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Nichts ist so praktisch wie eine gute Theorie

—Kurt Lewin (1890–1947)

(There is nothing so practical as a good
theory)

but:
Nothing helps scientific thought like a good
Experiment.

Engineering and Physics cannot be thought
of without models which represent the real
world to the best of our knowledge.

—Friedrich Pfeiffer, Hartmut Bremer
(2015) CISM–AIMETA–Udine.

Since the birth of modern science, the
hypothesis as well as its experimental
verification have a mathematical nature, both
being expressed by a set of physical
measurable—not qualitative—quantities…..

—Emanuele Severino (1984)
Modern Philosophy
Rizzoli Inc., Italy



Foreword

A model is an abstract mathematical description of a more or less complex entity,
which is important in engineering sciences to investigate and predict the entity
behavior in relation to performance, reliability, and safety. Correct modeling of a
technical entity, whether material, structure, device, equipment or system, is thus
fundamental to engineering purposes. This holds, in particular, for mechanical
structures or systems, for which experiments to support modeling are often
unavoidable, following the definition of inverse problem from the measurement of
effects to identification of causes given in the preface of this book. In these cases,
design of experiment is an essential tool to verify, develop, or refine models.
Experiment and experience greatly help in finding simplifications making the model
just as complex as necessary to contain all relevant parameters. However, in model
building, physical and statistical validation of model assumptions should precede
data analysis. In this book Professor Freddi, supported by two of his closest col-
laborators, has condensed the experiences gained in a long academic activity in this
field in cooperation with the industry. The book gives a careful introduction to
methods and tools used in Experimental Stress Analysis, opening the door to new
investigations on failure mechanisms it is useful for mechanical engineers in practice
as well as a textbook, not least for the large number of solved practical examples.

Firenze and Zürich, April 2015 Alessandro Birolini
Ph.D. Professor Emeritus of Reliability

Engineering at the ETH Zurich
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Preface

The contents presented in this book are, in the opinion of the authors, an essential
conceptual basis for the training of professional mechanical engineers in the field of
experimental methods applied to theory of structures. Our intention is not to give an
overview of all the experimental methods used in stress analysis, as we present only
those that we have utilized for research purposes and scientific and technical
consulting. Experimental analysis methods are based on different branches of sci-
ence such as mechanics, electronics, optics, information theory, etc.: excellent
specialized books are available written by specialists from different areas, which
focus exclusively on methods. This book is a complementary reading to such
specialized works, in that it gives an outline of some methods and shows how their
applications make it possible to understand the foundation of a problem even before
obtaining a detailed solution. For this latter task, the computing methods that cover
nearly every need in solving particular cases are the best.

While historically experimental analysis was developed as a surreptitious tool due
to a lack of analytical solutions to structural problems, today it is an instrument for
clarifying the limitations of analytical theories, but primarily, due to the inverse
nature of experimentation, for identifying unknown parameters, integrating exper-
imental data into analytical models. Experimental Stress Analysis was classically
regarded as a collection of experimental methods dedicated to the measurement of
deformations of loaded bodies, and then to the corresponding states of stress. This
has been modified into a methodology to build acceptable models for setting up
phenomenological theories and supporting design practices.

It is common to speak of design for safety, reliability, or design to prevent high
cycle fatigue, low cycle fatigue, crack propagation, multi-mode failures, etc. On the
basis of years of teaching and consulting experience, we believe that the ultimate
goal of experimental analysis is not only the knowledge of a state of stress but also
the design and assessment of the integrity of structural systems.

There is another issue here that must be dealt with: Experimental Stress Analysis
requires a variety of devices, testing machines, etc. that may be available on the
market, often packaged in the form of black boxes. Self-made equipments give

ix



many more opportunities for adjusting to specific problems and have an unparal-
leled role for training the experimentalist and also for education in structural design.
The laboratory practice is highly educational for this purpose since it is concep-
tually similar to the practice of design. Both deal with problems in which a lot of
data is unknown. This book is therefore oriented to applications, which require a
self-made laboratory equipment on the assumption that it may offer a useful aid to
help graduate students develop sensitivity to quickly discovering the few control-
ling variables and the essential tests for solving the problem.

According to its inverse methodology nature, experimental analysis has recently
found new tasks in the solution of reliability problems. The estimation of reliability,
and therefore also the answer to the question of a possible extension of life, requires
experiments in order to identify the causes of defects and failures and to measure
the failure rate. Therefore, the role of experimentation is not one of simple verifi-
cation of a theoretical prediction, but is a continuous monitoring and control of
processes and an invaluable tool for the estimation of the life of technical systems.

Finally, we did not use the more accredited and common label of Experimental
Mechanics as the title to cover the topics of this book. Generic nominalization
might lead to a confused definition of boundaries and to misunderstandings:
important topics, such as Experimental Vibrations Analysis, have for many years
constituted disciplines in their own right and are not covered in this book. Along the
same line, there is no reason to limit Experimental Mechanics to solid bodies.

References to experimental stress analysis can be found in materials produced by
scientific societies in various countries, such as SEM (American Association of
Experimental Mechanics) in the USA, GESA (Gesellschaft für Experimentelle
Spannung Analyse) in Germany, GAMAC (Avancement des Methodes d’Analyse
desContraintes) in France, BSSM (British Society for StrainMeasurement) in theUK,
AIAS (Italian Association of Stress Analysis) in Italy, EURASEM (European
Association for ExperimentalMechanics) for Europe, theDanubia-Adria Symposium
for Central Europe, and the International Committee IMEKO TC 15 (Experimental
Mechanics) with related YSESM, (Youth Symposium for Experimental Solid
Mechanics) expressly devoted to young researchers.

Bologna, April 2015 Alessandro Freddi
Giorgio Olmi

Luca Cristofolini
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Introduction

The main aim of the book is the discussion of Experimental Stress Analysis as a
methodology to support theoretical models and build phenomenological theories.

After a preliminary chapter that introduces the concept of inverse problems and
tackles the methods used for solving them (Chap. 1), the first part of the book
briefly summarizes the conceptual basis of the experimental stress analysis methods
utilized by the authors, which are judged to be useful either for illustration or
practical use (Chaps. 2–5). The description is thus limited to a classic presentation
—sometimes highlighting aspects that are not always detailed in the traditional
literature—since it is considered more important to demonstrate their usefulness for
clarifying practical engineering problems than to provide information about the
latest developments of the methods.

The chapters in the second part of the book are devoted to the application of
stress analysis to several case studies of technical interest, demonstrating the con-
ceptual and practical importance of the inverse approach (Chaps. 6–9). In this part
of the book we deemed it appropriate to summarize some results of the classic
analytical theories which, although essential in academic training, generally have no
place in books of this type, such as the theory of elasticity and the elementary stress
theory of Fracture Mechanics. The presentation is limited to a few but important
theories of modern engineering.1 Chapter 10 is devoted to the application of
experimental stress analysis to biomechanical systems and offers a vivid example of
reliability-related engineering problems. Finally, the last chapter describes how to

1 A review of Hitachi from the 1970s (but likely to be still valid today) selected the following
items as the main reasons for failures with the corresponding incidences on total failures and
number of artifacts of its production:

• fatigue (59,8 %)
• static fracture and creep (13,4 %)
• brittle fracture (10,3 %)
• buckling and excess of deformation (8,9 %)
• wear and fretting (4,0 %)
• corrosion (3,6 %).
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utilize experimental stress analysis for reliability conclusions, with reference to a
case study that deals with the life extension of turbo-machinery (Chap. 11).

The book organization is summarized in the matrix of Fig. 1, where the rows
represent the methods and the columns the structural mechanics fields, while the
applications are located at the intersections.

Instructions to Instructors

Following these premises, the book can offer materials for two courses at Engi-
neering Schools: the first, of about 60 hours, aimed at undergraduate students and
covering a basic syllabus on Experimental Stress Analysis methods and application
to elementary theory of elasticity. Active exercises for groups of no more than six-
seven students should be devised on the following topics:

• Strain gages mounting and connection to circuits.
• Load-cell building and calibration.
• Optical analysis of field stress.
• Comparison between analytical and experimental results.

A second course is suitable for graduate students. The course syllabus, corre-
sponding to approximately 60 hours, should be oriented to the applications of the
methods to the main topics of structural mechanics, focusing on items developed in
the laboratory, such as:

• Strain gages measurements in actual mechanical parts.
• Static and fatigue tests performed on universal and special testing machines.
• Fracture Mechanics tests on specimens.
• Illustrations in a Biomechanics Laboratory of tests on bones and prostheses by
strain gages, photoelastic coating, digital image correlation.

• The course can be concluded by a Reliability treatment of experimental data.

Fig. 1 Book organization
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Part I
A Brief Review of the Experimental

Methods Utilized in the Book

The first part of the book briefly describes some common electrical (bonded strain
gages) and optical (photoelasticity, holography and digital image correlation)
methods and their relative merits and limitations, as they are used by the authors for
application to stress analysis. Specialized texts are the best further reference for
readers interested in each of them.

The chapters review the basic formulas and essential concepts, looking, how-
ever, at some specific questions that are not always emphasized in classical books,
and avoiding unnecessarily complex experimental equipments. Indeed, many
techniques can be applied in a relatively simple way without losing the great benefit
of understanding the problem before searching for a solution for it. In other words,
understanding the main variables of the phenomenon under study and clarifying
their effects is more important than finding a solution to a single case.



Chapter 1
Introduction to Inverse Problems

Abstract Experimental Stress Analysis has been traditionally applied—through a
direct or forward approach—for solving structural mechanical problems as an alter-
native and complementary methodology to the theoretical one. The great develop-
ment of numerical methods has largely overruled this task. In addition, the increased
accuracy of numerical tools has confined the forward approach to the role of exper-
imental verification restricted to cases of complex and non-conventional numeri-
cal modeling, such as stress states resulting from singularities, material anisotropy,
etc. If, however, causes (such as forces, impressed temperatures, imposed deforma-
tions) or system parameters such as geometry, materials and boundary conditions
are unknown, the case is totally different, and the experimental inverse approach has
no alternatives. Through measurements of the effects like displacements, strains and
stresses, it is possible to find solutions to these inverse problems by identifying the
unknown causes, integrating a series of experimental data into a theoretical model.
The accuracy of data together with a proper selection of the quantities that must
be measured are a necessary premise for limiting the experimental errors that can
influence the accuracy of the inversely estimated results.

1.1 Premise

The inverse problem consists in using the results of actual measurements to infer
the values of the parameters characterizing the system under investigation. Mea-
surements are justified when structural systems or physical models are available and
when forces or system parameters as stiffness or a function of these variables are
unknown and must be identified.

Practical recent and promising applications of the inverse problems can be found
in activities of supervising and health-monitoring existing structures [1], controlling
their deterioration and estimating their residual life. This is one of the most relevant
tasks in modern societies, sensitive to ecology and sustainability of the technical
solutions.

The present chapter must be considered a primer of this approach that totally
has reoriented the experimental stress analysis, better defining its main task and its

© Springer International Publishing Switzerland 2015
A. Freddi et al., Experimental Stress Analysis for Materials and Structures,
Springer Series in Solid and Structural Mechanics 4,
DOI 10.1007/978-3-319-06086-6_1

3



4 1 Introduction to Inverse Problems

fundamental benefit. For a complete presentation of inverse methods see e.g., the
books of [2–6] and the relative bibliography.

1.1.1 General Rules

All problems in mathematics, physics and engineering are divided into two classes:
well-posed problems and ill-posed problems.

Direct problems can be ill-posed when they are not well defined and inverse ones
can be ill-posed when the experimental errors (noise) are relevant; considering here
the inverse problems, it could happen that [2]:

Some of them are well-posed problems. For these:

• A solution exists.
• The solution is unique.
• A small change of data leads to a small change in the solution.

Vice-versa, a broad number of inverse problems belongs to the class of ill-posed
problems. For these:

• A solution may not exist.
• There may be more than one solution.
• Small variability of experimental data may originate great variability on the esti-
mation of unknown variables.

1.1.2 Rules for Inverse Problems

The approach to inverse problems needs the developing of the following steps [5]:

• Define the unknowns to be identified.
• Arrange a forward theoretical or numerical model that must be representative of
the physical problem, to fit to measured data. The solution of this process is called
Identification of unknown variables.

• Estimate whether the system can be theoretically formulated or not in an explicit
matrix form. The algebraic relationships in matrix form are suitable only for struc-
tural discretized systems.
In the present chapter the first case studies are introduced in discretized form, and
only in other chapters will some cases be presented for non-discretized systems.

• Develop an preliminary Design of Experiment on the forward problem for ana-
lyzing the sensitivity of the factors that must be independently influential to the
outputs (effects), trying to avoid the combined influence of several variables, i.e.
interaction effects.

• Estimate the level of experimental errors on the effects (i.e. signal to noise ratio)
and, if it is possible, select effects less influencedby experimental errors. The exper-
imental errors can favor the ill-posedness of the problem.
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• If the system can be formulated with matrix form and the number of known
variables equals the number of unknown variables, the problem is determined
or even-posed and inversion of the system matrix (or transformation, or operator
matrix) can be performed through a classical algorithm to obtain the inverse solu-
tion.
When the number of known and unknown variables is not the same, matrix inver-
sion methods can be used, all of them leading to approximate solutions. The
pseudo-inverse matrix concept must be introduced.

• Utilize regularization techniques for improve ill-posed problems. Some examples
in Chap.2 will clarify their use and effectiveness.

• If the system cannot be formulated with matrix form, the problem must be dealt
by formulation of a functional of error between forward and inverse solutions. It
must beminimized through optimization/minimization techniques. This procedure
provides the unknown parameters of the forward model.

• Verify the solution, introducing the identified variables in the model, comparing
the theoretical results with the experimental data.

1.2 Forward and Inverse Problems for Elastic Discretized
Structures

The germinal idea of the elastic structural analysis is in the Hooke’s Law Ut Tensio,
sic Uis (as the extension, so the force) that, for many variables, is applied to dis-
crete systems or to continuous systems discretized through a representation in Finite
Elements. The law for the forward problem is written with the formalism of Eq.1.1,
Fig. 1.1.

y = A(p) · x (1.1)

with these symbols meaning:

y output displacements vector
x input forces vector

Fig. 1.1 Matrix relationship for structural problems. For one variable x and y are numbers, for
several variables x and y are vectors. If x and y have the same dimensions the matrix is square

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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A = A(p) system matrix (or transformation matrix), function of p, a vector of all
data necessary for defining geometry,material properties and boundary
conditions.

A−1 inverse of the system matrix

If A is a positive definite square (m × m) matrix the problem is well-posed and an
unequivocal solution exists:

x = A−1 · y (1.2)

Given a geometrically complex system, the forward problem, from the known forces
to the unknown displacements, needs the use of numerical methods that schematized
(meshed) the structure through a great number of finite elements.

It is clear that the problem is theoretically reversible and, in this case, it is only
formal to take the Eq.1.1 as a forward problem and the Eq.1.2 as an inverse problem.
In the Finite Element formulation, the Eq.1.2 is chosen as a forward solver, because
the vector x and the system matrix A are given and the displacements vector y is
obtained by the matrix inversion.

Since in the forward problems it is recommended to have the same number of
known and unknown variables, a unique solution is found, solving a set of lin-
ear equations, by common solution codes. The modern methods do not necessarily
need the formal inversion of the matrix. Nevertheless, the solution is unequivocal.
Figure1.2 shows e.g., the simulation of a detail of a crane arm [7, 8] with a great
number of tetrahedral finite elements.

Having, instead of the Eq.1.2, a mathematical forward solver written in oppo-
site way:

x = ˜A(p) · y (1.3)

if˜A and y are known a direct problem is given, while ifA and x are known, an inverse
problem is given, Fig. 1.3. The Table1.1 synthesizes the different types of forward
and inverse problems (from Laermann [4]).

Fig. 1.2 The forward numerical model as a reference model for experimental measurements. The
finite elements method reduces complex structures to a numerous series of simple elements for
which the system matrix is assembled. See a case study in Sect. 7.10.1 in Chap.7

http://dx.doi.org/10.1007/978-3-319-06086-6_7
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Fig. 1.3 Scheme of forward and inverse problems

Table 1.1 Different types of forward and inverse problems

Case Forward solver Given Obtained Type

– p, x or p, y y or x Forward

I y = A(p) · x or x = A(p) · x p, y or p, x x or y 1st kind

II x or y p 2nd kind

IIIa yg, yu = A(pg, pu) · (xg, xu) pg, xg, yg pu , xu , yu Mixed

Taken from Laermann [4]
a Subscript g is for given quantities, subscript u for unknown variables

The causes can be external loads, imposed temperatures, imposed displacements,
while the unknown variables that designate the effects, are quantities that can be
experimentally measured as stresses, strains, natural frequencies, etc.

Only rarely is the number of the known variables equal to the number of unknown
variables. Given e.g. x the vector of forces applied to the system A, if y is the
displacements vector, the following alternatives might happen:

• If displacements y are measured (output) and the system parameters p are known,
the unknown input forces x can be identified.
Or:

• If displacements y aremeasured and the forces x are known, the system parameters
of the transformation matrix A can be identified.

• If all the other parameters of the system are given and the inputs and outputs of
the system are known, the boundary conditions that are a combination of forces
and displacements can be identified.

• When the number of input variables is the same for output variables, the matrix
of the forward problem is square and the problem is determined,1 and the

1 Called also even-posed.
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Fig. 1.4 Different kinds of
matrices when the number of
known variables (input) is
equal to, less or greater than
the number of unknown
variables (output)

identification is done without approximation. Nevertheless, also in this case, the
problem can be well-posed or ill-posed, depending on the role of the experimental
errors.

• When the number of input variables is less than the number of output variables, the
matrix of the forward problem is rectangular and the problem is over-determined
(called also over-posed) and identification is possible but only approximately. The
problem can be well-posed or ill-posed.

• When the number of unknown variables is greater than the number of measured
variables, the matrix of the forward problem is rectangular and the problem is
under-determined (called also under-posed) and always ill-posed.
The different kinds of matrices of the examined cases are shown in Fig. 1.4.

Over-posed and under-posed problems can give only approximate solutions because
the system matrices are not square, and rigorous inverted matrices A−1 do not exist.
Approximate solutions are given by the pseudo-inversion of the system matrices.

Summarizing, to solve an inverse problem a suitable theoretical (or numerical)
model and a set of accurate experimental data are necessary. The accuracy
and a proper selection of measured variables are necessary for limiting the
experimental errors that are transmittedby the inversionprocess to the unknown
variables, with the possibility of causing ill-posed solutions.

Let us report some Exercises taken from Liu and Han [5] that clarify the meaning
of direct and of inverse problems.

Exercise 1.1 (Inverse Problems for Uniaxial Load. First Case: Determined or Even-
posed) Consider a structural system with two bars of different elastic modulus,
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Fig. 1.5 Model of a
composite bar

transversal section and length, uniaxially loaded and constrained as shown in
Fig. 1.5.2 The stiffness parameters of the two parts are respectively k1 = E1A1/l1
and k2 = E2A2/l2.

(a) Forces, material properties and geometry are known and the theoretical solution
of the forward problem is:

⎧

⎪

⎨

⎪

⎩

u2 = f2
k1

+ f3
k1

u3 − u2 = f3
k2

(1.4)

or:
⎧

⎪

⎨

⎪

⎩

u2 = f2
k1

+ f3
k1

u3 = u2 + f3
k2

= f2
k1

+ f3

(

1

k1
+ 1

k2

)

and in matrix form:
(

u2
u3

)

=
⎛

⎜

⎝

1

k1

1

k1
1

k1

1

k1
+ 1

k2

⎞

⎟

⎠
·
(

f2
f3

)

(1.5)

or:
y = A(k1, k2) · x

The solution of the relative inverse problem is obtained by the inversion of the system
matrix, (see e.g.algorithm Inverse from Mathematica® in [9]).

Forces Identification

Thus the forces can be identified by the displacements through the equation:

(

f2
f3

)

=
(

k1 + k2 −k2
−k2 k2

)

·
(

u2
u3

)

(1.6)

2 Example taken from Liu and Han [5].
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or:
{

f2 = k1u2 − k2(u3 − u2)

f3 = k2(u3 − u2)
(1.7)

or in matrix form:
x = A−1 · y

Geometric and Elastic Parameters Identification

From the same Eq.1.6 is possible to obtain the stiffnesses as functions of the dis-
placements:

(

k1
k2

)

=

⎛

⎜

⎜

⎝

1

u2

1

u2

0
1

u3 − u2

⎞

⎟

⎟

⎠

·
(

f2
f3

)

(1.8)

From Eq.1.8, the stiffness or the Young’s modulus or the lengths of both bars mem-
bers can be easily determined, remembering that k = EA/ l.

The forward problem can be ill-posed for a lack of boundary conditions or in
the case of k1 or k2 equal to zero, Eq.1.5, while the inverse problem can be
ill-posed if u2 and u3, (that are small in elastic loaded structures) are also close
to one another. In these cases the error on estimated forces or stiffnesses can
become relevant, Eqs. 1.7 and 1.8.

Exercise 1.2 (Inverse Problems for Uniaxial Load. Second Case: Over-determined
or over-posed) Determine the stiffnesses of the two bars, supposing that k1 = k2 = k.

(a) Equations1.5 and 1.6 give [5]:

(

u2
u3

)

=
⎛

⎜

⎝

1

k

1

k
1

k

2

k

⎞

⎟

⎠
·
(

f2
f3

)

(1.9)

(

f2
f3

)

=
(

2k −k
−k k

)

·
(

u2
u3

)

(1.10)

This assumptiondoes not influence the identificationof the forces but over-determines
the stiffnesses of the two parts of the bar that can be identified in two different ways
and the values can be different (due to experimental errors):
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

k = f2
2u2 − u3

k = f3
u3 − u2

(b) The same difficulty arises for the identification of the elastic modulus, transverse
section areas and lengths, (if assumed identical in both bars), thus originating an
over-determined inverse problem. Also in this case the problem can be ill-posed if
the two displacements are affected by significant experimental errors.

This case, extended to many data, is the most common in laboratory experi-
mentation, because the experiment is generally planned in such a way to have
redundancy of data.
Recourse is then done to a method of minimization of the differences and the
most common is the Least Squares Method (LSM), for finding a reasonable
approximate mean value that is assumed as the most probable. In the following
Chaps. 2 and 9, examples of this minimization techniques will be shown for
strain gages application in multi-axial loading cells as well as in Fracture
Mechanics for identification of Stress Intensity Factors. In the last case it will
no longer be possible to have a reference to a discrete system and a general
optimization problem for linear and non linear systems will be adopted.

Exercise 1.3 (Inverse Problems for Uniaxial Load. Third Case: Under-determined,
then ill-posed) This is the case of a lack of experimental data with respect to the
number of unknowns to be determined.

With reference to Fig. 1.5, if e.g. only u3 is measured, the second of Eq.1.9
gives [5]:

u3 = f2
k1

+ f3
k1 + k2

k1k2
(1.11)

that is the equation of a straight line:

a1x1 + a2x2 = ymeasured (1.12)

Infinite solutions for pairs of values x2 = f2 and x3 = f3 exist, i.e. the solution is
non-unique. The problem is always ill-posed.

Exercise 1.4 (Inverse Problems for Uniaxial Load. Fourth Case: Even-posed for
Boundary Condition Identification) In this case everything but the boundary
conditions is known. Instead of the first of Eq.1.4 here repeated:

http://dx.doi.org/10.1007/978-3-319-06086-6_2
http://dx.doi.org/10.1007/978-3-319-06086-6_9
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

u2 = f2
k1

+ f3
k1

u3 − u2 = f3
k2

(1.13)

this new equation is written:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u2 − u1 = f2
k1

+ f3
k1

u3 − u2 = f3
k2

or
(−1 k1

1 0

)

·
(

f1
u1

)

=
(

k1u2
f2 + k2(u3 − u2)

)

(1.14)

Thus, the unknown boundary conditions are identified:

(

f1
u1

)

=
(−1 k1

1 0

)−1

·
(

k1u2
f2 + k2(u3 − u2)

)

(1.15)

Solving Eq.1.15 for the unknown input of boundary values, gives:

(

f1
u1

)

=
⎛

⎜

⎝

f2 + k2(u3 − u2)

u2 + f2 + k2(u3 − u2)

k1

⎞

⎟

⎠
(1.16)

The number of unknowns is the same as the number of knowns, thus this problem is
determined or even-posed. The input and the output vectors consist of both compo-
nents of displacement and force. The boundary conditions can be determined if all
the other system parameters are given and the causes and the effects are known.

It was remarked that, as long as we treat discrete structural problems described
by matrix algebra, it may be argued that forward and inverse problems are
mathematically reciprocal. In spite of this, the influence of the experimental
errors on the unknown identification was shown. For continuous problems
with differential or integral operators the problem of error transmission is
exacerbated. Leaving this aspect to specialized books, we must now reflect
upon the quality of the predication after the inversion, and suitable indexes
must be introduced to quantify it.
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1.2.1 Quality Indicators of Inverse Solutions

The pseudo-inversion of a matrix is an approximate operation: it means that the
product of this pseudo-inverse and of the original matrix do not necessarily give the
identity matrix.

There are indicators of the quality of the solution that are necessarily verified,
every time a matrix inversion it performed. They are called:

1. Data or output resolution or output reproducibility matrix.
2. Model or input resolution or input reproducibility matrix.

Writing again Eq.1.1:
y = A · x (1.17)

in the case of a not square matrix, the real inverse does not exist and the estimate of
the solution x assumes the form:

xestim = A−g · ymeasur (1.18)

where: A−g is the pseudo-inverse matrix, according to the scheme shown in Fig. 1.3.
There is no reason that the product A−g · A has to be necessarily equal to identity

matrix I, but only this value, referring to the unitarymatrix, is an index of the goodness
of the inversion. The effect-vector, with estimated value of the cause, is:

ypredict = A · xestim (1.19)

Substituting Eq.1.18 in Eq.1.19 gives:

ypredict = A · A−g · ymeas = D · ymeas (1.20)

This equation shows that, if A−g · A = I where I is an identity matrix, the inverse
procedure reproduces the measurement data. If D �= I, the measurement data will
not be reproduced (or resolved). Therefore the matrix D is defined as an data repro-
ducibility or data resolution matrix.

Furthermore, if it is argued that the true values xtrue should satisfy the forward
model, substituting the xtrue in Eq.1.19 the real measured values should be obtained:
ymeasur = A · xtrue. Substituting this relationship in Eq.1.18

xestim = A−g · ymeasur = A−g · A · xtrue = G · xtrue

gives the matrix G. If G �= I, the estimation will not be the true input. Therefore this
matrix is defined as an input resolution or input reproducibility matrix.
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1.2.2 Inverse Solution for Systems in Matrix Form

As it was seen, if the system can be formulated in an explicit matrix form, a general
inversion of the transformation matrix can be performed to obtain inverse or pseudo-
inverse solutions.

1.2.2.1 Pseudo-Inverse Matrix for Over-Determined (or Over-Posed)
(m > n) Problems

That is a very common case in the laboratory practice and in numerous applications.
From the general equation

y = A · x

In the case of experimental analysis the following equation holds:

ymeas − A · x = ε

with ε = experimental error, A ∈ Rmxn and m > n.
The determination of x ∈ Rn is done under the condition of the minimization of

the norm of the vector of the residuals that is the distance of the prediction of the
results of the forward model from the measurements:

J = ‖ymeas − A · x‖2 = min (1.21)

From the minimum condition:

∂ J

∂x
= 0 − AyT (ymeas − A · x) = 0

the set of normal equations is derived:

AT ymeas = AT Axestim (1.22)

Note that the matrix AT A is surely symmetric. Assuming it is also invertible:

xestim = A−g · ymeas (1.23)

with the following expression for the pseudo-inverse matrix, Fig. 1.6:

A−g = (AT A)−1 · AT

The output resolution matrix is:
A · A−g

that is not an identity matrix. Vice-versa the input resolution matrix is:
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Fig. 1.6 Solution for the
inverse over-determined,
thus over-posed problem

A−g · A = I (1.24)

This means the Least Squares Solution gives the true estimation of the model.
It could happen that the matrix AT A does not have a full rank, then it is not invert-

ible. In such cases, it can become necessary to introduce some kind of regularization
method, even accepting relatively approximate solutions.

1.2.2.2 Pseudo-Inverse Matrix for Under-Posed Problems (m < n)

It is the most critical inverse case that often arises in problems of maintenance,
damage analysis and control of structural systems, and for the evaluation of residual
life of structural systems. In these cases, it could be very difficult to have a sufficient
number of measurements necessary to identify all the unknown parameters of the
system.

An approximate result can be found if other information on the solution exists [4].
Without other conditions the problem offers infinite solutions that exactly satisfy the
equation of the corresponding forward model without any error and can become
determinated only if it is possible to add other physically meaningful information.
This is clarified by the simple mathematical model of a straight line. All the points
of it satisfy the Eq.1.12 and Fig. 1.7, thus infinite solutions exist.

Fig. 1.7 The minimum
length solution for an
under-posed problem
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A formal method for having determined the problem, is the Minimum Length
(ML) solution, but this solution is totally arbitrary if not supported by some physical
evidence. Given the model:

y = A · x

it must be:
ymeas − A · x = 0

with A ∈ Rm×n and m < n.
Determine x ∈ Rn such that:

J = ‖ymeas − A · x‖2 = min (1.25)

This is an undetermined problem and cannot be solved. According to the following
Eq.1.26

J = xT · x + λT · (ymis − Ax) = min (1.26)

The error functional is formed by two parts connected by a Lagrange multiplier: the
first is the Pythagorean length of the vector x and the second represents a constraint
on the variable that forces the unknown vector x to satisfy the equation system of
the forward model. Therefore, the function J is, in fact, a constrained Pythagorean
length of the unknown vector x subjected at m constraints (ymeas − A · x = 0) for
m Lagrangian multipliers.

To find the minimum length (that in Fig. 1.7 is represented by the distance from
the origin), both conditions:

∂ J

∂x
= 0

∂ J

∂λ
= 0

are required for writing the following equations:

∂ J

∂x
= 2x − AT λ = 0 (1.27)

and:
∂ J

∂λ
= ymeas − A · x = 0 (1.28)

Equation1.18 gives:

x = 1

2
AT λ (1.29)

that must be substituted in Eq.1.19:
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2ymeas = AAT · λ (1.30)

If AAT is invertible, the vector of Lagrange multipliers λ is:

λ = 2(A · AT )−1ymeas (1.31)

Substituting Eqs. 1.20 and 1.31 finally gives:

A−g = AT (A · AT )−1. (1.32)

1.3 Systems in Functional Form

For systems that cannot be formulated in an explicit matrix form, somemethods exist
for solving inverse problems, as reported in the bibliography of the cited books.

