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P R E F A C E
Reinforced concrete structures are the most com-
mon component in structural engineering. Engi-
neering experience and research achievements, 
improvements in manufacturing technology, 
and applications of new and efficient materials 
have led to a great deal of progress in reinforced 
concrete structures. The performance index is 
increasing continuously, structural configurations 
are more varied, and the scope of applications is 
expanding greatly. Today, reinforced concrete 
structures are used widely not only in various 
civil and public buildings, single- and multi-story 
industrial buildings, and high-rise and large-span 
buildings, but also in bridges, communication 
installations, and hydraulic and underground 
engineering. Reinforced or prestressed concrete 
structures are also used in special structures, e.g., 
TV towers, electrical transmission poles, silos, 
chimneys, even reactor and containment vessels 
in nuclear power plants, and very large hydraulic 
forging presses.

Generally, concrete structures work at room 
temperature (<60 °C) and they can be designed 
or their safety can be checked using the current 
codes.[0-1] However, some structures, e.g., metal-
lurgical and chemical plants, chimneys, nuclear 
reactors and their containment structures, and 
hydraulic forging presses, work constantly in 
high temperature environments (100–500 °C). 
In addition, building fire accidents occasion-
ally occur due to natural or man-made causes. 
These accidents cause the structure in a build-
ing bearing a high temperature attack to reach 
maximum temperatures of 1000 °C or higher 
within a short time (e.g., 1 h). When the con-
crete structure reaches elevated temperatures, 
it experiences cracking, increased deforma-
tion, and reduced strength, because of serious 
deterioration of material behavior and internal 
force redistribution of the structure. Then the 
structure may fail and even collapse, and this 
will result in significant economic losses and loss  
of life.
xi

The research work related to this field is still 
limited in China and no corresponding design 
code is available for engineers. Therefore, the 
development requirements of construction engi-
neering cannot be met, and research on the 
behavior of concrete materials and structures at 
elevated temperatures has become an important 
and urgent task.

The authors and several postgraduates have 
completed several research projects in this field 
since 1989. These projects are financially sup-
ported by the 863 High Science and Technol-
ogy Plan of the National Science Committee, 
National Natural Science Foundation, and Doc-
toral Research Foundation of the Education 
Ministry of China. This book is a systematic 
collection and summary of the experimental and 
theoretical research results of these projects. The 
postgraduate students who took part in the proj-
ects are: Quiping Shi, Xudong Shi, Yütao Guo, 
and Jianping Yang (doctoral students) and Wei 
Li, Li Jiang, Huadong Li, Jianlin Nan, Tong-
guang Lü, Jieying Zhang, and Jinfeng Sun (mas-
ters students). In addition, many undergraduate 
students took part in the experimental work dur-
ing their graduation projects.

The behavior of a concrete structure at high 
temperature is much more complicated than that 
at room temperature, and its theoretical analysis 
is quite difficult. When the environmental tem-
perature of a structure is elevated under some 
conditions, a corresponding dynamic nonuni-
form temperature field is formed, the strength 
and deformation behavior of the materials (con-
crete and reinforcement) deteriorates significantly 
at high temperatures, and the internal forces 
undergo severe redistribution. Furthermore, tem-
perature and load (or stress) show an obvious 
coupling effect, and the constitutive relationships 
of the materials and the mechanical behavior of 
the structure vary considerably under various 
temperature–load paths. Therefore, the mechani-
cal behavior of concrete material, members, and 
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structures is presented first in this book, accord-
ing to the experimental results in which tem-
perature and load act together. The working 
mechanisms are analyzed, experimental data are 
collected, general regularities are deduced, theo-
retical analyses are developed, and simplified 
calculation methods are given for engineering 
applications.

There are four parts in this book, which are 
introduced separately: the mechanical behavior of 
concrete and reinforcement at elevated tempera-
tures and the coupling temperature–stress con-
stitutive relationship of concrete; the theoretical 
analysis and calculation charts and tables for the 
temperature fields of the member section; the test-
ing method at elevated temperature and behavior 
regularities of various basic structural members 
and statically indeterminate structures; and the 
theoretical analysis along the temperature–load 
history and practical method of calculating the 
ultimate strength of the members and structures at 
elevated temperature, and evaluation criteria and 
method of grading damage in structures after fire.

This book provides important concepts, 
experimental data, and the method and param-
eters of the theoretical analysis for engineers 
and technicians engaged in research, design, or 
construction, when they design and calculate 
the resistance of a structure at high temperature 
(fire) or deal with an existing structure after a fire 
accident. Moreover, this book may be used as a 
textbook for a concrete structure course by uni-
versity lecturers, postgraduate, and undergradu-
ate students of structural engineering.

The Chinese version of this book was written 
by two authors. Zhenhai Guo was responsible 
for Chapters 1, 2, 3, 4, 8, 9, 11, 13 (part), and 
14, and Xudong Shi was responsible for Chap-
ters 5, 6, 7, 10, 12, and 13 (part). Zhenhai Guo 
revised and completed the manuscript. This Eng-
lish version was translated from the Chinese ver-
sion by Zhenhai Guo.

The authors sincerely thank the organizations 
that financially supported and assisted with the 
related projects and publication: 863 High Sci-
ence and Technology Plan of the National Sci-
ence Committee, National Natural Science 
Foundation, Doctoral Research Foundation of 
the Education Ministry of China, and Tsinghua 
University Press and Elsevier Inc. We also thank 
the postgraduates, undergraduates, technicians, 
and workers who worked with us and helped us 
with the experimental and theoretical research. 
In addition, I would like to give special thanks 
to my wife, retired professor Suying Qian, who 
not only patiently typed the entire manuscript, 
including many calculation tables and compli-
cated equations, to form the original computer 
text, but also takes care thoughtfully of my life.

The experimental investigations, theoretical 
analyses, design, and calculation methods for 
concrete structures at elevated temperatures are 
still not completely satisfactory. Many problems 
need to be resolved with more extensive research. 
Because the authors’ research results, under-
standing, and analysis abilities are limited, some 
errors may be found in this book. We are grateful 
to the specialists and readers for their comments 
and criticism.

Zhenhai Guo
Tsinghua University, Beijing



I N T R O D U C T I O N
0.1  THERMAL PROBLEMS IN 
STRUCTURAL ENGINEERING

Generally, a concrete structure works at room 
temperature within the construction period and 
during its long service life. The absolute value of 
its environmental temperature is low and does 
not fluctuate. A structure designed following the 
current codes[0-1] can satisfy the safety and ser-
vice performance requirements. However, if the 
environmental temperature increases too much 
or the temperature difference varies periodically, 
the structure may fail as the service performance 
deteriorates or strength decreases. Sometimes 
a structure may suffer local damage or even 
collapse.

In structural engineering, thermal problems 
due to changes in temperature can be classified 
into three categories[0-2]:

 1.  The temperature changes periodically or 
occasionally beyond the normal value. For 
example, on a surface exposed to the sun 
in a high-rise or long-span building, the 
temperature increases when the sun shines 
and reduces when the sun sets, and the air 
around the building increases in the summer 
and decreases in the winter, which causes 
the interior of the structure to suffer peri-
odic temperature differences. Because of the 
accumulation of hydration heat of cement in 
concrete during the hardening process, and 
the temperature variation caused by circum-
ferential water, air, and sunshine, a nonuni-
form temperature field is formed in massive 
hydraulic structures (dams, etc.). Although 
the maximum temperature in the interior of 
these structures is not very high (generally less 
than 60 °C), the strain induced by the tem-
perature change (±30 °C) is much larger than 
the value of the ultimate tensile strain of con-
crete.[0-3] This is sufficient to cause cracking 
of the concrete, increase deformation of the 
structure, induce redistribution of the internal 
forces, and influence the service performance 
of the building.

 2.  High temperature action is maintained for a 
long time within the working conditions of 
the building. For example, some structures in 
metallurgy and chemical industry workshops 
are subject to radiation of high temperatures 
throughout the year, and the temperature on 
the surface of the structure may reach 200 °C 
or even higher. When a chimney spurts smoke 
of high temperature, the temperature of the 
internal lining may reach 500–600 °C and 
the temperature on the external surface may 
reach 100–200 °C. In the reactor vessel and 
containment structures of a nuclear power 
plant, the temperature may reach 120 °C or 
even higher at local positions.

 3.  High temperature impact in a short time is 
caused by occasional accidents. For exam-
ple, a fire in a building may last a few hours, 
and the maximum temperature of the fire 
may reach 1000 °C, even higher within only 
1 h. If a chemical or nuclear explosion or an 
accident at a nuclear plant occurs, the tem-
perature may reach several thousand degrees 
centigrade or even higher within a matter of  
seconds.

The structural temperature effects of the 
above three categories have different temperature 
ranges and variable rules, which cause consider-
able differences in the behavior of the material 
and structure and the level of structural damage. 
They can be dealt with using theoretical analy-
ses, design methods, and structural construction, 
respectively. There are corresponding design 
codes or specifications[0-4,0-7] for practical use in 
many countries, but in China, there are design 
codes and research monographs[0-8,0-10] for the 
xiii



xiv Introduction
first two categories only. There is a design code[0-

11] for fire prevention in a building, but it cannot 
deal with the analysis and design of the fire resis-
tance of structures.

This book mainly deals with the third cat-
egory of structural thermal problems. It intro-
duces the experimental and theoretical research 
results on concrete and reinforcement materials 
and the concrete members and structures under 
high accidental temperatures (i.e., fire). The gen-
eral regularity and mechanical mechanism of 
their behavior at elevated temperatures are also 
presented. Analysis methods and calculations are 
provided for the temperature fields, the resistant 
behavior of structural members, statically inde-
terminate structures at elevated temperatures, 
and damage evaluation after a fire. The related 
principles, analysis methods, and experimen-
tal data in the book can also be used as a ref-
erence for other categories of structural thermal 
problems.

0.2  HARMFULNESS AND 
RESOLUTION OF STRUCTURE 
AFTER FIRE

The discovery of fire accelerated the evolu-
tion of humankind, promoted civilization and 
social development, and led to technologic prog-
ress, economic development, and a prosperous 
 modern society. However, loss of control of 
fire may result in catastrophe. In Chinese his-
tory, many cities were burnt down during wars, 
and cities built over several hundred years were 
ruined in one day. In England, the Great Fire 
in London (1667), caused by a fire in a bakery, 
brought disaster to one-third of the buildings in 
the city.

Different types of fire accidents cause enor-
mous loss of human lives, natural resources, 
and social properties. Therefore, humankind 
has struggled with fire for a long time and accu-
mulated many experiences and created effective 
ways to control it. In modern society, the tech-
niques and equipment for fire prevention and 
extinguishment are constantly being updated and 
their efficiency and performance also improve 
constantly, as scientific techniques make prog-
ress. Nevertheless, serious fire accidents still 
occur for various natural, technical, and man-
made reasons, and fires occur most frequently 
and cause the most damage to buildings in a 
populated city. For example, more than 10,000 
building fires occur every year in China, causing 
the loss of more than 1000 lives and several bil-
lion Yuan in economic losses annually.

There are many causes of fire in buildings, 
e.g., lightning strikes, material self-combustion, 
dust explosion, loss of control of fire in residen-
tial and industrial settings, negligence in storage 
or use of fuel, mistakes in operating electrical 
equipment, failure of an aged insulating layer, a 
secondary accident after an earthquake or war, 
and even arson. Fire prevention should cover all 
aspects.

Fire is a combustion phenomenon caused 
after a combustible substance is inflamed and 
reacts intensely together with an oxidant, gener-
ally oxygen in the air. In the burning process, 
enormous heat is generated, the temperature of 
the surrounding air and various materials rises 
quickly, and some materials in the space may 
burn successively and a more serious fire may 
result. As the flames and smoke associated with 
high temperature evolve, the fire spreads to the 
adjacent spaces, even the whole building. When 
firefighters are successful, either all combus-
tibles inside a building burn out, or oxygen is 
exhausted or isolated, with the effect that the 
fire declines gradually and is eventually extin-
guished. This describes one cycle of a fire acci-
dent but it is possible that burning and declining 
are repeated several times in one fire accident.

When a fire occurs in a building, the tempera-
ture increases, a nonuniform temperature field 
forms, and the structural material deteriorates in 
the interior of the structure. This causes damage 
and strength reduction at different levels in the 
structure. When the structure acts as the load-
bearing and support system of the building, it 
should maintain sufficient strength for a certain 
time period during a fire, so that firefighters can 
fight the fire, rescue the injured and deceased 
victims safely, and save valuable property. 



Therefore, it is considered that a structure fails in 
fire resistance, if one of three limit states[0-12,0-14] 
is reached:

 1.  The limit state of the load-bearing capac-
ity. The load-bearing capacity of a structure 
is reduced at elevated temperatures, so that 
the service load can no longer be supported 
because of structural collapse, instability, or 
excessive deflection (e.g., 1/30th of the clear 
span).

 2.  The limit state of obstructing fire. The integ-
rity of a structure is compromised by fire, 
wide cracks and holes are formed, and the 
spread of fire and smoke cannot be stopped.

 3.  The limit state of heat insulation. When the 
temperature on a surface unexposed to the 
fire of the structure increases excessively (e.g., 
140 °C for an average value or 180 °C for the 
maximum value), it may cause a fire in the 
adjacent rooms and a fire spreads.

The time taken for a structural or architectural 
member to reach one of the three limits under 
fire following the standard time–temperature 
curve (Eqn. (5.1)) is called the endurance limit (in 
hours). According to the Code of Fire Prevention 
in Buildings,[0-11] a building can be classified into 
four grades depending on its importance, and the 
minimum endurance limit (0.5–4 h) is stipulated 
for different members.

Several types of materials are used in struc-
tural engineering. Timber structures are combus-
tible, cannot prevent a fire, and can even enhance 
a fire after it has started. Although a steel struc-
ture is not combustible, the temperature of the 
steel members under fire rises quickly and causes 
loss of the load-bearing capacity or failure of 
local stability, even collapse of the whole struc-
ture, because heat conducts very quickly through 
steel and the structural members are composed 
of thin-wall shaped steel components and plates. 
However, the main part of reinforced concrete is 
concrete itself, which is a material of high heat 
inertia and the main structural members usu-
ally have thick sections. So, the temperature in 
the interior of the member elevates slowly dur-
ing a fire and the temperature elevation of the 
xvIntroduction

reinforcement is delayed by the outer cover. 
Therefore, the loss of strength of the material is 
less significant, the load-bearing capacity of the 
member decreases slowly, and the fire-resistant 
behavior and the endurance limit of reinforced 
concrete structures are much better than for steel 
and timber structures.

If a fire continues for a long time, the dam-
age and failure phenomena of different levels 
will appear successively in the concrete structure: 
cracking and loosening on the surface, damage 
to the sides and corners, explosive spalling of the 
cover, reinforcement exposure, member deflec-
tion, gradual separation of the surface layers 
from the main body, damage area penetrating 
into the interior of the member, and, finally, cav-
ing in, local holes, and ultimately collapse of the 
entire structure may result.

Many valuable lessons and experiences have 
been gained from previous fire accidents and 
effective methods to prevent and fight fire have 
been developed. However, preventing fire is not 
always possible, so one should also depend on 
effective methods to fight fires. After years of 
research, many effective measures have been cre-
ated in both of these aspects:

 1.  Prevention of fire occurrence and spread. 
For example, maintaining sufficient distance 
between buildings, separating the longer and 
larger areas into several parts and building 
firewalls between them, selecting facilities 
and furniture made of incombustible materi-
als, spraying or smearing fire-protective mate-
rial on the surface of combustibles, installing 
hydrants and water systems, installing auto-
matic alarms and sprinkler facilities, studying 
the regularity of combustion, and limiting the 
spread of fire.

 2.  Research and enhancement of the fire resis-
tance of buildings and structural members. 
For example, establishing large testing fur-
naces for measuring the endurance limit of 
full-scale members, selecting reasonable mate-
rials and improving the detail in construc-
tion of the structure, setting up insulating 
material on the member surface, conducting 
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experimental and theoretical research system-
atically on the thermal behavior of the materi-
als, investigating the behavior of the members 
and the structures at elevated temperatures 
and their analysis method, and developing 
 practical methods to calculate the bearing 
capacity and endurance limit of the structure 
under fire.

In order to enhance and solve the fire resis-
tance ability of the structure and its members, 
several development stages are conducted: during 
the initial stage, only the construction measures 
tested by experience are used, e.g., increasing the 
thickness of the concrete cover of the reinforce-
ment and using heat-resisting concrete; at the 
next stage, large experimental installations are 
established for loading tests of full-scale mem-
bers at elevated temperatures, and the endurance 
limit or bearing capacity of the structural mem-
ber under fire is directly measured. A recent trend 
is to emphasize theoretical analysis based on the 
experimental investigation, which includes the 
development of thermal–mechanical constitutive 
models for the materials, determination of the 
time–temperature curve of fire, conducting non-
linear analysis of the transient temperature field, 
and analyzing the whole process of the structure 
and its members under fire. Because the behavior 
of concrete structures at elevated temperatures is 
quite complicated, the theoretical analysis is not 
yet satisfactory and more study and improve-
ments are needed.

0.3  BEHAVIOR CHARACTERISTICS 
OF REINFORCED CONCRETE 
STRUCTURES AT ELEVATED 
TEMPERATURE

According to the existing results of experimen-
tal and theoretical research and the experience of 
engineering practice, the behavior of reinforced 
concrete structures at elevated temperatures (and 
fire) is considerably different from that at ambi-
ent temperature. The characteristics of reinforced 
concrete structures at elevated temperatures are 
as follows.
 1.  Temperature distributed nonuniformly in the 
interior
Since the thermal conductivity of concrete is 

low, the temperature on the surface of the structure 
rises very quickly during a fire, but the tempera-
ture in the interior increases slowly. So, a nonuni-
form temperature field is formed in the structure, 
especially a large temperature gradient in the outer 
layer. In addition, the temperature field varies con-
tinuously for the duration of the fire (see Part 2).

The main factors determining the temperature 
field of the structure are the temperature–time 
process, the shape and size of the members, and 
the thermal behavior of the concrete material. The 
internal forces, deformation, and small cracks in 
the structure have less influence on the tempera-
ture field. On the contrary, the temperature field 
of the structure influences considerably the inter-
nal forces, deformation, and its bearing capacity. 
Therefore, the analysis of the temperature field of a 
structure can be conducted independently and ear-
lier than that of internal forces and deformation.

 2.  Serious deterioration of material behavior
The values of the strength and elastic modulus 

of concrete and reinforcement at elevated tem-
peratures decrease considerably and the deforma-
tion of both materials increases correspondingly. 
In addition, the external damage of concrete, e.g., 
due to cracking, loosening, and spalling, appears 
successively and gradually becomes more severe 
as the temperature increases (see Part 1). This is 
the main cause of serious reduction in the bear-
ing capacity and the endurance limit of the struc-
ture and its members at elevated temperatures.

 3.  Coupling effect of stress, strain, temperature, 
and time
When a structure at ambient temperatures is 

analyzed, it is necessary to study only the stress–
strain relationship of the material. However, 
the value and the duration of high temperature 
strongly influence the strength and deformation 
of the material. Furthermore, different heat-
ing and loading histories cause various values 
of the strength and deformation of the mate-
rial. A coupling effect is then composed of four 
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factors: stress, strain, temperature, and time for 
the concrete. Therefore, in order to accurately 
analyze the behavior of the structure at elevated 
temperatures, it is necessary to develop a corre-
sponding coupling thermal–mechanical constitu-
tive relationship for concrete (see Part 3). This 
complicates the analysis of the structure and its 
members significantly.

 4.  Redistribution of the stress on the member 
section and the internal forces of the structure
The nonuniform temperature field of the mem-

ber section inevitably results in unequal temperature 
strain and stress redistribution on the section. In a 
statically indeterminate structure, the temperature 
deformation of the material at high temperature 
is restrained by the adjacent material at a different 
temperature, and the joint and the support. So, the 
redistribution of internal forces (bending moment, 
shear force, axial force, and even torque) of the 
structure is serious. As the temperature changes 
with time, a continuous process of redistribution 
of internal forces is then set in motion. Finally, the 
failure mechanism and pattern of the structure is 
different from that at room temperature, which 
influences the ultimate bearing capacity of the 
structure at elevated temperatures (see Chapter 10).

 5.  Process and pattern of failure
Generally, a concrete structure under ambient 

temperatures fails slowly with apparent signs. 
The structure and its members at elevated tem-
peratures fail suddenly because the deformation 
increases quickly, the failure duration is short, 
and fewer warning signs appear. The structural 
member after failure shows large residual defor-
mation, which can be seen clearly by the naked 
eye (see Part 3).
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C H A P T E R

1
Strength of Concrete at Elevated 
Temperatures
1.1  TESTING METHOD 
AND DEVICE

1.1.1  General Testing Program

The typical device for testing the mechanical 
behavior of concrete at elevated temperatures is 
not yet available, and no complete device is avail-
able on the market. Generally, research organi-
zations develop their own device or have one 
designed and manufactured in a factory. Because 
the temperature range, content, method of test-
ing, and the shape and size of the specimen are 
different for each research program, the arrange-
ment and construction of existing testing device 
are all different.[1-1,1-3]

A device for testing the mechanical behav-
ior of concrete at elevated temperatures must 
include three systems: a system for heating and 
temperature control, a system to support and 
load the specimen, and a system of measuring 
and recording instruments. The general arrange-
ment of the material behavior testing system for 
elevated temperatures in the Structural Engineer-
ing Laboratory of Tsinghua University is shown 
in Fig. 1-1. The device had been developed by 
the University and the construction and technical 
specifications are discussed in this chapter.

 1.  Heating and temperature control system
The system includes two sets of furnaces and the 
corresponding temperature controllers, which 
are used for preheating and accurately testing the 
specimen, respectively. The preheating furnace is 
an electrical resistance furnace of box-type SX2-
12-10, which was produced by Beijing Factory of 
Electrical Furnace. The clear space in the furnace 
chamber measures 500 mm × 300 mm × 200 mm, 
the specified power is 12 kW, and the maximum 
temperature is 1000 °C. The average velocity of 
the temperature increase is 8–10 °C/min when 
2

Specimen Preheating furnace
SX2-12-10

Furnace for strength test

 Thermocouple

2000 kN Hydraulic
testing machine

Y6DL-1 Dynamic
strain instrument

X-Y Function
recorder

 7V07 Data
acquisition

 Thermocouple

Furnace for
deformation test

Silicon controlled
power regulator

TGDFK-20

Temperature control box
KSW-12-11

FIGURE 1-1  General scheme of the devices for testing the behavior of concrete at elevated temperatures.[1-4]
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3CHAPTER 1  Strength of Concrete at Elevated Temperatures
no specimen is placed in the chamber. The cor-
responding temperature control box (type KSW-
12-11) is composed of a relay; the maximum 
temperature is 950 °C, and the fluctuation tem-
perature range is ±8–10 °C during constant tem-
perature testing. The temperature–time curve of 
the preheating furnace is shown in Fig. 1-2.

There are two furnaces for material behav-
ior tests. One is used for testing the compressive 
strength and splitting tensile strength of cubic 
concrete specimens (edge length 100 mm), and 
the other is used for testing the compressive 
stress–strain curve of prism concrete specimens 
(100 mm × 100 mm × 300 mm). The furnaces 
were designed and produced by the authors, and 
their construction and technical specifications are 
given in Section 1.1.2. Corresponding to the fur-
naces, a silicon-controlled power regulator (type 
TGDFK-20, manufactured by the Beijing Fac-
tory of Voltage Regulator) is used to control the 
temperature; it has a maximum power of 20 kW. 
The power regulator includes a Proportional-
Integral-Differential (PID) integrator, and can 
automatically slow down the elevating velocity 
of the temperature and avoid the impact of ther-
mal inertia when the temperature in the chamber 
is approaching the required temperature. The 
power regulator can also be operated by hand 
at any time to adjust the elevating velocity or to 
reduce the temperature fluctuation range. The 
controlled temperature is accurate within ±2 °C.

In some other research organizations[1-3] only 
one furnace is used for both heating and loading 
the specimen during testing. However, individ-
ual preheating and testing furnaces have obvi-
ous technical advantages, although the number 
of facilities and investment necessary are high. 
The chamber volume of the preheating furnace 
is large enough to contain 3–6 specimens of the 
same set; the furnace heats them together and 
keeps the temperature constant. Each specimen is 
taken out individually and moved into the testing 
furnace. It is then loaded after accurately control-
ling and readjusting the temperature. Therefore, 
the temperature is uniformly distributed in the 
interior of the specimen. The testing temperature 
is controlled accurately, the experimental results 
for specimens of the same set show good repeti-
tion, and high testing efficiency is achieved.

 2.  Measuring and recording data
The data required during material behavior test-
ing of concrete at elevated temperatures are the 
temperature of the furnace chamber, the temper-
ature of the interior of the specimen, the load (or 
stress), and deformation of the specimen.

In order to measure the temperature in the 
chamber and transfer it as a feedback signal to the 
temperature controller, an accurate and reliable 
armored nickel–chromium and nickel– silicon 
thermocouple (type WRNK-541) is applied. 
The gradation of the thermocouple is EU-2, the 
length is 300 mm and the diameter is 6 mm, and 
the maximum temperature is 900 °C. The ther-
mocouple is connected to the outer wall of the 
furnace through a movable cartridge flange. The 
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FIGURE 1-2  The temperature–time curve of the preheating furnace and the temperature in the interior of the specimen.
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wire used is composed of a knitted compensatory 
metal, which terminates in a plug. The tempera-
ture in the interior of the specimen is measured 
by a transducer made of a fine and light ther-
mocouple of nickel–chromium and nickel– silicon 
wires, which is buried inside the specimen in 
advance. The thermocouple is connected to the 
7V07 data acquisition device or the isolated mea-
surement pods (IMPs) to measure and record the 
temperature during testing.

The load transducer is placed on the specimen 
and the upper compression head. After the value 
of the load applied to the specimen is measured 
and recorded, the average compressive stress (σ) 
can be calculated easily.

In the deformation testing of concrete at ele-
vated temperatures, the prism specimen is put in 
the middle of the furnace, which is at a uniform 
temperature. Because many types of deformation 
transducers installed inside furnaces cannot bear 
high temperatures, an indirect method can be 
used to measure the deformation (or strain) of 
the specimen. In method (1), a pair of stretched 
arms can be set on the upper and lower compres-
sion heads located at both ends of the specimen; 
the deformation of the specimen is transferred 
outside the furnace (Fig. 1-3(a)) and can be mea-
sured and recorded by the displacement trans-
ducer and the corresponding instrument. The 
deformation modification of the compression 
heads should be calibrated in advance and 
deducted from the measured deformation when 
calculating the strain of the specimen.

In method (2), two pairs of long and short 
bars made of stainless steel are used for measur-
ing. The upper end of the longer bar is fixed on 
the upper part of the specimen and the lower end 
extends out of the furnace and is connected to 
the displacement transducer. The upper end of 
the shorter bar is fixed on the lower part of the 
specimen and the lower end also extends out of 
the furnace but is connected to the positioning 
piece (Fig. 1-3(b)[1-6]). As the long and short bars 
have equal temperature deformation within the 
same temperature area, the temperature deforma-
tion (strain) of the specimen can be calculated by 
deducting the temperature (expansion) deforma-
tion of the longer bar between the distance of the 
upper and lower parts of the specimen from the 
deformation value measured by the transducer. 
Compared with method (1), method (2) avoids 
errors caused by the rotation of the stretched 
Furnace body
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FIGURE 1-3  Furnace  and measuring method of  deformation  testing:  (a)  testing  furnace  and measuring method  (1); 
(b) measuring method (2).
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arms and the deformation of the upper and lower 
compression heads that are placed in the nonuni-
form temperature area of the furnace. In addition, 
the deformation modification part of the longer 
bar is located in the area of the furnace at uniform 
temperature and the deformation of this part can 
be calculated accurately or calibrated in advance. 
Thus, method (2) has advantages over method 
(1), but, in order to install the measuring bars in 
the chamber, the section size of the concrete prism 
specimen used is reduced to 80 mm × 80 mm.

1.1.2  Design and Manufacture 
of the Furnace for Material Testing

The furnace for strength testing is a special facil-
ity used for compression and splitting tension 
tests on cubic concrete specimens at elevated 
temperatures. The size and construction of the 
furnace body are shown in Fig. 1-4. The main 
components include the case, chamber and 
opening bricks, heating wire, isolated layers, and 
thermocouple.

The cover and case constitute the outer shell of 
the furnace. The periphery measures 410 mm ×  
410 mm × 500 mm, which fits the working table 
of the hydraulic testing machine.

The chamber and opening bricks are made of 
refractory material. The chamber brick is tubular 
with an internal diameter of 150 mm, which is 
slightly longer than the diagonal of the specimen 
section (10 mm × 100 mm). The chamber brick is 
20 mm thick and contains 28 longitudinal holes 
along the circumference, which permit the con-
tinuous heating wire to pass through. Its height 
is 250 mm and the height of the uniform tem-
perature area in the middle exceeds the height of 
the specimen (100 mm). The opening bricks are 
placed to protect the upper and lower ends of the 
chamber brick.

The total power of the furnace is 3 kW. Two 
heating wires of 1.5 kW each pass reciprocally 
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FIGURE 1-4  Construction of the furnace for strength testing.
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through the longitudinal holes within the cham-
ber brick. The ends of the wires are connected 
in parallel to each other and link up with the 
silicon-controlled power regulator, which sup-
plies electrical energy for heating. The armored 
thermocouple passes through the hole and enters 
the chamber to measure the temperature, and is 
then fixed with the flange. The thermocouple is 
used not only for measuring the temperature but 
also as the feedback signal, which provides input 
to the power regulator and controls the tempera-
ture of the furnace chamber.

Insulation is applied to the furnace body to 
increase thermal efficiency and to ensure safety 
during use. The insulation blanket of siliceous 
aluminum fiber is wrapped around the cham-
ber brick, and several layers of insulation felt of 
the same fiber are put on and under the cham-
ber brick. These insulation materials are manu-
factured by Beijing Factory of Refractory. The 
insulating effect of the furnace lasts even after 
many uses. When the temperature in the chamber 
remains at 900 °C for 2 h, the temperature on the 
outer surface of the furnace is lower than 50 °C.

The construction and materials of the furnace 
for deformation testing are the same as those 
used for strength testing. For measuring deforma-
tion, the height of the prism concrete specimen is  
300 mm, therefore the height of the chamber 
is 500 mm, which is created using two cham-
ber bricks. Three heating wires of 2 kW each 
pass reciprocally through the longitudinal holes 
within the chamber bricks. The ends of the wires 
are connected in parallel to each other and are 
linked to the power regulator. The total power 
of the furnace is 6 kW. The size of the outer shell 
of the furnace is 410 mm × 410 mm × 650 mm.

Since the two test furnaces were manufac-
tured, in cooperation with other facilities (Fig. 
1-1), several hundred heating–loading tests have 
been completed. They have shown that the con-
struction of the furnace body is reasonable, the 
insulation behavior is perfect, the accuracy of the 
controlling temperature is satisfactory, the test-
ing procedure is convenient, the testing efficiency 
is high, the investment is low, and the results are 
obtained quickly.
The complete device for testing the mechani-
cal behavior of concrete at elevated temperatures 
has been described above; its testing functions 
and technical specifications follow:

 1.  Test items: cubic compressive strength (fTcu), 
splitting tensile strength (fTt ), complete com-
pressive stress–strain curve, corresponding 
prismatic compressive strength (fc), and peak 
strain ε( )Tp .

 2.  Specimen size: cube of 100 mm × 100 mm × 
100 mm, prism of 100 mm × 100 mm ×  
300 mm.

 3.  Maximum axial compressive force: 2000 kN.
 4.  Maximum testing temperature: 900 °C.
 5.  Maximum heating velocity: 10 °C/min.
 6.  Precision of temperature control: ±2 °C.
 7.  Testing conditions: load under constant tem-

perature, heat under constant load, constant 
temperature and load, cycles of elevating and 
reducing temperature, and variety of loading–
heating paths.

1.2  COMPRESSIVE STRENGTH 
AT ELEVATED TEMPERATURES

1.2.1  General Phenomena During 
Heating

The compressive strength of concrete is the 
most basic and important mechanical behavior. 
It acts as a fundamental parameter to identify 
the strength grade and quality index of the con-
crete, and to determine the values of other types 
of mechanical behavior, e.g., tensile strength, 
elastic modulus, and peak strain. Similarly, the 
compressive strength and the stress–strain rela-
tionship of concrete at different temperatures 
are also the basis for studying the behavior of 
concrete structures and components at elevated 
temperatures.

The mechanical behavior of concrete at ele-
vated temperatures can be obtained using certain 
tests using the testing device described above; 
they are presented individually in this chapter 
and in Chapters 2 and 3. For the sake of easy 
comparison and analysis, the raw materials and 
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the mix of the concrete are the same for all the 
specimens in the various tests. The testing tem-
perature ranges from 100 °C to 900 °C.

There are two strength grades (C20 and C40) 
of concrete specimens, and two types of coarse 
aggregates (limestone and granite) for each grade 
of concrete. The maximum size of the aggregates 
was 15–20 mm. The same types of cement and 
sand were used for all concretes. The mixes and 
the cubic strength under normal temperatures 
during testing of the four concretes are listed in 
Table 1-1.

The concrete was mixed and poured into a 
steel mold by hand, and was then compacted 
using a vibrator and the surface was daubed. 
The concrete specimens were left for 2 days in 
the laboratory and then kept in the standard cur-
ing room for 28 days after being demolded. The 
specimens were prepared for testing after air-dry-
ing for more than 3 days at room temperature.

In order to obtain the strength of concrete 
at a certain temperature (e.g., T = 700 °C), 
the temperature in the interior of the specimen 
should be distributed uniformly. However, heat 
conducts slowly in concrete as it is a material 
of thermal inertia (see Section 5.2.1). When a 
cubic specimen (edge length 100 mm) is heated 
in the preheating furnace, the temperature at 
the center reaches only 430 °C in 75 minutes, 
whereas the temperature in the chamber has 
already reached 700 °C (Fig. 1-2). Obviously, 
the temperature distributes nonuniformly in 
the interior of the specimen. The temperature 
in the chamber fluctuates within 700 ± 10 °C, 
but the internal temperature of the specimen 
increases gradually with the reduction in elevat-
ing velocity. The temperature at the center of the 
specimen is approximately 650 °C and 677 °C 
in 2 and 6 hours, respectively. Thus, it is consid-
ered that the temperature in the whole specimen 
distributes uniformly after 6 h. Several tests at 
different temperature values demonstrate that a 
uniform temperature in a cubic specimen (edge 
length 100 mm) can be achieved after heating 
to a certain temperature and keeping it constant 
for 6 h.

Therefore, the procedure for testing the com-
pressive strength of concrete at elevated tempera-
tures is as follows: cubic specimens are heated 
to the predetermined temperature and kept 
constant for 6 h in the preheating furnace; each 
specimen is taken out individually using a special 
clamp and put into the strength test furnace; the 
specimen is loaded and the compressive strength 
at elevated temperatures (fTcu) is measured after 
accurately adjusting the furnace temperature, 
which takes about 20 min. The loading velocity 
of the specimen (0.25 MPa/s) is the same as that 
at normal temperatures.

When the concrete specimen is heated from 
room temperature to 900 °C, its physical condi-
tion changes gradually in the testing process. The 
color and surface damage of the specimen at dif-
ferent temperatures are shown in Table 1-2.[1-4]

The weight of the concrete specimen decreases 
gradually in the heating process. The weight 
loss (in %) of a cubic specimen after keeping 
it for 6 h at a predetermined temperature is 
shown in Fig. 1-5.[1-6] When the testing tem-
perature is in the range of 20–200 °C, the con-
crete loses weight quickly, mainly because the 
free water in the specimen evaporates; when the 
temperature is in the range of 200–500 °C, the  
weight is lost slowly as the chemically combined 
  TABLE 1-1      Mixes and Cubic Strength at Normal Temperature During Testing of Concretes

Type of concrete

Mix (kg/m3)

fcu (N/mm2)325# Cement Water Sand Limestone Granite

C20L 320 195 665 1235 30.50
C20G 320 195 665 1235 28.80
C40L 435 200 571 1200 55.00
C40G 435 200 571 1200 54.10
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  TABLE 1-2      Surface Features of Concrete at Different Temperatures

Temperature (°C) Color Cracks Lost surface Broken corners Loose

100 Same as normal 
temperature

No No No No

300 Slightly white Fine, few Not yet No No
500 Gray–white Fine, more Few No Slightly
700 Dark red Obvious, more Less Few Obvious
900 Red Wide, more, 

directionless
Lose after knocking Every corner, 

 different level
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FIGURE 1-5  Weight  loss  of  concrete  (limestone  aggre-
gates) at elevated temperatures.
water in the cement mortar separates; when 
the temperature reaches 500 °C, the calcium 
hydroxide component produced from the 
hydration of cement decomposes and dehy-
drates; when the temperature exceeds 600 °C, 
the magnesium and calcium carbonates in the 
dolomite and calcite of the aggregates begin to 
decompose, so the aggregates become unstable 
and the weight loss may reach 10%; when the 
temperature is even higher, the outer layer of 
the concrete is damaged and spalls off, causing 
further weight loss.

The cubic specimen of concrete is loaded and 
failed at different temperatures, and then cooled 
down to room temperature. The failure pattern 
is shown in Fig. 1-6. The specimen tested at 
normal temperature presents an upright reverse 
pyramid and the middle section cracks and 
spalls off, whereas the top and bottom surfaces 
show no signs of failure and the corners and 
edges remain intact because both surfaces are 
confined by the steel plates that are in contact 
with them. The failure appearance of the speci-
men tested at T < 300 °C shows little difference 
from that at normal temperature. For speci-
mens tested at higher temperature, the cracks 
and the broken corners and edges on both com-
pressive surfaces appear serious and the core 
section in the central part reduces gradually. As 
the testing temperature approaches T > 800 °C, 
the specimen breaks at the end of the loading 
or breaks into pieces when it is taken out of the 
furnace.

1.2.2  Cubic Compressive Strength 
at Elevated Temperatures

The cubic compressive strength of concretes at 
different temperature f

T
cu are listed in Table 1-3. 

Two grades of concretes with two types of aggre-
gates each are included. As the temperature of 
the specimen increases gradually during testing, 
all the internal materials of the concrete experi-
ence a series of physical and chemical reactions, 
and the compressive strength shows a compli-
cated variable regulation (in contrast to Fig. 1-7, 
discussed later).

When the testing temperature T equals 100 °C, 
the ratio between the compressive strength of 
concrete at elevated temperatures and at nor-
mal temperature, fTcu/fcu is between 0.88 and 
0.94. As the free water contained in the con-
crete evaporates gradually, capillary cracks and 
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FIGURE 1-6  Failure patterns of compressive cubic specimens of concrete at elevated temperatures.
  TABLE 1-3      Cubic Compressive Strength (fT
cu , N / mm2) of Concrete at Elevated 

Temperatures[1-4]

Concrete
Room  
temperature 60 °C 100 °C 150 °C 200 °C 300 °C 400 °C 500 °C 700 °C 900 °C

C20L 30.5 28.3 28.2 29.0 31.1 32.5 30.6 24.7 10.6 3.6
C20G 28.8 26.1 30.3 22.8 8.3 2.4
C40L 55.0 50.3 56.7 43.7 21.4 5.0
C40G 54.1 48.2 54.3 40.9 13.8 2.9
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FIGURE 1-7  Cubic compressive strength of concrete at elevated temperatures.
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porosity are formed in the interior of the speci-
men. The pressure of the water and vapor in the 
cracks and holes increases as the temperature 
rises causing tensile force in the surrounding 
solid materials. In addition, the stress concen-
tration occurs at the tips of the cracks and accel-
erates the expansion of the cracks. Therefore, 
the compressive strength of the concrete reduces 
slightly.

When T  = 200–300 °C, fTcu / fcu = 0.95–1.08, and 
the free water in the specimen is evaporated. 
Because the expansion coefficients[0-2] of the 
coarse aggregate and the cement mortar of the 
concrete are not equal, the difference in ther-
mal deformation between them causes cracks 
to form on the boundary of the aggregate and 
reduces the compressive strength of the concrete. 
On the other hand, as the combined water in the 
cement gelatin starts to release, it strengthens 
the adhesive action of the cement particles and 
relaxes the stress concentration at the crack tip, 
so it helps to increase the strength of the con-
crete. These contradictory factors act simulta-
neously, so that the compressive strength of the 
concrete first increases slightly and later reduces 
within the temperature range. It shows a com-
plicated variation. The fluctuating amplitude of 
the strength depends on the composite compo-
nents, quality of the raw materials, and mix of 
concrete.

When T is greater than 400 °C, the compres-
sive strength of the concrete decreases obviously, 
and f

T
cu / fcu = 0.75–0.85 when T = 500 °C. The 

difference in thermal deformation between the 
aggregate and the cement mortar increases con-
tinuously, and the cracks on the boundaries 
expand and extend. In the meantime, the water 
in the calcium hydroxide and other chemical 
compounds available after cement hydration is 
released with volume expansion, so the cracks 
expand and the compressive strength reduces 
more quickly.

When T ≥ 600 °C, the quartz components in 
the unhydrated cement particles and the aggre-
gates decompose and crystal is formed, accom-
panied by considerable expansion. Cracks also 
appear in the interior of some aggregates and 
expand as the temperature increases. The com-
pressive strength of concrete reduces sharply:

 T = 700 °C , fT
cu / fcu = 0.30–0.50; 

 T = 800 °C , fT
cu / fcu = 0.15–0.28; 

 T = 900 °C , fT
cu / fcu = 0.05–0.12. 

The thermal action results in strength loss and 
deterioration of the deformation behavior of con-
crete. According to the analyses above, the main 
reasons for this can be summarized as follows:

 •  Crack and porosity form in the interior of 
concrete after water evaporates.

 •  The thermal behavior of the coarse aggregate 
and the cement mortar are different, which 
causes a deformation difference and internal 
stress between them and results in cracking at 
their boundary.

 •  Coarse aggregate expands and cracks at high 
temperature. This internal damage in the con-
crete develops and accumulates continuously, 
and tends to be more serious as the tempera-
ture increases.

The compressive strength of concrete varies as 
the temperature changes; its regularity described 
earlier is consistent with the existing experimen-
tal conclusions worldwide.[0-6,1-3,1-8,1-9] How-
ever, the thermal behavior of concrete depends 
on many factors, such as the component mate-
rials, mineral chemical composition, mix, and 
moisture. Furthermore, the testing device and 
the method, the shape and size of the specimen, 
the heating velocity, and the time the concrete 
sample was subjected to a predetermined tem-
perature are different in each research experi-
ment. Therefore, the experimental value (fTcu / fcu) 
of concrete strength unavoidably shows a certain 
deviation.

Various factors influence the compressive 
strength of concrete at elevated temperatures, 
and they are analyzed according to the experi-
mental results.

 •  Strength grade of the concrete. The relative 
strength (fTcu / fcu) of concrete (C20–C50) at the 
same temperature decreases with higher grades 
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(Table 1-3), but there is only less than 10% 
difference between them. The relative strength 
of high-strength concrete (>C60) decreases 
to fTcu / fcu ≈ 0.8 when T  = 100–300 °C, and 
the specimen may spall off and break suddenly 
when T > 400–500 °C.[1-8] Extra attention 
should be paid to this.

 •  Type of aggregate. Concrete containing silicon 
aggregate (e.g., granite) has a slightly lower 
strength (fTcu / fcu) compared with  concrete 
containing calcium aggregate (e.g., lime-
stone) at the same temperature. The difference 
between them is approximately 6% when  
T > 700 °C, as shown in Table 1-3. Concrete 
containing light-weight aggregate has a much 
higher strength than concrete containing ordi-
nary aggregate.[1-9,1-10]

 •  Other factors. The larger the water/cement 
ratio or the water content of the concrete, the 
lower the strength (fTcu / fcu); the slower the heat-
ing velocity and the longer the time the speci-
men is held at a high temperature, the lower the 
strength. Cooling and heating–cooling cycles 
make the strength decrease continuous; the 
compressive stress loaded before heating the 
specimen increases the strength of the concrete 
(see Section 3.2).

All the experimental data from tests using the 
same experimental devices and the same condi-
tions are collected and summarized in Fig. 1-7. 
The figure shows the variable regularity and the 
deviation in the compressive strength of concrete 
at different testing temperatures. A fractional 
expression is used as its mathematic model1:

 
fT

cu

fcu
= 1

1 + a
(

T
1000

)b (1.1)

The parameters of the formula are obtained 
from regression analysis and the values are 
rounded to

 a = 16 , b = 6.3 (1.2)

The corresponding parameters in the devia-
tion curves for the upper and the lower limits are 
shown in Fig. 1-7.
11ength of Concrete at Elevated Temperatures

The compressive strength of concrete at elevated 
temperatures calculated by this formula is nearly 
constant f

T
cu ≈ fcu when T < 300 °C. Although it 

cannot accurately reflect the fluctuation in the 
practical strength within the temperature range, 
it fits the experimental regularity quite well when  
T > 300 °C, and the application scope is not lim-
ited (T → ∞). Therefore, this formula is suitable for 
analysis of a fire-resistant structure (at elevated 
temperatures). If a more accurate value of the 
strength is needed for a concrete of specified grade 
strength, raw materials, or mix, special specimens 
should be manufactured and tested, and then the 
values of the parameters in the formula can be cal-
ibrated according to the experimental data.

The specimen experiences successively heating, 
maintaining constant temperature, and loading in 
the strength testing of concrete at elevated tem-
peratures. The whole process takes 7–10 h and 
the heating time is very brief. When the concrete 
is heated for a long time (see Section 0.1), the 
compressive strength decreases gradually as the 
heating time continues because of the accumula-
tion of internal damage within the concrete. For 
higher temperatures, the reducing amplitude of 
the strength is larger. It is demonstrated in certain 
tests[1-13] that most of the strength loss appears 
within the first 2 days in the heating period, and 
the strength gradually tends to stabilize afterward.

1.2.3  Compressive Strength After 
Cooling

When a structure experiences an accidental high 
temperature and the fire eventually cools down 
to normal temperature, the residual strength of 
the concrete at this moment is the main basis to 
evaluate the damage level and the safety of the 
structure and has considerable influence in work-
ing out a strengthening scheme.

The procedure for testing the residual strength 
of concrete after it is cooled is:

 1.  Put a cubic specimen into the preheating 
furnace and heat it to the predetermined 
temperature.

 2.  Maintain a constant temperature for 6 h.
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FIGURE 1-8  Compressive strength of a cubic concrete specimen after it is cooled.
 3.  Open the door of the furnace. The tempera-
ture in the chamber cools down naturally to 
room temperature.

 4.  Take the specimen out after 24 h and then 
load it at room temperature.

 5.  Measure the compressive strength (fTRcu ).

The residual compressive strength of the cubic 
concrete specimen (edge length 100 mm) after it 
is cooled is expressed as fTRcu / fcu and varies as the 
testing temperature changes.[1-4,9-12] The varied 
regularity (Fig. 1-8) can be simulated using an 
empirical formula as follows:

 
fTR

cu

fcu
= 1

1 + 26
(

T
1000

)6.5 . (1.3)

Comparing Fig. 1-8 with Fig. 1-7, it is found 
that the residual strength of the concrete after it 
has cooled has similar regularity but with a slightly 
lower value than the strength of the concrete at 
elevated temperatures with the same value, i.e., 
fTRcu / fcu ≤ fTcu / fcu. In the temperature range T = 
500–800 °C, the difference between them reaches 
the maximum value, i.e., about 5–10%; in the 
other temperature ranges (T < 400 °C or T > 800 
°C), the values are close to each other. The com-
pressive strength of prism concrete specimens 
under these conditions behaves similarly, but the 
relative strength (fTRcu / fcu) has a lower value.[9-12]

The test results show that the interior of con-
crete is damaged gradually when it is heated 
and a high temperature is maintained. When 
the concrete is cooling down, the temperature 
on its outer surface decreases quickly but the 
temperature in its interior remains high, so a 
nonuniform temperature field with opposite gra-
dient is formed and new damage occurs in the 
interior of the concrete. This results in a further 
decrease in strength after the concrete is cooled 
compared with before cooling (i.e., at elevated 
temperatures).

Similar experimental investigations through-
out the world have reached the same conclu-
sion.[1-9,1-14,1-15] However, the values obtained for 
the residual strength of concrete after cooling are 
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different. The minimum value is 20% less than 
the strength at elevated temperatures, probably 
because the specimen cooled down too quickly or 
due to difference in the testing methods. Some fac-
tors, such as the types of cement and aggregate, the 
water/cement ratio, and the age of the concrete, also 
influence the residual strength after cooling.[1-15]

Some investigations[1-9,1-15] show that if the 
specimen experiences heating and cooling and 
is kept in air, its compressive strength decreases 
continuously and the residual strength decreases 
with a higher maximum temperature. If after 
heating and cooling the specimen is immersed in 
water, the lost strength may partly recover and 
the lower the maximum temperature reached, 
the more the strength is recoverable. After several 
heating and cooling cycles, the strength of con-
crete decreases with time, but most of the strength 
appears already lost after the first cooling.

1.3  TENSILE STRENGTH 
AT ELEVATED TEMPERATURES

The splitting testing method of a cubic specimen 
(edge length 100 mm) is used to measure the 
tensile strength of concrete at elevated tempera-
tures. The specimen is heated to a predetermined 
temperature and kept for 6 h in the preheating 
furnace. It is then moved into the strength test 
furnace, and is loaded after adjusting the temper-
ature. Two square (5 mm × 5 mm) stainless steel 
bars are placed between the specimen and the 
upper and lower compression heads separately. 
The tensile (splitting) strength of the concrete at 
elevated temperatures is calculated[0-2] according 
to the load value when the specimen splits.

The tensile strength of concrete decreases 
monotonically as the testing temperature increas es  
(Fig. 1-9). The range of its relative values (fTt / ft) 
versus temperature is listed in Table 1-4. The 
tensile strength of concrete reduces quickly when 
T = 20–100 °C, but reduces slowly when T = 
100–300 °C, and linearly when T > 300 °C. 
When T = 900 °C, the specimen approaches fail-
ure without further loading.

The splitting failure pattern of concrete at T ≤ 
300 °C is the same as that at normal temperature. 
A splitting crack divides the specimen into two 
pieces along its central line and the boundaries 
on both sides of the crack are clear and approxi-
mate to a plane; little damage can be found on 
the boundaries but no crack is found on other 
outer surfaces. When the testing temperature T > 
500 °C, the failed specimen caves in locally at the 
positions of the steel bars, dregs appear on the 
crack boundaries, and wider cracks parallel with 
the crack boundary and irregular heating cracks 
appear on the outer surfaces of the specimen.

Comparing Fig. 1-9 with Fig. 1-7, the different 
deterioration regularities can be seen between the 
tensile and compressive strengths of concrete at 
elevated temperatures, especially within the range 
of T = 100–700 °C. The relative tensile strength is 
obviously lower than the relative compressive 
strength (fTt / ft < f

T
cu / fcu). This demonstrates that 

the internal damage in the concrete caused by ther-
mal action has a stronger influence on its tensile 
strength. Therefore, the ratio between the tensile 
strength and the compressive strength of concrete 
varies as the testing temperature changes, but the 
value of the ratio is always less than that at nor-
mal temperatures, i.e., fTt / fTcu < ft / fcu.

The tensile strength of concrete has a small 
contribution to the bearing capacity of rein-
forced concrete structures and their members at 
elevated temperatures, the value of which can be 
calculated approximately according to a simple 
linear formula:

 
fT

t

ft
= 1 − T

1000
 (1.4)

A comparison between the theoretical and the 
experimental values is shown in Fig. 1-9.

  TABLE 1-4      Tensile Strength of Concrete 
at Elevated Temperatures[1-4]

T (°C) fT
t / ft

100 0.78–0.90
300 0.66–0.88
500 0.52–0.60
700 0.24–0.32
900 —
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FIGURE 1-9  Tensile strength of concrete at elevated temperatures.[1-4]
The bond strength (τu) between the reinforce-
ment and the concrete is the basis for using that 
combination in a reinforced concrete structure and 
is also an important factor influencing the behav-
ior of the structures.[0-2] Some investigations[1-16] 
show that the bond strength between both mate-
rials decreases monotonically as the testing tem-
perature increases, and the variation regularity is 
similar to that of the tensile strength of concrete. 
The reducing amplitude of the bond strength at 
elevated temperatures mainly depends on the sur-
face shape and the corrosion level of the reinforce-
ment. The relative bond strength of round-shaped 
reinforcements at elevated temperatures is even 
lower than the relative tensile strength of concrete, 
i.e., τT

u / τu < fT
t / ft. The design of the fire-resistant 

structures should take this into account.

CONCLUSIONS

Concrete is an artificial compound material. 
Cement is used as the main gluing substance and 
is blended proportionally with sand, stone aggre-
gates, and water. After the process of mixing, 
casting in a mold, compacting, and curing suc-
cessively, concrete coagulates and hardens gradu-
ally. The mechanical behavior of concrete varies 
considerably[0-2] because of the differences in the 
chemical components, behavior, and the propor-
tion of the various composite materials, as well 
as the technological conditions, environment, and 
time factors during the production and harden-
ing processes. At elevated temperatures, structural 
damage occurs in the interior of concrete mate-
rial due to evaporation of water, differences in 
thermal behavior between aggregate and cement 
mortar, and expanding and breaking of aggregate 
particles. The internal damage in the concrete 
accumulates continuously as a high temperature 
is sustained, so the deterioration in the mechani-
cal behavior of the concrete is accelerated.

The various mechanical behaviors of concrete 
at elevated temperatures arranged in order of the 
deterioration levels from lower to higher are as 
follows: weight lost, cubic compressive strength 
(fTcu), compressive strength after cooling (fTRcu ), 
prism compressive strength ( )Tcf , tensile strength 
(fTt ), bond strength τ( )Tu , and elastic modulus 



15CHAPTER 1  Strength of Concrete at Elevated Temperatures
(ET0 ). The variation regularity of each behav-
ior is also different as the testing temperature 
increases. However, the index for every behavior 
approaches exhaustion when T ≥ 800 °C.

Normally, large quantities of local materials 
are used in concrete. Their behavior varies con-
siderably and is influenced by many factors. In 
addition, there is no unified testing standard. 
Therefore, the existing experimental results 
show large deviations. Even the data, points of 
view, and conclusions derived by some research-
ers are contrary to one another. For example: 
Which type of aggregate has the highest or low-
est strength at elevated temperatures? Should 
Poisson’s ratio increase or decrease at elevated 
temperatures? Does the heating–loading path 
obviously influence the mechanical behavior? 
Furthermore, experimental data are still insuffi-
cient and the mechanism of some types of behav-
ior require further investigations.

The chapters in this book introduce the vari-
ous mechanical behaviors of concrete at elevated 
temperatures. The fundamental variation regu-
larities are generally in agreement. However, 
for specific concretes, the technical index of the 
various types of behavior may still vary to some 
extent. Once the materials in the concrete to 
be used in an important structural engineering 
project are determined, a number of specimens 
should be specially manufactured and tested to 
accurately measure the mechanical behavior of 
the concrete at elevated temperatures.

NOTE
1The empirical formula suggested in the previous 
references is 

−
cu

cu

1
,

1 ( 20)

T

b

f
f a T

 

and the value of the parameters obtained in the 
references are listed in the table below.

Reference a b
[1-4] 2.4 × 10−17 6
[1-11] 3.3 × 10−16 5.5
[1-12] 1.183 × 10−20 7.1
[9-3] 1.7 × 10−17 6
[8-3] 8.24 × 10−15 5
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C H A P T E R

2
Deformation of Concrete at Elevated 

Temperature
2.1  DEFORMATION DURING 
HEATING AND COOLING

2.1.1  Deformation During 
 Monotonic Heating and the  
Linear Expansion Coefficient

When a concrete specimen is heated or cooled 
freely (stress σ = 0), it is elongated or short-
ened and expanded or contracted. When the 
 temperature T > 400 °C, the value of the thermal 
deformation of concrete is extremely high and far 
exceeds the value of the compressive peak strain 
(about 2 × 10−3) of concrete at normal tempera-
ture. This thermal behavior has a considerable 
influence on the mechanical behavior of concrete 
material and structures at elevated temperatures.

The testing devices used for measuring the 
thermal deformation of concrete are the same as 
those described in Section 1.1. The testing proce-
dure is as follows:

 1.  Put the specimen directly into the furnace for 
deformation testing.

 2.  Install the deformation transducer and record-
ing instrument.

 3.  Switch on the electrical power.
 4.  Heat the specimen in a low velocity (2–5 °C/

min) until the temperature reaches the prede-
termined value.

 5.  Maintain the same temperature for 30 min.
 6.  Switch off the power and take out the insula-

tion material that is packed up between the 
chamber hole and the specimen; this makes 
the air blow through the chamber and the 
Experiment and Calculation of Rei
© 2011 Tsinghua University Press. P
specimen cools naturally. The cooling veloc-
ity is −5–10 °C/min at the maximum test 
temperature (700 °C or 500 °C) and reduces 
gradually to −1 °C/min as the temperatures of 
the chamber and the specimen decrease.

The temperatures of the chamber and the inte-
rior of the specimen (Ta and Tc, respectively) are 
measured and recorded during the testing pro-
cess. They vary with the heating time (t) and are 
shown in Fig. 2-1.

The thermal strain (ɛth) of the specimen is also 
measured during the testing process. The heat-
ing strain and temperature curves are drawn in 
Fig. 2-2.[1-4,1-6,1-11] As the predetermined tem-
perature cannot be maintained for 6 h due to the 
limitations of the testing method, the internal 
temperature of the specimen distributes nonuni-
formly and the average value calculated by Eqn 
(3.3) is taken as the nominal temperature of the 
specimen.

According to the experimental results, the 
general regularity of the freely expanding strain 
of concrete can be analyzed as discussed below.

When the testing temperature T < 200 °C, 
the solid components of the concrete, including 
the coarse aggregate and cement mortar, expand 
due to elevated temperatures and simultaneously 
shrink due to water loss. Both factors compen-
sate and cause smaller strain (elongation) at a 
slowly increasing rate. When T = 200 °C, the 
thermal strain reaches ɛth ≈ (0.8–1.5) × 10−3.

When T = 300–600 °C, the solid compo-
nents expand continuously as the temperature 
17
nforced Concrete at Elevated Temperatures
ublished by Elsevier Inc. All rights reserved.
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(b) temperature distribution in the interior of the specimen.
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FIGURE 2-2  Free heating strain–temperature curve.
is elevated, and the cracks on the boundary of 
the aggregate appear and extend; the result-
ing strain increases quickly. The thermal strain 
reaches a high value, e.g., ɛth = (6–9) × 10−3 
when T = 500 °C.
When T = 600–700 °C, the increasing rate 
of the thermal expansion strain slows down or 
even ceases.[1-11,0-6,2-1] The expansion strain is 
obstructed possibly because the crystal of the 
mineral component within the aggregates varies 
and the internal damage in the concrete accumu-
lates. At this time, the strain ɛth is greater than 
10 × 10−3.

According to some investigations,[0-7,1-9,1-15] 
the main factors influencing the thermal expan-
sion strain of concrete are: the types of mineral 
components in the aggregates, the mix and water 
content of the concrete, and the heating velocity 
of the specimen. In addition, differences in the 
testing methods and the measuring techniques 
cause greater deviation in the experimental data 
on the thermal strain of concrete.[2-2]

On the basis of the experimental data pro-
vided by Tsinghua University,[1-4,1-6,1-11] the 
relationship between the average value of freely 
expanding strain of concrete (ɛth) and the tem-
perature (T, °C) can be represented by a simpli-
fied regression formula:

 ɛth = 28
(

T
1000

)2

× 10 − 3 ≤ 12 × 10 − 3
 (2.1)

The upper and the lower bounds of the varying 
data are also shown in Fig. 2-2, and the bounds 
are within the varying scope of the experimental 
data in several countries.[2-2]

In accordance with the definition, the average 
linear expansion coefficient of concrete should be 
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ɛth / (T − 20) at elevated temperatures; it can be 
expressed approximately as

 αc = ɛth

T
= 28

(
T

1000

)
× 10 − 6/°C (2.2)

Its value is about (6–20) × 10−6/°C (when 
<650 °C) and increases as the temperature is 
elevated.

2.1.2  Deformation During 
the Heating–Cooling Cycle

A building fire experiences at least one complete 
cycle of heating and cooling. If several instances 
of extinguishing and burning occur, the same 
number of irregular cycles of heating and cool-
ing occur. Correspondingly, the temperatures on 
the surface and interior of the structural concrete 
increase and decrease alternately. This influences 
the different levels of deformation, internal forces 
(stress), bearing capacity, and the damage to the 
concrete materials and structures.

When the concrete specimen is heated freely 
(σ = 0) to different predetermined temperatures 
and is then cooled down naturally to room tem-
perature, the thermal (expansion) strains mea-
sured are shown in Fig. 2-3.[1-6]

The expansion strains of specimens heated to 
different maximum testing temperatures increase 
with increasing acceleration during heating. 
These heating strain curves coincide and show 
good repeatability. The length of the specimen 
shortens during cooling, i.e., the thermal strain 
reduces, all the cooling strain curves are nearly 
parallel, and the cooling strain rate is closed  
(8–12) × 10−6/°C. When the specimen cools down 
to room temperature, its expansion strain does 
not vanish completely and residual strain (elon-
gation) exists. The residual strain is small when 
the maximum testing temperature T < 300 °C; 
it increases quickly when T > 500 °C, and it 
reaches 5.2 × 10−3 when T = 700 °C, which is 
about 40% of the expansion strain at the maxi-
mum temperature.

The expansion strain (ɛth) of concrete during the 
heating process is composed of four parts: heating 
expansion of the solid materials, shrinking due to 
water loss, appearance and extension of cracks on 
the boundary between the aggregate and cement 
mortar, and damage to the interior of the aggre-
gates. However, during the cooling process, only 
the heating expansion of the solid materials may 
restore completely; the others remain unchanged. 
Therefore, all the cooling strain curves are paral-
lel in the cycle of free heating and cooling, and 
the residual strain (elongation) of concrete after 
it is cooled increases considerably as the concrete 
reaches the maximum elevated temperature.

When concrete experiences multicycle testing 
of heating and cooling with the same maximum 
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FIGURE 2-3  Thermal strain of concrete during a free heating and cooling cycle.[1-6]
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temperature in each cycle, the total expansion 
strain at the maximum temperature and the resid-
ual strain after it is completely cooled increase but 
tend toward convergence with repeating cycles, 
and most parts of both strains appear after the 
first cycle. When concrete experiences multicy-
cle testing of heating and cooling with different 
maximum temperature in each cycle, the strains 
measured in the process are shown in Fig. 2-4.

If the maximum temperature in the multicycle 
testing of heating and cooling increases after each 
cycle (300 °C to 500 °C to 700 °C), the values of 
the maximum expansion strain and the residual 
strain of the concrete specimen accumulate and 
increase after each cycle. On the contrary, if the 
maximum temperature in the cycles decreases 
after each cycle (700 °C to 500 °C to 300 °C), the 
absolute maximum expansion strain of the speci-
men occurs at the maximum temperature of the 
first cycle, and the strain at the maximum tem-
perature of the other cycles decreases gradually. 
The residual strain of the specimen also appears 
after the first cooling and remains almost con-
stant after the succeeding cycles.
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These test results indicate an important charac-
teristic of the thermal strain of concrete under free 
(σ  = 0) conditions. For multicycle testing of heating 
and cooling, the heating and cooling strain curves 
of each cycle coincide with that of a single cycle 
test (Fig. 2-3) regardless of the maximum temper-
ature and the order of every cycle. The residual 
strain of concrete after cooling depends mainly 
on the absolute maximum temperature reached in 
the multicycles, but is independent of the number 
and order of the multicycles. The mechanism of  
these phenomena is the same as described above.

2.2  COMPRESSIVE DEFORMATION 
AND THE STRESS–STRAIN CURVE 
AT ELEVATED TEMPERATURE

2.2.1  Characteristics of Compressive 
Deformation

The compressive deformation and the stress–
strain relationship in concrete at normal temper-
atures have been investigated fully, and accurate 
formulas have been established[0-2,2-4] and can 
be used for structural analysis. Similar investiga-
tions of concrete at elevated temperatures have 
been conducted worldwide.[1-3,1-9,2-5,2-6] How-
ever, the descending branch of the stress–strain 
curve was not measured and the value of the 
peak strain was not given in some findings; they 
are not satisfactory for analyzing structures at 
elevated temperatures.
A prism specimen measuring 100 mm × 100 
mm × 300 mm or 80 mm × 80 mm × 300 mm 
is used for the deformation test of concrete at 
elevated temperatures.[1-4,1-6] A set of specimens 
is put into the preheating furnace, heated, and 
maintained for 6 h at the predetermined tem-
perature; each specimen is taken out individually 
and put into the furnace for the deformation test. 
Then, the deformation transducers are installed 
(Fig. 1-3) and various measuring instruments are 
connected, the test machine is operated, and the 
specimen is loaded with a constant strain veloc-
ity. The complete compressive stress–strain curve 
for concrete at elevated temperatures (Fig. 2-5) 
is drawn on the X–Y function recorder or using 
isolated measurement pods.

As the concrete at elevated temperatures has 
low strength and large deformation, the linear 
stiffness of the descending branch of its stress–
strain curve is considerably less than that at 
normal temperatures and is generally smaller 
than the stiffness of the test machine. Thus, the 
complete compressive stress–strain curve is sta-
ble without any special stiffening construction 
attached to the specimen.[0-3]

The compressive stress–strain curve of con-
crete at elevated temperatures clearly shows that 
it tends to flatten and its peak obviously drops 
and moves toward the right-hand side as the test-
ing temperature increases. This means that the 
compressive strength at elevated temperatures 
(fTc ) decreases, the corresponding peak strain (ɛTp )  
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increases considerably, and the modulus of elas-
ticity decreases sharply.

During heating and maintaining the tempera-
ture, before loading of the specimen, the initial 
microstress (strain) state and many cracks are 
formed in the interior of the concrete for vari-
ous reasons, such as water evaporation, thermal 
behavior difference between the coarse aggre-
gate and cement mortar, and the expansion and 
breaking of the aggregate. The deformation pro-
cess from the start of loading until failure of the 
specimen can be divided into three stages:

 1.  When the stress of the specimen is low, e.g., 
σ/fTc ≤0.4, the strain of the concrete increases 
approximately linearly with the stress. But, 
if the testing temperature is higher (e.g., T > 
500 °C), several cracks are formed in the 
specimen before loading and the stress scope 
of the initial straight line is reduced.

 2.  As the stress increases, the plastic defor-
mation develops quickly and the slope of 
the stress–strain curve decreases gradually 
because of the cracks formed on the surface 
and in the interior of the heated specimen. 
When the stress is at a maximum, i.e., the 
prism compressive strength at elevated tem-
peratures (fTc ) is reached, the tangent of the 
curve is horizontal and the corresponding 
strain is called the compressive peak strain 
at elevated temperatures (ɛTp ). As the testing 
temperature increases, the peak part of the 
curve tends to flatten and the peak point is 
not clearly visible.

 3.  When the stress passes the peak point and 
enters the descending branch of the curve, the 
deformation of the specimen increases con-
tinuously (ɛ> ɛTy ) and internal cracks extend 
further, but no sudden breaking occurs in the 
concrete. The bearing capacity of the speci-
men reduces steadily.

The final failure pattern of the concrete speci-
men at elevated temperatures (Fig. 2-6) is similar 
to that at normal temperature. When the testing 
temperature T ≤ 300 °C, an inclined main crack 
appears clearly on the surface of the specimen, the 
inclined angle is larger, the cracking and break-
ing area is longer, and irregular cracks are dis-
tributed on the other parts of the surface. When 
the testing temperature T > 500 °C, most of the 
specimens break into two pieces after failure and 
FIGURE 2-6  Compressive failure pattern of a prism specimen at elevated temperatures.[1-5]
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cannot be taken out intact from the chamber of 
the furnace. The angle of the inclined main crack 
decreases but the inclined breaking belt is wider, 
and the dregs fall down from both sides of the 
crack. The irregular cracks on the other parts of 
the surface become wider.

An important phenomenon is shown in 
Fig. 2-5. When the strains of the specimens have 
the same value and are large enough, the speci-
men being tested at a lower temperature enters 
the stress descending branch, while the specimen 
being tested at a higher temperature is still located 
in the ascending branch, or the flatter part, of the 
descending branch. So, the bearing capacity of 
the latter may exceed that of the former.

2.2.2  Prismatic Compressive Strength 
and Corresponding Strain

The ordinate and abscissa of the peak point in 
the compressive stress–strain curve of concrete at 
elevated temperatures are the prismatic compres-
sive strength (fTc ) and corresponding strain (ɛTp ), 
respectively. All the experimental data[1-4,1-6,

1-11,8-3,9-3] obtained from tests of concrete material 
under the same conditions and using the same 
facilities (Fig. 1-1), are shown in Figs 2-7 and 2-8.

Comparing Fig. 2-7 with Fig. 1-7, it is found 
that the variation regularity of the prismatic 
compressive strength of concrete is similar to 
that of the cubic compressive strength as the test-
ing temperature increases. The prismatic com-
pressive strength reduces when T = 20–100 °C, 
but increases slightly when T = 100–300 °C, 
and reduces monotonically and quickly when  
T > 400 °C.

Comparing the relative values of both strengths 
of concrete, the prismatic strength (fTc /fc) 
is  obviously lower than the cubic strength  

cu cu( / )Tf f . The differences between them are 
10–20% within T = 400–700 °C, and 2–10% 
within other temperature ranges (T < 400 °C and 
T > 700 °C). This shows that high temperatures 
cause internal damage in concrete and have a 
more prominent influence on the mechanical 
behavior of the prism specimen, resulting in more 
loss and deviation of the strength.

The prismatic compressive strength of con-
crete varies with temperature (T, °C) and can 
be expressed by the similar empirical formula 
1.0

0.8

0.6

[1-4](L)

1

1+14( T / 1000)5.9

[1-4](g)

[1-11]

[1-6]

[1-12]

[9-3]

[8-3]

0.4

0.2

0 200 400
T (°C)

600 800 1000

1

1+18( T / 1000)5.1

1

1+24( T / 1000)4.4

f cT
 / 
f c

FIGURE 2-7  Prismatic compressive strength of concrete at elevated temperatures.
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FIGURE 2-8  Compressive peak strain of concrete at elevated temperatures.
(Eqn (1.1)) used for cubic strength. The param-
eters in the formula can be calibrated from the 
experimental data and the formula is obtained 
as follows:

 
f T

c

fc
= 1

1 + 18
(

T
1000

)5.1  (2.3)

The experimental data deviates and the enve-
lopes of the upper and the lower bounds are also 
shown in Fig. 2-7. The formula used in the ref-
erences listed in Fig. 2-7 is the same as the note 
after Eqn (1.1), and various theoretical curves 
fall inside both bounds.

The ratio between the prismatic and cubic 
compressive strength of concrete varies with tem-
perature and its value can be derived from Eqns 
(1.1) and (2.3):

 fT
c

fT
cu

=
1 + 16

(
T

1000

)6.3

1 + 18
(

T
1000

)5.1 · fc

fcu
≤ fc

fcu

 (2.4)

The value of the ratio fluctuates as the test-
ing temperature increases, but is always less than 
that at normal temperatures.

The compressive peak strain of concrete at 
elevated temperatures accelerates with the testing 
temperature (T, °C). The ratio between it and the 
value at normal temperatures can be calculated 
from

 
ɛT

p

ɛp
= 1 + 5

(
T

1000

)1.7

 (2.5)

The experimental data fluctuate and the upper 
and the lower bounds of the envelopes are shown 
in Fig. 2-8.

2.2.3  Equation of a Complete 
Stress–Strain Curve

The measured stress–strain curves of the speci-
mens are modified from the standard curves, 
in which the relative peak stress and strain are 
σ / fTc = ɛ / ɛTp =1. The standard curves of the four 
types of concrete (Table 1-1) at different test-
ing temperatures approach one another.[1-4] 
Therefore, the complete stress–strain curves of 
the concrete at elevated and normal tempera-
tures can be expressed reasonably by the same 
equation.

In Guo,[0-2] the loading and deforming pro-
cesses of the concrete at normal temperature are 
analyzed and the multinomial of the third power 
and the fractional expression are suggested, 
respectively, for the ascending and descending 
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branches of the complete stress–strain curve, and 
both branches continue at the peak point:

 
x ≤ 1, y = ax + (3 − 2a)x2 + (a − 2)x3

x ≥ 1, y = x
α(x − 1)2 + x

}
 (2.6)

where y= σ / fc and x= ɛ / ɛp. This equation sat-
isfies all the boundaries and geometrical condi-
tions of the experimental curves:

 •  x = 0, y = 0.
 •  d2y /dx2 < 0 when 0 ≤ x ≤ 1, which shows 

that the slope of the tangent dy/dx decreases 
monotonically and no point of inflection will 
appear on the ascending branch.

 •  single peak, i.e., y = 1 and dy/dx = 0 when 
x = 1.

 •  one point of inflection d2y/dx2 = 0 appears on 
the descending branch (x > 1), where the slope 
of the tangent has the maximum (absolute) 
value.

 •  y = 0 and dy / dx = 0 when x → ∞.
 •  0 ≤ y ≤ 1 when x ≥ 0.

In Eqn (2.6), there is one parameter for each 
branch, i.e., a and α for the formulas of the ascend-
ing and descending branches, respectively. The 
values of these parameters can be calibrated by the 
experimental data of concrete at elevated tempera-
tures and the following formulas are obtained:

Let

 y = σ
fT

c

, x = ɛ
ɛT

p

 (2.7)

when

 
x ≤ 1 : y = 2.2x − 1.4x2 + 0.2x3

x ≥ 1 : y = x
0.8(x − 1)2 + x

}
 (2.8)

where σ and ɛ are the stress and strain of con-
crete at elevated temperatures, respectively. fTc  
and ɛTp  are the compressive prismatic strength 
and corresponding peak strain of the concrete, 
respectively, at temperature T °C and they can be 
calculated from Eqns (2.3) and (2.5).

The theoretical curves calculated from these 
formulas fit well with the experimental results 
(Fig. 2-5).
2.2.4  Initial Elastic Modulus 
and Secant Modulus at Peak Stress

The initial elastic modulus of concrete at  elevated 
temperatures (ET0 ), just like that at normal 
 temperatures,[0-2] is defined as the ratio between 
the stress σ = 0.4 fTc  and the corresponding strain 
ɛ, or the secant slope at this point on a measured 
stress–strain curve. The secant modulus at peak 
stress is the ratio between the prismatic compres-
sive strength and the corresponding peak strain, 
i.e., ETp = fTc /ɛ

T
p .

The initial elastic modulus and the secant 
modulus at peak stress of the concrete vary with 
the testing temperature and are shown in Fig. 2-9. 
The reducing amplitudes of the moduli of con-
crete obviously exceed that of the compressive 
strength of the concrete at the same temperature,  
i.e., (ET0 /E0 ,ETp /Ep) < (f

T
cu / fcu , f

T
c / fc). The reason 

for this is that the decrease in the strength and 
the increase in the peak strain of concrete occur 
simultaneously, and the ratio between them has 
to reduce quickly.

Because the ascending branch of the compres-
sive stress–strain curve of concrete at elevated 
temperatures adopts the same formula (Eqn (2.8)) 
as that used for concrete at normal temperature, 
the ratio between the initial elastic modulus and 
the secant modulus at peak stress is certainly a 
constant and is independent of temperature. The 
solution of Eqn (2.8) is x = 0.209 when y = 0.4, so

 
ET

0

ET
p

= E0

Ep
= 0.4

0.209
= 1.914 = const. (2.9)

This conforms to the experimental data 1.87–
1.96[1-4] for various specimens.

Both the initial elastic modulus and the secant 
modulus at peak stress of concrete decrease as 
the testing temperature increases and they have 
the same variation regularity. After modifying 
Eqn (2.9), the following formula is derived:

 ET
0

E0
=

ET
p

Ep
=

fT
c / ɛT

p

fc / ɛp
= fT

c / fc

ɛT
p / ɛp

 (2.10)

When the numerator and the denominator 
of the formula are replaced by Eqns (2.3) and 
(2.5), respectively, the formula for both moduli 
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FIGURE 2-9  Initial  elastic  modulus  and  secant  modulus  at  peak  stress  of  concrete  at  elevated  temperatures[1-5]: 
(a) ET0 /E0; (b) ETp /Ep.
is obtained and the corresponding theoretical 
curves are shown by the solid lines in Fig. 2-9.

In order to simplify the calculation, the varia-
tion in the initial elastic modulus and the secant 
modulus at peak stress of concrete at different 
temperature can be expressed by a linear equation:

 60 °C ≤ T ≤ 700 °C :
ET

0

E0
=

ET
p

Ep
= 0.83 − 0.0011T  (2.11)

The calculated results are shown by the dashed 
lines in Fig. 2-9 and approach the experimental 
results and Eqn (2.10).

During the cooling process, both moduli of the 
concrete basically maintain the values at elevated 
temperatures (ET0 , E

T
p )

[2-7] and may not recover. 
This is similar to the compressive strength of con-
crete and the cause is also the same.

2.3  STRESS–STRAIN CURVES 
UNDER REPEATED LOADING

2.3.1  Envelope and Loci of the 
 Common Point and the Stability Point

The internal forces and stress redistribute exten-
sively in a statically indeterminate structure at 
elevated temperatures (see Chapter 10); even the 
value of the direction (positive or negative) of the 
bending moment on a cross-section may change 
alternately and the stress of concrete may also 
alternate. The strength and deformation behav-
ior of concrete at elevated temperatures and sub-
jected to repeated load (compressive stress) is 
introduced in this section.

A prismatic concrete specimen is put into the 
preheating furnace and heated to the predeter-
mined temperature, which is maintained for 6 h; 
then it is moved into the furnace for the defor-
mation test (Fig. 1-1). Two types of repeated 
loading–unloading (axial compression) tests are 
performed after adjusting and maintaining the 
value of the temperature.

 •  One cycle of complete loading and unload-
ing is conducted at the predetermined strain, 
which is increased by equal increments. When 
the predetermined strain value is reached 
after loading the specimen, the load (stress) 
is released to zero. Then the specimen is 
reloaded until the next predetermined strain 
on the envelope is reached.

 •  Multicycles of complete loading and unload-
ing are conducted at the predetermined strain, 
which is increased by equal increments. In each 
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FIGURE 2-10  Compressive  stress–strain  curves  of  concrete  at  elevated  temperature  and under  repeated  loading.[1-6] 
(a) Loading and unloading with equal strain increment; (b) loading and unloading cycles with equal strain increment.
unloading, the stress is released to zero. When 
the value of the stress at the predetermined 
strain after each loading does not decrease, 
the residual strain after each unloading no 
longer increases, and the loading and unload-
ing curves tend to be stable, no more cycles at 
this predetermined strain are conducted. The 
measured stress–strain process during testing 
(T = 500 °C) is shown in Fig. 2-10.

There are three loci found on the stress–strain 
curves of concrete specimens under repeated 
loading and they have definite physical meaning.

 •  The envelope is an outline along the outer 
boundary of all the curves. It shows the maxi-
mum stress or strength of the concrete at cor-
responding strain values and coincides in both 
shape and value with the complete stress–strain 
curve under monotonic loading (Fig. 2-5).

 •  The locus of the common point. When the 
specimen is unloaded until its stress is reduced 
to zero from any point on the envelope and 
is then reloaded, the intersecting point of the 
unloading and reloading curves is called the 
common point. The slope of the reloading 
curve passes the common point and reduces 
considerably and the strain increases quickly. 
This shows that new damage occurs in the 
interior of the concrete. All the common 
points of unloading–reloading curves are con-
nected smoothly and the locus of the common 
point is composed.

 •  The locus of the stability point. After the spec-
imen is unloaded and reloaded at the prede-
termined strain for several cycles, and when  
the stress (strength) of the concrete does not 
reduce and the residual strain does not increase, 
the unloading–reloading curves compose a 
stable closed ring, the top of which is called 
the stability point. All the stability points in 
the figure are connected and the locus of the 
stability point is obtained. It is equivalent to 
the ultimate envelope of fatigue strength of 
concrete under low cycles.

All the envelopes and the loci of the common 
point and stability point obtained from repeated 
loading–unloading testing of concrete at elevated 
temperatures are compared carefully with the 
complete stress–strain curve obtained from the 
monotonic loading (Fig. 2-5). They are similar 
in shape and the same formula (Eqn 2.8) can be 
used to calculate both. The similarity ratios are, 
respectively:

 
Envelope : Ke = 1
Locus of the common point : Kc = 0.90–0.94
Locus of the stability point : Ks = 0.82–0.88

 (2.12)
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These phenomena and conclusions coincide 
with the repeated loading test of concrete at nor-
mal temperature. Under repeated loading, the 
relative strength and deformation behavior of 
concrete at elevated temperatures are similar to 
that at normal temperatures and no over-damage 
occurs in the concrete.

2.3.2  Formulas for the Unloading 
and Reloading Curves

There are two kinds of stress–strain curves, 
besides the envelope, for concrete under repeated 
loading: the unloading curve when the stress 
decreases to zero from the envelope and the 
reloading curve when the stress increases from 
zero to the tangent point on the envelope. The 
shapes and variation regularities of these curves 
are similar to that at normal temperatures,[2-6] 
but the parameters in the formulas are different.

 1.  Unloading curve
When the stress is decreased to zero from any 
point (ɛu and σu) on the envelope, the residual 
strain (ɛs) is obtained. The measured ɛu and ɛs 
from each unloading curve of the specimens are 
expressed as the relative strains and drawn in 
Fig. 2-11 with the coordinates:
 xu = ɛu

ɛp
and ys = ɛs

ɛp
 (2.13)

where ɛp is the peak strain at the correspond-
ing temperature. The residual strain ɛs increases 
monotonically with the unloading strain ɛu, and 
also increases as the testing temperature (T, °C) 
increases. The variation regularity can be rep-
resented by a simplified empirical regression 
formula:

 
xu ≤ 1 : ys =

[
0.5

(
T

1000

)
+ 0.44

]
x1.36

u

xu ≥ 1 : ys = xu + 0.5
(

T
1000

)
− 0.56


 (2.14)

When the unloading curves are expressed by the 
relative values of the stress and strain

 ξu = ɛ − ɛs

ɛu − ɛs
and ηu = σ

σu
 (2.15)

the standardized curve, which starts from the 
point (1,1) and unloads at the point (0,0), is 
obtained. Analyzing and comparing the stan-
dardized unloading curves of the specimens at 
different testing temperatures, the curves can be 
compared using a power function:

 ηu = ξn
u or

(
σ
σu

)
=
(

ɛ − ɛs

ɛu − ɛs

)n

 (2.16)
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unloading curves.
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where n is a parameter. It takes the value of 
n = 2.3 when T < 700 °C or n = 3.5 when T ≥ 
700 °C. The theoretical curves are shown in 
Fig. 2-11(b).

 2.  Reloading curve
Starting from any strain (ɛs) with zero stress, 
the specimen is reloaded until the reloading 
curve is tangential to and coincides with the 
envelope. The tangential point is the end of 
the reloading curve and its coordinates are (ɛr, 
σr). The measured ɛs and ɛr from each reload-
ing curve of the specimens are expressed as the 
relative strains and are drawn in Fig. 2-12 with 
the coordinates:

 xs = ɛs

ɛp
, yr = ɛr

ɛp
 (2.17)

The end strain ɛr increases monotonically with 
the starting strain ɛs, but decreases as the testing 
temperature (T, °C) increases. The variation reg-
ularity can be represented by a simplified empiri-
cal regression formula:

xs ≤ 0.4 : yr =
[

2.124 − 1.2
(

T
1000

)]
x0.74

s

xs > 0.4 : yr = 1.05xs − 0.6
(

T
1000

)
+ 0.66




 (2.18)

The reloading curve is expressed by the relative 
values of the stress and strain

 ξr = ɛ − ɛs

ɛr − ɛs
and ηr = σ

σr
 (2.19)

and the standardized curve is obtained. The end 
point of the reloading stress–strain curve has to 
coincide with the envelope. When ɛr < ɛp, i.e., the 
curve is tangential to the ascending branch of the 
envelope, the slope at the end point is dηr / dξr >0. 
When ɛr > ɛp, i.e., the curve is tangential to the 
descending branch of the envelope, the slope at 
the end point is dηr/dξr <0. These two kinds of 
reloading curves must be distinguished and have 
different empirical formulas:

 
( )]

( )]

:

:

ε ε η ξ πξ

ε ε η ξ πξ

≤ ⎫
⎪

⎬

⎪⎭

r p r r r

r p r r r

[ + 0.3sin

[1+ 0.6sin

=

=

1.4

1.4

1

>
 (2.20)

The theoretical curves are shown in Fig. 2-12.
2.4  SHORT TIME CREEP 
AT ELEVATED TEMPERATURE

2.4.1  Creep Under Constant 
 Temperature and Stress

When concrete is stressed, the strain (ɛc) appears 
instantaneously. In addition, if the stress is sus-
tained, the strain increases continuously for the 
duration and is called creep (ɛcr). Usually, the 
increasing rate of the compressive creep of con-
crete under ambient temperatures decreases 
gradually with for the time (t, day) that the stress 
(σ, MPa) is sustained. The creep develops quickly 
within the first 3 months then slowly after 2 or 
3 years. However, a small increment in the creep 
can be measured even after 20–30 years. The 
ultimate convergence value of the creep is called 
the ultimate creep ɛcr(∞), and the ultimate creep 
under unit stress is called the specific ultimate 
creep ccr(∞) = ɛcr(∞)/σ(1/MPa). The ratio between 
the ultimate creep and the instantaneous strain 
is called the ultimate creep coefficient ϕ(∞) = 
ɛcr(∞)/ɛc(t0).

The value and variation regularity of con-
crete creep are influenced by the following main 
factors:

 •  Stress level (σ/fc),
 •  Sustaining time (t) of the stress,
 •  Concrete age when loading,
 •  Kind and mix of the raw materials,
 •  Environmental temperature and humidity within 

the service period, and
 •  The shape and size of the cross-section of the 

member.[0-2]

It is found from the experimental data that 
concrete creep deviates considerably and the 
range of the specific ultimate creep ccr(∞) = (10–
140) × 10−6/MPa, with an average value of about 
70 × 10−6/MPa. The ultimate creep coefficient is 
about ϕ(∞) = 2–4.

When a building fire occurs, the sustaining 
time is generally a few hours (1–4 h; see Section 
5.1) depending on the conditions of combus-
tion and the extinguishing method. Therefore, 
the concrete structure will support the load for a 
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few hours at elevated temperatures. Under these 
conditions, the short time creep of concrete at 
elevated temperatures is different from that at 
normal temperatures.

First, the short time creep test of concrete 
under basic conditions, i.e., constant tempera-
ture and stress, is introduced. The prismatic spec-
imen is used for testing. It is put into the furnace 
for the deformation test after being heated to the 
predetermined temperature and maintained at 
that temperature for 6 h, and it is then loaded 
with the predetermined stress. The creep of the 
specimen is measured for 2–3 h under constant 
temperature and stress.[1-6] Some of the experi-
mental results are shown in Fig. 2-13.

It is seen from the figures that the short time 
creep of concrete at elevated temperatures has a 
large value and is greater than that at normal tem-
peratures for several decades. However, the varia-
tion regularities are similar. The creep at elevated 
temperatures develops quickly in the early stages 
of sustaining a load, and the increasing rate of 
creep decreases gradually afterward. The higher 
the temperature and stress of the specimen, the 
longer the convergence time needed for creep. 
At the same temperature, the value of the creep 
is approximately proportional to the stress level 
when σ / fTc ≤0.6. It is called linear creep, and 
the specific creep limit is a constant for the con-
crete. When the stress is higher (σ > 0.6fTc ), the 
experimental data deviate seriously because of 
the difficulty in controlling the testing. The maxi-
mum stress that the specimen can bear at that 
temperature is the ultimate strength of concrete 
at elevated temperatures for a long period. The 
increase in the value of creep accelerates with 
the testing temperature at the same relative stress 
level (σ / fTc , rather than σ/fc). If the temperature 
is even higher, the creep of the specimen will 
diverge and cause failure of the specimen.

The short time creep of concrete at elevated 
temperatures, especially when T > 500 °C, has 
considerable value and develops quickly, because 
the internal cracks expand and elongate enor-
mously. The main factors influencing the creep 
are the temperature, the level and duration of the 
stress, and the types and mix of the aggregate.[2-9] 
These cause large deviations in the data measured 
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from creep tests, and the differences may be sev-
eral times higher,[1-11,2-10,2-11] and about the same 
as that at normal temperatures. In addition, 
there are two other important reasons: no unified 
testing standard exists and measuring strain has 
technical difficulties for the testing of concrete at 
elevated temperatures.

The definition of the specific creep of concrete 
at elevated temperatures for a short time period 
is the creep value that occurs within 2 h when 
the specimen is subjected to unit stress (1 MPa) 
under constant temperature (T, °C):

 cT
cr = ɛcr(2)

σ
(1MPa) (2.21)

All the relevant experimental data are shown in 
Fig. 2-14. The specific creep of concrete at elevated 
temperatures for a short period of time is quite 
low when the testing temperature T < 400 °C; it 
then increases rapidly and is far greater than that 
at normal temperatures when T > 400 °C.

As the compressive strength of concrete at ele-
vated temperatures varies considerably, the stress 
level σ / fTc  can better represent the mechanical 
damage level of concrete at different tempera-
tures. Therefore, a dimensionless parameter of 
specific creep is introduced and its definition is 
the creep value, which occurs within 2 h when 
the specimen is subjected to unit stress level at 
constant temperature:

 cT = ɛcr (2)

σ / fT
c

= cT
crf

T
c  (2.22)
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A simplified regression formula is obtained for 
the parameter from the experimental data pro-
vided by Nan[1-6]:

 cT = (e6T / 1000 − 1) × 60 × 10 − 6 (2.23)

The short time creep of concrete varies with the 
temperature and stress duration (t) and is approxi-
mately proportional to 

√
t / t0 , where t0 equals 2 h 

or 120 minutes, i.e., the duration used to deter-
mine the parameter of short time creep. Then, the 
calculation formula for short time creep of con-
crete at elevated temperatures can be derived:

 
σ
fT

c

≤ 0.6 , ɛcr (t) = σ
fT

c

√
t
t0

(eT / 1000 − 1) × 60 × 10 − 6 (2.24)

The results calculated by this formula are com-
pared with the experimental data in Fig. 2-14 and 
fit well with those provided by Nan,[1-6] but are 
lower than other data. If more reliable data are 
accumulated, the parameters in Eqn (2.24) may be 
modified to calculate the short time creep of con-
crete at elevated temperatures more accurately.

2.4.2  Creep Under Variable 
Temperature and Stress

When a structure in engineering practice is sub-
jected to fire, the temperature and stress of the 
concrete within it vary with the duration of the 
fire; the variation in short time creep of concrete 
is complex.

