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FOREWORD

Comprising the largest class of membrane-bound receptors, the G
protein-coupled receptors (GPCRs) also represent one of the most
prevalent gene families. These receptors mediate the biological ef-
fects of numerous hormones, neurotransmitters, chemokines, odor-
ants, and other sensory stimuli. These in turn control such diverse
physiological processes as neurotransmission, cellular metabolism,
secretion, cellular differentiation and growth, and inflammatory and
immune responses. In short, GPCRs are involved in a myriad of pro-
cesses in the human body relevant to health and disease. Conse-
quently, the GPCRs are targets of approx 70% of pharmacological
therapeutics and provide further important opportunities for the
development of new drug candidates with potential applications in
all clinical fields. Recent progress in GPCR research has proliferated
at a remarkable rate.

Structurally, GPCRs are characterized by a seven-transmembrane
a-helical (7TM) configuration of more than 25% homology, but de-
tailed structural knowledge is sparse. Of the three distant families of
vertebrate GPCRs, family A is by far the largest group, and includes
rhodopsin, adrenergic receptors, and the olfactory subgroups. The
receptors for the gastrointestinal peptide hormone family belong to
family B, whereas family C includes the metabotropic glutamate/
pheromone receptors. The recent availability of the structure of
rhodopsin has given a basis to better understand structure–function
relationships in other GPCRs. Subsequently, sequence-based predic-
tions and molecular modeling incorporating a multitude of results
from biochemical and biophysical analyses can now be scrutinized,
demonstrating some degree of success for these methods. Despite the
progress made in predicting the critical residues engaged in ligand
binding, particularly within the large family A, detailed structural
knowledge is still required for understanding the process of signal
transduction at a mechanistic level. Current work focuses on deter-
mining the structure of other GPCRs, on elucidation of their interac-
tions with ligands, and on conformational changes during their
activation process. There is significant hope that additional break-
throughs will occur in the near future.



The classical view that GPCRs function as monomeric entities has
been jarred by the emerging concept of GPCR dimerization. Ex-
amples of GPCRs that can be biochemically detected in homo- or
heteromeric complexes are being reported at an accelerated rate.
These findings have not only indicated that many GPCRs exist as
homodimers and heterodimers, but also that their oligomeric assem-
blies could have important functional roles. The important observa-
tion of GPCR dimerization came through the direct visualization of
rhodopsin dimers in native disk membranes by atomic force micros-
copy. The ability of GPCRs to specifically oligomerize may provide
some insight into how different receptor pathways influence each
other. The general acceptance of the existence of GPCR dimers is now
likely to have important implications for the development and
screening of a new class of drugs.

The G Protein-Coupled Receptors Handbook gives a broad overview
on the most recent progress in the rapidly evolving field of GPCR
research. It comes at a timely period because of the significant ad-
vances that have been made in the last few years in the understand-
ing of the structure and function of GPCRs.

Andreas Engel, PhD

M.E. Müller Institute, Biozentrum
University of Basel
Basel, Switzerland

Krzysztof Palczewski, PhD

Department of Ophthalmology
University of Washington School of Medicine

Seattle, WA

vi Foreword
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PREFACE

The intent of The G Protein-Coupled Receptors Handbook is to provide a
comprehensive overview of recent advances in the G protein-coupled
receptor (GPCR) field. From the basics of GPCR structure to dimeriza-
tion and drug discovery, this book reviews much of the recent advances
and current knowledge regarding GPCRs.

The first few chapters focus on the fundamentals of GPCR structure
and function. GPCR function is now known to be regulated by a number
of mechanisms: ligand-induced conformational changes, stabilizing
intramolecular interactions, pharmacological chaperones, and membrane
trafficking all play a role in regulating GPCRs. Specific ligand binding
causes changes in GPCR conformation, which ultimately result in the
activation of intracellular signaling cascades. Meanwhile, the inactive
state of the receptor is maintained by stabilizing intramolecular interac-
tions; disruption of these interactions is necessary for receptor activation.
Pharmacological chaperones play a role in GPCR folding and matura-
tion, and appear to be involved in a number of human genetic diseases.
Finally, membrane trafficking of GPCRs in endocytic and biosynthetic
pathways also contribute to the physiological regulation of GPCRs.

GPCRs are present in every cell and interact with a multitude of down-
stream effectors: heterotrimeric G proteins, regulators of G protein signal-
ing (RGS), arrestins, G protein-coupled receptor kinases (GRKs), and many
other GPCR interacting proteins. Heterotrimeric G proteins are among the
most important signaling transducers involved in GPCR activity, directly
coupling to the receptor and transmitting its information about activation/
inactivation to the cell. RGS proteins are involved in the regulation and ter-
mination of the signaling process. GRKs catalyze GPCR phosphorylation,
promoting receptor desensitization and internalization. Arrestins mediate
the desensitization and uncoupling of GPCRs from their G proteins, and
may also function as signal transducers. In addition, β-arrestin regulates the
sequestration, intracellular trafficking, degradation, and recycling of most
GPCRs. More than 50 other GPCR interacting proteins have been identified
that function as modulators of GPCR function at various stages of signaling.

The next section of this book explores our current understanding of
GPCR dimerization. The emerging concept of dimerization has modified
our views of GPCR structure, function, and regulation tremendously. The
existence of GPCR dimers has been demonstrated using biochemical



methods, such as co-immunoprecipitation, and biophysical approaches,
such as fluorescence (FRET) and bioluminescence resonance energy
transfer (BRET). Potential domains of GPCR dimerization have been de-
scribed using computational and experimental approaches. Functional
complementation studies have been used to analyze the basis, selectiv-
ity, and mechanisms of dimerization. It is now evident that dimerization
plays a role in receptor maturation, as many GPCRs have been shown to
dimerize prior to their trafficking to the cell surface. There is also some
evidence suggesting that dimerization alters the endocytotic and
postendocytotic trafficking properties of GPCRs. More importantly,
heterodimerization has been shown to modify the pharmacological prop-
erties of GPCRs; a finding that could have an enormous impact on the
future of drug design.

The final chapters of this book describe some of the most recent devel-
opments in the GPCR field, leading to advances in drug discovery.  It is
now thought that a number of GPCRs functionally interact as heterodimers
to mediate analgesic responses. Elucidating the role of GPCRs in mediat-
ing pain is also crucial to the development of superior analgesic drugs.
Thus, a new wave of drugs specifically targeting heterodimeric receptor
complexes may be on the horizon. Another important area of current re-
search consists of investigating the structural plasticity of receptor activa-
tion by examining the conserved motifs contributing to the overall receptor
structure (and variability among subtypes); this would confer ligand-bind-
ing specificity and, thus, could lead to the development of receptor-type
selective drugs. Finally, the last chapter describes the identification of natu-
ral ligands of orphan GPCRs, i.e., deorphanization. Orphan receptors may
represent an untapped drug target.  Understanding the evolutionary
diversity in GPCR ligand recognition is fundamental to understanding the
potential of GPCRs as therapeutic targets.

I thank all the authors for their timely and insightful contributions, the
series editors Helen Baghdoyan and Ralph Lydic for suggesting this book
as a part of their series, and Ms. Elyse O’Grady at Humana Press for keep-
ing things moving along. I also thank Noura Abul-Husn, Fabien DeCaillot,
and José Morón for their extensive input into the chapters. Finally, I am
grateful to Dr. Ivone Gomes for her excellent assistance throughout all of
the editing and formatting stages. From planning the list of chapters/
authors to the realization of this book, it has been a rewarding experience;
I hope this book will serve as a helpful guide for those who are interested
in learning more about the function and regulation of GPCRs.

Lakshmi A. Devi, PhD
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1
Structure–Function Relationships

in G Protein-Coupled Receptors

Ligand Binding and Receptor Activation

Dominique Massotte and Brigitte L. Kieffer

1. INTRODUCTION
G protein-coupled receptors (GPCRs) are integral membrane proteins that

form the fourth largest superfamily in the human genome, with more than 800
genes identified to date (1,2). Many of these receptors play key physiological
roles, and several pathologies have been associated with receptor functional
abnormalities (3,4). Therefore, GPCRs represent important targets for drug
design within pharmaceutical companies (5). Indeed, GPCRs mediate the ef-
fect of numerous ligands, including neurotransmitters, chemo-attractants, hor-
mones, cytokines, and sensory stimuli such as photons and odorants.

GPCRs were named for their common ability to associate with
heterotrimeric G proteins (Gαβγ). Binding of extracellular ligands with ago-
nistic properties initiates the signal transduction cascade by triggering con-
formational changes in the receptor that promote heterotrimeric G protein
activation (6,7). Following nucleotide exchange (guanosine diphosphate
[GDP] replacement by guanosine triphosphate [GTP]), the tightly associ-
ated Gα and Gβγ-subunits separate from each other and from the receptor.
Both components are then free to interact and modulate the activity of down-
stream elements of the signaling cascades, such as adenylyl cyclase, phos-
pholipases, mitogen-activated protein kinases (MAPKs), or calcium and
potassium ion channels. Signal transduction is tightly regulated by receptor
posttranslational modifications. Among them, receptor phosphorylation by
GPCR-specific and -nonspecific kinases modulates subsequent interactions
with several intracellular proteins involved in receptor internalization and
downregulation (8,9) or promoting growth factor receptor transactivation
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(10). Additional regulatory mechanisms ensue from the interplay of G pro-
tein subunits with regulators of G protein signaling (RGS) (11).

Tremendous progress has been accomplished within the past few years in
dissecting GPCR-mediated signal transduction pathways, but the molecular
mechanisms underlying ligand recognition and signal transduction through
the membrane are restrained by the lack of detailed receptor structures. To
date, only the three-dimensional (3D) structure of rhodopsin has been solved
at high resolution (12) because of the difficulty in producing large amounts
of concentrated integral membrane proteins, even in heterologous expres-
sion systems (13). Moreover, purification of GPCRs retaining structural
integrity requires defined compositions and ratios of lipids and detergents.
Additionally, GPCR size is fairly large (from approx 40 kDa to 200 kDa),
which further hampers their study. Altogether, these distinctive features have
prevented the acquisition of 3D structural information by means of crystal-
lography as well as nuclear magnetic resonance (NMR) techniques. Thus,
most of the structural information gathered to date derives from mutagenesis
studies or biochemical and biophysical approaches, to which models based
on the rhodopsin structure are now added. Our view depicts GPCRs as a
bundle of seven-transmembrane α-helices alternatively connected through
intracellular and extracellular loops. The N-terminal part of the receptor is
located on the extracellular side of the cytoplasmic membrane, whereas its
C-terminal counterpart faces the cytoplasm.

2. GPCR CLASSIFICATION
Few sequences are conserved among the GPCR superfamily, which is

often divided into six classes (see GPCR Database available at http://
gpcr.org/). Distinctive structural elements that characterize the three main
GPCR families (A, B, and C) are summarized in Fig. 1.

Class A receptors, also called rhodopsin-like receptors, comprise the larg-
est family of GPCRs. This class of receptors binds ligands from various
types, including small molecules such as biogenic amines as well as pep-
tides (see Subheading 4.). The overall homology among all class A recep-
tors is restricted to a limited number of highly conserved key residues in the
transmembrane regions, suggesting a critical role in the structural or func-
tional integrity of the receptor. Ligand binding to class A receptors is dis-
cussed in detail in Subheading 4.

Class B receptors, also called secretin-like receptors, include about 20
different receptors for various hormones and neuropeptides (2). Ligand bind-
ing involves both the N-terminus and extracellular loops of the receptor, and
to date, no evidence has been obtained regarding interactions occurring
within the transmembrane region of these receptors.
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In class C receptors, also known as metabotropic glutamate receptors,
ligand recognition is achieved through their very large extracellular domain
(300–600 residues). It is organized into two distinct lobes separated by a
cavity that binds the ligand in a “Venus flytrap” manner (14).

Fig. 1. The G protein-coupled receptor (GPCR) main families. A schematic rep-
resentation is shown for the three main GPCR classes (A, B, and C) with common
structural motifs to each family. The only common motif to class A, B, or C GPCRs
is a conserved cysteine residue on helix III and another in the second extracellular
loop 2. These cysteines are believed to be connected via a disulfide bridge. For class
A receptors (rhodopsin-like family), the most conserved amino acid of each helix is
indicated. A putative palmitoylation site is represented in the proximal part of the C-
terminus (   ). The DRY motif on helix III and the NPXXY motif on helix VII are
conserved among class A GPCRs (see details in Fig. 2A). Class B GPCRs (secretin-
like family) share a large amino terminus with conserved cysteine residues and dis-
ulfide bridges. Some proline residues are also conserved within the helical bundle,
but those residues are different from class A conserved prolines. Class C receptors
(metabotropic glutamate family) are characterized by a very large extracellular do-
main that binds the ligands. The highly conserved motif NEAK (NDSK in the case
of the GABA family) on the very short intracellular loop 3 is indicated.
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Classes D and E constitute two minor families that are present in fungi
and recently the frizzled/smoothened receptor family was added to the world
of GPCRs (15).

3. OVERALL TOPOGRAPHY OF CLASS A RECEPTORS

Despite limited sequence homology, class A receptors exhibit identical
structural organization, and their overall topography can be subdivided into
three main regions (Fig. 2A).

On the extracellular side, the N-terminal region is involved in ligand bind-
ing (see Subheading 4.) and possibly receptor activation (see Subheading
5.2.), whereas the extracellular loops represent important key elements for
peptide binding and play a role in receptor selectivity toward ligands (see
Subheading 4.3.).

The transmembrane core is comprised of a bundle of seven α-helices that
provide a hydrophobic environment critical for nonpeptide as well as small-
peptide ligand binding (see Subheadings 4.1. and 4.2.; Fig. 2B). It relays the
conformational changes induced upon ligand binding on the extracellular
side of the receptor to the intracellular architectural determinants that regu-
late activation of the signaling cascade (see Subheading 5.2.).

On the intracellular side, the loop regions contain key elements for either
direct or scaffolding–protein-dependent interactions with intracellular ef-
fectors (see Subheadings 5.4. and 5.5.). Additionally, posttranslational modi-
fications present in the C-terminal are likely to modulate both receptor
activation state and G protein coupling (see Subheading 5.3.) as well as to
participate in the regulation of receptor internalization and desensitization.

4. LIGAND BINDING IN CLASS A RECEPTORS

Countless studies have been performed on individual receptors that now
allow us to draw a fairly consistent picture of the precepts that govern ligand
binding to class A receptors. Information on critical determinants has been
experimentally obtained using site-directed as well as random mutagenesis,
receptor chimeras, and biochemical and biophysical methods. Such experi-
mental data were combined with computer modeling and were used to re-
fine the proposed models. This approach led to an improved template that
has been used for ligand-docking studies (3,16). One major outcome was
the notion that both the size and nature of the ligand drastically influence the
modalities and location of its binding. Hence, only some commonalities may
be extracted that are general among ligands or receptors.
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4.1. Binding of Small Ligands Within the Receptor
Transmembrane Regions

On the basis of the crystallographical information obtained for rhodopsin,
Ballesteros et al. (17) performed a detailed structural comparison of the D2
dopamine receptor with rhodopsin and concluded that the rhodopsin and bio-
genic amine receptors may be very similar, despite structural divergence in the
transmembrane helical bundle. Indeed, helix kinks at proline (Pro) residues or
helix binding or twisting at cysteine, serine, or threonine residues may slightly
modify the shape of the ligand-binding pocket and introduce the subtle differ-
ences required for class A receptors to bind a structurally diverse collection of
ligands. Conserved Pro-kinks in helices V,VI, and VII could adopt different
conformations that could significantly change the binding sites of different
GPCRs. Nonconserved Pro residues in helices II and IV or nonconserved cys-
teine/threonine/serine residues in helix III and other helices are another source
of potential structural divergence in the binding-site crevice. The authors pos-
tulated that GPCRs have evolved in a way that maintains their overall fold by
means of alternative molecular mechanisms (structural mimicry) that enable
localized variations within their binding sites suitable for recognizing a wide
variety of ligands. As a consequence, if the crystal structure of rhodopsin can
be used as a template for class A receptor modeling, the particular conforma-
tion of the binding site of a given receptor may require substantial refinement
to be accurately described at the molecular level.

However, some structural elements represent a very specific signature for
a receptor family. Catecholamines and related biogenic amines bind prima-
rily within the transmembrane region of their receptors. The identified bind-
ing crevice is outlined by residues from helices III, V,VI, and VII. This
binding pocket is common to both agonists and antagonists that likely
establish a salt bridge with a conserved aspartate residue on helix III at a
position analogous to D113 (3.08)1 in the β2-adrenergic receptor (AR).
Additional key interactions have also been identified that differ between
agonists and antagonists (6,18).

1Amino acids will be referred throughout the text according to the one-letter code. Residue
numbering in parentheses corresponds to the nomenclature introduced by Ballesteros and
Weinstein for amino acids located in the transmembrane region of the receptor. The first
number refers to the helix on which the residue is located. The second number indicates the
position of the residue relative to the most conserved amino acid on this helix to which an
arbitrary value of 50 is assigned. Residue 3.44 for example is located on helix III six amino
acids before the conserved arginine.
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Fig. 2. Schematic representation of class A receptors. (A) General organization
of the δ-opioid receptor as a prototype for class A receptors. The amino terminus is
located at the extracellular side of the membrane and the carboxy-terminus at the
cytoplasmic side. N-glycosylation consensus sequences are present (Y) on the N-
terminus. The conserved cysteines forming a disulfide bridge between helix III and
the extracellular loop 2 are indicated. Potential palmitoylation sites at the proximal
part of the receptor are represented (   ). Residues in the transmembrane region are
numbered according to the nomenclature of Ballesteros–Weinstein. Highly con-
served residues among class A G protein-coupled receptors (GPCRs) are indicated
by a grey circle with a thick black border. Important motifs are also located. Resi-
dues of the E/DRY motif on helix III are shown in white circles with a thick border.
Residues forming the basic X1BBX2X3B motif on helix VI are indicated by gray
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Based on the mutagenesis studies performed on GPCRs that bind cationic
amine neurotransmitters, the aspartate residue in helix III has become a sys-
tematic anchorage point for amine ligands in modeling studies. However,
opposite effects were observed when this assumption was tested on the μ-
and δ-opioid receptors, leading to the conclusion that the aspartate residue
in helix III is required for high-affinity binding of agonists to the μ-opioid
receptor, but not the δ-opioid receptor (19,20). Moreover, extensive mu-
tagenesis studies performed on the δ-opioid receptors involving peptides
and alkaloids acting as agonists as well as antagonists emphasized that the
determinants of the opioid receptor binding pocket differ among ligands,
despite the presence of a common subset (21). These data again underscore
that, although ligand binding in two closely related receptors shares consid-
erable similarities, it displays (on a very fine scale) many subtle differences
that preclude direct extrapolation from one set of data to another.

4.2. Ligand Binding to the Receptor Extracellular Regions

Unlike small ligands (photon, biogenic amines, nucleosides, eicosanoids,
lysophosphatidic acid, and sphingosine 1-phosphate), peptides bind to the
extracellular domains of the receptor. Determinants have been identified in
the receptor N-terminus that are essential for recognition of various peptides
( 90 amino acids), including oxytocin, vasopressin, endothelin, opioids, or
substance P. Moreover, the long extracellular N-terminus of the target re-
ceptor constitutes the primary high-affinity binding site of large glycopro-
tein hormones (  30 kDa) such as lutotropin/choriogonadotropin (LH/CG),
thyrotropin-stimulating hormone (TSH) or follitropin-stimulating hormone
(FSH). Upon ligand binding, this domain may undergo a conformational
change that allows secondary contacts with extracellular loop regions and
eventually leads to receptor activation (reviewed in refs. 6 and 22). Note-

Fig. 2 (From opposite page) squares. Residues forming the NPXXY motif on helix
VII are indicated by white diamond symbols. Several other important residues for
ligand binding and receptor activation mentioned in the text are also indicated in
the figure.

(B) Organization of the transmembrane helices as seen from the extracellular
side of the membrane. The helices are positioned according to the projection maps
of rhodopsin and are believed to be organized sequentially in a counterclockwise
manner. Conserved amino acids through class A receptors are indicated.
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worthy peptides of rather small size (  40 amino acids) show a mixed bind-
ing profile through additional transmembrane anchoring in addition to their
primary interaction with the extracellular loops (3,5,23).

Studies using point mutants and receptor chimeras clearly showed that
the extracellular loops are also involved in receptor selectivity. Extracellu-
lar loop 2 appears to be a critical determinant to discriminate among α1-AR
subtypes (24). In the case of μ-, κ-, and δ-opioid receptor types, extracellu-
lar loop 1 contains critical elements for μ-selectivity (25), and extracellular
loop 2 contains critical elements for κ-selectivity (26). Extracellular loop 3,
together with the external parts of helices VI and VII, is involved in δ-ligand
selectivity by enhancing the affinity of the receptor for δ-ligands (25,27–
29). Additionally, this region also contains important determinants for μ-
agonist selectivity (30) and for κ-selective alkaloids (28).

4.3. Role of Extracellular Loop 2 and Conserved
Disulfide Bridge in Small-Ligand Binding

Although binding of small ligands within the transmembrane core of the
receptor is widely acknowledged, a possible involvement of the second
extracellular loop has also been proposed for small ligands; however, this
involvement is still under debate. Interestingly, two antagonists of the a1a-
AR, phentolamine and WB4101, exhibit unusual binding features in which
three amino acid residues localized in extracellular loop 2 appear to be criti-
cal. This observation suggests a binding profile involving extracellular re-
gions of the receptor that is more similar to what has been described for
peptide hormone receptors (24). In the high-resolution bovine rhodopsin
structure, the second extracellular loop folds down into the binding-site crev-
ice to form a lid over retinal (12), and one may postulate a similar extracel-
lular loop 2 structure exists in at least some class A receptors. Using the
substituted-cysteine accessibility method (SCAM), Shi et al. (31) concluded
that this may indeed be the case for the D2 dopamine receptor. Another
argument in favor of a critical role for extracellular loop 2 comes from the
observation that several antibodies directed to extracellular loop 2 induced
AR and bradykinin receptor (BR) activation (32). Nearly all class A recep-
tors show the presence of two conserved cysteine residues that are believed
to form a disulfide bridge connecting helix III and extracellular loop 2. How-
ever, the actual presence of the bridge has been established only in a limited
number of cases, including rhodopsin (12), μ-opioid (33), leukotriene LTB4
(34), muscarinic m1 (35), platelet thromboxane (36), TSH (37), or gonadot-
ropin-releasing hormone (GnRH) (38) receptors. This disulfide bond may
be crucial for both the structural integrity and function of many GPCRs. Its
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removal by mutagenesis severely disrupted ligand binding to muscarinic
acetylcholine (35), opioid (33), and angiotensin (AT)1 (39) receptors and
destabilized the high-affinity state of the β2-AR (40). The disulfide bridge
likely dictates a relatively rigid architecture by constraining the extracellu-
lar loop. This, in turn, shapes the ligand-binding site, rather than contribut-
ing directly to ligand binding.

4.4. Relative Distribution of Agonist- and Antagonist-Binding Sites

Interestingly, antagonists are small molecules that invariably bind within
the transmembrane region of class A GPCRs. They prevent agonist binding
and subsequent receptor activation whether the agonist is a peptide or a small
molecule. The generic antagonist binding pocket is located in a region
flanked by helices III, V, VI, and VII, in which residues establish the main
side-chain interactions with the ligand (6,17,18). Receptor contacts with
peptide agonists and nonpeptide antagonists do not substantially overlap at
atomic levels in the tachykinin receptor NK1 (18,41), AT1 (3), or opioid
receptors (21). Therefore, competitive antagonism would primarily arise
from a steric exclusion mechanism (3,18).

5. RECEPTOR ACTIVATION UPON AGONIST BINDING

This section briefly reviews the models currently applied to describe
GPCRs modus operandi. Attempts are made to draw a picture of the
molecular events that occur upon agonist binding that lead to G protein acti-
vation. The role of palmitoylation is discussed. Finally, modulation of the
interactions with intracellular partners is envisaged in the light of the recep-
tor susceptibility to adopt multiconformational states.

5.1. Ternary Complex Models of Receptor Activation

In the original ternary complex model (TCM) described by De Lean et al.
(42), an agonist-bound activated receptor forms a complex with a G protein,
resulting in its activation. This corresponds to a simple example of a recep-
tor isomerization mechanism in which ligand-binding (A) promotes a con-
formation of receptor (R) that couples to and activates a G protein (G). The
next level of progression toward present GPCR models involved the incor-
poration of different receptor conformations into the scheme. The demon-
stration of constitutive GPCR activity by Costa and Herz (43) indicated that
receptors could couple to and activate G proteins in the absence of ligand.
This required modification of the original TCM, which did not enable spon-
taneous formation of the R*G species; this modification resulted in the
extended TCM (ETC) (ref. 44; Fig. 3A). According to the ETC, the receptor
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exists in an equilibrium between an inactive conformation (R) and an active
conformation (R*). In absence of agonist, the inactive form R prevails, but a
certain fraction of receptors spontaneously assume the R* state because of
the low-energy barrier separating the two conformations. Agonists are pre-
dicted to bind with highest affinity to R* and to shift the equilibrium to a
larger proportion of receptors under the active conformation. Conversely,
inverse agonists that have the ability to inhibit agonist-independent activity
(also called constitutive activity) stabilize the inactive conformation R,
thereby shifting the equilibrium away from R*. On the other hand, neutral
antagonists do not influence the equilibrium between R and R*.

Fig. 3. Ternary models of G protein-coupled receptor (GPCR) activation. (A)
Extended ternary complex model (ETC) proposed by Samama et al. (64). Accord-
ing to this model, the receptor can spontaneously adopt either an inactive (R) or an
active (R*) conformation. Only the activated form (R*) of the receptor can interact
with the G protein (G) in the presence or the absence (constitutive activity) of an
agonist (A). (B) Cubic ternary complex model (CTC) proposed by Weiss et al. (65).
In this more thermodynamically complete representation of GPCR activation, both
the inactive state (R) and the active state (R*) of the receptor are allowed to interact
with the G protein (G).
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In 1996, Weiss et al. (45) proposed a more thermodynamically complete
model called the cubic TCM (CTC; Fig. 3B). In this model, both the active
R* and the inactive R conformations of the receptor are allowed to interact
with the G protein, whereas in the ETC model only the active R* receptor
state could interact with the G protein. It is presently unclear which of these
models better predicts and describes experimental findings with GPCRs. On
the practical side, the ETC model has fewer parameters and is simpler to
use, whereas the CTC model is more comprehensive but has a greater num-
ber of nonestimatable parameters. The choice for the appropriate model may
be dictated by the importance of the inactive agonist–receptor–G protein
(ARG) state: GPCR systems in which the ARG state is negligible can be
accurately described by the ETC model, whereas other systems in which the
ARG species plays a role (e.g., cannabinoid receptors [46]) require use of
the CTC model (ref. 47; Fig. 3).

Increasing evidence points to the existence of multiple conformational
states for GPCRs (see Subheadings 5.3. and 5.4.). Additionally, experimen-
tal data indicate that neither the ETC nor the CTC model accurately describes
the complex behavior of GPCRs. In an attempt to embrace the multiplicity
of receptor conformations, multistate models in which the receptor sponta-
neously alternates between multiple active and inactive states have been pro-
posed (48,49).

5.2. What Do Constitutively Active Mutants and Rhodopsin-Based
Models Tell Us About Activation Mechanisms in Class A
Receptors?

Some mutations appear to enhance basal activities of GPCRs and, there-
fore, are believed to mimic the agonist activity and to favor the active state
of the receptor. This, in turn, facilitates productive interaction with intra-
cellular G proteins. These mutant receptors are currently called constitu-
tively active mutants (CAMs). The δ-opioid receptor was the first GPCR
described as able to modulate second messengers in the absence of agonist
(43). A fairly large number of CAMs were incidentally identified from
mutagenesis studies on many different GPCRs. These CAMs contributed
massively to the set of data that helps explain the mechanisms of receptor
activation. The current hypothesis states that CAMs release the conforma-
tional constraints of the GPCR inactive state. This was first postulated for
the α1B-AR. Mutation of alanine 293 (A 6.34) and replacement by any of the
19 other amino acids generated a CAM, suggesting that the gain of function
resulted from the loss of an intramolecular constraint (50). Indeed, the cur-
rent belief is that agonist binding to a wild-type receptor introduces new
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molecular contacts that replace the intramolecular interactions constraining
the receptor in an inactive conformation. This results in a conformational
switch and subsequent receptor activation. However, many CAMs are likely
activated by simple disruption of interactions that exist within the receptor
inactive conformation, rather than by formation of new intramolecular
bonds. Therefore, it should be remembered that the actual structure adopted
by CAMs is only an approximation of the real active conformation of the
receptor (for a review, see ref. 51).

The crystal structure obtained for rhodopsin corresponds to the inactive
form in which 11-cis retinal is bound, and this serves as a template to postu-
late movement of helices III, VI, and VII upon light activation. Class A
GPCRs share a good number of conserved structural determinants with
rhodopsin. Therefore, the high-resolution structure of rhodopsin has been
used as template for GPCR modeling of the transmembrane domains, and
the helix movement model has been extended to class A receptors as a com-
mon mechanism of activation. According to this hypothesis, ligands acti-
vate GPCRs by disrupting the networks of intramolecular contacts that
stabilize the ground state. This modifies the conformation of the receptor so
that it optimally exposes epitopes that bind and stabilize a conformation of
the G protein close to the transition state for GDP–GTP exchange and G
protein activation.

Despite the availability of a high-resolution structure of rhodopsin at 2.8
Å, the actual mechanism used to disrupt stabilizing intramolecular interac-
tions remains elusive. Evidence for movements of helix VI relative to helix
III have been essentially provided by several different approaches that were
mostly applied to rhodopsin. Biophysical studies included Fourier trans-
formed infrared resonance spectroscopy (FTIR), surface plasmon resonance
(SPR), tryptophan ultraviolet (UV)-absorbance spectroscopy, and electron
paramagnetic resonance spectroscopy (EPR) (reviewed in ref. 52). Spectral
changes were also measured upon N,N’-dimethyl-N(iodoacetyl)-N’-(7-
nitrobenz-2-oxa-1,3-diazol-4-yl)ethylene-diamine (IANBD) binding to cys-
teine residues in the β2-AR (52,53). Additionally, several indirect strategies
were used, including generation of bis-histidine metal ion-binding sites be-
tween cytoplasmic extensions of helices III and VI in rhodopsin receptors
(54), β2-ARs (55), and NK1 receptors (41). Cysteine accessibility was also
determined in a β2-AR CAM (56) and random mutagenesis was performed
on muscarinic m5 (57), δ-opioid (58), AT1A (59), and C5A chemo-attrac-
tant (60) receptors.

In rhodopsin and biogenic amine receptors, one key event in the activa-
tion process may involve arginine (R3.50) in the highly conserved E/DRY
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motif at the cytoplasmic side of helix III (Fig. 1). Protonation of this residue
would disrupt the ionic interaction with a glutamic acid (E6.30) at position
X1 of a basic “X1BB X2 X3B” motif (where B is a basic amino acid and X is
a nonbasic amino acid) located at the junction region between intracelullar
loop 3 and helix VI (Fig. 2A). Mutagenesis studies have established this
mechanism for 5-HT2A receptors (61), H2 histamine receptors (62), α1B-
ARs (63), and β2-ARs (64). Mutagenesis of residues clustered at the junc-
tion between helix 3 and intracellular loop 2 in the muscarinic m5 receptor
suggested that some of the amino acids adjacent to the E/DRY motif are
involved in maintaining the receptor in an inactive state but also alternate
with residues required for G protein coupling (65). A similar role in G pro-
tein activation was postulated for the N-terminus of intracellular loop 2 in
rhodopsin (66) and more recently in the V1A vasopressin receptor (67). 1H
NMR analysis established a similar structure for the vasopressin and rhodop-
sin intracellular 2 loops (67) but was distinct from the α2A-AR intracellular
loop 2 conformation (68). This is of particular interest, because unlike the
other two, the α2A-AR is not activated by mutation of the aspartate in the
DRY motif and therefore diverges from the consensus model described ear-
lier (69).

In addition to the R3.50–E6.30 salt bridge, the residue X3 (6.34) of the
basic motif is hydrogen-bonded to the arginine R3.50 in rhodopsin (12).
Introduction of a lysine at position X3 revealed that the residue at position
6.34 is also involved in constraining biogenic amine receptors in an inactive
form in the α1B-, α2A-, β1-, and β2-ARs and in the 5-HT1B-, 5-HT2A-, and 5-
HT2C-receptors (refs. 61 and 70 and references therein). However, this strat-
egy may not generalize across all receptors. In the case of opioid receptors,
the ionic interaction postulated earlier between E6.30 (X1 residue of the basic
motif) and R3.50 (in the DRY motif) cannot occur, because the glutamate
residue E6.30 on helix VI is replaced by a leucine. Moreover, mutation of
T6.34 into a lysine does not activate the μ-opioid receptor (70). These data
show that the actual interactions depend on the residues and local environ-
ments at the intracellular ends of helices III, V, and VI and that sequence
differences in this region are likely to support locally different forms of ac-
tivation mechanisms (71). Interestingly, in the δ-opioid receptor R258
(6.32), the second basic residue of the “X1BB X2 X3B” motif would be in-
volved in an ionic bridge with E323 (7.43) on helix VII (58).

A group of mutations comprising tryptophan W173 (4.50) that is strictly
conserved in all rhodopsin-like GPCRs (despite its location on the most vari-
able helix IV) induced constitutive activation of the δ-opioid receptor (58).
This cluster of mutations could either directly or indirectly affect the orien-
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tation of W173, which would play a central role at the helix II–helix IV
interface in controlling the orientation and outward motion of helix III dur-
ing the activation process. W173 is also involved in opioid ligand binding
(21) and has been located within the binding crevice in the D2 dopamine
receptor (72). Because of its high conservation, W173 may represent a key
switch for helix III movements in most GPCRs.

Chen et al. (73) reported that a phenylalanine F303 (6.44) on helix VI is a
key residue involved in α1B-AR transmembrane movement that leads to G
protein activation. This residue is highly conserved among GPCRs and is
located several residues below those identified as being important for ligand
interaction and receptor activation in many GPCRs. A similar role has been
assigned to the equivalent phenylalanine residue in chemo-attractant C5A
(60), muscarinic m5 (57), and cholecystokinin receptors (74). In the musca-
rinic m1 receptor, the conserved F374 (6.44) in helix VI is part of a network
of interactions involving a leucine residue L116 (3.43) in helix III and the
asparagine N414 (7.49) of the NPXXY motif on helix VII (7, 75). Addition-
ally, an important and specific interaction occurs in rhodopsin between the
NPXXY motif and the methionine M257 (6.40) on helix VI (76). In the δ-
opioid receptor, mutation of the tyrosine Y318 (7.53) of the NPXXY motif
into a histidine or replacement of methionine M262 (6.36) in helix VI by a
threonine led to constitutive activity (58). Interestingly, a residue equivalent
to M262 is highly conserved among the peptide receptor family, and its
mutation in the LH receptor is associated with precocious puberty in hu-
mans (77). These data support the view that the conserved NPXXY motif
plays a central role in the conformational switch that leads to receptor acti-
vation and underscore the importance of networks of hydrophobic interac-
tions in maintaining GPCRs in the inactive state. Following agonist binding,
these networks of Van der Waals interactions may be disrupted, resulting in
the removal of the hydrophobic latch between helices III, VI, and VII. This,
in turn, may induce a rotation of helices VI and VII relative to helix III.
From the previous examples, it can also be concluded that although activa-
tion of class A GPCRs may be associated with similar conformational
changes, different receptors may employ specialized sets of intramolecular
interactions to produce these changes.

A whole-receptor random mutagenesis strategy applied to the δ-opioid
receptor identified 30 mutations distributed throughout the receptor se-
quence and allowed researchers to draw a general picture of the events lead-
ing to receptor activation (58). The N-terminus, extracellular loop 3, and
upper portions of helices VI and VII constitute an outward platform that
responds to extracellular ligands and initiates transmembrane signaling.
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Movement of at least helices VI and VII throughout the transmembrane core
then follows, in addition to local re-arrangement of the helices III, VI, and
VII which are proposed for rhodopsin and several biogenic amine receptors.
Again, a common structural switch might involve the cytoplasmic ends of
helices III and VI identified in several class A receptors (histamine H2 re-
ceptors, μ-opioid receptors, ARs, and muscarinic receptors).

Notably, this study identified five amino acid modifications in the N-
terminal domain that enhanced spontaneous activity of the δ-opioid receptor
(Q12L, D21G, P28L, A30D, and R41Q) (58). Each mutation substantially
modified the chemical nature of the amino acid side-chain, introducing or
deleting ionic charges or modifying hydrophobicity and structural con-
straints. This suggests that the N-terminal portion of the receptor is folded
as a domain whose structure and spatial orientation influences receptor func-
tion. This hypothesis is consistent with the rhodopsin structure, in which the
N-terminal domain is folded as a β-sheet and covers the helical bundle like
a lid (12). Presently, functional activity of the N-terminal region has been
investigated only in glycoprotein hormone GPCRs. For example, the N-ter-
minal tail of the TSH receptor has been proposed to bind spontaneously to
the empty receptor and act as an inverse agonist favoring the off-state (78).
The present data suggest that the short N-terminal domain of some class A
GPCRs may also modulate the on–off transition.

5.3. Palmitoylation: A Modulator of Receptor Activity

Palmitoylation is a posttranslational modification that results in the
attachment of a 16-carbon-long saturated acyl chain to a cysteine residue.
Unlike other acyl chain additions, palmitoylation is a dynamic process. Sev-
eral studies have suggested that dynamic palmitoylation could modulate re-
ceptor activity by influencing the coupling to G proteins as well as the
receptor phosphorylation state.

Mutations of C-terminal cysteine residues have been reported for several
GPCRs, and a variety of receptor functions were perturbed following these
mutations (79–81). These cysteine residues are often believed to be
palmitoylated and, therefore, are involved in the formation of a fourth intra-
cellular loop. Dynamic modulation of the local hydrophobicity through
palmitoylation may uncover or mask receptor domains that govern interac-
tions with intracellular effectors such as heterotrimeric G proteins or recep-
tor kinases. For example, depalmitoylation of rhodopsin increased its ability
to activate Gtα-light-dependent GTPase activity (82). Crystallographical
data suggest that helix VIII serves in rhodopsin as a membrane-dependent
conformational switch that may adopt a helical structure in the inactive state
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or a looplike conformation upon rhodopsin activation. Thus, one can specu-
late that palmitoylation of the two rhodopsin cysteine residues might modify
the orientation of helix VIII on the membrane surface (83).

Presently, the impact of C-terminal cysteine mutations on the interactions
between receptors and G proteins appears to be receptor type-dependent.
Coupling to G proteins was either nonaffected or decreased (ref. 79 and
references therein; refs. 81 and 84). The lack of palmitoylation subsequent
to cysteine replacement was established only in some cases. Therefore, some
of the effects observed following cysteine mutagenesis may result either
from the loss of the cysteine residues themselves or from the modification
they carry.

Substitution of the conserved palmitoylated cysteine residues 328/329
into serines resulted in constitutive activation of the 5-HT(4a) receptor, a re-
ceptor coupled to Gαs. More recently, mutation of cysteine C328 into an
arginine residue in the δ-opioid receptor as well as replacement of cysteines
348/353 by alanine residues in the μ-opioid receptor conferred agonist-in-
dependent activity to both Gαi/o-coupled receptors (58,85). Although a
definite link to the receptor palmitoylation state is still needed for opioid
receptors, the data suggest a common role of these residues in the control of
receptor activation.

Interestingly, in some cases the lack of palmitoylation appears to have
differential effects on the various signaling pathways engaged by a given
receptor. A palmitoyl-deficient mutant of the human endothelin (ET)A
receptor was reconstituted in phospholipid vesicles together with various G
proteins. This mutant was less effective in stimulating Giα and Gqα than the
wild-type counterpart, but its ability to stimulate Goα was not affected (86).
Similarly, Horstmeyer et al. (87) showed that the unpalmitoylated ETA re-
ceptor was still able to couple to Gαs, but no longer to Gαq, in Chinese
hamster ovary (CHO) cells. On the other hand, an unpalmitoylated triple
cysteine mutant in positions 402, 403, and 405 of the receptor ETB was un-
able to couple to Gαi or Gαq proteins. However, the presence of the
palmitoylated cysteine 402 was sufficient to promote coupling to Gαq but
not Gαi. In the latter case, additional downstream carboxy-terminal elements
appear to be required (88).

Phosphorylation by numerous kinases, including protein kinase A (PKA)
and GPCR kinases (GRKs), initiates a cascade of events that leads to recep-
tor desensitization (see Chapter 7). In addition to a role in receptor–G pro-
tein coupling, palmitoylation has been proposed as a key determinant in
receptor desensitization. Increased palmitate turnover rates upon agonist
stimulation has been reported for numerous receptors, including the β2-ARs
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(89,90), α2A-ARs (91), muscarinic m2 (92), and 5-HT4a receptors (84). Sev-
eral studies linked a lack of palmitoylation to an increased level of receptor
phosphorylation. Mutation of the palmitoylated cysteine residue improved
PKA phosphorylation of the β2-AR (93) and GRK phosphorylation of the
adenosine A3 receptor (94). Conversely, introduction by mutagenesis of a
PKA phosphorylation consensus motif at a palmitoylation site of the D1
dopamine receptor gave rise to a palmitoylation-deficient mutant that was
constitutively desensitized (79). Moreover, palmitoylation at cysteine C356
and phosphorylation at tyrosine Y352 appear mutually exclusive in the
bradykinin B2 receptor, maybe as a result of the close vicinity of the two
residues (95). Therefore, palmitoylation could be seen as a molecular switch
regulating the accessibility of phosphorylation sites involved in receptor
downregulation. As mentioned previously, agonist stimulation increases
palmitate turnover, thus promoting receptor depalmitoylation (89,90). This,
in turn, would unmask phosphorylation sites that render them readily acces-
sible for phosphorylation and would provide a link to receptor internaliza-
tion and desensitization. Interestingly, substitution of the carboxy-terminal
cysteines by glycine residues decreased both the basal- and agonist-induced
level of phosphorylation of the V1a vasopressin receptor that was nonethe-
less internalized at a faster rate, suggesting receptor-specific effects (81).

Notably, additional palmitoylation sites have been postulated in the intra-
cellular loops for the rat μ-opioid receptor (96) and the V1a vasopressin re-
ceptors (81) besides those identified in their C-terminal region; however, no
functional role has been assigned to them yet.

5.4. Receptor Multiple Conformations and G Protein Coupling

It was long-believed that a given GPCR interacts with a particular G pro-
tein or a given family of G proteins. However, accumulating evidence has
now clearly indicated that several GPCRs can simultaneously interact with
G proteins that belong to different families and can activate different signal-
ing cascades—some of which exert opposing effects (for a review, see ref.
97). The efficacy of coupling to the various G proteins may then vary ac-
cording to the receptor type and the interacting G protein but also depends
on the agonist.

To date, 23 Gα-subunits have been identified that are classically divided
into four different families: Gαi/o, Gαs, Gαq/11, and Gα12. Six β- and 11 γ-
subunits that are differentially expressed have also been isolated (e.g., β1γ2
are ubiquitous, whereas β1γ1 are restricted to visual cells [98]). Conse-
quently, the heterotrimeric combinations that can be observed are depen-
dent on the expression pattern of each of the three components. This implies
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that the actual coupling of a GPCR to a given heterotrimeric G protein may
vary among cells, because it is highly dependent on both the availability of
the subunits in a given cell as well as their location in close vicinity to the
receptor.

Availability of α,β and γ-subunits is not the only factor that influences
the type of coupling that will occur between a given receptor and
heterotrimeric G proteins. Indeed, determinants that govern the choice of
the interacting partners must be present on the receptor. A very large num-
ber of studies based on point mutations, chimeras, and synthetic mimetic
peptides have pointed to intracellular loops 2 and 3 and the proximal region
of the C-terminus as key regions for interaction with and activation of G
proteins. Despite a plethora of data, no consensus motifs could be identified
as a signature that reflects the interaction of the receptor with one of the four
families of Gα proteins (97,99). Fidelity of coupling to a single G protein
seems to require a combination of distinct intracellular regions on both in-
tracellular loops 2 and 3 (65,100), but the exact molecular determinants that
allow the receptor to distinguish among the various G protein subunits re-
main unclear.

Recently, Slessareva et al. (101) showed that closely related GPCRs
achieve selective coupling through multiple and distinct domains located on
the G protein α-subunits. This suggests that coupling selectivity ultimately
involves subtle and cooperative interactions among various domains on both
the G protein and the associated receptor; therefore, multiple conformational
states likely exist for a given receptor. Presumably, the various conforma-
tions adopted by the receptor are also directly linked to the nature of the
agonist. Multiple G protein-coupled states of the β2-AR were evidenced us-
ing various guanylyl nucleotide analogs (102). Moreover, changes in the fluo-
rescence of a reporter group born by a purified β2-AR were monitored
following binding of agonists; these revealed that the extent of changes de-
pended on agonist efficacy (103). Therefore, a given agonist induces particu-
lar structural modifications within the receptor that will ultimately contribute
to the selectivity of the coupling with the G protein. Experimental evidence
was obtained when activation profiles of a Gαi1- or a Gαi2-subunit in fusion
with the μ-opioid receptor were compared upon binding of different ago-
nists. The activation profile of the fused Gαi1-subunit closely resembled that
observed for the wild-type receptor, which interacts freely with the pool of G
proteins present in the cell, whereas activation of the fused Gαi2-subunit was
only promoted by a very limited number of the agonists tested (104). Simi-
larly, differential activation of Gαo1 and Gαi1 was observed with the δ-opioid
agonist DADLE (105). Recently, plasmon–waveguide resonance spectros-
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copy experiments using the δ-opioid receptor confirmed that the affinity of
the receptor toward the G protein depends on the agonist, antagonist, or in-
verse agonist nature of the ligand prebound to the receptor. Moreover, the
selectivity of the coupling toward a given Gα-subtype within the Gαi/o-fam-
ily was demonstrated to depend on the agonist DPDPE (106). Upon cat-
echolamine binding, the β2-AR undergoes transitions to two kinetically
distinguishable conformational states that were correlated with biological
responses in cellular assays. These results support a mechanistic model for
GPCR activation in which contacts between the receptor and structural de-
terminants of the agonist stabilize a succession of conformational states with
distinct cellular functions (107). The response evoked by the tachykinin NK2
receptor also differed if the receptor bound the complete form of NKA or the
naturally occurring truncated NKA 4–10. NKA elevated intracellular cal-
cium level and stimulated cyclic adenosine monophosphate (cAMP) produc-
tion, whereas NKA 4–10 only affected calcium concentrations. The authors
also demonstrated that PKA activation diminished cAMP production,
whereas protein kinase C (PKC) activation facilitated the switch from cal-
cium response to cAMP production. To account for these observations, mul-
tiple active and desensitized conformations with low, intermediate, or high
affinities and with distinct signaling specificities were assumed for the NK2
receptor (108). Similarly, PKA-mediated phosphorylation of the β2-AR
switched coupling from stimulatory Gαs to inhibitory Gαi/o protein (109).

Other mechanisms have been proposed to explain coupling to different
pathways. Alternative splicing at the C-terminal region of the receptor may
be one additional determinant of receptor–G protein selectivity. In some
cases, it also modifies coupling specificity. The strict coupling to Gαs ob-
served in the case of the 5-HT4a receptor was enlarged to the Gαi/o family in
the 5-HT4b variant (110). Similarly, the prostaglandin receptors (111,112)
distinguish themselves by their affinity for different G protein families. RNA
editing in intracellular loop 3 of the 5-HT2c receptor also affected coupling
selectivity and efficiency (113). Additionally, G protein coupling selectiv-
ity was reported to be modified by μ- and δ-opioid receptors (114,115), AT1
receptors and B2Rs (116), or CCR2/CCR5 (117) heterodimerization (see
Part III).

5.5. Interaction With Intracellular Effectors Other Than G Proteins

Within the scope of proteomics, an increasing number of proteins were
identified that interact with intracellular loops or with the carboxy-terminal
tail of GPCRs (see Part II). Most of the partner candidates have been
extracted from yeast two-hybrid screens, glutathione-S-transferase (GST)
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pulldown assays, or gel overlays. Some possess enzymatic properties, in-
cluding receptor specific (GRK) or nonspecific (PKA, PKC) kinases, nitric
oxide synthase, calmodulin, or small G proteins such as Arf or RhoA. Oth-
ers are scaffolding proteins that act as adaptors, including β-arrestin 1/2,
MUPP-1, AKAP 79/250, NHERF 1/2; these possess several important func-
tions. They participate in the targeting of GPCRs to specific subcellular com-
partments but are also responsible for the clustering of these receptors with
various effectors. Finally, interacting proteins can regulate GPCR functions
in an allosteric manner (for recent reviews, see refs. 10, 118, and 119). In
several cases, receptor interactions with these types of molecules were
shown to be ligand-dependent (118,120).

6. CONCLUSIONS

Our knowledge of GPCR structure and function has greatly improved
over recent years. The structure at high resolution obtained for rhodopsin
has confirmed many of the former assumptions based on mutagenesis, bio-
chemical, and biophysical studies. The overall structure of GPCRs—espe-
cially those from class A—definitely appears to match that of rhodopsin
fairly well. However, the structure that has been obtained for the visual pig-
ment corresponds to the inactive state of the protein, and many aspects of
the receptor function remain unsolved. In particular, modeling combined to
structure–activity studies of class A GPCRs has revealed that despite a com-
mon overall structure, the fine-tuning of ligand binding, receptor activation,
and interaction with intracellular partners is fully receptor-dependent. Fur-
thermore, the nature of the ligand appears to be a crucial element as well.
Altogether, this suggests that a thorough understanding of the mechanisms
underlying receptor activation and subsequent signal cascade initiation cor-
responds to unique equations in which both the ligand and the receptor type
are critical factors. Moreover, the structure of rhodopsin brings insights into
only the transmembrane region of the receptor. This leaves a wide gap in the
case of GPCRs, where ligand binding is largely assumed to be at the extra-
cellular domains of the receptor and underscores the need for a detailed pic-
ture of each receptor of interest. This will require production of large
amounts of receptors purified to homogeneity. Although 3D crystals will
provide static pictures of the receptor, biochemical and biophysical studies
will bring dynamic information that is needed to accurately describe and
explain GPCR activation. Therefore, despite the tremendous progress made
over recent years, much remains to be deciphered, and, to date, a full under-
standing of GPCR plasticity remains beyond our reach.
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Molecular Mechanisms Involved

in the Activation of Rhodopsin-Like
Seven-Transmembrane Receptors

Peng Huang and Lee-Yuan Liu-Chen

1. INTRODUCTION

1.1. Seven-Transmembrane Receptors

Seven-transmembrane receptors (7TMRs) comprise a large family of
membrane-bound proteins that share a unifying signal transduction mecha-
nism (i.e., upon activation, these receptors signal through G proteins). These
receptors are involved in a vast variety of physiological functions, including
neurotransmission, function of exocrine and endocrine glands, smell, taste,
vision, chemotaxis, embryogenesis, development, human immunodeficiency
virus (HIV) infection, oncogenesis, cell growth, and differentiation. More
recent studies indicate that these receptors are also associated with and sig-
nal through other molecules (1). Therefore, it is more appropriate to use the
term 7TMR than G protein-coupled receptors (GPCRs).

To date, rhodopsin is the only receptor of the superfamily for which the
high-resolution structure has been determined (2,3). In 1993, Shertler et al.
(2) published a project map of the bovine rhodopsin at 9 Å resolution in two
dimensions. In 2000, Palczewski et al. reported the structure of bovine
rhodopsin in ground (inactive) states at 2.8 Å resolution in three dimensions
(3,4). Both reports showed the seven helices of rhodopsin traversing the
plane of the membranes in a nonparallel manner, with some transmembranes
(TMs) being tilted, an extracellular N-terminal domain, an intracellular C-
terminal domain, and three extracellular loops and three intracellular loops
connecting the helices (Fig. 1). In the proximal region of the C-terminal
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Fig. 1. Three-dimensional crystal structure of rhodopsin with bound detergent
and amphiphile molecules. Helical portions of the protein, including the seven TMs,
are shown as blue rods, and β-strands are shown as blue arrows. The polypeptide
connecting the helices appears as blue coils. A transparent envelope around the
protein represents the molecular surface. The dark blue ball-and-stick groups at the
bottom of the figure denote carbohydrate groups attached to the protein. Two
palmitoyl groups covalently attached to the protein are shown in green.
Nonylglucoside and heptanetriol molecules located near the hydrophobic surface
of the protein are shown in yellow. (Reprinted from ref. 4 with permission of the
American Chemical Society, copyright 2001.)
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domain, there is a short helix, helix 8 (H8), parallel to the plane of the plasma
membranes (Fig. 1). It is generally accepted that 7TMRs share the structure
of the 7-TM bundle (5,6).

In the human genome, there are three major families of 7TMRs (see refs.
7 and 8 for a classification scheme): (a) rhodopsin and rhodopsin-like recep-
tors (approx 200) and odorant and taste receptors (several hundreds); (b) glu-
cagons/vasoactive intestinal polypeptide/calcitonin receptors (approx 25);
and (c) metabotropic glutamate receptors, γ-aminobutyric acid (GABA)B re-
ceptors and chemosensors (approx 20). Within each family, there is at least
25% homology within the 7-TMs and a distinctive set of highly conserved
residues and motifs. The rhodopsin family of 7TMRs, which constitute
approx 90% of all 7TMRs (4), are the most extensively studied.

1.2. Numbering Schemes for Rhodopsin-Like 7TMR Sequences

Two residue-numbering schemes are used throughout this chapter: the
generic numbering scheme of Ballesteros and Weinstein (9) and the residue
numbers in the amino acid sequence of the particular receptor being dis-
cussed. According to the generic nomenclature, amino acid residues in TMs
are assigned two numbers (N1 and N2). N1 refers to the TM number. For
N2, the most conserved residue in each TM is assigned 50, and the other
residues are numbered in relation to this conserved residue, with numbers
decreasing toward the N-terminus and increasing toward the C-terminus.
The receptors of the rhodopsin family are characterized by the presence of
highly conserved “fingerprint” residues (8,10), including N1.50 in the TM1;
D2.50 in the TM2; the DRY(3.49–3.51) motif in the TM3; W4.50 in the
TM4; and P5.50, P6.50, and NP7.50XXY motif in TMs5, -6, and -7.

For example, D3.49(134) in bovine rhodopsin is located in TM3 and one
amino acid N-terminal to the most conserved R3.50; it is the 134th amino
acid residue from the N-terminus. The generic numbering scheme allows
easy comparisons of the same residues among different receptors in the
rhodopsin family.

1.3. Structural Studies on Rhodopsin

The structure–function relationship of rhodopsin has been extensively
studied (reviewed in refs. 11–13) with low-resolution electron density maps
(2,14,15) and biochemical approaches, including crosslinking (by geneti-
cally engineered disulfide bridges and Zn2+ binding sites), site-directed spin
labeling, scanning accessibility determinations (reviewed in ref. 11), and
analysis of retinal movement by photo-affinity labeling (16). By X-ray crys-
tallography, Palczewski et al. reported a high-resolution structure of the
bovine rhodopsin in ground (inactive) states at 2.8 Å resolution (3,4), which
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currently is the only 7TMR with known structural details (Fig. 1). This report
provided much new information and confirmed many detailed structural
characteristics inferred from experimental results in previous publications.
Rhodopsin has been an excellent model for the other members in the rhodop-
sin 7TMR family regarding the mechanism by which the receptor may be
constrained in inactive states and which molecular interactions may be
changed to induce conformational changes from inactive states to active
states, thus exposing receptor interaction sites for heterotrimeric G proteins
(10,17). Upon activation by light, retinal isomerization triggers outward
movement of the helices of rhodopsin, thereby opening a cleft at the cyto-
plasmic ends of the helices. Additionally, there is an increased distance be-
tween TM3 and TM6 (Fig. 2), exposing more inner faces of TM2, -3, –6,
and -7, which are believed to be involved in interaction with the G protein
transducin. In contrast, the cytoplasmic ends of TM4 and TM5 become less
exposed. Overall movement of TM6 exceeds that of TM3, which is more
constrained by its central position in the helix bundle (11) (Fig. 2).

1.4. Scope of This Chapter

Experimental data support the notion that the helical movements involved
in rhodopsin activation likely occur in other 7TMRs of the rhodopsin family

Fig. 2. A diagram to show the conformational changes of TMs during 7TMR
activation. The figure is based on the structure of rhodopsin and is viewed from the
cytoplasmic side. The circles represent the cytoplasmic ends of each helix. The
activation of all 7TMRs probably involves a separation of TM3 and TM6 (the
double arrow) and a clockwise rotation in TM6.
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(6,18,19; this is summarized under Subheading 2). Additonally, detailed
molecular events underlying the movements in TMs during receptor activa-
tion (thereby determining the conversion from inactive to activated states)
have been partially elucidated experimentally. Section 3 focuses on the
mechanisms that are likely to be common to many, if not all, 7TMRs of this
family. Structural motifs located in the intracellular ends of TM3 and TM6
are important components of a network of intra- and interhelical interac-
tions stabilizing the ground (inactive) state of the receptors. Disruptions of
the interactions appear to play an important role in receptor activation. The
interpretations of the mechanisms will be mainly based on substantial struc-
ture–function studies of constitutively active mutants (CAMs) of various
7TMRs and the molecular modeling work that integrated the experimental
data using rhodopsin-based models. Because it is a vast field, it is not pos-
sible to cite all the work related to the topic. We apologize to the authors
whose works are not mentioned in the chapter.

2. THE RELATIVE POSITIONS OF TMs ARE CHANGED
DURING THE ACTIVATION OF 7TMRs

2.1. Crosslinking of TM3 and TM6 Stabilizes
Inactive Conformations

Before the high-resolution crystal structure of rhodopsin was known, cys-
teine or histidine residues were engineered into cytoplasmic ends of differ-
ent TM helices of rhodopsin to form disulfide bonds or Zn2+ binding sites to
assess proximity between residues and to determine effects of structural con-
straints on receptor activation.

2.1.1. Disulfide Bonds

Cysteine residues engineered into the cytoplasmic ends of TM3 and TM6
of rhodopsin were shown to form Cys–Cys disulfide links after mild oxida-
tion between V3.54(139)C in TM3 and each of the five positions 6.30(247)–
6.34(250), but not 6.35(252), in the TM6 (20,21). Additionally, a disulfide
bond formed between R3.50(135)C at the end of TM3 and V6.33(250)C at
the end of TM6 (21). These results indicate that the cytoplasmic ends of
TM3 and TM6 are in close proximity. Formation of any of the six disulfide
bonds prevented the activation of rhodopsin, demonstrating the importance
of movement of the cytoplasmic ends of TM3 and TM6 in rhodopsin activa-
tion (20,21).

Formation of a disulfide bond between A6.29(246)C at the end of TM6
and Q312C in the H8 abolished both transducin activation and phosphoryla-
tion by rhodopsin kinase (21), indicating that movement of TM6 relative to
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H8 is important for rhodopsin activation. A disulfide bond between
K6.28(245)C at the end of TM6 and S338C in the C-terminal domain en-
hanced transducin activation but abolished phosphorylation by rhodopsin
kinase, suggesting that the structure recognized by transducin was stabilized
in this mutant (21).

2.1.2. Zn2+ Binding Sites

Two properly spaced substituted histidines can bind Zn2+, which in turn
restricts movement of the two histidines. When histidines were introduced
in the cytoplasmic ends of TM3 and TM6 at V3.53(138) and T6.34(251),
binding of Zn2+ inhibited rhodopsin activation (22). The inhibitory effects
of Zn2+ bridges connecting TM3 and TM6 were also demonstrated in other
7TMRs. For example, when His residues were introduced into A3.53(134)H
at the end of TM3 and one of the three positions E6.30(268)H, H6.31(269),
and L6.34(272)H at the end of TM6 (23) in the β2-adrenergic receptor (AR),
activation of the receptor was greatly inhibited by the Zn2+ ion. These re-
sults indicate that relative movements of TM3 and TM6 are required for
7TMR activation.

2.2. Activation of 7TMRs Involves Rearrangement of the Positions
of TM3, TM6, and TM5

Several different strategies were used to examine agonist-dependent dy-
namic structural changes in TMs of a 7TMR, including site-directed spin
labeling studies, fluorescence spectroscopic analysis, and in situ disulfide
crosslinking.

2.2.1. Site-Direct Spin Labeling and Electron Paramagnetic Resonance
Spectroscopy

The general approach has been to individually substitute residues at the
cytoplasmic ends of TMs of rhodopsin with cysteines. These cysteines al-
low covalent incorporation of nitroxide spin labels, of which unpaired elec-
trons can be probed with electron paramagnetic resonance (EPR)
spectroscopy (24). These site-directed spin labels allow determination of
the environment of a side-chain (aqueous, hydrophobic, buried within mem-
branes) as well as measurement of approximate distances between pairs of
spin labels in proteins of less than 25 Å (24).

EPR spectral changes suggest that upon light exposure, rhodopsin activa-
tion causes a rigid body tilt or rotation of TM6, moving its cytoplasmic end
out from the bundle (25) with a rotation of TM6 about its axis (clockwise as
viewed from the cytoplasm; Fig. 2), simultaneously increasing the exposure
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of the cytoplasmic end of TM3 because of a rigid body movement relative to
the other TMs (ref. 26; Fig. 2) and decreasing the exposure of some posi-
tions near the end of TM5 (25). Additionally, the distances between
V3.54(139)C and K6.31(248)C, T6.34(251)C, or R6.35(252)C at the cyto-
plasmic ends of TM3 and TM6, respectively, were demonstrated to be in-
creased (20). The data were consistent with the separation of the cytoplasmic
ends of TM3 and TM6 and rigid body motion of TM6 relative to TM3 (Fig.
2). The movement of TM3 was interpreted to be relatively small (20).

2.2.2. Fluorescence Spectroscopic Analysis

The use of fluorescence spectroscopic analysis for β2-AR allowed the
first direct structural analysis of conformational changes in a diffusible
ligand-activated 7TMR (27,28; reviewed in refs. 18 and 29). The approach
is to label the cysteine(s) with a fluorescent probe that is sensitive to the
polarity of the local environment. Gether et al. (28) demonstrated that ago-
nists induced a decrease in fluorescence, whereas antagonists caused an in-
crease, and there was a linear correlation between biological efficacy and
the change in fluorescence. Subsequently, they mutated all but one, two, or
three of the cysteine residues in the β2-AR and showed that agonist binding
caused conformational changes around Cys3.44(125) in TM3 and around
Cys6.47(285) in TM6; this was explained by either a clockwise rotation of
TM6 (when viewed from the intracellular side; Fig. 2) and/or a tilting of
TM6 toward TM5 (27). Therefore, these conformational changes are similar
to those in rhodopsin, indicating a shared mechanism of 7TMR activation.
However, the relatively slow kinetics of the conformational changes in the
β2-AR is a notable difference.

2.2.3. In Situ Disulfide Crosslinking

“In situ disulfide cross-linking,” a recent application used by Wess and
colleagues (30) regarding the disulfide crosslinking strategy to the m3 mus-
carinic receptor,, allowed examination of agonist-dependent dynamic struc-
tural changes of a 7TMR present in its native membrane-bound environment.
Mutant receptors are generated that contain the Y5.62(254)C mutation and a
second cysteine substitution within the segment K6.29(484)–S6.38(493) at
the intracellular ends of TM5 and TM6, respectively. Formation of disulfide
bonds during receptor activation was observed between Y5.62(254)C and
each residue within the A6.34(489)C–L6.37(492)C segment, indicating that
the cytoplasmic ends of TM5 and TM6 move closer to each other, which
appears to involve a major change in secondary structure at the cytoplasmic
end of TM6 (30).
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3. 7TMR ACTIVATION INVOLVES DISRUPTION OF
STABILIZING INTRAMOLECULAR INTERACTIONS

Section 2 demonstrated that the primary conformational changes during
7TMR activation were TM movements—especially a rotation and/or a tilt-
ing of TM6—and increased distance between the cytoplasmic ends of TM3
and TM6. Questions regarding the molecular events during/leading to move-
ments of the TMs and the mechanisms underlying the conformational
changes are intriguing. To provide precise molecular details, one would need
X-ray crystallography data of activated forms of rhodopsin, which are not
yet available. Currently available rhodopsin X-ray crystallography data are
of an inactive state (refs. 3 and 4; Fig. 1). Mutagenesis studies, combined
with molecular modeling on CAMs, have been very useful to elucidate acti-
vated states of 7TMR and the molecular mechanisms of 7TMR activation
(31,32), which are discussed in this section.

3.1. CAMs Mimic the Active Conformations

According to the various models of 7TMR function (18,33–35), receptors
exist in conformational equilibriums between inactive states that are struc-
turally constrained and unable to couple to Ga-proteins and active states that
can interact productively with guanosine triphosphate (GTP)-bound Ga-sub-
units and can therefore activate several downstream intracellular pathways.
Agonists have higher affinity to active states.

CAMs are 7TMR mutants that exhibit agonist-independent activities.
CAMs have higher affinities for agonists than the wild-type receptors (36),
unless the mutations themselves attenuat the binding of agonists (for an ex-
ample, see ref. 37). Unlike those of the wild-type receptors, the affinities of
CAMs for agonists were unaffected by uncoupling of the receptors from G
proteins by guanine nucleotides, indicating that they are intrinsic properties
of CAMs. Therefore, CAMs mimic (at least to some extents) agonist-in-
duced activated conformations of the wild-type receptor and spontaneously
adopt structural states that are able to activate G proteins (32).

Agonist-independent activation of a 7TMR was first demonstrated by
Kjelsberg et al. (36), who showed that mutation of A6.34(293) in the α1B-AR
to any one of the 19 other amino acids resulted in agonist-independent acti-
vation. They proposed that there were intramolecular interactions constrain-
ing the receptor preferentially in inactive conformations in the absence of an
agonist. Subsequently, CAMs of many 7TMRs have been generated, sug-
gesting that the intramolecular constraints have been conserved during evo-
lution to maintain receptors in inactive states. Mutations resulting in the loss
of such intramolecular interactions cause receptor activation similar to ago-
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nist-induced activation. Therefore, the positions and nature of the mutations
provide clues to the differences between inactive and active conformations.

It has been demonstrated that CAMs of the β2-AR (38,39), α1B-AR (40),
histamine H2 receptor (41), and μ-opioid receptor (42,43) are less structur-
ally stable. Indeed, expression of some of the CAMs could be detected only
after cells were grown in the presence of a ligand (41–44). These results are
consistent with the notion that the mutations have disrupted critical stabiliz-
ing intramolecular interactions.

3.2. R3.50 Is Constrained by Intra- and Interhelical Interactions

3.2.1. Interactions Between the D/ER3.50Y Motif in TM3
and the X16.30BBX2X36.34B Motif in TM6

Hydrogen bonds, ionic interactions, and Van-der-Waals contacts link the
TM helices in rhodopsin structure, stabilizing the ground (inactive)-state
structure (3,4). The D/ERY motif at the interface of the TM3 and second
intracellular loop is highly conserved in the rhodopsin family of 7TMRs
(refs. 9 and 45; Fig. 3A) and is important in receptor activation (46,47).
R3.50(135) in the highly conserved D/E R3.50Y motif forms a salt-bridge
with the neighboring E3.49(134) and participates in two interhelical asso-
ciations with E6.30(247) and T6.34(251) at the cytoplasmic end of TM6
(ref. 3; Fig. 4A). E6.30(247) and T6.34(251) are the X1 and X3 residues in
the conserved X16.30BBX2X36.34B motif (Fig. 3B), respectively, where B
represents basic amino acid and X represents any other amino acid (Fig.
3B). It has been suggested that the three interactions are critical to keep
rhodopsin in the inactive conformation (3).

Although not as common as the R3.50–D/E3.49 interaction, the two
interhelical interactions connecting TM3 and TM6, R3.50–6.30 and R3.50–
6.34, were also found in some rhodopsin-like 7TMRs. Studies regarding
CAMs and molecular modeling have indicated that these interactions are
critical to stabilize the inactive conformations of the receptors (Fig. 4A).

3.2.2. Protonation of D/E3.49 in “D/ERY” May Be a Common Initial Event
in 7TMR Activation

Experimental evidence indicates that protonation of the D/E3.49 in the
highly conserved D/ERY motif is one of the initial key events in rhodopsin
activation. Activation of rhodopsin by light was shown to induce uptake of
two protons from the aqueous environment (48,49). Parkes and Liebman
(50) reported that the rate of the light-induced conversion between
metarhodopsin I and metarhodopsin II was increased by decreasing pH from
7.7 to 6.1. Arnis et al. (51) found that the constitutively active E3.49(134)Q
mutant displayed a loss of light-induced uptake of two protons from the
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aqueous phase, compared with the wild-type rhodopsin. Thus, rhodopsin
activation requires light-induced conformational changes that allow proto-
nation of E3.49(134) and another residue during activation. Fahmy et al.
(52) deduced that E3.28(113) in metarhodopsin II was protonated. The con-
formational changes that are likely to ensue from this change in protonation

Fig. 3. Amino acid sequence of TM3 (A) and that at the cytoplasmic ends TM6
(B) of the rat m-opioid receptor compared to those of several other 7TMRs. The
“D/ERY” and “X1BBX2X3B” motifs and variants are highlighted (B is a basic
amino acid, and X is a nonbasic amino acid). D3.32 of each receptor and E3.28 of
rhodopsin are in bold. The numbering indicates the amino acid numbers in the se-
quences of the receptors.
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state should allow R3.50 to be repositioned to support the interaction with G
proteins (46,51).

Indirect evidence supports the notion that protonation is important for
activation of other receptors. For the β2-AR, lowering of pH from 8.0 to 6.5
has been demonstrated to enhance agonist-independent activity and facili-
tate the transition of the receptor to the activated state (53). Scheer et al. (54)
mutated D3.49(142) in the a1B-AR to all possible natural amino acids and
found that the level of constitutive activity correlated positively with the
hydrophobicity of the residue. Because the hydrophilicity/hydrophobicity
can be regulated by deprotonation/protonation of this residue, these results
support the notion that protonation is an important modulator of the transi-
tion between the inactive and active states of the a1B-AR. As described later,
mutations of D/E3.49 residues in several 7TMRs with charge-neutralizing
amino acids (which mimic the protonated state of the D/E3.49) were shown
to lead to constitutive activation of the receptors. Because the D/ERY motif
is almost invariably conserved in rhodopsin-like 7TMRs (8,10) (Fig. 3A),
protonation of Asp/Glu3.49 is likely to be a common molecular event dur-
ing activation of 7TMRs (19,55).

3.2.3. Loss of Interactions With R3.50 Results in Constitutive Activation
of 7TMRs

3.2.3.1. MUTATION OF D/E3.49 TO NEUTRAL AMINO ACIDS

The E3.49(134)Q mutant of rhodopsin was found to have enhanced
constitutitive activity and to adopt a photoactivated conformation in the dark
state (56,57). Subsequently, mutation of D/E3.49 to a neutral amino acid has
been shown to result in constitutive activation of several other 7TMRs, in-
cluding μ-opioid receptor (43), α1B-AR (54,58), β2-AR (39), V2 vasopressin
receptor (59), chemokine CXCR2 receptor (60), and gonadotropin-releasing
hormone (GnRH) (46) receptor. Interestingly, the Kaposi’s sarcoma-associ-
ated herpes virus 7TMR has “VRY,” rather than “D/ERY,” and thus does
not possess and negatively charged-side chains at 3.49 and displays high
levels of basal activity (61,62). It is noteworthy that in the histamine H2
receptor, of which the wild-type has high constitutive activity, mutation of
D3.49(115) caused a further increase in basal signaling activity (41).