The general way consists in establishing a functional of residuals or errors defined
with a suitable norm, and in utilizing optimization/minimization techniques to search
for the solution that minimizes this functional.

Several minimization algorithms are offered by the mathematical literature and
greatly simplify the researcher’s task, such as the FindFit (Mathematica®) [9].3

In a case study on K parameter identification of FractureMechanics, (seeChap.9),
the forward problem cannot be expressed inmatrix form, but only in functional forms
of this type:

y = A(p1, p2, . . . , pk, x) (1.33)

where y is a vector of the effects, A is the system transformation matrix, function of
vectors parameters pi, while x is the inputs vector, identified by the solution of the
inverse problem.

The error functional is the norm of a vector of the difference between the pre-
dicted output based on the forward model of Eq.1.33 and the measured data that are
presumed to be generated by the true value of input variables xtrue; (n is the number
of experimental data):

J (x) = (ypred − ymeas)T · (ypred − ymeas) =
n

∑

i=1

[

y pred
i (x) − ymeas

i (xtrue)
]2

(1.34)

3 E.g., the algorithm FindFit [data, expr, pars, vars] finds numerical values of the parameters pars
that make expr give a best fit to data as a function of vars. The expression expr can depend either
linearly or nonlinearly on the pari . This algorithm is particularly useful forminimizing functional of
error because it allows the use of several alternatives that can be select such as Conjugate Gradient,
Gradient, Levenberg Marquardt, Newton, and Quasi Newton methods, with the default use of the
Least-Squares methods.

http://dx.doi.org/10.1007/978-3-319-06086-6_9
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If x �= xtrue:
J ≥ 0

From this equation it is clear that if another type of functional is used, e.g. the L1
norm that is the sum of absolute errors:

J =
n

∑

i=1

|y pred
i (x) − ymeas

i (xtrue)|

the values of the input variables that minimize this functional will be certainly dif-
ferent from the values obtained, e.g., from L2 norm.4

1.3.1 Regularization Method of Tikhonov-Phillips

A method that generalizes the previous one and that is essential for solving under-
posed problems but becomes useful also for over-determined problems (when they
are ill-posed) is the Tikhonov-Phillips5 regularizationmethod [4] that provides a way
tomake use of further information to regularize the solution. Thismethod, also called
Damped Least Squares Solution, defines the discrepancy functional in the following
form:

J = (

ymeas − Ax
)T (

ymeas − Ax
) + αxT x = min (1.35)

or:
J = ‖ymeas − Ax

∥

∥

2 + α‖x‖2 = min (1.36)

Thefirst term is the L2 normof theLeast Squares Solutionwhile the second term is the
Pythagorean distance of theMinimum Length Solution and α denotes a regularization
parameter called damping factor that is an additional unknown of the problem. Its
task is to reduce the weight of the distance inside the functional, so that a too high α

value improves the solution stability but reduces the solution accuracy and a too low
value of the parameter improves the accuracy but does not modify the ill-posedness
of the solution. Searching for the minimum error requires:

∂ J

∂x
= 0

4 For each kind of engineering problem it is necessary to check which inverse solution method best
meets the requirements of the solution. Different solution algorithms applied to the same data can
yield different answers (see examples in Chap. 7).
5 Tikhonov regularization has been invented independently inmany different contexts. Some authors
use the term Tikhonov Phillips regularization.

http://dx.doi.org/10.1007/978-3-319-06086-6_7


1.3 Systems in Functional Form 19

that leads to:
2(ymeas − Ax)(0 − A) + 2αxI = 0 (1.37)

−AT (

ymeas − Ax
) + αxI = 0 (1.38)

then:
AT ymeas = AT Ax + αxI (1.39)

Matrix
(

ATA + αI
)

is symmetric and invertible. The solution is:

xestim = (

AT A + αI
)−1AT · ymeas = A−g · ymeas (1.40)

Input and output reproducibility matrices deviate from identity matrix. The choice
of the damping factor defines the level of the solution approximation.

1.3.2 Regularization Using Regularization Matrix

This method due to Tikhonov [10], is an extension of the preceding method because
it introduces a second regularization tool constituted by a matrix R.

So the functional to minimize becomes:

J = (ymeasAx)T (ymeasAx) + α[Rx]T [Rx] (1.41)

= ‖ymeas − Ax
∥

∥

2 + α‖R · x‖2 = min (1.42)

With this approach, a regularization condition (obtained with a matrix of data based
on theoretical properties of the expected solution) is added to the precedingminimum.
The result for the transformation matrix is the following:

A−g = (AT A + α · RT R)−1 · AT (1.43)

Applications at case studies can clarify the criteria for the α parameter. For the
matrix R selection, a reference is given by the hole drilling method for residual
stress measurement, one of the most ill-posed problems of stress analysis, Fig. 1.8,
see discussion in [11, 12]. Figure1.9 shows a synthesis of the inverse and pseudo-
inverse matrices.
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Fig. 1.8 The hole drilling method for the residual stress measurement, see ASTM E 837-08

Fig. 1.9 Inverse and pseudo-inverse matrices for the solution of inverse linear structural problems
in matrix form [4]

1.3.3 Further Reading

The following sources can be useful to a reader seeking additional information about
Inverse Problems [13–19]. For a bibliography of inverse problems in experimental
solid mechanics see [20]. See also, for a general analysis on models in Engineering
and Physics [21].
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Chapter 2
Introduction to the Application
of Strain Gages

Abstract This chapter reviews the basic formulas of electrical resistance strain
gages and related circuits, as well as some concepts that are not always emphasized in
specialized books. Some sections of the chapter deal with the limits of the maximum
and minimum values of the measurable strain, the choice of the resistance of the
commercial gages series, the linearity and the drawbacks of the basic measuring
circuits and some properties of a piezo-resistive gages. Classic formulas are given
for principal strain and stress calculation for single strain gages and for rosettes, as
well as for the application of the Wheatstone bridge circuit to biaxial strain state. A
final issue concerns load cells. This topic is tackled from the point of view of design
for high sensitivity and high stiffness which are especially required for fatigue tests.
The calibration procedure is also described and applied to several cases, for uni- and
multi-axial cells.

2.1 Properties of Strain Gages

The electrical resistance strain gage is the simplest and more widespread sensor
developed for measuring static and dynamic strains at points of loaded structures
and for the manufacturing of transducers and instruments of high accuracy and res-
olution. Several types of strain gages are offered on the market: the piezo-resistive
type, the bonded metallic wire type, and foil resistance gages. The bonded resistance
strain gage is by far the most widely used in experimental stress analysis as it will
be shown; thus, the presentation is mostly devoted to this type. The manufacturers’
catalogues and Technical Notes remain the most useful tools for the choice, e.g.
[1–6], produced all over the world, in the USA, Germany, Japan and China. Nev-
ertheless, some general guidelines can offer the basic description of the main char-
acteristics for a first initiation among the great commercial variety of these sensors.
For a complete presentation of the strain gages technique, see the books [7–12].

The principle of operation is based on a known property: an electrical conductor,
subjected to strain along the axis, changes its electrical resistance. The strain can be
tensile and compressive, (distinguished by a positive or negative sign) representing
expansion or contraction respectively.

© Springer International Publishing Switzerland 2015
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Fig. 2.1 Changes of length
and diameter of an electrical
conductor when it is
stretched or compressed

When the conductor, electrically isolated by a thin backing called carrier, is bonded
in a certain direction to a restricted area of the test element, from the measurement
of the change in resistance it is possible to discover the strain in that direction.1 This
distance is the gage length and is an important parameter for a comparison between
various strain measurement techniques.

The measurement of a change in resistance between two points of an electrical
conductor close to one another is much more accurate than the direct measurement
of the variation of the distance between the same points obtained by mechanical
devices; furthermore, being an electrical signal, it offers enormous advantages from
the point of view of sensitivity, resolution, conditioning, storing, comparison and
remote control capabilities.

The minimal significant variation of the distance (related to the initial value) is
of the order of magnitude of 10−6 m

m or 1 µm
m . This unit, common in practical use, is

called micro-strain (µε) and is utilized for expressing deformation values.2

2.1.1 Relationship Between Strain and Resistance Change

An electrical conductor (not necessarily of circular section), subjected to deformation
along its axis, undergoes geometric variations (length and cross-section), Fig. 2.1 and
a physical variation due to the change of its resistive property.

For a conductor of cross-section S and length l the electrical resistance is:

R = ρl

S
(2.1)

Taking the logarithms of the twomembers of Eq.2.1 and the derivatives of themwith
respect to an auxiliary variable t , we have:

1 Strain is defined as the displacement between two points some distance apart, related to the initial
distance.
2 For a typical average strain value in a steel structure of 10−4 m/m = 10−4 mm/mm = 10−4 in/in
the equivalent values in this unit are of 10−2 % or 1000µε.
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logR = logρ + logl − logS = logρ + logl − 2logΦ − log
π

4
(2.2)

1

R

dR

dt
= 1

ρ

dρ

dt
+ 1

l

dl

dt
− 2

Φ

dΦ

dt

Eliminating the common auxiliary increment dt, the following relationship remains:

dR

R
= dρ

ρ
+ dl

l
− 2

dΦ

Φ

The first term dρ/ρ is due to the change in resistivity and can be interpreted as a small
piezo-resistive effect, while the terms εl = dl/ l and εt = dΦ/Φ = −νεl = −νdl/ l,
due to geometrical variations of the conductor in longitudinal and in lateral directions,
are the dominant effect for metallic materials. Then:

dR

R
= dρ

ρ
+ dl

l
(1 + 2ν) (2.3)

Collecting dl/ l:
dR

R
=

[

1 + 2ν + dρ/ρ

dl/ l

]dl

l

and substituting infinitesimal variations with finite increments, we have:

ΔR

R
= Sε (2.4)

where

S =
[

1 + 2ν + dρ/ρ

dl/ l

]

It can be concluded that if S is constant, the relative variation (called also frac-
tional change) in resistance is proportional to the fractional change in length.

S represents the conductor sensitivity. Since the geometric contribution alone is,
for every metallic alloy, between (1 + 2ν) = 1.5 ÷ 1.7 and becomes 2 in the plastic
field, while the measured value of S for metals for elastic (reversible) behavior is
between 2 and 4, it is possible to conclude that dρ/ρ due to a piezo-resistance effect
of the wire material is small but not negligible, and for special materials can be even
a big term.
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Table 2.1 Example of commercial strain gages materials (Vishay precision group M.M. [6])

Material Composition Sensitivity Use

Constantan 45Ni 55Cu 2.1 General

Karma 73 Ni; 20Cr; Fe and Al 2.1 General

Isolastic 36.5 Ni; 8Cr; 0.5 Mo;
55 Fe

3.6 Dynamic

Nichrome 80 Ni; 20 Cr 2.1 T > 250 ◦C
Platinum-Tungsten 92 Pt; 8 W 4.0 T > 250 ◦C
Isoelastic, Constantan, Nichrome, Karma, etc. are trade names

2.1.2 Materials for Metal Strain Gages

Alloys used for strain gagesmanufacturingmust exhibit a linear relationship between
the relative change of resistance and the strain, as well as a low temperature coeffi-
cient of the electrical resistance. Table2.1 shows the commercial names, chemical
composition, sensitivity and field of application of five of the most common alloy
materials for strain gages produced by a specialized Company [6] that satisfy the pre-
vious conditions and other requirements relating to temperature stability, to fatigue
strength and to other special applications in hostile environment.3 Other manufac-
turers [5] offer similar types of Strain gages that cover typical applications:

• Universal strain gages for stress analysis and simple transducers with a grid in
Constantan and carrier in Polyimide.

• Special strain gages for measurements at extreme temperatures from −269 up to
250 ◦C with a grid in Cr–Ni alloy and carrier in Polyimide.

Limiting the analysis to some of them, Constantan is the most widely used and the
least expensive gage wire material. This material is suitable for static or quasi-static
strain applications, for large deformations, even if it is not suitable for high tempera-
tures. This material is particularly attractive, because the geometrical contribution of
the conductor to the relative variation of the resistance (i.e. the sensitivity) is 2 and
it maintains its value for the entire deformation interval, Fig. 2.2a. It is stable with
respect to thermal variation so that the ratio

dρ/ρ

ε

is relatively constant at different values of ε, where ε = dl/ l. Sensors can be built
with a linear response up to great deformations; only at very large deformations
such as 150,000µm/m = 15%, is a non-linearity characteristic found and the

3 These are commercial names, but, due to the reputation of this Company, can constitute a reference
also for others that use similar alloys with different commercial names.



2.1 Properties of Strain Gages 27

Fig. 2.2 Schematic representation of the resistance versus strain characteristics of tensioned wires
of Constantan (a) and a Pt alloy (b)

relationship becomes non linear (parabolic). More sensitive sensors can be built
with other materials but they are much more critical with respect to the linearity.

With a proper manufacturing procedure of the alloy and of the selected melt, the
gage wire manifests a very low thermally induced strain (apparent strain) over a wide
range of temperatures. The same characteristics are typical of other alloys such as
Karma alloy, so that this material, together with Constantan, is considered to have
self-temperature-compensation.

In the field of FeNiCr alloys, the Isoelastic alloy has a higher sensitivity (3.6
versus 2.1 in Constantan) but, unlike Constantan, does not have the self-temperature-
compensation property and is too sensitive to changes in temperature, so that it is
not suitable for measurements with temperature variation over time.

Since most strain gages built with this alloy have a resistance of 350� (compared
to 120� of Constantan strain gages), the signal to noise ratio is improved.

However, the real advantage of this alloy is concerned with the better fatigue
properties with respect to other strain gage materials, even if the sensitivity remains
not constant with respect to deformation or to temperature and decreases from 3.5 to
2.5when the strain exceeds a threshold of 8,000µε. Concluding, this alloy is suitable
for standard dynamic strain measurement in vibration and impact applications.

For Chrome-Nickel and Platinum-Tungsten alloys or similar alloys of other man-
ufacturers,4 S is not constant with respect to the elongation and the temperature,
Fig. 2.2b. Nevertheless, they are resistant to high temperatures, and are thus used for
T > 250 ◦C or for other special purposes.

4 For HBM, these gages have the specifications of Series C.
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2.1.3 Resistance Values

The typical values of the strain gages on the market are 120, 350, 600, 1000�.5 Let
us examine the reason for this manufacturer choice. The elastic strains in a structural
mechanics problem lie in the interval of 10−4 ÷ 1%. This means that, e.g. for a steel
bar in pure tension (with the elastic modulus of about 200,000MPa) this interval
corresponds to a stress range from 0.2 to 2,000MPa.

With a resistance value of 120 �, and S equal to 2, the minimum value of the
sensitivity, the resistance varies in the range:

2.4 × 10−4 � ≤ ΔR ≤ 2.4 �

The instruments available today have a measuring range that fits the previous one,
with a sensitivity equal to:

1 division

10−4�

The minimum value thus corresponds to 2.4 divisions, an acceptable resolution for
measurements of very small deformations. Modern instruments have optimum lin-
earity and adequate class of accuracy. 6

The value of about 120 � is, generally, the lower commercial limit for a strain
gage resistance. Through the wire technology, this resistance requires a minimum
value of the conductor length of about 120mm.7 Also with modern techniques of
photoengraving, that make it possible to produce very thin gages on a polyimide
resin carrier, approximately 13µm thick, the conductor length is not negligible.
Moreover, if larger values of resistance (e.g. 350�) are preferable for the increment
of the measurable resistance variation with a consequent reduction of the noise to
signal ratio, such resistances are limited by the maximum acceptable length of the
conductor. A maximum resistance value of 1,000� can be regarded as the upper
limit in extreme applications.

5 Other less common values of the gages [13] with a grid in Constantan, can reach the value of
60�.
6 Often the terms resolution, precision, and accuracy are used interchangeably, but they actually
indicate very different entities: resolution is the fineness to which an instrument can be read and
precision is the fineness to which an instrument can be read with a good repeatability and reliability.

The class of accuracy is the percentage of the inherent error of the measuring device with respect
to full scale indication. E.g., if the class of accuracy is 2, this means an error of 2 in a full scale 100
reading [14, 15].
7 For an electrical conductor of Φ = 25µm = 0.025mm in diameter and ρ = 0.49�mm2

m =
0.49 × 10−3 �mm for Constantan:

lmin = 120 · 4.9 × 10−4

4.9 × 10−4 = 120mm
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Fig. 2.3 Sketches of a Normal (on the left) and Encapsulated (on the right) thin Film Strain gage
and its resistance range. A = gage length, B = grid width, C = overall pattern, D = matrix width,
E = matrix length

The reason for the adopted solution for the gages, in which the conductor is wound
(today engraved) in a grid with a serpentine shape, is now clear. All segments placed
along a direction cooperate in the overall resistance, while the gage length i.e. the
measuring base, coincides with the length of a segment, and is the distance over
which the measured strain is averaged. Thus in areas with high strain gradients, the
grid length must be very small, which greatly affects the conductor length, Fig. 2.3,
The thin isolated support must, when bonded, guarantee the perfect transmission of
the deformation from the measuring point to the grid.

Manufacturing the resistance strain gage by a photoengraving and etching process
allows grids of thickness 3.8 to 5 µm. For resistance values of 120� grids with very
small length from 0.2mm are thus available. There is another constraint on the
minimum value of the resistance due to the capacity to dissipate power in the form
of thermal energy (heat). This limit can be higher than the commercial value of the
strain gage, but a universal indication for this limit is not possible, because factors
other than gage type are involved.

All resistors have a steady-state power rating, which is the amount of Joule power
that they can dissipate for an indefinite time, without causing damage by overheating.
It depends on what other materials the grid is in contact with (conductive cooling),
the grid area,8 the carrier type and the adhesive properties, the thermal capacity of
body, the airflow around the conductor, etc.

8 The grid area is the active gage length multiplied by the grid width.



30 2 Introduction to the Application of Strain Gages

Table 2.2 Maximum acceptable grid power-density, from [9]

Tested body material PD (mW/mm2) Mean value

Thick Al or Cu 8 ÷ 16 12

Thick steel 3 ÷ 8 5

Thin steel 1.5 ÷ 3 2

Filled plastic or ceramic 0.3 ÷ 0.8 0.5

Unfilled plastic 0.3 ÷ 0.8 0.05

The not dissipated power, that is the second portion of the thermal power, is
responsible for a temperature increment so that both grid and substrate operate at
temperatures higher than the room temperature. When the temperature rise is exces-
sive, gage performance is affected by a variation of the electrical resistance.

The admitted temperature must be limited by this constraint, as well as by creep
effects. Experience [9] suggests a maximum value for the total Joule thermal power
PD

(

mW/mm2
)

per unit area of the grid, a function of the thermal capacity of the
body and of its thermal conductivity, Table2.2.

The thermal power varies as the square of the applied voltage: PW = R · i2 =
e2/R, where e is the voltage at the strain gage terminals. This power must not be
bigger than the maximum power dissipated by the conduction effect which is a
function of the heat-sink capacity of the body.

This limit is the product of the maximum dissipated power per unit area and the
area A of the grid:

PW ≤ PD · A

The total power is a function of e, thus a second minimum condition for the strain
gage resistance is:

R ≥ e2

PD · A
(2.5)

The e values, functions of the supply voltage e0 of the measuring circuit, can be
found by a trial and error method, by gradually increasing the bridge excitation9

under zero-load conditions until a zero instability is observed. The excitation should
then be reduced until the zero reading becomes stable again, without a significant
offset.

Following the suggestion of a manufacturer [6]: “Conducting this test at the maxi-
mum operating temperature instead of room temperature will increase the likelihood
that the maximum safe bridge voltage has been established.”

Commercial strain measurement instrumentation utilizes constant excitation volt-
age e0 of 1 to 10V, (with mean values of 1÷ 2V), thus the voltage across the active
arm e (one-half the bridge voltage for a bridge with equal resistances) varies from

9 As it will be shown, theWheatstone bridge is the most used measuring circuit for the strain gages.
In a normal set-up the bridge has four equal resistances on its arms.
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Table 2.3 Minimum gage resistance values for the admissible power densities

e0 (V ) e (V ) Body material PD
( mW
mm2

)

R(�) R(�)

Bridge Gage Grid area
= 3x1.4

Grid area
= 6x2.8

1 0.5 Thick Al or
Cu

8 ÷ 16 120 120

Thick steel 3 ÷ 8 120 120

Thin steel 1.5 ÷ 3 120 120

Filled plastic
or ceramic

0.3 ÷ 0.8 120 120

Unfilled
plastic

0.03 ÷ 0.08 1000 350

2 1 Thick Al or
Cu

8 ÷ 16 120 120

Thick steel 3 ÷ 8 120 120

Thin steel 1.5 ÷ 3 120 120

Filled plastic
or ceramic

0.3 ÷ 0.8 600 120

Unfilled
plastic

0.03 ÷ 0.08 >1000 >1000

10 5 Thick Al or
Cu

8 ÷ 16 600 120

Thick steel 3 ÷ 8 >1000 350

Thin steel 1.5 ÷ 3 > 1000 600

Filled plastic
or ceramic

0.3 ÷ 0.8 >1000 >1000

Unfilled
plastic

0.03 ÷ 0.08 >1000 >1000

0.5 to 5V. According to Eq.2.5 the minimum values of the strain gage resistance
can be calculated as a function of the bridge voltage e0, for different grid areas and
heat-sink properties of the gage type, Table2.3. From the Table values the following
remarks can be made on the excitation voltage:

• For all the cases for which the resistance exceeds the commercial values, the
excitation voltage must be reduced, selecting a gage with a larger area, or reducing
the bridge voltage with a potentiometric circuit, Fig. 2.8 or a series resistor.

• Creep in the gage backing and adhesive will occur also at room temperature, when
the temperatures of grid and substrate are raised by self-heating effects.

• Output due to temperature will be altered when grid and substrate temperatures
are significantly different.

• Gages for normal stress analysis can be excited at a higher level than under trans-
ducer conditions, where the utmost in stability, accuracy, and repeatability is very
high.
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Fig. 2.4 Transversal strain
on longitudinal grid elements
and on the inversion portions
of the conductor

• Gages for dynamic strain measurement can be excited by higher voltage with a
considerable advantage on measurement accuracy.

A great number of strain gage types are available on the market for the most widely
differing strain measurement applications, from experimental stress analysis appli-
cations to transducer development, for a variety of resistance values, lengths, pat-
terns, alloy materials to stainless steel, carbon steel, and aluminum (matched ther-
mal expansion coefficients (α = 5, 12, 16, 23, 27 ppm/◦K), substrates, adhesives
and bonding, and solder configurations. Several companies also provide installation
accessories and instruments for test and measurement applications. New inventions
related to manufacturing methods are continually being proposed as one based on
an ion beam technology.10

2.1.4 Transverse Sensitivity and Strain Gage Factor

In the serpentine arrangement of the strain gage bonded on a calibration specimen
in a longitudinal direction, the longitudinal grid elements and the inversion portions
of the conductor are also stretched in a transversal direction, Fig. 2.4 and the total
resistance variation of the gage is also a function of theseminor effects. Remembering
that:

Rl + Rt = R

the total resistance variation for a strain gage is:

ΔR = S · εl Rl + S · εt Rt

thus:
ΔR

R
= S · εl Rl · 1

R
+ S · εt Rt · 1

R

10 The method is described in (CN 101614522 B patent on Manufacturing method of resistance
strain gage based on ion beam technology (02–Mar–2011)Applicants: NO44 Inst. ofNo 4Academy
of China Aerospace Science and technology Corp. 866.473.6826, http://ip.com/).

http://ip.com/
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If:

Sl = S · Rl/R is the longitudinal sensitivity
St = S · Rt/R is the transversal sensitivity

ΔR

R
= Sl · εl + St · εt = Sl (εl + Kt εt ) (2.6)

with Kt = St
Sl
.

If the strain gage is bonded in a longitudinal direction on a specimenwith a known
bending moment Fig. 2.5, holds:

ΔR

R
= Sl (εl + Ktεt ) = Sl(εl − Ktν0εl) = Sl εl (1 − ν0Kt ) = K · ε

K = Sl (1 − ν0Kt ) is the gage factor, i.e. the proportionality factor between the
fractional resistance change and the longitudinal strain. The factor also takes into
account the backing and glue effect that partially shield the strain transition from
the body to the grid. As the constant was defined, the calibration of the strain gage
factor K depends on the ratio between longitudinal and transverse strains of the
calibration bar. A systematic error arises in all the cases of strain gage applications
in a biaxial stress field, with a ratio other than that used in the calibration specimen
[16]. Even if errors in strain indication due to transverse sensitivity are generally
small since the transverse sensitivity is small, (in common gages it varies from −9.2
to +1.8 %), these errors can become intolerable in biaxial strain fields with large
differences between principal strains [17]. It can be taken into account and corrected
in a simple way for two gages bonded in whatever perpendicular directions 1 and 2
of a biaxial state of stress, where the fractional gage resistances in both directions
can be written as:

ΔR1

R1
= Sl · ε1 + St · ε2 = K ε̂1

ΔR2

R2
= Sl · ε2 + St · ε1 = K ε̂2

Fig. 2.5 Device for gage
calibration
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where: ε̂1 and ε̂2 are the indicated not corrected values with the gage factor K .
Substituting its expression leads to the equations:

{

Sl (ε1 + Kt ε2) = Sl(1 − ν0 Kt )ε̂1

Sl (ε2 + Kt ε1) = Sl(1 − ν0 Kt )ε̂2

from which the true strains in both directions 1 and 2 are derived:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ε1 = 1 − ν0 Kt

1 − K 2
t

(

ε̂1 − Kt ε̂2
)

ε2 = 1 − ν0 Kt

1 − K 2
t

(

ε̂2 − Kt ε̂1
)

(2.7)

2.1.5 Influence of a Temperature Variation

It is known that the resistance of an electrical conductor R is strongly affected by
the temperature; so the strain gage grid, the lead wiring, as well as the backing and
the body material to which the gage is bonded, are strongly influenced by changes
in temperature, these variations constituting the most common causes of error of the
measurements.

Only a temperature variation of the bonded gages during the test influences the
results. A resistance variation before the bridge balance is ineffective and compen-
sated and does not influence the measurements. Vice-versa, during-the-test temper-
ature changes are causes of relevant errors. Let us consider the thermal phenomenon
that affects all the variables, inducing:

• A resistivity variation of the grid material, expressed in a linearized form for small
thermal variations, as:

ρt = ρ0(1 + γΔT )

then
Δρ

ρ0
= γΔT

This fractional variation takes into account the modification of the resistance of a
unitarian dimension of the conductor material, due to two reasons:

– the geometrical variation of the unitarian volume (length and cross-section of
the conductor) and

– the modification of the physical material property.
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As a consequence, the fractional resistance variation is the same as the fractional
resistivity variation. Indeed:

ΔR

R
= Δρ

l

S

1

R
= Δρ

ρ
= γΔT

This term is the first contribution of an apparent strain:

εapp = γΔT

K
(2.8)

(e.g. for Constantan γ = 40 ppm/◦K)
• In addition, a sensitive grid length variation must be considered, equal to:

lt = l0(1 + αΔT )

(for the Constantan α = 15 ppm/◦K)

And the fractional contribution to the apparent strain is:

εapp = lt − l0
l0

= αΔT

• Moreover, a length variation of the portion of the body onwhich the gage is bonded
occurs for the linear dilatability coefficient of the tested objects:

lt = l0(1 + βΔT )

β is, e.g. equal to 12 ppm/◦K for Carbon steel 16 ppm/◦K for inox austenitic steel
24 ppm/◦K per aluminum alloys.

The fractional contribution to the apparent strain is:

εapp = βΔT (2.9)

• The expression of the total apparent strain is thus:

εapp =
[ γ

K
+ (β − α)

]

ΔT (2.10)

The minus sign is justified by the deformation sign conventions. If β > α this
strain shows an apparent tension and a compression in the contrary case.

• The gage factor is finally influenced by a temperature change, according to a linear
law, as follows:

KT = K0(1 + δΔT ) (2.11)
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with a value for the most common gages equal to δ = 95 ppm/◦K. The real value
is given by the manufacturer in the strain gage packaging, together with the gage
factor and a complete diagram of the apparent strain for the actual base materials.

The previous relationship shows that the apparent strain depends not only on the
nature of the strain gage, but also on the material to which the gage is bonded.
For this reason, thermal output data are meaningful only when referred to a
particular type of strain gage, bonded to a specified material.

• In order to reduce the apparent strain of Eq.2.10 it is thus necessary to select the
coefficients α, β and γ in order to reduce it to a minimum value or better to cancel
it completely. Manufacturers suggest, the coefficient γ of the grid material being
known, the proper choice of α for matching the body material coefficient β, in
order to have a global compensation on the apparent strain. The gages of this kind
are called self-compensating gages.

• In the case of dynamic or cyclic strain measurements, if the scope of the measure-
ments is the strain variation at a frequency higher than the frequency of temperature
change, the thermal output (apparent strains) on the mean signal value is theoret-
ically of no consequence on the measurement results, and it can be neglected.

• Nevertheless, the errors due to thermal output can not be compensated on the
entire temperature range but only on a limited interval close to the room tempera-
ture, but they become extremely large as temperatures deviate from the reference
temperature during tests.

2.1.6 Compensation for Thermal Output

The way to reduce apparent strains is the use of self-temperature compensation
gages and/or utilizing proper circuit arrangements. In order to keep apparent strain
as small as possible (at least in the normal range of working temperatures) in case
of temperature changes, the metallurgical properties of grid materials are modified
by adding alloying elements and by working them with proper thermo-mechanical
treatment.

Strain gagemanufacturers [18] provide, e.g. for each lot of themost common alloy
gages, diagrams like that in Fig. 2.6 for self-temperature compensated Constantan
(A-alloy) and modified Karma (Vishay K-alloy) strain gages. These diagrams show
the effect of the self-compensation when the gages are bonded to material having
the thermal expansion coefficient for which the gage is intended. A regression-fitted
(least-squares) polynomial equation is given to calculate the apparent strain of Con-
stantan alloy gages. This equation is useful for temperatures outside the field of a
total compensation.
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Fig. 2.6 Thermal output
variation with temperature
for self-temperature
compensated, (a) Constantan
and (b) (Vishay K-alloy)
strain gages
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εT = A0 + A1T + A2T 2 + A3T 3 + A4T 4 (2.12)

where T is the grid temperature during the test.
For Constantan alloy, the following average coefficients can be used for repre-

senting the curve with T in Fahrenheit degrees:

ε = −8.54×10+2.65 · T −2.47×10−2 · T 2 +6.50×10−5 · T 3 −3.84×10−8 · T 4

or the following for T in Centigrade degrees, Fig. 2.6:

ε = −23.803+2.2749 ·C −0.060575 ·C2 +0.00035041 ·C3 −4.0311×10−7 ·C4

Zero of the function is for T equal to the ambient temperature.
Those equations are obtained for a gage factor equal 2.0, so that apparent strains

calculated by the previous equations must be adjusted to a different gage factor.
The correction on the gage factor that also takes into account the thermal effect

computed in Eq.2.11 due to backing and glue materials is evaluated by the following
Eq.2.13:

ε = ε̂ · K0

K (T )
(2.13)

where:

ε is the corrected strain,
K0 is the calibration factor equal 2.0 for Constantan,
K (T ) the actual value at the test temperature,
ε̂ the indicated (not corrected) strain corresponding to K = 2.