The short time creep of concrete was inves-
tigated at a constant temperature but variable 
stress,[1-6] and some of the experimental results 
are shown in Fig. 2-15. When the stress acting 
on the concrete varies and the succeeding stress 
is increased, the increasing rate of creep accel-
erates suddenly and the creep curve turns away 
obviously. When the succeeding stress remains 
constant, the increasing rate of creep decreases 
gradually and the curve tends to flatten. The creep 
curve of concrete subjected to succeeding stress 
approaches that at the beginning for the same 
temperature and stress (see Fig. 2-13). When 
the stress decreases, the value of creep remains 
almost constant and the creep curve tends to be a 
horizontal line. Thus, the total creep of concrete 
is mainly controlled by the maximum tempera-
ture and stress experienced.

According to the conclusions of existing 
experimental investigations, the creep–time 
curve of concrete at constant temperature and 
stress can be assumed to be unique, i.e., it is 
not influenced by a different temperature–stress 
history, when the short time creep of concrete 
at elevated temperatures is calculated. Con-
sidering the deviation of the creep at elevated 
temperatures, the approximate theory of elastic 
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creep can be used for accumulative calculations. 
This means that the creep increment within 
every time period with the same temperature 
and stress can be calculated separately and then 
accumulated to obtain the total value of creep. 
An example is shown in Fig. 2-16 to explain 
this:

 •  The temperature–stress history experienced 
by the concrete is determined and divided into 
several time periods with the same tempera-
ture and stress.

 •  The unique creep–time (ɛcr–t) curve and the 
corresponding formula, e.g., Eqn (2.24), are 
decided for each time period of the tempera-
ture–stress (T, σ / fTc ) condition.
 •  The creep (ɛcr,1) that appears within the first 
time period (t = 0–t1) is calculated and the 
curve segment oa is obtained.

 •  The creep increment within the second time 
period (t = t1–t2) is calculated as follows. First, 
the equivalent time teq1  (point a′) corresponding 
to creep ɛcr,1 is found on the relevant creep–
time curve (T2 , σ2/f

T
c2). Then the creep incre-

ment within the time increment (t2–t1) and the 
total creep ɛcr,2 (point b′) at t2 are calculated. 
The curve segment a′b′ is moved in a parallel 
fashion and creep segment ab is obtained.

 •  Similarly, the creep increment occurring 
within the third time period (t2–t3) and the 
total creep ɛcr,3 at t3 are calculated, and the 
εcr
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curve segment b″c′ is obtained and moved in a 
parallel fashion to bc.

 •  Because the values of the temperature and 
stress within the fourth time period (t3–t4) are 
lower, the intersection of the equivalent time 
cannot be found on the corresponding creep–
time curve σ4 4 4( , / )TcT f . It is assumed that 
the creep will not increase and a horizontal 
line cd is obtained.

 •  The segments of the creep–time curves within 
all time periods are connected one by one; the 
curve abcd of several segments, i.e., the total 
creep–time curve, is completed.

Obviously, the method and procedure 
described above can also be used for calcu-
lating the short time creep of concrete under 
other conditions, e.g., constant temperature 
and stress, constant temperature but variable 
stress, and variable temperature but constant 
stress. However, if the concrete under stress 
is heated and its temperature is elevated, the 
freely expanding strain (ɛth) and the transient 
thermal strain (ɛtr) (see Chapter 3) also have to 
be calculated.

CONCLUSIONS

The deformation of concrete at elevated tem-
peratures includes the free heating strain, strain 
caused by the stress load, and short time creep. 
These strains accelerate with increasing tempera-
ture. The value of concrete deformation is con-
siderable when the temperature T > 400–500 °C 
and is several times, even several tens of times, 
that at normal temperature. It is also far greater 
than the peak compressive strain (about 2 × 10−3) 
of concrete at normal temperature.

Concrete at elevated temperatures shows large 
deformations mainly caused by cracks spread-
ing and extending into the interior of the cement 
mortar and on the boundary of the aggregate 
and damage within the aggregate. Generally, this 
damage in the concrete does not recover dur-
ing the cooling and unloading process, so the 
residual strain is still large after the concrete has 
cooled and unloaded.
When the concrete experiences several cycles 
of heating–cooling and loading–unloading at 
the same maximum temperature and stress, the 
maximum strain and residual strain appear in 
the first cycle and the strain increments occur-
ring in the succeeding cycles decrease sharply. 
If the values of the maximum temperature and 
stress of the latter cycles are greater than in the 
previous cycles, the maximum strain and resid-
ual strain in this cycle increase notably. On the 
contrary, if the values of the maximum temper-
ature and stress of the latter cycle are less, the 
maximum strain does not exceed the maximum 
value reached previously and the residual strain 
remains constant. Therefore, the maximum 
strain and residual strain of concrete depend on 
the maximum values of temperature and stress 
ever experienced within all the heating–cooling 
and loading–unloading cycles.

Many types of deformation behaviors of con-
crete at elevated temperatures have the same 
regularity as that at normal temperatures. There-
fore, some important concepts and analysis 
methods, including the formulas, can be used 
for reference, e.g., the formulas for the complete 
compressive stress–strain curve, the formulas for 
the envelope, the loci of the common and sta-
bility points, the unloading and reloading curves 
of the specimen under repeated loading, the con-
cepts and analyses of linear creep, specific creep, 
and the creep coefficient. However, the values 
of the parameters in these formulas should be 
determined from the corresponding character-
istic values of the concrete behavior at elevated 
temperatures.
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C H A P T E R

3
Temperature–Stress Paths and Coupling 
Constitutive Relation of Concrete
3.1  TEMPERATURE–STRESS 
PATHS AND DEFORMATION 
COMPONENTS

3.1.1  Temperature–Stress Path 
and Its Resolution

In structural engineering, concrete that experi-
ences successive casting, curing, and hardening 
reaches a certain value of strength and starts to 
bear load action. In the latter period of construc-
tion and placing into service, the structure carries 
various dead and live loads, and sustains frequent 
or occasional environmental temperature varia-
tions. This reflects a complicated long-term load 
(or internal forces)–temperature history; it also 
includes redistribution of internal forces of the 
structure during heating and cooling processes. 
The stress and temperature of the concrete in the 
structure vary in a more complicated fashion: 
both either increase or decrease simultaneously 
or alternately. Therefore, every point of the con-
crete has a particular temperature–stress path.

When the temperature and stress of the concrete 
vary from the original condition to certain values, 
there may be many different paths; generally it 
should be an irregular path (e.g., OCP in Fig. 3-1). 
If the temperature and stress increase proportion-
ally, this results in a special path, OP, which is 
seldom found in engineering practice. Moreover, 
there are two extreme but basic paths as follows:

 •  Path (OAP in Fig. 3-1) of loading under 
constant temperature (T–σ). The concrete is 
heated to and maintained at a certain value at 
36
Experiment and Calculation of Reinfor
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elevated temperatures, and is then loaded. The 
various tests on concrete behavior at elevated 
temperatures introduced in the previous chap-
ters involve this path.

 •  Path (OBP in Fig. 3-1) of heating under con-
stant load (σ–T). The concrete is loaded to and 
maintained at a certain value of stress, and is 
then heated. For example, in a building sus-
taining a fire accident or in a workshop with 
high temperature, the structure carries various 
dead and live loads from an early stage, and 
then experiences thermal action.

Any arbitrary temperature–stress path can be 
simulated by finite steps of temperature and stress 
increments.[3-1] All the ordinate increments are 
B

O T T

A

P

C

FIGURE 3-1  Different temperature–stress paths.[3-1]
ced Concrete at Elevated Temperatures
shed by Elsevier Inc. All rights reserved.
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the paths of loading (Δσ) under constant temper-
ature (T), and all the abscissa increments are the 
paths of heating (ΔT) under constant loading (σ). 
The number of the steps and the length of the 
increments can be determined to satisfy the 
requirement of calculation accuracy.

The strength and deformation behavior of 
concrete at elevated temperatures vary consider-
ably with the different temperature–stress paths, 
so it is necessary to first investigate the mechani-
cal behavior of concrete under these two basic 
paths. As the behavior of concrete under the path 
of loading under constant temperature (T–σ) has 
been introduced comprehensively in the previ-
ous chapters, the behavior of concrete under the 
path of heating under constant load (σ–T) is dis-
cussed in this chapter. The strength and defor-
mation behavior of concrete under an arbitrary 
 temperature–stress path and their calculations 
are also investigated.

3.1.2  Composite Components 
of Deformation at Elevated 
Temperatures

At any point in the concrete in a structure, the 
temperature–stress condition starts with (T, σ) 
and reaches another condition (T + ΔT, σ + Δσ) 
after sustaining a time increment (Δt) and fol-
lowing a known temperature–stress path, yields 
the corresponding strain increment (Δɛ). As the 
temperature–stress path is resolved according to 
the method shown in Fig. 3-1, the strain incre-
ment of concrete in each step is composed of 
three deformation components[3-2]:

 •  The strain increment under the path of load-
ing under constant temperature (T–σ). When 
the temperature T = constant, the strain incre-
ment is produced instantaneously by the stress 
increment (Δσ). It depends on the current val-
ues of the temperature and stress and is writ-
ten as Δɛσ (T,σ);

 •  The strain increment under the path of heating 
under constant load (σ–T). When the stress 
σ = constant, the strain increment is given 
by the temperature increment (ΔT). It also 
depends on the current values of the tempera-
ture and stress and is written as ΔɛT(T,σ);

 •  Short time creep at elevated temperatures. 
Under the condition of constant tempera-
ture (T) and stress (σ), the creep increment is 
induced after the time increment (Δt) and is 
written as Δ ɛcr (T , σ /fTc , t).

If the signs of the compressive stress and the 
elongated strain of concrete are taken as positive, 
the total strain increment of each step is

Δ ɛ = − Δ ɛσ (T , σ) + Δ ɛT (T , σ) − Δ ɛcr (T , σ / fT
c , t) (3.1)

The total strain of concrete is obtained by 
accumulating all the increments of the tempera-
ture–stress-time steps, i.e.,

 

ɛ = −
∑

Δ ɛσ (T , σ) +
∑

Δ ɛT (T , σ)

−
∑

Δ ɛcr (T , σ /fT
c , t)  (3.2)

The loading strain under constant tempera-
ture (ɛσ) and the short time creep (ɛcr) among the 
deformation components are investigated sepa-
rately in Sections 2.2 and 2.4. The heating strain 
of concrete under constant loading (ɛT) is intro-
duced in Section 3.3.

3.1.3  Testing Method and Average 
Temperature of the Specimen

The differences in the strength and defor-
mation behavior of concrete under  different 
 temperature–stress paths can be found by cor-
responding experiments. Therefore, the experi-
ments under different temperature–stress paths 
must be performed under identical or approxi-
mate testing conditions in order to ensure that 
the experimental results are comparable.

Concrete is a material of thermal inertia as 
mentioned earlier. If the path of loading under 
constant temperature (T–σ) is performed to mea-
sure its material behavior at elevated tempera-
tures, the specimen experiences a longer heating 
time (about 1–2 h) and a constant temperature in 
the furnace chamber for 6 h (Fig. 1-2) to make 
the temperature in the interior of the specimen 
approach that outside it. In the succeeding load-
ing stage, only a short time (10–20 min) is needed 
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FIGURE 3-2  Heating–time curve for the furnace chamber and the temperature in the interior of the specimen.[1-6]
for the specimen to load until failure. In contrast, 
in another extreme path, i.e., the path of heat-
ing under constant loading (σ–T), the specimen is 
loaded first and the stress is kept constant at nor-
mal temperature. This takes quite a short time. 
Then, the specimen is heated until failure and the 
total time needed is 1–2 h. Within the process of 
the latter path, there is no time to achieve a uni-
form temperature in the specimen, so the temper-
atures in the interior and exterior of the specimen 
are not uniform. Obviously, the time at high tem-
perature and the internal  temperature distribution 
of the specimen under this path are quite different 
from that under the path of loading at constant 
temperature. Similarly, other temperature–stress 
paths (e.g., increasing proportionally or increas-
ing in several steps) also have different testing 
conditions. Therefore, it is doubtful whether the 
strength and deformation values measured in 
these experiments are comparable.

In order to create identical or approximate 
test conditions for experiments with different 
temperature–stress paths, the following test and 
analysis methods are adopted:

 •  The same temperature–time curve is used for 
all the comparative experiments. The speci-
men is loaded soon after the predetermined 
temperature is reached, and the constant tem-
perature stage is canceled.

 •  The heating velocity is reduced to 2–5 °C/min, 
in order to decrease the temperature differ-
ence between the inside and outside of the 
specimen.

 •  The average temperature at the central section 
of the specimen is calculated and used as the 
nominal value of the testing temperature.

Thermocouples are set in the interior of the 
cubic specimen (edge length 100 mm) and used 
to measure the temperature and its variation dur-
ing heating (Fig. 3-2). The maximum difference 
in the temperatures at the center and the outside 
of the specimen is less than 200 °C, but most of 
the difference (gradient) is concentrated within 
the outer layer (20–25 mm) of the specimen. The 
temperature difference within the central part is 
less than 30 °C.

The temperature distribution in the middle 
section of the specimen is assumed as shown in 
Fig. 3-3. The temperature on the surface of the 
specimen is taken as that of the furnace chamber 
(Ta); the temperature varies linearly within the 
outer layer (s, mm), and the constant tempera-
ture (Tc) is taken within the central part (b − 2s, 
mm) of the section. The formula for the average 
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FIGURE 3-3  Temperature distribution and average temperature of the middle section of the specimen where b is the 
edge length of the specimen and s is the thickness of the area with variable temperature and may be taken as 20 mm.
temperature of the specimen can be derived 
according to the volume of the geometric figure:

 

T = Ta − (Ta − Tc)
[

1 − 2
(

s
b

)
+ 4

3

(
s
b

)2
]

= Tc + (Ta − Tc)

[
2
(

s
b

)
− 4

3

(
s
b

)2
]

 (3.3)

The experimental data, which are obtained 
from the tests with a heating velocity of 5 °C/
min, are entered into the formula, and the ratio 
between the average temperature of the specimen 
and the temperature of the furnace is derived:

 T ≤ 300 °C:T /Ta = 0.5 – 0.7 

 T ≥ 400 °C:T / Ta = 0.8 – 0.9 

If the heating velocity is slower (e.g., 2 °C/min)
during testing, the value of T /Ta is slightly 
larger.

The compressive strength of concrete at the 
average temperature measured and calculated 
using the method is the average strength of the 
specimen with nonuniform temperature distri-
bution in the section. Comparing this with the 
test results of the specimens loaded after keeping 
the temperature constant for 6 h (f

T
cu, Chapter 1), 

Fig. 3-4 shows that both have the same variation 
regularity and approximate values, and may be 
replaced by each other. This demonstrates that 
the method can be used for testing different tem-
perature–stress paths.
3.2  COMPRESSIVE STRENGTH 
OF CONCRETE UNDER DIFFERENT 
TEMPERATURE–STRESS PATHS

3.2.1  Upper and Lower Bounds 
of Compressive Strength

The procedure for testing a cubic concrete speci-
men under the path of heating under constant 
load (σ−T) is:

 1.  Apply compressive stress (σ) under normal 
temperature and keep the stress constant.

 2.  Then, heat the specimen until failure when the 
stress cannot be sustained and decreases.

 3.  Obtain the corresponding ultimate temperature.

All the experimental data are drawn and con-
nected smoothly in Fig. 3-5 and the variation 
regularity is presented.

In the figure, the curve of the path of heat-
ing under constant load (σ–T) is obviously above 
that of the path of loading under constant tem-
perature (T–σ). The ultimate temperature and 
stress values of the concrete obtained from test-
ing various other temperature–stress paths (see 
Section 3.2.2) fall between these two curves. 
These tests prove that the connecting line of 
the experimental data measured from the path 
of loading under constant temperature (T–σ) 
is the lower envelope among different temper-
ature–stress paths, i.e., the lower bound of the 
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compressive strength of concrete at elevated 
temperatures. Correspondingly, the connecting 
line of the experimental data measured from 
the path of heating under constant load (σ–T) 
is the upper envelope, i.e., the upper bound of 
the compressive strength of concrete at elevated 
temperatures.

The difference between the upper bound 
(fTucu ) and the lower bound (fTcu) of the compres-
sive strength of cubic concrete at elevated tem-
peratures reaches the maximum value within 
the temperature range T = 600–800 °C. The 
absolute difference and the ratio between them 
are (0.20–0.32)fcu and f

Tu
cu / fTcu = 1.4–2.0, respec-

tively. It is apparent that different temperature–
stress paths greatly influence the strength value 
of concrete.

The compressive strength of concrete at 
 elevated temperatures is increased for the speci-
men under the path of heating under constant 
load (σ–T) and other paths with compres-
sive stress before heating, compared with that 
under the path of loading under constant tem-
perature (T–σ). This has been demonstrated by 
many experiments[1-11,1-15,3-3,3-4] and is gener-
ally agreed. The main reasons for this are that 
the compressive stress acting on the concrete in 
advance effectively confines the freely expand-
ing deformation of concrete during the heat-
ing process and restricts extension of the crack 
perpendicular to the stress direction. In the 
meantime, the transient thermal strain (ɛtr, see 
Section 3.3) appears as a large quantity, induces 
the relaxing and releasing of the internal stress 
of the concrete, and mitigates the failure pro-
cess on the boundary between the cement mor-
tar and the aggregate. Also, the compressive 
stress reduces the volume expansion resulting 
from the crystallization of the aggregate and 
dehydration of the cement hydration products 
at elevated temperatures.

Corresponding to the two extreme temperature–
stress paths, the upper and the lower bounds of 
the compressive strength of concrete at elevated 
temperatures vary with the temperature and 
can be expressed, respectively, by the following 
formulas:
Upper bound (path σ – T) :
fTu

cu

fcu
= 1

1 + 12(T / 1000)10  (3.4)

Lower bound (path T – σ) :
fT

cu

fcu
= 1

1 + 20(T / 1000)7.5  (3.5)

3.2.2  Influence of Different 
Temperature–Stress Paths

Numerous different temperature–stress paths 
may appear in concrete in practical structural 
engineering and not all of them can be tested 
and measured. Only several typical temperature–
stress path tests can be tested to investigate the 
general regularity of the concrete strength and 
demonstrate the upper and the lower bounds.

The experimental data of concrete strength 
under various temperature–stress paths are pro-
vided in references [1-6] and [1-11].

 •  In the series of experiments under the path 
of previous stress–heating–loading (σ0–T–σ, 
Fig. 3-6(a)), the level of previous compres-
sive stress is selected as σ0/fcu = 0.2, 0.4, 
and 0.6 and the testing temperature is T = 
350–820 °C.

 •  In the series of experiments under the path of 
(1) heating–prestressing, (2) heating–reloading  
(T1–σ0–T–σ, Fig. 3-6(b)), the parameters 
selected are T1 = 20–500 °C, σ0/fcu = 0.2–0.6, 
and T = 270–630 °C.

 •  Other complicated paths (Fig. 3-6(c)) include 
the path of temperature and stress increasing 
proportionally (path P), multisteps increasing 
alternately (path S), and prestressing–unloading 
and heating–reloading (path M1, M2). All the 
experimental results are shown in Fig. 3-5 and 
fall between the curves of the upper and the 
lower bounds of the concrete strength at ele-
vated temperatures.

The compressive strength of concrete cu
σ( )Tf  

under the path of prestressing–heating–loading 
(σ0–T–σ) is related to the value of the prestress 
(σ0) and is shown in Fig. 3-7. When the testing 
temperature T ≤ 300 °C, the prestress has only a 
minor influence on the compressive strength, i.e., 
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FIGURE 3-6  Various  experiments  with  complicated  temperature–stress  paths.  (a)  σ0–T–σ  path;  (b)  T1–σ0–T–σ  path; 
(c) four other paths.
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FIGURE 3-7  Influence of prestress on the compressive strength of concrete at elevated temperatures.[1-6]
fTσ
cu / fTcu ≈1.0, where fTcu is the lower bound strength 

corresponding to the path of loading under con-
stant temperature (T–σ). When T ≥ 400 °C,
the relative compressive strength of concrete 
increases with the temperature (fTσ

cu / fcu > 1.0) 
and the rate of increase accelerates gradually. 
When the testing temperature is identical, the 
relative compressive strength increases with the 
level of prestress (when σ0/fcu ≤ 0.6) but the rate 
of increase reduces gradually.

When testing under the path of twice heating–
twice loading (T1–σ0–T–σ), the first heating and 
the prestress have an influence on the compres-
sive strength of concrete (fTσ

cu ) and the results mea-
sured from the tests at temperature T = 630 °C 
are shown in Fig. 3-8. But, when the temperature 
of the first heating T1 = 20–500 °C, the compres-
sive strength (fTσ

cu ) of the specimens varies slightly 
with temperature T1. It is concluded that the 
compressive strength of concrete at elevated tem-
peratures increases greatly and only depends on 
the level of prestress (σ0/fcu) when the difference 
between the heating T − T1 > 130 °C or 150 °C, 
but it increases slightly when T − T1 < 130 °C.

According to the available data from experi-
mental investigations, the compressive strength 
of concrete under different temperature–stress 
paths with the action of prestress can be calcu-
lated approximately by the linear interpolation:

 fTσ
cu = fT

cu +
(

fTu
cu − fT

cu

) σ0

fTu
cu

 (3.6)
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FIGURE 3-8  Influence of the first heating on the compressive strength of concrete at elevated temperatures.[1-11]
where fTcu and f
Tu
cu  are the lower and the upper 

bounds of compressive strength of concrete when 
the maximum temperature is T, respectively, and 
σ0 is the value of prestress before the temperature 
reaches T − 150 °C. If the stress is not a con-
stant within the temperature range from 20 °C to  
T − 150 °C, the average stress weighted by the 
temperature range (ΔT) is used.

The compressive strength of a concrete prism 
at elevated temperatures also varies with the 
different temperature–stress paths. It is demon-
strated in the existing experiments[1-11] that the 
values of the lower and the upper bounds of a 
concrete prism sample (fTc and f

Tu
c ) can also be 

obtained from the experiments under the paths 
of loading under constant temperature (T–σ) and 
of heating under constant load (σ–T), respec-
tively. The variation regularity and the differ-
ence between both values are similar to that 
of the compressive strength of a concrete cube 
(Fig. 3-5), but the relative compressive strength 
of a concrete prism is slightly lower than that 
of a cube, i.e., fTc / fc < f

T
cu / fTcu , f

Tu
c / fc < f

Tu
cu / fc. In 

the experiments under other temperature–stress 
paths, the prestress (σ0) and multiheating also 
influence the compressive strength of the con-
crete prism, and the regularity and the level 
of influence are similar to that of a concrete  
cube.
3.3  THERMAL STRAIN UNDER 
STRESS AND TRANSIENT THERMAL 
STRAIN

3.3.1  Thermal Strain Under Stress

The procedure of the deformation test of con-
crete under the paths of heating (or cooling) 
under constant load (σ–T) is as follows:

 1.  The prism specimen is put into the furnace 
chamber for the deformation test, and is loaded 
to and maintained at the predetermined stress 
level (σ/fc = 0–0.6) at normal temperature.

 2.  The chamber is heated at a velocity of 2–5 °C/
min until it reaches the predetermined tem-
perature (500 °C or 700 °C), and the same 
temperature is maintained for 30 min.

 3.  Then, the electrical power is turned off, the 
upper and the lower gaps between the cham-
ber and the specimen are cleared, and the 
specimen is cooled down naturally.

The temperature and deformation of the spec-
imen are measured in the testing process and are 
shown in Fig. 3-9, and the strain–temperature 
curves of the concrete are obtained. The abscissa 
in the figure is the average temperature (Eqn 3.3) 
of the specimen.

The heating and cooling strain curve of the 
specimen with the stress, σ = 0, is the same as that 
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FIGURE 3-9  Heating and cooling strains of concrete under different stress levels[3-5]: (a) Tmax = 500 °C; (b) Tmax = 700 °C.
shown in Fig. 2-3. The expansion strain (taken as 
a positive value) of the specimen increases quickly 
with temperature; it may reach ɛth = +(7–12) × 
10−3 when T = 500–700 °C. The specimen con-
tracts almost linearly during the cooling process. 
The residual strain (elongation) of the specimen 
after it cools down to the normal temperature is 
about +(1–5) × 10−3, depending on the maximum 
temperature reached before cooling.

The compressive strain (taken as a negative 
value) is produced instantaneously when the 
specimen is loaded at normal temperature, and 
its value is rather small, i.e., | ɛσ | <0.7× 10− 3. 
In the successive heating process, the thermal 
strain of the specimen varies considerably with 
the stress level (σ/fc):

 •  When σ/fc ≤ 0.4 and T < 500 °C, the ther-
mal strain of the specimen is expansive and 
increases with the elevating temperature. 
However, the higher the stress level of the 
specimen, the smaller the expansive strain.

 •  When σ/fc ≥ 0.6 and T > 100 °C, or σ/fc = 0.4 
and T > 500 °C, the specimen is contracted 
with the elevating temperature and its strain is 
taken as a negative value that develops quickly.
Therefore, the total thermal strain of the 
concrete heated from the beginning to a prede-
termined temperature may be elongation or con-
traction, depending mainly on the stress level 
acted before heating.

In the cooling process, all the specimens under 
different stress levels contract and the tempera-
ture–strain curves parallel approximately with 
that under free cooling (σ = 0). This means that 
the values of the total contracted strain approach 
one another at about −(5–7) × 10−3, when the 
specimens are cooled down to normal tempera-
ture from 500 °C or 700 °C. Thus, the values of 
the residual strain of the specimens are consider-
ably different because of the different stress levels 
acted on the concrete specimen previously. When 
the specimen is loaded with the stress σ/fc ≥ 0.2 
before heating, the residual strain after cooling is 
generally contracted (negative value) and is oppo-
site to that of the specimen without stress (σ = 0).

3.3.2  Transient Thermal Strain

In the heating–cooling process, the thermal 
(expansive) strain of the concrete specimen with-
out stressing (σ = 0) is ɛth (curve oa in Fig. 3-10). 
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For the specimen under the path of heating under 
constant load, the strain ɛσ (oo′) appears instan-
taneously when the stress is acted before heating, 
and the strain after heating is ɛT (curve o′b′ or 
ob after moving in a parallel fashion). Therefore, 
the thermal strains of the concrete under differ-
ent stresses (σ) differ greatly and the difference 
between them is called the transient thermal 
strain (contraction) (in Khoury et al.,[3-6,3-7] the 
difference is called load-induced thermal strain 
(LITS) and is considered to be composed of two 
T

T

th

tr

 / f c

 =
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O

O'
T
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b

a

FIGURE 3-10  Thermal deformation and transient  thermal 
strain of concrete.
parts: “transient thermal strain” and “basic 
creep,” but the former is the main part):

 ɛtr (T , σ / fc) = ɛth (T) − ɛT (T , σ) (3.7)

According to the measured thermal strains ɛth 
and ɛT from the experiments, the transient ther-
mal strain occurring during one cycle of heating–
cooling can be calculated and is shown in Fig. 
3-11. It is a general regularity that the transient 
thermal strain increases quickly as the tempera-
ture increases during the heating process and its 
value is approximately proportional to the stress 
level (σ/fc). However, it varies less during the 
cooling process and maintains almost the maxi-
mum value at the maximum temperature. There-
fore, transient thermal strain of concrete occurs 
only during heating and is not restored during 
cooling.

If the concrete specimen experiences multi-
cycles of heating–cooling under constant stress, 
the thermal strain is measured from the testing 
(Fig. 3-12). In the first set of the two cycles of 
heating–cooling, the maximum temperature 
in the first cycle is higher than that in the sec-
ond cycle (700 °C > 500 °C, Fig. 3-12(a)). The 
thermal strains of the specimen within the first 
cycle of heating–cooling are the same as those 
shown in Fig. 3-9(b). Within the second cycle 
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FIGURE 3-11  Transient  thermal  strain  of  concrete  during  one  cycle  of  heating–cooling[3-5]:  (a)  Tmax  =  500  °C; 
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of heating–cooling, the total strain–temperature 
curves of the specimens without stress (σ = 0) 
and with constant compressive stress (σ/fc = 0.2 
and 0.4) are basically parallel, and the tran-
sient thermal strains (Eqn 3.7) approach a con-
stant, with an increment that is nearly zero. The 
expanding strain of the specimen occurring dur-
ing the second heating restores during cooling 
and the residual strain does not increase (refer 
to Fig. 2-4(b)).

In the second set of the two cycles of heating–
cooling, the maximum temperature in the first 
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cycle is lower than that in the second cycle (300 °C 
< 500 °C, Fig. 3-12(b)). The strains in the specimen 
within the first cycle of heating– cooling are simi-
lar to that shown in Fig. 3-9. Within the second 
cycle of heating–cooling, the thermal strain of the 
specimen with no stress (σ = 0) is the same as those 
in Fig. 2-4(a); the thermal strain of the specimen 
with stress (σ/fc = 0.4) increases nearly linearly 
with increasing temperature before T ≤ 300 °C, 
but stagnates when the temperature exceeds the 
maximum temperature in the first heating, i.e.,  
T = 300 °C or 500 °C. This means that the tran-
sient thermal strain appears again. During the 
second cooling, the thermal strain curve of the 
specimen with stress is parallel to the corres-
ponding curve of the specimen without stress.

It is demonstrated by all the experiments under 
the path of multicycles of heating–cooling that 
the transient thermal strain (contraction) of con-
crete with compressive stress appears only during 
the first heating or when the temperature during 
the succeeding heating exceeds the maximum 
temperature experienced in previous cycles. The 
transient thermal strain keeps a constant value, 
the maximum value reached, when cooling or 
when the temperature during heating does not 
exceed the maximum temperature experienced in 
the previous cycles of heating–cooling.

The transient thermal strain of concrete 
appears instantaneously during heating, when it 
is acted on with compressive stress. The value of 
transient thermal strain is far greater than that 
of the short-term creep (see Section 2.4) and the 
strain induced by the stress (see Section 2.2) at 
elevated temperatures. Thus, the transient ther-
mal strain is the main component of thermal 
strain of concrete at elevated temperatures and 
influences considerably the deformation and 
stress relaxation (or redistribution) of the struc-
ture at elevated temperatures, and it should be 
taken into account in the analysis of the structure 
at elevated temperatures.

The mechanism of transient thermal strain in 
concrete is not yet clear. Possibly, when concrete 
is first heated, a chemical reaction occurs in the 
cement hydrates causing variation in the micro-
structure of the cement mortar and a change 
in the volume of the internal holes, resulting in 
remarkable compressive strain of the concrete 
under stress and at elevated temperatures.

It is convenient to introduce a dimensionless 
parameter of transient thermal strain, β(T). This 
parameter is defined as the value under a specific 
stress level (σ/fc):

 β (T) = ɛtr

σ / fc
 (3.8)

The experimental data from various tests 
were introduced into the formula, and a series 
of β–T curves (Fig. 3-13) were obtained after 
calculation. The curves for the tests at different 
stress levels (σ/fc = 0–0.6) and heating velocity 
2–5 °C/min are quite close together, and a simpli-
fied formula is obtained after regression analysis:

 β(T) =

[
72
(

T
1000

)2

−
(

T
1000

)]
× 10 − 3

 (3.9)

Therefore, the transient thermal strain of con-
crete at the first heating can be calculated by the 
following formula:

 ɛtr = σ
fc

[
72
(

T
1000

)2

−
(

T
1000

)]
× 10 − 3 (3.10)
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FIGURE 3-13  Relation between parameters of transient 
thermal strain and temperature.
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3.4  COUPLING TEMPERATURE–
STRESS CONSTITUTIVE RELATION

3.4.1  Comparison of Strains Under 
Different Temperature–Stress Paths

The difference between the strain values of con-
crete experiencing different temperature–stress 
paths can be represented by the comparison of the 
experimental results of the two extreme paths (Fig. 
3-14). When the concrete (C20L, see Table 1-1) 
reaches T = 500 °C and σ = 0.6fc from the original 
conditions (T = 20 °C and σ = 0), the specimen 
tested under the path of loading under constant 
temperature (OAP) experiences successively free 
heating strain (ɛth = +7.4 × 10−3) and instanta-
neous strain ɛσ = −2.65 × 10−3 under loading at 
constant temperature (T = 500 °C). The total 
strain is ɛT–σ = +4.75 × 10−3 (PR, elongation). The 
specimen tested under the path of heating under 
constant load (OBQ) experiences successively the 
strain (ɛσ = −0.6 × 10−3) under loading at normal 
temperature and thermal strain (ɛT = +0.2 × 10−3) 
during heating under constant load, and the total 
strain is ɛσ–T = −0.4 × 10−3 (RQ, contraction).

In this example, the strains of concrete under 
the two extreme paths (ɛT–σ and ɛσ–T) have oppo-
site signs, and the difference between them is 
large Δɛ = 5.15 × 10−3 (PQ). The total strains 
under both paths with other values of stress (σ < 
0.6fc) are presented separately as lines AP (ɛT–σ) 
and AQ (ɛσ–T) in Fig. 3-14, and the variation of 
the difference between them (Δɛ) can be seen in 
the figure. If the concrete reaches T = 500 °C and 
σ ≤ 0.6fc following other various temperature–
stress paths (e.g., Fig. 3-1 and Fig. 3-6), the total 
strain of the specimen should be situated between 
the curves AP and AQ.

The total strain values of concrete under dif-
ferent temperature–stress paths are considerably 
different, mainly because the transient ther-
mal strain of concrete under compressive stress 
is large during the heating process and is not 
restored after it appears. Therefore, it should be 
carefully taken into account when the coupling 
temperature–stress constitutive relation of con-
crete is established.

3.4.2  Basic Formulas of Coupling 
Constitutive Relation

Following an arbitrary temperature–stress path, 
the concrete experiences a time increment (Δt, 
min) and reaches the temperature T + ΔT and 
stress σ + Δσ from the temperature–stress con-
dition (T,σ); the total strain increment produced 
= +4.75

σ / fc
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BQR0.6

0.4

P

0.2

∆ε

∆ε

A

8 6 4 2 0 –0.4 –0.8

(Contraction)(Elongation)

P

Temperature stress path
O T

A

B

500 °C

Q0.6

0.4

0.2

ε 10–3

FIGURE 3-14  Strains of concrete experienced with different temperature–stress paths.[3-1]
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can be calculated by Eqn (3.1), in which the 
strain increment due to heating under constant 
stress σ (ΔɛT) can be replaced by Eqn (3.7). The 
basic formula to calculate the total strain incre-
ment is:

 Δ ɛ = − Δ ɛσ (T , σ) + Δ ɛth (T) − Δ ɛtr (T , σ / fc)
− Δ ɛcr (T , σ / fT

c , t)
 (3.11)

The definition and formula for each strain 
component are as follows:
Δɛσ (T,σ): the strain increment produced at 

constant temperature T when the stress increases 
from σ to σ + Δσ:

 Δ ɛσ(T,σ) = 1
dσ / dɛ

Δ σ  (3.12)

where dσ/dɛ is the first derivation at σ on the 
stress–strain curve (Eqn (2.8));
Δɛth(T): the strain increment of freely expand-

ing strain (Eqn (2.1)) is produced when the tem-
perature rises to T + ΔT from T.

 Δ ɛth(T) = dɛth(T)
dT

Δ T = 56
(

T
1000

)
× 10 − 6 Δ T  (3.13)

Δɛtr(T, σ/fc): the increment of transient thermal 
strain (Eqn (3.10)) appears when the tempera-
ture rises to T + ΔT from T and under stress:

 Δ ɛtr (T , σ / fc) = ∂ ɛtr (T , σ / fc)
∂ T Δ T

= σ
fc

[
144

(
T

1000

)
− 1

]
× 10 − 6 Δ T

 (3.14)

Δ ɛcr(T,σ / fTc ,t): the increment of short time 
creep (Eqn (2.24)) is produced in the time from  
t to t + Δt under the actions of temperature T and 
stress σ:

 
Δ ɛcr (T , σ / fT

c , t) = ∂ ɛcr (T , σ / fT
c , t)

∂ t Δ t

= σ
fT

c
(e6T / 1000 − 1) 30 × 10 − 6√

teqt0
Δ t

 (3.15)

teq is the equivalent time (see Fig. 2-16) and 
can be calculated by modifying Eqn (2.24), in 
which ɛcr is the total creep at T and σ, and t0 = 
120 min.

 teq =

[
ɛcr × 106

(σ / fT
c ) (e6T / 1000 − 1) × 60

]2

t0 (3.16)
Equations (3.11)–(3.16) comprise the coupling 
thermal–mechanical constitutive relation of con-
crete and include the main influencing factors 
and reveal their variation regularities. They show 
the basic characteristics of the coupling actions 
of temperature and stress, and improve on com-
parisons with some available coupling constitu-
tive relations.[3-1,3-8,3-9]

3.4.3  Calculation Rules for Strain 
Increments

The coupling constitutive relation of concrete 
introduced above is expressed in terms of the 
increments and fits for the analysis of the structure 
under complicated temperature–stress paths when 
the corresponding computer program is devel-
oped. The smaller increments in temperature and 
stress can be used to increase computing accuracy. 
As for a simple temperature–stress path, the corre-
sponding formulas for strains are used to calculate 
step by step, and accurate results can be achieved.

An arbitrary temperature–stress path in con-
crete can be resolved into multisteps of loading 
under constant temperature and heating under 
constant load (Fig. 3-1). When the increments 
of various strain components are calculated, the 
following rules can be used for simplification, if 
variable temperature or stress occurs.

 1.  Stress-induced strain ɛσ
When the concrete is loaded under tempera-
ture T1 and its compressive stress reaches σ1, 
the strain ɛσ1(T1) induced can be calculated by 
Eqn (2.8) (Fig. 3-15), in which the prismatic 
compressive strength and corresponding strain 
are fc(T1) (Eqn (2.3)) and ɛp(T1) (Eqn (2.5)), 
respectively.

After the concrete had been heated under con-
stant load (σ1) and reaches T2, it is loaded again 
and the compressive stress increases to σ2 under 
constant temperature T2. The strain increment 
induced by the stress increment should be the dif-
ference between the strains corresponding to σ2 and 
σ1 on the stress–strain curve referring to T2, i.e.,

 Δ ɛσ = ɛσ2(T2) − ɛσ1(T2) 
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FIGURE 3-15  Calculation of the strain increment induced by stress.
The values of ɛσ2 and ɛσ1 can be calculated from 
Eqn (2.8), in which the prismatic strength fc(T2) 
and corresponding strain ɛp(T2) are referred to 
temperature T2.

 2.  Freely expanding strain ɛth
When the concrete is heated first to T1, the freely 
expanding strain ɛth(T1) can be calculated from 
Eqn (2.1). When the concrete is loaded and reaches 
σ1 under constant temperature T1, compressive 
strain ɛσ1(T1) is produced. Then it is heated again 
and reaches T2 under constant load (σ1); the incre-
ment of the freely expanding strain (Fig. 3-16) is

 Δ ɛth = ɛth(T2) − ɛth(T1) 

The expanding strain ɛth(T2) and ɛth(T1) are also 
calculated using Eqn (2.1).

 3.  Transient thermal strain ɛtr
When the concrete is heated first to T1, the tran-
sient thermal strain is zero, ɛtr = 0, as no stress is 
acted. When the concrete is heated to T2 from T1 
under the action of stress σ1, the transient ther-
mal strains at T2 and T1 can be calculated indi-
vidually by Eqn (3.10) and the difference between 
them is the increment of transient thermal strain, 
i.e., Δɛtr,1 = ɛtr(T2) − ɛtr(T1) (Fig. 3-17). When the 
concrete is heated to T3 from T2 under the action 
of stress σ2, the increment in the transient ther-
mal strain can be calculated similarly.
 4.  Short time creep ɛcr
The calculation of the increment in short time 
creep is presented in Section 2.4.2 (Fig. 2-16).

3.4.4  Example and Experimental 
Demonstration

 1.  Example
If the cubic and prismatic compressive strengths of 
concrete C40 under normal temperature are fcu = 
40 MPa and fc = 32 MPa, respectively, and the cor-
responding strain is ɛp = 2 × 10−3, the strains at T = 
500 °C and σ = 0.5fc for various temperature–stress 
paths (Fig. 3-18(a)) are calculated, and the strain 
under the path of temperature and stress increasing 
proportionally are estimated (without considering 
short time creep at elevated temperatures).
Solution:
Path 1: OAP, i.e., loading after heating

 OA (σ = 0, T = 20–500 °C):

ɛth = 28
(

500
1000

)2
× 10 − 3 = 7.0 × 10 − 3

 

 
AP (T = 500°C , σ = 0–0.5fc) : fT

c = 0.656fc , y

= 0.5fc
0.656fc

= 0.762
 

Substituting into Eqn (2.8) and obtaining x = 
0.487, we get,

 
ɛσ = 0.487

[
1 + 5

(
500
1000

)1.7
]

× 2 × 10 − 3 = 2.47 × 10 − 3 
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∑

σ = σth − ɛσ = + 4.53 × 10 − 3
 

Path 2: OBP, i.e., heating after loading

 OB (T = 20° C, σ = 0.5fc): ɛσ = 0.27 × 2 × 10 − 3

= 0.54 × 10 − 3
 

 
BP (σ = 0.5fc , T = 20–500 °C) : ɛth = 7 × 10 − 3 

 
ɛtr = 0.5

[
72
(

500
1000

)2

− 500
1000

]
× 10 − 3 = 8.75 × 10 − 3

 

 ∴
∑

ɛ = − ɛσ + ɛth – ɛtr = – 2 . 29 × 10 − 3
 

The calculations for paths 3–8 are listed in  
Table 3-1.

The variation processes of the strains of con-
crete under various temperature–stress paths are 
shown in Fig. 3-18(b) and the total strains are 
listed in Table 3-2. According to the results, the 
strain of concrete at T = 500 °C and σ = 0.5fc expe-
riencing the path of temperature–stress increas-
ing proportionally should be estimated between 
+(0.009–0.076) × 10−3 (paths 8 and 7). If a smaller 
increment step is used for the calculations, a more 
accurate value of the strain can be achieved.

 2.  Experimental demonstration
The coupling temperature–stress relation for con-
crete introduced above is established based on 
the experimental data, which are measured indi-
vidually in the various arbitrary tests for the strain 
components of ɛσ, ɛth, ɛtr, and ɛcr, and derived 
after analysis. In order to confirm the reasonable-
ness and accuracy of the constitutive relation, a 
comprehensive experiment should be performed.

Therefore, a short strut of constant height 
(confined) is designed for the heating experiment 
(Fig. 3-19).[1-6] The prismatic concrete specimen 
(80 mm × 80 mm × 300 mm, fc = 23.4 MPa) is 
put into the furnace and a load transducer is put 
on top. Both are placed on the working table of 
a hydraulic testing machine and the upper cross 
head is moved to make contact with the trans-
ducer. When the furnace is heated at a velocity 
of 5 °C/min after turning on the electrical power, 
the concrete specimen expands and presses the 
testing machine during heating, and the com-
pressive force and the deformation are measured 
simultaneously. The hydraulic valve of the test-
ing machine is adjusted continuously during the 
testing to keep the height (strain) of the speci-
men constant. Actually, the error in the practi-
cal operation is small and the strain fluctuates 
at <±50 × 10−6. The compressive force (stress 
σ)–temperature curve of the specimen is recorded 
(Fig. 3-19(b)). Obviously, this is a complicated 
temperature–stress path.

According to the traditional method of struc-
tural mechanics, the thermal stress of the specimen 
is analyzed using the following principle: the freely 
expanding strain of the specimen during heat-
ing is compensated fully by the strain induced by 
compressive stress, without considering transient 
thermal strain and short time creep. Therefore the 
compressive stress of the specimen increases quickly 
and reaches the corresponding strength f

T
c  at tem-

perature T = 380 °C; this means that the specimen 
fails. If the specimen is heated further, the stress of 
the specimen enters the descending branch. Obvi-
ously, the calculation curve obtained is consider-
ably different from the experimental one.

When the coupling temperature–stress con-
stitutive relation of concrete introduced above is 
used, the example can be calculated as follows:

 1.  The behavior parameters of concrete material 
are determined.

 2.  The temperature increment for every calcu-
lation step is given, the corresponding time 
increment is obtained, and the average tem-
perature of the specimen is calculated.

 3.  The stress value obtained in the last step is 
used as a parameter and placed in the consti-
tutive formulas, and the increments for freely 
expanding strain, transient thermal strain, 
and short time creep (Δɛth, Δɛtr, and Δɛcr) 
occurring in the current temperature step are 
calculated individually.

 4.  The condition of confined deformation of the 
specimen is established as

 Δ ɛ = − Δ ɛσ + Δ ɛth − Δ ɛtr − Δ ɛcr = 0 

   The strain Δɛσ induced by the stress is then 
obtained. The stress increment Δσ and total 
stress σ can then be calculated from Eqn (2.8), 
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  TABLE 3-1      Example of the Calculations for the Coupling Constitutive Relation 
of Concrete (ɛ × 10−3)

Path T (°C) σ/fc ɛσ ɛth ɛtr Accumulation

3 OA1 20→250 0 +1.75 0 +1.75
A1A2 250 0→0.5 −0.82 +0.93
A2P 250→500 0.5 +5.25 −6.624 −0.444

4 OB1 20 0→0.25 −0.25 −0.25
B1B2 20→500 0.25 +7.0 −4.375 +2.375
B2P 500 0.25→0.5 −1.468 +0.907

5 OA1 20→125 0 +0.438 +0.438
A1A2 125 0→0.25 −0.281 +0.157
A2A3 125→375 0.25 +3.50 −2.188 +1.469
A3A4 375 0.25→0.5 −0.680 +0.789
A4P 375→500 0.5 +3.06 −3.875 −0.026

6 OB1 20 0→0.125 −0.118 −0.118
B1B2 20→250 0.125 +1.75 −0.53 +1.102
B2B3 250 0.125→0.375 −0.404 +0.698
B3B4 250→500 0.375 +5.25 −4.969 +0.979
B4P 500 0.375→0.50 −0.828 +0.151

7 OA1 20→100 0 +0.28 +0.28
A1A2 100 0→0.2 −0.213 +0.067
A2A3 100→300 0.2 +2.24 −1.112 +1.195
A3A4 300 0.2→0.4 −0.385 +0.810
A4A5 300→500 0.4 +4.48 −4.528 +0.762
A5P 500 0.4→0.5 −0.686 +0.076

8 OB1 20 0→0.1 −0.094 −0.094
B1B2 20→200 0.1 +1.12 −0.268 +0.758
B2B3 200 0.1→0.3 −0.275 +0.483
B3B4 200→400 0.3 +3.36 −2.532 +1.311
B4B5 400 0.3→0.5 −0.632 +0.679
B5P 400→500 0.5 +2.52 −3.19 +0.009
  TABLE 3-2       Comparison of Strains of Concrete Under Various Temperature–Stress Paths

Path

1 4 6 7 8 5 3 2

ɛ (10−3) +4.53 +0.907 +0.151 +0.076 +0.009 −0.026 −0.444 −2.29
Paths compared 1 vs 2 4 vs 3 6 vs 5 7 vs 8
Strain difference 
ɛ (10−3)

6.82 1.351 0.177 0.067
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FIGURE 3-19  Heating experiment on a concrete strut of constant height[1-6]: (a) specimen; (b) temperature–stress curve; 
(c) strain components.
considering the values of temperature and 
stress in the current step.

 5.  The variation in the specimen stress through-
out the heating process can be obtained by 
repeating steps 2–4.
A computer program for the calculation 

procedure has been compiled,[1-6] and the tem-
perature–stress curve of the specimen and the 
variations in the strain components during heat-
ing are computed and shown in Fig. 3-19(b) and 
(c), respectively. Their variation regularities coin-
cide with and their values approach that of the 
experimental results.

When the temperature is lower (T < 200 °C),
the values of the transient thermal strain and 
creep of concrete are small and the freely expand-
ing strain is compensated mainly by the strain 
induced by the compressive stress, satisfying 
the condition ɛ = 0. As the value of the elastic 
modulus of concrete is still high at this time, the 
stress increases quickly. Afterward, the concrete 
is heated continuously under the action of the 
compressive stress, the transient thermal strain 
increases sharply and has a value approximating 
the freely expanding strain, so the stress of the 
specimen varies less. When the temperature T > 
600 °C, the freely expanding strain of concrete 
increases gently, but its transient thermal strain 
and short time creep develop more quickly and 
exceed the increment in the expanding strain, so 
stress relaxation occurs and the stress decreases 
in the specimen, satisfying the condition ɛ = 0.

CONCLUSIONS

The compressive strength and deformation 
behavior of concrete at elevated temperatures 
varies considerably with the temperature–stress 
path experienced. Among various paths, the path 
of loading under constant temperature (T–σ) 
refers to the lower bound, and the path of heat-
ing under constant load (σ–T) refers to the upper 
bound; other arbitrary paths are located between 
the upper and the lower bounds.

The strain of concrete at elevated tempera-
tures is composed of four components. Among 
them, the freely expanding strain (ɛth) and the 
transient thermal strain (ɛtr) have consider-
able values but with opposite signs. The others 
are the stress-induced strain (ɛσ) and short time 
creep (ɛcr), both of which have relatively smaller 
values. These strain components vary with tem-
perature, stress, and time, but have different 
variation regularities, so the complicated tem-
perature–stress–strain–time (T–σ–ɛ–t) coupling 
constitutive relation of concrete is formed. When 
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a concrete structure and its members at elevated 
temperatures are analyzed, the coupling consti-
tutive relation of concrete should be introduced 
carefully in order to obtain reasonable and accu-
rate results in the theoretical calculation.

The mechanical behavior of concrete at ele-
vated temperatures is influenced by many fac-
tors and varies considerably. There is no unified 
standard and the measuring technique is not 
sufficient for testing at elevated temperatures, 
resulting in large deviation from the experimen-
tal data. In addition, the experimental data in 
some aspects is still not sufficient and the mecha-
nisms of some physical phenomena are not very 
clear; they cause more difficulty in developing 
the coupling constitutive relation with high accu-
racy. However, the effect of a fire accident on the 
structure has more severe probability and devia-
tion (see Chapter 5). Thus, it is possible to make 
some necessary simplifications and approximate 
assumptions for developing the coupling consti-
tutive relation of concrete.

The coupling constitutive relation of concrete 
suggested in this chapter includes the main influ-
ential factors and their variation regularities, and 
reflects the basic characteristics of the coupling 
action between temperature and stress. Some 
approximate assumptions are introduced, e.g., 
the uniqueness of the compressive stress–strain 
curve of concrete at elevated temperatures, sim-
plified treatments of transient thermal strain, and 
short time creep. Better coupling constitutive 
relations require further experimental and theo-
retical research.
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C H A P T E R

4
Mechanical Behavior and Constitutive 
Relation of Reinforcement at Elevated 
Temperatures
4.1  TESTING METHOD 
AND DEVICE

4.1.1  Testing Program

Devices for testing the mechanical  behavior 
of reinforcement at elevated temperatures 
include three systems: a loading system, a sys-
tem for heating and controlling temperature, 
and a system for measuring and recording 
data. Such a testing device has been developed 
56
Experiment and Calculation of Reinfor

© 2011 Tsinghua University Press. Publi
and manufactured in house in the Structural 
 Engineering Laboratory of Tsinghua University 
(Fig. 4-1).

 1.  The loading system
The existing lever-type tension–compression 
testing machine (100 kN) is used as the main 
loading device. After the reinforcement speci-
men is clamped down, the tensile force can be 
applied and controlled by hand or electricity 
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Figure 4-1  Devices for testing reinforcement at elevated temperatures.
ced Concrete at Elevated Temperatures
shed by Elsevier Inc. All rights reserved.



57CHAPTER 4  Mechanical Behavior and Constitutive Relation of Reinforcement
and its signal is transmitted through the load 
transducer.

In order to suspend the testing furnace, a spe-
cial horizontal slipping track is installed perpen-
dicular to the plane of the loading screws in the 
testing machine. After the furnace is moved along 
the track and into the loading position in the test-
ing machine, testing at elevated temperatures can 
be started. Usually, the furnace is moved away 
from the loading position, and the regular use of 
the testing machine is not affected.

 2.  The system for heating and controlling 
temperature

A furnace for testing reinforcement at elevated 
temperatures cannot be purchased on the mar-
ket and must be developed by researchers. 
Reinforcement with a small diameter, generally 
d ≤ 32 mm, is used in structural engineering 
practice. The value of the thermal conductivity 
of steel is high (see Section 5.2.2) and heat con-
ducts quickly through it. Therefore, only one 
testing furnace is used for the heating operation, 
and the preheating furnace is not necessary.

The testing furnace is composed mainly of cham-
ber brick, opening brick, heating wire, an insulation 
layer, and an outer wall (Fig. 4-2). The chamber 
brick is tubular in shape with a height of 200 mm, 
and external and internal diameters of 88 mm and 
52 mm, respectively; the tube wall contains 12 
longitudinal holes. The heating wires (4 kW) pass 
through these holes. Two opening bricks protect 
both ends of the chamber brick, and each has a 
central hole 40 mm in diameter. The insulation lay-
ers are composed of refractory siliceous aluminum 
felts, which are wrapped around the chamber brick. 
The outer wall of the furnace is cylindrical in shape 
and is manufactured from stainless steel plate; the 
external diameter is 200 mm.

The outer ends of the heating wires in the fur-
nace are connected to a silicon controlled power 
regulator (type TGDFK-20, same as in Fig. 1-1), 
which supplies electrical energy for heating. The 
thermocouple is extended into the chamber and 
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Figure 4-2  Construction of the furnace for testing reinforcement at elevated temperatures.[4-1]
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the outer ends are connected to the regulator, 
which controls the temperature in the cham-
ber. A digital voltmeter is also connected to the 
thermocouple, parallel to the regulator, and dis-
plays the temperature (voltage) in the chamber 
instantaneously.

This device setup has been used many times for 
testing reinforcement at elevated temperatures. 
The maximum temperature reaches 1000 °C,  
the maximum heating velocity is 50 °C/min, the 
temperature control is accurate within ±0.5 °C, 
and the temperature on the outer wall of the 
furnace is <60 °C after being heated for several 
hours. The testing furnace is thermally insulated 
and displays stable thermal behavior. It provides 
a longer area of uniform temperature in the mid-
dle and is convenient to use.
 3.  System for measuring and recording data
The factors that need to be measured during the test-
ing of reinforcement at elevated temperatures are 
temperature, stress (tensile force), and deformation. 
The thermocouple in the furnace and the load trans-
ducer in the testing machine supply the information 
on temperature and tensile force, respectively.

The strain value of the reinforcement is diffi-
cult to measure directly because of the high tem-
perature in the furnace, but can be transmitted 
outside the furnace and measured indirectly. Two 
pairs of stretched bars, specially designed and 
manufactured, are clamped using strong springs 
on the top and bottom of the reinforcement, and 
extend out of the furnace. Two displacement 
transducers are set up between the ends of the 
corresponding stretched bars (Fig. 4-3(a)) and 
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connected in series to form a complete bridge 
circuit for measuring the average strain of the 
reinforcement.

4.1.2  Test Contents and Data 
Processing

The basic mechanical behavior of reinforcement 
at elevated temperatures includes yield strength, 
ultimate strength, stress–strain curve, and elastic 
modulus at different temperatures. In addition, 
the strength and deformation of reinforcement 
under different temperature–stress paths and 
after cooling and creep at elevated temperatures 
greatly influence the behavior of the structure at 
elevated temperatures and after a fire accident.

There are five grades of strength of reinforce-
ment used in concrete structural engineering. 
Generally, the diameter of the reinforcement is 
not greater than 32 mm. The diameter, the yield, 
and the ultimate strength at normal temperature 
of the reinforcement specimens selected for testing 
are listed in Table 4-1. The testing temperature is 
in the range of 20–800 °C and not less than three 
specimens are used for each testing condition.

The general testing process for reinforcement 
at elevated temperatures is as follows. The testing 
furnace is moved into the loading position of the 
testing machine, and the reinforcement specimen 
is passed through the chamber; its upper end is 
clamped to the upper head of the machine and 
the lower end is free. After the gaps between the 
specimen and the furnace opening are blocked 
with refractory fiber, the testing furnace is heated 
to the predetermined temperature, which is main-
tained for 5–10 min. The displacement transduc-
ers are set up and the measuring and recording 
instruments are adjusted. Finally, the lower end 
of the specimen is clamped to the lower head of 
the machine and the specimen is loaded at the 
velocity of 0.5 MPa/s until failure.

Various types of data are measured and 
recorded during the testing process and values 
for the temperature, stress, and strain of the rein-
forcement can be obtained using the methods 
described below.

The temperature in the middle part of the 
furnace chamber is taken to be the approximate 
temperature of the specimen, because its diameter 
is small, heat conducts quickly through it, and the 
temperature distributes uniformly on its section.

The average stress calculated from the original 
area of the specimen is taken as its nominal stress, 
without considering the reduction in tensile area 
at elevated temperatures and after yielding.

The strain value of the reinforcement at ele-
vated temperatures has to be calculated and 
modified according to the deformation value (δ) 
measured by the displacement transducers. The 
temperature distribution in the chamber is mea-
sured during testing and it varies with time as 
shown in Fig. 4-3(b). The temperature distrib-
utes quite nonuniformly within the length (l = 
340 mm) of deformation measured. The temper-
ature in the middle part of the chamber reaches 
the maximum and distributes uniformly, but the 
temperature near the opening of the chamber 
reduces obviously, and the temperature at the 
fixed ends of the stretched bars, which extend out 
of the furnace, approaches room temperature. In 
order to simplify the calculation, the measuring 
length is divided approximately into two parts, 
i.e., the testing part and the part at room temper-
atures, according to the principle that the area of 
the measured temperature distribution is equal to 
that of the equivalent temperature distribution. 
Then, the length of the two parts (lt and l0) are 
determined and the strain value of the specimen 
  TABLE 4-1       Types of Reinforcement Tested at Elevated Temperatures[4-1]

Strength grade I II III IV V

Diameter (mm) 12 12, 25 12 12 5
fy (MPa) 288 426 504 579 1274
fu (MPa) 376 577 633 930 1681
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at testing temperature can be calculated using the 
following formula:

 ɛs (T) = δ − (σ / ES) lt
l0

 (4.1)

where δ is the deformation value (mm) measured 
by the displacement transducers, σ is the stress 
of the reinforcement, Es is elastic modulus of the 
reinforcement at room temperature, and l0 and l1 
are the length at the testing and normal tempera-
tures, respectively, based on the equivalent figure 
of temperature distribution.

4.2  TENSILE STRENGTH 
AT ELEVATED TEMPERATURE

4.2.1  Characteristics and Ultimate 
Tensile Strength

The path of loading at constant temperature (T–σ) 
is mainly used for testing the tensile strength of 
reinforcement at elevated temperatures. The rein-
forcement specimen is put into the testing furnace, 
heated to the predetermined temperature which is 
maintained for several minutes. Then, the speci-
men is loaded until failure and the deformation 
process and the strength value are measured 
simultaneously.

The color on the surface of the reinforcement 
varies gradually during heating. The color is 
gray-black and the same as that at room temper-
ature when T ≤ 300 °C; it becomes darker when 
T > 400 °C, slightly red when T = 600 °C, and 
red-black after T > 700–800 °C.

The specimen is taken out of the furnace at the 
end of the test, and its failure mode is observed 
after it is cooled. The specimen is broken into two 
and the fracture section is obviously necked down 
when the testing temperature T ≤ 300 °C. The fail-
ure mode of the specimen tested when T ≤ 300 °C 
is same as that tested at room temperature. When 
T = 400–600 °C, the failed specimen still has local 
neck and its surface layer is lost, but the length of 
the neck increases and the diameter decreases as 
the testing temperature increases. When T = 700–
800 °C, the local neck of the specimen is hardly 
seen, the middle part elongates uniformly at higher 
temperature, and the diameter clearly decreases; 
the loss of the surface layer is significant. How-
ever, the length and diameter of both ends of the 
specimen at lower temperature vary considerably 
less compared to those before testing.

The ultimate tensile strength of the reinforce-
ment at different temperatures (fTu ) is taken as the 
quotient between the maximum tensile force during 
testing and the original area of the section, or as the 
stress value at the highest point of the stress–strain 
curve. The experimental results of the reinforce-
ments for the five strength grades are represented 
by the relative values (fTu / fu) and shown in Fig. 4-4, 
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Figure 4-4  Ultimate tensile strength of reinforcement at elevated temperatures.[4-2]
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where fu is the ultimate tensile strength of the rein-
forcement of the same grade at room temperature.

The ultimate tensile strength of the rein-
forcements of all grades decreases slightly 
(fTu / fu >0.9) when the testing temperature T ≤ 
300 °C, but decreases sharply within the range 
T = 300–800 °C, and reaches a rather low value 
(fTu / fu ≈ 0.04–0.12) at T = 800 °C. However, the 
ultimate strength of the reinforcements of differ-
ent types and strength grades varies.

The ultimate strength of grade I reinforcement 
increases slightly (1.0< fTu / fu <1.08) when T = 
300–400 °C, but it decreases when T > 500 °C 
and varies similarly to grades II, III, and IV.

The grade V specimen is heat-treated high-
strength wire (ф5). Distortion of the metal crys-
tal construction induced during heat-treating 
is relieved gradually during heating and the 
heat-treated function is basically lost when the 
temperature exceeds 400 °C.[4-3,4-4] Therefore, 
the relative strength at elevated temperatures 
decreases sharply, and it is about fTu / fu ≈ 0.04 at 
T = 800 °C and is far smaller than that of grades 
I–IV (Fig. 4-4). However, the grade V reinforce-
ment contains more alloy elements and the abso-
lute value of its ultimate strength (fTu ) is greater 
than that of grades II–IV when T ≤ 600 °C, but 
approaches that of grades I–IV when T > 600 °C.

According to the above experimental results, 
the ultimate tensile strength at elevated tempera-
tures of the reinforcements of the five strength 
grades can be summarized into two simplified 
regression formulas:

 Steel grades I, II, III, IV:
fT

u

fu
= 1

1 + 36 (T / 1000) 6.2
 (4.2a)

 Steel grade V:
fT

u

fu
= 1

1 + 56 (T / 1000) 4.4
 (4.2b)

Experimental investigations[2-6] also show that 
the relative ultimate strength (fTu / fu) of hard wire 
(grade V) is lower than that of mild steel (other 
grades), and the difference between them may 
reach 25–35% within T = 400–600 °C. Grade V 
wire is mainly used in prestressed concrete struc-
tures and it loses strength considerably at ele-
vated temperatures, so the fire-resistant behavior 
of the corresponding structural member should 
be emphasized.

4.2.2  Yield Strength at Elevated 
Temperatures

 1.  Method for determining the value of yield 
strength

The yield strength (fy) of reinforcement is the 
main factor that decides the bearing capacity 
and ductility of reinforced concrete structures, 
and is the strength limit used in the design of the 
structure. Although the ultimate tensile strength 
of reinforcement is much higher than the yield 
strength (fu/fy ≈ 1.5), the strain corresponding to 
the ultimate strength is several times the yielding 
strain. Normally, when the strain at the ultimate 
strength is reached, the structure fails because of 
too much deformation or loss of stability. There-
fore, the ultimate strength of reinforcement can-
not be used in the structural design, but can be 
used as an additional safety reserve.

The tensile–elongation (σ–ɛ) curve of mild 
steel (grades I–IV) has an apparent yielding step, 
and the lower yielding point on the curve is taken 
as the yield strength (fy) of the steel.[0-2] But the 
tensile–elongation curve of hard steel (grade V) 
has no yielding step and the stress correspond-
ing to the residual strain ɛ = 2 × 10−3 is taken as 
the nominal yield strength of the steel. However, 
the tensile–elongation curve of the reinforcement 
at elevated temperatures (Fig. 4-9) also has no 
apparent yielding step, and if the nominal yield 
strength corresponding to the residual strain ɛ = 2 × 
10−3 is used, it does not fit well with the trend of 
the elongation curve. Therefore, another method 
has to be found to determine the yield strength of 
the reinforcement at elevated temperatures.

The following methods have been used and 
compared[4-1] to determine the yielding points of 
the materials or structures:

 •  Residual strain: described earlier.
 •  Energy: determined according to the princi-

ple that the areas under the experimental and 
nominal stress–strain (or load– displacement 
for structure) curves should be equal.
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 •  Ductility ratio: determined by calculating 
the yielding strain (ɛy = ɛu/μ) according to 
the strain at ultimate strength (ɛu) and the 
ductility ratio required (μ).

 •  Yield/ultimate strength ratio: determined 
by calculating (fTy = fTu fy / fu) from the ulti-
mate strength at elevated temperatures (f

T
y ) 

and the yield/ultimate strength ratio of the 
reinforcement at room temperature (fy/fu).

All the yield points on the tensile–elongation 
curve of reinforcement at elevated temperatures 
determined by these methods are not quite cor-
rect. The yield strains of the reinforcement (ɛTy ) 
obtained are too high and the structure may fail 
because the corresponding displacement exceeds 
the limit, although the material still retains some 
strength reserve.

From the physical concept of the yielding 
point, it is reasonable to define it as follows: plas-
tic strain of the material starts to develop or the 
strain rate of the material increases suddenly, and 
a turning point forms on the tensile–elongation 
(stress–strain) curve. The practical method and 
criteria are described below.

The stress–strain curve of the reinforcement 
measured during testing is divided into finite 
stress increments (∆σ), and the correspond-
ing strain increments (∆ɛi) are calculated one 
by one. When the strain increasing rate of 
the (n + 1)th increment exceeds several times 
(a) that of the nth increment, the slope of the 
curve decreases obviously and a turning point is 
formed on the curve. Then, this point is defined 
as the theoretical yielding point. This means 
that when

 Δ ɛn + 1 / Δ σ
Δ ɛn / Δ σ

= Δ ɛn + 1

Δ ɛn
≥ a (4.3a)

the yield strength and the corresponding strain 
of the reinforcement at elevated temperatures are

 fT
y = n ·Δσ , ɛT

y =
n∑

i = 1

Δ ɛi  (4.3b)

If the deformation processes (e.g., bending 
moment–curvature, load–displacement) of the 
concrete structures and their members have no 
apparent yielding step, the same method can 
also be used for defining the unified standard 
to determine the yield bending moment, and 
yield bearing capacity, and then to calculate 
the ductility ratios. Of course, the magnitude 
of the stress (or force) increment and the bound 
(a) of the deformation rate can be adjusted 
properly.

 2.  Yield strength at elevated temperatures
The stress increment is taken as one-tenth of 
the ultimate tensile strength at T = 800 °C 
of the reinforcement for each grade, i.e., 
Δ σ ≈ 0.1f 800u = (3.3∼ 9.6)MPa≈ (0.005∼0.020) fy , 
and the bound of the strain increasing rate is 
taken as a = 2. Then, the yield strengths of the 
reinforcements at different temperatures are cal-
culated and the relative values (fTy / fy) are shown 
in Fig. 4-5.

The yield strength of grade I–IV reinforce-
ments (f

T
y ) decreases monotonically as the test-

ing temperature increases; the general variation 
regularity is similar to that of the ultimate ten-
sile strength (fTu ). However, there are some dif-
ferences between them. The yield strength of the 
reinforcement decreases by about 10–15% at T = 
200 °C and has lower relative value (fTy / fy) when 
T = 200–500 °C, so the yield/ultimate strength 
ratio (fTy / fTu ) (Fig. 4-6) reduces gradually within 
T = 20–500 °C, but increases again gradually 
within the range T = 600–800 °C. However, 
the variable amplitude of the ratio is not large 
and most of the ratios are within the range of 
fTy / fTu =0.6–0.8.

The relative yield strength (fTy / fy) of grade V 
reinforcement is lower than that of grades I–IV 
and the variation regularity is similar to that of 
its relative ultimate strength (fTu / fu) but with a 
slightly lower value. Therefore, the yield/ultimate 
strength ratio (fTy / fTu ) approximates to a constant, 
possibly because the obvious yielding point does 
not appear originally for grade V reinforcement 
at room temperature.

According to the above experimental results, 
at elevated temperatures the yield strength of 
reinforcements of all the five grades can also 
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be summarized in two simplified regression 
formulas:

 Steel grades I, II, III, IV:
fT

y

fy
= 1

1 + 24 (T / 1000) 4.5  (4.4a)

 Steel grade V:
fT

y

fy
= 1

1 + 46 (T / 1000) 4    (4.4b)

The theoretical curve is compared with the 
experimental data in Fig. 4-5.

Comparing the grade II reinforcement speci-
mens of diameter φ25 mm φ12 mm, there is no 
apparent difference between the ultimate tensile 
strengths measured during the testing tempera-
ture range T = 600–800 °C.

4.2.3  Influence of Temperature–
Stress Path

The reinforcement, like the concrete, in a struc-
ture subjected to a fire accident has to experi-
ence a complicated long-term temperature–load 
(stress) history. The mechanical behavior and the 
variation of the reinforcement under different 
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Figure 4-7  Ultimate temperature/tensile strength of reinforcement under the path of heating under constant load.[4-1]
temperature–stress paths must be investigated by 
proper testing.

The testing methods for reinforcements at 
elevated temperatures introduced above corre-
spond to the path of loading at constant tem-
perature (T–σ). Another extreme path is that of 
heating under constant load (σ–T, Fig. 3-1) and 
its testing procedure is as follows. The specimen 
is placed inside the testing furnace and both 
its ends are clamped by the testing machine. It 
is then loaded and reaches the predetermined 
stress level (σ/fu) under ambient temperature. 
After the gaps near the furnace openings are 
obstructed, the furnace is supplied with elec-
trical power and heated. In the meantime the 
testing machine is operated and the specimen is 
elongated simultaneously in order to keep the 
stress constant. The specimen is heated continu-
ously until failure and the ultimate temperature 
is measured.

The ultimate temperatures of the five grades 
of reinforcements under different stress levels 
(σ / fu = fTu / fu) are presented in Fig. 4-7. Com-
pared with the theoretical curves of the ultimate 
tensile strengths of the reinforcements under the 
path of loading at constant temperature (T–σ, 
Eqn (4.2)), the strengths of the reinforcements 
of grades I–IV (mild steel) under the path (σ–T) 
is lower than that under the path (T–σ) when 
T < 500 °C, but the strength under both paths 
is not obviously different when T > 500 °C. The 
strength of grade V reinforcements (hard steel) 
under both extreme paths is not obviously differ-
ent throughout the temperature range.

Grade II reinforcement diameter ф12 mm 
is used for all the tests under various compli-
cated temperature–stress paths. The ultimate 
strengths at elevated temperatures (fTu ) of the 
reinforcements are tested and measured under 
five  temperature–stress paths (paths 3–7 in  
Fig. 4-8(b)), and they are compared in Table 4-2 
with the experimental results under two extreme 
paths (1 and 2).

The average ultimate tensile strength and the 
temperature of the specimens are 271 MPa and 
598 °C, respectively, under all seven paths. The 
fluctuation of the tensile strength and tempera-
ture is ≤±11.8%, which is within the reasonable 
error range of testing at elevated temperatures. 
Therefore, the experimental results demonstrate 
that the temperature–stress path does not obvi-
ously influence the ultimate tensile strength of 
the reinforcement.

Some experiments[1-14,9-12] have shown that 
the ultimate tensile strength and yield strength of 
a reinforcement after heated to 900 °C and then 
cooled down (naturally or in water) are respec-
tively approaching, or even slightly higher than, 
that of the reinforcement at room temperature 
without heating-cooling.

Therefore, according to the existing experi-
mental results, it is considered that the different 
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  TABLE 4-2      Comparison of the Ultimate Strength of Reinforcements Under Different 
Temperature–Stress Paths

Temperature–stress path

1 2 3 4 5 6 7 Average

Tmax (°C) 580 563 572 638 625 590 618 598
Relative difference (%) −3.0 −5.9 −4.3 +6.7 +4.5 −1.3 +3.3

 (MPa) 249 268 303 270 270 266 274 271
Relative difference (%) −8.1 −1.1 +11.8 −0.4 −0.4 −1.8 +1.1
fT

u

temperature–stress paths and the heating–cooling 
cycles do not obviously influence the strength of the 
reinforcement. This characteristic of steel is caused 
by its properties, manufacture, and working tech-
nology and is totally different from that of concrete.

4.3  TENSILE STRAIN AND STRESS–
STRAIN CURVE AT ELEVATED 
TEMPERATURE

4.3.1  Characteristics of Tensile Strain

Tension testing and strain calculations of reinforce-
ment at constant temperature follow the methods 
introduced in Section 4.1.2 and the stress–strain 
curves of the reinforcements of the five strength 
grades under different temperature (Tmax = 
800 °C) are obtained (Fig. 4-9). The shapes and 
the variations in these curves illustrate the char-
acteristics of the reinforcement deformation at 
elevated temperatures.

The stress–strain curve of grade I reinforce-
ment at room temperature has an apparent and 
long (about 5 × 10−3) horizontal yielding step, 
which is followed by a hardening part of stress 
increase and the peak point; the specimen is 
then necked and the stress descending branch is 
formed. When the testing temperature increases 
but T < 400 °C, the yield strength of the rein-
forcement decreases, the turning at the yield 
point is blurred gradually, the yielding step con-
tracts and slopes gradually, and the hardening 
part and the descending branch still follow obvi-
ously. When T > 500 °C, the yielding step dis-
appears, the ultimate strength decreases quickly, 
and the stress–strain curve is composed of the 
ascending branch with the slope decreasing 
monotonically and the descending branch after 
the peak point. The higher the testing tempera-
ture (T > 700 °C), the flatter the curve top and 
the less clear the descending branch. When the 
test temperature ranges from T = 20 °C – 200 °C, 
the values of the ultimate elongation of the speci-
men (reinforcement) measured after failure are 
less different. The ultimate elongation decreases 
when T > 300 °C and the minimum value of the 
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Figure 4-9  Stress–strain curves for reinforcements at different temperatures[4-2]: (a) steel grade I; (b) steel grade II; (c) steel 
grade III; (d) steel grade IV; (e) steel grade V.
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ultimate elongation is measured at about T = 
600–700 °C. When T > 800 °C, the ultimate 
elongation increases because the reinforcement 
softens and stable flow occurs.

The deformation behavior of grade II–IV rein-
forcements at elevated temperatures is similar to 
that of grade I, but varies gradually. When the 
strength grade of the reinforcement increases, the 
yielding step of the stress–strain curve at room 
temperature is clear, but the length contracts to 
(20–10) × 10−3, and the temperature correspond-
ing to the disappearance of the yielding point is 
reduced to 200 °C from 400 °C. The ultimate 
strength decreases sharply when T > 400 °C. The 
ultimate elongation of the specimen after failure 
decreases gradually when T > 300 °C and reaches 
the minimum value when T = 600 °C, which is 
only about one-fourth of that at room tempera-
ture. However, the ultimate elongation increases 
again when T > 700 °C.

The stress–strain relationship for grade V 
reinforcement at room temperature, and also 
at elevated temperatures, is a continuous curve 
without the yielding step. The ultimate tensile 
strength of the reinforcement decreases quickly 
when T > 200 °C, and the ultimate elongation 
of the failed specimen reaches the minimum 
value within the range of T = 400–600 °C and 
increases greatly when T > 800 °C.

In the stress–strain curves of reinforcement 
under different temperatures, the shapes of the 
top part and the descending branch can be divided 
into two categories. One has an apparent peak 
and a descending branch. When the testing tem-
perature is not too high (T ≤ 600 °C), the speci-
men is necked down locally soon after the peak 
tensile load (or fTu ) is reached, then the area of 
its critical section decreases and the load reduces, 
and finally the specimen suddenly breaks in two. 
The stress–strain curve is obtained when the 
stress (or strength) of the specimen is calculated 
by using its original section area. However, if the 
practical area of the critical section is used in the 
calculation, the stress after the peak load (fTu ) still 
rises slowly. Another category of the stress–strain 
curve has a gentle top part and the descending 
branch is not clear. For this category, the specimen 
is tested at a higher temperature (T > 700 °C) and 
is softened with a much lower elastic modulus. 
The part of the specimen with high temperature 
elongates uniformly and the diameter decreases 
uniformly without a local neck, so the specimen 
has a large ultimate elongation.

4.3.2  Equation of Stress–
Strain Curve

The stress–strain relationships (curves) of rein-
forcement at room temperature are usually 
divided into two types. For grade I–IV reinforce-
ments, the curve has an apparent yielding step 
and is simulated by an ideal elastoplastic model, 
i.e., the stress and strain increase proportionally 
and the elastic modulus (Es) is a constant when 
σ < fy, and the stress is taken as a constant (fy) 
when the strain is greater than the yield strain  
(ɛ ≥ ɛy). For grade V reinforcement, the relation is 
usually simulated by a continuous equation.[0-2]

The stress–strain curve of the reinforcement 
at elevated temperatures is different from that at 
room temperature. Observing and comparing the 
stress–strain curves of the reinforcements of all 
strength grades, the shapes of the curves at dif-
ferent temperatures when T > 200 °C are similar, 
i.e., the strain before yielding (σ < fTy ) is relatively 
small and the yielding step is not clear. The strain 
increase accelerates after yielding (σ ≥ fTy ) and the 
curve tends to be horizontal when the ultimate 
tensile strength is reached. Therefore, a unified 
mathematical model (Fig. 4-10) is used for sim-
ulating the stress–strain curve of the reinforce-
ment at elevated temperatures to simplify the 
calculation with sufficient accuracy, and it can 
satisfy the analysis requirement for structures at 
elevated temperatures.

The stress–strain curve for reinforcements at 
high temperatures (T > 200 °C) can be divided 
into two parts, the elastic branch before yield-
ing and the hardening branch after yielding, and 
the equations of both branches are presented 
separately:

 ɛ ≤ ɛT
y , σ =

fT
y

ɛT
y

· ɛ = ET
s · ɛ  (4.5a)
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 ɛT
y ≤ ɛ ≤ ɛT

u, σ = fT
y + (fT

u − fT
y ) · η, (4.5b)

where

 η = (1.5ξ − 0.5ξ3)
0.62

 (4.6)

The relative coordinates used for the harden-
ing branch are

 ξ =
ɛ − ɛT

y

ɛT
u − ɛT

y

, η =
σ − fT

y

fT
u − fT

y
 (4.7)

Equation (4.6) is a simplified regression formula 
obtained from the analysis of the partial experimen-
tal data (Fig. 4-10(b)) and it satisfies the boundary 
conditions, i.e., σ = fTu  and dσ/dɛ = 0, when ɛ = ɛTu .
stitutive Relation of Reinforcement

The ultimate strain (ɛTu ) of the reinforcement 
at elevated temperatures has a high value, which 
is hardly exceeded in a practical structure during 
a fire accident, so the equations above can satisfy 
the requirement for thermal analysis of the struc-
ture. If necessary, a plastic horizontal line can be 
attached after ɛ ≥ ɛTu  when T > 700 °C, i.e., the 
stress is taken as a constant σ = fTu . Or a descend-
ing branch may be attached when T < 700 °C.

The yield strength fTy  and the ultimate strength 
fTu  of reinforcement in these constitutive relations 
can be calculated using the formulas presented 
earlier. The experimental data for the corre-
sponding yield and ultimate strains (ɛTy  and ɛTu ) 
are shown in Fig. 4-11.[4-1]
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The yield strain of each grade of reinforce-
ment varies irregularly with temperature when 
T ≥ 200 °C, but the difference between them is 
less. Therefore, the yield strain of each grade of 
reinforcement can be taken approximately as a 
constant when the structure and its members at 
elevated temperatures are analyzed. The yield 
strains of the reinforcements of various strength 
grades at elevated temperatures can be calculated 
by a unified formula:

 ɛT
y = α ·ɛy  (4.8)

where ɛy = fy/Es is the yield strain of the rein-
forcement at room temperature. The strain 
ratio a suggested in Table 4-3 can be used in the 
analysis.

The ultimate strains ɛTu  of the various strength 
grades of reinforcements at elevated temperatures 
decrease as the testing temperature increases and 
reach minimum values at T = 600 °C, i.e., 40 × 
10−3 for grade I or 20 × 10−3 for grades II–V. The 
minimum values are still greater than the permis-
sible maximum strain value (10 × 10−3) of steel 
(reinforcement), which is listed in the design codes 
for steel and reinforced concrete structures[0-1] and 
is used for preventing failure of structures because 
of excessive deformation. Although the ultimate 
strain increases when T > 700 °C, the correspond-
ing stress–strain curve is rather flat (Fig. 4-9). 
Therefore, if the minimum value at T = 600 °C 
is taken, the analysis of the structure at elevated 
temperatures will not be influenced. The ulti-
mate strains for all five grades of reinforcements 
at elevated temperatures (T > 200 °C) can be 
 calculated separately as follows:

 

Grade I:ɛT
u = 0.18 − 0.23

(
T

1000

)
≥ 0.04

Grades II, III, IV:ɛT
u = 0.16 − 0.23

(
T

1000

)
≥ 0.02

Grade V:ɛT
u = 0.06 − 0.1

(
T

1000

)
≥ 0.02

 (4.9)

4.3.3  Elastic Modulus

The stress–strain relation (σ < fTy ) before the 
reinforcement yields at elevated temperatures is 
simulated approximately to a straight line and its 
slope is the corresponding elastic modulus:

 ET
s = fT

y / ɛT
y  (4.10)

The experimental data[4-1] for various grades of 
reinforcements tested at different temperatures 
are used and the values of their elastic modulus 
can be calculated (Fig. 4-12).

The value of the elastic modulus of reinforce-
ment decreases as the temperature increases, 
and its variation is similar to that of the yield 
and ultimate strengths, except that its decreas-
ing amplitude is greater. The elastic modulus of 
grade I–IV reinforcement starts to decrease more 
when T ≥ 200 °C.

When Eqns (4.4) and (4.8) are substituted 
into Eqn (4.10), formulas for the elastic modu-
lus of various strength grades of reinforcement 
at elevated temperatures are obtained, and the 
theoretical curves are compared with the experi-
mental results in Fig. 4-12.
  TABLE 4-3      Experimental and Suggested Values of Yield Strain of Reinforcement 
at Elevated Temperatures (T ≥ 200 °C)

Grade of 
 reinforcement

Yield strain at normal 
temperature ɛy (10−3)

Experimental value ɛTy  (10−6) α = ɛT
y / ɛy

Range Average Average Suggested

 I 1370 1759–2003 1874 1.368 1.36
 II 2029 2127–2500 2295 1.131
 III 2381 2796–2821 2810 1.180 1.20
 IV 2843 3295–3962 3632 1.278
 V 6067 5700–6407 5986 0.987 1.0
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4.4  THERMAL STRAIN UNDER 
STRESS

The thermal deformation of concrete under the 
action of stress includes freely expanding strain 
(ɛth) and transient thermal strain (ɛtr), and its 
value is considerable, so it is the main part of 
the total deformation of concrete at elevated tem-
peratures and is also a key factor in the coupling 
constitutive relation. This behavior of reinforce-
ment has not been investigated fully up to now, 
and there is no final conclusion. Some experi-
mental research and analyses have revealed a few 
important phenomena that are worth investigat-
ing further.

4.4.1  Freely Expanding Strain

The reinforcement specimen is heated to the 
predetermined temperature and is maintained 
at the same temperature under free conditions 
(σ = 0) until it does not deform any more, then 
the strain, the freely expanding strain (ɛth) of 
the reinforcement, is recorded. When the test-
ing temperature is T = 800 °C, the time needed 
for heating is 20 min and the temperature is 
maintained for 40 min. The measured expand-
ing strains for the five grades of reinforcements 
at temperature T = 20–800 °C are shown in 
Fig. 4-13.
Although the chemical components are dif-
ferent and the strength differences are consid-
erable for the five grades of reinforcements, the 
expanding strains are similar at the same tem-
perature. The expanding strains of all the rein-
forcements are less but the increases accelerate 
when T ≤ 200 °C, and are almost proportional 
when T ≥ 300 °C.

The freely expanding strain of reinforcement 
can be calculated following the empirical regres-
sion formula:

 ɛth = 16
(

T
1000

)1.5

× 10 − 3
 (4.11)

Correspondingly, the linear expansion coef-
ficient is

 αs = ɛth

T
= 0.5

√
T × 10 − 6 (4.12)

where T is the temperature of the reinforcement 
(in °C).

4.4.2  Thermal Strain Under Constant 
Stress

The testing procedure for measuring the thermal 
strain of reinforcement under constant stress is 
as follows. The testing furnace is set up and the 
reinforcement specimen is clamped down and 
loaded under tension at room temperature. After 
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Figure 4-12  Elastic modulus of reinforcement at elevated temperatures.
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the tensile stress reaches the predetermined level 
(σ/fy = 0.2, 0.4, or 0.6), the furnace is heated by 
electrical power and the testing machine is oper-
ated simultaneously to keep the tension constant; 
the temperature and elongation deformation of 
the specimen are measured and recorded. To 
limit the influence of short time creep of the rein-
forcement at elevated temperatures, the specimen 
is heated continuously without the constant tem-
perature stage. This takes about 20 min when the 
temperature reaches T = 800 °C.

The thermal strains of the five grades of rein-
forcements under different stress levels have simi-
lar variation regularity (Fig. 4-14), i.e., the strain 
of the reinforcement accelerates as the tempera-
ture increases continuously. The thermal strain is 
less when T ≤ 200 °C and increases quickly when 
T ≥ 300 °C, because the elastic modulus of the 
reinforcement at elevated temperatures decreases 
considerably and the creep appears unavoidably. 
The specimen at high stress level (σ/fy = 0.6) fails 
because its strain diverges when the ultimate tem-
perature (Fig. 4-7) approaches.

The thermal strains of the reinforcements at 
the same temperature increase approximately lin-
early with the stress. The values of the thermal 
strains of grade I–IV reinforcements (mild steel) 
under the same conditions are similar, but that of 
grade V is obviously larger. Empirical formulas 
for thermal strain are given by Lu.[4-1]

Compared with the freely expanding strain 
(Fig. 4-13), the thermal strain of reinforce-
ment under the action of stress is less when 
the temperature T < 500–650 °C because the 
specimen is heated quickly without the con-
stant temperature stages and the strain does not 
develop fully. However, the thermal strain is 
obviously larger when the temperature is even 
higher, because the elastic modulus decreases 
at elevated temperatures and the plastic strain 
increases quickly.

The total strain of the reinforcement under 
the path of heating under constant load (σ–T) 
includes the load causing strain at normal tem-
perature and the heating causing strain under 
constant stress. The total strain of the reinforce-
ment under the path of loading at constant 
temperature (T–σ) includes the freely expand-
ing strain and the load (stress) causing strain 
at elevated temperatures. The values of both 
total strains are not equal, but there is a lack of 
detailed comparison and analyses.
ΙΙ
ΙIΙ
ΙV
V

Ι

2000 400 600 800

2

4

6

8

10

12

14

16 ( )T
1000

Figure 4-13  Freely expanding strain of reinforcement.[4-1]
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4.4.3  Short Time Creep at Elevated 
Temperatures

Many experimental investigations have been 
conducted for the creep of steel at normal tem-
perature and identical conclusions are drawn.[0-2] 
For mild steel (grades I–IV) with an obvious yield 
step, when a specimen is loaded and sustained 
for a long time or loaded–unloaded repeatedly, 
no creep and residual strain appears if the stress 
applied is within the elasticity limit, which is 
slightly lower than the yield strength. The high 
strength reinforcement (grade V or hard steel) 
shows plastic strain under high stress (σ/fu>0.6), 
so the creep (or relaxation) occurs when the 
stress is sustained for a long time. The value 
of the creep is about 3–8% of the correspond-
ing elastic strain when the designed stress acts 
for 1000 h, and the creep tends to be stable 
afterward.

Grade II reinforcement is used for the creep 
test at elevated temperatures. The specimen is 
heated to the predetermined temperature (200–
600 °C) in the testing furnace and expands fully 
when the constant temperature is maintained. It 
is then loaded to σ/fy = 0.2–0.8. The creep of the 
specimen is then measured under the conditions 
of constant temperature (±0.5 °C) and stress 
(±0.5 MPa) and it develops within 2 h as shown 
in Fig. 4-15.
When the testing temperature T = 200 °C, the 
creep of the reinforcement developed within 2 h 
is very small and is far less than the yield strain at 
normal temperature (ɛcr = ɛy), and the stress level 
reaches σ/fy = 0.8. When the testing temperature 
T = 600 °C, the creep of the reinforcement under 
low stress level (σ/fy = 0.2) increases proportion-
ally with time and reaches 16 × 10−3 after 2 h 
and the increasing rate does not reduce. When  
the stress level is higher (σ/fy ≥ 0.4) and exceeds the 
yield strength at elevated temperatures (f

T
y ), the 

strain of the specimen increases quickly with  
time (t) and the specimen then fails.

When the reinforcements are tested at the 
same temperature T = 400 °C but under different 
stress levels, the creeps developed within 2 h are 
recorded completely. The creep increases quickly 
when the stress is applied, and the value of the 
creep yielded within the first 10 min is about 
one-half of that yielded within 2 h; the increas-
ing rate is reduced gradually. For specimens with 
stress level σ/fy ≤ 0.6, the creeps tend to steady 
when t = 80 min. For specimens with stress level 
σ/fy = 0.8, the creep still increases obviously 
without convergence after 2 h.

These experimental results demonstrate that 
if the stress of the reinforcement is less than the 
yield strength at elevated temperatures (σ < fTy ), 
the creep value will converge within 2 h and 
is approximately proportional to the stress 
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value, but the increase accelerates with the 
temperature.

CONCLUSIONS

Steel (reinforcement) is a product manufactured 
by modern industry and has uniform proper-
ties, stable behavior, and guaranteed quality. 
The mechanical behavior mainly depends on the 
composition of the alloys and production tech-
nology, including thermal treatment. The metal 
crystal structure in the interior of steel transforms 
at elevated temperatures and this causes the cor-
responding variations in its mechanical behavior.

The experimental data provided from testing 
reinforcement at elevated temperatures demon-
strate that the strength and deformation behav-
ior deteriorate gradually as the temperature 
increases. In the order of decreasing amplitude 
from smaller to greater, the behavior indi-
ces are ultimate tensile strength (fTu / fu), yield 
strength (fTy / fy), and elastic modulus (ETs /Es). 
The  ultimate elongation of reinforcement also 
decreases continuously when the temperature  
T = 20–600 °C. The various strength and defor-
mation indices (fTu , f

T
y , E

T
s ) for all strength 

grades of reinforcement reach much lowers 
value at temperature T = 800 °C, which is only 
about 10% of that at normal temperature.
At the same temperature, the decreasing 
amplitudes of grade I–IV reinforcement (mild 
steel) approach one another, but that of grade V 
(hard steel) is larger.