In contrast, the E3.49(134)D mutation in rhodopsin (56) and the
D3.49(164)E substitution in the μ-opioid receptor (43) reduced basal activ-
ity. Additionally, D3.49(142)E substitution in the α1B-AR did not affect
basal activity (54). These results indicate that the carboxylate group of
D3.49(164) is important for stabilizing the inactive state.
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Fig. 4
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Based on mutagenesis studies and molecular dynamics simulations on
the GnRH receptor and β2-AR, Ballesteros et al. (46,63) suggested that the
conserved R3.50 of the DRY motif is constrained by an ionic interaction
with the preceding D3.49 in inactive forms. The crystal structure of inac-
tive rhodopsin suggests that the carboxylate group of E3.49(134) forms a
salt-bridge with the guanidium group of R3.50(135) (ref. 3; Fig. 4A). There-
fore, it is inferred that disruption of the interaction between D/E3.49 and
R3.50 would lead to activation of the receptors, mimicking protonated states
of D/E3.49.

However, charge-neutralizing mutations at D/E3.49 in some 7TMRs, in-
cluding those in the m1 muscarinic (64) and luteinizing hormone/chorionic
gonadotropin (65) receptors, did not lead to enhanced constitutive activity.
The mutation in the GnRH receptor did (46) or did not (66) lead to constitu-
tive activation. The mutations reduced cell-surface expression of the recep-
tors, suggesting that D/E3.49 is important for proper folding and, hence, the
stability of the receptor proteins.

3.2.3.2. MUTATIONS AT 6.34(X3) SITES

It is noteworthy that the residues at the 6.34 site within the
X16.30BBX2X36.34B motif among rhodopsin-like 7TMRs vary markedly
(Fig. 3B). Therefore, a direct interaction between R3.50 and the 6.34 site
may not always be present in the receptors as it is in rhodopsin. However,
mutations at the 6.34(X3) site or its variants at the junction of the third intra-
cellular (i3) loop and TM6 have been shown to lead to constitutive activa-
tion of several 7TMRs, including A293 in α1B-AR (36), T373 in α2A-AR
(67), L322 in β1-AR (68), C322 in the 5-HT2A receptor (69), S312 in the 5-

Fig. 4. (From opposite page) Activation of the b2-AR involves disruption of an
ionic lock between TM3 and TM6. The Ca traces are taken from the high resolution
structure of bovine rhodopsin. Except in A, the top of each panel shows the extra-
cellular end, and the bottom of each panel shows the intracellular end of the TMs.
(A) An extracellular view of the high resolution structure of rhodopsin showing the
interaction between residues at the cytoplasmic ends of TM3 and TM6. (B) A side
view of the interactions between E6.30 and R3.50 as well as between R3.50 and
D3.49, which are within the distance range of an ionic interaction shown with
dashed lines, in a rhodopsin-based model of the b2-AR. (C) After the E6.30A muta-
tion, the ionic interaction of E6.30 and R3.50 is abolished. (Modified from Fig. 5 of
Ballesteros et al., ref. 63.)
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HT2C receptor (70), and T313 in the 5-HT1B receptor (71) (see Fig. 3B). In
the α1B-AR, all 19 possible amino acid substitutions at the 6.34(X3) locus
(A293) led to varying levels of constitutive activities, with the A6.34(293)K
mutant demonstrating the highest activity (36).

The effect of a mutation at the 6.34 locus can be dramatically different
depending on the nature of the substitution (44). For the μ-opioid receptor
(Fig. 5), T6.34(279)K mutant dramatically enhanced agonist-independent
activity, whereas T6.34(279)D mutation did not, although it almost abol-
ished the G protein signaling (44). The results were interpreted in the struc-
tural context of a rhodopsin-based model for the μ-opioid receptor. The
interaction of T6.34(279) with R3.50(165) through a hydrogen bond in the
μ-opioid receptor stabilizes the inactive conformations (Fig. 6A). The
T6.34(279)K substitution disrupts this interaction because of charge repul-
sion and supports agonist-free activation (Fig. 6B), whereas T6.34(279)D
mutation strengthens this interaction by forming an even stronger ionic bond
that keeps the receptor in inactive states (ref. 44; Fig. 6C).

However, introducing an acidic residue in the 6.34(X3) locus does not
always lead to inactive receptors. In contrast to the μ-opioid receptor, sub-
stitutions of the 6.34(X3) locus with D or E caused agonist-independent ac-
tivation of several 7TMRs, including A293D/E in the α1B-AR (36), T373E
in the α2A-AR (67), L322E in the β1-AR (68) and C322E in the 5-HT2A
receptor (69). The differences between those receptors and the μ-opioid re-
ceptor have been further studied and have been demonstrated to involve a
mutation at the 6.30(X1) locus as shown in Subheading 3.2.3.3.

3.2.3.3. NEUTRALIZING MUTATIONS AT ASP/GLU6.30(X1) SITES

Ballesteros et al. (2001) (63) observed that charge-neutralizing mutations
(alanine substitution) of E6.30(268)(X1) alone or combined with that of
Asp3.49(130) led to agonist-independent activities of the β2-AR, suggesting
that the ionic interactions of E6.30(X1) with R3.50 in the inactive state (Fig.
4B) were disrupted by the mutations at these sites (Fig. 4C) (63). Although
D/E6.30 is not universally conserved among the rhodopsin-like receptors, it
is nearly 100% conserved among the monoamine and glycoprotein hormone
receptors and opsins (63). Consistent with the observations regarding the
β2-AR, the E6.30(360)A mutant of the m1 muscarinic receptor displays high
agonist-independent activity (72). Based on computational modeling, the
E6.30–R3.50 salt-bridge was proposed to occur in the 5-HT2A receptor
(5,73,74) and the α1B-AR (75); this was supported by studies showing that
mutations weakening this interaction led to constitutive activation. Addi-
tionally, naturally occurring D6.30(564)G mutation in the lutropin/
choriogonadotropin receptor (76,77) and D6.30(619)G mutation in the thy-
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rotropin receptor (78) leads to constitutive receptor activation, which causes
gonadotropin-independent familial male-limited precocious puberty and
hyperfunctioning thyroid adenomas, respectively. The activation mechanism
of the D6.30(564) mutant of the lutropin/choriogonadotropin receptor has
been suggested to result from the loss of R3.50(464)–D6.30(564) ionic in-
teraction (79). The finding that substitution of D6.30(564) with Glu did not
lead to constitutive activation (77,80) is consistent with the interpretation.
Therefore, the D/E6.30(X1)–R3.50 interaction may constitute a constraint
of inactive states for many 7TMRs, which is removed in the process of re-
ceptor activation (73–75,79).

Fig. 5. Helical net representation of the rat m-opioid receptor. The D/ERY motif
and X1BBX2X3B motif are highlighted with dark circles at the cytoplasmic ends of
TM3 and TM6, respectively.
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Fig. 6. Molecular three-dimensional representations of the interactions between
R3.50(165) of TM3 and residues at 6.30(275) and 6.34(279) of TM6 at their cyto-
plasmic ends of the wild-type or mutant m-opioid receptors. (A) The wild-type:
The T6.34(279)–R3.50(165) and D3.50(164)–R3.50(165) interactions, (shown here
in a rhodopsin-based model of the m-opioid receptor) enhance the hydrogen bond
network around R3.50(165), stabilizing the inactive state of the receptor. (B) The
T6.34(279)K mutant: Because the introduced K has the same charge as that of
R3.50(165), the electrostatic repulsion leads to the separation of TM3 and TM6 and
enhanced constitutive activity of the receptor. (C) The T6.34(279)D mutant: An
ionic interaction formed between R3.50(165) and D6.34(279) is stronger than the
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It is noteworthy that the opioid receptors have a nonpolar residue, L6.30,
at the 6.30(X1) site (Figs. 3B and 5). Thus, the 6.30(X1)–R3.50 ionic inter-
action does not exist in the opioid receptors (81) (Fig. 6A). The L6.30(275)E
mutation inactivated the μ-opioid receptor (81). Additionally, L6.30(275)E–
T6.34(279)D mutants displayed no constitutive activity and could not be
activated by agonists, whereas the L6.30(275)E/T6.34(279)K mutant had
some constitutive activity, but much less than the T6.34(279)K CAM. Inter-
preted in the context of interactions with the conserved R3.50(165), when
L6.30(275) is mutated to E, the favorable E6.30(275)–R3.50(165) interac-
tion stabilizes an inactive state (as in rhodopsin) and, hence, inactivates the
receptor (Fig. 6D) and reduces the activities of the T6.34(279) mutants (Fig.
6E,F). Therefore, the μ-opioid receptor is different from rhodopsin and
monoamine 7TMRs, of which the wild-type receptors with the native E6.30
(Fig. 3B) can be activated and the 6.34D or 6.34K mutants display enhanced
constitutive activities. Although the interaction between the cytoplasmic
ends of TM3 and TM6 is conserved among receptors, there are some spe-
cific differences in the molecular mechanisms of receptor activation. It is
interesting to speculate that compared with rhodopsin and receptors of
monoamines, the μ-opioid receptor may have other intramolecular interac-
tions or a specific local environment at TM6 to keep it in inactive states,

Fig. 6. (From opposite page) original hydrogen bond between R3.50 and T6.34 in
the wild-type, keeping the receptor in inactive conformations. (D) The L6.30(275)E
mutant: The L6.30(275)E mutation creates an additional E6.30–R3.50 ionic bond
and reinforces the interaction between TM3 and TM6 supported by the T6.34(279)–
R3.50(165) hydrogen bond to restrain the m-opioid receptor in inactive conforma-
tions. (E) The L6.30(275)E/T6.34(279)K mutant: The ionic interaction between the
glutamate introduced at 6.30(275) and R3.50(165) reduces the degree of repulsion
introduced by the T6.34(279)K mutation. (F) The L6.30(275)E–T6.34(279)D mu-
tant: The ionic lock on R3.50(165) produced by the L6.30(275)E mutation is further
strengthened by the introduction of an aspartate at 6.34(279), leading to enhanced
stabilization of the inactive form of the receptor. (Modified from Fig. 6 of Huang et
al., ref. 81, with permission of copyright 2002 American Chemical Society.)
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which compensates its loss of the 6.30(X1)–R3.50 ionic constraint (81) and
is likely to account for the inactivating effects of the L6.30(275)E,
T6.34(279)D, and L6.30(275)E–T6.34(279)D mutations. The unique struc-
tural attributes of the μ-opioid receptor remain to be identified.

3.2.3.4. D/E6.30(X1) IN TM6: THE SECOND PROTONATION SITE?
Rhodopsin activation is accompanied by the uptake of two protons at

cytoplasmic sites (51). As mentioned in Subheading 3.2.2., one site of pro-
ton uptake is E3.49(134) (51), which, in the inactive state, forms an ionic
bond with R3.50 in the D/ERY motif. The second protonated residue in
metarhodopsin II has not been identified but was inferred to be E3.28(113)
(52). However, in most other 7TMRs, the corresponding 3.28 position is not
an acidic residue. Lowering pH from 8.0 to 6.5 enhanced the constitutive
activity of the β2-AR and facilitated its transition to activated states, but
mutation of D3.49(130) did not abrogate the pH sensitivity (53), suggesting
that there is/are other possible protonation site(s). Based on the interaction
of R3.50 with Glu6.30 in rhodopsin and β2-AR, Ballesteros et al. (63) sug-
gested that E6.30 of the BBXXB motif may represent the second site of
protonation. Thus, protonation of these two acidic residues (D/E3.49 and D/
E6.30) would disrupt their ionic interactions with R3.50, thereby breaking
the ionic lock holding TM3 and TM6 together in the inactive state (63).

3.2.3.5. MUTATIONS AT ARG3.50 SITES

Site-directed mutagenesis studies on rhodopsin (82), V2 vasopressin (83),
m1 muscarinic (84), GnRH (44,66), CB2 cannabinoid (85), and histamine H2
(41) receptors as well as α1B-ARs (86) showed that replacement of the con-
served R in the D/ERY motif by various amino acids attenuated or abolished
G protein coupling, a finding consistent with Arg playing an important role
in receptor activation. Interestingly, all the R3.50 mutants of the α1B-AR
(86) and histamine H2 receptor (41) displayed increased binding affinity for
agonists, which is a characteristic of CAMs (see Subheading 3.1.). It appears
that the R3.50 mutant of the histamine H2 receptor can adopt an active con-
formation but has a decreased ability to couple to or activate the G proteins
(41); this may result from the loss of the conserved R3.50 (87).

The nature of replacing the amino acid residue, not just the loss of the
conserved R3.50, significantly contributes to the functional properties of
the resulting mutants. For example, mutation of R3.50(143) in the α1B-AR
resulted in mutants with a small increase in constitutive activity (H, D) and
impairment (H, D) or complete loss of agonist-mediated response (E, A, N,
I) (86). Additionally, the same substitution in different 7TMRs differen-
tially affected receptor function. A charge-conserving R3.50(123)K substi-
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tution in the m1 muscarinic receptor results in modest impairment of recep-
tor function (84), but the R3.50(143)K mutation in the α1B-AR conferred a
high degree of constitutive activity and preserved the maximal agonist-in-
duced response (86). Therefore, R3.50 of the D/ERY motif is required for
efficient signal transduction for most of the rhodopsin-like 7TMRs and has
been generally implicated as a central trigger of G protein activation.
Ballesteros et al. found that based on molecular simulation and mutagenesis
studies on the GnRH receptor, after the D3. 49(138)–R3.50(139) ionic bond
was broken during activation, the unrestrained Arg was prevented from ori-
enting itself toward the water phase by a steric clash with I3.54(143), which
is necessary for receptor signaling (46).

However, in the gonadotropin receptor, R3.50(464)A mutation did not
disturb receptor signaling (80). Additionally, R3.50(137)A mutation in the
oxytocin receptor caused constitutive activation (88). Thus, R3.50 may not
be regarded as the indispensable molecular switch for G protein activation
for all rhodopsin-like 7TMRs (80).

3.2.4. Two Hypotheses: “Arginine Cage” vs “Polar Pocket”

On the basis of experimental results, molecular modeling, and computa-
tional simulations, two distinct hypotheses were proposed to define the spe-
cific role of D/E3.49 protonation and R3.50 in receptor activation. The
earlier hypothesis was the “polar pocket” hypothesis, which was proposed
by Scheer et albased on mutagenesis studies and simulations of the α1B-AR
(54,58). The alternative hypothesis was the “arginine cage” hypothesis,
which was proposed by Ballesteros et al. based on studies on the GnRH
receptor (46).

The “polar pocket” hypothesis predicted that in the inactive state of the
receptor, the highly conserved R3.50 in the D/ERY motif is constrained in a
pocket formed by highly conserved polar residues in TM1, -2, and -7—par-
ticularly N1.50, D2.50, and N7.49. Protonation (or charge-neutralizing mu-
tation) of the adjacent D3.49 resulted in long-range conformational changes
in the receptor molecule caused by R3.50 shifting out of the polar pocket.
The highlight of this hypothesis is that in the inactive state, the specific
ionic counterpart of the R3.50 is the conserved D2.50 in TM2, and this ionic
interaction is broken after receptor activation.

In contrast, in the “arginine cage” hypothesis, Ballesteros et al. (46) pro-
posed that in the inactive state, R3.50 interacted with the adjacent D3.49 by
ionic interaction within the D/ERY motif. During receptor activation, D3.49
becomes protonated, the R3.50–D3.49 ionic bond is broken, and R3.50
forms another ionic interaction with D2.50. Thus, an ionic interaction
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between R3.50 and D2.50 was associated with the active state, rather than
with the inactive state, as proposed in the “polar pocket” hypothesis.

The high-resolution structure of rhodopsin has revealed that R3.50(135)
interacts with E3.49(134), E6.30(X1)(247), and T6.34(X3)(251) (3), which
supports the “arginine cage” hypothesis. As discussed by Ballesteros et al.
(63), however, in rhodopsin, the distance between R3.50(135) and D2.50(83)
is approx 20 Å, which is too great a distance for an interaction between these
residues in the inactive state (as proposed by the “polar pocket” hypothesis).
Additionally, it is not likely that R3.50 and D2.50 interact in the activated
state suggested in the “arginine cage” hypothesis, because it would require a
large conformational change for the two residues to interact (63).

3.3. Constraining Intramolecular Interactions Beyond
the “D/ER3.50Y” Motif

In addition to the intramolecular interactions centering around R3.50 at
the cytoplasmic ends of TM3 and TM6, there are other interactions impor-
tant in constraining the structure of 7TMRs in inactive states. The following
examples provide evidence for these interactions; disruption of these inter-
actions leads to receptor activation. However, it is uncertain whether the
results of these studies on different 7TMRs can be generalized to all rhodop-
sin-like 7TMRs. Some of the interactions are likely to be receptor-specific.

3.3.1. The “Aromatic Cluster” in TM6
An “aromatic cluster” formed by the aromatic residues in TM6 (F6.44,

W6.48, F6.51, and F6.52) in the proximity of the highly conserved P6.50
kink are present in many 7TMRs. The structural constraints related to this
aromatic cluster appear to exist in many receptors, because mutations of
residues within or in the vicinity of the cluster result in alterations in recep-
tor activity and some become constitutively active. Visiers et al. (5) pro-
posed that for the 5-HT2A receptor, one or more of the aromatic residues are
involved in agonist binding, which relieves the constraints and initiates con-
formational rearrangements of aromatic side-chains. Such rearrangements
trigger changes along TM6 that involve P6.50 and propagate to the cyto-
plasmic end of TM6 and i3. The aromatic clusters are like a “toggle switch,”
transmitting the signal from agonist binding for receptor activation (5).

F6.51(310), but not F6.52(311), of the α1B-AR is involved in binding of
the catechol ring. Chen et al. (89) postulated that activation of α1B-AR in-
volves initial disruption of the D3.32(125)–K7.36(331) ionic interaction
(discussed later), followed by F6.51(310)-catechol ring-induced movement



Conformational Changes in 7TMRs Activation 53

of TM6. The later interaction is essential for conformational changes from
partially activated state to the fully activated state (89). The F6.44(303)L
mutant of the α1B-AR showed markedly increased basal activity and in-
creased potency and efficacy of agonist-stimulated signaling (40). The
F6.44(282) mutants of the β2-AR display varying degrees of constitutive
activity [F6.44(282)L > F6.44(282)A > F6.44(282)G] (90). These results
are consistent with the notion that the F6.51 residue of ARs is involved in
agonist binding and the F6.44 residue is part of the toggle switch for recep-
tor activation.

Shi et al. (91) reported that C6.47(285) in the β2-AR modulates the con-
figuration of the “aromatic cluster” and the TM6 Pro-kink through specific
interactions in its different rotamer configurations; this further supports the
association of the “rotamer toggle switch” with receptor activation (91). These
researchers proposed that in the monoamine 7TMRs, agonist binding to a clus-
ter of aromatic residues surrounding the Pro-kink in TM6 promotes receptor
activation by altering the configuration of the TM6 Pro-kink and by the sub-
sequent movement of the cytoplasmic end of TM6 away from TM3 (91).

3.3.2. Other Interhelical Interactions Between TM3 and TM6
Additional interactions between residues in TM3 and TM6 have been

found to be involved in activation of 7TMRs. W6.48(256)F and Q mutants
of the human B2 bradykinin receptor display enhanced constitutive activity
(92). The W6.48(256)H–N3.35(113)H double-mutant exhibited higher bind-
ing affinity for Zn2+, indicating their proximity. It was hypothesized that
W6.48(256) interacted with N3.35(113) and stabilized the inactive state, and
W6.48(256) controlled the balance between active and inactive states (92).
In the δ-opioid receptor, mutations of Y3.33(129)F or A in TM3 enhanced
the receptor basal activity (37). Based on molecular modeling, it was pro-
posed that Y3.33(129) in TM3 forms a hydrogen bond with H6.52(278) in
TM6 as part of the interhelical interactions that keep the receptor in inactive
states (37). This interaction may be specific for opioid receptors. It is inter-
esting to note that for leutenizing hormone receptor, an interaction between
TM3 and TM6 may be associated with active states of the receptor (93).
L3.43(457) is a highly conserved residue in TM3, and constitutive activa-
tion was associated with a positively charged amino acid (R, K, or H) at the
L3.43(457) site. Molecular modeling showed that R, K, or H at 3.43(457)
interacts electrostatically with D6.44(578) in TM6, perturbing the
interhelical interactions between TM3, -6, and -7 and giving rise to the con-
stitutive activation of the receptor (93).
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3.3.3. TM7: “NPXXY” Motif and Others

3.3.3.1. Y7.53-F–Y7.60 INTERACTION

Recent studies have revealed that there is an interaction between Y7.53 in
the NPXXYX5–6F/Y motif and an aromatic residue (F or Y) at the 7.60 site
in H8 in the inactive states of rhodopsin (94) and the 5HT2C receptor (95).
This TM7–H8 interaction appears to be highly conserved in 7TMRs.

In rhodopsin, H8 is anchored to the membranes by palmitoylated residues
C322 and C323, and this region is important for the interaction of light-acti-
vated rhodopsin with transducin. In rhodopsin, Ala replacement mutations
within the NPXXYX5-6F/Y domain, which eliminate an interaction between
Y7.53(306) and F 7.60(313), allow the formation of metarhodopsin II. A dis-
ulfide bond linking Y7.53(306)C and F 7.60(313)C prevented metarhodopsin
II formation. These observations suggest that the interaction between
Y7.53(306) and F 7.60(313) is disrupted during the metarhodopsin I–
metarhodopsin II transition. Therefore, NPXXY and D/ERY motifs have been
proposed to provide a dual control of the activating structural changes (94).

In the 5HT2C receptor, substitution of Y7.53(368) of the NPXXY motif
with all naturally occurring amino acids resulted in three levels of constitu-
tive activities: moderate, high, and “locked-on.” Unlike the high basal activ-
ity of the other receptor mutants, the high basal activity of the locked-on
Y7.53(368)N mutant was neither increased by agonists nor decreased by
inverse agonists. The Y7.53(368)F mutant was uncoupled. Computational
modeling suggested that Y7.53(368) interacts with the aromatic ring of
Y7.60(375) in H8. These results suggest that the interaction between Y7.53
and Y7.60 connecting TM7 and H8 influences the switching of the 5HT2C
receptor among multiple active and inactive conformations (95).

3.3.3.2. 3.32–7.43 INTERACTIONS OR EQUIVALENTS

Mutation of D3.32(128) or Y7.43(308) in the δ-opioid receptor, of
D3.32(125) in α1B-AR, or of E3.28(113) (one helical turn extracellular to
the 3.32 locus) in rhodopsin led to constitutive activation of the receptors
(37,96,97). It was hypothesized that an interaction exists that connects TM3
and TM7 between E3.28(113) and K7.43(296) in rhodopsin receptors (97),
D3.32(125) and K7.36(331) in the α1B-ARs (96), and D3.32(128) and
Y7.43(308) in the δ-opioid receptors (37), constraining the receptors in
inactive states. Mutations that disrupt the interaction lead to agonist-inde-
pendent activation. However, this interaction is not universal for rhodopsin-
like 7TMRs. Mutation of D3.32(147) in the μ-opioid receptor or D3.32(155)
in the 5-HT2A serotonin receptor did not result in constitutive activation
(43,98). For the C5a receptor, researchers have been demonstrated that
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I3.32(116) and V7.39(286) interact with the side-chain at position 5 of the
hexapeptide ligands analogous to the C-terminal eight residues of C5a. This
interaction forms an activation switch, causing a change in their relative
orientations, and allows TM6 to move away from the receptor core, leading
to G protein activation (99).

3.3.3.3. TM6–TM7 INTERACTION

In thyrotropin receptor, whereas the D6.44(633)A or N7.49(674)D muta-
tion led to high constitutive activity, the combined N7.49(674)D–
D6.44(633)N mutations resulted in a receptor that behaved like the wild-type
receptor, indicating that the two residues interact and the interaction main-
tains the receptor in inactive states. Additionally, in the thyrotropin recep-
tor, N7.49(674) is essential for agonist-stimulated effect; therefore, the
interaction between D6.44(633) and N7.49(674) serves as an on/off switch
for activation (100). Although N7.49 of the NPXXY motif is highly con-
served in the rhodopsin family of 7TMRs, its role may not be identical for
all 7TMRs. For example, N7.49 (332)D mutation of the μ-opioid receptor
eliminated detectable binding of ligands, and D2.50(114)N mutation de-
creased affinities for the agonists and abolished agonist-induced signaling
(101). Interestingly, the combined D2.50(114)N–N7.49(332)D mutations
restored high-affinity binding for the antagonists and partially restored the
binding affinities, potencies, and efficacies of agonists (101). The results
indicate that the residue N7.49(332) in the NPXXY motif of the μ-opioid
receptor is adjacent in space with D2.50(114) and that the chemical
functionalities are important for ligand binding and receptor activation.

3.3.3.4. TM7 MOVEMENT

Evidence from EPR spectroscopy studies in rhodopsin suggests that
movements of the cytoplasmic portion of TM7 relative to TM1 and of TM2
relative to H8 may also occur in response to photoactivation (102,103). The
possible importance of TM7 in receptor activation is also indirectly sup-
ported by the finding that activating metal–ion binding sites can be gener-
ated between TM3 and TM7 in both the β2-AR (104) and the neurokinin-1
receptor (105).

3.4. Conformational Changes in CAMs Detected
by Cysteine Accessibility

Methanethiosulfonate ethylammonium (MTSEA; a charged, hydrophilic,
sulfhydryl-specific reagent) has been shown to react much faster with water-
accessible cysteine residues than with those in the interior of proteins or
facing lipids (106,107). Effects of MTSEA applied extracellularly on ligand



56 Huang and Liu-Chen

binding to receptors have been used to determine whether cysteine residues,
endogenous or engineered, are exposed in the binding site crevice. MTSEA
had no effect on ligand binding to the wild-type β2-AR. In contrast, in four
β2-AR CAMs—L6.28(266)S–K6.29(267)R–H6.31(269)K–L6.34(272)A (a
quadruple mutant), D3.49(130)N, F6.44(282)L, and F6.44(282)A—MTSEA
significantly inhibited ligand binding, and C6.47(285) in TM6 was identi-
fied to be responsible for the inhibitory effect of MTSEA (39,90,108). Fur-
thermore, Ballestero et al. (63) demonstrated that among the five b2-AR
CAMs—E6.30(268)Q, E6.30(268)A, D3.49(130)N, D3.49(130N)/
E6.30(268)Q, and D3.49(130)N/E6.30(268)A—the extent of MTSEA inhi-
bition of ligand binding to these CAMs tightly correlated with the level of
constitutive activity. According to their rhodopsin-based model of the β2-
AR, in the inactive state, C6.47(285) is pointing toward TM7 and, therefore,
is poorly water-accessible. In contrast, in activated states, a counterclock-
wise rotation and/or tilting of TM6 (viewed from the intracellular side)
brings C6.47(285) more toward the margin of the water-accessible ligand-
binding crevice. There is a progressive increase in the accessibility of
C6.47(285), with increasing activation and, hence, a corresponding increase
in the rotation and/or tilting of the TM6. As described under Subheadings
2.2.1. and 2.2.2., a similar movement is predicted from analysis of light- or
agonist-induced conformational changes in rhodopsin and in β2-AR.

However, there may be a difference in the orientation of C3.44(125) in
the β2-AR in agonist-activated states and in CAMs. Using a cysteine-reac-
tive fluorescence probe, Gether et al. (27) reported that agonist activation of
the β2-AR causes C3.44(125) and C6.47(285) to be exposed to a more polar
environment, indicating that conformational changes occur around these two
residues. However, by MTSEA reaction, C3.44(125) in the β2-AR was not
identified to become exposed in the CAMs (39,90,108). Additionally, the
F6.44(282)L CAM of the β2-AR induced the movement of not only
C6.47(285) but also that of C7.54(327) (90), suggesting that conformational
changes of TM7 are implicated in activation of the β2-AR. These results
also imply that there are multiple activated states for a given 7TMR.

3.5. Multiple Activated States of a 7TMR

A traditional view of 7TMR activation is that there is an active state stimu-
lating all effectors and eliciting regulatory processes, such as receptor phos-
phorylation and internalization. However, evidence has been accumulated
to suggest that more than one active conformation exists for a given 7TMR.
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3.5.1. Different CAMs of the Same 7TMR Can Couple
to Distinct Signal Pathways

Perez and colleagues (109) found that the C3.35(128)F CAM of the α1B-
AR exhibited a selective constitutive activation of a Gq-coupled pathway
but not a Gi/o-coupled pathway. In contrast, the A6.34(293)E CAM of this
receptor (see Subheading 3.1.) constitutively activated both pathways (109).
It was postulated that the α1B-AR can isomerize to at least two distinct ac-
tive states: one coupled to Gq and one coupled to Gi/o. Additionally, these
researchers found that the C3.35(116)F CAM of the β2-AR caused constitu-
tive stimulation of the Na+/H+ exchanger 1, which is a G13-mediated effect,
but not of cyclic adenosine monophosphate production, which is a Gs-medi-
ated event (110). Although all the CAMs of the β2-AR mentioned in Sub-
heading 3.5. constitutively activated the Gs pathway, they displayed
somewhat different movements of TMs, lending support for different acti-
vated states.

3.5.2. Some CAMs Are Not Constitutively Internalized
After agonist binding, 7TMRs not only activate G protein(s) but also ini-

tiate regulatory processes, including desensitization and internalization, that
involve phosphorylation and arrestin recruitment in most receptors (111).
Because the structures adopted by CAMs mimic active conformations of the
receptor, CAMs are likely to be substrates forGPCR kinase (GRK)-medi-
ated phosphorylation in the absence of agonists. Constitutive phosphoryla-
tion has been demonstrated for many CAMs, including T6.34(373) of
α2A-AR (67); L6.28(266)S–K6.29(267)R–H6.31(269)K–L6.34(272)A of
β2-AR (112); and K7.43(296)G, E3.28(113)Q, A7.39(292)E, and
G2.57(90)D of rhodopsin (113).

However, several CAMs have been shown to not be constitutively phos-
phorylated or internalized. The N3.35(111)A/G CAM of the angiotensin II
receptor AT1A did not exhibit an increase in basal phosphorylation, nor was
its phosphorylation enhanced by the agonist (114). Additionally, two CAMs
of the same receptor may exhibit different regulatory properties. Mhaouty-
Kodja et al. (115) reported that although two different CAMs of the α1B-AR
had similar agonist-independent activities, the A6.34(293)E CAM displayed
increased GRK2-mediated phosphorylation and underwent β-arrestin-me-
diated internalization in a constitutive manner, whereas the D3.49(142)A
CAM did not. The L3.40(124)N–L3.43(127)Q CAM of the C5a receptor
recruited β-arrestin and underwent constitutively internalization, whereas
the F6.44(251)A CAM did not (116). These observations suggest that the
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conformations recognized by GRKs and arrestins may be different from
those that couple a 7TMR to G protein signaling.

The finding that some agonists of opioid receptors do not cause internal-
ization or desensitization corroborates this view. Morphine and [Tyr-D-Ala-
Gly-N-(Me)Phe-Gly-ol] (DAMGO) activated the μ-opioid receptor;
however, unlike DAMGO, morphine did not cause phosphorylation or in-
ternalization (117–120). Additionally, levorphanol or etorphine did not
cause phosphorylation or internalization of the human κ-opioid receptor,
although both acted as full agonists in activating G proteins (121). How-
ever, levorphanol or etorphine acted as an antagonist in reducing U50,488H-
or dynorphin A-induced phosphorylation and internalization (121). To date,
all the reported CAMs of the μ-opioid receptor are shown to, or are likely to,
induce constitutive internalization of the receptor (42,43); these CAMs may
represent DAMGO-induced active state(s) of the receptor, whereas a CAM
mimicking morphine-induced active conformation has not been found.

3.6. Information From Random Mutagenesis Studies

A large number of spontaneous and site-directed mutations resulting in
constitutive activity of different 7TMRs have been identified and character-
ized to involve structural motifs throughout the entire receptors, well-beyond
the “D/ER3.50Y,” the XBBXXB, and the NPXXY motifs (31). Systematic
mapping of the amino acids involved in activation of a given receptor is
extremely useful for complete elucidation of the molecular mechanisms of
activation, without preconceived structural hypotheses. Recently, random
mutagenesis studies of AT1 (122), m3 (123) and m5 (124) muscarinic, C5a
(125), and δ-opioid (126) receptors have shown that the locations of activat-
ing mutations are widespread, not only within the TMs but also in the sec-
ond and third intracellular loops, the third extracellular loop, and even the
N- and C-terminal domains.

For example, in a whole-receptor random mutagenesis study regarding
the human δ-opioid receptor, Kieffer et al. (126) identified 30 single-muta-
tion CAMs. The sites of mutations were distributed throughout the receptor
and were mapped on a three-dimensional model of the receptor. With the
exception of those located in the N- and C- terminal domains, most activat-
ing mutations were clustered spatially into four groups, and amino acid resi-
dues in each group were adjacent to each other from extracellular face to
cytoplasmic face. Five CAMs (Q12L, D21G, P28L, A30D, and R41Q) were
demonstrated to have mutations in the N-terminal region, suggesting that
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this region may be folded into the 7-TM bundle to influence receptor activa-
tion (126). Four CAMs (C328R, D341N, G369S, G369D) resulted from
mutations of residues in the C-terminal domain, with potential regulatory
functions that may directly modify receptor interaction with G proteins
(126). C328 is a potential palmitoylation site. Mutations to A of C348/C353
putative palmitoylation sites in the human m-opioid receptor led to constitu-
tive activation (127). D341N mutation eliminated a negative charge at a
position uniquely conserved among opioid receptors within a highly vari-
able region. G369S introduced a potential phosphorylation site. G369D in-
troduced a residue mimicking phosphoserine.

Group I is composed of four CAMs in the extracellular regions: K214R,
V283A, I289V, and L286P. V283A, I289V, and L286P were found within a
highly hydrophobic region of the third extracellular loop, and these muta-
tions may diminish local hydrophobicity, which restrains motions of TM6
and TM7. K214R at the extracellular end of TM5 may have an indirect effect
to weaken this structural constraint, favoring activation. It was postulated
that the agonist may initiate the 7TMR activation by contacting the third
extracellular hydrophobic core and releasing the constraint as a first step.

Group II consisted of four CAMs: T3.38(134)A, I4.47(170)T,
N4.46(169)S, and W4.50(173)R. It was postulated that these residues form
a microdomain surrounding W4.50, which is strictly conserved in all rhodop-
sin-like 7TMRs. By aromatic stacking with Y3.34(130), W4.50 may limit
TM3 mobility and may represent a key switch for TM3 movements in most
7TMRs. The four mutations may perturb W4.50 orientation.

Group III included four CAMs: D3.32(128)N, S3.39(135)G,
Y7.43(308)H, and W6.48(274)R. Mutation of D3.32(128) or Y7.43(308)
was demonstrated to lead to constitutive activation of the δ-opioid receptor,
which disrupted interactions between the two residues (37) and weakened
interactions of TM3 and TM7 (see Subheading 3.3.3.). S3.39(135)G may
also reduce interactions of TM3 and TM7. W6.48 is part of the aromatic
cluster in TM6, acting as a “toggle switch” to transmit the signal from ago-
nist binding for receptor activation (5; see Subheading 3.3.1.). In the human
B2 bradykinin receptor, it was hypothesized that W6.48(256) interacted with
N3.35(113) to stabilize the inactive state (92; see Subheading 3.3.2.).

Group IV was comprised of five CAMs: R6.32(258)H, M6.36(262)T,
Y7.53(318)H, L7.56(321)R, and E323K. These residues cluster between
TM6 and TM7 at the cytoplasmic interface. An ionic bridge was proposed
between R6.32(258) in the BBXXB motif and E323 in the proximal portion
of C-tail. M6.36(262), Y7.53(318), and L7.56(321) may form a hydropho-
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bic pocket. Therefore, mutations at these loci would break TM6–TM7 inter-
actions and allow separation of TM6 and TM7 at the cytoplasmic face.

Based on these results, Kieffer et al. (126) proposed that δ-opioid recep-
tor activation occurs as a three-step process by an agonist. In step A (involv-
ing residues from Group I), an opioid agonist binds to the third extracellular
loop and, possibly, the N-terminal domain, which perturb the third extracel-
lular loop hydrophobic cluster and thereby destabilize TM6–TM7 interac-
tions near the extracellular side. In step B (involving residues from Group II
and III), the amphiphilic agonist enters the binding pocket, disrupting both
TM3–TM6 and TM3–TM7 hydrophobic interactions from the middle of
membranes to the extracellular region, provoking outward TM3–TM6–TM7
movements. In step C (mimicked by CAMs from Group IV mutants as well
as from DRY, BBXXB, and NPXXY mutants), helical movements propa-
gate downward within the receptor, disrupt cytoplasmic ionic or aromatic
interactions (TM6–TM7, TM3–TM6 and TM7–H8), and possibly release
the putative H8 helix. This reveals receptor intracellular determinants to in-
teract with G proteins.

The wealth of information from such random mutagenesis studies will
guide further studies to provide mechanistic explanations for each CAM,
leading to better understanding regarding mechanisms of 7TMR activation.

4. CONCLUSIONS
The structural basis of rhodopsin activation is representative of receptors

in the rhodopsin family of 7TMRs. The activation mechanisms of other
receptors in the family are consistent with information that is available for
rhodopsin involving movements of TMs. Studies regarding CAMs, sup-
ported by rhodopsin-based models, have been important in elucidating the
detailed molecular events underlying the movements in TMs during recep-
tor activation. Although receptor activation in the rhodopsin family of
7TMRs may be associated with similar motifs and conformational changes,
different receptors may also employ specialized sets of molecular switches
to produce these changes.
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GPCR Folding and Maturation

The Effect of Pharmacological Chaperones

Ulla E. Petäjä-Repo and Michel Bouvier

1. INTRODUCTION

Folding and maturation of G protein-coupled receptors (GPCRs) are com-
plex events, which take place before these integral membrane proteins are
transported from their site of synthesis in the endoplasmic reticulum (ER) to
their site of action at the plasma membrane. Problems in these events (e. g., as
a result of minor mutations) often result in the inability of the newly synthe-
sized receptors to function properly because of mislocalization in the cell.
Therefore, ways to circumvent difficulties in GPCR folding, maturation, and
trafficking could be of primary importance for alleviating diseases related to
GPCR mislocalization. This chapter first provides an overview on the biogen-
esis of GPCRs and then describes the recently discovered concept of pharma-
cological chaperones. These membrane-permeable compounds have been
found to enhance processing and maturation of several wild-type and mutant
GPCRs as well as of some other proteins that are normally retained in the ER.

2. BIOGENESIS OF GPCRS

The GPCRs do not share extensive sequence identity but are believed to
have a similar three-dimensional structure with seven hydrophobic trans-
membrane (TM) domains connected by three extracellular and three intrac-
ellular loops (1,2). Similarly to other membrane proteins, the nascent GPCRs
are cotranslationally targeted and translocated to the ER membrane. Only
about 10% of GPCRs contain a cleavable signal sequence (stop–transfer
sequence), whereas the majority rely on the first or the second TM domain,
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which is believed to function as a targeting sequence (reverse signal anchor)
(3). In the ER membrane, the newly synthesized receptor molecules acquire
their native three-dimensional conformations and undergo extensive process-
ing, such as signal sequence cleavage, N-glycosylation, and disulfide bond
formation. Final processing, such as further N-glycan modifications, O-
glycosylation, palmitoylation, phosphorylation, and sulfation take place as
the receptors are transported through the Golgi or have reached their final
destination at the cell surface. Thus, folding and processing of GPCRs are
complex events, and mechanisms that control their biogenesis have a critical
role in governing cellular responsiveness to an array of extracellular signals.

2.1. Folding and Posttranslational Modifications

Folding of GPCRs in the ER is likely to follow the two-stage model for
polytopic membrane proteins proposed by Popot and Engelman (4). Accord-
ing to this model, the individual TM α-helical domains fold independently
upon insertion into the ER membrane and assemble without significant re-
arrangement of their secondary structure. This hypothesis is supported by
the finding that both folding and assembly of GPCRs do not appear to require
covalent linkage of the polypeptide chain, because individually expressed
TM domains can form functional receptors (5–7). Factors that direct the
assembly of the individual TM domains probably include packing of the α-
helices and formation of intramolecular interactions, which involve residues
in different TM domains. Additionally, the extra- and intracellular loops
connecting the helices are likely to be important—especially the conserved
cysteine residues in the first and second extracellular loops, which appar-
ently form a constraining disulfide bond in more than 90% of GPCRs (8).
Direct evidence for the existence of such a bond has been obtained for the
muscarinic m1 acetylcholine receptor (9), rhodopsin (10,11), and substance
P receptor (12). Increasing evidence also suggests that dimerization or higher
oligomeric arrangements between GPCR molecules or with other accessory
proteins may contribute to the quaternary structure of the receptors (13–16).

The functional activity of GPCRs is critically dependent on the ability of
the protein to change its conformation upon activation (8,17). Therefore, it can
be hypothesized that the apparent need to maintain conformational flexibility
may lead to inherent instability of the assembled TM bundle. This notion is
supported by the observation that several constitutively active mutant GPCRs
are conformationally unstable (18–20). The vital need to maintain conforma-
tional flexibility may also result in high susceptibility to misfolding. This is
exemplified by the numerous naturally occurring mutations among GPCRs
that result in intracellular trapping of the misfolded protein (21–29). Not only
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truncations and short in-frame deletions and inversions, but also single amino
acid changes, can lead to ER retention of the affected receptor, leading to hu-
man diseases such as retinitis pigmentosa, nephrogenic diabetes insipidus, and
hypogonadotropic hypogonadism (reviewed in ref. 30). For example, to date,
178 different V2 vasopressin receptor-inactivating mutations causing nephro-
genic diabetes insipidus have been identified (http://www.medicine.mcgill.ca/
nephros/), most of which appear to be defective in intracellular transport (26).
In addition to GPCRs, many other membrane-bound and secretory proteins
may contain mutations that produce minor changes in the primary structure
and that result in aberrant intracellular retention of the mutant proteins. Ex-
amples include minor mutations in the cystic fibrosis TM conductance regula-
tor (CFTR) and α1-antitrypsin that have been shown as the underlying causes
for cystic fibrosis and some forms of emphysema, respectively (31,32).

Folding difficulties do not necessarily follow only from deviations from
the wild-type structure; they may be characteristic for the wild-type GPCRs
as well, as suggested by our studies regarding the human δ-opioid receptor
(33,34). We found that in stably transfected human embronic kidney
(HEK)293 cells, conversion of the receptor precursor to the mature cell-sur-
face form was slow (t1/2: approx 120 min), and only about 40% of the precur-
sors were exported out of the ER. This did not result from overloading of the
capacity of the cells to process the newly synthesized receptors, because there
was no correlation between receptor expression level and maturation effi-
ciency. Therefore, it is quite reasonable to speculate that the low efficiency of
maturation of the δ-opioid receptor is an intrinsic property of the protein mol-
ecule itself and is related to folding difficulties. Increasing evidence supports
the notion that such inefficient maturation is not restricted to the δ-opioid
receptor but may represent a general feature shared by many GPCRs. For
example, gonadotropin receptors (the luteinizing hormone and follicle-stimu-
lating hormone receptors) have been shown to mature inefficiently in heter-
ologous expression systems (35–37), and a large pool of precursor forms of
these receptors has been detected in natural tissues (35,36,38,39), suggesting
that processing inefficiency may characterize in vivo systems as well. It has
also been shown that naturally occurring GPCR variants may differ in matu-
ration efficiency; in pulse–chase studies, Fishburn et al. (40) observed that
about 20% of the long isoform of the D2 dopamine receptor was in an imma-
ture form after 3 h of chase, whereas the short isoform was fully processed to
the mature form during that time. Inefficient folding of polytopic membrane
proteins is not limited to GPCRs, because only about 20% of the wild-type
CFTR was found to be processed to the mature form (41).

Nascent glycoproteins are cotranslationally modified by the addition of
N-linked glycans. This applies also to GPCRs, because they contain several
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putative sites for N-linked glycosylation (Asn–X–Thr/Ser, where X is any
amino acid except Pro) in their extracellular N-terminal domain or in the
extracellular loops. Only a few isolated exceptions have been reported that
are devoid of any consensus sites for N-linked glycosylation, such as the
α2B-adrenergic receptor (42). The oligosaccharyl transferase transfers the
glycan precursor Glc3Man9GlcNAc2 from a lipid carrier to the nascent pro-
tein. Processing of the precursor is initiated immediately by removal of the
terminal glucoses (43,44), final processing of the N-linked glycans occurs
during transport of the protein through the Golgi. In contrast to N-
glycosylation, O-glycosylation and palmitoylation are late posttranslational
modifications. Thus far, only a few GPCRs have been shown to be modified
by O-glycosylation on Thr or Ser residues (33,45,46), but addition of palmi-
tate to cysteines on the proximal end of the C-terminal domain of GPCRs is
a common modification (reviewed in ref. 47). Both O-glycosylation and
palmitoylation appear to occur after the newly synthesized receptors have
been exported from the ER ([33], U. Petäjä-Repo, Mireille Hogue, and M.
Bouvier, manuscript in preparation).

The N-linked glycans of GPCRs have been studied extensively, but their
functional role has remained elusive. It appears that at the cell surface, their
role may vary depending on the receptor and the cell type. Nevertheless, it
has become increasingly apparent that addition of the N-linked glycans to
the nascent GPCRs may be important for folding of these proteins, because
several receptors have been demonstrated to display decreased cell-surface
expression upon mutation of their putative N-glycosylation sites (48–52).
This most likely results from the important role of the N-linked glycans in
the ER quality control that oversees the folding of glycoproteins (see Sub-
heading 2.2.). Addition of palmitate may also be important for the transport
of newly synthesized receptors to the plasma membrane (53–56), but the
mechanisms behind this observation have not been investigated.

2.2. ER Quality Control
Similarly to all other proteins traversing the secretory pathway, folding

and maturation of GPCRs are monitored by the ER quality control, which
allows only correctly folded and assembled proteins to leave this cellular
compartment and progress to their final destinations (57–59). The primary
quality control is based on common structural features that distinguish native
protein conformations from non-native conformations and relies on ubiqui-
tous molecular chaperones and folding factors, such as BiP, calnexin,
caltericulin, protein disulfide isomerase, and ERp57. Important features for
recognition include exposure of hydrophobic regions, unpaired cysteine resi-
dues, and tendency to aggregate (58).
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The mechanisms that distinguish native GPCR conformations from non-
native ones and assist in folding are undoubtedly crucial for the biogenesis
and cell-surface expression of GPCRs, but they have remained largely
uncharacterized. Only three molecular chaperones, calnexin, calreticulin, and
BiP (which are known to be involved in the primary ER quality control), have
been shown to interact with GPCRs. The lectin calnexin was found in a com-
plex with the V2 vasopressin, glycoprotein hormone, and olfactory receptors
(60–63), and the thyroid stimulating hormone receptor was also discovered to
interact with calreticulin and BiP (62). Importantly, calnexin was shown to be
involved in the ER retention of mutant V2 vasopressin receptors (61), indicat-
ing that the calnexin/calreticulin cycle may be intimately involved in GPCR
folding. The calnexin/calreticulin cycle is one of the most thoroughly charac-
terized primary quality control systems that are responsible for assessing the
folding of glycoproteins (44,57–59). The monoglucosylated form of the N-
linked oligosaccharides confers the capacity to bind to calnexin and/or
calreticulin to the glycoproteins, and a cycle of binding to and release from
these chaperones is determined by the sequential action of two enzymes: the
UDP-glucose-glycoprotein glucosyltransferase and glucosidase II, which add
and remove the terminal glucose from the N-glycan, respectively. The former
enzyme can assess the folding status of the substrate and adds the glucose to
the N-glycan only if the substrate protein has not folded correctly, thereby
promoting rebinding of calnexin/calreticulin. Both calnexin and calreticulin
are known to form a complex with the ERp57, thus coupling folding assis-
tance to disulfide bond formation.

Most of the ER molecular chaperones and folding factors are lumenal
proteins and, therefore, possess a direct access only to soluble, newly syn-
thesized proteins in the ER lumen. This raises the important issue regarding
how folding of the GPCR TM and cytosolic domains is monitored, because
a large portion of GPCRs is buried within the membrane bilayer or lies in
the cytoplasm. Molecular chaperones that could directly oversee folding and
assembly of TM domains of GPCRs are completely unknown. On the other
hand, folding of GPCR cytosolic domains might be assisted by cytosolic
chaperones such as the heat-shock protein Hsp70, as has been shown for
another polytopic membrane protein, CFTR (64). The recent observation
that rhodopsin can interact with cytosolic Hsp40 proteins HSJ1a and HSJ1b
and with Hsp70 is consistent with this hypothesis (65).

Unlike the primary quality control that relies on common structural fea-
tures, the secondary ER quality control involves protein-, cell- and tissue-spe-
cific factors that regulate folding and transport of individual proteins or protein
families (57). Some secondary ER quality control factors involved in GPCR
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intracellular transport have been identified (reviewed in ref. 66). These in-
clude the DRiP78 (67), cis–trans prolyl isomerase homologs NinaA (68) and
RanBP2 (69), ORD-4 (70), M10 and M1 families of major histocompatibility
complex class 1b molecules (71), and receptor activity-modifying proteins
(RAMPs) (72,73), which have been demonstrated to be crucial for the expres-
sion of the D1 dopamine receptor, some opsins, olfactory receptors, V2R
pheromone receptors, and the calcitonin receptor-like receptor, respectively.
The last four protein groups function not only in the ER but may also have a
role as escort proteins during transit through the Golgi. In the case of RAMPs,
the interaction with the receptors is maintained at the plasma membrane gov-
erning the functional activity of the receptors (74). Interestingly, in the case of
the γ-aminobutyric acid (GABA) type B1 receptor, heterodimerization with
another GPCR, the GABA type B2 receptor, was shown to be required for
both proper trafficking and function (75). This requirement for
heterodimerization may also apply to some taste receptors (76–78).

2.3. ER-Associated Degradation

If folding of the nascent proteins fails or subunits of multimeric proteins
are unable to assemble correctly, the ER quality control recognizes them as
aberrant and targets them for degradation. This ER-associated degradation
(ERAD) involves polyubiquitination and dislocation through the Sec61
translocon to the cytosol, where the misfolded and assembled proteins are
degraded by the 26S proteasomes (79–81). In the case of glycoproteins, the
ER α1,2-mannosidase I has been proposed to act as a timer for the exit of
substrate glycoproteins from the calnexin/calreticulin cycle by producing a
Man8GlcNAc2 form of the oligosaccharide (82,83). This N-linked glycan
structure mediates binding to the Man8-specific ER lectin EDEM, and this
interaction apparently plays a role in the delivery of the substrate glycopro-
teins to the degradation machinery (84–86).

The human δ-opioid receptor was the first GPCR that was demonstrated
to be polyubiquitinated and targeted for degradation by the proteasomes (34).
Subsequently, several other ER-retained wild-type or mutant GPCRs have
been shown to be degraded by this pathway (63,87–90). The mechanism by
which ER quality control recognizes these proteins as aberrant and targets
them for degradation is currently unknown. Upon proteasomal blockade, the
δ-opioid and thyrotropin-releasing hormone receptors were found to accu-
mulate in the cytosol in a deglycosylated soluble form (34,90). In contrast,
misfolded opsin mutants accumulate in large insoluble cytosolic aggregates
called aggresomes (87,88), and murine olfactory receptors (ml7 and
mOREG) appear to form aggregates in the ER and are at least partially de-
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graded by autophagy (63). The reasons for these apparent differences are
presently unknown. However, it is possible that the propensity of the mutant
opsins and olfactory receptors to aggregate may relate to the fact that the
entire pool of these receptors is targeted for degradation, whereas the major-
ity of newly synthesized δ-opioid and thyrotropin-releasing hormone recep-
tors can exit the ER and are transported to the cell surface. In any case, it is
apparent that accumulation of misfolded proteins in the ER is detrimental to
the cell, and the quality control mechanisms that dispose misfolded proteins
need to function very efficiently. Therefore, conformationally unstable pro-
teins, such as GPCRs, may be targeted for degradation prematurely—even in
the case of wild-type proteins. This notion is consistent with the findings that
the amount of mature δ-opioid receptors, rhodopsin, and luteinizing hormone
receptors appear to increase following blockade of the proteasomal degrada-
tion pathway (refs. 34 and 87; E. Maritta Pietilä, Jussi T. Tuusa, Pirjo M.
Apaja, Jyrki T. Aatsinki, Hannu J. Rajaniemi, and U. Petäjä-Repo, manu-
script in preparation).

3. CHEMICAL AND PHARMACOLOGICAL CHAPERONES

A large fraction of cytosolic proteins apparently fail to fold correctly and
are degraded (91), and accumulating evidence suggests that this may also be
the case for proteins that traverse the secretory pathway, including GPCRs.
Therefore, it could be envisaged that promoting the release of ER-retained
proteins might be sufficient to enhance processing and cell-surface target-
ing of these proteins and even recover function in some loss-of-function
diseases. This is based on the fact that the ER-retention relies on conforma-
tional, rather than functional, criteria (58), possibly preventing many poten-
tially functional proteins from reaching their correct cellular location.

3.1. Chemical Chaperones

The initial attempts to enhance folding and maturation of ER-retained
proteins relied on low-molecular-weight compounds such as glycerol, which
were known to increase the stability of native proteins and assist in refold-
ing of unfolded proteins (92,93). These compounds, called chemical chap-
erones, were first used to correct the mutant phenotype in cells expressing
the ΔF508 form of the CFTR (94,95). This mutation, which is responsible for
the majority of cases of cystic fibrosis, leads to ER retention and degrada-
tion of the affected protein so that it is unable to reach the apical plasma
membrane of epithelial cells (41). Glycerol, deuterated water, dimethylsul-
foxide, or trimethylamine N-oxide enhanced posttranslational maturation of
the mutant channel, leading to an increased cyclic adenosine monophos-
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phate (cAMP)-dependent chloride transport (94,95). Since these pioneering
studies were performed, chemical chaperones, many of which have the prop-
erty of increasing cellular osmolar activity, have been discovered to par-
tially correct mislocalization of several other proteins, such as the mutant
aquaporin-2 (which is associated with nephrogenic diabetes insipidus [96])
and the mutant α1-antitrypsin Z (which is associated with emphysema and
liver disease [97]).

Several mechanisms have been proposed for the chemical chaperone ac-
tion. For example, it has been envisioned that these compounds might stabi-
lize incorrectly folded proteins, reduce aggregation, or prevent
nonproductive interactions with other proteins (98). Although the precise
mechanism of action is unknown, it has been proposed that osmolytes
(amino acids such as proline, sugars such as trehalose, and polyols such as
glycerol) tend to raise the free energy of the misfolded species through their
unfavorable interactions with the protein backbone, thus favoring the native
completely folded state of the protein (99). In any case, the chemical chap-
erones are nonspecific and are active only in high concentrations, which
hinders their use in in vivo settings.

3.2. Pharmacological Chaperones

An exciting and novel twist on the concept of chemical chaperones was
introduced by Loo and Clarke (100), who studied the effects of more spe-
cific compounds on P-glycoprotein transporter mutants encoded by the
multidrug resistance 1 gene (Table 1). The authors found that various sub-
strates and modulators of the transporter enhanced folding of the mutants
and increased the amount of fully processed mature protein at the cell sur-
face. Subsequently, Fan et al. (101) applied the same paradigm for mutant
forms of the lysosomal enzyme α-galactosidase A that are associated with
Fabry disease. In this study, a competitive inhibitor, 1-deoxy-
galactonojirimycin, was found to facilitate transport of the R301Q mutant to
its correct destination within lysosomes and to significantly increase galac-
tosidase activity in lymphoblasts carrying the R301Q or Q279E mutations.
Similarly, the mutant N470D HERG potassium channel associated with con-
genital long QT syndrome was rescued to the plasma membrane following
treatment with the channel blockers E-4031, astemizole, and cisapride (105).
These observations paved the way to more specific approaches to try to alle-
viate problems in protein mislocalization and misfolding. In contrast to
chemical chaperones, the compounds that have the ability to bind specifi-
cally to the affected protein have a much higher potential to be useful in in
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vivo settings and are less likely to result in toxic effects. Therefore, we
defined these specific compounds as pharmacological chaperones (114,123).

The concept of pharmacological chaperones was first applied to GPCRs
in an attempt to enhance cell-surface expression of mutant V2 vasopressin
receptors that are retained in the ER (114) and are responsible for the devel-
opment of X-linked nephrogenic diabetes insipidus. The cell-permeable re-
ceptor-specific antagonists SR121463A and VPA-985 converted the
precursor form of the ΔL62AR64 V2 vasopressin receptor (a deletion mutant
lacking three amino acids in the first cytoplasmic loop) into a fully
glycosylated mature protein that was now targeted to the cell surface in Af-
rican green monkey fibro blasts COS and HEK293 cells, as determined by
pulse–chase analysis, cell-surface immunofluorescence microscopy, and
flow cytometry. Once these receptors were at their correct cellular location,
they were functional and conferred arginine vasopressin-stimulated cAMP
responses. Importantly, this effect could not be mediated by nor competed
with an antagonist that was membrane impermeable, indicating that
SR121463A and VPA-985 were mediating their effects intracellularly. To
date, a total of 11 of 18 intracellularly retained V2 vasopressin receptor
mutants have demonstrated cell-surface targeting and agonist-stimulated sig-
naling following SR121463A treatment. In a subsequent study, two other
V2 vasopressin receptor mutants, L292P and ΔV278, were found to be respon-
sive to SR121463B, which rescued their surface expression in both COS
cells and polarized Madin–Darby canine kidney II cells (115). In the latter
cell line, the mutants L292P and R337X were appropriately delivered to the
basolateral surface following the antagonist treatment.

Because the receptor-specific ligands were able to rescue ER-retained V2
vasopressin receptor mutants to the cell surface, we tested whether the same
strategy could enhance processing and cell-surface targeting of the wild-
type δ-opioid receptor, which has an inherently low maturation efficiency
(116). Addition of the lipophilic opioid antagonist naltrexone to the culture
medium in pulse–chase experiments significantly increased the turnover rate
of receptor precursors in stably transfected HEK293 cells, leading to a two-
fold increase in the processing of this species to the mature form. The
naltrexone-mediated enhancement in receptor maturation was dose-depen-
dent, and the EC50 was similar to the estimated Ki for this ligand, indicating
requirement for receptor occupancy. Additionally, the antagonist was able
to enhance receptor maturation, even when protein transport to the cell sur-
face was blocked by brefeldin A and the membrane-impermeable peptidic
opioid agonist Leu-enkephalin (at saturating concentration) was not able to
block its effects, confirming the intracellular site of action of the antagonist.
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Importantly, the chaperone action was found to be pharmacologically selec-
tive because unrelated GPCR ligands, such as the β-adrenergic antagonist
propranolol, were unable to mimic the effects mediated by the opioid ligand.
The effects also could not be mimicked by SR121463A, a compound that
promotes functional rescue of ER-retained V2 vasopressin receptor mutants
(114). These data strongly support the hypothesis that the receptor-specific
ligands act as pharmacological chaperones by binding to newly synthesized
receptors in the ER. Interestingly, the signaling efficacy of the ligands does
not seem to be an important aspect of their pharmacological chaperone ac-
tion, because both antagonists and agonists were found to have comparable
activity. This suggests that stabilization of several distinct receptor confor-
mations can facilitate adequate folding and/or export of the receptor protein
from the ER.

The subsequent observations on another opioid receptor subtype, the μ-
opioid receptor, are consistent with the findings obtained for the δ-opioid
receptor. Chaipatikul et al. (117) showed that intracellularly retained mu-
tants were transported to the cell surface after incubating transiently trans-
fected HEK293 cells with μ-opioid receptor-specific ligands. This was
demonstrated by ligand binding, flow cytometry, and immunofluorescence.
Importantly, as was observed for the δ-opioid receptor (116), only mem-
brane-permeable ligands were found to be effective, and both agonists and
antagonists were able to rescue the intracellularly trapped receptors.

Subsequently, the pharmacological chaperone paradigm has been
extended to other GPCRs. Conn and colleagues demonstrated that it is pos-
sible to use peptidomimetics indoles, quinololes, and erythromycin
macrolides to enhance cell-surface expression of gonadotropin-releasing
hormone receptor mutants that cause hypogonadotropic hypogonadism
(28,118,119,124). For 11 of 14 mutant receptors, addition of the ligand at
the time of transfection conferred both ligand binding and effector coupling
to COS cells. Ligands with a high affinity for the wild-type receptor were
observed to be the most efficient. In an analogous approach, ER-retained
rhodopsin mutants related to retinitis pigmentosa were rescued to the cell
surface using retinal-based ligands (88,120–122).

The concept of pharmacological chaperones has also been extended to
several other misfolded proteins that cause human diseases. In addition to
receptor ligands, several small pharmacologically selective molecules have
been used to rescue misfolded ion channel, enzyme, and transcriptional fac-
tor mutants (Table 1). The paradigm has also been applied to enhance as-
sembly and secretion of immunoglobulins using the cognate hapten ligand
as a pharmacological chaperone (111).
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3.3. The Mechanism of Action of Pharmacological Chaperones

The mechanisms of the pharmacological chaperone action on GPCRs are
not fully understood; however, it can be hypothesized that the most likely
mechanism by which receptor-specific ligands mediate their effect is stabi-
lization of the newly synthesized receptors in the native or intermediate state
of their folding pathway. Binding of a ligand may alter the thermodynamic
equilibrium in favor of the correctly folded protein. This would then en-
hance the possibility of the protein to escape the stringent ER quality con-
trol, ultimately leading to an increase in the steady-state level of functional
receptors at the cell surface. This hypothesis is consistent with the observa-
tion that there is a clear correlation between the magnitude of ligand-medi-
ated rescue and binding affinity of ligands that mediate the effects (116,119).
A similar correlation has been observed for enzyme inhibitors and blockers
that rescue mutant forms of the α-galactosidase A and HERG potassium
channel, respectively (102,106). The link between the binding affinity and
the chaperone effect can be rationalized according to either an induced fit or
a kinetic selection model. In the induced fit paradigm, the higher binding
energy provided by the high-affinity interaction contributes to promote the
native protein conformation that is compatible with ER export. In the selec-
tion model, the longer average binding time (>kon/koff) of the higher affinity
ligands allows more time for the ligand-bound stabilized conformation to
reach its native form and leave the ER. Obviously, these are not mutually
exclusive models, and both mechanisms could contribute to the pharmaco-
logical chaperone action of the GPCR ligands.

The precise molecular mechanisms by which ligands may enhance con-
formational stabilization of the newly synthesized GPCRs are still unknown.
Nevertheless, it can be hypothesized that these compounds may promote
more stable packing of the TM α-helices of the receptor, analogously to
other small molecular ligands that have been shown to induce changes in
protein thermostability and flexibility (125–127). Although it has not been
directly shown that the ligands are able to bind to receptor precursors in the
ER, the indirect evidence is compelling. Therefore, it is reasonable to specu-
late that binding of a ligand to the newly synthesized receptor might stabi-
lize the labile protein by inducing additional conformational constraints
within the α-helical bundle. Interestingly, all the membrane-permeable
opioid ligands that were tested were observed to enhance opioid receptor
cell-surface expression (116,117), suggesting that both the inactive receptor
conformation (stabilized by antagonists or inverse agonists) and the active
one(s) (stabilized by agonists) are recognized as export competent forms by
the ER quality control.
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4. CONCLUSIONS

As the molecular mechanisms of genetically inherited diseases are un-
covered, it becomes apparent that errors in folding and localization are the
underlying causes for an increasing number of diseases and disorders, in-
cluding those relating to GPCRs. Therefore, assessing the mechanisms that
are responsible for the errors in folding and localization and development of
novel approaches to alleviate these problems have become increasingly im-
portant. Thus, the observation that specific cell-permeable compounds can
stabilize protein conformations(s) that are compatible with their export from
the ER might represent a generally applicable rescue strategy for many mu-
tant proteins that are responsible for human diseases.

Potential clinical implications of pharmacological chaperones have
already been evoked in several cases of inherited diseases, and the therapeu-
tic potential of pharmacological chaperones has provided a rationale for de-
signing novel drugs to treat these disorders. For example, pharmacological
chaperones are proposed as potential drugs for the treatment of lysosomal
storage disorders such as Fabry disease and Gaucher syndrome, which are
caused by ER-retained lysosomal enzymes (128,129). Similar scenarios
could be envisioned for treating patients that suffer from GPCR-related dis-
orders. For example, patients that suffer from nephrogenic diabetes insipi-
dus, hypogonadotropic hypogonadism, or retinitis pigmentosa could benefit
from treatment with pharmacological chaperones. In the case of GPCRs,
many pharmacological chaperones that could be used clinically are likely to
be among existing drugs that are already used. However, further studies are
required to determine whether the pharmacological chaperone activity is an
intrinsic property of GPCR ligands in general. In any case, the interesting
results reviewed in this chapter provide a compelling argument for further
research on this strategy. Screening campaigns based on the ability to rescue
cell-surface targeting and function of otherwise ER-retained mutant pro-
teins are likely to uncover new pharmacological chaperones with various
potential therapeutic applications.

Importantly, it should also be remembered that the clinical implications
of pharmacological chaperones might not be limited to conditions resulting
from mutated genes. This was suggested by the observations that receptor-
specific ligands can promote maturation and cell-surface expression of the
wild-type δ-opioid and gonadotropin-releasing hormone receptors
(116,130). If future studies reveal that this concept applies to a larger num-
ber of wild-type GPCRs, then the pharmacological chaperone activity of the
corresponding ligands may prove a useful parameter in the design of better
therapeutic drugs and may help to explain and predict the functional conse-
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quences that follow chronic treatment with these agents in vivo. Indeed,
compounds that have pharmacological chaperone activity could regulate the
expression level of their target receptors and modulate their responsiveness
in ways that are independent from their direct signaling efficacy. In sum-
mary, pharmacological chaperone activity represents a recently uncovered
property that permits specific facilitation of cell-surface expression of mem-
brane proteins and may have therapeutic applications in many clinical con-
ditions.
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Regulated Membrane Trafficking

and Proteolysis of GPCRs

James N. Hislop and Mark von Zastrow

1. INTRODUCTION

Multiple mechanisms contribute to the physiological regulation of G pro-
tein-coupled receptors (GPCRs) present in the plasma membrane, the main
site where ligand-induced signaling events are initiated. Early studies delin-
eated the existence of distinct functional processes of receptor regulation in
natively expressing cells and tissues (1,2). More recent studies have led to
an explosion of new information regarding cellular and molecular mecha-
nisms of receptor regulation.

1.1. Functional Uncoupling of GPCRs From Heterotrimeric
G Proteins Mediated by Receptor Phosphorylation

Extensive studies of certain GPCRs, such as rhodopsin (a light-activated
GPCR) and the β2-adrenergic receptor (β2-AR; a ligand-activated GPCR),
established a highly conserved mechanism that regulates the functional
activity of many GPCRs (3). This mechanism involves the phosphorylation
of receptors by a specific family of G protein-coupled receptor kinases
(GRKs), followed by the interaction of phosphorylated receptors with cyto-
plasmic accessory proteins called arrestins. Arrestin-bound receptors are
unable to couple to heterotrimeric G proteins, disrupting the pathway of
GPCR-mediated signal transduction at the earliest stage.

Biochemical studies of signal transduction in isolated rod outer segment
preparations identified the protein rhodopsin kinase (or GRK1), which
inhibited the ability of light-activated rhodopsin to stimulate its cognate
heterotrimeric G protein (transducin). Light-activated rhodopsin is a good
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substrate for phosphorylation by rhodopsin kinase, whereas rhodopsin that
has not been activated by light is a poor substrate (4). Phosphorylation
rhodopsin only partially inhibited the activation of transducin. A second pro-
tein, visual arrestin, which is present in cytoplasmic fractions of rod cells,
was able to bind to the phosphorylated rhodopsin and completely inhibit
(“arrest”) activation of transducin (5).

Studies using functional reconstitution of β2-AR-mediated activation of
adenylyl cyclase have provided strong evidence for a role of phosphoryla-
tion in mediating rapid desensitization of a ligand-activated GPCR (6). Bio-
chemical purification of the cytoplasmic activity responsible identified the
protein β-AR kinase (βARK, or GRK2), which preferentially phosphory-
lates agonist-occupied receptors and has similar properties to rhodopsin
kinase (7). Biochemical reconstitution studies indicated that increasingly
purified fractions of βARK exhibited reduced ability to attenuate β2-AR-
mediated signal transduction in reconstituted membrane preparations. Fur-
ther analysis of this effect led to the identification of a distinct protein
component that was lost in increasingly purified fractions and that increased
functional desensitization when re-added to highly purified fractions of
βARK (7,8). This protein cofactor was similar to visual arrestin and, there-
fore, was named “nonvisual” arrestin or β-arrestin. Complementary DNA
cloning has identified a family of arrestins involved in regulating the func-
tion of phosphorylated GPCRs (9).

Agonists not only regulate phosphorylation of GPCRs by GRKs but also
regulate the affinity with which phosphorylated receptors bind to arrestins
(10). This dual-control mechanism assures that only those receptors actually
activated by agonist are desensitized. In this way, other receptors that are
not activated, including co-expressed GPCRs that recognize other ligands
and are potentially desensitized by the same mechanism, are not affected.
Indeed, GRK-mediated phosphorylation and subsequent binding of arrestins
is generally considered to be a paradigm for homologous desensitization, a
form of desensitization that is specific only to the specified activated GPCR
and is not influenced by activation of other receptors in the same cell (3).

1.2. Agonist-Induced Endocytosis of GPCRs

Pharmacological studies of the process of sequestration led to the hypoth-
esis that certain GPCRs are removed from the plasma membrane within
minutes after agonist-induced activation (11,12). Biochemical and immu-
nochemical methods have verified this finding in both cultured cells and
certain native tissues (13–15). Rapid endocytosis of the β2-AR is mediated
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by an agonist-dependent lateral redistribution into clathrin-coated pits (16).
Coated pits then pinch off from the plasma membrane (Fig. 1) to form
endocytic vesicles, a process that is dependent on the cytoplasmic protein
dynamin (17–20). Subsequent studies have demonstrated that regulated en-
docytosis of several other GPCRs is also mediated by a dynamin-dependent
mechanism, suggesting a conserved role of clathrin-coated pits in mediating
endocytosis of many GPCRs.

Clathrin-coated pits play a general role in mediating rapid endocytosis of
a large number of cell-surface components other than signaling receptors,
many of which are endocytosed constitutively (i. e., in a ligand-independent
manner). This has raised the question: How is GPCR endocytosis regulated
by ligands? GRKs and arrestins (in addition to their previously established
role in mediating functional uncoupling of receptors from heterotrimeric G
proteins) play an important role in regulating endocytosis of certain GPCRs.
Particularly, β-arrestins can promote the concentration of phosphorylated
receptors in coated pits by binding simultaneously to the receptors and to
the clathrin-containing lattice structure via distinct protein interaction do-
mains, thus functioning as “adapters” that link specific GPCRs to endocytic
membranes (21,22). This is true for many, but not all, GPCRs. There are
also examples of GPCRs that either do not endocytose rapidly or endocytose
by a different mechanism (23–25). Although this diversity of GPCR mem-
brane trafficking is not yet fully understood at the mechanistic level, it may
have important implications for the physiological regulation of distinct
GPCRs.