The apparent strain must be algebraically subtracted from the indicated (not cor-
rected) strain on the display of the instrument.

Conversely, it is clear that, if the gage is usedwithin the range of the compensation,
it is not necessary to compensate its thermal output.
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2.2 Strain Gage Rosettes

According to the elastic theory, the strain value in a point εθ in the direction θ can be
expressed as a function of the normal and shear strain in two mutual perpendicular
axes x, y.

• the strain εx = dx/x gives this contribution along θ direction:

εθ = da

a
= dx cos θ

x/ cos θ
= εx cos

2 θ (2.14)

• the strain εy = dy/y gives this contribution along θ direction:

εθ = da

a
= dy sin θ

y/ sin θ
= εy sin

2 θ

• the shear strain γxy, gives this contribution along θ direction:

εθ = da

a
= γxy a sin θ cos θ

a
= γxy sin θ cos θ = γxy

2
sin 2θ

Thus the total strain along θ direction is:

εθ = εx cos
2 θ + εy sin

2 θ + γxy

2
2θ

or:

εθ = εx + εy

2
+ εx − εy

2
cos 2θ + γxy

2
sin 2θ (2.15)

Conversely, in order to derive the normal and shear strains from the strain εθ at a point
εx εy γxy, referring to a coordinate system of cartesian axes, three measurements
of εθ in three different θ directions are needed:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

εa = εx + εy

2
+ εx − εy

2
cos 2θa + γxy

2
sin 2θa

εb = εx + εy

2
+ εx − εy

2
cos 2θb + γxy

2
sin 2θb

εc = εx + εy

2
+ εx − εy

2
cos 2θc + γxy

2
sin 2θc

(2.16)

The idea of rosette gages derives from these Equations.
Having a single sensor formed by three gages assembled in optimal directions on

the same backing facilitates the bonding and the electrical connection of two/three
gages, Fig. 2.7. Stacked Rosette gages allow a more accurate measurement at the
same point but are critical from the point of view of the thermal power and of the
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Fig. 2.7 Schematic representation of three-gage Rosettes with different layout of the strain gages
at 45 and 60/120◦ with separated or stacked grids

local reinforcement effects.11 It follows that a single gage with one input power will
have a temperature rise at the surface equal to double the mean temperature of the
grid, (taking the temperature of the specimen as equal to room temperature). Then
in a stacked three-gage rosette similarly excited, the top grid will receive six times
the temperature rise of a similar single gage.

In this case of the three gages, the power applied to each gage must be reduced
to 1/6, to keep the temperature rise of the top grid equal to that of a single gage.
Since the power is proportional to the square of the applied voltage (PW = e2/R),
the excitation voltage must be reduced to 1/

√
6 = 1/2.5.

If the strain gradient at the measuring point is not too high and the deformation is
essentially constant in the area around the point, rosettes with not overlapped gages
are the appropriate solution.

2.2.1 Three-Gage Rectangular (0◦ 45◦ 90◦) Rosettes

In this case the θ values are:
⎧

⎪

⎨

⎪

⎩

θa = 0◦

θb = 45◦

θc = 90◦
(2.17)

11 For Fourier’s law qx = −kAdT/dx holds, where: qx is the amount of heat transferred per unit
time that is constant for each gage.
k is the thermal conductivity.
A is the exchange area.
From dT/dx = const. a linear law of temperature variation along the gage thickness is derived.
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The Eq.2.16 give:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

εa = εx + εy

2
+ εx − εy

2
= εx

εb = εx + εy

2
+ γxy

2

εc = εx + εy

2
− εx − εy

2
= εy

then:
⎧

⎪

⎨

⎪

⎩

εx = εa

γxy = 2εb − εa − εc

εy = εc

and for the principal strains:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε1, ε2 = εx + εy

2
±

√

(εx − εy

2

)2 +
(γxy

2

)2

tan 2φ = γxy

εx − εy

or:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε1, ε2 = εa + εc

2
±

√

(εa − εc

2

)2 +
(2εb − εa − εc

2

)2

tan 2φ = 2εb − εa − εc

εa − εc

(2.18)

φ is the angle between the principal direction 1 and the x axis.
The determination of the actual value of φ from the previous equation needs the

signs analysis of the numerator z and denominator n of the Equation:

φ = 1

2
arctan

z

n
(2.19)

Table2.4 shows the actual angle values for different signs of the numerator and
denominator. The corresponding state of stress is determined by the constitutive law,
e.g. the Hooke’s law, valid for the elastic-isotropic case:

Table 2.4 Determination of the actual directions of the principal strains

z ≥0 >0 ≤ 0 <0

n >0 ≤ 0 <0 ≥0

φ φ = φ∗ φ = π
2 − φ∗ φ = π

2 + φ∗ φ = π − φ∗

0◦ ≤ φ < 45◦ 45◦ ≤ φ < 90◦ 90◦ ≤ φ < 135◦ 135◦ ≤ φ < 180◦
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⎧

⎪

⎨

⎪

⎩

σ1 = E

1 − ν2
(ε1 + νε2)

σ2 = E

1 − ν2
(ε2 + νε1)

(2.20)

Substituting Eq.2.18 gives:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

σ1, σ2 = E

2

[εa + εc

1 − ν
± 1

1 + ν

√

(εa − εc)2 + (2εb − εa − εc)2
]

φ = 1

2
arctan

2εb − εa − εc

εa − εc

(2.21)

2.2.2 Three-Gage (0◦ 120◦ 240◦) or (0◦ 60◦ 120◦) Rosettes

These rosettes, called also delta rosettes, offer a very slight potential advantage over
the 45◦ rectangular rosette. The only reason is due to the greatest possible angle from
one another that in some cases could increment the accuracy. The relationships are
similar to the other ones but more complex: the θ values are:

⎧

⎪

⎨

⎪

⎩

θa = 0◦

θb = 120◦

θc = 240◦
(2.22)

The previous relationships give:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

εa = εx + εy

2
+ εx − εy

2
= εx

εb = εx + εy

2
+ εx − εy

2
(−0, 5) + γxy

2
·
(

−
√
3

2

)

εc = εx + εy

2
+ εx − εy

2
(−0, 5) + γxy

2
·
√
3

2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

εx = εa

γxy

2
= 1√

3
(εc − εb)

εy = 1

3
·
[

2(εb + εc) − εa

]
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Following the same way as the 45◦ rosettes, the principal strains are:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε1, ε2 = εx + εy

2
±

√

(εx − εy

2

)2 +
(γxy

2

)2

tan 2φ = γxy

εx − εy

(2.23)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε1, ε2 = εa + εb + εc

3
±

√

(2εa − εb − εc

3

)2 + 1

3
(εc − εb)2

tan 2φ =
√
3 (εc − εb)

2εa − εb − εc

(2.24)

φ is the angle between direction 1 and x axis. The principal stresses σ1 and σ2 are:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σ1, σ2 = E
[εa + εb + εc

3(1 − ν)
± 1

1 + ν

√

(2εa − εb − εc

3

)2 + 1

3
(εc − εb)2

]

φ = 1

2
arctan

√
3 (εc − εb)

2εa − εb − εc
(2.25)

The first becomes:

= E ·
{εa + εb + εc

3(1 − ν)
±

√
2

3(1 + ν)

√

(εa − εb)2 + (εb − εc)2 + (εc − εa)2
}

These formulas are valid for the sequence of angles:

⎧

⎪

⎨

⎪

⎩

θa = 0◦

θb = 120◦

θc = 240◦
(2.26)

Vice-versa, for the sequence:
⎧

⎪

⎨

⎪

⎩

θa = 0◦

θb = 60◦

θc = 120◦
(2.27)

a sign change is necessary in the second of Eqs. 2.25:

φ = 1

2
arctan

√
3 (εb − εc)

2εa − εb − εc
(2.28)
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2.3 Potentiometric Circuit

The strain gage is inserted in an electric circuit that transforms the measurement
of the fractional electrical resistance of the grid into a measurement of fractional
electrical voltage. The most simple circuit for measuring the fractional resistance of
a gage is the potentiometric circuit, Fig. 2.8. The circuit is suitable only formeasuring
dynamic strains but it cannot be used for static or slowly variable deformations.

The output voltage at open terminals, when the strain gage is stretched, is:

e = R1

R1 + R2
· e0 (2.29)

When the gage changes its resistance by the amount ΔR1, the output voltage is:

Δe

e0
= R1 + ΔR1

R1 + R2 + ΔR1
− R1

(R1 + R2)
= ΔR1R2

(R1 + R2)2 + ΔR1(R1 + R2)
(2.30)

This is a highly non-linear relation with respect to ΔR1. The task of R2 is to reduce
the non-linearity and this happens if (R1 + R2) is much greater than ΔR1. E.g. for
R1 = R2 = 120�, the sum 240 is much greater than ΔR1 variable in the range
of 10−3 e 1� Only for very high deformation values must the non-linearity of the
previous expression be taken into account.
For the most common ΔR1 values, ΔR1(R1 + R2) is negligible with respect to the
square of the sum and Eq.2.30 gives with good approximation:

Δe

e0
= R1R2

(R1 + R2)2
· ΔR1

R1
= R1R2

(R1 + R2)2
· K ε (2.31)

Since:

lim
R2→0

R1R2

(R1 + R2)2
= lim

R2→∞
R1R2

(R1 + R2)2
= 0 (2.32)

Fig. 2.8 Scheme of the
potentiometric circuit
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high values of R2 improve linearity but reduce the coefficient
R1R2

(R1 + R2)2
that rep-

resents the circuit sensitivity; on the contrary, smaller R2 values reduce both linearity
and sensitivity.

For R2/R1 = 1 the circuit sensitivity reaches its maximum value equal to 1/4.12

In this case:
Δe

e0
= K ε

4
(2.33)

The linearized approximation is obtained by the first variation of the functional e:

de = ∂e

∂ R1
dR1 + ∂e

∂ R2
dR2 + ∂e

∂e0
de0 (2.34)

Second and third terms are zero if R2 is a constant and if a stabilized excitation is
used. Equation2.34 becomes:

de = ∂e

∂ R1
dR1 = R2e0

(R1 + R2)2
· dR1

For finite differences, dividing and multiplying the second term by R1 the fractional
voltage change, proportional to the fractional resistance change is:

Δe

e0
= R1R2

(R1 + R2)2
· ΔR1

R1
= R1R2

(R1 + R2)2
· K ε (2.35)

with the proportionality factor:

R1R2

(R1 + R2)2
· K

2.3.1 Measurement of Dynamic Strains

From the Eq.2.31, applied to the case of classic strain values, the fractional voltage
of the potentiometric circuit Δe/e0 varies within the range 10−6 ÷ 10−2. With an
excitation of a few volts, the minimum values of the voltage changeΔe are expressed
by the fifth or sixth decimal figure of the output voltage e +Δe. This problem can be
overruled only for dynamic Δe measurement where it is possible to block the static
component with a proper RC filter, Fig. 2.9.

12 Numerator and denominator are derided by (R2)
2:

R1R2

(R1 + R2)2
= R1/R2

(1 + R1/R2)2
; Themaximum

is obtained for the null value of the derivative with respect to the ratio x = R1/R2. The derivative
1 − x

(1 + x)3
is zero for x = 1, i.e. for R1 = R2.
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Fig. 2.9 Potentiometer
circuit with RC Filter

2.3.1.1 RC Circuit Response to an Impulsive Input

This problem is analyzed by J.F.Doyle, see [19] for a detailed presentation.Assuming
a null internal resistance of the generator e, the output voltage is the drop e′ = RM I
across the resistor RM (expression acceptable for open circuit or in the case of an
output instrument with great resistance). The capacitor C stores energy such that the
voltage drop is:

eC = Q

C

from which:
deC

dt
= 1

C

d Q

dt
= I

C
(2.36)

where: Q is the charge and I the current.
The input voltage e, i.e. the voltage drop on the series of capacitor and resistor

RM is:

e = eC + eR thus
de

dt
= deC

dt
+ deR

dt
= I

C
+ de′

dt

where I is the current circulating in RM that is equal to e′/R. Substituting Eq.2.36,
holds:

de

dt
= e′

RC
+ de′

dt
(2.37)

or:

RC
de′

dt
+ e′ = RC

de

dt
(2.38)

When RC is great, e = e′ and vice-versa, when RC tends to zero, then e′ = 0. Thus,
the potentiometric circuit can be used for recording dynamic phenomena, accepting
inevitable attenuation and distortion effects, Fig. 2.10 (on the left side).
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Δe
e'

ϖRMC

1

Fig. 2.10 Response of RC circuit to a rectangular [19] (on the left) and to a sinusoidal input (on
the right)

2.3.1.2 RC Circuit Response to a Sinusoidal Input

Choosing a value of RM much larger than the parallel of all the resistors before the
filter, Fig. 2.9 (in such a way to neglect the voltage drops on the internal resistances
of the supply voltage with respect to the filter impedence), the DC-current in RM ,
due to a constant voltage e, is zero; the output voltage is due to the variable current
only, generated by Δe, sinusoidal input.

In fact, taking the e expression, constituted by a constant term and a variable term:
e = e0 + Δe sinωt , substituting this in the differential equation Eq.2.38, gives:

RC
de′

dt
+ e′ = RC · Δe ω cosωt (2.39)

The term e disappears and the differential equation gives the following solution of
the associated homogeneous Equation:

eomo = K e−t/RC

The diagram of the attenuation function, i.e. the filter characteristics is shown in
Fig. 2.10 (on the right side)

The voltage drop e′ across RM terminals is then:

e′ = RM ivar. = RM (Δe)

|Z |
Since the filter impedance is:

|Z | =
√

R2
M + 1

ω2C2 (2.40)
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finally holds:
e′

Δe
= 1

√

1 + 1
(ωRM C)2

(2.41)

The constant component of the voltage is stopped while the variable component Δe
is transmitted but attenuated as a function of RM and C values.

Exercise 2.1 Calculate an RC filter for a dynamic measurement of a variable signal,
proportional to a sinusoidal strain with an amplitude equal to 500µε and a frequency
of 30Hz (corresponding to ω = 2π f = 190 rad/sec). The gage resistance R1 is
120�, K = 2, and a grid area is 6 · 2.8mm2. The resistor R2 is equal to R1.

(a) Maximum Current in the strain gage

The limit value for PD is 5mW/mm2, (Thick steel). For the selected grid dimen-
sions the limit power is PW = 84mW. The corresponding maximum current
is:

i =
√

PW

R
= 26.5 m A

(b) Electromotive force (emf) and output voltage
If R1 = R2 we have:

i = e

R1
= e0

R1 + R2

then:
e = 3.17V e e0 = 6.35 V

(c) Output voltage Δe

For K = 2 and ε = 1,000µε:Δe = 1/4 K ε·e0 = 2
10−3

4
·6.35 = 3.17×10−3 V

The total output voltage is:

e + Δe = 3.17 + 3.17 × 10−3V

(d) RC Filter

The resistance RM f must be as large as possible, to reduce output voltage drop:

RM 
 R1R2

R1 + R2
= R1/2 = 60�



48 2 Introduction to the Application of Strain Gages

If we select RM = 6,000�, in order to transmit Δe with low attenuation, (e.g.
e′ ≥ 0.9 · Δe), it must be:

e′

Δe
= 1

√

1 + 1

(ωRM C)2

≥ 0.9

From this Equation the value of C is found:

C ≥ 1.81 × 10−6 Faraday = 1.81µF

2.4 Wheatstone Bridge

The constant output voltage component can be suppressed by two potentiometric
circuits connected in opposition to each other as shown in Fig. 2.11. This circuit is
called a Wheatstone Bridge. In this circuit the output voltage is only Δe, which can
be measured on the principle of the null deflection method that is slow, but gives very
accurate results. The other advantage of this circuit is its capability to perform logic
operations such as signal products, sums and subtractions, that is a useful property
for many applications. Because of its outstanding sensitivity, the Wheatstone bridge
is the most frequently used circuit for strain measurements.

The output voltage of the circuit with four potentially variable resistances, can be
written as the difference between two potentiometric circuits, Fig. 2.11 as:

VC − VA = R3i ′ − R2i =
( R3

R3 + R4
− R2

R1 + R2

)

· e0 (2.42)

R2 R3

R1 R4

e0

e

A Ci i'

Fig. 2.11 Double potentiometric circuit in opposition and the equivalent Wheatstone bridge
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An initial steady state voltage exists unless the numerator above is zero. Such a
configuration with zero output voltage is termed a Balanced Bridge and is provided
when:

R3

R3 + R4
= R2

R1 + R2

i.e.:
R1R3 = R2R4 (2.43)

If three of four resistances are known, the fourth (e.g. R1) can be determined by the
other values obtained at balance, without having any current on the output diagonal
and without a stabilized electromotive force (emf) that does not play any role in the
equilibrium equation.

If the bridge is used as a double potentiometer and the circuit gives an output pro-
duced by small changes in the resistance of the bridge arms, which can be considered
infinitesimal changes, the circuit can be linearized and the following relationship
holds:

de = ∂e

∂ R1
dR1 + ∂e

∂ R2
dR2 + ∂e

∂ R3
dR3 + ∂e

∂ R4
dR4 + ∂e

∂e0
de0 (2.44)

Deriving first the infinitesimal changes, then substituting themwith finite differences
in each resistor:

Δe = R1R2e0
(R1 + R2)2

·
(ΔR1

R1
− ΔR2

R2

)

+ R3R4e0
(R3 + R4)2

·
(ΔR3

R3
− ΔR4

R4

)

+
( R3

R3 + R4
− R2

R1 + R2

)

· Δe0 (2.45)

The last term is zero if the bridge is balanced or for a stabilized supply voltage. The
equation gives:

Δe

e0
= R1R2

(R1 + R2)2
·
(ΔR1

R1
− ΔR2

R2

)

+ R3R4

(R3 + R4)2
·
(ΔR3

R3
− ΔR4

R4

)

(2.46)

If the bridge is balanced before gage deformation, from Eq.2.43 the following iden-
tities derive:

R3

R3 + R4
= R2

R1 + R2

or:
R4

R3 + R4
= R1

R1 + R2
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multiplying the members of the first relation by the corresponding members of the
second:

R1R2

(R1 + R2)2
= R3R4

(R3 + R4)2

and Eq.2.46 becomes:

Δe

e0
= R1R2

(R1 + R2)2
·
(ΔR1

R1
− ΔR2

R2
+ ΔR3

R3
− ΔR4

R4

)

(2.47)

Moreover, if R1 = R2:

Δe

e0
= 1

4
·
(ΔR1

R1
− ΔR2

R2
+ ΔR3

R3
− ΔR4

R4

)

(2.48)

Remarks:

• Linearity simplification is acceptable only for small bridge unbalance voltage.
• Even if the bridge consists of four only nominally equal gages, Eq. 2.48 can be
used considering four identical resistors (e.g. four strain gages of the same nom-
inal values), because possible small variations on the real values of strain gage
resistances do not affect the measurement accuracy. Even differences of 5% due
to the tolerance in the resistance of R1 and R2 produce errors less than 0.1%.

• If the measuring points are limited number, it is right to balance the bridge before
the test, to limit the initial unbalance currents.

• Vice-versa, in the case of Data Acquisition Systems based on a computer for the
automatic scanning of a large number of strain gages, it is preferable to record and
store the initial unbalanced of all the measuring points, subtracting automatically,
at the end of the test, the initial values from the final readings.

• Commercial instrumentations offer many ways of balancing the bridge by series
and parallel variable resistors, suitable also for balancing full bridges in which all
the arms contain active strain gages, Fig. 2.12. In Fig. 2.13 the adjustable resistors
are all in a second bridge in parallel with the main bridge, for a maximum balance
operation flexibility.

2.4.1 Shunt Calibration

A substitution method is generally used when a direct method of calibration is not
possible. In this method an auxiliary shunt is used that produces an effect on the
measurement equipment comparable with a real predetermined mechanical strain.
This is accomplished by shunting, or connecting, a large resistor of known value RC

across one arm R1 of the bridge (in parallel with the nominal resistance), creating a
known resistance variation equal to:
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R2 R3

R1 R4

e0

e

R2 R3

R1 R4

e0

e

Fig. 2.12 Series and parallel circuits

R2
R3

R1 R4

e0

e

Fig. 2.13 A second bridge in parallel with the main one

ΔR1 = R1RC

R1 + RC
− R1 < 0 (2.49)

If the output of the bridge must correspond to a known deformation ε for strain gage
with known gage Factor K , it is possible to write this condition:

ΔR1 = R1RC

R1 + RC
− R1 = −K · ε · R1 (2.50)

that is negative since the parallel produces a reduction of the resistance of the arm 1.
From this relationship the following shunt value derives:

RC

R1
= 1

K · ε
− 1 (2.51)

Exercise 2.2 Calculate a Shunt for calibrating a circuit with: K = 2, ε = 1,000µε

and R1 = 120�.
From Eq.2.51

RC = 59,880�
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while, for ε = 2,000µε:
RC = 29,880�

Since this choice is made with a conventional Gage Factor K equal K̂convent = 2,
the actual deformation for the actual Gage factor Kactual, is:

εactual = 2

Kactual
· ε

2.4.2 Bridge Excitation

The Wheatstone Bridge circuit can be excited by direct or alternating voltage [10].
The different choice is connected with the use of the amplifier that is necessary to
raise the level of the signal from millivolts to volts.

• The direct voltage measuring amplifier provides a stabilized direct excitation of
the bridge and amplifies static as well as dynamic signals also of high frequency.
The disadvantage is the amplification, together with the main signal, of spurious
signals due to electrical and magnetic field and thermal and galvanic voltages. The
last can be detected by reversing the excitation.

• On the contrary, the alternating voltage measuring amplifier with the carrier fre-
quencymethod amplifies static and dynamic signals with amplitude modulation of
a high frequency carrier (225Hz or 5kHz), but does not accept frequencies above
or below it. The spurious direct signals are eliminated but dynamic signals with
a frequency greater than 9Hz or 1kHz respectively are cut. The alternating volt-
age also needs a double balancing device for resistance and capacitance balance,
but is very stable when wires are properly protected against spurious capacitances.

The bridge equilibrium condition between the resistors and capacitors on the four
arms (Fig. 2.14) is:

Z1Z3 = Z2Z4 (2.52)

that originates two different relationships between moduli and phases:

|Z1| · |Z3| = |Z2| · |Z4| (2.53)

φ1 + φ3 = φ4 + Φ2 (2.54)

where:

|Z | =
√

R2 + 1

ω2C2
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Fig. 2.14 Alternating
voltage bridge
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Z1 Z4
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2.5 Bridge Configurations

The Wheatstone bridge offers the possibility to arrange a variety of circuits that,
with computer aid, are able to perform accurate measurements at a huge number of
points and to record and process data. Through the same kind of circuits, it is also
possible to utilize strain gages devices for implementing control (see, e.g. in Chap. 8
the strain-controlled tests) and industrial surveillance systems.

2.5.1 Quarter Bridge

The most simple unit is the quarter bridge circuit for a single strain measurement. In
this circuit three dummy resistances complete the bridge, as shown in Fig. 2.15. In
this arrangement the output is temperature sensitive, unless the active gage (R1) is
self-compensated for that temperature range. The circuit is often used when accuracy

Fig. 2.15 Quarter bridge
configuration
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e
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requirements are not severe (≈10µε). The circuit is the same as the potentiometric
one, and the output is given by Eq.2.55:

Δe

e0
= R1R2

(R1 + R2)2
· ΔR1

R1
= R1R2

(R1 + R2)2
· K = K ε1

4
ε1 (2.55)

(The last passage if R2/R1 = 1 and the circuit factor becomes 1/4).

2.5.2 Half Bridge

For this case two non-active resistances are provided in adjacent arms (R2 and R3),
Fig. 2.16.

The bridge output is not sensitive to temperature so long as any temperature
changes occur equally in the two arms R1 and R4, provided both other elements
are temperature insensitive. An output is produced only when unequal resistance
changes are produced in gages R1 and R4. The bridge output is:

Δe

e0
= R1R2

(R1 + R2)2
· K (ε1 − ε2) (2.56)
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Fig. 2.16 Half bridge configuration with: a one active gage and a compensator gage, b two active
gages
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Two kinds of measurements are possible:

• If R2 is a compensator gage, i.e. a non-active gage, with only an apparent defor-
mation (ε2 = εapp), the output is:

Δe

e0
= R1R2

(R1 + R2)2
· K (ε1 + εapp − εapp) = R1R2

(R1 + R2)2
· K ε1 = Δe

e0
= K ε1

4
(2.57)

If R2/R1 = 1, the last passage is valid.
• If the task of this circuit is the measurement of the bending strain in thin plates or
beams, both the strain gages R1 and R2 are active and the output is twice that of a
single active gage. If the two gages are close to each other, the possible temperature
changes during the test will be nearly identical in them and no apparent strain will
be observed. Moreover, if a component of uniform stretching (or compression) is
present in addition to the bending, its effect would be canceled, since it would be
the same for each gage.

The equation is the following, see Eq.2.48 with ε1 = −ε2 and ε3 = ε4 = 0:

Δe

e0
= R1R2

(R1 + R2)2
· K (ε1 − ε2) = R1R2

(R1 + R2)2
· 2K ε1 (2.58)

This configuration has the following advantages in slender structure measurements:

• If the two gages aremounted opposite each other on opposite (top/bottom) surfaces
so that a compressive strain (−ε) is measured by one and an equal tensile strain
(+ε) by the other, Eq. 2.57 the output is twice the bending deformations (with an
increment of the sensitivity).

• Apparent strains are eliminated.
• Possible contributions of strain due to normal load are also eliminated.

The same circuit but with the two active gages connected with opposite bridge
arms cannot be considered a half bridge configuration since it does not elim-
inate apparent strains. Then, this circuit needs auto-compensated gages. Nev-
ertheless, this circuit has the following advantage: it eliminates the bending
deformations and gives double the normal strain value, improving the sensi-
tivity of the measuring circuit.

2.5.3 Full Bridge

In a full bridgemeasuring circuit all the gages on the four arms are active. This circuit
has perfect thermal compensation and maximum sensitivity.
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The circuit equation are given by Eqs. 2.46–2.48 depending on the values of the
four resistances in the bridge arms. The last one becomes:

Δe

e0
= K

4
·
(

ε1 − ε2 + ε3 − ε4

)

(2.59)

Some applications are described below.

2.5.3.1 Axial Strain in Slender Beams

Two strain gages are mounted on two opposite sides of the bar, along the longitudinal
direction and connected on opposite branches of the bridge in order to double the
strain of the bar due to a normal load. The two additional gages are mounted on the
same opposite sides of the bar but on transversal directions, Fig. 2.17 and connected
on the remaining branches of the bridge. Through this scheme the following results
are obtained and the Equation is the following, Eq.2.60:

• The strains due to a bending moment My are not recorded.
• All the apparent strains are eliminated.
• The strains due to a bending moment Mx are also not recorded.

R1

R2

R3

R4

x

y

R1

R2

R4

R3

(a) (b)

Fig. 2.17 Full bridge applications. aMeasurement of axial stress in a bar; bmeasurement of torsion
in a shaft
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• The circuit sensitivity is improved due to the concurrent contributions of the four
gages.

• The output signal is linearly related the axial load only.

Δe

e0
= K

4
·
(

ε1 + νε1 + ε1 + νε1

)

= 2(1 + ν)K

4
· ε1 (2.60)

2.5.3.2 Deformation of a Circular Shaft Subjected to Pure Torsion

The same electrical connection is utilized for measuring deformation of a circular
shaft subjected to torsion and other spurious loadings such as bending moments.

To isolate the pure torsion, the gages on opposite sides of the bridge must be
bonded on opposite parts of the shaft, but in the same helical direction. The general
equation is:

Δe

e0
= K

4
·
(

ε1 + ε1 + ε1 + ε1

)

= 4K

4
· ε1 = K ε1 (2.61)

Since all the strain gages measure the same value of strain, sensitivity of the full
bridge is four times the sensitivity of one strain gage.

2.5.4 Eliminating Cable Effects with Three-Wire Circuit

For compensating thermal resistance variation of the wires when the strain gage
is mounted far from the recording unit, the three-wire circuit is suggested [20].
Following the circuit of Fig. 2.18 it is possible to put in series awire of the same length,
at the active strain gage and at the compensator gage as well, canceling the thermal
effect of thewire from the bridge output. In theBulletin [20] the following advantages
are summarized: In summary, benefits of the three-wire circuit include intrinsic bridge
balance, automatic compensation for the effects of lead-wire temperature changes

Fig. 2.18 Three-wire circuit
for eliminating thermal
effect of wire resistance
contribution

Compens

SG
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on bridge balance, and increased measurement sensitivity compared to the two-wire
configuration. The three-wire hookup is the recommended configuration for quarter-
bridge strain gage circuits for static strain measurement.

2.6 Semiconductor Strain Gage

Some semiconductor materials, such as germanium and silicon, offer a strong piezo-
resistive effect and special semiconductor gages can be made with a high nominal
resistance and with small dimensions, with a range of application from 1,000 to
10,000µε, and with either positive or negative resistance changes. The high output
of the semiconductor gage can be efficiently used for measuring dynamic strains,
where temperature effects are generally less important than for static strain.

The special range of application consists in the use in feedback loops of the force
control of finger sensors of robots, where manipulated objects could be damaged
due to too high applied force or could be dropped because of poor clamping. Pos-
sible applications include medical devices for non-invasive pressure measurements,
machine tools, such as CNC-lathes, for continuous monitoring of the tool trajec-
tory avoiding the undesired torsion moment at the cutting edge, the construction of
miniaturized cells, etc. The advantage of a high sensitivity to strain is penalized by
a non-linearity of change in resistance with strain.

2.7 Tests on Piezo-Resistive Hydrogenated Amorphous
Silicon Strain Gages

A sensor that might overcome some of the limitations and drawbacks of traditional
electrical strain gages, together with the need for an adhesive [21], can be developed
on the basis of the piezo-resistive effect. The sensor active area, Fig. 2.19, consists
of a thin n-doped hydrogenated amorphous silicon layer (a-Si:H).