The strength and deformation behavior of 
reinforcement vary under different tempera-
ture–stress paths, and this is revealed experi-
mentally. However, the experimental data and 
theoretical analysis available are still not suf-
ficient to draw a quantitative conclusion, and 
more comprehensive experimental investiga-
tions are needed.
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C H A P T E R

5
Temperature–Time Curve of Fire and the 
Equation of Heat Conduction
5.1  TEMPERATURE–TIME CURVE 
OF FIRE

5.1.1  Characteristics of the 
 Temperature Change of Fire

Fire is a burning phenomenon caused after a com-
bustible substance is ignited and reacts intensely 
with oxygen in the air. During the burning pro-
cess of the combustible material, enormous heat 
is produced and spread out in various ways. The 
temperature of the surrounding air and materi-
als rises quickly, causes new burning, and further 
spread of heat. If burning gets out of control, as 
the flame and smoke at a high temperature flow 
and heat spreads, more materials nearby burn 
and a fire accident quickly occurs.

When a fire accident occurs in a building or 
a local space within a building, the fire gener-
ally involves three stages: the start of the fire, the 
spread of fire, and the decline and stop of the 
fire. It is also possible, under some conditions, 
that the fire declines and burns again repeat-
edly. Finally, when all the combustibles burn 
out, the surrounding oxygen is exhausted, or the  
fire-fighters fight the fire successfully, the fire 
declines and goes out.

Reinforcement concrete is not a combustible 
material and will not burn and produce heat 
when it is exposed to a fire. A fire on a con-
crete structure only elevates the temperature and 
forms a nonuniform temperature distribution in 
the interior of the concrete, because the concrete 
is under the action of the surrounding air at a 
high temperature and absorbs heat gradually. 
76
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Therefore, when analyzing the temperature fields 
of a structure and its members, the first thing to 
find out is how the temperature varies on the 
periphery of the structure.

The typical temperature–time curve of a fire 
accident is shown in Fig. 5-1. In practice, the 
temperatures at various points in the space sus-
taining the fire are quite different; the maximum 
temperature appears near the flame surrounding 
the combustibles and the temperature outside the 
flame reduces gradually. Due to the heat flow 
floating up, an air layer at high temperature is 
formed near the bottom of the horizontal mem-
bers, such as the beams and slabs above a room, 
and along the side surfaces of the vertical mem-
bers, such as the walls and columns. The value of 
the temperature and its uniformity of distribution 
in the air layer surrounding the structural mem-
bers depend on the position and distribution of 
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the combustibles, the burning time, and the direc-
tion of the air flow in the room. The temperature 
of a fire accident is referred to the temperature 
of the air layer, and it is normally assumed that 
the temperature distributes uniformly within the 
layer and is only the function of the burning time.

When a fire occurs in a room, only a few com-
bustibles are burning and limited heat is sent out 
at the beginning. Although the local temperature 
nearby elevates and heat spreads quickly, the tem-
perature of the surroundings is still lower and the 
temperature in the room elevates slowly. This is the 
first stage of a fire accident. As the temperature in 
the room is low and the temperature in the interior 
of the structural concrete is even lower (<300 °C),  
the mechanical behavior of the material loses less 
and has little influence on the behavior of the 
structure, so no obvious damage is caused.

As the burning time continues and the burn-
ing combustibles increase, the released heat 
increases quickly and accumulates in the room, 
causing the temperature of the fire to increase 
gradually; the fire is now in the second stage. 
When the combustibles burn fully, the tempera-
ture of the fire approaches and reaches the maxi-
mum temperature (Tmax). The temperature of 
the fire then decreases slowly, due to reduction 
of the combustibles or oxygen provided. When 
the fire temperature elevates, the temperatures 
of the structural members and the architectural 
finishing layers surrounding them, such as ceil-
ings and plastering, are lower than that of the air 
flow layer near the boundary. But the tempera-
ture of the interiors of these materials increases 
because heat is absorbed. When the fire tempera-
ture reduces to about 80% of the maximum tem-
perature, the temperature of the air flow layer is 
lower than that on the surfaces of the structure 
and architectural layers, so heat conducts in the 
opposite way, i.e., heat spreads from the building 
materials to the air layer. This indicates the end 
of the second stage of a fire. The temperature of 
the structure increases quickly during the second 
stage; the temperature on its surface reaches the 
maximum value, and the temperature in its inte-
rior elevates continuously. Because of the heat 
inertia of concrete, the temperature on a section 
of the structural member decreases from the sur-
face to the interior and distributes rather nonuni-
formly, and a considerable temperature gradient 
is formed on the outer layer of the section. Cor-
respondingly, the bearing capacity and deforma-
tion behavior of the structure and its members 
deteriorate rapidly and different levels of damage 
result. This is the most dangerous period during 
a fire accident.

At the beginning of the third stage of a fire, 
the temperature on the surface layer of the struc-
ture will not increase but its absolute value is still 
high, although the temperature of the air flow 
layer has decreased gradually. As the structure 
has experienced a period under sustained high 
temperature, its behavior may deteriorate further 
and the damage tends to be more serious. During 
the later period of the third stage, the fire tem-
perature decreases rapidly, the heat absorbed in 
the interior of the structure is released gradually 
to the outer layer and the surrounding air, and a 
temperature field with the opposite gradient and 
a corresponding stress field are formed on the sec-
tion. When the fire goes out and the normal tem-
perature is restored in the room, the damage that 
occurred in the structural concrete at elevated 
temperature will not recover, and the strength 
of the concrete even decreases slightly (Fig. 1-8).  
The deformation of the reinforcement that 
occurred at elevated temperature will also not 
recover, although the yield strength will recover. 
Therefore, after the fire goes out, serious dam-
age in the structure, such as considerable residual 
deformation, cracks, and local spall, is visible, 
and the residual bearing capacity is far lower 
than the initial value at normal temperature.

5.1.2  Factors That Influence Fire 
Temperature

The typical temperature–time curve of a fire is 
shown in Fig. 5-1, but the parameters, such as 
the duration of each stage and the total process, 
the maximum temperature reached (Tmax), the 
duration at high temperature (e.g., T > 600 °C), 
and the shape of the curve, may differ consider-
ably for any particular fire.
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According to the statistics from China,[0-12] 
80% and 95% of the building fires on the ground 
are extinguished within 1 h and 2 h, respectively, 
i.e., the total duration of most fires is no more 
than 2 h. However, some serious fires occurring 
in underground spaces (e.g., in a building, tun-
nel, or cave) are sustained more than 10 h, or 
even several days (see Section 14.2.1), usually 
because of difficulties in extinguishing the fire.

The temperature–time curves of building fires 
vary considerably; the main factors influencing 
the duration and the maximum temperature of a 
fire are discussed below.

 1.  Properties, quantity, and distribution of the 
combustibles in a room

The types and properties of various com-
bustibles are different, so the burning behav-
ior, i.e., the temperature of the ignition point, 
burning velocity, and the quantity of heat from 
a specific combustible mass, are also different.

The quantity of combustibles, also called 
the fire load, determines the total quantity of 
heat produced during burning, the maximum 
temperature, and the duration of the fire.

The distribution conditions of the combus-
tibles, which include concentrated, continuous, 
or separate distribution, in a compact fashion 
or scattered, and the height and area of the 
stack, influence the burning velocity, concentra-
tion level of the flame, and the spread of the fire.

 2.  Area and shape of the room, and the area and 
position of windows and doors

A room with a large area may contain 
more combustibles and the temperatures 
occurring in the center and near the window 
or door in the room make a great difference. 
The shape of the room influences the direction 
and velocity of the heat smoke flow.

The area and position of the windows and 
doors in the room determine the direction and 
quantity of the air flow. The air flowing into 
the room supports continuous burning and 
production of heat from the combustibles; the 
heat smoke flowing away from the room pos-
sibly causes the fire to spread into other rooms.
 3.  Thermal behavior of building material
If the building materials in and around 

the room are combustible, they support and 
develop the fire. If the mass heat capacity of 
the combustibles is small, they absorb less 
heat but the temperature increases quickly. 
If the value of the thermal conductivity (see  
Section 5.2) is large, the building materials 
transfer heat quickly and the temperature 
elevates quickly, which may cause the fire to 
spread, because the temperature on the outer 
surface of the room elevates too much.

The actual variation in fire temperature 
can be illustrated by a series of experimental 
results (Fig. 5-2) on wood burning in a full-
sized room. The quantities of the wood piled 
up in the room were 15, 30, and 60 kg/m2 
and the area of the window and door holes 
in the walls as a percentage of the gross area 
of the walls were 12.5%, 25%, and 50%, 
respectively. The relationship between the 
average temperature in the room and time 
was measured under various conditions 
(Fig. 5-2).

The temperature quickly reaches the maxi-
mum value (within 10–40 min) after the wood 
is lit under all the test conditions; there is a 
longer stage of decline and the fire goes out.

When the area of the holes on the wall is 
the same, the more wood (or fire load) in the 
room, the higher the maximum temperature 
reached and the longer the duration of the fire.

When the quantity of the wood in the room 
is the same, the room with a smaller area of 
holes on the wall takes longer to reach the 
maximum temperature, so the total duration 
of the fire is longer. If the area of holes in the 
wall is increased, the burning process is accel-
erated, the maximum temperature of the fire 
is reached earlier and the duration is short-
ened. On the other hand, when the area of the 
holes on the wall is larger (50%), the cool air 
flowing into the room and the hot air flow-
ing outside increase, causing a great quantity 
of heat loss, the maximum temperature in the 
room decreases, and the duration of the fire is 
shortened.
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FIGURE 5-2  Experimental temperature–time curves of wood burning.[0-13]
5.1.3  Standard Temperature–Time 
Curve of Fire

For many years, scientists have conducted a 
great deal of research on the variation regularity 
of the temperature in a building fire, which has 
included surveying and gathering statistics from 
practical fire fields, burning tests in analogous 
rooms, and various analyses of burning theory. 
Many experimental and theoretical research 
results have been published up to now. In a 
simple building space, a complete temperature–
time curve of the fire can be analyzed theoreti-
cally and accurately[0-7,0-12,0-14] according to the 
theorem of energy (heat) conservation and the 
principle of heat conduction, if the values of  
the parameters of the various influencing factors 
are determined. The dynamic process of a given 
fire can even be described by a visualization on 
the computer.

However, an actual fire in a building is far 
more complicated than that in a simple room. 
Many rooms with different area, height, and 
shape are connected in a building and there 
are many holes for windows and doors, so the 
burning and spread of the fire are influenced by 
adjacent rooms. These are difficult to describe 
accurately using a simple mathematical model. 
In addition, various combustibles are mixed in 
every room of the building and they are of differ-
ent types, quantity, and distribution, with no uni-
fied regularity. As the functions of the rooms may 
change and the users of the rooms have different 
interests, these are very difficult to predict. Fur-
thermore, the cause of the fire and the material 
and location where the fire started are obviously 
undefined. Therefore, the fire temperature–time 
curve of a practical building presents consider-
able randomness.

In view of the complexity of a building fire, 
the relevant research and academic organiza-
tions in various countries have worked out 
standard temperature–time curves of fire (Fig. 
5-3(a)) to provide unified fire resistance require-
ments for building structures and for use as 
the basis for fire resistance experiments on the 
building members. These curves illustrate the 
monotonic heating process. The temperature 
elevates very quickly within the first 30 min 
after the fire starts and the increasing veloc-
ity then reduces gradually but without reach-
ing the cooling stage. These standard curves of 
elevating temperature are similar, with a few 
exceptions.

The fire resistance curve suggested by the 
International Standardization Organization (ISO 
834) for experiments on building members is the 
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FIGURE 5-3  Standard  temperature–time  curves  of  fire:  (a)  fire  resistance  test  standards  in  various  countries;  (b)  ISO 
standard curve.
same as that suggested in the United Kingdom; 
the formula for the curve is

 T = T0 + 345 log(8t + 1) (5.1)

where T0 is the initial temperature in the testing fur-
nace (°C), and T is the average temperature of the 
air in the furnace at t minutes after the fire starts.

The ISO standard temperature–time curve is 
also a unified process of a monotonic increase 
regardless of how long the fire lasts, and the 
temperature increases continuously without the 
decreasing and extinguishing process. It cannot 
replace the variable temperature of a real fire 
occurring in a building (similar to Fig. 5-1), and 
it is considerably different from the experimental 
results for wood burning in a room (Fig. 5-2). 
However, the curve can be used as a standard to 
conduct fire resistance tests, to analyze behavior 
at elevated temperature, to check the fire endur-
ance limit of structural members, to ensure an 
identical fire resistance behavior for structures, 
or to offer comparable fire resistance safety in 
different structures.

A recent contentious consideration is that the 
actual temperature–time curve of a possible fire 
occurring in a building may be used for the fire 
resistance design or fire endurance check of its 
structure, if the curve is far lower than the standard 
(e.g., ISO) curve and is confirmed in various ways.

5.2  THERMAL BEHAVIOR OF 
MATERIALS

The mechanical behavior of concrete and steel 
(reinforcement) materials at elevated tempera-
ture has been introduced fully in the previous 
four chapters. The temperature distribution and 
its variation in the interior of the structure and 
its members at elevated temperatures (e.g., under 
fire) depend only on the thermal behavior of the 
structural materials, in addition to the temperature 
conditions surrounding the structure. The temper-
ature distribution is unrelated to the stress (strain) 
state and the mechanical behavior of the materials.

When the temperature field of a structure is 
analyzed theoretically and the basic equation 
of heat conduction (Eqn (5.4)) is established, 
the relevant thermal behavior of the material is 
described using three terms. Correspondingly, 
there are three basic parameters: coefficient of 
heat conductivity, specific heat capacity, and 
mass density. Other thermal parameters can be 
derived from these parameters.

Another basic thermal parameter of the mate-
rial is the linear expansion coefficient (see Sections 
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2.1.1 and 4.4.1), which influences only the thermal 
strain and stress of the material and structure, but 
is unrelated to the analysis of the temperature field.

5.2.1  Thermal Parameters of 
Concrete

Concrete is a man-made compound material and 
is composed of cement, water, and fine (sand) 
and coarse (gravel) aggregates, and is sometimes 
mixed with some additional materials. They are 
mixed following predetermined ratios and then 
undergo casting, compacting, and curing. Con-
crete is formed in the coagulation and harden-
ing process due to the adhesive action of cement. 
The various raw materials in concrete have very 
different chemical mineral compositions and 
textures, and their original thermal parameters 
are different. The values of the thermal param-
eters of the concrete formed are different and the 
experimental data vary due to the differences in 
the mixing ratio, water content, age, and pro-
duction technique. The experimental results and 
data listed below give general values for the ther-
mal parameters of concrete.

 1.  Thermal conductivity or coefficient of heat 
conduction (λc)

The coefficient of heat conduction of a 
material is defined as the quantity of heat (J) 
passing through per unit area (m2) with uni-
form temperature within a unit of time (h) 
and per unit temperature gradient (K/m). Its 
units are W/(m K) or W/(m °C).

The coarse aggregate has the highest frac-
tion of the total volume of concrete and has 
the predominant influence on its thermal 
behavior. The coarse aggregate of concrete 
of normal weight is alluvial gravel or crushed 
stone, which is broken from igneous or aque-
ous rock. The coefficient of heat conduction 
of the aggregate depends mainly on the min-
eral composition, crystal character, and struc-
ture of the granules because of small porosity 
(normally <5%) in the interior.

The coefficients of heat conduction of 
various rocks and their variations with 
temperature are given in Fig. 5-4.[5-1] The val-
ues of the coefficients of heat conduction of 
these rocks at normal temperature are consid-
erably different (may exceed 300%), but they 
tend to be similar at elevated temperature 
(T > 200 °C). Also, they vary differently as 
the temperature increases. The coefficient of 
heat conduction of siliceous sandstone, dolo-
mite, and limestone decreases quickly, that of 
granite and gneiss decreases slowly, but that 
of diabase and calcareous feldspar increases 
slowly when the temperature increases.

The coefficient of heat conduction of hard-
ened cement mortar fluctuates slightly as the 
temperature increases (Fig. 5-5). The water/
cement ratio (W/C) of the mortar during mix-
ing has some influence on the coefficient of 
heat conduction. A specimen with a large 
water/cement ratio contains more water 
and more microporosity is formed after the 
water is lost during hardening. This causes a 
decrease in the coefficient of heat conduction.

The coefficient of heat conduction of con-
crete composed of an aggregate of different 
kinds of rock varies with temperature and is 
shown in Fig. 5-6. The coefficient of ordinary 
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concrete with siliceous aggregate is slightly 
higher than that of calcareous aggregate, but 
both reduce less as the temperature increases 
and are similar at very high temperature (e.g., 
>800 °C).

Coarse aggregate can also be made of vari-
ous porous materials, such as pumice, slag, 
expanded clay, or shale, and it can replace 
ordinary rock aggregate and be mixed to pro-
duce light-weight concrete. The granules of 
light-weight aggregate contain many interior 
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pores, and the efficiency of heat conduction 
reduces considerably. Therefore, the coef-
ficient of heat conduction of light-weight 
concrete is far lower than that of ordinary 
concrete, and its variable amplitude decreases 
as the temperature increases.

The coefficient of heat conduction of con-
crete shows larger variability and scatter 
because of the influence of various factors. 
In order to simplify the calculation, concrete 
is divided into three categories according to 
the different types of aggregate, and the for-
mulas for the coefficients of heat conduction 
(W/(m K)) are given individually in the design 
code.[2-6]

Siliceous aggregate (20 °C ≤ T ≤ 1200 °C)
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(

T
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)
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The corresponding relationship between the 
coefficient of heat conduction and tempera-
ture is shown in Fig. 5-7. Different calcula-
tions for the coefficient of heat conduction are 
also suggested in other references,[5-3] and can 
be compared and consulted.

 2.  Mass heat capacity or specific heat capacity (Cc)
The specific heat capacity is defined as the 

quantity of heat (J) absorbed per unit mass 
(kg) of the material when its temperature 
increases 1 K (or 1 °C), and its units are J/(kg K)  
or J/(kg °C).

The values of the specific heat capacity of 
concretes with different aggregates are mea-
sured from the experiments and are shown 
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FIGURE 5-7  Calculated value of  the coefficient of heat 
conduction of concrete.[2-6]
in Fig. 5-8. They increase gradually with 
temperature and tend to be stable when T > 
600 °C. However, a sharp peak appears near 
T = 100 °C, because the water contained in 
the interior of concrete evaporates and a lot 
of steaming heat is absorbed.

The type of aggregate has an influence, 
although not much, on the specific heat 
capacity of concrete. The specific heat capac-
ity of concrete with siliceous (quartz) aggre-
gate is slightly larger than that of calcareous 
(limestone) aggregate, and that for various 
light-weight aggregates is slightly smaller than 
that of ordinary concrete. Other factors, such 
as the mixing ratio, water content, and age, 
have less influence on specific heat capacity. A 
standard formula (in J/(kg K)) is suggested for 
various concretes by the Commission of the 
European Communities[2-6]:

 
20 °C ≤ T < 1200 °C: Cc� = 900� � �80

(
T

120

)

��4
(

T
120

)2
 (5.3)

Other references (e.g., Lie[5-3]) have different 
suggestions.

 3.  Mass density (ρc)
The mass density, also called the volume 

density, is defined as the mass of the material 
per unit volume, and its units are kg/m3.

The mass density of concrete changes con-
tinuously during heating (Fig. 5-9). It reduces 
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obviously during the initial period, because the 
water content evaporates and overflows. The 
solid components, i.e., aggregate and cement, 
expand after heating, the volume increases, 
and the mass density decreases. This phenom-
enon exists throughout the heating process, 
and its influence increases gradually at high 
temperature.

In addition, some types of rock aggre-
gate with different mineral components 
have special properties at elevated tem-
perature, which influence the mass density. 
For example, siliceous aggregate dissolves 
and forms crystals at T = 600–800 °C, and 
is accompanied by considerable volume 
expansion and  sudden decrease in the mass 
density. Basalt and quartz are melted and 
sintered when T = 1200–1400 °C, and then 
the mass density of the concrete increases  
suddenly.

The mass density of concrete composed of 
various light-weight aggregates varies with 
temperature similar to that of ordinary con-
crete, but the amplitude of the variation is 
smaller (Fig. 5-9).

The mass density of concrete does not vary 
sharply with temperature, and the influence on 
the temperature in the interior of the structure 
is smaller than that of the other main thermal 
parameters. To simplify the calculation dur-
ing analysis of the temperature field of the 
structure, the mass density of concrete is nor-
mally taken as a constant (2200–2400 kg/m3) 
irrespective of temperature. Or the mass den-
sity is combined with the specific heat capac-
ity and the value of (Ccρc)[5-3] is given and 
introduced into the heat conduction equation 
(Eqn (5.4)).

The basic thermal behavior of concrete 
depends not only on the thermal behavior 
of the coarse and fine aggregates and the 
hardened cement mortar but also the compo-
sition, water content, age, casting and com-
pacting technique, and compactness of the 
concrete. Thus, the thermal parameters pres-
ent large variation and scatter. If accurate 
thermal parameters are required for analysis 
of a large engineering project, the specimens 
should be manufactured and tested specially 
and then the thermal parameters can be mea-
sured. As far as general structural engineer-
ing is concerned, no special requirement of 
accuracy is needed for the analyses of fire 
resistance and the temperature field. The 
simplified values of the thermal parameters 
suggested in the relevant code can be used 
for practical engineering for the randomness 
and scatter of the temperature variation in a 
fire accident.

5.2.2  Thermal Parameters of 
Reinforcement

A limited quantity of reinforcement (or wire) 
spreads in the interior of reinforced and pre-
stressed concrete structures, and it generally 
makes up only a small percentage (<3%) of the 
total volume. The existing reinforcement has lit-
tle influence on the temperature distribution in 
the interior of a structure under fire (high tem-
perature) conditions. When the temperature field 
of a structure is analyzed, taking the required 
accuracy of the calculations into account, the 
structure is assumed to be composed of homo-
geneous concrete material and the reinforcement 
can be ignored. The main thermal behavior and 
the indices of the steel used in building are intro-
duced briefly below.
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The main constituents of the steel used in 
building structures are iron and carbon, and 
the steel is divided into low, medium, and high 
carbon-steels according to the carbon con-
tent. To improve the mechanical and working 
behavior of steel, a few alloy elements, such as 
manganese, silicon, niobium, vanadium, and 
titanium, are mixed in during the smelting pro-
cess, to make low-alloy steel. The different ele-
ment components and their content in the steel 
and the working and heat-treatment processes 
of the steel influence the indices of its thermal 
behavior.

The coefficient of heat conduction of vari-
ous steels varies with temperature (Fig. 5-10). 
Pure iron has the highest coefficient of conduc-
tion and it decreases gradually as the content 
of carbon and alloy in the steel increases. The 
coefficients of heat conduction of carbon steel 
and low-alloy steel decrease monotonically 
as the temperature increases, but the variable 
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rates are reduced gradually. However, some 
steels containing more alloy and the coeffi-
cient of heat conduction increases slowly with 
temperature.

Because iron, carbon, and other alloy elements 
have different values of specific heat capacity, the 
steels composed of different types and content of 
alloy elements have corresponding values of heat 
capacity (Cs). The value increases slightly and 
gradually with temperature, but the variation is 
small.

The mass density (ρs) of steel also varies 
slightly because of the different types and con-
tent of alloy elements in steel. The mass density 
of pure iron is high and reaches 7871 kg/m3; for 
carbon and low-alloy steels, the mass density is 
7850 kg/m3. The volume of the steel expands 
(Fig. 4-13) and the mass density decreases 
slightly as the temperature increases, but it is 
generally taken as a constant during analysis of 
the temperature field.

General variable ranges for the thermal 
parameters of steel are given by Federation Inter-
national de la Précontrainte,[0-7] and are listed in 
Table 5-1 and compared with concrete.

Comparing the data listed in Table 5-1, it is 
found that steel is a good heat conductor and 
concrete is a heat inertia material. The ratio 
of the coefficients of heat conduction is enor-
mous. The mass heat capacity of steel is obvi-
ously smaller than that of concrete, because it is 
defined by the mass (kg) of the material. How-
ever, if per unit volume of material is considered, 
the Csρs (kJ/(m3 K)) of steel is about double the 
Ccρc of concrete.

This thermal behavior and the values of the 
parameters for concrete and steel have an obvi-
ous impact on the value and distribution of tem-
perature in the structure at elevated temperatures.
  TABLE 5-1       General Range of Thermal Parameters of Steel and Concrete

Material
Coefficient of heat  
 conduction λ (W/(m K))

Mass heat capacity C (kJ/
(kg K))

Mass density ρ 
(kg/m3)

Steel 55–28 0.42–0.84 7850
Concrete 1.6–0.6 0.84–1.26 2300
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5.3  EQUATION OF HEAT 
CONDUCTION

5.3.1  Basic Equation of Heat 
 Conduction

When a structure sustains a fire, the temperature 
of the heat flow surrounding it increases rapidly 
and varies continuously. Then, the structure is 
heated, the temperature on its surface elevates 
quickly, and heat penetrates gradually into the 
interior of the structure through conduction 
action. As concrete is a material of heat inertia, 
nonuniform temperature distribution is formed 
in the interior of the structure and varies continu-
ously while the fire lasts. Thus, this is a problem 
of a dynamic or transient temperature field.

When a structure is heated, the mechanical 
behavior of the concrete and steel (reinforce-
ment) deteriorates (see Part 1), the deformation 
of the structural member increases, and the bear-
ing capacity decreases (see Part 3). In the mean-
time, the nonuniform temperature distribution 
of the structure causes thermal stress and stress 
redistribution on its section and redistribution 
of the internal forces in the statically indeter-
minate structure (see Chapter 10). Therefore, 
the mechanical responses of the structure at 
elevated temperature, including internal forces, 
deformation, and bearing capacity, depend on 
the temperature fields and their variations in the 
structure and structural members.

On the other hand, the mechanical responses 
of a structure at elevated temperature do not 
change the existing temperature distribution 
in general cases. This only occurs when very 
wide cracks appear in the structural concrete 
and heat flow penetrates its interior. The tem-
perature may vary locally within a small area 
nearby.

Therefore, when the mechanical analysis of 
a structure at elevated temperature and the fire 
resistance design or checks on a structure are 
performed, the temperature field of the structure 
must first be analyzed, and the internal forces 
and bearing capacity (or fire endurance) must be 
checked.
The analysis of the temperature field of a struc-
ture is a based on heat conduction of solid matter. 
The basic differential equation of heat conduction 
can be developed and the solution found.

The concrete in a structure is assumed to be an 
isotropic material, and the thermal parameters, 
i.e., λ, c, and ρ, are known and are functions of 
temperature. A microcuboid dx dy dz is taken 
from the structure near an arbitrary point (x, y, z) 
in Cartesian coordinates (Fig. 5-11); its internal 
temperature is assumed to be uniformly distrib-
uted and is T(x, y, z, t) at time t.

The microcuboid experiences heat exchange 
under the thermal action on its surfaces. If the 
X direction is considered first, the quantities of 
heat flowing into and out of the microcuboid, 
through unit area within unit time, are qx and 
qx+dx, respectively. They can be obtained as fol-
lows, according to the definition of the coefficient 
of heat conduction:

 qx = − λ ∂ T
∂ x  

and

 
qx + dx = qx +

∂ qx

∂ x
dx = − λ ∂ T

∂ x
− ∂

∂ x

(
λ ∂ T

∂ x

)
dx

 

The area of the microcuboid perpendicular 
to the X direction is dy dz, so the increase in 
the quantity of heat in the cuboid per unit time 
should be
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FIGURE 5-11  Analysis of the heat flow of a microcuboid.
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Similarly, the quantities of heat obtained in 
the Y and the Z directions are

 
∂
∂ y

(
λ ∂ T

∂ y

)
dx dy dz

 

and

 
∂
∂ z

(
λ ∂ T

∂ z

)
dx dy dz

 

respectively. Therefore, the increase in the total 
quantity of heat in the microcuboid within unit 
time is

 

[
∂
∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
+ ∂

∂ z

(
λ ∂ T

∂ z

)]
dx dy dz

 
(i)

In addition, if the material can generate heat 
itself, e.g., hydration heat of cement or burn-
ing of combustibles mixed in concrete, and the 
quantity of heat generated per unit volume of the 
cuboid within unit time is qd, then the quantity 
of heat generated in the cuboid within unit time 
should be

 qd dx dy dz (ii)

As the heat is absorbed into the microcuboid, 
the temperature increases. If the temperature 
increment per unit time is ∂T / ∂ t, the total quan-
tity of heat absorbed in the cuboid within unit 
time should be

 Cρ dx dy dz
∂ T
∂ t

 (iii)

according to the definition of specific heat 
capacity.

According to the principles of energy conser-
vation, the sum of the quantities of heat that enter 
or leave the microcuboid through its surfaces and 
generated in its interior should be equal to the 
quantity of heat absorbed because of increased 
temperature or released because of reduction in 
temperature, respectively, in the microcuboid. 
Using equations (i), (ii), and (iii):

 

[
∂

∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
+ ∂

∂ z

(
λ ∂ T

∂ z

)]
dx dy dz

+ qd dx dy dz = Cρ ∂ T
∂ t dx dy dz  
or

 

∂ T
∂ t = 1

Cρ
[

∂
∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
+ ∂

∂ z

(
λ ∂ T

∂ z

)]

+ qd
Cρ  

(5.4)

This is the basic differential equation of the 
transient heat conduction.

In the general condition, concrete is not con-
sidered to generate heat itself and qd = 0 when 
a structure at elevated temperature (or fire resis-
tance) is analyzed.

If the temperature of the environment sur-
rounding the structure is not variable, e.g., the 
second category of thermal problem in structural 
engineering (see Section 0.1), the internal tem-
perature of the structure is also not variable as 
time continues. This means ∂T / ∂ t= 0, and when 
qd = 0, Eqn (5.4) can be simplified:

 
∂

∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
+ ∂

∂ z

(
λ ∂ T

∂ z

)
= 0

 
(5.5)

This is called the basic equation of stable heat 
conduction.

The equations above can be used to analyze 
any three-dimensional structure. The linear 
members, such as a beam and a column, are 
most commonly used in practice; it is generally 
assumed that the temperatures along the axis line 
are identical, and the temperature field is simpli-
fied into a two-dimensional field on its section. 
For planar members, such as a wall and a slab, 
the temperature field is simplified further into a 
one-dimensional field along the direction of its 
thickness. The corresponding basic equations of 
heat conduction are listed in Table 5-2.

If the coefficient of heat conduction (λ) is taken 
as a constant and unrelated to temperature, and 
when

 
d = λ

Cρ (5.6)

is introduced into Eqns (5.4) and (5.5), the 
basic equations of heat conduction can be simpli-
fied and modified respectively as

 

∂ T
∂ t

= d

(
∂ 2T

∂ x2 + ∂ 2T

∂ y2 + ∂ 2T

∂ z2

)
+

qd

Cρ 
(5.4a)
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  TABLE 5-2       Two- and One-Dimensional Basic Equation of Heat Conduction

Member Transient Stable

Linear member  
(two-dimensional)

∂ T
∂ t

= 1
Cρ

[
∂
∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)]
∂

∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
= 0

Planar member  
(one-dimensional)

∂ T
∂ t

= 1
Cρ

∂
∂ z

(
λ ∂ T

∂ z

)
∂

∂ z

(
λ ∂ T

∂ z

)
= 0
and

 

∂ 2T

∂ x2 + ∂ 2T

∂ y2 + ∂ 2T

∂ z2 = 0
 (5.5a)

d is called the heat diffusivity of the material and 
is a physical quantity derived from the basic ther-
mal parameters, with units of m2/h or m2/s.

5.3.2  Conditions and Methods 
for Finding a Solution

In order to find the solution of the equation of 
heat conduction (Eqn (5.4) or (5.5)), the initial 
and boundary thermal conditions of the structure 
have to be determined in advance, and the ther-
mal parameters of the material must be known.

A building structure is normally at the envi-
ronmental temperature before a fire accident 
occurs; the temperature of the whole structure is 
usually assumed to be uniformly distributed and 
is equal to the environmental temperature (T0). 
Therefore, the initial thermal condition of the 
structure can be written as

 T(x,y,z,t = 0) = T0 (5.7)

The boundary thermal condition of the struc-
ture is generally divided into four categories,[0-9] 
depending on the different conditions of the 
environment surrounding the structure and heat 
exchanging with the surrounding medium:

 1.  It is known that the temperature on the 
boundary (l1) of the structure is a function of 
time (t), e.g.,

 T(x,y,z,t) | l1
= Tf (t) (5.8)

 2.  It is known that the quantity of the heat flow

 

(
− λ ∂ T

∂ n
|

l2
, �n is normal direction

)
 

   on the boundary (l2) of the structure is a func-
tion of time (t).

 3.  It is known that the temperature of the fluid 
medium in contact with the structure is Ta and 
the quantity of the heat flow passing through 
the boundary (l3) is

 βT

[
T(x , y , z , t) − Ta

]
| l3 (5.9)

   where βT is the coefficient of heat transfer 
between the boundary of the structure and the 
surrounding fluid medium, and it is defined as 
the quantity of heat passing through unit area 
within unit time and with unit temperature 
difference. The units of βT are W/(m2 K).

 4.  The condition of the heat exchange on the 
boundary (l4) of the structure is known when 
it is in contact with other solid material.

For the basic methods for solving the prob-
lems of various thermal boundaries, consult rel-
evant monographs (e.g., Zhu et al.[0-9]).

When a structure sustains a fire accident, the 
surface exposed to the fire is normally taken as 
the third category of the boundary condition.  
As the fire continues and the temperature 
increases, the temperature on the surface 
exposed to the fire also increases and gradually 
approaches that of the heat flow of the fire; it 
can then be considered as the first category of the 
boundary condition. The surface not exposed to 
fire and located far away from the fire (e.g., the 
back surface of a thick slab) may be treated as  
the first category of the boundary condition.

When the transient temperature field of a 
structure under a fire accident or at elevated 
temperature is analyzed, the heating processes 
are variable, the nonlinear thermal parameters 
of the material vary with the temperature, and 
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the boundary conditions are complex. There-
fore, an accurate solution to the partial differ-
ential equation of heat conduction, which is 
nonlinear and parabolic in shape, is very diffi-
cult to determine.

The equation of heat conduction is almost 
impossible to solve by the analytical method. The 
approximate analytical solution can be obtained 
only if the temperature field of the structure is 
simplified into a stable problem and constant val-
ues are used for the thermal parameters of the 
material.

In order to deal with the nonlinear equation 
of transient heat conduction, the most effective 
and successful choice is to use the numerical 
method, i.e., finite difference or finite element 
analysis, and a high-speed computer to calculate 
the solution.

The finite difference method can be used 
to find the solution for the temperature field 
for some simple structures. This method has 
advantages; the calculation format is simple 
and flexible, and the solution is reached quickly. 
However, the method fits only the difference net-
work of regular shapes (square, rectangular, and 
equilateral triangle); it is quite inconvenient for 
complicated geometrical shapes. Another disad-
vantage is that the method considers only the 
action of the nodes, without taking into account 
the characteristics of the elements that are linked 
to the node.

The mixed finite element-difference method 
is now popular. It means that the space region 
of the structure is discreted into finite elements 
and the time (or temperature) region is analyzed 
recurrently step by step by using the difference 
method. The finite element method used in the 
space region can easily separate the structure of 
various complicated shapes, and the integration 
performed over the element can introduce the 
contribution of the element to the parameters 
of the node. This may compensate for the disad-
vantage of the finite difference method. On the 
other hand, the transient temperature field of a 
structure depends only on the previous tempera-
ture variation and current boundary conditions, 
and is not related to the condition occurring 
afterward. So, this is a step by step problem in 
the time coordinate and the solutions at different 
times need not be found simultaneously. There-
fore, the calculation can be started from the ini-
tial value in the time region and is performed step 
by step with the time increment until the prede-
termined time.

Because the temperature variation of the con-
crete structure during a fire accident is influenced 
by many factors and deviates considerably, and 
accurate values for the relevant thermal param-
eters are not available so far, it is necessary to use 
some simplifications and assumptions in order to 
achieve more simple, clear, and practical calcu-
lations of the temperature field analysis, when 
the accuracy required for engineering practice 
is satisfied. The actual methods for finding the 
solution of the equation of heat conduction and 
the analysis of the temperature field (two- and 
one-dimensional) of the structure are introduced 
in detail in the next chapter.

CONCLUSIONS

The content of this chapter is the preparation for 
the analysis of the temperature field of a struc-
ture. The temperature–time curve of a fire acci-
dent is a concentrated representation of its action 
on the structure, and is the main basis for the 
analysis of the temperature field. Based on the 
principle of energy conservation, the differential 
equation of heat conduction is established and 
can be used to find the solution. It also represents, 
mathematically, the regularity of the temperature 
field. The thermal parameters of concrete and 
steel (reinforcement) reflect the characteristics 
of the structural materials and are the physical 
parameters necessary for the analysis of the tem-
perature field.

Generally, a fire accident in a building experi-
ences three stages: the start of the fire, the spread 
of the fire, and the decline and end of the fire. 
The corresponding temperature–time curve can 
reflect the main action of the fire on the struc-
ture. The practical temperature–time curve of a 
fire varies considerably with many factors, such 
as the combustibles, the shape of room, the air 
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flow, and the thermal behavior of the building 
materials. In order to unify the fire resistance 
requirements of a structure, the standard (ISO) 
temperature–time curve can be used.

When a building sustains a fire, the structure 
is heated, its temperature increases, and a non-
uniform temperature field is formed in its inte-
rior because concrete is a material of heat inertia. 
Correspondingly, the mechanical behavior of 
concrete and reinforcement deteriorates, the 
stress on the section and the internal forces of 
the structure redistribute, the behavior indices of  
the structure reduce, and damage at different 
levels appears. On the other hand, the internal 
forces, deformation, and various damage to the 
structure do not generally have an influence on 
the temperature distribution. Therefore, the tem-
perature field of the structure can be analyzed 
first, i.e., by establishing the basic equation of 
heat conduction, introducing the values of the 
thermal parameters of concrete, determining the 
initial and boundary thermal conditions, and 
then finding the solution.

As the temperature of a fire accident varies 
with time and the thermal parameters of the 
materials vary with the temperature (time), the 
analysis of the temperature field of a structure 
is a nonlinear problem of transient heat conduc-
tion. The basic equation is a second order partial 
differential equation and it is difficult to deter-
mine an accurate analytical solution. Numerical 
methods, i.e., finite difference and finite element 
analyses, are normally used to find the solution.
The values of the thermal parameters of con-
crete vary and deviate considerably because of 
differences in factors such as the raw materials, 
mixing ratio, casting and compacting techniques, 
and age. The values of the thermal parameters 
suggested in the relevant code can be used for 
analysis of the temperature field in an ordi-
nary building. When dealing with some impor-
tant structural engineering, special experiments 
should be performed, if necessary, to accurately 
measure the values of the thermal parameters of 
the concrete, which are then used for the analysis 
of the temperature field.
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C H A P T E R

6
Theoretical Analysis of the 

Temperature Field
6.1  DIFFERENCE ANALYSIS

The basic equation of heat conduction, i.e., 
Eqn (5.4) or Eqn (5.5), is a second order par-
tial differential equation and can be solved 
approximately by the difference method. As for 
a concrete member of a rectangular section, the 
network of the section can be divided and the 
boundary condition can be represented easily, 
so the difference method is a simple and prac-
tical method for the analysis of a temperature 
field.

6.1.1  Discretization Method 
and Difference Format

In order to solve the two-dimensional tempera-
ture distribution on a section of the structural 
member, the section can be divided into a certain 
number of planar networks. It is assumed that 
the temperature and thermal behavior within 
each network are invariable and can be repre-
sented by the corresponding values at the center 
of the network. Therefore, the temperature dis-
tribution on the section can be represented by the 
temperatures at finite points.

The network can be divided in various 
ways. The simplest way is to divide the sec-
tion into a network of the same size using the 
straight lines parallel to the coordinates. If the 
temperature on the section changes sharply, 
networks of different size can be divided. In 
order to represent the practical distribution of 
temperature, the finer network on the section 
should be divided, and then more temperature 
Experiment and Calculation of Reinf
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points are obtained, and more calculations  
result.

In order to solve the second order equation of 
heat conduction, the first and second differen-
tials of temperature (e.g., ∂T/∂x, ∂T/∂y, ∂2T/∂x2, 
∂2T/∂y2, and ∂T/∂t) should be discreted. Accord-
ing to the requirements of calculation accuracy 
and stability for the solution, different difference 
formats (e.g., two or three points, forward, back-
ward, or central difference) may be selected and 
obtained by expanding into a Taylor series.

If the coordinate is xi and the temperature is Ti 
at a network point i, then the adjacent points are 
i + 3, i + 2, i + 1, i − 1, i − 2, and i − 3, the cor-
responding coordinates are xi + 3Δx, xi + 2Δx, 
xi + Δx, xi − Δx, xi − 2Δx, and xi − 3Δx, respec-
tively, and corresponding temperatures are Ti+3, 
Ti+2, Ti+1, Ti−1, Ti−2, and Ti−3, respectively. Then, 
the difference formats for two and three points 
can be written for the first and second partial dif-
ferentials (∂T/∂x and ∂2T/∂x2) and are shown in 
Table 6-1.

Similarly, the corresponding difference for-
mats can be obtained for more difference points 
and for the first and second partial differentials 
of temperature with respect to coordinate y and 
time t, respectively.

After the difference formula is substituted 
into Eqn (5.4) for heat conduction, an algebraic 
equation of heat equilibrium is obtained for 
each network point. The corresponding equa-
tions for all the network points on the section 
make up a series of algebraic equations, and the 
unknowns are the temperatures at every network 
91
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  TABLE 6-1       Difference Formats for the First and Second Differentials of Temperature

Difference format»| ∂T/∂x ∂2T/∂x2

Two-point 
formula

Forward 
 difference

∂ T
∂ x

|
i
= Ti + 1 − Ti

Δ x
+ O(Δ x) ∂ 2T

∂ x2 |
i
= Ti − 2Ti + 1 + Ti + 2

Δ x2 + O(Δ x)

Backward 
 difference

∂ T
∂ x

|
i
= Ti − Ti − 1

Δ x
+ O(Δ x) ∂ 2T

∂ x2 |
i
= Ti − 2 − 2Ti − 1 + Ti

Δ x2 + O(Δ x)

Central 
 difference

∂ T
∂ x

|
i
= Ti + 1 − Ti − 1

2 Δ x
+ O(Δ x2) ∂ 2T

∂ x2 |
i
= Ti − 1 − 2Ti + Ti + 1

Δ x2 + O(Δ x2)

Three-point 
formula

Forward 
 difference

∂ T
∂ x

|
i
= − 3Ti + 4Ti + 1 − Ti + 2

2 Δ x
+ O(Δ x2) ∂ 2T

∂ x2 |
i
= 2Ti − 5Ti + 1 + 4Ti + 2 − Ti + 3

Δ x2

+ O ( Δ x2)
Backward 

 difference
∂ T
∂ x

|
i
= Ti − 2 − 4Ti − 1 + 3Ti

2 Δ x
+ O ( Δ x2) ∂ 2T

∂ x2 |
i
= − Ti − 3 + 4Ti − 2 − 5Ti − 1 + 2Ti

Δ x2

+ O ( Δ x2)

O(Δx) and O(Δx2) are the first and second cut-off errors, respectively.
point. When the temperature condition on the 
boundary is introduced and the equation series 
is solved, the temperature distribution on the sec-
tion is obtained.

6.1.2  Stable Heat Conduction 
Problem

The equation of stable heat conduction in a two-
dimensional temperature field (Table 5-2) on the 
section is

 
∂

∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
= 0 (6.1)

The network of the section shown in Fig. 6-1 
is divided into equal sizes along the X and Y 
axes. As an example, the algebraic equations for 
the central difference format for two points are 
derived below. Other difference formats can be 
derived similarly.

As far as an internal network point on the sec-
tion is concerned, if the number and temperature 
are Pi,j and Ti,j, respectively, the numbers and 
temperatures of the surrounding network points 
are, respectively:

number: Pi−1,j, Pi+1,j, Pi,j−1, Pi,j+1
temperature: Ti−1,j, Ti+1,j, Ti,j−1, Ti,j+1
When the central difference format of two 
points is used and substituted into Eqn (6.1), we 
obtain:

 

λi − 1 , j : i , j
Ti − 1 , j − Ti , j

Δ x2 + λi + 1 , j : i , j
Ti + 1 , j − Ti , j

Δ x2

+ λi , j − 1 : i , j
Ti , j − 1 − Ti , j

Δ y2 + λi , j + 1 : i , j
Ti , j + 1 − Ti , j

Δ y2 = 0
 

(6.2)
where Δx and Δy are the edge lengths of a net-
work along the X and Y axes, respectively, λi−1,j:i,j 
is the coefficient of heat conduction between the 
network points Pi−1,j and Pi,j, and so on.

As the edge length of the network is far smaller 
than that of the section, the coefficient between 
the adjacent network points can be taken as the 
average value of both points:

 λi − 1 , j : i , j = 1
2
(λi − 1 , j + λi , j) (6.3)

where λi−1,j and λi,j are the coefficients of heat 
conduction of the network points Pi−1,j and Pi,j, 
respectively.

For the network points along the periphery, 
including the corner, of the section, it is not 
necessary to establish the algebraic equations 
of heat equilibrium if the boundary condition 
is in the first category, i.e., the temperature on 
the boundary is already known. However, if the 
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P1, j+1

P1, j–1

P1, j

Y

P1,1

O X

Pi,1
∆

∆ 
y

x

P2,  j Pi+1, j

Pi, j+1

Pi, jPi–1, j

Pi,j–1

FIGURE 6-1  Divided network of the section.
boundary condition is in the third category, the 
temperature at the network point on the periph-
eral is unknown and the algebraic equation of 
heat equilibrium has to be given. For example, 
the following equation is given for the network 
P1,j in Fig. 6-1, according to Eqn (6.1):

 

β1
T

T1
a − T1 , j

Δ x + λ2 , j + λ1 , j
2

T2 , j − T1 , j

Δ x2

+ λ1 , j − 1 + λ1 , j
4

T1 , j − 1 − T1 , j

Δ y2

+ λ1 , j + 1 + λ1 , j
4

T1 , j + 1 − T1 , j

Δ y2 = 0

 

(6.4)

where β1T and T1a are the coefficient of heat trans-
fer and the environmental temperature on the left 
boundary of the network P1,j, respectively.

The definitions of the other symbols, i.e., P, 
T, and λ, are the same as in Eqns (6.2) and (6.3).

If the boundary condition of the corner net-
work of the section is in the third category, i.e., 
P1,1 in Fig. 6-1, the algebraic equation of heat 
equilibrium can also be obtained from Eqn (6.1):

 

β1
T

T1
a − T1 , 1

Δ x + λ2 , 1 + λ1 , 1
4

T2 , 1 − T1 , 1

Δ x2 + βb
T

Tb
a − T1 , 1

Δ y

+ λ1 , 2 + λ1 , 1
4

T1 , 2 − T1 , 1

Δ y2 = 0
 (6.5)

where βbT and Tba are the coefficient of heat 
transfer and the environmental temperature 
on the bottom boundary of the network P1,1, 
respectively.

If the two outside boundaries of the corner 
network are in different categories, e.g., the left 
boundary of P1,1 in Fig. 6-1 is in the third cat-
egory but the bottom boundary is in the first 
category, the temperature of the network is still 
unknown and the corresponding algebraic equa-
tion of heat equilibrium is:

 

β1
T

T1
a − T1 , 1

Δ x + λ2 , 1 + λ1 , 1
4

T2 , 1 − T1 , 1

Δ x2

+ λ1 , 2 + λ1 , 1
4

T1 , 2 − T1 , 1

Δ y2 = 0
 (6.6)

Referring to these equations, the algebraic 
equation of heat equilibrium can be established 
individually for every network on the section 
including the internal, edge, and corner net-
works. The series of equations is compiled and 
can be solved, and then the temperature distribu-
tion on the section under a given boundary con-
dition is obtained.

6.1.3  Transient Heat Conduction 
Problem

The method for solving the transient heat con-
duction problem is basically the same as that for 
the stable heat conduction problem, except one 
term of ∂T/∂t is added to consider the temper-
ature varying with time. It is assumed that the 
section of the structural member is also divided 
into the network on the space field as shown 
in Fig. 6-1. On the time field, the total time is 
divided into n increments and the duration of the 
kth increment is Δtk. Using the difference format 
given above, the transient heat conduction equa-
tion (Table 5-2),

 
∂
∂ x

(
λ ∂ T

∂ x

)
+ ∂

∂ y

(
λ ∂ T

∂ y

)
= ρC

∂ T
∂ t

 (6.7)

can be changed into an algebraic equation. The 
central difference format of two points is used 
on the space field here, and the forward differ-
ence format of two points is used on the time 
field.
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When t = 0, the initial condition is the value of 
the environmental temperature of every network 
point on the section:

 T0
i,j = T0 � (i = 1,�2,⋯, �m ; � j = 1��2�⋯��n) (6.8)

When the total time t=
∑k

i= 1
Δ ti, i.e., at the 

kth incremental time step, the temperature of the 
internal network point, Pi,j, of the section can be 
written from Eqn (6.7):
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where Tki,j and Tk− 1
i,j  are the temperature values 

of the network point Pi,j at the kth and (k − 1)th 
incremental time steps, respectively, and (ρc) k− 1

i , j
is the product of the mass density and the spe-
cific heat capacity of the network point Pi,j at the 
(k − 1)th incremental time step. The definitions of 
other symbols are listed in Table 6-2.

When the boundary of the peripheral network 
point of the section is in the third category, the 
temperature value of the point (P1,j) at the kwth 
incremental time step has to be solved using the 
formula:
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where (β1T)
k− 1

 and (T1a)
k− 1

 are the coefficient of 
heat transfer and the environmental temperature 
on the left side boundary of the section at the 
(k − 1)th incremental time step. The definitions 
of the other symbols are the same as in the previ-
ous formulas.

If the boundary condition of the corner net-
work point (e.g., P1,1 in Fig. 6-1) is in the third 
category, the temperature value Tk1 , 1 can be cal-
culated using the following formula:
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  TABLE 6-2      Definitions of Other Symbols

Network point Pi−1,j Pi,j Pi+1,j Pi,j−1 Pi,j+1

Temperature value at (k − 1)th incremental 
time step

Tk − 1
i − 1,j Tk − 1

i,j Tk − 1
i + 1,j Tk − 1

i,j − 1 Tk − 1
i,j + 1

Coefficient of heat conduction λk − 1
i − 1,j λk − 1

i,j λk − 1
i + 1,j λk − 1

i,j − 1 λk − 1
i,j + 1
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where (βbT)
k− 1

 and (Tba)
k− 1

 are the coefficient of 
heat transfer and the environmental temperature 
on the bottom boundary of the section at the  
(k − 1)th incremental time step, respectively. 
The definitions of other symbols are the same as 
before.

If the left boundary condition is in the third 
category, but the bottom boundary condition is 
in the first category for the corner network point, 
the temperature value can be calculated using the 
following formula:
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(6.12)

Referring to these equations, the algebraic 
equation of the heat equilibrium can be estab-
lished individually for the temperature value of 
every network on the section, including the inter-
nal, edge, and corner networks, at the kth incre-
mental time step. Then the series of equations is 
compiled and can be solved, and the temperature 
of every network point Tki,j is obtained. When the 
time increment reaches the sth step, the tempera-
ture distribution and its variation on the section 
are obtained within the whole time field.

The stability of the calculation above is con-
ditional. When the series analysis method is 
used, the thermal parameters are assumed to be 
constants, and the maximum value of the coef-
ficient of heat conduction λ and the minimum 
values of the specific heat capacity C and mass 
density ρ are taken, the condition of stability 
is obtained to be the limits of the incremental 
time step:

 Δ t ≤ (Δ x)2(Δ y)2

2 (λ / ρC)
[
(Δ x)2 + (Δ y)2

] (6.13)

If the boundary condition of the section is 
in the third category and the value of the coef-
ficient of heat conduction is high, the limits of 
the incremental time step should be reduced 
further.

6.1.4  Examples

Example 1 There is an infinite plate of thickness 
l = 0.2 m (Fig. 6-2) and the coefficient of heat 
conduction is λ = 1 W/(m °C). The temperatures 
of the media on the outer side of both sides are 
Ta1 = 100 °C and Ta2 = 0 °C, and the coefficient 
of heat transfer of the media to the plate is β = 
20 W/(m2 °C). The temperature distribution is 
calculated by difference method.

Solution This is a problem of a stable temper-
ature field and its boundary condition is in the 
third category. The theoretical solution is:

 
T = β (Ta2 − Ta1)

2 (λ + lβ)
x + 1

2
(Ta1 + Ta2)

 

The plate is divided into five networks along 
its thickness direction, and the length of the net-
work is Δx = 0.05 m. The algebraic equations 
of heat equilibrium are established successively 
β = 20W/(m2  °C)β = 20W/(m2 °C)
Ta1 = 100 °C Ta2 = 0 °C

0

0.2 m

(a)

(b)

T1 T2 T3 T4 T5

0.025 0.025
0.05 0.05

0.
05

0.05

FIGURE 6-2  Analysis of the stable temperature field of an infinite plate: (a) boundary condition; (b) network division.
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for every network point according to Eqns (6.2) 
and (6.4):

 2T1 − T2 − 100 = 0 

 T1 − 2T2 + T3 = 0 

 T2 − 2T3 + T4 = 0 

 T3 − 2T4 + T5 = 0 

 T4 − 2T5 = 0 

The series of equations is solved and T1 = 
83.33 °C, T2 = 66.67 °C, T3 = 50 °C, T4 = 
33.33 °C, and T5 = 16.67 °C. The solution is 
identical with the accurate theoretical solution.

Example 2 There is a semi-infinite uniform 
substance and its initial temperature is zero. 
When t = 0, a constant and uniform heat flow 
applies suddenly on its left surface as a thermal 
load (Fig. 6-3). The coefficient of heat conduc-
tion is λ = 1.0 W/(m °C), the mass density is ρ = 
1.0 kg/m3, the specific heat capacity is C = 10 J/
(kg °C), and the heat diffusivity is d = λ/ρC = 10 
m2/s correspondingly for the substance. The tem-
perature of the medium on the boundary is Ta = 
200 °C, and the coefficient of heat transfer is β = 
1.0 W/(m2 °C). The temperature distribution is 
calculated using the difference method.

Solution This is a problem of transient heat 
conduction and the boundary condition is in the 
third category. The theoretical solution[6-1] is:

 T(x, t) = T∞




erfc
(

x
2
√

αt

)
− exp

(
βx
λ + β2αt

λ2

)

erfc
(

x
2
√

αt
+ β

√
αt

λ

)


 
where the complementary error function is 
erfc(x) = 1 − erf (x) and the Gauss error function 
is erf(x)= (2 /

√
π) ∫ x0e

− y2dy.
The difference method is used to find the solu-

tion. The semi-infinite substance is divided into 
networks along the perpendicular direction of 
the boundary, and the lengths of the network 
and the time step are taken as Δx = 0.1 m and 
Δt = 0.001 s, respectively. The algebraic equa-
tions of heat equilibrium are established accord-
ing to Eqns (6.9) and (6.10), and the temperature 
value at arbitrary time and position can be 
obtained after the equations are solved. Part of 
the calculation results and the curve of the accu-
rate theoretical solution are drawn together in  
Fig. 6-4.

The temperatures varying with time at points 
located at x = 0.5 m and 2 m from the bound-
ary are given in Fig. 6-4(a), and the temperature 
variation with the position, i.e., temperature dis-
tribution on the section, at times t = 0.1 s, 0.5 s, 
and 1.0 s are presented in Fig. 6-4(b). It is seen 
that the calculation results for the difference 
method agree well with the accurate theoretical 
solution.

These examples show that the difference 
method used for analyzing the temperature 
field of a regular section of a structure is accu-
rate. However, when the difference method is 
used for analyzing the transient temperature 
field, the accuracy of the calculation result 
reduces and depends not only on the differ-
ence format selected but is also closely related 
to the divisions of the network and the time  
step.
Ta = 200 °C

0

t = 0
T0 =

 0°C

(a) (b)

X

T1 T2 T3 T100 T101

0.05 0.1 0.1 0.1 0.05

0.
1

Network divided within length of 10 m

= 1W/(m2 °C)β

FIGURE 6-3  Analysis of the transient temperature field of a semi-infinite substance: (a) boundary condition; (b) network 
division.



97CHAPTER 6  Theoretical Analysis of the Temperature Field
80

0

0 1 2 3 4 5

20

40

60

80

100

120

Distance from heated boundary x (m)

Curve of
accurate solution

Curve of accurate solution

Calculation value of
finite difference method

Calculation value of finite
difference method

60

t (s)

(b)

t = 1s

0.5s

0.1s

(a)

x =
 0.5 m

x = 2 mTe
m

pe
ra

tu
re

 T
 (°

C
)

Te
m

pe
ra

tu
re

 T
 (°

C
)

40

20

0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6-4  Calculated  results  of  the  temperature  field  of  a  semi-infinite  substance:  (a)  temperature–time  curve; 
(b) temperature distribution on the section.
6.2  COMBINED FINITE ELEMENT 
AND DIFFERENCE ANALYSIS

The combined finite element and difference 
method is now commonly used to analyze the 
transient temperature field. It uses the finite ele-
ment method to discrete the space field and the 
difference method to discrete the time field, and 
then the finite element is calculated successively 
along the time progress.[6-2–6-7]

This method also has some disadvantages. Some 
researchers argue that the calculation value is stable 
and does not fluctuate, but with lower accuracy, 
if the backward difference format of two points 
is used. However, if the Crank–Nicolson format, 
the Galerkin format, and the backward difference 
format of three points are used, a stable calcula-
tion with high accuracy is achieved, but the size 
of the finite element and the incremental time step 
have to be selected reasonably. Otherwise, fluctua-
tion occurs most likely during the calculation pro-
cess.[6-8–6-10] Generally, variable step length can be 
used to deal with this (see Section 6.2.5).

6.2.1  Heat Conduction Equation 
for an Element

As well as the difference method, the extreme 
value method of the pan function and the 
weighted complementary method are also used to 
solve the partial differential equation. However, 
generally, the pan function of a partial differential 
equation of nonlinear parabolic type is compli-
cated.[6-11] Among the weighted complementary 
methods, the Galerkin method is used for finite 
element analysis. In this chapter it is used to derive 
the equation of heat conduction of an element.

According to the Galerkin method, the basic 
equation (Eqn (6.7)) of transient heat conduction 
can be expressed as an integral:

( ) ( ) ( ) ( )λ λ ρ∫
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where Ni is the weighted function and Ae is the 
area of the element.

The left of Eqn (6.14) is partially integrated 
and gives:
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where le1 and le3 are the element boundaries in the 
first and third categories, respectively, q is the 
density vector of heat flow, and n is the direction 
cosine vector outside the normal of the boundary.

The temperature at an arbitrary point within 
the element can be represented by the interpola-
tion function:

 T (x, y, t) = [N (x, y)] {T (t)}e
 (6.16a)

where the matrix of the shape function and the 
temperature vector of the element node are, 
respectively,

 [N (x,y)] = [N1 (x,y)N2 (x,y) … Nn (x,y)] (6.16b)

 {T (t)}e = [T1(t) T2(t) Tn(t)]T  (6.16c)

The partial derivatives of the temperature 
T(x,y,t) with respect to coordinates x and y are 
found:

 




∂ T
∂ x
∂ T
∂ y





=




∂ N1
∂ x

∂ N2
∂ x ⋯ ∂ Nn

∂ x
∂ N1
∂ y

∂ N2
∂ y ⋯ ∂ Nn

∂ y




{T(t)}e = [B]{T(t)}e  (6.17)

Equations (6.16) and (6.17) are substituted 
into Eqn (6.15) to obtain:

 [C]e ∂
∂ t

{T(t)}e + [K]e{T(t)}e = {P}e  (6.18a)

where

 [K]e = [KT]
e +

[
Kβ

]e
 (6.18b)

 {P}e = {PT}e +
{

Pβ
}e

 (6.18c)

where the matrix for the specific heat capacity of 
the element is:

 [C] e =∫ Ae ρ (t) C (t)[N] T [N] dA (6.19a)

the matrix for heat conduction of the element is:

 
[KT] e = ∫

Ae
λ (T)[B] T [B] dA

 (6.19b)
the matrix for heat transfer of the element is:

 [Kβ] e = ∫
Ae

βT [N] T [N] dA (6.19c)

the vector for the heat load of the element is:

 { } [ ]∫

T

T
l

P N l
e

e
1

= ( , ) dq n  (6.19d)

and the vector for the heat transfer load of the 
element is:

 
{

Pβ
}e = ∫

le3

βTTa [N] T dl  (6.19e)

When the behavior of the concrete structure at 
elevated temperature (fire resistance) is analyzed, 
considerable variation and deviation appear 
because of the influences of many factors. To 
simplify the calculation, a simple element can be 
used. A rectangular element of four nodes (Fig. 
6-5) is selected here and the temperature at any 
point within the element can be represented by 
the temperatures at the four nodes (1, 2, 3, and 
4). The shape function is

 Ni = 1
4

(
1 + ξi

x
a

)(
1 + ηi

y
b

)
, (i = 1,2,3,4) (6.20)

where ξ1 = −1, η1 = −1; ξ2 = +1, η2 = −1; ξ3 = −1, 
η3 = +1; ξ4 = +1, η4 = +1.
3

y

4

1 2

2b

2a

0 x

FIGURE 6-5  Rectangular element of four nodes.
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The values of the thermal parameters λ, C, and 
ρ of concrete vary with temperature (see Section 
5.2). The temperature value at every point of the 
section is different and is a function of the coor-
dinates x and y. The functions to be integrated in 
Eqns (6.19a) and (6.19b) are very complicated and 
their integrations are difficult to find directly. Thus, 
a digital method, such as integrating using the 
Gauss formula, has to be used to find the solution.

In order to simplify the calculation but to maintain 
the necessary accuracy of the  calculation, the values 
of the thermal parameters of concrete are simplified. 
When the divided element is small, the temperature 
gradient approaches zero. The experimental result 
shows that the values of the thermal parameters do 
not vary sharply with temperature. So, it is assumed 
that the values of the thermal parameters in an ele-
ment are constants and are calculated by the aver-
age temperature of its four nodes. Therefore, the 
thermal parameters λ, C, and ρ are only functions 
of the temperature at the nodes of the element and 
are not related to the coordinates. Therefore, these 
parameters can be removed from the integration 
and Eqns (6.19a) and (6.19b) become:

 [C]e = ρ
(
{T(t)}e)C({T(t)}e) ∫ Ae [N]T[N]dA (6.21a)

 [KT] e = λ (T (t) e) ∫ Ae [B] T[B] dA (6.21b)

The following formulas are obtained after 
integration:

 Ce
ij = ρ({T(t)}e)C({T(t)}e)ab

36
(3 + ξiξj)(3 + ηiηj) 

(6.22a)

 
Ke

ij = λ({T(t)}e)
12

[
b
a

ξiξj

(
3 + ξiξj

)
+ a

b
ηiηj

(
3 + ηiηj

)]

 (6.22b)

(i,j = 1, 2, 3, 4)
Therefore, the matrixes for the specific heat 

capacity and the heat conduction of the rectan-
gular element of four nodes are written as:

 [C]e =
ρ
(
{T (t)}e)C

(
{T (t)}e) ab

9




4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4


 

(6.23)
 

[KT]
e =

ρλ
(
{T (t)}e)

6
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 (6.24)

6.2.2 Total Collective Equation 
and Boundary Condition

The total collective equation of heat conduction 
is obtained for finite element analysis from Eqn 
(6.18):

 [C]
∂
∂ t

{T(t)} + [K]T(t) = {P} (6.25)

where [K] = [KT] + [Kβ], {P} = {PT} + {Pβ}, and 
[C] is the total matrix of specific heat capacity, 
[KT] is the total matrix of heat conduction, [Kβ] is 
the total matrix of heat transfer, {PT} is the total 
vector of heat load, and {Pβ} is the total vector of 
heat transfer load.

[C] and [KT] can be collected directly from 
Eqns (6.23) and (6.24), respectively. {PT} is the 
vector of the summation of the heat quantity flow-
ing into (or out of) the node. The formula is given 
separately for elements at different positions.

 1.  Internal element
An internal element (i, j) has four nodes located 
not on the boundary of the section. The total 
heat load (PT)l at its node l relates only to the 
four connected elements, i.e., (i − 1, j − 1), (i, j − 
1), (i − 1, j), and (i, j) (Fig. 6-6). It is known from 
Eqns (6.19d) and (6.20) that (PT)l relates only to 
the corresponding boundaries of the connected 
elements. Therefore,

 

(PT)l = (PT)
i − 1 , j − 1
34 + (PT)

i − 1 , j − 1
24 + (PT)

i , j − 1
13

+ (PT)
i , j − 1
34 + (PT)

i − 1 , j
12 + (PT)

i − 1 , j
24

+ (PT)
i , j
12 + (PT)

i , j
13

 (6.26)

where (PT)
i− 1 , j− 1
34  is the contribution of bound-

ary 34 of the element (i −1,j −1) to the heat load 
at node l. Other symbols are the same as before.
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FIGURE 6-6  Internal element and its adjacent elements.
The temperature and the density of heat flow 
should be continuous on the connected boundary 
between two adjacent elements. The continuity 
of the temperature on the boundary is ensured as 
the shape function of Eqn (6.20) is used. How-
ever, the normal density of heat flow is not con-
tinuous, so its continuous condition has to be 
added into the total collective equation of heat 
conduction for finite element analysis. For exam-
ple, the density of heat flow on boundary 34 of 
element (i − 1, j − 1) should be equal to that on 
boundary 12 of element (i − 1, j). So,

 
(

− λ ∂ T
∂ y

)i − 1,j − 1

34

=
(

− λ ∂ T
∂ y

)i − 1,j

12
 (6.27)

is obtained. The contributions of both boundar-
ies to the heat load of node l can be obtained 
separately from Eqns (6.19d) and (6.20):

 
(PT)

i − 1 , j − 1
34 = −∫ a

− a

1
2

(
1 + x

a

)(
λ ∂ T

∂ y

)i − 1 , j − 1

34

dx

 (6.28a)

 
(PT)

i − 1 , j
12 =∫ a

− a

1
2

(
1 + x

a

)(
λ ∂ T

∂ y

)i − 1 , j

12

dx
 (6.28b)

Comparing Eqn (6.27) with Eqn (6.28), we have:

 (PT)
i − 1 , j − 1
34 + (PT)

i − 1 , j
12 = 0 (6.29a)
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FIGURE 6-7  Boundary element and its adjacent  elements.
Similarly,

 (PT)
i − 1 , j − 1
24 + (PT)

i − 1 , j
13 = 0 (6.29b)

 (PT)
i , j − 1
34 + (PT)

i , j
12 = 0 (6.29c)

 (PT)
i − 1 , j
24 + (PT)

i , j
13 = 0 (6.29d)

Substituting Eqn (6.29) into Eqn (6.26), we have:

 (PT)l = 0 (6.30a)

Similarly, for the nodes m, n, and p:

 (PT)m = (PT)n = (PT)p = 0 (6.30b)

 2.  Peripheral element
A peripheral element (i, j) has at least one node 
on the periphery of the section (Fig. 6-7). When 
the boundary condition is in the third category, 
(PT)e = 0 at node e. The heat load at node c 
is contributed only by boundary 34 of element  
(i, j − 1) and boundary 12 of element (i, j). Both 
boundaries are internal boundaries and also 
have

 (PT)C = (PT)
i , j − 1
34 + (PT)

i , j
12 = 0 (6.31)

Similarly, the heat load at node f is (PT)f = 0. 
However, node d is in the interior of the section 
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and (PT)d = 0 is also obtained according to the 
derivation above (Eqn (6.29)).

When the boundary condition is in the first 
category,

 
(

∂ T
∂ y

)i,j − 1

13

=
(

∂ T
∂ y

)i,j

13

=
(

∂ T
∂ y

)i,j

34

 (6.32)

is obtained from Eqn (5.8). Substituting this for-
mula and Eqn (6.20) into Eqn (6.19b),

 (PT)
i , j − 1
13 = (PT)

i , j
13 + (PT)

i , j
34 = 0 (6.33)

is obtained. The heat loads at nodes e and c are, 
respectively:

 (PT)e = (PT)
i , j
13 + (PT)

i , j
34  (6.34a)

and

 (PT)c = (PT)
i , j − 1
13 + (PT)

i , j − 1
34 + (PT)

i , j
12 + (PT)

i , j
13  (6.34b)

Obviously, both are zero. Similarly, the heat 
load at node f ((PT)f) is also zero. The heat load 
at node d is the same as that under the boundary 
condition in the third category, i.e., (PT)d = 0.

Summarizing, we have

 {PT} = 0 (6.35)

Then, Eqn (6.25) can be written as:

 [C]
∂
∂ t

{T (t)} + [K] {T (t)} =
{

Pβ
}

 (6.36)

[Kβ] and {Pβ} occur on the boundary transferring 
heat. Generally, the coefficient of heat transfer βT 
and the temperature of the flow medium Ta vary 
slightly along the boundary of the section of the 
structural member and vary even less along the edge 
length of the element. It can be assumed that βT and 
Ta do not vary along the edge of the  element and are 
only functions of the fire  temperature. Therefore, βT 
and Ta can be removed from the integration, and 
Eqns (6.19c) and (6.19e) can be  written as:

 
[
Kβ

]e =
∑

i

βTi ∫ le3i
[N]

T
[N] dl (6.37a)

 
{

Pβ
}e =

∑
i

βTiTai ∫ le3i
[N]

Tdl (6.37b)
where le3i is the length of the ith boundary in the 
third category of the element, βTi is the coeffi-
cient of heat transfer on the ith boundary of the 
element, and Tai is the temperature of the flow 
medium on the ith boundary of the element.

If boundary 12 of the element is in the third cate-
gory, substituting Eqn (6.20) into Eqn (6.37) gives:

 

[
Kβ

]e
12

= aβT12
3




2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0


 ,

{
Pβ

}e
12

= aβT12Ta12




1
1
0
0




 (6.38a)

where βT12 and Ta12 are the coefficient of heat 
transfer and the temperature of the flow medium, 
respectively, on boundary 12 of the element.

Similarly, if boundaries 24, 13, and 34 of the 
element are in the third category, we have:

 

[
Kβ

]e
24

= bβT24
3




0 0 0 0
0 2 0 1
0 0 0 0
0 1 0 2


 ,

{
Pβ

}e
24

= bβT24Ta24




0
1
0
1




 (6.38b)

 

[
Kβ

]e
13

= bβT13
3




2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0


 ,

{
Pβ

}e
13

= bβT13Ta13




1
0
1
0




 (6.38c)

 

[
Kβ

]e
34

= aβT34
3




0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2


 ,

{
Pβ

}e
34

= aβT34Ta34




0
0
1
1




 (6.38d)
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Collecting Eqn (6.38) for every element, the total 
matrix of heat transfer [Kβ] and the total vector 
of heat transfer load {Pβ} of the section of the 
structural member are obtained.

6.2.3  Equation of Stable Heat 
Conduction and Its Calculation

Equation (6.1) of stable heat conduction of a 
two-dimensional temperature field of a section is 
a partial differential equation of ellipse type, and 
the finite element equation can be derived using 
the method described in Section 6.2.2.

The problem of stable heat conduction can 
also be considered as a special example of the 
problem of transient heat conduction, in which 
the time tends to be infinite and the tempera-
ture does not vary. When ∂ {T(t)} / ∂ t | ∞ = 0, the 
finite element equation (Eqn (6.25)) of transient 
heat conduction is changed into that of stable 
heat conduction:

 [K] {T∞} =
{

Pβ
}

 (6.39)

where {T∞} is stable temperature vector on the 
section.

Eqn (6.39) is a nonlinear equation series 
because [K] is related to {T∞}. Many meth-
ods[6-12–6-18] can be used to solve this type of 
equation series. Usually, the solution of a set of a 
series of linear equations is used to approach the 
real solution; the Newton–Raphson and modi-
fied Newton–Raphson methods are commonly 
used. To increase the accuracy and to accelerate 
the convergence of the calculation, various cali-
bration methods based on both methods can be 
used. Therefore, it is not difficult to find the solu-
tion of Eqn (6.39).

6.2.4  Difference Format of the 
Transient Heat Conduction Equation

The time field is divided into a certain number 
of time elements. Within each time element Δtk, 
the vector of temperature [T], the total vector of 
heat transfer load {Pβ}, the total matrix of specific 
heat capacity [C], and the total matrix of heat 
conduction [K] are composed of the simplest lin-
ear equations (Fig. 6-8):

 {T} = Nk{T}k + Nk + 1{T}k + 1 (6.40a)

 
{

Pβ
}

= Nk
{

Pβ
}

+ Nk + 1
{

Pβ
}

k + 1 (6.40b)

 [C] = Nk[C]k + Nk + 1[C]k + 1 (6.40c)

 [K] = Nk[K]k + Nk + 1[K]k + 1 (6.40d)

The partial derivative of Eqn (6.40a) with respect 
to time t is:

 
∂
∂ t

T = Ṅk{T}k = Ṅk + 1{T}k + 1 (6.41)

where the symbols for the various vectors and 
matrixes corresponding to time are:

when t =
k∑

r = 1

Δ tr {T}k {Pβ}k [C]k [K]k

when t =
k + 1∑
r = 1

Δ tr {T}k+1 {Pβ}k+1 [C]k+1 [K]k+1

In addition:
 Nk = 1 − ξ, Nk + 1 = ξ  

 Ṅk = − 1 / Δtk, Ṅk + 1 = 1 / Δ tk 

 ξ = τ / Δ tk, 0 ≤ ξ ≤ 1 

Using the method of weighted magnitude, Eqn 
(6.36) of a time element can be described as:

 ∫ 1
0wj

(
[C] ∂

∂ t
{T} + [K] {T} −

{
Pβ

})
dξ (6.42)

where wj is the weighted function.
Substituting Eqns (6.40) and (6.41) into Eqn 

(6.42),

 




1 − θ1
Δ tk

[C]k + θ1
Δ tk

[C]k + 1 + (θ1 − θ2) [K]k

+ θ2[K]k + 1


 {T}k + 1

+




− 1 + θ1
Δ tk

[C]k − θ1
Δ tk

[C]k + 1 + (1 − 2θ1 + θ2) [K]k

+ (θ1 − θ2) [K]k + 1




{T}k − (1 − θ1)
{

Pβ
}

k
− θ1

{
Pβ

}
k + 1

= 0

 (6.43)
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{T}k ,[C]k

{T}k+1,[C]k+1

{T},[C]

{Pβ},[K]

{Pβ}k ,[K]k

{Pβ}k+1,[K]k+1

BA
τ

∆tk

FIGURE 6-8  Linear variation within time element.
is obtained, where

 
θ1 =

∫ 1
0wjξ dξ

∫ 1
0wj dξ

, θ2 =
∫ 1

0wjξ2 dξ

∫ 1
0wj dξ  

There are various difference formats for differ-
ent weighted functions. According to the Galer-
kin method, the weighted function is taken as:

 
wi = ∂

∂ {T}k + 1

{T} = ξ
 

When θ1 = 2/3, θ2 = 1/2 are substituted into Eqn 
(6.43), we obtain:

 




1
Δ tk

(
1
3 [C]k + 2

3 [C]k + 1

)

+ 1
6 [K]k + 1

2 [K]k + 1


 {T}k + 1

+




− 1
Δ tk

(
1
3 [C]k + 2

3 [C]k + 1

)
[C]

+ 1
6 [K]k + 1

6 [K]k + 1


 {T}k

− 1
3
{

Pβ
}

k
− 2

3
{

Pβ
}

k + 1
= 0  (6.44)

If [C]k = [C]k+1, [K]k = [K]k+1, and {Pβ}k = {Pβ}k+1, 
this is the Galerkin format.

If the matrixes [C] and [K] and the vector {Pβ} 
in Eqn (6.43) are not related to temperature, and 
when θ1 = 0, 1/2, and 1 are taken separately, 
the forward difference, the Crank–Nicolson for-
mula, and the backward difference formats can 
be obtained. Therefore, Galerkin and these three 
formats are only the special cases of the differ-
ence format of Eqn (6.43).
Equation (6.44) is an implicit format and 
the iteration has to be performed within each 
incremental time step. The iteration formulas 
are:

 

{T}0
k + 1 =

(
1

Δ tk
[C]k + 2

3 [K]k
)− 1

(
1

Δ tk
[C]k − 1

3 [K]k
)
{T}k

+
(

1
Δ tk

[C]k + 2
3 [K]k

)− 1{
Pβ

}
k  (6.45a)

and

 

{T}i
k + 1 =




1
Δ tk

(
1
3 [C]k + 2

3 [C]
i − 1
k + 1

)

+ 1
6 [K]k + 1

2 [K]
i − 1
k + 1




− 1

×




1
Δ tk

(
1
3 [C]k + 2

3 [C]
i − 1
k + 1

)
[C]

− 1
6 [K]k − 1

6 [K]
i − 1
k + 1


 {T}k

+




1
Δ tk

(
1
3 [C]k + 2

3 [C]
i − 1
k + 1

)

+ 1
6 [K]k + 1

2 [K]
i − 1
k + 1




− 1

(
1
3
{

Pβ
}

k
+ 2

3
{

Pβ
}i − 1

k + 1

)

 (6.45b)

The iterating procedure will not stop until

 ‖ T i
k + 1 − T i + 1

k + 1 ‖ ≤ Tg or i = nmax (6.46)

where ‖•‖ is the norm with respect to •, Tg is the 
given convergence tolerance, and nmax is a posi-
tive integer for controlling the maximum number 
of iterations.

6.2.5  Stability of the Numerical 
Solution

In order to examine the stability of the transient 
heat conduction calculations, the decomposing 
vibration pattern method, which is popular in 
the dynamic analysis of structures, is used here. 
There are m coupling algebraic equations for the 
system of m degrees of freedom (temperature at 
node), and they are transformed into a series of 
m noncoupling equations. The temperature of 
the component of any vibration pattern ˆ{ }iT  is 
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given by the product of the vector of the vibra-
tion pattern {ϕ}i and the amplitude of the vibra-
tion pattern Yi, i.e.:

 { } { }φˆ
iii

T Y  

The summation of the components of all 
vibration patterns is the total temperature vector 
of all the nodes:

 {T} = {ϕ}1Y1 + {ϕ}2Y2 + ...+ {ϕ}mYm =
m∑

i = 1

{ϕ}iYi

(6.47)

Equation (6.47) is substituted into Eqn (6.43), 
and both sides of the equation are multiplied by 
{ϕ}Ti  (i = 1,2,…,m). Corresponding to free vibra-
tion, {Pβ} = {0} and

 




1 − θ1
Δ tk

(Ci)k + θ1
Δ tk

(Ci)k + 1

+ (θ1 − θ2) (λi)k + θ2(λi)k + 1


 (Yi)k + 1

+




− 1 + θ1
Δ tk

(Ci)k − θ1
Δ tk

(Ci)k + 1

+ (1 − 2θ1 + θ2) (λi)k

+ (θ1 − θ2) (λi)k + 1



(Yi)k = 0

 (6.48a)

Let δ = (Yi)k+1/(Yi)k; the equation becomes:

 

δ




1 − θ1
Δ tk

(Ci)k + θ1
Δ tk

(Ci)k + 1

+ (θ1 − θ2) (λi)k + θ2(λi)k + 1




+




− 1 + θ1
Δ tk

(Ci)k − θ1
Δ tk

(Ci)k + 1

+ (1 − 2θ1 + θ2) (λi)k + (θ1 − θ2) (λi)k + 1


 = 0

 (6.48b)

If | δ |>1, the instability (i.e., unlimited 
response) appears in the calculation, and the 
oscillation condition occurs when | δ |<1. Obvi-
ously, both cannot achieve the required solution.

In order to make the analysis convenient, the 
method of freezing coefficient is used to analyze 
the stability of the difference format with variable 
coefficient.[6-5] Equation (6.48b) is written as:

 | δ | = 1 − (1 − θi)ωi Δ tk

1 + θ1ωi Δ tk  (6.49)
where ωi = λi/Ci is the characteristic value of the 
difference format and is always larger than zero.

It is known from Eqn (6.49) that δ < 1, because 
0 < θ1 ≤ 1. If | δ |<1, it must be δ > −1. From Eqn 
(6.49):

 (1 − 2θ1)ωi Δ tk < 2 (6.50)

When θ1 ≥ 1/2, | δ |<1 is always satisfied. 
These types of formats, such as Crank–Nicolson, 
Galerkin, and the backward difference format, 
satisfy this condition and are unconditionally 
stable. When 0 < θ1 < 1/2, the stability of the 
format is conditional and it has to satisfy:

 ωi Δ tk <
2

1 − 2θ1
 (6.51)

When a different format (i.e., a different value 
of θ1) is used, the relation between δ and ωiΔtk is 
shown in Fig. 6-9. It is seen that δ > 0 is ensured 
only when θ1 = 1, and the format is uncondition-
ally stable and no oscillation will occur, but its 
accuracy is low and of first order. However, if θ1 
< 1, oscillation occurs when δ < 0, i.e., when ωiΔtk 
is greater than a certain value. The value of ωiΔtk 
reduces correspondingly with θ1, so oscillation is 
more possible. Therefore, because it prevents oscil-
lation, the Galerkin format (θ1 = 2/3) is better, but 
the calculation accuracy is slightly worse than that 
of the Crank–Nicolson format (θ1 = 1/2).

It is seen from Eqn (6.22) that ceij is related to the 
size (edge lengths a and b) of the element, and Keij 
is related to the size ratio (a/b) of the element. As ωi 

1

0

1

1

2 4 6 8 10 12 14 16

2/3

Stable

Unstable

=

θ1

θ1 = 1/2

θ1 = 0

θ1

=

δ ωi∆tk

FIGURE 6-9  Relation between δ and ωiΔtk  for different 
formats.
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is approximately proportional to 1/(ab), it increases 
sharply when the size of the element decreases. In 
order to let the value of ωiΔtk be less than a cer-
tain limit, Δtk has to be reduced considerably. This 
shows that the determination of the incremental 
time step is limited not only by the difference for-
mat but also by the step length in the space field (the 
size of the element). If the step in the time field is not 
matched properly with that in the space field, oscil-
lation will also occur. Generally, oscillation reduces 
with Δtk. However, when the edge length of the ele-
ment remains constant and Δtk is smaller than the 
limit value, new oscillation may occur because the 
accumulative and rounding off errors increase obvi-
ously. The limit value is given by Kong[6-8]:

 
d Δ tk

Δ x2 > 0.01–0.1 (6.52)

where d is the heat diffusivity and Δx is the edge 
length of the element.

The standard temperature–time curve of fire 
is a logarithmic function (Eqn (5.1)); the tem-
perature elevates very quickly at the beginning 
and then becomes slow and gradual later. Cor-
respondingly, the temperature field of a struc-
tural member also varies with time and shows 
similar variation regularity. The larger the rate 
of increase in temperature, the more serious the 
oscillation during calculation. So, the oscillation 
reduces gradually with time and the time step can 
be increased. Therefore, a constant temperature 
increment is used in this chapter, which can be 
calculated from the standard temperature–time 
curve of fire, and the corresponding variable time 
step increment is obtained; integration is per-
formed with respect to the time step.

6.3  COMPUTING PROGRAM 
AND AN EXPERIMENTAL 
DEMONSTRATION

6.3.1  Compiling the Computer 
 Program

According to the method and equations derived 
in Section 6.2, a computer program for the 
temperature field on a section of a concrete struc-
ture is easily compiled. The program is compiled 
using FORTRAN 90 and is called HTARC (heat 
transfer analysis of reinforced concrete). Consid-
ering the characteristics of concrete structures 
and fire accidents, the measures used for the pro-
gram are as follows.

 1.  Network division
The shape of the section of the concrete structural 
member is mostly regular, and a simple rectangu-
lar element of four nodes is suitable for use. The 
short and long edges of the divided element can 
be selected arbitrarily, but the ratio between them 
should be >0.1 in order to avoid too short an incre-
mental time step and too much computing time.

The network can be divided automatically by 
the program. If both the shape and the boundary 
condition of the member section are symmetri-
cal, only one-half or one-fourth of the section 
needs to be analyzed for the condition of one or 
two symmetrical axes, respectively. A network 
of equal distance is divided separately along the 
width and height directions of the section, but 
there is no finer division locally. When the tem-
perature gradient on the section is considerable, 
a smaller and equal sized network can be used in 
order to avoid complicated division in the pro-
gram. Although the total number of networks 
in the section increases, this does not cause any 
problems for the computer.

 2.  Boundary condition and thermal parameters 
of the material

Generally, the thermal boundary condition of 
a concrete structural member during a fire is 
in the third category. Some boundary, which is 
far away from the surface exposed to fire, can 
be considered as being in the first category, and 
the symmetrical axis (boundary) of the section is 
in the second category. These three categories of 
boundary conditions are included in the program, 
and the same boundary condition category, but 
with different temperature parameters for each 
boundary of the section, is also considered.

The values of the thermal parameters of con-
crete can be determined by the related formulas 
(Eqns (5.2a) and (5.3)) in Section 5.2.
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 3.  Time of temperature increase and incremental 
time step

This program can be used for various tempera-
ture–time curves. For the third category of the 
boundary condition, the ISO standard tempera-
ture–time curve and some existing experimental 
temperature–time curves have been deposited in 
subprograms, and various other temperature–
time curves can also be imported as required.

The velocity of the increase in fire temperature 
varies considerably with time. If the incremental 
time step given is a constant, the temperature incre-
ments differ greatly, and oscillation may occur 
during the calculation process. Therefore, equal 
increments for the temperature of the medium 
surrounding the section are given automatically in 
this program, according to the edge length of the 
divided element of the section. Then the variable 
time step (Δtk) can be calculated from the temper-
ature–time curve and is used as the basis for suc-
cessive analysis along the time direction.

 4.  Flow chart for the program
The flow chart for the HTARC program is shown 
in Fig. 6-10.

The program to compute the temperature field in 
a section of a structure (HTARC) must be calibrated 
and demonstrated. The simple linear problem of 
transient thermal conduction can be compared with 
the accurate analytical solution, but a nonlinear 
problem can only be measured and demonstrated 
by testing a structural member at elevated tempera-
ture, because the analytical solution is not available.

6.3.2  Calculated Examples 
and Demonstration

Example 1 The initial temperature (T0 = 800 °C) 
is distributed uniformly in a concrete slab of 
thickness 10 m (Fig. 6-11), and then put in a 
medium at constant temperature (T = 0 °C). This 
is a thermal problem with the boundary condi-
tion in the first category, and the theoretical solu-
tion[0-9] of the temperature field of the slab is:

 
T = 4T0

π
∑

k = 0
1

2k + 1 exp
(

d(2k + 1)2π2t
l2

)

sin
(

2k + 1
l πx

)  (6.53)
where T is the temperature (°C) at the point 
located x (m) from the left surface after time t 
(days), d is the heat diffusivity (m2/s), and l is the 
thickness of the slab (m). The temperature field 
of the slab is analyzed.

Solution This is a problem of a one-dimen-
sional temperature field. The temperature of 
the slab varies along the direction of its thick-
ness but does not vary along the direction of its 
plane. The temperature field of the slab is ana-
lyzed using the HTARC program and the slab 
is divided into 20 networks along its thickness, 
with a network thickness of 0.5 m. The length of 
the network can be taken as 0.5 m. The heat dif-
fusivity on the boundary is taken as d = 1.157 × 
10−6 m2/s.

The results computed by the program and the 
theoretical curves of Eqn (6.53) are shown in 
Fig. 6-12. The temperatures varying with time at 
the points located at x = 2.0, 3.5, and 5.0 m from 
the surface of the slab are shown in Fig. 6-12(a), 
and the temperature distribution along its thick-
ness, when the time t = 1–300 days, is shown in 
Fig. 6-12(b).

Example 2 This is a concrete slab. The tem-
perature of the medium on its left surface is T = 
0 °C and the coefficient of heat transfer there is 
β1; the temperature of the medium on its right 
surface is T = A0cosωt, i.e., it varies harmoni-
cally, and the coefficient of heat transfer there is 
β2. The theoretical solution of the temperature 
field[0-9] is

 T (x, t) = A0C
(

φcosφx + β1

λ
shφx

)
eiωt  (6.54)

where

 

C = β2 / λ(
φ2 +

(
β1β2 / λ2

))
shϕx0 + φ (β1β2 / λ) chφx0

and φ = (1 + i)
√

ω
2a  

The temperature field of the slab is analyzed.
Solution This is also a problem of a one-

dimensional transient temperature field, but 
with different boundary temperatures and ini-
tial conditions. The values of the parameters 
used in computing are: the thickness of the slab  
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Begin

Input the original data, including section, boundary, and initial conditions

Select the symmetrical part of the section to compute, divide
automatically into elements, and number elements and nodes

Calculate the maximum half bandwidth

N
Stable problem?

Determine the incremental time step

Calculate the thermal parameter C(T )

Calculate the matrix for the specific
heat capacity of element [C]e

Calculate the matrix of heat conduction of element [KT]e, matrix of heat
transfer of element [Kβ ]e, and vector of heat transfer load of element {Pβ }e 

Collect the total matrix of
specific heat capacity [C ]

Calculate the thermal parameters λ ( ), ρ( )TT

i=i+1

i=i + 1

Form the total matrix of stiffness and total vector
of load for solving vector of temperature

Introduce the first category of boundary condition and
eliminate known temperature variable of node
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–

FIGURE 6-10  Flow chart for the HTARC program.
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l = 2.6 m, the coefficient of heat conduction of the 
material λ = 0.00145 W/(m2 °C), the heat diffu-
sivity d= λ /Cρ =6.028×10− 7m2 / s, the coeffi-
cient of heat transfer on both surfaces β1 = β2 = 
0.00678 W/(m2 °C), the frequency of the tem-
perature variation ω =2π / r, and A0 = 1 °C.

The values of these parameters are substituted 
into Eqn (6.54) and the theoretical solution is 
obtained:

 

T (x , t) =

(
0.0619chξcosξ − 0.0299shξsinξ
+0.189shξcosξ+0.542chξsinξ

)

× cos 2πt
r +

(
0.029 9chξcosξ−0.061 9shξsinξ
− 0.189chξsinξ + 0.542shξcosξ

)

× sin 2πt
r

 (6.55)

where ξ = 0.4062x, t is time in months, and r = 12.
The results computed by the program and 

the theoretical curve of Eqn (6.54) are drawn 
together in Fig. 6-13. The temperatures varying 
with time at the points located at x = 0.65, 1.30, 
and 1.95 m from the left surface of the slab are 
shown in Fig. 6-13(a), and the temperature dis-
tribution along its thickness when time t = 1–11 
months is shown in Fig. 6-13(b).

Examples 1 and 2 are in the first and third cat-
egories of boundary conditions, respectively. The 
results computed by the HTARC program agree 
well with the theoretical solutions. This demon-
strates that the program is reliable and accurate 
for analysis of linear transient heat conduction.