2. FUNCTIONAL CONSEQUENCES OF GPCR ENDOCYTOSIS

2.1. Role in Rapid Desensitization of GPCRs

In many cases, endocytosis is not believed to play a primary role in medi-
ating rapid desensitization of GPCRs, although the precise role of endocyto-
sis in this process may depend on receptor expression level. Endocytosis of
μ-opioid peptide (MOP) receptors does not contribute significantly to func-
tional desensitization in cells expressing relatively high levels of receptor
protein but does appear to cause desensitization in cells expressing lower
levels of receptor (26). Studies of the β2-AR emphasize that GRK/arrestin-
dependent uncoupling of receptor from G protein occurs in the plasma mem-
brane before endocytosis begins, and desensitization of the β2-AR is not
prevented by blockade of receptor endocytosis (27).
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Fig. 1. Examples of events controlling the membrane trafficking of GPCRs. In
the endocytic pathway, agonist-activated GPCRs can be endocytosed via clathrin-
coated pits, followed by sorting to lysosomes or recycling to the plasma membrane.
In the biosynthetic pathway, GPCRs synthesized in the endoplasmic reticulum can
undergo ligand-assisted folding followed by kinase regulated sorting to either con-
stitutive or regulated secretory vesicles.
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2.2. Role in Resensitization of GPCR Signaling

In contrast to its limited role in mediating rapid desensitization, endocy-
tosis of certain GPCRs is believed to play a major role in mediating the
distinct process of receptor resensitization (28,29). The reason for this ma-
jor role is believed to be that endocytosis brings receptors in close proximity
to an endosome-associated phosphatase, which mediates dephosphorylation
of receptors previously phosphorylated (hence, “desensitized”) at the cell
surface. Dephosphorylated receptors are then recycled back to the plasma
membrane in a “resensitized” state, which is fully functional to mediate sub-
sequent rounds of signal transduction upon re-exposure to agonist (3,27). A
similar role of endocytic trafficking in promoting functional desensitization
has been described for other GPCRs, such as the ΜΟP receptor (30), al-
though this may not be the case for all GPCRs (3).

2.3. Role in Mediating Proteolytic Downregulation of GPCRs

Endocytosis is also believed to play an important role in mediating
downregulation of many GPCRs by promoting proteolysis of receptors.
Although downregulation of GPCRs can occur via multiple mechanisms
(31), one mechanism involves endocytosis of receptors followed by mem-
brane trafficking to lysosomes. GPCRs can be targeted to lysosomes after
initial endocytosis by clathrin-coated pits or alternate mechanism(s) of en-
docytosis (32,33). Certain GPCRs efficiently recycle to the plasma mem-
brane following endocytosis, whereas other GPCRs are sorted preferentially
to lysosomes (34,35). The sorting decision between tha plasma membrane
and lysosomes is important because it can determine whether agonist-in-
duced endocytosis promotes the distinct functional consequences of recep-
tor resensitization or downregulation, respectively.

3. MEMBRANE TRAFFICKING OF GPCRS
AFTER ENDOCYTOSIS

3.1. Mechanisms of Recycling

Many integral membrane proteins are believed to recycle to the plasma
membrane after endocytosis by bulk membrane flow, without requiring spe-
cific sorting information of the membrane protein itself (36,37). This does
not appear to be true for some GPCRs, such as the β2-AR and the ΜΟP
receptor, in which specific sequences present in the C-terminal cytoplasmic
domain have been identified that are required for efficient recycling of
endocytosed receptors to the plasma membrane (38–40). The “recycling sig-
nal” present in the C-terminal cytoplasmic domain of the β2-AR binds both
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to a family of PDZ domain-containing proteins capable of interacting with
the cortical actin cytoskeleton and to the N-ethyl-maleimide-sensitive fu-
sion factor (NSF); both types of protein interaction have been proposed to
function in controlling endocytic trafficking of receptors (38,39). The recy-
cling signal defined in the ΜΟP receptor tail does not bind detectably to
either the PDZ domains or NSF and, presumably, functions via distinct
cytoplasmic protein interaction(s) (40). It is not yet known how widespread
the phenomenon of “signal-mediated” recycling is in the GPCR superfam-
ily, although there is evidence for cytoplasmic sequences in several other
GPCRs that either enhance or inhibit recycling of internalized receptors.
Certain GPCRs remain persistently associated with arrestins after endocyto-
sis, which has been proposed to inhibit receptor recycling (41) or may medi-
ate other regulatory effects (42).

3.2. Mechanisms of GPCR Sorting to Lysosomes

Certain GPCRs, including the human β2-AR and the CXCR4 chemokine
receptor, can be sorted to lysosomes after prolonged stimulation by a mecha-
nism that requires covalent attachment of ubiquitin to the receptor protein
(43–45). Ubiquitin is a small (76-residue) polypeptide attached to the ε-
amino group of lysine residue(s) present on the cytoplasmic surface of re-
ceptors. The ubiquitin isopeptide functions as a covalent “tag,” promoting
the sorting of many integral membrane proteins to lysosomes via ubiquitin-
mediated binding to a specialized protein complex associated with the endo-
some membrane (46). Ubiquitination of the δ-opioid peptide (DOP) receptor
is not required for efficient trafficking to lysosomes in a human cell culture
model (47). A cytoplasmic protein has been identified that can bind to the
DOP receptor and modulate its trafficking to lysosomes, and binding of this
protein to receptors does not appear to require receptor ubiquitination (48).
Together, these observations suggest the existence of additional machinery
mediating lysosomal trafficking of GPCRs in mammalian cells. The details
of this additional machinery and relationships to the conserved ubiquitina-
tion-dependent sorting mechanism remain to be elucidated.

4. REGULATION OF GPCR TRAFFIC IN THE BIOSYNTHETIC
PATHWAY

4.1. Regulation of GPCR Folding and Export From the Endoplasmic
Reticulum

Much of what is known about GPCR membrane traffic involves receptor
transport through the endocytic pathway (Fig.1). However, the number of
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GPCRs available for ligand binding at the cell surface can also be regulated
by receptor trafficking through the biosynthetic pathway (Fig.1). Studies of
vasopressin and opioid receptors expressed in heterologous cell models have
revealed that a substantial fraction of newly synthesized receptors are im-
properly folded and proteolyzed by a mechanism involving proteosomes
(rather than lysosomes) before exiting the endoplasmic reticulum (49). Cer-
tain membrane-permeant (nonpeptide) ligands are capable of increasing the
surface delivery of newly synthesized receptors, apparently by promoting
the productive folding of receptors in the endoplasmic reticulum. This role
of opiate drugs as “pharmacological chaperones” may help to explain the
reason that certain opioid antagonists and partial agonist drugs produce
upregulation of opioid receptors in tissue (50). This is discussed in detail in
Chapter 4.

4.2. Regulation of GPCR Traffic After Exit From the Golgi
Apparatus

Another mechanism controlling the delivery of recently synthesized
GPCRs to the plasma membrane appears to involve the regulation of recep-
tor trafficking at a later stage in the biosynthetic pathway, after receptors
exit the endoplasmic reticulum and are delivered to the Golgi apparatus.
Tyrosine kinase (Trk)-mediated signaling (via Trk-family neurotrophin re-
ceptors) is sufficient to retain DOP expressed in cultured neurosecretory
cells in an intracellular membrane pool, localized adjacent to the trans-Golgi
network, which does not constitutively traffic to the plasma membrane but
is able to mediate rapid receptor insertion to the plasma membrane in re-
sponse to depolarization. This mechanism selectively regulates biosynthetic
membrane trafficking of DOP receptors, whereas MOP receptors appear to
constitutively traffic to the plasma membrane (51). It is suggested that this
mechanism may mediate activity-dependent changes in the responsiveness
of neurons to DOP receptor agonists and may also contribute to specific
changes in DOP receptor surface localization observed in opiate-dependent
animals (52).

5. CONCLUSION

Considerable progress has been made in defining GPCR membrane traf-
ficking itineraries in the endocytic and biosynthetic pathways. There has
also been progress in elucidating molecular mechanisms that mediate spe-
cific GPCR trafficking events; however, many questions remain. Functional
consequences of specific GPCR endocytic trafficking events have been iden-
tified most compellingly for the processes of resensitization and



102 Hislop and von Zastrow

downregulation of receptors. It is likely that endocytic trafficking of GPCRs
has other important functional effects that remain to be fully elucidated. It
also appears that certain GPCRs undergo regulated membrane trafficking in
the biosynthetic pathway, but the physiological functions of these events are
currently unknown. A limitation of our current understanding is that it is
derived largely from studies of model cell systems expressing recombinant
receptors. An important future challenge is to define membrane trafficking
mechanisms that regulate GPCRs in native cells and to elucidate physiologi-
cal consequences of these trafficking events in vivo. It is conceivable that
progress in this area will identify novel targets for therapeutic intervention
in disease states associated with dysregulation of GPCR signaling.
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Heterotrimeric G Proteins

and Their Effector Pathways

Tracy Nguyen Hwangpo, and Ravi Iyengar

1. INTRODUCTION

Almost 30 yr have passed since the discovery of the heptahelical trans-
membrane (TM) receptors and their connection to heterotrimeric G proteins
and sequential signal flow to intracellular effectors (1–3). Many hormones,
sensory stimuli, and neurotransmitters use this signaling system to convert
chemical or physical information from the G protein-coupled receptor
(GPCR) through a transducer (G protein) to an effector into an intracellular
language that the cell can comprehend and to which it can respond. In the
liver, epinephrine signals via the β-adrenergic receptor (AR) through Gαs to
adenylyl cyclase to increase cyclic adenosine monophosphate (cAMP) pro-
duction such that it leads to stimulation of glycogen breakdown and inhibi-
tion of glycogen synthesis, resulting in glucose production. In the eye, light
stimulates the GPCR rhodopsin, which activates the G protein transducin, to
stimulate the activity of cyclic guanosine monophosphate (cGMP) phos-
phodiesterase (PDE). This results in decreased cGMP levels and changes in
the activity of the cyclic nucleotide-gated Na2+ channels, thereby convert-
ing photons into electrical impulses and transmitting information to the vi-
sual cortex. These cascades of events allow for processing of the initial
signal, including amplification.

2. G PROTEIN-COUPLED RECEPTORS

The heptahelical TM receptor, also known as the GPCR, comprises the
largest group of TM receptor proteins involved in signal transduction. They
couple to heterotrimeric G proteins and induce a conformational change in
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the G protein upon ligand binding and receptor activation. All GPCRs share
a common molecular architecture consisting of seven-TM (7TM) helices
that are connected by three extracellular and three intracellular loops.
Although GPCRs share similar overall secondary structures, they vary
widely in amino acid identity and in the manner by which the different
receptors are activated by ligands.

To date, over 1200 members of the GPCR family have been identified in
the human genome, and about 40 to 60% have orthologs in other species (4).
Agonists or potential ligands have been assigned to approx 190 GPCRs, and
more than 900 are olfactory GPCRs (4). The remaining GPCRs are called
“orphan” receptors because their ligands have yet to be identified.

GPCRs are grouped into five major families based on sequence identity,
of which the first three comprise mammalian GPCRs. Family A contains
receptors related to rhodospin receptors and ARs that bind ligands as diverse
as biogenic amines (such as histamine and serotonin), peptides (opioid and
somatostatin), hormone proteins (follicle-stimulating hormone), olfactory
molecules, lipids, phospholipids (cannabinoids), and viral proteins. They
are the largest family of GPCRs and are subdivided according to structural
similarities. They are characterized by the presence of several highly con-
served amino acids and contain a disulfide bridge that connects the first and
second extracellular loops (5).

Family B, the second largest family of GPCRs, contains receptors for
peptide hormones that are similar to secretin. They include receptors for
secretin, glucagon, calcitonin, gastric inhibitory peptide, and vasoactive
intestinal peptide (VIP). They possess about 60 members and are character-
ized by the presence of a large N-terminus, which contains several cysteines
that presumably form a network of disulfide bridges (4,5). These receptors
usually are coupled to more than one G protein, with the Gαs-adenylyl cy-
clase pathway predominating (6).

Family C contains receptors related to the metabotropic receptors. It con-
tains over 2 dozen members and includes the metabotropic glutamate recep-
tors, the calcium-sensing receptors, and γ-aminobutyric acid (GABA)B
receptors. Family C is defined as a group of receptors comprising at least
three different subfamilies that share 20% or greater amino acid sequence
over their 7TM regions (4). This family contains a long amino terminus and
carboxyl tail, of which the N-terminus is the ligand-binding region (5).

The last two GPCR families are relatively small. Family D contains
receptors related to the fungal pheromone receptors; in July 2004, there were
about 24 members in this class (from the GPCR database [GPCRDB]) (7,8).
This family is divided into STE2- and STE3-like receptor subfamilies. Fam-
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ily E, the smallest family, contains receptors related to the slime mold cAMP
receptors; in July 2004, there were about five members (according to the
GPCRDB) (7,8). Within each of these structural classes of receptors, there
are several functional classes that couple to the various heterotrimeric G
proteins.

3. HETEROTRIMERIC G PROTEINS

Heterotrimeric G proteins are composed of an α-subunit, a β-subunit, and
a γ-subunit. The β-subunit and γ-subunit are considered to be a single func-
tional complex, because they do not dissociate in nondenaturing conditions.
The α-subunit can bind and hydrolyze guanosine triphosphate (GTP). They
are called heterotrimeric because of the three different subunits and G pro-
teins because they display highly selective binding for guanine nucleotides.
In the basal state, the α-subunit, which is bound to guanosine diphosphate
(GDP), associates with the βγ complex. Upon ligand binding to the GPCR,
the latter undergoes a conformational change such that it promotes the
exchange of GDP for GTP on the α-subunit. In the GTP-bound state, the α-
subunit dissociates from the βγ complex, and both the α-subunit and the βγ
complex can interact with and regulate downstream effectors to evoke physi-
ological responses. However, the hydrolysis of GTP on the α-subunit results
in its re-association with the βγ complex, leading to the dissipation of the
intracellular response. There are several other levels of regulation for this
system, such as regulators of G protein signaling (RGS), activators of G
proteins signaling (AGS), and G protein receptor kinases (GRKs), which
have been described in detail in many recent reviews (9–11). Briefly, RGS
proteins increase the intrinsic GTPase activity of the α-subunit; AGS pro-
teins activate G proteins independent of GPCR-mediated signaling, and
GRKs phosphorylate key residues on the GPCR, leading to desensitization
and/or endocytosis of the receptor.

4. DIFFERENT CLASSES OF HETEROTRIMERIC G PROTEINS
AND THEIR COUPLING PROPERTIES

The different classes of G proteins are defined by their sequence identity
as well as their downstream effector coupling specificity. There are over 20
Gα-subunits known to date, and they are divided into four major Gα sub-
families. Because the coupling of the receptor to the different classes of G
proteins specifies the signaling pathways that are activated, GPCRs are func-
tionally classified according to their coupling specificity, such as Gs- or Gq-
coupled receptors. Several recent reviews have detailed the expression and
biological significance of G protein pathways (12–14).
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4.1. Gαs Family

The Gαs family includes Gαs, GαsXL, and Gαolf. Members of this family
of Gα-subunits interact with and stimulate the activity of adenylyl cyclase
to increase cAMP levels. Additionally, the Gα-subunits are sensitive to the
cholera toxin made by Vibrio cholera. The A1 subunit of cholera toxin is an
intracellular adenosine diphosphate (ADP)-ribosyl transferase that catalyzes
the covalent addition of the ADP-ribose moiety from NAD+ to Gαs. ADP-
ribosylated Gαs·GTP can activate adenylyl cyclase but cannot hydrolyze the
GTP to GDP; therefore, Gαs remains constitutively active. There are four
splice variants of Gαs, and they are all known to stimulate adenylyl cyclase
activity (15).

The “extra large” G protein ( GαsXL), which is expressed in neuroendo-
crine cells, is a plasma membrane-associated protein; it consists of a novel
37-kDa XL domain followed by a 41-kDA αs-domain encoded by exons 2 to
13 of the Gαs gene (16,17). Similarly to Gαs, GαsXL can bind GTP and stimu-
late adenylyl cyclase activity, but it remains to be determined whether GαsXL
can interact with GPCRs that are known to interact with Gαs in vivo (17,18).

The final member, Gαolf, which was initially discovered in the
neuroepthilium and striatum and considered to be the G protein of the olfac-
tory system, shows 88% homology to Gαs. It has been shown to stimulate
adenylyl cyclase, can be constitutively activated by cholera toxin, and can
interact with the β-AR (19,20). Gαolf is involved in odor-evoked signal trans-
duction because Gαolf knockout mice are anosmic (21). It is believed that
upon odorant binding, the odorant receptor activates Gαolf, which conse-
quently activates adenylyl cyclase III (AC3). AC3 then raises cAMP levels,
causing cyclic nucleotide-gated channels to open, which leads to an influx
of cations and, eventually, the formation of an action potential that signals
to the brain (22). Gαolf has also been shown to be present in peripheral tis-
sues; more recently, it has been implicated in oncogenic transformation of
digestive and urogenital epithelial cells (23).

There are three major pathways by which Gs-coupled receptors take
effect. All of these involve adenylyl cyclases and cAMP. Most of the effects
of cAMP occur through the activation of protein kinase A (PKA), which can
phosphorylate and regulate diverse substrates such as transcription factors,
metabolic enzymes, and channels. In recent years, it has been demonstrated
that cAMP can bind directly and regulate the activity of Epac (the exchange
factor for the small GTPase Rap), thereby stimulating Rap activity. In sen-
sory organs such as the nasal neuroepithelium, cAMP also binds and regu-
lates the activity of cyclic nucleotide-gated channels. The various effector
pathways for Gαs are summarized in Fig. 1.
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Fig. 1. The Gαs signaling pathway. This schematic diagram demonstrates how
the Gαs–AC pathway regulates multiple physiological processes, including olfac-
tion, homeostatic regulatory functions, proliferation, and differentiation. AC,
adenylyl cyclase; PKA, protein kinase A; CNGC, cyclic nucleotide-gated channel;
GEF, guanine exchange factor; Rap1, a small GTPase; MAPK, mitogen-activated
protein kinase; B-Raf, MAP Kinase Kinase Kinase for MAP Kinase Kinase 1,2.
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4.2. Gαi/o Family

The Gαi/o family includes Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαgust, Gαt-r, and
Gαt-c. This family, with the exception of Gαz, is pertussis toxin-sensitive.
This toxin, which is also an ADP-ribosyl-transferase, catalyzes the addition
of ADP-ribose to the α-subunit of Gαi. This irreversible modification oc-
curs on a cysteine, which is at the fourth position from the C-terminus. This
region is also involved in coupling to receptors; hence, ADP-ribosylated
Gαi/o-subunits do not interact with receptors. Consequently, pertussis toxin
inhibits receptor activation of the Gα i/o pathway.

Gαi1, Gαi2, and Gαi3 are products of different Gnai (name for genes en-
coding Gαi members) genes, but all mediate inhibition of various adenylyl
cyclases (24,25). They are partly functionally redundant because Gαi1- and
Gαi3-deficient mice do not shown gross phenotypic changes (13). However,
Gαi2-deficient mice show defects in B- and T-cell signaling (26,27).

The most abundant G protein in the mammalian brain is Gαo. Three
isoforms of Gαo exist; two of which are generated by alternative splicing,
and the third is generated by posttranslational modification (28–30). This G
protein is enriched in growth cones and has been implicated in neurite out-
growth (31,32). Recent studies using yeast two-hybrid screens and comple-
mentary DNA (cDNA) expression cloning have yielded some candidate
proteins that are direct effectors of Gαo. They include the GTPase-activat-
ing protein (GAP) for the small G protein Rap (RapGAP), the GAP from
Gαz (Gαz–GAP), RGS-17, and the G protein-regulated inducer of neurite
outgrowth (GRIN) (33,34).

An excellent review on Gαz signaling was recently published (35). Simi-
larly to Gαi, Gαz can inhibit adenylyl cyclase and stimulate K+ channels
(36,37). However, Gαz lacks a consensus site for ADP-ribosylation by per-
tussis toxin and is thus unaffected by it (38,39). Additionally, Gαz hydro-
lyzes GTP at a much slower rate compared to other Gα-subunits, so it is not
surprising that it interacts with several RGS proteins (35,40). Gαz can be
phosphorylated by protein kinase C (PKC) and p21-activated kinase
(PAK)1, leading to a decrease in Gαz’s affinity for the Gβγ complex and
thereby maintaining the G protein in an active state for a longer period of
time (41,42).

The last three members of the Gαi family are involved in sensory sys-
tems. Gα-gustducin (Gαgust), expressed mainly in taste cells, is responsible
for transducing the bitter and sweet taste qualities to the brain because Gαgust
knockout mice show deficiency in bitter and sweet taste recognition (43).
Activation of Gαgust leads to a rise in intracellular Ca2+ followed by neu-
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rotransmitter release (44). A recent report by Zhang et al. (45) identified
TRPM5 (a taste receptor cell-specific ion channel) and PLC-β2 as neces-
sary for bitter, sweet, and umami signal transduction. The report demon-
strated that TRPM5 and PLC-β2 knockout mice could not recognize bitter
and sweet tastes as well as L-amino acids (45).

Rod transducin (Gαt-r) and cone transducin (Gαt-c ) are the G proteins
involved in visual transduction. The first type is important in dim illumina-
tion, and the latter is involved in color and sharp vision. In this system, a
photon of light causes the isomerization of a visual pigment in rhodopsin,
the GPCR involved in phototransduction. This conformation change stimu-
lates the exchange of GTP for GDP in transducin. Transducin then activates
cGMP PDE, also known as PDE8, by binding to the regulatory γ-subunit of
PDE8. PDE8 activation results in lower cytoplasmic cGMP levels, which
leads to closure of cGMP-gated cation channels and membrane hyperpolar-
ization. The hyperpolarization leads to a decrease in the release of the neu-
rotransmitter glutamate at the photoreceptor terminal (46–48). Therefore, a
sensory stimulus is translated into an electrical signal that can be communi-
cated to connecting neurons.

The various pathways regulated by Gαi/o are shown in Fig. 2. Because
many of the biological effects of the Gαi/o pathway are mediated through
Gβγ-subunits, these pathways are also shown in Fig. 2.

4.3. Gαq/11 Family

The Gαq/11 family includes Gαq, Gα11, Gα14, Gα15, and Gα16. This fam-
ily of G proteins is coupled to the activation of PLC-β (49–51). Activation
of PLC-β leads to the hydrolysis of phosphatidylinositol 4,5-bisphosphate
(PIP2) and the production of inositol triphosphate (IP3) and diacylglycerol
(DAG).

Gαq and Gα11 (which are 88% identical in amino acid sequence) are
widely distributed in mammalian tissues and can activate PLC-β1, -β3, and
-β2 in decreasing affinity as well as PLC-β4 (51). Gα14 (which is 81% iden-
tical to Gαq) is found in the spleen, lung, kidney, and testis (52). The human
Gα16 protein and the mouse Gα15 homolog (which share 57% homology to
Gαq) are expressed in hematopoietic cells (52,53). Although members of
the Gαq/11 family are indistinguishable regarding the PLC-β isozymes they
activate, some GPCRs can discriminate among them. For example, the mac-
rophage chemotactic protein-1 receptor B (MCP-1Rb) can couple to Gα14
and Gα16 but not Gαq or Gα11, whereas the C-C chemokine receptor-1
(CKR-1) can couple to Gα14 but not Gα16 (54). Signaling through this path-
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way leads to responses that are mediated through Ca2+ and PKC and is illus-
trated in Fig. 3.

4.4. Gα12/13 Family

The Gα12 family includes Gα12 and Gα13 and defines the fourth class of
G proteins. This family of G protein shares less than 45% sequence iden-
tity to other α-subunits and 67% homology to each other. Both proteins are
ubiquitously expressed, although Gα13 is especially abundant in human
platelets (55,56).

Fig. 2. The Gαi/o and Gbg signaling pathway. This schematic diagram demon-
strates how the Gαi/o pathway regulates multiple physiological processes such as
leukocyte trafficking, locomotor activity, and neurite outgrowth. In contrast, Gβγ
regulates other signaling pathways to affect physiological processes such as plate-
let aggregation, neutrophil chemotaxis, and neuro-transmitter release. AC, adenylyl
cyclase, GAP, a GTPase-activating protein; GRIN, G protein regulator of neurite
outgrowth; PLC-β, phospholipase-b; PI3Kγ, phosphoinositide-3 kinase; GIRK, G
protein-gated inwardly rectifying potassium channel.
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Several interacting proteins to either Gα12 or Gα13 have been identified
by yeast two-hybrid screening, including HSP90, AKAP, nonreceptor
tyrosine kinases, rasGAP, Rho guanine exchange factor (RhoGEF), radixin,
protein phosphatase type 5 (pp5), and cadherin (57). The diversity of these
interacting proteins suggests that the Gα12 family is involved in multiple
signaling pathways.

However, most of the studies conducted on Gα12 and Gα13 have used the
activated form of these proteins because many GPCRs that couple to this

Fig. 3. The Gαq signaling pathway. This schematic diagram demonstrates how
the PLC-β pathway regulates multiple physiological processes including channel
regulation, contraction, and neuronal regulation. PLC-β, phospholipase-β; PIP2,
phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; PKC, protein kinase
C; Ca2+, calcium ions.
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family can also activate Gαq family members. From these studies, numer-
ous proteins have been observed to be downstream of Gα12 and Gα13 signal-
ing. For example, c-Jun N-terminal kinase (JNK), the Na+/H+ exchanger
(NHE), and phospholipase D (PLD) have been shown to be activated in the
presence of these mutant proteins (58–62). In particular, overexpression of
activated Gα12 leads to increased JNK activity through various small G pro-
teins (Ras, Rac, Cdc42, and Rho) and the Src family tyrosine kinases,
because dominant-negatives or specific inhibitors of these proteins inhibit
JNK activation (58,59,63). In the case of the NHE, signaling via Gα12 or
Gα13 shows distinct differences. For example, Gα13 can activate all three
isoforms of NHE, whereas Gα12 activates NHE2 and NHE3 isoforms but
will inhibit NHE1 (61). In the case of PLD, the activation of the rat PLD1
via Gα13 Q226L involves the Rho-dependent pathway because the domi-
nant-negative N19RhoA and a Rho inhibitor can block this activation (62).
These pathways and their biological functions are summarized in Fig. 4.

Interestingly, the constitutively active Gα12 and Gα13 forms are oncogenic.
Overexpression of these proteins leads to the transformation of cultured fi-
broblasts (64). The growth-promoting activity and oncogenicity of the acti-
vated forms is dependent on Rho signaling because their capability to form
foci is inhibited when the Rho-sensitive Clostridium botulinum toxin C3
exoenzyme is present (65). The link between Gα12/13 and Rho signaling has
occurred through RhoGEFs such as p115-RhoGEF, PDZ-RhoGEF, and leu-
kemia-associated RhoGEF (LARG). Gα12/13 can physically interact with
these RhoGEFs through their RGS domain and may stimulate their guanine
nucleotide exchange activity toward Rho (66). Nevertheless, Gα12 and Gα13
display distinct signaling pathways toward Rho. Activated Gα13 can stimu-
late the GEF activity of p115-RhoGEF, whereas Gα12 cannot. The difference
is also shown in Gα13 knockout mice. The Gα13-deficient mice show embry-
onic lethality resulting from defects in the vascular system, and Gα12 cannot
rescue the function of Gα13 in these mice (67). Recent experiments have
shown that Gα12 can stimulate the GEF activity of LARG only when this
protein is phosphorylated by Tec, a nonreceptor tyrosine kinase (68). There-
fore, Gα12 may be routed to Rho signaling via tyrosine kinases such as Tec.

4.5. Gβγ Complex
There are over five Gβ-isoforms, of which two are splice variants. They

include Gβ1, Gβ2, Gβ3, Gβ3S, Gβ4, Gβ5, and Gβ5L (69–71). The least similar
of the Gβ-subunits is Gβ5. Gβ5 is expressed mainly in the central nervous
system, whereas Gβ5L is expressed only in the retina (70). In contrast, there
are more than 13 different Gγ-subunits. The Gγ-subunits can be modified by
a number of processes, such as isoprenylation, methylation, farnesylation,
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and geranylgeranylation. Several good reviews have been published regard-
ing the structure and function of the Gβγ complex (12,69–71).

The Gβ- and Gγ-subunits are considered to form one functional unit. They
exist in several specific combinations and various techniques involving
purified proteins, functional expression, yeast two-hybrid systems, and
ribozyme approaches have been used to determine the various combinations
(69,72–74). Some of the residues that determine the specificity of these
interactions have been localized. For example, the specificity of the assem-
bly of the Gβ1γ1 complex and Gβ2γ1 complex appears to be determined by a
stretch of 14 residues lying within the middle of the Gγ-subunit (69). Addi-
tionally, the residues in Gβ that contact the region of Gγ are clustered on
blade 5 and a small section of the N-terminal region of Gβ (69).

The Gβγ complex can affect downstream effectors just as well and as
much as the Gα-subunit. In 1987, the first effector of the Gβγ complex, the
G protein gated inwardly rectifying potassium channel (GIRK), was discov-
ered (75). Since then, a number of downstream effectors of Gβγ have been
identified. For example, adenylyl cyclase, phospholipases Cβ1 through Cβ3,
and PI3K are directly affected by the Gβγ-subunit (12,69,71).

5. DIRECT DOWNSTREAM EFFECTORS
OF THE G PROTEIN PATHWAY

5.1. Adenylyl Cyclases

Adenylyl cyclase (AC), a membrane protein, is important in promoting
the conversion of adenosine triphosphate (ATP) to cAMP. Nine membrane-
bound isoforms of AC and two spliced variants of AC8 have been cloned and
characterized in mammals, and all are expressed in the brain (76). cAMP is
an important second messenger in the cell. It stimulates the activation of
PKA by binding to the regulatory subunit of PKA and removing the inhibi-
tion by that subunit.

PKA can then phosphorylate several substrates important in glucose
metabolism and other vital physiological processes. cAMP can also interact
with many other proteins to promote protein–protein interactions that are
independent of PKA signaling. For example, cAMP can directly bind a
RasGEF called Epac and stimulate its GEF activity toward the small G pro-
tein Rap1 (77,78).

Several G proteins modulate AC activity directly. Gαs, Gαi, and Gβγ can
interact physically with various ACs to affect their activity. In particular,
Gαs can activate all nine isoforms of ACs to various degrees, whereas the
Gαi family can inhibit some ACs, especially AC5 through AC6 (25,76).
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Fig. 4. The Gα12/13 signaling pathways. This schematic diagram demonstrates
how the Gα12/13 pathway regulates multiple cellular pathways to affect physiologi-
cal processes such as transcription, proliferation, and cell movement. LPA,
lysophosphatidic acid ; NHE, sodium-hydrogen exchanger; GEF, guanine exchange
factor; Ras, a small GTPase; Rho, a small GTPase; PLD, phospholipase D.

The βγ-subunit has also been shown to be able to activate or inhibit some
AC isoforms, depending on the βγ combination or on the presence of acti-
vated Gαs. For example, Gβ1γ2 can inhibit AC1 and AC3, but some βγ com-
plexes can directly activate AC2, AC4, and AC7 in the presence of activated
Gαs (12,76,79).

AC has also been shown to be important in numerous processes, such as
long-term potentiation (LTP) and long-term memory, cell differentiation,
development, and drug dependence (76,79). In some of these processes, the
AC isoform involved is either activated or inhibited by calcium. For
example, AC1 activity is stimulated by Ca2+/camodulin, and this AC isoform
is important in LTP and long-term memory (76). In relation to GPCRs and
Gαs activation, AC in which Gαs is coupled to β1-ARs functions in increas-
ing cardiac rate and force of contraction; Gαs coupled to β2-ARs functions
in smooth muscle relaxation; Gαs that is coupled to β3-ARs functions in
lipolysis of white adipose tissue (80).
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5.2. Phospholipase C

Various G proteins can activate phospholipases. Phospholipases such as
phospholipase C (PLC) can cleave the polar head group of inositol phospho-
lipids. All members of the Gαq family can activate PLC-β1 to β4 isoforms;
Gα12 can activate PLC-ε; Gβγ can activate all four PLC-β isoforms as well
as PLA2 (12). In particular, PLC-β can hydrolyze the phosphorylated lipid
PIP2 to generate two intracellular products: inositol 1,4,5-trisphosphate (a
universal calcium-mobilizing second messenger) and DAG (an activator of
PKC). These products are important in raising intracellular Ca2+ levels in
the cells and in activating Ca2+-sensitive proteins such as calmodulin, which
regulates other proteins within the cell.

PLC-β is composed of the N-terminal pleckstrin homology (PH) domain,
EF-hand domain, catalytic X and Y domains, and regulatory C2 domain
(81). The PH domains of PLC-β2 and PLC-β3 bind the heterotrimeric G
protein subunit Gβγ. The C2 domains of PLC-β1 and PLC-β2 bind the GTP-
bound Gαq. Comparison of the ligand-binding affinities of different PLC-β
isozymes shows that each isozyme is regulated differently by both subunits
of Gαq. PLC-β2 and PLC-β3 are more sensitive to the βγ-subunit than PLC-
β1 and PLC-β4, whereas the affinities of Gαq for PLC-β1 and PLC-β3 are
higher than that for PLC-β2 (81).

Another phospholipase family member that can be modulated by G pro-
teins is PLC-ε. PLC-ε can function as a phospholipase as well as a RasGEF
(82). It can interact with both large and small G proteins. To do so, PLC-ε
contains conserved catalytic and regulatory domains common to other
eukaryotic PLCs, but it also contains two Ras-associating domains and a
RasGEF motif. This isoform can hydrolyze PIP2, and this activity is selec-
tively stimulated by a constitutively active form of Gα12 as well as various
Gβγ-dimers (82,83). Additionally, PLC-ε’s lipase activity can be inhibited
by pertussis toxin, suggesting that Gαi/Gαo signaling may be involved (84).
Furthermore, PLC-ε can promote formation of Ras–GTP through its
RasGEF domain. However, it has been suggested that PLC-ε is a Ras effec-
tor because the Ras-associating domain of PLC-ε can bind to the H-Ras in a
GTP-dependent manner that correlates with stimulation of PLC-ε’s lipase
activity of PLC-ε (85,86).

5.3. Ion Channels

Several ion channels are directly affected by G protein activation. GIRK,
voltage-gated Ca2+ channels (VDCCs), cardiac and epithelial chloride (Cl–)
channels, and cardiac and epithelial sodium channels (Na+) are affected by
G proteins. Such interactions have been deduced on the basis of several cri-
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teria. The channel activity must be conditionally and reversibly modified by
the activation of a relevant GPCR. The use of a nonhydrolyzable GTP ana-
log should allow for channel modulation, even in the absence of receptor
stimulation. The addition of a purified and active G protein subunit should
be sufficient to trigger changes in channel activity. Finally, physical asso-
ciation between the G protein and the channel subunits must be demon-
strated within the confines of an intact cell.

The most well-characterized channel that is directly affected by G protein
activation is the GIRK, or Kir3, family. Direct activation of GIRKs by G
proteins is involved in the rapid inhibition of membrane excitability result-
ing in the slowing of heart rate by the vagus nerve or the autoinhibitory
release of dopamine by midbrain neurons. Therefore, these GIRKs couple
GPCR signaling to membrane excitability. There are four isoforms of Kir3s
that are affected by G proteins: Kir3.1 (GIRK1), Kir3.2 (GIRK2), Kir3.3
(GIRK3), and Kir3.4 (GIRK4). They are all expressed in the brain. GIRK4
is also expressed in the heart. The Kir3s were the first effectors demon-
strated to be directly activated by the Gβγ-subunit (75). The current view is
that the interaction of the Gβγ-subunits with the GIRK channel involves
multiple binding domains that synergistically control channel gating. Sev-
eral studies have been conducted using fusion proteins, mutagenesis, and
peptides to identify the sites that are important for GIRK activity (87). Gβγ
directly binds to both the carboxy- and amino- cytoplasmic segments of the
channel protein. It is also believed that Gβγ binding stabilizes channel–PIP2
interactions that open the channel gate (88).

VDCCs are another type of ion channels that are directly affected by G
protein signaling. These channels, located near vesicle docking sites, are
important because they are responsible for the influx of Ca2+ into the pr-
esynaptic neuron, which allows for the release of neurotransmitters from the
synaptic nerve terminals. Calcium ions act in concert with distinct compo-
nents of the presynaptic machinery to facilitate fusion of synaptic vesicles
within the plasma membrane. Modulating the entry of Ca2+ into the nerve
terminal thus represents a major means by which neurotransmitter secretion
can be controlled. There are four major families of VDCCs: N-type, L-type,
P/Q-type, and T-type. The N-type Ca2+ (Ca2.2v) and L-type Ca2+ (Cav3.1)
channels are regulated by G proteins. Gαi1/i2/z and Gβγ have been shown to
inhibit the N-type Ca2+ channels, whereas Gαs and Gβγ can stimulate the L-
type Ca2+ channel (89–93). Of these, the Gβγ-complex has been shown to
directly interact with and modulate N-type Ca2+ channel activity (89). In
fact, the Gβγ-complex can bind several contact sites on the α1β-subunit of
the N-type Ca2+ channel. The interaction between Gβγ- and α1β-subunits
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has been mapped to the N-terminal, C-terminal, and I–II loop of the α1β-
subunit of the N-type Ca2+ channel (89).

5.5. Regulators of Small GTPases

Several small G protein regulators are direct effectors of G proteins. Ras-
GRF (also known as CDC25Mm), Raf-1, and Shc are believed to be modu-
lated by the Gβγ-complex, whereas Gapm and RhoGEFs are affected by the
Gα-subunit (68,94–100). Of these, Raf-1 is believed to directly interact with
the Gβγ-complex, whereas RapGAP and RhoGEFs are known to directly
interact with the Gα-subunit.

The serine/threonine (Ser/Thr) protein kinase Raf-1, directly downstream
of Ras, has been reported to interact with the Gβ2-subunit in vitro and in
vivo (96). In competition assays, only β-AR kinase can inhibit Gβ2 binding
to Raf-1 but can not inhibit Ras or 14-3-3. The significance of this interac-
tion has not been determined, although overexpression of Gβ1γ2 in HEK293
cells can stimulate the phosphorylation of mitogen-activated protein kinase
(MAPK) and enhance the MAP/ERK kinase (MEK) kinase activity of c-Raf
(101). These studies were performed in cell lines in which these proteins
were overexpressed; therefore, the relevance of this interaction and the ki-
nase assays need to be further investigated.

RasGRF has GEF activity toward the small G proteins Ras and Rac
(95,102,103). RasGRF can be activated via two different pathways. The
Gβγ-complex has been implicated in one of these pathways. Carbachol-
treated fibroblasts transfected with the muscarinic receptor type 1 (Gαq-
coupled) or type 2 (Gαi-coupled) increased the phosphorylation state of
RasGRF as well as its GEF activity toward Ras. This increase can also be
observed in COS-1 cells transfected with Gβ1γ2 complex, suggesting that it
is the Gβγ-complex that is significant in activating RasGRF. Additionally,
carbachol treatment of neonatal rat brain explants increased RasGRF’s GEF
activity and phosphorylation state (94). Furthermore, RasGRF immunopre-
cipitated from HEK293 cells overexpressing Gβγ showed enhanced GEF
activity toward the Rac1 protein (95).

The Gα12 family can also modulate the activity of the small G proteins
Rho and Ras via their direct interaction with RhoGEF and RasGAP (99,100).
Gα13 can physically interact with three RhoGEFs (p115PhoGEF,
PDZ0RhoGEF, and LARG) and stimulate their guanine exchange activity
(99,104,105). In contrast, Gα12 has been shown to physically interact with
Gap1m, a RasGAP, via the PH–BM domain of RasGAP in vitro and in vivo.
This interaction can stimulate the GAP activity of Gap1m toward Ras (100).

Both Gαi and Gαo can modulate the small G protein Rap via binding to
RapGAP directly (33,106). In particular, Gαi binds the Rap1GAPII isoform
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directly in its N-terminus. The activated form of Gαi binds Rap1GAPII more
efficiently than wild-type Gαi, and stimulation of Gi-coupled receptors re-
cruits RapIGAPII from the cytosol to the membrane, which then leads to a
decrease in the levels of RapGTP. Consequently, the decrease in Rap1 leads
to the activation of the MAPK, because there is less of Rap1 to inhibit Ras
activity (106). In contrast, wild-type Gαo can bind RapIGAPII directly and
inhibit RapIGapII from acting on Rap1 (33). Consequently, the increased
levels of Rap1 can stimulate MAPK1/2 activity. The mechanism by which
this occurs can be attributed to the promotion of the ubiquination and pro-
tease degradation of Rap1GAP upon binding to Gαo (107,108).

Other small G proteins affected by G protein signaling include Rac and
Cdc42. The activity of Rac can be modulated by Gαq signaling because
Gαq-deficient platelets cannot activate Rac upon stimulation of thrombox-
ane A2 receptor using the agonist U46619 (109). Constitutively active Gαq
can stimulate Cdc42 activity toward insulin signaling to GLUT4 transloca-
tion in adipoctyes (110).

6. NEURONAL REGULATION: HETEROTRIMERIC G
PROTEIN PATHWAYS AND NEURONAL PLASTICITY

Neurite outgrowth is an important process by which neurons achieve neu-
ronal connectivity during brain development. The mechanism involved in
this process requires coordination of signals coming from outside and inside
the cell. The growth cone is a critical structure in the neuron that is impor-
tant for such function. The nerve growth cone is the motile structure at the
tip of elongating axons and dendrites and is believed to be responsible for
recognizing pathways and targets and transducing such information into di-
rected movement (111). Growing axons are guided to appropriate targets by
responses of their motile growth cones to environmental cues. Many signals
participate in the regulation of neuronal outgrowth, and heterotrimeric G
protein pathways play an important role.

The major proteins that are present in growth cone membranes include
tubulin, actin, GAP43, and Gαo and its Gβ counterpart (31,112,113). Of
these, GAP43 and Gαo (the noncytoskeletal proteins) have been implicated
in neurite outgrowth. GAP43 is a neuron-specific protein whose expression
is closely related to axonal growth and can regulate Gαo activity (31,114).
However, in GAP43-deficient mice, GAP43 is not essential for axonal
outgrowth or growth cone formation but is required at certain decision
points, suggesting a model in which GAP43 is important for amplifying
pathfinding signals from the growth cone (115).
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Similarly, Gαo is expressed predominantly in the brain, accounts for 1% of
membrane proteins, and is highly enriched in growth cone membranes
(28,29,31). Therefore, many investigators have studied this G protein to
determine its significance in neurite outgrowth. They have shown that the
collapse of growth cones is mediated by GPCRs because pertussis toxin in-
hibits growth cone collapse (116). Additionally, the expression of constitu-
tively active Gαo results in an increase in the number of neurites per cell (32).
However, little else is known about how Gαo can affect neurite outgrowth.

The downstream effectors of Gαo signaling for neurite outgrowth are
under investigation. GRIN is one membrane protein that has been found to
directly interact preferentially with activated Gαo in vitro and in vivo
(33,34). Its expression pattern is similar to that of Gαo, because it is
expressed largely in the brain and is enriched in growth cone membranes
(34). Overexpression of GRIN in the presence of activated Gαo results in
long neurites and many hairlike processes (34). GRIN1 is the mouse pro-
tein, whereas GRIN2 is the human ortholog. These studies have prompted
our laboratory to study the downstream effectors of GRIN. Using the yeast
two-hybrid system with GRIN2 as a bait, we found many interacting candi-
dates; of these candidates, Sprouty2 was discovered as a possible partner
(unpublished data, 2003).

Sprouty was originally identified by genetic analysis as a regulator of
tracheal branching in Drosophila and was implicated as an inhibitor of the
MAPK pathway (117,118). Four mammalian genes (mSpry 1–4) encoding
protein homologs of dSpry have been identified (118). All sprouty proteins
share a highly conserved cysteine-rich domain at the C-terminus (118). The
different mechanisms by which Sprouty proteins inhibit signaling pathways
may rely on the differences in their amino terminals, which are weakly ho-
mologous and assumed to interact with different effectors (118). In fact, it
was a region of the N-terminal of Sprouty2 that was isolated from the yeast
two-hybrid system. In vitro and in vivo experiments confirmed the interac-
tion between Sprouty2 and GRIN2 (unpublished data, 2004).

To further study the significance of these interactions, the cannabinoid
receptors (CB1/CB2) endogenously expressed in Neuro2A cells are being
used as a prototypical endogenous system for study of Gαo, GRIN, and
Sprouty2. In initial experiments, Win515,2-2mesylate, a CB1/CB2 receptor
agonist, was used to stimulate Gαo signaling followed by basic fibroblast
growth factor (bFGF) stimulation to examine the MAPK pathway. Prelimi-
nary data have revealed that prestimulation of Gαi/Gαo signaling suppressed
MAPK activation via bFGF stimulation, compared to controls. We hypoth-
esize that activation of Gαo and, in turn, GRIN potentiates Sprouty2 inhibi-
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tion of the MAPK pathway. The inhibition of MAPK may be one method
that neurons can use to guide axonal growth. Further experiments are being
conducted to delineate the importance of GRIN and Sprouty in neurite out-
growth. Dominant-negatives and small interfering RNA (siRNA) of both
proteins will be used to determine their significance in neurite outgrowth
upon Gαo and FGF signaling.

Another interacting protein of Gαo is RapIGAPII (108). In vitro and in
vivo experiments confirm the interaction and show that RapIGAPII prefer-
entially binds the inactivated Gαo (33). RapIGAPII is the GAP of the small
protein Rap1. By sequestering RapIGAPII, there is an increase in Rap activ-
ity (33). Follow-up studies showed that Gαo signaling can promote the
ubiquitination and proteasomal degradation of RapIGAPII, because
overexpression of Gαo reduced the protein stability of RapIGAPII, whereas
the presence of proteasomal inhibitors such as lactacystin increased protein
levels (108). Another group showed that RapIGAP can be ubiquinated and
degraded by the proteasome (107).

Agonist stimulation of CB1/CB2 receptors endogenously expressed in
Neuro2A cells promoted neurite outgrowth, whereas the presence of a domi-
nant-negative of Rap1 and siRNA of Rap1 inhibited neurite outgrowth, sup-
porting a role for Rap1 in neurite extension. Additionally, the expression of
RapIGapII blocked Gαo-induced neurite outgrowth, and lactacystin potenti-
ated this inhibition (108). These results suggest that by regulating the
proteasomal degradation of Rap1GAPII, the CB1 receptor activates Rap to
induce neurite outgrowth.

7. CONCLUSIONS

It has been known for some time that heterotrimeric G protein pathways
play pivotal roles in almost every cell type. They are involved in many acute,
important physiological processes such as glucose regulation,
phototransduction, and cardiac contractility. The approx 20 Gα-subunits,
the 5 Gβ-subunits, and the 13 Gγ-subunits can transduce sensory, chemical,
and peptide signals into a language that cells can comprehend and to which
they can react. Recent research, as described earlier, indicates that the G
protein pathways also play major roles in regulating long-term processes. In
addition to the structural plasticity described in this chapter, the G protein
pathways—especially the cAMP signaling pathway—play a major role in
learning and memory processes (79,119) and in addictive behavior (120).
Therefore, the functioning of and interactions between heterotrimeric G pro-
tein pathways as well as with other pathways are major determinants of neu-
ronal functions across timescales.
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RGS Proteins

Orchestration of Multiple Signaling Pathways

Ryan W. Richman and María A. Diversé-Pierluissi

1. INTRODUCTION

For several years, the model for the transduction of G protein-mediated
signals consisted of three components: a heptahelical receptor, a
heterotrimeric G protein, and an effector (1). The heptahelical receptor,
which spans the membrane seven times, is coupled to a G protein complex
consisting of an α-subunit in the guanosine-5'-diphosphate-bound form (α-
GDP) and a βγ-dimer. Upon agonist binding to the receptor, a conforma-
tional change occurs in the G protein α-subunit, which leads to the release
of the GDP and the binding to guanosine-5'-triphosphate (GTP). The α-GTP
has lower affinity toward the βγ-dimer, releasing it from the G protein
heterotrimer complex (Fig. 1) (1). Both α-GTP and βγ-dimer are known to
regulate a wide range of effectors (2).

All subunits of Gα possess intrinsic GTPase activity, but the rate of GTP
hydrolysis from the α-subunit alone is too low to account for the duration of
G protein signaling observed in many physiological processes, such as visual
transduction or ion channel modulation. The discovery of the regulators of
G protein signaling (RGS) has helped to explain the difference in timing of
the G protein-mediated responses. G protein-coupled receptor (GPCR)
kinases (GRKs) and RGS proteins are involved in the termination or desen-
sitization of G protein-mediated responses (Fig. 2). GRKs work at the
receptor level by phosphorylating receptors in their active, ligand-bound
form, uncoupling receptors from G proteins (3). RGS proteins act at the G
protein level by accelerating the rate of GTP hydrolysis (Fig. 1) (4).
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The initial observations that suggested that RGS proteins have a role in
signal termination were performed in yeast (5) and nematode worms (6).
The sst2 gene was discovered in a genetic screen of mutants showing an
arrest in the G1 to S-phase transition cycle—an indication of a termination
failure of the mating pheromone response (7). Loss of the Caenorhabditis
elegans egl-10 gene by mutation resulted in a decrease in egg-laying, which
is a behavior inhibited by serotonin (6). These genes from yeast and nema-
todes shared a 120-amino acid region also found in GOS8 (an immediate
early gene in T-cell activation) (8). Subsequent studies by Kehrl and col-
leagues (9) and the laboratories of Peralta and Casey showed that mamma-
lian members of the RGS protein family impaired mitogen-activated
protein kinase (MAPK) activity and could bind to the α-subunit of the G
protein (10). A yeast two-hybrid screen for proteins that interact with Gαi3
resulted in the characterization of another RGS protein, GAIP (Gα-inter-
acting protein) (11).

The mechanism of action of RGS proteins became better understood when
it was reported that GAIP and RGS4, two members of the RGS family, sta-
bilize the GTP-to-GDP transition state of the G protein α-subunit (12). RGS
proteins bind to the switch regions of Gα-subunits (13). To date, more than
30 members of the RGS protein family have been characterized. Based on
structural similarities in their RGS box, the RGS proteins have been divided
into subfamilies (14,15) (Fig. 3). For example, RGS4 has an Asn residue in
position 128, which is conserved in subfamilies B, C, and D. This residue is
believed to be involved in the stabilization of the transition state of Gα-
subunits (13). Other subfamilies have a Glu (subfamily F), Gln (subfamily
E), or Ser (subfamily A) residues in the equivalent position.

Fig. 1. Exchange of nucleotides from the Gα subunit. Upon receptor activation,
the Gα subunit goes from the GDP-bound form to the GTP-bound form. Gα-GTP
has lower affinity towards Gβγ subunits, causing dissociation of the complex. Ter-
mination of the response takes place when the G protein returns to the basal state as
a consequence of GTP hydrolysis. RGS proteins accelerate the rate of hydrolysis.



RGS Proteins 137

1.1. Expression of RGS Proteins

Multiple RGS messenger RNAs (mRNAs) have been found in a wide
range of tissues. Some RGS proteins, such as GAIP (16), RGS2 (17), RGS 3
(18), RGS5 (18), RGS16 (19), axin (20), p115Rho-guanine nucleotide
exchange factor (GEF) (21), and PSD-95, Dlg, and ZO-1 proteins (PDZ)-
Rho GEF (22), are ubiquitous in their expression pattern. Some RGS pro-
teins show limited expression to certain tissues, suggesting they might serve
specialized roles. For example, RET-RGS1 is only expressed in retina (23),
whereas RGS1 is expressed in lymphocytes (24). Early studies showed that

Fig. 2. Cycle of onset and termination of the G protein-mediated response. Gα-
GTP and Gβγ subunits dissociate as a consequence of receptor activation and inter-
act with a wide range of effectors. Gβγ subunits can bind to GRK3, a G
protein-coupled receptor kinase, and phosphorylate the receptor, turning it into a
desensitized state. RGS proteins can bind to the G α subunit and accelerate the rate
of GTP hydrolysis.
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neuronal tissues could express multiple RGS proteins. Embryonic chick
dorsal root ganglion (DRG) neurons express 10 RGS protein transcripts (25).
Koelle and Horvitz (6) detected nine RGS family members in rat brain
complementary DNA using polymerase chain reaction primers based on the
nucleotide sequence of RGS proteins from the B subfamily.

The diversity of the RGS protein family is increased by the existence of
alternatively spliced forms of RGS proteins. Four alternatively spliced forms
of RGS12 are characterized by the presence or absence of the N-terminus
PDZ domain and the C terminus PDZ-interacting motif (26). The RGS9 gene
has two splice variants: (a) RGS9-1, a short variant which is expressed only
in retina (27), and (b) RGS9-2, which is 191 amino acids longer and is ex-
pressed in striatum (27).

Some RGS proteins can be regulated at the level of transcription. The
mRNA levels of RGS2 in hippocampus, cortex, and striatum are regulated
by synaptic activity (28). Drugs of abuse, such as cocaine and amphetamines,
can regulate the levels of RGS protein mRNA. RGS1 levels are upregulated
in B cells upon stimulation with phorbol esters (29).

1.2. Subcellular Localization of RGS Proteins

The subcellular localization of RGS proteins remains poorly understood.
The generation of antibodies against the different members of this protein
family to detect the localization of endogenous RGS proteins will provide
useful information. The RGS proteins (whose subcellular distribution has
been studied) seem to have cytosolic and membrane-associated pools. The
membrane-associated pool of GAIP is phosphorylated on Ser-24 and is
found on clathrin-coated vesicles close to the plasma membrane and the
trans-Golgi network (30). It is believed that RET-RGS1 is membrane bound

Fig. 3. Subfamilies of RGS proteins. The different subfamilies and their mem-
bers are listed. A schematic representation of the domain architecture for represen-
tative members of the different classes is included. RGS box represents the RGS
domain common to all members of the family. Abbreviations: C represents the
cysteine string region; CAT, β-catenin; DEP, dishevelled/EGL-10/plecstrin homol-
ogy domain; DH, dbl homology domain, DIX, disheveled homology domain; GGL,
G protein γ-like domain; GSK, glycogen synthase3b binding domain; PDZ, PSD95/
Disk Large/ Zona occludens domain; PKA, protein kinase A-anchoring domain;
PTB, phosphotyrosine binding domain; PX, phosphatidylinositol-binding domain;
PXA, PX-associate domains; Raf, Raf B homology domain; SNX, sorting nexin; S/
T, kinase serine-threonine kinase; T, transmembrane domain. Boxes in RGS12 and
RGS14 represent goloco motifs.
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because it has a cysteine-string motif and a putative transmembrane domain
(31). Overexpression of the constitutive active form of Gαi2 results in in-
creased association of RGS4 with the plasma membrane (32).

Lipid modification of RGS proteins provides another potential mecha-
nism of regulation of subcellular targeting and activity of these proteins.
Palmitoylation of an N-terminal cysteine in RGS16 protein promotes its lipid
raft targeting and allows palmitoylation of a poorly accessible cysteine resi-
due in the RGS box (residue 98) (33). Some RGS proteins contain
myristoylation sites, but it is not known whether this lipid modification plays
a role on their membrane association.

Another potential mechanism for targeting RGS proteins to specific sub-
cellular compartments is their association with non-G protein partners. For
example, the PDZ domain of RGS3 binds to the C-terminus of ephrin B
(ephB) (34). The ephB receptor, a receptor of tyrosine kinase, is involved in
axonal guidance and other developmental processes. The ligand for this
receptor, eph B, is a single transmembrane-spanning protein. In migration
assays, ephrin B has been shown to inhibit the effects of the chemokine
receptor CXCR4, a GPCR (34). This inhibition is mediated by RGS3. This
signaling model, proposed by Lu et al. (34), is important in understanding
the localization of granule neurons in the cerebellum (34). Granule neurons
are retained in the pia by chemo-attraction mediated by the CXCR4 recep-
tor. At postnatal day 3, ephrin B is upregulated, RGS3 is recruited, and the
RGS domain of RGS3 inhibits CXCR4 signaling (Fig. 4). Granular cells are
then free to migrate through the cerebellum.

Many of the RGS proteins are localized in the nucleus. In the case of
RGS10, phosphorylation by cyclic adenosine monophosphate-dependent
kinase causes its translocation to the nucleus, making RGS10 unavailable to
limit G protein-mediated signaling at the plasma membrane (35). Splicing
variants of RGS12 with a short C-terminal region are localized in the nucleus
with a punctate foci distribution (36). The functional implications of this
distribution are not known.

2. RGS PROTEINS AS MULTIFUNCTIONAL MOLECULES

All RGS proteins possess the 120-amino acid RGS domain, but they can
vary in length from 217 (GAIP and RGSZ1) to 1387 amino acids (RGS12).
In addition to the RGS domain, RGS proteins have many different domains,
suggesting selective regulation or multifunctional activity (Fig. 3). The mul-
tiplicity of RGS proteins suggests they might exhibit selectivity in the path-
ways on which they exert their actions. The following sections discuss
different roles of RGS proteins.
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2.1. RGS Proteins as Partners for G Protein β-Subunits

A subfamily of RGS proteins, C or R7 (14,15) (which include RGS6, -7,
-9 and –11), binds to the G protein β5-subunit. These RGS proteins contain
a homologous domain, with Gγ-subunits termed G protein γ-like domains
(37) Numerous studies have demonstrated the physiological importance of
this subfamily of RGS proteins in the kinetics of light response (38–41).
RGS7 has been shown to form a complex with Gβ5 in retina (42). Gβ5 knock-
out mice exhibit lower levels of RGS9 mRNA (43). The RGS9–Gβ5 com-
plex has been shown to stimulate the GTPase activity of transducin in its
bound state to the effector, cyclic guanosine monophosphate (cGMP) phos-
phodiesterase.

A large percentage of RGS9–Gβ5 complexes are tethered to the plasma
membrane by an anchoring protein, R9AP (44). R9AP has only been
detected in photoreceptors (44). The anchored complex shows a fourfold
increase in GTPase activity (45). The N-terminus of RGS9, which contains
a disheveled/EGL-10/pleckstrin domain, is believed to be important for this
interaction (46). Mice lacking RGS9 or lacking an RGS9–R9AP interaction
show a delay in the recovery from the light response (47). The physiological
relevance of RGS9 in the visual system was underscored by a recent study
in which it was demonstrated that patients exhibiting a condition known as

Fig. 4. Inhibition of chemoattraction by ephrin B. PDZ-RGS3 is recruited by
binding to the PDZ interacting domain of ephrin B and the RGS domain of RGS3
inhibits CXCR4 signaling by turning off the G protein.
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bradyopsia had recessive mutations in the RGS9 or R9AP genes. These pa-
tients experienced difficulty in adapting to sudden changes in light levels
and in seeing low-contrast moving objects (48).

Members of the C or R7 subfamily are also expressed in other parts of the
central nervous system. R7 proteins can increase tolerance at the level of μ-
opioid receptors. Knockdown of RGS9 and -11 by antisense oligonucle-
otides increased the duration of morphine-induced analgesia (49). The
RGS11-deficient mice showed reduced analgesic response to the δ-opioid
receptor agonist [D-Ala (2)] deltorphin II, whereas the mice deficient in
RGS6 and -9 showed alterations in the time-course of the effects of this
agonist (50).

2.2. RGS Proteins Bridge Signaling Between Heterotrimeric
and Monomeric G Proteins

A direct link between heterotrimeric and monomeric G protein signaling
was discovered when it was discovered that the Rho exchange factor
p115RhoGEF has an N-terminus RGS domain that exhibits GTPase-activat-
ing protein (GAP) activity on Gα12 and Gα13. Activation of Gα13 results in
translocation of p115RhoGEF to the plasma membrane (51). A K-to-L muta-
tion in residue 677 in the pleckstrin homology domain of this protein was
sufficient to abolish Rho-mediated gene transcription but did not alter trans-
location to the membrane. This link helped to explain the molecular mecha-
nisms by which activation of a receptor coupled to a heterotrimeric G protein
can result in cytoskeletal rearrangement and changes in cell morphology (52).
These members of the F (or GEF) family include p115RhoGEF, PDZ-
RhoGEF, and leukemia-associated RhoGEF (LARG) (53)

Gα12 and Gα13 are known to activate growth-promoting responses and
activation of c-fos through regulation of its serum response element (SRE).
Activation of muscarinic receptors expressed in HeLa cells results in activa-
tion of PYK2 (a tyrosine kinase member of the Src-related family) and
downstream activation of SRE-mediated transcription. These responses are
blocked by a kinase-deficient form of PYK2. The GTPase-deficient form of
Gα13 results in a potentiation of the response. This potentiation was blocked
by co-expression of the RGS box of p115RhoGEF (54).

Similar links to tyrosine kinase pathways have been demonstrated in stud-
ies of PDZ-RhoGEF and LARG. Activation of thrombin receptors result in
the activation of the focal adhesion kinase, which in turn phosphorylates
PDZ-RhoGEF and LARG (55). The tyrosine phosphorylation of these RGS
proteins results in a sustained activation of Rho and creates a positive feed-
back loop for the activation of Rho by GPCRs (55).
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2.3. RGS Proteins As Elements in G Protein and Tyrosine Kinase
Pathways

Modulation of calcium channels by GPCRs is a transient phenomenon;
neurons become unresponsive upon prolonged exposure to neurotransmit-
ters. Despite the common requirement of GRK activation for the onset of
desensitization of transmitter-induced inhibition of calcium current in chick
DRG neurons (56), Gi- and Go-mediated inhibition desensitize at different
rates (25). Activation of γ-aminobutyric acid (GABA)B receptors in chick
DRG neurons inhibits the Cav2.2 calcium channel in a voltage-independent
manner through activation of a tyrosine kinase of the Src-related family (57).
This inhibition desensitizes within 100 seconds (58). The voltage-indepen-
dent inhibition requires activation of a tyrosine kinase that phosphorylates
the α1-subunit of the channel and thereby recruits the binding of RGS12
(58). Introduction of a recombinant protein containing the sequence of the
phosphotyrosine binding domain from RGS12 slows the desensitization rate
of GABA-induced voltage-independent inhibition of Cav2.2 calcium chan-
nels, whereas the PDZ domain is not affected. RGS12 coprecipitates with
the tyrosine-phosphorylated calcium channel. This RGS12–calcium chan-
nel association is decreased by pretreatment with genistein, a tyrosine kinase
inhibitor (58).

Another example of the role of RGS proteins in providing a link between
GPCRs and receptor tyrosine kinases comes from studies of nerve growth
factor (NGF) signaling in PC12 cells and the role of GAIP in bridging these
signaling pathways (59). NGF binding to trkA receptors produces signals
that are important for neuronal survival, axonal guidance, and differentia-
tion (59). GIPC (a PDZ domain containing protein that binds to GAIP) can
also bind to and form a complex with the trkA receptor. Immunofluores-
cence experiments have shown that in retrograde transport vesicles, GIPC
colocalizes with the tyrosine-phosphorylated form of the trkA receptor (59).
Overexpression of GIPC in PC12 cells inhibits NGF-induced increases in
phosphorylation of MAPKs. Interestingly, no change has been observed on
the phosphorylation of other signaling molecules, such as phospholipase C-
γ1, Shc, or Akt.

2.4. Modulation of Ion Channels in Neurons by RGS Proteins

One of the first indications that RGS proteins could be more than just
GAPs for heterotrimeric G proteins came from studies of the modulation of
G protein inward-rectifying potassium channels (60). These channels are
opened by direct binding of G protein βγ-subunits (61). RGS proteins
increase the speed of the deactivation of these channels, as is expected from
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a GAP; the α-GDP-subunit will bind to the βγ-subunit, which is then no
longer available to bind to the channel.

In addition to the effects on the kinetics of termination of the response,
RGS4 and -8 accelerated the rate of current activation (60). One potential
explanation for these results is that accelerating the GTPase cycle can lead
to a more sustained response by increasing the number of G proteins that
can be activated.

The role of endogenous RGS proteins in the modulation of voltage-de-
pendent calcium channels was studied by Ikeda et al. (62), who used an
approach that mutated a glycine to serine in the switch region so that the
Gα-subunit became insensitive to the GAP activity of the RGS proteins.
Additionally, they introduced a mutation that rendered the α-subunit of Gi/o
proteins insensitive to pertussis toxin. In this case, both activation and deac-
tivation kinetics of the ion channels were slowed. A similar approach used
adenoviral delivery of RGS- and pertussis toxin-insensitive Gα-subunits to
hippocampal neurons and yielded similar results (63).

Experiments in which antibodies have been introduced into the cell bod-
ies of neurons by microinjection have shown that RGS4 and GAIP have
differential effects on the coupling of α2-adrenergic receptors to the inhibi-
tion of Cav2.2 calcium channels in chick DRG neurons (25). Removal of the
N- and C-terminus domains of GAIP abolished this selectivity.

RGS proteins might be regulated by calcium influx. Studies in which
RGS3 was overexpressed in chick DRG neurons showed that deletion of the
EF-hand of RGS3 abolished desensitization of transmitter-mediated inhibi-
tion of Cav2.2 calcium channels (64). The RGS3-mediated effects are
blocked by a calmodulin antagonist.

3. CONCLUSIONS

RGS proteins have been demonstrated to play a role in the cellular transi-
tion between excited and inhibited states in a wide range of physiological
processes, such as lymphocyte chemotaxis, ion channel modulation,
cytoskeletal rearrangement, visual transduction, adaptation to drugs of
abuse, and membrane trafficking. The mechanisms by which RGS proteins
are regulated have yet to be completely elucidated. It has become clear that
RGS proteins are more than just GAPs; they serve as bridges between
heterotrimeric G proteins and a multiplicity of pathways.
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G Protein-Coupled Receptor Kinases

Lan Ma, Jingxia Gao, and Xiaoqing Chen

1. INTRODUCTION

As the largest family of membrane receptors, G protein-coupled recep-
tors (GPCRs) transduce a large number of extracellular signals from hor-
mones, neurotransmitters, chemokines, and other environmental stimuli to
the interior of cells and play fundamental roles in the regulation of cellular
functions. One of the most important features of GPCR-mediated signal
transduction is that the activation of the receptor also triggers a feedback
regulatory mechanism to attenuate GPCR-mediated signal transduction
(homologous desensitization) in the cell. Homologous receptor desensitiza-
tion is a common mechanism employed by the cell to prevent potential harm-
ful effects that result from persistent activation of the signaling pathways.
The initial event of GPCR desensitization occurs within seconds to minutes
after agonist binding and is induced by receptor phosphorylation that is cata-
lyzed by GPCR kinases (GRKs) (1).

2. FAMILY MEMBERS AND STRUCTURAL FEATURES

Studies regarding the mechanisms involved in the homologous desensiti-
zation of rhodopsin and the β2-adrenergic receptor led to the discovery of
rhodopsin kinase (GRK1) and β2-adrenergic receptor kinase (βARK or
GRK2) and their cloning from bovine tissue (1). Thus far, at least seven
members (GRK1–7) of the GRK family have been cloned (1–3). Among
them, GRK1, -7, and -4 are expressed exclusively in retina and testis,
whereas GRK2, -3, -5, and -6 are expressed in a wide range of tissues such
as heart, brain, lung, and placenta (1,3).
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GRKs consist of a single, 60- to 80-kDa polypeptide chain that contains
the following three domains (Fig. 1): (a) an N-terminal domain (approxi-
mately 185 residues), which is involved in receptor binding and contains a
regulator of G protein signaling (RGS)-like domain; (b) a central domain,
which exerts kinase catalytic function; and (c) a less conserved C-terminal
domain, which contains structures responsible for plasma membrane target-
ing of the kinase. Caveolin and the α-subunit of Gq interact with GRKs
through the RGS domain at the N-terminal region of GRKs. Gβγ-subunits
and acidic lipids bind to the pleckstrin homology (PH) domain, and clathrin
binds to the clathrin binding motif at the C-terminal domain of the GRK (4).
GRKs are divided into rhodopsin kinase (GRK1 and -7), βARK (GRK2 and
-3), and GRK4 (GRK4, -5, and -6) subfamilies based on their structural and
functional similarities, (2,5,6).

Fig. 1. Schematic presentation of the structural organization of seven GRK sub-
types. The N-terminal domain of GRK 1–7 contains a conserved RGS domain and
is involved in receptor binding. The central domain of GRK 1–7 is responsible for
the catalytic activity of the kinase. The C-terminal domain of GRK is involved in
membrane targeting. GRK1 is farnesylated and GRK7 is geranylgeranylated at their
C-termini. The C-terminal domain of GRK2 and -3 contains a PH domain that is
required for Gβγ binding. GRK4 and -6 are palmitoylated at their C-termini. The C-
terminal domain of GRK5 contains basic amino acid residues for phospholipid bind-
ing.
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3. ACTIVITY AND ROLES IN REGULATION OF RECEPTOR
SIGNALING

GRKs are serine/threonine kinases. They are activated upon agonist
stimulation and catalyze phosphorylation of agonist-occupied GPCRs.
GRK-mediated receptor phosphorylation inhibits GPCR coupling to G pro-
teins and recruits signal molecules such as β-arrestins to the phosphorylated
receptor, resulting in desensitization of receptor-mediated signal transduc-
tion as well as receptor internalization (1,7). Overexpression of GRKs in
transfected cells or transgenic animals enhances agonist-induced receptor
phosphorylation and desensitization, whereas inhibition of GRK activity or
expression in cells or transgenic animals attenuates receptor desensitization.
Mutation of GRK phosphorylation sites reduces agonist-stimulated receptor
phosphorylation and desensitization (1,8). Studies have revealed a critical
role for GRK-catalyzed receptor phosphorylation in the regulation of GPCR
signals (Fig. 2).

GRKs have been shown to be involved in phosphorylation-independent
desensitization of certain GPCRs (4). GRKs mediate phosphorylation of Gq-
coupled metabotropic glutamate receptor 1a (mGluR1a) and contribute to
the desensitization of mGluR1a (9,10). However, Dhami et al. (11) recently
demonstrated that overexpression of GRK2 inhibits signaling mediated by a
C-terminal-truncated form of mGluR1a that is incapable of being phospho-
rylated. Additionally, the expression of the GRK2 N-terminal domain or the
catalytically inactive GRK mutant GRK2-K220R is sufficient to inhibit ago-
nist-stimulated mGluR1a signaling. These observations suggest that GRK2-
mediated regulation of mGluR1a signaling is not dependent on the kinase
activity of GRK (phosphorylation-independent). It is likely that binding of
the RGS domain of GRK to the activated Gαq or other signal molecules
contributes to the phosphorylation-independent regulation of GPCR signal
transduction, because the RGS domain at the N-terminus of GRK2 can bind
to Gαq and inhibit its activity. The binding of GRKs to many other proteins,
such as the GRK-interacting protein GIT1 (12), hints that GRKs may also
function as scaffolds in the regulation of signals mediated by certain GPCRs,
just like their counterpart arrestins.

4. SUBSTRATE AND GRK SPECIFICITY

GRKs preferentially phosphorylate GPCR in an active (agonist-occupied)
state at serine and threonine residues localized within either the third intra-
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cellular loop or the C-terminal domains. GRK phosphorylation sites have
been identified for only a few GPCR substrates, and no clear consensus sub-
strate sequence has been found. Studies with synthetic peptide substrates
and purified GRKs suggest that the kinases in the GRK2 family preferen-
tially phosphorylate peptides containing acidic residues that flank the target
serines or threonines (1). Studies with the M2 muscarinic receptor and α1AR
have shown that acidic amino acid residues are important in the agonist-
dependent phosphorylation and desensitization of these receptors (13,14).