Fig. 2.19 Sensor structure
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Output voltage, representing the sensor response, greatly depends on the resistivity
variation, whereas there is no dependence on sensor geometric strain or distortion.
Some previous experiments [22] were able to show that the output signal, acquired
at a perpendicular direction with respect to current density vector J , depends on the
relative orientation between the bias current direction and the stress/strain principal
coordinate system, according to the relationship:

V⊥ = ρπsσp|J | (2.62)

where ρ refers to the resistivity of the amorphous silicon/silicide layers, πs to the
piezo coefficient and σp to principal stress. The dependency is due to πs : it assumes
zero value when J is parallel or perpendicular to the principal directions and maxi-
mum value, as J is ±45◦ inclined.

From an electrical point of view, the sensor can be compared to a full Wheatstone
bridge with two input and two output terminals. While in a full bridge, gage resis-
tances are located on each side arm, in this sensor the resistance is distributed over
the whole sensing area and the resistances between the contacts are due to surface
conductivity of the amorphous film. The sensor can be powered in current or voltage.
e.g. a supply voltage of 2.5V is applied.

2.7.1 Gage Preparation and Testing

The amorphous siliconmaterial is deposited on a glass specimen byPECVD (plasma-
enhanced chemical vapor deposition at high vacuum pressure) in a stainless steel
chamber, Fig. 2.20. Tetraethoxysilane gaswas used to transfer silicon before its depo-
sition. Deposition data are the following:

Fig. 2.20 Sensors deposited on a glass specimen: dimensions compared to one dollar cent coin
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• Gas flow of pure silane 40 sccm.
• Silane diluted phosphine 10 sccm.
• Pressure 40 Pa.
• Power density 40mW/cm2.
• Deposition temperature 150 ◦C.
• Thickness 500 nm.

Three sensors with different shapes and dimensions, applied to a glass specimen,
are considered. One of them has an octagonal sensitive area measuring 4.83mm2,
with a side dimension of 1mm and a thickness of 10µm. Figure2.21 shows all the
configurations tested for each sensor.

1. The octagonal sensor can be supplied along a 45◦ direction 5–6 and the output
voltage is read at the perpendicular direction 15−8 (configuration A). Otherwise,
it is possible to invert the input voltage with the output one (configuration B).
Other options: supplying and reading the output along vertical and horizontal
directions, (configuration C and D).

2. The second sensor has a square shape with reduced dimensions. The sensitive
area is 0.09mm2 (side 0.3mm long), but input and output direction can only be
45◦ inclined, (configurations E and F).

3. A third sensor with a rhomboid shape has similar dimensional characteristics to
the square one, but voltage input and output reading can be performed only along
horizontal and vertical directions (configurations G and H ).

The resistance related to the distributed conductivity of the sensing area is in the
order of 7 k�, a value being ten times higher than that of conventional strain gages.
Power consumption is therefore much lower, around 1mW.

The response of the piezo-resistive sensor was compared to that of two conven-
tional strain gages in the longitudinal and transverse directions under pure bending
load, by the device in Fig. 2.22.

Fig. 2.21 Sensor configurations, where εl and εt are the longitudinal and transverse strains
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Fig. 2.22 Testing device for pure bending moment application

2.7.2 Calibration and Test Results

The results are shown in the following figures and compared with strains measured
by standard gages. All the configurations described in the previous paragraph were
investigated. Only some results are presented here (for a complete description see
[21]) and plotted in Fig. 2.23 for configuration A and in Fig. 2.24 for configuration
E . The experimental response shows that output voltage is strictly related to the
minimum angle between the supply direction and one of the principal directions.
In the cases of configurations A and B, Figs. 2.23 and 2.24, the voltage supply

Fig. 2.23 Output voltage of octagonal shape sensor with configuration A: low (on the left) and
high force ranges (on the right)



62 2 Introduction to the Application of Strain Gages

Fig. 2.24 Output voltage of square shape sensor with configuration E : low (on the left) and high
force ranges (on the right)

direction is 45◦ inclined with respect to both principal directions. The same occurs
for configurations E and F .

In order to evaluate sensor linearity and sensitivity, a comparison betweendifferent
configurations of piezo-resistive sensors andWheatstone bridges can be done. A full
bridge can be associated with every configuration with the condition that supply
and output directions are the same. Under this hypothesis the four arms are ideally
located along the edges of the piezo-resistive sensor shape.

In the case of the square shaped sensor (configurations A and B, Fig. 2.21 with
45◦ inclined supply direction), the equivalent bridge is indicated in Fig. 2.25 (on the
left), where εl and εt respectively are the longitudinal and the transverse strain of the
calibration bar.

In the case of the rhomboid configuration (G and H ) the equivalent full bridge is
shown on the right. All the equivalent strain gages on the bridge arms withstand the
same strain (ε) at 45◦ inclined directions with respect to the sample axis.

If the strain gages are ideally located on the edges, two of them would be parallel
to the specimen axis and the other two would have transverse orientation. By using
basic rules of the Theory of Elasticity, the bridge output voltage equation can be
computed as follows, Eq. 2.63.

Fig. 2.25 Interpreting
performance of square and
rhomboid sensors as
equivalent Wheatstone
bridges
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Δe

e0
= 1

4
K · 2(1 + ν)εl (2.63)

where εl is the strain along the longitudinal axis of the calibration specimen.
The square sensor output voltage can be related to the term 2(1+ ν) εl , estimated by
using εl , and ν measured by resistance strain gages. In this way a Gain Coefficient,
equivalent to the resistance Gage Factor, is given in Eq.2.64.

K = Δe

e0

2

(1 + ν) ε1
(2.64)

The relationships and regression straight lines between output voltage and strains are
shown in Fig. 2.26, with reference to configuration A. In the case of the rhomboid
sensor (configurations G and H ), the strain gages, ideally oriented along 45◦ inclined
directions, withstand the same strain. Therefore, the output voltage is zero.

The Gain factor K from Eq.2.64 is proportional to the slope of the linear rela-
tionship between output voltage and bridge reading. The interpolation suggests that
K is not influenced by the load intensity and is equal to one for all configurations.

2.7.3 Temperature Response

The described piezo-resistive sensors were also tested to determine their response
under temperature variation in different load conditions. The mean values of voltage
offsets per unit variation of temperature stand in the range from 0.013mV/◦C (con-
figuration F) to 0.24mV/◦C (configuration H ), with a mean value of 0.12mV/◦C.
The described results can be compared to other outcomes in the MEMS literature. A
similar experimental campaign was performed by Pramanik et al. [23], considering
a piezo-resistive porous silicon pressure sensor. The retrieved mean value of volt-
age offset per unit variation of temperature is about 0.15mV/◦C, which appears to

Fig. 2.26 Configuration A sensor interpreted as a Wheatstone bridge
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be comparable to the previously mentioned value (0.12mV/◦C) for the described
piezo-resistive sensors. For full details see [24].

2.8 Load Cells with Strain Gages Sensors

The following sections deal first with some theoretical issues on one and multiple-
degree of freedom load cells. Afterwards, the manufacturing trends, the calibration
procedure and the results are presented with reference to different degree of freedom
load cells.

Load Cells are the essential components of every modern force measuring system
in universal machines as well as in special laboratory equipment. The adoption of
load cells is often the only option to reliably estimate actual loads in operation
conditions by in-field or lab tests by specifically developed devices. Many examples
of design and applications of custom cells are reported in [21, 25–40]. A further
interesting trend stands in the development of identification techniques, for the direct
determination of mechanical properties. An accurate measurement of strain is the
first step for the application of these techniques [41–45].

Load cells consist of an elastic element which must be deformed under the action
of the force linearly to the applied load. They are made of material that must have
linear elastic behavior, no hysteresis and protection from the environment, such as
hardened, stainless steels, heat treated aluminum alloys and copper-beryllium alloys
[46].

The elastic element is instrumented with strain gages with resistance generally of
350� and epoxy adhesive, arranged in a full bridge, with the addition of calibration
and compensation resistors. The main features of a load cell can be summarized in
the following.

• It must be designed for suitable measurement of a minimum load with a required
accuracy: in particular, the output voltage must be measurable even at the lowest
load corresponding to cell resolution.

• At the same time, the cell strength must be warranted when the maximum load is
applied, considering a safety coefficient of at least two.

• A cell must be design to fulfill the requirements concerning the size of the instru-
mented part and the overall dimensions.

• The output voltage and consequently the yieldmeasurement should be independent
of unexpected effects, such as a not precise force application point, force inclination
generating bending, etc.
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2.8.1 Bending Load Cells

Like elastic elements, Bending Load Cells have a cantilever beam in bending, in
which the signal due to deformation is amplified by the lever effect and by the
mounting of two strain gages on opposite sides of the bar (see Sect. 2.5.2). These cells
are suitable for low load measurement, well compensated for temperature variation.
The solution of Fig. 2.27b has a tapered shape of the instrumented section to offer
constant bending strain in that part, eliminating the gradient of deformation in the
grids of the strain gages (a beam with constant section, Fig. 2.27a has a triangular
profile of bending strain). The reduction of the beam mass increases the natural
frequencies. Two drawbacks are due to deflection that causes a beam length, (thus,
a bending moment) reduction and a normal stress component, both origins of a non-
linearity.

For these reasons, loading cells are developed according to the static scheme of
Fig. 2.28 and designed as in Fig. 2.29. The strain gages are mounted at full-bridge
by placing those with strains of the same sign on the opposite sides of the bridge.
The tensile strain component in every beam, present in the four strain gages, is
automatically compensated for the imposed deformation due to rigid constraints.

2.8.2 Ring Load Cells

A ring was the first cell used for force measurements, Fig. 2.30; it was suitable
as a mechanical load cell if equipped with an internal instrument which measured

Sg
Load

Strain

(a) (b)

Fig. 2.27 The simplest example of the bending cell. a A cantilever beam with a load at one end,
instrumented with two opposing strain gages and b an improved development of the basic idea by
reducing the thickness and tapering the measuring area in order to make the strains in the gage grid
uniform
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Fig. 2.28 Static schemes of load cells with single beam: a doubly fixed, with loads and moments
applied to the opposite ends and b with double beam, instrumented with four strain gages on the
opposite sides

Fig. 2.29 Conceptual schemes of load cellswith double bending beams (a), (with a risk of variations
on the load direction) and with double bending beams degenerated into a central hole of a thick
block (b), with a load that keeps its alignment more easily

Fig. 2.30 Schemes of ring cells with circular a and oval b shape

the diameter deformation when the load was applied. It is still marketed for its
simplicity, accuracy and precision, instrumented by four strain gages to form a full-
bridge. Fitted with four electrical strain gages, it is an excellent load cell that can
be optimized to reduce the sensitivity to slightly misaligned loads and to offer a
wide range of applications and load capacities. Four strain gages are mounted on
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the diametral plane perpendicular to the loads, inside and outside the ring. The
traction components, which are identical in the four strain gages, are compensated
and removed from the measurements, while the bridge detects four times the single
strain of bending of one gage. The oval solution (b) has a low dimension in one
direction [8].

2.8.3 Shear Load Cells

An important feature of load cells, especially for fatigue tests, is the stiffness, that
must be as high as possible in order to avoid unwanted deformations and variations
of the vibration modes of the specimen.

The dynamic part of the testing machines based on this principle [47], mainly
consists of a series of masses, plus the specimen mass, and all elasticities of the
specimen and of the other parts within the dynamic load flow. These parts form the
oscillating system which is controlled and excited in its resonant frequency.

A low stiffness could reduce the fatigue life of the cell itself and vary the test
duration. Besides, with millions or tens of millions of cycles, the drawback could be
very serious. Material and structure-testings needs high stiffness cells but sensitive
to small deformations.

A type that meets this criterion works on the principle of measuring the shear
strains, Figs. 2.31 and 2.32. The local deformation of a small area, with proper
dimensions of its thickness, can be sufficiently high to allow measurement with
good sensitivity, while the global deformation (i.e. the displacement of the points
of the load application) remains low. Unlike the bending cells in which the flexural
deformations depend on the geometry variation during the arm deformation, thus
by the displacement of the points of load application, the shear stresses are directly

Fig. 2.31 Scheme of an elementary shear cell
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Fig. 2.32 Sketch of a cell
with high stiffness: the
massive part guarantees that
the deformed circular plate
has a perfect constraint at the
external circumference

related only to the load (regardless of point the of application) and to the body thick-
ness. Varying the thickness will directly vary the shear stresses. Limited spaces can
be machined in a body, large enough to accommodate the strain gages, but with a
thin wall thickness, to produce high shear deformations.13 In this way, cells of high
sensitivity, stiffness and load capacity can be built.

A final comment. Shear stresses are always accompanied by bending stresses
(T = dM/dx) which, in this case, represent a disturbance for the measurement. It
is therefore advisable to study a cells shape that allows shear stress measurement in
areas with minimum values of the bending moment. E.g., in the scheme of Fig. 2.31
the measurement of shear deformation is confined to a point, with virtually zero
bending moment.

With the same concept, the load cell of Fig. 2.32, suitable for fatigue testing
machines, was developed. This cell is not very sensitive to misalignment of the load,
thanks to a wide possibility of circuit compensation due to links with two bridges.
The cell is developed for a load capacity from 2.5 to 5KN and beyond; it consists of a

13 With an order of magnitude of 1,000 ÷ 1,700µε, with output bridge voltages of 2 ÷ 3mV/V.
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circular body with eight holes, with gages bonded at the points of thin walls to detect
high shear strains. This circular element is connected through a series of screws to a
massive structure that has the function of stiffening the instrumented area, limiting
the bending deformation and enhancing the shear deformation.

2.9 Load Cell Calibration

Theoretical formulations could be used in the definition of the relationship between
the applied load and the resulting strains.

However, systematic errors could enter, due e.g. to positioning errors (on location
and on direction) of strain gages, to the average effect of the measured strain on the
grid length, and to the grid cross sensitivity, etc. For all these reasons it is always
necessary to perform an experimental calibration.

A quite rigid calibration protocol must be followed. The step by step application
of increasing and decreasing loads is recommended. In no-loading condition the
zero output is checked and, if necessary, adjusted. Once a step has been established,
the applied force (or moment) is incremented and the resulting output voltage is
retrieved and recorded. This procedure is repeated until the force (or moment) value
at full scale is reached. It is sometimes advisable to overcome this value by about
10 or 15%. This procedure is usually followed to make sure of a complete adhesion
between the applied strain gage and the instrumented surface. Acting in this way
improves the accuracy and the repeatability of measurements.

Afterwards, load is step by step decremented to zero, with data recording at each
step. When the cell is designed to measure both positive and negative loads, the
direction of the force (or moment) is inverted and its value is again incremented
up to full scale or to a 10 ÷ 15% more. The resulting output voltage is measured at
each loading step. Afterwards, load entity is decreased to zero, with data recording
at each step. The entire procedure must be repeated at least three times. Finally, a
diagram relating the voltage output to the applied load is determined.

The experimental data are usually linearly interpolated to obtain the empiric rela-
tionship between the force, indicated as F , and the output voltage Δe, Fig. 2.33.
Once the calibration formula is known, the cell can be used to retrieve the unknown
force, based on the measured output voltage.
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Fig. 2.33 Typical linear
response of a calibrated load
cell: relationship between the
output voltage and the
applied load

The functioning logic of a loading cell can therefore be summarized in the
following points.

• As load is applied, strains are generated on the instrumented elastic element
of the cell.

• Consequently, strain gages experience variations of their nominal electrical
resistances.

• These variations are detected by measuring the output voltage of a Wheat-
stone bridge.

• From the knowledge of the force—output voltage (F − Δe) analytical rela-
tionship, the entity of the applied load can be determined.

2.10 Load Cells with More Degrees of Freedom

When there is interest in the simultaneous measurement of more than one loading
component, cells withmore degrees of freedom can be used. They offer the advantage
of simultaneous detection of several or all loading components: this is necessary for
fatigue tests in case of multiple loads acting simultaneously. The strain gages are
connected to form as many bridges as the forces or moments to be measured. In
other words, as many channels as unknown terms are necessary.

Amultiple-degrees load cell should be decoupled, i.e. each channelmust be highly
sensitive to just one force (or moment) component and theoretically insensitive to
all the other ones.
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The load cells are essentially of two types, see Chap.1:

• Isostatic cells, in which the six components of force and moment are measured
by the same number of independent units and the inverse problem is statically
determined.

• Statically indeterminate cells, in which the number of measurements is greater
than the number of unknown variables and the inverse problem is overdetermined.

The first are simpler and do not suffer from ill-conditioning of the measurements,
while the latter are more complex, but can offer advantages related to the mechanical
safety of the cell and to the construction compactness.

The most general case is that of a six-degree of freedom load cell: this cell type is
able to measure three force and three moment components.

Let [Fx , Fy, Fz] be the vector of the force components in xyz reference systems
and let [Mx , My, Mz] be the vector of themoment components in the same directions.
These two vectors can be merged in a six-sized vector containing all the unknowns
fi, with i = 1, 2, ..., 6.

Measurements are fulfilled by processing the output voltagesΔei of the six chan-
nels, collected in the vector Δei , with i = 1, 2, ..., 6. The relationship between these
vectors can be expressed by a 6 × 6 matrix, as in Eq.2.65.

Δe = B · f (2.65)
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The term B is usually regarded as the Compliance Matrix and has as many rows as
the number of channels and as many columns as the number of degrees of freedom.
For a six-d.o.f. load cell, it is typically a 6 × 6 matrix.

If the transducer is decoupled, the terms on the principal diagonal are theoretically
zeroes and the matrix becomes diagonal. In actual conditions, it implies the terms
on the diagonal being much greater than the other ones. The calibration consists in
the determination of the terms bi j of the matrix B.

The generic term bi j stands for the output voltage of the i-th channel (Δei ) when
the j-th component (Fj ) is unitarian and the all the other ones are zeroes. The conse-
quence is that the calibration proceduremust be conductedwith a separate application
of all the load components. The protocol to be followed is similar to that described
for the one-degree of freedom load cells, with step by step increasing and decreasing
and output recording: at each step all the six outputs must be saved.

Considering a load cell with a good decoupling, the data after the application of
the third load component are qualitatively shown in Fig. 2.34.

http://dx.doi.org/10.1007/978-3-319-06086-6_1
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Fig. 2.34 Calibration procedure of a six-degree of freedom decoupled load cell (the third channel
is supposed to be sensitive to the applied load component, F3)

The readings per unit force values are easily yielded by the slopes of the linear
interpolations of the experimental data points and the slopes of regression lines
become the coefficients in the third column of the matrix B, i.e. b13 . . . b63, Eq. 2.65.
If the described procedure is repeated for all the load components, the entire matrix
B can be obtained.

Upon calibration, when the cell is used to measure an unknown set of forces and
moments, the outputs of the six channels can be processed by inverting the compli-
ance matrix. If the strain gages are bonded in suitable locations and are adequately
connected, the outputs of each channel are linearly independent from one another.
After controlling the non-singularity of the compliance matrix B and its invertibility,
the vector of the unknowns can be computed as in Eq.2.66.

Δe = Bf ⇔ f = B−1Δe ⇔ f = CΔe (2.66)

The matrix C, the inverse of B, is commonly regarded as the Calibration Matrix.
Otherwise, when strain gage location is badly designed, the risk is that the problem
becomes ill-conditioned, which reflects in the singularity of B and in its determinant
tending to zero.

Once the matrices B and C have been determined, it is possible to evaluate the
response of the cell, in particular its decoupling, by computing suitable parameters,
called Coupling Coefficients (C.C.). The value of the (ij)-th coefficient is yielded by
Eq.2.67.

C.C.i j = bi j · FS j

bii · FSi
(2.67)
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It can be regarded as the ratio between the output voltage of the i-th channel, when
the j-th load component is acting (a component to which the i-th channel should be
theoretically insensitive) and the output of the same channel, under the component
it is designed to measure.

Values at full scale (FS j , FSi ) must be considered in the application of Eq.2.67.
For a load cell with n degrees of freedom, (n − 1) different C.C. may be calculated
for each channel. The grade of decoupling is indeed related to the values of the
coupling coefficients, with low values indicating a good decoupling.

2.10.1 Load Cell for Three Forces

Measuring three forces along three perpendicular directions is a quite common
requirement in robotic wrists. An accurate force measurement is required to pre-
vent product damage or to make sure it is safely handled. The basic features of
the cell in Fig. 2.35 may be summarized in its simple manufacturing process, in its
sensitivity and in channel decoupling.

Regarding the first issue, a commercial annular tube (external diameter: 30mm,
internal diameter: 24mm) was used. It is fully constrained at one end and connected
to a small flat bar at the other one.

The forces, namely a longitudinal (Fx ), a transverse (Fy) and a vertical load (Fz),
are applied at its end. In order to increase the sensitivity of the three channels devoted
to the measurement of the three forces, the cell is designed so that the applied strain
gages are loaded under bending for every force component. If only the tube had been
instrumented, there would have been a lack of sensitivity in the measurement of the
axial component. For this reason a flat bar is connected and instrumented for the
measurement of the axial component, converted into a bending load. The schemes of
the bridges are in Fig. 2.36: channels A and C are half bridges and B is a full bridge.

The number of output channels equals the number of unknowns, thus the com-
pliance and the calibration matrices are square (3 × 3). In order to achieve a good
decoupling, each channel is devoted to the measurement of just one component and
theoretically insensitive to all the others.

Channel A is sensitive to the longitudinal load, Fx : This force, up to50Ncauses the
flat bar bending. Let Hb and Sb be the width and the thickness of the bar respectively:
the bending resisting moment Wb,14 holds:

Wb = 1

6
· bh2 (2.68)

14 The resisting moment is the area moment of inertia I along the x-axis, over d, the distance from
the neutral axis along y-axis on the section area in which the stress is calculated.



74 2 Introduction to the Application of Strain Gages

Fig. 2.35 Layout of a load cell for measuring three forces

Fig. 2.36 Wheatstone bridge connections: channels A, B and C

The output voltage ΔeA on channel A is:

ΔeA = 1

4
· K · e0 · (ε1 − ε2) = 1

2
· K · e0 · Fx · l

EWb
(2.69)
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Symbols K and e0 in Eq.2.69 stand for the gage factor and the supply voltage,
whereas ε1 and ε2 indicate the strains under the strain gages 1 and 2 in Figs. 2.35 and
2.36. Finally, l indicates the moment distance in Fig. 2.35.

This output is theoretically independent of the other components: the transverse
force Fy induces a normal stress on the flat bar, so that the strain reading is the same
for the two strain gages and the resulting output is zero. The vertical force Fz implies
bar bending: the strain gages 1 and 2 are in this case along the barycentric neutral
axis: as a consequence, the measured strain is theoretically zero.

The force Fy , up to 200N, is measured by the second half Wheatstone Bridge,
indicated as B. Its output voltage, ΔeB , is computed:

ΔeB = 1

4
· K · e0 · (ε3 − ε4 + ε6 − ε5) = 1

2
· K · e0 · Fy · a

EWb
(2.70)

where a denotes the moment distance, as in Fig. 2.35. ε3, ε4, ε5, ε6 stand for strains
under the gages with numbers 3, 4, 5, 6 in the same figure.

The vertical load Fz generates a torsion moment transmitted to the tube. Torque
is not detected by the previously mentioned strain gages, as they are aligned along
the axial direction. The same load also has the effect of tube bending, however, the
considered strain gages are applied on a barycentric plane: the detected strains are
therefore zero. The longitudinal force Fx generates a constant bending moment on
the tube: in this case strain gages with numbers 3 and 5 are under a non-zero tensile
strain, whereas the other gages are under the same strain in compression. The output
voltage is therefore zero.

The vertical load Fz , up to 200N, is measured by the third channel C . As previ-
ously remarked, this force leads to a torsion of the tube, however this type of load
is not detected by the axially aligned gages 7 and 8. The computation of the output
voltage is shown in Equation:

ΔeC = 1

4
· K · e0 · (ε7 − ε8) = 1

2
· K · e0 · Fz · (a + x)

EWb
(2.71)

where x is a distance, Fig. 2.35, while ε7 and ε8 are the strains under the strain gages
7 and 8.

The axial load, Fx implies a normal load on the tube with identical strains detected
by the gages with numbers 7 and 8, and therefore a negligible output. In addition, the
tube bends, but the mentioned strain gages are bonded on a neutral plane and cannot
detect any strain. Also the bending load, generated by the transverse force Fy , is not
detected for the same reason.

The experimental tests were performed with a separate application of each load
component. The outputs of the three channels were recorded simultaneously by
a multi-channel acquisition device. The loads were applied by hanging calibrated
masses. The tests were conducted with a step-by-step load increase up to maximum
values, each trial was repeated for three times. The results are collected in diagrams
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showing the output voltages of the threeWheatstone Bridges versus the applied loads
(supply voltage: 2V, gage factor: 2.09).

2.10.1.1 Loading by Axial Force Fx

The tubewas oriented, so that the required load could be applied by calibratedmasses
under gravity. The results are shown in the diagram and in the histogram in Fig. 2.37.
The highest output was retrieved for the first bridge A.

It is remarkable that the linear correlation coefficient (R2) of the interpolating line
related to bridge A is almost 1, indicating a perfect linearity. The R2 coefficient is
further from 1, considering the other channels, whose outputs (theoretically zero) are
mainly due to experimental uncertainty. The histogram in the same Figure compares
the experimental outputs to the theoretical predictions.

Fig. 2.37 a Output voltages on the three channels versus Fx entity; b comparison between the
experimental outputs of channel A and theoretical predictions
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2.10.1.2 Loading by the Transverse Force Fy

For the application of the transverse load the beam was properly oriented, and the
experimental results are shown in Fig. 2.38.

The first diagram at the top indicates themost significant output as being that of the
second channel (B). However, the output of the first channel (A) is also remarkable
(up to 72µV) and much higher than expected. According to the theoretical model,
under the hypothesis of negligible displacements and rotations, the strain gages with
numbers 1 and 2 should be loaded by a normal load. Moreover, as they are mounted
on adjacent arms of the bridge, the overall output should be zero. It can be observed
that the vertical displacement of the tube is not completely negligible (in the order
of mm): consequently, the flat plate experiences a bending deformation.

The strains due to bending are therefore retrieved by the strain gages and in
addition, the output signal is doubled, due to the half-bridge connection. This can be
regarded as a secondary effect, which can be anyway cancelled by the cell calibration,
with a consequent determination of the calibration matrix. In this case, also the

Fig. 2.38 a Output voltages on the three channels versus Fy entity; b comparison between the
experimental outputs of channel B and theoretical predictions
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regression lines with reference to the most involved channel (B) have a high linear
correlation coefficient R2 (close to one).

Experimental and theoretical results are also compared in the histogram in
Fig. 2.38 in the bottom, with errors below 2%.

2.10.1.3 Loading by the Vertical Force Fz

The vertical load was applied under another orientation of the cell. The results,
Fig. 2.39a, show a good decoupling and a very good linearity in the response of the
third bridge channel C . The data are compared to the theoretical outcomes in the
histogram in Fig. 2.39b with a very good agreement (errors in the order of 2%).

Fig. 2.39 a Output voltages on the three channels versus Fz entity. b Comparison between the
experimental outputs of channel C and theoretical predictions
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Concluding, it can be pointed out that:

• The calibrated cell generally has a good decoupling, with an exception for channel
A, designed to measure Fx , being slightly sensitive to Fy .

• The experimental results are linearly distributed with very high values of the linear
correlation coefficients (R2).

• The outputs of the three channels increase with the entity of the applied load with
negligible offsets.

The results of the calibration tests were processed, considering the slopes of the linear
distributions (expressed in µV/N) mentioned above. These coefficients, having the
meaning of output voltage per unit applied load, can be regarded as the coefficients
of the compliance matrix B.

Exercise 2.3 (Determination of the Compliance and Calibration matrices) The
slopes determined under the first load component Fx were regarded as the coef-
ficients of the first column of the compliance matrix (B). In the same way, the slopes
under the second Fy and the third Fz components were incorporated into the second
and the third columns of the same matrix.

The relationship between the output voltages and the load array, along with the
matrix (B) is reported in the following Eq.2.72.15

ΔemV = B fN (2.72)
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The matrix B has a non-zero determinant and is therefore invertible. Its inverse,
matrix C, is determined:

fN = C ΔemV (2.73)

⎛

⎝

fx

fy

fz

⎞

⎠ =
⎛

⎝

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞

⎠ ·
⎛

⎝

ΔeA

ΔeB

ΔeC

⎞

⎠

15 In order to avoid too low coefficients of the Calibration matrix, it is common use to express the
output voltages in mV. Therefore, the previously determined slopes are divided by 103.
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The calibration matrix C is very close to the condition for a diagonal matrix. In
fact, the terms on the diagonal are higher than the other by about one order of
magnitude. The level of decoupling of the design load cell is further evaluated by the
determination of the coupling coefficients, as in Eq.2.67 at page 73. The maximum
values at full scale are: FS_Fx = 49N, FS_Fy = 196N, F S_Fz = 196N. The
computed coefficients are shown in Eq.2.74.
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The values are allwithin a fewpercentage points, except for the highest one,C.C.12 =
15.38%. This shows that the first channel is slightly dependent on transverse loads,
due to the secondary effects.

2.10.2 Load Cell for Two Forces and One Torsional Moment

The design of this load cell is inspired by the same principles discussed above. The
aim was to design a decoupled cell with good accuracy and sensitivity and that could
be easily calibrated and tested.

The same tube as the load cell of Sect. 2.10.1 is clamped at one end and loaded at
the other. Loads are a transverse and a vertical force plus a torsional moment.

This type of cell may also have applications in the field of robotics, to determine
force on gripping devices and to detect disturbing torsional components. All the
strain gages measure strains due to bending generated by the mentioned loads. For
measuring torsion, four strain gages were bonded along+45◦ and−45◦ helical lines
and connected to the four arms of a full Wheatstone bridge.

The cell was conceived as theoretically decoupled: each bridge channel is sen-
sitive to a single component and insensitive to the others, Figs. 2.40 and 2.41. The
application point of forces Fy and Fz and of torsional moment Mx is indicated by Q.
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Fig. 2.40 Load cell for measuring two forces and a torsional moment: layout, main dimensions,
instrumentation

Fig. 2.41 Strain gage Wheatstone bridge connections: channels D, E and F

The first channel, corresponding to the bridge arm D, is sensitive to the transverse
force Fy which bends the tube. The output voltage can be computed by Eq.2.75,
where K is the gage factor, e0 is the supply voltage, and ε3 and ε4 respectively stand
for the strains retrieved by the gages with numbers 3 and 4. The distances a and x
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are defined in Fig. 2.40, whereas E and Wb are the material Young’s modulus and
the cross section bending resisting moment.