T=0 °C

x
t =0:T0=800 °C

T =0 °C

0

l

(a)

(b) 1 3 5 7 9 11 33 35 37 39 41

2 4 6 8 10 12 34 36 38 40 42

0.
5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 2 3 4 5 17 18 19 20

FIGURE 6-11  Analysis of the transient temperature field 
of a slab:  (a)  initial and boundary conditions;  (b) division 
of the network.
6.3.3  Experimental Demonstration

When the mechanical behavior of fire resistance 
(or at elevated temperature) of a structure and 
its members is tested, certain thermocouples can 
be mounted in advance on the surface and in the 
interior to measure the temperature and its varia-
tion in the interior of the section during the pro-
cess of heating (or cooling) and loading.

Generally, the thermal-electrical transducer is 
made of different alloy materials, and the ther-
mocouple is composed of nickel–chromium and 
nickel–silicon wires. One end of fine wires of two 
different materials are welded together. When the 
temperature at this end varies, the potential differ-
ence between the other ends of both wires occurs 
correspondingly. After the value of the potential 
difference is measured by some instrument, the 
temperature at the welded end can be calculated.

When the temperature of the air surrounding 
the structural member or the temperatures on the 
surface and in the interior of the member need 
to be measured, the thermocouples should be 
positioned and mounted on the necessary places. 
There are two methods for mounting the ther-
mocouples to measure the temperature in the 
interior of a concrete structural member. In the 
first method, the welded end of the thermocouple 
is fixed in position in the mold of the member 
before the concrete is cast, and the two wires 
pass through two insulation tubes separately and 
extend out of the mold. For the second method, a 
hole is left in the concrete in advance or is drilled 
after the concrete has hardened, then the thermo-
couple is put into the hole and cement mortar is 
poured in and compacted afterward. Both meth-
ods have advantages and disadvantages.

Experiment 1 A concrete member, length 1300 
mm and cross section 100 mm × 180 mm (see 
Fig. 8-5), is heated in an electrical furnace (see 
Fig. 8-3). Only three surfaces of the member, i.e., 
both side surfaces and the bottom, are heated; 
the top surface is exposed to the environmental 
air in the laboratory. Eight thermocouples are 
placed on the central section of the member (Fig. 
6-14(a)) and are used to measure the temperature 
at the corresponding points during the heating 
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FIGURE 6-12  Analysis results for the temperature field of the slab (example 1): (a) temperature–time curves at various 
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ous positions; (b) temperature distribution varying with time. Solid line, accurate solution; •, value computed from the 
 program.
process. The measured temperature–time curves 
are shown in Fig. 6-14(c); the temperature distri-
bution on the section can also be obtained and is 
shown in Fig. 8-6.

The temperature field on the section of the 
member is computed using the HTARC pro-
gram. Because the temperatures on the sec-
tion and the boundary are symmetrical about 
the vertical axis, only the left half of the sec-
tion is analyzed and the network as divided is 
shown in Fig. 6-14(b). The thermal parameters 
λ and C of the concrete are calculated using 
Eqns (5.2a) and (5.3), respectively. The mass 
density is taken as a constant ρ = 2400 kg/m3. 
The unheated top surface of the member is in 
the first category of boundary conditions and 
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the temperature there is taken as 20 °C; the 
other heated sides and bottom surface are in 
the third category of boundary conditions, and 
the coefficient of heat transfer is taken as β = 
5.5 W/(m2 °C). The temperature of the medium 
surrounding the heated surfaces of the member 
is taken as the temperature measured (see Fig. 
8-4) in the chamber of the furnace during test-
ing. The temperatures at the measuring points 
and their variation with time obtained from the 
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program agree well with the measured curves 
(Fig. 6-14(c)).

Experiment 2 A concrete member, length 
1440 mm and cross section 100 mm × 200 mm 
(see Fig. 9-8). is heated in an electrical furnace 
(see Fig. 9-19). Only the two adjacent surfaces 
of the member, i.e., the left side and bottom sur-
face, are heated; the right side and top surface 
are exposed to the air in the laboratory. Sixteen 
thermocouples are placed on the central section 
of the member (Fig. 6-15(a)), and are used to 
measure the temperatures at the corresponding 
points during the heating process. The mea-
sured temperature–time curves are shown in 
Fig. 6-15(c), and the temperature distribution on 
the section can be seen in Fig. 9-22.

The temperature field on the section of the 
member is computed using the HTARC pro-
gram. The whole section is divided into net-
works, shown in Fig. 6-15(b), and the thermal 
parameters of the concrete and the parameter 
value of the boundary condition of the section 
are the same as in Experiment 1. The tempera-
ture of the medium near the heated boundary 
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of the member is taken as the temperature pro-
gram in the chamber of the test furnace (see Fig. 
9-20). The temperatures at the measuring points 
and their variation with time obtained from the 
program agree well with the measured curves 
(Fig. 6-15(c)).

These two experiments and other experi-
ments, which are not reported, show that the 
combined finite element difference method and 
the HTARC program are suitable for analyz-
ing the nonlinear transient temperature field on 
a section of a concrete structure under various 
boundary conditions.

6.3.4  General Regularity of the 
Temperature Field on a Section

Using the HTARC computer program described 
above, the temperature field on the section of a 
structural member of various shapes and sizes 
can be computed in series for different types of 
temperature–time curves for a fire accident and 
different boundary condition. In addition, the 
temperature field on the section can be mea-
sured from a large number of experiments on 
the structural member at elevated temperatures. 
Then, the temperature distribution on the sec-
tion of the member and its variation with time 
under various conditions can be obtained. Using 
these theoretical and experimental research 
results, the general regularity of the tempera-
ture field on the section of a concrete member 
under monotonic heating can be summarized as 
follows:

 •  The temperature field on a section of a struc-
tural member and its variation with time 
depend mainly on the temperature–time curve 
of the medium (air flow layer) surrounding it 
and the heating time.

 •  The temperature on the surface of a member 
heated or exposed to fire is always lower than 
that of the surrounding medium. The temper-
ature difference may reach 100–200 °C at the 
beginning of heating, but reduces gradually to 
20–30 °C as the heating time and the absolute 
value of the temperature increases.
 •  The one-dimensional temperature field of a 
planar member heated on one surface is the 
most fundamental temperature distribution. 
The temperature on its section decreases 
monotonically and the temperature gradient 
reduces as well along the normal line of the 
heated surface. The maximum temperature 
occurs on the outer surface, the temperature 
fall or gradient within the surface layer (about 
20–40 mm) decreases approximately linearly, 
and the temperature at the furthest distance 
remains basically constant, i.e., the tempera-
ture gradient is nearly zero.

 •  When more than one peripheral surface of the 
section of the structural member, e.g., both sur-
faces of a planar structure, two adjacent surfaces 
of a beam or column, or three or four surfaces 
of a rectangular section, are heated or exposed 
to fire, the temperature field on the section is 
approximately the sum of the one-dimensional 
temperature fields from various directions.

 •  The thermal behavior of the material of a 
structural member has an obvious influence 
on the temperature field on its section. With 
smaller coefficients of heat conduction (λ), a 
greater specific heat capacity (C) and mass 
density (ρ), i.e., smaller heat diffusivity (d = 
λ/Cρ), the greater the temperature gradient on 
the surface layer of the section and the smaller 
the temperature in the interior.

These regularities apply to the temperature 
field on a rectangular section of an ordinary con-
crete structural member under monotonic heating 
conditions. As far as a member of a nonrectan-
gular section (e.g., T, I, and circular sections), 
or special heating (and cooling) conditions, or 
thermal parameters of material is concerned, 
the corresponding temperature field on the sec-
tion has to be computed. However, the regulari-
ties described above still apply to the qualitative 
analysis of a temperature field.

CONCLUSIONS

Variation in the temperature conditions on the 
boundary and the thermal parameters of the 
material of a concrete structural member with 



113CHAPTER 6  Theoretical Analysis of the Temperature Field
time (or temperature) is complicated. The tran-
sient temperature field on its section can only 
be obtained after solving the nonlinear second 
partial differential equation of heat conduc-
tion. As an accurate analytical solution is not 
achieved because of the mathematical difficulties, 
a numerical method of analysis is used and the 
solution can be obtained with enough accuracy, 
relying on numerous but fast calculations on the 
computer.

The difference method is suitable for analyz-
ing the temperature field of a simple structural 
member with regular sections. After reason-
ably dividing the network and selecting the 
difference format and incremental time step, 
the differential equation of heat conduction is 
changed into an algebraic series. The approxi-
mate solution with certain accuracy of the tem-
perature field is obtained after solving the series 
of equations.

The combined finite element difference analy-
sis method uses the finite element method to dis-
crete the space field and the difference method 
to discrete the time field, and the finite element 
analysis is performed successively with time. This 
method is now commonly used for analyzing the 
temperature field. Among the weighted comple-
mentary methods, the Galerkin method is used in 
this chapter to derive the heat conduction equa-
tion of the element in the finite element analy-
sis and the difference format in the time field. In 
addition, the values of the thermal parameters of 
the element are simplified and the limiting con-
dition is determined to satisfy the stability of 
the digital solution; the analysis of the nonlin-
ear transient temperature field is then achieved 
successfully.

The HTARC computer program was devel-
oped for analysis of a nonlinear transient tem-
perature field on the section of a concrete 
structural member based on the theoretical 
analysis described above. The variable incre-
mental time step, which is equivalent to equal 
increments of temperature of the surrounding 
medium, is used in the program, and it is helpful 
to ensure the stability of the calculation process. 
This program can be used widely for the analysis 
of a temperature field on the section of a struc-
tural member under various conditions of the 
temperature–time curve of fire and the tempera-
ture on the boundary. The computed results are 
compared with the accurate theoretical solutions 
of some special examples and many experimental 
results for various structural members at elevated 
temperature. The results from this program show 
that the calculation method is correct, the com-
puting process is stable, and the results computed 
are accurate.
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C H A P T E R

7
Calculation Charts for a Temperature 

Field on a Cross Section
7.1  BASIC ASSUMPTIONS 
AND APPLICATION  
CONDITIONS

The temperature field on the cross section of a 
structural member is an important premise for 
analyzing the mechanical behavior of the struc-
ture at elevated temperatures (fire resistance). 
Although various theoretical methods and com-
puter programs are available to analyze the indi-
vidual temperature field, which is a complex 
problem of nonlinear transient heat conduction, 
a large number of complicated computing work 
has to be performed. The most relevant prob-
lems in engineering practice are evaluation of the 
endurance of fire resistance, the bearing capacity 
at elevated temperature, and the residual bear-
ing capacity after a fire in the main members in 
a structure. Therefore, it is necessary to provide 
the temperature field for a section of a structural 
member, quickly and conveniently, and with suf-
ficient accuracy.

Based on the theoretical analysis of the finite 
element difference method and the HTARC com-
puter program described in Chapter 6, a large 
amount of computing work has been performed. 
Two practical methods and corresponding auxil-
iary means, i.e., calculation tables and tempera-
ture contour lines, are given in this chapter for 
the temperature field on a section of a concrete 
structural member to satisfy the requirements of 
engineering practice.

In addition to the basic assumptions and 
simplifications given for the theoretical analy-
sis and computer program (see Chapter 6), the 
Experiment and Calculation of Reinfo
© 2011 Tsinghua University Press. Pub
assumptions and application conditions for 
all the tables, contours, calculation formulas, 
and various data shown in this chapter are as 
follows:

 1.  The ISO standard temperature–time curve 
(Eqn (5.1)) is used for the process of a fire 
accident and the duration of the fire is divided 
into six grades, i.e., 30, 60, 90, 120, 150, and 
180 min.

 2.  It is assumed that a section of the structural 
member is composed of homogeneous and 
continuous concrete material. Neither the 
influence of the reinforcement area of the 
section nor the temperature redistribution 
caused by local changes in the section area 
due to cracking and surface spalling of con-
crete are taken into account.

 3.  The values of the thermal parameters of 
concrete material vary with temperature. 
The coefficient of heat conduction (λ) and 
the specific heat capacity (C) are calculated 
using Eqns (5.2a) and (5.3), respectively; 
the mass density is taken as a constant ρ = 
2400 kg/m3. The coefficient of heat trans-
fer (W/(m2 K)) on the boundary of the third 
category is calculated using the following 
formula:

	 T

T

β
β −

≤ °
> ° × −

⎫

⎬

⎭

6

T 600 C, 0.07

T 600 C, 0.07 8.75 10 (T 600)
	 (7.1)

 4.  The surfaces exposed to fire and the maxi-
mum size of a (rectangular) section of the 
structural members are shown in Table 7-1.
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 TABLE 7-1      Surfaces Exposed to Fire and the Maximum Size of a (Rectangular) Section of 
the Structural Members

Surfaces exposed to fire Maximum section

Planar	member,	e.g.,	slab,	wall One	surface	only Thickness	200	mm
One-dimensional	member,		

e.g.,	beam,	column
Three	surfaces 500	mm	×	500	mm
All	four	surfaces 600	mm	×	600	mm
Two	adjacent	surfaces 500	mm	×	500	mm
If the conditions of the structural member ana-
lyzed do not fit with that listed above, the tem-
perature field on the section can be determined 
approximately by interpolation or equivalent esti-
mation method based on the similar conditions. 
Some examples are: the actual temperature–time 
curve is different from the ISO standard, the 
shape or size of the section is different, the values 
of the thermal parameters of the material or the 
coefficient of heat transfer on the boundary are 
different. The practical methods are explained 
below.

7.2  SLABS WITH ONE SURFACE 
EXPOSED TO FIRE

7.2.1 Calculation Tables

When one surface of a planar member, e.g., 
floor slab or wall, is exposed to fire, which lasts  
t = 30–180 min, the temperature on the section 
can be referred to and obtained directly from 
Table 7-2(a)–(f). These tables can be used sepa-
rately for slabs of thickness h = 80, 100, 120, 
150, 180, and 200 mm, and z is the depth away 
from the fire, i.e., the distance from the surface 
exposed to fire to the point at which the tempera-
ture is given (see also Fig. 7-1).

Considering the variation in the temperature 
gradient on a section, the intervals between the tem-
perature points increase successively and are 5 mm  
for z ≤ 20 mm, 10 mm for z = 20–100 mm, and 
20 mm for z = 100–200 mm, in order to improve 
the accuracy of temperature field on the section.

If the thickness of a slab is less than 200 mm 
and the duration of the fire is less than 180 min, 
the values of the thickness (h), time (t), and 
depth away from the fire (z) cannot be found in 
Table 7-2. The temperature values of approxi-
mate conditions can be found in these tables in 
advance and then interpolated to determine the 
required temperature value. For example, if the 
thickness of a slab is h = 100 mm, the tempera-
ture value at position z = 55 mm and at time 
t = 140 min is determined as follows: four values 
of temperature at z = 50 mm and 60 mm and at 
t = 120 min and 150 min are found in Table 
7-2(b), and the required temperature value is 
obtained after linear interpolation twice.

If the thickness of a slab is h > 200 mm, the 
temperature value with z ≤ 200 mm can be taken 
approximately as that listed in Table 7-2(f), and 
the temperature value at z > 200 mm can be 
taken as a constant, i.e., the temperature at z = 
200 mm.

7.2.2 Temperature Distribution 
Curves

All the data listed in Table 7-2 are drawn 
in the figures and connected smoothly; the 
curves of the temperature distribution on sec-
tions of the slabs of various thickness (h = 
80–200 mm) and with one surface exposed to 
a fire, which lasts t = 30–180 min, are obtained 
(Fig. 7-2(a)–(f)). These figures show clearly the 
variation regularity of a one-dimensional tem-
perature field in a slab.

Using these curves, the temperature field on 
the section of the slab with one surface exposed 
to fire can be found directly or obtained after the 
interpolation calculation.
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)

120 150 180

324 361
352 392
384 429
424 471
472 521
528 579
596 648
678 728
775 822
829 875
889 931
953 991
1021 1054

169 201
181 215
214 253
263 306
295 340
333 380
378 426
431 480
493 543
566 616
653 702
756 803
814 859
877 919
945 983
1017 1050

(Continued)
 TABLE 7-2      Temperature Value on a Section of Slab with One Surface Exposed to Fire (°C)

z (mm) t (min) z (mm) t (min

30 60 90 120 150 180 30 60 90

(a)	Thickness	of	slab	h	=	80	mm (b)	Thickness	of	slab	h	=	100	mm
100 53 42 218 278
90 58 154 236 301

80 95 218 307 371 417 453 80 69 173 261 330
70 105 238 334 404 456 496 70 87 200 293 366
60 126 267 370 446 502 545 60 114 237 335 411
50 159 310 418 497 556 602 50 151 286 387 466
40 208 368 479 560 621 669 40 203 349 454 533
30 276 444 556 638 699 746 30 274 430 536 615
20 372 544 654 732 791 837 20 370 534 638 715
15 433 605 712 787 843 887 15 432 597 699 773
10 505 674 776 847 899 940 10 504 668 766 836
5 591 753 847 912 960 997 5 591 749 840 904
0 693 842 926 982 1024 1057 0 693 840 922 978

(c)	Thickness	of	slab	h	=	120	mm (d)	Thickness	of	slab	h	=	150	mm
150 23 51 92 132
140 23 54 98 141

120 33 93 154 207 251 286 120 28 69 120 170
100 41 112 183 243 294 336 100 39 97 159 214
90 50 129 205 269 323 327 90 49 119 185 244
80 64 154 234 301 358 405 80 63 146 218 280
70 84 185 271 341 399 448 70 84 180 258 323
60 112 226 316 389 449 500 60 112 222 306 374
50 150 278 372 447 509 560 50 150 275 364 435
40 202 343 441 518 580 631 40 202 341 436 508
30 273 426 527 603 664 714 30 273 425 522 595
20 370 531 632 706 764 812 20 370 531 629 700
15 432 595 693 765 821 866 15 430 594 691 760
10 504 666 762 830 882 924 10 504 666 760 826
5 590 748 837 900 948 986 5 590 747 836 898
0 693 839 920 976 1018 1052 0 693 839 920 975
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 TABLE 7- °C)—cont’d

z (mm) t (min)

0 120 150 180

(e)	Thickness
63 87 110

180 72 99 125
160 88 119 148
140 113 148 181
120 150 189 225
100 200 245 285
90 233 280 321
80 271 320 363
70 316 367 412
60 368 422 468
50 430 486 533
40 504 561 608
30 593 649 696
20 698 753 798
15 759 812 855
10 825 875 916
5 897 943 981
0 975 1016 1049
2      Temperature Value on a Section of Slab with One Surface Exposed to Fire (

t (min) z (mm)

30 60 90 120 150 180 30 60 9

	of	slab	h	=	180	mm (f)	Thickness	of	slab	h	=	200	mm
200 20 26 42

20 32 56 85 113 140 180 20 28 47
21 36 64 97 130 160 160 21 34 58
23 46 81 119 156 190 140 23 45 78
28 64 109 154 195 233 120 28 64 107
39 95 152 203 249 290 100 39 95 151
49 117 180 235 283 326 90 49 117 179
63 145 214 272 323 367 80 63 145 214
84 179 255 317 369 415 70 84 179 254
112 222 304 369 424 471 60 112 222 304
150 275 363 431 487 535 50 150 275 363
202 341 434 505 562 610 40 202 341 434
273 425 522 593 650 697 30 273 425 521
370 530 628 699 754 799 20 370 530 628
432 594 691 759 812 856 15 432 594 691
504 666 760 825 876 916 10 504 666 760
590 747 836 897 944 981 5 590 747 836
693 839 920 975 1016 1050 0 693 839 920
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FIGURE 7-1  Calculation parameters for a slab with one 
surface exposed to fire.
7.3  BEAMS AND COLUMNS 
WITH THREE SURFACES EXPOSED 
TO FIRE

7.3.1 Calculation Tables

Usually, three surfaces, i.e., both sides and the 
bottom surface, of the sections of beams, col-
umns, and similar members in a building are 
exposed to fire during an accident. Because of 
the symmetry of the section and the boundary 
conditions, the temperature value (T, °C) at cer-
tain points on the left half of the section only 
are given in Tables 7-3 to 7-9 for a fire lasting 
t = 30–180 min.

There are seven sizes of section (mm × mm) of 
structural members included in these tables: 200 ×  
300, 200 × 500, 300 × 300, 300 × 500, 400 × 
400, 400 × 500, 500 × 500. The origin of the 
coordinates is located on the left bottom corner 
of the section (Fig. 7-3), and the coordinate of 
a point is (x,y), where the temperature value is 
given. Therefore, x and y are the distances from 
the point to the left side and the bottom surface 
exposed to fire, respectively.

When the section size of the structural mem-
ber and the duration of the fire are identical to 
the conditions in the tables, the temperature field 
can be obtained directly. If they are not identi-
cal, various approximate methods can be used to 
determine the temperature values. Some exam-
ples are presented below.

The temperature values for larger sections 
(i.e., 200 mm × 500 mm, 300 mm × 500 mm,  
400 mm × 500 mm, and 500 mm × 500 mm) of 
the member are given in the tables for t = 120 min 
and 180 min, but not for t = 30 min and 60 
min. However, the temperature values of  
the latter can be determined approximately by 
referring to the values for the corresponding 
smaller section (i.e., 200 mm × 300 mm, 300 mm ×  
300 mm, or 400 mm × 400 mm).

If the section size of the structural member 
and the duration of the fire do not exceed the 
maximum values (500 mm × 500 mm and 180 
min, respectively) listed in these tables, but can-
not be found directly, the temperature value 
can be determined by the interpolation method, 
referring to the tables with similar conditions.

If the section size of the structural member 
exceeds the maximum value listed in these tables, 
e.g., 400 mm × 700 mm > 400 mm × 500 mm, 
the temperature value can still be determined using 
Table 7-8. The temperature values within the range 
of the lower part of the section (y = 0–200 mm) 
have the same values as in the same range listed in 
Table 7-8; the temperature values within the range 
of the upper part of the section (y = 600–700 mm) 
have the values in the range of y = 400–500 mm in 
Table 7-8; and the temperature values in the range 
of the middle part of the section (y = 200–600 mm) 
have the values at y = 200 mm and 400 mm in 
Table 7-8 with linear interpolation between them.

7.3.2 Graphs of Temperature 
Contours

Using all the data listed in Tables 7-3–7-9, the 
temperature contour lines on the section can 
be drawn and are shown in Figs. 7-4–7-10 for 
structural members of various section sizes and 
duration of fire (t). The shapes and sizes of these 
contours actually show the scope of different 
damage levels of concrete on the section of a 
structural member under fire.

The temperature field on the section of a 
structural member with three surfaces exposed 
to fire can be found directly from these graphs 
or obtained by the interpolation calculation. If 
the section size of the structural member and the 
duration of the fire are not identical to the con-
ditions listed in these graphs, the methods sug-
gested in Section 7.3.1 can be used.
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FIGURE 7-2  Curves of the temperature distribution on a section of a slab with one surface exposed to fire: (a) h = 80 
mm; (b) h = 100 mm; (c) h = 120 mm; (d) h = 150 mm; (e) h = 180 mm; (f) h = 200 mm.
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 TABLE 7-3     T ree Surfaces Exposed 
t

x (mm)

y (mm) 0 40 70 100

(a)	t	=	30	min
300 648 285 167 134
200 693 352 209 167
150 693 357 217 176
100 695 383 250 212
70 701 429 308 274
40 722 532 435 408
20 754 661 593 574
0 816 874 856 851

(c)	t	=	120	min
300 903 496 386 354
200 980 690 555 514
150 983 717 589 550
100 989 761 647 611
70 997 813 713 682
40 1010 896 824 801
20 1024 978 933 919
0 1043 1084 1076 1073
emperature Value on a Section (200 mm × 300 mm) of a Member with Th
o Fire (°C)

x (mm) y (mm)

20 40 70 100 0 20

(b)	t	=	60	min
322 174 76 50 300 779 445
370 202 87 57 200 840 535
371 203 88 58 150 841 539
376 212 100 72 100 846 556
395 239 136 110 70 855 588
456 324 240 220 40 874 661
555 456 396 382 20 897 750
754 722 701 696 0 933 897

(d)	t	=	180	min
571 417 301 267 300 972 644
725 553 409 366 200 1058 845
737 570 432 390 150 1062 862
764 611 483 444 100 1068 891
800 664 551 517 70 1074 924
864 762 675 649 40 1084 976
930 865 809 791 20 1093 1027
1024 1010 999 995 0 1106 1093
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 (300 m es Exposed 

1 100 150

2 80 47
2 93 53
2 99 57
2 110 70
4 156 120
8 228 198
2 376 353
3 553 538
6 845 841

(200 m es Exposed 

10 70 100

26 385 353
33 501 458
36 546 504
37 574 533
39 594 555
44 648 612
51 714 683
64 824 801
79 933 919
99 1076 1073
 TABLE 7-5      Temperature Value on a Section
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100

(a)	t	=	30	min
300 648 322 173 72 35
250 692 368 199 81 38
200 693 370 202 83 39
150 693 370 202 84 40
100 694 376 211 97 55
70 701 395 239 133 97
40 722 456 324 239 211
20 754 555 456 395 376
0 816 754 722 701 694

 TABLE 7-4     Temperature Value on a Section 
to Fire (°C)

y (mm) x (mm)

0 20 40 70

(a)	t	=	120	min
500 903 571 416 300
450 975 702 523 378
400 979 722 548 404
200 981 729 559 417
150 983 737 571 433
100 989 764 611 483
70 997 800 664 551
40 1010 864 762 675
20 1024 930 865 809
0 1043 1024 1011 999
m × 300 mm) of a Member with Three Surfac

y (mm) x (mm)

50 0 20 40 70

(b)	t	=	60	min
2 300 779 441 278 145
3 250 837 525 332 172
3 200 839 531 341 180
4 150 840 535 347 189
1 100 845 553 375 227
5 70 854 586 423 291
03 40 874 659 528 423
71 20 897 750 659 586
93 0 933 897 874 854

m × 500 mm) of a Member with Three Surfac

y (mm) x (mm)

0 0 20 40

(b)	t	=	180	min
7 500 972 643 495
4 450 1051 810 641
0 400 1057 840 683
5 200 1060 854 704
2 150 1062 864 720
5 100 1068 892 762
7 70 1074 924 813
9 40 1084 976 896
1 20 1093 1027 978
5 0 1106 1093 1084
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0 m s Exposed 

100 150

231 187
291 234
320 258
358 299
394 338
478 428
571 528
722 690
870 849
1064 1060

0  es Exposed 

100 150

235 191
300 243
343 283
390 333
477 427
571 528
722 690
870 849
1064 1060
 TABLE 7-6     Temperature Value on a Section (30
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100

(a)	t	=	120	min
500 899 555 387 243 165
450 970 679 482 301 202
400 974 697 504 321 218
200 976 705 516 337 237
150 978 716 533 360 264
100 985 748 581 424 338
70 994 787 641 503 428
40 1009 856 746 642 585
20 1023 926 856 788 750
0 1043 1023 1009 994 986

 TABLE 7-5      Temperature Value on a Section (30
to Fire (°C)—cont’d

y (mm) x (mm)

0 20 40 70 100

(c)	t	=	120	min
300 899 555 388 244 167
250 970 680 484 304 206
200 975 701 511 331 230
150 978 715 532 359 262
100 985 748 580 423 337
70 994 787 641 503 428
40 1009 856 746 642 585
20 1023 926 856 788 750
0 1043 1023 1009 994 986
m × 500 mm) of a Member with Three Surface

y (mm) x (mm)

150 0 20 40 70

(b)	t	=	180	min
122 500 996 618 452 309
147 450 1043 772 577 394
160 400 1049 799 612 427
180 200 1053 815 638 461
210 150 1056 830 661 492
290 100 1063 865 715 565
387 70 1070 904 776 647
553 40 1082 963 872 778
730 20 1092 1019 964 905
981 0 1106 1092 1082 1071

mm × 300 mm) of a Member with Three Surfac

y (mm) x (mm)

150 0 20 40 70

(d)	t	=	180	min
123 300 967 620 454 312
151 250 1044 775 582 400
174 200 1051 807 625 446
208 150 1055 828 658 488
289 100 1063 865 714 564
386 70 1070 903 776 646
553 40 1082 963 872 778
730 20 1092 1019 964 905
981 0 1106 1092 1082 1071
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 TABLE 7-7 ree Surfaces Exposed 

y (mm) x (mm)

0 70 100 150 200

(a)	t	=	30	min
400 648 145 78 34 25
350 692 171 90 37 26
200 693 180 97 41 29
150 693 188 108 54 43
100 694 227 154 108 99
70 701 290 227 189 182
40 722 423 275 347 343
20 754 586 553 535 532
0 816 854 845 840 839

(c)	t	=	120	min
400 899 293 203 123 100
350 969 371 254 151 121
200 976 436 317 210 179
150 978 472 360 261 232
100 985 550 452 366 342
70 994 636 551 478 458
40 100 771 709 655 640
20 102 901 862 827 818
0 104 1070 1062 1055 1053
     Temperature Value on a Section (400 mm × 400 mm) of a Member with Th
to Fire (°C)

x (mm) y (mm)

20 40 70 100 150 200 0 20 40

(b)	t	=	60	min
322 173 72 35 21 20 400 779 441 277
368 199 81 38 21 20 350 837 522 332
370 202 83 39 21 20 200 839 531 342
370 202 84 40 23 22 150 840 535 347
376 211 97 55 40 39 100 845 553 375
395 239 133 97 84 83 70 854 586 423
456 324 239 211 202 202 40 874 659 528
555 456 395 376 370 370 20 897 750 659
754 722 701 694 693 693 0 933 897 874

(d)	t	=	180	min
553 384 236 150 78 58 965 614 444
677 478 291 183 92 67 1042 765 565
703 512 327 215 121 95 1051 808 625
714 529 352 246 158 134 1055 825 650
746 578 418 324 249 229 1062 861 708
787 639 499 418 354 337 1070 901 771

9 856 746 639 578 531 519 1081 962 869
3 926 856 787 747 715 708 1092 1018 962
3 1023 1009 994 985 978 977 1106 1092 1081
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tion (4 aces Exposed 

150 100 150 200

78 202 122 99
92 252 149 120
99 276 165 132
121 318 212 181
158 360 261 233
249 452 366 342
354 551 478 458
531 709 655 640
715 862 827 828
978 1062 1055 1053

ion (500 ces Exposed 

150 100 150 200

72 197 108 54
85 246 132 63
91 269 145 70
115 312 194 123
153 355 247 183
245 448 356 303
351 549 470 427
529 707 650 619
714 861 824 805
978 1062 1055 1051
 TABLE 7-8      Temperature Value on a Sec
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100

(a)	t	=	120	min
500 899 553 384 236 150
450 969 677 478 291 182
400 974 695 499 310 196
200 976 703 512 327 216
150 978 714 529 352 246
100 985 746 578 418 324
70 994 787 639 499 418
40 1009 856 746 639 578
20 1023 926 856 787 747
0 1043 1023 1009 994 985

 TABLE 7-9      Temperature Value on a Sect
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100

(a)	t	=	120	min
500 899 553 384 235 148
450 969 677 478 291 181
400 974 695 499 309 194
200 976 703 512 326 214
150 978 714 529 351 245
100 985 746 578 417 323
70 994 787 639 499 417
40 1009 856 745 639 578
20 1023 926 856 787 746
0 1043 1023 1009 994 985
00 mm × 500 mm) of a Member with Three Surf

y (mm) x (mm)

200 0 20 40 70

(b)	t	=	180	min
57 500 965 614 444 293
67 450 1042 765 565 371
72 400 1048 791 598 401
95 200 1051 809 625 437
134 150 1055 825 651 472
229 100 1062 861 708 550
337 70 1070 901 771 636
519 40 1081 962 869 771
708 20 1092 1018 962 901
977 0 1106 1092 1081 1070

 mm × 500 mm) of a Member with Three Surfa

y (mm) x (mm)

200 0 20 40 70

(b)	t	=	180	min
32 500 965 613 443 290
35 450 1042 764 563 367
37 400 1048 790 596 397
62 200 1051 808 624 434
105 150 1055 824 649 470
207 100 1062 861 707 549
321 70 1070 901 770 645
508 40 1081 962 869 770
701 20 1092 1018 962 901
975 0 1106 1092 1081 1070
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FIGURE 7-3  Calculation parameters for a member with three surfaces exposed to fire.
7.4  SQUARE COLUMNS WITH 
FOUR SURFACES EXPOSED TO FIRE

7.4.1 Calculation Tables

Sometimes all four surfaces of an arbitrary col-
umn of a square section in a building are exposed 
to fire during a fire accident. Because the  section 
is symmetrical about both perpendicular axes, 
the temperature values (T, °C) are given in 
Tables 7-10–7-13 only for certain points on the 
left lower one-fourth of the section (Fig. 7-11) 
and the duration of the fire t = 30–180 mm. There 
are four section sizes (mm × mm) of the column 
included in these tables: 300 × 300, 400 × 400, 
500 × 500, and 600 × 600. The origin of the coor-
dinates is located on the left bottom corner of the 
section and the coordinates of the point are (x, y) 
where the temperature value is given.
The method for using these tables to deter-
mine the temperature field in a section of a 
square column with four surfaces exposed to fire 
is similar to that described in Section 7.3.1 for a 
structural member with three surfaces exposed 
to fire.

7.4.2 Graphs of Temperature 
Contours

Using all the data listed in Tables 7-10–7-13, 
the temperature contour lines on the section 
can be drawn and are shown in Figs. 7-12–7-15 
for a square column of various section sizes 
and duration of fire (t). The method for using 
these graphs to determine the temperature dis-
tribution in a section of a square column with 
four surfaces exposed to fire is similar to that 
described above.
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FIGURE 7-4  Temperature contour on a section (200 mm × 300 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 30 min; (b) t = 60 min; (c) t = 120 min; (d) t = 180 min.
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FIGURE 7-5  Temperature contour on a section (300 mm × 300 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 30 min; (b) t = 60 min; (c) t = 120 min; (d) t = 180 min.
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FIGURE 7-6  Temperature contour on a section (200 mm × 500 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
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FIGURE 7-7  Temperature contour on a section (300 mm × 500 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
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FIGURE 7-8  Temperature contour on a section (400 mm × 400 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 30 min; (b) t = 60 min; (c) t = 120 min; (d) t = 180 min.
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FIGURE 7-9  Temperature contour on a section (400 mm × 500 mm) of a structural member with three surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
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exposed to fire: (a) t = 120 min; (b) t = 180 min.
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m r Surfaces Exposed 

50 100 150

6 123 84
1 158 123
5 229 199
03 376 354
71 553 538
93 845 841

54 454 403
04 501 454
93 583 542
56 728 697
31 873 853
82 1064 1060

m  Surfaces Exposed 

20 100 150 200

116 347 248 220
140 371 275 248
230 455 371 347
338 553 481 460
519 709 656 641
708 862 828 818
977 1062 1055 1053
 TABLE 7-10      Temperature Value on a Section (300 
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100 1

(a)	t	=	30	min
150 693 371 203 85 41 2
100 694 376 211 97 55 4
70 701 395 239 133 97 8
40 722 456 324 239 211 2
20 754 555 456 395 376 3
0 816 754 722 701 694 6

(c)	t	=	120	min
150 982 731 556 393 304 2
100 986 751 587 433 350 3
70 995 789 644 507 433 3
40 1009 857 747 644 587 5
20 1023 926 857 789 751 7
0 1043 1023 1009 995 986 9

 TABLE 7-11     Temperature Value on a Section (400 m
to Fire (°C)

y (mm) x (mm)

0 20 40 70 100 150

(a)	t	=	120	min
200 977 708 519 338 230 140
150 978 715 531 354 250 164
100 985 747 578 418 325 250
70 994 787 639 499 418 354
40 1009 856 746 639 578 531
20 1023 926 856 787 747 715
0 1043 1023 1009 994 985 978
m × 300 mm) of a Square Column with Fou

y (mm) x (mm)

0 20 40 70

(b)	t	=	60	min
150 841 538 354 199
100 845 553 376 229
70 854 586 423 291
40 874 659 529 423
20 897 750 659 586
0 933 897 874 854

(d)	t	=	180	min
150 1060 853 697 542
100 1064 873 728 583
70 1071 907 782 656
40 1082 965 875 782
20 1092 1020 965 907
0 1106 1092 1082 1071

 × 400 mm) of a Square Column with Four

y (mm) x (mm)

0 0 20 40 70

(b)	t	=	180	min
200 1053 818 641 460
150 1055 828 656 481
100 1062 862 710 553
70 1070 901 771 637
40 1081 962 869 771
20 1092 1018 962 901
0 1106 1092 1081 1070
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Calculation	Charts	for	a	Tem
perature	Field	on	a	Cross	Section

tion (500 m r Surfaces Exposed to 

150 2 100 150 200

107 5 304 186 115
152 1 356 249 186
245 2 449 356 304
351 3 549 471 427
529 5 707 650 619
714 7 861 824 805
978 9 1062 1055 1051

tion (600 m r Surfaces Exposed to 

0 200 150 200 300

52 162 98 60
4 72 192 133 98
2 114 245 192 162
5 214 355 311 288
1 326 470 434 415
9 512 649 624 611
4 703 824 808 800
8 976 2 1055 1051 1050
 TABLE 7-12     Temperature Value on a Sec
Fire (°C)

y (mm) x (mm)

0 20 40 70 100

(a)	t	=	120	min
250 975 701 508 321 207
150 978 714 529 351 245
100 985 746 578 417 323
70 994 787 639 499 417
40 1009 856 745 639 578
20 1023 926 856 787 746
0 1043 1023 1009 994 985

 TABLE 7-13     Temperature Value on a Sec
Fire (°C)

y (mm) x (mm)

0 20 40 70 100 15

(a)	t	=	120	min
300 975 699 505 316 201 97
200 976 703 512 326 214 11
150 978 714 529 351 245 15
100 985 746 578 417 323 24
70 994 787 639 499 417 35
40 1009 856 745 639 578 52
20 1023 926 856 787 746 71
0 1043 1023 1009 994 985 97
m × 500 mm) of a Square Column with Fou

y (mm) x (mm)

00 0 20 40 70

(b)	t	=	180	min
3 250 1051 805 619 427
07 150 1055 824 650 471
07 100 1062 861 707 549
21 70 1070 901 770 635
08 40 1081 962 869 770
01 20 1092 1018 962 901
75 0 1106 1092 1081 1070

m × 600 mm) of a Square Column with Fou

y (mm) x (mm)

300 0 20 40 70 100

(b)	t	=	180	min
29 300 1050 800 611 415 288
51 200 1051 808 624 434 311
97 150 1055 824 649 470 355
201 100 1062 861 707 549 448
316 70 1070 901 770 634 540
505 40 1081 962 869 770 707
699 20 1092 1018 962 901 861
975 0 1106 1092 1081 1070 106
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FIGURE 7-11  Calculation  parameters  for  a  square  column 
with four surfaces exposed to fire.
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FIGURE 7-12  Temperature contour on a section (300 mm × 300 mm) of a square column with four surfaces exposed 
to fire: (a) t = 30 min; (b) t = 60 min; (c) t = 120 min; (d) t = 180 min.
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FIGURE 7-13  Temperature contour on a section (400 mm × 400 mm) of a square column with four surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
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FIGURE 7-14  Temperature contour on a section (500 mm × 500 mm) of a square column with four surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
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FIGURE 7-15  Temperature contour on a section (600 mm × 600 mm) of a square column with four surfaces exposed 
to fire: (a) t = 120 min; (b) t = 180 min.
7.5  SQUARE COLUMNS WITH TWO 
ADJACENT SURFACES EXPOSED 
TO FIRE

7.5.1 Calculation Tables

When a corner column of a building sustains a 
fire accident, its two adjacent surfaces may be 
exposed to fire. The temperature values (T, °C) 
at certain points on its square section are given in 
Tables 7-14–7-16 for the t = 30–180 min. These 
tables include three section sizes (mm × mm): 300 ×  
300, 400 × 400, and 500 × 500. The origin of the 
coordinates is located on the left bottom corner of 
the section (Fig. 7-16) and the coordinates of the 
point are (x,y) where the temperature value is given.

The method for using these tables to determine 
the temperature distribution on a section of a square 
column is similar to that described in Section 7.3.1.

7.5.2 Graphs of Temperature 
Contours

Using all the data listed in Tables 7-14–7-16, 
the temperature contour lines on the section can 
be drawn and are shown in Figs. 7-17–7-19 for 
a square column of various section sizes and 
duration of fire (t). The method for using these 
graphs to determine the temperature distribu-
tion on a section of a square column with two 
adjacent surfaces exposed to fire is similar to that 
described above.

CONCLUSIONS

When the fire-resistant behavior, including 
the bearing capacity at elevated temperature, 
fire endurance limit, and bearing capacity 
after fire, of a concrete structural member are 
analyzed, the transient temperature field, cor-
responding to the temperature–time curve of 
the fire, of a member has to be determined in 
advance. Based on the results of numerous cal-
culations using the HTARC computer program 
( Chapter 6), the temperature fields on the sec-
tions are provided in this chapter for various 
structural members commonly used in engi-
neering practice, and they can be used as an 
auxiliary method in fire resistance analysis of 
structural members.
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perature	Field	on	a	Cross	Section

 TABLE 7-14     Te mn with Two Adjacent Surfaces 
Ex

y (mm) x (mm)

0 2 0 70 100 150 200 300

(a)	t	=	30	min
300 648 32 77 145 78 34 22 20
200 693 37 41 179 96 40 26 22
150 693 37 47 188 107 54 40 34
100 694 37 75 227 154 107 96 78
70 701 39 23 290 227 188 179 145
40 722 45 28 423 375 347 341 277
20 754 55 59 586 553 534 530 441
0 816 75 74 854 845 840 839 779

(c)	t	=	120	min
300 899 55 45 294 203 115 71 40
200 975 69 12 421 299 182 122 71
150 978 71 46 466 350 239 182 115
100 985 74 06 547 446 350 298 202
70 994 78 70 634 547 466 421 294
40 1009 85 68 770 706 646 612 445
20 1023 92 62 901 860 822 800 615
0 1043 10 081 1070 1062 1054 1050 965
mperature Value on a Section (300 mm × 300 mm) of a Square Colu
posed to Fire (°C)

x (mm) y (mm)

0 40 70 100 150 200 300 0 20 4

(b)	t	=	60	min
2 173 72 35 21 20 20 300 779 441 2
0 202 83 38 21 20 20 200 839 531 3
0 202 84 40 23 21 21 150 840 535 3
6 211 97 55 40 38 35 100 845 553 3
5 239 133 97 84 83 72 70 854 586 4
6 324 239 211 202 202 173 40 874 659 5
5 456 396 376 370 370 322 20 897 750 6
4 722 701 694 693 693 648 0 933 897 8

(d)	t	=	180	min
4 385 236 150 74 42 25 300 966 615 4
9 506 320 209 111 69 42 200 1050 800 6
4 528 350 243 151 111 74 150 1054 822 6
6 578 417 323 243 209 150 100 1062 861 7
7 639 498 417 350 320 236 70 1070 901 7
6 745 639 578 528 506 384 40 1081 962 8
6 856 787 746 714 699 554 20 1092 1018 9
23 1009 994 985 978 975 899 0 1106 1092 1
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perature	Field	on	a	Cross	Section

 (400 Adjacent Surfaces 

300 50 200 300 400

24 07 61 28 22
31 47 84 39 28
66 90 130 84 61
120 44 190 147 107
235 54 310 271 297
358 69 433 399 290
553 49 623 598 443
748 24 807 791 613
101 055 1051 1048 965

 (50  Adjacent Surfaces 

400 150 200 400 500

20 106 60 21 20
20 142 77 22 21
46 191 131 77 60
91 245 191 142 106
194 355 311 268 196
309 470 434 396 290
499 649 624 596 443
695 824 808 790 613
974 1055 1051 1048 965
 TABLE 7-15     Temperature Value on a Section
Exposed to Fire (°C)

y (mm) x (mm)

0 20 40 70 100 150 200

(a)	t	=	120	min
400 936 587 417 266 175 90 50
300 1015 748 553 358 236 120 66
200 1018 760 572 383 264 153 100
150 1021 775 594 414 303 200 153
100 1028 810 649 488 390 303 264
70 1036 850 711 573 488 414 383
40 1049 915 814 711 649 594 572
20 1061 978 915 850 810 775 760
0 1078 1061 1049 1036 1028 1021 1018

 TABLE 7-16      Temperature Value on a Section
Exposed to Fire (°C)

y (mm) x (mm)

0 20 40 70 100 150 200

(a)	t	=	120	min
500 899 553 384 235 148 72 39
400 974 695 499 309 194 91 46
200 976 703 512 326 214 114 71
150 978 714 529 351 245 152 114
100 985 746 578 417 323 245 214
70 994 787 639 499 417 351 326
40 1009 856 745 639 578 529 512
20 1023 926 856 787 746 714 703
0 1043 1023 1009 994 985 978 976
 mm × 400 mm) of a Square Column with Two 

y (mm) x (mm)

400 0 20 40 70 100 1

(b)	t	=	180	min
21 400 965 613 443 290 197 1
24 300 1048 791 598 399 272 1
50 200 1051 807 623 433 310 1
90 150 1055 824 649 469 354 2
175 100 1062 861 707 548 448 3
266 70 1070 901 770 634 548 4
417 40 1081 962 869 770 707 6
587 20 1092 1018 962 901 861 8

5 936 0 1106 1092 1081 1070 1062 1

0 mm × 500 mm) of a Square Column with Two

y (mm) x (mm)

500 0 20 40 70 100

(b)	t	=	180	min
20 500 965 613 443 290 196
20 400 1048 790 596 397 268
39 200 1051 808 624 434 311
72 150 1055 824 649 470 355
148 100 1062 861 707 549 448
235 70 1070 901 770 634 548
384 40 1081 962 869 770 707
553 20 1092 1018 962 901 861
899 0 1106 1092 1081 1070 1062
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FIGURE 7-16  Calculation parameters for a square column with two adjacent surfaces exposed to fire.
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FIGURE 7-17  Temperature contour on a section (300 mm × 300 mm) of a square column with two adjacent surfaces 
exposed to fire: (a) t = 30 min; (b) t = 60 min; (c) t = 120 min; (d) t = 180 min.
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FIGURE 7-18  Temperature contour on a section (400 mm × 400 mm) of a square column with two adjacent surfaces 
exposed to fire: (a) t = 120 min; (b) t = 180 min.
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The main scope and conditions of the tables 
and graphs in this chapter are:

 •  temperature–time curve of fire: the ISO stan-
dard curve

 –  duration of fire: 30–180 min
 •  type and section size of structural members 

exposed to fire:
 –  slab with one surface exposed to fire: thick-

ness 80–120 mm
 –  beam or column with three surfaces exposed 

to fire: rectangular section 200 mm ×  
300 mm to 500 mm × 500 mm

 –  square column with four surfaces exposed 
to fire: section 300 mm × 300 mm to  
600 mm × 600 mm

 –  square column with two adjacent surfaces 
exposed to fire: section 300 mm × 300 mm 
to 500 mm × 500 mm
 •  form of expression: table showing the temper-
ature values at certain points on the section, 
temperature contour lines on the section

When the temperature field of a structural 
member needs to be determined, the temperature 
value and its distribution on the section of the 
member can be found directly from these charts, 
if the section size of the member and the duration 
of the fire are identical to the conditions in the 
chart. Otherwise, the temperature field is deter-
mined by interpolation calculations after the 
temperature values with approximate conditions 
are found in the tables.
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8
Behavior of Flexural Members 
at Elevated Temperatures
8.1  TESTING METHOD 
AND DEVICE FOR STRUCTURAL 
MEMBERS

8.1.1  General Testing Program

The basic members of a reinforced concrete 
structure include mainly flexural members, such 
as the beam and the slab, and axial and eccentric 
compressive members. The mechanical behav-
ior at elevated temperatures has to be measured 
from experiments using special heating and load-
ing devices. These devices cannot be bought 
directly and no typical product exists. Generally, 
these devices are designed and manufactured by 
researchers, according to the research objective 
and program.

The existing devices used for testing a struc-
tural member at elevated temperatures are 
divided into two categories. One is a large furnace 
for fire endurance experiments on the structural 
member, and is built individually for experiments 
on different members, e.g., beam, slab, column, 
or wall plate.[8-1,8-2] A full-scale specimen is put 
into the chamber of the furnace and loaded to a 
certain level, the gas or fuel is sprayed into the 
chamber and set alight, and fire occurs imme-
diately; the temperature is controlled and fol-
lows the predetermined temperature–time curve 
(e.g., the ISO standard, Eqn (5.1)), and the test 
is continued until failure of the specimen. The 
fire endurance is measured in hours. The experi-
mental conditions of a device in this category 
approach those of a real fire accident. However, 
the scale of the device is large, the experimental 
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technique is complicated, the initial investment 
is expensive, and the continuing expenses for the 
experiment are high. Therefore, devices of this 
category are normally installed in special research 
organizations and are suitable for the fire endur-
ance experiments on structural and architectural 
members in practical engineering.

The second category is a small-scale furnace 
for testing structural members at elevated tem-
peratures and it is usually heated by electrical 
power. Although it is not heated following the 
standard temperature–time curve and the fire 
endurance of a structural member cannot be 
measured directly, it still has some advantages:

 •  The device is easily manufactured by research-
ers, the investment is less, and the effect is 
obtained quickly.

 •  The temperature is easily controlled with high 
accuracy.

 •  The experimental technique and measure-
ments are easier to solve and more items may 
be measured during testing.

 •  The size of the specimen is small and the 
experimental expense is lower.

 •  Experiments on various heating–loading con-
ditions can be conducted with high efficiency. 
Therefore, a device of this category is suitable 
for systematic experimental and theoretical 
research on the mechanical behavior of struc-
tural members at elevated temperatures.

An experimental device has been designed and 
manufactured by the Structural Engineering Lab-
oratory of Tsinghua University for the testing of 
ced Concrete at Elevated Temperatures
ished by Elsevier Inc. All rights reserved.



147CHAPTER 8  Behavior of Flexural Members at Elevated Temperatures
structural members on a small scale at elevated 
temperatures. The general scheme is shown in 
Fig. 8-1, and it is composed of three systems as 
follows.

 1.  Heating and temperature control system
This system includes an experimental furnace 
for the structural member and a temperature 
control box. The construction and specifica-
tions of the furnace are given in Section 8.1.2. 
A specimen is put into the chamber of the exper-
imental furnace with one surface open during 
testing, then the electrical power is switched 
on and the specimen is heated. One end of the 
armored nickel–chromium and nickel–silicon 
thermocouple (WRNK-541) is inserted into the 
chamber of the furnace and the other end is con-
nected to the temperature control box to control 
heating and to maintain the temperature of the 
furnace.

 2.  Support and loading system for the specimen
The experimental furnace and the specimen are 
supported separately on the testing machine or 
the loading floor of the laboratory, and a speci-
men with a positive bending moment (i.e., tension 
zone of the section exposed to high temperature) 
is loaded by the hydraulic testing machine (capac-
ity of 2000 kN) or a hydraulic jack. The experi-
mental loads are two symmetrical concentrated 
forces, which act on top of the specimen through 
a small beam. So an experimental section of pure 
bending (without shear force) is formed in the 
middle of the beam.

The specimen with a negative bending moment 
(i.e., compression zone of the section exposed to 
high temperature) is tested in the opposite posi-
tion, and the middle section is put on the two 
supports and both ends are cantilevered (Fig. 
8-2). There is a pair of loading frames at each 
end of the specimen and a hydraulic jack used for 
loading is hung below the beam of the frame. The 
experimental furnace is hung on top of the load-
ing frames with the help of two adjustable bolts, 
which are used to properly adjust the position 
of the furnace. The loading method described in 
Zhang[8-3] is similar, but the supports in Fig. 8-2 
are replaced by two hydraulic jacks and both 
ends of the beam are supported on the rollers, 
which are located between the upper and lower 
beams of the loading frame.
Refractory
fiber Specimen

Connector for
electric power 

Load transducer

 Small beam

IMP strain acquisition

Microcomputer and software for
IMP data acquisitionElectrical

power

Temperature
control box

IMP voltage acquisition
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Beam of testing machine
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Specimen

FIGURE 8-1  General scheme of testing devices for structural members at elevated temperatures.[1-12]
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 3.  Data measurement and acquisition system
Three categories of experimental data need to be 
measured during the testing of structural mem-
bers at elevated temperatures and different trans-
ducers are used to measure these data:

 •  The armored or ordinary (simplified) thermo-
couple is used to measure the temperatures 
in the furnace chamber and the interior of 
the specimen.

 •  A load transducer is used to measure the 
load value.

 •  Displacement transducers of different 
travel distance and accuracy can be selected 
and positioned properly to measure vari-
ous deformations of the specimen, e.g., 
longitudinal and transverse deformation, 
deflection, curvature, rotating angle, even 
twisting angle. Various transducers are 
connected individually with the IMP volt-
age (35951A) or strain (35951B) data 
acquisition; the corresponding data and 
their variations (curves) are collected and 
displayed in real time on a microcomputer 
during the testing process.

The load and displacement transducers have 
to be placed some distance (>100 mm)[1-12,8-3] 
away from the surface of the specimen to avoid 
the influence of the high temperature of the speci-
men and steam evaporating from the water in the 
interior of concrete on the measuring accuracy of 
the transducer.

8.1.2  Design and Manufacture of a 
Furnace for Member Testing

When a building sustains a fire accident, generally 
both the sides and the bottom surface (three sur-
faces in total for a rectangular section) of a beam 
or column and all four surfaces of an arbitrary 
column are exposed to high temperature; only one 
surface of a floor slab or wall is exposed to high 
temperature. The experimental furnace is shaped 
like a channel (Fig. 8-3), which provides three 
sides for heating with one side open. The furnace 
is versatile and can be used not only for testing 
a structural member with three surfaces or one 
surface exposed to high temperature but also for 
members with four surfaces exposed to high tem-
perature, when two furnaces are joined together. 
The furnace with one surface open is convenient 
for installing the specimen before testing, observ-
ing the response of the specimen during testing, 
and removing the specimen after testing.
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FIGURE 8-2  Method  of  loading  a  specimen  with  negative  bending  moment  (compression  zone  exposed  to  high 
 temperature).[9-12]
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FIGURE 8-3  Construction of a furnace for testing members[1-12]: (a) longitudinal section; (b) transverse section.
The net width and height of the chamber 
in the experimental furnace are 120 mm and 
330 mm, respectively, and the maximum section 
of the specimen that may be contained in it is 
100 mm × 200 mm. The total length of the fur-
nace is 1100 mm and the length of the heating 
section in the middle is 950 mm, which is four 
times greater than the depth of the specimen. 
Therefore, the experimental part of the specimen 
has the same temperature field on its section.

The experimental furnace is composed of the 
case structure, a heating element, an insulation 
layer, and accessories.

The case structure is welded and forms a skel-
eton using angle and belt steels. It is covered with 
a thin steel plate, therefore it is stiff and is used 
for supporting and fixing the furnace bricks and 
insulation material.

The chamber brick is one of the main parts 
of the heating element and is manufactured 
from refractory material. The original brick is a 
box section, and a channel section of net space 
120 mm × 225 mm is formed after one side is 
cut off. Three pieces of bricks are connected one 
by one and a chamber 950 mm long is obtained. 
Both the sides and the bottom walls of the brick 
are 25 mm thick, and there are 26 longitudinal 
circle holes 12 mm in diameter in the walls. Five 
heating wires of 2 kW each pass reciprocally 
through these holes and the ends of the wires are 
linked with the connector outside the furnace 
case. One opening brick is put on each end of the 
chamber bricks for protection.

Siliceous aluminum refractory fiber is used 
as the thermal insulation layer and fills up the 
area between the chamber brick and the case 
structure.

In addition, two short steel channels are 
welded beneath both ends of the case and four 
rings are welded on top of the case for install-
ing and hanging the case easily. The connector of 
the heating wires is located on the upper part on 
the side surface of the case, and electrical power 
is also connected to it. Seven holes for measur-
ing temperature are located on the bottom of the 
case along its central line, and the thermocouples 
can be inserted into these holes.

A simple electrical circuit with relay is used 
in the temperature control box, and electrical 
power is connected to the experimental furnace 
through the control box (Fig. 8-1). When electri-
cal power is switched on, the furnace is electrified 
and heated continuously if the feedback temper-
ature signal of the thermocouple is lower than 
the predetermined value. The electricity supply 
stops immediately if the predetermined value is 
reached, or the furnace is electrified and heated 
again if the temperature in the chamber is lower 
than the predetermined value by the permissible 
tolerance.
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Although the experimental furnace and the 
temperature control box are manufactured 
separately, they are used together to measure 
the curves of elevation and for keeping the tem-
perature at every thermocouple in the furnace 
constant. It has been demonstrated that the 
temperature is uniformly distributed within the 
middle section of the furnace, and the tempera-
ture–time curves measured from various experi-
ments are stable and reproduce well (Fig. 8-4).

The specifications of the thermal behavior of 
the complete experimental device is as follows: 
the maximum cross section of the specimen is 
100 mm × 200 mm, the length of the experimen-
tal section with high temperature is 900 mm, the 
maximum temperature may reach 1000 °C, the 
maximum heating velocity is 20 °C/mm, the con-
trol accuracy of constant temperature is within 
±20 °C, and the temperature on the outer surface 
of the furnace case is less than 60 °C after heat-
ing for 5 h.

8.2  MECHANICAL BEHAVIOR 
AT ELEVATED TEMPERATURE

8.2.1  Testing Method and Specimens

When a reinforced concrete continuous beam 
or frame beam is being considered, the positive 
bending moment occurs in the middle part of the 
span and the negative bending moment occurs 
near the support. If three surfaces of the beam 
are exposed to a high temperature during a fire 
accident, the tension zone of the section within 
the middle part of the span and the compression 
zone of the section near the support are exposed 
to high temperature. Even if the section and the 
reinforcement along the beam are the same, the 
thermal behavior of these two sections differ 
considerably.

Beams with the tension and the compression 
zones exposed to high temperatures have differ-
ent experimental and loading methods (Figs. 8-1 
and 8-2). The specimens for both conditions have 
to be designed and manufactured separately, and 
the sizes and construction are shown in Fig. 8-5. 
The strengths of concrete and longitudinal rein-
forcements of the specimen at room temperature 
are listed in Table 8-1.

The mechanical behavior of a beam specimen 
at different temperatures is measured under the 
path of loading under constant temperature, and 
the method and procedure are as follows: the 
specimen is manufactured and cured for 28 days, 
kept in the laboratory and tested after aging for 
60 days, the specimen is installed, and the longi-
tudinal, transverse, and vertical positions of the 
experimental furnace are adjusted to place the 
experimental part of the specimen in the mid-
dle of the furnace. Various transducers are set 
up and connected to the measuring instrument, 
the experimental furnace is electrified and the 
specimen is heated; the supports of the specimen 
permit free expansion deformation. When the 
temperature in the chamber reaches the predeter-
mined temperature (20–950 °C) and is held for 
10 min, the specimen is loaded continuously until 
failure, i.e., loss of bearing capacity. In the mean-
time, the data on the temperature in the chamber, 
and the temperature, load, and deformation of 
the specimen are measured and recorded.

The thermocouples are fixed into the cham-
ber of the furnace and the interior of the speci-
men, and can measure the temperatures and their 
variation at the corresponding places during the 
heating and loading process. Using these data, the 
vertical and transverse temperature distributions 
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  TABLE 8-1       Strength of Specimens at Room Temperature

Specimen Concrete fcu (MPa)

Longitudinal reinforcement

Diameter (mm) fy (MPa)

Tension zone exposed to a 
high temperature

29.45 10 270

Compression zone exposed 
to a high temperature

39.20 12 310
on the middle section of the specimen at different 
times can be obtained (Fig. 8-6).

The maximum temperature occurs on the bot-
tom and both side surfaces for a beam specimen 
with three surfaces exposed to high temperature, 
but it is slightly lower than that of the chamber, 
and the temperature on the side surface decreases 
gradually from bottom to top. Therefore, the tem-
perature on the section is not uniformly distributed 
along both vertical and transverse directions. The 
temperature gradient within the range 20–30 mm 
of the outer layer of the section is high, but the 
temperature variation in the interior of the sec-
tion is small. During the initial stages of heating, 
the temperature is not very high (e.g., <400 °C), 
but the temperature gradient in the outer layer 
is much greater, although it decreases gradually 
later. The top surface of the specimen does not 
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come in direct contact with the high temperature 
and has the lowest temperature. However, as the 
heating time continues and the temperature in 
the interior of the specimen increases, the tem-
perature on the top surface also elevates gradu-
ally, because the heat being transferred to the top 
surface exceeds that transferred to the air. When 
the temperature (T) in the chamber of the experi-
mental furnace is <600 °C, the temperature on 
the top surface is <80 °C. When the experimental 
temperature reaches 950 °C, the temperature on 
the top surface may reach 200–300 °C.

Under the same heating conditions, beams with 
tension and the compression zones exposed to high 
temperature have the same temperature field on 
their sections, but the mechanical behavior differs 
considerably. The existing experimental investiga-
tions[8-6–8-10] were conducted for the beams with 
compression zone exposed to high temperatures.

8.2.2  Beam with Tension Zone 
Exposed to High Temperature

Various macroscopic physical phenomena appear 
successively on the reinforced concrete beam 
when the temperature in the chamber of the fur-
nace increases during the heating process. When 
the temperature in the chamber is T = 300 °C, 
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water vapor escapes visibly from the gap between 
the specimen and the inner wall of the furnace. 
When T = 400–500 °C, the quantity of escaping 
vapor reaches a maximum and then decreases 
gradually. When T = 700 °C, no vapor is visible. 
The specimen is weighed after the test is finished 
and the weight loss is 3.1–6.7%.

The color of the surface of a specimen exposed 
to high temperatures varies as the temperature in 
the chamber elevates, and is similar to that of the 
cubic concrete specimen (Table 1-2), i.e., it is gray 
at room temperature, and turns gray-white, dark 
red, and red successively. After the test is finished 
and the specimen cools down, various damage 
phenomena, e.g., cracks, loosening, surface loss, 
and corners and edges spalling off and broken, 
are obvious on the surface of the concrete, and 
the level of this damage depends on the maxi-
mum temperature the specimen has reached. In 
addition, the changes to the surface and diameter 
of the reinforcement can be visible from the wide 
crack near the bottom of the beam.

A beam with the tension zone exposed to high 
temperatures experiences two testing stages: 
freely heating and loading under constant tem-
perature. The measured bending moment– 
curvature curve of the section within the pure 
bending part in the middle of the beam is shown 
in Fig. 8-7. The heating process before loading 
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the specimen causes curvature of the section and 
the deformation of the beam is convex toward 
the direction of high temperature, which is taken 
as a positive value, because of the nonuniformly 
distributed temperature and different thermal 
strain on the section. This is an initial curvature 
and its value is rather small when T ≤ 300 °C, 
but increases quickly as the temperature elevates 
(T ≥ 400 °C).

When the beam is loaded under constant tem-
perature, the curvature caused by the bending 
moment and the initial curvature caused by the 
temperature are in the same direction (positive 
value), so the deformation of the beam increases 
continuously and is convex toward the direction 
of high temperature. Before yielding tensile rein-
forcement ( < fTy ), the curvature of the beam accel-
erates as the bending moment increases, and the 
slope of the bending moment–curvature curve 
and the stiffness of the beam decrease gradually. 
The higher the experimental temperature of the 
beam, the flatter the bending moment–curvature 
curve and the less stiff it is. When the tensile rein-
forcement in the beam is yielding (fTy ), the bending 
moment–curvature curve turns obviously. The 
curvature then increases sharply as the bending 
moment increases slightly, and the bending pro-
cess and the sudden failing of the beam are appar-
ent to the naked eye. The higher the experimental 
0

1.5

Curvature 1/   (10–4 mm–1)

3.0

4.5

6.0

7.5

0.5

B
en

di
ng

 m
om

en
t M

 (
kN

  m
)

1.0 1.5 2.0 2.5 3.0

850 °C 

600 °C 

500 °C 

400 °C 

300 °C 
20 °C 

200 °C 

FIGURE 8-7  Bending  moment–curvature  relationship  for  a  beam  with  the  tension  zone  exposed  to  a  high  
temperature.[8-5]
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temperature of the beam, the smaller the yielding 
moment (MT

y ) and the shorter the failing process.
The beam is unloaded and cooled down after 

the test is completed, and it shows a noticeable 
flexible failure pattern. The experimental part 
in the middle of the beam is obviously bent and 
the residual deflection is far greater than that of 
the beam at room temperature. The tensile crack 
on the side surface extends up near the top from 
the bottom, and the number of cracks is less but  
the width of the cracks is greater. The height 
and the length of the compressive failure zone of 
concrete are small. The higher the experimental 
temperature of the beam, the wider and longer 
the tensile crack and the smaller the height of the 
compressive failure zone.

The ultimate bending moment of the beam 
with the tension zone exposed to high temper-
ature (MT

u ) is calculated by the maximum load 
measured in the test. The ratio between it and the 
ultimate bending moment of the beam at room 
temperature (Mu) varies with the experimental 
temperature (in the chamber of the furnace) and 
is shown in Fig. 8-8. When the temperature is 
T ≤ 300 °C, the ultimate bending moment of the 
beam is slightly lower than that at room tem-
perature, but it is a little higher at T = 200 °C. 
The ultimate bending moment decreases sharply 
when T ≥ 400 °C, and reaches only about 5% 
of that at room temperature when T = 850 °C. 
The variation regularity of the ultimate bending 
moment of the beam coincides with that of the 
yield strength of the reinforcement at elevated 
temperatures (fTy , Fig. 4-5).

The variation in the ultimate bending moment 
of the beam with the tension zone exposed to 
high temperature with the experimental temper-
ature (T, °C) can be simulated by the following 
formula:

 
MT

u

Mu
= 1

1 + 55 (T / 1000) 5.6 (8.1)

However, the formula can only be used to rep-
resent the variation regularity of the beam 
described above. When the beam is under other 
conditions, such as different shape and size of the 
section, or type and quantity of reinforcement, or 
temperature–time curve, the values of the param-
eters in the equation have to be calibrated.

The temperature in the beam specimen with 
three surfaces exposed to high temperature 
increases gradually during the heating stage, 
and increases continuously but slightly dur-
ing the loading stage under constant chamber 
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temperature. However, the temperature always 
distributes nonuniformly on its section during 
testing. The tensile reinforcement is located in 
the high temperature zone of the beam, and the 
temperature value is taken as that of the concrete 
adjacent to it, which can be obtained from the 
measured temperature distribution on the section 
(Fig. 8-6). The yield strength of the reinforce-
ment decreases (fTy < fy) before loading due to the 
high temperature. Because the tensile strength of 
concrete at elevated temperatures (fTt ) is lower, 
the tensile force on the section of the beam after 
loading is carried mainly by the reinforcement; 
the stress of the reinforcement (σ) increases with 
the load or the bending moment. When the stress 
reaches the yield strength at elevated tempera-
tures (σ = fTy ), the yield bending moment (MT

y ) 
of the beam is reached and the beam deflects 
sharply, and soon afterward the ultimate bend-
ing moment of the beam (MT

u ) is reached. There-
fore, the ultimate bending moment of the beam 
depends mainly on the yield strength of the ten-
sile reinforcement at elevated temperatures (fTy ).

At the ultimate stage of the beam at elevated 
temperatures, the tensile force of the reinforce-
ment (As , f

T
y ) is small and the height of the 

compressive concrete zone, which is needed 
to maintain the equilibrium conditions of the 
forces, is rather small, because the compressive 
zone is located on the low temperature side and 
the strength of concrete (fTc ) loses less. However, 
the strain of the reinforcement at elevated tem-
peratures is great (Fig. 4-9), so the curvature at 
elevated temperatures and the residual deforma-
tion after unloading and cooling of the beam are 
far greater than that of the corresponding beam 
at room temperature.

When a reinforced concrete beam fails due 
to a diagonal shear crack occurring near its end 
portion, the shear-bearing capacity (Vu) depends 
mainly on the shear span ratio of the load, the 
strength of the concrete (fcft), and the contents 
and strength of the stirrup and longitudinal rein-
forcement of the beam.[0-2] The shear-bearing 
capacity of a beam (VTu ) decreases under the 
action of high temperature. This has been inves-
tigated experimentally by Shi.[1-12] Less stirrup 
(Ф4@160 mm) is set up in the shear span of the 
specimen and the diagonal failure pattern occurs 
after loading at room temperature, but the fail-
ure pattern will change when the specimen is at 
elevated temperatures as follows: bending failure 
in the mid-span and shear failure on the end of 
the specimen occur together when T = 200 °C, 
bending failure occurs in the mid-span only when  
T = 400 °C, diagonal fine cracks appear on the 
end part but without failure signs, and pure bend-
ing failure occurs but no diagonal cracks appear 
on the end part when T ≥ 600 °C.

The shear-bearing capacity of a beam depends 
mainly on the strength of the concrete located on 
the top part and the mid-height of the section, 
and the strength of the concrete there loses less 
because the temperature there is lower. Therefore, 
the decreasing amplitude of the shear- bearing 
capacity of a beam at elevated temperatures is 
smaller than that of the bending-bearing capac-
ity. This causes a change in the failure pattern 
of the beam at elevated temperatures. Generally, 
the relative shear-bearing capacity of a beam is 
greater than the relative bending-bearing capac-
ity (VTu /Vu ≥MT

u /Mu), so its failure pattern is 
controlled by the latter.

8.2.3  Beam with the Compression 
Zone Exposed to High Temperature

The specimen and the loading form in a test of 
a beam with the compression zone exposed to 
high temperatures are different from that with the 
tension zone exposed to high temperatures, but 
the heating–loading process and the measuring 
method of both tests are the same. In addition, the 
physical phenomena occurring during the heat-
ing of the specimen, e.g., escaping water vapor, 
changing color of the concrete surface, and devel-
opment of damage, are similar for both tests.[8-3]

A beam with the compression zone exposed to 
high temperatures also experiences two experi-
mental stages: freely heating and loading under 
constant temperature. The measured bending 
moment–curvature relationship of the section 
within the mid-span of the beam is shown in 
Fig. 8-9.
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When the specimen is heating, the bending 
deformation is convex toward the high tem-
perature zone (i.e., compression zone) because 
the thermal strain there is greater. The curva-
ture of the section increases as the temperature 
elevates and the value is identical to that of the 
specimen with the tension zone exposed to high 
temperature, but the sign is taken as a negative 
one. When the specimen is loaded under constant 
temperature, the curvature caused by the action 
of the bending moment is convex toward the ten-
sion (i.e., lower temperature) zone (positive sign) 
and is opposite to the initial curvature during 
heating.

When the experimental temperature T ≤ 
600 °C, the temperature of the concrete in the 
interior of the specimen section is not yet high 
and the elastic modulus of the concrete reduces 
slightly; the curvature of the specimen increases 
almost linearly with the bending moment. When 
the tensile reinforcement, which is located 
in the low temperature zone, reaches its yield 
strength (σ = fTy ≈ fy), the curvature of the speci-
men increases suddenly, the bending moment 
curvature turns obviously, the deflection of the 
specimen increases quickly, and then the speci-
men fails. When the experimental temperature 
T ≥ 800 °C, the concrete on the outer layer of the 
specimen is seriously damaged, the temperature 
of the concrete in the interior is high, and the 
elastic modulus (ETc ) is lower. When the bend-
ing moment is relatively small (M/MT

u ≤ 0.5), 
the curvature of the specimen increases almost 
linearly. However, the strain of concrete at ele-
vated temperatures increases considerably and 
the curvature accelerates under the action of a 
larger bending moment, so the slope of the bend-
ing moment–curvature curve decreases gradually 
and an arc is formed. After yielding the ten-
sile reinforcement, the specimen deforms con-
tinuously and the tensile crack in the concrete 
expands and extends upward, the compression 
zone reduces gradually, and the ultimate bend-
ing moment (MT

u ) is reached when the concrete in 
the compression zone fails. However, there is no 
obvious turning (yielding) point on the bending 
moment–curvature curve. The ultimate curvature 
of the specimen is rather large, because the peak 
strain (εTp ) of the concrete at elevated tempera-
tures is large.

The deformation of the beam with the com-
pression zone exposed to high temperature is 
convex toward the compression zone (nega-
tive sign) during the initial heating stage, and it 
becomes convex toward the tension zone of low 
temperature (positive sign) at failure. Therefore, 
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the bending moment–curvature curve has to pass 
a point with zero curvature, and the value of 
bending moment at this point varies considerably 
and depends on the experimental temperature 
(Fig. 8-9). However, the deformation at failure 
and the residual deformation after the unload-
ing and cooling of the specimen are both convex 
toward the tension zone of low temperature, and 
the values of the deformations are noticeable and 
may reach 100 mm.

The final failure pattern of the specimen with 
the compression zone exposed to high tempera-
ture is also a flexural one. Compared with the 
specimen with the tension zone exposed to high 
temperature, more tensile cracks appear and dis-
tribute uniformly on the surface of the tension 
zone of low temperature, and larger height and 
longitudinal length are shown on the failure part 
of the compression zone for the specimen with 
the compression zone exposed to high tempera-
ture. The higher the experimental temperature of 
the specimen, the larger the area of failure on the 
compression zone.

The ratio between the ultimate bending 
moment of the specimen with the compression 
zone exposed to high temperature and that at 
room temperature (MT

u /Mu) varies with the 
experimental temperature and is shown in Fig. 
8-8. When the temperatures are T ≤ 600 °C and 
T = 800 °C, the ratios are MT

u /Mu > 0.9 and 
MT
u /Mu = 0.88, respectively. The reduction in 

the ultimate bending moment of the specimen at 
elevated temperatures is limited. The relative ulti-
mate bending moment (or MT

u /Mu) of the speci-
men with the compression zone exposed to high 
temperature (when T > 400 °C) is several times 
higher than that with the tension zone exposed 
to high temperature and is also far higher than 
the relative strengths of the reinforcement and 
concrete materials at the same temperature 
(fTy /fy , f

T
c / fc, see earlier chapters).

The flexural failure pattern of a reinforced 
concrete beam is controlled by yielding of the 
tensile reinforcement, and its bearing capacity 
at elevated temperatures (MT

u ) depends on the 
tensile force (fTy As) of the reinforcement and the 
length of the internal force-arm of the section 
at the failure state. The bearing capacity of the 
beam with the tension zone exposed to high tem-
perature reduces seriously as the experimental 
temperature increases; the main reason for this is 
that the yield strength of the tensile reinforcement 
at elevated temperatures (fTy ) reduces sharply. 
However, in a beam with the compression zone 
exposed to high temperature, its tensile reinforce-
ment is located on the low temperature zone, and 
it loses less yield strength (fTy ≈ fy). As the strength 
of the compression zone of the concrete at ele-
vated temperatures decreases seriously (fTc = fc), 
the height of the compression zone has to increase 
greatly to satisfy the equilibrium condition, and 
the length of the internal force-arm reduces corre-
spondingly. Therefore, the decreasing amplitude 
of the ultimate bending moment (MT

u ) is limited. 
It is predicted that the ultimate bending moment 
will not reduce much if the beam is at an even 
higher temperature (T > 800 °C).

8.3  MECHANICAL BEHAVIOR 
UNDER DIFFERENT HEATING–
LOADING CONDITIONS

When a real building sustains a fire accident or 
other source of high temperature, the reinforced 
concrete beams and slabs in it may experience 
a complicated variable heating–loading path 
( similar to Fig. 3-1). The behavior of the con-
crete beam at elevated temperatures introduced 
above occurs only when the beam experiences 
an extreme path, i.e., loading under constant 
temperature. The behavior of the beam in differ-
ent thermal conditions or other heating– loading 
paths has to be investigated specially. The behav-
ior of a beam under another extreme path, 
i.e., heating under constant load, and after the 
heating– cooling cycle is introduced in the follow-
ing section.

8.3.1  Path of Heating Under 
Constant Load

The specimen, experimental devices, and mea-
suring method for testing a concrete beam with 
three surfaces exposed to high temperature under 
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the path of heating under constant load[8-11,8-12] 
are the same as those used for the specimen 
under the path of loading under constant tem-
perature. The specimen is installed and its ten-
sion zone is exposed to a high temperature 
(Fig. 8-1). It is loaded at room temperature 
and the level of the load or bending moment is 
P0/Pu =MT

u /Mu = 0–0.72 where Pu and Mu are 
the ultimate load and bending moment, respec-
tively, of the specimen at room temperature. 
Then, the load is maintained constantly and the 
experimental furnace is electrified continuously. 
The temperature of the specimen is elevated and 
the behavior of the specimen deteriorates gradu-
ally. Finally, the specimen fails because its defor-
mation develops out of control. Various data, 
including the maximum (ultimate) temperature 
(Tu, °C) at the failure of the specimen, are mea-
sured and recorded during the testing process.

The macroscopic physical phenomena of the 
specimen occurring in the heating process under 
constant load, such as escape of internal water 
vapor, weight loss, change in the color of the con-
crete on the surface, damage developing on the 
surface, and their variations with the experimen-
tal temperature, are similar to that of the speci-
men under the path of loading under constant 
temperature. No obvious difference is observed 
even for specimens with different initial levels of 
bending moment (MT

u /Mu).
The beam specimen experiences two test-
ing stages, i.e., loading at room temperature 
and heating under constant load. The curva-
ture of the beam caused in the loading stage at 
room temperature is negligible, compared with 
the thermal effect. The curvature of the section 
within the pure bending part in the mid-span of 
the specimen varies within the stage of heating 
under constant load and is shown in Fig. 8-10.

At the beginning of heating the specimen and 
when the temperature T ≤ 300 °C, the curvature 
of the specimen increases slowly and the differ-
ences between various specimens at different 
loading levels are not noticeable, because the 
thermal strain of concrete (εth) is not great and is 
confined by the linear deformation on the section. 
When the temperature T > 300 °C, the curvature 
of the specimen accelerates and the temperature–
curvature curves of various specimens are devi-
ated because of the different levels of the initial 
bending moment (MT

u /Mu). When P0 = 0 (i.e., 
MT
u /Mu = 0) the specimen carries only its own 

weight and its curvature increases quickly with 
the temperature, as the thermal expansion strain 
of concrete accelerates. When the temperature 
elevates and reaches T = 600–800 °C, the cur-
vature of the specimen does not increase rapidly 
again, because the thermal strain of concrete 
ceases (Fig. 2-2) and the temperature gradient on 
the section decreases (Fig. 8-6). For a specimen 
Mu / Mu = 0.0T  
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FIGURE 8-10  Temperature–curvature relationship for a specimen heated under constant load.[8-11]
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carrying a load (P0 ≠ 0), the curvature increases 
very quickly with the experimental temperature, 
because not only the thermal expansion strains 
of concrete and reinforcement increase quickly 
but also the mechanical behavior of the materi-
als deteriorates, i.e., the elastic modulus reduces, 
short time creep at elevated temperatures 
appears, and larger additional deformations are 
caused. The higher the level of the initial bending 
moment of the specimen, the larger the increas-
ing rate of the curvature, and the lower the tem-
perature value the ultimate state reaches when 
the deformation of the specimen is out of control.

The specimen is unloaded and cooled down 
after the testing is completed and the flexural 
failure pattern is observed, i.e., the tensile rein-
forcement yielded in advance and the concrete 
in the compression zone is crushed. The mid-
span part under the high temperature of the 
specimen is obviously bent up and the residual 
deflection is great. The cracks in the tension 
zone extend up and near the top of the speci-
men, and their number is less but their width 
is greater. The height and length of the failure 
part of the concrete in the compression zone are 
both small. These signs of failure are similar to 
those of a specimen under the path of loading 
under constant temperature.

When the specimen under the testing path of 
heating under constant load is loaded initially 
to load (P0), the stress state on the section is 
established correspondingly. Although the 
bending moment of the section of the specimen 
maintains a constant value during the heating 
process (P0 = constant), the tensile stress (σs) of 
the longitudinal reinforcement increases slightly 
because the stress on the section is redistributed 
due to the thermal strain, concrete in the ten-
sion zone is out of work gradually, and the neu-
tral axis on the section moves slightly. In the 
meantime, the temperature of the reinforcement 
increases continuously and its yield strength 
(fTy ) reduces gradually. When the yield strength 
of the reinforcement at elevated temperatures 
is reduced to the stress value on the section at 
that time, the crack on the critical section of 
the specimen develops quickly, the deflection 
(curvature) increases sharply, and the specimen 
fails soon after. Therefore, the ultimate bending 
moment (MT

u ) of the specimen under the path of 
heating under constant load is also the initial 
bending moment, which corresponds to the ini-
tial load (P0).

The experimental results for the ultimate tem-
perature and the bending moment of specimens 
under the path of heating under constant load are 
plotted in Fig. 8-11. The ultimate temperatures of 
the specimens with the higher level of initial load 
(bending moment) (P0/Pu =MT

u /Mu ≥ 0.4) are 
less different (Fig. 8-10), i.e., T = 555–513 °C. 
However, the lower the level of the initial load 
(P0/Pu ≤0.36), i.e., the lower the stress of the 
tensile reinforcement, the higher the temperature 
endured by the specimen.

The comparison of the bearing capacities 
between the beams under the path of heat-
ing under constant load and under the path of 
loading under constant temperature shows (Fig. 
8-11) that the former is always higher than 
the latter. If the initial bending moment of the 
specimen under the path of heating under con-
stant load is at a higher level (MT

u /Mu > 0.4), 
and even the stress of tensile reinforcement of the 
specimen is at a higher level, the specimen fails 
only when the experimental temperature in the  
chamber of the furnace exceeds 500 °C and 
the temperature of the tensile reinforcement in  
the specimen is higher than 300–400 °C, at 
which the yield strength begins to reduce. There-
fore, the ultimate temperature of the specimen is 
certainly higher than 500 °C. However, when the 
experimental temperature T = 300–500 °C, the 
ultimate bending moment of the specimen under 
the path of loading under constant tempera-
ture has already reduced MT

u <Mu. If the initial 
bending moment of the specimen is at a lower 
level MT

u /Mu < 0.4 or the experimental tempera-
ture is higher (T > 550 °C), the ultimate bend-
ing moments and temperatures of the specimens 
under both heating–loading paths are approach-
ing each other. However, the specimen under the 
path of heating under constant load has slightly 
higher values of ultimate bending moment and 
temperature, because the strength of concrete 
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under this path is higher (Fig. 3-5) and the tensile 
reinforcement sustains a shorter time at elevated 
temperatures.

The ultimate temperature (Tu, °C) of a beam 
with the tension zone exposed to high tempera-
ture and under the path of heating under con-
stant load can be simulated by the formula:

 Tu = 470 + 30

MT
u / Mu

 (8.2a)

or

 
MT

u

Mu
= 30

T − 470
(T > 500 °C) (8.2b)

Similarly, the values of the parameters in these 
formulas have to be calibrated for beams of dif-
ferent materials and sections, or different temper-
ature–time curves of heating.

8.3.2  Influence of the Cover 
Thickness of Reinforcement

The ultimate temperature and bearing capac-
ity of a beam with the tension zone exposed to 
high temperature depends mainly on the yield 
strength of the tensile reinforcement at elevated 
temperatures. Because the temperature is distrib-
uted nonuniformly on the section of the beam 
and the temperature gradient of the outer layer 
is high (see Fig. 8-6), the concrete cover thickness 
of the reinforcement determines its temperature 
and has a great influence on the behavior of the 
beam at elevated temperatures.

Beams with different thicknesses of concrete 
cover are tested under the path of heating under 
constant load for comparison and three sur-
faces are exposed to high temperature. All the 
specimens are identical in length, width, effec-
tive depth of the section, and the materials and 
reinforcement construction. However, the thick-
nesses of the concrete covers below and beside the 
reinforcement and the total depth of the section 
are different for various specimens (Table 8-2). 
These specimens are loaded at room temperature 
in advance and the level of the initial bending 
moment is the same, i.e., MT

u /Mu =P0/Pu = 0.411. 
Then, the specimens are heated until the ultimate 
state is reached, when the development of defor-
mation gets out of control.
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  TABLE 8-2       Thickness of the Concrete Cover and Ultimate Temperature of Specimens[8-13]

Specimen 1-1 Specimen 1-2 Specimen 2-2 Specimen 3-2

Total depth of section (mm) 180 180 190 200
Thickness of bottom cover (mm) 10 10 20 30
Thickness of side cover (mm) 10 20 20 20
Ultimate temperature (°C) 540 544 644 663
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FIGURE 8-12  Deflection–temperature curves of specimens with concrete covers of different thickness.[8-13]
These specimens present the same failure pat-
tern, i.e., the specimen fails when the tensile rein-
forcement is yielded at elevated temperatures, the 
crack extends up and near the top, and the con-
crete area of the compression zone is reduced and 
crushed. The specimen, after being unloaded and 
cooled, shows obvious residual flexural defor-
mation and the small number of tensile cracks 
expand widely.

The deflection at the mid-span of the speci-
men varies during testing under the path of 
heating under constant load and is shown in 
Fig. 8-12. Although specimens 1-1 and 1-2 
have the same thickness of bottom cover (10 
mm) but different thickness of side cover (i.e., 
10 mm and 20 mm, respectively), the measured 
deflection–temperature curves and the values of 
the ultimate temperature of both specimens are 
approaching each other. Because the level of the 
initial bending moment of the specimen is quite 
high (0.411Mu) and exceeds that of the cracking 
bending moment (e.g., (0.2–0.3)Mu normally) 
at room temperature, the cracks existed on the 
tension zone of the specimen before heating. The 
thickness of the bottom cover of the reinforce-
ment is small and has greater influence on the 
temperature value of the reinforcement. If only 
the thickness of the side cover of the reinforce-
ment is increased, its temperature cannot be 
reduced effectively and the behavior of the beam 
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at elevated temperatures cannot be improved 
effectively.

The thicknesses of both the bottom and side 
covers of the reinforcement in specimen 2-2 are 
increased to 20 mm; they are 10 mm for speci-
men 1-1. The deflection at the mid-span of speci-
men 1-1 accelerates when the temperature T ≥ 
300 °C and reaches one-fiftieth of the span length 
at about T = 520 °C. The specimen fails at T = 
540 °C. Correspondingly, the temperatures are 
T ≥ 400 °C, ~630 °C, and 644 °C, respectively, for 
specimen 2-2 when the above phenomena appear 
successively. Obviously, the behavior of specimen 
2-2 at elevated temperatures is improved.

Specimen 3-2 has an even thicker concrete cover 
of reinforcement, and the bottom and side cov-
ers are 30 mm and 20 mm, respectively. Thermal 
deformation develops more slowly, the ultimate 
temperature is slightly higher, and the behavior of 
resisting the high temperature improves less but 
not obviously for specimen 3-2, compared with 
that of specimen 2-2. The main reason for this 
is that the width of the tensile crack is approxi-
mately proportional to the thickness of the con-
crete cover of the reinforcement,[0-2] and the 
temperature of the reinforcement on the cracking 
section does not decrease effectively if the thick-
ness of the concrete cover is increased too much.

Some other experiments[2-6] show that con-
crete may spall off under high temperature. If the 
concrete cover is too thick, the concrete cover of 
the reinforcement in the specimen falls and the 
reinforcement is exposed directly to the high tem-
perature. Therefore, this causes major deteriora-
tion in the behavior of resisting high temperature 
of the structural member. Therefore, the concrete 
cover has to be thickened properly in order to 
improve the thermal behavior of the structural 
member. A thicker concrete cover (e.g., 40–50 
mm) is effective only when the protecting wire is 
put into it.[0-7,2-6]

8.3.3  After a Heating and Cooling 
Cycle

A structure sustaining a fire accident experiences 
at least one cycle of heating and cooling. The 
mechanical behavior of the structure at elevated 
temperatures determines the safety during the fire 
accident, and the residual behavior of the struc-
ture after it is cooled is the main basis to evaluate 
whether the structure can be used again and to work 
out the strengthening measures. The temperature, 
behavior of the materials, deformation, and bear-
ing capacity of the structure under these working 
conditions are different than at room temperature, 
and are also different from each other. Therefore, 
these conditions should not be confused.

The method and device used to test a concrete 
beam under the two working conditions,[8-14] i.e., 
at elevated temperatures and after it is cooled, 
are basically the same (see Figs. 8-1 and 8-2). 
The length and cross section of the specimens 
are 2400 mm and 100 mm × 200 mm, respec-
tively, the compressive strength of the concrete 
at room temperature is fe = 33.0 MPa, the tensile 
and compressive reinforcements are each 2Ф12 
mm, and the yield strength is fy = 234 MPa. 
Four specimens are tested and three surfaces are 
exposed to high temperature. Two specimens 
(HT and HC) are heated to T = 800 °C and the 
temperature is kept constant, then positive and 
negative bending moments are applied, respec-
tively, on the two specimens until their failure, 
corresponding to the conditions of the tension 
zone and the compression zone exposed to high 
temperature, respectively. Two other specimens 
(LT and LC) are also heated to T = 800 °C, but 
the temperature is maintained for 10 min only, 
then the specimens are taken out of the furnace 
and cooled down naturally to room temperature. 
After 16–20 h, positive and negative bending 
moments are applied on the two specimens until 
their failure. The numbers and the measured val-
ues of the yield and ultimate bending moments of 
the four specimens are listed in Table 8-3.

 1.  Beam with the tension zone exposed to high 
temperature

Specimen HT loaded at elevated temperatures 
experiences two stages, i.e., freely heating and 
loading at elevated temperatures; specimen LT 
loaded after it is cooled experiences three stages, 
i.e., freely heating, naturally cooling, and loading 
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  TABLE 8-3       Comparison of the Characteristic Values of the Bending Moments of 
Specimens at Elevated Temperatures and After Cooling[8-14]

Zone exposed to high temperature

Theoretical 
value of speci-
men at room 
temperature

Tension zone Compression zone

At elevated 
temperature After cooling

At elevated 
temperature After cooling

Specimen HT Specimen LT Specimen HC Specimen LC

Yield bending 
moment (kN m)

1.512 7.232 7.295 7.902 9.418

Ultimate bending 
moment (kN m)

3.826 8.514 7.832 8.583 9.835
at room temperature. The initial deformations 
(curvatures) before loading the specimens under 
both working conditions are approaching each 
other (Fig. 8-13); this shows that the recoverable 
deformation of the specimen during the cooling 
process is small.

When specimen HT is loaded at elevated 
temperatures, the deformation caused by the 
bending moment has the same direction (posi-
tive value) as the thermal deformation, the cur-
vature accelerates, and the slope of the bending 
moment–curvature curve (also, the stiffness of 
the specimen) reduces gradually as the bending 
moment increases. When the crack in the ten-
sion zone widens, the tensile reinforcement is 
exposed locally to high temperature (800 °C) and 
its yield strength reduces seriously, and the value 
of the yield bending moment is low. The stress 
of the tensile reinforcement then increases con-
tinuously (Figs. 4-9 and 4-10), and the internal 
force-arm of the section also increases, the tensile 
crack expands, and the neutral axis moves up, 
so the ultimate bending moment of the specimen 
increases considerably and the bending moment–
curvature curve varies correspondingly.