Fig. 2. Schematic presentation of the role of GRK2-catalyzed receptor phospho-
rylation in agonist-stimulated GPCR desensitization. GPCR activation induces
GRK2 binding to free Gβγ on the membrane. This is followed by binding of the
GRK2-Gβγ complex to the activated receptor to form a receptor-GRK2-Gβγ ter-
nary complex, resulting in phosphorylation of the activated receptor and receptor–
G protein uncoupling. The phosphorylation of GPCR by GRKs recruits β-arrestins
to the receptor complex and promotes receptor internalization. The formation of
the receptor-GRK2-Gβγ ternary complex is important for stabilization of the GRK2
membrane localization and catalytic function.
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Data obtained from opioid receptors have demonstrated that the negatively
charged acidic residues flanking GRK phosphorylation sites are critically
involved in the interaction of the receptor with GRKs of both the βARK and
GRK4 subfamilies in vivo and, therefore, are required for GRK-mediated
receptor phosphorylation and desensitization (15,16).

GRKs mediate the phosphorylation and desensitization of a variety of
agonist activated GPCRs, including opioid receptors, dopamine receptors,
substance P receptors, chemokine receptors, and so on (17). However, the
phosphorylation of non-GPCR substrates (such as receptor tyrosine kinases)
by GRK2 has also been observed (18). Additionally, activation of β2-AR
induces GRK2-mediated phosphorylation of nonreceptor substrates such as
tubulin, synucleins, phosducin, and ribosomal protein-2 (19).

More than 600 GPCR genes have been identified in the human genome
and more than 1000 of 19,000 open reading frames in the genome of
Caenorhabditis elegans encode GPCRs (20,21). To date, however, only
seven members of the GRK family have been identified. The mechanism by
which this limited number of GRKs regulates the huge number of receptors
is not well-understood. Studies on different GRK subtypes expressed in het-
erologous systems have demonstrated both the functional redundancy and
specificity of GRKs. In recent years, insightful information regarding GRK
specificity has been gained from GRK transgenic and knockout mice (8).
Studies of animals with altered GRK gene have revealed that GRK1 phos-
phorylates rhodopsin and regulates light response of retinal cells; GRK2 is
responsible for regulation of β-AR signaling in heart and vasculature; GRK3
controls the functions of odorant and muscarinic receptors; GRK4 is able to
regulate D1 dopamine receptor; GRK5 targets the β-AR and muscarinic
receptors; and GRK6 is responsible for phosphorylation of CXCR4 and
regulation of D2 dopamine receptors (8,22). Thus far, these in vivo studies
have demonstrated that defined roles exist for each of the GRK subtypes
and have indicated that the in vivo functions of GPCRs may be regulated by
a particular GRK subtype.

5. REGULATION OF LOCALIZATION AND ACTIVITY

The predominant physiological significance of GPCR desensitization
mediated by GRKs is to protect cells from overstimulation in the persistent
presence of agonists and, therefore, regulate signaling. This requires tight
regulation of the activation, cellular localization, and gene expression of
GRKs. Subheadings 5.1.–5.3. describe the various mechanisms involved in
regulating GRK activity.
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5.1. Regulation by G Proteins and Phospholipids

Interaction between GRKs and the activated GPCR on the plasma mem-
brane is required for GRK-catalyzed receptor phosphorylation. Membrane tar-
geting of GRK1, -4, -6, and -7 is through posttranslational modification of the
GRK C-terminus. Membrane association of GRKs occurs via farnesylation
(GRK1), palmitoylation (GRK4, GRK6), or geranylgeranylation (GRK7).
GRK5 associates with the cell membrane through interactions between their
negatively charged C-terminal domain and phospholipids such as phosphaty-
dylinositol-4,5-bisphosphate (PIP2), and these interactions enhance its activ-
ity (1,6).

Studies have revealed that the members of the β-AR kinase subfamily
(GRK2 and -3) are present primarily in the cytosol of unstimulated cells and
do not undergo posttranslational lipid modification. GRK2 and -3 translo-
cate to the plasma membrane upon agonist stimulation, and both possess PH
domains through which they interact with PIP2 in the plasma membrane.
The membrane translocation of GRK2 and -3 also requires the activation of
G proteins, because, to be recruited to the membrane, GRK2 and -3 must
bind free Gβγ-subunits that are anchored to the membrane (1,8). Further-
more, the interaction of GRK2 and -3 with the Gβγ-subunits stimulates the
phosphorylation of GPCRs (1). A recent study indicated that the agonist-
dependent association of GRK2 and opioid receptors requires Gβγ-subunits
(16), and coimmunoprecipitation studies suggested that the formation of re-
ceptor–GRK–Gβγ complex is required for GRK2 membrane translocation
and catalytic activity (Fig. 2).

GRK2 and -3 have been shown to interact with the activated form of the
Gαq subunit and to inhibit Gαq-mediated phospholipase C activity (6). This
effect on phospholipase C is mediated via the RGS domain and occurs inde-
pendently of the catalytic activity of GRK2 and -3.

5.2. Regulation by Other Kinases

5.2.1. Regulation by Extracellular Signal-Regulated Protein Kinase-1/2

Most of the GRKs in the cytoplasm are in a basally phosphorylated and
inactive form. In the cytosol, GRK2 is primarily phosphorylated at serine
670, which is a putative phosphorylation site for extracellular signal-regu-
lated protein kinase (ERK)1/2 (8). ERK activation stimulates GRK2 phos-
phorylation and reduces both its kinase activity and binding to Gβγ-subunits
(8). Activation of β2-AR stimulates the association of GRK2 with ERK1
and this is enhanced in the presence of both agonist-occupied receptor and
Gβγ-subunits (8). These data suggest that GRK2 activation is negatively



G Protein-Coupled Receptor Kinases 155

regulated by the mitogen-activated protein kinase pathway and phosphory-
lation of GRK2 by ERK1/2 may work as a switch to turn off GRKs and keep
them in an inactive state in the cytoplasm.

5.2.2. Regulation by c-Src
GRK2 can also be phosphorylated at tyrosine residues in the RGS do-

main upon activation of β2-AR; this depends on the ability of β-arrestin to
bind to and recruit c-Src to the receptor. Phosphorylation of GRK by c-Src
increases the activity of GRK2 toward receptor substrates, enhances the in-
teraction of GRK2 with Gαq, and potentiates receptor desensitization. How-
ever, tyrosine phosphorylation of GRK2 promotes degradation of GRK in
the proteasome (19).

5.2.3. Regulation by Kinase A and Protein C

Second messenger-dependent kinases such as protein kinase A (PKA) and
protein kinase C (PKC) have been shown to regulate GRK activity and mem-
brane targeting. Both GRK2 and -5 are substrates of PKC. Phosphorylation
of GRK2 by PKC stimulates GRK-mediated receptor phosphorylation most
likely through enhancement of its membrane translocation, whereas phos-
phorylation of GRK5 by PKC inhibits GRK-mediated receptor phosphoryla-
tion and its binding to the membrane (19). The PKC phosphorylation site on
GRK2 is located at the N-terminus of GRK2, whereas phosphorylation of
GRK5 by PKC occurs at two sites within the C-terminal region of GRK5
(19). Activation of a Gs-coupled receptor that binds A-kinase anchoring pro-
tein 79 (AKAP79) induces phosphorylation of GRK2 at serine 685 by PKA,
which increases the affinity of GRK2 for Gβγ-subunits and stimulates its
translocation to the membrane (19).

5.3. Regulation by Calcium-Binding Proteins

Calcium ions, as a universal second messenger, play important roles in
neuronal signaling and signal transduction processes that occur in non-neu-
ronal cells. Increase in the cytosolic calcium ion concentration activates cal-
cium sensor proteins, of which recoverin and calmodulin are well-studied
GRK interacting proteins. Recoverin is predominantly present in photorecep-
tor cells. It binds to GRK1 and inhibits its activity in the dark when [Ca2+] is
high. However, upon light stimulation (which lowers [Ca2+]), recoverin dis-
sociates from GRK1 and allows calmodulin to phosphorylate rhodopsin (8).

Calmodulin is a ubiquitously expressed universal calcium sensor protein
and its binding to both the N- and C-terminal domains of GRKs inhibits the
activity of GRKs 2–6; however, this inhibition occurs at different potencies.
GRK5 is very sensitive to the calcium-bound calmodulin (IC50, 40–50 nM),
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whereas GRK2 has a much lower sensitivity (IC50, 2 μM) (19). The different
affinities of various GRKs for calcium sensor proteins may provide the ba-
sis for the specificity of signal transduction modulation by GRKs that are
activated by different receptors.

6. REGULATION OF PROTEIN LEVELS

6.1. Stability

Regulation of GRK enzymatic activity provides a mechanism to exert
rapid control on GPCR signaling. Regulation of GRK expression adjusts
cellular GRK protein levels and may produce a long-lasting effect on recep-
tor-mediated signal transduction. Cellular levels of GRKs are under strin-
gent control. GRK2 undergoes ubiquitination and is rapidly degraded in the
proteasome (with a half-life of less than 2 h), and agonist stimulation pro-
motes the degradation of GRK2 (19). The mechanisms underlying GRK2
degradation involve β-arrestin binding and subsequent phosphorylation of
GRK2 by c-Src recruited by β-arrestins (19).

6.2. Expression

Transgenic studies have indicated that the regulation of GPCR signaling
is sensitive to the level of GRKs expressed in vivo. Alteration in GPCR
signaling and changes in GRK expression and activity are correlated.
Overexpression of GRK2 or -5 in cardiac tissue impairs β-AR agonist-stimu-
lated contractile functions (8). The abnormal activity and expression of
GRK2, -5, or -6 have been observed under many pathological conditions,
including heart failure, cystic fibrosis, hypertension, and rheumatoid arthri-
tis (6,8,19). Chronic activation of GPCRs induces changes in GRK expres-
sion. For example, chronic infusion of β-AR agonist results in increased
levels of GRK2 messenger RNA (mRNA) and protein, β-AR desensitiza-
tion, and myocardial hypertrophy. Additionally, chronic administration of
morphine resulting in morphine tolerance causes changes in the levels of
GRK2 protein and GRK2 and -5 mRNA levels (6,8,23–25). The mecha-
nisms underlying regulation of GRK gene expression are not well-under-
stood. One study showed that mitogenic stimulation of T cells causes an
increase in GRK mRNA levels, which could be partially mimicked by PKC
activators (19). This study also showed that transcriptional regulation of the
promoter of GRK2 gene is cell type-specific and is regulated by phorbol
esters as well as activation of Gαq or α1-AR pathways in aortic smooth
muscle cells (19).
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Regulators of GPCR Activity

The Arrestins

Louis M. Luttrell

1. INTRODUCTION

A single photon of light, triggering the physicochemical isomerization of
an 11-cis-retinal to its all-trans form, initiates the process of vision. The
retinal moiety serves as a tethered ligand for the photoreceptor rhodopsin, a
G protein-coupled receptor (GPCR); within milliseconds, the conforma-
tional change in rhodopsin that occurs as a result of the retinal isomerization
catalyzes guanosine 5'-triphosphate (GTP) for guanosine 5'-diphosphate
(GDP) exchange on the heterotrimeric G protein transducin, transducin-de-
pendent activation of a cyclic guanosine monophosphate (cGMP) phos-
phodiesterase (PDE), and the closure of cGMP-gated ion channels. The
resulting hyperpolarization of the rod outer segment membrane inhibits re-
lease of the neurotransmitter glutamate from the photoreceptor terminal, and
the light-induced stimulus is transmitted through the neural network of the
retina to the central nervous system (CNS) for processing.

In contrast to the rapidity of photoreceptor activation, reversal of the light-
induced conformational change in 11-cis-retinal is a slow process. Thus, the
ability to retain light sensitivity beyond an initial round of photobleaching
absolutely depends on the existence of a mechanism for the rapid termina-
tion of rhodopsin–transducin coupling. In the retina, this is accomplished
through a two-step process. First, the bleached rhodopsin is phosphorylated
by rhodopsin kinase, a membrane-associated serine/threonine kinase that
specifically targets the activated conformation of the receptor. Phosphory-
lated rhodopsin then binds tightly to an abundant 48-kDa cytosolic protein,
originally termed S antigen. Binding of S antigen, now called visual arrestin
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or arrestin 1, sterically interdicts rhodopsin–transducin coupling to prevent
persistent signaling in the absence of an ongoing stimulus (1,2).

This basic paradigm in which an agonist-induced change in GPCR con-
formation initiates two antagonistic processes (G protein activation and
receptor desensitization) is not confined to the retina. Nearly all GPCRs
studied to date undergo agonist-dependent phosphorylation by GPCR ki-
nases (GRKs) and bind to members of the arrestin family (3,4). It is now
recognized that the arrestins are central players not only in desensitization
but also in GPCR internalization, intracellular trafficking, and signaling.
They function not only as “arresting proteins” but also as adapters targeting
GPCRs for removal from the cell surface via clathrin-coated pits and as
scaffolding proteins recruiting signaling proteins to ligand-bound GPCRs
(Fig. 1). They may even function as “G protein-independent” signal trans-
ducers and play roles in the trafficking and signaling of membrane receptors
other than GPCRs. This chapter reviews what is currently known about the
structure of these versatile proteins and the diverse roles they play in the
termination and transmission of receptor-mediated signals.

2. THE ARRESTIN FAMILY OF PROTEINS

2.1. Visual and Nonvisual Arrestins

Although simple eukaryotes such as yeast possess GPCRs and
heterotrimeric G proteins, they do not contain arrestins. However, arrestins
are expressed in many invertebrates, including Caenorhabditis  elegans,
Drosophila, and squid (5–8). Vertebrates (including amphibians, birds, and
mammals) possess two types of arrestin: (a) the visual arrestins, which are
expressed almost exclusively in the retina and pineal gland, and (b) the non-
visual arrestins (β-arrestins), which are ubiquitously expressed. Genomic
analysis of the early ascidian chordate Ciona intestinalis revealed a single
arrestin gene possessing features of both visual and nonvisual arrestins, sug-
gesting that the two types may have arisen from gene duplication of an an-
cestral arrestin early in vertebrate evolution (9).

To date, four functional members of the vertebrate arrestin gene family
have been cloned (3,4). The two arrestins expressed in the retina, visual
arrestin (S antigen or arrestin 1 [10,11]) and cone arrestin (X-arrestin or C-
arrestin [12,13]), primarily exist to regulate photoreceptor function. The
nonvisual arrestins, β-arrestin 1 (arrestin 2 [14]) and β-arrestin 2 (arrestin
3[15]), regulate the activity of most of the other 600-plus GPCRs in the
genome. Partial complementary DNA clones of two additional arrestins, D-
arrestin and E-arrestin, have been reported (13), but it remains unclear if
functional D- and E-arrestin proteins are expressed.
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Alternative splice variants exist for each of the arrestins (4). Visual
arrestin, a 404-amino acid protein, has two splice variants—one in which
the last 34 amino acids are truncated and replaced by an alanine residue and
another that lacks exon 13, which encodes residues 338 to 345. The trun-
cated form of visual arrestin localizes specifically to the rod outer segment
and is a more potent inhibitor of rhodopsin signaling than the longer form.
β-arrestin 1, a 418-amino acid protein, has a splice variant consisting of the
insertion of 8 residues between amino acids 333 and 334; β-arrestin 2, a
410-amino acid protein, has a splice variant consisting of the insertion of 11
residues between amino acids 361 and 362. To date, no functional differ-
ences have been ascribed to the two β-arrestin splice variants.

All four arrestins bind specifically to light-activated or agonist-occupied
GPCRs that have been phosphorylated by GRKs and block the receptor–G
protein interaction. In addition to their role in GPCR desensitization, the β-
arrestins have other functions that are not shared with the visual arrestins.
The β-arrestin C-terminal tail (distal to residue 374) contains binding motifs
for clathrin (16,17) and the β2-adaptin subunit of the AP-2 complex (18–
20), which allow β-arrestins to act as adapter proteins and target GPCRs to
clathrin-coated pits for endocytosis. These are the primary interactions that
distinguish the two arrestin subfamilies and make β-arrestin binding inte-
gral to the interrelated processes of GPCR endocytosis, intracellular traf-
ficking, resensitization, and downregulation.

2.2. Structure–Function Relationships

High-resolution crystal structures are currently available for visual
arrestin (21,22) and β-arrestin 1 (23). They reveal proteins of high structural
homology. The arrestins contain two major domains: an N domain (residues
8–180 of visual arrestin) and a C domain (residues 188–362), each of which
is composed of a seven-stranded β-sandwich (Fig. 2). A polar core, which
lies embedded between the N- and C-domains in the basal state, links the
two major domains. This region, called the phosphate sensor domain, forms
the fulcrum of the arrestin molecule and plays a key role in the conforma-
tional changes that occur when an arrestin encounters a phosphorylated
GPCR. Residues from the free N- and C-terminal tails of the protein also
contribute to the polar core of unbound arrestin.

Extensive mutagenesis studies performed using visual arrestin have
divided the protein into three functional and two regulatory domains that
coincide closely to the structural elements defined crystallographically (24).
The functional domains include a receptor activation recognition domain in
the globular N-domain (residues 24–180), a secondary receptor-binding re-
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gion in the C-domain (residues 180–330), and the phosphate sensor domain
(residues 163–182). Data obtained from visual arrestin–β-arrestin 1 chime-
ras indicate that the specificity of receptor recognition resides within resi-
dues 49 to 90 and 237 to 268 of visual arrestin and the homologous regions
of β-arrestin (25). Interactions among the polar core, the C-terminal tail, and
the phosphate sensor region maintain arrestin in the inactive state. Upon
binding to an activated receptor, the phosphorylated receptor tail is believed
to invade the polar core, displacing the arrestin C-terminus and allowing for
conformational changes that promote tight binding to the receptor (26). Con-
sistent with this model, mutations in arrestin or β-arrestin that disrupt in-
tramolecular interactions within the polar core produce arrestins that bind
with high affinity to agonist-occupied GPCRs without requiring receptor
phosphorylation (27,28).

As noted, it is the C-terminus of the β-arrestins distal to the globular C-
domain that confers properties lacking in visual arrestin. This region of the
protein contains two well-defined motifs that link β-arrestin-bound GPCRs
to the clathrin-dependent endocytic machinery. A LIEF/L sequence located
between residues 374 and 377 of β-arrestin 2 binds to a region located be-
tween amino acids 89 and 100 of the N-terminal domain of the clathrin heavy
chain (16,17). Additionally, β-arrestins bind directly to the β2-adaptin sub-
unit of the heterotetrameric AP-2 adaptor complex through an RxR se-
quence, located at residues 394 to 396 of β-arrestin 2 (18–20). The AP-2
complex links many receptors to the clathrin endocytic machinery by bind-
ing to clathrin, dynamin, and EPS-15 and is involved in the initiation of
clathrin-coated pit formation (29). Both interactions appear to be important
for efficient β-arrestin-mediated GPCR internalization (19,30).

Additional interactions modulate the endocytic function of β-arrestins. β-
arrestins bind to phosphoinositides—particularly InsP6 (31). The

Fig.1. The alternative fates of ligand-occupied GPCRs. Upon binding agonist
(H), GPCRs undergo conformational changes that initiate heterotrimeric G protein
activation and signaling through G protein-regulated effectors (E). Alternatively,
receptor phosphorylation by second-messenger-dependent protein kinases (PKA,
PKC) produces heterologous desensitization, whereas phosphorylation by GRKs
promotes arrestin (Arr) binding and homologous desensitization. Once bound to
the receptor, β-arrestins engage the endocytic machinery and target desensitized
GPCRs for clathrin-mediated sequestration. By acting as adapters or scaffolds, β-
arrestins also recruit signaling proteins, such as components of the ERK1/2 MAPK
cascade (Raf-1, MEK, ERK1/2) to the receptor to initiate a “second wave” of GPCR
signaling through protein complex assembly on the desensitized GPCR.
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Fig. 2. Arrestin structure and binding partners. (A) Ribbon diagram of the crystal
structure of visual arrestin. The globular N- and C-domains that surround the polar
core of the protein are indicated. In the inactive state the N-terminus (N) and C-
terminus (C) contribute to the polar core. (B) Line diagram comparing visual arrestin
with β-arrestin 1 and β-arrestin 2. The location of the crystallographically defined
N- and C-domains are shown in relation to the functionally defined amino terminal
(A) domain responsible for recognition of activated GPCRs, the carboxy terminal
(B) domain responsible for secondary receptor recognition, the phosphate sensor
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phosphoinositide-binding region of β-arrestin 2 resides within residues 233
to 251. Mutation of basic residues within this region produces a protein that
translocates to the membrane but that fails to target β2-adrenergic receptors
(ARs) to clathrin-coated pits, thereby inhibiting endocytosis of the receptor.
The N-ethylmaleimide-sensitive fusion (NSF) protein also binds to β-
arrestin 1 in vitro and in vivo (32). NSF is an adenosine triphosphate
(ATP)ase involved in intracellular transport. Overexpression of NSF
enhances β2-AR endocytosis in HEK293 cells, which suggests that the in-
teraction between β-arrestin and NSF is important for receptor endocytosis.
β-arrestins also form complexes with the small GTP-binding protein ARF6
and the ARF guanine nucleotide exchange factor ARNO (33). Expression of
constitutively activated or dominant inhibitory mutants of ARF6 inhibits
GPCR internalization, whereas overexpression of ARNO enhances GPCR
internalization, suggesting that these interactions also contribute to β-
arrestin-mediated endocytosis.

3. ARRESTINS IN GPCR DESENSITIZATION

3.1. Heterologous vs Homologous Desensitization

The waning of GPCR signals in the continuous presence of agonist is
accomplished by a coordinated series of events that are typically considered
as three distinct processes: receptor desensitization, sequestration, and
downregulation (Fig. 3). Desensitization, which begins within seconds of
agonist exposure, is initiated by phosphorylation of the receptor. Second-
messenger-dependent protein kinases, including cyclic adenosine mono-
phosphate (cAMP)-dependent protein kinase A (PKA) and protein kinase C
(PKC), phosphorylate serine and threonine residues within the cytoplasmic
loops and C-terminal tail domains of many GPCRs. Phosphorylation of these
sites is sufficient to impair receptor–G protein coupling efficiency in the
absence of β-arrestin. For example, phosphorylation of the β2-AR in vitro
by PKA markedly impairs receptor-stimulated GTPase activity (34),
whereas removal of the PKA phosphorylation sites delays the onset of
desensitization in intact cells (35). Agonist occupancy of the target GPCR is

Fig. 2. (From opposite page) domain (P), and the amino (R1) and carboxy (R2)
terminal regulatory domains. The locations of binding sites for Src SH1 and SH3
domains, Ask1, JNK3, inositol 6-phosphate (IP6), clathrin and AP2, as well as the
major regulatory phosphorylation sites of β-arrestin 1 and β-arrestin 2 are also indi-
cated. Other putative arrestin binding proteins whose interacting domains have not
been mapped are listed.
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not required for this process; thus, receptors that have not bound ligand,
including receptors for other ligands, can be desensitized by the activation
of second-messenger-dependent protein kinases. This lack of requirement
for receptor occupancy has led to the use of the term heterologous desensiti-
zation to describe the process (36). In some cases, such as the β2-ARs (37,38)
and murine prostacyclin receptors (39), PKA phosphorylation also alters the
G protein-coupling specificity of the receptor to favor coupling to the
adenylyl cyclase inhibitory G protein Gi over the stimulatory G protein Gs,
causing the PKA-phosphorylated receptor to “reverse direction” regarding
cAMP production (40).

In contrast to heterologous desensitization, homologous desensitization
is specific for agonist-occupied receptors and involves phosphorylation of
the receptor by GRKs as well as subsequent binding of β-arrestin. GRK
phosphorylation alone has little effect on receptor-G protein coupling in
vitro. In fact, the initial attempts to characterize β-AR kinase 1 (GRK2)
were confounded by the finding that as the purity and specific activity of the
kinase for agonist-occupied β2-ARs increased, its ability to inactivate recep-
tor-Gs coupling decreased. The finding that GRK2-mediated β2-AR desen-
sitization could be restored by the addition of visual arrestin led to the
hypothesis that additional arrestin-like proteins existed outside of the retina
(41). The removal of an essential cofactor during GRK2 purification (subse-
quently identified as β-arrestin 1) accounted for the loss of GRK2-depen-
dent desensitization by the highly purified kinase preparations. We now

Fig. 3. Role of β-arrestins in the desensitization, sequestration, and intracellular
trafficking of GPCRs.Homologous desensitization of GPCRs results from the bind-
ing of β-arrestins (β-arr) to agonist (H)-occupied receptors following phosphoryla-
tion of the receptor by GRKs. β-arrestin binding precludes further coupling between
the receptor and heterotrimeric G proteins, leading to termination of signaling by G
protein effectors (E). Receptor-bound β-arrestins direct GPCR sequestration by link-
ing the receptor to components of the clathrin endocytic machinery including clathrin
and β2-adaptin (AP-2). Receptor sequestration reflects the dynamin (Dyn)-depen-
dent endocytosis of GPCRs via clathrin-coated pits. Once internalized, GPCRs ex-
hibit two distinct patterns of β-arrestin interaction. “Class A” GPCRs rapidly
dissociate from β-arrestin and are trafficked to an acidified endosomal compart-
ment, wherein the ligand is dissociated and the receptor is dephosphorylated by a
GPCR-specific protein phosphatase PP2-A isoform. These receptors are rapidly
recycled to the plasma membrane. “Class B” receptors form stable receptor-β-
arrestin complexes. These receptors accumulate in endocytic vesicles and are either
targeted for degradation or slowly recycled to the membrane via as yet poorly
defined routes.
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recognize that the principal function of the GRK in GPCR desensitization is
to increase receptor affinity for β-arrestin. In vitro phosphorylation of the
β2-AR by GRK2 increases receptor affinity for-β-arrestin 1 by 10- to 30-
fold (42). Binding of arrestin to receptor domains involved in G protein
coupling, rather than GRK phosphorylation per se, leads to homologous de-
sensitization.

3.2. The GRKs

There are seven known GRKs. Of these, rhodopsin kinase (GRK1) and
GRK7 (a candidate cone opsin kinase [43]) are retinal kinases involved in
photoreceptor regulation, whereas GRK2 to GRK6 are more widely ex-
pressed. Membrane targeting of all the GRKs is critical to their function and
is conferred by distinctive C-terminal tail domains (44). GRK1 and GRK7
possess a C-terminal CAAX motif. Light-induced translocation of GRK1
from the cytosol to the plasma membrane is facilitated by posttranslational
farnesylation of this site. The β-AR kinases (GRK2 and GRK3) have C-
terminal Gβγ-subunit-binding and pleckstrin-homology domains and trans-
locate to the membrane because of interactions between these domains and
free Gβγ-subunits and inositol phospholipids. Palmitoylation of GRK4 and
GRK6 on C-terminal cysteine residues leads to constitutive membrane lo-
calization. Targeting of GRK5 to the membrane is believed to involve the
electrostatic interaction of a highly basic 46-residue C-terminal domain with
membrane phospholipids.

Similarly to second-messenger-dependent protein kinases, GRKs phos-
phorylate GPCRs on serine and threonine residues in their third intracellular
loop and C-terminal domains. The significant difference is that GRKs pref-
erentially phosphorylate receptors that are in the agonist-occupied confor-
mation. The subsequent recruitment of β-arrestins only to activated receptors
accounts for the specificity of homologous desensitization.

3.3. β-Arrestins and Homologous Desensitization In Vivo

Studies performed using β-arrestin knockout mice have provided evi-
dence of the in vivo role of β-arrestin-mediated desensitization in modulat-
ing GPCR function. Because simultaneous knockout of both β-arrestin 1
and 2 results in embryonic lethality, assays of the physiological function of
β-arrestins have been confined to single knockout lines. Homozygous β-
arrestin 1 knockout animals appear phenotypically normal and exhibit nor-
mal resting cardiac parameters, such as heart rate, blood pressure, and left
ventricular ejection fraction. However, acute challenge with β-adrenergic
agonists provokes an exaggerated increase in heart rate and ventricular ejec-
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tion fraction in the knockouts, suggesting that β-arrestin 1 is important for
cardiac β-AR desensitization (45). Similarly, homozygous β-arrestin 2
knockout mice are phenotypically normal but exhibit a dramatic potentia-
tion and prolongation of the analgesic effect of morphine, which is consis-
tent with impaired μ-opioid receptor desensitization in the CNS (46). In these
animals, the loss of opioid receptor desensitization correlates with an inabil-
ity to develop tolerance to the antinociceptive effects of morphine but does
not prevent the development of opioid dependence (47).

4. β-ARRESTINS IN GPCR INTERNALIZATION
AND TRAFFICKING

4.1. β-Arrestins and Receptor Sequestration

Internalization of GPCRs (also termed receptor sequestration or endocy-
tosis) occurs more slowly than desensitization, taking place over a period of
several minutes after agonist exposure. Most, but not all, GPCRs undergo
sequestration, and for many, the process can be blocked by expressing a
dominant inhibitory mutant of dynamin, a large GTPase necessary for the
fission of clathrin-coated vesicles from the plasma membrane (48). It is
now clear that GRK-mediated GPCR phosphorylation and binding of β-
arrestin to the receptor facilitates the clathrin-dependent endocytosis of
many GPCRs, including the β2-ARs, angiotensin II type 1a (AT1A), m2–m5
muscarinic cholinergic, endothelin A, D2 dopamine, follitropin, monocyte
chemoattractant protein-1, and the CCR-5 and CXCR4 chemokine recep-
tors (ref. 4; Fig. 3). Once β-arrestin translocates from the cytosol to bind a
GRK-phosphorylated GPCR, the LIEF/L and RxR motifs in the C-terminal
regulatory domain engage clathrin and β2-adaptin, respectively, leading to
the clustering of receptors in clathrin-coated pits. The clathrin-coated pits
that mediate GPCR endocytosis appear to comprise a distinct subpopula-
tion from those that mediate the constitutive endocytosis of transferrin re-
ceptors (49).

The physiological relevance of β-arrestin-dependent GPCR endocytosis
in vivo is illustrated by the behavior of a naturally occurring R137H muta-
tion of the V2 vasopressin receptor that is associated with familial nephro-
genic diabetes insipidus. Familial nephrogenic diabetes insipidus results
from a loss of vasopressin responsiveness in the renal tubule and is most
commonly caused by mutations in the V2 vasopressin receptor that lead to
absent expression or misfolding of the receptor. The R137H mutation lies
within the highly conserved DRY motif in the second intracellular domain
of the receptor and produces a receptor that is constitutively phosphorylated
and bound to β-arrestin (50). As a result, the R137H V2 receptor is continu-
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ously desensitized and sequestered in arrestin-associated intracellular
vesicles, even in the absence of agonist. Experimental introduction of sec-
ondary mutations that disrupt the receptor-arrestin interaction re-establishes
plasma membrane localization of the receptor and its ability to respond to
agonist, indicating that the clinical loss of function phenotype derives from
constitutive β-arrestin-mediated sequestration.

4.2. Variations on the Theme

Although the preceding model is true for the majority of GPCRs studied
to date, the process of GPCR sequestration can be a heterogenous process,
and the extent of β-arrestin involvement appears to vary significantly with
the receptor, agonist, and cell type. This probably reflects variation in
endogeous patterns of GRK and β-arrestin expression, the specific effects of
agonist and partial agonist drugs on receptor conformation, and the avail-
ability of alternative pathways for GPCR endocytosis.

Several examples illustrate that β-arrestin-dependent GPCR desensitiza-
tion and sequestration are not inextricably linked. The thrombin receptor
protease-activated receptor (PAR)-1 undergoes agonist-dependent phospho-
rylation and binds to β-arrestin 1. In murine embryo fibroblasts (MEFs) lack-
ing expression of either β-arrestin 1 or 2, PAR-1 receptor desensitization is
markedly impaired, which is consistent with the loss of homologous recep-
tor desensitization, but clathrin-dependent receptor endocytosis proceeds
normally. Interestingly, a C-terminal phosphorylation site mutant of PAR-1
fails to internalize in either the β-arrestin replete or β-arrestin null back-
ground, suggesting that PAR-1 receptors use a phosphorylation-dependent,
but β-arrestin-independent, mechanism for endocytosis (51). Similar results
have been obtained using the N-formyl peptide receptor (52), and the soma-
tostatin (SST) receptor type 2A (53). The human cytomegalovirus GPCR
US28, a homolog of the human chemokine receptor family, provides an-
other example. US28 is a constitutively active GPCR and, therefore, is con-
stitutively phosphorylated and bound to β-arrestin. Mutation of Ser 323, the
critical C-terminal residue for β-arrestin binding, enhances Gq-coupling and
inositol phosphate accumulation, confirming the link among constitutive
activity, phosphorylation, and β-arrestin-dependent desensitization (54).
Nonetheless, US28 internalization (which is clathrin-mediated) is similar in
both control and β-arrestin null fibroblasts (55).

Other GPCRs that undergo β-arrestin-mediated desensitization appear to
internalize via clathrin-independent mechanisms. Internalization of AT1A
and m2 muscarinic acetylcholine receptors is insensitive to expression of
dominant inhibitory mutants of either β-arrestin or dynamin (48,56). β1-AR
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mutants lacking GRK phosphorylation sites exhibit impaired β-arrestin re-
cruitment and clathrin-mediated endocytosis but still internalize through an
alternative pathway that involves PKA phosphorylation that can be blocked
by pharmacological inhibition of caveoli (57). Although the physiological
relevance of these β-arrestin and/or clathrin-independent mechanisms of
GPCR endocytosis is uncertain, their existence clearly points to the poten-
tial for independent regulation of receptor desensitization and sequestration.

4.3. Functional Specialization of β-Arrestin Isoforms

Early work with overexpression systems and purified proteins in vitro
revealed little regarding functional differences between β-arrestin 1 and β-
arrestin 2. However, the use of chimeric β-arrestin–green fluorescent pro-
tein (GFP) fusion proteins that permit visualization of β-arrestin binding
and receptor trafficking in live cells has revealed significant differences in
the interaction of GPCRs with the two β-arrestin isoforms (58). Using this
approach, it has been demonstrated that GPCRs exhibit distinctive patterns
of β-arrestin interaction, with most receptors falling into one of two distinct
classes (59). Class A receptors include the β2- and α1B-ARs, μ-opioid recep-
tors, endothelin A receptors, and D1A dopamine receptors. These receptors
bind to β-arrestin 2 with higher affinity than they do with β-arrestin 1 and do
not bind to visual arrestin. Additionally, their interaction with β-arrestin is
transient. β-arrestin is recruited to the receptor at the plasma membrane and
translocates with it to clathrin-coated pits. Upon internalization of the re-
ceptor, the receptor-β-arrestin complex dissociates, so that the β-arrestin
recycles to the plasma membrane, and the receptor proceeds into an
endosomal pool (60). Class B receptors, represented by the AT1A,
neurotensin 1, V2vasopressin, thyrotropin-releasing hormone, and neuroki-
nin (NK)-1 receptors, bind β-arrestin 1 and β-arrestin 2 with equal affinity
and interact with visual arrestin. These receptors form stable complexes with
β-arrestin, so that the receptor-β-arrestin complex internalizes as a unit that
is targeted to endosomes. The structural features of the receptor that dictate
the stability of the receptor-β-arrestin complex reside within specific clus-
ters of serine and threonine residues in the C-terminal tail of the receptor
(61). The C-terminus of β-arrestin also determines the stability of the inter-
action, because a β-arrestin mutant truncated at residue 383 binds to the β2-
AR (a class A GPCR) with high affinity and trafficks with it into endosomes.

Studies done using MEFs that lack either or both β-arrestins further sup-
port the hypothesis that β-arrestin 1 and β-arrestin 2 exhibit functional spe-
cialization (62). Knockout of either β-arrestin 1 or β-arrestin 2 is sufficient
to impair desensitization of both the β2-ARs and AT1A receptors. Desensiti-
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zation is further reduced in double-knockout β-arrestin 1/2 null cells, sug-
gesting that the two isoforms are equally effective at inducing desensitiza-
tion. In contrast, β2-AR sequestration is inhibited only in β-arrestin 2
knockout and double-knockout MEFs, not in β-arrestin 1 knockouts. Re-
constitution of β-arrestin expression in double-knockout MEFs revealed that
β-arrestin 2 is 100-fold more potent than β-arrestin 1 in supporting β2-AR
endocytosis. AT1A receptor sequestration is minimally affected by the ab-
sence of either β-arrestin 1 or β-arrestin 2 and is markedly impaired only in
the double-knockout MEFs. Consistent with data obtained using the β-
arrestin–GFP chimeras, these results suggest that β2-AR endocytosis prima-
rily involves β-arrestin 2, whereas either β-arrestin can support AT1A
receptor sequestration.

4.4. Posttranslational Modifications Affecting β-Arrestin Function

β-arrestin function is regulated by posttranslational modification, notably
phosphorylation and ubiquitination. Cytoplasmic β-arrestin 1 is almost sto-
ichiometrically phosphorylated on S412, which lies within the C-terminal regu-
latory domain (63). Upon translocation to the membrane, β-arrestin 1
undergoes rapid C-terminal dephosphorylation. An S412D mutant of β-arrestin
1 that mimics the phosphorylated state binds to agonist-occupied β2-ARs and
supports receptor desensitization but does not interact well with clathrin and,
therefore, inhibits receptor sequestration. The corresponding S412A mutation
associates constitutively with clathrin and is capable of supporting GPCR se-
questration. Thus, dephosphorylation of S412 appears to regulate the ability of
the receptor–β-arrestin complex to engage the endocytic machinery. β-Arrestin
2, which lacks an S412 equivalent, undergoes a similar pattern of regulation
by phosphorylation-dephosphorylation. In this case, the phosphorylated resi-
dues are S361 and T383. As with β-arrestin 1, dephosphorylation occurs upon
receptor binding, and phosphomimetic mutations at these sites impair clathrin
binding and GPCR endocytosis without affecting β-arrestin 2-mediated recep-
tor desensitization (64).

Regulated ubiquitination of β-arrestin 2 has also been shown to play an
important role in GPCR endocytosis. Both  β-arrestin 2 and β2-ARs are rapidly
and transiently ubiquitinated in response to agonist (65).  β-arrestin 2 ubiquitin-
ation is catalyzed by the E3 ubiquitin ligase Mdm2, which binds directly to the
β-arrestin. Ubiquitination of the receptor is catalyzed by an as yet unidentified
ubiquitin ligase but still requires the presence of β-arrestin. Ubiquitination of
β-arrestin apparently is required for β2-AR internalization, whereas ubiquitin-
ation of the receptor is involved in receptor degradation but not internaliza-
tion. The V2 vasopressin receptor also undergoes β-arrestin-dependent
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ubiquitination. Unlike the β2-AR, the V2 receptor-associated β-arrestin 2 re-
mains stably ubiquitinated as it trafficks with the receptor into the endosomal
pool. Similarly to the β2-AR, ubiquitination of the V2 receptor itself is not
required for endocytosis but does accelerate receptor degradation (66). Inter-
estingly, the time-course of β-arrestin 2 ubiquitination when associated with
class A or class B GPCRs correlates with stability of the receptor–β-arrestin
interaction. In cells expressing a β-arrestin 2–ubiquitin chimera, the “stably
ubiquitinated” β-arrestin 2 remains associated with both β2-ARs and V2 vaso-
pressin receptors as they internalize. Thus, regarding its trafficking pattern,
irreversible ubiquitination of β-arrestin 2 converts the class A β2-AR into a
class B receptor . These data suggest that de-ubiquitination of β-arrestin 2 is a
prerequisite for dissociation of the receptor–β-arrestin 2 complex (67).

5. β-ARRESTINS IN GPCR DOWNREGULATION,
RESENSITIZATION, AND RECYCLING

Downregulation of GPCRs, the persistent loss of cell-surface receptors
that occurs over a period of hours to days, is the least understood of the
processes controlling GPCR responsiveness. Control of cell-surface recep-
tor density occurs partially at the transcriptional level, but removal of ago-
nist-occupied receptors from the cell surface and their sorting for either
degradation or recycling to the membrane is also important, at least in the
early stages of downregulation (Fig. 3).

For a fast-recycling GPCR, such as the β2-AR, it is clear that β-arrestin-
dependent endocytosis plays a key role in the resensitization process (68).
In COS-7 cells, overexpression of β-arrestins enhances the rate of β2-AR
endocytosis and resensitization (69). Conversely, downregulation of β2-ARs
does not occur in β-arrestin 1/2 double null MEFs (62).

Resensitization of a sequestered GPCR requires that β-arrestin is dissoci-
ated, the receptor is dephosphorylated, and bound ligand is removed. Shortly
after stimulation, phosphorylated β2-ARs appear in an endosomal vesicle
fraction that is enriched in GPCR-specific protein phosphatase (PP2A) ac-
tivity (70). Dephosphorylation of the receptor occurs in an acidified vesicle
compartment, because treatment of cells with ammonium chloride (which
neutralizes the acidity of endosomal vesicles) blocks association of the re-
ceptor with the phosphatase and prevents receptor dephosphorylation (71).
Dephosphorylation of the GPCR may be the rate limiting in determining the
rate of GPCR recycling. Overexpression of phosphorylation-state insensi-
tive mutants of β-arrestin 1 reduces the extent of GRK phosphorylation of
β2-ARs, presumably by binding agonist-occupied receptors prior to GRK
phosphorylation, and markedly accelerates the process of recycling (72).
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The stability of the receptor-β-arrestin interaction also dictates the fate of
the internalized receptor. Although the class A β2-AR is rapidly dephospho-
rylated and recycled to the plasma membrane, the class B V2 vasopressin
receptor recycles slowly. Switching the C-terminal tails of these two recep-
tors, which converts the β2-AR into a class B receptor and the V2 vaso-
pressin receptor into a class A receptor, reverses the pattern of
dephosphorylation and recycling (73). Therefore, the formation of a tran-
sient receptor–β-arrestin complex favors rapid dephosphoryation and a re-
turn to the plasma membrane, whereas the formation of a stable
receptor–β-arrestin complex retards resensitization and may favor targeting
of the receptor for degradation. The N-formyl peptide receptor, which binds
β-arrestin but does not require it for internalization, fails to recycle when
expressed in β-arrestin 1/2 null MEFs, instead becoming trapped in a peri-
nuclear vesicle compartment (52). Thus, the protein–protein interactions that
determine β-arrestin’s role in receptor trafficking may be distinct from those
that mediate endocytosis.

Other protein–protein interactions involving the GPCRs also contribute
specificity to the process of endocytic sorting and determination of the ulti-
mate fate of an internalized GPCR. Transplantation of a PDZ-binding motif,
DSLL, from the C-terminus of the β2-AR onto the δ-opioid receptor causes
the latter to reroute from a degradative pathway into the rapid recycling
pathway (74). Binding between the DSLL motif and the PDZ-domain con-
taining protein, NHERF-1/EBP50, has been implicated in directing the β2-
AR into the recycling pathway (75). Conversely, a candidate
GPCR-associated sorting protein (GASP) has been identified that binds to
the C-terminus of the δ-opioid receptor and appears to preferentially target
the receptor to lysosomes for proteolytic degradation (76).

6. ARRESTINS AS SIGNAL TRANSDUCERS

6.1. GPCR-Arrestin As an Alternative Ternary Complex

The basic paradigm of GPCR signaling predicts that activated receptors
function catalytically to stimulate guanine nucleotide exchange on
heterotrimeric G protein Gα-subunits and to promote Gα- and Gβγ-subunit
dissociation. In contrast, arrestin-bound receptors exist in relatively stable
protein complexes of defined stoichiometry. In this state, β-arrestins act as
adapter proteins that physically link the receptor to the clathrin-mediated
endocytic machinery and promote receptor endocytosis. Although sterically
precluded from further G protein coupling, evolving literature suggests that
these arrestin-bound receptors are still involved in signal transduction.



The Arrestins 175

Rather than functioning enzymatically to catalyze G protein activation, the
desensitized GPCR and receptor-associated proteins (such as the arrestins)
appear to serve as scaffolds that recruit signaling molecules into complexes
with ligand-bound receptors. Although this model, in which the receptor
essentially functions as a ligand-activated docking protein, is thoroughly
established for other types of membrane receptors, it has only recently been
invoked to explain aspects of GPCR signaling (77).

It is quite clear that GPCRs exist in a conformationally distinct state when
bound to arrestins. Classical GPCR pharmacology has demonstrated that in
the absence of GTP, agonist, receptor, and heterotrimeric G proteins can
exist as a preformed “ternary complex” that exhibits higher agonist affinity
than the GPCR alone. More recent studies of GRK-phosphorylated, β-
arrestin-bound GPCRs have demonstrated that arrestin binding also induces
conformational changes in the receptor that affect agonist binding affinity,
leading to the suggestion that the agonist–receptor–arrestin complex repre-
sents an “alternative ternary complex” (78). For example, m2 muscarinic
acetylcholine and N-formyl peptide receptors each bind agonist, but not an-
tagonist, with increased affinity in the β-arrestin-bound state (78,79). Simi-
larly, a chimeric NK-1 receptor–β-arrestin 1 fusion protein appears to exist
in a stable, high-affinity agonist-binding form (80). Interestingly, the recep-
tor conformations that favor β-arrestin interaction appear to be different from
those that promote productive G protein coupling. For example, certain syn-
thetic angiotensin II analogs that act as antagonists of phospholipase C sig-
naling are nonetheless capable of inducing β-arrestin recruitment, receptor
sequestration, and mitogen-activated protein kinase (MAPK) activation (81).
Similarly, point mutations within the conserved DRY motif in the second
transmembrane domain of the AT1A receptor (82) can uncouple the receptor
from heterotrimeric G proteins but preserve agonist-induced β-arrestin bind-
ing and internalization. Collectively, such observations suggest that distinct
points of contact between agonist and GPCR select or induce distinct recep-
tor conformations that favor particular receptor interactions.

6.2. Arrestins As Scaffolds for GPCR Signaling

Data from yeast two-hybrid screens using β-arrestins, from biochemical
characterization of receptor–arrestin complexes, from study of GPCR sig-
naling in β-arrestin 1/2 null MEFS, and from siRNA-mediated silencing of
β-arrestin expression have identified several potential arrestin-binding part-
ners that may play a role in GPCR signaling beyond their dampening effects
on receptor—G protein coupling. The following sections summarize some
of the arrestin interactions that may permit the “alternative ternary com-
plex” to function as a signaling entity (refs. 83 and 84; Table 1).
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6.2.1. Arrestins and Src Family Tyrosine Kinases

The initial evidence suggesting that β-arrestins function as signal trans-
ducers came from the observation that β-arrestin 1 and β-arrestin 2 can bind
directly to Src family kinases and recruit them to agonist-occupied GPCRs.
In HEK293 cells, stimulation of β2-ARs triggers the colocalization of the
receptor with both endogenous β-arrestins and Src kinases in clathrin-coated
pits (85). This colocalization reflects the assembly of a protein complex con-
taining activated Src, β-arrestin, and the receptor. Similar results have been
obtained in KNRK cells, in which β-arrestins are involved in recruiting Src
to the NK-1 receptor (86); in neutrophils, in which β-arrestins recruit the Src
family kinases Hck and Fgr to the CXC chemokine receptor CXCR1 (87);
and in the rod outer segment, in which bleached rhodopsin, visual arrestin,
and Src assemble to form a multimeric complex (88).

Comparison of the functionally defined arrestin “docking” domains with
the crystal structures of visual arrestin and β-arrestin 1 suggests that arrestin
could simultaneously accommodate binding to a phosphorylated GPCR, Src,
phosphoinositides, and clathrin/β-adaptin (89). Src binding to arrestins is
partially mediated by an interaction between the Src homology (SH)3 do-
main of the kinase and proline-rich PXXP motifs in the β-arrestin N-do-
main. β-arrestin 1 has three such motifs, spanning residues 88 to 91, 121 to
124, and 175 to 178, whereas visual arrestin has only a single motif of this
type. All three of the β-arrestin 1 PXXP motifs reside on the solvent-ex-
posed surface of the molecule, where they would be available for binding,
and a P91G/P121E mutant of β-arrestin 1 is impaired in c-Src binding (85),
suggesting that at least two of the motifs contribute to Src binding. How-
ever, a second major site of interaction appears to involve the N-terminal
portion of the catalytic (SH1) domain of Src and additional epitopes located
within the N-terminal domain of β-arrestin 1 (90). Interestingly, complexes
containing bleached rhodopsin and arrestin associate specifically with the
immobilized Src SH2 domain in vitro (88), suggesting that multiple points
of contact exist.

GPCR stimulation results in the Src-mediated phosphorylation of several
proteins directly involved in the modulation of GPCR signaling, including
dynamin, GRK2, and Gαq/11-subunits. Some evidence suggests that β-
arrestin–Src complexes mediate these events. Activation of β2-ARs results
in rapid Src-dependent tyrosine phosphorylation of dynamin on Y597, which
stimulates dynamin self-assembly and increases its GTPase activity (91,92).
Mutation of the Src phosphorylation sites produces a dominant inhibitory
form of dynamin that impairs GPCR endocytosis. Expression of an inactive
Src SH1 domain that binds selectively to β-arrestin inhibits β2-AR-stimu-
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lated tyrosine phosphorylation of dynamin and receptor internalization (90),
suggesting that the β-arrestin–Src interaction may regulate tyrosine phos-
phorylation of dynamin, thereby enhancing GPCR endocytosis.

GRK2 is another potential substrate for β-arrestin-bound Src (93). β2-AR
or CXCR4 stimulation in HEK293, Jurkat, or C6 cells stimulates Src-medi-
ated GRK2 phosphorylation, followed by rapid ubiquitination and
proteosomal degradation of the GRK. Expression of the β-arrestin 1 P91G/
P121E mutant inhibits GRK2 phosphorylation and degradation, again sug-
gesting that targeting of Src may occur through its binding to β-arrestin. In
this case, the role of Src appears to be to downregulate of GRK activity, which
could provide a feedback mechanism for regulating GRK levels and GPCR
signaling.

Controlling of the rate of Gαq/11-mediated vesicular trafficking to the
plasma membrane is another potential role (94). Stimulation of endothelin
ETA receptors in 3T3-L1 adipocytes leads to Src kinase activation, Src-de-
pendent tyrosine phosphorylation of Gαq/11-subunits, translocation of insulin-
sensitive glucose transporter (GLUT4)-containing vesicles to the plasma
membrane, and an increase in GLUT4-mediated glucose uptake. Treatment
with Src inhibitors or microinjection of antibodies against either the Src fam-
ily kinase c-Yes or β-arrestin 1 blocks endothelin 1-stimulated glucose up-
take. Furthermore, β-arrestin 1 can be demonstrated to recruit Src into a
molecular complex with the ETA receptor in 3T3-L1 cells. Therefore, stimu-
lation of GLUT4 translocation by GPCRs appears to involve β-arrestin-me-
diated Src activation and, possibly, Src-mediated tyrosine phosphorylation
of heterotrimeric G protein subunits.

Further evidence for a role of β-arrestin–Src complexes in the trafficking
of exocytic vesicles comes from granulocytic neutrophils. In these, activa-
tion of CXCR1 by interleukin (IL)-8 stimulates the rapid formation of com-
plexes containing endogenous β-arrestin and the Src family kinases Hck or
Fgr (87). The formation of β-arrestin–Hck complexes leads to Hck activa-
tion and trafficking of the complexes to granule-rich regions. Granulocytes
expressing β-arrestin 1 P91G/P121E fail to activate tyrosine kinases and
demonstrate reduced chemoattractant-stimulated granule release after IL-8
stimulation.

Ras-dependent activation of the extracellular signal-regulated kinase
(ERK)1/2 MAPK cascade by many GPCRs requires Src kinase activity (95–
97). In some cases, the interaction between β-arrestin and Src appears to
play a role in the process. In HEK293 cells, overexpression of β-arrestin 1
mutants that exhibit either impaired Src binding or that are unable to target
receptors to clathrin-coated pits blocks β2-AR-mediated activation of ERK1/
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2 (85). In KNRK cells, activation of NK-1 receptors by substance P leads to
the assembly of a scaffolding complex containing the internalized receptor,
β-arrestin, Src, and ERK1/2. Expression of either a dominant-negative β-
arrestin 1 mutant or a truncated NK-1 receptor that fails to bind β-arrestin
blocks complex formation and inhibits both substance P-stimulated endocy-
tosis of the receptor and activation of ERK1/2 (86).

Activation of nuclear factor-κB (NF-κB) is another downstream signal-
ing event that may involve β-arrestin-dependent Src activation . D2 dopam-
ine receptors expressed in HeLa cells activate NF-κB through a pathway
involving pertussis toxin-sensitive G proteins, Gβγ-subunits, and Src family
tyrosine kinases. The signal is independent of phospholipase C and phos-
phatidylinositol-3-kinase activity but is enhanced by overexpression of β-
arrestin 1, suggesting that β-arrestin recruitment, rather than activation of
traditional heterotrimeric G protein effectors, may be the initiating event in
the process (98).

6.2.2. Arrestins and MAPKs
Most GPCRs can stimulate the activation of MAPKs. The mechanisms

underlying these signals are highly diverse and vary both with receptor and
cell type. Furthermore, the mechanism underlying MAPK activation has a
significant impact on the duration and subcellular distribution of MAPK
activity and, hence, its function. A growing body of evidence suggests that
under certain circumstances, β-arrestins can act as positive regulators of
MAPK activity and, in so doing, can promote the formation of functionally
discrete MAPK pools within the cell (95–97).

The MAPKs are a family of evolutionarily conserved serine/threonine ki-
nases that are involved in the transduction of externally derived signals regu-
lating cell growth, division, differentiation, and apoptosis. Mammalian cells
contain at least three major classes of MAPK: ERKs, c-Jun N-terminal ki-
nases (JNKs) (also known as stress-activated protein kinase [SAPK]) and p38/
HOG1 MAPKs (99,100). MAPK activity in cells is regulated by a series of
parallel kinase cascades comprised of three kinases that successively phos-
phorylate and activate the downstream component. In each cascade, the most
proximal element, a MAP kinase kinase kinase (MAPKKK), phosphorylates
a MAP kinase kinases (MAPKK), which, in turn, carries out the phosphoryla-
tion and activation of the MAPK. Once activated, MAPKs phosphorylate vari-
ous membrane, cytoplasmic, nuclear, and cytoskeletal substrates. Activated
MAPKs can translocate to the nucleus, where they phosphorylate and activate
nuclear transcription factors involved in DNA synthesis and cell division.

In many cases, the activation of a MAPK cascade is controlled by binding
of the component kinases to a scaffolding protein (100,101). These scaf-
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folds serve at least three functions in cells: to increase the efficiency of sig-
naling between successive kinases in the phosphorylation cascade, to ensure
signaling fidelity by dampening crosstalk between parallel MAPK cascades,
and to target MAPKs to specific subcellular locations. The prototypic
MAPK scaffold is the Saccharomyces cervisiae protein Ste5p (102), which
controls activation of the yeast pheromone mating pathway, a GPCR signal-
ing cascade. Although no structural homologs of Ste5p exist in mammalian
cells, several potential functional homologs have been identified that can
bind to two or more components of a MAPK module. For example, the JNK-
interacting protein (JIP) family of proteins act as scaffolds for regulation of
the JNK–SAPK pathway (103,104). Current data suggest that β-arrestins
can serve as GPCR-regulated scaffolds for some of the MAPK cascades
through direct interaction with MAPKKKs and MAPKs.

6.2.2.1. JNK–STRESS-ACTIVATED PROTEIN KINASE

In whole-brain lysates and yeast two-hybrid assays, β-arrestin 2 binds to
the neuronal JNK–SAPK isoform JNK3 (105). Co-expression of the
MAPKKK Ask1, along with JNK3 in COS-7 cells, results in very little JNK3
activation. However, when β-arrestin 2 is also expressed, Ask1-stimulated
JNK3 activation is dramatically enhanced. β-arrestin 2 forms complexes with
Ask1, the MAPKK, MKK4, and JNK3, but not JNK1 or JNK2. Ask1 binds
to the β-arrestin 2 N-terminus, whereas JNK3 binding is conferred by a
RRSLHL motif in the C-terminal half of β-arrestin 2 (105,106). This motif,
which is not present in β-arrestin 1, corresponds to a consensus MAPK bind-
ing motif that has been identified in several other MAPK-binding proteins.
Binding of the MAPKK MKK4 may be indirect, because its presence in the
complex appears to require the presence of at least one of the other kinases.

Interestingly, expression of β-arrestin 2 results in cytosolic retention of
JNK3. The physical basis of this phenomenon is the existence of a classical
leucine-rich nuclear export sequence (NES) in the β-arrestin 2 C-terminus
(107,108). Mutation of this sequence, or replacing it with the corresponding
region of β-arrrestin 1 (which lacks the consensus NES), allows nuclear ac-
cumulation of both β-arrestin 2 and co-expressed JNK3. Treatment with
leptomycin B, which blocks nuclear export, results in active nuclear accu-
mulation of wild-type β-arrestin 2, suggesting that β-arrestin 2 constitutively
shuttles in and out of the nucleus and could serve to deliver β-arrestin-bind-
ing proteins to the nucleus. Therefore, β-arrestin 2 exhibits all the character-
istics of a scaffold for the JNK3 cascade. It assembles the component kinases
into a complex with a degree of specificity, increases the efficiency of the
sequential phosphorylation steps, and controls the spatial distribution of the
active kinase.
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6.2.2.2. EXTRACELLULAR SIGNAL-REGULATING KINASE-1/2

β-arrestins also contribute to GPCR stimulation of the ubiquitous ERK1/
2 MAPK cascade. Overexpression of β-arrestin 2 paradoxically enhances
AT1A receptor-mediated ERK1/2 activation in COS-7 cells while predict-
ably attenuating G protein-mediated phosphatidylinositol hydrolysis (109).
Conversely, depletion of β-arrestins in HEK293 cells using RNA interfer-
ence (RNAi) inhibits AT1A receptor-mediated ERK1/2 activation and re-
ceptor sequestration and markedly enhances second-messenger production
(110). In each system, GPCR-stimulated ERK1/2 activation correlates with
β-arrestin binding, rather than G protein activation. Indeed, recent data indi-
cate that β-arrestins can mediate ERK1/2 activation through a mechanism
that is essentially G protein-independent. Stimulation of a G protein-un-
coupled mutant AT1A receptor (DRY/AAY) with angiotensin II fails to in-
duce detectable G protein loading but still promotes β-arrestin 2 recruitment,
receptor sequestration, and ERK1/2 activation (82). This apparently G pro-
tein-independent activation of ERK1/2 is abolished when β-arrestin 2 is se-
lectively depleted by RNAi (111). Identical results were obtained when the
wild-type AT1A receptor was treated with the synthetic peptide angiotensin
antagonist [Sarcosine1,Ile4,Ile8] AngII. Exposure of the wild-type receptor
to [Sarcosine1,Ile4,Ile8] AngII induced β-arrestin 2 recruitment and ERK1/
2 activation in the absence of detectable G protein activation, whereas deple-
tion of β-arrestin 2 by RNAi abolished [Sarcosine1,Ile4,Ile8] AngII-stimu-
lated ERK1/2 activation.

Similar paradoxical findings suggesting G protein-independent signaling
have been reported for the β2-AR (112). Ligands such as propranolol and
ICI118551, which function as inverse agonists for Gs-stimulated adenylyl
cyclase activation, act as partial agonists for ERK1/2 activation. The ERK1/
2 signal persists in pertussis toxin-treated cells with inactivated Gi/o proteins
and in S49 cyc- cells that lack functional Gs, but it is inhibited by expression
of a dominant-negative β-arrestin and is absent in β-arrestin 1/2 null MEFs.
Moreover, activation of ERK1/2 by β2-AR inverse agonists can be conferred
upon β-arrestin 1/2 null MEFs by expression of β-arrestin 2, indicating that
the G protein-independent signal is transmitted through β-arrestin.

β-arrestin-dependent activation of ERK1/2 apparently results from scaf-
folding of the MAPK pathway by GPCR-bound β-arrestin. In KNRK cells,
stimulation of PAR-2 receptors induces the assembly of a complex contain-
ing the internalized receptor, β-arrestin 1, Raf-1, and activated ERK1/2
(113). The complex apparently is required for ERK1/2 activation by the
wild-type PAR-2 receptor, because the signal is blocked by expression of a
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truncated form of β-arrestin that inhibits receptor endocytosis. Qualitatively
similar results have been obtained for the AT1A receptor expressed in
HEK293 and COS-7 cells (114). AT1A receptor activation results in the for-
mation of complexes containing receptor, β-arrestin 2, and the component
kinases of the ERK cascade (cRaf-1, MEK1, and ERK2). Upon receptor
internalization, activated ERK2 appears in the same endosomal vesicles that
also contain AT1AR–β-arrestin complexes. The NK-1 receptor provides a
third example. Activation of NK-1 receptors causes the formation of com-
plexes comprised of internalized receptor, β-arrestin, Src, and ERK1/2 (86).

When associated with class B GPCRs such as the PAR-2, AT1A receptors,
and NK-1 receptors, β-arrestin–ERK complexes appear to be relatively stable
entities that can be isolated by gel filtration or immunoprecipitation
(86,113,114). This stability, along with the NES sequence that excludes β-
arrestin 2 from the nucleus, may account for data indicating that the nature of
the GPCR–β-arrestin interaction affects not only the mechanism of ERK1/2
activation but also the spatial distribution and function of activated ERK1/2.

GPCRs can employ several mechanisms to activate the ERK1/2 pathway
(97,115,116). For example, the AT1A receptor activates ERK1/2 not only
through β-arrestin-dependent pathways but also through G protein-depen-
dent signals and through the “transactivation” of classical receptor tyrosine
kinases such as the epidermal growth factor (EGF) receptor (117–119).
Some data suggest that these different ERK1/2 activation pathways are func-
tionally specialized. Crosstalk between GPCRs and EGF receptors, which
leads to activation of the Ras pathway, accounts for the proliferative re-
sponse to GPCR stimulation in several systems (120,121). In contrast, β-
arrestin-dependent ERK activation by the PAR-2 and the AT1A receptors
does not generate a proliferative signal. Wild-type PAR-2, which mediate
β-arrestin-dependent activation of a predominantly cytosolic pool of ERK1/
2 in KNRK cells, do not stimulate 3H-thymidine incorporation or cell repli-
cation (113). Similarly, overexpression of β-arrestins promotes cytosolic
retention of angiotensin II-stimulated ERK1/2 activity and attenuates ERK-
dependent transcription of an Elk1–luciferase reporter, a signal that requires
nuclear translocation of activated ERK1/2 (109).

By determining the stability of the receptor-β-arrestin interaction, the C-
terminal tail of the GPCR appears to control the utilization of β-arrestin
scaffolds and, therefore, the physiological consequences of ERK1/2 activa-
tion. When expressed in COS-7 cells, the class B AT1A and V2 vasopressin
receptors activate β-arrestin-bound ERK2 more efficiently than the class A
α1b- and β2-ARs (122). The activation of β-arrestin-bound ERK2 correlates
with the stability of the GPCR–β-arrestin interaction, because exchanging
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the C-terminal tails of the V2 and β2 receptors (which converts the class B
receptor to class A and vice versa) reverses the pattern of ERK2 activation.
Wild-type V2 vasopressin receptors generate a larger pool of cytosolic
phospho-ERK1/2 and less nuclear phospho-ERK1/2 than the comparable
chimeric V2–β2 receptor, whereas the V2–β2 chimera stimulates Elk1–
luciferase reporter expression to a greater extent than the wild-type V2 va-
sopressin receptor and is capable of eliciting a mitogenic response. Similarly,
a mutant PAR-2 that lacks C-terminal GRK phosphorylation sites still acti-
vates ERK1/2 but does so through a Ca2+- and Ras-dependent pathway that
is mechanistically distinct from the β-arrestin-dependent pathway used by
the wild-type receptor. The mutant, unlike the wild-type receptor, induces
nuclear translocation of ERK1/2 and stimulates cell proliferation (113).

Although it is clear that β-arrestin-bound ERK1/2 is excluded from the
nucleus and does not appear to participate in mitogenic signaling, little is
currently known about the functional role of β-arrestin–ERK complexes. In
addition to directly phosphorylating nuclear transcription factors, ERK1/2
phosphorylates numerous plasma membrane, cytoplasmic, and cytoskeletal
substrates (100), including several proteins involved in GPCR signaling,
such as β-arrestin 1 (123), GRK2 (124,125), and Gα1-interacting protein
(GAIP) (126). Interestingly, phosphorylation of GRK2 by ERK1/2 enhances
its rate of degradation, and the process is accelerated by overexpression of
β-arrestin 1, suggesting that β-arrestins may target ERK1/2 to GRK2 (127).
Therefore, a potential role of β-arrestin–ERK1/2 complex formation could
be to specifically target ERK1/2 to non-nuclear substrates involved in the
regulation of GPCR signaling or intracellular trafficking. Alternatively, β-
arrestin-bound ERK1/2 might phosphorylate other cytosolic proteins in-
volved in transcriptional regulation (such as p90RSK), which in turn relay
signals to the nucleus. In such a model, transcriptional events mediated di-
rectly by the nuclear pool of ERK1/2 would be attenuated, whereas indirect
pathways of ERK-dependent transcription would persist, resulting in an al-
tered pattern of transcription following activation of the GPCR.

In NIH-3T3 cells, PAR-2 stimulate prolonged activation of a plasma-
membrane-associated pool of ERK1/2 that is retained in receptor–β-
arrestin–ERK1/2 complexes. These complexes are enriched in pseudopodia
when exposed to a chemotactic gradient. Furthermore, PAR-2 receptor-me-
diated cytoskeletal reorganization, polarized pseudopod extension, and
chemotaxis are ERK1/2-dependent and inhibited by expression of a domi-
nant-negative mutant of β-arrestin 1. These findings suggest that the forma-
tion of β-arrestin–ERK1/2 signaling complexes at the leading edge of a cell
may direct localized actin assembly and drive chemotaxis (128). Consistent
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with this hypothesis, T and B cells from β-arrestin 2 knockout mice are
strikingly impaired in their ability to respond to CXCL12 in transwell and in
transendothelial migration assays (129).

6.2.2.3. P38 MAPKS

Less information is available regarding the role of β-arrestins in the regu-
lation of p38 MAPKs. In HeLa and HEK293 cells, overexpression of β-
arrestin 2 enhances ERK1/2 and p38 MAPK activation as well as the
chemotactic response to activation of CXCR4 and CXCR5 (130). Con-
versely, suppression of endogenous β-arrestin 2 expression by antisense or
RNAi attenuates CXCR4-mediated cell migration. In this system, inhibition
of p38 MAPK, but not ERK1/2, blocked the effect of β-arrestin 2 on chemo-
taxis, suggesting that β-arrestin may act as a positive regulator of chemokine
receptor-mediated chemotaxis by enhancing activation of the Ask1–p38
MAPK pathway. Similarly, the C-terminal phosphorylation sites and β-
arrestin-interacting domain of the human cytomegalovirus GPCR US28 are
required for maximal activation of p38 MAPK by this receptor (54).

6.2.3. Arrestins and Ubiquitin Ligases

As previously discussed, the E3 ubiquitin ligase Mdm2 associates directly
with β-arrestin 2 and catalyzes ubiquitination of β-arrestin simultaneously
with its binding to agonist-occupied GPCRs (66). Ubiquitination of β-
arrestin regulates GPCR endocytosis and affects the stability of the GPCR–
β-arrestin complex, with important effects on the postendocytic trafficking
of GPCRs (67). However, Mdm2 has other cellular roles, most notably as a
negative regulator of the p53 tumor suppressor. Some data suggest that β-
arrestin binding to Mdm2 may link GPCRs to the p53 signaling pathway
(131). Mdm2 catalyzes the ubiquitination of p53, which targets it for degra-
dation. In HEK293 cells, stimulation of δ-opioid receptors leads to β-
arrestin-dependent recruitment of Mdm2 to the receptor. In Saos cells,
binding of β-arrestin 2 to Mdm2 suppresses Mdm2-catalyzed ubiquitination
of p53. As a result of increased p53 abundance, overexpression of β-arrestin
2 enhances p53-mediated apoptosis, whereas suppressing expression of β-
arrestin 2 by RNAi has the opposite effect. Although these data do not es-
tablish a physiological link between GPCRs and p53 through β-arrestin, they
suggest a possible mechanism for β-arrestin effects on cell survival.

6.2.4. Arrestins and cAMP PDEs

β-arrestins bind directly to selected isoforms of cAMP PDE (132). Stimu-
lation of β2-ARs leads to the β-arrestin-dependent recruitment of PDE4D3
and PDE4D5 to the agonist-occupied receptor. The result is accelerated ter-
mination of membrane-associated PKA activity, because β-arrestin binding
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precludes further Gs activation by inducing homologous receptor desensiti-
zation, and it enhances the rate of cAMP degradation by recruiting PDE4. In
both HEK293 cells and primary cardiac myocytes, inhibiting PDE4 activity
either pharmacologically or by expressing a catalytically inactive mutant of
PDE4D markedly enhances PKA-mediated phosphorylation of the receptor.
Because PKA phosphorylated β2-ARs exhibit enhanced coupling to Gi pro-
teins and stimulate pertussis toxin-sensitive ERK1/2 activation (37), inhibi-
tion of PDE activity is also associated with a marked increase in β2-AR
stimulation of MAPK (133). By locally controlling cAMP concentration, β-
arrestin-dependent PDE recruitment may therefore provide a mechanism for
locally dampening PKA activation and modulating the G protein-coupling
specificity of β-ARs.

6.2.5. Arrestins and Ral-GDS
The Ral-GDP dissociation stimulator Ral-GDS interacts with β-arrestins

in yeast two-hybrid assays and in co-immunoprecipitations from human
polymorphonuclear leukocytes (134). Ral-GDS is inactive when bound to
cytosolic β-arrestin; however, when β-arrestin is recruited to the membrane
in response to formyl-Met-Leu-Phe receptor stimulation, the Ral-GDS dis-
sociates and catalyzes activation of the Ral effector pathway, leading to
cytoskeletal re-arrangement. Thus, β-arrestins appear to provide a direct link
between GPCR activation and Ral-mediated cytoskeletal reorganization.

6.2.6. Other Signaling Roles for Arrestins
Some data suggest that β-arrestins may regulate cell survival and cell

cycle progression through the phosphatidylinositol-3-kinase (PI3K)–Akt
pathway. In IIC9 cells, α-thrombin stimulates rapid, PI3K-dependent acti-
vation of Akt (135). This response is inhibited by expression of dominant
interfering mutants of β-arrestin 1, but not β-arrestin 2.

Alterations in visual arrestin function are associated with retinal disease
in flies, mice, and humans. Certain forms of hereditary stationary night
blindness, such as Oguchi disease, are attributable to mutations in rhodopsin
kinase or arrestin that lead to impaired photoreceptor desensitization (136–
138). Many of these patients develop retinitis pigmentosa, with the death of
photoreceptor cells. Arrestin knockout mice maintained in continuous or
cyclic light, but not in continuous darkness, experienced photoreceptor loss
at a rate proportional to the amount of light exposure, consistent with the
hypothesis that constitutive signal flow in the absence of arrestin leads to
photoreceptor degeneration (139). However, a different mechanism—pos-
sibly involving arrestin-dependent signaling—has been demonstrated in reti-
nal degeneration mutants of Drosophila (140,141). In these models, the
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formation of stable arrestin–rhodopsin complexes leads to apoptotic death
of photoreceptor cells, whereas deletion of either rhodopsin or arrestin res-
cues the degeneration phenotype. This mechanism of retinal degeneration
involves the endocytic machinery, suggesting that endocytosis of arrestin–
rhodopsin complexes might be involved in triggering the apoptotic pathway
(142). In light of the data indicating that arrestins may link GPCRs to the
JNK–SAPK, Mdm2–p53, and PI3K–Akt pathways, these results suggest that
arrestin scaffolds may play a physiologically relevant role in this form of
retinal degeneration.