ΔeD = 1

4
· K · e0 · (ε3 − ε4) = 1

2
· K · e0 · Fy · (a + x)

EWb
(2.75)

The vertical load Fz is not detected by this channel, as the strain gages 3 and 4 are on
the neutral plane for bending. Torsion is definitely ineffective for strain gages with
longitudinal orientation. The same happens for the fourth channel, bridge arm E ,
designed to measure the vertical force Fz . The computation of the output voltage is
in Eq.2.76, where ε7 and ε8 respectively stand for the strains recorded by the gages
with numbers 7 and 8.

ΔeE = 1

4
· K · e0 · (ε7 − ε8) = 1

2
· K · e0 · Fz · (a + x)

EWb
(2.76)

The last channel, bridge arm F , with four active gages on +45◦ and −45◦ helical
lines, is sensitive to torsion Mx . The moment is applied by hanging a mass (up to
196N) at a distance of 75mm. The output voltage is computed by Eq.2.77, where ε9,
ε10, ε11 and ε12 respectively stand for the strains recorded by the gages with numbers
9, 10, 11 and 12.

ΔeF = 1

4
· K · e0 · (ε9 − ε10 + ε11 − ε12) = K · e0 · 1 + ν

E
· Mx

Wt
(2.77)

This output, where ν indicates the material Poisson’s coefficient and Wt the torsional
resisting moment, is insensitive to the bending moments generated by the forces Fy

and Fz .

2.10.2.1 Loading by the Transverse Force Fy

Calibration results are shown in Fig. 2.42. The output of the first channel D is much
higher than the others. The regression lines have correlation coefficient R2 very
close to one. The histogram of comparison between the experimental yields and the
numerical predictions shows very good agreement.

2.10.2.2 Loading by the Vertical Force Fz

The results obtained upon the application of the vertical load are shown in Fig. 2.43.
The output voltage of the second bridge, (E), is now the most significant with respect
to the other ones. There is very good linearity and an excellent agreement between
experimental and theoretical results, with errors in the order of just 1%.
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Fig. 2.42 a Output voltages on the three channels versus Fy entity; b comparison between the
experimental outputs of channel D and theoretical predictions

2.10.2.3 Loading by the Torsional Moment Mx

The application of a pure torsional moment requires a specific test rig. Some possible
solutions are sketched in Fig. 2.44. A single vertical force is applied by gravity and
the outputs of the three channels were recorded. The force was applied, so that the
longitudinal distance from the clamping device was the same as in the Fz force
application trial (described in Sect. 2.10.2.2), so that the experimental results could
be made dependent on the same bending moment as in the previous testing.

Based on the Principle of the Superposition of the Effects, the contribution of
bendingmoment could be cancelled by computing the difference between the current
outputs and those reported in Sect. 2.10.2.2.

The test results are shown in Fig. 2.45: they account for both torsional and bending
moments, therefore the outputs are significant on channels E and F . A double scale
is reported along the horizontal axis, thus indicating both the value of the force (Fz)
and that of the induced torsional moment (Mx ). The application of the force is far
away from the longitudinal axis, at a distance of 75mm.
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Fig. 2.43 a Output voltages on the three channels versus Fz entity; b Comparison between the
experimental outputs of channel E and theoretical predictions

The described procedure of detracting the outputs depending on the bending
moment, from those depending on both bending and torsional moments led to the
results depicted in Fig. 2.46. These results are now dependent on (pure) torsion only:
it can be remarked that this type of load is detected only by the third channel (F).
The values are consistent with theoretical predictions, apart from a small error (about
3%). It can be pointed out that:

• The calibrated cell generally has a good decoupling.
• The experimental results are linearly distributed with very high values of the linear
correlation coefficients (R2).

• The outputs of the three channels increase with the entity of the applied load with
negligible offsets.

Results of the calibration tests are processed, considering the slopes of the linear
distributions (expressed in µV/N) mentioned above. These coefficients, having the
meaning of output voltage per unit of applied load, can be regarded as the coefficients
of the compliance matrix B.
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Fig. 2.44 Several solutions for pure torsional moment application: a, b using return pulleys;
c using a radial bearing

Fig. 2.45 Output voltages on the three channels versus Fz and Mx

Exercise 2.4 (Determination of the Compliance and Calibration matrices) The
same procedure was followed in the processing of the experimental data and in
the determination of the compliance matrix and related coefficients. In particular,
the slopes of the regression lines obtained under the first load component (Fy)
enter the first matrix column. In the same way, the slopes of the regression lines
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Fig. 2.46 a Output voltages on the three channels versus Mx entity; b comparison between the
experimental outputs of channel F and theoretical predictions

determined under Fz and Mx were incorporated into the second and the third columns
respectively.

The relationship between the output voltages and the load array is reported in
Equation:

ΔemV = B fN (2.78)
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ThematrixB has full rank and is therefore invertible. Its inverse, matrixC, is reported
in Eq.2.79. The output voltages are turned into mV
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fN = C ΔemV (2.79)
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The calibrationmatrixC is almost diagonal: the terms on themain diagonal are much
greater (by about two orders of magnitude) than the other ones. The good level of
decoupling is well confirmed also by the computation of the coupling coefficients, as
in Eq.2.67 at p. 72. The following values at full scale are considered for calculation
196N for Fy and Fz and 14.70Nm for Mx . The computed coefficients are shown in
Eq.2.80.
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The values are all within few percentage points. The hugest one, |C.C.13| = 7.40%
indicates that the first channel (D) has a slight sensitivity to the torsional moment
Mx . It may be due to a positioning or more likely an alignment error of the strain
gages with numbers 7 and 8, which should theoretically be longitudinally oriented.

2.10.3 Load Cells at Six Degrees of Freedom

Two alternatives case studies of cells were presented to identify six load and moment
components in a piece of sports equipment (actions transmitted by the ski boot to
the ski), Fig. 2.47a.
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Fig. 2.47 The six actions transmitted by a ski boot to the ski and comparison with a classic scheme
of a generic cell with more degrees of freedom developed for a robot hand

2.10.3.1 Statically Determinate Cell

The cell consists of seven bending micro-cells, each of which is calibrated for a
force measurement, Fig. 2.48 through cantilever small beams. The cell is divided in
sub-cells: a frontal sub-cell and a rear sub-cell. A central cell completes the device
[48, 49].

The first frontal sub-cell measures the component fx in the direction of motion
along the longitudinal axis x of the ski, the two parallel micro-cells measure two
vertical forces in the vertical direction z which, together with the homologous sub-
cells in the rear part, allow the independent measurement of the force fz as algebraic
sum of the four values, as well as the measurement of the pitching moment (with the
moment-axis in the transverse direction y) and the rolling moment (withmoment-axis
along the longitudinal x axis).

Fig. 2.48 Scheme of the isostatic cell with six degrees of freedomwith sevenmicro-cells in bending
for the recording of six signals [29, 50]
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The central micro-cell, together with the homologous in the back part, allows the
determination of the lateral force along the y axis and also the torque moment (with
moment-axis along the vertical axis z).

The calibration of the cell needs the application of six independent actions (three
forces and three moments). They make it possible to determine a matrix of com-
pliance, also called calibration matrix, which connects the output signals from the
measuring channels to the six actions. In this case a square matrix is obtained that
must be inverted, for identifying the unknowns actions from the measurements. The
inverse operation is mathematically possible, without any difficulty.

2.10.3.2 Statically Indeterminate Cell

Conversely, a second solution, designed for safety reasons with an indeterminate
structure with six unknowns and eight measurements is shown in Fig. 2.49.

The cell has, Fig. 2.50:

• 6 Actions to evaluate (3 Forces and 3 Moments).
• 24 Sensors.
• 8 Wheatstone bridges (4 half- and 4 full bridges).
• 8 Equations with 6 unknowns. (overdetermined problem).

The compliance matrix obtained from the calibration is no longer square due to an
excess of experimental data with respect to the unknowns. This condition is essential
for finding acceptable solutions for ill-conditioned problems and is effective formak-
ing the measuring instrument sufficiently accurate, precise and robust (insensitive to
noise).

Exercise 2.5 (Calibration of a 6-degrees of freedom load cell) The calibration was
done by the application of known forces and moments to the cell, as in the example
shown in Fig. 2.51, in order to determine first the compliance matrix, Eq.2.81.

Fig. 2.49 Scheme of a hyperstatic cell at eight degrees of freedom for recording of six signals.
Overdetermined problem
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Fig. 2.50 Strain gage location on the four micro-cells and circuit diagram with eight degrees of
freedom for the recording of six actions by overdetermined data [29, 51]

Fig. 2.51 Calibration for the cell mounted on a ski
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According to Sect. 2.10, the relationship between the output and the input being the
following:

ε = B · F
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the pseudo-inversion of the rectangular matrix gives:

f = (BT B)−1BT ε = B−gε

see Eq.1.23 in Chap.1.
The following matrix B−g is the Calibration Matrix that is shown in Eq.2.82.
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After the calibration matrix was calculated, the load cell was verified, comparing the
assigned values of the three forces and the three moments with the six corresponding
values identified through the measurements.

Comparison were performed as shown in diagrams of Fig. 2.52. In this case,
discrepancies are present, especially on the My moment (error around 11%) and on
the Fx force (error up to 100%).

Further tests were performed to investigate the repeatability of the results in
dynamic application.

The cell weaknesses can be thus summarized:

• Lack of accuracy, mainly in the measurement of the longitudinal force Fx , and of
the My moment.

• Lack of repeatability and signal conditioning, thus of precision, since small uncer-
tainties in the estimation of the strains lead to much greater errors in the identifi-
cation of forces and moments.

This case is a typical example of an overdetermined (the number of channels exceeds
that of the measured components) ill-posed problem.

The next exercise tackles the questions posed above and shows possible strategies
to improve the calibration of this kind of sensors in order to improve their accuracy
and robustness.

An important improvement can derive from the regularizationmethods [52–54] of
ill-posed problems, such as the Tikhonov-Miller, Tikhonov-Phillips algorithms. The
first one is also known as the Regularized Least Squares (RLS) method. A further
option consists in the Singular Value Decomposition (SVD). Further information can
be found in Chap.1.

http://dx.doi.org/10.1007/978-3-319-06086-6_1
http://dx.doi.org/10.1007/978-3-319-06086-6_1
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Fig. 2.52 Comparison between actual and measured force and moments before regularization

2.10.4 Regularization of the Six-Degrees Load Cell

The results of the previous calibration tests were first analyzed to determine the
possible cause for the errors introduced in force estimation.

2.10.4.1 Lack of Accuracy of the Cell

The first issue to be considered was the lack of accuracy of the cell. The results of
the calibration tests were analyzed to determine the possible cause for the errors
introduced in force estimation.

The load cell was designed in order to achieve a good decoupling on the six mea-
sured components. This goal was accomplished by a suitable design of the sensing
element, a suitable location of strain gages and a proper Wheatstone bridge connec-
tion. As stated before (see Sect. 2.10), this is a usually recommended design trend,
to make sure of full sensitivity to all the acting forces and moments.

However, the results of the calibration tests denoted some unexpected trends, espe-
cially considering the channel which theoretically should have had a zero reading.
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In these cases the output was obviously not exactly zero, but the output-load rela-
tionship was often noisy and quite difficult to linearly interpolate.

For instance, the responses of channels 1 and 2 versus the applied bendingmoment
My are sketched in Fig. 2.53. These two channels are designed to measure the Fx

component and theoretically insensitive to My . The strain readings are all repeatable
and not particularly high (lower than 15µε).

However, the followed trend seems to be dependent on the sign of the applied
moment, probably due tomechanical hysteresis in the load transmission to the sensing
elements. The graphs in Fig. 2.54 emphasize another strain-load trend which is not
suitable for linearization.

This figure refers to the responses of channels 4, 5, 7, 8, sensitive to My and to
transverse force Fy . The trend is indeed linear, however a not negligible offset (about
45µε) is introduced. Not taking these offsets into account can be the primary cause
of cell insufficient accuracy.

As a consequence of this first analysis, the experimental data were reprocessed
without neglecting all the offset terms encountered in data linearization.

The formulas in Eq.2.83 show how the offset term may be incorporated into the
equation that gives the force vector f as a function of the current strain readings over
the eight channels ε.

The total offset is indicated as ε0, while superscripts are added to indicate the
offset terms related to the six force and moment components.

ε = B · f +ε0_Fx +ε0_Fy +ε0_Fz +ε0_Mx +ε0_My +ε0_Mz = B · f +ε0 ⇔ (2.83)

⇔ ε − ε0 = B · f ⇔

⇔ f = C · (ε − ε0) = C · ε′

Fig. 2.53 Noise affecting signal with theoretical zero reading
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Fig. 2.54 A further example of noise affecting signal with theoretical zero reading

2.10.4.2 Lack of Robustness and Precision

The second issue regarded the lack of robustness and precision in load estimation.
A response, where a huge error in the estimation of mechanical actions arises from
even small errors in strain measurement, is typically regarded as ill-conditioning.
In some references, e.g. in [52], it is remarked that an overdetermined problem,
where the number of channels or measuring points is higher than the number of
loads, is usually ill-conditioned. An acceptable solution is usually provided [55, 56]
by the Tikhonov-Phillips [52–54] regularization algorithm. It can be regarded as
a combination of the minimum-length with the least-squares solution, minimizing
the object function, and is going to be applied in the following. As mentioned,
alternative techniques consist in the application of the Tikhonov-Miller algorithm or
of the Singular Value Decomposition. However, the first one has the drawback of
requiring a priori information about the solution. On the other hand, the application
of the second one must be usually integrated in the solution of the inverse problem
and has the outcome of a lack of input reproducibility.

J = ‖ε − B · f‖2 + α‖f‖2 = min (2.84)

The solution of the least-squares problem in Eq.2.84 gives the vector of the applied
forces and moments, f , as in Eq.2.85. The symbol I stands for the Identity matrix.

f = (BT B + αI)−1BT · ε′ (2.85)

The relationships in Eqs. 2.84 and 2.85 contain a further term, α, commonly indi-
cated as damping factor. The key issue in the application of the Tikhonov-Phillips
regularization algorithm, consists in the determination of a suitable value for α. In
Refs. [52–54, 57] it is remarked that this is usually between 0 and 1 and that it must
be high enough to prevent ill-conditioning. In particular, α must have the smallest
value to avoid ill-conditioning, a too high value is also unacceptable, as it would
have a detrimental effect on solution accuracy. Its determination can be tackled by
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two general purpose methods: the L-Curve and the Generalized Cross Validation
(GCV ) [58–62]. However, these two criteria, despite their good efficiency, are not
suitable to all problems. An alternative approach that appears to be more suitable for
the calibration and regularization of overdetermined load cells is suggested in the
following section [63].

2.10.5 Determination of the Damping Factor

In order to determine the suitable value forα, twonumerical tools can be developed, to
simulate experimental uncertainty and to globally estimate error in the simultaneous
measurement of more variables. The general goal is to find the lowest value of α, so
that the results are sufficiently accurate, despite a noisy strain measurement.

For the sake of clarity, the method is applied with reference to the examined case
study of three forces and three moments, but it can be used in general cases.

1. The first step was to consider some sample readings obtained in lab under combi-
nations of loads. In order to randomly generate noisy signals, normal distributions
were applied to the eight readings. The standard deviation was estimated as 10%
of themeasured value, as this percentage can be regarded as a common estimation
of experimental uncertainty in strain gage measurements.

2. The second step had the aim of estimating error. The usual approach consists in
the computation of the difference between the measured load and the applied one.
In the case of multiple loads acting simultaneously, the norm of the difference
between the two load vectors is estimated. A drawback of this approach consists in
the error being estimated in absolute terms. Its application would be impossible in
the present case, as the vector of loads consists in both forces andmoments, which
have different measuring units and cannot be summed up together. Therefore, the
error was computed as in Eq.2.86, where the square root of the sum of the squares
of relative errors is computed.

Error =
[

β1 ·
(

Fx_m − Fx_a

Fx_a

)2

+ β2 ·
(

Fy_m − Fy_a

Fy_a

)2

+ β3 ·
(

Fz_m − Fz_a

Fz_a

)2

+ β4 ·
(

Mx_m − Mx_a

Mx_a

)2

+ β5 ·
(

My_m − My_a

My_a

)2

+ β6 ·
(

Mz_m − Mz_a

Mz_a

)2] 1
2

(2.86)

Writing the error in this form was also the opportunity to incorporate additional
weight coefficients, β1, . . . , β6, which take the importance of the measured com-
ponent into account. For instance, they can all be kept at a unitarian value, except
β1, to account for the minor importance of a very accurate estimation of Fx .
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The numerical procedure for the determination of the most suitable value of the
damping coefficient can be summarized as follows.

• Just one of the sample strain readings was initially considered. According to the
describedmethodology to simulate experimental uncertainty, 500 random readings
were determined. The value of α was initially assumed as unitarian and the model
in Eqs. 2.84 and 2.85 was followed for the computation of the vector of loads, f ,
corresponding to the first of the 500 random input readings.

• Afterwards, the error was computed by the application of Eq.2.86, where the sub-
script m stands for measured and the subscript a stands for applied. The same
procedure was followed for the remaining 499 random input signals, thus com-
puting other error terms.

• An averaged value of error was finally determined for α = 1 and recorded. Then
the value of α was halved and the whole procedure was followed again for the 500
random signals, thus computing a further value of the averaged error for α = 0.5.
Then the value was halved again the and the entire procedure was followed until
it assumed a value around 10−3.
The orders of magnitude seemed quite reasonable to define the interval where the
most suitable value of α was likely to be.

• The average error versus the number of the performed iteration It. is plotted in
Fig. 2.55. The simple relationship between the iteration It. and the actual value of
α is shown in Eq.2.87.

αI t. =
(

1

2

)I t.−1

(2.87)

• It can be observed that the curve exhibits a minimum for I t. = 7, correspond-
ing to α = 0.016. It suggests that the performed procedure is really effective at
reducing the error induced by the experimental uncertainty, thus improving device
robustness.

• A possible drawback lies in the determined value depending on the sample reading
used to generate the 500 random input signals. For this reason the whole procedure
was repeated also for other sample readings. The results were all consistent and
proved that the most suitable value for α is always close to 0.016.

Fig. 2.55 Average error as a function of the iteration number (It.)
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Fig. 2.56 Comparison between actual and measured force and moments after regularization

The final issue concerns the impact of the two strategies that have been tackled and
described here, to account for the offset terms and to achieve a regularization of the
ill-problem. The histograms in Fig. 2.56 compare the estimated loads to the current
applied loads in case of strain readings affected by a 5% error. These results, to be
compared with those of Fig. 2.52, denote a very good agreement with a maximum
acceptable discrepancy around 11% for Fx .
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Chapter 3
Introduction to Photoelasticity

Abstract For nearly a century the photoelasticmethod has been a reference to verify
special applications of the theory of elasticity and to provide a solution to cases of
loaded structures without theoretical models. Today photoelasticity has been largely
replaced by numerical methods, such as finite elements, which provide solutions for
any structural problem with great detail and accuracy, and is therefore confined to
the role of an illustration tool. This technique is based on an analogy of the optical
behavior of transparent amorphous bodies; this fact limits the applications but its
capability of analyzing the general field and, at the same time, clarifying details, is
still very useful, and applications of photoelastic techniques continue to be presented
in the most qualified international venues. It is therefore still logical to present an
overview of the theory and to discuss some applications. The classical approach
remains the best way of understanding the inherent advantages and drawbacks and,
thanks to the inverse approach, continues to be a useful investigation method.

3.1 Premise

Recently, photoelasticity has achieved significant improvements for a digital exten-
sion (digital photoelasticity), developed and applied by several researchers [1–5].1

3.2 Nature of Light

According to the electromagnetic theory due toMaxwell, light is awave phenomenon
related to the harmonic oscillation of an electric field (which can be represented by
one or more vectors normal to the direction of light propagation) and to harmonic
oscillation of a magnetic field perpendicular to the first [6].

1 The Society of Experimental Mechanics SEM in the United States included about 80 papers in
the annual 2009 conference and comparable numbers in previous years. At the ICEM (International
Conference of Experimental Mechanics in 2014) two sessions where dedicated to this method.

© Springer International Publishing Switzerland 2015
A. Freddi et al., Experimental Stress Analysis for Materials and Structures,
Springer Series in Solid and Structural Mechanics 4,
DOI 10.1007/978-3-319-06086-6_3
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Let us first suppose that we have a point source of monochromatic light and
consider only the electric field. Since this field oscillates harmonically, its value at a
given instant of time t and at a point at a certain distance r from the source S can be
expressed as (Figs. 3.1 and 3.2):

a(r, t) = K

r
cos

[

2π

λ
(r − ct) + φ

]

(3.1)

where:
K/r = amplitude or attenuation coefficient
λ = wavelength
r = distance of the point from the source
t = time variable
c = light propagation velocity in the medium
[ 2π

λ
(r − ct) + φ

] = phase angle (or phase)
φ = initial phase angle (or initial phase) for t = 0 and r = 0.

If t = const., r = const., φ = const., a(r, t) is constant on a spherical surface with
center S. At a distance r from the source, the electric field has the same value as the
phase angle in any direction.

The propagation front is spherical, i.e. the oscillatory phenomenon is in phase at
all the points on a spherical surface normal to the propagation direction. There are
other forms of wave fronts: a plane wavefront can be obtained placing a point source
in the focus of a plane-convex lens.

wavelength

period

Fig. 3.1 Oscillation of electric field with associated magnetic field on left side and representation
of the function a(r, t) on the right side
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Fig. 3.2 Three-dimensional
representation of a(r, t) in
coordinates r and t

The instantaneous value of a(r, t) can also be expressed as a real part of a complex
vector, indicated by the capital boldface letter A:

a(r, t) = Re [A]

where:

A = K

r
e

i
[

2π
λ

(r−ct)+φ
]

= K

r
eiΦ · e

i
(

2π
λ

r−ωt
)

(3.2)

If f = c/λ is the oscillation frequency of the electric field and ω = 2π f the
corresponding pulsation, Eq. 3.1 can be interpreted as the combination of an harmonic
vibration and a uniform translation.

If t is treated as a constant, Eq. 3.1 gives the wave profile along r at this instant;
vice-versa Eq.3.1 for a constant value r = r gives the oscillation at distance r from
the origin.

The wavelength λ is defined for variable r and period T = λ
c or frequency f = 1

T
are defined for variable t .2

Denoting by |A| the amplitude K/r and A = K

r
eiφ = |A|eiφ as complex ampli-

tude, Eq.3.2 can be written as (Fig. 3.2):

a(r, t) = Re
[

Aei( 2π
λ

r−ωt)
]

(3.3)

2 The light color is determined by the wavelength; the values of the visible spectrum range from
dark red ( f = 390 × 1012 Hz or λ = 770 nm) to violet ( f = 770 × 1012 Hz, or λ = 390 nm)
(1 nm = 10−9 m), passing through orange, yellow, green, blue, indigo-violet. If the light vector
is composed of vibrations a1, a2, . . . , an of the same frequency, light is monochromatic; if the
components have different frequencies, the eye perceives them all together as white light.
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3.2.1 Polarized Light

A wave of monochromatic light is said to be polarized when it is represented by
vectors with non-random orientations.

The electric field, i.e. the Light vector in a point of the propagation path, is com-
pletely determined by a complex amplitude that can be represented by its projections
on the coordinate axes. i.e. by means of two plane polarized waves on coordinate
planes xr, yr with complex amplitudes:

|Ax |eiφx

|Ay |eiφy

and the light vector can be written as:

A =
(|Ax |eiφx

|Ay |eiφy

)

=
(

Ax
Ay

)

(3.4)

Ifφx andφy are expressed as functions of their sum β = φx + φy and their difference
Δ = φy − φx , the following relationships hold:

⎧

⎪

⎨

⎪

⎩

φx = β − Δ

2

φy = β + Δ

2

and Eq.3.4 can be written as:

(|Ax |eiφx

|Ay |eiφy

)

=
(|Ax |

|Ay |eiΔ

)

eiβ/2e−iΔ/2

Terms such as eiβ/2e−iΔ/2 are common phases to both vectors and can be omitted
in the following discussion of photoelasticity, sensitive only to phase differences
between the two vectors.

3.2.2 Plane Polarized Light

If this is the phase relationship between the normal coordinates components:

Δ =
{

0

π
(3.5)

the resultant electric field is plane polarized light (Fig. 3.3). ForΔ = 0 and Δ = π is:
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Fig. 3.3 Plane polarized light

A ≡
(|Ax |

|Ay |ei0

)

=
( |Ax |

+|Ay |
)

(3.6)

A ≡
(|Ax |

|Ay |eiπ

)

=
( |Ax |

−|Ay |
)

In general, for |Ax | �= |Ay | the vibration plane is inclined with respect to the x axis
of an angle α, such that:

tan α = ay

ax
= |Ay |

|Ax | = const.

If also |Ax | = |Ay | = |A| the light vector becomes:

A = |A|
(

1
±1

)
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If tan α = ±1, α = ±π
4 and light3 is plane polarized at 45◦.

Polarized light in planes xr and yr is represented by vectors:

(

1
0

)

|Ax |
(

0
1

)

|Ay |

3.2.3 Circularly Polarized Light

A wave of monochromatic light is said to be circularly polarized when the electric
field vector is such that:

|Ax | = |Ay | = |A| and Δ = ±π/2

The vector of the resulting electric field can be expressed in the followingway, except
for a common phase which does not influence the light properties.

A ≡ |A|
(

1
e±iπ/2

)

≡ |A|
(

1
±i

)

(3.7)

Instant field values can be deduced from the instant components values along x and
y. For Eq. (3.1), taking Eq.3.7 into account, they are:

{

ax = |A| cos [ 2π
λ

(r − ct) + φx
]

ay = ∓|A| sin [ 2π
λ

(r − ct) + φx
] (3.8)

Squaring and summing the instantaneous values of both components:

3 The instantaneous value of the field in planes xr and yr is expressed, for Eq.3.1, by:

ax = |Ax | cos
[

2π

λ
(r − ct) + φx

]

ay = ±|Ay | cos
[

2π

λ
(r − ct) + φx

]

and instantaneous value of the resulting vector is:

ar =
√

a2
x + a2

y = √
2|A| cos

[

2π

λ
(r − ct) + φx

]

.
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ar =
√

a2
x + a2

y = |A| (3.9)

an constant instant value equal to |A| is obtained. The angle the light vector forms
with x axis is given by:

tan α = ay

ax
= ∓ tan

[

2π

λ
(r − ct) + φx

]

(3.10)

i.e.:

α = ∓2π

λ
(r − ct) + φx

The angle α varies linearly as a function of time t and r , while the vector amplitude
is constant. The vector describes a circle with the variable t with an angular velocity
sω = 2π

λ
c. Since it varies in position along the propagation direction, the composed

movement is an elliptical helix.
The sign distinguishes the direction of rotation of the vector. For an observer

looking at the source, the sign is assumed positive when the rotation is clockwise
and vice-versa for counterclockwise. With this convention, when t increases, angle
α decreases.

3.2.4 Elliptically Polarized Light

Light is elliptically polarized with the ellipse diameters along x and y axes, when
Ax �= Ay and Δ is equal to ±π/2.

The electric field vector can be expressed as:

( |Ax |
±i |Ay |

)

(3.11)

and along x and y:

{

ax = |Ax | cos
[ 2π

λ
(r − ct) + φx

]

ay = ∓|Ay | sin
[ 2π

λ
(r − ct) + φx

] (3.12)

Squaring and summing:
a2

x

|A2
x |

+ a2
y

|A2
y |

= 1 (3.13)

If |Ax | �= |Ay | and φy − φx �= π/2 light is still elliptically polarized even if with
axes not coinciding with the coordinate axes. See a summary of all these cases in
Fig. 3.4.
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(a) (b)

(c) (d)

Fig. 3.4 Polarized light. a Natural light, b plane polarized, c circularly polarized, d elliptically
polarized)

3.2.5 Plane Polarizer

In order to alter the state of light polarization, different types of polarizing filters can
be set along light beams.

Plane polarizers are optical filters that allow only vectors components vibrating
in a defined direction, called polarizer axis to pass through. Components along its
normal direction are totally absorbed.

Identifying light vectors with the corresponding complex amplitudes, and con-
sidering only a wavelength, the incident light is given by, Fig. 3.5:

(

Ax
Ay

)

The angle formed by P axis with x axis is ϑ (considered positive in counterclock-
wise direction, looking at the light source).

The emerging light vector, referring to the P axis and to its perpendicular direc-
tion, is:

A′
p = Ax cosϑ + Ay sin ϑ (3.14)

If the emerging beam refers to cartesian axes, it becomes:

(

A′
x

A′
y

)

=
(

cos2 ϑ sin ϑ cosϑ

sin ϑ cosϑ sin2 ϑ

)

.

(

Ax
Ay

)

(3.15)
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Fig. 3.5 L light source, P
polarizator axis, x and y
Cartesian coordinates

Matrix Pϑ which transforms the incident light vector into an emerging light vector
is called a polarizer matrix.4

If the polarizer axis is respectively along the x axis (ϑ = 0), y axis (ϑ = π/2) or
at 45◦ (ϑ = π/4), P assumes respectively the following forms:

Px =
(

1 0
0 0

)

Py =
(

0 0
0 1

)

P π
4

= 1

2

(

1 1
1 1

)

(3.16)

3.2.6 Double Refraction or Birefringence

Some transparent materials have the property of splitting the light that passes through
them in two polarized components, lying on two planes perpendicular to each other;
these components are transmittedwith different velocities. The phenomenon is called
double refraction or birefringence.

Referring to Fig. 3.6, let be x, y be the coordinate axes and 1, 2 the polarization
axis of the plate.

4 Currently the employed filters are Polaroid® (Polaroid Co., Cambridge, Mass, USA), supplied in
sheets of various size; “this material, known as J-sheet, was later replaced by the improved H-sheet.
H-sheet is a polyvinyl alcohol (PVA) polymer impregnated with iodine. During manufacture, the
PVA polymer chains are stretched such that they form an array of aligned, linear molecules in
the material. The iodine dopant attaches to the PVA molecules and makes them conducting along
the length of the chains. Light polarized parallel to the chains is absorbed, and light polarized
perpendicular to the chains is transmitted” [7].
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L

x

y

Ax

Ay

θ

r

A

A2

1

A'1
A'2

α

Fig. 3.6 Phase shift introduced by a birefringent filter in complex representation on the left and in
physical space on the right (Δ = Φ2 − Φ1)

Axis 1 forms an angle α respect to axis x (with the same sign convention). The
incident light vector

(

Ax
Ay

)

referring to the polarizing axes 1 and 2 becomes:

(

A1
A2

)

=
(

cosα sin α

− sin α cosα

)

.

(

Ax
Ay

)

(3.17)

While components A1 and A2 are at the filter entrance, the following ones are
emerging:

(

A′
1

A′
2

)

=
(

1 0
0 eiΔ

)

.

(

A1
A2

)

(3.18)

Referring them to x and y is:

(

A′
x

A′
y

)

=
(

cosα − sin α

sin α cosα

)

.