Specimen LT is loaded after it is cooled, the 
concrete is damaged during both the heating and 
the cooling processes, and internal cracks exist 
and are already widespread.[1-14,8-14] When the 
specimen is loaded at room temperature, from 
the beginning until the yielding of the reinforce-
ment, the stiffness of the cross section is nearly 
constant and the bending moment–curvature 
curve is approximately a straight line. After the 
reinforcement reaches its yield strength, the defor-
mation of the specimen increases quickly and the 
ultimate bending moment is soon reached as the 
load increases less (into the descending branch 
of the bending moment–curvature curve). This 
behavior of the specimen is similar to that of the 
beam at room temperature.

Comparing specimen HT loaded at elevated 
temperatures with specimen LT loaded after it is 
cooled, the yield and ultimate bending moments 
are considerably different. The reason is appar-
ent. The reinforcement of the HT specimen is 
at elevated temperatures, so its yield strength 
(fTy ) and the bearing capacity of the speci-
men decrease significantly. However, the yield 
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strength of the reinforcement of the LT specimen 
recovers after cooling, and the bearing capacity 
is reduced slightly compared with the specimen 
at room temperature, because of the reductions 
in the concrete strength of the compression zone 
and the internal force-arm of the cross section. 
Therefore, the bearing capacity of the beam with 
the tension zone exposed to high temperature is 
reduced considerably at elevated temperatures, 
and most of the bearing capacity of the beam 
at room temperature can be recovered after it is 
cooled down to normal temperature.

Although the bending moments at yielding of 
reinforcement and the ultimate state of specimens 
HT and LT are considerably different, the values 
of the corresponding curvatures of both specimens 
are less different (Fig. 8-13). When specimen HT 
is loaded, its deformation is much greater than 
that of the beam at room temperature (Fig. 8-7), 
because the mechanical behavior of the concrete 
and the reinforcement deteriorate, i.e., their elas-
tic moduli reduce, thermal deformation is greater, 
and the crack expands. Although specimen LT 
was cooled down to normal temperature before 
loading and the mechanical behavior of the rein-
forcement has already recovered, the mechanical 
behavior of concrete does not recover and is even 
worse (see Section 1.2.3). In addition, wider cracks 
already exist in specimen LT before loading and 
the characteristic value of its deformation under 
load approaches that of specimen HT at elevated 
temperatures. Therefore, the deformation behav-
ior of a beam with the tension zone exposed to 
high temperature deteriorates seriously and does 
not improve even after it is cooled down.

 2.  Beam with the compression zone exposed to 
high temperature

After specimen HC is heated, the behavior of 
the concrete in the compression zone exposed 
to high temperature deteriorates. The speci-
men is loaded at elevated temperatures and its 
deformation is much greater than that of the 
beam at room temperature. However, the tem-
perature of the concrete in the tension zone is 
lower and the compressive strain of concrete is 
greater at elevated temperatures, so the depth of 
the compression zone on the cross section is great 
and the tensile strain increases slowly. Therefore, 
the cracking bending moment of the specimen is 
quite high (Fig. 8-14). After the specimen cracks, 
its deformation accelerates with the load, the 
deformation increases sharply, and the bending 
moment–curvature curve clearly turns after the 
reinforcement yields. When the bending moment 
increases further but slightly, the ultimate bend-
ing moment of the specimen is reached, and the 
curve then turns into the descending branch.

After specimen LC experiences the heating–
cooling cycle, no crack is found on the top surface 
of tensile concrete, which is located in the lower 
temperature zone. The strength and elastic mod-
ulus of the reinforcement have recovered to nor-
mal values, but the concrete on the compression 
zone is damaged and its behavior deteriorates. 
When the specimen is loaded at room tempera-
ture, its deformation increases approximately 
proportionally to the bending moment, and the 
cracking bending moment is higher than that of 
specimen HC. However, its deformation devel-
ops quickly after the concrete cracks, and the 
tensile reinforcement reaches the yield strength 
and the bending moment–curvature curve turns 
obviously. Then, the curve passes a flat yielding 
step, and turns into a flatter descending branch 
after the ultimate bending moment of the speci-
men is reached.
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for beams with the compression zone exposed to a high 
temperature.[8-14]
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The tensile reinforcement of specimen HC is 
far away from the zone of high temperature and it 
loses less strength; that of specimen LC is at nor-
mal temperature and its strength is slightly higher. 
The concrete strength of the compression zone of 
specimen HC decreases significantly at elevated 
temperatures; that of specimen LC decrease even 
more significantly because it experienced a cool-
ing process after heating. Therefore, the yield and 
ultimate bending moments of both specimens are 
approaching and the difference between them is 
less than 9%, but the bearing capacity of speci-
men LC after it is cooled is slightly higher.

The flexural deformation of the specimen with 
the compression zone exposed to high tempera-
ture is convex toward the compression zone (the 
curvature is taken as a negative value) during 
the heating process and recovers slightly during 
the cooling process, so the thermal deforma-
tions of specimens HC and LC are approaching 
each other before loading. When the specimen 
is loaded, its curvature and bending moment 
have the same direction and take positive values. 
When the tensile reinforcement yields, the ther-
mal deformation of the specimen is not yet can-
celed out and the total curvature is still a negative 
value. It is seen that the thermal deformation of 
a structural member at elevated temperatures is 
very high. The deformation of the specimen then 
increases sharply and the total curvature turns 
into a positive value, i.e., the same direction as 
the bending moment, when the ultimate bending 
moment is reached. The values of the characteris-
tic curvatures of specimen HC loaded at elevated 
temperatures and specimen LC loaded after it is 
cooled are also approaching each other.

 3.  Comparison between beams with the tension 
zone and the compression zone exposed to 
high temperature

The mechanical behavior of beams with the ten-
sion zone (HT) and the compression zone (HC) 
exposed to high temperature is compared in Sec-
tion 8.2.3. When specimens LT and LC, which 
are loaded after cooling, are compared, the 
strengths of the tensile reinforcements of both 
specimens are approaching, but the strength of 
the compressive concrete of the LT specimen 
reduces less because it is located in the zone of 
low temperature. However, concrete strength 
has less influence on the yield and ultimate bend-
ing moments of the specimen, so the character-
istic bending moments of both specimens are 
approaching (Table 8-3). This means that the 
residual bearing capacities of the parts with the 
positive and negative bending moments within 
the structural member are approaching after it is 
cooled.

Comparing Fig. 8-13 with Fig. 8-14, the total 
deformation at the ultimate bending moment of 
the beams (HT and LT) with the tension zone 
exposed to high temperature is several times 
greater than that of the beams (HC and LC) with 
the compression zone exposed to high tempera-
ture. The main reason for this is that the thermal 
and bending moment deformations of the former 
have the same sign and add together, and both 
deformations of the latter have opposite signs 
and are subtractive. If the deformation caused 
only by the bending moment of the specimen 
after loading is compared, the curvature values 
of the four specimens are about 0.1/m with small 
differences.

CONCLUSIONS

When a building structure sustains a fire acci-
dent, a beam with three surfaces and a slab with 
one surface exposed to fire are the most common 
working conditions. Under these conditions, the 
temperature distributes nonuniformly on the sec-
tion of the structural member, and the difference 
between the temperatures on the top and the bot-
tom of the section is considerable. The member 
or the section of a member bearing a positive 
bending moment is the condition of the tension 
zone exposed to high temperature; that bearing a 
negative bending moment is the condition of the 
compression zone exposed to high temperature. 
The bearing capacity and deformation of both 
conditions are considerably different.

Under the path of loading under constant 
temperature, the ultimate bearing capacity of 
a beam with the tension zone exposed to high 
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temperature deteriorates significantly, because 
the yield strength of the reinforcement decreases 
sharply at elevated temperatures. The reducing 
amplitude of the bearing capacity is similar to 
that of the strength (fTy /fy) of the reinforcement. 
The strength of the reinforcement recovers after 
the beam is cooled down and most of the bearing 
capacity of the beam can also be recovered. The 
bearing capacity of the beam with the compres-
sion zone exposed to high temperature decreases 
less, because the compressive strength of con-
crete reduces and the internal force-arm of the 
section decreases at elevated temperatures. How-
ever, the bearing capacity of the beam undergoes 
limited recovery after it is cooled down, because 
the compressive strength of concrete cannot be 
recovered.

Under the path of heating under constant 
load, the specimen bearing a high level of ini-
tial bending moment (MT

u /Mu > 0.4) will not fail 
when the temperature is lower than 500 °C, 
and the ultimate temperature-bearing capacity 
exceeds that of the specimen under the path of 
loading under constant temperature. When the 
initial bending moment of the specimen is at a 
lower level (MT

u /Mu < 0.4), the ultimate temper-
ature increases as the initial bending moment 
decreases, and the variation regularity of this is 
similar to, but slightly higher than, that of the 
specimen under the path of loading under con-
stant temperature.

Generally, a concrete beam and slab under 
the action of high temperature fail in a flexural 
pattern, which is controlled by the yielding of 
the reinforcement. The deformation (curvature, 
deflection) values of the structural member dur-
ing heating and loading at elevated temperatures 
are far greater than at room temperature. Defor-
mation develops very quickly after the yielding 
of the reinforcement and then it fails suddenly. 
The residual deformation after it is unloaded and 
cooled down is great and it bends up obviously. 
Flexural cracks appear on the surface of the 
structural member, and the number of the cracks 
is less but they are wider.

The shear resistance capacity of a concrete 
beam also reduces as the temperature increases, 
but the reducing amplitude is smaller than 
that of the bending moment resistance capac-
ity. Therefore, if a structural member fails in a 
shear pattern at room temperature, it will fail 
in a flexural pattern at elevated temperature. 
The concrete cover of the reinforcement in a 
beam can effectively reduce the temperature of 
the reinforcement during a fire accident. When 
the thickness of the concrete is increased prop-
erly, the thermal resistance capacity of the struc-
tural member is improved. If the concrete cover 
is too thick, it may spall off and fall when a 
fire accident occurs. The reinforcement is then 
exposed directly to high temperature, which is 
unfavorable.
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C H A P T E R

9
Behavior of Compressive Members 
at Elevated Temperatures
Usually, reinforced concrete columns and walls 
simultaneously bear the actions of the bend-
ing moment and axial compression. Normally, 
reinforced concrete beams and slabs bear only 
the bending moment under the action of load, 
but they also bear the additional action of axial 
force, when their longitudinal thermal defor-
mation is constrained by a support member 
or an adjacent structure during a fire accident. 
These structural members are called eccentric 
compressive members or compressive–flexural 
members.

When a building sustains a fire accident, four, 
three, two, or one surfaces of the rectangular 
cross section of an eccentric compressive member 
may be exposed to high temperature, depending 
on its position. As for the central and eccentric 
compressive concrete members with peripheral 
surfaces exposed to fire, many experimental 
investigations have been reported, mostly involv-
ing fire endurance tests on prototype members 
using a large furnace.[9-1,9-2]

During a fire accident, three or one surfaces 
of a column are connected to the wall and a 
beam with a flange and wall exposed to fire; 
the two adjacent surfaces of a corner column 
in a room and a beam connected to the wall 
underneath are exposed to fire. These struc-
tural members are used commonly in buildings. 
Their thermal behavior is more complicated 
and is the main topic discussed in this chapter. 
A structural member with peripheral surfaces 
exposed to fire may be regarded as a special 
example.
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9.1  CENTRAL COMPRESSIVE 
COLUMN WITH THREE SURFACES 
EXPOSED TO HIGH TEMPERATURE

9.1.1  Testing Method and Contents

The experimental devices and methods for test-
ing a compressive concrete member at elevated 
temperatures[9-3,9-4] are basically the same as for 
flexural members (see Fig. 8-1). The heating and 
temperature control system and the data mea-
surement and acquisition system can be used 
directly; only the support and loading system for 
the specimen have to be modified.

The vertical testing method (Fig. 9-1) is used 
for a central compressive column in order to 
avoid the influence of its weight on lateral dis-
placement. The specimen is supported on the 
working table (or steel beam) of the 2000-kN 
hydraulic testing machine. Both ends of the spec-
imen are in contact with knife hinges, making 
the acting point of the axial compression clearer. 
The experimental furnace (Fig. 8-3) is placed 
vertically on the work table of the test machine, 
and kept in the correct position relative to the 
specimen. The elevating temperature curve of the 
furnace is the same as in Fig. 8-4.

The size and the construction of the central 
compressive specimen are shown in Fig. 9-2. 
The specimens are made, cured, and stored in 
the laboratory for 60 days before the start of the 
test. The prismatic compressive strength of the 
concrete is fc = 27.2 MPa when testing the speci-
men, and the yield strength of the longitudinal 
reinforcement is fy = 340 MPa.
rced Concrete at Elevated Temperatures
lished by Elsevier Inc. All rights reserved.
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Figure 9-1  Scheme for central compression testing.
The testing procedure for the central compres-
sive specimen is the same as that for the beam 
specimen (see Section 8.2.1). The temperature–
load conditions tested include loading at con-
stant temperature, heating under constant load, 
and a heating–cooling cycle. The temperature 
distributions in the furnace chamber and in the 
interior of the specimen, the ultimate tempera-
ture and load-bearing capacity, the lateral deflec-
tion at mid-span, and the axial deformation of 
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Figure 9-2  Specimen for central compression testing.[9-3]
the specimen are measured during the test. The 
measurement points are shown in Fig. 9-1.

Various macroscopic physical phenomena 
observed during the process of elevating the tem-
perature of the compressive specimen are the 
same as those for the beam specimen (see Sec-
tion 8.2.2), such as escape of water vapor, weight 
loss, change in the color of the surface, and dam-
age to the surface layer (cracking, loosening, and 
spalling off). As the experimental furnace is set 
up vertically, the heating wire softens and its coil 
droops after the wire is electrified and its temper-
ature is elevated. Therefore, the temperature in 
the lower part of the furnace chamber is slightly 
higher than in other parts,[9-3] but the tempera-
ture in the main testing part in the middle of the 
specimen changes less. The mechanical behavior 
of the specimens tested under different temper-
ature–load paths is discussed in the following 
sections.

9.1.2  Mechanical Behavior 
at Elevated Temperatures

The mechanical behavior of the central compres-
sive specimens at different temperatures is tested 
under the path of loading at constant tempera-
ture. After the specimen is set up, the experi-
mental furnace is electrified and heated to a 
predetermined temperature (the maximum value 
is 950 °C) and the temperature is kept constant 
for 10 min; then the testing machine is started 
and the specimen is loaded until failure.

The central compressive specimen experiences 
two successive stages: freely heating and load-
ing at constant temperature. The specimens are 
tested at different temperatures (in the furnace 
chamber); the lateral deflection at mid-span and 
the axial deformation vary with the axial force 
and are measured during the testing as shown 
in Fig. 9-3. The measured curves of the rotation 
angle at the end of the specimen are similar.[9-3]

During the freely heating stage, three surfaces 
of the specimen section are heated and the tem-
perature distributes nonuniformly in the inte-
rior of the specimen. The flexural deflection is 
convex toward the surface of high temperature 
(which is taken as a positive value), because the 
expanding strain of concrete (εth) on this surface 
is larger. In the meantime, the average expand-
ing strain of the specimen section causes axial 
elongation (which is taken as a negative value). 
Both the lateral deflection and axial deformation 
increase with the testing temperature. When the 
experimental temperature T ≤ 200 °C, the tem-
perature in the interior of the specimen is even 
lower and the temperature gradient is small, so 
the deformation of the specimen is small. When 
the temperature T > 400 °C, the thermal strain 
of concrete increases quickly and the tempera-
ture gradient on the section also increases, so the 
deflection and axial deformation of the specimen 
develop rapidly. After the temperature reaches T 
> 700 °C, the thermal strain of concrete stagnates 
(Fig. 2-2), although the temperature inside and 
outside the specimen increases continuously, so 
the temperature gradient on the section reduces 
(Fig. 8-6) and the deformation rate of the speci-
men decreases. When the experimental tempera-
ture is 900 °C, the lateral deformation and axial 
elongation of the specimen are measured to be 
about 7.7 mm and 9.0 mm, respectively.

During the stage of loading at constant tem-
perature, the temperature on the section of the 
specimen distributes nonuniformly, and the 
loss of elastic modulus and strength of concrete 
are correspondingly different. Even when the 
specimen is acted on by a central force and the 
compressive stress on the section distributes uni-
formly, the strain still develops nonuniformly on 
the section, i.e., the compressive strain on the 
high temperature side is larger and that on the 
low temperature side is smaller. So, the deflection 
caused is convex toward the surface of low tem-
perature and is opposite to that caused during 
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Figure 9-3  Deformation of a central compressive column with three surfaces exposed to high temperature[9-5]: (a) lateral 
deflection at mid-span; (b) axial deformation.
heating. For a specimen tested at a temperature 
T ≤ 400 °C, the lateral deflection caused by the 
axial force is small because the internal tempera-
ture of the concrete is lower and the loss of the 
material behavior is limited. The deflection of the 
specimen at the ultimate axial force (NTu ) is still 
convex toward the high temperature side (posi-
tive value) and the thermal deflection caused dur-
ing heating has not yet been canceled out. The 
concrete on the low temperature side fails first 
because of lower peak strain (εTp , Fig. 2-5) and the 
axial force enters the descending branch. Then 
the specimen is flexed continuously toward the 
high temperature side. As for the specimen tested 
at a temperature T ≥ 600 °C, the lateral deflec-
tion caused by the axial force is large because the 
internal temperature of the concrete is high and 
the material behavior deteriorates enormously. 
The deflection of the specimen at the ultimate 
axial force (NTu )  becomes convex toward the low 
temperature side (negative value) and the thermal 
deflection caused during heating has been can-
celed out. The concrete on the high temperature 
side fails first and its strain increases consider-
ably, the load carrying capacity of the specimen 
reduces, and the lateral deflection is continuously 
convex toward the low temperature side and 
develops considerably.

Therefore, all the specimens with three sur-
faces exposed to high temperature fail with 
the pattern of smaller eccentricity, but the final 
deflection may be convex toward the high tem-
perature or low temperature side, and this 
depends on the value of the experimental tem-
perature (see Fig. 9-5). After the failed specimen 
cools down, the residual flexural deformation is 
apparent. Greater height and longitudinal length 
of the compressive failure zone are seen on the 
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concave side, but some fine and short transversal 
tensile cracks are seen on the convex side.

The axial deformation of the specimen is elon-
gation (negative value) during the stage of freely 
heating and contraction (positive value) caused 
by the axial force. When the specimen is tested 
at the experimental temperature T ≤ 400 °C, the 
initial thermal expanding deformation is small 
and the stiffness reduces slightly; the compressive 
deformation caused at ultimate strength NTu  can-
cels out the expanding deformation and the total 
deformation is contraction. The compressive 
deformation develops more quickly as the axial 
force decreases. When the specimen is tested 
at the experimental temperature T ≥ 600 °C, 
the stiffness reduces obviously as the tempera-
ture increases, so larger compressive deformation 
occurs after loading. However, the total defor-
mation at ultimate strength NTu  is still elongation, 
because the initial value of the thermal expanding 
deformation also increases with the experimental 
temperature. The concrete on the high tempera-
ture side fails first and the axial force enters the 
descending branch; the axial compressive defor-
mation develops rapidly and turns, finally, into 
contraction.

The ultimate strength NTu  of the central com-
pressive specimen with three surfaces exposed to 
high temperature reduces monotonically as the 
experimental temperature increases (Fig. 9-4), 
but the variation regularity is obviously differ-
ent from that of the compressive strength of  
concrete material (see Fig. 2-7). When the 
specimen is tested at an experimental temper-
ature T ≤ 400 °C, the ultimate axial force is 
obviously lower than that of the central com-
pressive member at normal temperature. It is 
actually an eccentric compressive condition 
and the initial eccentricity of the axial force is 
the thermal deflection caused during the heat-
ing stage, although the internal temperature of 
the concrete is not high and strength loss of the 
concrete is limited. When the specimen is tested 
at a higher temperature (≥600 °C), the ultimate 
axial force reduces continuously, as the mechan-
ical behavior of concrete and reinforcement is 
damaged significantly and the initial eccentricity 
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caused during the heating stage increases. How-
ever, the ultimate axial force of the specimen 
tested at the highest experimental temperature 
(950 °C) is about 30% of that at normal temper-
ature, and this ratio is apparently much higher 
than the residual strengths (<10%) of concrete 
and reinforcement materials at the same experi-
mental temperature. The main reason is that the 
specimen experiences only a short time (about 
2.5 h) at high temperature, so the internal tem-
perature is lower and the average strength of the 
material is higher.

When a specimen with three surfaces exposed 
to high temperature is tested, the lateral deflec-
tion, i.e., the initial eccentricity of the axial force, 
is formed after the heating stage and additional 
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eccentricity is caused during the stage of loading 
at constant temperature, and the total eccentric-
ity and the ultimate bending moment at the ulti-
mate axial force (NTu ) are eTu  and MT

u =NTu · eTu , 
respectively. The values change from positive 
(deflection convex toward the high temperature 
side) to negative (deflection convex toward the 
low temperature side) as the experimental tem-
perature increases; the variable processes are 
shown in Fig. 9-5. Therefore, although the axial 
force of the specimen acts on the geometric cen-
ter of the initial section and acts on the geometric 
center of both end sections after testing, addi-
tional eccentricity and larger bending moments 
are caused on the mid-span section and the asym-
metrical failure pattern of smaller eccentricity is 
finally formed because the temperature distrib-
utes nonuniformly on the section and the thermal 
strain and mechanical behavior of the materials 
are inhomogeneous.

9.1.3  Mechanical Behavior 
Under the Path of Heating Under 
Constant Load

When a central compressive specimen with three 
surfaces exposed to high temperature is tested 
under the path of heating under constant load, 
the experimental device and the method used are 
the same as previously (Fig. 9-1) but the testing 
procedure is different. The initial central force 
(N0 /Nu =NTu /Nu = 0.3 , 0.5) is applied first to 
the specimen at normal temperature and kept 
constant, then the experimental furnace is electri-
fied and heated continuously until deformation 
of the specimen is out of control and the bear-
ing capacity is exhausted. The value of the ulti-
mate temperature (Tu) is measured and the test 
is complete.

The lateral deflection and axial deformation of 
the central compressive specimen with three sur-
faces exposed to high temperature and under the 
path of heating under constant load are shown 
in Fig. 9-6. A central load is applied to the speci-
men at normal temperature and the lateral deflec-
tion is zero. When the experimental temperature 
T < 500 °C, the temperature distributes nonuni-
formly on the specimen section during the stage 
of heating under constant load. Larger expand-
ing strain occurs on the high temperature side 
and the deflection of the specimen is slightly con-
vex toward the same side (positive value). But the 
temperature in the interior of the concrete is not 
high and the deterioration level of the material 
is low, so the deflection of the specimen is small. 
When the experimental temperature T > 600 °C, 
the behavior of the concrete and the reinforce-
ment deteriorates rapidly and the deformation 
of the specimen is considerable. The compressive 
strain on the high temperature side is obviously 
greater than that on the low temperature side; the 
total deflection of the specimen converts gradu-
ally to become convex toward the low tempera-
ture side (negative value) and increases quickly. 
When the ultimate temperature is approached, 
the reinforcement on the high temperature side 
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Figure 9-6  Deformation of a central compressive specimen with three surfaces exposed to high temperature and under 
the path of heating under constant load: (a) lateral deflection at mid-span; (b) axial deformation.
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yields under compression and the strain of the 
concrete and deflection of the specimen increase 
quickly, and the specimen soon fails. The final 
failure pattern of the specimen is the same as that 
for the specimen tested under the path of loading 
at constant temperature. The residual flexural 
deflection is apparent and is convex toward the 
low temperature side. Larger compressive failure 
areas are shown on the concave side and a few 
fine and short transverse cracks appear on the 
convex side.

The central compressive force is applied on 
the specimen at normal temperature; the con-
traction deformation (positive value) occurs 
with a small value in the axial direction. The 
deformation converts to axial elongation (nega-
tive value) during the process of heating under 
constant load, as the concrete expands with the 
elevating temperature. But the elongation defor-
mation increases slowly because of the restraint 
of compressive stress in concrete (see Fig. 3-9). 
When the experimental temperature is higher 
than 600–700 °C, depending on the level of 
axial compression (N0/Nu), the behavior of the 
concrete and reinforcement deteriorates dra-
matically and the compressive strain increases 
considerably. Then, the axial deformation con-
verts again to contraction (positive value) and 
develops rapidly until the ultimate temperature 
is reached and the specimen fails.

Central compressive force is applied to the 
specimen at normal temperature and the strain 
and stress distributed on its section are uni-
form. During the process of heating under 
constant load, the temperature distributes non-
uniformly on the section and the thermal strain 
and mechanical behavior of the material are no 
longer homogeneous, so a flexural deformation 
is formed and an additional eccentricity is caused 
on the middle part of the specimen. Although 
the central force applied is kept unchanged, the 
uniformly distributed stress on the section can 
no longer be maintained and stress redistribu-
tion has to occur continuously, but the resultant 
stress on the section has to maintain balance 
with the axial force throughout. When the ulti-
mate temperature of the specimen is reached, the 
compressive strength of the concrete at elevated 
temperatures (fTc ) on part of the section reduces 
to the value of the stress actually acted; the defor-
mation of the specimen increases sharply and the 
specimen fails (see Fig. 11-9).

The measured values for the ultimate temper-
ature-bearing capacity of the central compressive 
specimen with three surfaces exposed to high 
temperature and under the path of heating under 
constant load are plotted in Fig. 9-4, and they 
are above the connecting line for the measured 
values of the specimens tested under the path of 
loading at constant temperature. It shows that 
the former has the advantage of the behavior of 
resisting high temperature. The indices for the 
main behavior at the ultimate conditions of the 
specimens tested under both paths are compared 
in Table 9-1.

When the specimen tested under the path of 
heating under constant load reaches the ultimate 
temperature (Tu), the ultimate central force is 
greater than that of the specimen tested under 
the path of loading at constant temperature. If 
the additional eccentricity that exists practically 
is considered, the ultimate bending moments 
make a bigger difference. Furthermore, the 
higher the level of the initial axial force (NTu /Nu), 
the more advantage the previous one has. This 
conclusion agrees with the comparison of the 
behavior of beams with three surfaces exposed 
to high temperature under both testing paths 
(see Fig. 8-11). In addition, the signs of axial 
deformation of the specimens under both paths 
are just the opposite. Obviously, these compari-
sons reflect the behavior difference of concrete 
material under both testing paths (see Fig. 3-5 
and Fig. 3-9).

The specimen is unloaded and cooled down 
to room temperature after the end of testing 
under the path of heating under constant load, 
and then the axial compressive force is applied 
again on the center of both end sections. As the 
larger eccentricity, i.e., residual lateral deflec-
tion already exists at the mid-span section, the 
residual ultimate bearing (capacity) of the speci-
men is far lower than that at high temperature 
(Table 9-1).
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  TABLE 9-1      Comparison of the Mechanical Behavior at Ultimate Conditions of Central 
Compressive Specimens Tested Under Different Heating–Loading Paths

Testing path
Specimen 
number

Temperature 
Tu (°C)

Central 
force 
NT

u (kN)

Lateral 
deflection 
eT

u (mm)

Ultimate 
bending 
moment 
MT

u (kN m)

Axial  
deformation 
(mm)

Ultimate 
load 
after 
cooling 
(kN)

Loading under 
constant 
temperature

T8N 850 222.9 −7.30 −1.627 −2.4 —

Heating under 
constant 
load

N5T 840 300.0 −14.33 −4.299 +4.2 133

Loading under T9N 950 178.1 −12.07 −2.150 −3.1 —
constant 
temperature

Heating under 
constant 
load

N3T 965 180.0 −19.62 −3.532 +2.4 126

Lateral deflection, i.e., eccentricity at the mid-span section, is taken as a negative value when it is convex toward the low temperature 
side. Axial deformation of elongation is taken as a negative value and that of contraction is taken as a positive value.
9.2  ECCENTRIC COMPRESSIVE 
COLUMNS WITH THREE SURFACES 
EXPOSED TO HIGH TEMPERATURE

9.2.1  Testing Method and Contents

The experimental device and the method used to 
test the eccentric compressive specimen with three 
surfaces exposed to high temperature are the same 
as for the flexural member at elevated tempera-
tures (see Fig. 8-1), but the support and loading 
systems are different (Fig. 9-7). The experimental 
furnace (see Fig. 8-3) is placed horizontally and 
suspended using four adjustable bolts located at 
the top corners, in order to conveniently adjust its 
vertical and horizontal positions. The specimen 
is also placed horizontally and two roller sup-
ports are used temporarily at both ends, which 
do not obstruct free thermal deformation of the 
specimen. The hydraulic jack is fixed on the block 
support and exerts a horizontal load on the speci-
men through a spherical hinge on the front and a 
knife hinge at other end of the specimen. When 
the load reaches about 5 kN, the roller supports 
are moved away and the load acts continuously 
and equally until the specimen fails.

The size and construction of the specimen 
are shown in Fig. 9-8. The cross section in the 
middle of the specimen is 100 mm × 200 mm 
and is reinforced symmetrically. There are two 
corbels at both ends of the specimen, which are 
used to apply the eccentric load and prevent local 
failure of the concrete under compression. The 
specimens are produced in batches[8-3,9-3,9-6] and 
the concrete is aged for 60 days before testing. 
At normal temperature, the cubic and prismatic 
compressive strengths of the concrete in the test-
ing area are fcu = 32.7–38.8 MPa and fc = 26.0–
28.8 MPa, respectively, and the yield strength of 
the longitudinal reinforcement is fy = 340 MPa.

The initial eccentricity e0 of the load acting on 
the specimens with three surfaces exposed to high 
temperature is from +0.6h to −0.6h, and the pos-
itive and negative values represent, respectively, 
the loading point at the low temperature side (or 
positive bending moment and the tension zone 
exposed to high temperature) and at the high 
temperature side (or negative bending moment 
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Figure 9-7  Scheme for the experimental device for an eccentric compressive specimen with three surfaces exposed to 
high temperature.[9-6]
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and the compression zone exposed to high tem-
perature). In addition, the flexural members with 
the tension and the compression zones exposed 
to high temperature (Chapter 8) correspond to 
the eccentricities e0 = +∞ and −∞, respectively.
The testing procedure for the eccentric com-
pressive specimen at elevated temperatures is 
the same as for the flexural and central com-
pressive specimens. The heating–loading condi-
tions tested also include the path of loading at 
constant temperature, the path of heating under 
constant load, and a heating–cooling cycle. The 
macroscopic physical phenomena observed and 
the contents (including the temperature distribu-
tion on the section) measured during the test-
ing process are also the same as or approximate 
to that of the flexural and central compressive 
specimens.

9.2.2  Deformation at Elevated 
Temperatures

The eccentric compressive specimen with three 
surfaces exposed to high temperature and 
under the testing path of loading at constant 
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temperature also experience two stages: freely 
heating and loading at constant temperature. 
The variation curves for lateral deflection at mid-
span and axial deformation of the specimens are 
shown in Fig. 9-9.

During the freely heating stage, the curvature 
and lateral deflection (positive values) of the spec-
imen are convex toward the high temperature 
side and are caused by the elevated temperatures 
acting on three surfaces, and axial elongation 
deformation (negative value) is also caused. The 
deformation values of the specimen (length 1440 
mm) at different testing temperatures are listed in 
Table 9-2; they develop rapidly at elevated tem-
peratures and their values are considerable.

During the stage of loading at constant tem-
perature, the variation in deflection at the mid-
span of the specimen depends mainly on the 
eccentricity of the load. When the eccentricity  
e0 > 0.2h, the high and the low temperature 
zones of the section are stretched and shortened, 
respectively. Thus, the curvature of the section 
has the same sign as that during heating and the 
deflection is convex toward the high temperature 
side and develops continuously under loading. 
As the load on the specimen increases, the crack-
ing of the concrete in the tension zone tends to 
be more serious, the strain of the reinforcement 
increases, the neutral axis moves up, the com-
pression zone on the section reduces, the com-
pressive strain of the concrete also increases, and 
the deflection at the mid-span of the specimen 
develops quickly. When the load approaches and 
reaches the ultimate strength (NTu ) , the reinforce-
ment yields and the crack expands in the tension 
zone with the high temperature, the strain of the 
concrete in the compression zone with the low 
temperature increases considerably, the deflec-
tion of the specimen accelerates, and it leads to 
failure of the specimen. The total deflection (Δ T

u ) 
of the failed specimen is large and after the speci-
men cools down, it is obviously bent and convex 
toward the high temperature side.

When the eccentricity e0 < 0.1h, or the load is 
acted on the high temperature side, the curvature 
of the specimen caused during loading is opposite 
to that caused during heating. Correspondingly, 
as the load increases, the deflection of the speci-
men caused during heating counteracts gradually 
and develops in reverse, i.e., convex toward the 
low temperature side (negative value). When the 
load approaches and reaches the ultimate strength 
(NTu ) , the reinforcement in the tension zone at low 
temperature yields and the strains of the concrete 
and the reinforcement in the compression zone at 
high temperature increase quickly; the deflection 
of the specimen increases suddenly and the speci-
men fails with the pattern of larger eccentric-
ity. Alternatively, the strength of the concrete is 
reached, the reinforcement yields in the compres-
sion zone at high temperature, and the deforma-
tion of the specimen increases quickly, but only a 
few transverse cracks occur in the tension zone at 
low temperature; the specimen fails with a failure 
pattern of smaller eccentricity.

The axial deformation of the specimen with 
three surfaces exposed to high temperature is 
elongation (negative value) during the freely 
heating stage and increases with the test tempera-
ture (Table 9-2). During the stage of loading at 
constant temperature, the axial deformations of 
the specimens tested at 400 °C and 600 °C are 
contraction (positive value). Thus, the elongation 
of the specimen caused during heating is counter-
acted gradually and the total axial deformation 
has converted to contraction when the ultimate 
strength (NTu )  is reached. When the specimen is 
tested at 800 °C and the load eccentricity e0 ≤ 
0.4h, the axial compressive deformation caused 
by the load is not large enough to counteract 
the considerable expanding deformation caused 
during heating, and the total deformation is still 
elongation when the ultimate strength is reached. 
Furthermore, when the load eccentricity e0 = 
0.6h, the bending moment, the area of the tension 
zone, and the strain at elevated temperatures of 
the specimen are greater; the average axial strain 
of the section is elongation during loading and 
has the same sign as the strain during heating, 
so the axial elongation of the specimen develops 
continuously. Therefore, the value of axial defor-
mation of the specimen at ultimate strength (NTu )  
varies considerably with the test temperature and 
the load eccentricity.
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Figure 9-9  Lateral deflection and axial deformation of an eccentric compressive specimen with three surfaces exposed 
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  TABLE 9-2      Deformation of a Specimen After Free Heating[9-7–9-9]

Testing temperature (°C) 400 600 800

Lateral deflection at mid-span (mm) 2.2 to 3.0 5.5 to 6.8 7.2 to 8.5
Axial deformation (mm) −1.4 to −2.1 −2.0 to −3.0 −6.0 to −7.0
–0.6 –0.4

400 °C
600 °C
800 °C 10
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Figure 9-10  Deflection at the mid-span of a specimen at ultimate strength: (a) total deflection at mid-span; (b) deflec-
tion caused during loading.
The total deflection of the specimen at ulti-
mate strength (NTu )  is also an additional eccen-
tricity (Δ T

u ) of the axial load, and it varies with 
the test temperature and the initial load eccen-
tricity as shown in Fig. 9-10(a). When the initial 
load eccentricity moves from +0.6h to −0.6h, the 
ultimate deflection of the specimen (Δ T

u ) reduces 
gradually and converts from being convex toward 
the high temperature side to convex toward the 
low temperature side. The ultimate deflection 
varies greatly when | e0 |< 0.2h, but tends to 
converge gradually when | e0 |> 0.4h. The varia-
tion regularity of the ultimate deflection of the 
specimen is similar when the testing temperature 
T = 400–800 °C, and the absolute value of the 
deflection increases with the test temperature.

The ultimate deflection (Δ T) of the specimen 
minus the deflection occurring during the heating 
stage (Δ T

u ) is the deflection caused by the load 
(NTu )  applied during the stage of loading at con-
stant temperature:

 Δ N
u =Δ T

u −Δ T  (9.1)

Because the deflection during heating (ΔT) 
depends only on the test temperature and is 
not related to the load eccentricity, the curve 
Δ T
u − (e0 /h) is moved parallel and downward by 
ΔT and the curve ΔN
u − (e0 /h) is obtained (Fig. 

10-9(b)). The deflection (ΔN
u ) caused by the ulti-

mate load varies slightly for the specimen with 
eccentricity e0 > 0.2h, when the test temperature 
is within the range of T = 400–800 °C.

9.2.3  Ultimate Strength and 
Optimum Eccentricity

The ultimate strength (NTu )  of the eccentric com-
pressive specimen with three surfaces exposed 
to high temperature varies with the test tem-
perature and the initial load eccentricity (e0) 
(Fig. 9-11). The maximum strength (N0) of a 
column with a symmetrical section at normal 
temperature occurs when central compression 
(e0 = 0) is applied. When the initial load eccen-
tricity increases and whether the load acts on 
the left or the right side, the ultimate strength 
of the column decreases monotonically, and 
the curve Nu − (e0 /h) is symmetrical about the 
ordinate.

When three surfaces of a specimen are exposed 
to high temperature, the temperature distributes 
nonuniformly on the section, the deterioration 
in the mechanical behavior of concrete and rein-
forcement at elevated temperatures is variable, 
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inhomogeneous and asymmetrical fields of 
strength and strain of the material are formed on 
the section, and the resultant center of the mate-
rial strength moves toward the low temperature 
side. Thus, the ultimate strength of the specimen 
depends on not only the value of load eccentric-
ity but also its direction. When the load acts on 
the low temperature side (e0 > 0) and the high 
temperature side (e0 < 0), the ultimate strength 
of the specimens at elevated temperatures are dif-
ferent and the curve NTu − (e0 /h) is asymmetrical 
about the ordinate.

When central compression (e0 = 0) is applied 
to the specimen with three surfaces exposed to 
high temperature, the strength of the specimen 
is not the maximum value because the strength 
of the material on the section cannot be used 
fully. If the load moves properly toward the low 
temperature side (e0 > 0), the higher strength 
of the concrete in the zone of low temperature 
can be utilized and the strength of the specimen 
increases. However, the strength of the speci-
men reduces again if the eccentricity is too much. 
The maximum strength of a specimen under the 
same test temperature is called the optimum ulti-
mate strength, the corresponding eccentricity is 
called the optimum eccentricity (eT0u >0), and the 
point of the load applied is called the optimum 
center, which is always on the low temperature 
side. When the specimen is tested at normal 
temperature, the behavior of the material on the 
section is homogeneous and the optimum eccen-
tricity should be eT0u = 0. As the test temperature 
of the specimen is increased, the difference in 
behavior in the material on the section zones of 
high and low temperature is enlarged and the 
optimum eccentricity has to be increased gradu-
ally. The data in Fig. 9-11 show that the value 
of the optimum eccentricity eT0u /h is slightly 
greater than zero when the test temperature is 
T = 400 °C, and the values are eT0u /h≈ 0.1 and 
0.15 when T = 600 °C and 800 °C, respectively. 
(The abscissa e0 in Fig. 9-11 is the initial eccen-
tricity of the specimen or the eccentricity at both 
end sections after testing. When the ultimate 
strength of the specimen at elevated temperatures 
is reached, additional eccentricity, i.e., the total 
deflection (Δ T

u ) occurs at the critical section in 
the middle of the specimen and the actual ulti-
mate eccentricity is (eu = e0 +Δ T

u ). So, only if this 
is used as the abscissa, accurate optimum center 
and eccentricity are achieved.)

In addition, the optimum eccentricity (eT0u) 
is an important boundary of the behavior of 
the specimen in an asymmetrical temperature 
field. When the initial eccentricity of an eccen-
tric compressive specimen is greater than the 
optimum eccentricity (e0 > eT0u), it means that 
the load is located on the low temperature side 
and the specimen will fail in the pattern of 
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smaller eccentricity, which is controlled by the 
compressive strengths of the concrete and the 
reinforcement on the low temperature side, or 
in the pattern of greater eccentricity, which is 
controlled by the yield strength of tensile rein-
forcement on the high temperature side, and the 
ultimate deflection is convex toward the high 
temperature side. The ultimate strength of the 
specimen decreases quickly as the eccentricity 
increases, so the slope of the curve NTu − (e0 /h) 
is greater. On the other hand, when the initial 
eccentricity is smaller than the optimum eccen-
tricity (e0 < eT0u, algebraic value), this means that 
the load is located on the high temperature side 
and the specimen will fail in the pattern of smaller 
eccentricity, which is controlled by the compres-
sive strengths of the concrete and reinforcement 
on the high temperature side, or in the pattern 
of greater eccentricity, which is controlled by 
the yield strength of the tensile reinforcement 
on the low temperature side, and the ultimate 
deflection is convex toward the low tempera-
ture side. The ultimate strength of the specimen 
decreases slowly as the eccentricity decreases, so 
the slope of curve NTu − (e0 /h) is smaller. When 
the load eccentricity is near the optimum eccen-
tricity (e0 ≈ eT0u), the flexural deformation of the 
specimen is very small and is similar to that of 
the specimen subjected to central compression at 
room temperature.

If the initial load eccentricity of the specimen 
is the same, its strength (NTu )  reduces monotoni-
cally as the test temperature increases (Fig. 9-12). 
The reducing slope of the curve NTu −T  of the 
central compressive specimen (e0 = 0) is at the 
maximum. When the load acts on the high tem-
perature side (e0 < 0), the curve NTu −T  of the 
specimen is always below that of the central com-
pressive specimen and the curves never intersect. 
However, when the load acts on the low tem-
perature side (e0 > 0) and the test temperature is 
within a certain range, the ultimate strength of 
the specimen is greater than that of the central 
compressive specimen (Fig. 9-11), and the curve 
NTu −T  also reduces monotonically but intersects 
with that of the central compressive specimen 
(Fig. 9-12).
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The values of axial compression and bending 
moment carried by a structural member with spe-
cific sections and materials can be presented by a 
corresponding ultimate envelope. The test results 
for the beams and the central and eccentric com-
pressive columns with three surfaces exposed to 
high temperature, introduced earlier, are plotted 
in Fig. 9-13, in which the dimensionless coordi-
nates NTu /N0 and MT

u / (N0h0), but MT
u / (fcbh

2
0) 

for the beam, are used. N0 is the ultimate cen-
tral compression of the specimen at room tem-
perature, and b and h0 are the width and effective 
depth, respectively, of the specimen section. Con-
sidering the additional eccentricity (i.e., deflec-
tion Δ T

uz) at the ultimate condition, the ultimate 
bending moment of the specimen at elevated tem-
peratures can be calculated from

 MT
u = NT

u

(
e0 +Δ T

u

)
 (9.2)

The test data for the beams is located on the 
abscissa, and the beams with the tension and 
the compression zones at high temperature are 
located in the positive and the negative direc-
tions, respectively.

The ultimate envelope of the axial compres-
sion–bending moment of a reinforced concrete 
column of rectangular section and symmetrical 
reinforcement is symmetrical about the ordinate 
when it is at room temperature, and a tip point 
(discontinuous point) of the envelope is located 
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on the ordinate, corresponding to the condition 
of central compression (N0, e0 = 0). Two bound-
ary points, which distinguish between the failure 
patterns of larger and smaller eccentricities, are 
located symmetrically on both sides of the ordi-
nate. When the test temperature of the speci-
men increases, the ultimate envelope of the axial 
compression–bending moment reduces gradually 
toward the inside, the tip point corresponding 
to the optimum eccentricity eT0u and the ultimate 
strength drifts down toward the right-hand side, 
and the asymmetrical envelope gradually becomes 
more obvious and significant. The boundary 
points of the failure patterns on both sides move 
inside and toward the origin, but they are not 
located symmetrically again.

The connecting lines of the tip points and the 
boundary points divide the envelopes into four 
areas with different failure patterns and they are 
from right to left (or e0 = +∞ to −∞):

 1.  failure pattern of larger eccentricity, which is 
controlled by the tensile reinforcement yield-
ing on the high temperature side
 2.  failure pattern of smaller eccentricity, which 
is controlled by the compressive strength of 
the concrete on the low temperature side

 3.  failure pattern of smaller eccentricity, which 
is controlled by the compressive strength of 
the concrete on the high temperature side, and

 4.  failure pattern of larger eccentricity, which is 
controlled by the tensile reinforcement yield-
ing on the low temperature side.

As the test temperature increases, area 3 
expands and area 2 contracts obviously, but area 
1 expands and area 4 contracts slightly.

The intervals between the ultimate envelopes 
of the axial compression–bending moment at dif-
ferent test temperatures vary in different ways. 
When the test temperature T ≥ 400 °C, the 
intervals of area 1 (larger eccentricity) and area 
3 (smaller eccentricity) expand rapidly, which 
shows that the strength of the specimen decreases 
significantly at higher temperature. The intervals 
of area 2 (smaller eccentricity) and area 4 (larger 
eccentricity) are smaller, which shows that the 
decrease in the strength of the specimen is limited.
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9.3  ECCENTRIC COMPRESSIVE 
COLUMNS WITH THREE SURFACES 
EXPOSED TO HIGH TEMPERATURE 
UNDER DIFFERENT CONDITIONS

9.3.1  Behavior Under the Path of 
Heating Under Constant Load

The experimental device and method used to test 
an eccentric compressive specimen with three 
surfaces exposed to high temperature and under 
the path of heating under constant load are the 
same as the pervious ones (see Fig. 9-7 and Fig. 
8-1), and the size and materials of the specimen 
are the same as shown in Fig. 9-8. In order to 
demonstrate the difference between this speci-
men and a specimen under the path of loading at 
constant temperature, paired specimens are used 
and compared directly after testing.[9-6,9-11]

For the path of loading at constant tempera-
ture, the specimen is heated to the predetermined 
temperature, then the eccentric load is applied 
until the specimen fails and the ultimate load (NTu )  
and the corresponding deformation are measured. 
The specimen numbers are T8N4, T6N2, etc.
For the path of heating under constant load, 
the specimen is loaded eccentrically at normal 
temperature and the value of the load is taken 
as the ultimate load (NTu )  of another specimen in 
pairs. Then, the specimen is heated until it fails 
and the ultimate temperature is measured. The 
specimen numbers are N4T8, N2T6, etc.

The symbols T and N in the specimen num-
bers represent heating and loading, respectively, 
and the order shows the sequence in the test path. 
The number after the symbol T multiplied by 
100 °C is the experimental temperature, and the 
number after the symbol N multiplied by 0.1h is 
the eccentricity of the load.

The lateral deflections at the mid-span of the 
specimens vary with temperature and are shown 
in Fig. 9-14(a). The specimens (T–N series) tested 
under the path of loading at constant tempera-
ture are heated freely, and the deflections at the 
mid-span increase and accelerate gradually and 
are not related to the eccentricity of the load, so 
the deflection–temperature curves of specimens 
T8N4, T8N2, and T8N0 are similar. The speci-
mens (N–T series) tested under the path of heat-
ing under constant load are loaded first at room 
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temperature, and initial deflections of different 
values, although not very different, are caused 
because of the different values and eccentricities 
of the load. During the subsequent heating pro-
cess, the deflections of the specimens vary consid-
erably and depend on the load eccentricity. For 
the specimens with eccentricity e0 > 0.2h, the ten-
sile zone is exposed to high temperature and its 
deflection during heating and that during loading 
are in the same direction. Thus, the total deflec-
tions develop gradually during heating, and the 
deflection–temperature curves are nearly parallel 
with that of the specimens in the T–N series. The 
specimen with eccentricity e0 ≤ 0 deflects after 
heating but is convex toward the direction of the 
low temperature zone, which is the opposite direc-
tion to the specimens in the T–N series, because 
the compressive strain on the high temperature 
zone is large. This is shown in Fig. 9-14(a) by 
comparing specimens N0T8 and T8N0.

The deflections at the mid-span of the speci-
mens vary with the load and are shown in Fig. 
9-14(b). The deflections of the specimens (T–N 
series) tested under the path of loading at con-
stant temperature are similar to those shown in 
Fig. 9-9. However, the comparative specimens 
(N–T series) are loaded first at room tempera-
ture, so their deflections are small with nearly 
linear variation during loading, and they increase 
along the horizontal lines during the heating stage 
under constant load. The direction of the deflec-
tion depends on the eccentricity of the load. After 
the ultimate temperature is reached, the deflec-
tion of the specimen increases sharply and its 
strength reduces, so the specimen fails suddenly.

When the specimens are compared in pairs, 
the failure pattern of both heating–loading paths 
is identical, the direction of residual deflection is 
the same, and the failure depth of the compres-
sive zones on the section and the development of 
tensile cracks are similar. The ultimate tempera-
ture and axial load of the paired specimens are 
compared in Table 9-3.

The specimens tested at temperature T ≥ 
800 °C are discussed as an example. When the 
load eccentricity e0 ≥ 0.2h, the specimens fail 
on the pattern of larger eccentricity, which is 
controlled by the tensile reinforcement yielding 
in the high temperature zone, so the ultimate 
temperatures and axial loads measured from the 
paths of loading at constant temperature and of 
heating under constant load are approaching 
  TABLE 9-3      Main Experimental Results for Eccentric Compressive Specimens with 
Three Surfaces Exposed to High Temperature and Under the Path of  
Loading at Constant Temperature Compared with the Path of Heating Under 
Constant Load[9-6]

Initial eccen-
tricity e0/h

Experimen-
tal path and 
specimen 
number

Ultimate 
temperature 
Tu (°C)

Ultimate 
strength NT

u 
(kN)

Ultimate 
deflection Δ T

u  
(mm)

Ultimate 
bending 
moment MT

u 
(kN m)

0 T6N0 600 396.4
N0T6 584
T8N0 800 247.9 −10.5 −2.603
N0T8 852 −21.5 −5.33

0.2 T4N2 400 331.3
N2T4 395
T6N2 600 296.8
N2T6 580
T8N2 800 239 +12.0 12.428
N2T8 800 233 +22.3 14.561

0.4 T8N4 800 140.9 +14.5 13.315
N4T8 800 +24.5 14.724
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each other. But the latter shows slightly larger 
additional eccentricity (also ultimate deflection) 
at failure, and the ultimate bending moment 
is also slightly larger. The central compressive 
specimens (e0 = 0) fail on the pattern of smaller 
eccentricity, which is controlled by the com-
pressive concrete in the high temperature zone, 
and the specimen tested under the path of heat-
ing under constant load has higher values for 
the ultimate temperature and bending moment. 
There is a lack of experimental data for an 
eccentric compressive column of load eccen-
tricity e0 < 0. According to nonlinear analysis 
and considering the coupling constitutive rela-
tion of concrete, the theoretical values[9-6] for 
the ultimate temperature and strength of eccen-
tric compressive columns under both heating–
loading paths are shown in Table 9-4. This 
demonstrates that the column under the path 
of heating under constant load has higher val-
ues for the ultimate temperature and bending 
moment when the axial load is equal.

The envelopes of ultimate axial load–bending 
moment of the eccentric compressive specimens 
with three surfaces exposed to high temperature 
(T ≥ 800 °C) and under two extreme heating–
loading paths are shown in Fig. 9-15. Both the 
experimental data and the theoretical values 
(broken lines in the figure) demonstrate that the 
envelope corresponding to the path of heating 
under constant load (N–T) is located on the out-
side of the envelope corresponding to the path 
of loading at constant temperature (T–N). There-
fore, the fire resistant behavior of the former is 
better than that of the latter.

The behavior of the eccentric compressive 
specimens with three surfaces exposed to high 
temperature is different under various heating–
loading paths. The main reason is that the com-
pressive strength of the concrete material under 
the path of heating under constant load is higher 
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sion–bending moment of eccentric compressive specimens 
with  three  surfaces  exposed  to  high  temperature  and 
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  TABLE 9-4      Comparison of Ultimate Temperature–Strength (Theoretical Values) of 
Eccentric Compressive Columns with Three Surfaces Exposed to High 
Temperature but Under Different Heating–Loading Paths

Initial eccen-
tricity e0/h

Experimen-
tal path and 
specimen 
number

Ultimate 
temperature 
Tu (°C)

Ultimate 
strength NT

u 
(kN)

Ultimate deflec-
tion Δ T

u  (mm)

Ultimate 
bending 
moment MT

u 
(kN m)

−0.6 T8N6A 800 83 −19.6 −11.59
N6T8A 982 −29.7 −12.43

−0.4 T8N4A 800 106 −16.5 −10.22
N4T8A 1043 −24.6 −11.09

−0.2 T8N2A 800 150 −8.6 −7.29
N2T8A 983 −17.5 −8.63

0 T8N0 800 227 −4.68 −1.06
N0T8 855 −18.20 −4.13
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than that under the path of loading at constant 
temperature (see Fig. 3-5). When the experimen-
tal temperature T ≤ 600 °C, the temperature dis-
tributed on most parts of the specimen section is 
still low, differences in the strength of the con-
crete under different heating–loading paths are 
less, and the behavior of the specimens at ele-
vated temperatures is similar (Table 9-3). When 
the experimental temperature T ≥ 800 °C, espe-
cially for the specimen with eccentricity e0 ≤ 0 
and a failure pattern of smaller eccentricity, the 
ultimate strength of the specimen depends mainly 
on the compressive strength of the concrete in the 
high temperature zone, so the specimen under 
the path of heating under constant load shows 
better behavior at elevated temperatures. If the 
specimen has load eccentricity e0 ≤ −0.4h and a 
failure pattern of larger eccentricity, its ultimate 
strength depends mainly on the yield strength of 
the tensile reinforcement in the low temperature 
zone, and the differences in the behavior of the 
specimen at elevated temperatures is smaller for 
both paths.

9.3.2  Behavior After Temperature 
Sustained and After Cooling

When a fire accident occurs in a building, the 
structural members in the building may experi-
ence many temperature variations. As well as the 
two basic heating–loading paths described above, 
the temperature typically has to reduce eventu-
ally to a normal value after the high temperatures 
are sustained for a certain period of time.

Three types of temperature conditions[9-12,9-13] 
are selected to compare eccentric compressive 
specimens with three surfaces exposed to high 
temperature:

Condition H. After the experimental temperature 
reaches 800 °C and is maintained for 10 min, 
the specimen is loaded until failure. This is the 
same as testing under the path of loading at 
constant temperature, described in Section 9.2.

Condition P. After the temperature reaches 800 °C 
and is maintained (±25 °C) for 2 h, the speci-
men is loaded until failure.
Condition L. After the temperature reaches 800 °C 
and is maintained for 10 min, the specimen 
cools down naturally to room temperature 
and is then loaded 16–20 h later until failure.

The experimental devices and procedures 
needed for these tests are the same as the previ-
ous one (see Figs. 9-7 and 8-1), and the size and 
materials of the specimens are the same as shown 
in Fig. 9-8; the initial eccentricity of the load is 
e0 = +0.6h to −0.6h.

The curves for axial load–deflection at the 
mid-span of the eccentric compressive speci-
mens under the temperature conditions P and 
L are plotted in Fig. 9-16. The corresponding 
curves for the specimens under the temperature 
condition H, which experience two stages, i.e., 
freely heating and loading at constant tempera-
ture, are shown in Fig. 9-9(a). The specimens 
under the temperature condition P experience 
three stages, i.e., freely heating, maintaining 
a high temperature, and loading at constant 
temperature. The deformation of the specimen 
during heating in the first stage is the same as 
that under the temperature condition H, and 
the deflection at the mid-span is about 8 mm. 
The deflection of the specimen reaches about 
13 mm and increases by 62% after maintaining 
the high temperature for 2 h. In addition, the 
stiffness of the specimen reduces and its defor-
mation increases quickly after loading, and the 
axial load–deflection curve tends to be flatter. 
The deflection value of specimen P at the ulti-
mate strength (NTu )  is much greater than that of 
the specimen under the temperature condition 
H (see Fig. 9-17).

The specimen under the temperature condi-
tion L experiences three stages: freely heating, 
naturally cooling, and loading at room tem-
perature. The deformation of the specimen dur-
ing heating in the first stage is the same as that 
under the temperature conditions H and P. The 
deflection of the specimen during cooling recovers 
slightly but only 1 mm or even less is recovered 
after it is cooled and after 6 h. Then, the speci-
men is loaded at room temperature and its axial 
load–deflection curve is similar to that of the  
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H series specimens, because the mechanical behav-
ior of concrete does not recover after it is cooled.

The direction of deflections during the load-
ing of all the specimens under these temperature 
conditions is identical. When the load eccentric-
ity e0 ≥ 0.2h, the direction of deflection of the 
specimen during loading is the same as that dur-
ing heating, so the deflection of the specimen 
increases continuously and is convex toward the 
high temperature zone at failure. When the load 
eccentricity e0 ≤ 0, the direction of deflection of 
the specimen during loading is opposite to that 
during heating, so the deflection of the specimen 
is counteracted gradually. The deflection of the 
specimen at failure turns and is convex toward 
the low temperature zone, if the load eccentricity 
e0 ≤ 0.2h.

The axial load–deflection curves of the speci-
mens under the three temperature conditions, 
but with the same initial eccentricity (e0 = 0.6h 
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u .
or −0.6h), are compared in Fig. 9-17. However, 
the ultimate loads of the specimens loaded at 
high temperature (H series) and after cooling (L 
series) vary considerably, i.e., they differ greatly 
when e0 = 0.6h, whereas they are approaching 
when e0 = −0.6h; but the slopes of the axial load–
deflection curves (or stiffness of the specimen) 
before the ultimate load and the deflection values 
at the ultimate load are approaching each other. 
However, the stiffness of the specimen (P series) 
loaded after maintaining a high temperature for 
2 h reduces obviously, and the deflection caused 
by loading is much greater than that of the H and 
L series specimens.

The ultimate strength–eccentricity (NTu − e0) 
curves and the ultimate envelopes of the axial 
compression–bending moment (NTu −MT

u ) of the 
eccentric compressive specimens under the three 
temperature conditions and at a high tempera-
ture of 800 °C are shown in Fig. 9-18. Obvi-
ously, these curves are asymmetrical and incline 
to the right-hand side of the ordinate, and they 



189CHAPTER 9  Behavior of Compressive Members at Elevated Temperatures
are notably lower than the corresponding curves 
for the specimen at room temperature.

When the specimen loaded at high tempera-
ture (H series) is compared with that loaded 
after cooling (L series), the failure pattern of 
both specimens with e0 ≤ 0.2h is the same, i.e., 
the pattern of smaller eccentricity or the pat-
tern of larger eccentricity is controlled by ten-
sile reinforcement in the low temperature zone. 
The material strength and the ultimate strength 
of both specimens are approaching. When the 
load eccentricity e0 ≥ 0.4h, the failure pattern of 
the specimens is of larger eccentricity and is con-
trolled by tensile reinforcement in the high tem-
perature zone, so the ultimate load of the L series 
specimens is obviously higher than that of the H 
series specimens, as the strength of the reinforce-
ment in the L series specimens has recovered to 
the value at room temperature.

For the specimens loaded after maintaining a 
high temperature for 2 h (P series), the internal 
temperature on the section is elevated, the mate-
rial behavior of most areas in the section deterio-
rates, the deformation of the specimen increases 
considerably, and significant ultimate strength is 
lost, and the area of the envelope reduces sharply 
and is very inclined.
9.4  ECCENTRIC COMPRESSIVE 
COLUMN WITH TWO ADJACENT 
SURFACES EXPOSED TO HIGH 
TEMPERATURE

9.4.1  Testing Method and Contents

When eccentric compressive specimens, includ-
ing central compressive and flexural specimens, 
with two adjacent surfaces exposed to high tem-
perature are tested, a special furnace needs to 
be developed; the other experimental devices, 
including the temperature control system, sup-
port and loading device for the specimen, and the 
instruments for measuring and recording data, 
can be the same as those used for specimens with 
three surfaces exposed to high temperature (see 
Fig. 8-1 and Fig. 9-7).

The construction of the special furnace used 
to test specimens with two adjacent surfaces 
exposed to high temperature, developed by the 
Structural Engineering Laboratory of Tsinghua 
University, is shown in Fig. 9-19. The length of 
the furnace body is 1100 mm, its transverse out-
line is 500 mm × 500 mm; the net size of the 
chamber is 250 mm × 250 mm, and the openings 
are each 200 mm on two adjacent sides.
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The construction of the furnace body is sym-
metrical about a 45° diagonal line. The fur-
nace case is welded by angle and belt steels to 
form a skeleton and is covered with thin steel 
plates. Two pieces of channeled chamber brick 
plate (250 mm × 500 mm), which is made of 
refractory material, are connected on each side 
of the furnace. Four 2 kW heating wires pass 
through those channels and the ends of the wires 
are linked to the connector outside the furnace 
case. The refractory bricks are placed outside 
the channeled brick and the opening bricks are 
placed at both ends of the channeled brick for 
protection. Siliceous aluminum refractory fiber 
is used as the thermal insulation layer and is 
placed between the chamber brick and the fur-
nace case.

After the specimen (cross section 100 mm × 
200 mm) is put into the chamber of the furnace, 
the electric power is switched on and the fur-
nace is heated. The temperature in the chamber 
increases with the heating time as shown in Fig. 
9-20. The rate of increase in the temperature 
in the furnace used for the specimen with two 
adjacent surfaces exposed to high temperature 
is slightly lower than that used for the specimen 
with three surfaces exposed to high temperature 
because the total electrical power of the heat-
ing wires (8 kW < 10 kW) is less and the speci-
men has one more surface dispersing heat. Four 
thermocouples are placed on each side of the 
furnace and the temperatures measured in the 
chamber are similar.[9-6] When the experimental 
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Figure 9-20  Elevating  temperature  curves  for  the 
experimental furnaces.[9-14]
temperature reaches 800 °C and is maintained 
for 1 h, the temperature on the outer surface of 
the case is lower than 60 °C. This shows that the 
temperature in the chamber is distributed uni-
formly and the heat insulation behavior of the 
furnace is good.

The support and loading method of the speci-
men are the same as shown in Fig. 9-7. Two 
spherical hinges are placed at both ends of the 
specimen and the specimen can bend freely in 
two directions after it is loaded using a hydraulic 
jack.

The size and construction of the eccentric 
compressive specimen are the same as shown in 
Fig. 9-8, but the specimens are produced in a sep-
arate batch. The concrete age of the specimens 
during testing is 60–90 days, the cubic strength 
at room temperature is fcu = 24.7 MPa, and the 
yield strength of the reinforcement at room tem-
perature is fy = 340 MPa.

All the specimens with two adjacent surfaces 
exposed to high temperature are tested under 
the path of loading at constant temperature  
(T = 800 °C). The number and initial eccentrici-
ties (e0x, e0y) of the applied loads are shown in 
Fig. 9-21 for all specimens. The first and second 
(if any) digits in the specimen number represent 
the vertical and horizontal relative eccentricities 
(e0y/0.1h, e0x/0.1b). The letter A after the digit 
shows the load applied in the high temperature 
zone (negative eccentricity), otherwise it shows 
the load applied in the low temperature zone 
(positive eccentricity).

9.4.2  Temperature Distribution 
and Deformation

During the free heating stage, water vapor starts 
to escape from the gap between the specimen 
and the furnace body when the temperature in 
the chamber is about T = 350 °C. The quantity 
of vapor escaping reaches a maximum and water 
drops seep onto the nonheating surfaces of the 
specimen when T = 500–600 °C; the amount of 
water vapor reduces gradually and the water on 
the surfaces evaporates, but some water vapor 
still escapes at T = 800 °C. This phenomenon is 
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similar to that of the specimen with three sur-
faces exposed to high temperature. The color 
change on the heated surfaces is also the same.

When the experimental temperature of the 
specimen with two adjacent surfaces exposed to 
high temperature is T = 800 °C, the measured 
temperature in its middle section (Fig. 9-22) is 
not distributed symmetrically in both the hori-
zontal and vertical directions. The temperature 
at the heated corner (left bottom) of the speci-
men shows the maximum value, the tempera-
ture on both heated surfaces is nearly 800 °C, 
and the temperature near the unheated surfaces 
reduces gradually. The temperature on most of 
the unheated surfaces is rather low (<100 °C). 
Therefore, a considerable temperature difference 
(gradient) is formed on the section and along the 
horizontal and vertical directions.
Comparing the specimen with two adjacent 
surfaces exposed to high temperature with the 
specimen with three surfaces exposed to high 
temperature, the temperatures within 20 mm 
thickness from the heated surfaces are similar 
for both specimens, but the temperature on the 
other parts and the average temperature of the 
section of the former is much lower than that of 
the latter; the temperature gradient of the former 
is greater than that of the latter.

During the free heating process, the deforma-
tion of the specimen with two adjacent surfaces 
exposed to high temperature develops rapidly as 
the temperature increases (Fig. 9-23). The ver-
tical deflection (Δ T

y ) and the axial deformation 
Δ T
z  of this specimen are similar to the specimen 

with three surfaces exposed to high temperature. 
However, because the total temperature differ-
ences (ΔT) along the horizontal and vertical direc-
tions of the specimen section are similar but the 
width of the section is less than its depth (b < h), 
the horizontal curvature (in inverse proportion 
to the width b) and deflection of the specimen 
are greater than the vertical curvature (in inverse 
proportion to depth h) and deflection Δ T

x > Δ T
y , 

respectively, of the same specimen. Bidirectional 
flexural deformations appear and the horizontal 
deflection is greater than the vertical deflection 
after heating the specimen with two adjacent 
surfaces exposed to high temperature. This is the 
main characteristic of the specimen and is differ-
ent from that of the specimen with three surfaces 
exposed to high temperature.

During the stage of loading at constant temper-
ature, the vertical deflection (Δy) of the specimen 
with two surfaces exposed to high temperature 
depends on the eccentricity of the axial load (Fig. 
9-24). When the specimen is loaded with vertical 
eccentricity only (e0y = 0.6h to −0.6h and e0x = 
0), the flexural deflection (Δy) caused by the load 
is convex toward the high temperature zone and 
is in the same direction as the heating deflection 
if e0y ≥ 0.2h; the deflection caused by the load 
develops in the opposite direction if e0y ≤ 0.1h. 
When the eccentricity of the specimen is e0y ≤ 0, 
the deflection at the ultimate strength is convex 
toward the low temperature zone. The regularity 
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of deformation and the failure pattern of the 
specimens are similar to those of the specimen 
with three surfaces exposed to high temperature 
(see Fig. 9-9).

When the specimen is loaded with horizontal 
eccentricity (e0x ≠ 0), the vertical deflection (Δy) 
caused during loading may be convex toward the 
high or the low temperature zones (Fig. 9-24(b)). 
The section can be divided into two areas (see Fig. 
9-21) according to the experimental results[9-6]: 
when the initial position of the load is located on 
the upper right part (low temperature zone) of the 
line Ey–Ey, the deflection caused during loading 
is convex toward the high temperature zone and 
is in the same direction as the deflection during 
heating; when the initial position of the load is 
located on the lower left part (high temperature 
zone) of the line Ey–Ey, the deflection caused dur-
ing loading is opposite to that caused during heat-
ing. Furthermore, the further the load position 
from the line Ey–Ey, the flatter the curve N–Δy, 
and the larger the deflection caused by the load.
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The horizontal deflection (Δx) of the specimen 
with two adjacent surfaces exposed to high tem-
perature also depends on the eccentricity of the 
axial load (Fig. 9-25) during the stage of load-
ing at constant temperature. When the load posi-
tion is located on the right side (low temperature 
zone) of the line Ex–Ex (see Fig. 9-21) on the sec-
tion, the deflection caused during loading is con-
vex toward the high temperature zone and is in 
the same direction as the deflection during heat-
ing. When the load position is located on the left 
side (high temperature zone) of the line Ex–Ex, 
the deflection caused during loading is opposite 
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heating.[9-6]
to that during heating. Also, the further the load 
position from line Ex–Ex, the flatter the curve 
N–Δx and the larger the deflection caused by the 
load.

The total horizontal and vertical deflections 
of the eccentric compressive specimens with two 
surfaces exposed to high temperature are Δ T

ux 
and Δ T

uy, respectively, at the ultimate strength 
(NTu ) , and the deflections caused by the load 
are ΔN

ux and ΔN
uy, respectively, after deducting 

the corresponding deflections Δ T
x  and Δ T

y  dur-
ing heating (Eqn (9.1)). They vary also with the 
eccentricity of the load (Fig. 9-26). When the 
specimen is loaded with vertical eccentricity 
only (e0x = 0), the vertical deflections (Δ T

uy and 
ΔN
uy) turn from being convex toward the high 

temperature zone into being convex toward 
the low temperature zone, when the eccentric-
ity e0y changes from +0.6h to −0.6h. The varia-
tion regularity is similar to that of the specimen 
with three surfaces exposed to high temperature 
(see Fig. 9-10). The horizontal deflection (ΔN

ux) 
caused by the load also changes from positive 
to negative, but the total deflection (Δ T

ux) of 
the specimen is always convex toward the high 
temperature zone (positive value) because the 
deflection caused during heating is considerable 
(Δ T

x ≈12�mm).
When the specimens are loaded with hori-

zontal eccentricity only (e0y = 0), the horizontal 
deflections (Δ T

ux) are convex toward the high 
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temperature zone and the vertical deflections 
(Δ T

uy) change from being convex toward the 
high temperature zone to being convex toward 
the low temperature zone (Fig. 9-26(b)) when the 
eccentricity changes from +0.1b to −0.1b.

When the axial compression is applied, the 
axial deformation (Δz) of the specimen with two 
adjacent surfaces exposed to high temperature is a 
contraction (Fig. 9-27) regardless of the direction 
and value of the load eccentricity, and this causes 
a reduction in the expansion deformation during 
heating. When parts of the specimens reach their 
ultimate strengths, the expansion deformations 
during heating are totally counteracted and the 
total deformations are contractions.

When the eccentric compressive specimen with 
two adjacent surfaces exposed to high tempera-
ture is tested, three angle transducers are set up at 
both ends and in the mid-span of the specimen in 
order to measure the torsional angle. The results 
show that the bidirectional flexural deflections 
of the specimen are dominant during the heating 
and loading process, and the torsional deforma-
tion is small and negligible.

9.4.3  Ultimate Strength

When the specimen with two adjacent surfaces 
exposed to high temperature fails under the path 
of loading at constant temperature, the failure 
pattern bidirectional eccentric compression and 
its residual flexural deflection is obvious in both 
directions. The compressive failure and tensile 
crack zones on its section are not symmetri-
cal and its neutral axis should be inclined (Fig. 
9-28); this applies even with the load of the speci-
men with the eccentricity in one direction only 
or without eccentricity (e0x = e0y = 0). When the 
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specimen is loaded with vertical eccentricity only 
(e0x = 0), the compressive failure zone is located 
on the upper right part (low temperature corner) 
of the section and the tensile crack zone is located 
on the lower left part (high temperature corner) 
of the section if the eccentricity e0y ≥ 0.1h; the 
compressive failure zone turns to the lower right 
part and the tensile crack zone is located in the 
upper left part if the eccentricity e0y ≤ 0. As 
the eccentricity of the load increases, the area 
of the compressive failure zone on the section 
reduces, but the area of the tensile crack zone 
increases and the width of the crack also increases.

The ratios between the measured ultimate 
strengths (NTu ) of the eccentric compressive 
specimens with two adjacent surfaces exposed 
to high temperature and the strength (N0) of 
the central compressive specimen at room tem-
perature are written at the initial positions of 
the load applied, and the ratios vary with the 
eccentricity in one direction of the load (e0y/h 
and e0x/b, separately) (Fig. 9-29). The ultimate 
strength of the specimens distributes asymmet-
rically along both X and Y axes, and the ini-
tial position of the maximum ultimate load is 
located in the low temperature zone (the first 
quadrant of the section), i.e., the optimum 
eccentricities on both directions are greater than 
zero but are not equal.

The variation regularity of the ultimate 
strength of the eccentric compressive specimen 
with two adjacent surfaces exposed to high tem-
perature is similar to that with three surfaces 
exposed to high temperature (see Fig. 9-11) as the 
eccentricity changes. When the load eccentricity 
is greater than the optimum one, i.e., the load 
applied is located in the low temperature zone, 
the deflection during loading is convex toward the  
high temperature zone and it is the same as the 
deflection during heating, so the additional eccen-
tricity at the ultimate state is high. In addition, 
the yield strength of the tensile reinforcement 
located in the high temperature zone reduces sig-
nificantly, so the ultimate strength of the speci-
men decreases quickly. On the other hand, when 
the load eccentricity is smaller than the optimum 
one, i.e., the load applied is located in the high 
temperature zone, the direction of the deflection 
during loading is opposite to that during heating 
and the additional eccentricity is small, and the 
yield strength of the tensile reinforcement located 
in the low temperature zone reduces less, so 
the ultimate strength of the specimen decreases 
slowly.
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When the specimen with two adjacent sur-
faces exposed to high temperature is loaded 
eccentrically in one direction only (e0x = 0, e0y), 
the vertical ultimate bending moment (MT

uy) and 
the envelope of the axial compression–bending 
moment (NTu −MT

uy) are asymmetrical about the 
ordinate (Fig. 9-30). In addition, because the tem-
perature on the left side of the section is higher 
and the mechanical behavior of the materials there 
 deteriorates significantly, the horizontal deflec-
tion arises during both heating and loading stages, 
and the additional horizontal eccentricity (Δ T

ux, 
see Fig. 9-26) and  corresponding  horizontal 
ultimate bending moment (MT

ux =NTu ·Δ T
ux) are 

not small at the ultimate state, even though 
the initial horizontal eccentricity of the load is 
zero (e0x = 0). The horizontal ultimate bending 
moment has a positive value (deflection convex 
toward the high temperature zone) and is also 
asymmetrical about the ordinate (Fig. 9-30(a)). 
The maximum value occurs when the eccentricity 
is near the optimum one and it reduces gradu-
ally as the vertical eccentricity moves out to both 
sides.
The eccentric compressive specimens with two 
adjacent surfaces and with three surfaces exposed 
to high temperature have the same size and mate-
rials, and they also have similar test methods and 
heating–time curves, but the ultimate strengths 
are different because the temperature fields in 
their sections are different (see Fig. 9-22), and 
hence the behavior of the material, the defor-
mations, and the stress states are also different. 
Comparing the specimens with vertical eccentric-
ity only (e0x = 0, e0y), as an example, the ulti-
mate strengths (NTu ) of both specimens are similar 
when the eccentricity is greater (i.e., e0y ≥ 0.2h 
or e0y ≤ −0.4h) according to Figs. 9-29 and 9-30. 
However, when the eccentricity is smaller (e0y = 
− 0.4h to 0.2h) and the specimens have a fail-
ure pattern of smaller eccentricity, the ultimate 
strength (NTu ) of the specimen with two adjacent 
surfaces exposed to high temperature is much 
higher than that with three surfaces exposed to 
high temperature. Obviously, although the speci-
men with two adjacent surfaces exposed to high 
temperature presents an asymmetrical tempera-
ture distribution in both directions of the section 
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and appears to have a larger horizontal deflec-
tion, the ultimate strength is still higher because 
the failure pattern is controlled by the compres-
sive resistance of concrete when the eccentricity 
is smaller, the area with high temperature in its 
section is smaller, and the total loss of material 
strength is less.

CONCLUSIONS

When a structural member sustains a fire, but its 
periphery is not wholly exposed to high tempera-
tures, e.g., only three surfaces or two adjacent 
surfaces of a rectangular section are exposed to 
high temperature, a nonuniform and asymmet-
rical temperature field is formed in the section. 
Hence, the distributions of the material behavior 
in the section are also nonuniform and asymmet-
rical, and the mechanical behavior of the struc-
tural member is also asymmetrical.

There is a vertically symmetrical axis in a sec-
tion of a compressive member with three surfaces 
exposed to high temperature, and the member is 
flexed in one direction only when the load acts 
in the plane of the symmetrical axis. However, 
when the axial load acts on the geometric center 
of the section, the ultimate strength of the com-
pressive member is not the maximum and the 
deflection is obvious. Only when the axial load 
acts in the low temperature zone can the maxi-
mum ultimate strength of the compressive mem-
ber be achieved and the deflection is very small. 
The point where the load is applied is called the 
optimum center, the distance from it to the geo-
metric center is called the optimum eccentric-
ity, and the corresponding strength is called the 
optimum ultimate strength of the compressive 
member. Obviously, the optimum center and 
the ultimate strength of the compressive mem-
ber vary with the temperature field in the sec-
tion, and the optimum eccentricity increases and 
the optimum ultimate strength reduces when the 
temperature increases.

When the axial load acts on the low tem-
perature side and its eccentricity is greater than 
the optimum, the compressive member fails 
with the pattern of smaller eccentricity, which 
is controlled by the compressive concrete in the 
low temperature zone, or fail with the pattern 
of larger eccentricity, which is controlled by 
yielding of the tensile reinforcement in the high 
temperature zone. The ultimate deflection of 
the compressive member is convex toward the 
high temperature zone and the ultimate strength 
reduces quickly as the eccentricity increases. On 
the other hand, when the eccentricity of the axial 
load is smaller than the optimum and the load 
acts on the high temperature side, the compres-
sive member fails with the pattern of smaller 
eccentricity, which is controlled by the compres-
sive concrete in the high temperature zone, or 
fails with the pattern of larger eccentricity, which 
is controlled by yielding of the tensile reinforce-
ment in the low temperature zone. The ultimate 
deflection of the compressive member is convex 
toward the low temperature zone and the ulti-
mate strength reduces slowly as the eccentricity 
increases.

There is no symmetrical axis in both the X 
and Y directions of a section of a compressive 
member with two adjacent surfaces exposed 
to high temperature and biflexural deflections 
occur during both the heating and loading pro-
cesses; even the horizontal deflection is greater 
than the vertical one. The optimum center of the 
section is located in the low temperature zone 
and is away from the geometric center; both hor-
izontal and vertical eccentricities exist between 
both centers and they increase with the tempera-
ture. The variations in the ultimate strength and 
the deflection direction of the compressive mem-
ber depend on the comparison between the load 
eccentricity and the optimum eccentricity, and 
the regularity is similar to that of the compres-
sive member with three surfaces exposed to high 
temperature.

Although the actions of temperature and load 
are asymmetrical and greater deflections are 
formed in both directions of the section, the area 
of deteriorated concrete in the section is smaller 
and slighter, so the ultimate strength of the com-
pressive member with two adjacent surfaces 
exposed to high temperature is greater than that 
with three surfaces exposed to high temperature 
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under the same environmental temperature and 
eccentric load conditions.

The ultimate temperature–strength of a struc-
tural member with three surfaces exposed to high 
temperature and under the path of loading at con-
stant temperature is the lower boundary among 
various temperature–load paths. The behavior of 
the structural member under the path of heating 
under constant load is better than that under the 
path of loading at constant temperature, and the 
ultimate temperature–strength of the former is 
obviously higher, especially when the tempera-
ture is much higher and the load eccentricity is 
much smaller.

The mechanical behavior of eccentric com-
pressive (including central compressive and bend-
ing) structural members deteriorates at elevated 
temperatures; cracking and deformation increase 
and its strength decreases. The main reasons are 
the damage to the materials in the concrete and 
reinforcement at elevated temperatures and the 
additional deformation caused by nonuniform 
and asymmetrical behavior of the materials in 
the section. The deterioration in behavior of the 
structural member tends to be more serious as 
the temperature increases or is sustained. When 
the structural member at elevated temperatures 
is maintained for a period of hours, the tempera-
ture inside the section continues to increase grad-
ually, the area of damaged material expands, and 
the ultimate strength reduces continuously and 
considerably.

When the structural member cools down to 
room temperature after experiencing a high tem-
perature, the strength and modulus of elasticity 
of the reinforcement recover, but the mechani-
cal behavior of the concrete does not recover. 
Therefore, most of the ultimate strength of a 
structural member at room temperature recov-
ers if its failure is controlled by yielding of the 
tensile reinforcement, which includes failure 
patterns of larger eccentricity compression 
and bending. But the ultimate strength of the 
structural member cannot be recovered if the 
failure pattern is of smaller eccentricity com-
pression and controlled by the compression of 
the concrete.
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C H A P T E R

10
Behavior of Statically Indeterminate 
Structures at Elevated Temperatures
10.1  INVESTIGATION OF CONTENT 
AND TESTING METHODS

One of the outstanding advantages of concrete 
is that it is made by molding, when it is used as 
a main material in structural engineering. An 
integral structure is formed easily after concrete 
is cast in a mold, regardless of the variations in 
shape and size. Therefore, most reinforced con-
crete structures in practice are statically indeter-
minate systems, and the typical form is a frame 
structure connected integrally by beam and col-
umn members.

The mechanical behavior of the basic struc-
tural members, including flexural and compres-
sive members, with the emphasis on analyses of 
their cross section, at elevated temperatures was 
introduced in detail in the previous chapters. This 
chapter summarizes the experimental regularities 
of simple (statically determinate) specimens.

When a building sustains a fire accident or 
another temperature effect, the behavior and 
safety of the statically indeterminate concrete 
structure depend not only on the behavior of 
the structural members (cross sections) at ele-
vated temperatures, but also, to a greater extent, 
on the distribution of internal forces and their 
variation within the structure. Because of the 
thermal inertia of concrete, a severe nonuniform 
temperature field is formed on the section of a 
structural member under the action of high tem-
perature. Correspondingly, considerable flexural 
and axial deformations of the member occur and 
are restrained by other structural members; the 
stiffness of the member (section) is changed due 
Experiment and Calculation of Reinf
© 2011 Tsinghua University Press. Pu
to deterioration in the behavior of the materials 
at elevated temperatures. Therefore, the internal 
forces in a statically indeterminate structure redis-
tribute significantly and thus the deformation, 
failure pattern, and ultimate strength change.

Experimental investigations on statically inde-
terminate concrete structures at elevated tem-
peratures are limited so far. Some existing 
experiments[10-1,10-2] provide only the fire endur-
ance (hours) level of the structural member, but 
lack measurements and analyses on the varia-
tion in the processes of deformation and internal 
forces of the structure, because of difficulty in 
measuring these at elevated temperatures.

An experimental measuring technique and 
two types of specimens of statically indetermi-
nate structure (i.e., a continuous beam of two 
spans and a single-bay and single-story frame) 
have been designed, produced, and tested under 
heating and loading[1-12] in the Structural Engi-
neering Laboratory of Tsinghua University. 
Complete data and experimental results[10-3–10-5] 
are available after observing and measuring dur-
ing the testing process.

10.1.1  Specimen Design and Testing 
Content

A continuous beam of two spans is the simplest 
statically indeterminate structure containing 
only one indeterminacy, but it reflects the basic  
characteristic behavior of a statically indetermi-
nate structure. The mechanical conditions are 
simple and clear; the deformations, redistribu-
tion of internal force, and failure process are 
201
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observed and measured easily during testing. The 
experimental devices needed are readily available 
and the experimental costs are low. Therefore, it 
is a suitable device for testing a statically indeter-
minate structure at elevated temperatures.

The continuous beam specimen (Fig. 10-1) is 
designed with two equal spans of 1.2 m each. The 
total length and section are 2.5 m and 100 mm × 
180 mm, respectively, which fit within the exist-
ing furnace (see Fig. 8-3) for testing a structural 
member with three surfaces exposed to high tem-
perature. The upper and lower reinforcements on 
the section of the specimen are symmetrical and 
its construction is shown in Fig. 10-1. Both ends 
of the specimen are supported on rollers, which 
permit longitudinal (horizontal) displacement, 
and one concentrated load acts symmetrically on 
each span.

Six specimens of a continuous beam were pro-
duced to investigate the load position (the dis-
tance (βl) between the concentrated load and the 
end support), the initial loading level (the value 
of constant load), and the heating conditions 
(heating simultaneously on both spans or heat-
ing on one span only while the other span is kept 
at room temperature). The numbers and experi-
mental parameters of the specimens are listed in 
Table 10-1.

A single-bay and single-story frame was 
selected as the statically indeterminate structure. 
Although it is the simplest form of frame struc-
ture, it includes both basic structural members, 
i.e., beam and column, and has three degrees of 
indeterminacy. Therefore, it still reflects the main 
characteristics of the frame structure.
The construction of the frame specimen is 
shown in Fig. 10-2. Two concentrated loads act 
symmetrically on the third point of the beam. 
The span and height of the frame and the sizes of 
beam and column sections fit well with the exist-
ing experimental furnace (see Fig. 8-3). The bot-
toms of the two columns are connected with two 
stiff base beams.

Five frame specimens were designed and their 
numbers and experimental parameters are listed 
in Table 10-2. One specimen (TFC-1), used for 
comparison, was tested at room temperature, 
and the value of the ultimate load obtained is Pu 
(kN). Four other specimens were tested at ele-
vated temperatures and the factors investigated 
are the initial load level (P0/Pu) and the ratio 
between the linear elastic rigidities of the beam 
and column:

 ib = Ebbh3
b

12L
, ic = Ebch

3
c

12H  

 ∴ ib
ic

= bbh3
bH

bch
3
cL

 (10.1)

All the specimens were made in the labora-
tory using a steel mold. The continuous beams 
were cast in a normal position and the frames 
were cast horizontally. They were prepared for 
testing after casting, compacting, and curing of 
the concrete. The raw materials used for the con-
crete specimens were slag cement, river sand, and 
crushed limestone with maximum particle size of 
15 mm. The mix of the concrete and its strength 
at room temperature while testing are shown in 
Table 10-3.
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FIGURE 10-1  Construction and loading pattern of a continuous beam specimen[1-12]: (a) specimen; (b) loading pattern.



203CHAPTER 10  Behavior of Statically Indeterminate Structures at Elevated Temperatures

  TABLE 10-1      Numbers and Experimental Parameters for Continuous Beam Specimens

Number of specimen Load position (β) Heating spans Value of constant load (kN)

TCB1-1 1
3

2 10
TCB1-2 2 20
TCB1-3 1 20
TCB2-1 2

3

2 25
TCB2-2 2 35
TCB2-3 1 10
250250

1500

15
00

15
00

25
0

25
0

1

1

1 11 1

φ4@80

φ4@80

φ4
@

15
0

φ4
@

15
0

φ4@80

2 2

2

2700

2

2–2

P P

1–1

bb(bc)

h b
(h
c)

2φ10
2φ20

2φ202φ10

φ4@80
φ4@150

200

h

l/3 l/3 l/3
l

Belt steel

FIGURE 10-2  Construction and loading pattern of a frame specimen.[1-12]
  TABLE 10-2      Numbers and Experimental Parameters for Frame Specimens

Number of 
specimen

Span of 
beam L 
(mm)

Height of 
column H 
(mm)

Depth of 
beam section 
hb (mm)

Depth of 
 column sec-
tion hc (mm)

Ratio between linear 
elastic rigidities of beam 
and column (ib/ic)

Load 
level 
P0/Pu

TFC-1 1700 1425 150 200 0.354 1.0
TFC-2 1700 1425 150 200 0.354 0.49
TFC-3 1700 1425 150 200 0.354 0.30
TFC-4 1650 1425 150 150 0.877 0.29
TFC-5 1650 1400 200 150 2.011 0.31

The width of the beam and column sections is bb = bc = 100 mm. The beam span L and the column height H are varied because of the 
different depths of their sections, and are adjusted to fit the size of the experimental furnace.
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  TABLE 10-3      Mix and Strength of Concrete

Number of specimen
Grade of 
cement

Mix in weight ratio Cubic strength at 
room temperature 
fcu (MPa)Cement Water Sand Crushed stone

Continuous 
beam

TCB (All) 325 1 0.48 1.54 2.99 29.50

Frame TFC-1 325 29.94
TFC-2
TFC-3
TFC-4 425 47.81
TFC-5
Specimen
Constant load

Experimental furnace
Displacement

trasducer Attachment

End support
Middle support

Steel beam

FIGURE 10-3  Experimental devices and measuring points for a continuous beam.[1-12]
The longitudinal reinforcement used in all the 
specimens was grade I (diameter is 10 mm), its 
yield strength at room temperature was fy = 270 
MPa, and the net thickness of the concrete cover 
was 10 mm. The stirrups were made of cold 
drawing steel wire (No. 8) after tempering.

10.1.2  Testing Method and 
Measuring Technique

The testing method of heating and loading of the 
continuous beam and frame specimens is simi-
lar to that for single beam or column specimens. 
The heating and temperature control system, 
and the transducers and recording instruments 
for measuring various items, which are intro-
duced in Chapters 8 and 9, can also be used. 
Only the support system and loading equip-
ment for the statically indeterminate specimens 
have to be modified, and a measuring method 
for the unknown redundant reactions has to be 
developed.

The continuous beam is supported on a long 
steel beam, each span is heated using an experi-
mental furnace (see Fig. 8-3) with three surfaces 
of the specimen exposed to high temperature, 
and its three supports out of the furnace and in 
an area at room temperature (Fig. 10-3). The 
middle support is a hinge and free rotation of the 
specimen is permitted; two movable and rotary 
roller supports with reaction measurement capa-
bilities are set up at both ends of the specimen. 
The displacement transducers are set up on top 
(low temperature area) of the specimen to mea-
sure the transverse deflection. To avoid the influ-
ences of high temperature and water vapor on the 
transducer, an attachment is fixed on top of the 
specimen, and then the deflection of the specimen 
is moved to the low temperature area and mea-
sured. In addition, two displacement transducers 



205CHAPTER 10  Behavior of Statically Indeterminate Structures at Elevated Temperatures
are set up horizontally at both ends of the speci-
men to measure the longitudinal deformation.

The continuous beam is a statically indeter-
minate system of one indeterminacy and the dis-
tribution of its internal force can be obtained 
if only one of the three reactions is measured. 
Two supports with reaction measurement capa-
bilities are set up at both ends of the beam, then 
the reactions measured can be checked and the 
specimen can be erected and adjusted easily. 
The construction of the roller supports with 
reaction measurement capabilities is shown in 
Fig. 10-4. The main part includes three pairs of 
adjustable screw nuts and bolts of 50 mm diam-
eter. The screw bolts are welded on the lower 
30-mm-thick steel plate and are arranged in an 
isosceles triangle on the plane, and a row of steel  
rollers is put underneath the plate. Another 
steel plate is put on top of the screw nuts and 
two force transducers (15 kN each) are put on 
the plate. The support can measure the vertical 
reaction; it also satisfies all the requirements for 
rotation, horizontal displacement, and height 
and slope adjustments of the specimen. After 
many tests, the support is convenient to use,  
works successfully and has high measurement 
accuracy and a low friction coefficient of hori-
zontal movement.

Three experimental furnaces (see Fig. 8-3) for 
a structural member with three surfaces exposed 
to high temperature are used to heat separately 
the beam and columns of the frame specimen. A 
steel cover plate with thermal insulation is set 
up on each side of the two joints between the 
beam and column of the frame, and is connected 
integrally with the furnace by an attached steel 
connector. Four adjustable bolts are linked 
with the connectors and are hung on the load-
ing frame (Fig. 10-5) for convenient adjustment 
of the relative positions of the furnace and the 
specimen.