7. GPCR-INDEPENDENT FUNCTIONS OF ARRESTINS

Whether in the context of negative regulation of receptor–G protein cou-
pling or of signal transduction as adaptor/scaffold proteins, most work on
the arrestins has focused on their role in regulating GPCR function. How-
ever, several recent reports have suggested that arrestins are involved in the
internalization or signaling of some non-GPCRs, indicating that they play a
broader role in receptor regulation than previously appreciated.

The receptor for insulin-like growth factor (IGF)-1 is a heterotetrameric
receptor tyrosine kinase of the insulin receptor family. Despite its lack of
structural relation to the heptahelical GPCRs, some aspects of IGF-1 recep-
tor signaling apparently involve components of the GPCR signalling ma-
chinery, including heterotrimeric G proteins and β-arrestins. For example,
in cultured Rat 1a fibroblasts, HIRcB cells, and 3T3L1 adipocytes, IGF-1-
stimulated ERK1/2 activation and mitogenesis is pertussis toxin-sensitive
and inhibited by peptides that sequester free Gβγ-subunits (143). β-arrestins
also associate with IGF-1 receptors in a ligand-dependent manner.
Overexpression of β-arrestin enhances clathrin-mediated endocytosis of the
IGF-1 receptor and increases IGF-1-stimulated ERK1/2 phosphorylation and
DNA synthesis (144). Conversely, microinjection of antibodies against β-
arrestin 1 specifically inhibits IGF-1 stimulated mitogenesis, with no effect
on the responses to either insulin or EGF (145). Prolonged exposure to insu-
lin leads to a marked decrease in cellular β-arrrestin 1 content by stimulat-
ing β-arrestin ubiquitination and proteosomal degradation, resulting in
profound changes in subsequent cellular responses to both GPCR and IGF-
1 receptor stimulation. Predictably, β2-AR-mediated cAMP production is
enhanced and receptor sequestration is attenuated (146). Consistent with its
signaling role, the downregulaton of β-arrestin 1 reduces IGF-1-stimulated
ERK1/2 activation and abolishes ERK1/2 activation by lysophosphatidic
acid (LPA) and β2-ARs. Ectopic expression of β-arrestin 1 in cells where
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endogenous β-arrestin 1 has been downregulated by insulin exposure res-
cues IGF-1- and LPA-stimulated ERK1/2 activation (147).

β-arrestin 1 also appears to be involved in IGF-1 activation of a PI3K-
dependent cell survival pathway that is distinct from the well-characterized
pathway initiated by recruitment of p85/PI3Kα to tyrosine phosphorylated
insulin receptor substrate proteins. In subconfluent MEF cultures, IGF-1
treatment rapidly activates the PI3K–Akt pathway and inhibits apoptosis
through a mechanism that does not involve the IGF-1 receptor tyrosine ki-
nase activity, pertussis toxin-sensitive G proteins, or ERK1/2. This signal is
absent in β-arrestin 1/2 null MEFs but can be restored by stable re-expres-
sion of β-arrestin 1, suggesting that the IGF-1 receptor can use β-arrestins in
signal transduction (148).

Analogous to their role in GPCR trafficking, β-arrestins play a role in
internalization and downregulation of the single transmembrane-spanning
transforming growth factor (TGF)-β receptor (149). β-arrestin 2 binds to the
TGF-β type III receptor after phosphorylation of the cytoplasmic tail of the
receptor. The phosphorylation is not catalyzed by a GRK, but by the TGF-β
type II receptor, which possesses intrinsic kinase activity. β-arrestin binding
leads to internalization and downregulation of both type II and type III TGF-
β receptors.

Constitutive clathrin-dependent endocytosis of the low-density lipopro-
tein (LDL) receptor involves the autosomal recessive hypercholesterolemia
clathrin adaptor protein ARH. Interestingly, however, β-arrestin 2 knockout
mice that were fed a high-fat diet exhibited significant elevation of LDL and
intermediate-density lipoprotein levels compared to littermate controls, sug-
gesting that β-arrestins may play an accessory role in LDL receptor endocy-
tosis. Indeed, β-arrestins have been shown to coprecipitate with the LDL
receptor. In HEK293 cells, overexpression of β-arrestin 1 or β-arrestin 2
substantially increases LDL uptake, whereas RNAi suppression of β-arrestin
2, but not β-arrestin 1, reduces LDL receptor endocytosis. Similarly, LDL
receptor endocytosis is impaired in β-arrestin 1/2 null fibroblasts and can be
restored by expression of β-arrestin 2, but not β-arrestin 1, at physiological
levels. The interaction with β-arrestin 2 involves the LDL receptor C-tail
and is enhanced by a phosphoserine-mimetic S833D mutation of the LDL
receptor (150).

β-arrestins also appear to be involved in the Wnt signaling pathway,
which is a key regulator of development in many organisms. Wnt proteins
bind to seven-transmembrane-spanning receptors called Frizzleds. Unlike
GPCRs, Frizzleds do not signal via heterotrimeric G proteins. Rather, they
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recruit the cytoplasmic proteins Dishevelled 1 and Dishevelled 2 (Dvl 1 and
Dvl 2), which link the receptor to several signaling cascades, including inhi-
bition of glycogen synthase kinase-3β, stabilization of β-catenin, and acti-
vation of lymphoid enhancer factor (LEF). Based on yeast two-hybrid
studies, β-arrestin 1 has been identified as a binding partner of both Dvl 1
and Dvl 2 (151). Phosphorylation of Dvl 1 strongly enhances its binding to
β-arrestin 1, and overexpression of β-arrestin 1 along with Dvl1 synergisti-
cally activates LEF transcription. β-arrestins also participate in the endocy-
tosis of Frizzleds (152). In HEK293 cells, endocytosis of Frizzled 4 in
response to the Wnt5A protein is mediated by β-arrestin 2 that is recruited to
the receptor by binding to phosphorylated Dvl2. Similarly to GPCRs, these
data suggest that β-arrestins function both as regulators of endocytosis and
as signaling adaptor proteins coupling Frizzled receptors to transcriptional
activation.

8. CONCLUSIONS

The arrestin family of proteins was initially discovered through their
involvement in the termination of GPCR coupling to heterotrimeric G pro-
teins. Subsequent research has markedly expanded our appreciation of the
diverse roles played by these proteins in both negative and positive receptor
regulation. In addition to mediating homologous desensitization of GPCRs,
we now appreciate that the arrestins are central regulators of GPCR internal-
ization and intracellular trafficking. Indeed, their role in receptor trafficking
appears to extend beyond GPCRs to include other classes of membrane re-
ceptor. As receptor-binding proteins that can interact with a host of signal-
ing proteins, the arrestins are also able to confer enzymatic activity upon
GPCRs in a ligand-dependent manner. This model of GPCR signaling, in
which receptor-bound arrestins act as adaptors or scaffolds that recruit sig-
naling proteins to “desensitized” GPCRs, intimately links the processes of
receptor trafficking and signaling. Rather than simply being a mechanism
for ending GPCR signaling, arrestin binding may mark the transition point
between heterotrimeric G protein activation and the initiation of a second
wave of β-arrestin-dependent signaling.
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GPCR Interacting Proteins

Classes, Assembly, and Functions

Hongyan Wang, Catherine B. Willmore, Jia Bei Wang

1. INTRODUCTION

The complex transduction of ligand stimulation events at G-protein coupled
receptors (GPCRs)  by heterotrimetric G proteins has long been appreciated.
In addition to this, recent data shows that other protein interactions assist and
can fine-tune cellular signals.  Scientists have identified other membrane and
intracellular proteins that interact, directly or indirectly, with GPCRs.  In fact,
50 or more proteins are described in current literature as GPCR interactive
proteins. GPCR interacting proteins act as modulators of ligand-evoked sig-
nals. Membrane associated or intracellular GPCR interacting proteins have
critical roles in mediating: ligand recognition, optimization of signal trans-
duction, trafficking, receptor clustering, and/or compartmentalization. This
chapter reviews four aspects of the GPCR interacting protein literature: (a)
methods for identifying GPCR interacting proteins; (b) interaction domains
on the GPCR; (c) facilitation and fine-tuning of GPCR signaling events by
interacting proteins; and (d) particular analysis of proteins that are μ opioid
receptor (μOR) interactive. Although GPCR dimerization is viewed by many
as a type of protein interaction between the GPCRs, dimer-related protein
interactions will not be discussed; an alternate section of this book is devoted
to dimerization.
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2. GPCR INTERACTING PROTEINS: DETECTION ASSAYS

2.1. Yeast Two-Hybrid Screening
Yeast hybridization techniques capitalize on structural flexibilities that

are typical for yeast transcription modulators. For example, the transcrip-
tion factor Gal4 has both a DNA binding domain and a transcriptional acti-
vation domain. These domains do not need to be attached for transcription
to occur, but they must be positioned in close proximity. If, by genetic engi-
neering, the Gal4 domains are fused to two functionally unrelated—but
interactive—proteins, transcription progresses as a result of protein–protein
interaction (1). A further benefit that results from choosing the yeast two-
hybrid assay is that this method provides simultaneous access to the genes
that encode interacting proteins.

Yeast two-hybrid assays proceed as a complementary DNA (cDNA) library
screening, with bait corresponding to either a C-terminal or a third intracellu-
lar loop sequence in the favored receptor. Yeast two-hybrid systems are the
most commonly used assay systems for identifying G protein-coupled recep-
tor (GPCR) interactive proteins, and these assays have enhanced scientific
understanding of protein–protein interplays. γ-aminobutyric acid B R1
(GABABR1) and R2 (GABABR2) proteins in association were detected by
the yeast two-hybrid method (2). Similarly, a yeast assay permitted the detec-
tion of β2-adrenergic receptors (β2-ARs) in association with Na+/H+ exchanger
regulatory factor/Ezrin/Radixin/Moesin (ERM)-binding phosphoprotein-50
proteins (NHERF/EBP50) (3). As further examples, the association between
somatostatin receptor 2 (SSTR2) and somatostatin receptor interacting pro-
tein (SSTRIP) was elucidated by a yeast screening method (4), as was the
association between the D2 dopamine receptor (D2R) and spinophilin (5).
Clearly, the yeast two-hybrid system provides an excellent method for detect-
ing protein–protein interactions; however, this system does have limitations.

One shortcoming of yeast assaying methods is that a protein can only be
identified by yeast assays if the fished protein has direct contact with a
GPCR. A second negative factor for yeast hybridization is the low number
of proteins identified per library screen. One or, at most, two proteins are
typically fished from the cDNA library with each bait. Another downfall of
the yeast two-hybrid assaying method is its inability to detect protein–pro-
tein interactions that follow posttranslational modification(s). Additionally,
as a final caution, investigators contemplating tests in a yeast assaying sys-
tem should acknowledge that these assays have rendered false-negative as
well as false-positive results.
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2.2. Expression Cloning
Protein–protein interactions can be characterized by laboratory methods

that involve expression cloning. The power of carefully applied expression
cloning strategies is demonstrated by work done to characterize calcitonin
receptor-like receptor (CRLR)-interacting proteins. CRLR, which is a mem-
ber of the calcitonin gene-related peptide (CGRP)/CT superfamily of pep-
tides, was proposed to encode the receptor for CGRP. However, several
attempts to demonstrate functional expression met with failure (6). Subse-
quently, an expression cloning effort by McLatchie et al. yielded data sug-
gesting that an alternate protein, receptor-activity modifying protein
(RAMP), could affect ligand attachment to CRLR and could alter intracellu-
lar signals after CRLR activation (7). The following was the strategy used
for this expression cloning effort: (a) genetically engineered human neuro-
blastoma SK-N-MC cells with good binding of CGRP were generated; (b)
the cellular response to bound CGRP was noted as an increase in cytoplas-
mic cAMP; (c) SK-N-MC cDNA was transcribed in vitro, and pools of
complementary RNA were injected into Xenopus oocytes, with cRNA
encoding the cystic fibrosis transmembrane regulator (CFTR); (d) because
CFTR contains a cyclic adenosine monophosphate (cAMP)-activated chlo-
ride channel, which was used as a sensitive read-out for indicating the
receptors that positively coupled to adenylyl cyclase; and (e) the pool of
clones that showed robust response to CGRP was repeatedly subdivided.
When this work was completed, McLatchie and colleagues had isolated a
single cDNA that encoded RAMP. The study by McLatchie et al., which
designated RAMP as a CRLR-interacting protein, was followed-up in other
laboratories, and RAMP became the protein credited with facilitating the for-
mation of functional CGRP receptors through its association with CRLR (8).
Although this method is not frequently chosen to fish GPCR-associated pro-
teins, it is still a good strategy to search for an interacting protein that might
be a functional component of the favored receptor.

2.3. Application of Proteomic Approaches

Recently, a proteomic approach based on peptide affinity chromatogra-
phy, two-dimensional (2D) electrophoresis, and mass spectrometry was
attemtped (9); this combination of methods can be used to identify proteins
in a multiprotein complex that is GPCR interactive. Becamel and colleagues
examined proteins interacting with the C-terminal tail of 5-HT2C receptors
purified from mouse whole-brain extracts by peptide affinity chromatogra-
phy using the entire C-terminal tail fused to glutathione S-transferase (GST),
which was immobilized onto glutathione sepharose beads. After the bound
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proteins were eluted, separated by 2D electrophoresis, and stained with sil-
ver, a differential analysis of 2D gel protein patterns from the test sample
and from two control samples was performed using image software. Pro-
teins of interest, which were either not detected in the controls or were not
distinct from control proteins, were further characterized by matrix-assisted
laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF
MS; see http://www-microbiol.kun.nl/tech/malditof.html) or tandem mass
spectrometry after excision from the gel and trypsin digestion. By this
proteomic approach, 15 proteins were identified for direct or indirect bind-
ing to the 5-HT2C C-terminal; these were synapse-enriched multidomain
proteins, some of which contained PSD-95, Dlg, and ZO-1 (PDZ) domains
(10). Thus, Becamel et al. delineated a proteomic approach that permits an
investigator to globally characterize physiologically relevant protein net-
works, and this method circumvents known limitations of two-hybrid as-
says. Protein microarray assays and proteome chip assays are powerful, and,
therefore, these methods are used to comprehensively analyze protein–pro-
tein interactions. During interaction analyses, a library of immobilized pro-
teins is arrayed on slides, and each slide is probed with fluorescently labeled
proteins. For example, a research group recently constructed yeast proteome
chips containing 5800 yeast proteins, which were then probed using
biotinylated calmodulin (CaM). As follow-up to the CaM probing, a Cy3-
labeled streptavidin treatment was used to identify 33 new CaM-interacting
proteins (11). Protein microarray assays are ideal for research aiming to de-
tect GPCR-associated proteins in large scale. However, to achieve such a
comprehensive analysis, the analyzer might need to label thousands of pro-
teins, which is an arduous task. Although such a process has been simplified
by an improved labeling method (12), the assay continues to be viewed as
expensive and labor-intensive. Additionally, discrepancies have been ob-
served between protein microarrays and genome mining approaches (such
as two-hybrid screening) in studying the complexity of protein interaction
networks (13–15). These discrepancies clearly indicate a need to refine and
optimize the protein microarray approach.

3. INTERACTING PROTEINS SELECTIVELY TARGET
DOMAINS WITHIN A GPCR

Many interacting proteins change cell function by binding to the C-termi-
nus of a GPCR; protein interactions also localize to specific regions of the
C-terminus. By direct or indirect binding to C-terminal motifs, the interac-
tive proteins fine-tune GPCR activities. For example, the C-terminal tail of
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metabotropic glutamate receptor type 7 (mGluR7) has three binding regions
(16): proximal, central, and distal.

Proximal C-terminal domains are important for modulating intracellular
signals when mGluR7 is stimulated. Agonist stimulation of mGluR7
decreases the formation of cAMP, K+ channel opening, and voltage-gated
Ca2+ channel inhibition. The three signals are transduced partly by Gβγ-
subunits and partly by CaM. CaM and Gβγ bind to distinct proximal regions
of the C-terminus. It is interesting to note that CaM binding promotes the
dissociation of Gβγ from mGluR7. The mGluR7 C-terminal signaling sys-
tem is further regulated by protein kinase C (PKC) (16). In this regard, PKC
is capable of phosphorylating a CaM binding domain, which blocks CaM
binding. In contrast, CaM binding inhibits the phosphorylation of mGluR7.
Collectively, these results indicate that CaM and PKC regulate the activities
of mGluR7 by binding to proximal regions of the C-terminal tail.

A more central region of the C-terminal tail on mGluR7 is regarded as an
axonal targeting or guiding domain. This region is understood to include
residues 883 through 912, which lie between the proximal CaM–Gβγ–PKC
recognition sites and a more distally located PDZ domain. Although no in-
teracting proteins have been identified for specific activity centered in this
domain, a study performed by Stowell and Craig indicates that this region is
functionally linked to axon targeting signals (17).

The distal region of the C-terminus is believed to guide the formation of
presynaptic clusters, and PDZ binding motifs are common in distal regions
of the C-terminus. Many PDZ domain-containing proteins have been identi-
fied as interacting proteins of GPCRs. PDZ is an acronym derived from the
names of three proteins in which PDZ coding sequences were originally
recognized: PSD-95, Dlg, and ZO-1 proteins. PDZ modules foster protein–
protein interactions, and these interactions generate protein layers in scaf-
fold (18,19). Protein interacting with PKC (PICK1) is a single PDZ
domain-containing protein originally isolated as a binding protein for PKC-
α and is also a substrate for PKC phosphorylation. It was reported that
PICK1 interacts with a PDZ binding motif located at the distal region of the
C-terminus for mGluR7. Boudin and colleagues demonstrated that the PDZ
binding motif critically mediates synaptic aggregation, presumably by in-
teraction with PICK1 (20). Without this structure, PICK1 had no binding
affinity at mGluR7, and mGluR7 also failed to cluster in synapses.

3.1. GPCR–PDZ Domain Interactions

In addition to pre- and postsynaptic clustering (as indicated from the study
of mGluR7), interactions that follow from PDZ domains cause receptors
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and ion channels to re-organize into complexes (21). PDZ cassettes also
mediate the grouping of signaling components into macromolecular com-
plexes within a microcompartment (22); many interactions between GPCR
and PDZ domain-containing proteins depend on PDZ domains (23). The
following paragraph provides a few examples of GPCR–PDZ domain inter-
actions.

NHERF is a 55-KDa multidomain protein that contains two tandem PDZ
domains at its amino terminus and an ERM-binding domain at its carboxyl
terminus (24). EBP50 is a human homolog of rabbit NHERF. It binds to the
cytoplasmic tail of β2-AR through the first PDZ domain and to the cortical
actin cytoskeleton through an ERM-binding domain (25). Finer details of
the β2-AR cytoplasmic tail and PDZ domain interaction have also been ex-
plained. The specific sequence “D-S/T-x-L” is required for optimal protein–
protein interaction, and Serine 411 in the β2-AR tail is required for both
interaction with EBP50 and proper receptor recycling (25).

The importance of PDZ domain-orchestrated protein–protein interactions
can also be appreciated by examining details of the interplay between intra-
cellular C-terminal regions of SSTR2 and SSTRIP. The SSTR2–SSTRIP
interaction can be viewed as prototypic, because it represents a single ex-
ample among many multidomain cytoskeletal anchoring protein interactions
that enrich the postsynaptic density fractions (26). Postsynaptic density en-
richment by protein–protein interaction is important for both maintenance
and proper functioning of central nervous system synapses.

3.2. GPCR–Non-PDZ Domain Interactions

Some non-PDZ domain-mediated interactions take place in the intracellu-
lar domains of GPCRs. For instance, spinophilin is an 817-amino acid pro-
tein enriched in brain tissues; this protein was identified as a D2R-interacting
protein (5). The D2R–spinophilin protein–protein interaction occurs at the
third intracellular loop of receptors (as determined by yeast two-hybrid
screening when the receptor’s third intracellular loop was used as bait) (5).
Spinophilin contains a putative actin-binding domain at the amino terminus,
a single PDZ domain, and a region predicted to form a coiled-coil structure at
the carboxyl-terminal. Interestingly, the interaction is through a non-PDZ-
mediated mechanism. The portion of spinophilin responsible for interacting
with the third intracellular loop of the D2R has been narrowed to a region
between its actin-binding domain and its only PDZ domain. Spinophilin can
simultaneously interact with both D2R and a ubiquitously expressed protein
phosphatase-1, although these interactions are centered in different binding



GPCR Interacting Proteins and Their Functions 205

pockets. Therefore, spinophilin is recognized as an important scaffold or
adaptor protein that links receptors to downstream signaling molecules and
to cytoskeletal elements, thereby establishing a protein complex that is nec-
essary in dopaminergic neurotransmission. Other GPCR interacting proteins
that have been reported to target the intracellular domains include 14-3-3
proteins (27) and actin-binding protein-280 (28).

Accessory proteins have been demonstrated to facilitate interactions by
binding to both intracellular and C-terminal domains. Contemporary litera-
ture reveals that non-PDZ sequences can participate in accessory protein
regulation of GPCR signaling (29,30). Non-PDZ sequences have been
implicated in partial regulation of chaperone activities, vesicular traffick-
ing, and signal refining after stimulation of a GPCR. Neither inactivation
nor afterpotential A (nina A), a 26-KDa integral membrane protein contain-
ing a membrane-permeating signal sequence and a single transmembrane
domain, and its mammalian homolog RanBP2 (31) are the first identified
protein chaperones that mediate cell surface expression of two sensory
GPCRs—rhodopsin (32) and opsin (31). Odr4, which encodes 445 amino
acids with a C-terminal transmembrane domain, shares no sequence nor
structural similarity to nina A or RanBP2 but interacts with another sensory
GPCR, Odr10 (the Caenorhabditis elegans odorant receptor), and this inter-
action localizes the receptor to cilia on olfactory neurons (33).

The association of accessory proteins with GPCRs is not restricted to sen-
sory GPCRs. Thus far, yeast two-hybrid and co-immunoprecipitation stud-
ies have demonstrated a stable interaction between angiotensin II type 1
receptor-associated protein (ATRAP) and angiotensin II type 1 receptor
(AT1R) (34) as well as associations between filamin A and either D2R or
D3R (35) and between gravin and β2-AR (36). The mapping studies con-
vincingly show that the C-terminal and/or the third intracellular loop of the
receptors are crucial for receptor–protein interaction, whereas the interac-
tion sequences in accessory proteins are much more varied. For example,
gravin binds the receptor through β2-AR C-terminus (Arg329 to Leu413),
and the interaction is maintained as the receptor is internalized (36). Filamin
A, a ubiquitously expressed actin-crosslinking phosphoprotein, interacts
with dopamine receptor through the N-terminal segment on the third intrac-
ellular loop of the receptor. Filamin is composed of an N-terminal actin-
binding domain, a C-terminal homodimerization domain, and a central
rod-like backbone that comprises 23 tandem repeats (each approx 96 amino
acids in length) (37). The sequence within repeat 19 of filamin A has been
demonstrated to contribute to its association with dopamine receptors (35).
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4. FUNCTIONAL PROTEIN NETWORKS: FINE-TUNING OF
GPCR ACTIVITY AND MODIFIED LIGAND-BINDING AFFINITY
4.1. Modified Ligand Recognition and Signal Transduction

All receptor proteins, including GPCRs, transduce signals after binding
selective ligands. A ligand’s affinity for the GPCR is partly derived from its
physiochemical properties (38). However, the configuration of correspond-
ing GPCR will also determine affinity (39). Receptor dimerization particu-
larly affects the affinity of a ligand. In fact, once dimerized, receptors can
exhibit a novel binding pattern (40). These data (compiled as scientific con-
temporaries came to understand receptor dimerization) could illustrate the
critical activities of interacting proteins and their capacity to modify recep-
tor-binding affinities.

One example involves κ- and δOR, which can assemble into hetero-
dimers. The κ-δOR heterodimer does not significantly bind κ- or δOR-pre-
ferring full agonists, nor does it significantly bind κ- or δOR antagonists;
however, the κ-δOR heterodimer has strong affinity for partially selective
ligands (41). To follow-up the concept that dimerized receptors select among
potential ligands, the phenomena of the synergistic binding of a dimerized
receptor is also interesting. Gomes et al. reported opioid treatments in cells
expressing μ-δOR heterodimers and proved that the dimerization state could
influence subsequent affinity measurements (42). In this study, Gomes et al.
treated cells isolated for μ-δOR heterodimer expression with δOR-selective
ligands at low concentrations. This brought about a significant increase in
the cell’s binding of μOR agonists. Similarly, treatment with low concentra-
tions of μOR-selective ligands resulted in a significant increase in the bind-
ing of δOR agonists.

Several newly identified accessory proteins have been demonstrated to
function as regulators of GPCR function (43). Research is warranted to
enhance scientific understanding of accessory proteins and accessory pro-
tein-provoked modification of GPCR function. For example, it is instructive
to consider RAMP isoform-specific modulations of CRLR. CRLR can be
co-expressed with RAMP1 to form functional CGRP receptors, and CRLR
co-expression with RAMP2 or -3 promoted the formation of a receptor with
pharmacological properties of an adrenomedullin receptor (7,44).

From a traditional stance, GPCRs couple only to heterotrimeric G pro-
teins for signal transduction. However, a more recent view of GPCR signal-
ing recognizes that many additional proteins are often required for optimal
coupling to downstream effectors. As mentioned earlier, RAMP proteins
interact directly with CRLR. They are necessary, but not sufficient, for con-
veying a full functional CGRP receptor. Another accessory protein, the re-
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ceptor component protein (RCP), was also found to directly associate with
CRLR. Unlike RAMP, RCP does not function as chaperone. Instead, it
couples CRLR to cellular signal transduction machinery. Therefore, it is
suggested that a functional CGRP receptor is composed of at least three
proteins in a complex: the ligand-binding and membrane-spanning protein
(CRLR), a chaperone (RAMP), and a coupling protein for signal transduc-
tion (RCP) (45).

4.2. Modified Receptor Trafficking, Sorting, and Intracellular
Compartmentalization

Small accessory or chaperone proteins also play important roles in pro-
moting receptor delivery to plasma membrane regions of a cell. The CGRP/
CRLR system is again instructive. A specific RAMP protein, RAMP1, is
critical for terminal glycosylation events in the posttranslational processing
of CRLR. A mature and fully glycosylated CRLR is inserted at plasma mem-
branes only if RAMP1 interactions ensue. The D2R-filamin A interplay is
another example that illustrates the criticality of protein–protein interactions
for proper cell surface expression. Lin et al. tried to express D2R in a filamin
A-deficient cell line and found that in lieu of surface expression, D2R was
detected mainly within intracellular compartments. In contrast, when a
filamin A-reconstituted cell line was used, the D2R became localized in cell
membranes (35).

Another phenomena that is believed to involve protein–protein interac-
tions is cell-compartment—or, more specifically, endoplasmic reticulum
(ER)-compartment—retention of imperfect proteins. Although protein–pro-
tein interactions enhance the efficiency of protein folding (46), which fosters
the insertion of viable cell surface receptors, folding and insertion processes
are corruptible. Improperly folded proteins are generally retained within the
ER compartment of a cell (47). New data indicate that protein–protein inter-
actions are instrumental to bring about such ER retentions. For example, the
chaperone protein calnexin targets improperly folded receptor proteins to the
ER compartment. This was demonstrated by work performed by Morello et
al., who found a greater interaction between calnexin and an ER-retained
R337X mutant receptor than with the wild-type V2 vasopressin receptor
(AVPR2). This demonstrated that calnexin played a role in increasing the ER
retention of misfolded GPCRs in addition to its general role in protein fold-
ing (48).

Recent work in many laboratories has contributed to our understanding
of the process of receptor endocytosis. Once internalized, receptors are pro-
cessed by one of the following two sorting options (49,50): (a) receptors can
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be dephosphorylated, recycled, and re-inserted in plasma membrane or (b)
receptors can be taken up by cellular lysosomes and degraded. GPCR-asso-
ciated and interacting proteins may participate, and ultimately control, re-
ceptor-sorting pathways (51). Consider, for example, that the fate of an
internalized β2-AR depends on interactions between the accessory phos-
phoprotein EBP50 and the distal cytoplasmic tail of the β2-AR. The β2-AR–
EBP50 interplay was elucidated as pivotal after results from a site-directed
mutagenesis study were published (25). In this study, the Ser411 residue of
native β2-AR was replaced with an aspartic acid (S411D), thus blocking the
β2-AR–EBP50 interaction and detracting from the efficiency of β2-AR
recycling, which ultimately provoked ligand-induced degradation of the mu-
tant receptor.

Homer proteins, which contain a PDZ-like domain at the N-terminus, are
designated as 1a, 1b, or 1c variant proteins. Homer proteins are interesting
both because they exist as a part of the postsynaptic density in excitatory
brain synapses and because they interact with each other to induce plasma
membrane clustering of receptors. To illustrate, Homer-1b has been demon-
strated to retain Group I mGluRs in the ER (52). If there is subsequent syn-
aptic activity, then Homer-1a competes with Homer-1b for the receptor in
the ER and efficiently chaperones the receptor to the cell surface. Then,
once the receptor is inserted in cell membrane, Homer-1c replaces Homer-
1a in its interaction with the receptor, forming large clusters of receptors on
cell surface (53,54).

5. INTERACTING PROTEINS THAT SELECTIVELY
MODULATE μOR SIGNALING PATHWAYS

5.1. PKC Interacting Protein (PKCI)

An interacting protein’s fine-tuning of the receptor signal might occur by
“dampening” a second messenger pathway. An example of dampened
receptor signals exists in the μOR–mPKCI interaction (reported at the 2002
INRC meeting). The mPKCI protein contains 126 amino acids and is a ubiq-
uitous member of the histidine triad (HIT) protein family. The association
between mPKCI and HIT proteins is evident in a conserved HIT (His-X-
His-X-His, X is a hydrophobic amino acid) motif (55). mPKCI was origi-
nally identified as an in vitro inhibitor of PKC isoforms (59). With further
investigation, inconsistencies were noted between mPKCI and a well-estab-
lished PKC inhibitor in vivo (55). In our laboratory, a two-hybrid screening
method was used to determine that mPKCI underwent specific interactions
with μOR and that this interaction localized to the C-terminus of μOR. These
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findings were also confirmed by co-immunoprecipitating full-length μOR
sequences with mPKCI in CHO cells. The affinity of μOR for opioid ligands
and its ability to mediate G protein activation were not changed by μOR–
mPKCI interactions, but its ability to inhibit adenylyl cyclase activity was
moderately reduced. The association of mPKCI and μOR also induced sup-
pression of receptor desensitization at the adenylyl cyclase level. In these
interaction studies, phorbol 12-myristate 3-acetate (PMA)-induced, but not
[D-Ala2, MePhe4, Glyol5]enkephalin (DAMGO)-induced, μOR phosphory-
lation was partly inhibited.

In addition to in vitro analysis of μOR–mPKCI interactions, some behav-
ioral tests were performed. We observed an enhanced morphine-induced anal-
gesia in mPKCI knockout mice and noted a faster development of tolerance to
morphine-induced analgesia in knockout mice than in wild-type controls.
Therefore, studies from our laboratory revealed some roles for mPKCI in fine-
tuning the signaling of the stimulated μOR. The sensitization and phosphory-
lation states of μOR appeared to depend on μOR–mPKCI interactions in vitro.
In experiments that quantified morphine-induced antinociception, our results
indicate that μOR–mPKCI interactions have potential to alter pain perceptions
in a living organism. Our results in experiments that measured morphine-in-
duced dependence and tolerance also indicate that μOR–mPKCI interactions
participate in manifestations of tolerance and dependence to an opiate drug
(data unpublished but reported in the 2002 INRC meeting). Taken together,
these data indicate that mPKCI is a direct and specific modulator of μOR.

5.2. Phospholipase D2

Koch et al. used the yeast two-hybrid technique to screen a rat cDNA li-
brary, and the selected bait was rat μOR C-terminus. Results from this library
screening indicated specific interactions between μOR C-terminus and an N-
terminal coding sequence for phospholipase D2 (PLD2). This μOR–PLD2
interaction was confirmed by co-immunoprecipitation in an HEK293 cell line
with stable expression of μOR and PLD2, and the interaction was shown to be
constitutive. The Phox homologous domain in the N-terminus of PLD2 was
further determined as an important site for interaction with the C-terminus of
μOR (56). PLD2 is a widely distributed phospholipid-specific diesterase that
hydrolyzes phosphatidylcholine to phosphatidic acid and choline and is be-
lieved to play important roles in cell regulation (57). Functional studies have
revealed that the μOR agonist DAMGO activated PLD2 and induced receptor
internalization, whereas morphine, which did not induce receptor endocyto-
sis, failed to activate PLD2. DAMGO-mediated PLD2 activation was depen-
dent on adenosine diphosphate-ribosylation factor (ARF) but not PKC.
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Heterologous stimulation of PLD2 accelerated μOR internalization, whereas
inhibition of PLD2 prevented agonist-mediated receptor endocytosis. Taken
together, the findings of Koch et al. indicate that ARF-dependent PLD2 acti-
vation is required for agonist-induced μOR endocytosis (56).

6. CONCLUSIONS

Research to discern the functional relevance of GPCR-associated protein
interaction is progressing rapidly. The picture that emerges from this
research is that interacting proteins are structurally and functionally diverse,
“partnering” easily with alternate interacting proteins. This diversity may
help individual GPCRs to form a physically and functionally distinct unit
that is important for carrying specificity and selectivity along unique signal-
ing pathways (58). Although specific GPCR-interacting proteins have not
yet been designated as promising drug targets, the potential to use these
interacting proteins as novel drug targets and to develop cell type-specific
disease intervention should not be underestimated.
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1. INTRODUCTION

Traditionally, G protein-coupled receptors (GPCRs) were believed to
exist and function as single monomeric entities that interacted with only G
proteins to produce an intracellular signal. However, intensive research in
the field now clearly indicates that receptors exist in a multiprotein com-
plex, interacting with other GPCRs and intracellular regulatory proteins to
form homo- or hetero-oligomeric signaling units (reviewed in refs. 1–5).
The existence of direct receptor–receptor interactions adds an additional
level of complexity to the regulation of GPCR function in cells co-express-
ing various GPCRs. Furthermore, the discovery that GPCRs can interact to
form hetero-oligomeric complexes, often with novel pharmacological and
functional properties, has shed much light on the previously unexplained
behavior of many agonists in vivo and on the mechanisms by which differ-
ent pathways and receptor systems can intersect and crossreact to produce
an integrated signal and cellular response.

Investigations into GPCR oligomerization have involved several differ-
ent approaches. Early studies used such techniques as receptor complemen-
tation to provide indirect evidence for oligomerization. However, the notion
of GPCR oligomerization was not generally accepted until a large body of
evidence accumulated using biochemical methods and, more recently, bio-
physical methods to demonstrate and monitor receptor–receptor interactions.
This chapter discusses techniques that have been applied to the study of
GPCR oligomerization, focusing both on the more conventional biochemi-
cal approaches and the newer biophysical approaches and the mechanisms
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by which they have been used to demonstrate the existence of GPCR homo-
and hetero-oligomers.

2. HISTORICAL PERSPECTIVE OF GPCR OLIGOMERIZATION

2.1. Earlier Studies

Even prior to the understanding of the genetic structure of GPCRs, there
was evidence that pointed toward the phenomenon of oligomerization within
this receptor superfamily. However, the significance of many of these stud-
ies was not fully appreciated until much later, when more direct evidence
for GPCR oligomerization emerged. In retrospect, early studies employing
radioligand binding, radiation inactivation, and receptor crosslinking—all
reported data that could be interpreted or explained by the presence of
receptor homo- or hetero-oligomers.

Many groups have observed complex binding of combinations of ago-
nists and antagonists to receptors with positive and negative cooperativity
that, with hindsight, could be explained by the presence of more than one
ligand binding site resulting from the formation of a dimeric or oligomeric
receptor complex (6–8). Crosslinking experiments using crosslinked ago-
nists, antibodies, and cell-surface crosslinking reagents also provided early
evidence that GPCRs could function as dimers (9–13).

Radiation inactivation is a technique based on the inverse relationship
between the size of a macromolecule and the dose-dependent inactivation of
that molecule by ionizing radiation. It has been used to demonstrate that the
functional receptor has a mass higher than that predicted from the mono-
meric structure for several GPCRs, including the α2-adrenergic receptor
(AR; ref. 14), D2 dopamine receptor (15), and the gonadotropin-releasing
hormone (GnRH) receptor (16). However, it was unclear whether these
higher-molecular-weight complexes represented receptor–receptor com-
plexes or merely receptor–protein complexes.

2.2. Trans-Complementation Studies

Although earlier pharmacological and biochemical studies suggested that
GPCRs function as oligomers, mechanisms of receptor function were still
modeled on a monomeric unit. Trans-complementation studies provided a
resurgence in interest in the concept of oligomerization by reporting func-
tional trans-complementation upon co-expression of various chimeric and/
or mutant receptor constructs. In initial trans-complementation studies, two
nonfunctional chimeric α2-ARs/m3 muscarinic receptors (each containing
transmembranes (TMs) 1 to 5 of one receptor and TMs 6 to 7 of the other)
were nonfunctional when expressed alone. However, upon co-expression of
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the two chimeras, binding of both adrenergic and muscarinic ligands was
restored, providing evidence for dimerization (17). A similar trans-comple-
mentation was also observed for two nonfunctional mutant angiotensin type
II AT1 receptors (AT1R) (18) and truncated D2 and D3 dopamine receptors
(19). The dominant-negative and dominant-positive effects observed for
certain mutants on wild-type receptor function also provides evidence for
direct receptor–receptor interactions (20–24).

3. BIOCHEMICAL METHODS TO STUDY GPCR
OLIGOMERIZATION

Because of the cloning of many GPCR complementary DNAs (cDNAs)
and the availability of antibodies toward several GPCRs and epitope tags, it
has been possible for biochemical studies to be conducted, providing strong
evidence for GPCR oligomerization. The observation (using immunopre-
cipitation and Western blotting) of molecular species corresponding to twice
(or more) the molecular weight of the receptor provided support for the no-
tion that GPCRs could form dimers or oligomers. Co-immunoprecipitation
of differentially epitope-tagged receptors provided much stronger evidence
for the existence of GPCR homodimers and has also been used to demon-
strate the occurrence of heterodimers (reviewed in refs. 1–3,5) (Table 1).

3.1. Detection of Higher Order Receptor Complexes
by Immunoprecipitation and Co-Immunoprecipitation

To detect receptor–receptor interactions biochemically, tissues or cells
endogenously expressing the receptor(s) or, more typically, cells heterolo-
gously expressing epitope-tagged receptors are employed. Following cell
lysis and the solubilization of membranes, receptors are immunoprecipitated
using receptor- or epitope-specific antibodies. Immunoprecipitates are then
analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and detected by Western blotting.

Immunoprecipitation has allowed the detection of higher order complexes
of several GPCRs, including the thyroid-stimulating hormone (TSH; ref.
25) and D2 dopamine receptor (26), suggesting the existence of homodimers
and oligomers. Furthermore, studies using native tissues have strengthened
the concept that homodimers and oligomers occur in vivo and do not simply
result from heterologous overexpression of receptor. Receptor-specific anti-
bodies detected higher order complexes of D3 dopamine receptors in immu-
noprecipitates from monkey and rat brain (27). Similarly, higher order
complexes have been detected in immunoprecipitates prepared from native
tissues for the calcium-sensing receptor (28), adenosine A1 receptor (29),
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(continued)

Table 1
Summary of Studies Applying Biochemical and Biophysical Techniques to Investigate
Homo- and Hetero-Oligomerization Within the GPCR Superfamily

GPCR Technique References

Homo-oligomerization class A
α1a-AR Immunoprecipitation, FRET 60
α1b-AR Immunoprecipitation, FRET 60
β1-AR BRET 82,96
β2-AR Immunoprecipitation 30

BRET 11,82,96
TRH receptor 1 BRET 71,73

Immunoprecipitation 32
TRH receptor 2 BRET 73
GnRH receptor pbFRET 61,90

BRET 71
D2 dopamine receptor Immunoprecipitation 97

FRET 56
D1 dopamine receptor Immunoprecipitation 98
δ-opioid receptor Immunoprecipitation 31,40,99

BRET, TR-FRET 63
κ-opioid receptor Immunoprecipitation 39
μ-opioid receptor Immunoprecipitation 40

BRET 99
SSTR 5 Immunoprecipitation, FRET 65
Cholecystokinin type A receptor BRET 72
LH receptor pbFRET 100
α-Factor receptor FRET 57
CXCR2 Immunoprecipitation 34
CXCR4 BRET 78
Chemokine receptor CCR5 Immunoprecipitation 101

BRET 91
Chemokine receptor CCR2 Immunoprecipitation 10
Complement C5A receptor FRET 59
Melatonin M1 receptor Immunoprecipitation, BRET 86
Melatonin M2 receptor Immunoprecipitation, BRET 86
TSH receptor FRET 62
Neuropeptide Y Y1 receptor FRET 58
Adenosine A1 receptor BRET 50
Adenosine A2 receptor BRET 81
Oxytocin receptor BRET 74
V1a vasopressin receptor BRET 74
V2 vasopressin receptor BRET 74
Neuropeptide Y Y4 receptor Immunoprecipitation, BRET 80
Class C
Calcium-sensing receptor Immunoprecipitation 9

BRET 79
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mGluR5 Immunoprecipitation 33
mGluR1 Immunoprecipitation 52
Hetero-oligomerization class A and class A
SSTRs 1 and 5 pbFRET 65
SSTRs 2A and 3 Immunoprecipitation 42
SSTR2A and μ-opioid receptors Immunoprecipitation 102
D2 dopamine receptors and SSTR5 pbFRET 66
Adenosine A1 and D1 dopamine receptors Immunoprecipitation 46
Adenosine A2A and D2 dopamine receptors Immunoprecipitation 103

BRET 75,81
AT1A and AT2 receptors Immunoprecipitation 43
AT1A receptors and B2Rs Immunoprecipitation 48
κ- and δ-opioid receptors Immunoprecipitation 39

BRET 99
μ- and δ-opioid receptors Immunoprecipitation 40,41
μ-opioid and substance P (NK1) receptor Immunoprecipitation, BRET 47
CCR2 and CCR5 Immunoprecipitation, FRET 104
CCKA and CCKB receptors Immunoprecipitation, BRET 76
TRHR1 and TRHR2 BRET 73
5-HT1B and 5-HT1D receptors Immunoprecipitation 105
Melatonin M1 and M2 receptors Immunoprecipitation, BRET 86
β1- and β2-ARs Immunoprecipitation, BRET 82,96
β2-ARs and angiotensin AT1Rs Immunoprecipitation 106
Adenosine A1 and P2Y1 receptors Immunoprecipitation, BRET 50
β2-AR and δ-opioid receptors BRET, TR-FRET 63

Immunoprecipitation 44
β2-ARs and κ-opioid receptors Immunoprecipitation 44
α2a-adrenergic and β1-ARs Immunoprecipitation 107
α1a-adrenergic and α1b-ARs FRET 60
Oxytocin and V1a vasopressin receptors BRET 74
Oxytocin and V2 vasopressin receptors BRET 74
V1a and V2 vasopressin receptors BRET 74
Class C and class C
GABABR1 and GABABR2 Immunoprecipitation 36–38
Calcium-sensing receptor and mGluR1 Immunoprecipitation 51
Calcium-sensing receptor and mGluR5 Immunoprecipitation 51
Class A and class C
5HT1A and GABABR2 Immunoprecipitation 94
Adenosine A1 receptor and mGluR1 Immunoprecipitation 108
Adenosine A2A receptor and mGluR5 Immunoprecipitation 45

Abbreviations: GPCR, G protein-coupled receptor; FRET, fluorescence resonance energy trans-
fer; BRET, bioluminescence resonance energy transfer; AR, adrenergic receptor; mGluR,
metabotropic glutamate receptor; GABA, γ-aminobutyric acid; B2R, bradykinin 2 receptor; TRH,
thyrotropin-releasing hormone; GnRH, gonadotropin-releasing hormone; TR-FRET, time-resolved
FRET; pbFRET, photobleaching FRET; SSTR, somatostatin receptor.
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and the chemokine CCR5 receptor (29). However, whether these higher-
molecular-weight complexes represent receptor dimers or oligomers or
merely represent receptor–protein complexes often is not addressed.

Through the heterologous expression of differentially epitope-tagged re-
ceptors, co-immunoprecipitation has been used to detect homo- and hetero-
oligomerization of many GPCRs; a signal is obtained on Western blot only
if there is an association between the two tagged receptors. For example,
the immunoprecipitation of myc-tagged β2-AR and the subsequent
immunoblotting of co-expressed HA-tagged β2-AR demonstrated the co-
immunoprecipitation of the differentially tagged receptors and indicated
homo-oligomerization of the β2-AR (30). Similar studies have demonstrated
the homo-oligomerization of many GPCRs, including the δ-opioid receptor
(31), thyrotropin-releasing hormone receptor (TRHR) (32), metabotropic
glutamate receptor 5 (mGluR5) (33), calcium-sensing receptor (9), CXCR2
receptor (34), and lutropin receptor (35). More recently, co-immunopre-
cipitation experiments have been used to demonstrate hetero-oligomeriza-
tion between closely related receptors, such as γ-aminobutyric acid
(GABA)BR1 and GABABR2 (36–38), opioid receptor subtypes δ and κ (39)
as well as δ and μ (40,41), somatostatin receptor (SSTR) subtypes SSTR2A
and SSTR3 (42), and AT1A and AT2 receptors (43). Hetero-oligomeriza-
tion between more distantly related receptors, such as the β2-ARs and δ-
opioid receptors (44), adenosine A2A and mGluR5 receptors (45), adenosine
A1 and D1 dopamine receptors (46), and μ-opioid and substance P (neuro-
kinin [NK]1) receptors (47), has also been observed using co-immunopre-
cipitation techniques.

Ideally, studies should investigate receptor hetero-oligomers in cell lines
or tissues in which they are endogenously expressed. Hetero-oligomeric re-
ceptor complexes of endogenously expressed receptors have been detected
for the AT1R and bradykinin 2 receptors (B2R) in rat smooth muscle cells
(48) and human platelets and omental vessels (49). Direct associations be-
tween the adenosine A1 receptor and P2 adenosine triphosphate (ATP)
purinoceptor (P2Y1) (50) as well as between the mGluR1 and calcium-sens-
ing receptor (51) have also been demonstrated in co-immunoprecipitation
experiments using membrane extracts from rat brain. This provides evidence
that dimerization is not simply an artifact of receptor overexpression in het-
erologous expression systems. However, demonstrating heterodimerization
in native tissues is often problematic because of the low level of endogenous
receptor expression observed for certain GPCRs and the lack of receptor-
specific antibodies.
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3.2. Concerns and Controls

Although immunoprecipitation is commonly used to study GPCR oligo-
merization, it can be problematic because a solubilization step with deter-
gents is usually required, which, as a result of the highly hydrophobic nature
of GPCRs, can lead to artifactual aggregation of receptor. However, many
studies validate immunoprecipitation data by demonstrating that complexes
are obtained only upon co-expression of receptors within the same cell and
not merely upon mixing of cells individually expressing each receptor. Fur-
thermore, the use of an additional GPCR to demonstrate the specificity of
the receptor–receptor interaction represents another potentially valuable
control for immunoprecipitation experiments. The finding that whole-cell
crosslinking prior to solubilization leads to an increase in the proportion of
dimers formed for several receptors (suggesting that preformed complexes
are present at the cell surface) further supports that dimers or oligomers do
not merely result from aggregation (9,30,31,33).

Various immunoprecipitation conditions, including the use of different
combinations of detergents, have also been used to address the concerns
regarding artificial aggregation of GPCRs. It is possible that the detergent
used could induce receptor aggregation. However, a study investigating
opioid receptor heterodimerization detected dimers under a wide range of
conditions (39). Reducing agents have also been used to address the con-
cerns regarding the potential nonspecific aggregation of GPCRs during the
extraction and immunoprecipitation process. Dimers were detected on SDS-
PAGE for the calcium-sensing receptor (9) and mGluR1(52) in nonreducing
conditions, but in reducing conditions (presence of dithiothreitol [DTT]),
only monomers were observed, suggesting that dimers/oligomers were not
just a result of artifactual aggregation but, rather, resulted from covalent
(disulfide) intermolecular interactions. Capping agents that carboxy-methy-
late free sulfhydryl groups on cysteine residues are often used in conjunc-
tion with reducing agents to reduce the chance of artifactual receptor
associations occurring as a result of nonspecific disulfide bond formation
during solubilization and immunoprecipitation procedures (39,53). There-
fore, provided that the appropriate controls are performed, immunoprecipi-
tation can represent a valid technique for detecting GPCR oligomerization.

4. BIOPHYSICAL METHODS TO STUDY GPCR
OLIGOMERIZATION

Biophysical techniques, which overcome many of the problems associ-
ated with the use of biochemical methods, have recently been used to pro-
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vide strong evidence for the existence of GPCR oligomerization in intact
cells (reviewed in refs. 2,3,5,54, and 55) (Table 1). Fluorescence resonance
energy transfer (FRET) and the newly emerging derivative, bioluminescence
resonance energy transfer (BRET), have the distinct advantage of being able
to monitor receptor–receptor interactions in live cells in real time.

4.1. Fluorescence Resonance Energy Transfer

4.1.1. Principle of FRET

FRET is a strictly distance-dependent energy transfer technique that has
been used for several years to detect and monitor protein–protein interac-
tions in live cells, both temporally and spatially. It involves the transfer of
energy from a fluorescent energy donor, following its excitation, to a fluo-
rescent energy acceptor when in close enough proximity (<100 Å). Measur-
ing this transfer of energy relies on a sufficient overlap between the emission
spectrum of the donor and the excitation spectrum of the acceptor to allow
energy transfer. Ideally, there should be little overlap between the excitation
spectra of the donor and acceptor molecules to minimize the degree of direct
excitation of the acceptor fluorophore as well as sufficient separation
between the emission spectra of the donor and acceptor molecules to allow
measurement of acceptor fluorescence without contaminating bleedthrough
from donor fluorescence.

4.1.2. Fluorescent Proteins and Dyes

The fluorescent donor and acceptor molecules can be either fluorescent
proteins genetically added to the proteins of interest to produce fusion pro-
teins or fluorescent dyes, which are used to label the proteins in combina-
tion with receptor- or epitope-specific antibodies.

Green fluorescent protein (GFP) and its color variants have a wide range
of spectral properties and thus have been used as FRET pairs to detect many
GPCR oligomers. Cyan fluorescent protein (CFP) and yellow fluorescent
protein (YFP), have been commonly used as donor and acceptor fluorescent
molecules, respectively, to detect GPCR interactions using FRET. The
homo-oligomerization of the D2 dopamine receptors (56), the yeast α-fac-
tor receptor (Ste2)(57), the neuropeptide Y receptors (Y1, Y2, and Y5), (58)
and the complement C5A receptors (59) all have been demonstrated using
CFP and YFP receptor fusion in FRET-based assays (Fig. 1A). Addition-
ally, CFP and GFP (60), GFP and red fluorescent protein (RFP) (58,61), and
YFP and RFP (62) have been used as donor and acceptor pairs in FRET.

Fluorescent dyes conjugated to receptor- and/or epitope-specific antibod-
ies have also been used to demonstrate homo-oligomerization of heterolo-
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gously expressed δ-opioid receptors (63), D2 dopamine receptors (64), and
SSTR5 (65) as well as hetero-oligomerization of SSTR5 and D2 dopamine
receptor (66) (Fig. 1B). Using fluorescent dyes conjugated to receptor-spe-
cific antibodies, it should be possible to detect FRET between endogenous
receptors and image these interactions in a single cell, as has been done for
other membrane receptors, including the epidermal growth factor receptor
(67). An increase in the availability of receptor-specific antibodies for
GPCRs would make it more feasible to monitor endogenous receptor–re-
ceptor interactions, thus providing strong evidence for the existence of
GPCR oligomers in vivo.

4.1.3. Time-Resolved FRET

The simplest FRET-based approaches to monitor GPCR oligomers
involve measuring the ratio of acceptor versus donor emission (or inten-
sity). As a result of FRET, donor emission decreases and acceptor emission
increases, and the acceptor/donor fluorescence intensity ratio in a cell co-
expressing both fusion proteins increases compared to the ratio obtained
from cells expressing only the donor-tagged protein. The homo-oligomer-
ization of the yeast α-factor receptor (Fig. 1A) (57,68) and the complement
C5A receptor (59) as well as the hetero-oligomerization of the α1a- and α1b-
ARs (60) have all been demonstrated by employing scanning spectrofluo-
rometry on cell suspensions to measure donor and acceptor emissions to
detect FRET. Alternatively, donor and acceptor emissions have been mea-
sured and FRET has been imaged in single cells for the TSH receptor (62,69)
and neuropeptide Y homodimers (58).

Ratiometric, intensity-based FRET approaches are at a disadvantage
because they require a donor that only expresses cell samples with expres-
sion levels similar to those in the donor-plus-acceptor cell population. Fur-
thermore, in a typical FRET experiment, the emitted fluorescent light is a
combination of donor emission, acceptor emission caused by direct excita-
tion, and acceptor emission caused by FRET. Therefore, to calculate the
FRET efficiency, the proportion of emission resulting from contaminating
fluorescence from the donor and direct excitation of the acceptor fluorophore
must be accounted for (Fig. 1A). Often, this correction can result in a very
low actual increase in acceptor emission, making this FRET-based technique
relatively insensitive for detecting weak or low-level protein interactions.

Time-resolved FRET (TR-FRET) can be performed to reduce the back-
ground fluorescence resulting from cellular autofluorescence and to improve
the signal/noise ratio. Fluorophores with long-lived fluorescence are used in
TR-FRET, enabling delayed FRET measurements to be taken after the back-
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Fig. 1
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ground fluorescence has decayed. Donor fluorophore europium3+ has been
used with acceptor fluorophore allophycocyanin to detect δ-opioid receptor
(63) and D2 dopamine receptor (64) homo-oligomers.

4.1.4. Photobleaching FRET
Photobleaching FRET (pbFRET) is an alternative to intensity-based

FRET measurements. Unlike intensity-based or ratiometric FRET assays
(which measure the ratio of acceptor vs donor emission), pbFRET measures
the rate of fluorescence decay of the donor fluorophore. Fluorescent pro-
teins naturally decay when continually excited, but as a result of FRET, the
rate of photobleaching decay of the donor fluorophore is reduced. This
derivative of FRET has the advantage of being independent of donor and/or
acceptor fluorophore concentrations. However, it has the disadvantage that
repeated measurements cannot be performed on the same sample, because
the fluorophores are destroyed by continual exposure to the excitation light
source. Homo-oligomerization of the SSTR5 (Fig. 1B) (65) and hetero-oli-

Fig. 1. The application of FRET to study GPCR oligomerization. (A) Monitor-
ing yeast α-factor homo-oligomerization in vivo using FRET. (I) Schematic dia-
gram illustrating the application of FRET to detect oligomerization. Yeast cells
co-expressing CFP-tagged (donor) and YFP-tagged (acceptor) receptors are irradi-
ated at 425 nm, and in the absence of an interaction, light is emitted at 475 nm. If a
receptor–receptor interaction occurs, energy is transferred via FRET to YFP and
re-emitted at 525 nm. (II) Schematic diagram demonstrating how FRET is detected
by scanning spectroscopy with fluorescence emission recorded between 450 and
600 nm. The emission from YFP caused by FRET is calculated as (CFP + YFP
emission) – (CFP only emission) – (YFP only emission). (B) Use of pbFRET to
detect SSTR5 ligand-induced homo-oligomerization. (I) Schematic diagram dem-
onstrating how ligand-induced oligomerization is detected using epitope-specific
antibodies with FRET occurring between antibody conjugated FITC and rhodamine
dyes. (II) Photobleaching of FITC (donor) in the absence of rhodamine (acceptor),
and the presence of ligand, with images taken every 4 s (selection of images shown)
illustrating the decay. For analysis of photobleaching emission, only the high-in-
tensity membrane region is used, with background and intracellular regions masked.
The decrease in fluorescence intensity of each pixel in the unmasked (membrane)
region is then plotted to show the average rate of decay of donor fluorescence caused
by photobleaching. (III) Photobleaching of FITC in the presence of rhodamine and
ligand leads to a reduction in the rate of photobleaching decay of the donor result-
ing from FRET. (Images in Fig. 1B parts II and III are from ref. 65. Copyright 2000
by American Society for Biochemistry & Molecular Biology. Reproduced with
permission from the authors and American Society for Biochemistry & Molecular
Biology in textbook format via the Copyright Clearance Center.)
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gomerization between the D2 dopamine receptor and SSTR5 (66) were dem-
onstrated using pbFRET. Although pbFRET is a powerful way to monitor
GPCR oligomerization, its use may be limited by the low availability of the
instrumentation and technology required to perform the single-cell FRET
microscopy.

4.2. Bioluminescence Resonance Energy Transfer

BRET involves the distance-dependent transfer of energy between a bi-
oluminescent energy donor and a fluorescent acceptor molecule. It is a natu-
rally occurring phenomenon observed in Renilla reniformis, with energy
resulting from the degradation of coelenterazine by Renilla luciferase (Rluc)
transferred to GFP (70). Similarly, BRET is observed between aequorin and
GFP in the jellyfish Aequora victoria. By generating fusion proteins with
either Rluc or Aequora GFP or its derivatives, BRET can be used to monitor
protein–protein interactions in live cells (70).

Performing a BRET assay initially involves genetically fusing one pro-
tein with the Rluc and fusing the second protein to the red shifted variant of
GFP, enhanced YFP (EYFP). Following the addition of the cell-permeable
substrate coelenterazine to cells co-expressing the fusion proteins, energy is
transferred from Rluc (peak emission: 480 nm) to EYFP if the proteins are
in close enough proximity (<100 Å). Energy is then re-emitted at a wave-
length characteristic of EYFP (peak emission: 530 nm) (Fig. 2A). Similarly
to FRET, BRET involves a ratiometric measurement (BRET ratio = the ratio
of light emitted at 530 nm over that emitted at 480 nm). The extent of BRET
is then determined by subtracting the BRET ratio for cells expressing only
the Rluc-fused protein from the BRET ratio for cells co-expressing both
fusion proteins; an increase in the BRET ratio is indicative of an interaction.

BRET was first developed to enable the dimerization of the light-sensi-
tive circadian clock protein KaiB from cyanobacteria to be studied (70). It
has now been used to demonstrate the oligomerization of many GPCRs in
living cells (Table 1), including the homo-oligomerization of the β2-AR (11),
TRHR1 (71), GnRH receptor (71), and type A cholecystokinin (CCKA)
receptor (72) as well as hetero-oligomerization between the type 1 and 2
TRHRs (73), oxytocin and V1 or V2 vasopressin receptors (74), adenosine
A2A and D2 dopamine receptors (75), and CCKA and CCKB receptors (76).

More recently, BRET was performed using Rluc and GFP as donor and
acceptor molecules, respectively. In this modified version of the original
BRET assay, marketed as BRET2, light is emitted from Rluc as a result of
the degradation of the coelenterazine “DeepBlueC” at a peak wavelength of
410 nm. It is then transferred to GFP, resulting in its excitation and subse-
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quent fluorescence at a peak wavelength of 515 nm (Fig. 2B). Therefore,
BRET2 offers an improved spectral resolution between donor and acceptor
emissions (105 nm) compared to the original BRET pair (50 nm), theoreti-
cally increasing range and sensitivity. However, the quantum yield of Rluc
using DeepBlueC in BRET2 is less than that with coelenterazine h, com-
monly used in the original BRET assay system. BRET2 has been used to
demonstrate constitutive homo-oligomerization of the δ-opioid receptor
(77), human immunodeficiency virus coreceptor CXCR4 (78), calcium-

Fig. 2. Schematic diagram illustrating the application of BRET and BRET2 for
the detection of GPCR oligomers. (A) Receptors C-terminally tagged with either
the energy donor, Renilla luciferase (Rluc) or the energy acceptor, EYFP are co-
expressed in cells. In the absence of dimerization or oligomerization, no energy
transfer is observed following addition of the cell permeable Rluc substrate,
coelenterazine (h form), and light is emitted from Rluc at a peak wavelength of 480
nm. If an interaction occurs, then the tags are in close enough proximity (<100 Å),
allowing energy transfer from Rluc to EYFP and additional emission of fluorescent
light at a peak wavelength of 530 nm. (B) In BRET2, energy is emitted from the
donor, Rluc, at a peak of 410 nm, as a result of degradation of its substrate
DeepBlueC. It is then transferred to the acceptor, GFP, leading to the appearance of
an emission peak at 515 nm characteristic of the GFP used. BRET2 provides an
advantage over the original BRET system, with greater spectral resolution (105
nm) between donor and acceptor emissions.
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sensing receptor (79), and neuropeptide Y Y4 receptor (80) as well as hetero-
oligomerization between the adenosine A2A and D2 dopamine receptors (81)
and adenosine A1 and P2Y1 receptors (50).

BRET has also been applied quantitatively to gain insight into the relative
affinities of various homo-oligomers and hetero-oligomers (82). BRET satu-
ration curves can be generated by expressing an increasing concentration of
acceptor fusion protein with a constant amount of donor fusion protein. The
BRET signal should rise with increasing concentration of acceptor fusion pro-
tein until a maximum signal is reached, with the maximum signal being a
function of the relative orientation and distance between the donor and accep-
tor tags and the quantity of dimerized receptors. However, the concentration
of acceptor fusion producing 50% of the maximum BRET signal (BRET50) is
a measure of the relative affinity of the interaction. This approach was used to
show that the β1- and β2-ARs formed homodimers and heterodimers with
similar relative affinities, suggesting that homo-dimers and hetero-dimers co-
expressed at equivalent levels should form in equal proportions (82). The V1a,
V2, and oxytocin vasopressin receptors were also demonstrated to have a simi-
lar propensity to interact with themselves as they were to each other (74).
This may suggest that in vivo, the degree of homo- versus hetero-oligomer-
ization may be determined by the relative expression levels of the receptors
rather than by interaction affinities. Alternatively, accessory proteins may be
involved in modulating homo- and hetero-oligomer formation.

5. DIMER OR OLIGOMER?

Although the interaction between receptors has been demonstrated for
many GPCRs, it is still unclear whether such complexes are dimeric or oligo-
meric and what proportion of the receptor exists in the monomeric, dimeric,
or oligomeric state. Furthermore, the issue of whether the receptor monomer
is functional has yet to be addressed for most GPCRs. The monomeric recep-
tors are nonfunctional for at least the GABAB receptors (36–38,83) and the
T1R1 (84) and T1R2 (85) taste receptors, with hetero-oligomerization an
obligate requirement for function.

Many studies do not make a clear distinction between dimers and oligo-
mers, with dimerization and oligomerization often used interchangeably
when describing the formation of the GPCR complex. Immunoprecipitation
experiments often reveal the presence of monomers, dimers, and oligomers.
However, the relative quantities of each molecular species observed on
immunoblots is often influenced by the experimental conditions employed.
Although biophysical techniques have the advantage because the receptor–
receptor interactions are monitored in intact cells, they do not easily reveal
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the stoichiometry of the receptor complex. However, a recent study used
BRET competition in conjunction with theoretical models to predict that the
melatonin MT1 and MT2 receptors exist predominantly as homodimers,
rather than oligomers or monomers (86). The BRET signal between either
MT1 or MT2 receptor homodimers was observed to reduce linearly with
increasing concentrations of untagged MT1 or MT2 receptor, respectively.
A similar approach was applied to demonstrate that more than 80% of β2-
ARs existed as dimers (82). However, such studies were performed in heter-
ologous expression systems, and the size of GPCR oligomers in native
tissues still remains largely unclear. A recent study using atomic force mi-
croscopy on mouse eye-disc membranes showed that, at least for rhodopsin,
the receptors exist as dimers arranged in an oligomeric array (87,88).

6. LIGAND MODULATION OF OLIGOMERS DETECTED
BY BIOCHEMICAL AND BIOPHYSICAL METHODOLOGIES

To better understand the functional relevance of GPCR oligomerization,
the effect of ligand binding on oligomerization has been investigated by
many researchers in the field. However, it is still not clear whether dimers or
oligomers are preformed during synthesis and traffick to the cell surface as
an oligomer or whether they oligomerize in response to agonist binding.
Many studies have detected preformed receptor oligomers, with ligands
causing an increase, decrease, or no change in oligomerization. However,
for certain GPCRs, such as the SSTR1 and SSTR5 (66,89), SSTR5 and D2
dopamine receptor (66), and the GnRH receptor (61,71,90), oligomerization
appears to be agonist-dependent.

The observed diversity of ligand-induced effects on GPCR oligomeriza-
tion may reflect differences between GPCRs in how oligomerization is regu-
lated. However, a partial source of the conflicting results may be differences
in methodologies used to detect GPCR oligomers. Several studies have
examined the effects of ligands on dimer or oligomer formation using co-
immunoprecipitations, reporting an increase (30,32,65), decrease (31), or no
change (34,53) in the extent of dimer formation observed. However, ligand-
induced changes in the amount of dimer or oligomer observed in co-
immunprecipitations may be caused by conformational changes that result in
a change in the accessibility of the antibody and, hence, in detection. Ligand
binding may also affect the stability of the dimer or oligomer and, therefore,
the quantity of higher order species that appear on Western blots.

Similarly, changes in FRET and BRET signals have been observed in
response to ligand binding. Using FRET, the yeast α-factor receptor (57),
D2 dopamine receptor (64), and complement C5A receptor (59) were all
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found to exist as preformed oligomers unaffected by ligand binding. How-
ever, in another study using FRET, the D2 dopamine receptor was found to
undergo constitutive and agonist-induced oligomerization (56). In contrast,
oligomerization of the TSH receptor was inhibited by receptor occupation
by the TSH ligand (62).

Similarly, investigations using BRET have revealed differences in the
effects of ligand on oligomerization. Agonist-induced BRET was observed
for homo-oligomerization of the β2-ARs (11) and TRH receptors (71) as
well as hetero-oligomerization between the adenosine A1 and P2Y1 recep-
tors (50). In contrast, agonist-induced decreases in the BRET signal between
CCKA (72) and neuropeptide Y Y4 receptor (80) homo-oligomers were in-
terpreted as indicative of receptor dissociation. However, many studies have
demonstrated no change in BRET signals in the presence of agonists
(74,76,79,91). This may suggest that the oligomerization state of the recep-
tor is not affected by ligand and is consequently unrelated to the activation
state of the receptor. Detection of changes in BRET between melatonin MT2
receptors following the binding of agonists and antagonists supports the idea
that changes in resonance energy transfer efficiencies following ligand bind-
ing result from conformational changes that occur in the receptor that may
not necessarily be related to activation (86). Indeed, ligand-induced changes
in BRET may not necessarily reflect an increase in oligomer formation or a
dissociation but, rather, reflect conformational changes in the dimer that
bring the donor and acceptor pairs into a more or less favorable orientation
for energy transfer. These conformational changes may or may not be
detected, depending on the sensitivity of the assay and instrumentation.

7. ADVANTAGES AND LIMITATIONS OF BIOCHEMICAL
AND BIOPHYSICAL APPROACHES

The oligomerization of GPCRs has been studied using many different
approaches. Biochemical and biophysical approaches both have provided
strong evidence to support the existence of GPCR dimers or oligomers.
However, the different methodologies have advantages and disadvantages
that need to be considered when deciding which technique is to be used in
the investigation of receptor–receptor interactions and also when interpret-
ing the findings obtained from applying different approaches.

Biophysical techniques, such as FRET and BRET, provide a powerful
means to study GPCR oligomerization. Unlike biochemical techniques such
as co-immunoprecipitation, they are performed in intact cells and do not
require receptors to be extracted and solubilized from cell membranes, which
can often lead to artifactual receptor aggregation.
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Resonance energy transfer techniques are strictly distance-dependent,
with energy transfer only occurring between donor and acceptor molecules
less than 100 Å apart. Because the structure of rhodopsin predicts that the
center-to-center distance between monomers in a dimer would be approx 40
to 50 Å (92,93), such biophysical techniques are ideal for monitoring these
interactions and their modulation in living cells.

Unlike FRET, BRET does not require an excitation light source, with
donor energy derived from a bioluminescent reaction. This eliminates the
associated problems of autofluorescence, photobleaching, cell damage, and
signal loss. Furthermore, the subsequent reduced background fluorescence
of BRET makes it a highly sensitive technique for detecting weak or low-
level protein–protein interactions. This may be an important consideration,
because many studies of GPCR oligomerization have involved the
overexpression of receptors in heterologous expression systems. It has been
suggested that GPCRs have a natural tendency to form dimers or oligomers
upon co-expression in heterologous expression systems, and studies need to
be performed in cells that endogenously co-express the receptors (94). How-
ever, this is not always possible, thus it is advantageous to perform high-
sensitivity assays with receptor expression levels at near physiological
levels, as has been done recently using BRET (77,86,91). The problem of
nonspecific receptor–receptor interactions caused by heterologous receptor
overexpression can also be reduced through the use of receptor controls. An
interaction between two receptors has often been shown to be specific by
using additional receptors that show a lack of interaction. In the case of
BRET, nontagged receptors can be used to specifically compete out recep-
tor–receptor BRET signals (71).

A potential limitation of BRET is the inability to clearly localize the
receptor interaction. Imaging GPCR dimers through FRET microscopy has
been performed (58,62). Furthermore, through the use of receptor-specific
antibodies, dimers and oligomers could be monitored in native tissues.
Imaging of BRET has been performed on Escherichia coli colonies (70) and
in Chinese hamster ovary (CHO) cell extracts (95). Single-cell BRET was
performed on the melatonin MT1R and MT2R expressed in HEK293 cells;
however, subcellular resolution was not observed (86). The development of
BRET imaging to detect and localize GPCR dimers and oligomers within a
single cell would represent a significant advance in this technology and al-
low the fate of dimers and oligomers to be monitored following agonist ac-
tivation, signaling, and receptor trafficking to and from the cell surface. The
development of alternative BRET donor and acceptor molecules that could
be conjugated to receptor-specific antibodies would also be extremely use-
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ful, enabling this relatively simple technique to detect endogenously ex-
pressed GPCR dimers and oligomers.

8. CONCLUSIONS
Evidence for the existence of GPCR dimers and oligomers has rapidly ac-

cumulated over the recent years. A range of techniques has been applied to
detect and monitor receptor–receptor interactions. The use of biophysical
techniques, such as FRET and BRET, produced a significant advance, pro-
viding the ability to detect GPCR oligomerization in live cells and eliminat-
ing the problems associated with artifactual receptor aggregation that can
potentially occur in co-immunoprecipitation procedures. Continuing advance-
ments in the reagents and instrumentation required to perform FRET- and
BRET-based techniques will only widen their application and increase our
understanding of GPCR oligomerization, the mechanisms involved, its regu-
lation, and, importantly, its role in receptor and cellular function.
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Oligomerization Domains

of G Protein-Coupled Receptors

Insights Into the Structural Basis of GPCR Association

Marta Filizola, Wen Guo, Jonathan A. Javitch,
 and Harel Weinstein

1. INTRODUCTION

Many recent reviews have thoroughly described the ability of a wide
range of G protein-coupled receptors (GPCRs) to exist and to potentially
function as oligomers (1–6). This chapter summarizes the computational
and experimental studies that have provided insight into the understanding
of the structural basis of GPCR association. Particular emphasis is placed on
the combined computational and experimental approach that we have
recently developed to characterize the homodimerization interface of
rhodopsin-like GPCRs.