(

A′
1

A′
2

)

(3.19)

From Eq.3.20 the following is derived:

(

A′
x

A′
y

)

=
(

cosα − sin α

sin α cosα

)

.

(

1 0
0 eiΔ

)

.

(

cosα sin α

− sin α cosα

)

.

(

Ax
Ay

)

(3.20)
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From the matrix product:

M =
(

cos2 α + eiΔ sin2 α (1 − eiΔ) sin α cosα

(1 − eiΔ) sin α cosα sin2 α + eiΔ cos2 α

)

(3.21)

Synthetically:
A′ = M · A (3.22)

If:
⎧

⎪

⎨

⎪

⎩

m11 = cos2 α + eiΔ sin2 α

m12 = m21 = (1 − eiΔ) sin α cosα

m22 = sin2 α + eiΔ cos2 α

(3.23)

then:

M =
(

m11 m12
m21 m22

)

(3.24)

When phase difference is equal to π/2 the birefringent filter is called a quarter-wave
plate, because the phase difference between the two polarized rays at the filter exit
is equal to one-quarter of the wave length for the considered monochromatic light.

If the phase shift is π and 2π , the filter is called respectively half-wave and
full-wave plate.

If Δ = π
2 and α = ±π

4 the matrix of the birefringent filter becomes:

Q = 1

2

(

1 + i ±(1 − i)
±(1 − i) 1 + i

)

eiφ1 (3.25)

Collecting the common term (1 + i) (equal to 2eiπ/4) that together with vector eiφ1

do not enter, as it will be seen, in the interference phenomenon, the matrix Q can be
expressed, except for these two vectors, as:

(

1 ∓i
∓i 1

)

(3.26)

3.3 Light Treatment in an Optical System

Let now examine the behavior of light passing through an optical system composed
of elements designed to alter polarization and the phase of the light. For the linearity
property of transformations that the light undergoes, linear matrix algebra can be
introduced [8] that makes it possible to express the emerging field as a function of
the field at entry. Each element of the optical system is represented by a matrix. For
the property of matrix algebra, the field emerging from the optical system is obtained
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by pre-multiplying the incident field by the matrices of the optical elements taken in
reverse order:

A′ = Mn, . . . , Mi . . . , M2, M1 · A (3.27)

All the matrices Mi are square, of the second order and symmetric.

3.3.1 Optical System with a Polarizer and a Birefringent Filter

Let us consider the generation of different kinds of polarized light, setting up an
optical system constituted by a polarizer filter followed by a birefringent one.

Plane, circular or elliptical polarized lights can be generated depending on phase
shift Δ and on angle α.

3.3.1.1 Circular Polarized Light

The simplest case is given by the following conditions:

{

ϑ = 0 and α = 0 or α = π/2

ϑ = +π
2 and α = 0 or α = π/2

For any value of Δ, the emerging light remains plane polarized in the horizontal or
in the vertical plane.

Setting up a polarizer with polarizing axis along y followed by a Quarter wave
plate, Fig. 3.7, respectively for α = π/4 and for α = −π/4, the emerging vector
becomes:

A =
(

1 ∓i
∓i 1

) (

0 0
0 1

)

Ay =
(∓i
1

)

Ay ≡
(∓1

i

)

Ay (3.28)

having collected and neglected i = eiπ/2, the absolute value of a phase shift that is
also irrelevant in the interference phenomenon.

The emerging light is circularly polarized, Eq.3.7 and Fig. 3.8.

3.3.1.2 Elliptic Polarized Light

If the filter is a Quarter-wave plate, for any value of α, but 0, π/2, π/4 (or even
multiples of them), the transmitted light is elliptically polarized.



3.3 Light Treatment in an Optical System 113

Fig. 3.7 Light treatment with a polarizer and a quarter-wave plate

<

<

<

Fig. 3.8 Generation of circular polarized light
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3.4 Light Intensity

The intensity of the light radiation, which is responsible for common lighting effects
(photochemical reactions, stimulation of the retina, etc.) is proportional to the square
of the amplitude modulus.

I ∝ |A2| (3.29)

Introducing the complex notation Eq.3.29, it is possible to write also:

I ∝ |A|e−iφ |A|eiφ = A∗ A ∝ |A|2 (3.30)

that is the product of amplitude by its conjugate (A∗ being the conjugate of A).
More generally, if an electric field is expressed by:

(|Ax |eiφx

|Ay |eiφy

)

light intensity is represented by the scalar:

I ∝ (|Ax |e−iφx |Ay |e−iφy
)

.

(|Ax |eiφx

|Ay |eiφy

)

= |Ax |2 + |Ay |2 (3.31)

i.e.
I ∝ A∗ · A (3.32)

where A∗ is the transpose vector of the conjugate of A.
An absolute phase does not contribute to light intensity, i.e. to energy transport.

3.5 Optics of Photoelasticity

Many non-crystalline transparent materials [6, 9–15], ordinarily optically isotropic,
if loaded, become anisotropic and show a behavior similar to crystals. This effect,
that vanishes when loads are removed, is called temporary or artificial birefringence.

When this happens, the transparent material has photoelastic behavior and is
called photoelastic material.

Let us consider a plane model of photoelastic material. Initially the model is
unloaded and has a refractive index equal to n0 at every points and in any direction.
When the model is loaded, in any point it becomes birefringent, like the optical filter
previously seen.

The principal optical directions with maximum and minimum refractive indices
coincide with the principal directions 1 and 2 of the stress state in that point; phases
of the two vectors along 1 and 2 axes also vary along the model thickness so that
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both components emerge at different times. If n1 and n2 are refractive indices at the
point along axes 1 and 2 and d is the thickness, the delay of A′

2 on A′
1 at the exit is:

t2 − t1 = d

v2
− d

v1
= d

c

(

c

v2
− c

v1

)

= d

c
(n2 − n1) (3.33)

where c is the speed of light in vacuum.
The axis of polarization 1 with a smaller refractive index n1, thus with greater

propagation speed, is called a fast axis, while the other is called a slow axis. The
phase difference of the light components emerging from the model is:

Δ = 2π

λ
c(t2 − t1) = 2π

λ
d(n2 − n1) (3.34)

In order to have circularly polarized light it must be Δ = π/2; this condition makes
it possible to accurately derive the thickness d of the plate, once optical properties
of the material (n2 − n1) and the wavelength λ of the light in vacuum are known.

It is therefore not possible to build a Quarter-wave plate for different wavelengths
or for the white light. The variation of the index of refraction is linearly related to
the stresses,

⎧

⎪

⎨

⎪

⎩

n1 − n0 = c1σ1 + c2(σ2 + σ3)

n2 − n0 = c1σ2 + c2(σ3 + σ1)

n3 − n0 = c1σ3 + c2(σ1 + σ2)

(3.35)

where: n0 is the index of refraction (or the refractive index) of unstressed state and
n1, n2, n3 are the principal refractive indices along the principal stress directions
σ1, σ2 and σ3. Constants c1, c2, c3 are stress optic coefficients that depend on the
material.

Subtracting the previous equations member to member gives:

⎧

⎪

⎨

⎪

⎩

n2 − n1 = (σ1 − σ2)(c2 − c1)

n3 − n2 = (σ2 − σ3)(c2 − c1)

n1 − n3 = (σ3 − σ1)(c2 − c1)

(3.36)

For a model of thickness d with its plane perpendicular to the third principal-stress
direction, the first of Eq.3.36 can be written as:

Δ = 2π

λ
d(n2 − n1) = 2π

λ
d · B(σ1 − σ2) (3.37)



116 3 Introduction to Photoelasticity

where: (c2 − c1) = B is the relative stress-optic coefficient (brewster)

(

1 Brewster = 10−12 m2

N
= 10−6 m2

MN
= 10−6 1

MPa

)

For a positive birefringence, the wave velocity related to principal stress σ1 is
greater than wave velocity related to principal stress σ2. So if σ1 ≥ σ2 ≥ σ3 then
n3 ≥ n2 ≥ n1.

The phase difference, i.e. the relative retardation between the two vector compo-
nents, is thus proportional to (σ1 − σ2).

Let N = Δ/2π be the fractional phase shift and: fσ = λ/B a photoelastic
constant of the material for the light wavelength λ. Equation (3.37) becomes:

σ1 − σ2 = fσ
N

d
(3.38)

In the elastic range are valid the Hooke’s equations:

⎧

⎪

⎨

⎪

⎩

ε1 = 1

E
(σ1 − νσ2)

ε2 = 1

E
(σ2 − νσ1)

from which the following equation is derived:

ε1 − ε2 = 1 + ν

E
(σ1 − σ2) = fε

N

d

where:

fε = 1 + ν

E
fσ (3.39)

The inverses of the two constants: 1/ fσ and 1/ fε have respectively the meaning of
stress and strain sensitivities, because they express thematerial birefringence (fringes
number), for given values of stress and strain.

3.6 Polariscopes

The instrument formeasuring the birefringence at points of a loaded planemodel (and
consequently, the difference of the principal stress or strain with relative directions),
is called a polariscope.

This instrument can have several forms but in its simplest arrangement it consists
of a light source (white and monochromatic) and of two polarizers and two quarter-
wave plates.
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Two main types of polariscopes are available on the market and can be classified
according to the type of light transmission:

1. The diffused light polariscope (Fig. 3.9).
2. The lens or (parallel) light polariscope.

They differ only in the possibility of having diffused or parallel light beams. The
acquired images are substantially the same; the parallel rays allow some special
techniques that cannot be used for the other one.

The scheme of the optical filters for a Polariscope (in parentheses the variations
for lens polariscope) is the following, starting from the source along the light path:

1. A diffuse source of monochromatic light, e.g. natrium vapor lamps.
2. A second diffused source of white light alternative to the first.
3. Diffuser partially transparent plate.

• A point source of light in the focus of a lens (for lens polariscope).
• First convex-plane lens (for lens polariscope).

4. First Polarizer.
5. First Quarter-wave plate.
6. Plane Model with the loading apparatus.
7. Second Quarter-wave plate.
8. Second Polarizer called Analyzer.

• Second plane-convex lens (for lens polariscope).

9. Recording Instrument (analogical or digital or video camera).

The Quarter-wave plates (Q.O.) can be inserted or not on the optical path.
Analyzer must be coupled with the polarizer to allow a synchronic rotation of

both filters with crossed polarization axes.

The lens polariscope, with an optical system consisting of at least two lenses,
allows more orthodox observations. It is useful for the definition of precise
contours of the model and for the use of special techniques such as fringes
multiplication. Downstream, a lens is placed after the analyzer and converges
the rays in the lens focus of the recording unit or on a screen.

The diffused light polariscope (easier to build) can in all other cases replace
the polariscope with parallel light, if care is taken to record the image with a
medium telephoto lens to limit errors due to the inclination of the direction of
the rays that converge on the lens of the recording apparatus.
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Fig. 3.9 A Diffused Light polariscope (by Tiedemann–Garmish, Germany)

3.7 Plane Polariscope

The plane polariscope consists of two plane polarizers only. It can be built very easily
with two Polaroid filters andwith a light source. It is used in twomain configurations:
with crossed or with parallel polarizing filters (Fig. 3.10).

3.7.1 Polarizer and Analyzer with Crossed Axes

Without losing generality, x and y axes can be chosen respectively in horizontal and
vertical directions. The emerging light vector, in the hypothesis of a vertical polarizer
and a horizontal analyzer, for Eqs. 3.17 and 3.27 is given by:

A′ = PxMPy · A

then:
(

A′
x
0

)

=
(

1 0
0 0

) (

m11 m12
m21 m22

) (

0 0
0 1

) (

0
Ay

)

from which:
(

A′
x
0

)

=
(

m12
0

)

Ay (3.40)
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Fig. 3.10 Plane polariscope with crossed axes: source L , polarizer with polarizing axis P along y,
plane model with principal stresses in the observed point, analyzer with polarizing axis A along x

with:
m12 = (1 − eiΔ) sin α cosα

There are two light extinction (or destructive interference) conditions:

eiΔ = 1 sin α cosα = sin 2α = 0

• The first is verified when Δ = 0 plus multiple of 2π i.e. Δ = 0 + 2kπ with k
integer.

• The second is verified when 2α = 0 or π .

Zeros of the function are:

N = Δ

2π
= 0, 1, 2, . . . , k (3.41)

α = 0 α = π

2
(3.42)

The same result is obtained from the condition of zero light intensity. For Eq. 3.32:

I ∝ A∗′
.A′ = |Ay |2m∗

12m12 (3.43)

I ∝ |Ay |2 sin2 α cos2 α[2 − (eiΔ + e−iΔ)]
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Remembering the Euler’s identity:

cosΔ = eiΔ + e−iΔ

2
sinΔ = eiΔ − e−iΔ

2i

I ∝ 2 sin2 α cos2 α|Ay |2(1 − cosΔ) = 2 sin2 2α sin2
Δ

2
= 0

Then I = 0 for:

sin 2α sin
Δ

2
= 0 (3.44)

from which:
{

Δ = 0 + 2kπ

2α = 0 or π
(3.45)

that are the same of Eqs. 3.41 and 3.42.

3.8 Circular Polariscope

A circular polariscope consists of two light sources, monochromatic and white, (or
a monochromatic filter to produce monochromatic light from white light), a first
polarizing plate, two quarter-wave plates and a second polarizing plate. First polarizer
and first quarter-wave plate (oriented at α = π/4 with respect to the polarizing axis),
produce circular polarized light. The second quarter-wave plate has the fast axis and
slow axis inverted respect to the first one in order to inversely transform the circular
polarized light into a plane polarized light. The last filter is the analyzer, Fig. 3.11.

3.8.1 Polarizer Along y Axis and Analyzer Along x Axis

The light vector emerging from the analyzer is given by, Fig. 3.11:

A′ = Px Q− π
4

M Q π
4

Py A (3.46)

The transformation matrix is:
(

1 0
0 0

)(

1 i
i 1

)(

m11 m12
m21 m22

) (

1 −i
−i 1

)(

0 0
0 1

)

(3.47)
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Fig. 3.11 Filters set-up in a circular polariscope: source L , polarizer P with axis along y, quarter-
wave plate Q with axes 1 and 2 at π/4 and 3/4π respectively, plane model, second quarter-wave Q
with axes 2 and 1 at π/4 and 3/4π respectively, analyzer A with its axis along x . Positive direction
counterclockwise looking towards the light-source

from which:
A′

x = Ay(2m21 − im11 + im22) (3.48)

Substituting the expressions of m11, m22 etc.:

A′
x ∝ Ay(1 − eiΔ)(sin 2α − i cos 2α) (3.49)

There is only one light extinction condition (1− eiΔ = 0), because the second term
does not become zero for any value of α. Then: eiΔ = 1 fromwhich Eq.3.41 derives.

Alternatively the condition of zero light intensity is:

I ∝ A
′∗ · A′ = |Ay |2

4
(1 − cosΔ) = |Ay |2 sin2 Δ

2
(3.50)

This equation has the same zeros as the previous one for the plane polariscope,
see Eq.3.41. The other condition given by Eq.3.42 regarding the principal stress
orientation is now absent.
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3.8.2 Both Polarizer and Analyzer Along the y Axis

In this case the general expression of the transmitted light becomes:

A′ = Py Q− π
4

M Q π
4

Py A (3.51)

=
(

0 0
0 1

) (

1 i
i 1

) (

m11 m12
m21 m22

)(

1 −i
−i 1

) (

0 0
0 1

) (

0
Ay

)

from which:
A′

y ∝ Ay(m11 + m22) (3.52)

(m11 + m22) = (1 + eiΔ) = 0

verified for:
eiΔ = −1 (3.53)

In the case of the analyzer along y axis, the destructive light interference gives (with
k integer):

Δ

2
= 2k + 1

2
π (3.54)

N = Δ

2π
= 0.5, 1.5, 2.5, . . . (3.55)

Alternatively, the light intensity expression is, Eq. 3.31:

I ∝ |Ay |2(m∗
11 + m∗

22)(m11 + m22)

or, with the same zeros of Eq.3.53:

I ∝ |Ay |2(1 + e−iΔ)(1 + eiΔ) = |Ay |2 1 + cosΔ

2
= |Ay |2 cos2

Δ

2
(3.56)

3.9 Isochromatics

As it was previously shown with Eq.3.38, the difference of the principal stresses in
a point of a plane model is directly proportional to the photoelastic constant, to the
parameter N and inversely to the thickness d at that point.

σ1 − σ2 = fσ
N

d
(3.57)
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Fig. 3.12 Isochromatics on a black and bright background of an annular disc loaded at three points

If the observation is carried out in monochromatic light with wavelength λ, the
loci of points of light extinction with crossed filters (or the maximum transmission
with parallel filters), are interference fringes that are called isochromatics. So such
fringes appear black on a black background with crossed filters and bright on a bright
background with parallel filters (Fig. 3.12). Details of the contact points are shown
in Fig. 3.13.

Isochromatics join the points having the same value of the difference σ1 − σ2,
namely the same diameter as the Mohr’s circle, i.e. the same maximum shear stress;

Fig. 3.13 Details of isochromatics in contact points without (up) and with a light friction (bottom)
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Table 3.1 Nλ values up to the first order with crossed polarizers in white light, modified from [13]

Nλ (nm) Absorbed Transmitted

0 All Black

40 Iron gray

57 Lavender gray

158 Gray blue

218 Gray

234 Green white

259 White

267 Yellow white

275 Pale straw yellow

281 Straw yellow

308 Bright yellow

390 Indigo-violet Brilliant yellow (corr. to N = 1
with sodium light)

430 Brown yellow

505 Blue-green Orange

536 Green Red

551 Deep red

565 Purple

576∗ Brilliant yellow Indigo-violet (passage from
warm to cold colors)

664 Orange Sky blue

728 Green blue

747 Red Green

800 Bright green

826 Yellow-green

*Correspondent to order 1 with the use of Sodium vapor light

in other words they are the contour lines of the difference of the principal N is called
Isochromatic order.

If observation is carried out in white light, isochromatics appear colored by the
complementary colors of the extinguished ones,5 whose wavelength λ is linked to
the principal stresses difference by the relationship, Eq.3.37:

B · (σ1 − σ2)d = Nλ (3.58)

with N given respectively by Eqs. 3.41 and 3.55 for crossed and parallel polarizers. In
this way, each value of d(n2−n1) i.e. (σ1−σ2) is distinguishable for a characteristic
color of transmitted light, Table3.1.

5 The colors of all wavelengths but the extinct one, are transmitted and perceived as a single color,
called the complementary color of the extinguished one.
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Fig. 3.14 Absorbed and transmitted color: modified from [16]

Let us now continuously increase the difference (σ1 − σ2), starting from zero
value. If the principal stresses difference is zero, the transmitted light intensity is
zero and a black fringe appears. The light of all wavelengths is absorbed and order
N = 0 occurs.

For higher stress differences, (keeping N = 1), extinction happens for wave-
lengths smaller than theminimum of the visible spectrum (violet) and the transmitted
light varies from black, through shades of gray, up to white at about 260 nm. The first
colors clearly defined appear due to the extinction of a wavelength of approximately
390 nm (violet) (Nλ = 1 · 390 nm), and the transmitted light color, complementary
to the absorbed one is yellow. The extinction occurs for the following wavelengths
of the visible spectrum in this order: blue, green, yellow, orange and red. The colors
are then transmitted respectively in the sequence: yellow, orange, red, purple, blue,
green, Fig. 3.14.6

At about 577 nm extinction of the first order of colors N = 1 is complete. If
the difference (σ1 − σ2) increases, extinctions begin for twice the wavelengths of
the visible spectrum (N = 2) and the colors are extinguished a second time. If the
difference becomes higher, the number of wavelengths cancelled at the same time
tends to increase. The second order is complete at about 1100 nm. From the third
order the transmitted colors are the sum of several complementary colors and appear
faded, tending to pink, pale green, and finally, to white. Theoretically, the estimation

6 Taken from Prof. Stephen A. Nelson, Department of Earth and Environmental Sciences. EENS
2110, Mineralogy, Tulane University: Interference Phenomena, Compensation, and Optic Sign.
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of the color of the transmitted light could offer a way to calculate the difference
of the principal stresses. Since the isochromatic of integer order corresponds to a
precise multiple of the wavelength of the monochromatic light used, the estimation
of an intermediate color in white light would make it possible to evaluate the frac-
tional order of isochromatic. However, estimation is uncertain and it is preferable to
use white light only for identifying the isochromatic of zero order, which appears
always black.

Conversely, the accurate counting of of isochromatic orders is done in mono-
chromatic light, because they appear sharp up to very high (10 and more) orders.
If sodium vapor lamps are used (λ = 576.6 nm), the first order corresponds to the
indigo-violet color observed in white light.

3.10 Isoclines

It is possible, with the use of plane polarized light, to show the condition of light
extinction expressed by the relationship:

2α = nπ

This happens for the points of the model that have the principal stress directions
coinciding with polarization directions of polarizer and analyzer with crossed axes.

The locus of these points of equal inclination of the principal directions are con-
tinuous curves called isoclines.

With the use of circular polarized light, isoclines are deleted and only the isochro-
matics appear. It is not possible to operate the inverse, i.e., to eliminate the isochro-
matics and keep only the isoclines; nevertheless, it is possible to distinguish these
from the first ones following these methods:

• Rotate polarizer and analyzer maintaining their relative directions at 90◦. The
isocline changes position on the model surface and, during a complete rotation of
90◦, cover all the points of the model, while isochromatics remain unchanged.

• The model is observed in white light. The isochromatics are colored, while the
isoclines appear as dark lines or bands.

• Reduce the applied loads gradually. The isoclines, that depend only on the principal
directions and not on the stress values, remain unaltered, while the isochromatics
tend to disappear.

It should be noted that, generally, the isoclines have a band shape with a certain
width. The midline is the isocline value for the assigned inclination of the polarizer
axes.

If the isocline is recorded for a number of discrete values of the inclination of the
polarizing filters, a family of isoclines is generated, each of which can be marked by
the value of the inclination from which it derives.
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Fig. 3.15 Isoclines properties: Isoclines at a free boundary (a) and isoclines at symmetric points (b)

The isoclines have special attributes resulting from their definition, Fig. 3.15:

1. The isocline parameter depends on the initial position of themodel with respect to
the reference x , y identified by the initial directions of the analyzer and polarizer
axes.

2. The isocline parameter depends on the rotation direction of the crossed filters.
The same isocline has values complementary to 90◦ if it is derived by clockwise
or counterclockwise rotation. Consequently, symmetrical isoclines have comple-
mentary to 90◦ values.

3. The isocline at a point on a free boundary has, by definition, the value of the angle
formed by the tangent (or by the normal) to the border with the x axis, depending
on the direction of the crossed filters rotation.

4. The points of a straight free edge belong to the same isocline.
5. In the case of geometrical and physical (forces distribution) symmetry, the sym-

metry axis coincides with an isocline.
6. All isoclines pass through the points that have equal principal stresses.

3.10.1 Isotropic and Singular Points

If the difference σ1 − σ2 is equal to zero at a certain point, that point has optical
isotropic behavior and is called isotropic.

Moreover, if σ1 = σ2 = 0 the point is without any stress and is called singular.
If an isotropic point is on a free edge of the model, it is necessarily singular. This

point indicates, in general, the change of sign of the principal stress tangent to the
boundary.

By rotating the filters of the polariscope in a given direction it may happen that
the isocline at an isotropic point rotates in the same or in the opposite direction of
the filters.

Points of the first type are called positive and the other negative. A singular point
on the free edge of the model is necessarily negative.
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Fig. 3.16 Properties of isotropic points: positive when the isoclines sequence rotates in the same
direction as the polariscope axes, negative when the isocline sequence is in the opposite direction

The isotropic contiguous points are alternately positive and negative, since the
sequence of the isocline at one point is necessarily reverse at the next point, Fig. 3.16.

The order of an isotropic point is defined by the number of isoclines of equal
value that pass through it. If only one isocline is present at the point with a single
polarizer direction (in the interval 0–90◦), the isotropic point is of the first order.

The isoclines do not coincide only at the isotropic points; coincidence happens
also in application points of concentrated loads, i.e. singularities for stress tending
to infinity. In some cases, instead of single points there is an isotropic region.

3.10.2 Determination of Fractional Fringe Orders

One of the problems of the information produced by the isochromatics curves is the
necessity of interpolation for stress calculation when the point does not lie exactly
on the isochromatic fringes and phase shift does not correspond exactly to an integer
multiple or half-integer order.

Small phase shifts (or fractional orders) can be accurately measured by instru-
ments called compensators or by a special set-up of optical filters of the polariscope,
according e.g. to Tardy or Senarmont methods.

The first way to determine the fractional orders of isochromatics and to identify
the principal stress directions is by the use of a simple optical device that introduces,
on the optical light path in the polariscope, a known value of phase shift that equalizes
the unknown phase shift in the point of the model under examination. The device
therefore compensates the unknown value with a known one (which is the reason for
its name), with the same philosophy of the two pans balance.

3.10.2.1 Compensator Made from a Wedge Pre-compressed Bar

The concept underlying these tools can be clarified for the simplest type of com-
pensator. It is built with a small bar of photoelastic material, uniaxially loaded in
compression along its axis.

The procedure for making a compensator with adjustable compressive state is the
following:
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Fig. 3.17 Compensator made by a wedge bar with frozen compression stress

A compression uniaxial stress state is frozen in a small parallelepiped bar of
photoelastic material, Fig. 3.17.

The bar is cut in a wedge shape as shown in the same figure. According to the
following formula derived from the general equation of photoelasticity, Eq.3.38:

N = σ

fσ

dmax

l
x (3.59)

the isochromatic order is proportional to x , i.e. the distance of the generic point from
the wedge edge. Isochromatics are thus linearly distributed along the length of the
bar, at an equal distance from one another. The compensator is finally completed by
bonding this wedge-bar to another with the same shape, but stress-free, in order to
avoid spurious refraction effects in the light transmission. Along its length orders of
isochromatic are marked like a ruler, Fig. 3.17.

Let 1 and 2 be the principal stress directions at a point of a (loaded) model in
the polariscope. The longitudinal direction of the compensator is placed, in turn,
along the principal directions over the point. The effect of birefringence due to the
overlapped state of the uniaxial stress in the beam (that is known and variable with
continuity), and the unknown birefringence at the point of the model, Fig. 3.18 is
observed.

If the unknown stress state at the point of the model is (σ1 − σ2), two cases are
possible:

1. If the direction of the compensator coincides with the principal direction 1, the
overall retardation (or the overall phase shift) decreases: augmenting the com-
pression level of the compensator, decreases the order of the optical system con-
sisting of the model and compensator, eventually reaching zero, (shown by a
black isochromatic of zero order). The unknown phase shift (fractional order) in
the model is equal and opposite to that produced in the bar loaded with a known
compressive stress.

2. If, vice-versa, the bar axis is superimposed on the direction 2, the phase shift in
the composed optical system increases, i.e. the isochromatic assumes different
colors and the condition of light extinction (black isochromatic) is never reached
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Fig. 3.18 Illustration of the use of compensator: a known optical effect is superimposed to the
unknown one in the model, with identical effect of an added compression stress

for whatever value of compressive stress in the bar. In this case, the measurement
of the order is impossible.

Through this procedure the principal stress directions are identified and the order is
measured.

If the analysis is done at points on free boundaries, the technique gives the only
principal stress not equal to zero, tangent to the boundary; from Eq.3.38 thus the
following derives:

σT = fσ
N

d
(3.60)

and the phase shift measured by the compensator gives the unknown stress.
The isochromatic orders can be read directly on the compensator, Fig. 3.18. This

order is equal and opposite to the unknown fractional fringe order at that point.
There are other methods, in addition to the one described above that indicate

which of the principal directions is associated with the higher stress:

1. By examination of the isoclines and isostatics.
2. By a concentrated load at the free boundary, Fig. 3.19.

This method consists in the observation of the shape of the isochromatic on the free
boundary due to the effect of a localized pressure produced by a pointed object in
a direction perpendicular to the surface. If the tangent direction is in a tensile state,
the pressure σ2 = −p produces a phase shift between principal stresses such that:
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Fig. 3.19 Method of localized pressure to determine the stress sign at a free surface of a loaded
plane model

(σ1 − σ2) > σ1

So the order increases, new isochromatics enter the model and isochromatics of a
lower order are pushed inside themodel. In the opposite case of a tangent compressive
state, the following holds:

(σ1 − σ2) < σ1

and the isochromatics with lower order tend to move towards the boundary and the
order at the edge decreases.

3.10.2.2 Babinet-Soleil Compensator

The Babinet-Soleil compensator is a variant but also an improvement of the previous
one, since it allows the use of positive or negative retardation (phase shift) to add to
the unknown retardation at the point of the model (Fig. 3.20).

It is made from a small parallelepiped of quartz of uniform thickness t plus two
quartz wedges that have the optical axes perpendicular to the first. The thickness of
the double-wedge is variable with the lateral position of one of the wedges which is
mobile. In this way, the total phase shift introduced by the compensator in an optical
path is proportional to the difference between the thicknesses of the bar of constant
dimension and the bar made from the two wedges. In the system consisting of the
parallelepiped bar and by two wedges, when t1 = t2 the overall retardation is zero;
for t1 �= t2 retardations are positive or negative.

The compensator works in this way: having chosen the point in the model and
identified the principal directions, the compensator must be aligned with one of them
and the thickness adjusted to extinguish the phase shift at that point. The position

Fig. 3.20 Babinet-Soleil
compensator

t1

t2
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of the lateral micrometer screw that moves the wedge is calibrated in order to be
proportional to the isochromatic unknown order at the point.

3.10.3 Measurement of Fractional Orders by Means
of Quarter-Wave Plates

Fractional isochromatic orders are determined more frequently with other methods
that use only the normal equipment of the polariscope. Theoretically, through these
methods a resolution of one- hundredth of an order can be reached.

3.10.3.1 Tardy Method

In the Tardy method the analyzer itself acts as a compensator. Having chosen the
point for the examination, the axis of the polarizer is aligned along the direction of
σ2 and the other optical elements of the circular polariscope are arranged to give a
dark field, Fig. 3.21. In general, as the first operation, the polariscope axes x and y are
rotated up to coincide with the principal stress directions at the point. For clarity, the
direction of σ1 is assumed to be coincident with the axis x in a horizontal direction.