There is no thermal resource on the inner side 
of the steel cover plate at the joint, but the gap 
between the plate and the joint is linked up with 
the chambers of the experimental furnaces on 
both sides. Therefore, the joint of the  specimen is 
heated indirectly by the high temperature airflow, 
and the temperature there is about 20–100 °C  
lower than that in the furnace chamber,  according 
to experimental measurements.

The top surface of the beam and the outside 
surfaces of the two columns of the specimen 
are located in the low temperature area, and 13 
displacement transducers are set up there for 
measuring separately the deflections and axial 
deformations of the beam and columns. Also, 
the deformations are moved out to the room 
temperature area through the attachments and 
are measured. Two base beams at the bottom of 
the two columns of the specimen are located in 
the low temperature area, and two displacement 
transducers are set up on each beam for measur-
ing the deformations of the supports.

The frame specimen is a statically indetermi-
nate structure of three degrees of indeterminacy 
and the lower ends of the two columns should be 
connected stiffly with the base beams. The base 
beams are specially designed and constructed 
Compression
transducer

Upper steel plate

Positioner

Screw nut

Screw bolt

Lower steel plate

Rollers

Front view Side view

FIGURE 10-4  Construction of roller supports with reaction measurement capability.
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FIGURE 10-5  Experimental devices and measuring points of a frame.[1-12]
(Fig. 10-5) in order to measure the three 
unknown redundant reactions of the specimen. 
One base beam is set up at the bottom of each 
column and two base beams are linked with two 
steel belts. The base beam on the left column is 
longer and is compressed tightly on the loading 
floor by the compression beams and screw bars, 
and then an ideal fixed end is composed. The 
base beam on the right column is short and a 
roller support with reaction measurement capa-
bility is set up underneath; horizontal displace-
ment of the right column is restrained by the two 
steel belts on its left side. A construction like this 
can measure unknown redundant forces and sat-
isfy the basic requirement of a fixed end of the 
column.

The construction of the roller support with 
reaction measurement capability is shown in Fig. 
10-6(a). It is composed of three thick-walled steel 
tubes, steel plate, and rollers. The thick-walled 
steel tubes are used as the compression trans-
ducers and welded and arranged in an isosceles 
triangle on a 30-mm steel plate, under which 
there is a row of steel rollers and the bottom  
steel plate. The short base beam of the right 
column of the specimen is set up on the roller 
support.

The measuring and calculation methods (Fig. 
10-6(b)) for the unknown redundant reactions or 
the internal forces on the bottom section of the 
right column of the frame specimen are as fol-
lows: four strain gauges of electric resistance are 
pasted on each of the three compression trans-
ducers and the two steel belts between the base 
beams, and each transducer is calibrated sepa-
rately and accurately before testing; the strain 
gauges of the two compression transducers on  
the left-hand side of the support are linked serially  
and measure the value of reaction R1 during test-
ing. The compression transducer on the right-
hand side measures the value of reaction R2, and 
the strain gauges on the steel belts measure the 
values of the horizontal constrained forces H1 
and H2; then the internal forces on the bottom 
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FIGURE 10-6  Roller support with reaction measurement capability and calculation of the internal forces on the bottom 
section of a column: (a) construction of the roller support; (b) calculation of the internal forces at the bottom of the column.
section of the right column can be calculated after 
determining the positions of all the transducers:

 Axial force: N = R1 + R2 

 Shear force: V = H1 + H2 (10.2)

 Bending moment: M = R2l2 − R1l1 − H1h1 − H2h2 

According to these values, the distributions of 
all the internal forces of the statically indetermi-
nate frame specimen can be obtained. Their redis-
tributions during the testing process of heating 
and loading can also be obtained in the same way.

Experience with many heating and loading 
tests of the statically indeterminate continuous 
beam and frame specimens has shown that the 
integral testing program, measuring technique, 
and attached devices, which are introduced above, 
are reliable, convenient to use, and accurate.

10.2  BEHAVIOR OF A 
CONTINUOUS BEAM AT ELEVATED 
TEMPERATURES

10.2.1  Macroscopic Processes of 
Deformation and Failure

All the continuous beam specimens are tested 
under the path of heating under constant load. 
First, a concentrated load (P0) is applied at the 
predetermined position on each span of the speci-
men and is kept constant. Then, the experimental 
furnaces are heated continuously and the tem-
peratures on both side surfaces and the bottom 
of the specimen increase. When the deformation 
of the specimen is out of control, the value of its 
ultimate temperature (Tu, °C) is measured. How-
ever, the end of specimen TCB2-3 rises up from 
the support when the experimental temperature 
is higher than 800 °C (see Fig. 10-9) and it will 
not fail under the action of the initial load, so the 
specimen is loaded again until failure.

The macroscopic phenomena, including escape 
of water vapor, weight loss, color change, and 
cracking on the surface, and their variations in the 
continuous beam specimen during the process of 
heating under constant load, are similar to that of 
single beam or column specimens.

Four of the continuous beam specimens are 
heated simultaneously on both spans, so their 
behavior is symmetrical. The maximum deflec-
tion in the middle of the span increases mono-
tonically during testing (Fig. 10-7). The specimen 
is loaded at room temperature and the deflection 
in the span increases slightly with the initial load 
level, but the value of the deflection is much less 
than that during heating. Flexural deflection of 
the specimen occurs during heating and is con-
vex toward the high temperature zone, because a 
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position β = 1/3; (b) load position β = 2/3.
nonuniform temperature field and thermal strain 
are formed on the section. The deflection in the 
span of the continuous beam is certainly smaller 
than that of a single member (e.g., Fig. 9-9) 
under the same conditions, because the continu-
ous beam is restrained by the middle support.

The mechanical behavior of the concrete and 
the reinforcement of the specimen deteriorates 
after heating, their strain increases, and the deflec-
tion in the span increases rapidly. The deflection 
in the span increases less when the experimental 
temperature T ≤ 400 °C and increases obviously 
when T > 400 °C, and the temperature–deflection 
curve gradually becomes horizontal and its slope 
reduces. When the plastic hinges occur succes-
sively at the mid-span and the middle support of 
the specimen and a mechanism of one degree of 
freedom is formed, the specimen soon fails because 
its deformation is out of control. Nevertheless, the 
failing process of a continuous beam is slower 
than that of a simply supported beam (Chapter 8).

Deformation during heating and the ultimate 
temperature of the specimen vary considerably 
with different positions of the concentrated 
load (or the distribution diagram of the bend-
ing moment). In addition, comparing specimens 
TCB1-2 with TCB1-1 or TCB2-2 with TCB2-1, 
the deflection in the span of the former is obvi-
ously greater than that of the latter at the same 
temperature, and the ultimate temperature 
reduces greatly as the initial load increases.

The failed specimen is removed from the fur-
nace chamber after it cools down. It is seen that 
the residual deformation is great and the local 
bends appear clearly near its mid-spans and 
middle support. Tensile cracks in the span of the 
specimen are less. The critical tensile cracks at 
the positions of the concentrated loads expand 
widely and extend nearly to the top surface of the 
specimen. Horizontal cracks appear in the com-
pression zone and are caused by compressive fail-
ure of the concrete, but the failure area is small. 
There are many tensile cracks on the top part 
near the middle support; a few of them expand 
widely and the extended length is about one-half 
to two-thirds of the section depth. The compres-
sive depth is on the lower part of the section and 
no obvious symptoms of compressive failure are 
found. These phenomena in a continuous beam 
are the same as the failure pattern of a beam with 
the tension or the compression zone exposed to 
high temperature (Chapter 8).

Two other continuous beam specimens (TCB1-3 
and TCB2-3) are also loaded symmetrically at 
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room temperature, but only one span is heated later 
until failure. Therefore, the mechanical responses 
appear asymmetrical. The maximum deflections of 
the heated and unheated spans of the specimen are 
measured during testing and shown in Fig. 10-8.

When the initial loads are applied on the 
specimen at room temperature, the deflections in 
both spans are equal and small. When specimen 
TCB1-3 is heated, the maximum deflection in the 
heated span increases with the experimental tem-
perature and the variation regularity is similar 
to that of the previous four specimens, but the 
maximum deflection in the unheated span is basi-
cally unchanged. When the specimen approaches 
the ultimate temperature, a mechanism of one 
degree of freedom is formed after two plastic 
hinges appear successively in the heated span and 
near the middle support; then the specimen fails 
and its failure pattern is the same as that of the 
previous four specimens. Although the specimen 
is heated on one span only and the temperature, 
deformation, and strength of its two spans are no 
longer equal (symmetrical), it demonstrates that 
the diagrams of the bending moment and shear 
force on both spans are still symmetrical. There-
fore, the maximum value of the bending moment 
in the unheated span is equal to that of the ulti-
mate bending moment (MT

u ) of the heated span 
and is far less than that of the ultimate bending 
moment (Mu) of the same section at room tem-
perature. After the specimen fails, only a few fine 
tensile cracks appear in the unheated span, and 
the residual flexural deformation and other fail-
ure symptoms are not evident.

The deformation of specimen TCB2-3 is 
also small during loading at room temperature. 
The maximum deflection in the unheated span 
of the specimen during heating is also basically 
constant; the deflection in the heated span var-
ies specifically. The maximum deflection in the 
heated span varies less when the experimental 
temperature is T ≤ 200 °C, and increases slightly 
when T = 200–400 °C, but the end of the speci-
men rises up gradually from the support when 
T > 400 °C (Fig. 10-9). The end of the specimen 
leaves the support and rises up about 15 mm at 
T = 823 °C, so the deflection in the heated span 
reduces slightly instead. The specimen is then 
loaded again until failure at a constant temper-
ature of 823 °C; its deflection turns to increase 
again and the risen end recovers gradually.

The end of specimen TCB2-3 rises up at ele-
vated temperatures (T ≥ 400 °C) and the reaction 
there is zero. Therefore, the bending moment 
on the section between the concentrated load 
and the end support (length βl) is also zero, 
and that between the concentrated load and the 
middle support has a negative value. Then, the 
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continuous beam is changed into a bicantilever in 
view of the mechanical condition. During the sec-
ond loading stage, the first plastic hinge appears 
at the middle support,[10-6] then the deforma-
tion of the specimen increases considerably and 
its end falls down to the support, and a positive 
bending moment occurs again in the span. When 
the second plastic hinge is formed in the heated 
span, the specimen undergoes a mechanism of 
one degree of freedom and fails. The failure pat-
tern is the same as that of specimen TCB1-3.

10.2.2  Ultimate Strength at Elevated 
Temperatures

When the six continuous beam specimens, intro-
duced above, fail, plastic hinges are formed in 
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FIGURE 10-9  Vertical  displacement  of  the  end of  the 
heated span of specimen TCB2-3.
the heated span(s) and near the middle support, 
and the ultimate bending moments at elevated 
temperatures on the corresponding sections are 
achieved. The measured ultimate temperatures 
(Tu) and strengths (PTu ) of the specimens tested 
are summarized in Table 10-4.

When the continuous beam specimen TCB1-1 
is compared with TCB1-2, the ultimate temper-
ature reduces from 950 °C to 743.2 °C and the 
reducing amplitude is 21.8%, as the load level is 
increased from P0/Pu = 0.25 to 0.5, although both 
specimens have the same load position (or calcu-
lation model) and heated spans. When specimen 
TCB2-1 is compared with TCB2-2, the ultimate 
temperature reduces from 937 °C to 490.9 °C 
and the reducing amplitude reaches 47.6%, as the 
load level (P0/Pu) is increased from 0.63 to 0.88.

When the position of the concentrated load 
acting on the continuous beam is changed, the dis-
tribution diagram of the bending moment or the 
ratio between the bending moments in the span 
and at the middle support changes. For example, 
the load positions are β = 1/3 and 2/3 for the two 
series of specimens tested, and the corresponding 
ratios of the bending moments are M0/MB = 1.18 
and 0.87. This means that the bending moment in 
the span is decreased, while that at middle support 
is increased, when the second series of specimens 
(TCB2) is compared with the first series (TCB1). 
On the other hand, the cross sections in the span 
and at the support of the continuous beam at 
room temperature are the same and the ultimate 
  TABLE 10-4      Ultimate Strength of Continuous Beam Specimens at Elevated Temperatures

Number of 
 specimen

Constant  
load P0 (kN)

P0

Pu

M0

Mu

MB

Mu Tu (°C) PT
u (kN)

TCB1-1 10.0 0.25 0.259 0.222 950.0 10.0
TCB1-2 20.0 0.50 0.519 0.444 743.2 20.0
TCB1-3 20.0 0.50 0.519 0.444 697.9 20.0
TCB2-1 25.0 0.63 0.602 0.692 937.0 25.0
TCB2-2 35.0 0.88 0.843 0.972 490.9 35.0
TCB2-3 10.0 0.25 0.241 0.278 823.0 24.7

Pu and Mu are the theoretical values of the ultimate load and bending moment, respectively, on the section of the continuous beam speci-
men at room temperature, and M0 and MB are the maximum bending moments of the sections in the span and at the middle support of 
the specimen, respectively, under the action of load P0 and at room temperature.
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values of their bending moments (Mu) are also the 
same. However, the ultimate bending moment in 
the span of the specimen at elevated temperatures 
reduces significantly because the tension zone is 
exposed to high temperature; the reduction in the 
ultimate bending moment near the middle support 
is limited (see Fig. 8-8) because the compression 
zone is exposed to high temperature. Therefore, 
the two ultimate bending moments differ consid-
erably. The distribution of the bending moments 
of the second series of specimens coincides with 
the varying tendency of the ultimate strength of 
the continuous beam after heating, so that the 
plastic hinge in the span occurs later and the ulti-
mate temperature and strength of the specimen are 
higher. For example, the load level P0/Pu = 0.63, 
ultimate load PTu =25 kN, and ultimate tempera-
ture Tu = 937 °C of specimen TCB2-1 are much 
higher than the corresponding values for the spec-
imen TCB1-2, i.e., P0/Pu = 0.50, PTu =20 kN, and 
Tu = 743.2 °C.

When the specimen (TCB1-2) is heated in both 
spans and a concentrated load of the same posi-
tion and value is acted on each span, the mechan-
ical behavior is symmetrical about the middle 
support and the angular rotation of the section at 
the middle support is zero throughout the load-
ing and heating process. However, as the speci-
men (TCB1-3) is heated in one span only, angular 
rotation of the section at the middle support is 
certain to occur, and then the bending moment 
there has to be reduced and the maximum bend-
ing moment in the span is increased, correspond-
ingly, because the rigidity of the heated span is 
smaller than that of the unheated span, although 
the bending moment diagrams on both spans are 
still symmetrical. This leads the first plastic hinge 
to appear earlier in the heated span, so the ulti-
mate temperature of the continuous beam heated 
in one span only is lower than that heated in both 
spans (697.9 °C < 743.2 °C).

10.2.3  Redistribution Process 
of Internal Force

A continuous beam of two spans is a stati-
cally indeterminate structure of one degree of 
indeterminacy. When the specimen is loaded at 
room temperature, the distribution of the bend-
ing moment calculated by the measured values of 
the load and reactions fits well with the results of 
the theoretical analysis based on homogeneous 
linear elastic material. Even if the specimen 
(TCB2-2) is loaded to a high level (P0/Pu = 0.88), 
and the concrete cracks have already appeared in 
the tension zone and the nonelastic strain of con-
crete has occurred in the compression zone, the 
difference between the bending moments mea-
sured and analyzed elastically is still less (<10%).

When the continuous beam specimen is heated 
under a constant load, large thermal deforma-
tions are caused because a nonuniform tempera-
ture field is formed on the sections. The flexural 
deformation (curvature = 1/ρ, see Figs. 8-7 and 
8-9) among them is constrained by the redundant 
support, so redistribution of the bending moment 
and shear force of the specimen result. However, 
the longitudinal expansive deformation (see Figs. 
9-3 and 9-9) is not restrained and no axial force 
results, because the roller supports are set up on 
both ends of the specimen.

The specimens TCB1-1 and TCB1-2 are simi-
lar. The reactions at their supports measured 
during testing vary with the elevating tempera-
ture and are shown in Fig. 10-10. The maximum 
bending moment (M0 = RAβl) in the span of the 
specimen is directly proportional to the reaction 
at the end support (RA = RC). According to the 
variations in the reactions at the supports (i.e., 
also the bending moment in the span) shown in 
the figure, there are three stages in the redistri-
bution process of internal force in a continuous 
beam during heating.

 1.  Initial development stage. When the speci-
men is heated and the experimental tem-
perature increases from the normal value to  
300–400 °C, the temperature in its interior 
is not yet high but the temperature gradient 
on the section is large, so the expansive strain 
of concrete is not uniform and flexural defor-
mation, which is convex toward the high 
temperature zone, results and the reaction 
at the middle support (RB) increases. At the 
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FIGURE 10-11  Redistribution of the internal force and failure mechanism of a continuous beam: (a) redistribution of the 
bending moment; (b) position and order of appearance of plastic hinges.
same time, the reactions at the end supports 
(RA = RC) have to reduce because the loads 
on the specimen are constant (P0 = const.). 
Therefore, the bending moment in the span 
(M0) reduces and the bending moment at the 
section in the middle support (MB) increases 
gradually (Fig. 10-11).

 2.  Stable development stage. When the specimen 
is heated continuously, the temperature in the 
interior of its section increases gradually and 
the behavior of the concrete deteriorates more 
significantly. The reducing amplitude of sec-
tion rigidity in the span area (of +M) with the 
tension zone exposed to high temperature on 
the continuous beam is far greater than that 
in the area near the middle support (of −M) 
with the compression zone exposed to high 
temperature, so nonuniform distribution of 
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section rigidity results. In the meantime, the 
thermal deflection is continuously convex 
toward the high temperature zone, although 
the temperature gradient on the section 
reduces slightly. Due to the actions of these 
two factors, the redistribution of internal 
forces in the continuous beam develops con-
tinuously and stably, and the bending moment 
in the span reduces while the bending moment 
at the middle support increases (Fig. 10-11).

 3.  Stage after the plastic hinge is formed. As 
the experimental temperature increases con-
stantly, the bending moments in the span and 
at the middle support continuously decrease 
and increase. However, the ultimate bend-
ing moment (MT

0u) in the span section with 
the tension zone exposed to high tempera-
ture reduces even more quickly. This leads 
the existing bending moment in the span to 
first reach the ultimate value of the bending 
moment, and then the first plastic hinge is 
formed there. As the experimental tempera-
ture increases continuously, the ultimate value 
of the bending moment at the plastic hinge 
under high temperature reduces further and 
the reaction at the end support decreases cor-
respondingly. In the meantime, the reaction at 
the middle support increases and the bending 
moment of the section there increases quickly. 
When the bending moment there reaches the 
ultimate value of the bending moment of the 
specimen with the compression zone exposed 
to high temperature, the second plastic hinge 
appears near the section on the middle sup-
port (Fig. 10-11(b)) and the specimen com-
poses a mechanism and fails.

The load and heating conditions of both spec-
imens TCB1-1 and TCB1-2 are the same, and 
the redistribution processes of internal force are 
similar. However, when TCB1-1 is compared 
with TCB1-2, its load level is higher (P0/Pu = 
0.50 > 0.25), so the second stage is reached ear-
lier, the first plastic hinge also appears earlier, 
and the ultimate temperature is lower. If the 
ratio between the reactions at the end support 
is reduced when the first plastic hinge is formed 
and that before heating is taken as an index of 
the redistribution amplitude of the internal force 
of the continuous beam after heating, the index 
of the specimen TCB1-2 is obviously lower than 
that of the specimen TCB1-1 due to the higher 
load level.

The measured reactions at the supports of 
specimen TCB2-1 vary during the heating pro-
cess and are shown in Fig. 10-12(a). Because the 
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FIGURE 10-12  Variation of the reaction at the support of a continuous beam specimen at elevated temperatures[10-7]: 
(a) TCB2-1 (P0  /Pu = 0.63); (b) TCB2-2 (P0  /Pu = 0.88).
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concentrated loads on the specimen are located 
near the middle support (β = 2/3), the reaction at 
the end support is far smaller than that at the mid-
dle support (RA =RB) and the bending moment in 
the span is relatively small (M0/MB). Therefore, the 
rigidities of the sections in the span and near 
the middle support at elevated temperatures are 
not so different, the internal force redistributes 
slowly, and the turn between the first and sec-
ond stages is not clear. As the bending moment 
in the span under the action of load is reduced, 
it is helpful for delaying the appearance of the 
plastic hinge in the redistribution process of the 
internal force during heating and for increasing 
the ultimate temperature of the specimen. The 
appearance order of plastic hinges and the failure 
mechanism of specimen TCB2-1 are the same as 
for specimen TCB1-1 and others, but the load 
level of specimen TCB2-1 is higher (P0/Pu = 0.63) 
and the redistribution amplitude of the internal 
force is smaller.

The load level of specimen TCB2-2 is quite 
high (P0/Pu = 0.88) and the ratio between the 
initial bending moment and the ultimate bend-
ing moment on the section in the span reaches 
M0/Mu = 0.843 (Table 10-4). After the specimen 
is heated, the bending moment in the span 
reduces slightly and the redistribution process 
of the internal force is short. However, the 
ultimate bending moment at elevated tempera-
tures reduces quickly and the first plastic hinge 
appears in the span when the experimental tem-
perature T < 500 °C (Fig. 10-12(b)), so the redis-
tribution amplitude of the internal force is very 
small. Another plastic hinge then appears near 
the middle support, and the specimen composes 
a mechanism and then fails.

Two other continuous beam specimens are 
heated in one span only during testing and the 
measured reactions at the supports during heat-
ing vary as shown in Fig. 10-13. It is seen that the 
behavior of specimen TCB1-3 is similar to that 
of specimens TCB1-1 and TCB1-2. However, 
the section at the middle support of specimen 
TCB1-3 is rotated during heating in one span 
and the deformations in both spans are adjusted 
and are different, so the redistribution amplitude 
of the internal force is small and the turn from 
the first to the second stage is not clear.

The concentrated load acting on specimen 
TCB2-3 is located near the middle support 
and the load level is P0/Pu = 0.25, so the initial 
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reaction at the end support (RA = RC) is quite low. 
The flexural deformation of the specimen after 
it is heated is convex toward the high tempera-
ture zone and redistribution of the internal force 
occurs, so the reaction at the end support reduces 
gradually and even reduces to zero at experimen-
tal temperature T ≈ 400 °C. When the specimen 
is heated continuously, the thermal deformation 
makes the end support rise up constantly (Fig. 
10-9); then the area between the end support and 
concentrated load is free of internal force, and 
the calculation model of the specimen is changed 
to the bicantilevers from the continuous beam of 
two spans (Fig. 10-11). At this time the reactions 
at the supports keep constant values, i.e., RA = 
RC = 0 and RB = 2P0. When the experimental 
temperature reaches 823 °C, the ultimate bend-
ing moment on the section of the middle sup-
port with the compression zone exposed to high 
temperature (MT

u ) reduces slightly (Fig. 8-8) but 
is still far greater than the value of the bending 
moment there caused by the load (P0 = 10 kN), 
so the specimen does not fail. It is estimated that 
the specimen will not fail at all even if it is heated 
continuously, so it is loaded again and the exper-
imental temperature is kept constant (823 °C). 
When the load reaches P0 = 24.7 kN, the first 
plastic hinge is formed near the section on the 
middle support and considerable rotation occurs 
there, so both ends of the specimen fall down to 
the end supports and the mechanical behavior of 
the continuous beam of two spans is recovered. 
When the reaction at the end support increases 
again and the corresponding value of the bend-
ing moment in the span increases to that of the 
ultimate bending moment of the section with 
the tension zone exposed to high  temperature, 
the second plastic hinge appears there and the 
 specimen composes a mechanism and fails.

Generally, the redistribution process for the 
internal force of a reinforced concrete continu-
ous beam with two spans at room temperature 
and monotonic loading is as follows: before 
the tensile concrete cracks, the distribution of  
the internal force agrees well with the result of 
linear elastic analysis; after the concrete cracks, 
the rigidity of the section is reduced and the 
value of the rigidity differs from section to sec-
tion, so the redistribution of the internal force is 
slight; after the first plastic hinge is formed near 
the middle support, the internal force is redis-
tributed sharply and the bending moment in the 
span increases quickly with the load and that at 
the middle support remains constant. When the 
second plastic hinge has appeared in the span, 
the continuous beam composes a mechanism and 
then fails.

The redistribution processes for the inter-
nal force of six reinforced concrete continuous 
beams with two spans under monotonic heating 
and different loading conditions are presented in 
detail above. The macroscopic regularity is simi-
lar to that at room temperature, e.g., before and 
after the appearance of the first plastic hinge, the 
redistribution of the internal force is caused by 
different factors, and the redistributed ampli-
tudes are also different; when several plastic 
hinges are formed successively, the continuous 
beam is composed of a mechanism of one degree 
of freedom and then fails. However, the redis-
tribution of the internal force of the continuous 
beam during the heating process is larger and 
more complex; the redistribution of the internal 
force may be larger before the appearance of the 
first plastic hinge; even the calculation model 
is changed; the ultimate value of the bending 
moment at the plastic hinge reduces continuously 
as the temperature increases; and the order of 
appearance of the plastic hinges may have more 
than one possibility.

10.3  BEHAVIOR OF FRAMES 
AT ELEVATED TEMPERATURES

10.3.1  Macroscopic Processes 
of Deformation and Failure

Four single-bay and single-story frame speci-
mens are tested under the path of heating under 
constant load. A pair of concentrated loads act 
symmetrically on third points of the frame beam 
and maintained at a predetermined value (P0). 
Then the experimental furnace is electrified and 
heated; both sides and the inner surfaces of the 



216 CHAPTER 10  Behavior of Statically Indeterminate Structures at Elevated Temperatures
frame beam and columns are heated continu-
ously. When the specimen fails because its defor-
mation is out of control, the value of the ultimate 
temperature (Tu) is measured. If the specimen 
does not fail when the experimental temperature 
T > 950 °C is reached, the temperature is kept 
constant for 60 min and then the specimen is 
loaded again until failure.

During the heating process of the specimen, 
water vapor in the interior of the two columns 
escapes less from the outer surfaces; most of it 
rises up and escapes from the joints on the top. 
Other macroscopic phenomena, i.e., weight loss, 
color change, and cracking on the surface, and 
variations with elevating temperature, are similar 
to that of a single beam or column specimen.

Specimen TFC-1 is tested at room temperature 
for comparison. The deflection in the beam span, 
the lateral displacements of the columns, and the 
axial deformations of the beam and columns of 
the specimen are very small during the loading 
process, and, basically, they are directly propor-
tional to the value of load. As the load increases, 
the tensile crack appears first on the top surface 
at the end of the frame beam because of the larger 
bending moment there; several tensile cracks 
then appear successively on the bottom of the 
frame beam between the two concentrated loads, 
i.e., in the span zone of the pure bending moment 
(shear force is zero). Each of the cracks extends 
and expands gradually but its width is small. As 
the ultimate load (Pu = 27.9 kN) is approached 
and reached later, tensile cracks appear succes-
sively on the outer surface near the top and on 
the inner surfaces near the bottom of the frame 
columns; then three plastic hinges are formed 
successively at both ends and the mid-span of the 
frame beam and the frame specimen composes 
a beam mechanism and fails. After the load is 
removed, most of the cracks are closed and the 
residual deformation is not clear on the failed 
specimen, except for the cracks and bend defor-
mations near the plastic hinges. At this time, the 
maximum deflection at the mid-span of the speci-
men is only 7.5 mm and the axial elongation is 
less than 1 mm.[1-12] This is the general failure 
pattern of a statically indeterminate structure.
When the specimens TFC-2 to TFC-5 are 
loaded to the predetermined values (the maxi-
mum is P0/Pu = 0.49) at room temperature, no 
obvious tensile cracks appear on the outer sur-
faces of the frame beam and columns, and the 
flexural and axial deformations are small. Dur-
ing the heating process under constant load of 
the specimen, the deflection at the mid-span of 
the beam (i.e., downward displacement related 
to the top of the column) and the axial defor-
mations of the beam and column increase with 
the experimental temperature (Figs. 10-14 and 
10-15), and the deflection curves of the frame 
beam and columns are shown in Fig. 10-16.

The initial load level P0/Pu = 0.49 of specimen 
TFC-2 corresponds approximately to the ser-
vice load of a practical structure used normally. 
When the experimental temperature reaches  
T ≈ 200 °C, the cracks appear successively on 
the top surface at the end of the beam and on 
the outer surface at the top of the column, and 
they develop slowly. When T ≥ 400 °C, the 
cracks in the concrete and the flexural and axial 
deformations of the beam and column increase 
gradually because of serious deterioration in the 
behavior of the concrete. Although the relative 
deformation of the beam is already great when 
T = 500 °C, the absolute deflection is still smaller 
than that at room temperature (Fig. 10-16(a)), 
because the axial elongations of both columns 
are even greater. The lateral displacement of the 
column is convex toward its outer surface dur-
ing loading at room temperature, but it turns to 
the opposite direction and is convex toward the 
inner surface of the column when T = 500 °C, 
because the temperature in the inner side is 
higher and the expansive strain there is greater 
than that on the outer side; in the meantime the 
axial deformation of the beam is elongated. As 
the experimental temperature increases further, 
the behavior of the concrete deteriorates more 
significantly; the flexural deformation in the 
beam span develops quickly and is even greater 
than the expansive elongation of the column, so 
the absolute value of the deflection at the mid-
span of the beam increases quickly. In addition, 
many transverse cracks appear at a uniform 
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FIGURE 10-14  Deformation of frame specimens TFC-2 and TFC-3 during heating[10-8]: (a) relative deflection at the mid-
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FIGURE 10-15  Deformation of frame specimens TFC-3 to TFC-5 during heating[10-8]: (a) relative deflection at the mid-
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distance on the outer surfaces of the column from 
top to bottom, because the compressive strain of 
concrete at high temperatures in the inside of the 
column increases considerably. Therefore, the 
flexural deformation of the column turns again 
to the opposite direction, i.e., is convex toward 
the outer surface, and develops rapidly.
When the experimental temperature approaches 
and reaches 820 °C, the ultimate bending moment 
in the span of the beam reduces significantly 
because the tension zone there is exposed to high 
temperatures, the tensile reinforcement yields, 
and the first plastic hinge is formed there. Then, 
the bending moment at the end of the beam 
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FIGURE 10-16  Deflection  curves  of  the beam and  column of  the  frame  specimen:  (a)  TFC-2;  (b)  TFC-3;  (c)  TFC-4; 
(d) TFC-5.
increases gradually as the internal force is redis-
tributed, but the ultimate value of the bending 
moment there reduces slowly because the com-
pression zone is exposed to a high temperature. 
When the values of the existing bend moment 
and the ultimate bending moment are equal, two 
plastic hinges opposite in direction to the first 
one are formed at each end of the beam, and 
the frame specimen composes a beam mecha-
nism (Fig. 10-17) and then fails. When specimen 
TFC-2 is compared with specimen TFC-1 tested 
at room temperature, the failure mechanism and 
the positions of the plastic hinges are identical, 
but the appearance order of the plastic hinges 
is just the opposite. The exterior of specimen 
TFC-2 after it fails is also similar to that of 
specimen TFC-1, but the residual deformation is 
much greater. The local bend deformations and 
wide cracks are obvious near the positions of the 
plastic hinges at mid-span and at both ends of 
the frame beam. The convex deflection of the col-
umn is clear but is smaller than that of the frame 
beam because the rigidity of the column is greater 
(ib/ic = 0.354), and the width of the cracks on 
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FIGURE 10-17  Position and order of appearance of plastic hinges of a  frame specimen:  (a) at normal  temperature 
(theoretical analysis); (b) at elevated temperatures (tested).
the column is smaller. The axial deformations of 
the beam and column reach 10 mm and 6 mm, 
respectively.

The frame specimens TFC-3 and TFC-2 have 
the same cross section, beam length, and column 
height, and are also tested under the same condi-
tions. The only difference between them is the 
initial load level (P0/Pu = 0.30 < 0.49). Therefore, 
the internal force and deformation of specimen 
TFC-3 caused during loading at room tempera-
ture are even less and no cracking occurs. The 
deflection in the mid-span of the beam, the lateral 
displacement of the column, and the axial defor-
mations of the beam and column of the frame 
specimen are slightly less throughout the heating 
process (Figs. 10-14 and 10-16). When the cracks 
appear first on the top surface near the end of the 
beam and on the outer surface near the top of the 
columns, the experimental temperature is about 
450 °C, which is higher than that of specimen 
TFC-2. When the experimental temperature is 
increased further to T = 979.4 °C, the deforma-
tion and cracks in the specimen are large, but are 
still less than the corresponding values for spec-
imen TFC-2 when T = 800 °C, and no failure 
symptom has yet shown up. The load and tem-
perature of the specimen are then kept constantly 
for 60 min, deformation and cracks develop 
further, but still no failure symptom appears. 
When the specimen is loaded again and the load 
reaches P0 = 17.3 kN, three plastic hinges are 
formed successively in the mid-span and at both 
ends of the frame beam, and the frame specimen 
composes a beam mechanism and then fails. The 
failure mechanism and pattern of the specimen 
are identical with that of specimen TFC-2, but 
the residual deformation of specimen TFC-3 is 
greater.

Frame specimens TFC-4 and TFC-5 have simi-
lar values for the initial load levels (P0Pu = 0.29 
and 0.31, respectively) as specimen TFC-3 (P0/Pu = 
0.30), and the testing conditions are identical. 
The differences between them are the depths of 
the sections and the values of the ratio between 
the linear rigidities of the beam and column (ib/ic, 
Table 10-2). Comparing specimens TFC-4 and 
TFC-5 with specimen TFC-3, the values of the 
ratio of linear rigidity are increased, because the 
depth of the beam is increased or the depth of the 
column is decreased. When the two specimens 
are loaded at room temperature, the difference 
in the internal force of the specimens causes dif-
ferent values of deformations, but all the defor-
mations are small and no cracking occurs on the 
specimens. When the two specimens are heated 
and the experimental temperature reaches T ≥ 
200 °C, a crack occurs first on the outer surface 
near the top of the column because of the weak-
ness there. Then, transverse cracks appear suc-
cessively at a uniform distance along the height of 
the column, and they extend and expand gradu-
ally; no cracks are found on the top surface of the 
beam. As the rigidity of the column is reduced, 
the flexural deformation caused during loading 
is greater than that caused during heating, so 
the lateral displacement of the column is con-
tinuously convex toward the outer surface (Fig. 
10-16(c) and (d)). The relative deflection in the 
mid-span of the frame beam is greater than that 
of specimen TFC-3 (Fig. 10-15(a)), because the 
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constraint action of both columns is weakened. 
The axial deformations of the beam and column 
are related to the size of their section, and they are 
decreased and increased, respectively, when the 
specimens are compared with specimen TFC-3,  
but the differences between them are limited  
(Fig. 10-15(b)).

When the experimental temperature is T ≥ 
400 °C, the behavior of the concrete material 
deteriorates more significantly and the cracks on 
the specimen expand gradually, and the defor-
mations of the beam and column increase rapidly 
along the previous directions. When T ≥ 950 °C, 
the flexural deformation of the column is convex 
toward its outer surface and can be seen by naked 
eye, but still no failure symptoms appear. Then, 
the experimental temperature is kept constant, 
and the deformations of the beam and column 
of the specimen increase greatly again. Specimen 
TFC-5 fails after the temperature is kep constant 
for 16.8 min, because its deformation is out of 
control. However, specimen TFC-4 is loaded 
again after the temperature is kept constant for 
60 min, and it fails when the load (P0) reaches 
9.8 kN from 8.5 kN.

The failure conditions for specimens TFC-4 
and TFC-5 are examined after testing[1-12]: fine 
tensile cracks are found only on the outer surface 
near the top of the column; other parts on and 
near the joint between the beam and column are 
basically undamaged; the plastic rotation zones 
are found at the mid-span of the beam and the 
bottom of both columns because the reinforce-
ments in the inner side are subjected to elevated 
temperatures (when these three plastic hinges are 
formed, the frame specimen composes a stati-
cally determinate arch of three hinges, but this 
is not enough to compose a changeable mecha-
nism); considerable thermal flexural deformation 
is caused within a long area in the middle part 
(longer than half the height) of the column due 
to less rigidity, and larger additional eccentric-
ity appears there; the compressive deformation 
of the concrete on the inner side of the column 
is considerable as it is located in the high tem-
perature zone; even the concrete cover there falls 
down and the compressive reinforcement yields, 
causing a large plastic rotation angle and a plastic 
hinge of compression type is formed there. Then 
the frame specimen composes a changeable mech-
anism of mixed type of beam and column with 
five plastic hinges (Fig. 10-17(b))[10-8] and fails.

Every frame specimen composes a  changeable 
mechanism of one degree of freedom and then 
fails, after several plastic hinges are formed suc-
cessively under the loading and heating pro-
cess. A specimen with a different ratio between 
the rigidities of the beam and the column may 
show various failure mechanisms. If the five 
frame specimens of similar size and construc-
tion are loaded at room temperature, all of them 
form a mechanism of beam type (Fig. 10-17(a)) 
and then fail. However, three plastic hinges are 
formed successively at both ends and at the mid-
span of the beam for specimens TFC-1, TFC-2,  
and TFC- 3; they are formed successively in 
the mid-span of the beam and near the top of 
both columns for specimens TFC-4 and TFC-5 
because of the smaller section of the column. 
The failure mechanisms of the frame specimens 
observed during testing at elevated temperatures 
(Fig. 10-17(b)) are different from that observed 
at room temperature. They are different in the 
position or the order of appearance of the plastic 
hinges, even in various types of mechanisms.

10.3.2  Ultimate Strength at Elevated 
Temperatures

The ultimate temperature (Tu) and strength (load 
PTu ) of the five frame specimens measured in dur-
ing testing are summarized in Table 10-5.

When a reinforced concrete frame specimen 
is tested at elevated temperatures, considerable 
deformation occurs because of serious deterio-
ration in the behavior of the concrete and the 
reinforcement. The ultimate strength reduces 
considerably compared with that of the specimen 
at room temperature, e.g., the relative strengths 
of the four specimens are reduced by 38–70% 
when the experimental temperature is higher 
than 800 °C.

The higher the initial load level on the frame 
specimen, the worse the fire (high temperature) 
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resistant behavior. Specimen TFC-3, with an ini-
tial load level P0/Pu = 0.30, does not fail after a 
high temperature of 979.4 °C is maintained for 
60 min, and the load that it can bear is doubled. 
However, specimen TFC-2, with an initial load 
level P0/Pu = 0.49, fails when the experimental 
temperature increases to 820 °C.

If the ultimate strengths of the frames at room 
temperature are identical but the ratios between 
the rigidities of the beam and column are not 
equal, the resistant capacities at elevated temper-
atures may be obviously different. For example, 
the initial load levels of frame specimens TFC-3, 
TFC-4, and TFC-5 are nearly the same (P0/Pu ≈ 
0.30), but the ratios between the linear rigidi-
ties of the beam and column range from ib/ic = 
0.354 to 2.011, respectively. Although all expe-
rience high temperatures of more than 950 °C, 
the specimen with the highest ratio fails earlier, 
i.e., specimen TFC-4 fails when the value of the 
second loading is small after a high tempera-
ture is maintained for 60 min; even specimen 
TFC-5 fails during the process of constant high 
temperature. Therefore, the ultimate strength of 
the frame structure at elevated temperatures is 
reduced gradually, as the ratio between the rigid-
ities of the beam and column increases, i.e., the 
section of the beam increases or the section of the 
column decreases.

10.3.3  Redistribution Process 
of Internal Forces

Frame specimen TFC-1 is loaded at room tem-
perature until failure. The actual values of the 
bending moment of the specimen are calculated 
(see Eqn 10.2) from the measured reactions at 
the support (R1 and R2) and the horizontal con-
straint forces (H1 and H2), and they are com-
pared in Table 10-6 with the results of linear 
elastic analysis. The measured bending moments 
at the bottom and the top of the column and at 
the end of the beam are slightly smaller; that at 
the mid-span of the beam is slightly greater. The 
reason is that a tiny rotation occurs on the base 
of the specimen (Fig. 10-18). The maximum error 
between the measured and calculated bending 
moments is less than ±8%, when the load level is 
  TABLE 10-5      Ultimate Strength of Frame Specimens at Elevated Temperatures

Number of 
specimen

Value of 
constant 
load P0 (kN)

P0

Pu

Ratio between 
rigidities of beam 
and column ib/ic

Ultimate 
tempera-
ture Tu (°C)

Time constant 
temperature 
maintained (min)

Ultimate 
Load PT

u
(kN)

TFC-1 27.9 1.00 0.354 20.0 0 27.9
TFC-2 13.7 0.49 0.354 820.0 0 13.7
TFC-3 8.5 0.30 0.354 979.4 60 17.3
TFC-4 8.5 0.29 0.877 964.1 60 9.8
TFC-5 9.3 0.31 2.011 952.2 16.8 9.3
  TABLE 10-6      Comparison of Bending Moments on Sections of Frame Specimen TFC-1

Position of section Bottom of column
Top of column and  

end of beam Mid-span in beam

Load P/Pu 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
Measured bending 

moment Mt (kN·m)
1.057 2.197 3.151 2.114 4.394 6.302 1.827 3.488 5.522

Calculated bending 
moment Mc (kN·m)

1.118 2.236 3.354 2.236 4.472 6.707 1.705 3.410 5.115

Mt/Mc 0.945 0.983 0.939 0.945 0.983 0.940 1.072 1.023 1.080
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P0/Pu ≤ 0.75. This shows that the redistribution 
amplitude of the internal force of the frame, due 
to the appearance of tensile cracks and nonelastic 
compressive strain in the concrete, is small before 
the formation of the plastic hinge. In the mean-
time, the testing program and technique used to 
measure the unknown redundant reactions are 
shown to be reasonable and all the transducers 
work normally with proper accuracy.

Frame specimen TFC-2 is loaded (P0/Pu = 0.49) 
first at room temperature, and the reactions mea-
sured at the support (R1, R2) and the horizontal 
constraint forces (H1, H2), the angular rotation 
and the horizontal displacement of the short base 
beam or the bottom of the right column (see Figs. 
10-5 and 10-6), increase approximately linearly 
with the value of the load (Fig. 10-18). A posi-
tive bending moment (with tension in the inner 
side of the column) is caused on the bottom of 
the right column under loading, so the angular 
rotation of the short base beam is clockwise, and 
the reaction there is R2 > R1 and the horizontal 
constraint force is H1 > H2.

When frame specimen TFC-2 is heated under 
constant load, the inner and outer sides of the 
beam or column are at high and low tempera-
tures, respectively, and nonuniform temperature 
fields are formed on their sections. Then, non-
uniform thermal strain and deterioration in the 
behavior of the material result and the redistribu-
tion of the internal force of the frame specimen is 
complicated (Fig. 10-19). During the early heat-
ing stage, the thermal expansive strain of con-
crete (curvatures 1/⍴ are convex toward the inner 
side with the high temperature of the beam and 
column) is predominant, and a negative bend-
ing moment is caused on the bottom section of 
the column due to the constraint of its support. 
Therefore, the positive bending moment (with 
tension in the inner side of column) caused dur-
ing loading is reduced gradually and reaches zero 
when the experimental temperature T ≈ 200 °C. 
The bending moment then turns to a negative 
value (with tension in the outer side of the col-
umn) and reaches a maximum at T ≈ 400 °C. 
Correspondingly, the angular rotation at the bot-
tom of the column (or base beam) turns coun-
terclockwise from the clockwise direction, the 
reaction R1 and horizontal force H2 increase, and 
the reaction R2 (R1 + R2 = P0 = const.) and the 
horizontal force H1 decrease. At this time, 
the positive bending moment in the mid-span 
of the frame beam decreases and the negative 
 bending moment at its end increases, and the 
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negative bending moment is distributed over the 
entire height of the column.

When the experimental temperature is higher 
(T > 400 °C), compressive stress in the inner side 
of the column section increases under the action of 
the negative bending moment and the behavior of 
the concrete deteriorates significantly at high tem-
perature. The compressive strain increases sharply 
and flexural deformation of the column is convex 
toward its outer surface and develops quickly (see 
Fig. 10-16). As the deformation is also constrained 
by the support, the negative bending moment at 
the bottom section of the column reduces gradu-
ally. When the experimental temperature reaches 
T ≈ 600 °C, the redistribution of the internal force 
of the specimen develops rapidly, and the bending 
moment at the bottom section of the column is zero 
at T ≈ 650 °C and turns to positive afterward. In 
the meantime, the angular rotation at the bottom 
of the column (or base beam) turns again to clock-
wise from the counterclockwise direction, and the 
reaction R1 and horizontal force H2 decrease while 
reaction R2 and horizontal force H1 increase. The 
bending moment, reactions, and deformation at 
the bottom of the column experience a process 
that is repeated twice, i.e., positive–negative–pos-
itive or negative–positive–negative. Correspond-
ingly, the bending moments in the mid-span, at the 
end of the beam, and at the top of the column also 
experience a process that is repeated twice, i.e., 
decreasing and increasing or vice versa.

As frame specimen TFC-2 is heated continu-
ously, the internal force and deformation develop 
constantly. When the experimental temperature 
approaches 820 °C, the bending moment in the 
mid-span of the beam reaches the ultimate value 
of the bending moment on the section with the 
tension zone exposed to high temperature, and the 
first plastic hinge appears there. Then, the bending 
moments at both ends of the beam soon reach the 
ultimate value of the bending moment on the sec-
tion with the compression zone exposed to high 
temperature and two plastic hinges are formed 
on both ends of the beam; so the frame specimen 
composes a mechanism of beam type and fails (see 
Fig. 10-17(b)). As the section depth and strength 
of the column are greater than that of the beam, 
no plastic hinge is formed on the column. The 
frame specimen is unloaded after failure, and the 
internal force and deformation recover slightly.

Frame specimen TFC-3 is different from 
TFC-2 only in the lower level of the constant load  
(P0/Pu = 0.30 < 0.49). The variations in the reac-
tion and deformation, the redistribution regular-
ity of the internal force (Fig. 10-19(d) and (e)), and 
the failure pattern of both specimens measured 
during the loading and heating processes are simi-
lar, but are quantitatively different. For example, 
the bending moment on the bottom section of the 
column of specimen TFC-3 turns from a positive 
to a negative value at about 150 °C and turns 
back to a positive value again at about 890 °C. 
The temperature interval (740 °C) at which the 
negative bending moment appears is obviously 
longer than that of specimen TFC-2 (450 °C) 
and the variable gradient or algebraic difference 
of the positive and negative bending moments 
of specimen TFC-3 is obviously smaller. In addi-
tion, the variable amplitude of the shear force on  
the bottom section of the column is smaller, 
and the variable amplitude of the bending moment 
at the end of the beam (also at the top of the col-
umn) is greater than that of specimen TFC-2 (Fig. 
10-20). Of course, frame specimen TFC-3 has a 
higher ultimate temperature (Tu) and longer fire 
(high temperature) resistance endurance (hours).

Frame specimens TFC-3, TFC-4, and TFC-5 
are a series of comparative specimens with 
approximately equal initial load levels and the 
same heating conditions, but with different ratios 
between the linear rigidities of their beam and 
column. The bending moment and shear force 
at the bottom section of the column are also 
measured during testing, and they vary with the 
experimental temperature (Fig. 10-21). The reac-
tions on the support, deformation, etc. of the 
specimens vary correspondingly.

As the ratio between the linear rigidities of 
the beams and columns of the frame specimens 
increases (i.e., the beam section increases or the 
column section decreases), the positive bend-
ing moment and shear force at the bottom sec-
tion of the column, caused under the action 
of load, reduce gradually. However, the value 
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of the temperature, when the positive bending 
moment turns into a negative one during heating, 
increases, but it decreases when the negative bend-
ing moment turns back to a positive one; so the 
temperature interval where the negative bending 
moment appears at the bottom section of the col-
umn is shortened obviously and the variable gradi-
ent of the positive and negative bending moments 
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reduces. However, the variation regularity of the 
shear force at the bottom section of the column is 
different. The shear force of frame specimen TFC-5 
with a smaller section of the column increases 
monotonically, because the time period when the 
positive bending moment is acting is longer. The 
bending moment at the end of the beam (also at 
the top of the column) also increases rapidly (Fig. 
10-20) due to the larger section of the beam, and 
the value of the bending moment at T = 800 °C 
is five times greater than that before heating. The 
increment of the bending moment at the top of the 
column is disadvantageous for the column with 
smaller sections, so a plastic hinge of compression 
type is formed in the middle of the column (Fig. 
10-17(b)) and the frame specimen fails eventually. 
The ultimate strength of frame specimen TFC-5 at 
elevated temperatures is much lower than that of 
frame specimen TFC-3 (see Table 10-5).

CONCLUSIONS

When a statically indeterminate reinforced concrete 
structure bears an action of high temperature, the 
mechanical behavior is more complicated and the 
ultimate strength is reduced obviously, compared 
with the same structure at room temperature. 
According to the tests on a simple continuous beam 
and frame specimens at elevated temperatures, the 
general characteristics of the thermal behavior of 
statically indeterminate structures is known.

When a statically indeterminate structure at 
elevated temperatures is approaching failure, 
its deformation develops quickly and the failing 
process is quite short. The residual deformation 
and cracking after failure are apparent. How-
ever, the failing process is slower than that of a 
statically determinate structural member, so it is 
more advantageous for fire resistance.

The redistribution process of the internal force 
of a statically indeterminate structure at elevated 
temperatures can be divided into three stages, 
and the main factor in each stage that influences 
the process is different and as follows:

 1.  The initial stage (T = 20–400 °C). The flexural 
deformation (1/ρ) of the structural member 
is caused by nonuniform thermal expansive 
strain of concrete.

 2.  The middle stage of heating (T > 400–500 °C). 
The behavior of concrete and reinforcement 
materials deteriorates significantly and their 
strains increase sharply, so the rigidity of 
the section of the structural member reduces 
considerably.

 3.  The stage after formation of the first plastic 
hinge. The ultimate bending moment at the 
section of every plastic hinge formed succes-
sively reduces continuously and the angular 
rotation increases there.

The redistribution process of the internal force 
of a statically indeterminate structure at elevated 
temperatures varies sharply and is complex. The 
internal forces on the section of each structural 
member not only vary considerably in quantity, 
but also increase and decrease repeatedly; even 
their positive and negative values change recipro-
cally. Furthermore, the calculation model of the 
structure may be modified under certain condi-
tions. The regularity and amplitude of the redis-
tribution of the internal force of the structure 
depend on the value of the rigidity of every struc-
tural member, the relative ratio between rigidities 
of the structural members, the initial load level, 
and the heating conditions.

The statically indeterminate structure com-
poses a variable mechanism and then fails after 
several plastic hinges are formed successively. 
The type and shape of the failure mechanism, 
and the positions and order of appearance of the 
plastic hinges in the structure at elevated tem-
peratures are quite different from that at room 
temperature.

The plastic hinges formed in a concrete struc-
tural member at elevated temperatures can be 
divided into the hinges with the tension and the 
compression zones exposed to high temperature. 
In addition, the plastic hinge of the compression 
type is formed possibly in the structural mem-
ber with the greatest axial compression, and 
the area of the hinge zone is long and the defor-
mation (rotation) is considerable. The ultimate 
strength (MT

u ) at the section of the plastic hinge 
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does not remain constant, but reduces continu-
ously when high temperature is sustained. These 
are the important differences between the plas-
tic hinges at elevated temperatures and at room 
temperature.

The ultimate temperature–strength of a stati-
cally indeterminate structure reduces consider-
ably as the level of constant load increases, and 
also reduces as the ratio between the rigidities of 
the beam and column increases (or the rigidity of 
the column decreases).

Large flexural and axial deformations of the 
structural members, i.e., beam and column, are 
caused at elevated temperatures. When a fire acci-
dent occurs locally in a building, the structural 
member at elevated temperatures is constrained 
by the surrounding structural members at room 
temperature, and considerable additional inter-
nal forces are caused.
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C H A P T E R

11
General Mechanical Characteristics 
of Inhomogeneous Sections
11.1  STRUCTURAL MEMBERS 
OF INHOMOGENEOUS SECTIONS 
IN ENGINEERING PRACTICE

Many experimental investigations have demon-
strated that a seriously nonuniform temperature 
field is caused in the sections of a reinforced con-
crete structure and its members at elevated tem-
peratures (after a fire accident) because of the 
thermal inertia of concrete material. Correspond-
ingly, the strength value and stress–strain (consti-
tutive) relationship at each point on the section 
are different depending on the deterioration level 
of the material at that point. Furthermore, they 
vary constantly with different temperature condi-
tions surrounding the structural member and the 
time at high temperature. Therefore, an original 
section of homogeneous material is changed into 
a section of dynamic inhomogeneous material 
under the action of a high temperature. This is the 
essential difference between structural members at 
elevated temperatures and at room temperature.

Many important phenomena are revealed by 
testing a structural member at elevated tempera-
tures. For example, when a structural member 
is heated under asymmetric conditions, con-
siderable flexural deformation and additional 
eccentricity are caused, the ultimate strength–
eccentricity curve and the ultimate envelope of 
axial compression–bending moment are asym-
metrical, and the acting point of maximum 
strength is not located at the geometric center 
of its section, but moves to the optimum center 
located in the low temperature zone of the sec-
tion. These are the mechanical responses of the 
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structural member of an inhomogeneous section. 
The behavior of the deformation and the strength 
of the structural member depend on the nonuni-
form distribution and the variation regularity of 
the material in its section.

There are still many similar situations of inho-
mogeneous sections of structural members in 
structural engineering. For example, nonuniform 
damage is caused on the surface layer and the inner 
side of the section of a structural member due to 
bad durability of the concrete material, after the 
structure is used for a long period of time; dam-
age is caused at different levels in a section of a 
structural member after a severe earthquake. The 
characteristic of these structural members is that 
the mechanical behavior of concrete varies con-
tinuously along one or two directions in the sec-
tion. There are other examples. When a beam or 
column is strengthened with its section enlarged, 
the original and new concrete become an inho-
mogeneous section. Various types of sections of 
steel-reinforced concrete composite beams and 
columns are another kind of inhomogeneous 
section in structural members. An ordinary rein-
forced concrete beam or the column itself is an 
inhomogeneous section composed of concrete 
and reinforcement, whose behavior is totally dif-
ferent. A pure concrete beam can also be con-
sidered as an inhomogeneous section within a 
member, because the strengths and stress–strain 
relationships of concrete in the compression and 
tension zones are different. The characteristics of 
these structural members are that the materials 
and their behavior in the different parts of the 
section change abruptly.
orced Concrete at Elevated Temperatures
blished by Elsevier Inc. All rights reserved.
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In addition to the definitions of inhomoge-
neous sections of structural members described 
above, random inhomogeneous sections of struc-
tural members also occur in structural engineer-
ing. For example, random inhomogeneity, not 
only on the transverse section but also on the 
longitudinal direction, may arise in the interior 
of a large structural member because the concrete 
is located at different depths, inside and outside 
the reinforcement skeleton, and is cast at dif-
ferent times, compacted differently, and cured 
under different conditions, and as a result of 
occasional differences in the raw materials and 
the mix of each concrete mixture. Generally, the 
variable amplitude of random inhomogeneity in 
a concrete section is small and is within the per-
missible range of engineering accuracy, so special 
mechanical analysis is not necessary.

In addition, different parts on a section of 
structural members are not loaded simultane-
ously and a phase difference in the stress history 
exists between them. For example, a composite 
concrete beam or slab is composed of precast and 
cast-in-situ parts. When the precast part is loaded 
first during the construction stage, the initial 
stress state is established on its section. When the 
structural member is completed integrally after 
the concrete is cast in situ and the service load is 
applied later, the stress state on the precast part 
varies successively while the stress state on the 
cast-in-situ part has just begun. If a strengthened 
column is unloaded partially before strength-
ening, a residual stress state should exist on its 
original section; after it is strengthened with the 
additional section and loaded again later, the 
beginnings of stress increments of the original 
and additional sections are different although 
they work together. A section with a structural 
member with this kind of stress history can be 
considered a generalized inhomogeneous section.

Briefly, in engineering practice, the structural 
member of an inhomogeneous section is formed 
due to differences in materials or in material 
behavior, or the phase difference of the stress his-
tory, or both factors together.

All the structural members of  inhomogeneous 
sections should have some common characteristics 
of mechanical behavior and the same or similar 
basic regularity. The analysis methods and con-
clusions can be used to refer one to the another. 
Analysis of a structural member in an inho-
mogeneous section of linear elastic materials 
is discussed in Section 11.3. The experimental 
investigations and theoretical analysis method 
of a reinforced concrete structural member at 
elevated temperatures are given in Chapters 8, 9,  
10, 12, and 13. They provide references for anal-
ysis of other kinds of structural members of inho-
mogeneous sections.

11.2  MECHANICAL CHARACTER 
POINTS ON A SECTION

Resistance of materials is an important theory sys-
tem, based on an ideal, homogeneous, linear elastic 
material, and it provides the fundamental formu-
las to calculate the stress and deformation of struc-
tural members that resist various internal forces, 
including axial tension and compression, bending 
moment, shear force, and torsion. In the past, the 
analyses of stress and deformation, checks on the 
bearing capacity, and design of the cross section 
of the structure and its members made of various 
engineering materials, including steel and con-
crete, were based theoretically on the resistance 
of materials. Even now, the fundamental formu-
las are still used in some provisions of the existing 
design code of reinforced concrete structures,[0-1] 
e.g., checking a structural member for fatigue and 
analysis of prestressed concrete members.

Several mechanical concepts, such as neutral 
axis, linear strain hypothesis, moment of area, 
moment of inertia, and core of cross section, are 
summarized in the resistance of materials, and 
the formulas for sectional stress and deformation 
of various structural members are also derived 
from it. All of these have universal significance.

Although the existing formulas derived in the 
resistance of materials cannot be used directly for 
the calculation of structural members of various 
inhomogeneous sections in engineering practice, 
mentioned above, the concepts and methods 
of the resistance of materials can be used as a 
reference for analyzing the members. Several 
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important basic concepts of inhomogeneous sec-
tions are given below and some simple condi-
tions are analyzed.

An inhomogeneous rectangular section of one 
dimension is taken as an example. The concept 
and definition of every mechanical character 
point on the section are given, and a section of 
two dimensions can be analyzed in the same way. 
It is assumed that the material and its behavior 
at every point of the rectangular section (b · h) 
are identical along its width direction, but vary 
along its depth direction following a certain rule. 
If the coordinate origin is located at the center 
of the section, the stress–strain relationship and 
the ultimate strength of the material at a point 
being z apart from the origin are σz − ɛz and fz, 
respectively (Fig. 11-1), and both are functions 
of the ordinate z. The main mechanical character 
points needed for the sectional analysis based on 
the linear strain hypothesis are given below.

 1.  Geometric center (G)
The geometric center of a section is also the 

center of its weight, and depends only on its 
geometric shape. It has no relationship with the 
stress–strain relationship of the material at every 
point on it. When the conclusion of resistance of 
materials is used directly, the moment of area of 
the section is

 S =∫ h / 2
− h / 2b dz · z = 0 (11.1a)
It is found that the geometric center of the section 
is located at its center and the eccentricity is

 eG = 0 (11.1b)

and has no relationship with the inhomogeneity 
of the section.

 2.  Deformation center (D)
When the strain on the section of a structural 

member is distributed uniformly, i.e., εz = con-
stant, or dɛz / dz=0 and 1 / ρ =0, the correspond-
ing nonuniform distribution of stress is formed 
on the section (Fig. 11-2) because of the differ-
ence in the stress–strain relationship of the mate-
rial at different positions on the section.

The resultant (axial force ND) and resultant 
couple (bending moment MD) of distributed 
stress on the section can be obtained according 
to the equilibrium formulas:

 ND =∫ h / 2
− h / 2σz (ɛz) b dz , MD =∫ h / 2

− h / 2σz (ɛz) bz dz (11.2a)

or they are transformed into the axial force ND 
and the corresponding eccentricity

 eD = MD

ND

 (11.2b)

The latter is the distance from the deformation cen-
ter (D) to the geometric center (G) on the section.

Therefore, when the axial force acts on 
the deformation center of an inhomogeneous 
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FIGURE 11-1  Inhomogeneous  section  and  variation  in material  behavior.  (a)  Section;  (b)  stress–strain  relationship  at 
each point.
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FIGURE 11-3  Absolute  strength  center:  (a)  section;  (b)  distribution  of  ultimate  strength;  (c)  distribution  of  strain 
corresponding to ultimate strength.
section, the strain is equal anywhere on it and its 
curvature (1/ϱ) is zero. Obviously, there is one 
corresponding deformation center (D) for every 
particular value of strain in the section, so the 
position of the deformation center (eD) and the 
corresponding axial force (ND) are functions of 
the strain value (εz).

 3.  Absolute strength center (M)
If the stress at every point on the section 

reaches the ultimate strength of the material at 
the same point separately (Fig. 11-3), the cor-
responding axial force, bending moment, and 
eccentricity of the section can be calculated:

 NM =∫ h / 2
− h / 2fzb dz , MM =∫ h / 2

− h / 2fzbz dz , eM = MM

NM
 (11.3)

The absolute strength center (M) of the section is 
at a distance eM from the geometric center (G).
Obviously, the absolute maximum strength 
(NM) corresponding to the absolute strength 
center is the maximum possible strength of the 
section, only when the potential strengths of all 
the materials on the section are utilized simulta-
neously and fully. However, the distribution of 
the strain corresponding to the ultimate strength 
of the material in the section is not consistent, 
under general conditions, with the compatibility 
condition of deformation (linear strain hypoth-
esis), so it is not realizable. The absolute maxi-
mum strength may be reached or approached 
only when under some special conditions, e.g., 
an ideal elastic (or nonelastic) plastic material of 
a homogeneous or inhomogeneous section.

 4.  Optimum center (P)
The ultimate strength of a structural mem-

ber of an inhomogeneous section varies with the 
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eccentricity of the axial load (force) (see Figs. 9-11 
and 11-4). The ultimate strength of the structural 
member (NG) is not the maximum when the load 
is acting on the geometric center of the section 
(G, e = 0); it increases gradually and reaches the 
maximum when the load is moved continuously 
toward the side of higher strength of material 
on the section (e > 0), but it reduces if the load 
eccentricity increases further. The maximum 
strength (axial force) that the structural mem-
ber can reach practically is called the optimum 
ultimate strength (NP). The corresponding load-
ing point is called the optimum center (P) and its 
distance from the geometric center is called the 
optimum eccentricity:

 eP = MP

NP

 (11.4)

As far as homogeneous linear elastic and 
nonlinear materials are concerned, the geomet-
ric center, deformation center, absolute strength 
center, and optimum center on the section of a 
structural member coincide, i.e., eD = eM = eP = 0, 
and their corresponding ultimate strengths are 
identical. However, the four centers on the sec-
tion of a structural member of inhomogeneous 
linear elastic and nonlinear materials are located 
separately. The eccentricities are not equal to one 
another and vary with the inhomogeneity of the 
material field on the section and the stress–strain 
relationship of the material. Moreover, the cor-
responding ultimate strengths are also not equal 
to one another; the optimum ultimate strength of 
the section is not greater than the absolute maxi-
mum strength, but is not less than the ultimate 
strength when the load is acted on the deforma-
tion center, so

 NM ≥ NP ≥ ND (11.5)

Generally, these three ultimate strengths are 
greater than the ultimate strength (NG) when the 
load is acted on the geometric center (e = 0) of 
the section.

In addition, the core of the section is also a 
mechanical character point on the section of a 
structural member. There are two cores on an 
asymmetrical inhomogeneous section and they 
are located asymmetrically on the upper and the 
lower parts of the section. When the load is acted 
on one of them, the stress (strain) at either the 
top or the bottom side of the section is zero. This 
is discussed in detail below.

11.3  ANALYTICAL SOLUTION OF 
LINEAR ELASTIC MATERIAL

The constitutive relation of linear elastic material 
is the simplest, and it is also a special example 
and the basis for analyzing various nonlinear 
materials. When the inhomogeneous section of 
a structural member is composed of linear elastic 
materials, the mechanical behavior can be calcu-
lated analytically. Two examples[11-1,11-2] of dif-
ferent inhomogeneous sections are discussed in 
the following sections. The analysis method and 
the calculated results are given to illustrate the 
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FIGURE 11-4  Optimum center: (a) section; (b) strain on section; (c) stress distribution; (d) ultimate strength–eccentricity 
relation.
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general regularity of the mechanical behavior of a 
structural member of an inhomogeneous section.

11.3.1 Rectangular Section 
Composed of Two Materials

It is assumed that a structural member of rect-
angular section (b · h) is composed of two kinds 
of linear elastic materials (M1 and M2) and each 
occupies one half of the section (Fig. 11-5). If the 
strengths are equal (f1 = f2 = f ), but the moduli of 
elasticity are not equal (E1 > E2), the stress–strain 
relations are
 σ1 = E1ɛ ≤ f and σ2 = E2ɛ ≤ f  (11.6a)

respectively. So the ultimate strains are

 ɛ1 = f
E1

and ɛ2 = f
E2

 (11.6b)

respectively, and the ratio between them is

 ɛ1

ɛ2
= E2

E1

 (11.6c)

When the axial load (N) is acted with an 
eccentricity e and the strains at the top and the 
bottom of the section (εt and εb) are taken as 
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load; (d) distribution of strain; (e) distribution of stress.
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basic unknowns, two equilibrium equations of 
forces can be established assuming the strain on 
the section is distributed linearly:

 

∑
X = 0 , N = bh

8 [ɛt (3E1 + E2) + ɛb (E1 + 3E2)]
∑

M = 0 , Ne = bh2

48 [ɛt (5E1 − E2) − ɛb (5E2 − E1)]




 
(11.7a)

The equations are solved and the ratio between 
both strains is obtained:

 ɛt

ɛb
= (5E2 − E1) + (3E2 + E1) (6e / h)

(5E1 − E2) − (3E1 + E2) (6e / h)
 (11.7b)

The stress at the top, the bottom, and the geo-
metric center (on the side of M1) of the section 
can then be calculated:

 

σt = ɛtE1 = 8E1
(3E1 + E2) + (E1 + 3E2) (ɛb / ɛt)

· N
bh

σb = ɛbE2 = 8E2
(E1 + 3E2) + (3E1 + E2) (ɛt / ɛb)

· N
bh

σ0 = 1
2 (ɛt + ɛb) E1 = 1

2

(
σt + E1

E2
σb

)




 
(11.8)

and the distribution of stress on the section is 
shown in Fig. 11-5(e).

These basic formulas are used to calculate 
the strain, stress, and curvature of the inho-
mogeneous section under the combined actions 
of axial compression and bending moment, 
and the ultimate values of the axial compres-
sion and bending moment are obtained, corre-
spondingly. If the strengths of both materials 
are equal, f1 = f2 = f, and the moduli of elas-
ticity are E1 = 2E2, the ultimate strains should 
be ε2 = 2ε1. Several mechanical characteristic 
conditions of the section will appear succes-
sively when the eccentricity of the axial com-
pression moves from e = –∞ to +∞ continuously. 
The calculations are listed in Table 11-1, and 
the relationships between the ultimate axial 
compression and eccentricity and between the 
ultimate envelope of axial compression and the 
bending moment of the inhomogeneous section 
are shown in Fig. 11-6.

From the analysis above, the important char-
acteristics of the mechanical behavior of the struc-
tural member of an inhomogeneous rectangular 
section composed of two types of linear elastic 
materials can be found and compared with those 
of a section composed of a single homogeneous 
linear elastic material.

 1.  Although the strain on a section of a struc-
tural member agrees with the linear strain 
hypothesis when any load is acted, the stress 
diagram on the section varies suddenly at the 
place where the modulus of elasticity changes.

 2.  When the load is acted at the geometric cen-
ter (G) of the section or the compression is 
acted centrically (e = 0), the strain is dis-
tributed nonuniformly on the section and 
the curvature of the section will not be zero  
(1/p ≠ 0). The value of the strain is greater 
where the modulus of elasticity is smaller, and 
vice versa.

 3.  The curve of the ultimate axial compression–
eccentricity is asymmetrical about the ordi-
nate (N) axis, and the optimum center (P) and 
optimum (also maximum) ultimate strength 
appear on the right side of the ordinate or on 
the side of greater value of the modulus of 
elasticity on the section. The ultimate enve-
lope of axial compression–bending moment is 
also asymmetrical about the ordinate (N) axis 
and is oblique up and toward the right side; 
the highest tip corresponds to the optimum 
ultimate strength.

 4.  When the optimum center coincides with 
the deformation center (eP = eD), the ulti-
mate strengths of both conditions are equal  
(NP = ND).

 5.  The inhomogeneous section in this example is 
composed of two materials, so there are three 
points where failure may occur: top (material 
M1), bottom (M2), and mid-depth (M1, but 
M2 will not fail because of the ultimate strains 
ε2 > ε1). Correspondingly, when the eccentric-
ity of the load moves from e = −∞ to +∞, four 
failure modes, i.e., tension at top, compres-
sion at bottom, compression at mid-depth, 
and compression at top, will transit succes-
sively. The control region and eccentricity 
range of each failure mode can be found in 
Fig. 11-6 and Table 11-1.
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 TABLE 11-1     Analysis of Inhomogeneous Linear Elastic Sections

Position of 
load

e
h

Distributions of strain and 
stress on section

Ultimate 
strength

Curva-
ture 1/ρ

Failure 
 controlled by

Negative  bending 
moment −M

–∞
+

–

+

–0.
58

33
b

0.
41

67
b

M

ƒ

0.2ƒ
0.1ƒ

0.7ƒ

0.2

ε1

ε1

1.4ε1

Nu = 0
Mu

fbh2 = − 0.1325
− 2.4

ɛ1

h
Tension at top

–0.8333
+

–

+

–

0.5ƒ

N

ƒ

ƒ

0.
66

7b
0.

33
3b

0.
83

3b

2

ε1

ε1

0.5ε1
0.25ƒ

Nu

fbh
= 0.1875

Mu

fbh2 = − 0.1562

− 3
ɛ1

h
Tension at top 

and com-
pression at 
bottom

Lower core of 
section Cb

–0.1

ƒ

ƒ

0.5ƒ

2

0

N

h

0.
1h

ε1

ε1

Nu

fbh
= 0.625

Mu

fbh2 = 0.0625

− 2
ɛ1

h
Compressions at 

bottom and 
mid-depth

Geometric  
center G

0 0.5ƒ

0.75ƒ

ƒ

0.5

1.5

N

ε1

ε1

ε1

0.5ƒ

Nu

fbh
= 0.6875

Mu = 0

− ɛ1

h
Compressions at 

mid-depth

Deformation 
center D 
(optimum 
center P)

0.0833 ƒ

ƒ
0.5ƒ

N

0.5ƒ
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08

33
h
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ε1
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fbh
= 0.75
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N

h
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_
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 TABLE 11-1     Analysis of Inhomogeneous Linear Elastic Sections—cont’d

Position of 
load

e
h

Distributions of strain and 
stress on section

Ultimate 
strength

Curva-
ture 1/ρ

Failure 
 controlled by

Absolute strength 
center M

0 (Compatibility  condition of defor-
mation (strain) on section is 
not  satisfied)
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FIGURE 11-6  Ultimate strength of an inhomogeneous linear elastic section: (a) relationship between the ultimate axial 
compression and eccentricity; (b) ultimate envelope of the axial compression–bending moment.
Obviously, the main mechanical characteris-
tics of the structural member loaded eccentrically 
with three surfaces exposed to high temperature 
(see Chapter 9) have much in common with this 
example.

11.3.2 Section Composed of Material 
with Continuously Variable Behavior 
Along Its Depth

It is assumed that a structural member of rectangu-
lar section (b · h) is composed of an inhomogeneous 
linear elastic material, and the strength of the 
material at any point on the section is identical  
(f1 = f2 = f ), but the modulus of elasticity of the 
material is E1 at the top and decreases linearly to 
E2 at the bottom of the section (Fig. 11-7). Cor-
respondingly, the ultimate strain of the material 
is ε1 at the top and increases nonlinearly to ε2 at 
the bottom of the section. If the coordinate origin 
is located at the top of the section, the modulus 
of elasticity of the material at z from the origin is

 Ez = E1 − (E1 − E2)
z
h

 (11.9a)
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material behavior; (c) distribution of strain and stress on the section.
and the ultimate strain there is

 
ɛz = f

Ez  (11.9b)

Then, the stress–strain relationship at any point 
on the section is

 σ = ɛ · Ez ≤ f  (11.9c)

When an axial compression (N) is acted eccen-
trically (e) on the structural member, the stress 
distribution is certainly nonlinear on its section, 
assuming the strain distribution is linear on the 
section. If the strains at the top and the bottom 
of the section (εt and εb) are taken as the two 
basic unknowns, the equilibrium equations are 
established and simplified as follows:

 

∑
X = 0 , N = bh

6 [ɛt (2E1 + E2) + ɛb (E1 + 2E2)]
∑

M = 0 , M = bh2

12 (ɛtE1 − ɛbE2)




 
 (11.10a)
The equations are solved and the strain ratio is 
obtained:

 
ɛt

ɛb
= 6E2 + (E1 + 2E2) (12e / h)

6E1 − (2E1 + E2) (12e / h) (11.10b)
Therefore, the stresses at the top and the bottom 
of the section are, respectively,

 

σt = ɛtE1 = 6E2 + (E1 + 2E2) (12e / h)
E2

1 + 4E1E2 + E2
2

· NE1
bh

σb = ɛbE2 = 6E1 − (2E1 + E2) (12e / h)
E2

1 + 4E1E2 + E2
2

· NE2
bh




 
 (11.11a)

and the stress at any point on the section is

 σ =
[
ɛt − (ɛt − ɛb)

z
h

]
· Ez  (11.11b)

As the section of the structural member is 
composed of inhomogeneous material with con-
tinuously variable behavior, not only the top and 
the bottom sides of the section are certain failure 
control points but also every point on the section 
is possibly a failure control point, if the strain 
value at the point reaches its own ultimate value 
first. The position of the failure control point 
within the section is determined by the tangen-
tial point between the strain line distributed on 
the section caused by load and the ultimate strain 
curve of the material on the section (Fig. 11-8). 
As the strain values and slopes of both should be 
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equal at the tangential point, two equations are 
established:

ɛz = f
E1 − (E1 − E2) (z / h) = z

h ɛb +
(

1 − z
h

)
ɛt

dɛz
dz = (E1 − E2) f

[E1 − (E1 − E2) (z / h)]2h
= ɛb − ɛt

h




 (11.12)

Then, the position of the failure control point is 
solved:

 
z
h

= E1

2 (E1 − E2)
− (ɛt / ɛb)

2 (1 − (ɛt / ɛb) )  (11.13)

When Eqn (11.13) is substituted into Eqn 
(11.12), the ultimate strain value at the failure 
point is obtained.

The mechanical behavior of the section in 
which the material behavior is continuously vari-
able (Fig. 11-7) can be analyzed using these basic 
formulas, and the strain, stress, curvature, fail-
ure control point, and ultimate strength (axial 
compression–bending moment) of the section 
are given. If the relationship between the moduli 
of elasticity at the top and the bottom sides of 
the section is E1 = 2E2, various conditions of the 
mechanical characteristics of the section obtained 
from the calculations are shown in Fig. 11-9. The 
ultimate axial compression–eccentricity relation-
ship and the ultimate envelope of axial compres-
sion–bending moment of the inhomogeneous 
section are shown separately in Fig. 11-10.

According to the calculated results of the struc-
tural member of an inhomogeneous section com-
posed of linear elastic material with continuously 
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variable behavior, there are several important 
characteristics of the mechanical behavior:

 1.  When the strain distribution on the section 
agrees with the linear strain hypothesis, the 
stress distribution on the section should be 
continuous but nonlinear (Fig. 11-7(c)).

 2.  When the load is acted at the geometric cen-
ter of the section (Fig. 11-9(d)), the strain 
on the section is nonuniform (i.e., the strain 
is smaller where the modulus of elasticity is 
greater and the strain is greater where the 
modulus of elasticity is smaller) and the cur-
vature of the section is 1/ρ ≠ 0.

 3.  The curve of the ultimate axial compres-
sion–eccentricity relationship and the ulti-
mate envelope of axial compression–bending 
moment are asymmetrical about the ordinate 
axis (N) and the peaks deviate to the right side 
of the ordinate (i.e., the side of greater value 
of modulus of elasticity on the section).

 4.  The eccentricity of the optimum center (P) is 
between 0.0227h > eP > 0, and the optimum 
ultimate strength of the section is NP > NG > 
ND; NG and ND are the ultimate strengths of 
the section when the loads are acted at the 
geometric (eG = 0) and the deformation (eD) 
centers, respectively.
 5.  When the eccentricity of the load varies from 
e = –∞ to +∞, the failure mode and control 
point of the structural member transit succes-
sively as shown below:

Eccentricity e/h Failure mode  
and control point

−∞ to −0.667 Tension at the top
−0.667 to −0.125 Compression at the bottom
−0.125 to +0.0227 Compression at the interior of the 

section (moves gradually from the 
bottom to the top)

+0.0227 to +∞ Compression at the top

Correspondingly, the ultimate envelope of axial 
compression–bending moment of the section of 
the structural member is also composed of four 
segments of a straight line or a curve, which cor-
respond to four failure modes.

The structural members of other kinds of inho-
mogeneous sections composed of various linear 
elastic or ideal elastoplastic materials can also be 
calculated and analyzed in accordance with the 
analytical method introduced above. It is diffi-
cult to find an analytical solution for a structural 
member of an inhomogeneous section composed 
of nonlinear materials. However, the mechanical 
behavior and its variable process during loading 
(or heating) of this kind of structural member 
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can be obtained when the numerical method is 
used and the many calculations are conducted on 
a computer (see Chapter 12).

CONCLUSIONS

In engineering practice, different levels of dam-
age are caused in the interior of a reinforced 
concrete structure as a result of occasional acci-
dents (e.g., fire or earthquake) or bad durability 
of the materials. Nonuniform and asymmetri-
cal distribution of the material behavior occurs 
in the cross section of some structural members 
because of the construction or bad manufactur-
ing. Furthermore, phase differences in the stress 
history may occur on the cross section of some 
other structural members (e.g., strengthening 
a structural member) because of the construc-
tion or loading path. All of these can generally 
be called the structural member of an inhomo-
geneous material field section, and the mechani-
cal behavior is more complicated than that of the 
structural member of homogeneous material.

Several important points of a mechanical char-
acter (i.e., deformation center, absolute strength 
center, optimum center, and core of the section) 
can be found on the section of a structural mem-
ber of a general inhomogeneous material field. 
They do not coincide with the geometric center 
on the section and their positions vary constantly 
with the level of nonuniformity of the material 
field and the stress–strain relationship of the 
material. Knowing these characteristics well is 
helpful in understanding and determining the 
mechanical behavior of a structural member of 
inhomogeneous material.

The analytical method can be used to com-
pletely analyze the structural member of an 
inhomogeneous section of linear elastic material 
with simple variance. Two kinds of structural 
members of a rectangular section of inhomoge-
neous material are given in this chapter, and the 
variation process and transition regularity of the 
important characteristics of the sections are pre-
sented, e.g., stress distribution, curvature (defor-
mation), failure mode and its control point, and 
the ultimate value of the axial compression–
bending moment, when the eccentricity of an 
axial compression varies from e = –∞ to +∞. Both 
examples illustrate and demonstrate qualita-
tively the main phenomena and characteristics of 
the mechanical behavior of reinforced concrete 
structural members at elevated temperatures, as 
revealed by experiments (see Chapters 8 and 9).
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C H A P T E R

12
Finite Element Analysis of the Loading 

History for Structures
12.1  BASIC ASSUMPTIONS AND 
CONSTITUTIVE RELATIONS OF 
MATERIALS

12.1.1  Basic Assumptions

The mechanical behavior of a single structural 
member and a statically indeterminate structure 
of reinforced concrete under the action of high 
temperature vary in a complicated fashion and 
deteriorate severely, as demonstrated clearly in 
the relevant tests (Chapters 8–10). When the 
structural members at elevated temperatures are 
the same geometric shape but are different in 
size, the distribution of the temperature field and 
the material behavior on their sections are not 
similar even under the same temperature–time 
curve, because of the thermal inertia of concrete. 
Therefore, the thermal behavior of a prototype 
structure in practical engineering is not similar to 
the test result of a model at reduced scale, and, 
obviously, it cannot be calculated using empirical 
formula regressed from the model.

There are two ways to understand and deter-
mine accurately the behavior of a structure at 
elevated temperatures (under fire), i.e., full-scale 
testing of a 1:1 model at elevated temperatures 
and theoretical analysis following the whole load-
ing–heating history. However, it is difficult to test 
a structure integrally; only part of it can be tested 
because of the limited capacity of the experimen-
tal device, the test incurs high costs and is time 
consuming. Based on the thermal–mechanical 
constitutive relationships of the materials, which 
are demonstrated by many experiments, and a 
Experiment and Calculation of Reinf
© 2011 Tsinghua University Press. Pub
program for nonlinear finite element analysis, the 
mechanical history of the structure can be obtained 
after numerous calculations on a computer.

Analysis of the thermal behavior of a rein-
forced concrete structure has the following char-
acteristics and difficulties:

 1.  A nonuniformly distributed temperature field 
on the section causes different levels of dete-
rioration of the material at each point on it, 
and the behavior of the material varies con-
tinuously along the section.

 2.  The thermal–mechanical constitutive rela-
tionship of concrete is a complicated func-
tion consisting of four coupled factors: stress, 
strain, temperature, and time, and varies with 
the different temperature–stress paths.

 3.  Nonuniform thermal deformation on the 
section causes variations in tensile and com-
pressive stresses and also causes loading or 
unloading conditions under the action of 
load.

 4.  The value of the creep of the material at 
elevated temperatures is considerable even 
within a short time period (hours) and varies 
constantly with stress, temperature, and time.

 5.  Deformation of a structural member at 
elevated temperatures is considerable; the 
influence of the geometric nonlinearity of 
the structure should be taken into account if 
necessary.

The computer program for nonlinear analysis 
of a reinforced concrete structure at room tem-
perature can be compiled easily.[12-1,12-2] Only the 
243
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simple constitutive (stress–strain) relationships 
of the materials are needed, without consider-
ing the complicated factors listed above, which 
are related to high temperature. Some existing 
computer programs for analyzing structures at 
elevated temperatures[3-9,5-3,10-1,12-3] do not take 
these complicated factors into account, although 
the stress–strain relationship varying with tem-
perature of the material is used. Therefore, they 
cannot accurately reflect the practical behavior of 
the structure at elevated temperatures. Some other 
computer programs on the market (ADINAT,[12-4] 
ARC,[12-5] BERSAFE,[12-6] and ANSYS[12-7]) also 
have a function to analyze the thermal stress of 
a structure, but the influence of temperature on 
deformation and stress states of the structure are 
considered as an additional factor. In addition, 
the thermal constitutive relationship of the mate-
rial is simplified too much and is quite different 
from the practical behavior of concrete.

The computer program NARCSLT (nonlinear 
analysis of reinforced concrete structures under 
loading and elevated temperatures)[1-12] intro-
duced in this chapter represents the mechanical 
behavior of concrete and reinforcement materi-
als at elevated temperatures (see Chapters 1–4) 
and the characteristics of structural members at 
elevated temperatures. Therefore, it can be used 
for complete analysis of the mechanical history 
of a structure under the actions of loading and 
high temperature.

The basic assumptions used in the program 
are:

 1.  A two-dimensional temperature field on the 
cross section of a structural member does not 
vary along its longitudinal axis, and is not 
related to the stress and the strain states of 
the material or cracking in the concrete.
The temperature field of a structural mem-

ber depends only on the exchange of heat with 
the surrounding environment and is not related 
to the stress and strain of the material. When 
a crack appears in structural concrete and heat 
gets into it, the temperature distribution nearby 
is disturbed and the temperature along its longi-
tudinal axis is different. The number of cracks in 
the structural member is limited and the depth of 
the cracks is small, therefore effect on the region 
is not considerable. Therefore, when the crack 
width is relatively small and the concrete cover 
has yet not spalled off, the temperature field on 
the section is still assumed to be unchanged by 
the crack. The method for determining the tem-
perature field can be found in Chapters 6 and 7.

 2.  Planar deformation of a section
A member of a structure of a bar system is slen-

der and the size of its section is far smaller than its 
length. Even though considerable and nonuniform 
thermal deformation is caused in the structural 
member under the action of high temperature, the 
section of the deformed member remains planar 
before the concrete cracks, because of the con-
straint effects from outside and inside the structural 
member. After a crack appears in the structural 
member, especially when it is approaching fail-
ure, the longitudinal reinforcement yields and the 
depth of the compression zone on the section is 
reduced; obviously, the cracked section does not 
conform to the condition of planar deformation. 
Tests on structural members at room temperature 
show that the deformation of a section conforms 
basically with the hypothesis of planar deforma-
tion, if the average strain of a piece of length (e.g., 
> 0.4h[12-8]) is considered.

 3.  No slip between the reinforcement and the 
concrete
Good adhesion between the reinforcement and 

the concrete is the basis for their working together. 
The strains of the reinforcement and concrete at 
an adjacent position in a structural member are 
equal and no relative slip occurs between them 
before the concrete cracks. However, after the 
crack is formed in the structural member, the 
strains in both materials near the crack are dif-
ferent and a relative slip appears between them. 
The bond stress–slip relationship between rein-
forcement and concrete at room temperature has 
been investigated fully,[0-2] but not at elevated 
temperatures due to the lack of experimental 
data. Therefore, it is assumed that no relative slip  
occurs between the reinforcement and adjacent 
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concrete, and some constructions are designed 
to prevent relative slip between them, e.g., both 
ends of all reinforcements are anchored reliably 
within the support or joint zone, and the total 
deformation values are guaranteed to be equal. 
In addition, the influence of relative slip between 
reinforcement and concrete is considered properly 
when the calculation parameters are determined.

 4.  Tension of concrete utilized fully
The tension of concrete in a general structure 

at room temperature can be neglected during the 
calculations; the calculations are simplified and 
the error caused is small. The thermal deforma-
tion of concrete at elevated temperatures is con-
siderable, and a large tension zone may appear on 
the section of a structural member and vary con-
stantly under the actions of temperature and load. 
If the tension of the concrete is totally neglected, it 
can significantly change the stress distribution on 
the section and cause unreasonable results from 
the calculations. Therefore, only when the sum-
mation of the stress increments in the concrete is 
higher than the tensile strength of the concrete 
during the step by step analysis, is the concrete  
considered to be cracked and out of work.

12.1.2  Thermal–Mechanical 
Constitutive Model of Concrete

 1.  Basic equation
The coupling constitutive relationship of 

concrete under common actions of temperature 
and stress is complicated and the corresponding 
mathematic model suggested in Chapter 3 (Eqns 
(3.11)–(3.16)) is based on a great deal of results 
from experimental investigations. The total strain 
of concrete (ɛc) is composed of four components: 
the strain caused by the action of stress (ɛσ), freely 
expanding strain (ɛth), transient thermal strain 
(ɛtr), and short time creep (ɛcr). Therefore,

 εc = εσ − εth + εtr + εcr (12.1)

is established and after differentiation

 dεc = dεσ − dεth + dεtr + dεcr (12.2)
is obtained. The signs of compressive and tensile 
stresses, and the corresponding contraction and 
elongation strains, of concrete are positive and 
negative, respectively.

The functions and differentiations of the strain 
components are:

 σc = fσ (εσ , T) , � dσc = ∂ fσ
∂ εσ

dεσ + ∂ fσ
∂ T

dT  (a)

 dεσ = 1
∂ fσ / ∂ εσ

[
dσc − ∂ fσ

∂ T
dT

]
 (a′)

 εth = fth (T) , dεth = ∂ fth

∂ T
dT  (b)

 εtr = ftr (σc , T) , dεtr = ∂ ftr

∂ σc
dσc + ∂ ftr

∂ T
dT  (c)

εcr = fcr (σ , T , t) , dεcr = ∂ fcr

∂ σc
dσc + ∂ fcr

∂ T
dT + ∂ fcr

∂ t
dt (d)

Equations (a′), (b), (c), and (d) are substituted 
into Eqn (12.2) and

dεc =
(

1
∂ fσ / ∂ εσ

+ ∂ ftr
∂ σc

+ ∂ fcr
∂ σc

)
dσc

−
(

1
∂ fσ / ∂ εσ

∂ fσ
∂ T + ∂ fth

∂ T − ∂ ftr
∂ T − ∂ fcr

∂ T

)
dT

+ ∂ fcr
∂ t dt  (e)

is obtained after it is rearranged. The formula for 
the stress increment is then established:

 dσc = Eσdεc + ET dT + Et dt (12.3)

where

 

Eσ = Δ fσ
Δ εσ

Hσ

ET = −
(

∂ fσ
∂ T + ∂ fσ

∂ εσ
∂ fth
∂ T − ∂ fσ

∂ εσ
∂ ftr
∂ T − ∂ fσ

∂ εσ
∂ fcr
∂ T

)
Hσ

Et = − ∂ fσ
∂ εσ

∂ fcr
∂ t Hσ




 
 (12.4)

and

 
Hσ = 1 /

(
1 + ∂ fσ

∂ εσ

∂ ftr

∂ σc
+ ∂ fσ

∂ εσ

∂ fcr

∂ σc

)
 (12.5)

 2.  Mathematical models of strain components
Equations (2.7) and (2.8) are taken as the for-

mulas for the compressive stress–strain curve of 
concrete at elevated temperatures (i.e., fσ):

x = εσ
εT

p
≤ 1 , � � y = σc

fT
c

= 2.2x − 1.4x2 + 0.2x3

x ≥ 1 , � � y = x
0.8(x − 1)2 + x




 (2.8)
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where fTc and εTp  are the compressive strength of con-
crete at elevated temperatures (Eqn (2.3)) and the 
corresponding peak strain (Eqn (2.5)), respectively.
The tensile stress–strain (σt–ɛt) curve for concrete 
at elevated temperatures has not been reported in 
experimental investigations so far and a simpli-
fied model is used to meet the needs of calculation:

 

εt ≤ εT
p,t, � � σt = E0εt

εT
p,t < εt < εT

u,t, � � σt = fT
t

ε > εT
u,t, � � σt = 0




 (12.6)

where f
T
c  is the tensile strength of concrete at 

elevated temperatures (Eqn (1.4)), εTp,t = f
T
t /E0 

is the tensile peak strain of concrete at elevated 
temperatures, E0 is the modulus of elasticity of 
concrete at room temperature, εTu,t is the ultimate 
tensile strain of concrete at elevated temperature, 
and the value at room temperature is taken.

The mathematical models of other strain com-
ponents, including freely expanding strain ɛth, 
transient thermal strain ɛtr, and short time creep 
ɛcr, can use the corresponding formulas intro-
duced in Chapters 2 and 3, respectively:

 
εth = 28

(
T

1000

)2

× 10 − 3 < 12 × 10 − 3

 (2.1)

 
εtr = σc

fc

[
72
(

T
1000

)2

−
(

T
1000

)]
× 10 − 3

 (3.10)

 
εcr = σc

fT
c

√
t
t0

(
e6T / 1000 − 1

)
× 60 × 10 − 6

 (2.24)

The symbols used in these formulas are the same 
as before.