Traditional models of GPCR activation have been based on the assump-
tion that single agonists induce conformational changes in single receptors,
which in turn stimulate heterotrimeric G proteins and produce signal ampli-
fication. However, recent reports on GPCR oligomerization have suggested
that the ligands bind to and may activate an oligomeric complex (7–10),
giving rise to various signaling events in the ensuing cascade. The require-
ment for GPCR dimerization in signaling has been demonstrated explicitly
for the γ-aminobutyric acid (GABA)B1–GABAB2 heterodimer. In this case,
the subunit GABAB1 binds GABA but does not appear to be capable of G
protein coupling, whereas the subunit GABAB2 cannot bind GABA but does
appear to couple to G protein (8). Therefore, heterodimerization is a prereq-
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uisite for receptor activation, which seems to occur through transactivation
(8). It is also possible that for other GPCRs, the relevant unit defining their
pharmacological characteristics may not be the monomer. Consequently, it
is necessary to consider the structural details and modes of oligomerization
to achieve an accurate understanding of receptor function.

Both computational and experimental efforts have been made to under-
stand the basis of protein–protein interaction in GPCR oligomerization, but
the specific molecular determinants required for receptor–receptor dimer-
ization are still unknown. Additionally, there is still an issue regarding
whether dimerization interfaces differ among highly related GPCRs. We
have recently developed a combined experimental (11) and computational
(12–15) approach to identify the molecular determinants responsible for
GPCR oligomerization, with the goal of discovering mutations that disrupt
the interface between protomers and, therefore, may interfere with receptor
function. The computational approach produces putative three-dimensional
(3D) models of oligomers based on the structural information contained in
the crystal structure of rhodopsin (16) as well as on correlated mutation
analysis (CMA) (12–15,17–21) that serves to significantly limit the number
of different packing modes of the transmembrane (TM) bundles of GPCRs
that must be considered in the modeling of oligomers. This approach has
recently been applied to the three-cloned opioid receptor subtypes to iden-
tify their likely interfaces in both homo- (15) and heterodimers (13). Once
the likely oligomerization interfaces were identified with the CMA-based
approach, molecular modeling served in the construction of 3D models of
GPCR dimers to maximize the number of interactions between the corre-
lated residues that were predicted from CMA on the appropriate lipid-facing
surface of the TMs in each protomer.

The computational procedure has recently been described for the opioid
receptors (15). This chapter presents the results of CMA calculations per-
formed on the other rhodopsin-like GPCR subtypes for which
homodimerization has been experimentally demonstrated. To test these
predictions, we have developed an experimental strategy that uses cysteine
crosslinking to map the dimer interface of GPCRs. By applying this ap-
proach to the D2 dopamine receptor, we recently showed that TM4 forms
part of a symmetric homodimer interface for this receptor (11). Interest-
ingly, our CMA-based approach predicted TM4 as a likely dimerization
interface for the D2 dopamine receptor. We propose to use the interdisci-
plinary approach described in this chapter as a tool to provide new insights
into the understanding of the structural basis of GPCR oligomerization.
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2. DOMAINS OF GPCR OLIGOMERIZATION INFERRED
FROM EXPERIMENTS

To date, oligomerization of GPCRs has been suggested to be mediated by
direct protein–protein interaction involving all the structural regions—
extracellular, intracellular, and/or TM. A summary of the GPCR oligomer-
ization domains that are experimentally suggested is provided later.

2.1. Extracellular Amino Terminus Domain
The involvement of the N-terminus in GPCR oligomerization has been

clearly demonstrated for class C receptor subtypes. Direct evidence exists for
the metabotropic glutamate receptor (mGluR)1 based on X-ray crystallo-
graphical data (22). Three different high-resolution crystal structures of the
N-terminal ligand-binding region of this receptor, with and without the ligand,
appeared as disulfide-linked homodimers. Several conformers of this amino
terminus were identified by combining crystallographical data with modeling
studies (22). Specifically, “active” and “resting” conformations resulted from
interdomain movement and relocation of the dimer interface. Binding of
glutamate to the extracellular ligand-binding domain of mGluR1 stabilized
both the “active” dimer and a “closed” conformation of the protomer in
dynamic equilibrium. The ligand-induced interdomain movements in the
mGluR1 dimeric complex were suggested to produce an allosteric effect on
the TM or intracellular regions of the receptor, leading to its activation.

A similar activation mechanism was recently proposed for the class C
GABAB receptor (23). Introduction of two cysteines, which were expected to
stabilize the N-terminal ligand-binding domain of GABAB1 in a closed state
by a disulfide bridge, locked the receptor into an almost fully active state.

Additional, although indirect, evidence for the participation of the N-
terminal domain in GPCR oligomerization exists for other members of
class C, as well as members of classes A, B, and D. Particularly, mutagen-
esis studies showed that cysteines within the N-terminal domain of the
class C human extracellular calcium sensing receptor were critical for the
formation of intermolecular disulfide bond(s) formed between receptor
protomers (24,25).

The involvement of the amino terminus has also been implicated in the
dimerization of the class A bradykinin 2 receptor (B2R) (26). In the wild-
type B2R, the fraction of B2R crosslinked in a dimeric or oligomeric form
was increased by the binding of the agonist bradykinin, whereas this
crosslinking was greatly reduced in a mutant that lacked the wild-type amino
terminus and that started at amino acid 65, just before TM1 (26). Further-
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more, the addition of a peptide corresponding to the amino terminus of the
receptor reduced the amount of crosslinked B2R dimers observed after
bradykinin treatment, whereas peptides derived from the extracellular loops
had no effect.

Western blot analysis of Ig-Hepta (a novel member of the GPCR super-
family defining a new subfamily of class B with a large extracellular amino
terminus domain) indicated that this protein exists as a disulfide-linked
dimer (27). The same analysis performed on the amino terminus domain of
Ig-Hepta alone indicated that by itself, this receptor region lacks the ability
to dimerize by forming disulfide bond(s). Nonetheless, experiments carried
out on the mutant Ig-Hepta truncated after the first TM span indicated dimer
formation, suggesting that the disulfide-linked dimer is formed through the
cysteine residues in the extracellular domain, rather than in the seven-TM
(7TM) helices. Assuming that the truncated Ig-Hepta mutants adopt a con-
formation similar to the extracellular domain of the wild-type receptor, these
results suggest that although the covalent dimer is formed through intermo-
lecular disulfide bond(s) in the amino terminus, TM1 is necessary for the
molecular association of Ig-Hepta receptor.

Fluorescence resonance energy transfer (FRET) and endocytosis-based
assays (which detect the ability of green fluorescent protein (GFP)-tagged
endocytosis-defective receptors to interact with and be rescued by co-ex-
pressed untagged wild-type receptors) were used to analyze receptor dele-
tion mutants of the class D yeast α-factor receptor sex pheromone exporter
(STE)2 (28). These studies suggested that the α-factor receptor STE2 amino
terminus, as well as TM1 and TM2, mediate receptor dimerization.

2.2. Intracellular C-Terminal Domain

Early indirect evidence suggested the involvement of the C-terminal
region in the heterodimerization process of GABAB1–GABAB2 (29,30) and
in the homodimerization of δ-opioid receptor (31). In particular, yeast two-
hybrid screening (29,30) showed that GABAB1 and GABAB2 subunits inter-
act via a stretch of approx 30 amino acid residues within their intracellular
C-terminal domains. Additionally, circular dischroism spectroscopy of
polypeptide chain fragments containing the heterodimerization site of
GABAB receptor showed that these peptides preferentially form parallel
coiled-coil heterodimers in a physiological buffer (32), suggesting that the
functional GABAB receptor is a heterodimer assembled by parallel coiled-
coil α-helices contained in the intracellular C-terminal domain. Subsequent
experiments with a series of GABAB1 receptor C-terminal truncation
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mutants identified a sequence of four amino acids (RSRR) within the pro-
posed coiled-coil interaction domain of the GABAB1 receptor that function
as an endoplasmic reticulum (ER) retention signal in this receptor subunit
(33). Therefore, the coiled-coil interaction with GABAB2 masks this ER
retention signal and allows GABAB1 to come to the cell surface as a
heterodimer with GABAB2. Disruption of both the ER retention signal and
the coiled-coil interaction domain allowed the GABAB1 receptor mutant to
reach the cell surface, where it retained the ability to bind agonist but did not
function. However, co-expression of this mutant with GABAB2 produced a
heterodimer capable of inducing GABA-evoked G protein-coupled inwardly
rectifying potassium (GIRK) current (33), demonstrating that regions
(maybe TM helices) other than the intracellular C-terminal domain can
mediate appropriate heterodimerization of GABAB receptor subunits.

2.3. TM Domains

Dimer interfaces involving TM regions have been suggested for several
GPCR subtypes, including rhodopsin receptors (34,35), β2-adrenergic
receptors (ARs [36]), D1 (37) and D2 (5,11,38) dopamine receptors, C5a
(39), α1b-adrenoreceptor (40), and yeast α-factor receptors (41). As detailed
below, the experimental approaches used atomic force microscopy and
molecular modeling, synthetic peptides corresponding to various TMs, co-
expression and FRET, and a strategy of disulfide-trapping of endogenous or
substituted cysteine residues.

Specific oligomerization interfaces were suggested from molecular model-
ing based on the recently published atomic force microscopy analysis of
rhodopsin. These pointed to the involvement of TM4 and TM5 in intradimeric
contacts and to TM1 and TM2, as well as the cytoplasmic loop connecting
helices TM5 and TM6, in the formation of dimeric rows (34,35). A 3D model
of the rhodopsin homodimer was derived from these studies (Protein Data
Bank identification code 1N3M [34,35]), offering predictions of specific in-
teraction sites. Inhibition studies with a synthetic peptide corresponding to
TM6 of the β2-AR suggested the involvement of TM6 in the dimerization of
this family A GPCR (36). Specifically, a glycophorin A-like dimerization motif
(272LKTLGIIMGTFTL284) in TM6 of the β2-AR was hypothesized to play a
role in the dimerization of this receptor. The use of synthetic peptides also
identified TM6 and TM7 as possible dimerization interfaces of D2 dopamine
receptors (38). In contrast, studies using the substituted cysteine accessibility
method (42) and cysteine crosslinking experiments (11) suggested that TM4
forms part of a symmetric homodimer interface in the D2 dopamine receptor.
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In contrast to the early findings for the β2-ARs (36) and D2 dopamine
(38) receptors, a peptide based on the TM6 sequence of the D1 dopamine
receptor did not affect the extent of dimerization (37), suggesting that the
dimerization interfaces of closely related GPCRs could differ. Although the
findings discussed earlier were shown to be specific for the sequences of
these particular synthetic peptides, these data do not necessarily establish
TM6 and/or TM7 as the dimer interface in β2-ARs or D2 dopamine recep-
tors, because a specific peptide–receptor interaction at one site may modu-
late the ability of the receptor to form dimers at a different interface.

Specificity of oligomerization was also observed for GPCR
heterodimerization (7,43,44), because some GPCRs were found to interact
with one type of receptor but not another. For example, the μ-opioid receptor
is known to heterodimerize with the δ-opioid receptor but not with the κ-
opioid receptor. However, the κ-opioid receptor may form heterodimers with
the δ-opioid receptor (43). Interestingly, the notion of selectivity in
heterodimerization is also supported by computational analysis with the sub-
tractive correlated mutation (SCM) method that we recently developed to
identify likely heterodimerization interfaces among GPCR subtypes (13).
Similarly to the opioid receptors, the somatostatin (SST)5 receptor has been
reported to heterodimerize selectively, with SST1but not with SST4 subtypes
(7), whereas the chemokine receptor (CCR)2 has been demonstrated to asso-
ciate with CCR5 but not with CXCR4 subtypes (44).

An interface involving TM1 has been proposed for C5a (39), α1b-
adrenoreceptor (40), and yeast α-factor (41) receptors. Thus, co-expression
of the α1b-adrenoreceptor with a fusion protein incorporating the N-terminal
domain and TM1 of the α1b-adrenoreceptor and G11α was interpreted to
indicate a role for TM1 in dimerization. Both TM1 and TM2 were suggested
to form the interface of yeast α-factor receptor oligomers (28) based on the
result of FRET experiments and assays showing that GFP-tagged endocyto-
sis-defective receptors are recruited into the endocytic pathway through in-
teraction with untagged wild-type receptors. Additionally, symmetric dimer
interfaces involving TM1 and TM2 or TM4 of the C5 receptor were inferred
based on disulfide trapping (39).

Taken together, the experimental results for various GPCR types suggest
that TM1 and TM4 are the most likely interfaces for GPCR dimerization.
Assuming a rhodopsin-like packing of the TM bundle for all GPCRs, TM1
and TM4 could not simultaneously participate in a single symmetric dimer-
ization interface. Therefore, these results suggest either different dimeriza-
tion interfaces for highly related GPCRs or the possible formation of higher
order oligomers, as discussed below.
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3. MODES OF INTERACTION BETWEEN TM REGIONS
OF GPCR MONOMERS

Two modes of interaction between the TM helices of GPCRs have been
proposed. First, “domain swapping” occurs when the TM bundles interpen-
etrate, and the interacting TMs from two different polypeptides appear as
interlaced units (18,20,45,46). Second, “contact dimerization” occurs when
each protomer TM bundle presents a separate binding site that is packed
against that of another protomer through interactions at interfaces that would
otherwise face the lipid environment. The domain-swapping mode of inter-
action was first suggested based on co-expression studies with mutant mus-
carinic and adrenergic receptors (47). Two chimeric constructs were used for
this experimental study: α2C–m3 and m3–α2C, in which the TM6 and TM7
segments had been exchanged between the α2C-adrenergic and the m3 mus-
carinic receptors. Although transfection with either of the two chimeric re-
ceptors alone did not result in detectable binding activity for muscarinic or
adrenergic ligands, cotransfection with both α2C–m3 and m3–α2C restored
binding of both ligands. This prompted the explanation that the TM1 to TM5
part of the receptor chimera formed a ligand-binding site using TM6 and
TM7 from the second receptor chimera, thereby reconstituting a normal bind-
ing site comprised of TMs incorporated in two different polypeptide chains.

Although other examples of domain swapping have been proposed (19),
more recent experimental results (28,34,35,48–51) have not supported this
mode of interaction as a dominant form of GPCR dimerization but propose
it only as a mechanism of functional rescue in heterologously expressed
GPCRs. For example, nonfunctional point mutants and truncation mutants
of D2 dopamine receptor were used to examine TM domain swapping in the
oligomerization process of this receptor. Specifically, it was demonstrated
that receptor function was antagonized when D2 dopamine mutant receptors
that were incapable of ligand binding were expressed with the wild-type
receptor (48), which is contrary to the expectation of reconstitution of intact
binding pockets as a result of TM domain swapping. Additionally, no spe-
cific binding was detected upon co-expression of an Asp114Asn D2 dopam-
ine receptor-defective mutant with a truncation mutant containing TM1
through TM5, suggesting that TM domains 1 through 5 do not participate in
swapping with TM domains 6 and 7 in the D2 dopamine receptor. Similarly,
nonfunctional constructs of the V2 vasopressin receptor with mutations in
the N-terminal folding domain (TM1–TM5) could not be rescued by co-
expressing a nonmutated N-terminal receptor fragment (51). Because all
attempts to restore function of V2 vasopressin receptor mutants failed, but a
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noncovalent interaction between monomers was detected by co-immuno-
precipitation studies, oligomers of this receptor were also suggested to form
by contact rather than by domain swapping. A recent study on the yeast α-
factor receptor (28) also favored a dimer contact model over domain swap-
ping: small fragments of this receptor (as simple as the N-terminal region
plus TM1) could self-associate, unlike other receptor fragments lacking
TM1. Intramolecular crosslinking between the TM1 and TM7 domains of
m3 muscarinic acetylcholine receptor using an in situ disulfide crosslinking
strategy did not produce dimers (49). In any domain-swapped dimer,
regardless of the crossover point between the polypeptides, TM1 and TM7
(the first and last TM helices) must be from different protomers (unless
multiple swaps are proposed). Therefore, crosslinking between TM1 and
TM7 without the formation of a disulfide-bonded dimeric complex on
nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and immunoblotting is strong evidence against domain swap-
ping. Similarly, photo-affinity label experiments using a peptide agonist of
the cholecystokinin receptor showed binding of this peptide to TM1 and
TM7 of the same receptor (50), also arguing against the mechanism of
domain swapping in the dimerization of this GPCR.

Finally, the recent atomic force microscopy map of rhodopsin (34,35),
which shows receptor monomers organized into two-dimensional arrays of
dimers, provides direct evidence for the formation of contact dimers, rather
than domain-swapped dimers, in GPCRs.

4. AN INTERDISCIPLINARY APPROACH TO CHARACTERIZE
THE OLIGOMERIZATION INTERFACE OF RHODOPSIN-LIKE
GPCRS

Based on the preponderance of experimental data suggesting that the con-
tact-dimer geometry is the most likely form of oligomerization among
rhodopsin-like GPCRs, we recently developed a combined computational
and experimental strategy to identify the molecular determinants for the oli-
gomerization of rhodopsin-like GPCRs. The number of possibilities in which
the 7TM regions of two GPCR monomers can be packed together is
extremely large (at least 49 [=7 × 7] for heterodimers and 28 [=7{7 + 1}/2]
for homodimers). To reduce these possibilities, we recently developed two
different computational approaches (6,13,15) based on a combination of
CMA with the structural information of GPCR monomers derived from
homology modeling, using the rhodopsin crystal structure (16) as a tem-
plate. The computational method was used to identify likely interfaces of
homodimerization (15) for all the rhodopsin-like GPCRs that are known to
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dimerize to investigate whether oligomerization interfaces in different
rhodopsin-like GPCRs are the same or different. The results from this study
are reported below with a summary of the experimental method that we
developed to test the computational predictions and characterize, in detail,
the oligomerization interface(s) of GPCRs.

4.1. Dimerization Interfaces of Rhodopsin-Like GPCRs Predicted
Computationally

Based on the principle that residues involved in a common function tend
to mutate together, we recently searched for lipid-exposed correlated muta-
tions within multiple sequence alignments of rhodopsin-like GPCRs for
which homodimerization had been experimentally demonstrated. Specifi-
cally, calculations were performed for the following GPCRs: adenosine 1
receptors; angiotensin II type 1 receptors; α1b-adrenoreceptors; β1-ARs; β2-
ARs; B2Rs; cannabinoid 1 receptors; CCR2s, CCR5s, and CXCR4s; D1,
D2, D3 dopamine receptors; H1, H2 , and H4 histamine receptors; 5-HT1B
and 5-HT1D serotonin receptors; leukotriene B4-1 receptors; luteinizing hor-
mone receptors; m2 and m3 muscarinic acetylcholine receptors; MT1 and
MT2 melatonin receptors; neuropeptide Y type 1, type 2, and type 5 recep-
tors; δ-, μ-, and κ-opioid receptors; SST2A, SST5, SST3, and SST1 recep-
tors; thyrotropin-releasing hormone receptors; and V2 vasopressin receptors
(3,40,52–55). Several receptors were excluded from analysis, including
rhodopsin-like GPCRs with fewer than five full-length sequences from dif-
ferent species (CCR2, D3DR, H4R, L4R1, MT2, SST2A, SST5, SST3, and
SST1) and GPCR subtypes for which the structural similarity with rhodop-
sin has been questioned (CB1, CCR5, and CXCR4) (56).

Rhodopsin-like GPCR sequences were retrieved from the GPCR data-
base (57). Human receptor sequences were used as reference sequences for
the multiple alignments of GPCRs, which were performed using the
CLUSTALW program version 1.81 (58). TM regions were assigned based
on the multiple sequence alignment of the entire rhodopsin family reported
in the GPCR database (57). The 2.8 Å crystallographical structure of bovine
rhodopsin (16) was used as a structural template in the definition of surface-
exposed residues from 3D models (59,60) of the GPCR TM domains. Mod-
els of all receptors were constructed using the homology modeling approach
implemented in the program MODELLER (61). Any residual steric repul-
sions between atoms of the side-chains in the resulting models were elimi-
nated with mild energy minimization using version 27 of CHARMM (62).
Specifically, 200 cycles of steepest descent followed by 200 cycles of con-
jugate gradient minimization were performed using a distance-dependent
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dielectric constant of 4r and keeping all the backbone atoms restrained by
harmonic potentials.

The sequence alignments and the 3D models were used in a computer
program that identified lipid-exposed correlated mutations in GPCRs (6,15).
This program builds on concepts embodied in general algorithms for the
identification of correlated mutations (63,64). Lists of lipid-exposed corre-
lated mutations for a given GPCR were extracted from the program outputs
using the solvent accessibility values calculated from the atomic coordi-
nates of each residue in the GPCR 3D models as criteria. Based on these
values, pairs of correlated residues in which either one or both residues were
inaccessible to lipid were eliminated from the lists. This pruning was per-
formed to eliminate intramolecular contacts from the initial list of correlated
mutations, which may have included predictions of both intra- and intermo-
lecular contacts. Additional filtering criteria were applied to reduce the num-
ber of false-positives, although this procedure may produce some
false-negatives by eliminating an actual interface from the resulting predic-
tions. Therefore, the number of correlated pairs was first reduced to L/2,
where L was the length of the GPCR sequence used as a reference in each
multiple alignment. This filtering was performed because a list of L/2 was
demonstrated to contain more correct predictions (64). Further eliminations
from the L/2 list included any correlated pairs with a correlation index of 0.7
or less, which was done to reduce the number of false-positives. However,
all correlated pairs with a correlation index equal to 1 were considered, even
if the total exceeded the number of L/2 correlated pairs (see above). The
residues that remained after filtering by these criteria were considered puta-
tive candidates for the interface of homodimerization of each GPCR under
study. However, among these identified residues, an interface was consid-
ered to be predicted only if at least three were within seven residues from
one another.

The constituent residues of the predicted structural neighborhood at
dimerization interfaces (i. e., at least three lipid-exposed correlated muta-
tions within seven residues from one another) of the rhodopsin-like GPCRs
we studied are shown in Table 1. Notably, although calculations were per-
formed for α1b-adrenoreceptors, m2 muscarinic acetylcholine receptors, m3
muscarinic acetylcholine receptors, neuropeptide type 2 receptors, neu-
ropeptide type 5 receptors, and κ-opioid receptors, no likely interface is
reported because no residues satisfied the interface prediction criterion of at
least three lipid-exposed correlated mutations close in sequence (within
seven residues from one another). Because of the stringency of the criterion
chosen to define dimerization interfaces and the filtering used to eliminate
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most of the false-positives (see above), it is likely that some actual inter-
faces were not detected computationally.

Gouldson et al. (17,18,20) also carried out CMA calculations to identify
likely dimerization interfaces of GPCRs. The main differences between
those calculations and the protocol discussed earlier are: (a) the present
method uses separate sequence alignments for each GPCR subtype, whereas
Gouldson et al. did not separate subtypes and considered, for example, the
entire family of biogenic amine receptors in a single sequence alignment
and (b) additional criteria and filtering methods are incorporated into the
present protocol to prune the original list of correlated mutations and to iden-
tify the dimerization interface neighborhood (e.g., the definition of likely
dimerization interfaces based on the presence of at least three correlated
mutations within seven residues from one another). Consequently, predic-
tions from our CMA-based approach can focus on a small number of
strongly predicted interfaces and involve only a few TMs, whereas the
results from the larger alignments by Gouldson et al. (17,18,20) predict
nearly every TM as a putative interface, most likely because they miss any
putative subtype differences.

As demonstrated in Table 1, residues in TM1 and TM4 appear most often
as putative interfaces among the studied GPCRs, making these TMs the most
likely segments of rhodopsin-like GPCRs to be involved in oligomerization
interfaces. This finding is intriguing, given the recent experimental data sum-
marized in Section 1, which have suggested a role for these two segments in
the dimerization/oligomerization of rhodopsin-like GPCRs, including
rhodopsin receptors (34,35), D2 dopamine receptors (11), α1b-
adrenoreceptors (40), and C5a receptors (39). In particular, structural infer-
ences from the recently published atomic force microscopy analysis of
rhodopsin (34,35) have suggested that TM1 and TM4 form distinct sym-
metrical interfaces. The TM4 segment was specifically implicated in
intradimeric contact between monomers, whereas TM1 was suggested to
facilitate the formation of rhodopsin dimer rows. Despite the refinement and
stringency of the CMA-based protocol described earlier, we believe that
application of the CMA approach alone is not sufficient to exactly deter-
mine the entire correct interface for each GPCR, and additional computa-
tional efforts (such as the analysis of 3D models of GPCR dimers using the
CMA predictions as a starting point) must be added for this purpose. Never-
theless, the agreement found thus far between CMA-based predictions with
the stringent protocol and the experimental evidence regarding the likely
interfaces (e.g., the preponderance of TM4 and TM1 in rhodopsin-like
GPCRs, the subtype variability) underscores the usefulness and predictive
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power of the approach. Notably, the computational method is also capable
of providing useful information about conserved interfaces in oligomeric
assemblies larger than dimers.

4.2. Testing and Validation Using Cysteine Crosslinking
Experiments

Numerous studies using crosslinking have demonstrated that GPCRs in
the membrane are dimeric or oligomeric complexes (26,31,36,65–67). These
studies used relatively long, lysine-reactive bifunctional crosslinking re-
agents, which made it impossible to infer the specific residues or regions that
were crosslinked. To directly identify the dimer interface, we designed a strat-
egy to use cysteine crosslinking (11) of our collection of D2 dopamine recep-
tor-substituted-cysteine mutants (59,68). It was essential to develop a system
that would allow a non-crosslinked receptor to run as a monomer on
nonreducing SDS-PAGE. Our background construct FLAG-D2 dopamine
receptor (11) ran almost exclusively as a heterogeneously glycosylated mono-
mer of approx 65 kDa on nonreducing SDS-PAGE (Fig. 1A). Therefore, if
this D2 dopamine receptor is oligomeric, the oligomer dissociates in SDS.
Additionally, unlike some class C receptors, the D2 dopamine receptor is not
an obligatory disulfide-linked dimer in the plasma membrane (69,70).

As a control before introducing engineered cysteines into FLAG-D2
dopamine receptor for disulfide crosslinking experiments, we reacted
FLAG-D2 dopamine receptor in intact cells with copper phenanthroline
(CuP), an oxidizing reagent that promotes the formation of disulfide bonds
directly between cysteines (71,72). Reaction with CuP produced a new band
of approx 133 kDa (Fig. 1A), which is approximately twice the size of mono-
mer (11). The fraction of total density that was present in the approx 133-
kDa band was plotted against increasing CuP concentrations (Fig. 1),
providing half-maximal crosslinking at 60 ± 10 μM CuP and maximal
crosslinking of 80 ± 14% (n = 3).

The apparent mass of the crosslinked species was consistent with it being
a homodimer of D2 dopamine receptor; however, because it was possible
that it might represent D2 dopamine receptor crosslinked to another protein
of similar size, the partners in the crosslinked species were definitively iden-
tified by co-immunoprecipitation of myc-D2 dopamine receptor stably co-
expressed with FLAG-D2 dopamine receptor (11). These results established
that the approx 133-kDa band is a D2 dopamine receptor homodimer that is
disulfide crosslinked via one of the remaining endogenous cysteines. Muta-
tion of Cys1684.58, but not Cys561.54, Cys1263.44, or Cys3566.47, in TM4 to
Ser completely prevented CuP-induced crosslinking (Fig. 2; ref. 11), dem-
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onstrating that this Cys at the extracellular end of TM4 forms the CuP-in-
duced disulfide crosslink at a symmetrical homodimer interface. However,
mutation of Cys1684.58 to Ser does not prevent interaction at this D2 dopam-
ine receptor dimer interface, based on the crosslinking of this construct ob-
served when another residue at the same interface is simultaneously mutated
to cysteine (unpublished observations).

Fig.1.  Crosslinking of D2 dopamine receptor to a homodimer by copper
phenanthroline. (A) Treatment of FLAG–D2 dopamine receptor with 0, 10/40, 40/
160, 100/400, 400/1600, 1000/4000 mM CuP (lanes 1–6, respectively). (B) Exponen-
tial association fit of dimer/total density plotted against CuP from panel a. The mo-
lecular masses of protein standards are given in kDa. Representative data from n = 3
experiments are shown. (Adapted from ref. 11.)

Fig. 2. Crosslinking of Cys mutants by 100/400 mM CuP in FLAG–D2 dopam-
ine receptor. Representative data from n = 3 experiments are shown. (Adapted from
ref. 11.)
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Because crosslinking requires that only one of the two cysteines involved
is modified initially by the reagent, and the derivatized cysteine then reacts
by collision with the second unmodified cysteine, the rate of collision must
be much faster than the rate of initial modification. This is consistent with
the cysteines being very close initially. The very high fraction of receptor
that can be crosslinked, the apparent specificity of the crosslinking (based
on the appearance of a single homodimer band), and the lack of crosslinking
of Cys561.54 (which, based on the bovine rhodopsin structure, has a lipid
accessibility similar to Cys1684.58) all argue for the proximity of the TM4
cysteines in the native state. Therefore, in the membrane, D2 dopamine re-
ceptor, untreated with CuP, very likely exists as a homodimer, but this dimer
does not survive detergent solubilization.

Our finding that the site of crosslinking in D2 dopamine receptor is
Cys1684.58 at the extracellular end of TM4 is consistent with the hypothesis
that TM4 forms a symmetrical dimer interface. Notably, the computational
method we described earlier predicted C4.58 as a possible dimeric contact in
D2 dopamine receptor, together with I4.48, T4.55, and L4.60. To reduce the
number of false-positives among the predicted correlated mutations and to
reveal additional loci of interaction between monomeric interfaces as dis-
cussed in detail earlier, we recently built geometrically feasible configura-
tions of D2 dopamine receptor homodimers (in preparation). The
information available from these monomer-based models is currently guid-
ing experiments that are serving to map the entire interface of D2 dopamine
receptor dimerization, with the goal of understanding the role of the inter-
face in ligand binding and receptor activation and of discovering mutations
that disrupt the interface between monomers, which therefore interfere with
receptor function. Because of the success in the application of our interdis-
ciplinary approach to D2 dopamine receptors, we propose to use our meth-
odology as a tool to provide new insights into the understanding of the
structural basis and functional consequences of GPCR oligomerization.
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Analysis of GPCR Dimerization

Graeme Milligan, Juan J. Carrillo, and Geraldine Pascal

1. INTRODUCTION

Cloning of complementary DNAs (cDNAs), which are predicted to encode
G protein-coupled receptors (GPCRs), required a mechanism to ascertain if
the single polypeptide encoded by such cDNAs was sufficient to generate
the pharmacology and function anticipated for the receptor in question.
Because this generally was the case—and despite evidence of greater com-
plexity (reviewed in ref. 1)—it became axiomatic that GPCRs were single,
seven-transmembrane-span polypeptides. However, a series of
immunoblotting studies has suggested that a fraction of cellular GPCRs might
exist as dimers or higher order species in both transfected cell lines and na-
tive tissues (2–4). The known propensity of hydrophobic proteins to aggre-
gate—particularly when samples were heated prior to separation by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)—meant
that it was possible to disregard these data. However, studies in which differ-
entially epitope-tagged forms of a single GPCR could be co-immunoprecipi-
tated following their co-expression in heterologous cell lines provided
considerable evidence for the presence of dimeric or, indeed, higher oligo-
meric complexes (2,5). This was generally not observed when the two forms
of the GPCR were expressed in separate cell populations that were mixed
prior to membrane solubilization and immunoprecipitation. These results in-
dicate that co-immunoprecipitation did not result simply from aggregation of
the hydrophobic transmembrane elements of these polypeptides following
removal of lipid by treatment with detergents. Equivalent studies then began
to examine the proclivity of different, co-expressed GPCRs to be co-immu-
noprecipitated. These studies have produced a large body of evidence sup-
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porting the capacity of GPCRs to exist as heterodimers/-oligomers (for re-
view, see refs. 6 and 7). However, studies that have reported a very broad
capacity of particular GPCRs to allow co-immunoprecipitation of co-ex-
pressed GPCRs (8) have questioned the relevance of GPCR co-immunopre-
cipitation data when this is not accompanied by similar data produced by
alternative strategies.

There is also a concern that many “co-immunoprecipitation” studies are
poorly performed and controlled. For example, many studies in this area
centrifuge samples to remove particulate material after detergent treatment
to generate a “soluble” preparation for the immunoprecipitation steps. Often,
however, the centrifugation step is performed for only short periods, and the
centrifugal force is too low to achieve this end. This inevitably results in
small membrane fragments being present in the “soluble” fraction and the
possibility that “co-immunoprecipitation” represents nothing more than both
polypeptides presenting within the same membrane fragment.

These types of issues have resulted in the widespread adoption and use of
techniques that can monitor protein–protein interactions in either membrane
preparations or intact living cells. Various forms of resonance energy trans-
fer techniques have been employed to explore GPCR dimerization/oligo-
merization because of their relative simplicity and exquisite dependence on
distance between the energy donor and acceptor species (9–14). These issues
and the utility of the systems have recently been reviewed (15,16) and are
discussed further within this volume (17). An alternative strategy that can
be used instead of, or in parallel with, resonance energy transfer techniques
is functional complementation produced following co-expression of pairs of
distinct GPCR or GPCR–G protein fusion mutants.

2. COMPLEMENTATION OF PAIRS OF MUTANT GPCRS

GPCRs can be assembled from co-expressed fragments (12,18). This has
led to the hypothesis that segments of GPCRs can be considered distinct
domains capable of independent folding. Extensions of this idea have also
allowed the envisaging of models of GPCR dimers that include explicit re-
quirement for domain swapping (19,20). Although direct experimental evi-
dence in favor of such models is somewhat limited, such evidence would
potentially explain marked variations in ligand pharmacology that are some-
times observed when two GPCRs capable of heterodimer formation are co-
expressed (21) or when chimeric GPCRs are constructed (21,22). Reciprocal
chimeric GPCRs between the α2C-adrenoceptor and the m3 muscarinic ace-
tylcholine receptor that contained the N-terminus and transmembrane seg-
ments I–V of one receptor and transmembrane segments VI–VII and the
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C-terminal tail of the second bound neither muscarinic or α2-adrenergic
ligands. However, the co-expression of the two chimeras resulted in regen-
eration of some level of high-affinity binding for both muscarinic and α2-
adrenergic antagonists (22). These workers were also able to reconstitute
agonist-mediated signal transduction when pairs of distinct, functionally im-
paired mutant muscarinic receptors were co-expressed (22). Related studies
on the angiotensin II type 1 receptor showed that forms of this GPCR with
specific mutations in either transmembrane region III or transmembrane seg-
ment V were unable to bind ligands. However, ligand binding was observed
upon co-expression (23). These studies were central in providing evidence in
favor of molecular interactions between GPCRs. Despite these conclusions,
the number of ligand-binding sites produced following co-expression was
low, and it is unclear if this simply reflects that the individual mutations are
very poorly expressed compared to the wild-type protein, or if the efficiency
of “reconstitution” is poor. One potential explanation is that if the reconstitu-
tion of high-affinity ligand binding requires a domain exchange mechanism,
then this may be thermodynamically feasible but uncommon compared with
dimerization based on linear packing, which would not be anticipated to
regenerate ligand binding on co-expression of the two mutants.

The first definitive evidence of GPCR hetero-dimerization was the rec-
ognition that the γ-aminobutyric acid (GABA)BR1 polypeptide could bind
agonist (although with lower than the anticipated affinity) and antagonist
ligands but could not generate signals or be trafficked effectively to the cell
surface unless co-expressed with the GABABR2 polypeptide (24,25). Simi-
larly to other family C GPCRs, the long extracellular N-terminal extension
binds the ligand, but the architecture of the prototypic seven-transmembrane
core defines the signal transduction unit. Because such GPCRs can be con-
sidered bifunctional polypeptides, chimeras between the extracellular re-
gion and the transmembrane segments and intracellular elements have been
generated to aid understanding of the mechanisms of signal propagation,
from ligand binding to G protein activation (26).

Several family A GPCRs that respond to large glycoprotein hormones
also have long extracellular N-termini and, therefore, are amenable to re-
lated approaches. One well-studied example is the luteinizing hormone re-
ceptor. This GPCR has been used to generate differentially defective mutant
pairs—one in the extracellular exodomain that lacks binding of the ligand
human chorionic gonadotropin and a second that can bind the ligand but is
unable to signal because of a mutation in the endodomain (27,28). Their co-
expression resulted in the restoration of ligand generation of the second
messenger cyclic adenosine monophosphate (cAMP). Again, although this
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provided a persuasive case for intermolecular interactions among GPCRs,
the amplification mechanisms resulting in cAMP generation (which also
often result in the characteristic of “spare receptors”) do not allow for easy
assessment of the effectiveness of the complementation process.

It has been suggested that unlike many other GPCRs, the luteinizing hor-
mone receptor does not form stable dimers. Such functional complementa-
tion studies can provide evidence for both cis-activation (i.e., ligand bound
to the exodomain, causing activation on the same endodomain) or trans-
activation, where the ligand activates the partner endodomain within a dimer
(29). It is noteworthy that such a model may also explain the complex inter-
actions between activated protease-activated receptor (PAR)3 and PAR4
GPCRs (30) and, potentially, other complex interactions between PAR sub-
types (31). The glycoprotein hormones and PARs are unusual examples of
family A, rhodopsin-like GPCRs. For the bulk of these, the agonist ligands
bind at least partially within the cavity created by the seven-transmembrane
helix architecture. We wished to develop a generic functional complemen-
tation strategy that would be suitable to study both homo- and
heterodimerization of family A GPCRs and that would provide quantitative
assays for the effectiveness of complementation. Therefore, we employed
pairs of nonfunctional, but potentially complementary, GPCR–G protein α-
subunit fusion proteins.

3. FUNCTIONAL COMPLEMENTATION OF PAIRS
OF GPCR–G PROTEIN FUSIONS

3.1. GPCR–G Protein Fusions

The first GPCR–G protein fusion was constructed between the β2-
adrenoceptor and the α-subunit of the long isoform of the G protein Gs.
When this was expressed in S49 cyc– cells lacking expression of Gαs, the β-
adrenoceptor agonist isoprenaline was able to stimulate adenylyl cyclase
(32), thus confirming the functionality of both elements of the fusion con-
struct. Although the fusion construct had several interesting characteristics
(32), it was initially viewed as little more than a curiosity. However, over
the intervening period, a wide range of GPCRs and G proteins have been
used to generate similar fusions (33,34). These have been used to address
issues such as the selectivity of GPCRs in activating different G proteins
(35), the role and regulation of posttranslational acylation in the function
and cellular location of GPCRs and G proteins (36–38), as reagents to screen
for agonists at “orphan” GPCRs (39,40) and, most recently, to explore the
basis and selectivity of GPCR dimerization (41).
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GPCR–G protein fusions can also be considered as bifunctional polypep-
tides because, although they are generated from a single open frame, they
contain the sequence and functionality of both GPCR and G protein. There-
fore, mutants that eliminate the ability of agonists to generate a signal corre-
sponding to activation of the G protein can be produced by alterations in the
sequence of either the GPCR or the G protein element. This allows for the
production of distinct pairs of fusions that are individually inactive but have
the potential to complement function if they interact. Two obvious regions
can be targeted for the G protein segment of the fusion. All G protein α-
subunits have a conserved Val-Gly-Gly-Gln-Arg sequence (Table 1), where
mutation of the second Gly to Ala generates a form of the G protein that is
unable to exchange guanosine diphosphate (GDP) for guanosine triphos-
phate (GTP) and hence become activated. This provides a simple strategy to
generate GPCR–G protein fusion proteins that are unable to respond to ago-
nist ligands even though the GPCRs linked to such mutants are wild-type
and able to bind ligands. Equally, because it is well established that the ex-
treme C-terminal region of most G protein α-subunits is a key contact do-
main for GPCR-mediated activation (42), judicious mutation in this region
can produce forms of the G protein that are not responsive to GPCRs. For
example, because pertussis toxin-catalyzed adenosine diphosphate (ADP)-
ribosylation of the Cys residue four amino acids from the C-terminus of all
widely expressed Gi-family G protein α-subunits prevents GPCR-mediated
activation of these G proteins, Bahia et al. (43) replaced this residue in Gαi1
with each of the other naturally occurring amino acids and then assessed the
ability of each of the mutants to be activated by agonist occupancy of the
α2A-adrenoceptor. Substitution of the Cys with more hydrophilic amino ac-
ids reduced coupling effectiveness, and there was no significant activation
with either positively or negatively charged amino acids at this position.
Similar data have been produced for activation of equivalently mutated
forms of Gαi3 by the 5-HT1A receptor (44). Several of the Gαi1 mutations
have been constructed into fusion proteins with the α2A-adrenoceptor and
have been used to monitor the effects on these alterations on information
transfer from GPCR to G protein, which was measured as alterations in ago-
nist potency and relative efficacy (45,46). Similarly, mutation of the Tyr
four amino acids from the C-terminal of Gα11 resulted in reduction of its
ability to be activated by the α1b-adrenoceptor (47). With Asp at this posi-
tion, no activation was observed by the agonist-occupied α1b-adrenoceptor,
both in co-expression studies and when the modified G protein was con-
structed into a fusion with this GPCR (47). Although it has not been explored
in such detail, it is well known that the lack of function of Gαs in the S49
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unc cell line reflects an Arg to Pro substitution six amino acids from the C-
terminus of this G protein (48). Therefore, although the details of contacts
between different GPCRs and a specific G protein differ subtly (49), alter-
ations in the C-terminal tail of the G protein can produce forms than cannot
be activated by the GPCR of choice.

Table 1
A Generic Strategy to Generate Inactive G Protein α-Subunits

G α-subunit Species Sequence

Gs Human VGGQRDERRK
Golf Human VGGQRDERRK
Gi1 Human VGGQRSERKK

Rat VGGQRSERKK
Gi2 Human VGGQRSERKK

Mouse VGGQRSERKK
Gi3 Human VGGQRSERKK

Rat VGGQRSERKK
Go1 Human VGGQRSERKK

Bovine VGGQRSERKK
Go2 Human VGGQRSERKK
Gz Rat VGGQRSERKK

Bovine VGGQRSERKK
Transducin1 Human VGGQRSERKK
Transducin2 Rat VGGQRSERKK
Gustducin Human VGGQRSERKK
Gq Mouse VGGQRSERKK

Human VGGQRSERKK
G11 Rat VGGQRSERKK

Human VGGQRSQRQK
G12 Rat VGGQRSQRQK

Human VGGQRSERKR
G13 Human VGGQRSERRK
G14 Mouse VGGQRSERRK
G15 Human VGGQRSERKK
G16

G protein α-subunits are highly conserved between mammalian spe-
cies, particularly in core domains involved in the binding and hydroly-
sis of guanine nucleotides. Alteration of the highlighted glycine residue
to alanine results in forms of the G protein that are unable to bind GTP.
This provides a generic means to generate G proteins that are unable to
be activated by G protein-coupled receptors (GPCRs) and thus to pro-
duce one of the pair of inactive GPCR–G protein fusion proteins used in
the functional complementation strategy.
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A range of potential strategies are available to produce inactive GPCR–G
protein fusions via mutation of the GPCR. However, the most generic (at
least, for many rhodopsin-like class A GPCRs) appears to be via mutation of
one or more highly conserved hydrophobic residues in the second intracel-
lular loop of the GPCR to acidic residues. The first of these is frequently
three amino acids downstream of the highly conserved DRY domain, and
the second is four amino acids further downstream (Table 2).

3.2. Complementation of GPCR–G Protein Fusions
in Cell Membranes

A useful feature of GPCR–G protein fusions is that the defined 1:1 stoichi-
ometry ensures that saturation ligand-binding studies define the expression
levels of the G protein as well as the GPCR. Agonist stimulation of the bind-
ing of [35S]GTPγS (50) to such fusion proteins can then provide a proximal,
and potentially quantitative, assay of G protein activation which direct
experiments have shown to be linear over a good range of membrane amounts
(38). It is important to demonstrate that agonist-mediated binding of
[35S]GTPγS is truly to the G protein element of the fusion rather than to en-
dogenously expressed G proteins. This is an important issue because—at least,
for some fusion constructs—it is clear that activation of endogenously ex-
pressed G proteins can occur (51,52). However, generally, this seems to be a
serious concern only with high-level expression of the GPCR–G protein fu-
sion or when a free G protein is also co-expressed at high levels (53). For
fusions incorporating members of the Gi family of G proteins, mutation of the
pertussis toxin-sensitive Cys residue to a hydrophobic amino acid, such as
Ile, prevents pertussis toxin-catalyzed ADP-ribosylation without inhibiting
GPCR-mediated activation of the G protein (45,51). Therefore, following
transfection of cells to express a GPCR–G protein fusion containing such a
pertussis toxin-resistant mutant, treatment of the cells with pertussis toxin
results in ADP-ribosylation of only the endogenously expressed forms of Gi.
Binding of [35S]GTPγS to these expressed forms of Gi hence cannot be stimu-
lated by agonist. Therefore, following immunoprecipitation with an anti-Gαi
antiserum, agonist-enhanced binding of the nucleotide must reflect loading of
the G protein element of the fusion protein. For example, membranes pre-
pared from pertussis toxin-treated HEK293 cells expressing a δ-opioid pep-
tide (DOP)-opioid receptor–Cys351IleGαi1 fusion protein (15 fmol of
[3H]antagonist binding sites) were subjected to a [35S]GTPγS binding assay
in the absence or presence of the agonist D-ala2, D-leu5-enkephalin (DADLE)
and were then subjected to immunoprecipitation. Radioactivity in the pres-
ence of the agonist was approximately sixfold higher than in its absence, con-
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Table 2
A Generic Strategy to Generate GPCR Variants Unable to Activate G Proteins

GPCR Specie G protein Sequence

5-HT1A receptor Human Gi/Go DRYWAITDPID
5-HT1B receptor Mouse Gi/Go DRYWAITDAVE
5-HT1D receptor Rabbit Gi/Go DRYWAITDALE
5-HT2A receptor Rat Gq/G11 DRYVAIQNPIH
5-HT2C receptor Rat Gq/G11 DRYVAIRNPIE
5-HT4 receptor Mouse Gs DRYYAICCQPL
5-HT6 receptor Rat Gs DRYLLILSPLR
α1a-adrenoceptor Bovine Gq/G11 DRYIGVSYPLR
α1b-adrenoceptor Hamster Gq/G11 DRYIGVRYSLQ
α2b-adrenoceptor Rat Gi/Go DRYWAVSRALE
β1-adrenoceptor Human Gs DRYLAITSPFR
β2-adrenoceptor Bovine Gs DRYLAITSPFK
β3-adrenoceptor Mouse Gs DRYLAVTNPLR
A1 adenosine receptor Human Gi/Go DRYLRVKIPLR
A3 adenosine receptor Human Gi/Go DRYLRVKLTVR
Acetylcholine M1 receptor Mouse Gq/G11 DRYFSVTRPLS
Acetylcholine M2 receptor Human Gi/Go DRYFCVTKPLT
Acetylcholine M3 receptor Mouse Gq/G11 DRYFSITRPLT
Angiotensin AT1A receptor Human Gq/G11 DRYLAIVHPMK
Angiotensin AT1B receptor Rat Gq/G11 DRYLAIVHPMK
Bradykinin B2 receptor Human Gq/G11 DRYLALVKTMS
Chemokine CXCR3 Mouse Gi/Go DRYLSIVHATQ
Chemokine CXCR4 Human Gi/Go DRYLAIVHATN
Dopamine D2 receptor Mouse Gi/Go DRYTAVAMPML
Dopamine D3 receptor Rat Gi/Go DRYTAVVMPVH
FSH receptor Bovine Gs ERWHTITHAMQ
GnRH receptor Mouse Gq/G11 DRSLAITQPLA
Histamine H1 receptor Mouse Gq/G11 DRYRSVQQPLR
Histamine H2 receptor Human Gs DRYCAVMDPLR
LH receptor Mouse Gs ERWHTITYAVQ
Melanocortin 2 receptor Human Gs DRYITIFHALR
DOP-opioid receptor Rat Gi/Go, Gz DRYIAVCHPVK
KOP-opioid receptor 1 Mouse Gi/Go DRYIAVCHPVK
MOP-opioid receptor 1 Rat Gi/Go, Gz DRYIAVCHPVK
Rhodopsin Bovine Gt ERYVVVCKPMS
Oxytocin receptor Rat Gq/G11 DRCLAICQPLR
P2U purinoceptor 1 Rat Gq/G11 HRCLGVLRPLH
Prostaglandin D2 receptor Mouse Gs ECWLSLGHPFF
Prostaglandin E2 receptor Rat Gq/G11 ERCVGVTQPLI
Somatostatin receptor 2 Human Gi/Go Gq DRYLAVVHPIK
Thyrotropin-releasing Rat Gq/G11 ERYIAICHPIK

hormone receptor-1

The vast majority of class A, rhodopsin-like G protein-coupled receptors (GPCRs) possess a pair
of hydrophobic residues (highlighted) in the second intracellular loop, downstream of the highly

continued
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firming the functionality of this construct. When similar experiments were
performed with a version of this fusion protein that also incorporated a
Gly203Ala mutation in the G protein, DADLE did not enhance incorporation
of the nucleotide. This was also true for a version of the fusion that incorpo-
rated Val150Glu and Val154Asp mutations into the second intracellular loop of
the GPCR element but that was wild-type for Gαi1, other than the pertussis
toxin-resistant Cys351Ile mutation. However, when Val150Glu,Val154Asp
DOP–Cys351IleGαi1 was co-expressed with DOP–Gly203Ala,Cys351IleGαi1
membranes prepared after treatment with pertussis toxin and containing 15
fmol of DOP-opioid receptor binding sites displayed marked reconstitution of
[35S]GTPγS binding in response to DADLE (Fig. 1). Assuming that the
intracellular loop 2 mutations do not interfere with DOP–DOP interactions,
that GPCRs function as dimers, that dimers bind two ligands, and that
Val150Glu,Val154Asp DOP–Cys351IleGαi1 and DOP–Gly203Ala,Cys351IleGαi1
express to equal extents in the cotransfections, simple arithmetic defines that
the heterodimer (containing one copy of each of Val150Glu,Val154Asp DOP–
Cys351IleGαi1 and DOP–Gly203Ala,Cys351IleGαi1) should represent only 50%
of the ligand-binding sites. Of the other 50%, 25% would be expected to be
Val150Glu,Val154Asp DOP–Cys351IleGαi1 homodimers, and 25% would be
expected to be DOP-Gly203Ala,Cys351IleGαi1 homodimers.

As demonstrated earlier, neither the Val150Glu,Val154Asp DOP–
Cys351IleGαi1 nor the DOP–Gly203Ala,Cys351IleGαi1 homodimers bind
[35S]GTPγS in response to agonists. Therefore, conceptually, following co-
expression, membranes containing 30 fmol of antagonist binding sites could
be anticipated to bind the same level of [35S]GTPγS in response to agonist as
membranes expressing 15 fmol of the DOP–Cys351Ile Gαi1 fusion protein.
Reconstitution was not this effective (Fig. 1). This may imply that the qua-
ternary structure of the GPCR–G protein fusion is a higher order oligomer
rather than a dimer or that there is a complex mixture of species that may
also include monomers. Further analyses are required to test these ideas.

Table 2 (From opposite page) conserved ’DRY’ domain at the bottom of transmembrane
region III. In the examples we tested, alteration of one or both of these to acidic residues
resulted in forms of the GPCR that are unable to activate G protein. This provides a poten-
tially generic means to form an inactive GPCR–G protein fusion protein. Such mutations do
not affect the binding of antagonist ligands. The effect on the binding of agonist ligands is
more complex and generally reflects whether the GPCR in question shows a significant alter-
ation in agonist binding in response to addition of guanine nucleotides. For example, many
Gq/G11-coupled GPCRs display only a marginal effect on agonist binding affinity; however,
for Gs and Gi/Go-coupled receptors, this alteration in affinity can be substantial.
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Fig. 1. Functional complementation of agonist-mediated [35S]GTPγS binding by
co-expression of pairs of inactive DOP-opioid receptor–Gαi1 fusion proteins. A fu-
sion protein was created between the human DOP-opioid receptor and a pertussis
toxin-resistant Cys351Ile mutant of Gαi1. Further modifications to this fusion intro-
duced either Val150Glu,Val154Asp mutations into the receptor element or Gly203Ala
into the G protein. Each of these three fusion proteins was transfected into HEK293
cells that were then treated with pertussis toxin to cause ADP-ribosylation of
endogenously expressed forms of Gαi/Gαo. Expression levels of the fusion proteins
were measured by the specific binding of the opioid receptor antagonist
[3H]diprenorphine and membrane amounts containing 15 fmol of each fusion pro-
tein used in [35S]GTPγS binding studies, which were conducted in the absence or
presence of the synthetic enkephalin DADLE (10 μM). At the termination of assay,
samples were immunoprecipitated with an antiserum directed to the C-terminal
decapeptide of Gαi1 and were then counted. Equivalent studies were also performed
on membranes of cells into which Val150Glu,Val154Asp DOP-opioid receptor–
Cys351IleGαi1 and DOP-opioid receptor–Gly203Ala,Cys351IleGαi1 were co-
expressed. Co-expression reconstituted DADLE-stimulated [35S]GTPγS binding, but
this was not produced when membrane preparations individually expressing either
Val150Glu,Val154Asp DOP-opioid receptor–Cys351IleGαi1 or DOP-opioid receptor–
Gly203Ala,Cys351IleGαi1 were mixed.
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Importantly, however, co-expression is required to reconstitute function.
Membranes prepared from cells each expressing one of the inactive fusion
constructs did not allow agonist-stimulated binding of [35S]GTPγS when
mixed. Equivalent fusion constructs incorporating the μ-opioid peptide
(MOP)-opioid receptor have similar characteristics, and reconstitution of
agonist function is again achieved following co-expression of the pair of
individually inactive fusion constructs. Co-expression of one inactive fusion
containing the MOP-opioid receptor, with the partner containing the DOP-
opioid receptor, also results in reconstitution of function and is consistent
with the formation of a MOP–DOP heterodimer (54,55).

Other G proteins are not targets for pertussis toxin-catalyzed ADP-
ribosylation, but are widely expressed. Therefore, other strategies are re-
quired to ensure that enhanced binding of [35S]GTPγS truly reflects
activation of the G protein element of the fusion, rather than endogenous G
protein. The α1-adrenoceptor agonist phenylephrine elevates binding of
[35S]GTPγS following expression of a fusion protein between the α1b-
adrenoceptor and Gα11 in HEK293 cells and membrane preparation (53).
However, nucleotide binding in the absence of agonist is high, thus limiting
the agonist-induced signal to background. The vast majority of the agonist-
independent binding is not to either the G protein within the fusion construct
or to endogenously expressed Gα11 and/or Gαq. When samples were immu-
noprecipitated with an anti-Gα11/Gαq antiserum, virtually all the agonist-
independent binding was lost, but because the agonist-mediated signal was
maintained, the signal to background ratio was increased greatly (53). This
did not establish whether all (or any) of the [35S]GTPγS was bound to the G
protein element of the fusion protein, because both the fusion construct and
the endogenously expressed G proteins were pulled down. However, fol-
lowing expression of an α1b-adrenoceptor–Gly208AlaGα11 fusion protein,
virtually no agonist-stimulated binding of [35S]GTPγS was observed in such
immunoprecipitates (53). These results imply that at the levels of expres-
sion achieved, the receptor in this fusion cannot access and activate the endo-
genous pools of Gα11/Gαq to any significant degree. Therefore, the
agonist-stimulation of [35S]GTPγS binding produced in membranes express-
ing the wild-type α1b-adrenoceptor–Gα11 fusion is a direct measure of acti-
vation of the fusion protein. A fusion between Leu151Aspα1b-adrenoceptor
and wild-type Gα11 also generated very little agonist-dependent [35S]GTPγS
binding (41), defining the poor ability of this mutated receptor to activate G
protein. Similarly to the opioid receptor constructs discussed earlier, co-
expression of Leu151Aspα1b-adrenoceptor–Gα11 and α1b-adrenoceptor–
Gly208AlaGα11 resulted in reconstitution of agonist function consistent with
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Fig. 2. Detection of α1b-adrenoceptor dimerization by functional complementa-
tion of a pair of inactive α1b-adrenoceptor–Gα11 fusion proteins using single-cell
Ca2+ imaging studies. A fusion protein was constructed between the hamster α1b-
adrenoceptor and Gα11. This construct was transfected into a mouse embryo fibro-
blast cell line (EF88 cells) derived from a double Gαq/Gα11 knockout mouse along
with green fluorescent protein (GFP). Imaging of these cells (top panel left) shows
only a single positive cell in the field, and this was the only cell that responded to
phenylephrine (basal vs peak [Ca2+]). Because these cells do not express any G
protein able to induce Ca2+ signaling, these data demonstrate the functionality of
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dimerization of the α1b-adrenoceptor bringing the wild-type G protein and
wild-type receptor into contact (41). Similar data have been obtained for
fusion proteins between the histamine H1 receptor and Gα11.

As mentioned earlier, the binding affinity of both antagonist and agonist
ligands for the α1b-adrenoceptor–Gα11 fusion protein was unaffected by
introduction of the Leu151Asp mutation that blocked agonist activation. This
may seem rather surprising, because the affinity of agonist ligands is often
modulated by the interaction status of GPCR and G protein, and such effects
have been observed for other GPCR–G protein fusions (56). However, gua-
nine nucleotide-induced shifts in agonist affinity are well established to be
very small for α1-adrenoceptors. Significant alterations in agonist affinity
might be observed with the introduction of equivalent mutations in other
GPCR–G protein fusions.

3.3. Complementation Between GPCR–G Protein Fusions
in Intact Cells

When the α1b-adrenoceptor–Gα11 fusion protein was expressed in EF88
cells, addition of phenylephrine resulted in elevation of [Ca2+]i (41,47). This
reflects functionality of the fusion protein because EF88 cells are a line of
mouse embryo fibroblasts derived from an animal in which the genes for both
of the widely expressed Ca2+ mobilizing G proteins, Gα11 and Gαq had been
inactivated (57). Earlier studies demonstrated the requirement for co-expres-
sion of both a suitable GPCR and an appropriate G protein in these cells to
generate function (38). Furthermore, only cells that are positively transfected
respond to the agonist. The poor transfection efficiency of these cells when
using cationic lipid-based methods means that analysis has generally required
the use of single-cell Ca2+ imaging (38,41). However, retrovirally based
infection or the development of other effective means of transfection would
allow the use of standard, cuvet-based measurements of Ca2+ levels and easier
generation of concentration–response curves. As suggested under Subhead-
ing 3.2., transfection of these cells with a fusion protein between the wild-
type α1b-adrenoceptor and Gly208AlaGα11 failed to generate an elevation in

Fig. 2 (From opposite page) the fusion protein. The detailed time-course of [Ca2+]
regulation in response to phenylephrine is shown in the bottom panel (top-most
line). The fusion was modified to introduce a Leu151Asp mutation into the receptor
element (bottom-most line) or a Gly208Ala mutation into the G protein (second line
from bottom). When expressed in EF88 cells, neither of these mutants responded to
phenylephrine; however, agonist-mediated signaling was reconstituted when they
were co-expressed (second line from top).
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[Ca2+]i in response to phenylephrine (41). This was also the case for
Leu151Aspα1b-adrenoceptor–Gα11. Similarly to the membrane-based assays,
co-expression of Leu151Aspα1b-adrenoceptor–Gα11 and α1b-adrenoceptor–
Gly208AlaGα1111 resulted in a restoration of phenylephrine-mediated eleva-
tion of [Ca2+]i (Fig. 2). Because there are no appropriate endogenous G
proteins in these cells, such data require interactions between the complemen-
tary fusions. Similar results were obtained when equivalent fusion proteins
that incorporated the histamine H1 receptor rather than the α1b-adrenoceptor
were used (41). When Leu151Aspα1b-adrenoceptor–Gα11 and histamine H1–
Gly208AlaGα11 were co-expressed, histamine, but not phenylephrine, was
able to elevate [Ca2+]i. The reverse was true when α1b-adrenoceptor–
Gly208AlaGα11 was co-expressed with Leu133Asp histamine H1–Gα11 (41).

A weakness of single-cell imaging studies is the impossibility of moni-
toring expression levels of each construct. However, when the wild-type
histamine H1 receptor–Gα11 fusion was co-expressed with the isolated
Leu151Aspα1b-adrenoceptor, the capacity of histamine to elevate [Ca2+]i was
reduced. Although these studies are more difficult to interpret than the par-
allel experiments performed in membranes of HEK293 cells (in which the
expression levels of both the histamine H1 receptor–Gα11 fusion and
Leu151Aspα1b-adrenoceptor could be measured directly by [3H]ligand-bind-
ing studies; see Subheading 3.2.), their results are consistent with the
Leu151Aspα1b-adrenoceptor forming a nonfunctional heterodimer with the
histamine H1 receptor–Gα11 fusion protein and thus reducing levels of func-
tional histamine H1 receptor–Gα11/histamine H1 receptor–Gα11
homodimer. This type of strategy should be generally applicable for GPCRs
that couple to the Ca2+ mobilizing G proteins Gq and G11, and may be appro-
priate to measure the relative interaction affinities among GPCRs.

4. FUTURE PERSPECTIVES

Potentially, although the subject has yet to be directly explored, studies
akin to those described earlier could be expanded. Many GPCRs can inter-
act with the so-called “promiscuous” G proteins G15 and G16 (58). Fusion
proteins that incorporate either G15 or G16 with several GPCRs that do not
routinely elevate [Ca2+]i have been generated and have been used to allow
ligand screening and detailed pharmacological characterization using plat-
forms such as the fluorescence imaging plate reader system, which is widely
employed by the pharmaceutical industry (59–61). Incorporation of a
Gly211Ala form of Gα16 into a fusion should render it unresponsive to ago-
nists and allow equivalent single-cell reconstitution assays, as detailed under
Subheading 3.3. Equally, chimeric G proteins containing the backbone of a
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Ca2+-mobilizing G protein (with the extreme C-terminal tail modified to
provide interaction with GPCRs that couple selectively to Gi-family or Gs G
proteins) have been widely employed (62–64) to channel signal to a com-
mon and easy-to-measure assay endpoint. GPCR–G protein fusions con-
taining chimeric G proteins have also been generated and have been shown
to be functional (65,66). Selectivity of GPCR interactions can be quantita-
tively measured from the extent of reconstitution of [35S]GTPγS binding,
with expression of known amounts of two GPCR fusions monitored by satu-
ration ligand-binding studies. Equally, the domains and amino acids that
provide the interfaces of GPCR dimerization should be amenable to analy-
sis via mutagenesis studies followed by reconstitution.
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The Role of Oligomerization

in G Protein-Coupled Receptor Maturation
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1. INTRODUCTION

A large body of evidence now shows that the basic functional unit of
seven transmembrane-spanning G protein-coupled receptors (GPCRs) is a
dimer, with the possibility of the existence of higher order oligomeric spe-
cies. GPCR oligomerization has been demonstrated to be a physiological
process that defines receptor pharmacology and function (1,2). There is sub-
stantial evidence indicating that these receptors are assembled as dimers
and, possibly, oligomers prior to cell-surface expression (Fig. 1). Although
it has generally been accepted that constitutive GPCR oligomers exist at the
plasma membrane, there is evidence demonstrating that the extent of oligo-
merization at the plasma membrane may be altered by ligand induction (3–
5) (Fig. 1). For many other classes of cell-surface receptors, oligomerization
has been found to be a prerequisite for activation and signaling. For ex-
ample, the epidermal growth factor receptor, a prototypical member of the
tyrosine kinase (TK) family, requires a ligand-induced dimeric configura-
tion for the auto-phosphorylation of tyrosine residues on the cytoplasmic
domain and subsequent recruitment of various signaling proteins (6). With
the exception of the insulin receptor, agonist-induced dimerization appears
to be the rule of thumb for TKs. Conversely, a large proportion of receptors
belonging to the cytokine receptor superfamily have been reported as intra-
cellularly derived dimers at the plasma membrane (7–10). Ligand binding
triggers a conformational change in these receptors, facilitating Janus kinase-
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mediated phosphorylation of various cytosolic substrates (11). Although
there is a wealth of knowledge regarding the formation and functional sig-
nificance of oligomerization in these other receptor families, progress is still
being made to determine the cellular implications of the relatively novel
concept of GPCR oligomerization.

A key step in dissecting the functional consequences of GPCR oligomer-
ization involves understanding how receptors are formed in the cell. The
current understanding of the folding and maturation process of a GPCR (or
any other α-helical transmembrane protein) assumes an initial monomeric
configuration. The formation of a membrane-spanning receptor begins in
the endoplasmic reticulum (ER) and occurs in two stages. The first stage
involves the sequential pair-wise insertion of transmembrane α-helices into
the ER membrane. Several landmark studies on single transmembrane frag-
ments of the seven-transmembrane-domain protein opsin were among the
first to demonstrate that translocation of the nascent transmembrane domains
through the membrane requires signal sequences and stop–transfer
sequences (12–16).

The maturation of polytopic integral membrane proteins such as GPCRs
begins with the insertion of two α-helical peptide segments into the mem-
brane as a hairpin loop (Fig. 1). Translocation of each hairpin loop involves
coincident insertion of two transmembrane domains, with intrinsic alternat-
ing signal–anchor and stop–transfer sequences. Asparagine-linked (N-
linked) glycosylation can occur cotranslationally as the translocation
mechanism proceeds. This concept of membrane insertion of integral pro-
teins was first demonstrated in a multitransmembrane repeat mutant of the
single-membrane-spanning asialoglycoprotein receptor H (17).

The second stage of receptor formation involves assembly of the trans-
membrane segments into a heptahelical bundle that yields the receptor’s ter-
tiary structure. This is driven by a number of factors, including helix–helix
interactions and structural constraints imposed by the connecting loops (18).
This model was first proposed in studies involving bacteriorhodopsin frag-

Fig. 1. (From opposite page) Maturation process of a GPCR oligomer. GPCR
monomers are synthesized in the endoplasmic reticulum (ER) and inserted in the
membrane sequentially as transmembrane domain pairs (1). Folding of the polypep-
tide is mediated by specific ER-resident molecular chaperones, which may also
function to mediate dimeric assembly (2,3). Higher order oligomeric assembly may
occur with other dimers in the ER (4A) and these complexes will then be trafficked
to the cell surface as constitutively formed GPCR oligomers (5A). Alternatively,
ER-formed dimers may traffic to the plasma membrane (4B, 5B) and form higher
order oligomeric units upon agonist induction.
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ments that contained multiple transmembrane domains. These fragments
were demonstrated to insert separately into lipid vesicles, and subsequent
assembly between complementary domains was found to result in reconsti-
tution of the native receptor (19,20). This principle has been shown with
other GPCRs, including rhodopsin (21,22) and muscarinic receptors (23).

To date, there is little information regarding the mechanism by which
GPCR oligomers are actually synthesized and which factors are involved in
oligomer trafficking through the secretory pathway. However, there are
clues from other receptor families and emerging evidence from many rigor-
ous studies on GPCR oligomerization to suggest exactly where and how
GPCR oligomers are made and processed.

2. BIOSYNTHESIS OF OLIGOMERS OF GPCRS

2.1. Intracellular Formation of GPCR Oligomers

The study of specific GPCR mutants, both naturally occurring and
genetically modified, has provided a useful tool in locating the intracellular
site of GPCR oligomer formation (24–29). An increasing number of reports
demonstrate that co-expression of various intracellularly sequestered GPCR
mutants with the corresponding wild-type receptors results in intracellular
retention of the wild-type receptor. These dominant negative effects are a
consequence of receptor oligomerization and provide evidence for constitu-
tively formed GPCR oligomers. A physiologically relevant example of
dominant negative inhibition of GPCR function is provided by the naturally
occurring ccr5Δ32 deletion mutant of the CCR5 chemokine receptor, a
coreceptor for human immunodeficiency virus (HIV) infection. This trun-
cated nonfunctional variant of the CCR5 receptor is localized in the endo-
plasmic reticulum and reduces cell surface expression of the wild-type CCR5
by oligomerization, rendering it aberrantly trapped and unable to support
HIV1 infection (26). Other naturally occurring examples of dominant inhi-
bition can be drawn from splice variants of certain GPCRs such as the gona-
dotropin-releasing hormone receptor (27) and the photoreceptor rhodopsin
(29). Each of these truncated receptors sequester their respective wild-type
receptor in an intracellular compartment, likely by oligomerization in the
ER. There are also examples of genetically derived receptor mutants that
yield dominant inhibition of native receptors as a consequence of receptor–
receptor interactions. Truncation mutants of the V2 vasopressin receptor
have been shown to negatively regulate wild-type receptor function by form-
ing a hetero-oligomer that is intracellularly retained (25). Similarly, point
mutants of the human platelet-activating factor receptor (30) and the D2
dopamine receptor (31) have been shown to decrease binding and cell-sur-
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face expression of the cognate wild-type receptor. Although the precise site
of intracellular retention has not been conclusively determined for most of
these sequestered oligomers, it indicates that oligomerization occurs prior to
cell-surface expression, lending support for the constitutive oligomeric as-
sembly of these receptors.

Several methods have been used to determine where receptor oligomers
are formed in the biosynthetic pathway. Sucrose density gradient fraction-
ation has provided a reliable means of isolating various subcellular com-
partments. Immunoblot analysis of these fractions has provided information
regarding where GPCR oligomers are formed and how they are processed as
they make their way to the plasma membrane. The advent of biophysical
techniques in the study of GPCR oligomerization has provided a unique
strategy for assessing the proximity of two receptors in the cell. Biolumines-
cence resonance energy transfer (BRET) and fluorescence resonance energy
transfer (FRET) have enabled the measurement of receptor–receptor prox-
imity within a range of 50 to 100 angstroms, a distance that would permit
receptor oligomerization. The combination of BRET or FRET and subcellu-
lar fractionation has provided a powerful tool for determining the presence
of GPCR oligomers in specific organelles. BRET signals have been reported
to be the highest in ER and plasma membrane-rich fractions of cells
expressing oxytocin, vasopressin, and CCR5 chemokine receptor oligomers
(32,33). This indicates that the earliest site of oligomer formation is the ER
and that oligomeric stability is maintained during transit through the secre-
tory pathway to the cell surface. Similar expression studies of the human
complement C5a anaphylatoxin receptor have used FRET to demonstrate
that these receptors also exist as oligomers in the ER, Golgi, and cell surface
(34). C5a receptor FRET signals are not affected by ligand induction, im-
plying that GPCR oligomerization is insensitive to ligand treatment and
favoring the view that oligomers are assembled in the ER. These reports
corroborate well with the studies involving dominant negative receptor mu-
tants that imply that GPCR oligomers are constitutively formed in the ER.

2.2. The Role of Glycosylation in Oligomer Formation

Most GPCRs have been shown to possess N-linked glycosylation sites in
extracellular regions that serve as sites for cotranslational addition of high-
mannose oligosaccharides. Mutation of these sites can result in reduced cell-
surface expression of certain GPCRs, including the D5 dopamine receptor
(35) and the AT1 angiotensin receptor (36), implicating a role for
glycosylation in intracellular trafficking. It has been suggested that various
elements, such as Rab GTPases, vesicular composition, and posttranslational
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modifications (like glycosylation), differentially modulate exocytosis-medi-
ated transport (37). The role of glycosylation (if a role exists) in GPCR oli-
gomer formation has not been clearly established. There is evidence to
suggest that N-linked glycosylation-deficient mutants of the V2 vasopressin
receptor (25) and the D1 dopamine receptor (Fig. 2) can form oligomeric
complexes on sodium dodecyl sulfate-polyacylamide gel electrophoresis.
Similar results were found in cells expressing metabotropic glutamate
receptor 1α that were pre-incubated with glycosylation inhibitors such as
tunicamycin (38). Although these examples suggest that glycosylation has
no role in GPCR oligomerization, studies of adrenergic receptor (AR) oligo-
mers challenge this notion and implicate receptor-specific modulation by
glycosylation. The decreased ability to co-immunoprecipitate differentially
tagged glycosylation mutants of the β1-AR compared to the wild-type
receptor provides evidence that in this case, glycosylation may actually be
required for receptor homo-oligomerization (39). Conversely, it was demon-
strated that the same glycosylation mutant of the β1-AR could heterodimerize
more efficiently with wild-type α2A- AR than with wild-type β1-AR (40).
The reciprocal experiment with a glycosylation-impaired α2A-AR yielded
similar results, suggesting that glycosylation may sterically hinder the effi-
ciency of these ARs to hetero-oligomerize. Thus, it appears that abolishing
glycosylation in the β1-AR has differential effects on its propensity to homo-
and hetero-oligomerize.