The light vector emerging from the analyzer when the analyzer with its vector
A is rotated counterclockwise by ϑ with respect to x axis, (that coincides with the
initial direction of the vector A0), is given by:

Fig. 3.21 Measurement of fractional order by Tardy method
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A′ = Pϑ Q− π
4

Mα=0 Q π
4

Py A (3.61)

The transformation matrix, a product of matrices of Eq. 3.61, taking into account
Eqs. 3.16 and 3.26, is:

(

cos2 ϑ sin ϑ cosϑ

sin ϑ cosϑ sin2 ϑ

) (

1 i
i 1

) (

1 0
0 eiΔ

) (

1 −i
−i 1

)(

0 0
0 1

)

=
(

sin ϑ cosϑ − i cos2 ϑ + ieiΔ cos2 ϑ + eiΔ sin ϑ cosϑ

sin2 ϑ − i sin ϑ cosϑ + ieiΔ sin ϑ cosϑ + eiΔ sin2 ϑ

)

For Eq.3.32, unless the term 1
4 |Ay |2, the intensity expression is:

I ∝ sin2 ϑ cos2 ϑ(1 + e−iΔ)(1 + eiΔ) + cos4 ϑ(1 − e−iΔ)(1 − eiΔ)

+ sin2 ϑ cos2 ϑ(1 − e−iΔ)(1 − eiΔ) + sin4 ϑ(1 + e−iΔ)(1 + eiΔ)

+ i sin ϑ cos3 ϑ(1 + eiΔ)(1 − e−iΔ) − i sin ϑ cos3 ϑ(1 − eiΔ)(1 + eiΔ)

− i sin3 ϑ cosϑ(1 − eiΔ)(1 + e−iΔ) + i sin3 ϑ cosϑ(1 + eiΔ)(1 − e−iΔ)

Taking into account the Euler relationships, is:

I ∝ 1

2
|Ay |2[1 − cos (Δ − 2ϑ)]

or:

I ∝ |Ay |2sin2
(

Δ

2
− ϑ

)

(3.62)

The condition of light intensity extinction is given by:

Δ

2
− ϑ = nπ

with n integer. or:

N = Δ

2π
= n + ϑ

π
(3.63)

Rotating the analyzer in the direction of ϑ < 0 (clockwise), the condition for light
extinction is the following:

N = Δ

2π
= n − ϑ

π
(3.64)

In order to avoid errors it is advisable to use a crossed polarizer and analyzer to
detect the orders of the isochromatic adjacent to the point under examination. The
procedure is the following:
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• Remove the quarter-wave plates and rotate the polarizer and analyzer together
until reaching the condition of light extinction. With this operation the isocline is
brought to the point.

• Return the quarter- wavelength plates in their relative position at π/4◦ with respect
to the new direction of the polarizers.

• Rotate the analyzer of an angle ϑ to obtain the light extinction: turning to anti-
clockwise or clockwise, bring the closest isochromatic of integer order to the
point.

If the order of this isochromatic is of order ni−1 the extinction condition is reached
for a fractional order:

ni−1 + ϑ1

π
(3.65)

If the order of this isochromatic is ni , the extinction condition is reached for a
fractional order:

ni − ϑ2

π
(3.66)

3.10.3.2 Senarmont Method

Also in this case, without loss of generality, the principal stress directions at the point
are assumed respectively along the horizontal and vertical axes (Fig. 3.22).

The method needs the following steps:

• The plane polariscope is rotated to bring light extinction to the point, i.e. to bring
the isocline in it.

• The polariscope filters are rotated to bring the polarizer and analyzer axes at 45◦
with respect to the principal directions.

Fig. 3.22 Measurement of fractional order by Senarmont method
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• The second quarter-wave plate downstream of the model must be fitted with one
of the polarizing axes parallel to the analyzer axis.

• The analyzer from the position of the A0 must be rotated by an angle +β i.e. with
respect to the x axis of an angle ϑ ′ = −π

4 + β to bring an isochromatic of integer
order to the point.

With these operations, the emergent light vector is given by:

A′ = Pβ−π/4 Q− π
4

Mα=0 P π
4

A (3.67)

The transformation matrix is:
(

cos2 ϑ ′ sin ϑ ′ cosϑ ′
sin ϑ ′ cosϑ ′ sin2 ϑ ′

) (

1 i
i 1

) (

eiΔ 0
0 1

) (

1 1
1 1

)

After somemathematical manipulations, the following expression is obtained for the
light intensity:

I ∝ |Ay |2 sin2
(

Δ

2
− β

)

(3.68)

that is the same found by the Tardy method.
Also in this case the extinction of light is achieved for the conditions Eqs. 3.65

and 3.66.

3.10.3.3 Method of Isochromatics Multiplication

With a proper use of two semi-reflective mirrors, the number of fringes that can
be observed in a photoelastic model can be multiplied [17]. This method has two
advantages compared to the compensation methods [18]: it operates instantaneously
and simultaneously at all points of the model.

Two semi-reflective mirrors are placed in a parallel light polariscope on both sides
of themodel, according to the scheme of Fig. 3.23. The secondmirror is slightly tilted
with respect to the first. The effect of the inclination on the beams is shown in the
same figure. It is clear that each light beam emerges from the system of mirrors with
an angle that depends on the number of times that the beam has passed back and
forth through the model. For e.g. rays 1, 3, 5, that have passed the model a number
of times identical to their numbers, emerge with angles 0, 2Φ, 4Φ.

Although beams do not pass strictly through the same point, the paths are much
closer than it appears in the figure where the angle is amplified for clarity. The path
length on which the photoelastic effect is measured as the sum of partial photoelastic
effects depends on Φ, on the number of beams and on the distance between the
mirrors.

In practical terms one can operate a multiplication of isochromatics from 5 to 7
times without introducing errors not acceptable due to the different paths of light in
the model thickness (Φ, in practice, is approximately 1/200 rad).
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Fig. 3.23 Method of fringes multiplication

As the different beams are inclined at different angles to the axis of the polariscope,
many images are formed. Each of these rays can be isolated by placing the eye or the
recording device on the image of interest. It proves useful to introduce a diaphragm
to delete all images, but the observed one.

Suppose, e.g., that we are recording images respectively in bright field and dark-
field for beam 1.

The orders of the isochromatics are:
0, 1/2, 1, 3/2, 2, 5/2, . . . ,
The images obtained with ray 3 thus give orders:
0, 1/6 1/3, 1/2, 2/2, 5/6, 1.
The result is a densification of the isochromatics that allows a very accurate order

estimation at every point of the model.

3.10.4 Drawing Stress Trajectories from Isoclines

The two families 1 and 2 of isostatic curves (or isostatics) can be plotted graphically
once the full family of isoclines is known, drawn for a number of inclination angles
of the polarizer and analyzer with respect to a reference coordinate system.

The simplest method consists in tracing many small crosses on the isocline curves
oriented in the same way as the isocline angle. These crosses give the directions of
both isostatics families at every point. Isostatics must be completed by joining the
arms of the crosses.
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A more practical method could be the following:

• All the isoclines, e.g. every 15◦, are drawn, having defined a positive rotation
direction of the filters, e.g. counterclockwise (looking towards the model from the
analyzer).

• After fixing an angular reference, a segment of an isostatic, starting from any point
of an isocline,must be drawnwith an inclination corresponding to its angular value.
This straight line is extended up to about the half distance from the contiguous
isocline.

• Starting from the end of this segment, a new straight-line segment is drawn with
a slope corresponding to this second isocline, again extending it up to about half
way between this isocline and the third one. The process is repeated up to the last
isocline, Fig. 3.24a.

The isostatics have some properties:

1. Curves of the family σ1 intersect curves of σ2 at 90◦.
2. Close to the isotropic points, isostatics have a characteristic pattern shown in

Fig. 3.24b, c.
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Fig. 3.24 Plotting isostatics from isoclines: a Typical isotropic points: b positive, c negative
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3. At the straight edges of the free model boundary or at the boundary loaded with
distributed perpendicular forces, the two families are respectively perpendicular
and tangent to the boundary.

4. Density and bending of isostatics are related to the stress concentration in that
area. Some cases will be shown in subsequent chapters.

5. Symmetry axes belong to an isostatic (in addition to an isocline);
6. Isostatics concentrate and converge in areas of loads application.
7. Principal stresses have a maximum or a minimum in the straight portion or

in inflection points of the isostatics. These properties are summarized in the
case-study in Fig. 3.25.
In fact, the stress equilibrium equations can be written along isostatics, according
to Lamé-Maxwell equations in this way:

∂σ1

∂S1
+ σ1 − σ2

ρ2
= 0

∂σ2

∂S2
+ σ1 − σ2

ρ1
= 0 (3.69)

Stresses σ1 and σ2 have a maximum or a minimum value respectively when S2
and S1 are rectilinear or with an inflection point (ρ2 and respectively ρ1 equal to
∞).

• ∂σ1

∂S1
= 0 for

1

ρ2
= 0 S2 has a straight portion or an inflection point.

• ∂σ2

∂S2
= 0 for

1

ρ1
= 0 S1 has a straight portion or an inflection point.
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Fig. 3.25 Isoclines and deduced isostatics in an annular disk loaded at three points, Fig. 3.12
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3.11 Principal Stresses Separation

The fundamental equation of photoelasticity allows direct determination of single
principal stress at a point on a free boundary if the fringe order, the thickness and
the photoelastic constant fσ are known.

At internal points, only the difference of the principal stresses and their directions
can be determined, i.e. stresses are not separately known.

Let us examine how it is possible to separate the principal stresses at internal
points of a plane model. Some methods require further experimental data while
others, based on the integration of equilibrium equations, complete the experimental
data with theoretical assumptions. Among them themethod of shear stress difference
can be applied not only to the 2-D cases but also to three-dimensional ones.

3.11.1 Shear Stresses and Normal Stresses Difference
Determination

Photoelasticity allows the complete knowledge of the values and signs of shear
stresses and of the normal stresses difference at any point of a model, since these
data derive from the knowledge of isochromatics and isoclines.

It is worth observing the Mohr’s circle does not give the physical sign of τxy but
the different sign describes only the fact that on two perpendicular edges the shear
stress converges or diverges:

τxy = ±1

2
(σ1 − σ2) sin 2α (3.70)

In this equation α is the isocline parameter at the point.
In a similar way the stresses difference is derived:

σx − σy = ±(σ1 − σ2) cos 2α (3.71)

Regarding signs for τxy and for the difference σx − σy , the following considerations
must be made.

3.11.2 Determination of Stress sign

The (conventional) signs of τxy and of the difference σx − σy may be assigned
by equilibrium considerations, see Fig. 3.26, once the principal stress directions are
separately identified.
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Fig. 3.26 Shear stress signs from equilibrium conditions
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Fig. 3.27 How to obtain signs of shear stresses and of stress difference by compatibility conditions

Signs are also derived by an intuitive compatibility observation, Fig. 3.27:

• If the positive direction of σ1 is in the first quadrant, Fig. 3.27a, τxy is positive;
if also the angle between the direction of 1 and x is less than 45◦, then σx > σy

and Eq.3.71 must be assumed to be positive. If, vice-versa, the angle between the
direction of 1 and x is greater than 45◦, Fig. 3.27b, σx < σy and Eq.3.71 must be
assumed to be negative.

• If the positive direction of σ2 is in the first quadrant, τxy is negative; if also the
angle between the direction of 2 and x is greater than 45◦ Fig. 3.27c, then σx > σy

and Eq. (3.71) must be assumed to be positive; if, vice-versa, the angle between
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the direction of 1 and x is less than 45◦, Fig. 3.27d, then σx < σy and Eq.3.71
must be assumed to be negative.

3.11.3 Integration of Equilibrium Equations

Given a plane model, after fixing a Cartesian coordinate system with the origin at a
point of the free boundary of the model, the differential equilibrium equations must
be integrated in order to determine the stress state at all points along a segment of
the x axis. The equilibrium equations are:

⎧

⎪

⎨

⎪

⎩

∂σx

∂x
+ ∂τxy

∂y
= 0

∂σy

∂y
+ ∂τxy

∂x
= 0

If the first member is integrated with respect to x , between values 0 and i , the
following relationship is derived:

∫ i

0

∂σx

∂x
dx = −

∫ i

0

∂τxy

∂y
dx (3.72)

i.e.:

σx = σx0 −
∫ i

0

∂τxy

∂y
dx (3.73)

Once the isochromatic pattern and related isoclines (assuming x as the initial analyzer
direction) are plotted, the determination of σx at point 0 is obtained by equilibrium
along x direction of the infinitesimal element shown in Fig. 3.28.

The τxy sign is determined by equilibrium in y direction. In the case of Fig. 3.28,
e.g., σx0 and τxy are both positive according to the most common sign convention.
The integration can be carried out for finite differences Δx , Δy.

The following steps are obtained:

1. The integral approximated by finite differences:

∫ i

0

∂τxy

∂y
dx �

i
∑

0

Δτxy

Δy
Δx (3.74)

2. The initial value given by equation, Fig. 3.28:

σx0 = σ0 cos
2 α (3.75)

3. N and α along A − A′ and B − B ′ at a distance ±Δy/2 from x .
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Fig. 3.28 Integration scheme of equilibrium equations at finite differences along the x axis

4. Value and sign of τxy along the same AA′ and B B ′.
5. Δτxy along y.
6. This value multiplied by the ratio Δx/Δy.7

7. σx along x .
8. σx − σy along section 0 − i by isochromatics and isoclines values.
9. σy from the equation:

σx − σy = ±(σ1 − σ2) cos 2α (3.76)

10. Finally, the principal stresses at point i are individually determined:

σ1,2 = 1

2
(σx + σy) ± 1

2
(σ1 − σ2) (3.77)

3.11.4 Overview of Experimental Methods for Principal
Stresses Separation

The experimental methods to separate the principal stresses are based on other the-
oretical relationships between principal stresses.

3.11.4.1 Determination of the Sum of the Principal Stresses

One is based on the measurement of the third principal strain ε3 = εz perpendicular
to the model plane xy, remembering that, in the elastic field for plane stress, the
following holds:

7 Elements can be selected square, to have a ratio equal to 1 for the all points.
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σz = ν

E
(σ1 + σ2)

where:

εz = Δh

h

is a linear function of the thickness variation due to the load. It can be measured at
any point of the model plane:

• By precision lateral extensometers.
• By optical interferometric methods (such as holographic interferometry, etc.).

3.11.4.2 Method of Oblique Incidence

The fundamental equation of photoelasticity is obtained in the case of light transmis-
sion in a direction perpendicular to the model surface. If the plane of the model is
rotated so that the direction is no longer perpendicular to themodel plane, the isochro-
matics observed in the polariscope are different from the previous ones and provide
additional information. Let us consider for simplicity the case in which the principal
directions are known: if themodel is rotated around 1 axis of an angleϑ , Fig. 3.29, the
light beam goes through the model with a thickness h/ cosϑ . Isochromatics are no
longer due to stresses lying on the model plane, but to secondary principal stresses,
i.e. those lying on a plane perpendicular to the propagation direction, such as plane
σ1, σ

′
2:

σ1 − σ ′
2 = fσ

Nϑ

h

cosϑ

(3.78)

Nϑ is the fringe order for the new light beam direction. The link between σ ′
2 and

σ2 is:
σ ′
2 = σ2 cos2 ϑ

then:

σ1 − σ2 cos2 ϑ = fσ
Nϑ

h

cosϑ

Combining Eq.3.78 with Eq.3.38 gives:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σ1 = fσ
cosϑ

sin2 ϑ
(Nϑ − N0 cosϑ)

σ2 = fσ
1

sin2 ϑ
(Nϑ cosϑ − N0)

(3.79)
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Fig. 3.29 Method of oblique
incidence

A correction is needed to take into account of light beams diffraction within the
model. Angle θ must be replaced in Eq.3.79 with θ ′, Fig. 3.29. This new angle value
can be evaluated by knowing the material diffraction index.

If both principal directions are unknown, it can be shown that two observations
in oblique light (obtained by rotating the model around two arbitrary axes Ox
and Oy) make it possible to derive σx and σy separately and consequently σ1
and σ2. Stresses separation is possible for a plane stress state, i.e. for σ3 = 0.

In the case of a three-dimensional state, the separation is not possible
because σ3 is present in any relationship with other stress components.

3.12 Materials for Photoelastic Models

An ideal photoelastic material should have the following properties:

1. Transparency.
2. Absence of edge effects.
3. High stress sensitivity.
4. High strain sensitivity.
5. Linearity of mechanical and optical responses.
6. Mechanical and optical isotropy and homogeneity.
7. Comparative high strength.
8. Good casting and machinability properties.
9. Poisson ratio not too different from the ratio of the prototype material.
10. Limited boundary effect and creep.
11. Freezing capability of stress (strain) states.
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3.12.1 Boundary Effects

When a photoelastic model is stored for a long time even without external loads, a
state of stress arises along the external surfaces that causes a spurious birefringence
effect, responsible for errors when not identified. This noise is due to water vapor
transmission from the air to the material and vice-versa. If the concentration of the
water vapor is uniform in the resin, the boundary effect is insignificant; if vice-versa
the diffusion process is so slow that it takes a long time to reach an equilibrium state,
then the stress developed at the surface and its optical effects are considerable.

The extent of the phenomenon is related to the relative humidity of the environment
and to its temperature. The boundary effect also depends on the conditions of the
model surface. Themachined surfaces show amuchmoremarked effect than surfaces
obtained by the casting process.

3.12.1.1 Machining

As regards the machining properties of plastic resins, it should be specified that
stresses of thermal origin in the model must be avoided since they tend to be frozen
together with stresses due to external loads. It is therefore necessary to limit the
development of heat and excessive pressure of the tool on the model during the
model preparation phase.

Among the machining methods, those in which the cutting edge of the tools does
not always remain in contact with the model and allows a partial cooling of the
surface, such as band saws, milling machines, and of course lathes, are particularly
suitable. In these types of machining it is not necessary to use artificial cooling.

For drilling, the precaution of cooling and using tools with tungsten carbide plate
must be observed. For epoxy resins the machining parameters in Table3.2 are rec-
ommended.

Table 3.2 Machining parameters

Tool Cutting speed
(m/min)

Feed speed Note

Lathe 4–5 0.1mm/rev Upper angle
clearance: 0–5◦

Milling 80–100 2–3cm/min End mill

Milling 20 Same Standard milling

Drill 10–20 With short intervals
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3.12.2 Stress Freezing

The behavior of the resin can be explained by a two-phases theory.
According to this theory, the material consists of two structures: a primary elastic

and a secondary viscose. The elastic structure is governed by Hooke’s law and its
elasticity modulus is practically independent of temperature; the viscous structure
is temperature dependent. The elastic structure made up of a network of long chain
molecules of three-dimensional hydrocarbons (primary bonds). The viscous structure
is made up of other molecules less firmly attached through short chains. When the
polymer is at room temperature, both molecular systems, primary and secondary,
react to the applied loads.

If the temperature increases up to the critical value (critical temperature), the
secondary bond breaks and the primary structure bears all the applied load.

Since the secondary bond is a significant portion of the polymer, the deformations
that occur at critical temperature are quite larger than the corresponding ones at room
temperature, but in elastic range.

If the temperature is lowered to room temperature with the load applied on the
specimen, the secondary bonds are restored around the primary bond that remains
deformed and frozen in the achieved configuration. If the load is finally removed, the
primary system relaxes slightly, butmost of the deformation remains inside. Since the
phenomenon occurs at themolecular level, the deformation and the birefringence that
accompany it are retained in every molecule, in spite of the machining operation,
i.e. the model can be cut without modifying the impressed stress and the fringes
distribution.

The resolution of the secondary bonds is instantly verified at a temperature greater
than or equal to the critical temperature but this phenomenon can happen at lower
temperatures, in the case of a longer period of application of the load: the viscosity
behavior has time to act and to transfer the entire load to the elastic part. In spite of
this fact, at room temperature the same resin has an elastic behavior if the the time
of the loads application is short. In this case the elastic modulus is much greater
than the elastic modulus of the primary bond only. The frozen stress mechanism is
illustrated by the example in Fig. 3.30.

The different properties of the materials used for room temperature tests and for
frozen tests are shown in Table3.3 at room temperature and in Table3.4 over the
critical temperature.

3.12.3 Calibration of Photoelastic Material

The measurement of material parameters necessary to quantify the results of the
experiment is obtained by an inverse procedure on a specimen with a known stress
state, generally a small bar loaded with bending moment as in Fig. 3.31.
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Fig. 3.30 Freezing mechanism for plastic resin, from [9] for a bar loaded by P along its axis: I
primary bonds, II secondary bonds, troom = room temperature, tcr = critical temperature, Δl1 =
bar elongation at room temperature, Δl2 = bar elongation at critical temperature

Table 3.3 Material properties at room temperature

Material Commer. name fσ (λ = 577 nm) E (MPa) Q = E/ fσ
units (N/(mm ord)) (ord/mm)

Resin catalyst Araldite CT200+
30% phthalic
anhydride

10.3 3140 305

Resin catalysta Araldite 6020+
50% phthalic
anhydride

10.2 3100 305

Polymethyl-
methacrylate

Plexiglass
Perspex

−130 3000 23

Rubber

Polyurethane Hysol 4485 0.17 4 26

Gelatine 0.09 0.3 3.3

Glass 400 70,000 200
ahttp://en.wikipedia.org/wiki/Araldite

By measurement of the maximum stress at the surface of the bar as a function of
the applied bending moment and by the fundamental relationship of photoelasticity
the following formula is derived:

fσ
Nmax

d
= M

W

http://en.wikipedia.org/wiki/Araldite
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Table 3.4 Material properties at critical temperature

Commer. name fσ for λ = 577 nm E (MPa) Q (ord/mm) T (◦C)

units (N/(mm ord))

Araldite
CT200+ 30%
phthalic
anhydride

0.23 13 56.6 140

Araldite
6,020+ 50%
phthalic
anhydride

0.415 36 86.6 162

The ratio Q = E/ fσ is called figure of merit because it is proportional to the strain sensitivity, that
clarifies the capacity of the material to be employed for freezing better than stress sensitivity

Fig. 3.31 Material
calibration by a small beam
in pure bending

la

P P

a

d

h

where: W = dh2

6
. The expression of photoelastic constant as a function of applied

load and maximum order thus becomes:

fσ = 6P a

h2Nmax
(3.80)

Themaximumorder is usually estimated as the average between themaximumvalues
on the tensile and compression sides of the bar.

The elastic modulus in bending is obtained from the deflection of the central axis,
estimated as the average value between intrados and extrados deflections:

η = ηe + ηi

2

Recalling the expression of the maximum deflection of a beam in bending:

η = Ml2

8E J

the elastic modulus is obtained by the following relationship:

E = 3

2

Pal2

ηdh3
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3.12.4 Material Sensitivity

In elastic field the strain sensitivity is related to the stress sensitivity by equation:

1

fε
= E

1 + ν

1

fσ

For strict similarity between a prototype and its model the strain should be identical
in them:

εm = εp

Considering a prototype with deformations of the order of magnitude of 1000 με,
looking at the relationship:

ε1 − ε2 = 1 + ν

E
(σ1 − σ2) = fε

N

d

the strain sensitivity 1/ fε with, e.g. d = 10mm and N = 2 (fringe order), should
have an order of magnitude of hundreds (200 ord/μεmm).

In fact, at freezing temperature, the term 1/ fε never assumes a value greater than
30–40,while it reaches a value of about 200 only in room temperature tests, Tables3.3
and 3.4.

This observation shows the difficulty encountered in observing a strict similarity
between the photoelastic models and metal prototypes.

An approximate similarity can be accepted if the systematic error is estimated. In
any case, the ratio Q = E/ fσ , proportional to the strain sensitivity 1/ fε, is the figure
of merit of the material.

The allowable stress is assumed to be a very high percentage of the limit of pro-
portionality, which in fact coincides with the ultimate stress. The value of allowable
stress allows the choice of the stress scale; once the maximum stress in critical points
of the prototype has been estimated, the stress scale is given by Kσ = σmodel/σprot

ratio between the allowable stress in the model and the maximum stress in the
prototype.

Of course, themaximum stress in the prototype is only an approximate estimation.
The actual stress scale will be recalculated exactly at the test end, from the forces
and the length really adopted for the model. The preliminary estimation is, however,
very useful for choosing the loads that must act on the model in the initial phase of
the experiment.

For Araldite B e.g., at critical temperature, an allowable stress of about 0.6MPa
should not be exceeded.
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3.13 Three-Dimensional Photoelasticity: The Frozen
Stress Method

This property of freezing the stress state can be successfully utilized in a special tech-
nique developed for analyzing three-dimensional stresses in non-slender bodies, not
only on their surfaces but especially at whatever interesting point that can be located
inside. Synthetically, the procedure for this technique called three-dimensional pho-
toelasticity is the following:

• A scaled model of the prototype is made from photoelastic resin, suitable for
freezing stress. (usually epoxy resins).

• Complex models are manufactured by casting. Special care must be devoted to the
internal cores that must be removed not at room temperature but at an intermediate
temperature between room and critical temperature in order to allow the removal,
favored by the larger thermal dilatation coefficient of the resin.

• The model is loaded at critical temperature of the resin in an oven controlled by a
thermo-controlled system.

• After a certain time at critical temperature at which only the primary elastic bond
is active, the model is cooled very slowly up to room temperature. During this long
interval the secondary bonds is reconstituted and stresses become frozen in each
molecule of the model, without introducing spurious frozen thermal stresses that
have enough time to slow down.

• The external loads are removed at room temperature.
• Once the stress state is frozen, the model is cut into slices that can be analyzed in
a polariscope as plane models.

• The photoelastic effect is first measured for the stress state in the slice planes.
• Only in special cases (symmetry slices or surface slices cut from plane boundaries)
the principal stresses are in these planes.

• For a general slice cut from a three-dimensional body, the principal stresses σ ′
1 and

σ ′
2 are not the real principal stresses but only the stresses lying on this slice plane,

related to the first by equilibrium equations. They are called secondary principal
stresses.

For a beam perpendicular to this plane the photoelastic law gives:

σ ′
1 − σ ′

2 = fσ
N

d
(3.81)

Similarly, the isoclines on this plane are the locus of points with constant principal
secondary stress directions.

The choice of thickness d is subjected to a limitation: it is necessary that the
secondary principal stresses on plane xy, maintain, point by point, the same direction
and value along the thickness. In practice, between this requirement for which a
slice thickness should tend to zero (in order to have a rigorously plane stress state)
and the opposite of an optical effect sufficient to be correctly measured, a value of
compromise is chosen, ordinarily from 2 to 5 mm.
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3.13.1 Limit of Three-Dimensional Photoelasticity

In three-dimensional cases the stress state at a point is given by a stress matrix with
six independent terms:

⎛

⎝

σx τxy τxz

τyx σy τyz

τxz τyz σz

⎞

⎠ (3.82)

Let us fix coordinates axes and the elementary volume dx, dy, dz at a generic point
of a three-dimensional model with frozen stress state.

Which ones and how many of the si x terms can be determined by observing in a
polariscope the infinitesimal cube in three directions?

For each light beam normal to the three faces of the cube, a first relationship can
be derived relating the differences two by two of normal stresses to the orders N and
a second relationship between shear stresses and the α angles8 which yields:

√

(σx − σy)2 + 4τ 2xy = fσ
Nz

dz
(3.84)

tan 2αxy = 2τxy

(σx − σy)
(3.85)

√

(σy − σz)2 + 4τ 2yz = fσ
Nx

dx
(3.86)

tan 2αyz = 2τyz

(σy − σz)
(3.87)

√

(σx − σz)2 + 4τ 2xz = fσ
Ny

dy
(3.88)

tan 2αxz = 2τxz

(σx − σz)
(3.89)

However, six relationships are not sufficient for a complete determination of the
stress state, because only five of them are linearly independent. The six unknowns
are in fact:

(σx − σy) , τxy

8 In place of Eqs. 3.85, 3.87 and 3.89 the equivalent relationships expressed by the sines of the
angles can be written, e.g. for the plane x, y:

sin 2α = 2τxy
√

(σx − σy)2 + 4τ 2xy

(3.83)

.
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(σx − σz) , τxz

(σy − σz) , τyz

and each of them, (e.g. the difference σy − σz) is obtained as a linear combination
of the other two.

With oblique incidence, measurements of 6N values in 6 different directions must
be performed in place of 3N plus 3α values in the case of normal incidence. It is
easy to demonstrate that even the oblique incidence technique obtains 5 independent
Equations between the 5 previous unknowns.

The problem presented in this way has only theoretical value, because measure-
ments point by point, even ignoring the impossible cutting operation, lack the advan-
tage of a field analysis, which is a distinctive characteristic of photoelasticity.

3.13.2 Overview of the Mold-Making and Casting Technique

The problems of the preparation of themodels are the typical ones of casting artificial
resins with high precision shape. Moreover, models must be totally free from states
of residual stress; therefore it is necessary to:

1. Assess and exactly maintain the proper casting temperature.
2. Avoid polymerization and thermal origin stresses.
3. Favor the internal cores removal with a suitable mold design and other cares, see

Fig. 3.32.

The monomer is heated up to liquid phase; a hardener is added in exact weight
proportion. The chemical reaction is exothermic: due to low thermal conductivity of
the resin, the temperature may rise locally in the melted condition and cause partial
polymerization of some areas, with the consequent formation of spurious internal
stress states.

The procedure of pouring molten polymer in preheated mold to 100–125 ◦C and
then of cooling to remove the reaction heat until a uniform temperature has been
reached, is recommended. After that, casting is preserved at 80–100 ◦C.

Figure3.33 shows the thermal cycle the model must undergo in the mold and
the time period for extracting the cores which must occur at a temperature higher
than the room one to avoid shrinking stresses that would otherwise arise at this
temperature for the forcing effect of the resin on the core, due to the particularly
high value of the coefficient of thermal expansion of the resin (α = 6 × 10−5 C−1

versus e.g. 2.5 × 10−5 C−1 for aluminum alloys of casting-mold material). For
a finished surface of the model without further processing, it is convenient to use
a metal mold (preferably of aluminum alloy) with machined surfaces, coated with
suitable anti-adhesives such as silicone oils and greases. Surfaces that do not have
special finishing needs or for which the subsequent machining process is foreseen,
a simple form of approximate sizes is advantageous.
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Fig. 3.32 How to build 3D models: the mold design for casting epoxy resin of pressure vessels

Fig. 3.33 Thermal cycle for
models casting

temp(0C)

100

150

time(h)

1 5(0C /h) 0.5 5(0C /h)

Core removingPouring

24 20

If the prototype is available with suitable size, a mold of thermosetting plastic
material can be obtained directly from the prototype itself by plaster mold.
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3.13.3 Stress State in Plane External Surfaces and in Planes
Perpendicular to the External Surface

A first criterion for reducing the frozen model to a series of plane models is cutting
slices containing a portion of plane surfaces and slices perpendicular to external
surfaces, (i.e. with edges belonging to the surface). In both cases, the complete
determination of stress state is straightforward.

3.13.3.1 Stress State on Plane External Surfaces

In this case in which the model has flat outer surfaces, slices such as those in Fig. 3.34
can be cut. Principal stresses σ1 and σ2 are unknown, while σ3 is zero or known (e.g.
applied pressure). In this case:

• Aslice is observedwith incidence light perpendicular to its plane and the difference
(σ1 − σ2) and both principal stress directions are derived by isochromatics and
isoclines.