12.1.3  Thermal–Mechanical 
Constitutive Model of Reinforcement

The total strain of reinforcement (ɛs) under the 
common actions of temperature and stress is 
composed of three factors: strain caused by the 
action of stress (ɛs,σ), freely expanding strain 
(ɛs,th), and short time creep (ɛs,cr):

 εs = εs , σ + εs , th + εs , cr (12.7)

The functions of the strain components are: 
σs = fs,σ(ɛs,σ ,T), ɛs,th = fs,th(T), ɛs,cr = fs,cr(σs,T,t). 
e Loading History for Structures

The incremental thermal–mechanical constitu-
tive relationship for reinforcement is also estab-
lished according to the method used to derive the 
constitutive relationship for concrete:

 dσs = Es , σ dεs + Es,T dT + Es,t dt  (12.8)
where

 

Es , σ = ∂ fs , σ
∂ εs , σ

Hs , σ

Es,T =
(

∂ fs , σ
∂ T − ∂ fs , σ

∂ εs , σ
∂ fs , th

∂ T − ∂ fs , σ
∂ εs , σ

∂ fs , cr
∂ T

)
Hs , σ

Es,t = − ∂ fs , σ
∂ εs , σ

∂ fs , cr
∂ t Hs , σ


 

(12.9)
and

 
Hs , σ = 1 /

(
1 + ∂ fs , σ

∂ εs , σ

∂ fs , cr

∂ σs

)
 (12.10)

Among the mathematical models of the strain 
components of reinforcement that are needed 
for structural analysis are the formulas used 
for the tensile (compressive) stress–strain curve 
(fs,σ), (Eqns (4.4)–(4.8)) and the function used for 
freely expanding strain (fs,th) (Eqn (4.11)), and 
the function used for short time creep is intro-
duced according to Dorn’s theory[12-9]:

 fs , cr (σs , T , t) = εt0

ln 2
cosh − 1

(
2Zθ / εt0

)
 (12.11)

where Z is the Zener–Hollomon parameter 
(1/hour), ɛt0 is the creep parameter, θ is the time of 
temperature compensation (hours), represented as:

 θ =∫ t
0exp − Δ H

Rt
dt  (12.12)

where R is the Mohr gas constant (J/(kg mol °C)), 
T is the temperature (°C), and ΔH is the activation 
energy of creep (J/(kg mol)). The value of each 
parameter can be found in the ACI guide.[12-9]

12.2  INCREMENTAL FORMAT 
OF THE CONSTITUTIVE RELATION 
OF A SECTION

12.2.1  Incremental Finite Element 
Formats of Stress, Strain, 
 Temperature, and Time

When the nonlinear finite element method is used 
to analyze a structure and its members, each mem-
ber is discretized into a certain number of beam 
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elements along its longitudinal axis (X), and each 
beam element is also discretized into many small 
prism elements along its section. As the values of 
stress, strain, temperature, and their increments 
at every point within any prism element are not 
equal to one another, the center of the summa-
tion of the increments does not coincide, gener-
ally, with the geometric center of the element. 
When the size of the element is small enough, it is 
considered that the average values are uniformly 
distributed on the section of the element.

Analyses of a structure and its members are 
based on the analyses of their cross sections. Any 
section can be divided into rectangular elements, 
the sides parallel with the two perpendicular 
axes (Y and Z) that pass through the geometric 
center of the section. If the reinforcement is 
included in an element, the geometric center of 
the reinforcement should coincide with that of 
the element. According to the basic assumption 
of planar deformation, the deformation (dis-
placement) of any section has three degrees of 
freedom, so the strain at the geometric center of 
the section (ɛ0) and the angular rotations against 
the Y and Z axes (curvatures ϕy and ϕz) are taken 
as the basic unknowns (Fig. 12-1). Compressive 
strain on the section takes a positive sign and 
the curvature ϕy (ϕz) of the section takes a posi-
tive sign, if the angular rotation causes compres-
sive strain, when y ≥ 0 (z ≥ 0), and tensile strain, 
when y < 0 (z < 0), on the section. Conversely, 
the strain and curvature take a negative sign.
Y Y

O Z

(y, z)

ε

ε0

ε 0

ε 

φ y

φ z

O

X

y

Z

X

O

z

FIGURE 12-1  Basic variables of deformation of a section.
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The strain at any point (y,z) on the section is

 ε = ε0 + yφy + zφz = [N (y , z) ] { u } (12.13)

where [N(y, z)] = [ 1 y z ] is the matrix 
of the shape function related to (y,z), 
{ u } = [ ε0 φy φz ]T  is the vector of the basic 
variables.

The vectors of the strain and increments of 
the section after discretizing can be represented 
as:

 { ε } = [N] { u } (12.14)

and
 { Δ ε } = [N] { Δ u } (12.15)

where the vector of the strain is ε  = 
{ ε1 , ε2 , εi ,⋯ , εn }, the vector of the strain incre-
ment is { Δ ε } = { Δ ε1, Δ ε2 ,⋯ , Δ εi ,⋯ , Δ εn }, 
and the matrix of the shape function is

 
[N] =




1 1 ⋯ 1 ⋯ 1
y1 y2 ⋯ yi ⋯ yn
z1 z2 ⋯ zi ⋯ zn




T

 

The number of rectangular elements divided 
from the section is n, and the coordinate, strain, 
and strain increment of the ith element are (yi,zi), 
ɛi, and Δɛi, respectively.

Assuming no slip occurs between the rein-
forcement and the adjacent concrete, the strain 
at any point on the section is also the total strain 
of the concrete or reinforcement at that point, 
and their increments should also be equal:
 ε = εc = εs  (12.16)

 Δ ε = Δ εc = Δ εs  (12.17)

The vectors of the stress increments of concrete 
and reinforcement on the section are obtained 
from Eqns (12.3), (12.8), and (12.17):

{Δ σc} = [Eσ] {Δ ε) } + [ET] {Δ T�} + [Et] {Δ t} (12.18)

Δ σs = [Es,σ] Δ ε + [Es,T] Δ T
+ [Es,t] Δ t  (12.19)

where the incremental vectors of the stress of 
concrete and reinforcement, the temperature, 
and the time are, respectively:
{Δ σc} =
[

Δ σc1 Δ σc2 ⋯ Δ σci ⋯ Δ σcn
]T

 

{Δ σs} =
[

Δ σs1 Δ σs2 ⋯ Δ σsi ⋯ Δ σsn
]T

{Δ T} =
[

Δ T1 Δ T2 ⋯ Δ Ti ⋯ Δ Tn
]T

 

{Δ t} =
[

Δ t1 Δ t2 ⋯ Δ ti ⋯ Δ tn
]T

 

Obviously, the time increment (Δti) for every 
element should be equal, but the vector {Δt} is still 
used to unify the format. The diagonal matrixes 
of the tangential moduli are:

[Eσ] =




Eσ11 0

⋱

Eσii

⋱

0 Eσnn




,

[ET] =




ET11 0

⋱

ETii

⋱

0 ETnn




[Et] =




Et11 0

⋱

Etii

⋱

0 Etnn




,

[Es , σ] =




Es , σ11 0

⋱

Es , σii

⋱

0 Es , σnn
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[Es , T] =




Es , T11 0

⋱

Es , Tii

⋱

0 Es , Tnn




,

[Es , t] =




Es , t11 0

⋱

Es , tii

⋱

0 Es , tnn




 

The summations of the stresses of all ele-
ments on the section are the internal forces of the 
section, which include axial force and bending 
moments in two directions:

 

N =∫ Ac
σcdAc +

∑
i σsiAsi

My =∫ Ac
σcydAc +

∑
i σsiysiAsi

Mz =∫ Ac
σczdAc +

∑
i σsizsiAsi





 (12.20)

The increments of the internal forces can be writ-
ten in the form:

 

Δ Fp =∫ Ac
[N (y , z)]T Δ σcdAc

+
∑

i [N (ys , zs)]
T Δ σsiAsi (12.21)

where { Δ Fp = [ ΔN ΔMy ΔMz] T is the incre-
mental vector of the internal force of the section 
or load, and [N (ys, zs) ] = [ 1 ysi zsi ].

As the structure is discretized, Eqn (12.21) is 
changed into

{ Δ Fp } = [N]T ([Ac] { Δ σc } + [As] { Δ σs } ) (12.22)
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where the diagonal matrixes of the areas of con-
crete and reinforcement for each element are:

 

[Ac] =




Ac11 0

⋱

Acii

⋱

0 Acnn




and [As] =




As11 0

⋱

Asii

⋱

0 Asnn




 

If there is no reinforcement in the element (j), 
Asjj = 0 is taken.

Equations (12.18) and (12.19) are substituted 
into Eqn (12.22), and

 { Δ F } = [K] { Δ u } (12.23)

is obtained after it is rearranged. This is the 
incremental format of the finite element between 
the ba sic unknowns ( {Δu} =[ Δ ε0 Δ φy Δ φz]

T) 
and the axial force, bending moment, tempera-
ture, and time of the section of the reinforced 
concrete structural member under common 
actions of temperature and load. This formula 
can be used for a structural member experienc-
ing any temperature–load path. The incremental 
vector of the total load includes the incremental 
load vectors of loading, temperature, and time:

 {Δ F�} = {Δ Fp} + {Δ FT} + {Δ Ft} (12.24)

where
 {Δ FT} = − [N]T [ET,cs] {Δ T�} (12.25)

 {Δ Ft} = − [N]T [Et,cs] {Δ t} (12.26)

 [ET,cs] = [ET] [Ac] + [Es,T] [As] (12.27)

 [Et,cs] = [Et] [Ac] + [Es,t] [As] (12.28)
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The total matrix of stiffness is

 [K] = [N]T [Eσ , cs] [N] (12.29)
where

 [Eσ , cs] = [Eσ] [Ac] + [Esσ] [As] (12.30)

12.2.2  Finding a Solution for the 
Incremental Finite Element Format

 1.  Characteristics of the incremental finite ele-
ment format
A nonlinear problem, after discretizing into 

the finite elements, can result in a series of non-
linear algebra equations:

 Ψ (a) = K (a) · a − R = 0 (12.31)

where a= [ a1 a2 … an ]T,

Ψ =[ ψ1 ψ2 ⋯ ψn ] T, 

R= [ R1 R2 … Rn ]T, and K(a) is a matrix 
of order n × n.

Various numerical methods can be used to find 
the solution of Eqn (12.31), which is approached 
gradually by a series of solutions of linear equa-
tions. When the problem is related to the loading 
history, the incremental method is generally used 
for calculation.

For comparison with Eqn (12.23), let R= λR, 
and Eqn (12.31) is modified to be of incremental 
format:

 Ψ (a , λ) = K (a) a − λR = 0 (12.32)

where λ is a parameter describing the variation 
of the load.

Assuming am and am + Δam are the solutions 
corresponding to the parameters λm and λm + 
Δλm, respectively, in Eqn (12.32), then

 Ψ (am , λm) = Ψ (am + Δ am , λm + Δ λm) = 0  (12.33)

is obtained. When it is expanded into the Taylor 
series and the higher terms are neglected:

 KT (am , λm) Δ am = Δ λmR (12.34)

is obtained, where

KT (am , λm) = ∂ Ψ
∂ a

|
a = am
There are no limits for R and R is generally 
independent of a; this assumption is also the 
basis for the solution of Eqn (12.31). If R and R 
are implicit in a, then Eqn (12.34) is similar to 
Eqn (12.23). Therefore, the nonlinear algebraic 
equations corresponding to Eqn (12.23) can 
be written in the form of Eqn (12.31), but R is 
implicit in a and cannot be written as

 R = K0 (a) a + R0 (12.35)

where R0 = [ R01 R02 ⋯ R0n ] is a vector that 
is not implicit in a and K0(a) is a matrix of order 
n × n.

Therefore, a new method for finding the solu-
tion of the incremental finite element format 
above has to be given.

 2.  Coupling treatment
It is seen from Eqn (12.24) that the incre-

mental vector of the total load {ΔF} is implicit 
in the vector {u}; in practice, the incremental 
load vectors of temperature and time ({ΔFT} and 
{ΔFt}) are implicit in {u}. The determination of 
the two vectors is dependent on the correspond-
ing matrixes [ET,cs] and [Et,cs] (Eqns (12.25) and 
(12.26)), which are dependent on the vector {u}. 
On the other hand, a given increment step of {u} 
is dependent on {ΔFT} and {ΔFt}. Therefore, the 
relationship between them is coupled. If a direct 
iteration method is used to find the solution, 
not only is the convergence speed slow (or even 
divergence may occur) but also {ΔF} has to be 
calculated repeatedly in each iteration and addi-
tional work is needed.

In order to decouple, the Adams explicit 
method[12-10] is used first to estimate the incre-
mental load vectors of the temperature and the 
time at the beginning of every increment step 
(e.g., the mth step):

 
{ Δ FT } m = { Δ T } m

r∑
i = 0

βri[N]T[ET , cs]m − r
 (12.36)

 
{ Δ Ft } m = { Δ t } m

r∑
i = 0

βri[N]T[Et , cs]m − r
 (12.37)

where {ΔFT}m, {ΔFt}m, {ΔT}m, and {Δt}m are the 
corresponding incremental vectors at the mth 
increment step, and [ET,cs]m−r, and [Et,cs]m−r are 
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the corresponding matrixes at the (m − r)th incre-
ment step:

 βri = (− 1)i + 1
r∑

j = i

[
j
i

]
aj, � � aj = (− 1)j ∫ 1

0

[
− x
j

]
dx  

where r is the number of increment steps utilized 
before the mth step.

When only the datum for the previous incre-
ment step is utilized, i.e., r = 1, Eqns (12.36) and 
(12.37) are changed into:

 

{Δ FT}m = − 3[N]T[ET , cs]m + [N]T[ET , cs]m − 1
2

{Δ T}m   (12.38)

 

{Δ Ft}m = − 3[N]T[Et , cs]m + [N]T[Et , cs]m − 1
2

{Δ t}m  (12.39)

When the first increment step is calculated, i.e.,  
m = 1, and no previous datum can be utilized, 
the incremental load vectors of temperature and 
time are calculated using the Euler method:

 {Δ FT}1 = − [N]T[ET , cs]1{Δ T}1 (12.40)

 {Δ Ft} = − [N]T[Et , cs]1{Δ t}1 (12.41)

With these estimated values, the vector {ΔF} 
within each increment step is independent of the 
unknown vector {u}, and Eqn (12.23) can be 
solved using the general method.

 3.  Unbalanced force
A system of one degree of freedom (Fig. 12-2) 
is taken now as an example. The solution {u}1 
found from Eqn (12.23) is obviously not accurate 
for the incremental total load {ΔF}. There is a dif-
ference between {ΔF} and the incremental vector 
of load (point B in the figure) corresponding to 
{u}1, and the difference represents an unbalanced 
force:

 {Δ R}1 = {Δ F} − {Fσ} + {F}m (12.42)

Differing from the condition at room tempera-
ture, the unbalanced force here is not the integra-
tion of the total stress, but is part of the internal 
force, which is integrated in the stress caused by 
the strain only. {F}m is the total accumulated value 
of {ΔFp}, {ΔFT}, and {ΔFt} of the previous incre-
ment steps before the current increment step:

 
{F}m =

m∑
i = 1

({Δ Fp} + {Δ FT} + {Δ Ft})
 

(12.43)

Determination of the term {Fσ} in Eqn (12.42) 
is difficult, so {ΔR}1 is calculated using an 
approximate method. When Eqn (12.43) is sub-
stituted into Eqn (12.42):

{Δ R}1 = {Δ Fp} +
(
{Δ FT} −

{
Δ FT

})
+

(
{Δ Ft} −

{
Δ Ft

})
+ {Fp} − {Fc} (12.44)

is obtained after rearranging, where { Δ FT
}

and { ΔFt
}
 are the vectors of the internal forces 

obtained from integration of the stresses, and they 
are, respectively, the temperature and the time 
experienced from point A to point B in Fig. 12-2 
and correspond to the stress caused by the strain.
Unbalanced forceF

O u' u

∆u

∆F

∆R
'Fm+1

F
σ

Fm A

B

FIGURE 12-2  Incremental equation with one degree of freedom solved by the Euler method at the mth increment step.
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{Fc} is the total internal force on the section:

 {Fc} = [N]T ([Ac] {σc} + [As] {σs}) 

When { ΔFT } = { ΔFT } and { Δ Ft } = { ΔFt }:

 {Δ R}1 = {Δ Fp} + {Fp} − {Fc} (12.45)

is established. Then {ΔR}1 is obtained as {ΔFp} 
and {Fp} in the formula are known. It can be 
seen from Fig. 12-2 that { ΔFT } − { ΔFT }, 
{ Δ Ft } − { ΔFt }, and the unbalanced force 
tends toward zero simultaneously as the number 
of iterations increases.

 4.  Iteration within an increment step
Every step of the approximate linear treat-

ment will cause some error, but the sensitivity 
of Eqn (12.23) is different from the others. The 
equilibrium equation of internal force on the sec-
tion should be implicit in Eqn (12.23) and it can 
be satisfied only if {ΔF} = 0. Generally, the usual 
method to find the solution does not follow this 
condition. It is assumed for Eqn (12.23) that the 
internal forces on the section are in equilibrium 
at the beginning of every increment step, but the 
total error accumulates constantly and the final 
solution obtained is far from the real solution 
(Fig. 12-3) as the number of steps for finding 
the solution increases. Generally, an improved 
method is to iterate within each increment step, 
using the Newton–Raphson (N–R) or modified 
Newton–Raphson (mN–R) method. When the 
latter is adopted:
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u u
 (12.46)

are used for the (k + 1)th iteration within the 
(m + 1)th increment step, where ([K] − 1)

0
m+ 1 is 

the inverse matrix of the total stiffness matrix of 
strain at the beginning of the (m + 1)th increment 
step, {Fp}m+1 is the load vector of the force on the 
section at the beginning of the (m + 1)th incre-
ment step, {ΔFp}m+1 is the incremental load vector 
of the force on the section at the beginning of the 
(m + 1)th increment step, { Fc } km+ 1 is the vector 
of the total internal force on the section after the  
kth iteration within the (m + 1)th increment step, 
F5

F4

F3

F2

F1

F

O u

a1 , a2 , a3 , ... Real solutions

a'1 , a'2 , a'3 , ... Drift solutionsa1

a2

a3

a4

a5

a'5

a'4

a'3

a'2

a'1

FIGURE 12-3  The drift of the solution of an incremental equation with the one degree of freedom system using the 
Euler method.
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{ Δ u } k+ 1
m+ 1 is the incremental vector of the basic 

variables obtained from the unbalanced force 
that occurs after the kth iteration within the 
(m + 1)th increment step, and { Δ u } k+ 1

m+ 1 is the 
kth correction value of the basic variables within 
the (m + 1)th increment step.

 5.  Accelerating convergence within an increment 
step
When the mN–R method is used to find the 

solution of a series of nonlinear equations, the 
advantage is that the repeated formation and 
finding the inverse of the tangential stiffness 
matrix are avoided during every iteration, but 
the disadvantage is that the convergence speed of 
iterations is slow and the convergence is even dif-
ficult to reach, especially when the ultimate state 
of the structure is approaching. Therefore, the 
modified Aitken method of acceleration is used 
to increase the convergence speed.
The Aitken method of accelerating conver-
gence is conducted once every other iteration. If 
the kth iteration is accelerated, the acceleration 
factor of the (k + 2)th iteration is obtained from 
the unbalanced difference between the (k + 1)th 
and (k + 2)th iterations. The scheme of iteration 
accelerated within the (m + 1)th increment step 
for a system with one degree of freedom is shown 
in Fig. 12-4 when the Aitken method is used. 
If the initial tangential stiffness is Km+1 and the 
local secant stiffness is Ks, the acceleration fac-
tor is taken as Km+1/Ks. The accelerated Δuk+ 2

m+ 1 is 
obtained by multiplying the value of the (k + 2)th 
iteration Δuk+ 2

m+ 1 by the acceleration factor.
The Aitken method of accelerating conver-

gence within the (m + 1)th increment step for a 
system with multiple degrees of freedom can be 
presented as:

 { Δ u } k
m + 1 = [ak] { Δ u } k

m + 1 (12.47)
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FIGURE 12-4  The mN–R iteration method within the (m + 1)th increment step for the system with one degree of free-
dom when the Aitken method of acceleration is used.
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where { Δ u } km+ 1 is the incremental vector of the 
basic variables accelerated after the kth iteration 
within the (m + 1)th increment step and [ak] is 
the diagonal matrix. The formula for each ele-
ment is:

1
, 1

1
, 1 , 1

1, 0,2,4,

, 1,3,5,
k k
ii i m

k k
i m i m

k

a u
k

u u

−
+

−
+ +

=⎧

⎪ Δ⎨ =
⎪Δ − Δ
⎩

…

…

 (12.48)

where akii is the acceleration factor correspond-
ing to Δ uki,m+ 1, and Δ uk+ 1

i,m+ 1 and Δ uki,m+ 1 are the 
increments of the ith basic variable at the (k − 1)
th and kth iterations, respectively, within the (m 
+ 1)th increment step.

The denominator term in Eqn (12.48) includes 
two elements with a minus between them; the 
value may be very small for a particular i and this 
causes akii to be large. To avoid this condition, the 
diagonal matrix [ak] in Eqn (12.47) is replaced by 
a scalar, and then Eqns (12.47) and (12.48) are 
changed, respectively, into:

 { Δ u } k
m + 1 = ωk { Δ u } k

m + 1 (12.49)
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where ωk is the acceleration factor at the kth iter-
ation within the (m + 1)th increment step.
12.2.3  Determination of Stress and 
Strain, and Their Increments When  
a Temperature Increment Occurs

 1.  Transformation of the stress–strain curves of 
concrete at elevated temperatures
When concrete experiences a path of loading 

at constant temperature, the strain increment 
caused by a stress increment can be calculated 
easily using Eqn (2.8). However, when concrete 
experiences a path of heating under constant 
load, not only does the temperature increment 
cause freely expanding strain (ɛth, Eqn (2.1)) and 
transient thermal strain (ɛtr, Eqn (3.10)) but also 
the value of the strain is influenced by the reduc-
tion in the concrete strength. It is difficult to 
clearly divide these strains from the experimental 
data of material behavior, but they can be deter-
mined by the transformation of the stress–strain 
curves of concrete at elevated temperatures.[1-12]

The compressive stress–strain curves of con-
crete at different temperatures (Fig. 2-5) have 
been measured from tests. The compressive 
strength of concrete reduces and the correspond-
ing peak strain increases as the temperature 
increases. When the strain value of each stress–
strain curve is divided separately by the corre-
sponding peak strain, a family of curves with the 
same value (ε/εTp =1) of peak strain is obtained 
(Fig. 12-5(a)). This shows that the stress reduces 
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FIGURE 12-5  Transformation of the stress–strain curves of concrete at different temperatures: (a) relative peak strain of 
every curve is identical; (b) original curves; (c) transformed curves.
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gradually when the temperature increases from 
T1 to T2, and the value of the relative strain 
remains constant, but the absolute value of the 
strain increases with that of the peak strain at 
higher temperature.

There are different stress–strain curves (Fig. 
12-5(b)) for concrete at temperatures T1 and 
T2 (= T1 + ΔT), and they are transformed into 
curves T′1 and T′2, respectively, in Fig. 12-5(c). 
Point A on original curve T1 is transformed into 
point A′ on curve T′1; point B′, at which the value 
of the relative strain is equal to that of point A′, 
can be found on transformed curve T′2, and then 
point B is obtained on the original curve T2 (Fig. 
12-5(b)).

When the peak strain is εT1p  and the expression 
of stress is σ = (ɛ,T1) for the concrete at tem-
perature T1, the stress and strain of point A are, 
respectively, σA = σ(ɛA,T1) and ɛA. When there is 
a temperature increment ΔT and the temperature 
reaches T1 + ΔT, the increments to point B are:

 
Δ εAB = εB − εA = εA

εT1
p

· ∂ εp

∂ T
|
T = T1

Δ T
 (12.51)

and
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 Δ σAB =

(
εA

εT1
p

∂ σc

∂ ε
|
(εA , T1)

∂ εp

∂ T
|
T = T1

+ ∂ σc

∂ T
|
(εA , T1)

)
Δ T

 
(12.52)

where ɛp(T) and σc(ɛ,T) are known functions (see 
Eqns (2.5) and (2.8)).

 2.  Determination of the position of the stress–strain 
point when a temperature increment occurs
When the solutions of the finite element formu-

las for force, strain, temperature, and time incre-
ments are required, the load–-temperature path has 
to be divided into a certain number of increment 
steps. When the temperature is increased from Ti to 
Ti + ΔT within a certain increment step, a point 
on the locus of the stress–strain at the condition of 
temperature Ti has to be transformed into that at 
the condition of temperature Ti + ΔT; the position 
of the corresponding yield point, e.g., point A, is 
also transformed into point B′ (Fig. 12-6).

Assuming the unloading stiffness of the stress–
strain curve at different temperatures is equal to 
the tangential stiffness at its origin, the trans-
formation of any stress–strain point from the 
condition of temperature Ti into Ti + ΔT can be 
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FIGURE 12-6  Locus transformation of the stress–strain point: (a) concrete; (b) reinforcement.
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calculated using the following formulas, which 
are obtained from Eqns (12.51) and (12.52):
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ε
′
s = εA +

Es0 (εA − εs) + ( ∂ σs / ∂ T) | (εA ,Ti)
Δ T

Es0 + ( ∂ σs / ∂ T) | T = Ti
Δ T  

 (12.54)

used, respectively, for concrete and reinforce-
ment (∂ εsp / ∂T=0, Fig. 4-11) where ɛc and ɛs are 
values of the strains corresponding to the stresses 
at any point on the stress–strain loci of concrete 
and reinforcement at temperature Ti, ε′c and ε′s 
are the values of the strains corresponding to 
the stresses of concrete and reinforcement after 
transformation into Ti + ΔT, Ec0 and Es0 are the 
unloading stiffness of concrete and reinforcement 
at temperature Ti, σ and σs are stress functions of 
concrete and reinforcement at different tempera-
tures, and ɛp and ɛsp are functions of strains at 
peak stresses of concrete and reinforcement.

It is seen from Fig. 12-6(a) (for concrete) that 
the segments AB and DE on curve 1 are trans-
formed, correspondingly, into segments A′B′ and 
D′E′ on curve 2, and the absolute value of the 
stress on segment A′B′ is greater than the absolute 
value of the yield limit (B′), which is impossible. 
If this happens, the point that is higher than the 
yield limit has to go back to the yield limit. For 
example, if point A1 at temperature Ti is trans-
formed into A′1 at temperature Ti + ΔT, point T′1 
has to be lowered to B′ and, correspondingly, the 
strain caused by stress is reduced by

Δ ε′
A1 = 1

Ec0 + ( ∂ Ec / ∂ T) | T = Ti

(
σA ′

1
− σB ′

)
  

(12.55)

where σ
A′
1
 is stress at point A′1, and σB′ is the 

yield limit corresponding to point A′1 at tempera-
ture Ti + ΔT.
After Δ ε′
A1 is obtained, let point B′ move to 

point A″1 along the stress–strain curve at temper-
ature Ti + ΔT and the stress increment (σA′

1

− σB ′ ) 
is added; so, point A″1 is the desired position 
at temperature Ti + ΔT, corresponding to point 
A1 of the stress–strain curve at temperature Ti.

 3.  Increment and iteration paths
It is assumed that the current increment step is 

m and the temperature is {Ti}, and the tempera-
ture is {Ti−1} for the previous increment step. At 
the beginning of the increment step m, the stress–
strain vector at temperature {Ti−1} obtained from 
the last iteration of the previous increment step is 
transformed into that at temperature {Ti} using 
the method described above, and the yield limit 
corresponding to each strain point at tempera-
ture {Ti} is determined. Within each increment 
step, the path of the first iteration is called the 
increment path and the others are called iteration 
paths.

 (1)  Stress–strain point at the yield state
The position of the stress–strain point 

within the mth increment step for the kth ele-
ment is shown in Fig. 12-7. Point A is the posi-
tion at the beginning of the mth increment step 
and point B is the position of the stress–strain 
point after the nth (n ≥ 1) iteration within the 
mth increment step. There are two situations 
when the next iteration is conducted: one of 
them is plastic loading i.e., σkΔɛk > 0, and the 
other one is plastic unloading, i.e., σkΔɛk ≤ 0, 
where σk is the stress at point A (or B) and Δɛk 
is the  stress–strain increment of concrete or 
reinforcement.

When σkΔɛk > 0, both increment and iteration 
paths move along the stress–strain curve under 
the temperature condition Tki , which is the tem-
perature of the kth element at temperature {Ti}. 
Then, the values of the strain caused by stress at 
point A at the beginning of the increment step 
and after the current iteration are put in stor-
age. When σkΔɛk ≤ 0, the increment path is dif-
ferent from the iteration path. While the former 
is unloading along the AC direction (Fig. 12-7), 
the latter is unloading along BA rather than the 
BC′ direction, and is unloading further along the 
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AC direction after point A is reached. Then, the 
values of the strain, caused by stress at point A at 
the beginning of the increment step and after the 
iteration, are recorded.

 (2)  Stress–strain point at the elastic state
When the stress–strain point is of elastic state, 
the directions of the increment and iteration 
paths are the same.
The position of the stress–strain point within the 
mth increment step for the kth element of elas-
tic state is shown in Fig. 12-8. There are three 
loci of possible paths for concrete. When point 
B is of uncracked state of concrete and no plas-
tic strain is caused by tensile stress, the incre-
ment and iteration paths move on the locus of 
EA1O1A′1E′O3F1; when point B is of uncracked 



258 CHAPTER 12  Finite Element Analysis of the Loading History for Structures
state but plastic strain is caused by tensile stress, 
the increment and iteration paths move on the 
locus of EA2O2A′2E′O3F1; when point B is of 
cracked state of concrete, the increment and 
iteration paths move on the locus of EA3O3F1 or 
EA4O4F2. There are two loci of possible paths for 
reinforcement. When the stress of reinforcement 
at point B is greater than zero, the increment and 
iteration paths move on the locus of E1A1O1E2, 
and when the stress at point B is smaller than 
zero, the increment and iteration paths move on 
the locus of E2A2O2E3.

12.3  FINITE ELEMENT ANALYSIS 
OF A STRUCTURE

12.3.1  Equivalent Stiffness 
Matrix of a Beam Element

The finite element format of the constitutive rela-
tion of a section of structural member has been 
established above, and the equivalent stiffness 
matrix of each beam element has to be deter-
mined in advance, before the finite element anal-
ysis of the structure is begun.

The x axis of the local coordinates of a beam 
element is taken to coincide with the axis of its 
geometric center, and the displacement compo-
nents of the element and its nodes are shown in 
Fig. 12-9. Polynomial expressions are used for 
displacement mode of the beam element:
xy
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FIGURE 12-9  Displacement components of a beam ele-
ment and its nodes.
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2 + γ4x
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(12.56)

where αi, βi, and γi (i = 1,2,3,4) are generalized 
coordinates.

The formula for the displacements of the ele-
ment represented by the displacements of its 
nodes is obtained from Eqn (12.56):

 {V} = [Nb] {U}e (12.57)

where {V } =[V1 V2 V3] T  is the displace-
ment vector of the beam element, {U}e   =   

[U1 U2 U3 U4 U5 U6 U7 U8 U9 U10] is the dis-
placement vector of the nodes of the beam ele-
ment, and [Nb] is the shape function of the beam 
element:
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where

 
Nb

1 = 1 − x
l

, Nb
2 = Nb
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l3 x3
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4 = − Nb
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6 = x

l  

 
Nb

7 = Nb
8 = 3

l2 x2 − 2

l3 x3 , Nb
9 = − Nb
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l
x2 + 1

l2 x3

 

Strain vector {u} of the beam element is taken 
as the basic variable and its formula is

 { u } = [L] { V } (12.59)

where

 

[L] =




− d
dx 0 0

0 − d2

dx2 0

0 0 − d2

dx2



 

Equation (12.57) is substituted into Eqn (12.59) 
and
 {u} = [B] {U}e (12.60)
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is obtained, where

 

[B] = [L]
[
Nb

]

=




ai 0 0 0 0 aj 0 0 0 0
0 bi 0 0 ei 0 bj 0 0 ej

0 0 ci di 0 0 0 cj dj 0




and

 
ai = − aj = 1

l
, bi = ci = − bj = − cj = 6

l2 − 12

l3 x
 

 
di = − ei = − 4

l
+ 6

l2 x, dj = − ej = 2
l

− 6

l2 x
 

If the incremental vector of load {ΔP}e, includ-
ing that of the loads from outside, temperature, 
and time, is acted only on the nodes of the beam 
element,

 ∫ lδ{u}T {Δ F} dx = δ{U}eT{Δ P}e
 (12.61)

is established according to the principle of vir-
tual displacement, where {ΔF} is the incremental 
vector of the internal force on the section of the 
beam element and can be seen in Eqn (12.23). 
The total stiffness matrix of the strain in Eqn 
(12.23) becomes the stiffness matrix of the beam 
element here:

 
[D] =




Dx Dxy Dxz

Dxy Dy Dyz

Dxz Dyz Dz



v (12.62)
where Dx is the axial stiffness of the beam ele-
ment, Dy, Dz are the flexural stiffness of the 
beam element with respect to the y and z axes, 
respectively, Dxy, Dxz are the coupling stiffness 
of the beam element between the axial and flex-
ural stiffness with respect to the y and z axes, 
respectively, and Dyz is the coupling stiffness of 
the beam element between the flexural stiffness 
with respect to the y and z axes.

Substituting Eqns (12.23) and (12.62) into 
Eqn (12.61) gives:

 [K]e{Δ U}e = {Δ P}e (12.63)

where {ΔU}e is the incremental vector of the dis-
placement of nodes of the beam element and [K]e 
is the equivalent stiffness matrix of the beam ele-
ment, and its expression is

 
[K]e =∫ l[B]

T




Dx Dxy Dxz

Dxy Dy Dyz

Dxz Dyz Dz


 [B] dx

 (12.64)

As it is assumed that the stiffness of the section 
of the beam element is invariant along its length, 
Eqn (12.64) is integrated and becomes:
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This matrix is similar to the stiffness matrix of 
the element of a linear elastic structure at room 
temperature, but there are differences between 
them, i.e., the coupling stiffness between axial 
and flexural deformations is not zero gener-
ally, and every factor in this matrix is related 
to the histories of load, temperature, time, and 
deformation.

After the plastic hinge is formed at the end of a 
structural member, the angular rotations on both 
sides of the hinge are no longer equal. Therefore, 
the freedom of rotation at the plastic hinge has to 
be released, and the equivalent stiffness matrixes 
of the related beam elements have to be modified 
correspondingly.[1-12]

12.3.2  Finding a Solution for a Node 
Displacement Vector

Similar to the analysis of the usual finite element 
method, the local coordinates of every beam ele-
ment are transformed first into integral coordi-
nates of the structure, the equivalent stiffness 
matrixes for every beam element are collected 
for the total stiffness matrix of the structure 
[K], and the incremental vectors of the load at 
the nodes of every beam element are added to 
that at the nodes of the structure {ΔP}, which 
includes the vector of the unbalanced force after 
the last iteration within the previous increment 
step. Therefore, the nonlinear equation for the 
direct stiffness of the structure at the kth iteration 
within the ith increment step is

 [K]ki {Δ U}k
i = {Δ P}k

i  (12.66)

After { ΔU } ki  is solved from the equation, the 
incremental vector { ΔU } eki  of the displacement 
at the nodes of each beam element is obtained 
and substituted into Eqn (12.63) to obtain the 
incremental vector { ΔP } eki  of the load at the 
nodes of all the beam elements. Then, the stiff-
ness matrix and incremental vector of the dis-
placement at the nodes of each beam element 
under { ΔP } eki  are calculated and added to the 
new total stiffness matrix [K]k+ 1

i  and the incre-
mental vector of the load at the nodes { ΔP } k+ 1

i  
e Loading History for Structures

of the structure. Now, the vector of unbalanced 
force can be calculated:

 { r } i ={ Δ P } k + 1
i − [K]k + 1

i { Δ U } k
i  (12.67)

If the norm of {r}i is smaller than the given con-
vergence tolerance,

 { U } i ={ U } i − 1 +{ Δ U } k
i  (12.68)

is obtained and the calculation of the next incre-
ment step can be done, otherwise the iteration is 
continued until the norm of {r}i is smaller than 
the convergence tolerance.

12.3.3  Calculation Procedure

The NARCSLT computer program is com-
piled for nonlinear finite element analysis of 
the mechanical history of a reinforced concrete 
structure under common actions of temperature 
and load, and the calculation procedure is as 
follows:

  1.  The temperature and load are divided into 
a certain number of increment steps accord-
ing to the time step, and the increments of 
temperature, load, and time within each 
increment step are not zero simultaneously. 
The increment vector of load {ΔP} at the 
nodes of the structure is not zero in any 
increment step, so Eqn (12.66) is a series 
of nonlinear equations at the kth itera-
tion within the ith increment step, and the 
incremental vector of displacement at the 
nodes of the structure is not zero in any 
increment step.

  2.  Each member of the structure is divided 
into a certain number of beam elements 
along its length, and each beam element is 
divided again into a certain number of prism 
elements along its section. The areas of the 
cross sections of the concrete and reinforce-
ment of each prism element are calculated.

  3.  The initial conditions of the structure are 
given.

  4.  The temperature field on the cross section 
of each beam element is calculated using the 
HTARC program (see Chapter 6). However, 
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this is not needed if the temperature incre-
ment within the current increment step is 
zero.

  5.  The vector of the stress–strain point on the 
section of every beam element obtained 
from the previous increment step is trans-
formed into that under the temperature 
condition within the current increment step, 
and the vector of the yield limit of the sec-
tion of every beam element under the cur-
rent condition is found. This is not needed 
if the temperature increment within the cur-
rent increment step is zero.

  6.  The tangential moduli, related to the strain, 
temperature, and time, of concrete and rein-
forcement on the section of a prism element 
of each beam element are calculated using 
Eqns (12.4) and (12.9).

  7.  The stiffness matrixes of the load, tempera-
ture, and time, and the total stiffness matrix 
of the section of a beam element are formed 
using Eqns (12.27)–(12.30).

  8.  The incremental load vectors of the tempera-
ture and time at the nodes of a beam element 
are calculated using Eqns (12.38)–(12.42).

  9.  The calculated result of Eqn (12.24) is 
added to the vector of the unbalanced force 
(the coordinates of which have been trans-
formed) at the nodes of a beam element after 
the last iteration within the previous incre-
ment step, and the incremental load vector 
at the nodes of the beam element is obtained.

 10.  The equivalent stiffness matrix of every 
beam element is calculated using Eqn 
(12.65).

 11.  The local coordinates of every beam element 
are transformed into the integral coordinate 
of the structure for the equivalent stiffness 
matrix and the incremental vector of the 
load at the nodes.

 12.  The incremental vector of the load at the 
nodes of the structure is collected.

 13.  The total stiffness matrix of the structure is 
collected and the boundary condition of its 
displacement is introduced.

 14.  The vector of the unbalanced force is calcu-
lated using Eqn (12.67).
 15.  If the norm of the vector of the unbalanced 
force is smaller than the convergence toler-
ance given, the vector of the displacement 
at the nodes of the structure within the 
current increment step is calculated using 
Eqn (12.68), and the current condition of 
deformation of the structure is recorded. 
These are taken as the initial conditions for 
calculating the next increment step, which 
is started again from step 4 above and con-
ducted until failure of the structure or the 
end of the last increment step given. If the 
norm of the vector of the unbalanced force 
is greater than the convergence tolerance 
given, the iteration is continued within the 
current increment step.

 16.  The incremental vector of the displacement 
at the nodes of the structure is calculated 
using Eqn (12.66).

 17.  The incremental vector of the displace-
ment at the nodes of every beam element is 
determined.

 18.  The strain vectors caused by stresses of con-
crete and reinforcement on the section of 
every beam element are calculated.

 19.  The vector of the yield limit of the section of 
every beam element under the current tem-
perature conditions is calculated and then 
return to step 6 above.

12.4  COMPARISON BETWEEN THE 
THEORETICAL CALCULATIONS 
AND THE EXPERIMENTAL DATA

 1.  A simply supported beam
The size, reinforcement construction, position 

of the load, and heating–time curve of a simply 
supported reinforced concrete beam can be seen 
in Chapter 8. The curve of the load–maximum 
deflection at the mid-span of the beam measured 
during the testing path of loading at constant 
temperature and the curve of the temperature–
maximum deflection at the mid-span of the beam 
measured during the testing path of heating under 
constant load are plotted as the dashed lines in 
Fig. 12-10. The corresponding theoretical curves 
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FIGURE 12-10  Comparison of the maximum deflection at the mid-span of a simply supported beam (TSB): (a) path of 
loading under constant temperature; (b) path of heating under constant load.
calculated by the NARCSLT program are plotted 
as the solid lines, and they agree well with the 
curves measured from the tests.

 2.  Continuous beam
The reinforced concrete continuous beams of 

two spans are tested under the path of heating 
under constant load, and the size, material, and 
construction of the specimens can be seen in Chap-
ter 10; the testing conditions of the specimens, such 
as the position of the load, the level of constant 
load, and the number of heated spans, are differ-
ent from one another. The measured curves for the 
maximum deflection at the mid-span and the reac-
tion at the end support of the heated span, which 
vary with temperature, of some specimens are 
shown separately as dashed lines in Fig. 12-11(a) 
and (b). The corresponding curves calculated by 
the NARCSLT program are plotted as solid lines. 
It is found after comparison that the variation 
regularity of the theoretical curves is consistent 
with that of the curves measured under various 
test conditions, and the corresponding values on 
both curves are similar. However, the reaction at 
the end support of the continuous beam is sensitive 
during calculation, so the error is slightly greater.

 3.  Frame
The reinforced concrete frames of a single bay 

and single story are tested under the path of heat-
ing under constant load, and the size and con-
struction of the specimens can be seen in Chapter 
10. The ratio between the linear stiffness of its 
beam and column or the level of constant load of 
the specimens is different. The variation curves 
for relative deflection at the mid-span of the beam 
and the bending moment and shear force on the 
bottom section of the column measured during 
the heating process are shown as dashed lines in 
Fig. 12-12. The corresponding curves calculated 



263CHAPTER 12  Finite Element Analysis of the Loading History for Structures
l/3 2l/3 l

l/3 2l/3 l

l/32l/3 l

800 800

600

400

200

600

400

200

800

600

400

200

800

1000

600

400

200

800

600

400

200

800

1000

600

400

200

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

P0 P0

P0

P0 P0

P0

Deflection at mid-span (mm) Reaction at end support (kN)

Reaction at end support (kN)

Reaction at end support (kN)

Deflection at mid-span (mm)

Deflection at mid-span (mm)

(Heated on both spans,
P0 / Pu = 0.50)

(Heated on one span only,
P0 / Pu = 0.63)

(Heated on both spans,
P0 / Pu = 0.63)

TCBl–2
TCBl–2

TCB1–3 TCB1–3

TCB2–1

TCB2–1

T
 (

ºC
)

T
 (

ºC
)

T
 (

ºC
)

T
 (

ºC
)

T
 (

ºC
)

T
 (

ºC
)

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 1 2 3 4 5 6

(a) (b)

FIGURE 12-11  Comparison  between  the  theoretical  and  measured  values  of  continuous  beam  specimens  (TCB): 
(a) maximum deflection at the mid-span; (b) reaction at the end support. Solid line, calculated; dashed line, measured.
by the NARCSLT program are plotted as solid 
lines. The theoretical and measured curves expe-
rience several reverses, and their variation regu-
larities and the corresponding values are similar.

Based on the comparisons between the 
main experimental results and the theoretical 
calculations for various simple and statically  
indeterminate structural members experiencing 
different  temperature–load paths and variable test 
conditions, it is demonstrated that the NARCSLT 
program is reasonable and feasible and can be 
used for the analysis of internal forces and defor-
mation of a reinforced concrete structure under 
any temperature–load path.
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CONCLUSIONS

The behavior responses of a reinforced con-
crete structural member, especially a statically 
indeterminate structure, under common actions 
of temperature and load are quite variable and 
complicated. Determining the strength at elevated 
temperatures or the fire endurance by testing a 
full-scale model of every structure in practical 
engineering is impossible, and also not necessary. 
Therefore, a reasonable and accurate theoretical 
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system has to be established based on experimen-
tal investigations of the behavior of materials 
and structural members at elevated temperatures. 
The solution can be found after analysis and cal-
culation. The nonlinear finite element analysis 
program (NARCSLT) introduced in this chapter 
can be used to calculate the mechanical history 
of a reinforced concrete structure under different 
temperature–load paths, and the variation regu-
larity of the structural behavior can be given.

The main procedure of the NARCSLT pro-
gram is:

 •  Every member of the structure is discretized 
into beam elements along its length, and every 
beam element is also discretized into small 
prism elements along its cross section.

 •  A predetermined temperature–load path is 
divided into the increment steps of tempera-
ture, load, and time.

 •  The HTARC program (see Chapter 6) is intro-
duced to analyze the temperature field on the 
cross section.

 •  The coupling temperature–stress constitutive 
model of concrete and the temperature–stress 
constitutive model of reinforcement are used, 
which are demonstrated by the experimental 
investigations.

 •  Incremental finite element formats of stress, 
strain, temperature, and time are established 
for the analysis of the section.

 •  The transformation rule of the position of the 
stress–strain point is provided when a temper-
ature increment occurs.

 •  The coupled series of equations are decoupled.
 •  Some measures are used to accelerate the cal-

culation process of iteration.
 •  The equivalent stiffness matrix of the beam 

element and the total stiffness matrix of the 
integral structure are derived.

 •  The basic equation of a finite element is solved 
and the basic unknowns (displacements at 
nodes) are obtained, then the indices of vari-
ous types of behavior of the structure and its 
members are calculated.

 •  After the program is compiled and debugged, 
it is used to analyze the test specimens of 
several simply supported beams and statically 
indeterminate continuous beams and frames. 
The theoretical values (curves) obtained agree 
well with the experimental results.
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C H A P T E R

13
Practical Calculation Methods for the 
Ultimate Strength of Members and 
Structures at Elevated Temperature
13.1  BASIC ASSUMPTIONS 
AND DETERMINATION  
OF EQUIVALENT SECTION

The mechanical history of a reinforced concrete 
structure and its member at elevated temperatures 
can be obtained accurately using the non linear 
finite element method. Although it is possible from 
a theoretical point of view, the calculation pro-
cess is complicated. The  temperature–time curve 
and variability on the space during a building 
fire in real life is undetermined, the thermal and 
mechanical behavior of the structural materials is 
variable and scattered, and the thermal–mechan-
ical constitutive relations are not yet satisfied, 
therefore the accuracy of the results of theoretical 
analysis is still difficult to guarantee in a practical 
sense. On the other hand, ultimate strength is the 
most important mechanical behavior of the struc-
ture and its member during or after a fire accident 
(at elevated temperatures), and it is also the most 
interesting problem for the structural engineers 
dealing with the accident. As the ultimate strength 
of the structure is related directly to its safety, it 
is necessary to develop an approximate method 
of engineering accuracy and a clear concept; and 
the ultimate strength of a structural member at 
elevated temperatures must be easy to use.

According to existing experimental investiga-
tions and theoretical analyses, the failure pat-
tern and the strain and stress distributions on 
the section at the ultimate state of the reinforced 
266
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concrete structural member during high tempera-
ture or after cooling are similar to that at room 
temperature. Therefore, the calculation principle 
and method for a structural member at room 
temperature can also be used for that at elevated 
temperatures, but the strength and deformation 
indices of the reinforcement and concrete have to 
be modified correspondingly because of deterio-
ration in the materials, which depends upon the 
temperature distribution in the section.

The basic assumptions used to calculate the 
ultimate strength of the structural member dur-
ing or after high temperature are as follows:

 1.  The temperature field on the section is known.
The temperature field on the section of a 
structural member can be obtained from theo-
retical analysis (see Chapter 6), according to 
the ISO standard temperature–time curve, or 
the actual heating process and time, or fire 
endurance (h) needed. It can also be deter-
mined directly using various charts given in 
the relevant design code, manual, or profes-
sional book,[0-6,0-7] or Chapter 7 in this book.

When the temperature field on a section 
is calculated, generally the action of the rein-
forcement area is not considered and the 
influence of the stress and crack conditions is 
also neglected. The temperature of the rein-
forcement on the section is taken as that of 
concrete at the same position. When the resid-
ual strength of the structural member after 
orced Concrete at Elevated Temperatures
blished by Elsevier Inc. All rights reserved.
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FIGURE 13-1  Calculated  strength  of  reinforcement  at 
elevated temperatures.
cooling is calculated, the maximum tempera-
ture experienced and its distribution on the 
section should also be determined.

 2.  The strain on the section is distributed lin-
early, i.e., the condition of planar deforma-
tion is satisfied.

 3.  No slip occurs between the reinforcement and 
the adjacent concrete.

 4.  The tensile strength of concrete at elevated 
temperatures is neglected (f Tt = 0).

The calculated values for the strength of rein-
forcement and concrete under and after high 
temperature are simplified according to the cor-
responding experimental results. The tensile 
and compressive strengths of reinforcement at 
elevated temperatures are equal, and the value 
taken is shown in Fig. 13-1; the formula is:

 

T ≤ 200 °C: f T
y = fy

200 °C < T ≤ 800 °C: f T
y =

[
1 − 0.9

(
T − 200

600

)
fy

]

800 °C < T ≤ 1200 °C: f T
y =

(
1200 − T

4000

)
fy

T ≥ 1200 °C: f T
y = 0





 

(13.1)

When the reinforcement is cooled down to nor-
mal temperature after being heated to a high tem-
perature, the strength value is taken as the same 
value as if it did not experience a high tempera-
ture, i.e., the strength at room temperature.

The compressive strength of concrete at ele-
vated temperatures (f Tc ) varies with temperature 
and the relationship between them is a compli-
cated curve (see Fig. 2-7). It may be replaced, 
approximately, by a trapezoid or step shape[13-

1,13-2,9-12] (Fig. 13-2), according to different tem-
perature values and mechanical conditions of the 
structural member when it is calculated.

When the temperature on the section of a rein-
forced concrete structural member is distributed 
nonuniformly, different compressive strengths (f Tc ) 
are caused correspondingly on the section, so the 
calculation of the ultimate strength of the member is 
complicated. When the section is transformed into 
an equivalent homogeneous section of concrete, the 
method and formulas in the existing design code[0-1] 
can also be used to calculate various structural 
members at elevated temperatures. This is conve-
nient for the engineer to understand and use.

A structural member of a rectangular section 
and a one-dimensional temperature field (e.g., 
a floor slab or a wall panel), is presented as an 
example to illustrate the method for determin-
ing the equivalent section. First, the positions of 
several relevant isothermal lines are calculated, 
e.g., h2, h3, h5, and h8 (Fig. 13-3(a)), according 
to the predetermined temperature distribution 
on the section. Based on the equivalent principle 
of ultimate strength of the section, i.e., the resul-
tant value and its acting position of compressive 
stress of concrete should be equivalent, the actual 
width of every temperature zone on the section 
is reduced and multiplied by the ratio between 
the respective strength and the strength at room 
temperature (f Tc / fc; Fig. 13-2), so the equivalent 
trapezoid, single or double T-flange section is 
obtained (Fig. 13-3(b)). The ultimate strength of 
the structural member with the equivalent sec-
tion can then be calculated as if it is a member of 
homogeneous concrete (of strength fc), and is not 
different from that at room temperature.

All the reinforcements (e.g., As1 and As2) on 
the equivalent sections are kept at the original 
position, and the tensile or compressive strength 
of each reinforcement depends on the tempera-
ture at its own position (see Fig. 13-1).

When the temperature field on the section of a 
structural member is two-dimensional, its equiv-
alent section can also be determined by the same 
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FIGURE 13-2  Calculated compressive strength of concrete at elevated temperatures: (a) trapezoid; (b) two steps[13-1,13-2]; 
(c) two steps[9-12]; (d) three steps.[9-12]
principle and method as shown in Fig. 13-4 and 
Fig. 13-6 later in this chapter.

When the basic assumptions and the method to 
determine the equivalent section described above 
are used, some other assumptions are included 
implicitly; e.g., the action of thermal stress on the 
section is neglected, the influence of different tem-
perature–stress paths of concrete on its strength 
is not considered, the ultimate compressive stress 
block of concrete on the section is taken to be 
approximately rectangular, and its strength is fc.

13.2  CENTRAL COMPRESSIVE 
MEMBERS WITH PERIPHERY 
EXPOSED TO HIGH TEMPERATURE

When a central compressive column of a rectan-
gular section is subjected to the action of high 
temperature (fire) on its periphery, the tempera-
ture field and the stress distribution on its sec-
tion are symmetrical about the two perpendicular 
axes, and the strain is distributed uniformly on 
the section. Selecting the calculated strength of 
concrete at elevated temperatures (f

T
c , see Fig. 

13-2), and determining the positions of the iso-
thermal lines needed (see Chapter 7), the shape 
of these lines is rounded to a rectangle, e.g., b3 × 
h3, b8 × h8, etc., in Fig. 13-4; the formula is 
then established for the ultimate strength of the 
column.

If the calculated strength of concrete at ele-
vated temperatures is taken as that of a trap-
ezoid (Fig. 13-2(a)), the ultimate stress state 
on the section of the column is shown in Fig. 
13-4(b), and the bearing capacity of concrete 
is the volume of the stress block of a truncated 
pyramid. (The calculated strength of concrete 
varies linearly when the temperature increases 
from 300 °C to 800 °C (Fig. 13-2(a)), but the 
isothermal lines of temperature ranging from 
300 °C to 800 °C are distributed at different 
intervals on the section (e.g., Fig. 7-12). There-
fore, the ultimate stress block on the section 
should be a truncated pyramid with a slightly 
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convex surface (dashed line in Fig. 13-4(b)), if 
it is calculated accurately according to the value 
of the distributed temperature. However, when 
the stress block is taken approximately as a 
truncated pyramid of planar surface (solid line 
in Fig. 13-4(b)), the error caused is limited.) The 
yield strength (f Tyi) of each reinforcement (area 
of Asi) at elevated temperatures is determined 
separately according to the temperature at its 
position on the section. So the total ultimate 
strength of the column is:

 
NT

u1 =
[

1
3 (b3h3 + b8h8) + 1

6 (b3h8 + b8h3)
]

fc

+
∑

i fT
yi Asi

 (13.2)
If the calculated strength of concrete at ele-
vated temperatures is taken in two steps (Fig. 
13-2(b)), the ultimate stress state on the section 
of the column is shown in Fig. 13-4(c) and the 
ultimate strength of the column is:

 NT
u2 = 1

2
(b3h3 + b8h8) fc +

∑
i

fT
yi Asi (13.3)

The difference between the ultimate strengths 
of the column, which correspond to the two 
types of calculated strengths of concrete at ele-
vated temperatures, is:

 NT
u2 − NT

u1 = 1
6
(b8 − b3) (h8 − h3) fc > 0 (13.4)
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Therefore, the ultimate strength of the column 
at elevated temperatures calculated by the lat-
ter condition is slightly higher, but the relative 
difference between them is small in engineering 
practice.

13.3  FLEXURAL MEMBERS

A slab with one surface and a beam of rectan-
gular section with three surfaces exposed to 
high temperature are introduced as examples to 
derive the basic formulas of ultimate bending 
moment (MT

u ), according to the basic assump-
tions and the method for determining the 
equivalent section. The same method and pro-
cedure can also be used for beams in other situ-
ations, such as sections with different shapes, 
different temperature conditions, and differ-
ent calculated strengths of concrete at elevated 
temperatures.

13.3.1 Slabs with One Surface 
Exposed to High Temperature

In a reinforced concrete slab with one surface 
exposed to high temperature, the isothermal 
lines of temperatures 300 °C and 800 °C (h3 
and h8) at time t are known, the trapezoid cal-
culated strength of concrete at elevated tem-
peratures (Fig. 13-2(a)) is selected, and the 
temperatures of the upper and the lower rein-
forcements (As1 and As2) on the section are Ts1 
and Ts2, respectively; the corresponding calcu-
lated strengths f Ty1 and f

T
y2 are determined from 

Fig. 13-1. Then the equivalent section and the 
ultimate stress state on the section of the slab 
are obtained as shown in Fig. 13-5. The basic 
equations of the ultimate bending moment 
of the section can be established for the two 
situations separately, i.e., tension zone (+M) 
and compression zone (−M) exposed to high 
temperature.

 1.  Tension zone exposed to high temperature
As the temperature of the reinforcement on the 

tension zone is high (Fig. 13-5(b)), the strength 
(fTy2) is low and the depth of the compression zone 
on the section is small. In general, when x ≤ h3 
or f Ty2As2 ≤ fcbh3 + f Ty1As1, the equilibrium equa-
tions are established as:

 

∑
N = 0: fcbx + fT

y1As1 = fT
y2As2∑

M = 0: MT
u = fcbx

(
h0 − x

2

)
+ fT

y1As1 (h0 − a1)

}

 (13.5)
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If the result calculated from the equations is x 
≤ 2a1, the action of compressive reinforcement 
(As1) can be neglected and the equations are 
simplified to:

 
fcbx = fT

y2As2

MT
u = fcbx

(
h0 − x

2

)
}

 (13.6)

 2.  Compression zone exposed to high temperature
When the depth of the  compression zone (Fig. 

13-5(c)) is x ≤ h8 − h3 or fTy1As1 ≤
1
2
fcb (h8 − h3)+

fTy2As2, the  equivalent width at neutral axis of 
the section is b′ = [x / (h8 −h3) ] b, and the basic 
equations are:
 

∑
N = 0: fc

bx2

2 (h8 − h3)
+ fT

y2As2 = fT
y1As1

∑
M = 0 : MT

u = fc
bx2

2 (h8 − h3)

(
h8 − 2

3 x − a1

)

+ fT
y2As2 (h − a1 − a2)




 (13.7)

When the depth of compression zone is x > h8 − 

h3 or fTy1As1 >
1
2
fcb (h8 −h3) + fTy2As2, the basic 

equations become:

 

fc

[
1
2 b (h8 − h3) + b (x − h8 + h3)

]
+ fT

y2As2 = fT
y1As1

MT
u = fc

[ 1
6 b (h8 − h3) (h8 + 2h3 − 3a1)

+ 1
2 b (x − h8 + h3) (h8 + h3 − x − 2a1)

]

+ fT
y2As2 (h − a1 − a2)




 (13.8)
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13.3.2 Beams with Three Surfaces 
Exposed to High Temperature

A reinforced concrete beam is of rectangular sec-
tion (b × h) and three surfaces are exposed to 
high temperature. When the two-step calculated 
strength of concrete at elevated temperatures 
(Fig. 13-2(b)) is selected, the formula is

 
T ≤ 300 °C: fT

c = fc

300 °C < T ≤ 800 °C: fT
c = 0.5fc

T > 800 °C: fT
c = 0

 (13.9)

When the isothermal curved lines for tempera-
tures of 300 °C and 800 °C on its section at time 
t (see Chapter 7) are rounded approximately to 
rectangles, the lengths of their sides are b3, h3 
and b8, h8 (Fig. 13-6(a)), respectively. According 
to the principle described above, an equivalent 
T-shaped section (Fig. 13-6(b)) is obtained, and 
the width and thickness of the upper flange are:

 bT1 = b3 + 1
2

(b8 − b3) = 1
2

(b3 + b8) 

and hT1 = h3, respectively, and the width and 
depth of the web are, respectively, bT2 = (1 / 2) b8 
and hT2 =h8 −h3.

The areas of the reinforcements (As1 and 
As2) and their positions on the section remain 
 invariable and the calculated strengths (f Ty1 and 
f Ty2) depend on the temperature (Ts1 and Ts2, 
respectively). The ultimate bending moment of 
the section of the beam is calculated separately 
for two conditions, i.e., tension zone (+M) 
and compression zone (−M) exposed to high 
temperature.

 1.  Tension zone exposed to high temperature
The calculation diagram of ultimate stress 

state on the section is shown in Fig. 13-6(c) 
and the basic equations are as follows. When 
the depth of the compression zone is x ≤ h3 or 
fTy2As2 ≤ fcbT1h3 + fTy1As1:

 
fcbT1 x + fT

y1As1 = fT
y2As2

MT
u = fcbT1 x

(
h0 − x

2

)
+ fT

y1As1 (h0 − a1)

}
 (13.10)
When the depth of the compression zone is x > 
h3 or fTy2As2 > fcbT1h3 + fTy1As1, the basic equations 
are:

 

fc [bT1 h3 + bT2 (x − h3)] + fT
y1As1 = fT

y2As2

MT
u = fcbT1 h3

(
h0 − 1

2 h3

)

+ fcbT2 (x − h3)
(

h0 − h3 + x
2

)

+ fT
y1As1 (h0 − a1)




 
(13.11)

In general, the condition of x > h3 is rare, 
because the temperature of the reinforcement on 
the tension zone of the beam is high and the ten-
sile strength (f

T
y2) is low. If x < 2a1 is obtained 

after calculation, the action of compressive rein-
forcement can be neglected (i.e., As1 = 0) and the 
ultimate bending moment is calculated again.

 2.  Compression zone exposed to high temperature
The calculation diagram of the ultimate stress 

state on the section is shown in Fig. 13-6(d) and 
the basic equations are as follows. When the 
depth of the compression zone is x ≤ h8 − h3 or 
fTy1As1 ≤ fcbT2 (h8 −h3)+ f

T
y2As2:

 

fT
y1As1 = fcbT2 x + fT

y2As2

MT
u = fcbT2 x

(
h8 − x

2 − a1

)
+ fT

y2As2 (h0 − a1)

}

 
(13.12)

When the depth of the compression zone is x 
> h8 − h3 or fTy1As1 > fcbT2 (h8 −h3)+ f

T
y2As2, the 

basic equations are:

 

fT
y1As1 = fc [bT2 (h8 − h3) + bT1 (x − h8 + h3)] + fT

y2As2

MT
u = fcbT2 (h8 − h3) ( h8 + h3

2 − a1)

+ fcbT1 (x − h8 + h3)(
h8 + h3 − x

2 − a1

)
+ fT

y2As2 (h0 − a1)





 (13.13)

If other kinds of approximate calculated strength 
of concrete at elevated temperatures (e.g., Fig. 
13-2) are used, the basic equations of the ulti-
mate bending moment of the beam can be estab-
lished using the same method. The calculated 
results will be slightly different but similar to the 
experimental results.
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13.4  ECCENTRIC COMPRESSIVE 
MEMBERS

13.4.1 Determination of the 
 Ultimate Envelope of Axial 
 Compression–Bending Moment

When an eccentric compressive member of a 
reinforced concrete structure is under the action 
of asymmetrical temperature along the direction 
of depth on its section, e.g., one or three sur-
faces are exposed to fire, the ultimate envelope of 
axial compression–bending moment (NTu −MT

u , 
e.g., Fig. 9-13) is also asymmetrical about the 
ordinate. There are five asymmetrical character-
istic points on the envelope: the peak point (P) is 
located on the right side of the ordinate and rep-
resents the optimum strength (NTp ) of the mem-
ber, which corresponds to the optimum center 
(ep > 0); two points of intersection in the posi-
tive and negative directions of the abscissa (M 
and M′) represent, respectively, the values of the 
ultimate bending moment of the member (N = 0) 
with the tension zone and the compression zone 
exposed to high temperature; the others are two 
boundary points (B and B′), which distinguish 
between the failure patterns of larger and smaller 
eccentricity compressions, with eccentricities eB > 0 
and eB′ < 0, (eB ≠ | eB ′ | ), which correspond to the 
axial compression acting on the sides of the low 
and the high temperature zones, respectively, on 
the section (see Fig. 13-7).

During the loading of the structural member, 
the tensile reinforcement located on the high tem-
perature zone yields first when the eccentricity of 
axial compression is e ≥ eB, and the tensile rein-
forcement located on the lower temperature zone 
yields first when the eccentricity of axial com-
pression is e ≤ eB′ (algebraic value). Afterward, 
the concrete and reinforcement on the compres-
sion zone reach successively their own compres-
sive strength, hence the failure pattern of larger 
eccentricity compression or flexure is caused. The 
stress distribution on the section at the ultimate 
state of these structural members is determined, 
and the stress diagram on the compression zone 
of concrete can be taken approximately as a 
rectangle. Then, two equilibrium equations are 
established and solved, and the ultimate strength 
(NTu ,M

T
u ) of the member is obtained.

When the eccentricity of axial compression 
is eB > e > eB′, the concrete on the near side of 
axial compression, whether on the low or the 
high temperature zone on the section, reaches its 
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FIGURE 13-7  Ultimate  envelope  of  the  axial  compression–bending  moment  of  a  structural  member  at  elevated 
 temperatures.
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compressive strength first, hence the failure pat-
tern of smaller eccentricity compression is caused. 
In the meantime, the concrete and reinforcement 
on the further side of axial compression cannot 
reach their own strength whether compressive or 
tensile. Therefore, the stress distribution on the 
section of these structural members at the ulti-
mate state varies with the eccentricity (e) of axial 
compression and is transformed from the condi-
tion of tension on the high temperature zone and 
compression on the low temperature zone to the 
condition of compression on the whole section, 
and again to the condition of tension on the low 
temperature zone and compression on the high 
temperature zone. In addition, the stress values of 
concrete and reinforcement on most parts of the 
section are unknown, so it is difficult to establish 
the equilibrium equations accurately and to find 
the ultimate strength. The same problem exists 
for the structural member of smaller eccentricity 
compression at room temperature. In the exist-
ing design code for concrete structures,[0-1] the 
rectangular stress block (strength of concrete 
fc) of one part of or even the whole section is 
assumed and used for approximate calculation, 
which seems imperfect from the theoretical point 
of view.

There is a general regularity for the strengths 
of materials and structural members in struc-
tural engineering, which is demonstrated by 
many experimental investigations and theoreti-
cal analyses: the ultimate envelope of various 
strengths should be convex, e.g., the envelopes 
of concrete strength under bi- and tridimen-
sional stress states[0-3] and the ultimate enve-
lopes of composite strength of various structural 
members, which include the envelopes of axial 
force–bending moment (N–M), axial force–shear 
force (I–V), shear force–torque (V–T), bending 
moment–torque (M–T), and bending moment–
shear force–torque (M–V–T).[0-2] The ultimate 
envelope of axial compression–bending moment 
of a reinforced concrete structural member at ele-
vated temperatures (see Fig. 9-13) is not excep-
tional, so the envelope segments 

⌢
B′P and ⌢

PB
within the range of the failure pattern of smaller 
eccentricity compression is also convex and the 
curvatures are small. If they are replaced by 
the straight lines B

′
P and PB, respectively, the 

result of the calculation should be safe with lim-
ited error, the calculation method is  simplified, 
and the assumption of excessive approxima-
tion for ultimate stress block on the section is 
avoided.

When the optimum strength (MT
p ,N

T
p ) of the 

structural member and the ultimate strengths 
((MT

B ,N
T
B) and (MT

B ′ ,NTB ′ )) at both boundary 
points (B and B′), respectively, which distin-
guish between the failure patterns of larger and 
smaller eccentricity compressions, are known, 
the formula of the straight envelope line BP, 
corresponding to the failure pattern of smaller 
eccentricity compression, is:

 

(
MT

B − MT
p

)
NT

u +
(

NT
p − NT

B

)
MT

u = MT
BNT

p − MT
pNT

B

 (13.14)

where MT
u , NTu  are the coordinate values of any 

point on the straight line BP, i.e., the ultimate 
strength of the structural member.

When MT
B ′ is taken as a negative value 

and replaces MT
B in Eqn (13.14), the formula of 

straight envelope line B
′
P is obtained.

If the eccentricity of a structural member at 
ultimate state eu is known, the ultimate strength 
can be calculated by the formulas below, which 
are derived from Eqn (13.14):

 

NT
u = MT

BNT
p − MT

pNT
B(

MT
B − MT

p

)
+

(
NT

p − NT
B

)
eu

MT
u = NT

ueu




 (13.15)

According to the analyses above, the method 
to determine the ultimate envelope of axial com-
pression–bending moment of the structural mem-
ber at elevated temperatures or to calculate the 
ultimate strength is as follows:

 1.  The flexural member (N = 0) is divided into 
two conditions, i.e., tension zone (+M) and 
compression zone (−M) exposed to high 
temperature, and both ultimate strengths 
can be calculated separately using Eqns 
(13.5)–(13.13).
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 2.  Two boundary points on both sides of the ordi-
nate (corresponding eccentricities eB and eB′), 
distinguishing between the failure patterns of 
larger and smaller eccentricity compression, 
are determined and the corresponding ulti-
mate strengths are calculated.

 3.  When the eccentricity of a compressive struc-
tural member at ultimate state (see Eqn (13.22)) 
is eu ≥ eB or eu ≤ eB′, the equilibrium equations 
(Eqns (13.17)–(13.20)), which fit with the fail-
ure pattern of larger eccentricity compression, 
are used to find the ultimate strength.

 4.  The optimum strength of a section of a 
structural member is calculated using Eqn 
(13.21).

 5.  The formula for a straight envelope line (Eqn 
(13.14)), corresponding to the failure pattern 
of smaller eccentricity compression, is estab-
lished and the ultimate strength of the section 
is calculated using Eqn (13.15).

13.4.2 Calculation of the Ultimate 
Strength of a Section

A structural member of rectangular section with 
three surfaces exposed to high temperature is 
taken as an example; the methods and formu-
las for calculations of the boundary points dis-
tinguishing two failure patterns, the ultimate 
strength of the section with larger eccentricity, 
and its optimum strength are given.

When the cross section of a structural mem-
ber (b × h) is given, the temperature field is 
determined first according to the condition 
of fire or the fire endurance needed. Then the 
equivalent section is obtained (Fig. 13-8(a)) 
after the calculated strength of concrete at ele-
vated temperatures (Fig. 13-2) is selected. The 
failure characteristic of the structural member 
on the boundary between larger and smaller 
eccentricity compressions is that when the 
reinforcement in the tension zone reaches its 
yield strength (f

T
y ) and the concrete on the outer 

side in the compression zone of the section 
simultaneously reaches its ultimate value of  
strain (εTc,u).
The boundary depth of the compression zone 
(xu) of the section can be obtained directly based 
on the basic assumption of strain distributing 
linearly on the section. If the nonuniformly dis-
tributed stress on the compression zone of the 
section at the ultimate state is simplified to an 
equivalent rectangular stress block, the corre-
sponding boundary depth of the compression 
zone is changed to xB = 0.8xu.[0-1,0-2] Since the 
effective depths of the section and the values of 
ultimate strain of the materials are different for 
both conditions, i.e., tension zone (+M, eB > 0) 
and compression zone (−M, eB′ < 0) exposed to 
high temperature, the boundary depths of the 
compression zone of both conditions are calcu-
lated separately:

tension zone exposed to high temperature 
(eB > 0):

 xB =
0.8εT

c,u

εT
c,u + εT

y2

h0 (13.16a)

compression zone exposed to high temperature 
(eB′ < 0):

 xB ′ =
0.8εT

c,u

εT
c,u + εT

y1

(h8 − a1) (13.16b)

where εTy2, εTy1 are the yielding strains of ten-
sile reinforcements on the high and the low 
temperature zones, respectively, and they can 
be calculated using Eqn (4.8), and εTc,u is the 
ultimate compressive strain of concrete on the 
outer side of the compression zone of equiva-
lent section. The value may be taken as εc,u = 
3.3 × 10−3 at room temperature,[0-1] and the 
value of εTc,u / εc,u at elevated temperatures can 
be calculated using Eqn (2.5); εTc,u ≤ 6.6×10− 3 
is suggested.[9-6]

When a reinforced concrete structural member 
at elevated temperatures fails with the pattern 
of larger eccentricity compression, the ultimate 
stress distribution on its section can be simplified 
as shown in Fig. 13-9, the equilibrium equations 
can be established, and then the ultimate strength 
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can be found separately for the conditions of the 
tension and compression zones exposed to high 
temperature.

 1.  Tension zone exposed to high temperature (eu 
≥ eB or x ≤ xB)
When x ≤ hT1

 = h3 or NTu ≤ fcbT1hT1 + fTy1As1 −
fTy2As2, the equilibrium equations are:

 

NT
u = fcbT1 x + fT

y1As1 − fT
y2As2

NT
(

eu + h
2 − a2

)
= fcbT1 x

(
h0 − x

2

)

+ fT
y1As1 (h0 − a1)




 (13.17)

where eu is the eccentricity of the structural mem-
ber at the ultimate state (Eqn (13.22)).

When x > hT1 =h3 or NTu > fcbT1hT1 + fTy1As1 −
fTy2As2, the equilibrium equations change to:
 

NT
u = fc [bT1 hT1 + bT2 (x − hT1)]

+ fT
y1As1 − fT

y2As2

NT
u

(
eu + h

2 − a2

)
= fc




bT1 hT1

(
h0 − hT1

2

)

+ bT2 (x − hT1)(
h0 − x + hT1

2

)




+ fT
y1As1 (h0 − a1)




 (13.18)

and the ultimate bending moment of the section 
is MT

u =NTueu .

 2.  Compression zone exposed to high tempera-
ture (eu ≤ eB′ or x ≤ xB′)
When x ≤ hT2

 = h8 – h3 or NTu ≤ fcbT2hT2 +
fTy2As2 − fTy1As1, the equilibrium equations are:
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NT
u = fcbT2 x + fT

y2As2 − fT
y1As1

NT
u

(
eu + h

2 − a2

)
= fcbT2 x

(
hT1 + hT2 − x

2 − a1

)

+ fT
y2As2 (h0 − a1)




 (13.19)

When x > hT2 =h8 −h3 or Nu > fcbT2hT2 + fTy2As2 −
fTy1As1, the equilibrium equations change to:

 

NT
u=fc[bT2 hT2 + bT1 (x − hT2 )] + fT

y2As2 − fT
y1As1

NT
u

(
eu + h

2 − a1
)

= fc

[
bT2 hT2

(
2hT1

+hT2
2 − a1

)

+bT1 (x − hT2 )
(

2hT1
+ hT1

−x

2 − a′
)]

+fT
y2As2(h0 − a1)




 (13.20)
If the depth of the compression zone on the 
section of the eccentric compressive member at 
elevated temperatures calculated from the equa-
tions above is greater than its boundary depth, 
i.e., x > xB or x > xB′, the failure pattern of the 
member is of smaller eccentricity compression. 
Therefore, the ultimate strength of the member 
can be calculated from Eqns (13.14) and (13.15) 
in Section 13.4.1. In these equations the ultimate 
strengths at boundary points distinguishing two 
failure patterns are needed and can be calculated 
as follows: NTB  and MT

B (tension zone exposed to 
high temperature, eB > 0) are calculated by tak-
ing x = xB, which is substituted into Eqn (13.17) 
or Eqn (13.18); NTB  and MT

B (compression zone 
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exposed to high temperature, eB < 0) are calcu-
lated by taking x = xB′, which is substituted into 
Eqn (13.19) or Eqn (13.20).

The optimum strength of the section corre-
sponding to the peak point (P) on the envelope 
and its acting position can be calculated based 
on the equivalent homogenous section (Fig. 
13-9(a)). According to Section 11.2, the opti-
mum center (P) of a section of homogenous 
material coincides with the geometry center (G) 
and deformation center (D) of the same sec-
tion. Therefore, the calculation formulas are 
obtained:

 

NT
p = fc (bT1 hT1 + bT2 hT2) + fT

y1As1 + fT
y2As2

ep = h
2 − 1

NT
p

1
2


 fcbT1 h

2
T1

+ fcbT2 h
2
T2

(
hT1 + hT2

2

)

+ fT
y1As1a1 + fT

y2As2 (h − a2)




MT
p = NT

pep

 (13.21)

where ep is the optimum eccentricity.
The ultimate eccentricity (eu) of the structural 

member, appearing in the formulas above, is the 
sum of the initial eccentricity (e0 = M/N) of the 
load and its additional eccentricity (i.e., lateral 
deflection Δ T

u) at the ultimate state:

 eu = e0 +Δ T
u (13.22)

If the enlarged coefficient of eccentricity of the 
structural member at elevated temperatures is 
taken as η, then:

 η = eu

e0
= 1 + Δ T

u

e0
 

The additional eccentricity (Δ T
u, see Fig. 

9-10) of the structural member at the ultimate 
state under the common actions of tempera-
ture and load is given from the experiments on 
an eccentric compressive structural member at 
elevated temperatures. Then, the general regular-
ity of the enlarged coefficient of eccentricity of 
the structural member at elevated temperatures 
is confirmed as below: the value of η increases 
with temperature on the section, the value of η 
decreases as the initial eccentricity increases, 
the value of η of positive eccentricity (e0 > 0) is 
slightly greater than that of the negative eccen-
tricity (e0 < 0) if the absolute values of both 
eccentricities are equal, and a certain amount of 
ultimate eccentricity (Δ T

u ≠ 0) is still caused due 
to the action of temperature, even if the initial 
eccentricity of the specimen e0 → 0.

The enlarged coefficient of eccentricity of a 
concrete structural member at room tempera-
ture shows similar regularity, i.e., it increases 
as the depth of the cross section decreases and 
it decreases as the eccentricity increases. The 
relevant formulas listed in the existing design 
code for a reinforced concrete structure,[0-1] 
which are normally used for structures at room 
temperature, are suggested after trying, com-
paring, and analyzing to calculate the enlarged 
coefficient of eccentricity of the structural 
member at elevated temperatures. These for-
mulas are:

 η = 1 + 1
1400 (e0 / h0)

(
l0

h

)2

ζ1ζ2 (13.23)

 ζ1 = 0.5fcA
N

≤ 1.0 

 ζ2 = 1.15 − 0.01
l0

h
≤ 1.0  

where l0 is the calculated length of the struc-
tural member obtained by following the rele-
vant provisions in the design code, and h and 
h0 are the total and effective depths of the cross 
section, which are determined from the equiva-
lent section.

The minimum value of additional eccentricity 
should be taken as 20 mm or h/30 for a com-
pressive structural member with central load or 
smaller eccentricity.

According to the calculations described 
above, specimens heated to 800 °C[9-3] are calcu-
lated and checked, and the theoretical envelope 
is drawn in Fig. 13-10 and compared with the 
measured data. It is seen that the variation reg-
ularities of both are similar, the values of both 
are approaching, and the result obtained tends 
toward safety.
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FIGURE 13-10  Demonstration  of  the  calculation 
method.[13-2]
13.5  STATICALLY INDETERMINATE 
STRUCTURES

13.5.1 General Principle of Plastic 
Limit Analysis

According to experimental investigations of 
a statically indeterminate reinforced concrete 
structure, e.g., continuous beam and frame (see 
Chapter 10), at elevated temperatures under 
both paths of loading at constant temperature 
and heating under constant load, the specimens 
fail because several plastic hinges are formed suc-
cessively at some critical cross sections and the 
segments nearby, and a movable mechanism of 
one degree of freedom then results. The failure 
mechanism may be a local one (e.g., in one span 
only of a continuous beam or in a beam of the 
frame) or an integral one (e.g., in both spans of 
a continuous beam or a combined beam–column 
mechanism of the frame, see Fig. 10-17). There-
fore, the plastic limit analysis method (or method 
of equilibrium at ultimate state) used for the stat-
ically indeterminate structure at room tempera-
ture can also be used for analyzing the ultimate 
strength of the statically indeterminate structure 
at elevated temperatures, and the calculation can 
be conducted easily.

The basic assumptions used for the plastic 
limit analysis method[13-3–13-5] of a statically 
indeterminate structure at room temperature 
are:

 1.  The bending moment–curvature (M − 1/ρ) rela-
tionship of a cross section of a structural mem-
ber is ideal elastoplastic; this means that the 
curvature increases greatly with unvaried value 
of bending moment and is not influenced by 
the axial and shear forces on the section, after 
the ultimate bending moment (Mu) is reached.

 2.  The loads acted on the structure increase pro-
portionally, i.e., the relative ratios between 
the loads are unvaried, and they increase 
monotonically and unloading never appears.

 3.  The deformation of the structure is small 
before the formation of its failure mechanism 
and the internal forces of the structure are not 
influenced by its deformation.

The basic method of plastic limit analysis is 
as follows: one or several possible failure mecha-
nisms of one degree of freedom and correspond-
ing positions of the plastic hinges are determined 
or selected in advance for the statically indeter-
minate structure; the principle of virtual work or 
the ultimate equilibrium equation is used to cal-
culate the ultimate strength (Pu) of the structure 
when the ultimate bending moments (Mu) at the 
plastic hinges are known. Although the nonlinear 
deformation history of the structure need not be 
considered during the calculation and the actions 
of other factors (e.g., initial stress on the section, 
initial internal forces of the structure, settlement 
of the support) are not accounted for, the accu-
racy of the ultimate strength calculated for the 
structure is not affected.

The mechanical requirements, which have to 
be satisfied for the ultimate state or a real failure 
mechanism of a statically indeterminate struc-
ture, are as follows:

 1.  Equilibrium condition: all the forces from 
outside and the internal forces on the cross 
section acting on the structure itself or any 
part of it are in equilibrium.

 2.  Ultimate condition: the value of the bending 
moment (and other internal forces) on every 
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cross section has to be equal or smaller than 
the available ultimate value (M ≤ Mu).

 3.  Mechanism condition: plastic hinges of suffi-
cient number are formed in the structure itself 
or in some part of it and a movable mecha-
nism of one degree of freedom results.

The load satisfying these conditions is the ulti-
mate load of the structure.

The load value calculated from the equilib-
rium condition for one of the possible failure 
mechanisms selected is called a possible ultimate 
load, which satisfies conditions 1 and 3. When 
the value of the internal force calculated from the 
equilibrium condition for the load value selected 
is equal to or smaller than the ultimate value of 
that on the corresponding section, the load is 
called a statically admissible load, and conditions 
1 and 2 are satisfied.

It has been proved theoretically[133] that the 
possible ultimate load is the upper bound of the 
ultimate load and the minimum value is the value 
of the ultimate load (upper bound theorem), 
while the statically admissible load is the lower 
bound of the ultimate load and the maximum 
value is the value of the ultimate load (lower 
bound theorem). Therefore, the value of the pos-
sible ultimate load is certainly greater than that 
of the statically admissible load, and they pro-
vide the range of the approximate and accurate 
solutions of the ultimate load. When both of 
them are equal and all the conditions above are 
satisfied, the accurate value of the ultimate load 
is obtained.

13.5.2 Characteristics of Plastic 
Hinges at Elevated Temperatures

The plastic limit analysis of a statically indeter-
minate reinforced concrete structure under com-
mon actions of temperature and load are the 
same as that of the structure at room tempera-
ture, if the influence of the heating–loading path 
is not taken into account. However, the thermal–
mechanical behavior of the structure, especially 
the mechanical condition of the plastic hinge at 
elevated temperatures, is complicated, and this 
should be considered carefully during the plastic 
limit analysis.

When a simply supported reinforced concrete 
beam with three surfaces exposed to high tem-
perature is acted by a positive bending moment 
(i.e., tension zone on its section exposed to high 
temperature), the bending moment–curvature 
(M − 1/ρ) relation under the path of loading at 
constant temperature is shown in Fig. 8-7, and the 
temperature-curvature (T − 1/ρ) relation under 
the path of heating under constant load is shown 
in Fig. 8-10. The curves vary gently and the cur-
vature increases considerably after the tensile 
reinforcement yields and before the ultimate 
state is reached. This shows that a considerable 
angular rotation appears near the critical sec-
tion, so a plastic hinge is formed, which is called 
a tensile hinge at high temperature. When the 
beam is acted by a negative bending moment 
(i.e., tension zone on its section exposed to lower 
temperature), the bending moment–curvature 
(M − 1/ρ) relation under the path of loading at 
constant temperature is shown in Fig. 8-9; simi-
lar deformation regularity is seen and the plas-
tic hinge formed is called a tensile hinge at low 
temperature.

The tensile hinges at the high and the low 
temperatures are formed because the first of the 
tensile reinforcements on the section yields; the 
tensile hinges are of unidirectional rotation, so 
they can rotate only along the same direction as 
the bending moment. The value of the ultimate 
bending moment there remains unvarying. How-
ever, the ultimate values of the bending moments 
at the tensile hinges at high temperature (i.e., ten-
sion zone exposed to high temperature) and at 
low temperature (i.e., compression zone exposed 
to high temperature) differ greatly (see Fig. 8-8), 
and should not be confused with each other.

With regard to the influence of the heating–
loading path on the behavior of the plastic hinge, 
the ultimate bending moment–temperature rela-
tionship (Fig. 8-11) of the beam specimen shows 
that the curve corresponding to the path of heat-
ing under constant load is always above the curve 
corresponding to the path of loading at constant 
temperature, and the maximum difference in 
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the ultimate strength between them appears in 
the temperature range of 300–525 °C. If the 
temperature is T < 300 °C or T > 525 °C, the 
 heating–loading path makes no obvious differ-
ence to the ultimate strength of the beam. When 
the fire resistance of a structure is analyzed, the 
temperature of the fire is generally far greater 
than 525 °C, so the influence of the heating–
loading path may not be considered for the plas-
tic limit analysis. The ultimate bending moment 
of the beam section can be determined simply 
according to the path of loading at constant tem-
perature, and the calculation is then simplified 
and the result obtained tends toward safety.

When the structural member is acted on by 
an axial compression and bending moment (N, 
M) together or by an eccentric compression (N, 
e0 = M/N), the axial force (or bending moment 
M = Ne) deflection (curvature) of its section under 
the path of loading at constant temperature is 
shown in Fig. 9-9.

The compressive specimens of the failure pat-
tern of larger eccentricity (Fig. 9-13), including 
the specimens with tension zones exposed to high 
temperature (e0 > 0) and to low temperature (or 
compression zone exposed to high temperature, 
e0 < 0), fail also because the first tensile reinforce-
ment yields, and considerable plastic deformation 
(curvature) is caused before its failure; the ulti-
mate bending moment varies slightly. Therefore, 
both conditions of these specimens may also be 
considered approximately as the tensile hinges at 
high and the low temperature, respectively.

As far as the compressive specimens of the fail-
ure pattern of smaller eccentricity are concerned, 
their failure is controlled by the compressive con-
crete on the side of low temperature (e0 > 0) or 
high temperature (e0 < 0), separately. Once the 
ultimate strength (NTu ) of the specimen is reached, 
the value of the ultimate strength cannot be main-
tained and reduces gradually (although the ulti-
mate bending moment MT

u =NTueu on its section 
reduces slightly), as its deformation (curvature) 
develops continuously. The reducing amplitude 
of its ultimate strength depends on the tempera-
ture reached and the eccentricity of the load of 
the specimen. The higher the temperature and 
the larger the eccentricity of the load, the more 
gently the deformation increases and the less the 
ultimate strength reduces.

When reinforced concrete frames are tested at 
elevated temperatures, it is found that a consider-
able plastic angular rotation can also result within 
a longer longitudinal area of the column because 
its stiffness (and cross section) is small and the 
compressive strain of concrete at high temperature 
is high, so a compressive hinge at high tempera-
ture is formed (see Section 10.3.1 and Fig. 10-17).

If the compressive hinge at high temperature is 
the last one (or last batch) among all the plastic 
hinges appearing during the process of a movable 
mechanism of the structural forms, the ultimate 
strength (MT

u =NTu · eu) at the hinge can still be 
used for the plastic limit analysis. However, if 
the compressive hinge at high temperature has 
appeared in advance, the ultimate strength at the 
hinge is reduced as the plastic angular rotation 
occurs there during the process of other plastic 
hinges forming, successively. When the movable 
mechanism of the structure is reached eventu-
ally, the actual strength at the hinge (section) is 
smaller than its ultimate strength ( <NTu ) and the 
ultimate bending moment there is also smaller 
slightly (MT

u =NTu · eu). This should be considered 
carefully during the plastic limit analysis.

The ultimate strengths and deformations of 
the eccentrically compressive structural mem-
bers under different heating–loading paths are 
compared and it is demonstrated that the ulti-
mate envelope of the axial compression–bending 
moment of the member under the path of heat-
ing under constant load is outside that under the 
path of loading at constant temperature (Fig. 
9-15), i.e., the ultimate strength of the former is 
greater than that of the latter; and the deforma-
tion at the ultimate state of the specimen under 
the path of heating under constant load is also 
greater than that under the path of loading at 
constant temperature (Fig. 9-14(b)). Therefore, 
when the ultimate strength of the column section 
under the path of loading at constant tempera-
ture is used simply for the plastic limit analysis 
of the structure, the calculation is then simplified 
and the result obtained tends toward safety.
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13.5.3 Method and Procedure 
of Plastic Limit Analysis

The upper bound method of plastic limit analy-
sis is generally used to calculate and determine 
the ultimate strength of a statically indeterminate 
structure at elevated temperatures. The continuous 
beam and simple frame are used as examples to 
explain the calculation procedure of the method.

 1.  Calculation of the temperature field
According to the temperature–time curve 

(e.g., the ISO standard curve) of the peripheral 
medium of the structure and the fire endurance 
(h) desired, the temperature field on the section 
of every structural member is calculated (see 
Chapters 6 and 7).

 2.  Selection of possible failure mechanisms
One or several kinds of movable mechanisms 

of one degree of freedom, which are possible geo-
metrically, are selected and the positions of the 
plastic hinges are determined correspondingly for 
the statically indeterminate structure, based on 
the degree of indeterminacy, and the mechanical 
characteristics. The mechanisms composed may 
be the whole structure or part of the structure, 
and the number of plastic hinges is at least one 
more than the degree of indeterminacy.

Each span of a continuous multi-span beam 
may compose one possible failure mechanism. 
When the plastic hinges are formed successively 
at the positions of the maximum bending moment 
in the mid-span and at both end supports of one 
span of the continuous beam (Fig. 13-11(a)), 
one movable mechanism of one degree of free-
dom is composed. A simple frame of one bay and 
one story is a statically indeterminate structure 
of three degrees of indeterminacy; several kinds 
of failure mechanism (Fig. 13-11(b) and (c)) are 
possible. When only vertical loads act symmetri-
cally on the frame, the local beam-type failure 
mechanism of three plastic hinges may be com-
posed, and two of the plastic hinges are formed 
at the ends of the beam or at the upper ends of 
the columns, depending on the relative strengths 
of the beam and column sections. In addition, a 
special failure mechanism of combined beam–
column type with five plastic hinges may be com-
posed (Fig. 10-17) and cause integral failure of 
the frame. When a horizontal load also acts on 
the frame, a side-displacement failure mechanism 
or a combined beam–column mechanism[13-6] of 
four plastic hinges may be composed.