2.3. Resident ER Chaperones Aid in Receptor Oligomerization

The processing of proteins in the ER involves rigorous quality control
mechanisms to ensure that the proteins adopt a conformation compatible for
proper trafficking through the distal secretory pathway (41). Because of the
hydrophobic nature of many nascent proteins, the cell employs ER-resident
chaperone proteins that function within the framework of a quality control
mechanism to monitor the folding of functional oligomeric proteins, thus
ensuring that they do not aggregate or misfold.

Constitutive oligomeric assembly of glycoproteins in the cell, including
receptors and ion channels, is tightly regulated by ER-resident proteins
known as molecular chaperones (42–45). These proteins function by binding
to and assisting the folding kinetics of polypeptides as they are extruded from
the ER (Fig. 1). Molecular chaperones can be classified into four main fami-
lies: the heat shock proteins (including Hsp40, Hsp70, and Hsp90), the lectin
family of chaperones (including calnexin and calreticulin), the peptidyl-
prolyl isomerases, and the thiol-disulphide-oxidoreductases (46). An elegant



Biosynthesis of G Protein-Coupled Receptor Oligomers 293

study exemplifying the role of chaperones in oligomeric receptor assembly
involves the single-transmembrane-spanning human insulin receptor (HIR),
which is expressed at the cell surface as a functional ER-derived homodimer
(42). HIR maturation involves the cotranslational trimming of three glucose
residues by glucosidase I and II to a single, terminal glucose on high-man-
nose-type oligosaccharides. The resulting monoglucosylated core glycan
serves as a substrate for binding to calnexin and calreticulin, which is re-
quired for proper folding and dimerization of nascent receptor monomers.
The addition of glucose trimming inhibitors such as castanospermine pre-
vents the binding of these chaperones to the HIR, resulting in premature pro-
cessing manifested as accelerated dimerization and misfolded oligomeric
assembly (42). Therefore, the HIR requires chaperone association to main-
tain oligomer fidelity, possibly by sterically masking hydrophobic interfaces
that otherwise would cause aggregation of the nascent monomeric protein.

Fig. 2. The wild-type D1 dopamine receptor (WT-D1) exists as dimeric and
higher order oligomeric forms. The glycosylation-deficient mutant (D1-glyc def.)
has alanine mutations at N5 and N175 and exhibits a similar expression pattern,
with a reduction in size of all species corresponding to the expected size of the
unglycosylated D1 receptor. Monomeric species are dissociation products resulting
from treatment with reducing agents.
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Similar detailed studies with GPCRs have not been reported, but there is
evidence suggesting that molecular chaperones may participate in GPCR oli-
gomeric assembly in the ER. Both the V2 vasopressin receptor and the gona-
dotropin-releasing hormone receptor have been shown to form oligomers
constitutively (27,32,47) and to interact with calnexin (48,49). The thyrotro-
pin receptor (TSHR) has been reported to interact with BiP (a prototypic
Hsp70), calnexin, and calreticulin in the ER (50), and each interaction has
unique effects on receptor synthesis and folding. Calnexin and calreticulin
appear to stabilize the TSHR and blunt degradation of newly synthesized
receptors, whereas association with BiP destabilizes the receptor and promotes
proteasomal degradation. As a result, the maturation of TSHR and its ultimate
cellular fate is highly dependent on which chaperone system participates in
folding after protein synthesis. The TSHR has also been shown to form consti-
tutive oligomers, as detected by FRET and by immunodetection of oligomers
in detergent-solubilized thyroid membranes (51,52). Therefore, because of the
role of lectin chaperones in insulin receptor oligomer maturation, it is conceiv-
able that calnexin and calreticulin promote maturation of TSHR by helping to
mediate proper oligomeric assembly in the ER. Evidence for the self-dimer-
ization of calreticulin (53), calnexin (54), and specific HSP90 chaperones
(55,56) suggests a mechanism by which chaperone dimers bind to and facili-
tate the folding of GPCR oligomers. Thus, the ubiquitous role of chaperones in
general oligomeric assembly of proteins implicates a functional role for mo-
lecular chaperones in GPCR oligomer formation.

3. THE ROLE OF GPCR OLIGOMERIZATION IN RECEPTOR
TRAFFICKING TO THE CELL SURFACE

The dominant negative effect of receptor mutants on the ability of the wild-
type receptor to traffic to the cell surface when co-expressed indicates that a
GPCR oligomer must be in an appropriate conformation within the ER to per-
mit cell-surface expression. For other membrane-spanning proteins such as
the potassium ion channels, oligomerization is well-established to be impor-
tant for proper cell-surface expression (57). In this case, correct oligomeriza-
tion of ion channel subunits results in the formation of a fully functional ion
channel within the ER that is trafficked to the cell surface. Proper oligomeric
formations may facilitate cell-surface expression by masking ER retention sig-
nals (such as the RXR motif [58]) and exposing export motifs (such as the
DXE motif [59]) found on ion channel subunits. These retention and retrieval
motifs may also play a role in the alignment of GPCR oligomers, because
many of these motifs are found within the primary sequences of several
GPCRs.
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3.1. γ-Aminobutyric Acid BR1–γ-Aminobutyric Acid BR2
Hetero-Oligomerization

The γ-aminobutyric acid B (GABAB) receptors provide a significant ex-
ample of the importance of GPCR oligomerization in receptor trafficking,
as illustrated by the interaction between GABABR1 and GABABR2, which
share a 35% overall amino acid homology, that results in the formation of a
fully functional GABAB receptor (60–64). When individually expressed,
GABABR1 is mostly intracellularly localized within the ER (65), whereas
the GABABR2 is expressed at the cell surface and within the cytoplasm
(62,66). Co-expression of both receptors in heterologous cell lines forms
GABABR1–GABABR2 hetero-oligomers, which display functional charac-
teristics similar to endogenous GABAB receptors (60–62,64), and increases
GABABR1 cell-surface expression (61). Interactions between the coiled-coil
domains within the carboxyl termini of the GABABR1 and GABABR2
(60,67) and their transmembrane domains (68,69) participate in hetero-oli-
gomer formation (60–64). The coiled-coil domain also masks the ER reten-
tion motif RXR on the carboxyl terminus of GABABR1, allowing the
receptor to exit the ER to be further processed within the Golgi into a ma-
ture, glycosylated receptor before cell-surface localization (61–63). The re-
sulting glycosylation of the GABABR1 becomes resistant to the activity of
the enzyme endoglycosidase H (Endo H), which specifically cleaves glyco-
proteins that have high-mannose oligosaccharides attached at their N-linked
glycosylation sites—a characteristic of glycoproteins that are intracellularly
retained in the ER (61–63).

3.2. Hetero-Oligomerization Between α1-AR Subtypes

A further example demonstrating the importance of GPCR oligomeriza-
tion in receptor cell-surface trafficking is the interaction of the α1B-AR with
the α1A- or α1D-ARs, forming α1A–α1B and α1B–α1D hetero-oligomers,
respectively (70). Expressed alone, α1A-AR and α1D-AR (71,72) are poorly
expressed at the cell surface, whereas the α1B-AR is predominantly expressed
at the cell surface (73). The formation of hetero-oligomers resulted in no
change in the pharmacology of either receptor but increased cell-surface ex-
pression of the α1A- and α1D-ARs, compared to the α1A- and α1D-ARs ex-
pressed alone (70). These observations suggest that the α1B-AR facilitates
transport of α1A- and α1D-ARs to the cell surface (70). Physical interactions
forming hetero-oligomers are not mediated by interactions between the car-
boxyl or amino terminus of the receptors and are specific, because co-expres-
sion of α1A- and α1D-ARs did not lead to formation of hetero-oligomers or
change in cell-surface expression of either receptor.
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4. INTERACTIONS BETWEEN GPCRS AND ACCESSORY
PROTEINS REGULATE GPCR EXPORT TO THE CELL
SURFACE

Some accessory proteins, both cytosolic and membrane-bound, have been
observed to enhance cell-surface expression of GPCRs such as rhodopsin
and olfactory receptors, whereas others have been observed to inhibit cell-
surface expression of certain GPCRs, such as the group I metabotropic
glutamate receptors and the D1 dopamine receptor.

4.1. Calcitonin Receptor-Like Receptor and Receptor
Activity-Modifying Proteins

The observation that the calcitonin receptor-like receptor (CRLR) did not
express at the cell surface when transfected into heterologous cell lines sug-
gests that it may require a specific accessory protein for proper cell-surface
trafficking (74–76). The accessory protein for CRLR was found to be the
receptor activity-modifying protein (RAMP), of which there are three sub-
types that are 31% identical to each other (75). The RAMPs are ubiquitously
expressed and have a single-transmembrane domain, a large extracellular
domain, and a short cytoplasmic domain. Expressed alone, RAMPs are
intracellularly retained, cycling between the Golgi and the ER (74,75,77),
and exist as dimers (74). The intracellular retention of RAMPs results from
an ER retention motif on its carboxyl terminus (77).

When RAMP1 is cotransfected with the CRLR, surface localization of
both CRLR and RAMP1 are observed (74,75) and CRLR is differentially
processed into a mature, glycosylated receptor. This glycosylation of CRLR
is resistant to the activity of Endo H, indicating that the RAMP–CRLR com-
plex has exited the ER (74,75). A similar interaction exists between RAMP2
or RAMP3 and CRLR, which also facilitates transport of the receptor to the
cell surface (75,78–80). The RAMP–CRLR complex, formed by transmem-
brane domain interactions between CRLR and RAMP (77,79,81,82), is
maintained at the cell surface and during agonist-induced internalization
(74,76). RAMPs also interact with other group 2 GPCRs, such as the gluca-
gon and parathyroid hormone receptor 1 and 2; however, this occurs with-
out change in receptor pharmacology or surface localization (83). However,
these receptors aid RAMP cell-surface expression (83). Interactions between
RAMP1 or RAMP3 and the calcitonin receptor (CTR) are also observed,
resulting in decreased receptor cell-surface expression and increased affin-
ity to amylin (84).
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4.2. Rhodopsin and NinaA

In Drosophila, rhodopsin processing is mediated by the protein neither
inactivation nor afterpotential A (ninaA), which escorts the receptor through
the secretory pathway to the cell surface (85,86). This protein, which is
homologous to cyclophilins that are cytosolic isomerases involved in the
folding of proteins (87,88), is colocalized with rhodopsin within the ER and
at the cell surface in a certain subset of photoreceptor cells (86,89). NinaA is
a membrane-bound protein with the carboxyl terminus anchored in the mem-
brane and the active cyclophilin homologous domain protruding into the
lumen of the ER (88,89).

The ninaA protein performs two functions. First, because it contains a
cyclophilin homologous domain, it re-arranges peptide bonds within rhodop-
sin in the ER to ensure proper receptor folding (88). Second, it forms a stable
complex with rhodopsin and acts as a chaperone to allow rhodopsin to exit
the ER for further processing within the Golgi (85). This has been demon-
strated in experiments involving drosophila mutants that lacked ninaA
expression, where increasing the expression of ninaA protein increased the
amount of Endo H-resistant receptors, indicating that ninaA facilitated the
exit of the receptor from the ER (85,86,88,90). The interaction between
ninaA and rhodopsin is mediated through the carboxyl terminus of ninaA
(85) and is maintained despite deglycosylation of rhodopsin (90).

A mammalian homolog of ninaA has not been discovered. However, the
Ran binding protein 2 (RBP2) is a mammalian cyclophilin that functions simi-
larly to ninaA to target cell-surface expression of mammalian red and green
opsin. This protein is prenylated in membranes and binds red and green opsin,
but not blue opsin or rhodopsin (91,92). The cyclophilin domain re-arranges
peptide bonds on the opsin to stabilize the RBP2–opsin complex (92).

4.3. Odorant Response Mutant-10 and Odorant Response Mutant-4

Odorant receptors are predominantly found on the plasma membrane
when transfected into olfactory neurons (93) and cells of olfactory lineage
(94), but they are retained in intracellular compartments when expressed in
heterologous cell lines (95). Because these receptors are retained within the
ER as a result of receptor misfolding (96), accessory proteins, which are
present only in olfactory cells, may be required to ensure proper cell-surface
expression. One such accessory protein identified from Caenorhabditis
elegans is the single-transmembrane protein odorant response mutant-4
(ODR-4), which promotes cell-surface expression of the C. elegans GPCR
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ODR-10. ODR-4 is localized within the ER, Golgi, and transport vesicles
and acts as a chaperone protein, stabilizing ODR-10 receptor processing
throughout the secretory pathway (94,97). ODR-4 also interacts with the
odorant receptor STR-2 in C. elegans by mediating receptor cell-surface
expression (97). Accessory proteins like ODR-4 may be required for proper
cell-surface localization of mammalian odorant receptors, because cell-sur-
face localization of the rat odorant receptor U131 is increased when it is co-
expressed with ODR-4 (94).

4.4. Homer and Group 1 Metabotropic Glutamate Receptors

Metabotropic glutamate receptors (mGluRs) are involved in synaptic
activity (98) and are classified into three groups depending on their struc-
tural, pharmacological, and functional similarities. Group I mGluRs, com-
prised of mGluR1 (splice variants mGluR1α and mGluR1β) and mGluR5,
have been demonstrated to interact with the Homer family of cytosolic pro-
teins. There are three classes of Homer proteins; class 1 is made up of three
alternatively spliced homer proteins: Homer 1a, 1b, and 1c (99). Unlike
Homer 1a, Homer 1b and 1c contain a large coiled-coil domain that aids in
self-oligomerization (100). Interactions between group I mGluRs and Homer
proteins are mediated by an interaction between the P-P-X-X-F motif on the
mGluR carboxyl terminus and a distinct domain on the Homer proteins (101).
These interactions result in changes in receptor cell-surface trafficking. A
specific interaction between Homer 1b and mGluR5 retained the receptor
within the ER, as determined by immunofluorescence and increased suscep-
tibility of the receptor species to Endo H activity (102,103). Interactions be-
tween mGluR1α and Homer 1c have also been observed, but the effect is
unclear because reports suggest enhanced cell-surface expression, with
Homer 1c anchoring the receptor at the cell surface (104,105). However,
another study observed increased receptor sequestration within the ER (106).

4.5. D1 Dopamine Receptor and Dopamine Receptor Interacting
Protein-78

ER-resident chaperone proteins can not only mediate formation of GPCR
oligomers but can also mediate cellular trafficking. An interaction between
the D1 dopamine receptor and an ER-resident transport protein dopamine
receptor interacting protein (DRIP)78 results in ER retention of the D1 re-
ceptor, as demonstrated by a shift of receptor expression from the plasma
membrane to the ER (107). DRIP78 is a transmembrane structure that asso-
ciates, through two potential zinc finger domains, with the D1 receptor at
the ER-export motif F-X-X-X-F-X-X-X-F in the proximal carboxyl termi-
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nus (107). Once the interaction between the D1 receptor and DRIP78 is
lost, the D1 receptor is released from the ER for further modifications within
the Golgi. Other receptors that have also been observed to interact with
DRIP78 are the M2 muscarinic receptor (107) and the type 1 receptor for
angiotensin II (108).

4.6. α1B-AR and gC1q-R

The α1B-AR is expressed at the cell surface, but upon co-expression
with gC1q-R (a regulatory protein of the complement pathway), intracellu-
lar retention of the receptor is observed by immunofluorescence micros-
copy (109), cell-surface cell-flow cytometry analysis, and radioligand
binding (110). gC1q-R binds to the carboxyl terminus of the α1B- and α1D-
ARs, as determined by yeast two-hybrid assays and co-immunoprecipita-
tion studies (109–111).

5. SIGNIFICANCE OF INTRACELLULARLY RETAINED GPCRS

Immunofluorescence microscopy has revealed that by default, certain
members of the GPCR family are intracellularly retained when expressed in
heterologous cell lines. Some of these receptors include the α2c-AR (112)
and the rat trace amine receptor 1 (113). As described earlier, intracellular
localization has also been observed for the CRLR, ODR-10, and GABABR1
receptors when expressed alone; these receptors have also been demon-
strated to require a protein partner for proper cell-surface expression. There-
fore, it is possible that these other receptors require an unidentified protein
partner, possibly another receptor or accessory protein, to mediate cell-sur-
face expression.

6. CONCLUSIONS

To date, the evidence for GPCR oligomerization indicates that it is an
early event in receptor maturation. The intracellular processing of a GPCR,
such as glycosylation, may participate in determining whether a specific
receptor is subject to oligomerization. Although there are some reports re-
garding agonist-induced oligomerization at the plasma membrane, most of
the current evidence suggests that GPCR oligomerization occurs in the ER.
There, the receptor may be required to achieve a certain oligomeric configu-
ration to exit the ER for further processing in the Golgi—possibly with the
assistance of ER-resident chaperone proteins. Some GPCRs may require
accessory proteins, which regulate receptor folding and enhance or impede
cell-surface expression. In some cases, these accessory proteins can also
modulate receptor function at the cell surface. Other GPCRs (e. g., GABAB
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receptor) may require GPCR oligomerization to mask intrinsic trafficking
motifs that direct the cellular fate of the receptor.

Considerable progress has been made in elucidating the stages involved
in GPCR oligomeric assembly. Further studies must be conducted to deter-
mine how oligomerization occurs in the ER and the maturation steps subse-
quent to oligomerization. This involves defining the molecular chaperones
that orchestrate the folding kinetics of the specific oligomer, the role of post-
translational modifications in oligomerization, and the other cellular factors
involved in ensuring that receptors interact in a specific manner.
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Receptor Oligomerization and Trafficking

Selena E. Bartlett and Jennifer L. Whistler

1. INTRODUCTION

G protein-coupled receptor (GPCR) dimerization is a mechanism for
regulating the signaling from several classes of plasma membrane receptors
and has been a particularly well-studied mechanism for the regulation of
tyrosine kinase (Trk) receptors (reviewed in ref. 1). As reported for Trk and
cytokine receptors, some GPCRs may also dimerize in response to agonist
(2–6). However, GPCRs can also form constitutive dimers—often as early
as during their biosynthesis (7–9). Adding to this complexity, GPCRs can
form not only homodimers but also heterodimers with altered properties.
Ultimately, one main goal is to understand the functional consequences of
GPCR dimerization.

GPCR dimerization was first reported for the gonadotropin-releasing hor-
mone receptor (10), then for the β2-adrenergic receptor (AR) (11,12), and is
now considered to be a common theme for many GPCRs (for review, see
refs. 13–15). GPCRs can form homo- and heterodimers as well as higher
order oligomeric structures such as trimers, tetramers, and pentamers
(12,16–18). For the purposes of this chapter, we use the word “dimer” to
describe all of these oligomers because it is the smallest possible oligomeric
unit. GPCR homodimerization has been shown to occur with several recep-
tors, including the D2 dopamine receptor (19), the μ-opioid peptide receptor
(MOP-R; ref. 20), several of the somatostatin (SST) receptors (21), and the
chemokine CCR5 receptors (2), to name just a few. Heterodimerization has
been reported not only between receptors within the same GPCR family,
such as the μ and δ-opioid peptide receptor (DOP-R) (22), the m2 and m3
muscarinic receptors (23), and the CCR2 and CCR5 chemokine receptors
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(2), but also between diverse GPCR families, such as opioid receptors and
β2-ARs (24,25), adenosine A2a receptors and D1 dopamine receptors (26),
and SSTR5 and D2 dopamine receptors (27). Although the existence of these
diverse heterodimers has yet to be demonstrated in vivo, the potential for
their existence has profound implications for the biology of GPCR signaling
and for drug design. There is a growing body of literature describing various
GPCR dimers and dimerization’s effects on receptor maturation through the
secretory pathway, ligand binding, and signaling in vitro (for review, see
ref. 28). In contrast, there are relatively few studies describing the effects of
dimerization on receptor trafficking—particularly postendocytic trafficking.
This chapter summarizes the ways that dimerization can alter the trafficking
properties of various GPCRs.

2. SECRETION
GPCR dimerization has been demonstrated in the absence of receptor

activation by agonists (for review, see ref. 14). Thus, it has been proposed
that GPCR dimerization may be the result of a constitutive process that occurs
early in the biosynthetic pathway and is necessary for trafficking receptors
from the endoplasmic reticulum (ER) to the plasma membrane. For some
GPCRs, heterodimerization with highly homologous receptors within the
same family is actually a prerequisite for the expression of functional recep-
tor units. The γ-aminobutyric acid-B (GABAB) receptor is composed of two
subunits, GABABR1 and GABABR2. GABABR1 is not expressed at the cell
surface because it contains an ER retention signal, whereas GABABR2 is
efficiently transported to the plasma membrane but is nonfunctional (29).
Co-expression of GABABR2 with GABABR1 allows transport of both sub-
units, presumably because heterodimerization of GABABR2 to GABABR1
masks the ER retention signal (30,31). Intriguingly, it has also been demon-
strated that the γ2S-subunit of the ionotropic GABAA receptor interacts with
GABABR1 and can promote its cell-surface expression, thereby substituting
for GABABR2 for trafficking of GABABR1 to the membrane. It can also
interact with the GABABR1–GABABR2 heterodimeric complex to signifi-
cantly enhance GABAB receptor internalization in response to agonist (32).
This is the first demonstration of an interaction between a GPCR and an ion
channel affecting receptor trafficking. Although a general role of dimeriza-
tion in ER export has yet to be established, studies that use fluorescence and/
or bioluminescence resonance energy transfer with cell fractionation have
demonstrated the existence of receptor dimers in the ER for several receptor
classes, including CCR5 chemokine receptors (7), vasopressin receptors and
oxytocin receptors (8), the yeast α-factor receptor (33), and the C5a chemo-
tactic receptor (34).
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Once the receptors have reached the plasma membrane, the debate con-
tinues regarding whether ligands alter the dimerization state of the recep-
tors. To date, there is no clear answer. Ligand binding has been shown to
both promote (6,27,35–40) or inhibit (26,41,42) dimerization, and several
groups report no effect of ligand, suggesting instead that dimerization is a
constitutive process (7,8,34,43-50).

3. DESENSITIZATION AND ENDOCYTOSIS

Following transport to the plasma membrane and activation by an agonist
ligand, GPCRs are regulated by several mechanisms, many of which have
been shown to be altered by receptor homo- or heterodimerization, includ-
ing receptor desensitization, receptor endocytosis, receptor recycling, and
receptor degradation. For the purposes of this chapter, we define receptor
desensitization as any process that alters the functional coupling of a recep-
tor to its G protein/second messenger-signaling pathway. Endocytosis/inter-
nalization is defined as the translocation of receptors from the cell surface to
an intracellular compartment. Receptor recycling or receptor resensitization
is defined as receptors returning to the cell surface following their endocy-
tosis. Finally, receptor degradation or downregulation is defined as any pro-
cess that decreases the number of ligand-binding sites. Signaling from
GPCRs is rapidly regulated by a well-characterized and highly conserved
cascade of events involving G protein coupling and activation, receptor
phosphorylation by GPCR kinases (GRKs), and subsequent β-arrestin
recruitment that has been extensively reviewed elsewhere (51). These pro-
cesses contribute directly to receptor desensitization by facilitating the un-
coupling of the receptor from its G protein. GRK- and β-arrestin-mediated
desensitization is a rapid process that often occurs within minutes of recep-
tor activation. However, receptors can also be desensitized/uncoupled from
G proteins by GRK and β-arrestin-independent mechanisms (for review, see
ref. 52).

It has been reported that some GPCR heterodimeric complexes have
altered desensitization properties. For example, co-expression of the SST
receptors SSTR2A and SSTR3 results in a slower desensitization of the
SSTR2A–SSTR3 heterodimer compared to cells expressing SSTR2 or
SSTR3 homodimers (53). Similarly, heterodimerization of the MOP-R and
the SST2A receptor leads to cross-desensitization of receptor function (21).
This pattern of cross-desensitization is mirrored by co-expression and
heterodimerization of the adenosine A2a receptor with the D2 dopamine
receptor (54) as well as by heterodimerization of the MOP-R with the CCR5
chemokine receptor (55).
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Following desensitization by GRKs and β-arrestin, GPCRs are rapidly
endocytosed into an intracellular compartment. This process occurs follow-
ing even brief agonist exposure and is independent of signal transduction
(56,57). GPCR internalization is predominantly mediated via the recruitment
of β-arrestins 1 and/or 2 to agonist-activated phosphorylated receptors. GPCR
dimerization can alter the complement of proteins—particularly arrestins—
that are recruited during endocytosis, thereby affecting the endocytic proper-
ties of the receptors. In fact, heterodimerization has been shown to both inhibit
and facilitate endocytosis, depending on the pair of receptors expressed.
Heterodimerization of the β1-AR (a poor internalizer) and the β2-AR (a good
internalizer) results in inhibition of agonist-promoted internalization of the
β2-AR (58). Similarly, the κ-opioid peptide receptor (KOP-R), which is a
poor internalizer, inhibits the endocytosis of both the DOP-R (12) and the β2-
AR (24) when it heterodimerizes with these receptors.

On the other hand, there are several examples of co-internalization of both
receptors in a heterodimer pair, even when agonist ligand is present for only
one of the receptors. These include the A2a adenosine–D2 dopamine dimer
pair (54), in which addition of either the adenosine agonist or the dopamine
agonist promotes internalization of both receptors, and the SSTR2a–MOP
receptor pair, in which activation with either the SSTR2a agonist or the MOP-
R agonist promotes internalization of both receptors (21).

As mentioned earlier, in both cases, co-internalization was associated with
cross-desensitization of receptor-mediated signaling. Similarly, α1a- and
α1b-AR heterodimerization results in co-internalization of both receptors
following treatment with oxymetazoline, an α1a-specific agonist. In con-
trast, α1b does not co-internalize with agonist-activated neurokinin (NK)1
receptors or agonist-activated CCR5 chemokine receptors, and neither of
these receptors heterodimerizes with the α1b-AR (49), demonstrating that
dimerization appears to be required for co-internalization.

Another example of dimer-facilitated endocytosis occurs with mutant and
wild-type MOP-Rs. Wild-type MOP-Rs do not endocytose when activated
by morphine (59). However, co-expression of a mutant MOP-R, D-MOP-R
(which does internalize in response to morphine [60]) leads to dimerization
of MOP-R with D-MOP-R and endocytosis of both the wild-type and mutant
MOP-R in response to morphine (20).

In some cases, it has been shown that the co-internalization effects are
modulated by changes in recruitment of β-arrestin. This has been elegantly
demonstrated with the thyrotropin-releasing hormone receptors 1 and 2
(TRHR1 and TRHR2) dimers 961 and also with MOP-R and NK1-R dimers
(61,62). TRHR2 interacts preferentially with β-arrestin 2 when expressed
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alone in HEK293 and simian fibroblast (COS) cells. However, co-expres-
sion of TRHR1 leads to interaction of both TRHR1 and TRHR2 with β-
arrestin 1. As a consequence, the internalization rates for both TRHR1 and
TRHR2 are altered, with no effect on ligand binding or basal inositol phos-
phate production (61).

Based on the pattern of arrestin recruitment, GPCRs can be divided into
two categories: class A and class B (63). Class A receptors have a higher
affinity for β-arrestin 2 than β-arrestin 1, and, after initial recruitment, class A
receptors rapidly dissociate from β-arrestin. Class B receptors bind β-arrestin
1 and 2 with equal affinities, and, unlike class A receptors, class B receptors
remain in a stable complex with arrestins during endocytosis and, therefore,
are colocalized with arrestins in endosomes. Alterations in the pattern of β-
arrestin 2 recruitment are seen with MOP-R–NK1-R heterodimers. In cells
expressing only the MOP-R, β-arrestin 2 is recruited to the activated recep-
tors; however, β-arrestin 2 does not co-internalize with the receptor classifies
MOP-Rs as class A. However, when the NK1-R is co-expressed with the
MOP-R, the heterodimers recruit β-arrestin 2 in response to either the MOP-
R agonist [D-Ala(2)-N-Me-Phe(4), Gly(5)-ol]-enkephalin  (DAMGO) or the
NK1-R agonist substance P, and β-arrestin 2 is then co-internalized with the
MOP-R–NK1-R heterodimeric complex, switching the classification of the
MOP-R to class B (62). Furthermore, in the case of the MOP-R–NK1-R pair,
co-internalization of β-arrestin 2 with the heterodimer leads to a delay in both
MOP-R recycling and MOP-R resensitization kinetics (62). This observation
leads to the conclusion that heterodimerization may also affect receptor traf-
ficking—more specifically, postendocytic sorting.

4. POSTENDOCYTIC TRAFFICKING

Receptors that have been desensitized and rapidly endocytosed are
uniquely poised to make an important decision that has substantial impact
on future signal transduction. As mentioned earlier, following endocytosis,
receptors can be recycled, thereby restoring the functional complement of
receptors. Alternatively, receptors that have been endocytosed can be tar-
geted for degradation, thereby decreasing the functional complement of re-
ceptors and ultimately resulting in receptor downregulation. Although
endocytosis and subsequent degradation of receptors is not the only means
to produce receptor downregulation, it can produce receptor downregulation
rapidly, even following brief exposure to agonist (64). Apparent receptor
downregulation can also be affected by alterations in rate of receptor syn-
thesis and/or folding or secretion (65). Not all GPCRs are downregulated
following their endocytosis. For example, although both the MOP-R and
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DOP-R are class A receptors that are endocytosed via clathrin-coated pits
following agonist-induced activation, GRK phosphorylation, and associa-
tion with β-arrestins, they differ in their fate following endocytosis. Whereas
MOP-Rs are recycled following their endocytosis, DOP-Rs are transported
deeper into the endocytic pathway and are rapidly degraded by the lysosome
(60,66) and hence downregulated.

As discussed earlier, β-arrestin 2 is recruited and co-internalized with the
MOP-R–NK1-R heterodimeric complex in response to either the μ-opioid
agonist DAMGO or the NK1 receptor agonist substance P. This leads to a
delay in both MOP-R recycling and MOP-R resensitization kinetics (62),
suggesting that heterodimerization can alter the post-endocytic trafficking
properties of the MOP-R.

Heterodimerization of GPCRs may also result in changes, not only to the
rate of postendocytic recycling but also to the actual postendocytic fate of
the receptors. This has been beautifully demonstrated using the V1a vaso-
pressin receptor (V1aR), which heterodimerizes with V2 vasopressin recep-
tor (V2R) (8). V1aR activation results in the recruitment of β-arrestin.
Following receptor internalization, β-arrestin dissociates from V1aR, and the
receptor is rapidly recycled to the plasma membrane, which classifies the
V1aR as a class A GPCR. In contrast, V2Rs recruit β-arrestin, and following
internalization, β-arrestin fails to dissociate from the receptor, resulting in
V2R accumulation in endosomes in the perinuclear compartment (67); this
classifies V2R as a class B receptor. The postendocytic fates of V1aR and
V2R are altered when the receptors are co-expressed. Nonselective agonist
activation of both V1aR and V2R results in the co-internalization of both
V1aR and V2R with β-arrestin into endosomes, where the interaction inhib-
its the recycling of both receptors to the plasma membrane, thereby switch-
ing the V1aR from a class A to a class B receptor. Selective activation of
only V1aR results in co-internalization of the V2R, without co-internaliza-
tion of β-arrestin. This results in rapid recycling of both V1aR and V2R,
thereby converting V2R to class A receptor (67). These data suggest that for
the vasopressin receptors, it is the activated receptor within the heterodimeric
complex that determines the overall postendocytic fate of all receptors within
the complex. It remains to be determined whether this is true for all reported
receptor heterodimers.

5. CLINICAL RELEVANCE AND/OR BENEFITS

When one begins to think of all the combinations and permutations
whereby GPCRs could homo- or heterodimerize, the implications for unique
drug targets or “landing pads” becomes apparent and really quite over-
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whelming. Already there are several examples of ways in which
heterodimerization, solely by affecting trafficking, affects phenomena im-
portant for human disease.

5.1. Human Immunodeficiency Virus Infection

CCR5Δ32, the truncated form of the human immunodeficiency virus
(HIV) coreceptor CCR5, conveys resistance to HIV infection even in indi-
viduals in the heterozygous state (68–71). Co-expression of this truncated
CCR5 with the wild-type CCR5 leads to retention of both receptors in the
ER. Because CCR5 forms heterodimers, it has been suggested that by form-
ing a heterodimer with the wild-type receptor, the mutant receptor delays
transport of CCR5 coreceptors to the surface of cells, thereby preventing
HIV coreceptor function (72). The existence of naturally occurring
chemokine receptor mutants that alter CCR5 trafficking may be an explana-
tion for the subpopulations of patients with acquired immune deficiency
syndrome that display differential resistance to HIV infection. This may help
guide future therapeutic strategies for its treatment.

5.2. Attenuation of Morphine Tolerance and Dependence

The current evidence suggests that receptor oligomerization may open
the door to the discovery of new, more effective drug treatments for disease.
One example is the amelioration of the development of morphine tolerance
and dependence. This section outlines studies that suggest that targeting the
MOP-R oligomeric complex may be helpful to reduce the development of
morphine tolerance.

Although opioids such as morphine remain the analgesic of choice in
many cases, a major limitation to their long-term use is the development of
physiological tolerance, which is a profound decrease in analgesic effect
observed in all patients during prolonged administration of opioid drug.
Despite considerable progress, the molecular and cellular mechanisms me-
diating the development of tolerance and withdrawal to morphine remain
controversial. Multiple hypotheses exist to explain morphine tolerance.

In contrast to other opioids and many other agonists in general, morphine
fails to promote endocytosis of the wild-type μ-opioid receptor in cultured
cells (59,73) and native neurons (74,75), whereas endogenous peptide
ligands such as endorphins and several opioid drugs, such as methadone
(76), readily drive receptor endocytosis (74,75,77). Morphine-activated
MOP-Rs are relatively unique because they are not GRK-phosphorylated
nor do they efficiently recruit β-arrestin, although they are in an “active”
receptor conformation (78–80). Hence, morphine-activated MOP-Rs gener-
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ally elude an important, highly conserved regulatory mechanism designed
to rapidly modulate receptor-mediated signaling.

Whistler et al. have proposed that the regulation of opioid receptors by
endocytosis serves as a protective role in reducing the development of toler-
ance and dependence to opioid drugs (20,81). According to this model, pro-
moting morphine-induced endocytosis of the MOP-R should lead to an
attenuation of the development of morphine tolerance and dependence. This
has been shown to be true in a cell culture model, where mutations of the
MOP-R that enhance morphine-induced endocytosis ameliorate a cellular
hallmark of tolerance (60). Conversely, mutations that prevented endocyto-
sis of the MOP-R in response to ligands (such as methadone) enhanced
methadone-mediated tolerance (60). These observations led to the predic-
tion that one might be able to use the oligomeric state of the MOP-R to alter
its endocytosis in response to morphine, thereby altering the development
of morphine tolerance.

Briefly, could a MOP-R dimer in which one protomer was occupied with
DAMGO (which facilitates endocytosis) “drag” the other morphine-occu-
pied protomer into the cell? In fact, co-administration of a small dose of
DAMGO facilitated morphine-induced endocytosis of the MOP-R both in
cell culture models and in vivo (20). Importantly, facilitation of MOP-R
endocytosis also prevented the development of morphine tolerance (20).
Pharmaceutical interventions that target heterodimeric MOP-Rs that facili-
tate the endocytosis of the MOP-R in response to morphine may play impor-
tant roles in the attenuation of morphine tolerance and dependence.

6. CONCLUSIONS

Determining whether opioid receptor heterodimers or opioid–other GPCR
dimers exist in vivo is a true challenge. Advances in bivalent ligands that
selectively target heterodimers may provide the necessary tools (for review,
see refs. 82 and 83). Additionally, the phenotypes of the opioid receptor
knockout mice also provide hints that heterodimerization, at least among
the opioid receptors, is a real phenomenon. For example, some μ-opioid
receptor-specific analgesia is lost in the δ-opioid receptor-deficient mice
(84). One explanation for this observation could be that a μ–δ opioid recep-
tor dimer has also been eliminated in the genetically modified animals. Mak-
ing the assumption that GPCRs form dimers in vivo, it may be possible to
design therapeutics to specifically target these complexes, which therefore
provide more specific drug treatments. Signaling from GPCRs will ulti-
mately depend on the cell-type and its specific environment. Different sig-
nals may be generated from the same receptor, depending on the intracellular
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complement of other GPCRs available and/or the environment of the cell.
Understanding these differences will be important for the design of drugs
and the treatment of diseases.
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Modulation of Receptor Pharmacology

by G Protein-Coupled Receptor Dimerization
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and Ivone Gomes

1. INTRODUCTION

Although it was classically believed that G protein-coupled receptors
(GPCRs) acted as monomeric entities, it is now well-established that they
exist and function as dimers (or oligomers) in the plasma membrane. In
addition to forming homodimers, GPCRs can associate with closely or dis-
tantly related members of the GPCR superfamily to form heterodimers. Dis-
section of the functional relevance of these associations is currently an area
of enormous interest. Additionally, there is mounting evidence that
heterodimerization can generate receptors with novel characteristics, lead-
ing to altered pharmacological properties. This could at least partially
account for pharmacologically defined receptor subtypes for which no gene
has been identified. This chapter reviews recent reports of GPCR dimeriza-
tion and its effect on ligand pharmacology and function. Because current
techniques do not readily allow the distinction between the functional effects
of GPCR dimers and oligomers, the receptor complexes resulting from
GPCR interactions are referred to as “dimers” and the phenomenon as
“dimerization.” Additionally, interactions between identical proteins are
referred to as “homodimers,” and interactions between nonidentical proteins
are referred to as “heterodimers.”

2. HOMODIMERS

Recent biochemical and biophysical evidence has shown that an increasing
number of GPCRs exist as dimers/oligomers (see refs. 1–5). X-ray crystallo-
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graphic and atomic force microscopy (AFM) studies have demonstrated the
presence of constitutive GPCR homodimers. The finding that GPCRs exist as
dimers raises the question: How does this phenomenon modulate receptor
pharmacology? This has been studied by investigating the effect of ligand
treatment and peptide competition on the levels of receptor dimers as well as
by functional complementation studies using mutant receptors (Table 1).
These topics are described in the following sections.

2.1. Crystallographic and AFM Studies

X-ray crystallographic studies have revealed that the extracellular region
of the metabotropic glutamate receptor (mGluR) exists as a disulfide-linked
dimer. Binding of the ligand glutamate induces a movement of the two lobes
in each ligand-binding domain, leading to stabilization of the dimer in the
active conformation (6). The three-dimensional crystal structure of rhodop-
sin confirms that this prototype of family A GPCRs exists as a constitutive
dimer (7). Palczewski (8) as well as Fotiadis et al. (9) used infrared AFM to
demonstrate the native arrangement of rhodopsin in isolated mouse rod
outer-segment membranes. High-magnification analysis revealed distinct
rows of rhodopsin dimers densely packed in paracrystalline arrays. Based
on these findings, a molecular model for the rhodopsin paracrystal has been
proposed in which points of contact in the interface between the monomers
in the rhodopsin dimer consist of transmembranes (TMs)-IV and -V (10).

Based on geometrical constraints, it appears that a single heterotrimeric
G protein covers four rhodopsin molecules (11). According to this model,
ligand binding to one rhodopsin monomer induces a conformational change
that is transmitted to the second monomer, which then signals through the
heterotrimeric G protein. The second rhodopsin dimer appears to serve as a
docking platform (11). This model for G protein activation by GPCR oligo-
mers needs to be validated by further studies with other family A GPCRs.
Note that a recent study using mass spectrometry after chemical crosslinking
and neutron scattering in solution is consistent with this model because it
showed that one G protein trimer binds to the dimeric leukotriene B4 recep-
tor BLT1 to form a pentameric assembly (12).

2.2. Peptide Competition Studies

The domains involved in dimer formation have been examined using pep-
tides directed against certain TM regions of GPCRs. A few studies have
shown that ligand binding and signaling can be affected by disruption of
dimer formation with such peptides (13–17). In the case of the β2-adrenergic
receptor (AR), adding a peptide corresponding to TM-VI substantially
reduced the level of detected β2-AR dimers as well as isoproterenol-stimu-
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Table 1
GPCR Homodimers

Homodimers References

Crystallographic and AFM studies
mGluR 6
Rhodopsin 7–11
Leukotriene B4 12

Peptide competition studies
β2AR 14
D1R dopamine 15
B2R 17
δ-opioid This chapter
D2 dopamine 16

Functional complementation studies
α1b-AR 20
Platelet activating factor 21
AT1R angiotensin 18
H1 histamine 20
Calcium-sensing 22
CCR2b 23
CXCR2 24
V2 vasopressin 25
α-mating factor 26
SSTR 19
Melanocortin-4 27

Ligand-mediated modulation of receptor dimerization
m3 muscarinic 29
β2AR 14,30
B2R bradykinin 17
TRHR 31,32
MT1 melatonin 33
MT2 melatonin 33
GnRHR 35–38
Calcium-sensing 39
Sphingosine-1-phosphate 40
Metabotropic glutamate 41
CXCR2 24
CXCR4 34
CCR2b 23
CCR5 43
Oxytocin 44
Neuropeptide NPY1 42
Neuropeptide Y Y4 45
δ-opioid 46

mGluR, metabotropic glutamate receptor; AR, adrenergic receptor; TRHR, thyrotropin-
releasing hormone receptor; GnRH, gonadotropin-releasing hormone receptor; CCR,
chemokine receptor; SSTR, somatostatin receptor.
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lated adenylyl cyclase activity. Furthermore, pretreatment of membranes with
isoproterenol protected the dimer from the disruptive effects of the TM-VI
peptide, suggesting that agonist treatment resulted in dimer stabilization (14).
These studies suggest a role for TM-VI in β2-AR dimer formation and are
consistent with a role for this domain, as proposed by correlation mutational
analysis (13). Similarly, the TM-VI domain of the leukotriene B4 receptor
BLT1 was shown to be involved in dimerization because a TM-V1 peptide
inhibited the dimerization of this receptor and affected its ability to interact
with heterotrimeric G proteins (12).

In contrast, in the case of the D1 dopamine receptor, the peptide corre-
sponding to TM-VI did not disrupt oligomer formation; however, it caused
a dose-dependent irreversible inhibition of antagonist binding and attenua-
tion of signaling (15), suggesting a role for additional TMs in the dimeriza-
tion of this receptor. In the case of D2 dopamine receptor, an elegant set of
cysteine crosslinking studies was used to identify TM-IV as a symmetrical
dimer interface for this receptor. Additionally, this study showed that
crosslinking did not affect ligand binding or receptor activation, suggesting
that D2 dopamine receptor forms a constitutive dimer (16).We investigated
the role for TM-V to -VII domains in dimerization of δ-opioid receptors
using synthetic peptides to the putative TM domains. For this, peptides were
incubated with immunoprecipitates obtained from cells co-expressing Flag-
δ and myc-δ receptors, and the level of monomers released into the superna-
tant as well as the dimers left behind in the pellet were examined as described
(see Fig. 1 legend). We discovered that the level of dimers present in the
pellet was reduced by greater than 80% upon treatment with either TM-V or
TM-VI peptide (Fig. 1A). There was little (approx 25%) and no change with
the TM-VII and mutant TM-VI peptide, respectively (Fig. 1A). The decrease
in the level of dimeric receptors matched well with the increase in the level
of monomers (Fig. 1B) observed in the supernatant. These results suggest a
role for TM-V and -VI in the formation of δ-receptor dimers, although the
involvement of additional TMs cannot be ruled out.

2.3. Functional Complementation Studies

Modulation of receptor pharmacology by dimerization has been demon-
strated using functional complementation studies. In these studies, mutants
of the receptor that exhibit decreased or no agonist-mediated activity are
cotransfected with the wild-type receptor, and the resulting change in ago-
nist-mediated binding or signaling is examined. For example, co-expression
of Lys102 and Lys199 mutants of the type 1 angiotensin II receptor (which
individually did not bind angiotensin II or related analogs) led to the restora-
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tion of a normal binding site (18). Co-expression of mutant somatostatin
receptors lacking the second extracellular loop (and ligand binding) with

Fig. 1. Effect of various peptides on δ receptor dimerization. Human embryonic
kidney (HEK)293 cells were transfected with myc-tagged and Flag-tagged δ-recep-
tors. Immunoprecipitates with anti-myc antibodies were incubated with vehicle (con-
trol) or with 1 mM peptides corresponding to TM-V(217VFLFAFVVPILIIT
VCYGLML237), TM-VI (263VLVVVGAFVVCW APIHIFVIV283), TM-VII
(297VAALHLCIALGYANSSLNPVLYAF320), or TM-VI mutant (263VaVVVaAFVa
CWAaIHIaVIV283) in a buffer containing a protease inhibitor cocktail for 1 h, as
described in ref. 14. The mixture was centrifuged and the resulting pellet (A) and
supernatant (B) fractions were separately subjected to SDS/PAGE and Western blot-
ting with anti-Flag antibody as described in ref. 14. The autoradiograms were ana-
lyzed by densitometry and the density of the vehicle band was taken as 100%. Data
represent mean ± SEM of three independent experiments.



328 Abul-Husn et al.

mutants lacking the C-terminal tail (and signaling) led to the reconstitution
of agonist-mediated signaling (19). Studies with α1b-adrenoreceptors con-
taining a fused Gα11 at the C-terminus demonstrated that co-expression of
two nonfunctional, but complementary, fusion constructs led to reconstitu-
tion of agonist-mediated signaling (20). Similar observations were made
with mutant fusion constructs of the histamine H1 receptor (20). These and
additional studies using G protein fusion constructs are described in detail
in Chapter 12. Interestingly, cotransfection of a mutant human platelet-acti-
vating factor receptor, which does not couple to G proteins (and therefore
does not exhibit agonist-mediated increases in inositol phosphate), with the
wild-type receptor led to the formation of a constitutively active receptor
that exhibited a higher production of inositol phosphate than the wild-type
receptor (21).

Functional complementation studies have also demonstrated a partial
reconstitution of signaling. In the case of the calcium-sensing receptor, cells
co-expressing cysteine to serine mutants—each with reduced (or absent)
agonist-mediated, calcium-dependent signaling—exhibited partial reconsti-
tution of signaling (22). In the case of CCR2b chemokine receptors,
cotransfection of a loss-of-function CCR2 (Y139F) mutant receptor with
the wild-type receptor led to a decreased affinity and responsiveness to ago-
nists (23). Additionally, co-expression of truncated mutant chemokine
CXCR2 receptors that did not exhibit agonist-mediated signaling with the
wild-type receptor resulted in impaired agonist-mediated signaling and
chemotaxis (24).

Cotransfection of mutant vasopressin V2 receptors (truncated by the
introduction of a stop codon into either the i3 , i2, or e2 loop) with the wild-
type receptor led to a decrease in maximum binding and agonist-stimulated
cyclic adenosine monophosphate (cAMP) levels (25). Similarly, an attenua-
tion of agonist-mediated signaling efficiency was observed after co-expres-
sion of a dominant interfering mutant of the α-mating factor receptor STE2
with the wild-type receptor (26). This did not result from G protein seques-
tration, because the effect was observed even after overexpression of G pro-
teins (26). Additionally, co-expression of an endocytosis-deficient mutant
receptor with the wild-type receptor led to efficient receptor internalization,
suggesting that dimerization plays a role in agonist-mediated endocytosis of
the α-mating factor receptor (26).

The physiological consequences of receptor dimerization have been
illustrated in studies using natural variants and/or mutants of GPCRs (27,28;
see Chapter 14). In the case of the melanocortin-4 receptor, researchers have
observed that a D90N mutant receptor initially isolated in a patient with
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severe early onset obesity is highly expressed at the cell surface and binds
agonist with the same affinity as the wild-type receptor, but it exhibits a
complete loss of Gs-mediated adenylyl cyclase activation. Cotransfection of
this mutant receptor with the wild-type receptor leads to suppression of ago-
nist-mediated cAMP stimulation, and this is dependent on the amount of
mutant receptor transfected (27). Studies with other GPCRs have shown
that co-expression of naturally occurring deletion or truncated mutants that
exhibit decreased agonist-mediated signaling with wild-type receptors leads
to a significant decrease in surface expression and agonist-mediated signal-
ing of the wild-type receptor (28; see Chapter 13).

These functional complementation studies, which resulted in reconstitu-
tion, increased, or decreased binding or function of wild-type receptors, sug-
gest that dimerization plays a major role in modulation of receptor activity.

2.4. Ligand-Mediated Modulation of Receptor Dimerization
The fact that ligands significantly modulate the dimerization of other

membrane receptors, such as the tyrosine kinase receptors, raised the issue
of whether ligands can modulate GPCR dimers. Studies have found that
ligand treatment leads to no change or an increase or decrease in the level of
receptor dimers.

Increases in the level of receptor dimers following agonist treatment have
been observed with a few GPCRs, such as the β2-AR (14). Receptor isola-
tion by affinity chromatography, followed by nonreducing sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot-
ting with an antireceptor antibody, led to the isolation of both monomeric
and dimeric forms of the β2-AR (14) as well as the m3 muscarinic receptor
(29), suggesting that both monomers and dimers could bind ligand. Treat-
ment with the agonist increased and with the inverse agonist decreased the
amount of dimers of β2AR, suggesting that agonists stabilized the dimeric
species of the receptor, whereas inverse agonists stabilized the monomeric
species (14).

These results are consistent with data from bioluminescence resonance
energy transfer (BRET) studies in which agonist treatment led to an increase
in the BRET signal, which was blocked by the selective antagonist (30).
Agonist treatment also led to a dose- and time-dependent increase in BRET
signal in the case of the thyrotrophin-releasing hormone receptor (31,32).
Interestingly, in the case of the melatonin MT2 receptors (but not MT1)
agonists, neutral antagonists and inverse agonists were able to induce an
increase in the BRET signal, suggesting that receptor occupancy is suffi-
cient to modulate the proximity of dimers (33). In the case of the bradykinin
B2 receptor, crosslinking studies showed that treatment with the agonist
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bradykinin, but not a selective antagonist, led to an increase in receptor
dimers (17). Agonist treatment was also shown to induce dimerization of
the chemokine CXCR4 and CCR2b receptors (23,34).

An interesting study with the gonadotropin-releasing hormone receptor
used a bivalent antibody against the antagonist; treatment with this antibody
in combination with the antagonist promoted receptor signaling. This led
the authors to suggest that the antagonist–bivalent antibody complex induced
receptor activation by bringing two receptor proteins to close proximity (35).
More recently, using fluourescence resonance energy transfer and BRET
techniques, researchers have shown that agonists, but not antagonists, can
cause increased oligomerization of this receptor (36–38). Similarly, in the
case of CCR2b receptors, it was shown that a bivalent agonistic
antichemokine receptor monoclonal antibody induced receptor dimerization,
whereas monovalent Fab fragments did not (23).

In several cases, ligand treatment did not lead to alterations in the level of
receptor dimers, suggesting that these were constitutive dimers. This result
was observed with the m3 muscarinic receptor, in which the level of dimers
was not significantly affected by treatment with the agonist carbachol (29).
Similarly, agonist treatment did not significantly alter the level of dimers for
the calcium sensing (39), sphingosine-1-phosphate (40), mGluR5 (41), neu-
ropeptide NPY1 (42), chemokine CXCR2 (24), and chemokine CCR5
receptors (43). In the latter case, however, a bivalent antibody, which bound
to the second intracellular loop, promoted micro-aggregation of preformed
receptor homodimers (43).

In the case of a few GPCRs, agonist treatment led to a decrease in the
level of dimers, with a corresponding increase in the level of monomers.
This was observed for the oxytocin (44), rhesus neuropeptide Y Y4 (45),
and δ-opioid receptors (46). In the case of δ-opioid receptors, it was observed
that only agonists that induced receptor internalization caused receptor
monomerization. This suggests the involvement of an agonist-mediated de-
crease in the level of receptor dimers in agonist-mediated endocytosis.

In summary, these studies show that in some cases, agonist treatment can
modulate the level of GPCR homodimers. Note that current techniques do
not allow us to distinguish between ligand-mediated association of mono-
mers into dimers and ligand-mediated changes in the conformation of dimers
(which would appear as an increase in dimer levels). However, in the major-
ity of cases, the level of GPCR homodimers is unaffected by agonist treat-
ment, suggesting that these receptors generally exist as constitutive dimers.
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3. HETERODIMERS
A report on interactions between muscarinic m3 and adrenergic α2c

receptors was among the first studies assessing the functionality of
heterodimeric receptors (47). Two chimeric receptor molecules, α2c/m3 and
m3/α2c, were generated by exchanging the C-terminal regions (containing
TM domains VI and VII) between the α2c and m3 receptors. The mutant
receptors were then expressed in COS-7 cells, either alone or in combina-
tion, and radioligand-binding studies were performed to determine their abil-
ity to bind muscarinic and adrenergic antagonists. When expressed alone,
the chimeric constructs were unable to bind their selective radioligands. In
contrast, co-expression of α2c/m3 and m3/ α2c produced significant binding
of selective α2c and m3 receptor ligands, suggesting that interactions be-
tween the two receptors created specific binding sites for each ligand. Addi-
tionally, muscarinic agonist-induced phosphatidylinositol hydrolysis was
demonstrated to occur in cells co-expressing the α2c/m3 and m3/ α2c recep-
tors but not in cells expressing either receptor alone (47). These data were
the first to suggest that two nonfunctional chimeric receptors could physi-
cally associate to create a functional heterodimeric receptor with effective
ligand-binding and signaling capabilities.

In a similar set of studies, Maggio et al. (48) examined a chimeric m3/m2
receptor that contained 16 amino acids of the m2 receptor sequence in the third
cytoplasmic loop of the m3 receptor. Although this chimeric receptor could
bind muscarinic ligands, it was unable to stimulate phosphatydylinositol hy-
drolysis. However, when cotransfected with a truncated form of the m3 recep-
tor (which was also incapable of signaling on its own), phosphatydylinositol
breakdown did occur, demonstrating once again that dimerization of two non-
functional chimeric receptors could effectively produce a functional receptor
complex.

Following these pivotal findings with chimeric receptors, researchers was
discovered that heterodimerization occurs between many naturally occur-
ring GPCRs (Table 2). Indeed, this phenomenon has been shown to occur
between closely related GPCR types as well as between distantly related
receptors. In each case, the resultant heterodimeric receptor complex has
been found to differ in its pharmacological properties from either of the
individual receptors (see refs. 1–5). Occasionally, heterodimerization of two
receptors is necessary to constitute a functional receptor (49–57). In other
cases, heterodimerization simply modulates GPCR pharmacology by affect-
ing ligand binding, G protein coupling, signaling, and/or trafficking proper-
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Table 2
GPCR Heterodimers

Heterodimers References

Heterodimerization is necessary for receptor function
GABABR1–GABABR2 49–52
T1R2–T1R3 56,57
T1R1–T1R3 55

Heterodimerization modulates receptor pharmacology
Closely related receptors
κ–δ opioid 58
μ–δ opioid 59–61
SSTR1–SSTR5 19
D2R dopamine–D3R dopamine 62
CCR2–CCR5 65
TRHR1–TRHR2 32
α1a adrenergic–α1b adrenergic 63
α2a adrenergic–β1 adrenergic 64

Distantly related receptors
D2R dopamine–SSTR5 66
A1R adenosine–P2Y1R 68
A1R adenosine–D1R dopamine 69
A2AR adenosine–D2R dopamine 70
A1R adenosine–mGluR1α 71
A2AR adenosine–mGluR5 72
AT1R angiotensin–B2R bradykinin 73
κ-opioid–β2 adrenergic 75
δ-opioid–β2 adrenergic 75
μ-opioid–SSTR2A 76
μ-opioid– α2A-AR 77
μ-opioid–substance P 78

Heterodimerization inactivates a functional receptor
CCR2V64I–CCR5 82
CCR2V64I–CXCR4 82
SSTR2A–SSTR3 79
AT1R –AT2R 81
β1-adrenergic–β2-adrenergic 80

Abbreviations: GABA, γ aminobutyric acid; T1R, taste 1 receptor; SSTR, somatostatin
receptor; CCR, chemokine receptor; TRHR, thyrotropin-releasing hormone receptor.
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ties (58–77). There are also some examples of heterodimerization in which
one of the GPCRs in the heterodimer is inactivated (78–80). Examples of
these scenarios are described in the following Subheadings 3.1.–3.3.

3.1. Heterodimerization Is Necessary for Receptor Function

A fundamental role for GPCR heterodimerization in generating active
receptors has been observed in naturally occurring metabotropic γ-
aminobutyric acid (GABA)B receptors. In a series of seminal studies,
researchers demonstrated that the co-expression of nonfunctional GABAB-
R1 and GABAB-R2 receptors resulted in a functional receptor, as evidenced
by the high-affinity GABA binding and G protein activation (49–51). In
fact, when expressed alone, neither receptor is capable of activating inwardly
rectifying potassium channels; heterodimeric assembly of GABAB-R1 and
GABAB-R2 is required for the efficient signaling of GABAB receptors
through these channels (49–52). We now know that GABAB-R2 is required
for the cell-surface expression of GABAB-R1 (53). Heterodimerization of
the two receptors results in the masking of an endoplasmic reticulum reten-
tion signal on GABAB-R1, allowing the proper targeting of the assembled
complexes to the plasma membrane (54). Therefore, the heterodimeric
interaction between GABAB-R1 and GABAB-R2 receptors appears to be a
prerequisite for the formation of a fully functional GABAB receptor.

Similarly, heterodimerization of mammalian taste receptors is required
for the recognition of specific tastes. The mammalian amino acid taste re-
ceptors T1R1 and T1R3 have been shown to function as heterodimers (55).
These heterodimers function as L-amino acid sensors but do not respond to
D-enantiomers or other compounds. The same T1R3 receptors also dimerize
with T1R2 receptors to function as broadly tuned sweet sensors, recogniz-
ing a number of sweet-tasting molecules (56,57).

Although the cases described here represent those for which obligatory
heterodimerization has been firmly established, there are numerous other
examples in which heterodimerization appears to play a crucial role in
increasing pharmacological diversity by altering the various properties of
individual receptors. Many of these receptor pairs are discussed in the Sub-
heading 3.2.

3.2. Heterodimerization Modulates Receptor Pharmacology

3.2.1. Heterodimerization Between Closely Related Receptors

Heterodimerization has been shown to modulate the ligand-binding, sig-
naling, and receptor-trafficking properties of several related GPCRs. In the
case of the opioid receptor family, δ-opioid receptors have been shown to
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interact with both κ- and μ-opioid receptors to form heterodimers with al-
tered pharmacological properties (58,59). In the case of interactions between
κ- and δ-receptors, the resultant κ–δ heterodimers were found to have greatly
reduced affinities for highly selective κ- or δ-receptor ligands but had
enhanced affinities for partially selective ligands (58). In the presence of a
δ-selective agonist, a κ-selective agonist bound to the receptors with high
affinity, and, reciprocally, a κ-selective agonist increased the binding of a δ-
selective agonist. Cells co-expressing κ- and δ-receptors also exhibited syn-
ergistic effects on agonist-induced signaling (as measured by cAMP and
phosphorylated mitogen-activated protein kinase levels). Finally, dimeriza-
tion was found to affect the trafficking properties of these receptors because
etorphine-induced trafficking of the δ receptor was significantly reduced in
cells expressing κ–δ heterodimers, suggesting that δ-receptors are retained
at the cell surface as a result of dimerization with κ-receptors (58).

Studies with μ–δ heterodimers have also demonstrated decreased binding
affinity to selective synthetic agonists (60). The rank order of agonist affini-
ties for the heterodimeric receptors was different from that of the individual
receptors, suggesting allosteric modulation of the binding pocket (59,60).
Treatment of cells expressing μ–δ heterodimers with very low doses of δ-
selective ligands produced a significant increase in the binding of a μ-selec-
tive agonist; this increase was seen irrespective of the temperature at which
the binding assay was performed (Fig. 2). This treatment also enhanced μ-
receptor-mediated signaling (59,61). It is possible that the heterodimeric μ-
δ complex associates with pertussis toxin-insensitive G proteins, because
treatment with pertussis toxin did not abolish the synergistic binding (Fig.
3) and signaling (60). Therefore, the unique properties of μ–δ  and κ–δ-
receptor dimers suggest that heterodimerization may at least partially
account for pharmacologically characterized opioid receptor subtypes for
which genes have not been isolated.

Heterodimerization has also been shown to affect signaling and traffick-
ing properties of somatostatin (SST) receptor types (19). Although SSTR5
receptors undergo agonist-induced internalization, SSTR1 receptors do not
(and are externalized by prolonged agonist treatment). Rocheville et al. (19)
showed that co-expression of SSTR5 with SSTR1 receptors leads to agonist-
induced internalization of SSTR1 receptors. Additionally, chronic treatment
of SSTR1–SSTR5 co-expressing cells with an SSTR5-selective ligand
induced increases in the cell-surface expression (retention) of SSTR1 recep-
tors. These results suggest that crosstalk between SSTR1 and SSTR5 recep-
tors may be necessary for SSTR1 receptor trafficking and an increase in
cell-surface expression (retention). Also, co-expression of a mutant SSTR5
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receptor lacking its ligand-binding site with a mutant SSTR1 receptor con-
taining a C-tail deletion (which is thus unable to signal) led to a significant
increase in receptor signaling, as evidenced by somatostatin-induced adenylyl
cyclase inhibition (19). This further supports a role for heterodimerization in
modulating receptor signaling properties.

Fig. 2. Effect of temperature on potentiation of μ-agonist binding by δ-antago-
nist. Chinese hamster ovary (CHO) cells stably co-expressing Flag-tagged μ- and
myc-tagged δ-opioid receptors were plated into 24-well plates (5 × 105 cells/well).
The plates were kept at either 4°C (A), 10°C (B), room temperature (C), or 37°C
(D). Cells were then incubated with [3H]DAMGO (0.1–10 nM) in the presence or
absence of 10 nM TIPPΨ for 2 h at the temperatures mentioned. Nonspecific bind-
ing was determined in the presence of 1 μM of DAMGO or diprenorphine. Wells
were washed three times with 50 mM of ice-cold Tris-Cl, pH 7.5. Cells were lysed
overnight with 1 N of NaOH and neutralized with 1 N of HCl, and radioactivity was
collected and measured in a scintillation counter. Results are mean ± SEM of 3
experiments in triplicate.
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Heterodimers of closely related receptors exhibiting altered signaling and/
or trafficking properties have also been reported for the D3–D2 dopamine
(62), TRHR1–TRHR2 (32), α1a-α1b adrenergic (63), α2a-β1 adrenergic (64),
and CCR2–CCR5 chemokine receptors (65). In the case of CCR2–CCR5, it
was shown that heterodimers were more efficient at inducing a biological
response than either receptor alone (65). Additionally, although both CCR2
and CCR5 normally associate with Gαi proteins, CCR2–CCR5 heterodimers
were able to recruit Gq/11 proteins and trigger a pertussis toxin-resistant cal-
cium flux (65). Taken together, these studies show that heterodimerization
between specific subtypes of a GPCR can lead to alterations in pharmaco-
logical, signaling, and trafficking properties, which may account for the wide
range of biological responses that follow receptor activation.

3.2.2. Heterodimerization Between Distantly Related Receptors

Heterodimeric assembly between the SSTR5 receptor and the structurally
related D2 dopamine receptor generated a novel receptor that was pharma-
cologically distinct from either of its receptor homodimers (66). It is believed
that heterodimerization between these receptors may explain some of the
biological interactions observed between these two neurotransmitters (67).
The D2–SSTR5 receptor heterodimer had a greater affinity for both dopam-
ine and SST receptor agonists and exhibited enhanced G protein and effec-
tor coupling to adenylyl cyclase. As observed with opioid receptor dimers,
synergistic binding of dopamine and SST receptor agonists occurred in D2–
SSTR5 heterodimers. Additionally, the heterodimeric D2–SSTR5 receptor
appeared to be most efficient when simultaneously occupied by its two ago-
nists (66). Interestingly, a dopamine receptor antagonist produced a decrease
in the binding of a SSTR selective agonist. These results are in contrast to
μ–δ heterodimers, in which the δ-antagonist promoted an increase in the
binding and signaling by the μ-receptor selective agonist (59,61).

Two distinct purinergic receptors, adenosine A1 (coupled to Gi/ο) and
P2Y1 (coupled to Gq), have been shown to form heterodimers with altered
ligand-binding properties (68). The heteromeric complex exhibited
enhanced P2Y1R-like pharmacology: there was a significant reduction of
A1R-agonist and antagonist binding and a 400-fold increase in the binding
affinity of adenosine diphosphate-βS, a potent P2Y1R agonist (68). Adenos-
ine A1 has been shown to form heteromeric complexes with D1 dopamine
receptors (69), as does adenosine A2A with D2 dopamine receptors (70).
These phenomena may constitute the basis for adenosine–dopamine antago-
nism, because co-exposure of the A1R-D1R heterodimers to A1R and D1R
selective agonists, but not to either agonist alone, caused a substantial
reduction in D1R-mediated cAMP accumulation, which was associated with
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receptor co-internalization (69). A similar effect was observed with A2AR-
D2R heterodimers (70). The interactions between adenosine and dopamine
receptors are believed to be responsible for the ability of adenosine agonists
to inhibit and adenosine antagonists to potentiate the behavioral effects in-
duced by dopamine agonists. This may be relevant for the development of
adenosine and dopamine antagonists/agonists for the treatment of neuropsy-
chiatric diseases in which D2R has been implicated, such as Parkinson’s
disease, schizophrenia, Huntington’s disease, and dystonia.

In addition to modulating dopaminergic activity, adenosine also acts to
inhibit glutamate neurotransmission in several brain regions. Therefore, the
functional interactions between adenosine and glutamate receptors have
been investigated (71). In cells co-expressing A1R and mGluR1α, a
glutamate/adenosine synergism was discovered at the level of calcium
mobilization (71). Similarly, adenosine A2AR and mGluR5 have been
shown to exhibit a synergistic effect on extracellular signal-regulated kinase

Fig. 3. Synergistic interactions between μ- and δ-opioid receptors persist after
treatment with pertussis toxin. Chinese hamster ovary (CHO) cells stably co-ex-
pressing Flag-tagged μ- and myc-tagged δ-opioid receptors were plated into 24-
well plates (5 × 105 cells/well). On the day of the assay, cells were untreated
(control) or pretreated with 15 ng/mL of pertussis toxin (PTX) for 3 h at 37°C. Cells
were then incubated with 10 nM of [3H]DAMGO in the presence or absence of
either TIPPΨ, Delt II, or DPDPE (final concentration: 10 nM) for 2 h at 37°C.
Nonspecific binding was determined in the presence of 1 μM of DAMGO or
diprenorphine. Wells were washed three times with 50 mM of ice-cold Tris-Cl, pH
7.5. Cells were lysed overnight with 1 N of NaOH and neutralized with 1 N of HCl,
and radioactivity was collected and measured in a scintillation counter. Results are
mean ± SEM of 3 experiments in triplicate.
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(ERK1/2) phosphorylation and on the expression of the immediate-early
gene c-fos (72). A similar synergistic effect on c-fos expression was also
observed in striatal sections after administration of A2AR and mGluR5 se-
lective agonists to rats with intact dopaminergic innervation (72). These re-
sults indicate that A2AR-mGluR5 interactions may be involved in striatal
neuronal plasticity, such as long-term potentiation and depression.

Heterodimerization of two different vasoactive hormone receptors, the an-
giotensin II type 1 (AT1R) receptor and bradykinin B2 receptor (B2R), affects
the signaling and trafficking of these receptors (73). Co-expression of AT1R
and B2R increased the efficacy and potency of angiotensin II but decreased the
efficacy and potency of bradykinin. Additionally, angiotensin-stimulated acti-
vation of Gαi and Gαq proteins was increased by heterodimerization of the
AT1R and B2R, independently of bradykinin binding. Finally, internalization
of AT1R-B2R heterodimers occurred by a dynamin-dependent mechanism, as
opposed to the endocytotic pathway of the individual receptors, which is
dynamin- and clathrin-independent (73). Interestingly, it has been shown that
pre-eclamptic hypertensive women exhibit a significant increase in the levels
of AT1R-B2R heterodimers, which display increased sensitivity toward an-
giotensin II. Thus, the hypertension in pre-eclampsia may be related to an in-
crease in AT1R-B2R heterodimers in platelets (74).

Heterodimerization between members of two distinct GPCR subfamilies
has also been demonstrated using δ or κ-οpioid receptors (receptors that
couple to inhibitory G proteins) and β2-ARs (receptors that couple to stimu-
latory G proteins) (75). Although dimerization of opioid receptors with β2-
receptors did not significantly alter ligand-binding properties, it did affect
receptor trafficking. When co-expressed with δ-receptors, which normally
internalize rapidly, β2-receptors underwent opioid-mediated endocytosis.
However, when co-expressed with κ-receptors, which do not internalize rap-
idly, β2-receptors did not undergo endocytosis in response to isoproterenol
or opioids. Additionally, the loss of β2-receptor internalization was accom-
panied by some loss of receptor signaling in κ–β2 cells (75). In light of these
results, it is conceivable that opioid receptors and β2-receptors physically
associate in vivo to influence each other’s function. For example, cardiac
effects mediated by opioids (such as bradycardia) may, to some extent, result
from dimerization between opioid receptors and β2 receptors.

The μ-οpioid receptor has also been shown to heterodimerize with dis-
tantly related GPCRs such as SSTR2A (76), α2Α-AR (77), or substance P
(78) receptors. These receptor heterodimers exhibit properties that are quite
distinct from each individual receptor, again indicating that
heterodimerization may serve to increase the functional diversity of indi-
vidual receptors.
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3.3. Heterodimerization Inactivates a Functional Receptor

We have seen that in many cases, GPCR dimerization results in the modu-
lation of receptor activity to exhibit enhanced function. However,
heterodimerization can also result in a decrease in the activity of a fully
functional receptor, in which case one of the receptors forming the
heterodimer no longer signals in response to its agonist. This has been
observed with SSTR2A–SSTR3 receptor heterodimers (79). These
heterodimers had a high affinity for an SSTR2-selective agonist but dis-
played a 100-fold lower affinity for an SSTR3-selective agonist. Addition-
ally, although an SSTR2A-selective ligand stimulated strong GTPγS
binding, adenylyl cyclase inhibition, and ERK1/2 activation in cells express-
ing the heterodimers, an SSTR3-selective agonist had no effect on signal-
ing. These findings imply that SSTR2A-SSTR3 heterodimerization
generates a receptor with a ligand-binding site and a functional profile
resembling that of the SSTR2A receptor. On the other hand, the SSTR3
receptor is rendered inactive by heterodimerization. Additionally, SSTR2A–
SSTR3 heterodimerization alters the desensitization rate of the receptor (79).

Similarly, heterodimerization of β1- and β2-ARs has been shown to inhibit
β2-receptor function in HEK293 cells (80). Although adenylyl cyclase
activity was unaltered in cells expressing β1-β2 heterodimers, the ability of
the β2-receptor to activate the ERK1/2 signaling pathway was lost. Also,
heterodimerization of β1- and β2-receptors prevented agonist-induced inter-
nalization of the β2-receptor. Given that cardiac cells naturally express both
β1- and β2-receptors and that β2-receptor stimulation does result in ERK1/2
signaling in vivo, a mechanism for the sequestration of β2-receptors from
β1-receptors may be required for β2-receptor function.

An interesting case is that of μ-α2Α heterodimers, in which co-activation
of both receptors leads to a decrease in signaling, whereas activation with
ligands to either receptor leads to an increase in signaling. These observa-
tions were also made in primary spinal cord neurons, suggesting that these
receptor interactions may play an important role in modulating pain trans-
mission (77).

Heterodimerization-mediated inactivation of a fully functional receptor
can have important physiological consequences. This is illustrated in the
case of AT1R-AT2R heterodimerization (81). AT2R binds directly to AT1R,
resulting in a decrease in receptor function (81). This observation was made
in cultured cells as well as human myometrial biopsies. The physiological
relevance of AT1R-AT2R heterodimerization is evident during pregnancy,
when the level of AT2R is seen to decrease and angiotensin II responsive-
ness of the myometrium increases (78). Another example is provided by



340 Abul-Husn et al.

heterodimers between a naturally occurring mutant of the CCR2 chemokine
receptor CCR2V64I (this mutation occurs at an allelic frequency of 10–25%)
and chemokine CCR5 or CXCR4 receptors (82). The human immunodefi-
ciency virus (HIV) gains entry into cells via interaction with CCR5 or
CXCR4 receptors. However, association of CCR2V64I with either receptor
prevents HIV access to the cell (82) and is the likely mechanism underlying
the ability of CCR2V64I to delay the progression of acquired immunodefi-
ciency syndrome for 2 to 4 years in patients carrying this mutation. Taken
together, these results suggest alterations in receptor heterodimerization in
normal cell physiology and disease states. Therefore, developing drugs that
selectively target receptor heterodimers would be of importance in the case
of various pathologies.

4. CONCLUSIONS
Although traditional views have held that the functional GPCR comprised

of a single monomeric entity, it is now evident that GPCRs exist as dimers
or even oligomers. Additionally, a growing number of reports clearly dem-
onstrate that GPCRs can heterodimerize not only with other GPCRs but also
with proteins such as receptor activity-modifying proteins (Chapters 4, 9,
13, and 14), leading to a profound modulation of pharmacological, signal-
ing, and trafficking properties. To date, the majority of studies on GPCR
dimerization have been carried out in heterologous expression systems.
Therefore, further studies are necessary to identify the physiological signifi-
cance of receptor dimerization in vivo. Advances in the techniques used to
investigate protein–protein interactions in vivo along with the development
of reagents selective for the dimeric or oligomeric form of GPCRs, such as
selective antibodies and/or ligands, will help explain the physiological con-
sequences of this phenomenon. The presence of naturally occurring splice
variants of some GPCRs and their effects on the pharmacology and function
of the corresponding wild-type receptors indicates that in addition to gener-
ating pharmacological diversity, receptor heterodimerization may have pro-
found influences on receptor function under normal as well as pathological
conditions. This also suggests that further studies are needed to identify other
naturally occurring mutant GPCRs and to analyze their role under normal
and pathological conditions. The identification of heterodimers that are
formed in vivo will enable the development of novel drugs and therapies for
the treatment of a number of pathological conditions in which GPCR
involvement has been implicated.
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Role of Heteromeric GPCR Interactions

in Pain/Analgesia

Andrew P. Smith and Nancy M. Lee

1. INTRODUCTION

The mammalian response to pain is extremely complex, involving multiple
nervous pathways in the brain and spinal cord as well as in the periphery. The
chemical signaling that links individual neurons in these pathways makes use
of a great variety of neurotransmitters and neuromodulators, most of which
act at G protein-coupled receptors (GPCRs). In fact, most of the known GPCR
types have been shown to play some role in pain processing (1,2).

Pharmacological manipulations have revealed that these GPCRs interact
extensively with each other. Classically, these interactions have been ac-
counted for by synaptic connections between a population of neurons that
releases one type of transmitter and a second population, which is stimu-
lated by that transmitter, that releases a different kind of transmitter. For
example, it is well-established that nociception in the spinal cord is partially
controlled by descending systems from the brain that release the monoam-
ine neurotransmitters norephinephrine, serotonin, and, perhaps, dopamine
(3–6). At the spinal cord level, these transmitters interact with their appro-
priate GPCRs on dorsal horn neurons, some of which release the transmitter
enkephalin. Enkephalin, acting on opioid receptors, may then inhibit the
release of transmitters, such as glutamate and substance P, from incoming
sensory afferents (7,8). Opioid receptor activation in the spinal cord is also
associated with release of acetylcholine (ACh), a ligand for muscarinic
receptors (9). Activation of spinal muscarinic receptors, in turn, may be
associated with feedback on α2-adrenergic receptors (ARs) and on seroto-
nergic receptors (10) as well as a reduction in release of substance P (11).
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However, not all functional interactions among GPCRs necessarily occur
through multisynaptic pathways. Because a great deal of pain processing
occurs in a few restricted areas of the central nervous system (CNS) (includ-
ing the dorsal horn of the spinal cord, the rostroventral medulla [RVM], and
the peri-aqueductal gray [PAG] area of the brain [12,13]) and because some
GPCRs have been shown to be colocalized on certain populations of neu-
rons (14–17), the possibility exists for functional interactions of these
receptors within single cells. Such interactions are commonly referred to as
crosstalk and occur between GPCRs at the level of G proteins (18,19) and
their regulated enzymes (20,21).

Recently, crosstalk has also been discovered at the earliest conceivable
point in signal transduction: physical association of receptors. Techniques
such as sodium dodecyl sulfate gel analysis, crosslinking, immunoprecipita-
tion, and bioluminescence resonance energy transfer have established that a
growing number of GPCRs can form homomers or heteromers (22,23). The
formation of such complexes obviously has the potential to increase the sig-
naling capacity of a ligand that is selective for a particular receptor. Not
only may a ligand modulate the activity of a receptor it does not directly
bind to but, in some cases, heteromers have been shown to have binding
and/or functional properties that are different from either of their compo-
nent receptors (24–26). This suggests that the physical complex formed
between the two receptors may associate with a different set of signal-trans-
ducing molecules from those activated by either receptor alone.

To date, there appears to be no compelling evidence that physical asso-
ciation of GPCRs plays a role in pain processing. Because receptor dimer-
ization has been appreciated only recently, however, this possibility has not
been thoroughly explored. Regardless, there are numerous examples of func-
tional interactions among these receptors to which physical association
might contribute. This chapter evaluates this possibility for several GPCRs
that play a prominent role in pain processing.

2. ROLE OF HETEROMERIZATION IN FUNCTIONAL
INTERACTIONS OF GPCRS

2.1. Interactions of Different Opioid Receptor Types

Opioid agonists, particularly morphine, are widely used as general anal-
gesics for pain that is experienced following surgery or that is associated
with terminal illnesses. The nervous pathways involved in opioid analgesia
are not completely understood, but they include the PAG, RVM, and dorsal
horn of the spinal cord (27). Opioid agonists are active when injected into
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these regions, blocking transmission of pain signals on their multisynaptic
journey from peripheral receptors to the brain.

Pharmacological studies initially identified three major types of opioid
receptors in the mammalian CNS: μ, δ, and κ (28,29). Moreover, each of
these receptor types is believed to exist in two or more subtypes (30–33),
although to date, there is no evidence that these subtypes correspond to dis-
tinct genes or nucleotide sequences. The μ-receptor is believed to play the
primary role in mediating antinociception, although δ and κ-receptors are
antinociceptive when administered to certain CNS areas and antinociception
assessed by certain kinds of assays. However, physiological interactions are
well-established among these three receptor types. For example, ligands se-
lective for δ-opioid receptors, such as DPDPE, can potentiate antinociception
mediated by μ-selective ligands (DAMGO) in both brain (34) and spinal cord
(35,36). Many of these studies also used selective antagonists for further
proof that the observed effects did not result from crossreactivity (i.e., from
interaction between δ-ligand and μ-receptors). Interactions have also been
reported between κ-agonists such as U-50,488H or dynorphinA (1–17) and
morphine or other μ-agonists (37,38).

Heteromer formation between μ- and δ-opioid receptors has been demon-
strated both in transfected cells and in a cell line that contains both of these
receptor types endogenously (24,25). Heteromers of δ/κ-receptors have also
been reported (39), but no μ–κ  heteromers. In the case of μ–δ heteromers,
Gomes et al. (25) reported some evidence for potentiation, with occupation
of one type of receptor increasing affinity of ligands for the other type; how-
ever, both agonists and antagonists had this effect. In contrast,George et al.
(24), found that selective μ- and δ-agonists had less affinity for heteromers
than for pure receptors of the appropriate type. It should be noted that in-
hibitory interactions between these two kinds of ligands have also been re-
ported in vivo (40).

In summary, different types of opioid receptors manifest both functional
and physical interactions. There is also some evidence for colocalization,
although this evidence is not as strong. Aside from some early studies pre-
dating the development of highly selective ligands (41,42), the main evi-
dence for colocalization of different opioid receptor types has been provided
by studies of neuroblastoma-derived cell lines. Not only do some of these
cell lines contain more than one type of opioid receptor, but, in some cases,
the receptors have been shown to interact functionally (43–45). As noted
earlier, heteromer formation between μ- and δ-opioid receptors was also
demonstrated in one of these cell lines (25).
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Nevertheless, studies of endogenous cells are needed. Cheng et al. (14)
reported colocalization of μ- and δ-opioid receptors in dorsal horn neurons,
but the great majority of neurons containing one type of receptor lacked the
other kind, and even in cells containing both, much of the populations were in
different regions of the cell. Colocalization of two, or even all three, major
opioid receptor types has also been reported in dorsal root ganglion cells (46).
Functional interactions among them seem likely to occur at this site, but are
not as well-established as they are within the spinal cord. To our knowledge,
colocalization of opioid receptor types in brain has not been reported.

2.2. Opioid–Adrenergic Interactions
As noted in Section 1., pain inhibitory systems descending from the brain to

the spinal cord are partially mediated by noradrenergic processes. The latter
interact intimately with opioid systems. Grabow et al. (47) reported that in-
trathecal administration of yohimbine (an α2-antagonist) blocked
antinociception induced by injection of deltorphin (a δ-opioid agonist) into the
RVM, confirming the role of α2-receptors in opioid antinociception activated
at the supraspinal level. Intrathecal administration of yohimbine also blocked
a synergistic effect observed when low doses of deltorphin were administered
simultaneously to both RVM and spinal cord. Finally, a synergistic effect was
observed when subanalgesic doses of deltorphin and an α2-agonist were ad-
ministered simultaneously to the spinal cord. Somewhat similar results were
observed by Hao et al. (48), who used endormorphin, a μ-opioid agonist.

Therefore, both μ- and δ-opioid receptors interact with α2-receptors in
the spinal cord. It has been conventionally believed that this functional
interaction of opioid and ARs in the spinal cord results from multisynaptic
mechanisms. However, the finding of a synergistic interaction between these
two systems in the spinal cord suggests that the interaction is mediated not
by a sequential pathway but by a parallel pathway or possibly a pathway
involving action of the two transmitters on a common neuron. Colocalization
of opioid and ARs has not been demonstrated in the spinal cord, but Jordan
et al. (17) recently reported colocalization of μ-opioid receptors and α2-
receptors in hippocampal neurons. These two receptors form functional
heteromers with properties that are different from the individual receptors.
Moreover, dimerization of both δ- and κ-opioid receptors with β2-ARs has
been detected (49,50). Therefore, a role for heteromerization in this major
functional interaction in the spinal cord should not excluded.

2.3. Opioid–Substance P Interactions

The endogenous peptide substance P plays an important role in pain trans-
mission at the initial spinal cord level. Administration of substance P to the



GPCR Interactions in Pain 353

spinal cord induces thermal nociception (as measured by the tail flick test
[51]), and elimination of either substance P (52) or its receptor (53) in ani-
mals by homologous recombination results in altered pain response. Sub-
stance P is contained in the terminals of many primary afferent fibers to the
dorsal horn of the spinal cord (54) and is released by noxious stimuli (55).
Therefore, substance P is a major neurotransmitter at the first central syn-
apse in the nociceptive pathway.

Morphine is antinociceptive when administered to the spinal cord (56),
and its action is believed to at least partially involve an inhibition of the
substance P-mediated nociceptive pathway (57). An immunocytochemical
study confirmed that opioid and substance P receptors are colocalized on
dorsal horn neurons in the nociceptive pathway (15). Currently, there is no
study demonstrating a physical association between μ-opioid and substance
P receptors; however, as discussed earlier, different opioid receptor types are
known to form heteromers with each other as well as homomers. Some stud-
ies have suggested that these dimers may have altered internalization proper-
ties and that one type of receptor may promote or inhibit internalization of
another (24,58,59). This possibility is interesting in light of a study by Trafton
et al. (60) on the effect of morphine on substance P receptor internalization
in dorsal horn cells. Although morphine alone had little effect, the opioid
decreased substance P internalization when co-administered with a dose of
substance P receptor antagonist, which also was ineffective when adminis-
tered alone. Thus, μ-receptor–substance P heteromerization is a possible ex-
planation for this phenomenon.

In addition to providing insights into substance P actions, this finding
may have clinical relevance. Despite the nociceptive activity of substance P,
antagonists to this receptor are not antinociceptive in humans, although they
are antinociceptive in animal models of neuropathic and inflammatory pain
(61). The study by Trafton et al. (60) suggests that substance P antagonist
might be a more effective antinociceptive agent in the presence of morphine
or other opioid agonist by blocking internalization and recycling of sub-
stance P receptors.

2.4. Opioid–Cannabinoid Interactions

The cannabinoid receptors CB1 and CB2 have recently been implicated
in pain processing in both brain and spinal cord as well as in the periphery
and in several pain models (52,63). Although some evidence suggests they
can mediate antinociception by direct interaction with cannabinoid recep-
tors (64), cannabinoid agonists such as tetrahydrocannibinol (THC) also
interact with the opioidergic system. Antinociception induced by THC was
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potentiated by morphine and blocked by opioid antagonists (65). Con-
versely, THC can potentiate morphine antinociception (66).

Several cell lines derived from neuroblastomas have been shown to have
cannabinoid and opioid receptors (67,68). In NG108-15 neuroblastoma x
glioma cells, cannabinoid agonists can inhibit adenylate cyclase (69), simi-
larly to δ-opioid agonists. Moreover, exposure of cells to THC reduced
opioid receptor binding and opioid-mediated inhibition of adenylyl cyclase,
apparently through effects on G proteins (70). Recently, colocalization of
CB1 and μ-opioid receptors was reported on spinal interneurons (16).

Therefore, functional interactions between opioid and cannabinoid recep-
tors are well-established, and they are likely to be colocalized at the appro-
priate in vivo sites. Similarly to opioid–substance P interactions, evidence
of heteromer formation between these receptors is lacking. However, simi-
larly to opioid receptors, cannabinoid receptors, are known to associate with
themselves (98), suggesting that studies of physical interactions between
these two GPCR classes may be fruitful.

2.5. Dopamine–Adenosine Interactions

One of the most extensively documented cases of interaction between
GPCRs is the interaction between receptors for dopamine and adenosine.
Functional interactions were initially described in models of Parkinsonism,
where adenosine agonists inhibit (whereas antagonists potentiate) the effects
of dopamine agonists (71,72). It was subsequently reported that dopamine
D1 and adenosine A1 receptors are colocalized in cultured cortical cells (73),
whereas D2 and A2A receptors are colocalized in cells of the primate stria-
tum (74). Studies of both cultured neurons as well as transfected cells sug-
gested that colocalized receptors could interact to affect binding, signal
transduction, and internalization (75–77). Finally, heteromer formation was
demonstrated between D1/A1 and D2/A2A receptors in cultured neurons as
well as in transfected cell lines (73,77). Thus, it appears that many physi-
ological interactions between dopamine and adenosine could be accounted
for, in principle, by physical associations of their receptors.

The studies cited earlier are directly relevant to the role of dopamine and
adenosine in motor systems. There is much less evidence of dopamine–
adenosine interaction in pain processing, but both of these receptors play a
significant role in pain processing in both brain and spinal cord (6,78–80). A
recent study reported a biphasic effect of dopamine agonist on adenosine
agonist-mediated antinociception (81).
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2.6. Dopamine–Somatostatin Interactions

Somatostatin (SST) was first characterized as an inhibitor of pituitary
secretion of growth hormone, but some evidence suggests that this peptide
is nociceptive. SST is released in the spinal cord in response to thermal (82)
or inflammatory (83) stimuli. Intracerebrovascular injection of SST
decreased the threshold to thermal stimulus (84), whereas i.t. administration
of antagonist (85) or antibody (86) was antinociceptive against thermal or
inflammatory pain, respectively. However, other studies have challenged
the notion that SST has nociceptive effects at subtoxic doses (87), and one
study reported that SST administered intrathecally reduced pain in two can-
cer patients (88).

SST and dopamine are known to play a major role in mediating motor
behaviors, and numerous studies have documented a functional interaction
between receptors for the two transmitter/modulators (89,90). The recent
report that SST5 and dopamine D2 receptors are colocalized in striatal neu-
rons and that these receptors, when transfected at relatively low density in a
stable cell line, form heteromers (26) suggests that physical association
might account for some of the functional interactions. This possibility is
further supported by studies demonstrating that dopamine agonists or an-
tagonists modulate both SST binding and SST-mediated second messenger
effects in striatal or hippocampal neurons (91,92).

These motor regions are not known to be involved in pain processing, but
the demonstration that dopamine and SST receptors can associate in such
neurons suggests that if they are colocalized in other CNS areas, then they
might also form heteromers in these motor regions. Localization studies of
these receptors suggest that the dorsal horn of the spinal cord is one com-
mon area that plays a prominent role in pain processing where the receptors
might be co-expressed (93,94). To date, however, such studies have concen-
trated on SST2 and D1 and D2 receptors; mapping the distribution of other
subtypes may provide further clues of possible physical and functional
interactions.

3. CONCLUSIONS
The examples of GPCR interactions discussed in this chapter demonstrate

that heteromer formation can, at least in principle, play an important role in
mediating many major functional interactions between these receptors in
pain processing. If this has not been definitively established for any particu-
lar example of functional interaction and the evidence for most cases remains
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rather weak, we must remember this is largely because the essential studies
of colocalization and heteromer formation have not yet been carried out.
Only recently have we become aware of the significance that such data could
have for our understanding of how pain processing occurs.

Moreover, an even more important role may be played by homomer for-
mation. More than a dozen different GPCR receptors have been shown to
form homomers, including μ, δ-, and κ-opioid receptors (39,58,59); α2- and
β2-ARs (49,95); CB (96); M3 muscarinic (97); D2 and D3 dopamine recep-
tors (98,99); and SST2 and SST3 receptors (100). In several cases, more
than one kind of subtype of the receptor can associate with itself. Obviously,
in these cases, the possibility of physiological relevance is much greater
than with heteromer formation, where co-expression of the two different
GPCRs in endogenous systems must be demonstrated. If two receptor mol-
ecules of the same type physically associate when transfected into a cell
line, then the presumption exists that they can associate within any cell in
which that receptor is found—although perhaps not to the same extent if
their endogenous concentrations are lower. However, for this reason, it is
more difficult to demonstrate that homomerization has functional conse-
quences (i.e., that it results in a different effect in the cell from that trans-
duced by ligand binding to a single receptor molecule). Indeed, the growing
realization that homomer formation may be common among GPCRs raises
the issue of whether any effects transduced by these receptors are achieved
through single molecules, as was commonly accepted only a few years ago.
This issue must be resolved in future studies of GPCR association.
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1. LINKING G PROTEIN ACTIVATION
TO LIGAND DIVERSITY: EVOLUTION
OF THE G PROTEIN-COUPLED RECEPTOR FAMILY

1.1. G Protein-Coupled Receptors Transduce Signals
of Exceptionally Different Chemical Nature

Genome sequencing projects have identified the G protein-coupled
receptor (GPCR) superfamily as one of the largest classes of proteins in
mammalian genomes (1). For example, preliminary analyses of the human
genome have revealed up to 600 GPCRs (2,3). Additionally, GPCRs are
scored as the most common family in the human proteome at the Proteome
Analysis Database of the European Bioinformatics Institute(see http://
www.ebi.ac.uk/proteome/HUMAN/interpro/top15f.html), with more than
800 sequences. Based on phylogenetic analyses of the human genome, these
receptors have been classified into five main families: glutamate, rhodop-
sin, adhesion, frizzled/taste2, and secretin (4).

This vast family of proteins carries out two complementary functions: (a)
transduction and (b) amplification of extracellular chemical signals across
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the cell membrane. To perform these functions, extracellular ligand binding
to the receptor is translated into regulation of the activity of intracellular
proteins—primarily heterotrimeric guanine–nucleotide exchange proteins
(5). In turn, these G proteins modulate several cellular signaling pathways,
such as adenylyl cyclase, phopholipase C, or potassium and calcium chan-
nels.

One of the most striking properties of GPCRs is the variety in the chemi-
cal nature of their cognate extracellular ligands. Different subfamilies re-
spond to signals of great structural diversity, such as hormones, peptides,
nucleotides, amino acids, neurotransmitters, lipids, ions, or light (6), all of
which interact with GPCRs in distinctive binding modes (7). Despite such
agonist diversity, activation of a GPCR invariably leads to G protein activa-
tion. Therefore, the question arises regarding how this protein family, stem-
ming from a common ancestor, has evolved such diversity in ligand
recognition while preserving a common scaffold composed of seven-trans-
membrane helices (TMHs) and a set of shared intracellular partners.

1.2. Activation of GPCRs Requires Conformational
Changes in the Transmembrane Bundle

Because of the difficulty in producing and purifying a recombinant
receptor, only one GPCR, bovine rhodopsin, has been crystallized thus far.
Different analyses of X-ray diffraction data of the crystals have led to four
structural models of bovine rhodopsin, which are available at the Protein
Data Bank (PDB) at resolutions of 2.8 Å (PDB identifiers 1F88 and 1HZX),
2.6 Å (PDB identifier 1L9H [8]), and 2.65 Å (1GZM) (9). These crystal
structures show that bovine rhodopsin consists of seven-membrane-span-
ning α-helices joined by three cytoplasmic and three extracellular loops,
with an extracellular N-terminus and a cytoplasmic C-terminus. An addi-
tional intracellular helix lies approximately parallel to the plane of the mem-
brane, pointing away from the helical bundle. The presence of highly
conserved patterns in the sequences of rhodopsin-like GPCRs and a plethora
of data from biochemical and biophysical experiments indicate that the over-
all folding of the transmembrane bundle is conserved throughout the family.

Although little is known about the details of the molecular mechanisms
underlying GPCR activation, various experiments have suggested that mo-
tions of transmembrane helices are associated with this process. For example,
changes in the relative orientations of the cytoplasmic ends of TMH3 and
TMH6 (10,11) or the positions of TMH7 (12) and TMH2 (13) (for a review,
see ref. 14) have been associated with receptor activation. These motions
have been observed in different receptor subtypes and are likely to be a com-
mon feature of GPCR activation, at least for rhodopsin-like receptors.
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1.3. Family-Specific and Conserved Steps
in the GPCR Activation Mechanism

Specific interactions between a receptor and its cognate agonist typically
involve the extracellular domain and/or the extracellular part of the trans-
membrane region of the receptor. As expected from the ligand diversity,
these areas are poorly conserved throughout the GPCR family. On the other
hand, there is a higher degree of sequence conservation toward the intracel-
lular part of the transmembrane domain (9) in a region where helix move-
ments have been observed during activation. Interestingly, little sequence
conservation is observed in the intracellular loops, although these domains
are known to be important for binding the G protein. Evolutionary pressure
to diversify or modify the coupling specificity has probably favored this
variability, whereas convergent evolution has most likely allowed distant
receptors to couple with the same G protein (15,16). Such a sequence con-
servation pattern suggests a mechanistic similarity in the activation process,
where the sequence conservation would parallel the functional conserva-
tion. Each receptor subfamily must have evolved specific motifs to adapt to
the structural characteristics of its cognate ligands; therefore, domains
involved in ligand binding must also be subfamily specific. On the other
hand, with a common intracellular partner, the conformational rearrange-
ment of the helices close to the G protein are expected to be preserved to a
certain extent. Thus, conceptually, the signal transduction process can be
seen as a progress from the extracellular side to the intracellular domain
through conformational changes in the transmembrane bundle, which are
propagated through interactions between specific residues (17). These con-
formational changes are more conserved as the signal progresses toward the
cytoplasm and the G protein (Fig. 1).

However, with the helical bundle embedded in the lipid bilayer, the
sequence of the transmembrane domain is highly constrained. Therefore, it
is challenging to understand how evolution has selected and adapted the
similar architecture of GPCRs to recognize such a large variety of ligands
while preserving common mechanisms of activation. It appears that GPCRs
have accomplished this tour de force by achieving a significant degree of
conformational plasticity on an otherwise preserved scaffold. We use this
term to describe the structural differences within the binding site crevices
among different receptor subfamilies responsible for recognition of diverse
ligands. Additionally, individual receptors also feature some degree of flex-
ibility, denoting the ability of a receptor to dynamically adapt to agonist
binding and allow the conformational changes related to mechanisms of
activation.
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We are beginning to understand the molecular actors responsible for these
properties. Careful analysis of sequences of receptor subfamilies allows us to
detect motifs that could potentially be implicated in this conformational plas-
ticity and/or flexibility. In a second step, these motifs are studied in silico
using simulation techniques that reveal their structural properties. Finally,
the motifs can be tested experimentally (e.g., using site-directed mutagenesis
and bioassays) to identify their biological roles. This chapter focuses on work
done on class A GPCRs (18) and refers to positions in the receptor sequences
using the general notation of Ballesteros and Weinstein (19).

2. SEQUENCE PATTERNS
INVOLVED IN RECEPTOR PLASTICITY

2.1. Prolines: The Strongest Disruptors of α-Helical Geometry

Proline (Pro) residues have long been known to disrupt the structure of α-
helices (20). The proline side-chain is bonded back to its own amino group,
forming a bulky pyrrolidine ring that restricts the conformation of adjacent
residues. In an α-helix, the proline ring moves away from the fourth preced-
ing residue (i-4) to avoid a steric clash with the backbone carbonyl, leading
to a global kink and to a local disruption in the intrahelical hydrogen bond
network that normally stabilizes the α-helix (21,22). The average bend angle

Fig. 1. The highly diverse extracellular signals converge toward structurally con-
served mechanisms of effector activation. Whereas the first steps of these mecha-
nisms (S1, S2) are specific for each subfamily, the last steps (Sn-1, Sn) share many
common structural features (e.g., specific movements of the intracellular region of
the TMHs).
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of an helix resulting from the presence of Pro averages 20° (20,23,24). More-
over, the presence of the pyrrolidine ring induces a local opening in the
helix at the Pro-kinked turn (25), which is translated in a change of direction
of the kinked helix (24,25).

Although Pro residues are infrequent within helical segments in globular
proteins, they are regularly found in TMHs (22,24). For instance, TMH5, -6,
and -7 of class A GPCRs almost invariably contain a Pro, whereas the other
helices (with the exception of TMH3) contain Pro residues at specific posi-
tions, ranging from 5 to 60% of conservation (25). These Pro residues tend
to be conserved within subfamilies; for example, in TMH4, Pro4.59 (60% of
conservation) is present in peptide, amine, and opsin receptors, whereas
Pro4.60 (34% of conservation) is characteristic of hormone, cannabinoid,
and prostanoid receptors but is also found in opsins and some amine recep-
tors. As a result, vertebrate opsins and some amine receptor subfamilies fea-
ture a highly conserved Pro4.59 Pro4.60 motif.

Proline residues present in α-helical stretches are proposed to have struc-
tural or functional importance, for example, acting as helix breakers (26) or
facilitating the packing of helical structures (27,28). Beyond these static
roles, they are also dynamically important for protein function. Specifically,
there is wide experimental (29–33) and theoretical (34–38) evidence that
Pro residues are involved in the regulation of the structure of TMHs in rela-
tion to biological function. Because of its enhanced local dynamic flexibil-
ity, the Pro-containing helix can adopt different conformations that would
correspond to open/closed states in channels or active/inactive conforma-
tions in receptors (for reviews, see refs. 39 and 40).

2.2. Ser and Thr Also Deform the Structure of α-Helices

Ser and Thr, unlike other polar or charged residues, do not destabilize
TMHs (41). As a result, they are the most frequently occurring polar resi-
dues in TMHs: Whereas Leu, Ile, Val, Ala, Phe, and Gly account for two-
thirds of the composition of α-helices, the next most common amino acids
are Ser and Thr (42). In class A GPCRs, these Ser and Thr transmembranes
are often conserved in specific positions of the sequence (Table 1).

In known protein structures, the side-chain hydroxyl of Ser and Thr
located within α-helices is often hydrogen bonded to the backbone carbon-
yls of the preceding turns, as shown in Fig. 2 (43). This interaction could
mimic the known interaction of OH moieties of water molecules that hydro-
gen bond the backbone carbonyls of α-helices, which seems responsible for
the concave shape of solvent-exposed α-helices in soluble globular proteins.
The hydrophobic environment of the lipid membranes enhances the strength
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of these intrahelical hydrogen bonding interactions by Ser and Thr residues.
Therefore, the enhanced force applied on the helical structure may induce
larger conformational changes in TMHs than are observed in water-soluble
proteins.

The additional hydrogen bond formed between the hydroxyl group of Ser
and Thr side-chains in its gauche- conformation and the peptide carbonyls
in the previous turn of the helix (Fig. 2) disrupts the hydrogen bond network
that stabilizes TMHs, inducing or stabilizing a bend or kink in the helix
(44). This seemingly small distortion results in a significant displacement of
the residues located a few turns away in the helix. Moreover, the effect of
other nearby polar residues—either consecutive or located on the same face
of the helix (i.e., three/four residues apart)—can increase the magnitude of
this structural effect.

2.3. Ser and Thr Can Modulate the Structure
of Pro-Kinked Transmembrane α-Helices

Larger conformational changes can be induced in α-helical structures
when the two helix-disrupting motifs reviewed earlier occur together. In
these cases, Ser or Thr residues can significantly modulate the structure of

Fig. 2. The gauche-conformation of Ser and Thr can disrupt the hydrogen bond
network of TMHs. Whereas, in principle, this conformation allows two possible
hydrogen bonds, with the carbonyls at i-3 and i-4 positions (relative to the Ser/Thr)
the gauche+ conformation only permits the interaction with the carbonyl one turn
away at i-4. Finally, the trans-conformation excludes the possibility of intrahelical
hydrogen bonds. All the figures of molecular models have been created using
MolScript v2.1.1 (70) and Raster 3D v2.5 (71).
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Pro-kinked TMHs as a result of changes induced in the hydrogen bond net-
work of the disrupted turn; this results in a synergistic distortion of the heli-
cal structure (25). Importantly, sequence motifs of Pro with a nearby Ser or
Thr are common in transmembrane helical segments—particularly within
the transmembrane bundle of rhodopsin-like GPCRs. Statistical analyses
show that there is a clear tendency for Ser and Thr residues to be found at
positions one to two residues preceding Pro, with the exception of the Ser-
Pro motif (Tables 2 and 3). Analysis of molecular dynamics simulations of
Pro-kinked α-helices containing Ser or Thr residues has revealed possible
structural roles for these sequence motifs. Ser and Thr residues in the gauche-
side-chain conformation can hydrogen bond either of the two carbonyls from
the previous turn (three or four positions before in the sequence) (43). Our
simulations demonstrate how this different pattern of interaction results in a
different rearrangement of the hydrogen bond network in the helical turn
(Fig. 3). These differences can be translated into a local change in the open-
ing of the helix and into an overall change of the helical bend angle. The
precise modulation of the structure depends on the relative position of Ser/
Thr and Pro residues, the side-chain conformation of the polar residues, and
the nature of the intrahelical hydrogen bond between these residues and the
backbone carbonyls in the preceding turn of the helix. The changes in the
local structure are diverse and can either increase or decrease the bend of the
helix compared to the standard Pro-kink. In (Ser/Thr)-X1-Pro and (Ser/Thr)-
Pro motifs, an increase of the bend is measured, which apparently is caused
by the additional hydrogen bond formed between the side-chain of Ser/Thr
and the backbone carbonyl oxygen. In contrast, a decrease of the helical
bend angle is observed in (Ser/Thr)-X-X-Pro, Pro-X-(Ser/Thr), and Pro-X-
X-(Ser/Thr) motifs, either because of reducing the steric clash between the
pyrrolidine ring of Pro and the helical backbone or because of the addition
of a constraint in the form of a hydrogen bond in the curved-in face of the
helix. In the case of Ser-Pro and Ser-X-Pro motifs, a change in the direction
of the helix is observed when the Ser is in the gauche-rotamer (i.e., when the
hydroxyl group of Ser hydrogen bonds the backbone carbonyl three posi-
tions before in the sequence), which appears to induce a strongly distorted
helical turn.

Interestingly, a follow-up of these findings shows that changes in the local
hydrogen bond network of the helix, triggered by a change in the Ser or Thr
side-chain conformation and amplified by the presence of a nearby Pro resi-
due, can lead to conformational modification of the entire helix in a dynamic
fashion. Figure 4 shows the conformations of helices with different Ser/Thr
and Pro combinations, in different side-chain conformations of the polar
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residues, and with different hydrogen bond patterns. Clearly, variation of
the side-chain rotamer or in the hydrogen bond network generates a wide
structural diversity in the α-helix. This change in rotamer conformation,
triggered by interactions with an external partner (i.e., bound ligand) or with
nearby residues, may have an effect on the structure of the helix, with pos-
sible functional importance. In other words, by changing conformation from
a gauche+ or gauche- rotamer (i.e., hydrogen bonding the backbone) to trans
(not hydrogen bonding to backbone), Thr or Ser could act as conformational
switches during receptor activation, especially if present within a Pro-kink
motif. This switch of hydrogen bonding partners for the Ser or Thr side-
chain hydroxyl moiety could be induced, for example, by direct hydrogen
bonding with the ligand, resulting in receptor activation (agonist) or inacti-
vation (inverse agonist).

In summary, simulations on model peptides combined with analysis of
known protein structures offer molecular explanations for the observed high
association and conservation of Ser and Thr residues with Pro in TMHs
regarding specific structural and/or functional roles. These residues modu-
late the structural deformations caused by the pyrrolidine ring of Pro through

Table 2
Observed and Expected Number of Occurrences of the (S/T)xxP,
(S/T)xP, (S/T)P, P(S/T), Px(S/T), and Pxx(S/T) Motifs in a
Nonhomologous Database of Transmembrane Helices

Pair Observed Expected Odds ratio Significance

SxxP 292 294.9 0.99 0.88
TxxP 267 268.7 0.99 0.95
SxP 353 314.6 1.12 0.02
TxP 316 286.6 1.10 0.07
SP 291 334.2 0.87 0.01
TP 325 304.6 1.07 0.21
PS 280 334.2 0.84 0.001
PT 308 304.6 1.01 0.83
PxS 297 314.6 0.94 0.31
PxT 283 286.6 0.99 0.85
PxxS 249 294.9 0.84 0.004
PxxT 250 268.7 0.93 0.23

Calculated with the TMSTAT formalism (see http://bioinfo.mbb.yale.edu/tmstat/; ref. 42).
We used a p value cutoff of 0.10 to select statistically significant overrepresented (odds

ratio: <1) and under-represented (odds ratio: >1) patterns. Both TxP and SxP motifs are
overrepresented pairs, suggesting that (S/T)xP is a common pattern in transmembrane
helices. In contrast, the SP, PS, and PxxS are underrepresented pairs.
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specific interactions of their polar side-chains. These significant conforma-
tional changes may have important functional roles, such as modifying the
three-dimensional arrangements of the receptor’s binding site crevice, what
we refer to as “plasticity” of the binding site. These conformational varia-
tions within the binding sites, which allow or prevent specific interactions to
take place, may be responsible for divergent recognition of different ligands
through evolution. Therefore, combinations of Ser and Thr residues with
Pro appear as a likely mechanism for structural adaptation of membrane
proteins through evolution.

2.4. Glycine and Cysteine

Residues other than Pro, Ser, and Thr are involved in modulation of the
α-helical structure. For example, Glycine (Gly) residues, which have been
shown to promote helix-helix association (42,45,46), are also responsible

Fig. 3. Influence of the side-chain conformation of Ser in the geometry of an α-
helix featuring a Ser-X-Pro motif. The local hydrogen bond network in the helical
turn (yellow dots) is different when Ser is in gauche+ (left panel) or gauche- (right
panel). These local changes induce or stabilize strong distortions of the overall
helical structure.
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Fig. 4. The left panels display two different views of representative structures of
α-helices featuring a Ser-Pro motif, with Ser in the gauche+ rotamer (red), and in
the gauche- rotamer interacting with two different backbone carbonyls (dark orange
and light orange). The right panels show helices with a Ser-Ala-Pro motif in the
gauche+ (dark green), trans- (yellow), and gauche- rotamers (light green) of Ser.
Variation in the side-chain rotamer or the hydrogen bond pattern covers a wide
structural range in the α-helix.

for enhanced local flexibility in helices because of the lack of a side-chain
(47). It is remarkable that although Gly residues are rarely found in α-heli-
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ces of soluble proteins (where they are thought to destabilize this secondary
structure), they are much more common in TMHs. The reason may be the
lack (or decreased presence) of water molecules within transmembrane
domains. The β-methyl group that is absent in Gly residues that is present in
all other side-chains shields the carbonyl of the preceding turn from poten-
tial hydrogen bonding partners such as water molecules. Therefore, it might
be possible that Gly residues in TMHs do not destabilize α-helices and can
thus be used more often to confer the desired structural and/or functional
roles. For example, the crystal structures of bovine rhodopsin show a strong
bend in TMH2 at the level of Gly892.56 and Gly902.57, stabilized in part
by Thr residues in the next turn hydrogen bonding their preceding carbonyls
as described earlier (48). Interestingly, Gly residues are also often found
near transmembrane Pro residues, increasing the local flexibility of Pro-
kinked α-helices (24,49). In fact, a Gly-Pro motif has been proposed to be
responsible for the divergent agonist recognition between the cannabinoid
(CB)2 (Phe-Pro) and CB1 receptors (Gly-Pro) (50).

Finally, Cys residues contain a sulfhydryl group in their side-chain that is
also able to establish an hydrogen bond with the backbone carbonyl of the
α-helix (43). Although this weak hydrogen bond can not promote a struc-
tural distortion in the helix on its own (44), it is likely that similarly to Ser
and Thr, its presence synergistically influences the effect of nearby Pro (51)
or polar residues (52), leading to substantial conformational changes in
TMHs. This would explain the conservation of several Cysteine (Cys) resi-
dues within GPCRs, such as the conserved Cys6.47 that recently has been
shown to modulate the Pro-kink of TMH6 in the β2-adrenergic receptor (AR)
(51). It has been proposed that this Cys unusually hydrogen bonds its own
carbonyl in the inactive state of the receptor in the trans-rotamer configura-
tion, thereby exploiting the flexibility of the Pro-kink motif, whereas it
hydrogen bonds the backbone carbonyl of the fourth preceding residues (like
Ser or Thr residues) in the active state (51).

3. EXAMPLES OF PLASTICITY

3.1. Amine Receptors:
From Ligand Recognition to Activation Mechanism

Conserved Ser and Thr residues can play different roles in maintaining
the structure or regulating the activity of GPCRs. We hypothesize that these
functional roles are related to the capability of these residues to affect the
geometry of TMHs. To illustrate this point, this section discusses the
example of amine receptors.
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Sequence analysis of the amine receptor family reveals several conserved
Ser or Thr residues in TMH3 (18), the helix with the fewest conserved Pro
residues in the rhodopsin-like family of GPCRs (25) (Fig. 5). Whereas 3.37
and 3.39 positions are highly conserved in the entire amine receptor family
(forming the Thr3.37-(Ala/Ser)3.38-Ser3.39 signature of amine receptors)
and 3.30 and 3.47 are also conserved (to a lesser extent), other positions are
conserved only within certain subfamilies (Fig. 6). Located in the center of
the helical bundle, TMH3 interacts with nearly all the other helices, and,
therefore, these polar residues could facilitate specific interhelical contacts.
Our structural studies suggest an alternative role for these residues: Whereas
the lack of Pro in this helix suggests that it will not feature strong hinges,
these Ser and Thr can provide a certain degree of flexibility and plasticity to
the helix, leading to various alternative TMH3 conformations that might rep-
resent different functional states of the receptor, as has been proposed for the
D2 dopamine receptor (18). The actual distortions depend on the precise
positions of Ser and Thr residues in TMH3. Because this helix is known to

Fig. 5. Presence and degree of conservation of Pro residues in TMH3 of class A
GPCRs. Only a few and very specific subfamilies feature this residue-for example,
some peptide receptors at 3.29 (4% of class A), gonadotropin-releasing hormone
and prostanoid receptors in 3.39 (1% of class A), or tachykinin receptors at 3.32
(1% of class A).
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interact with the agonists in most GPCRs, variability in the number and
locations of Ser and Thr offers a mechanism for structural adaptation to the
characteristics of the ligand. We have tested this hypothesis with the 5-HT1A
receptor as a model system. Using molecular dynamics simulations, we have
shown that because of its specific patterns of Ser and Thr, TMH3 of the 5-
HT1A receptor tends to bend toward TMH5. This deformation would facili-
tate the interactions between the agonist and residues Asp3.32, Ser5.42,
Ser5.43, and Ser5.46, which have been identified experimentally. A statisti-
cal analysis of the molecular dynamics trajectories led to the conclusion that
these structural divergences result from the difference in sequence at the 3.36
and 3.37 positions; whereas rhodopsin vertebrate type 1 receptors possess a
conserved (85%) Gly3.36-Glu3.37 motif, amine receptors feature either a
completely conserved Cys3.36-Thr3.37 or a Cys3.35-X-Thr3.37 motif. The
predicted relocation of TMH3 in the 5-HT1A receptor (Fig. 7) substantially
alters the structure of the binding pocket. These changes allowed us to explain
the experimentally determined pattern of binding affinities of synthetic

Fig. 7. Structure of TMH3 in the 5-HT1A receptor (yellow) compared with
rhodopsin (grey). The left panel shows how the presence of Cys3.36 and Thr3.37
conserved in the amine receptor family of class A GPCRs (59 and 80%, respec-
tively) induces a bend in the helix. The effect of this bend relative to the transmem-
brane bundle, viewed from the extracellular side, is shown in the right panel.
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ligands (52). Interestingly, amine receptors also have a highly conserved Cys
residue at position 3.44; the structural and/or functional role of this Cys resi-
due has not been elucidated but may be involved in selecting specific helical
conformations, as proposed for Ser and Thr residues.

Additionally, there is indirect experimental evidence for a structural role of
Ser residues in TMH5. Conserved Ser5.42 (53), Ser5.43 (53), and Ser5.46 (54)
have been shown to be involved in ligand recognition, interacting with the
hydroxyl groups of the catechol moiety in catecholamines. Also, Ser2045.42
and Ser2055.43 of the β2-AR modulates the equilibrium between the active
and inactive form of the receptor (55). We suggest that these Ser adopt the
gauche- conformation in the absence of the extracellular ligand, thus satisfy-
ing its hydrogen bonding potential through interactions with the backbone car-
bonyls. During ligand binding, Ser must adopt the trans-conformation to
optimally interact with the hydroxyl moieties of the ligand. This transition
ultimately leads to an alteration of the orientation of the helix toward different
positions in space (Fig. 8), which can be related to the transition toward an
active form of the receptor. Notably, the presence of several Ser or Thr resi-

Fig. 8. Rotation of Ser and Thr side-chain can induce different conformation of
the helix. In this figure, the red helix represents an ideal (non bent) α-helix, taken as
a reference. Rotation of Ser side-chain from gauche- (blue) to the trans- (green) con-
formation induces a change in the direction of the helix toward different locations.
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dues conserved within the same turn of TMH5 at 5.42, 5.43, and 5.46 may
result in a much larger degree of conformational plasticity because of syner-
gistic helical distortions, as shown for the D2 dopamine receptor (18).

Although the role of other conserved Ser of the amine receptor family is
not clear, some studies point to a role in the structure or function of these
receptors. Substituted Cys accessibility method (SCAM) experiments in the
D2 dopamine receptor (56) show that Ser1213.39 faces a water-accessible
crevice. According to models based on the crystal structure of rhodopsin
(31,52), this residue would be facing Asn7.49 and Asp2.50, which are highly
conserved in the whole class A family and are involved in receptor activa-
tion (57). In this region, the most recent crystal structures of bovine rhodop-
sin (PDB access codes 1L9H and 1GZM) show the presence of water
molecules (58). Interestingly, bovine rhodopsin features an Ala residue at
position 3.39. Therefore, one can suggest that in the amine receptor family,
the polar side-chain of Ser3.39 replaces the function of one of these water
molecules. Mutations of Ser1213.39 in the D2 dopamine receptor (59) and
of Ser1093.39 in acetylcholine receptor (60) appear to destabilize the active
state of the receptors, likely by disruption of this hydrogen bond network
that results from the loss of the polar Ser3.39. A similar role has been pro-
posed for Ser7.46 based on mutagenesis studies on the acetylcholine recep-
tor. This position, which is likely to be near Asn7.49 and Asp2.50, has been
proposed to be involved in a network of interactions stabilizing the active
state of the receptor (61).

Finally, some of these conserved Ser and Thr may be involved in main-
taining the local structure of certain regions in the transmembrane bundle
through specific helix-helix interactions. For example, Ser2.45 of amine re-
ceptors is believed to interact with the nearby Trp4.50 (which is highly con-
served in all class A GPCRs) through a hydrogen bond interaction; a similar
pattern is present in rhodopsin, where position 2.45 holds an Asn residue.
However, single Ser and Thr residues are not able to promote helix-helix
association. Motifs of multiple Ser and/or Thr are needed to create a net-
work of hydrogen bonds that is strong enough to promote association (62).

In summary, we hypothesize that Ser and Thr residues can affect the struc-
ture of the transmembrane bundle, conferring some degree of plasticity to
the receptor. Dynamically, these motifs also provide flexibility to the struc-
ture, because changes in the conformation of the side-chain can modulate
the deformation of TMHs. Such changes in side-chain conformation could
be triggered either by changes in the protonation state or conformation of
nearby side-chains or by ligand binding.
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3.2. Combinations of Ser/Thr and Pro Can Account
for Structural Specificities of Peptide Receptors

Combinations of Ser/Thr and Pro residues found in the transmembrane
bundle of GPCRs tend to be conserved within specific subfamilies (see Table
3). For example, the Thr2.56-X-Pro2.58 motif in TMH2 is present in
leukotriene B4, platelet activating factor, and viral and peptide receptors. In
the latter subfamily, it is highly conserved in the APJ-like, angiotensin,
chemokine, Fmet-leu-phe, interleukin-8 and opioid receptors subfamilies,
accounting for almost 50% of the entire peptide receptor subgroup. Interest-
ingly, in the corresponding position of the sequence, opsin receptors possess
Gly892.56-Gly902.57, a highly conserved motif (90%) in rhodopsin verte-
brate type 1 receptors. Although both the Thr2.56-X-Pro2.58 and the
Gly2.56-Gly2.57 motifs are able to induce a distortion in the α-helix, these
motifs are likely to bend TMH2 in different directions, thereby producing a
different local structure in this region (Fig. 9). Hence, the structural conse-
quences of this sequence motif are expected to be a structural determinant of
at least some of the listed families, thus accounting for specificities in the
structure and/or function among GPCRs.

This putative functional role has been experimentally tested in the
Thr822.56-X-Pro842.58 motif of TMH2 by site-directed mutagenesis and
functional assays of the chemokine receptor CCR5 (31,63). In summary, the
results show that although mutation of Thr822.56 to either Ser, Cys, Ala, or
Val does not affect chemokine binding, it strongly influences the functional
response. The functional impairment is highly dependent on the specific
side-chain substituted for the Thr, and the rank order parallels the structural
deformation of the α-helix that was observed in the molecular dynamics
simulations (25). These simulations showed that the presence of Thr, Ser,
and Cys side-chains two positions before the Pro residue increases the aver-
age bend angle of the α-helix. The observation that the polar side-chains
form hydrogen bonds with the helix backbone during the simulations sug-
gests that the observed effect on the bending angle arises from local defor-
mations in helix geometry induced by these bonds. As a result of this effect,
chemokine receptors require a re-arrangement of the transmembrane bundle
interactions (relative to rhodopsin), because the presence of Pro842.58 ori-
ents the extracellular part of TMH2 toward TMH 3 and would not close to
TMH1 (as observed in the crystal structure of rhodopsin), whereas the addi-
tional presence of Thr822.56 accentuates this effect (Fig. 9). Our modeling
study also suggests that in chemokine receptors, the extracellular region of
TMH2 interacts with TMH3, which is not feasible in the rhodopsin struc-
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ture. This pattern of interaction has been further experimentally tested for
the CCR5 receptor (63). These results lead us to suggest that the Thr822.56-
X-Pro842.58 motif in TMH2 is a structural determinant in the chemokine-
and possibly other peptide-receptor family by virtue of significant local
effects on the helix conformation, which propagate through a lever action to
the extracellular parts of the transmembrane bundle.

3.3. Ser/Thr/Pro-Induced Plasticity:
A Common Attributeof Membrane Proteins

Because our findings are based on general principles of protein structure,
it is conceivable that Ser and Thr residues in α-helices of other integral mem-
brane proteins may also participate in conformational changes. For example,
mutations of Thr86 in the second transmembrane segment of connexin32
(part of a Thr86-Pro87 motif) shift the conductance-voltage relationship of
the wild-type channel, leading to the proposal that the hydrogen bonding
potential of Thr86, together with the structural effect of the nearby Pro87,
mediates the conformational changes between open- and closed-channel

Fig. 9. Structure of TMH2 in the CCR5 receptor (orange) compared with rhodop-
sin (grey). The left panel shows how the presence of the Thr822.56-X-Pro842.58
(highly conserved in some peptide receptor families) forces the helix to point in a
different direction. The magnitude of this effect relative to the transmembrane
bundle, viewed from the extracellular side, is shown in the right panel.
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states (30). In bacteriorhodopsin, mutation of Thr90 to Ala in the Thr90-
Pro91 motif present in TMH C alters the proton pumping efficiency, sug-
gesting that Thr90 also plays an important structural role in the proton
pumping mechanism (64).

4. CONCLUSIONS
Numerous studies have provided growing evidence that GPCRs can co-

exist in different conformations, strongly suggesting an inherent flexibility.
For example, in the β2-AR, it has been demonstrated that there are different

Fig. 10. Conformational plasticity of GPCRs. The figures represent two differ-
ent orientations (rotated 180°) of the transmembrane bundle viewed from the extra-
cellular side. The rhodopsin template is represented by thick ribbons, whereas
possible alternative conformations for each helix are represented by thin ribbons.
This alternative conformations arise from different conformations of selected se-
quence patterns: a Ser1.46-X-Pro1.48 motif (conserved in adenosine type 1 recep-
tors); a Ser2.56-X-Pro2.58 motif, with Ser in gauche- and gauche+ conformations
(conserved in some peptide receptor families); Ser3.30 (conserved in histamine,
some serotonin and β2-ARs) and a Cys3.36-Thr3.37 motif (conserved in amine
receptors); a Ser4.59-X-Pro4.61 motif, with Ser in gauche- and gauche+ conforma-
tions (conserved in some peptide receptor families); Ser5.43 and Ser5.46 (conserved
in amine receptors); and different conformations of the Pro-kink for Pro6.50 and
Pro 7.50. It can be observed how these sequence motifs are able to account for
either static structural plasticity or dynamic flexibility of the transmembrane bundle,
which can be related, respectively, to ligand recognition and activation mechanisms.
To help visualize the location of the binding crevice, retinal is represented in space-
filling spheres.

Color code: TMH1, grey; TMH2, orange; TMH3, yellow; TMH4, dark blue;
TMH5, light blue; TMH6, red; TMH7, green.1X is any nonpolar residue, with the
exception of Pro. In the simulations, Ala was used.
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states of the native form of the receptor (65,66), different ligands can stabi-
lize distinct conformations of the active state (67), and constitutively acti-
vated mutants present a higher degree of conformational flexibility (68).

The diversity of ligands throughout the GPCR family implies that a very
significant degree of conformational plasticity has been achieved within the
seven-TMHs. Our work and the work of others indicate that simple sequence
motifs, involving Pro, Ser and Thr residues, are responsible for the neces-
sary structural variability. Either alone or in combinations, these residues
can provide the structural diversity in α-helices that is necessary to accom-
modate the structural and chemical characteristics of the cognate ligands
(Fig. 10). The remarkable abundance of these motifs in class A GPCRs
shows that evolution has selected such motifs as a generic way to achieve
plasticity. As a corollary, this indicates that the seven-TMH architecture is
suitable to allow local structural variations while preserving global structure
and activation mechanism. Therefore, we suggest that the evolutionary suc-
cess of GPCRs (numerous and diverse, as are their associated biological
functions) results from their ability to allow for structural plasticity using
limited sequence variation, thanks to the structural motifs reviewed in this
chapter. Finally, it appears that not only can these motifs confer plasticity to
the protein family, but they can also provide flexibility. In several cases, Ser
and Thr could act as conformational switches, leading to conformational
changes upon ligand binding. Therefore, understanding the action of these
motifs is key in understanding the mechanisms of receptor activation at a
molecular level.
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De-Orphanizing GPCRs
and Drug Development

Rainer K. Reinscheid and Olivier Civelli

1. INTRODUCTION

Traditionally, the family of G protein-coupled receptors (GPCRs) has
been divided into “classical” GPCRs and olfactory (or gustatory) GPCRs.
The classical GPCRs comprise receptors for all neurotransmitters and hor-
mones, displaying a vast chemical diversity among their natural ligands.
Odorant receptors are believed to bind volatile molecules, but the mecha-
nisms of ligand binding in this group are less well-understood.

Our current knowledge about GPCRs and their natural ligands is the com-
bined work of several decades of research. However, we have only come
half the distance, or even less. Cloning of the human genome has revealed
about 1000 GPCRs—400 for neurotransmitters and hormones (transmitters,
as a general term) and about 600 presumed odorant and gustatory receptors
(sensory receptors). Currently, we know the natural ligands for approx 180
GPCRs and virtually none of the odorant ligands (1). Therefore, the work
has just begun.

By definition, orphan GPCRs are GPCRs that are not matched to any
know natural ligand; in this area, the olfactory GPCRs constitute by far the
largest group of orphan receptors. However, odorant receptors pose specific
technical challenges and are not currently viewed as targets of drug devel-
opment. Therefore, we focus on the progress made over recent years regard-
ing the classical GPCRs (transmitter GPCRs) and their ligands. Orphan
GPCRs and the quest for their ligands clearly is a product of the postgenomic
era. Technologies are being developed at the frontline of biomedical
research, and the benefits for future drug development are emerging.
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As members of the most successful family of current drug targets, the
orphan GPCRs are certainly the best candidates for drugs of the future and
hold special promise for treatment of brain and mental disorders (2).

2. The Family of Orphan GPCRs

By definition, orphan GPCRs are members of the superfamily of GPCRs
that await identification of their natural ligand(s). In this sense, every GPCR
that was cloned through homology was an orphan receptor because its dis-
covery was based on sequence data. The first reported orphan GPCRs were
the 5-HT 1A and the D2 dopamine receptors, which were both cloned in
1988 using the β2-adrenergic receptor complementary DNA (cDNA) as a
probe (3,4). Similarly, the muscarinic m3 receptor (5) and the cannabinoid
CB1 receptor (6) can be considered examples of early orphan receptors that
were soon paired with their respective ligands.

With application of polymerase chain reaction technology, large groups
of orphan GPCRs were soon discovered in the genome or cDNA libraries
(7). Ensuing research quickly showed that the total number of GPCRs in the
genome was larger than anyone had anticipated. Shortly after, another
groundbreaking paper provided compelling evidence that GPCRs also lie at
the basis of olfaction and that the number of olfactory receptors even exceeds
the number of “classical” GPCRs (8).

Progress in identification of olfactory ligands has been slow for three
primary reasons. First, there is an almost endless number of odorants that
humans or animals can smell, and the search for a specific molecule acti-
vating an olfactory receptor can be endless. Second, technical problems
have hampered the expression of olfactory receptors in non-neuronal cel-
lular environments (9). Finally, there is obviously a smaller commercial
interest in this group of GPCRs compared to the so-called “druggable”
orphan receptors. At first sight, the search for natural ligands of orphan
receptors appears similar to a classical academic field of research: high-
risk, uncertain results and unpredictable timing. However, the biggest
progress and successes in the hunt for new transmitter molecules were
made in the pharmaceutical industry (10). Academia has largely avoided
the field for three major reasons: (a) until recently, orphan receptor re-
search was considered too speculative to receive sufficient public funding;
(b) high-tech equipment mandates high costs; and (c) the projects gener-
ally require long durations.

This chapter summarizes the status quo of research in the field of orphan
GPCRs, the advancement of knowledge about physiological functions, and the
impact of de-orphanized receptors for pharmaceutical research of the future.
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3. TECHNOLOGICAL APPROACHES TO IDENTIFY LIGANDS
OF ORPHAN GPCRS

Three fundamentally different strategies have been employed for ligand
identification: (a) isolation of natural molecules from tissue extracts; (b)
matching of large collections of known chemicals; and (c) prediction of pep-
tide ligands through bio-informatic approaches, followed by matching them
to cloned orphan GPCRs. As a common principle, these approaches use cel-
lular assays of receptor activation that monitor changes in second messen-
gers, such as Ca2+, cyclic adenosine monophosphate, and arachidonic acid,
or quantify increases in γ-35S GTP binding as a measure of receptor activa-
tion. Because most of the search for new ligands was performed in the phar-
maceutical industry, the matching approach was completed quickly and
efficiently. In a few years, more than 30 orphan GPCRs were matched with
known molecules. Some of these known ligands were neuropeptides that
had been missing a corresponding receptor, such as melanin-concentrating
hormone (MCH), urotensin II (UII), neuromedin U (NMU), or neuropep-
tides FF and AF. In the cases of MCH, UII, and NMU, the same ligands
were also simultaneously isolated from tissue extracts by using the expressed
orphan GPCR as a cellular detector system (see Table 1). Together, these
results confirmed that the peptides were indeed bona fide ligands.

Matching has been most successful in the groups of nucleotide and lipid
receptors. In most cases, the key for success has been to find the right cellu-
lar environment that allows detection of receptor activation. Both nucleotide
and lipid receptors are almost ubiquitous, and finding a background-free cell
system has been one of the most difficult tasks in this field of orphan GPCR
research.

Isolation of novel bio-active molecules from tissue extracts has been slow
and tedious. To date, all newly discovered natural ligands have been pep-
tides. This is not surprising because quantities of natural ligands are usually
infinitesimally low, and the available methods of analytical chemistry and
structure elucidation are most sophisticated for peptides. For example, pep-
tide sequencing by Edman degradation or mass spectrometry requires only
femto- to low picomolar amounts of material, whereas the structural analy-
sis of a novel lipid or nucleotide molecule by nuclear magnetic resonance
might require 1000 times more isolated material to obtain the full structure.

In 1995, our group and the team of Jean-Claude Meunier isolated and
independently identified the first ligand of an orphan GPCR, orphanin FQ/
Nociceptin (OFQ/N), (11,12). Since then, only 10 truly novel ligands have
been discovered, although more than 150 orphan GPCRs are available for
screening. At this rate, the discovery of the natural ligands for all orphan



392 Reinscheid and Civelli

392

T
ab

le
 1

N
ew

 G
P

C
R

 L
ig

an
d

s 
Id

en
ti

fi
ed

 b
y 

Is
ol

at
io

n
 F

ro
m

 T
is

su
e 

E
xt

ra
ct

s

P
hy

si
ol

og
ic

al
S

yn
th

et
ic

L
ig

an
d

Y
ea

r
F

un
ct

io
ns

A
go

ni
st

/A
nt

ag
on

is
t

R
ef

er
en

ce

O
F

Q
/N

19
95

P
ai

n,
 s

tr
es

s
Y

es
11

,1
2

H
yp

oc
re

ti
ns

/O
re

xi
ns

19
98

S
le

ep
, f

ee
di

ng
Y

es
36

,3
7

A
pe

li
n

19
98

Im
m

un
e 

m
od

ul
at

io
n

7
0

P
rR

P
19

98
A

pp
et

it
e,

 s
tr

es
s,

 s
le

ep
4

6
M

C
H

19
99

F
ee

di
ng

Y
es

53
–5

5
G

hr
el

in
19

99
F

ee
di

ng
Y

es
6

2
U

ro
te

ns
in

 I
I

19
99

C
ar

di
ov

as
cu

la
r

Y
es

71
–7

3
N

eu
ro

m
ed

in
 U

20
00

F
ee

di
ng

, s
tr

es
s

7
4

M
et

as
ti

n
20

01
C

el
l p

ro
li

fe
ra

ti
on

,  D
ev

el
op

m
en

t
7

5
P

K
1 

an
d 

P
K

2
20

02
C

ir
ca

di
an

 r
hy

th
m

76
,7

7
N

P
B

 a
nd

 N
P

W
20

02
P

ai
n,

 f
ee

di
ng

78
–8

0

A
bb

re
vi

at
io

ns
: P

rR
P

, p
ro

la
ct

in
-r

el
ea

si
ng

 h
or

m
on

e;
 M

C
H

, m
el

an
in

-c
on

ce
nt

ra
ti

ng
 h

or
m

on
e;

 N
P

B
, n

eu
ro

pe
pt

id
e 

B
; N

P
W

, n
eu

ro
pe

p-
ti

de
 W

; P
K

, p
ro

ki
ne

ti
ci

n.



Orphan GPCRs 393

GPCRs—excluding olfactory receptors—may require years of work. There-
fore, development of new technologies for this task is highly anticipated.

Recently, a bio-informatic approach for finding novel peptide ligands has
been used in several cases. Secretory proteins are commonly predicted from
databases using sophisticated software that scans open reading frames for
structural hallmarks of peptide precursors, such as a hydrophobic signal pep-
tide, endoprotease cleavage sites, and glycine residues that can be converted
into a C-terminal amide. This strategy has been most successfully employed
to discover new members in the family of the RFamide peptides, which all
terminate in the sequence Arg-Phe-amide. The predicted peptides were syn-
thesized and then matched with orphan GPCRs (13–15).

By definition, matching of known compounds to a receptor can never iden-
tify totally new molecules because it relies on a collection of chemicals that
are usually commercially available. Therefore, only the isolation of bio-ac-
tive molecules from tissue extracts or prediction of novel secretory proteins
has the potential to discover new molecules.

4. EXAMPLES OF LIGAND DISCOVERIES
AND THEIR IMPACT ON PHARMACEUTICAL RESEARCH

This section discusses several examples of newly identified ligands of
orphan GPCRs and novel therapeutic concepts that have emerged from stud-
ies of their physiological functions. In many cases, our understanding of a
novel ligand–receptor system is still in an embryonic and continuously evolv-
ing stage, and we have selected only those cases in which sufficient experi-
mental evidence or preclinical studies with synthetic small molecules are
available. A list of molecules that have been isolated as ligands of orphan
GPCRs and their primary physiological functions (based on current knowl-
edge) is provided in Table 1. Nomenclature of both ligands and receptors is
particularly confusing in this field because ligands have occasionally been
identified by independent groups and receptors have been named inconsis-
tently. We have tried to use the nomenclature of the original publications.

4.1. Orphanin FQ/Nociceptin

OFQ/N was identified as the endogenous ligand of an orphan GPCR that
showed high homology to the opiate receptors (ORL-1, now called NOP)
(11,12). The primary structure of the peptide showed resemblance to opioid
peptides—particularly dynorphin A; therefore, it was no surprise that this
novel ligand was quickly embraced by the opiate community, and a large
number of physiological functions were described. OFQ/N can modulate
nociception, although in a different way than common opioid peptides
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(11,12,16–18). The peptide was demonstrated to reverse stress-induced
analgesia (19), modulate transmitter and hormone release (20–22), influ-
ence cardiac function (23) and feeding (24), modulate learning and memory
(25,26), and suppress coughing (27). OFQ/N may also be involved in the
pathophysiology of seizures and stroke (28). The role of OFQ/N in analge-
sia is not clearly understood, but it appears that, at least in the spinal chord,
OFQ/N antagonists could have therapeutic potential as analgesics in models
of chronic or inflammatory pain (29,30). One of the major functions of cen-
tral OFQ/N appears to be the attenuation of stress responses (31,32). Con-
verging evidence from both pharmacological and genetic studies showed
that OFQ/N or small molecule agonists (33) produced anxiolytic effects,
and mice lacking the peptide displayed increased responsiveness to acute
and chronic stress (34). Several studies have been published regarding small-
molecule agonists and antagonists for the NOP receptor (35). Generally,
OFQ/N antagonists are being developed as analgesics, whereas OFQ/N ago-
nists may be a new class of anxiolytic drugs in the future.

4.2. Hypocretins/Orexins
Hypocretin (Hcrt) 1 and 2 (also termed Orexin A and B, Hcrt/Ox) were

identified as hypothalamus-specific peptides (36,37). Because of their
expression in the lateral hypothalamus, Hcrt/Ox were expected and demon-
strated to regulate feeding behavior. However, when mice were engineered to
be devoid of Hcrt/Ox, they exhibited pronounced narcoleptic behavior (38).
This conclusion was paralleled by the results of positional cloning analyses
performed on an autosomal recessive mutation that was responsible for nar-
colepsy in dogs (39) that showed a mis-sense mutation in one of the orexin
receptors. Moreover, human patients with narcolepsy were found to have a
selective ablation of Hcrt/Ox-producing neurons (40). This phenotype is now
believed to be the result of an auto-immune disease. Consequently, although
Hcrt/Ox have a range of other effects (41,42), they are now seen as important
modulators of sleep and wakefulness. To date, one selective antagonist (SB-
334867-A) has been characterized in detail and was found to modulate wake-
fulness but also displayed anorectic effects (43,44; for a discussion of the link
between feeding and vigilance states, see ref. 45).

4.3. Prolactin-Releasing Peptide

Prolactin-releasing peptide (PrRP) was first characterized as a potent
stimulator of prolactin release in in vitro experiments (46). However, later
studies showed no evidence for a similar role of endogenous PrRP (47).
Since its discovery, PrRP has ben found to produce anorectic effects that
may be mediated via activation of corticotropin-releasing hormone (48).
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Additionally, PrRP appears to modulate stress responses (49) and wakeful-
ness (50), making it an interesting target for drug development in the field of
anorexia nervosa or similar stress disorders. To date, no synthetic molecules
modulating PrRP activity in vivo have been published, but it can be assumed
that the interest in this system will rise as more physiological functions of
PrRP are described.

4.4. Melanin-Concentrating Hormone
MCH is another high-profile player in the control of feeding and energy

balances. Before identification of its receptor, MCH was demonstrated to
potently stimulate food intake (51), and MCH knockout mice were found to
be lean (52). The first MCH receptor (MCH1R) was identified both by match-
ing and isolation of the natural peptide from brain extracts (53–55). Soon
after, a second MCH receptor (MCH2R) was described whose function is less
clear (56). Synthetic antagonists of MCH1R were found to suppress MCH-
induced food intake and to reduce body weight after chronic administration
(57–59). Unexpectedly, one MCH antagonist (SNAP-7941) was also reported
to have antidepressant- and anxiolytic-like effects in rodent models (58).
Obviously, MCH receptor antagonists are prime candidates for novel thera-
peutic concepts in control of body weight.

4.5. Ghrelin

The history of ghrelin and its receptor is a story with surprises and seren-
dipity. At the beginning, there was a synthetic compound identified and even
clinically tested as a growth hormone secretagogue (GHS) (60). This com-
pound was also used to clone a GPCR (termed GHS-R) that was found to be
predominantly expressed in the brain (61). Therefore, it was surprising when
ghrelin was isolated from stomach extracts (62). Ghrelin was found to be
profoundly involved in energy homeostasis and the control of food intake,
likely as a hunger signal from the gut to the brain (63). Ghrelin enhances fat-
mass deposition and food intake by activating hypothalamic feeding centers
and promotion of NPY expression (64). Under normal conditions, plasma
ghrelin levels peak before food intake. Interestingly, it was discovered that
morbidly obese patients undergoing gastric bypass surgery lack this ghrelin
peak, indicating that the disruption of ghrelin signaling may at least partially
contribute to the weight-reducing effects of this surgical procedure (65).
There are currently no reports about small-molecule ghrelin antagonists, but
it can be assumed that preclinical development is intensely progressing on
this target. The usefulness of ghrelin antagonists in the treatment of obesity
was recently questioned by the finding that ghrelin knockout mice had com-
pletely normal body weight and displayed no gross phenotypical abnormali-
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ties (66). Future studies and the availability of synthetic ghrelin antagonists
will help to clarify the function of ghrelin in feeding responses and control
of body weight.

4.6. ADP as the Ligand of P2Y12
The identification of the long-sought platelet P2Y receptor (now termed

P2Y12) and its endogenous ligand ADP was achieved in two different ways.
First, ADP was purified from tissue extracts as a natural compound activat-
ing an orphan GPCR that was clearly a member of the purinergic subfamily
of receptors, making it the first nonpeptide ligand isolated using the orphan
receptor strategy (67). However, the physiological identity of the receptor
clone was unclear. Soon after, expression cloning of the platelet ADP recep-
tor was reported, verifying the results of the former study (68). The P2Y12
receptor had been a major focus of pharmaceutical development, because
the antithrombotic drugs ticlopidine and clopidogrel were known to antago-
nize the platelet ADP receptor (69). However, these drugs were developed
before the molecular structure of P2Y12 was available. Blocking of P2Y12
receptors can potently reduce blood coagulation and is clinically used to
prevent thrombosis. The identification of P2Y12 and its endogenous ligand
ADP will enable pharmaceutical companies to develop more selective
antagonists with an improved side effect profile.

5. CONCLUSIONS
The identification of ligands for orphan GPCRs is a very juvenile, but

promising, field of postgenomic research. Both academia and the pharma-
ceutical industry have readily understood the great potential for unraveling
basic neurochemical mechanisms and development of truly innovative
drugs. At this early stage, several small-molecule agonists and antagonists
to newly identified ligand–receptor systems are already in preclinical devel-
opment, and hopefully, we will soon witness the first clinical trials based on
orphan GPCR research. Because of the successful history of GPCRs as drug
targets, these newly identified GPCRs and their natural ligands will cer-
tainly become the focus of future preclinical and clinical development.

A large amount of work lies ahead, and development of new technologies
might be necessary to identify all natural ligands of orphan receptors. The
knowledge of all transmitters and their cognate receptors involved in cell–
cell communication will eventually lead to fundamentally new views of
brain functions and associated diseases. Because GPCRs usually have a
modulatory effects on neurotransmission, it can be assumed that the results
from orphan receptor research will have their greatest impact on the under-
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standing and treatment of psychiatric disorders, where current evidence of-
ten suggests a lack of fine-tuning in neuronal communication. In this re-
spect, work on orphan GPCRs holds tremendous potential—not only for the
development of drugs that will fill unmet therapeutic demands but also for
the neurosciences in general.
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endocytosis, 311–313

GABAB receptor subtype
hetero-oligomerization,
295

postendocyte trafficking, 313,
314

secretion, 310, 311
therapeutic implications,

human immunodeficiency
virus coreceptor, 315

morphine tolerance and
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transduction, 123
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interactions, 209

PKA, see Protein kinase A
PKC, see Protein kinase C
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regulation of G protein-coupled
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signal transduction, 121
Protein kinase C (PKC),
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protein-coupled
receptors

PDZ domain interactions,
203, 204

trafficking modification,
207, 208

proteomics, 201, 202
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