 3.  Calculation of the ultimate strength (bending 
moment) of a critical section of a structural 
member
The ultimate bending moment (MT

u ) of a struc-
tural member at elevated temperatures is calcu-
lated approximately using the equivalent section 
method (see earlier in this chapter), based on the 
size, reinforcement, strengths of materials, and 
the temperature field of its section.
(c)

(b)

(a) –M

–M –M –M –M

+M

+M+M+M

+M

FIGURE 13-11  Possible failure mechanisms of a continuous beam and simple frame:  (a) continuous beam;  (b)  frame 
(vertical load only); (c) frame (vertical and horizontal loads).
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 4.  Calculation and determination of the ultimate 
load of a structure at elevated temperatures
The equilibrium equation at the limit state 

or the equation of virtual work is established 
for every possible failure mechanism of the 
 structure, and the corresponding value of the 
limit load is calculated. The minimum among 
all the limit loads corresponding to all pos-
sible failure mechanisms is chosen as the 
ultimate load (upper bound solution) of the 
statically indeterminate structure at elevated 
temperatures.

When one span of a continuous multi-span 
beam is considered and two concentrated loads 
are acting symmetrically on the span, the mov-
able mechanism is composed (Fig. 13-12(a)) after 
three plastic hinges are formed successively at 
the sections of both supports (A and B) and the 
maximum bending moment (C) in the span. The 
value of the ultimate load (Pu) of this span can be 
calculated after the ultimate bending moments at 
the corresponding sections (MA, MB, and MC) are 
determined.

 (1)  Method of equilibrium at the ultimate state
Suppose the beam is simply supported at both 

ends; the bending moment at the cross section 
(C), where the load is acted, is

 M0 = Puβl  

When the ultimate bending moments at the sec-
tions of both supports and the mid-span of the 
beam are known, they satisfy the equilibrium 
condition at the ultimate state (Fig. 13-12(b)):

 (1 − β)MA + βMB + MC = M0 

Solving these two equations, the value of the ulti-
mate load of this span is obtained:

 Pu = 1
l

(
1 − β

β
MA + MB + 1

β
MC

)
 (13.24)

 (2)  Method of virtual work principle
Suppose a virtual displacement (δ = 1) occurs 

under point C where the load is applied. The 
virtual angular rotations of the plastic hinges at 
both supports and the mid-span of the beam are, 
respectively (Fig. 13-12(a)):

 
θA = 1

βl
, θB = 1

(1 − β)l  

and

 
θC = 1

βl
+ 1

(1 − β)l
= 1

β(1 − β)l 

According to the principle of virtual work, the 
virtual work done by the external loads should 
be equal to that done by the internal forces, so:

 Pu

(
1 + β

1 − β

)
= MAθA + MBθB + MCθC  (13.25)
Pu Pu

C D BBA

l

(a) (b)

M
0

MA

MC

MD

MB
MBβ

θ

Cθ

Aθ δ

lβ

lβ

β(1–  ) MA

β(1–  )l

=1

FIGURE 13-12  Calculation model of the ultimate load of a continuous beam: (a) failure mechanism and virtual displace-
ment; (b) bending moment diagram at the ultimate state.
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is established. After the virtual angular rotations 
are substituted into Eqn (13.25), the value of 
ultimate load (Pu) obtained is the same as Eqn 
(13.24).

If the continuous beam is multi-span and each 
span has a different span length, temperature, 
or load, the value of the ultimate load of every 
span at elevated temperatures can be calculated 
individually based on the principles and methods 
introduced above. The minimum of the ultimate 
loads corresponding to all the spans is exactly the 
ultimate load needed for the continuous beam. 
When a frame of different shape and load is ana-
lyzed, the value of the ultimate load can be cal-
culated individually for every one of the possible 
failure mechanisms, e.g., as shown in Fig. 13-11, 
and the minimum among all the possible ultimate 
loads is the actual ultimate load of the frame.

There is another situation. When the load 
acting on a statically indeterminate structure 
is known in advance, the fire endurance of the 
structure needs to be calculated. Therefore, the 
fire endurance of the structure is assumed to be 
several periods (e.g., 1h, 2h, 3h, …), the corre-
sponding temperature field on the section and 
the ultimate bending moment of each structural 
member are calculated separately for each period, 
and the various possible failure mechanisms are 
selected; then the value of the ultimate load of 
the structure at elevated temperatures is calcu-
lated and determined for every period assumed. 
Comparing the loads calculated with the load 
known, the fire endurance (h) of the structure is 
then obtained.

13.5.4 Calculation Examples 
and Demonstration

A fire accident occurring in a practical build-
ing is very complicated, the initial data are dif-
ficult to collect completely and accurately, and 
the analysis and comparison are also not con-
venient. Therefore, the experimental results 
for the continuous beam and frame introduced 
above are used as examples to demonstrate the 
calculations.
 1.  Continuous beam of two spans
Five specimens of a continuous beam with two 

spans are tested under the path of heating under 
constant load. The factors investigated include 
the position of the load, initial loading level, and 
the number of the span heated (see Table 10-1). 
The details of the specimens, initial data and 
results of the experiments, and their calculation 
parameters can be found in Chapter 10. The rel-
evant data for specimen TCB2-1 heated on both 
spans are: the load is located 2l/3 from the side 
support, the initial loading level P0/Pu = 0.63, 
and the ultimate temperature measured from the 
test is 937 °C (see Table 10-4).

The specimen is put into the experimental 
furnace and then heated; the elevating tempera-
ture–time curve in the furnace is shown in Fig. 
13-13(a) and the elevating speed within 200 
min is far lower than that of the ISO standard 
curve. Specimen TCB2-1 fails when the ultimate 
temperature 937 °C is reached after 162 min of 
heating time. Obviously, the temperature field on 
the section of the specimen cannot be obtained 
from the charts in Chapter 7 but should be cal-
culated instead using the HTARC program (see 
Chapter 6). The result obtained is presented in 
Fig. 13-13(b).

When the calculated strength of concrete at 
elevated temperatures is taken in two steps (Fig. 
13-2(b)), the equivalent section of the specimen is 
obtained (Fig. 13-13(c)). After the temperature of 
tensile reinforcement is determined from the tem-
perature field on the section of the specimen (Fig. 
13-13(b)), the yield strength at elevated tempera-
tures is calculated based on Fig. 13-1. Using the 
relevant formulas introduced in Section 13.3.2, 
the ultimate bending moments at elevated tem-
peratures calculated are MT

C =0.555kNm for the 
section in the mid-span (tension zone exposed 
to high temperature) and MT

B = 6.649kNm for 
the section near the support (compression zone 
exposed to high temperature).

The span length and the load acting on the 
 continuous beam with two spans are symmetrical, 
so the value of the ultimate load for one span only 
needs to be calculated. When the tensile hinges 
at high and the low temperature are formed, 
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FIGURE 13-13  Calculation of the ultimate load of a continuous beam specimen (TCB2-1): (a) temperature–time curve; 
(b) temperature field on a section at the ultimate state; (c) equivalent section; (d) failure mechanism.
respectively, on the sections at the maximum 
bending moment (point C) in the span and at the 
middle support (point B), as the end support of 
the specimen is of hinge (MA = 0), so the unique 
possible movable mechanism of one degree is 
composed (Fig. 13-13(d)) and the  specimen fails. 
According to the equilibrium principle at the ulti-
mate state, the equation

 M0 = PT
uβ (1 − β) l = MT

C + βMT
B  

is established and the value of the ultimate load 
of the continuous beam at elevated temperatures 
is obtained:
 PT
u = 1

l

[
1

β (1 − β)
MT

C + 1
(1 − β)

MT
B

]
 (13.26)

The values of the ultimate loads of all the specimens 
in a continuous beam are calculated and listed 
in Table 13-1, and the ratios between the calcu-
lated and measured values are within  0.75–1.05. 
Considering the complicacy and  deviation of the 
mechanical behavior of a statically indeterminate 
structure of reinforced concrete at elevated tem-
peratures, it is confirmed that the results calcu-
lated by the practical methods of the equivalent 
section and plastic limit analysis are of acceptable 
accuracy and tend toward safety. The calculated 
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 TABLE 13-1     Ultimate Loads of Continuous Beam Specimens

Number of 
specimens

Temperature 
in furnace 
(°C)

Heating 
time 
(min)

Temperature 
of tensile rein-
forcement in 
mid-span (°C)

Ultimate 
bending 
moment at 
mid-span 
section MT

C 
(kN m)

Value of ultimate load (kN)

Calculated 
PT

u

Measured 
PS

u

Ratio 
PT

u / PS
u

TCB1-1 950.0 165 892 0.533 10.31 10.0 1.03
TCB1-2 743.2 108 679 2.151 16.38 20.0 0.82
TCB1-3 697.9 96 628 2.749 18.62 20.0 0.93
TCB2-1 937.0 162 879 0.555 18.70 25.0 0.75
TCB2-2 490.9 54 404 5.413 36.92 35.0 1.05
TCB2-3 823.0 131 766 1.109 20.78 24.7 0.84

The ultimate bending moment at the support section varies slightly with the temperature in the furnace and is taken as a constant:  
MT

B = 6.649 kN m.
error is caused by various factors: the actual 
temperature field on the section varies along the 
length of the specimen and has a low value near 
the support; the specimen is calculated based on 
the path of loading at constant temperature but it 
is actually tested under the path of heating under 
constant load; errors exist in the values taken for 
the thermal parameters of concrete and for the 
temperature of reinforcement; measuring errors 
also exist in various experimental data, including 
the size of the section, the position of the rein-
forcement, the position and value of the load, and 
the temperature in the furnace.

 2.  Frame with a single bay and a single story
Four specimens of a single bay and single-story 

frame are tested under the path of heating under 
constant load. The factors that influence the 
investigation are the initial loading level and ratio 
between the linear stiffness of the beam and the 
column of the frame (see Table 10-2). The initial 
data, experimental parameters, and main results 
for the specimens can be found in Section 10.3 
and the elevating temperature–time curve in the 
furnace is the same as shown in Fig. 13-13(a). 
The temperature fields on the sections of the 
beam and column (which are different sizes) of 
the frame specimens at the maximum experimen-
tal temperature are calculated separately using 
the HTARC program (see Chapter 6). When 
the calculated two-step strength of concrete 
at elevated temperatures (Fig. 13-2(b)) is also 
assumed, the corresponding equivalent sections 
are obtained, and then the ultimate values of the 
positive (tension zone exposed to high tempera-
ture) and negative (compression zone exposed 
to high temperature) bending moments of the 
beam and column can be calculated, respectively 
(Table 13-2).

The failure mechanism of the frame specimens 
obtained from the tests (see Fig. 10-17) are used 
for the calculation, i.e., they are of beam type for 
specimens TFC-2 and TFC-3 and of combined 
beam–column type for specimens TFC-4 and 
TFC-5. When the ultimate load of the frame is cal-
culated according to the principle of virtual work, 
the two diagrams of virtual displacement shown in 
Fig. 13-14 are used for both failure mechanisms.

The equation of virtual work is

 2PT
u × 2

3
= 2MT

D
2
l

+ MT
E

4
l  

for the failure mechanism of beam type, and the 
formula of its ultimate load is obtained:

 PT
u = 3

l

(
MT

D + MT
E

)
 (13.27)

The equation of virtual work is:

 2PT
u × 2

3
= 2MT

A
2
l

+ 2MT
B

4
l

+ MT
E

4
l  
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 TABLE 13-2     Ultimate Loads of Frame Specimens

Number of 
specimens

Temperature 
in furnace 
(°C)

Heating 
time (min)

Ultimate bending moment 
of section (kN m)

Value of ultimate load (kN)

MT
A MT

A MT
D MT

E

Calculated 
PT

u

Measured 
PS

u

Ratio 
PT

u / PS
u

TFC-2 820.0 130 — — 4.352 0.945 10.59 13.70 0.77
TFC-3 979.4 232 — — 3.130 0.295 6.85 17.30 0.40
TFC-4 964.1 228 3.808 0.367 — 0.314 8.83 9.80 0.90
TFC-5 952.2 184 3.948 0.459 — 0.392 9.56 9.30 1.03
D E F
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FIGURE 13-14  Failure mechanisms and virtual displacements of frame specimens: (a) TFC-2 and TFC-3; (b) TFC-4 and 
TFC-5.
for the failure mechanism of combined beam–col-
umn type, and the formula of its ultimate load is:

 PT
u = 3

l

(
MT

A + 2MT
B + MT

E

)
 (13.28)

The symbols for ultimate bending moments in 
these formulas correspond to various sections 
of the frame shown in Fig. 13-14. However, 
the position and rotating direction of the plastic 
hinges should be considered. The tensile hinges 
at the high and the low (or compression zone 
exposed to high temperature) temperature have 
to be distinguished and different values of ulti-
mate bending moments should also be given.

The values of the ultimate loads calculated for 
all the frame specimens are listed in Table 13-2. 
The values calculated by the practical method 
described above agree well with the experimen-
tal results, except for a few specimens. One of 
the reasons for calculation error is that axial 
compression is present on the beam of the frame 
because the longitudinal thermal deformation is 
restrained by both columns; the same applies to 
the calculation for the continuous beam.
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CONCLUSIONS

Eccentrically compressive (central and flexural) 
members of reinforced concrete are the most 
popular basic structural members used in struc-
tural engineering. The history of their mechani-
cal behavior under common actions of elevated 
temperatures and load (internal force) is complex 
and the calculations are tedious. A simple and 
practical approximation method is necessary and 
possible for calculating the most important index 
of mechanical behavior, i.e., the ultimate strength 
at elevated temperatures.

According to the method of equivalent sections 
suggested in this chapter, the method of calculat-
ing the strength of concrete at elevated tempera-
tures (fTC / fC) is simplified, and the cross section of 
nonuniform strength of concrete, which is caused 
by the nonuniformly distributed temperature, is 
then transformed into an equivalent section of 
homogeneous concrete. The relevant methods 
and formulas introduced in the existing design 
code for reinforced concrete structures can then 
be used to calculate the ultimate strength of a 
structural member at elevated temperatures.

The calculated strength of concrete at elevated 
temperatures can be simplified into a trapezoid 
shape or into two steps (Fig. 13-2(a)–(c)); the 
results from the calculations based on it show 
acceptable accuracy. If a structural member is 
kept at elevated temperatures for a longer time 
and the area at higher temperature on the sec-
tion increases, using three steps (Fig. 13-2(d)) to 
calculate the strength of concrete at elevated tem-
peratures is suggested.[9-12]

The formulas for the ultimate strength of a 
structural member at elevated temperatures given 
in this chapter can be used only for a centrally 
compressive column of rectangular section with 
the periphery exposed to high temperature, a slab 
and beam with one or three surfaces exposed to 
high temperature, and an eccentrically compres-
sive column with three surfaces exposed to high 
temperature. If a structural member is under dif-
ferent thermal conditions, e.g., a nonrectangular 
section, a nonstandard temperature–time curve, 
other conditions of the periphery exposed to high 
temperature, and different calculated strength of 
concrete at elevated temperatures, the same prin-
ciple described above can be used to determine the 
equivalent section and ultimate strength. When 
the fire endurance (or the maximum temperature 
or duration of a fire) and the residual strength 
after cooling of a structure are considered, the 
same principle and method introduced above can 
also be used to determine the equivalent section, 
and the calculations are then completed.

The value of the ultimate load of a statically 
indeterminate structure of reinforced concrete can 
be calculated using the method of upper bound 
solution of plastic limit analysis. Various types 
of possible movable mechanisms of one degree 
of freedom and the positions of the correspond-
ing plastic hinges are selected in advance. The 
equation is established based on the equilibrium 
condition at the ultimate state or the principle 
of virtual work and is then resolved individually 
for every mechanism. The minimum among all 
the solutions is the actual ultimate load of the 
structure. The experiments demonstrate that the 
practical calculation method introduced can sat-
isfy the requirement of accuracy for engineering 
applications.
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14
Fire Resistance Analysis and Damage 
Grade Evaluation of a Structure
14.1  PROBLEMS OF FIRE 
RESISTANCE ANALYSIS IN 
STRUCTURAL ENGINEERING

Fire accidents in a building generally cause enor-
mous losses of property and material resources, 
and even regrettable loss of human life. In order 
to reduce the occurrence of fire accidents and the 
associated losses, a fire prevention design should 
be incorporated in a building following the rel-
evant design code.[0-11,14-1,14-2] In addition, fire 
resistance analysis should be performed of the 
structure of a building, if necessary.

Currently, fire resistance analysis is not con-
ducted in general structural engineering during 
the design process. One main reason for this is 
that there is no mandatory requirement in the 
design code. In addition, the relevant technical 
code, the bases of design and checking calcula-
tions, and reliable and practical methods of anal-
ysis are not yet available (in China).

There are three types of situations with dif-
ferent characteristics that require fire resistance 
analysis.

 1.  Fire resistance design for the proposed building
The fire endurance grade (divided into four 

grades) of a building is determined to fit the 
requirement of the code of fire prevention[0-11,14-1] 
during its design according to the importance of 
the building, the possibility of fire, the safety 
of the building during fire, and the difficulty of 
extinguishing the fire. The fire endurance (h) 
required for every type of structural member in 
the building can be decided accordingly. Then, 
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a standard fire endurance test (ISO temperature–
time curve) of the main structural member is 
conducted to measure the available fire endur-
ance. If the test does not satisfy the requirement 
of the code, the design should be modified or the 
construction improved, until its fire endurance as 
required by the code is satisfied.

However, the test for fire endurance of a struc-
tural member is expensive, and it is not possible 
to test all the structural members under various 
conditions. Therefore, it is more economical and 
reasonable to use an accurate and reliable analy-
sis method to calculate the ultimate strengths at 
elevated temperatures or the fire endurance of 
the structural members and the structure, and to 
check whether the fire prevention code require-
ments are satisfied.

 2.  Safety evaluation of an existing building 
under a fire accident
After the circumstances of the existing build-

ing are collected in detail, the fire load can be 
calculated based on the conditions of the rooms 
and combustibles within them, and the tem-
perature–time curve of the potential fire can 
be determined.[0-12–0-14] The fire endurance of 
the structural members and the structure are 
obtained individually from the model test or 
theoretical analysis and are compared with that 
assigned in the code. The safety regions and 
damage regions of different levels of fire resis-
tance in the building are analyzed and divided; 
corresponding measures, such as heat insula-
tion, fire obstruction, or partial strengthening, 
orced Concrete at Elevated Temperatures
blished by Elsevier Inc. All rights reserved.



291CHAPTER 14 Fire Resistance Analysis and Damage Grade Evaluation of a Structure
are undertaken for the structure and its members 
where the fire endurance is not satisfactory. The 
safety and fire resistance of the structure is then 
ensured.

 3.  Analysis of the damage level of the structure 
of a building after a fire accident
Once a fire accident occurs in a building, the 

range and level of the damage in the structure 
should be investigated and analyzed to determine 
the safety of the building and the possibility of 
using it again, or to be used as the main basis of 
strengthening measures. Therefore, after a fire, a 
structure should be observed and surveyed care-
fully, and some tests should be conducted in situ, 
if necessary, in order to fully evaluate various 
important phenomena and data. These include: 
the reason, time, and position of the fire, how 
the fire spread and was extinguished, the dam-
aged regions in the building, the type and quan-
tity of materials burned, the possible maximum 
temperature reached and the duration of the fire, 
the exterior damage levels of the structure and 
its members (e.g., cracking, loosening of con-
crete, separation of the surface layer, damage 
at the edges and corners of the section, falling 
of the concrete cover, baring and bending of the 
reinforcement, defects in the member), and even 
explosive spalling off and falling of inner con-
crete, and local holes and collapse. The number 
and position of the structural members damaged 
and the numerical indices of the damage level 
(e.g., width of crack, deflection of the member, 
spalling thickness of concrete, area of hole) are 
measured and recorded. The residual strength of 
the concrete after the fire is estimated by empiri-
cal observation and analysis or obtained from a 
nondestructive test. A cylindrical sample of con-
crete may be taken by drilling if necessary, and 
then tested in the laboratory. Even a few struc-
tural members can be selected and tested under 
loading in situ to examine the mechanical behav-
ior after the fire.

All the results surveyed in situ are included in 
the report of the damage in the structure after the 
fire. Then, some significantly damaged and typi-
cal structural members are selected to conduct 
the fire resistance analysis, and the residual 
strengths are calculated to check the safety to 
decide whether the structural members can still 
be used, or if they should be used as the basis for 
preparing strengthening measures.

 The behavior of fire resistance (or endurance) 
or damage after a fire in a structure and its mem-
bers need to be analyzed for all the situations 
listed above. The results of the investigations 
provided in this book can now be used in the 
fire resistance analysis of the structure. The main 
contents and general method and procedure of 
fire resistance analysis are as follows:

 1.  Determination of the temperature–time (T–t) 
curve and the duration of the fire
The ISO standard curve (Eqn (5.1)) can be 

used for a new building during its design, and the 
temperature–time curve can be calculated from 
the actual fire load for an existing building when 
the initial data are available. For the structure 
after a fire, the possible maximum temperature 
reached and the duration of the fire are deter-
mined based on the data surveyed and analyzed.

 2.  Analysis of the temperature field of a struc-
tural member
Generally, the temperature field of a struc-

tural member is assumed to be unvaried along 
its longitudinal axis, so only a two-dimensional 
temperature field on a section needs to be ana-
lyzed. Both the accurate theoretical solution and 
the calculation charts or data provided in various 
references (see Part 2) can be used.

 3.  Calculation of the ultimate strength at ele-
vated temperatures or fire endurance of a 
structural member and the structure
The indices of mechanical behavior and con-

stitutive relations of structural materials at ele-
vated temperatures or after a fire (see Part 1) are 
determined based on their type and properties. 
Then, the ultimate strength or fire endurance of 
a single member and the whole structure can be 
calculated using the accurate theoretical solution 
(see Chapter 12) or the practical method (see 
Chapter 13).
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 4.  Evaluation of the fire damage grade of a 
structure
Comparing the calculated results or the data 

surveyed in situ, which are introduced above, 
with the evaluation table of fire damage grades of 
a structure (see Table 14-1), the damage grades 
of every structural member and the whole struc-
ture are evaluated individually. Then, the build-
ing is divided into a certain number of regions 
according to the fire damage grades, and they are 
classified into different categories.

 5.  Conclusion
The safety of a structure is evaluated inte-

grally, and the possibility of using it again or the 
necessity of strengthening can be decided accord-
ingly. Strengthening measures for the structure 
can be suggested, if necessary.
14.2  EVALUATION OF THE FIRE 
DAMAGE GRADE OF A STRUCTURAL 
MEMBER

14.2.1 Typical Examples 
of a Building Fire

When a fire accident occurs in a building on the 
ground, it is easily seen and the alarm can be 
given early; it is also convenient for the firefight-
ers to evacuate the building, extinguish the fire, 
and limit damage to the property, as the periph-
ery of the building is opened. According to the 
statistical data for China,[0-12] 80% of building 
fires are put out within 1 h and 95% are put out 
within 2 h. The shorter the duration of the fire, 
the smaller the economical loss and the structural 
damage. The main bearing structure of reinforced 
 TABLE 14-1     Fire Damage Grades and Their Evaluation Criteria in a Concrete Structure and 
Its Members

Damage

Grade I II III IV

Level Slight Medium Serious Extreme

Duration of fire (h) <2 2–4 4–10 >10
Concrete Color on surface Blackened by 

smoke
Slight white White-gray Light red

Crack Fine, a few Fine, many Obvious, more Wide, more
Surface layer, 

edge and 
corner

Still complete A few layers lost Broken, slightly Broken  
significantly

Depth damaged 
(mm)

<25 25–50 60–120 >150

Reinforcement Concrete cover Complete Loose Fallen off slightly Fallen off  
considerably

Deformation Few Small Great Much greater
Tmax experienced 

(°C)
<400 400–800 800–1000 >1000

Structure and its 
member

Appearance  
damaged

Not obvious Obvious Considerable Serious

Ultimate strength Reduced slightly Reduced obviously Lost considerably A few remain
Repairing and  

strengthen-
ing measures

Treat the surface Remove loose 
surface layer, 
clean up surface 
of reinforcement, 
cast concrete for 
strengthening

Clean up damaged 
concrete, add 
reinforcement 
or enlarge cross 
section, cast 
concrete for 
strengthening

Significant 
 measures  
or rebuild
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concrete, e.g., beam, column, and frame, will not 
be damaged significantly. Some examples of fires 
that occurred in high-rise buildings abroad show 
that even though the duration of a fire is 8–10 h, 
the main frame structure of reinforced concrete 
remains undamaged, although the combustibles 
and fittings in the rooms are completely burnt out.

As far as underground reinforced concrete 
structural engineering is concerned, fire accidents 
occur easily and are difficult to put out, because 
of the special environment. For example, the 
underground space is possibly moist, and the 
electrical equipment, components, and circuits 
easily become damp and the insulation has dete-
riorated; the loads of artificial lighting and other 
electrical equipment are considerable and the 
burning times are longer. The potential danger 
of a fire accident caused by electrical equipment 
is enormous when the equipment is aged. Only 
a few people stay at night in many underground 
spaces (e.g., market and storehouse), so normally 
the fire has already developed vigorously before 
it is discovered. When the internal area (and vol-
ume) of the underground space is high but the 
entrance and exit are limited, these narrow areas 
are usually filled with spouts of smoke at high 
temperature and even poisonous gas during a fire, 
which makes it difficult for the firefighters to enter 
the site and take direct measures to extinguish 
the fire. Closing up all the entrances and exits, or 
isolating the fire region, is the only measure that 
can be used for most underground fire accidents. 
The fire will then automatically be put out when 
the combustibles or oxygen in the interior of the 
underground space are burnt out. Therefore, the 
duration of a fire in underground engineering is 
longer and considerable loss and serious damage 
of the structure result. These need special consid-
eration and several typical examples are reported 
below (from examples and investigation reports 
of fire accidents by civil air defense and other 
underground engineering (brief report), compiled 
by the Design Code for Fire Prevention Group, 
Civil Air Defense Engineering, 1988.3).

An underground trade center was ring shaped, 
the peripheral length was 435.6 m, and the top 
was an arched structure. It was an underground 
building of three floors, and its total area was 9000 
m2 with 12 entrances and exits. The first floor was 
a market; the width and height were (4–6) m and 
3.6 m, respectively, and the combustible goods in 
the shop were about 60 kg/m2. The second floor 
was a passageway 3 m wide with vendors’ stands. 
The third floor was an entertainment area 9 m 
wide, and it was 15 m underground. It was rebuilt 
from civil air defense works in 1986, and no fire 
prevention measures, which are required accord-
ing to the design code for fire prevention,[14-2] 
were set up during the design. The fire accident 
occurred at midnight on 15 September, 1988, 
started by a spark from an electrical wire in a 
shop on the first floor. After the fire truck reached 
the building, the firefighters were obstructed by 
heavy smoke from the exit and could not enter 
the site of the fire. They blocked off the fire region 
and controlled the fire gradually. The fire burnt 
out eventually after 17 h. The survey after the 
fire showed that the burnt area of the commer-
cial hall on the first floor was about 270 m2, the 
concrete cover fell down, and the reinforcement 
was exposed on the top part of the arched struc-
ture within a length of 180 m, and the maximum 
depth of concrete spalling off was 70–80 mm.

A cave warehouse built in 1976 had an arch 
of reinforced concrete on the top. The length 
and net span were 290 m and 10 m, respectively, 
and the top of the arch was 6.5 m in height. The 
main storage goods were products of cotton, fur, 
leather, and timber, and the combustibles were 
400–500 kg/m2. There were no fire prevention 
measures included in the design of the building, 
except a water pond that was built outside the 
cave. On 23 September, 1984, somebody com-
mitted arson, i.e., a burning cigarette end caused 
a fire in the cave 180 m from the gate. When the 
smoke from the gate was found about 1.5 h later, 
the firefighters arrived, but several firefighters 
died or were injured because of heavy smoke and 
high temperatures. Then, the gate of the cave was 
closed until the fire burnt out after 41 days. The 
survey after the fire reported that about 40 m2 of 
the concrete top slab, which was 200 mm thick, 
had collapsed and large areas of the walls on 
both sides had cracked significantly.
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A fire accident occurred in an underground 
railway station under construction because a 
spark from electrical welding caused timber 
mold and electrical cable to burn. The fire was 
put out 16 hours later. The examination after the 
fire showed that the concrete within an area of 
484 m2 spalled off and the maximum thickness 
of the spalled off concrete reached 170 mm; the 
reinforcements within an area of 272 m2 were 
exposed and deflected downward.

A fire lasted for 10 h in an underground garage 
between two high-rise apartment buildings. The 
concrete cover of the top slab (300 mm thick) 
within a considerable area fell down and the 
reinforcement was exposed and deflected down-
ward. The maximum depth of concrete burnt 
reached 120–150 mm, but the beam and column 
were only damaged slightly.

There are similar examples of fire accidents 
throughout the world. A large underground shop-
ping center (Akasaray)[14-3] in Istanbul, Turkey, 
with an area of 72 m × 144 m, had four entrance–
exits. The structure was a slab–column cast in situ 
system. In 1975, a fire accident was caused at mid-
night by a spark from a short circuit of some elec-
trical equipment. Although the firefighters came 
to the site in time, they could not reach the fire 
region, so the fire spread extensively. Then all the 
entrance–exits were closed after 14 h and water 
was poured in through holes on the top slab, but 
this was not effective. The fire gradually reduced 
after 36 h and burnt out after 63 h. The examina-
tion after the fire showed that the top slab was 
damaged significantly, a considerable area of con-
crete spalled off and the maximum depth reached 
was 160 mm, and the reinforcement was exposed 
and deflected downward, but the column and its 
capital were only damaged slightly.

The fire resistance behavior of steel and timber 
structures in buildings is poor. Generally, the fire 
endurance of a bared steel structure is not lon-
ger than 1 h. Even if heat insulation treatment or 
fire prevention (obstruction) is used in the steel 
structure, the fire endurance is normally still less 
than 4 h. The twin towers of the World Trade 
Center in New York were the tallest buildings in 
the world. When they were struck separately by 
two airplanes on 11 September, 2001, only local 
damage occurred on the upper parts. However, 
after a large quantity of fuel stored in one of the 
airplanes caused a fire in one of the buildings, the 
strength of the steel structure reduced sharply, 
and both towers collapsed successively within  
1 h and were in total ruins.

It is seen from the examples of serious fire acci-
dents introduced above that the fire resistance 
behavior of reinforced concrete structure is much 
better than that of steel and timber structures, 
i.e., longer fire endurance, less loss of ultimate 
strength, and the buildings can be repaired and 
strengthened after a fire because of the thermal 
inertia of concrete, the integrity of the structure, 
and the larger size of the section of structural 
member. Even so, reinforced concrete structures 
can suffer serious damage and local collapse, if 
the duration of the fire is long.

14.2.2 Evaluation Criteria 
for Fire Damage Grade

It is practical to investigate and test the damage 
level of a structure that has experienced a fire 
accident. Comprehensive analysis and classifica-
tion of the damage conditions of a structure after 
a fire is necessary to establish the general regular-
ity of the damage level of the structure, which 
varies with the duration of the fire.

The experimental data on the fire resistance 
of various structural members and structures (at 
elevated temperatures) are used to research the 
behavior response and damage level for differ-
ent durations and maximum temperatures of the 
fire. Many quantitative results, e.g., percentage 
reduction of the ultimate strength, depth burnt 
and loss of concrete, and crack and deformation 
conditions, are then obtained. In addition, the 
temperature field on the section of a structural 
member and its variation with the duration of 
fire, obtained from experimental measurements 
or theoretical analysis (see Part 2), can be used 
to determine or estimate the strength loss, crack-
ing, depth of concrete spalled off (fallen down), 
loss of strength of reinforcement, and reduction 
in the effective cross section.
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Up to now there is no legal code in China that 
can be used to divide and determine the fire dam-
age grades of various structural members and 
the structure. Referring to the relevant literature 
in China and elsewhere and the comprehensive 
results of surveying, testing, and theoretical 
research introduced above, the fire damage levels 
of a concrete structure and its member could be 
divided into four grades: slight, medium, serious, 
and extreme damage. The evaluation criteria for 
each damage grade is given in Table 14-1, based 
on the duration of the fire, the appearance of the 
concrete and the reinforcement damaged, and the 
overall conditions of the structure and its mem-
bers. Repair or strengthening measures are also 
suggested in principle in the table for damaged 
structures of different grades.

Some items in the evaluation criteria of fire 
damage grades of reinforced concrete structures 
can be presented quantitatively, e.g., duration of 
fire, depth of damaged concrete, and maximum 
temperature the reinforcement experienced. 
These are the main factors to determine the dam-
age level of the structure. However, other factors 
are difficult to find quantitatively, so they are 
qualitative. The damage condition of a reinforced 
concrete structure after a fire is complicated, e.g., 
the damage levels of the structural members at 
various parts of the structure are different, the 
damage levels of a horizontal beam and slab are 
different from that of a vertical column and wall, 
and their influences on the ultimate strength and 
safety of the whole structure are also different. 
Therefore the fire resistance behavior of a struc-
ture during a fire accident or after the building 
has cooled has to be analyzed completely if an 
accurate fire damage level needs to be known.

14.3  PRACTICAL EXAMPLE 
OF FIRE RESISTANCE ANALYSIS 
AND DAMAGE GRADE 
EVALUATION

A city, an important political, economic, and mil-
itary center in Central Plains, China, is located 
at the hub of railway communications and the 
railway station is built in the central part of the 
city. An underground multi-story building is to 
be built under the public square by the station to 
save land. It will be used as a garage and business 
district in peacetime to satisfy the requirements 
of communication and shopping in the station 
area, and it could be used to protect people and 
disperse the population during wartime. There-
fore, the building is of great importance. To 
ensure the safety of the structure, fire resistance 
analysis and evaluation of the fire damage grade 
for the building has been requested, after the pre-
liminary design of the structure, including the 
civil air defense design, is completed.

14.3.1 The Structural Briefing

The building will be built in stages according to 
the national plan, and the total land area will be 
107 m × 238 m after it is built. The major part 
of the building is two floors underground, and 
the remainder is three floors. The first and sec-
ond floors will be used as a business center and 
garage, respectively, and the third floor is reserved 
for an underground railway station. During the 
architectural design, the fire prevention districts, 
emergency exits, and dispersing passages are deter-
mined and the firefighting equipment, including a 
sprinkler system, is set up according to the require-
ments of the fire prevention code.[14-2] Therefore, 
the functions of fire prevention and firefighting in 
this building are much improved compared with 
similar buildings constructed previously.

The main structural system of the building is 
slab–column (without beams) of reinforced con-
crete cast in situ, and 18 districts in the plan are 
divided by construction joints. The configuration 
of a standard district (Fig. 14-1) is:

 •  the cross section of a square column is 600 mm × 
600 mm

 •  the top area of the column capital is 2.6 m × 
2.6 m

 •  the distances between every two adjacent col-
umns are 6 m in one direction and 7 m or 6 m 
in another direction

 •  the net heights of the first and second floors 
are 4.2 m and 4.0 m, respectively, and
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FIGURE 14-1  Size of the slab–column structure in a standard area of an underground building.
 •  the thicknesses of the top slabs of the first and 
the second floors are 500 mm and 300 mm, 
respectively. There are concrete pavements 
250 mm thick and a covering of earth 550 mm 
thick on the top of the building.

The loads acting on the top slabs of the first 
and second floors in peacetime are 30 kN/m2 and 
12 kN/m2, respectively. The structural materials 
used are grade C30 concrete and grade II rein-
forcement. When the fire resistance analysis was 
conducted, the design of the main structure had 
not been completed and accurate data, e.g., the 
design values of the internal forces, the reinforce-
ment ratios, and constructions of the beam and 
column, were not finally determined.

Considering the characteristics of the under-
ground building and the lessons from previous 
fire accidents, once a fire accident occurs, the 
duration is possibly quite long. When the fire 
resistance of the structure is analyzed and the 
possible damage grade is evaluated, the duration 
of fire is classified into ten ranks (i.e., 0.5, 1, 1.5, 
2, 3, 4, 6, 8, 10, and 12 h), and the damage levels 
of the structure for different durations of fire are 
determined.
14.3.2 Analysis of the Temperature 
Field on a Section of the Structural 
Member

The basic assumptions used for the analysis of 
temperature fields of the slabs and column are 
as follows:

 •  The temperature–time relation of the fire is 
taken as that of the ISO standard curve (see 
Eqn (5.1)).

 •  Only the two-dimensional temperature field 
on the section of the column is calculated and 
is unvaried along its longitudinal axis; only 
the one-dimensional temperature field along 
the thickness of the slab is calculated and is 
not related to the position on the slab plan.

 •  The structural members are considered to be 
composed of homogeneous concrete. Neither 
the action of internal reinforcement nor the influ-
ences of variations in the internal forces, defor-
mation, and cracking are taken into account.

Based on these assumptions, the basic differ-
ential equation of heat conduction is established 
(see Eqn (5.4) and Table 5-2), and the combined 
numerical method for resolution (see Chapter 6) 
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is used. The difference method is used to discretize 
the time (temperature) field, the finite element 
method is used to discretize the space field, the 
cross section is divided into rectangular elements 
connected by the nodes, the temperature values 
at the nodes are taken as the unknowns, and the 
calculation and accumulation are conducted for 
every time (temperature) step successively. There-
fore, the HTARC program is compiled and all the 
calculations are completed by the computer.

The values of the thermal parameters of con-
crete, especially those at higher temperatures, 
are needed during the calculations, but accurate 
values measured from tests are not available in 
China. Therefore, the values suggested in the 
European code[2-6] for concrete with siliceous 
aggregate are referenced and used as follows: 
Eqn (5.2a) for the coefficient of heat conduction 
λc, Eqn (5.3) for the mass heat capacity Cc, the 
mass density ρc = 2400 kg/m3, and Eqn (7.1) for 
the coefficient of heat transfer βT.

The temperature distribution along the thick-
nesses of the top slabs of the first and the second 
floors of the building under different values of fire 
endurance (h) are shown separately in Fig. 14-2. It 
is found after comparing both figures that the tem-
perature distributions within a depth of 200 mm 
from the surface exposed to fire are less different 
for slabs of different thicknesses (≥300 mm).

The temperature distribution along lines AA 
(symmetrical axis) and BB on the section of the 
square column varies as shown in Fig. 14-3. The 
periphery of the column section is exposed to fire, 
therefore the temperature gradient is obviously 
smaller than that of the top slab. The line BB is 
about the position of the longitudinal reinforce-
ments of the column, and the temperature values 
of most parts on it are similar, but the tempera-
ture near the corner of the section is higher.

According to the practical calculation method 
for the ultimate strength of the reinforced con-
crete structural members at elevated tempera-
tures (see Chapter 13), the positions of certain 
isothermal lines (e.g., temperatures of 300 °C, 
500 °C, and 800 °C) on its section need to be 
determined. Based on the calculated results intro-
duced above (Fig. 14-2), the curves of the depths, 
at which certain temperature values are reached 
and which vary with the duration of the fire, 
can be drawn for the top slab with the bottom 
surface exposed to fire (Fig. 14-4). These will be 
used for further calculations.

As for the square column with the periphery 
exposed to fire, the isothermal lines for certain 
temperatures (e.g., 300 °C, 800 °C) on the sec-
tion can be drawn for various durations of fire 
(Fig. 14-5). Only one-fourth or one-eighth of its 
section is shown in the figure, as the section is 
symmetrical bidirectionally. It is clear from the 
figure that as the duration of fire increases, the 
temperature on its surface increases continuously; 
the isothermal line at the same temperature (e.g., 
800 °C) moves gradually inside the section, and its 
enveloped area reduces gradually, so the effective 
strength of the section decreases continuously.

14.3.3 Analysis of Ultimate Strength 
of Slabs at Elevated Temperatures

The slab–column system is a kind of two-way 
structure, so the reinforcements of the slab are set 
up in two perpendicular directions, but the ulti-
mate strength in both directions can be calculated 
separately as with the one-way slab. The slab– 
column system of this underground building is 
multi-floor, multi-span, and cast in situ; only one 
surface of the top slabs for the first and the second 
floor is exposed to fire when a fire accident occurs 
only in the corresponding floor. Nevertheless, posi-
tive and negative bending moments appear together 
in both directions, and the tension and compres-
sion zones exposed to fire (elevated temperatures) 
appear in both directions and should be calculated.

According to the results of experimental inves-
tigations and theoretical analysis, the ultimate 
strength of the shear resistance of a slab at room 
temperature is generally higher than that of the 
bending resistance, because the reinforcement 
ratio in the slab is low. This is also true for the 
slab at elevated temperatures, so it is not neces-
sary to check the ultimate shear strength of the 
slab of this building.

The ultimate bending moment in each 
direction of the slab (MT

u ) can be calculated 
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FIGURE 14-2  Temperature distributions on sections of slabs: (a) top slab of the first floor; (b) top slab of the second floor.
approximately using the method of equivalent 
section (see Chapter 13). The basic assumptions 
are presented in Section 13.1, the calculated 
(both tensile and compressive) strength of the 
reinforcement at elevated temperatures is shown 
in Fig. 13-1, the calculated compressive strength 
of concrete at elevated temperatures is simplified 
into trapezoid distribution (see Fig. 13-2(a)), and 
the equivalent section obtained is the same as 
shown in Fig. 13-5(a). The stress diagrams at the 
ultimate state of the cross sections with tension 
and compression zones exposed to high tempera-
ture are the same as shown in Fig. 13-5(b) and 
(c), respectively, and the corresponding formulas 
for calculating the ultimate bending moment are 
Eqns (13.5)–(13.8).

The data used for the slab of the building are:

 •  thickness of slab (h): 300 and 500 mm
 •  position of reinforcement (a): 40 and 50 mm
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 •  reinforcement ratio (ρ): 0.3 and 0.5%
 •  strengths of materials: reinforcement, fy = 310 

N/m2; concrete, fc = 15 N/m2

The ultimate values of the positive and nega-
tive bending moments of the slab for different 
durations of fire are calculated using the method 
of equivalent section, and the ratios between 
them and the corresponding values of the slab 
at room temperature (MT

u /Mu) are shown in Fig. 
14-6. Some conclusions can be drawn as follows.

When the slab (h = 300 mm, 500 mm) is acted 
by a positive bending moment and the thickness 
of the concrete cover is normally 25 mm (or a = 
40 mm), the ultimate strength remains basically 
unvaried if the duration of fire is less than 1 h. 
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However, the ultimate strength reduces sharply 
for a fire of longer duration, and will be only 
17% and less than 10%, respectively, of that at 
room temperature, if the duration of the fire is 
4 and 6 h.

If the thickness of the concrete cover of the 
slab is increased by 10 mm (or a = 50 mm), the 
ultimate strength is increased by 18–20% com-
pared with that of a normal cover, when the 
duration of the fire is 2–4 h. However, there is no 
obvious difference between them when the dura-
tion of the fire is longer than 6 h.

When the slab is acted by a negative bending 
moment, the ultimate value reduces gradually as 
the fire lasts, and still retains 50–72% of that at 
room temperature, when the duration of the fire 
reaches 12 h. The variation of the ultimate value 
of the bending moment depends mainly on the 
thickness of the slab, and a thicker slab is more 
advantageous. Comparatively, the reinforcement 
ratio and the thickness of the concrete cover (or a) 
have less influence.

14.3.4 Analysis of the Ultimate 
Strength of a Column at Elevated 
Temperatures

The structural system of the building is regular 
and uniform and the vertical load carried is con-
siderable. Therefore, an arbitrary column, the 
periphery of which is exposed to fire when a fire 
accident occurs, is considered approximately as 
a central compressive column, and the relative 
ultimate strength during the fire (NTu /N) can be 
calculated and checked.

The temperature field on the section of the col-
umn for every given duration of fire endurance (t) 
can be obtained from the available analysis results. 
Then, the isothermal lines for temperatures of 
300 °C and 800 °C on the section (e.g., Fig. 14-5) 
are found and rounded to square ones, and the 
ultimate strength of the column at elevated tem-
peratures (NTu ) can be calculated using Eqn (13.2) 
or Eqn (13.3).

The column of this building is of square sec-
tion, and the stress distribution on the section at 
the ultimate state is the same as shown in Fig. 
13-4(b), if the calculated compressive strength 
of concrete at elevated temperatures is taken 
approximately as a trapezoid (Fig. 13-2(a)). 
When the volume of the stress block is approxi-
mated to that of a truncated pyramid, the ultimate 
strength of the column at elevated temperatures 
can be calculated by the formula:

 NT
u = 1

3
fc

(
A3 + A8 +

√
A3A8

)
 (14.1)

The ratio between it and that at room tempera-
ture (Nu = fcA) is:

 

NT
u

Nu
= 1

3

(
A3

A
+ A8

A
+
√

A3A8

A2

)

 (14.2)

where A is the total area of the section of the 
column, A3 is the area of the section at which the 
temperature ≤300 °C, and A8 is the area of the 
section at which the temperature ≤800 °C and 
includes A3.

When these formulas are used for the calcula-
tions, the isothermal lines on the section need not 
be rounded to square ones.

The main longitudinal reinforcements of the 
column are located inside its section, but near its 
periphery, and are exposed to high temperature 
during a fire accident (Fig. 14-3(b)). Therefore, 
they can only bear limited axial force and are 
neglected in these formulas.
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The relative values of the ultimate axial 
forces (NTu /Nu) of the column for different 
durations of fire calculated from these formulas 
are plotted in Fig. 14-7. It is seen that the ulti-
mate strength of the column reduces continu-
ously as the fire lasts; about 75%, 45%, and 
11% of the ultimate strength of the column at 
room temperature remains after 2, 6, and 12 h, 
respectively.
14.3.5 Fire Damage Evaluation 
of a Structure

The evaluation criteria of fire damage grades 
(Table 14-2) for a reinforced concrete struc-
ture and its members include several important 
quantitative indices. To complete the fire resis-
tance analysis for this building, the values of 
the relevant indices, corresponding to different 
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 T

.0 8.0 10.0 12.0

T

h 30 1000 1070 1120

.072 0.048 0.031 0.019

.382 0.336 0.297 0.264

5 85 100 115
II III IV IV

T
h 30 1000 1070 1120

.072 0.048 0.031 0.019

.443 0.410 0.383 0.358

5 85 100 115
II III IV IV

h 40 940 1020 1070

.092 0.064 0.045 0.030

.442 0.406 0.376 0.350
5 85 100 115
II III IV IV

C .447 0.325 0.206 0.113
5 85 105 125
II III IV IV
ABLE 14-2     Analysis of Fire Damage Grade of Slab–Column Structure

Duration of fire (h) 0.5 1.0 1.5 2.0 3.0 4.0 6

op slab of the second floor

 = 300 mm
a = 40 mm
ρ = 0.3%

Ts (°C) 150 290 400 500 640 800 9

+ MT
u / Mu 1.000 1.000 0.849 0.674 0.386 0.172 0

PT
u / Pu 0.985 0.965 0.873 0.771 0.602 0.472 0

d (mm) — 10 15 25 35 45 6
Grade I I I II II III I

op slab of the first floor
 = 500 mm

a = 40 mm
ρ = 0.3%

Ts (°C) 150 290 400 500 640 800 9

+ MT
u / Mu 1.000 1.000 0.849 0.674 0.386 0.172 0

PT
u / Pu 0.995 0.985 0.897 0.802 0.638 0.517 0

d (mm) — 10 15 25 35 45 6
Grade I I I II II III I

 = 500 mm
a = 50 mm
ρ = 0.5%

Ts (°C) 110 215 300 400 535 670 8

+ MT
u / Mu 1.000 1.000 0.996 0.851 0.584 0.359 0

PT
u / Pu 0.984 0.971 0.958 0.876 0.727 0.601 0

d (mm) — 10 15 25 35 45 6
Grade I I I II II III I

olumn 600 mm ×  
600 mm

NT
u / Nu 0.932 0.868 0.816 0.755 0.667 0.580 0

d (mm) — 5 10 15 30 45 6
Grade I I I II II III I
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durations of fire, can be obtained from the results 
calculated using the following methods:

 •  The maximum temperature of the main rein-
forcement (Ts °C) can be found in the dia-
grams of the temperature distribution on the 
sections of the structural members (Figs. 14-2 
and 14-3) based on the position (or value of a) 
of the reinforcement.

 •  The depth of damaged concrete (d, mm) is 
taken as the average distance from the surface 
exposed to fire to the position on the section 
at which the temperature reaches 700 °C.

 •  The ratios between the ultimate strength of 
the structural members at elevated tempera-
tures and at room temperature are taken as 
MT
u /Mu for a statically determinate beam and 

slab and NTu /Nu for the column, and the ratio 
of the ultimate load PTu /Pu should be taken for 
a statically indeterminate structure.

The slab–column system of this building is a 
statically indeterminate structure. The ultimate 
state is reached only when the yield lines are 
formed successively in the span (positive bending 
moment) and at the support (negative bending 
moment) regions of the slab and a failure mecha-
nism is then composed. If the reinforcement ratios 
of the sections in the span and at the supports 
are equal, the relative value of the ultimate load 
(PTu /Pu) of the slab is taken approximately as the 
average value of the relative ultimate bending 
moments MT

u /Mu in the span and at the support.
The quantitative criteria for the ultimate 

strength for different damage grades of the struc-
ture and its members at elevated temperatures or 
after a fire are not given in Table 14-1. The dam-
age grades for the various structural members of 
this building are evaluated, referring to the rela-
tive ultimate load as follows:

Damage grade I II III IV
PT

u / Pu >0.8 0.8–0.5 0.5–0.3 <0.3

Based on the method and evaluation criteria 
presented, the top slabs and columns in the first 
and the second floors of this building are calcu-
lated separately, and the fire damage grades are 
determined. The main results of the calculations 
and evaluations are listed in Table 14-2.

It is seen from the data listed in the table that:

 •  The differences in the thickness (300 mm or 
500 mm) and reinforcement ratio (0.3% or 
0.5%) of the slab have less influence on the 
fire damage level.

 •  When the thickness of the concrete cover of 
the reinforcement in the slab is increased (i.e., 
from a = 40 mm to a = 50 mm), the damage 
level can be reduced if the duration of the fire 
is less than 6 h, but is not improved obviously 
when the duration of the fire is longer than 
6 h.

 •  The fire damage level of the column is about 
the same as that of the slab.

According to the results of the fire resistance 
analysis and damage evaluation of the struc-
tural members introduced above, the fire dam-
age grade of the reinforced concrete slab–column 
cast in situ structure of this building can be eval-
uated integrally as follows:

Duration of fire (h) <2 2–4 4–10 >10–12
Damage grade I II III IV

Several additional explanations are presented 
below for the fire resistance analysis and damage 
evaluation of this building.

 •  One of the main bases for the analysis and 
evaluation above is the ISO standard tem-
perature–time curve of fire (see Eqn (5.1)); 
correspondingly the temperature elevates 
monotonically with the duration of fire and 
reaches about 1300 °C at t = 12 h. However, 
when a fire accident occurs in a building, gen-
erally the temperature value is not increased 
monotonically within a long duration of fire, 
but will be a process of increasing–steady–
decreasing, and, eventually, going out (see Fig. 
5-2), because the supply of combustibles and 
oxygen in the room are limited.

 •  Some favorable factors, such as fire preven-
tion measures, heat insulation, and fire control 
(sprinkler), may be used in the architectural 
design of the building, but the effects are not 
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considered in the fire resistance analysis of the 
structure.

 •  Due to the lack of materials and detailed data 
in the structural analysis, the fire resistance 
analysis of the building depends on the ulti-
mate strength of the structural members at 
elevated temperatures.

CONCLUSIONS

Fire resistance analyses of a structure and its 
members need to be conducted for various sit-
uations in structural engineering, such as fire 
resistance design of a proposed building, safety 
evaluation of an existing building under fire, 
and evaluation of the damage level in a structure 
after a fire. The fire (high temperature) resistance 
behavior or fire endurance can then be obtained.

Fire (high temperature) resistance analyses of a 
structure and its members include the determina-
tion of temperature–time curve and duration of 
fire, analysis of the temperature field, calculation 
of the mechanical behavior (mainly the ultimate 
strength or fire endurance) at elevated tempera-
tures, and evaluation of the fire damage grades. 
The necessary methods and data for analyzing 
the fire resistance of a reinforced concrete struc-
ture and its members are presented in this book.
When a reinforced concrete structure is sub-
jected to a fire accident, various damage phe-
nomena appear successively and its damage level 
depends mainly on the duration of the fire and 
the maximum temperature experienced. It is sug-
gested that the levels of fire damage in a rein-
forced concrete structure and its members should 
be divided into four grades, based on the survey 
of the damage condition of the building after the 
fire and the results of relevant experimental and 
theoretical research. The evaluation criteria for 
grading fire damage are suggested and explained 
by an example of engineering practice.

REFERENCES

 [14-1]  National Standard of People’s Republic of China 
Design Code for Fire Prevention of Civil High-
Rise Building GB 50045–95, Plan Press of China, 
Beijing (1995).

 [14-2]  National Standard of People’s Republic of China 
Design Code for Fire Prevention of Civil Air 
Defense Engineering GB 50098–98, Plan Press of 
China, Beijing (1998).

 [14-3]  E. Arioglu, K. Anadol, A. Candogen, An Un-
derground Shopping Centre Fire and After Fire 
Repair Project, American Concrete Institute, 
Chicago (1983). Special Publication SP 80-11.





Page references followed by “f” indicat
I N D E X
A
Absolute strength center, 233, 233f
Adams explicit method, 250–251
ADINAT, 243–244
Aggregates, 7–8, 10, 22

calcareous aggregate, 81–83
calcium aggregate, 11
coarse aggregate, 7, 10, 81–83
and compressive strength, 11
heat conduction coefficient of, 81–83, 82f
light-weight aggregate, 81–83
mass density, 83–84, 84f
siliceous aggregate, 81–83
silicon aggregate, 11
and specific heat capacity, 107

Aitken method of accelerating convergence, 
253

ANSYS, 243–244
Approximate theory of elastic creep, 32–33
ARC, 243–244
Axial compression, 26, 174, 194, 236

and bending moment, 168, 181
ultimate envelope of, 181–182, 182f, 

185, 185f, 197, 197f, 236, 274f, 
275

Axial load–deflection curve, 186–188, 187f

B
Basic equation of heat conduction, 86–88, 

88t
Beam

with compression zone exposed to high 
temperature, 151f, 155–157, 156f

with tension zone exposed to high tem-
perature, 151f, 152–155, 153f–154f

with three surfaces
at elevated temperatures, 272f
exposed to fire, 119
exposed to high temperature, 273

Bending moment
and axial compression, 168, 181

ultimate envelope of, 181–182, 182f, 
185, 185f, 197, 197f, 236, 274f, 
275

of central compressive member at ulti-
mate conditions, 172, 172f

in frame specimens
comparison, 221t
at elevated temperatures, 225f

negative, loading specimen with, 148f
redistribution of, 212f
ultimate moment

of beam with three surfaces at elevated 
temperatures, 272f

of continuous beam, 284f
of slab with one surface at elevated 

temperatures, 271f
Bending moment–curvature curve, 

153–154, 156, 162–165
e figure, 
for beam with compression zone exposed 
to high temperature, 151f, 155–157, 
156f

after heating and cooling cycle, 163t, 
164–165, 164f

for beam with tension zone exposed to 
high temperature, 151f, 152–155, 
153f–154f

after heating and cooling cycle, 
162–165, 163f, 163t

of cross section of structural members, 
280

BERSAFE, 243–244
Bond strength, 14
Boundary condition, of heat conduction, 

88, 93, 99–102, 105
Boundary thermal condition, 88
Building fire. See Fire

C
Calcareous aggregate, 81–83
Calcium aggregate, 11
Calculation charts for temperature field on 

cross section
basic assumptions and application 

 conditions, 115–116
beams and columns with three surfaces 

exposed to fire, 119
calculation tables, 119
graphs of temperature contours, 119

slabs with one surface exposed to fire, 116
calculation tables, 116
temperature distribution curves, 116

square columns with four surfaces 
 exposed to fire, 126

calculation tables, 126
graphs of temperature contours, 126

square columns with two adjacent 
 surfaces exposed to fire, 138

calculation tables, 138
graphs of temperature contours, 138

Carbon steel, 85
Central compressive columns with three 

surfaces, 168–174
deformation of, 171f, 172

under heating with constant load, 173, 
173f

eccentricity and bending moment of, 
172, 172f

mechanical behavior, 170–173
under heating with constant load, 

173–174, 175t
specimen for, 170f
testing method and contents, 168–170, 

169f
ultimate bearing capacity of, 172f

Central compressive members, with 
 periphery exposed to high temperature, 
268–270
by “b” indicate box, and by “t” indicate table.
Coarse aggregate, 7, 10, 81–83
and coefficient of heat conduction, 81–83

Commission of the European  Communities, 
83

Compression zone, exposed to high 
 temperature, 271, 271f–272f, 273, 278f

Compressive–flexural members
central compressive columns with three 

surfaces, 168–174
mechanical behavior, 170–173, 

173–175
testing method and contents, 168–170

eccentric compressive columns, with three 
surfaces under different conditions, 
175–182

behavior after temperature sustained 
and constant cooling, 186–189

behavior under heating with constant 
load, 183–186, 183f, 184t, 185f

eccentric compressive columns, with three 
surfaces, 175–182

deformation, 176–179
testing methods and contents, 175–176
ultimate strength and optimum eccen-

tricity, 179–182
eccentric compressive columns, with two 

adjacent surfaces, 189–198
temperature distribution and deforma-

tion, 190–194, 192f–195f
testing method and contents, 189–190, 

191f
ultimate strength, 194–198, 195f–196f

Compressive strength, 6–13, 31, 39, 40f, 
54–55, 172, 180–181, 185–186, 
267–269, 268f

after cooling, 11–13
cubic compressive strength, 8–11
under different temperature–stress paths, 

39–43
influence of different paths, 41–43
upper and lower bounds of compres-

sive strength, 39–41, 40f
during heating, 6–8
mathematic model, 11
prismatic compressive strength, 23–24, 

168
procedure for testing, 7

Concrete strength
compressive strength, 6–13

compressive strength after cooling, 
11–13

cubic compressive strength, 8–11
general phenomena during heating, 6–8

concrete and reinforcement, adhesion 
between, 244–245

tensile strength, 13–14
testing method and device, 2–6

design and manufacture of furnace for 
material testing, 5–6
307



308 Index
general testing program, 2–5
thermal–mechanical constitutive model 

of, 245–246
basic equation, 245
strain components, mathematical 

models of, 245–246
Continuous beam, 201–202

behavior of, 207–215
internal force, redistribution process of, 

211–215, 212f–214f
macroscopic process of deformation 

and failure, 207–210, 208f–210f
ultimate strength, 210–211, 210t

concrete, mix and strength of, 204t
construction and loading pattern of, 202f
experimental devices and measuring 

points for, 204f
experimental parameters of, 203t
roller supports, construction of, 205f
and simple frame, possible failure mecha-

nisms of, 283f
testing method and measuring technique, 

204–205
ultimate loads of, 284f, 286f, 287t

Continuously variable behavior, 238–242, 
239f–241f

Cooling strain curves, 19
Creep

linear creep, 30
short time creep, 29–34, 37, 50

under constant temperature and stress, 
29–32

under variable temperature and stress, 
32–34

thermal strain under stress, 73–74
and time curve, 32–33
ultimate creep, 29

coefficient of, 29
Creep–time curve, 32–34
Cubic compressive strength of concrete, 

8–11, 9f, 9t, 24
after cooling, 12f

Cubic concrete specimen
under heating under constant load path, 

testing procedure, 39
under path of heating under constant 

load, 39

D
Deflection–temperature curve, 161–162, 

161f, 183–184
of specimens with concrete covers of dif-

ferent thickness, 161f, 165–166
Deformation

of central compressive columns with three 
surfaces, 171f, 172

under heating with constant load, 173, 
173f

of continuous beam specimen, 207–210, 
208f–210f

of eccentric compressive columns with 
three surfaces, 176–179, 178f–179f, 
179t

of eccentric compressive columns with 
two adjacent surfaces, 190–194, 
192f–195f

of frame specimen, 215–220, 217f–219f
process, 22
testing, 4, 6

Deformation center, 232–233, 233f
Deformation of concrete, 17
compressive deformation

characteristics of, 21–23
prismatic compressive strength and 

corresponding strain, 23–24
devices, 17
during heating and cooling, 17–21

heating–cooling cycle, 19–21
monotonic heating and linear expan-

sion coefficient, 17–19
measurement procedure, 17
short time creep, 29–34

under constant temperature and stress, 
29–32

under variable temperature and stress, 
32–34

stress–strain curves, 21–26
equation of, 24–25
initial elastic modulus and secant 

modulus at peak stress, 25–26
under repeated loading, 26–29

envelope and loci of common and 
stability points, 26–28

reloading curves, 29
unloading curves, 28–29

under heating (or cooling) under constant 
load path, testing procedure, 43

Devices
for testing behavior of concrete

general schema, 2f
systems requirements, 2

data measurement and recording 
system, 3

heating and temperature control 
system, 2

specimen support and control 
system, 3

furnace, design and manufacture of, 5–6
for testing mechanical behavior of rein-

forcement, 56
data measurement and recording 

system, 58–59
heating and controlling temperature 

system, 57–58
loading system, 56–57

Difference analysis, of temperature field, 
91–96

discretization method and difference 
format, 91–92, 92t

examples, 95–96
stable heat conduction problem, 92–93, 

93f
transient heat conduction problem, 

93–95, 94t
Ductility ratio, 62

E
Eccentric compressive columns, with three 

surfaces, 175–182
deformation, 176–179, 178f–179f, 179t
under different conditions, 175–182

behavior after temperature sustained 
and constant cooling, 186–189

load–deflection curves, 187f
ultimate temperature–strength, 

comparison, 173
behavior under heating with constant 

load, 183–186, 183f, 184t, 185f
ultimate temperature–strength, 

comparison, 185t
experimental device, scheme for, 176f
specimen for, 176f
testing methods and contents, 175–176
ultimate bending moment of, 181
ultimate envelope of axial compression–

bending moment, 181–182, 182f
ultimate strength and optimum  

eccentricity, 179–182, 180f–181f
Eccentric compressive columns, with two 

adjacent surfaces, 189–198
temperature distribution and deforma-

tion, 190–194, 192f–195f
testing method and contents, 189–190, 

191f
furnace construction, 189–190, 189f
temperature curves, elevation of, 190f

ultimate strength, 194–198, 195f–196f
bending moment, 197f

Eccentric compressive members, 274–279
axial compression–bending moment, 

ultimate envelope of, 274–276
ultimate strength of section, calculation 

of, 276–279
Elastic modulus, 59
Elasticity of material, 238
Energy, 61
Energy conservation principle, 87
Equivalent section, basic assumptions and 

determination of, 266–268
Equivalent stiffness matrix of beam element, 

258–260
Expansion strain, 18–20, 22
Experiments with different temperature– 

stress paths, considerations for test 
conditions, 38

F
Federation International de la Précon-

trainte, 85
Finite difference analysis, 89, 97–105
Finite element analysis, 89, 97–105

basic assumptions, 243–245
calculation procedure, 260–261
equivalent stiffness matrix of beam ele-

ment, 258–260
incremental format, 246–258

determination of stress and strain, and 
their increments, 254–258

solution for, 250–254
of stress, strain, temperature, and time, 

246–250
node displacement vector, solution for,  

260
theoretical calculations and experimental 

data, comparison between, 261–263, 
264f

continuous beam, 262
frame, 262–263
simply supported beam, 261–262

thermal–mechanical constitutive model
of concrete, 245–246
of reinforcement, 246

Fire
factors influencing duration and maxi-

mum temperature of, 78
fire endurance grade, 290
resistance analysis and damage grade 

evaluation
building fire, typical examples of, 

292–294



309Index
evaluation criteria, 292t, 294–295
fire resistance curve, 79–80
method and procedure, 291–292
practical example, 295–305

fire damage evaluation, 302–305
structural briefing, 295–296
temperature field analysis, 296–297
ultimate strength of column, analysis 

of, 300–302
ultimate strength of slabs, analysis 

of, 297–300
problems in structural engineering, 

290–292
slab with one surface exposed to

calculation parameters of, 119f
temperature distribution curves of, 120f

square columns with four surfaces 
exposed to

calculation parameters of, 136f
temperature contours of, 136f–138f

square columns with two adjacent  
surfaces exposed to

calculation parameters of, 141f
temperature contours of, 141f–143f

stages of, 76, 77
standard temperature–time curves of, 80f
structural member with three surfaces 

exposed to, temperature contours,  
127f–133f

temperature–time curve of, 76–80
characteristics of temperature change 

of fire, 76–77
fire temperature, influencing factors, 

77–78
area, shape, and position of room, 

windows, and doors, 78
properties, quantity, and distribution 

of combustibles, 78
thermal behavior of building mate-

rial, 78
standard temperature–time curve of 

fire, 79–80
typical examples of, 292–294

Flexural members, 146
furnace for member testing, design and 

manufacture of, 148–150, 149f–150f
general testing program for, 147f

data measurement and acquisition 
system, 148

heating and temperature control 
system, 147

support and loading system for speci-
men, 147

mechanical behavior of, 150–157
beam with compression zone exposed 

to high temperature, 151f, 
155–157, 156f

beam with tension zone exposed to 
high temperature, 151f, 152–155, 
153f–154f

after heating and cooling cycle, 
162–165, 163f–164f, 163t

heating under constant load path, 
157–160, 158f

testing method and specimens, 150–152
with concrete covers of different thick-

ness, 160–162, 161f, 161t
of reinforced concrete, 270–273

beams with three surfaces exposed to 
high temperature, 273
slabs with one surface exposed to high 
temperature, 270–273

Frame specimen, 202
behavior of, 215–226

internal force, redistribution process of, 
221–226, 222f–223f, 225f

macroscopic process of deformation 
and failure, 215–220, 217f–219f

ultimate strength, 220–221, 221t
bending moments, comparison of, 221t
concrete, mix and strength of, 204t
construction and loading pattern of, 203f
experimental devices and measuring 

points for, 206f
experimental parameters of, 203t
internal forces, calculation of, 207, 207f
roller supports, construction of, 207f
testing method and measuring technique, 

205–206
Freely expanding strain, 49–50, 51f, 52, 

54, 70
general regularity of, 17–18

G
General regularity, 275, 279

of freely expanding strain, 17–18
of temperature field on concrete section, 

112
Geometrical center, 232

H
Heat conduction equation, 86–89

basic equation of heat conduction, 
86–88, 88t

conditions and methods for solution, 88–89
for element, 97–99, 98f
stable, 102
transient, 100f, 102–103, 103f

Heat diffusivity, 87, 112
Heating strain curves, 19
Heating under constant load, 36, 157–160

cubic concrete specimen, 39
deformation of, 173, 173f
eccentric compressive columns, with three 

surfaces under different conditions, 
183–186, 183f, 184t, 185f

mechanical behavior, 173–174, 175t
path of

central compressive columns with three 
surfaces under, 173–174, 175t

compressive strength of concrete under, 
41

continuous beam testing under, 207, 
262, 285–287

cubic concrete specimen testing under, 39
deformation of central compressive 

columns with three surfaces under, 
173, 173f

deformation test procedure of concrete 
under, 43

flexural members under, 157–160, 158f
frame testing under, 215–216, 

262–263, 287–288
mechanical behavior of
plastic hinges testing under, 281–282
strain increment under, 37, 48, 49–50, 

254
total strain of reinforcement under, 71
ultimate temperature/tensile strength of 

reinforcement under, 64f
HTARC (heat transfer analysis of reinforced 
concrete) program, 105–112, 287–288

calculated examples and demonstration, 
106–108

compiling, 105–106
experimental demonstration, 108–112
flowchart for, 106, 107f
temperature field on section, general 

regularity of, 112

I
Increment path, 256–258
Incremental finite element format, 246–258

determination of stress and strain, and 
their increments, 254–258

at elevated temperatures, 254–255
increment and iteration paths, 256–258
during temperature increment, 255–256

solution for, 250–254
accelerating convergence within incre-

ment step, 253
characteristics, 250
coupling treatment, 250–251
iteration within increment step, 

252–253, 252f
unbalanced force, 251–252, 251f

of stress, strain, temperature, and time, 
246–250

Inhomogeneous sections, 230
linear elastic material, analytical solution 

of, 234–242
with continuously variable behavior, 

238–242, 239f–241f
rectangular section composed of two 

materials, 235–238, 235f,  
237t–238t, 238f

mechanical character points on section, 
231–234

absolute strength center, 233, 233f
deformation center, 232–233, 233f
geometrical center, 232
optimum center, 233–234, 234f

structural members of, 230–231
and variation in material behavior, 232f

Instantaneous strain, 29
Interior of specimen

damage in concrete, 7, 13
Internal force, redistribution process of, of 

continuous beam specimen, 211–215, 
212f–214f

of frame specimen, 221–226, 222f–223f, 
225f

temperature distribution in, 2f–3f, 3, 7, 
38f, 77, 212–213

International Standardization Organization 
(ISO)

fire resistance curve, 79–80
standard temperature–time curve, 80

Iron, 85
Isolated measurement pods (IMPs), 3–4
Iteration paths, 256–258

K
KSW-12-11, 2–3

L
Light-weight aggregate, 81–83
Linear creep, 30
Linear elastic material, analytical solution 

of, 234–242



310 Index

with continuously variable behavior, 
238–242, 239f–241f

rectangular section composed of two 
materials, 235–238, 235f, 237t–238t, 
238f

Load–deflection curves, 187f
Load-induced thermal strain (LITS), 44–45
Loading under constant temperature, path of

plastic hinges testing under, 281–282
strain increment under, 37, 48, 254
for testing tensile strength, 60

Low-alloy steel, 85

M
Macroscopic process, of deformation and 

failure, 215–220, 217f–219f
Mass density, 83–84
Mass heat capacity, 83
Maximum strain, 34
Mechanical behavior of reinforcement, 56

elastic modulus, 65–69
stress–strain curve, 65–69

equation of, 67–69
tensile strain, 65–69

characteristics of, 65–67
tensile strength, 60–65

characteristics and ultimate tensile 
strength, 60–61

influence of temperature–stress path, 
63–65

yield strength, 61–63
testing method and device, 56–60

test contents and data processing, 59–60
testing program, 56–59

thermal strain under stress, 70–74
constant stress, 70–71
freely expanding strain, 70
short-time creep, 73–74

Mechanical behavior
of central compressive columns with three 

surfaces, 170–173
under heating with constant load, 

173–174, 175t
of concrete, –0380, 6–7, 14–15, 55, 90, 

176–177, 230
testing methods, 2–5

of flexural members at elevated tempera-
tures, 150–157

of inhomogeneous sections, 234–236, 
240–242

of reinforced concrete continuous beam
under different heating and loading 

conditions, 157–165
at elevated temperature, 150–157

of reinforcement at elevated tempera-
tures, 56, 59, 74, 90, 176–177

testing devices, 56
testing methods, 63–64

of structural materials, 243, 266, 289, 
291

Mixed finite element-difference method, 
for, 89

Modified Newton–Raphson (mN–R) 
method, 252–253, 253f

Multicycle testing of heating and cooling, 
19–20, 20f

N
NARCSLT computer program, 243–244, 

260, 262–263
Nickel–chromium and nickel–silicon ther-
mocouple, 3–4

Node displacement vector, solution for, 260

O
Optimum center, 233–234, 234f

definition of, 180
Optimum eccentricity

definition of, 180
of eccentric compressive columns, 

179–182
Optimum ultimate strength, 233–234

definition of, 180

P
Planar deformation, 244
Plastic hinges, characteristics at elevated 

temperatures, 281–282
Plastic limit analysis

general principle of, 280–281
method and procedure of, 283–285

Plastic strain, 62
Possible ultimate load, 281
Preheating furnace, 2–3

temperature–time curve of, 3f
Prestressing–heating–loading path

compressive strength of concrete under, 
41–42

Prism compressive strength, 4
Prism specimen, 3–4, 12–13, 21, 26, 30, 

50–52
compressive failure pattern of, 22f

Prismatic compressive strength, 4, 23–24, 
23f, 43, 186

R
Random inhomogeneity, 231
Reinforced concrete continuous, mechanical 

behavior of
with compression zone exposed to high 

temperature, 151f, 155–157, 156f
bending moment–curvature relation-

ship for, 156f
after heating and cooling cycle, 163t, 

164–165, 164f
ultimate bending capacity of, 154f

specimens for measuring, 150–152, 151f
specimens, strength of, 151t
temperature distribution on specimen 

section, 152f
with tension zone exposed to high tem-

perature, 151f, 152–155, 153f–154f
bending moment–curvature relation-

ship for, 153f
after heating and cooling cycle, 

162–165, 163f, 163t,
ultimate bending capacity of, 154f, 

157–160, 160f
Reinforced concrete structure, 266, 

294–295, 302–304
fire resistance behavior of, 294
thermal behavior of, 243

Residual strain, 19, 21, 34, 61
of concrete, after cooling, 11–13

Resistance of materials, 231

S
Short time creep, 29–34, 37, 50

under constant temperature and stress, 
29–32
under variable temperature and stress, 
32–34

Silicon aggregate, 11
Silicon-controlled power regulator, 3
Slab–column structure, fire damage grade 

analysis of, 302–305, 303t
Splitting testing method, for tensile strength 

measurements, 13
Stability point, 27
Stable heat conduction. See also Heat con-

duction equation
equation, 102
problem, 92–93, 93f

Standard temperature–time curve of fire, 
79–80, 105

Statically indeterminate structures, 201, 
280–288

calculation examples and demonstration, 
285–288

content and testing methods, investiga-
tion of, 201–207

specimen design and testing content, 
201–204

testing method and measuring tech-
nique, 204–207

internal forces in, 201
plastic hinges at elevated temperatures, 

characteristics of, 281–282
plastic limit analysis

general principle of, 280–281
method and procedure of, 283–285

Steel, 85
Strain components

functions and differentiations of, 245
mathematical models of, 245–246

Strain increment, 49
determination of, 254–258

at elevated temperatures, 254–255
increment and iteration paths, 256–258
during temperature increment, 

255–256
under heating under constant load path, 

37
under loading under constant tempera-

ture path, 37
Strength grade of concrete, and compressive 

strength, 10–11
Stress increment, 49

determination of, 254–258
at elevated temperatures, 254–255
increment and iteration paths, 256–258
during temperature increment, 

255–256
Stress–strain curves, 21–26, 49–50, 59, 

61–62, 65–69, 238, 254–256, 254f
equation of, 24–25, 67–69
initial elastic modulus and secant modu-

lus at peak stress, 25–26
under repeated loading, 26–29

envelope and loci of common and 
stability points, 26–28

reloading curves, 29
unloading curves, 28–29

Stress–strain point
of concrete at different temperature,  

254f
at elastic state, 257–258
locus transformation of, 255f
position of, 257f
at yield state, 256–257



Surface features of concrete at different 
temperatures, 8t

SX2-12-10, 2–3

T
Temperature control box, 2–3
Temperature–curvature relationship

for experimental furnaces, 148–150, 150f
for specimen heated under constant load, 

157–160, 158f
Temperature field

calculation of, 283
combined finite element and difference 

analysis of, 97–105
boundary condition, 99–102
heat conduction equation for element, 

97–99, 98f
numerical solution, stability of, 103–105
stable heat conduction equation, 102
total collective equation, 99–102
transient heat conduction equation, dif-

ference format of, 92t, 102–103
difference analysis of, 91–96

discretization method and difference 
format, 91–92, 92t

examples, 95–96, 95f–97f
stable heat conduction problem, 

92–93, 93f
transient heat conduction problem, 

93–95, 94t
HTARC program, for reinforced concrete 

analysis
calculated examples and demonstra-

tion, 106–108
compiling, 105–106
experimental demonstration, 108–112
flowchart for, 106, 107f
temperature field on section, general 

regularity of, 112
Temperature–stress paths of concrete, 36

compressive strength of concrete, 39–43
influence of different paths, 41–43
upper and lower bounds of compres-

sive strength, 39–41
coupling constitutive relation, 48–54, 53t

basic formulas of, 48–49
calculation rules for strain increments, 

49–50
comparison of strains under different 

paths, 48
example and experimental demonstra-

tion, 50–54
and deformation components, 36–39

composite components of deforma-
tion, 37

resolution of path, 36–37
testing method and average tempera-

ture of specimen, 37–39
influence on reinforcements, 63–65
thermal strain under stress, 43–44
transient thermal strain, 44–48

Temperature–time curve, 106, 109f, 111f, 
112, 283, 286f

of fire, 76–80, 291, 304
characteristics of temperature change 
of fire, 76–77

fire temperature, influencing factors, 
77–78

area, shape, and position of room, 
windows, and doors, 78

properties, quantity, and distribution 
of combustibles, 78

thermal behavior of building 
 material, 78

standard temperature–time curve of 
fire, 79–80, 105

of preheating furnace, 3f
slabs with one surface exposed to fire, 

116
Tensile strength, 14t

measurements, splitting testing method 
for, 13

Tensile–elongation curve of mild steel, 
61–62

Tension zone exposed to high temperature, 
270–271, 271f–272f, 273, 276, 278f

TGDFK-20, 3
Theoretical calculations and experimental 

data, comparison between, 261–263, 
263f–264f

continuous beam, 262
frame, 262–263
simply supported beam, 261–262

Thermal behavior
of materials, 80–85

thermal parameters of concrete, 81–84
thermal conductivity/coefficient of 

heat conduction, 81–83
thermal parameters of reinforcement, 

84–85
of reinforced concrete structure, 243

Thermal expansion strain, 18
Thermal strain, 17
Thermal–mechanical constitutive model

of concrete, 245–246
basic equation, 245
strain components, mathematical 

models of, 245–246
of reinforcement, 246

Thermocouples, 3–6, 38, 150–151
procedure to mount, 108

Total collective equation, of heat 
 conduction, 99–102

Transient heat conduction
equation, 97–99. See also Heat conduc-

tion equation
difference format of, 92t, 102–103, 

103f
problem, 93–95, 94t
stability of, 103–105, 104f

Transient thermal strain, 50
Twice heating–twice loading path

compressive strength of concrete under, 
42

U
Ultimate creep, 29

coefficient of, 29
311Index

Ultimate eccentricity, of structural member, 
279

Ultimate load of structure, 284
Ultimate strains, 69
Ultimate strength, 59–61

of continuous beam specimen, 210–211, 
210t

of eccentric compressive columns with 
three surfaces, 179–182

of eccentric compressive columns with 
two adjacent surfaces, 194–198, 
195f–196f

of frame specimen, 220–221, 221t
of structural member

central compressive members with 
periphery exposed to high tem-
perature, 268–270

eccentric compressive members, 
274–279

axial compression–bending moment, 
ultimate envelope of, 274–276

ultimate strength of section, calcula-
tion of, 276–279

equivalent section, basic assumptions 
and determination of, 266–268

flexural members, 270–273
beams with three surfaces exposed to 

high temperature, 273
slabs with one surface exposed to 

high temperature, 270–273
statically indeterminate structures, 

280–288
calculation examples and demonstra-

tion, 285–288
plastic hinges at elevated tem-

peratures, characteristics of, 
281–282

plastic limit analysis, general princi-
ple of, 280–281

plastic limit analysis, method and 
procedure of, 283–285

Ultimate strength–eccentricity curve, 
188–189, 188f

Underground engineering, fire accident in, 
293–294

V
Vertical testing method, 168, 169f
Volume density. See Mass density

W
Water/cement ratio (W/C)

and compressive strength, 11
influence on coefficient of heat conduc-

tion, 81–83
Weight loss, 7–8, 8f
WRNK-541, 3–4

Y
Yield strain, 62, 69, 69t
Yield strength, 59, 62–63

determination method, 61–62
Yield/ultimate strength ratio, 62


	Experiment and Calculation of Reinforced Concrete at Elevated Temperatures
	Copyright
	Preface
	Introduction
	0.1 Thermal Problems in Structural Engineering
	0.2 Harmfulness and Resolution of Structure after Fire
	0.3 Behavior Characteristics of Reinforced Concrete Structures at Elevated Temperature
	References

	1 Strength of Concrete at Elevated Temperatures
	1.1 Testing Method and Device
	1.1.1 General Testing Program
	1.1.2 Design and Manufacture of the Furnace for Material Testing

	1.2 Compressive Strength at Elevated Temperatures
	1.2.1 General Phenomena During Heating
	1.2.2 Cubic Compressive Strength at Elevated Temperatures
	1.2.3 Compressive Strength After Cooling

	1.3 Tensile Strength at Elevated Temperatures
	Conclusions

	2 Deformation of Concrete at Elevated Temperature
	2.1 Deformation During Heating and Cooling
	2.1.1 Deformation During Monotonic Heating and the Linear Expansion Coefficient
	2.1.2 Deformation During the Heating–Cooling Cycle

	2.2 Compressive Deformation and the Stress–Strain Curve at Elevated Temperature
	2.2.1 Characteristics of Compressive Deformation
	2.2.2 Prismatic Compressive Strength and Corresponding Strain
	2.2.3 Equation of a Complete Stress–Strain Curve
	2.2.4 Initial Elastic Modulus and Secant Modulus at Peak Stress

	2.3 Stress–Strain Curves Under Repeated Loading
	2.3.1 Envelope and Loci of the Common Point and the Stability Point
	2.3.2 Formulas for the Unloading and Reloading Curves

	2.4 Short Time Creep at Elevated Temperature
	2.4.1 Creep Under Constant Temperature and Stress
	2.4.2 Creep Under Variable Temperature and Stress

	Conclusions
	References

	3 Temperature–Stress Paths and Coupling Constitutive Relation of Concrete
	3.1 Temperature–Stress Paths and Deformation Components
	3.1.1 Temperature–Stress Path and Its Resolution
	3.1.2 Composite Components of Deformation at Elevated Temperatures
	3.1.3 Testing Method and Average Temperature of the Specimen

	3.2 Compressive Strength of Concrete Under Different Temperature–Stress Paths
	3.2.1 Upper and Lower Bounds of Compressive Strength
	3.2.2 Influence of Different Temperature–Stress Paths

	3.3 Thermal Strain Under Stress and Transient Thermal Strain
	3.3.1 Thermal Strain Under Stress
	3.3.2 Transient Thermal Strain

	3.4 Coupling Temperature–Stress Constitutive Relation
	3.4.1 Comparison of Strains Under Different Temperature–Stress Paths
	3.4.2 Basic Formulas of Coupling Constitutive Relation
	3.4.3 Calculation Rules for Strain Increments
	3.4.4 Example and Experimental Demonstration

	Conclusions
	References

	4 Mechanical Behavior and Constitutive Relation of Reinforcement at Elevated Temperatures
	4.1 Testing Method and Device
	4.1.1 Testing Program
	4.1.2 Test Contents and Data Processing

	4.2 Tensile Strength at Elevated Temperature
	4.2.1 Characteristics and Ultimate Tensile Strength
	4.2.2 Yield Strength at Elevated Temperatures
	4.2.3 Influence of Temperature–Stress Path

	4.3 Tensile Strain and Stress–Strain Curve at Elevated Temperature
	4.3.1 Characteristics of Tensile Strain
	4.3.2 Equation of Stress–Strain Curve
	4.3.3 Elastic Modulus

	4.4 Thermal Strain Under Stress
	4.4.1 Freely Expanding Strain
	4.4.2 Thermal Strain Under Constant Stress
	4.4.3 Short Time Creep at Elevated Temperatures

	Conclusions
	References

	5 Temperature–Time Curve of Fire and the Equation of Heat Conduction
	5.1 Temperature–Time Curve of Fire
	5.1.1 Characteristics of the Temperature Change of Fire
	5.1.2 Factors That Influence Fire Temperature
	5.1.3 Standard Temperature–Time Curve of Fire

	5.2 Thermal Behavior of Materials
	5.2.1 Thermal Parameters of Concrete
	5.2.2 Thermal Parameters of Reinforcement

	5.3 Equation of Heat Conduction
	5.3.1 Basic Equation of Heat Conduction
	5.3.2 Conditions and Methods for Finding a Solution

	Conclusions
	References

	6 Theoretical Analysis of the Temperature Field
	6.1 Difference Analysis
	6.1.1 Discretization Method and Difference Format
	6.1.2 Stable Heat Conduction Problem
	6.1.3 Transient Heat Conduction Problem
	6.1.4 Examples

	6.2 Combined Finite Element and Difference Analysis
	6.2.1 Heat Conduction Equation for an Element
	6.2.2 Total Collective Equation and Boundary Condition
	6.2.3 Equation of Stable Heat Conduction and Its Calculation
	6.2.4 Difference Format of the Transient Heat Conduction Equation
	6.2.5 Stability of the Numerical Solution

	6.3 Computing Program and an Experimental Demonstration
	6.3.1 Compiling the Computer Program
	6.3.2 Calculated Examples and Demonstration
	6.3.3 Experimental Demonstration
	6.3.4 General Regularity of the Temperature Field on a Section

	Conclusions
	References

	7 Calculation Charts for a Temperature Field on a Cross Section
	7.1 Basic Assumptions and Application Conditions
	7.2 Slabs with One Surface Exposed to Fire
	7.2.1 Calculation Tables
	7.2.2 Temperature Distribution Curves

	7.3 Beams and Columns with Three Surfaces Exposed to Fire
	7.3.1 Calculation Tables
	7.3.2 Graphs of Temperature Contours

	7.4 Square Columns with Four Surfaces Exposed to Fire
	7.4.1 Calculation Tables
	7.4.2 Graphs of Temperature Contours

	7.5 Square Columns with Two Adjacent Surfaces Exposed to Fire
	7.5.1 Calculation Tables
	7.5.2 Graphs of Temperature Contours

	Conclusions

	8 Behavior of Flexural Members at Elevated Temperatures
	8.1 Testing Method and Device for Structural Members
	8.1.1 General Testing Program
	8.1.2 Design and Manufacture of a Furnace for Member Testing

	8.2 Mechanical Behavior at Elevated Temperature
	8.2.1 Testing Method and Specimens
	8.2.2 Beam with Tension Zone Exposed to High Temperature
	8.2.3 Beam with the Compression Zone Exposed to High Temperature

	8.3 Mechanical Behavior Under Different Heating–Loading Conditions
	8.3.1 Path of Heating Under Constant Load
	8.3.2 Influence of the Cover Thickness of Reinforcement
	8.3.3 After a Heating and Cooling Cycle

	Conclusions
	References

	9 Behavior of Compressive Members at Elevated Temperatures
	9.1 Central Compressive Column with Three Surfaces Exposed to High Temperature
	9.1.1 Testing Method and Contents
	9.1.2 Mechanical Behavior at Elevated Temperatures
	9.1.3 Mechanical Behavior Under the Path of Heating Under Constant Load

	9.2 Eccentric Compressive Columns with Three Surfaces Exposed to High Temperature
	9.2.1 Testing Method and Contents
	9.2.2 Deformation at Elevated Temperatures
	9.2.3 Ultimate Strength and Optimum Eccentricity

	9.3 Eccentric Compressive Columns with Three Surfaces Exposed to High Temperature Under Different Conditions
	9.3.1 Behavior Under the Path of Heating Under Constant Load
	9.3.2 Behavior After Temperature Sustained and After Cooling

	9.4 Eccentric Compressive Column with Two Adjacent Surfaces Exposed to High Temperature
	9.4.1 Testing Method and Contents
	9.4.2 Temperature Distribution and Deformation
	9.4.3 Ultimate Strength

	Conclusions
	References

	10 Behavior of Statically Indeterminate Structures at Elevated Temperatures
	10.1 Investigation of Content and Testing Methods
	10.1.1 Specimen Design and Testing Content
	10.1.2 Testing Method and Measuring Technique

	10.2 Behavior of a Continuous Beam at Elevated Temperatures
	10.2.1 Macroscopic Processes of Deformation and Failure
	10.2.2 Ultimate Strength at Elevated Temperatures
	10.2.3 Redistribution Process of Internal Force

	10.3 Behavior of Frames at Elevated Temperatures
	10.3.1 Macroscopic Processes of Deformation and Failure
	10.3.2 Ultimate Strength at Elevated Temperatures
	10.3.3 Redistribution Process of Internal Forces

	Conclusions
	References

	11 General Mechanical Characteristics of Inhomogeneous Sections
	11.1 Structural Members of Inhomogeneous Sections in Engineering Practice
	11.2 Mechanical Character Points on a Section
	11.3 Analytical Solution of Linear Elastic Material
	11.3.1 Rectangular Section Composed of Two Materials
	11.3.2 Section Composed of Material with Continuously Variable Behavior Along Its Depth

	Conclusions
	References

	12 Finite Element Analysis of the Loading History for Structures
	12.1 Basic Assumptions and Constitutive Relations of Materials
	12.1.1 Basic Assumptions
	12.1.2 Thermal–Mechanical Constitutive Model of Concrete
	12.1.3 Thermal–Mechanical Constitutive Model of Reinforcement

	12.2 Incremental Format of the Constitutive Relation of a Section
	12.2.1 Incremental Finite Element Formats of Stress, Strain, Temperature, and Time
	12.2.2 Finding a Solution for the Incremental Finite Element Format
	12.2.3 Determination of Stress and Strain, and Their Increments When a Temperature Increment Occurs

	12.3 Finite Element Analysis of a Structure
	12.3.1 Equivalent Stiffness Matrix of a Beam Element
	12.3.2 Finding a Solution for a Node Displacement Vector
	12.3.3 Calculation Procedure

	12.4 Comparison between the Theoretical Calculations and the Experimental Data
	Conclusions
	References

	13 Practical Calculation Methods for the Ultimate Strength of Members and Structures at Elevated Temperature
	13.1 Basic Assumptions and Determination of Equivalent Section
	13.2 Central Compressive Members with Periphery Exposed to High Temperature
	13.3 Flexural Members
	13.3.1 Slabs with One Surface Exposed to High Temperature
	13.3.2 Beams with Three Surfaces Exposed to High Temperature

	13.4 Eccentric Compressive Members
	13.4.1 Determination of the Ultimate Envelope of Axial Compression–Bending Moment
	13.4.2 Calculation of the Ultimate Strength of a Section

	13.5 Statically Indeterminate Structures
	13.5.1 General Principle of Plastic Limit Analysis
	13.5.2 Characteristics of Plastic Hinges at Elevated Temperatures
	13.5.3 Method and Procedure of Plastic Limit Analysis
	13.5.4 Calculation Examples and Demonstration

	Conclusions
	References

	14 Fire Resistance Analysis and Damage Grade Evaluation of a Structure
	14.1 Problems of Fire Resistance Analysis in Structural Engineering
	14.2 Evaluation of the Fire Damage Grade of a Structural Member
	14.2.1 Typical Examples of a Building Fire
	14.2.2 Evaluation Criteria for Fire Damage Grade

	14.3 Practical Example of Fire Resistance Analysis and Damage Grade Evaluation
	14.3.1 The Structural Briefing
	14.3.2 Analysis of the Temperature Field on a Section of the Structural Member
	14.3.3 Analysis of Ultimate Strength of Slabs at Elevated Temperatures
	14.3.4 Analysis of the Ultimate Strength of a Column at Elevated Temperatures
	14.3.5 Fire Damage Evaluation of a Structure

	Conclusions
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y