• Once the principal directions are known, it is possible to cut sub-slices from the
main slice with their faces parallel to the plane σ2, σ3, as in Fig. 3.34 (or σ1, σ3).

• The sub-slice is observed in the direction b of σ1 (or σ2) and, by isochromatics
values, a further relationship is derived between σ2, σ3 as in the figure (or between
σ1, σ3). In this way all the principal stress components σ1, σ2, σ3 are determined.

Fig. 3.34 Complete stress
determination at every point
on a surface slice: from two
observations a and b are
derived the values of
(σ1 − σ2) and (σ2 − σ3) are
derived. If σ3 is known σ1
and σ2 are deduced

2

3

1
a

b
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Fig. 3.35 Slice with an edge at the model surface: a σ2 and σ3 are principal stresses on the mean
plane of the slice: b σ3 is the only principal stress on the mean plane of the slice, while σ1 and σ2
are out of the plane and σx is a secondary principal stress. A sub-slice in gray is observed in the
direction of σ3

3.13.3.2 Slices Containing Edges of External Surfaces

In this case, care must be taken to cut slices with the edges that must be a portion
of the model surface with cutting planes perpendicular to the model surface, so that
it is possible to conclude the slice contains in its plane one of the three principal
directions (e.g. σ3 as in Fig. 3.35). The determination of stresses at the edge is thus
immediate:

1. If the plane is a symmetry plane or otherwise such as to also contain a second
principal direction (e.g.σ2), Fig. 3.35a observing the slice along the other principal
direction σ1, the difference σ2 − σ3 is given directly; if σ3 is known or equal to
zero, σ2 is determined.

2. If σ1 and σ2 have whatever direction Fig. 3.35b and the slice is observed in per-
pendicular direction, the difference σ1 − σx is given where:

σx = σ1 cos
2 α + σ2 sin

2 α (3.90)

The α value, together with a second relationship between σ1 and σ2 is obtained
by an observation along σ3 of the sub-slice with a face parallel to the plane σ1 σ2.

3.13.4 Determination of Stress State at Points Inside the Model

Once the frozen stress state is known at points located on the surface of the model,
for example on the edge of a slice perpendicular to the surface, one can extend
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Fig. 3.36 General slices cut from a three-dimensional model on left side and when a symmetry
plane is present on the right side

determination of stress state at points of the slice inside the model. Let x, y, z be a
reference coordinate system for the model.

With reference to Fig. 3.36 on the left side, after cutting from the model two slices
perpendicular to one another with a common edge along the planes xy and xz, slice
xy and slice xz are observed in a polariscope at normal incidence light.

From isochromatics and isoclines, tangential stresses τxy, τxz are derived along
the common edge of the slices. It is now possible to integrate the equilibrium equation
in x direction:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0 (3.91)

σx = σx0 −
∫ i

0

∂τxy

∂y
dx −

∫ i

0

∂τxz

∂z
dx (3.92)

Similar expressions canbederived for obtaining the other variablesσy andσz , rotating
the indexes x, y, z, with the use of other pairs of perpendicular slices.

The following criteria are recommended for slices cutting:

• In the model with a plane of symmetry, slices must be cut in two perpendicular
directions shown in Fig. 3.36 on the right side. Shear stresses τxy τxz are measured
and the slices are associated with one another and the model can be completely
analyzed.

• In the case of asymmetry, the problem of a full determination of the state of stress
is much more complex, but the case is more theoretical than practical.

• In order to show the method by means of an application, the example in Fig. 3.37
can be a guide. It refers to a model with frozen stress state due to six vertical
concentrated loads on its surface in z direction.
The most interesting unknowns are the stress distribution and their max values
σz = f (z) under each load, along the internal segment C D, Fig. 3.37b and the
procedure for its determination is the following:
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Fig. 3.37 Cutting plan of a three-dimensional model and relative isochromatics images. From an
application developed together with Kuske and Robertson [13]

Slices xz, yz Once the coordinate system has been defined, two slices perpen-
dicular to one another with a common edge along z axis are cut from the frozen
model, Fig. 3.37a. In Fig. 3.37c the isochromatics patterns for both slices are
shown.

σz = f (z) Along the common edge the integration for σz (previously described
for for σx ), now specialized in Eqs. 3.93 and 3.94, must be developed e.g. from
point D to point C in z direction. From the general expression of the third
equilibrium equation:

∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
= 0 (3.93)

the following integration for finite differences is developed:

σz = σz0 −
∫ i

0

∂τzx

∂x
dz −

∫ i

0

∂τzy

∂y
dz (3.94)
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The values of τxz and τyz , necessary for the the integration along z, are given
by the observation in the polariscope of both slices that, by isochromatics and
isoclines give the tangential stresses.

σzD unknown The difficulty that immediately appears is due to the unknown
values of the boundary condition on σz at point C or point D, both subjected to
external loads. For this reason the diagramof σz along z is determined except for
the unknown value of σzD . This incomplete diagram is indicated in Fig. 3.37b
with the symbol σz = f (z)

Slices xz, xy In order to overcome this difficulty, a third slice #3 perpendicular
to the previous ones is extracted from the model parallel to x, y plane. The new
common edge between the slice #1 and the slice #3 allows a second integration
from point A to point B. At point A lying on the external free surface, the
stress σx0 is known. The values of τxz and τxy necessary for the integration are
obtained by the observation of slices #1 and #3 that, through their isochromatics
and isoclines, give the tangential stresses and allow the complete integration
for obtaining σx = f (x). Thus, the σxi in point i = B is determined.

σz = f (z) Once σx B has been determined, σx B − σzB is derived from the
isochromatic order and isocline at point B. The real σzB value can now be
immediately obtained. With this value all the diagram σz = f (z) can be trans-
lated until this value at point B and, consequently, the real diagram is obtained
together with σzC and σzD unknown values

As it was observed, photoelasticity continues to be a useful method for stress
analysis, in spite of its limitations. Just to quote some classic and some recent
studies that utilize this technique, the reader can see the following papers on
this topic: [19–22] regarding the influence of thermal cycling on residual stress
generated in glass using digital photoelasticity [23], regarding force analysis in
porous media [24], regarding temporal phase unwrapping works at stress con-
centration zones [25], regarding novel photoelastic materials and methods for
validation of biomechanics models [26], regarding stress singularity and neu-
trality around a stiffener revealed by photoelasticity [27], regarding analysis
of obliquely oriented edge cracked semicircular rings (OECSR) [28], regard-
ing photoelastic study of an inclined crack from a fillet of a biaxially loaded
cruciform specimen. In [29] an application is presented about processing the
behavior of particulate materials using photo stress analysis technology that
will be introduced in the following section. All these papers were presented at
the ICEM Conference in Cambridge in Summer 2014.
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Fig. 3.38 Set up of optical filters in a reflection polariscope. Unlike the transmission polariscope,
the axes directions of the quarter-wave filters with the same names are parallel, being crossed by
light beams in opposite directions, since the light passes back and forth

3.14 Birefringent Coating Method

The photoelastic coatings make it possible to determine the difference between the
principal strains on the surface of a loaded non transparent body. This is an interesting
extension of the photoelastic capability in order to investigate directly on prototypes
or on not transparent bodies; it is sufficient that a birefringent coating can be cemented
on the body surface with an adhesive that has reflective properties. Similarly to elec-
trical strain gages, surface strains of the body (not stresses!) are transmitted identical
to the photoelastic coating and induce a temporary birefringence in the coating which
is measured in a reflection polariscope, a simple variant of the classic one.

The photoelastic technique is still used to measure the interference of polarized
light, as long as the value of thickness d in the transmission polariscope formula
is replaced by 2d (since the light passes now back and forth through the coating
thickness), and the polariscope is used with a set-up shown in Fig. 3.38, in order to
allow the reflection of light on the reflective layer of the cement (Fig. 3.39).

3.14.1 Measurement of Principal Strains Directions

The principal strains directions refer to a Cartesian coordinate system, consisting
of the symmetry axes of the body or, in their absence, of horizontal and vertical
directions.
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Fig. 3.39 Self-manufactured
reflexion polariscope

In the same way as the observation in a transmission polariscope, the isoclines
are observed in white light because here they appear black on a colored background
of isochromatics.

At every point of an isocline, the principal strains directions are parallel to the
crossed axes of the polarizer and analyzer P and A. The isocline value at a point of
the coating is obtained by the joint rotation of both polarizer and analyzer, until the
isocline is brought to that point. The value of the isocline is given by the angle of
rotation of the filters with respect to the predetermined reference position. From the
isoclines obtained for a number of selected directions, the isostatics family can be
deduced as previously described.

If the isoclines appear sharp, the directions of the principal strains vary greatly
from one point to another; if the isoclines are large and shaded, the directions vary
little, as happens, e.g. in a rectangular specimen loaded along its axis, with small
geometrical discontinuities.

3.14.2 Strains and Stresses Measurement

When a body with the coating on the surface is loaded, the surface deformations are
transmitted to the coating. The relationship between the principal stresses difference
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and the fringe order in the coating is given byEq.3.38, with the following adjustment:

σ1 − σ2 = N

2d
· λ

B
(3.95)

Remembering the expression for the coating:

ε1 − ε2 = 1 + ν′

E ′ (σ ′
1 − σ ′

2) (3.96)

(apices refer to the coating variables and the absence of apices to the underlying
body), the following relationship holds:

ε1 − ε2 = 1 + ν′

E ′ · N

2d
· λ

B
= N

2d
· λ

K
= N · f (3.97)

where:
1

K
= 1 + ν′

E ′ · 1

B
(3.98)

and

f = λ

2d
· 1

K
(3.99)

After obtaining strains in the coating, the stresses on the body surface are deduced by
Eq.3.96; in the formula, however, the difference of the principal stresses, the elastic
modulus and the Poisson’s ratio of the material are those of the body (and not of the
photoelastic layer):

σ1 − σ2 = (ε1 − ε2) · E

1 + ν
= N · f

E

1 + ν
(3.100)

Inmany applications one of the principal stresses is zero. In these cases the simplified
expression valid for the other non-zero principal stress is:

σ = N
f · E

1 + ν
(3.101)

3.14.3 Coating Calibration

The isochromatic fringes observed in the circular polariscope in white light appear
colored. The zero-order fringe looks black and makes it possible to assign the proper
orders to other isochromatics.
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Fig. 3.40 Fringes sequence on calibration bar

A rectangular cantilever beam of the samematerial as the body, loaded by a known
load, with the same type and same thickness of coating used on the body, Fig. 3.40
is used for coating calibration according to Eq.3.99.

If the color of the transmitted light is yellow with a wavelength equal to:

λ = 576.6 nm (3.102)

the constant f becomes:
λ

2d K
= 288.3

d K
(3.103)

Order N = 1 is associated with the fringe with indigo-violet color, a complementary
of yellow.

Order 1 is thus located where in white light the indigo-violet color is located, i.e.,
at the passage between warm and cool colors (the end of red, the beginning of blue)
and similarly the highest orders from N = 3 are located between red and green,
because for them the blue color disappears.

For a correct assignment of the fringe orders with increasing strains, colors are
always in the sequence yellow-red-green.

The measurement of fractional order must be performed by the Tardy method.
Figure10.9 in Chap.10 shows an example of application of reflexion photoelasticity
to a double-curvature body. In this case a special technique is applied to adapt the
coating in a semi-cured state to the body, before cementing it [30].

http://dx.doi.org/10.1007/978-3-319-06086-6_10
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Fig. 3.41 Example of
application of reflexion
photoelasticity to a plane
sheet simulating the surface
layer in the model of
Fig. 3.37, loaded at six
points. From an application
developed together with
Kuske and Robertson [13]

The method provides field information on the surface strain of loaded bodies
(Fig. 3.41), whether they are models or real components, plane or with double
curvature.

With this method it is possible to identify:

• High stressed zones.
• Zones with a high stress gradient (with dense fringes).
• Scarcely loaded zones.
• Zones with low stress gradients (uniform colors).

The results are of great value for shape optimizing of structural components,
especially for automotive and other light structures.

The products needed for the coating, adhesives and the procedure for prepar-
ing curves surfaces that match complex shapes, are provided by bulletins of
specialized companies, like the one cited previously. The choice must be made
on the basis of expected strain and of the desired thickness value which must
be such that it does not create appreciable reinforcement effects and sufficient
optical sensitivity i.e. the number of fringes wanted for a given level of stress
state (K = 0.001–0.009).
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Chapter 4
Introduction to Holographic Interferometry

Abstract Holographic interferometry is a method for recording and reconstructing
three-dimensional images, which can be applied for the solution of strain analysis
problems. Today this method, at least in its classical form, suffers from the way in
which the interference fringes are recorded. Special photographic plates with high
resolution are needed to record these images, together with accurate manipulation.
This constraint has limited the industrial application of the method and oriented the
research towards other optical interferometric methods that are less demanding in
terms of equipments and experimental difficulties. Nevertheless, classic holographic
interferometry offers an invaluable tool for the high accuracy and resolution required
by very small displacements analysis. In the present book the classic method is
presented in order to understand a special application to Fracture Mechanics for
parameters identification in the case of interaction between two cracks.

4.1 Holography

A coherent light beam that hits the surface of an object and is diffused by it until it
reaches a recording system, as special photographic plates, retains information of the
distance from the plate of every points on the surface of the object, i.e., of its three
dimensional shape. Holography is based on this principle. In the case of an object
deformation, an overlap is done of undeformed and deformed images of the object.
Two coherent light paths coming from undeformed and from deformed images of the
object interferewith each other. For the smallness of the displacements in comparison
to the size, the two images are indistinguishable, but the two light waves, no longer
coincident, generate a system of interference fringes that appear on the object’s
surface. They store information on distances between the two configurations, i.e. on
the displacements of every point of the surface.

The light radiation presented in the Chap. 3 is called coherent, when a defined
relationship between phases of the light vectors exists during the time and along the
direction of propagation, (temporal coherence and spatial coherence). Natural light
is neither temporally coherent, because the emission occurs by irregular pulses and
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not in continuous wave trains at constant frequency, nor spatially coherent, since
each point of a source emits radiations without phase relationship with the radiations
of other points.

4.1.1 The Laser Light

Today, Laser1 is utilized as a light source with high spatial and time coherence, that
has allowed the development of a variety of optical techniques with many applica-
tions in different measurements fields. Laser, in addition to high coherence, has a
high luminous flux, which enables images recording at high resolution, essential for
holograms generation [4–7, 9, 11, 12]. The coherence length of laser used in holog-
raphy applications, i.e. the maximum distance along the direction of propagation for
which a defined phase of the light radiation is maintained, is of about half a meter.
For the applications of coherent optics in structural problems, the following laser
types are utilized:

• He-Ne, helium-neon that emits at a wavelength of 632.8nm (red light), with a
radiation power from 5 to 50mW.

• Argon laser, that emits at wave length of about 514nm (green light), with a power
from 100mW to 5W.

• Ruby laser is utilized in dynamic applications, for its capacity to emitting pulsed
light with pulses of short duration (10−8 s), with power from 100kW to 10GW
(1G = 109), and a wave length of 690nm.

Laser emits light beams with diameter of about one millimeter from which plane or
spherical wavefronts are achieved with appropriate optical devices.

The laser light is also plane polarized, a prerequisite (together with monochroma-
tism) of spatial coherence; so it is possible to apply the concepts of constructive and
destructive interferences, discussed in Chap.3. Furthermore, in order to maintain a
defined phase relationship between two waves, it is necessary for them to be radi-
ated by the same source, since two individually coherent sources are not mutually
coherent.

4.1.2 Hologram

Let us consider a laser and the optical system shown in Fig. 4.1. A lens, or rather an
objective (generally 10x or 20x), transforms the Laser parallel beam to a spherical
wave. This optical element is called a spatial filter because it combines a calibrated
hole of small size positioned in its focus with the objective, with the task of filtering
spurious light components. Amechanical systemmounted on slides withmicrometer
screws, gives exact positioning of the hole into the focus.

1 Acronym for Light Amplification by Stimulated Emission of Radiation.

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 4.1 Layout of the optical system for the creation of hologram

With the most simple set-up, a portion of the spherical wave is reflected directly
from a mirror on the photographic plate and constitutes a reference field. A second
part of the spherical wave illuminates the object, each point of which scatters light
in every direction. The portion of the diffused light, collected by the photographic
plate, is called the object field.

Thus the simultaneous presence of the reference field and of the object field are
present on the plate where they optically interfere, generating high density interfer-
ence fringes.2

After photographic development, the plate constitutes an hologram that contains
information on amplitude and phase of the light coming from the object. The fineness
of the grain of a photographic plate is necessary for holograms generation and is
not a common commercial characteristics. It must have the resolution of 3,000–
5,000 lines/mm.3 The complex amplitudes of the light coming from the object and
from the mirror at a point of the plate (point B), are O and R [8]:

O = |O| eiω R = |R| eiρ (4.1)

then the light intensity at point B is, see Sect. 3.4 in Chap.3:

I = (O + R)∗(O + R) = |O|2 + |R|2 + |O| · |R| ei(ω−ρ) + |O| · |R| e−i(ω−ρ)

= |O|2 + |R|2 + 2|O| · |R| cos(ω − ρ)

2 For a correct exposure of the recording plate in darkened room, the average intensity of both
beams must be similar.
3 Today these special silver halide holographic plates are not easy to find for the end-production
by some Companies. The holographic techniques aimed at creating media for holographic data
recording are sometime announced by companies in the electronics industry such as Optware,
Fujifilm, CMC Magnetics.

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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The intensity is a real quantity, a function of phase angle ω of the light coming from
the object.

This is due to the presence of the reference beam, because, without it, the intensity
would be only related to the square of |O| and would not be dependent on phase ω.

The phase is related to the distance between B and all points of the object visible
from the point B: each point in the hologram contains information about the its
distances from all the points of the object, in other words, on the three-dimensional
form of the object.

It is understandable that the coherence of the light used is necessary in order to
guarantee the constancy of |O|, |R|,ω and ρ and consequently the positioning of the
optical system on a non-vibrating support is an imperative specification. To obtaining
a hologram it is necessary that all elements of the system do not experienced relative
displacements higher than fractions of the wavelength of the used light (1/8–1/10 · λ)
in order that the phase angles ω and ρ remain unchanged.

Let us consider the hologram produced by a photographic plate. The exposure,
i.e. the product of the intensity of incident light by the time of exposure, produces a
developed photographic plate that is made up of very fine black and bright fringes.
If the plate is then crossed by a light beam, it acts as a filter with transmission
function T variable from point to point. This transmission function, for each ray that
crosses the filter, is defined as the ratio between the transmitted and incident complex
light amplitudes:

T = At

Ai
= |At |eiφ

|At |eiφ
= |At |

|Ai | (4.2)

This filter modifies only amplitude but not the light phase.
The transmission function T of the hologram is proportional, at each point, to the

exposure that is the product I · t , where I is the intensity of light that impressed the
plate at that point and t is the exposure time:

T = T0 − b · (I t) = To − kT (4.3)

where T0 and b are constants dependent on the emulsion quality and development
conditions, Fig. 4.2.

4.1.3 Reconstruction

If the photographic plate (developed and fixed) is repositioned in the plate-holder
in the exact position of the exposure and illuminated with only the reference beam
(removing the beam coming from the object), the following complex amplitude At

is recorded at point B:

At = R · T = R (T0 − kT )

= |R| · [

T0 − K
(|O|2 + |R|2)] · eiρ − K |O| |R|2eiω − K |O| |R|2ei(2ρ−ω)

(4.4)
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I t

T

0

Fig. 4.2 Transmission function of a photographic plate versus exposure energy

Fig. 4.3 Reconstruction for hologram generation

The term −K |O| |R|2eiω has the same phase and modulus proportional to the com-
plex amplitude modulus of the object beam |O|. The negative sign shows that the
vector has a opposite direction of the object vector.

From every point of the hologram it is then possible to see the three-dimensional
object image in the same position that the real object had, Fig. 4.3; other terms
represent only noise effects but do not significantly deteriorate the quality of the
reconstructed object. The quality of the object image depends on the extent of the
surface of the hologram, even if only one point of the hologram receives and then
records in modulus and phase the rays diffused from all the points of the object.
Each small fraction of the hologram provides the information for the complete object
reconstruction.
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4.2 Holographic Interferometry

If the reconstruction of the hologram is performed by repositioning the developed
plate and also the object in the recorded locations, an observer positioned behind the
plate receives twowaves, the object and the reconstructedwaves, perfectly coincident
and indistinguishable.

If the object is loaded, the displacements produced in the body slightly change
the object’s shape. For the smallness of the displacement with respect to the size, the
object and its holographic image are indistinguishable, but the relative light waves,
no longer coincident, interfere, generating a system of fringes that appear on the
surface object.4 There are alternative arrangements of the optical elements more
complex than the one outlined here but more efficient from the point of view of the
exploitation of of the laser power.

One of these is shown in in Fig. 4.4. The light beam is split at the Laser output by
a semi-reflective mirror; the first beam, through a spatial filter, is projected on the
object, while the other, through a second lens, is conveyed directly on the recording
plate as reference beam.

Holographic interferometry can be classified into the following three categories:

1. Double-exposure holographic interferometry.
With a double exposure, both holographic images of undeformed and deformed
body are recorded on the photographic plate. They interfere, generating fringes
that appear frozen on the body surface in the reconstruction phase when the real
body is taken away from the optical path.

Fig. 4.4 Most common arrangement of the optical system for holograms generation

4 Of course any rigidmovement and rotation is equally recorded and overlapped to the displacements
due to the loads.
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With this procedure the plate is exposed twice, overlapping two different holo-
grams: a first with an undeformed object and a second with a deformed object.
Only two body configurations are compared and analyzed but the method offers
the considerable advantage of not requiring the accurate repositioning of the
developed photographic plate in a rigid plate holder.

2. Holographic interferometry in real time. In the observation phase only the holo-
gram of non-deformed body is impressed on the recording plate. The interference
fringes in the reconstruction phase are visible if this hologram and the real image
of the deformed object are accurately overlapped.
Fringes vary with the instantaneous deformation (and rigid movements if present)
of the body, as a function of external loads. The procedure requires accurate repo-
sitioning of the developed photographic plate on the stable plate holder where the
first hologram was generated.
The advantage is the possibility to observe different levels of body deformation
with only one hologram of the undeformed state.

3. Holographic interferometry in time average. This is used for the amplitudes
recording of vibrations of a vibrating body; with this procedure the hologram
is recorded for an exposure time greater than the vibration period, so that only the
two extreme configurations of the body at zero vibration speed interfere. Only
fringes at maximum vibration amplitude are recorded, while the other positions
with no-zero vibration velocity are not recorded on the photographic plate. This
method is specific for the vibration analysis of thin beams and plates. In a first
approximation, since the vibrations have cancelled the intermediate positions, the
hologram is equivalent to the double exposure of the extreme displacements of
the body at zero speed.

4.2.1 Interference Fringes in a Double Exposure Hologram

Let us consider the displacement vector from a point C of the object—assuming that
the displacement is contained on the plane defined by three points A, focus of the
spatial filter, C generic point on the body and B one observation point, fixed on the
photographic plate, Fig. 4.5—and the coherent light path coming from the point C
before and after the deformation.

Since both light vectors come from two reconstructed images, they are of course
plane polarized but also vibrating in the same direction. Thus, the constructive inter-
ference condition (bright fringes) between the beamsbefore and after the deformation
is obtained by equating the path difference with an integer number of wavelengths,
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Fig. 4.5 The two paths of light beams at point C before and after the displacement d (with an
amplified scale for displacements). See also Eq.4.11

while the destructive interference condition (black fringes) is obtained by equating
the path difference with an odd number of semi-wavelengths, Eq. 4.5:

d (cosα + cosβ) = Nλ =
⎧

⎨

⎩

n λ bright fringes
2 n + 1

2
λ black fringes

(4.5)

Displacement d can be deduced by the fringes orders when, in addition to the lying
plane, its direction is also knows:

d = N λ

cosα + cosβ
(4.6)

with:
N = 0, 1 2 3 ...... for bright fringes
N = 0.5 1.5 2.5 ...... for black fringes.

4.2.1.1 Null Intensity Condition

An alternative way to obtain Eq.4.5 is given respectively by the condition of maxi-
mum light intensity or of light extinction (null intensity) at point C .
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Denoting by A1 = |O| eiρ1 and A2 = |O| eiρ2 the two waves coming from the
undeformed and deformed reconstructed images andΔ the phase difference between
the two waves ρ2 − ρ1, the total intensity is:

I = |O|2(eiρ1 + eiρ2)∗ · (eiρ1 + eiρ2) = |O|2(e−iρ1 + e−iρ2) · (eiρ1 + eiρ2)

= |O|2 · [

2 + eiΔ + e−iΔ]

then:
I = 2|O|2 · (

1 + cosΔ
)

(4.7)

The extinction condition is obtained when:

cosΔ = −1

i.e.:
Δ = π + 2nπ

N is thus an integer number for the bright fringes, while for the black fringes:

N = Δ

2π
= 1 + 2n

2
= 0.5 1.5 2.5 ..... (4.8)

which are identical to Eq.4.5.

4.2.2 Interference Fringes in a Real Time Hologram

This case differs from the previous one, since the interference fringes arise from the
comparison of a light vector coming from the reconstructed image of the undeformed
object and the one from the real deformed object.

It was observed in Eq.4.4 in 4.1.3 that the term with the same phase and modulus
proportional to the complex amplitude modulus of the object beam |O| has opposite
direction to the object vector.

Consequently, in this case it is the destructive interference condition (black
fringes) between the beams before and after the deformation that is fulfilled when
the path difference is equal to an integer number of wavelengths.

The condition of Eq.4.7 changes in this way:

I = 2|O|2 · (

1 − cosΔ
)

(4.9)

and the extinction condition becomes: cosΔ = 1 i.e.:

Δ = 0 + 2nπ
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with n integer. The sequence of orders N for black fringes becomes:

N = Δ

2π
= n = 0 1 2 3 ..... (4.10)

It is easy to observe the analogy between constructive and destructive interfer-
ences between the light vectors in the holographic interferometry and between
vectors coming from the analyzer filter of a polariscope in photoelasticity.

The double exposure hologram gives the same interference condition as
parallel polarizer and analyzer filters withwhite fringes of integer orders, while
the real time hologram is the same as the crossed filters, with black fringes of
integer order.

4.3 Description by Means of Ellipses

It may be remarked [4], that the same optical path difference and therefore the same
fringe order are common to all possible displacements of the point C represented by
vectors outgoing from C with the other extremes on the ellipse with focuses A and
B, such that the distance dn between the point C and the ellipse, Fig. 4.6, is equal to:

dn = Nλ

2 cos γ
(4.11)

where 2γ is the angle between the illumination andobservationbeams.Thedifference
between Eqs. 4.6 and 4.11 is clear: in Eq.4.11 the angle 2γ is known and dn can be

Fig. 4.6 a Intersections
between the ellipses and
normal component dn of the
real displacement d of the
point C . b Displacement d
determination from dn1 and
dn2

d dn

C

C

C'

d
d n1

dn2

(a)

(b)
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determined by the measurement of the fringe order, while in Eq.4.6 only the sum
α + β = 2γ is known but α and β are unknown.

If the displacements are small compared to the size of the object and even more
compared to the size of the ellipse, dn can approximate the component of the effective
displacement along the normal to the ellipse passing through C , i.e., lying on the
bisector of the angle 2γ , equal to dn ∼ d cos θ , Fig. 4.6a.

If C is the point of the object, A the optical center of the spatial filter and B the
point of observation on the photographic plate (Hologram), Fig. 4.5, the fringes are
the locus of points of displacements with constant component dn along the bisector
of the angle formed by the illuminating beam and the viewing direction from any
point on the hologram plate, Fig. 4.6a.

A single observation does not allow the determination of the actual displacement
d in modulus and direction but only the value of dn . The value of d can be deter-
mined by two observations made from two different points of the holographic plate.
Two different views from two different points provide two different interferometric
patterns. If the observation point moves continuously, also the fringes seem to move.
Only the zero-order fringe that corresponds to a zero displacement in all viewing
directions does not participate in this movement. The displacement vector d must
have both ends belonging to two ellipses, and is therefore univocally determined.

From an analytical point of view, rather than solving the two equations for the
ellipses crossing C ′, the first with focuses A and B and the second with focuses A
and B2, Eq. 4.11 is used twice for two different known values of γ :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dn1 = N1λ

2 cos γ1

dn2 = N2λ

2 cos γ2

(4.12)

Once dn1 and dn2 in modulus, direction and orientation, d becomes uniquely known,
Fig. 4.6b.

In the particular case in which the direction of d is known, only one observation
(therefore a single relationship), allows the determination of the displacement. It is
possible to operate in various ways:

1. Using Eq.4.11, and the known angle δ between d and dn , d is obtained from:

d = dn

cos δ
= N λ

2 cos γ cos δ
(4.13)

2. If the object is oriented so that the displacement direction coincides with the
direction of the incident light, Eq. 4.6, gives:

Nλ

1 + cos 2γ
(4.14)
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4.4 Other Arrangements

More than a method for determining the displacements value, the practice suggested
by [1] of drawing a family of ellipses on a large sheet of paper positioned on the
holographic bench, is awayof clarifying the locations of all the elements and avoiding
a long phase of pre-tests.

A series of ellipses are drawn with foci A and B, Fig. 4.5, spaced along the x axis
(coinciding with the greater diameter) at a distance multiples of λ/2, in such a way
that, for each ellipse, the difference between the optical paths of the object and of
reference beams is always less than the coherence length, also when the point C on
the object and the reference mirror are represented on the diagram by points placed
on adjacent ellipses from the opposite side of the considered main ellipse.

The diagram is useful not only to help in setting up objects and optical devices
on the holographic bench, but also to verify how a large body can be placed on it,
remaining within the coherence length of the laser, and also for a first interpreta-
tion of the analytical relationships. The diagram also clarifies a series of possible
arrangements of the optical system, Fig. 4.7.
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L Ph1

Ph2 A
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Ph
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(a) (b) (c)
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Fig. 4.7 Possible layouts of holographic benches, where L Laser, O object, Ph photographic plate,
M mirror: awithout anymirror for the reference beam,with plate in position Ph2 gives the so-called
Lippman hologram and in position Ph1 the normal hologram; b suggests how to positioning a long
bar; c is a classic hologram with the mirror for the reference beam; d shows an alternative set-up
with reflecting mirror plus two mirrors; e gives a classic Michelson interferometer; finally f shows
a new type of interferometer with semi-reflecting mirror Sr and with C photographic camera (from
Ambramson [1–3])
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Fig. 4.8 Determination of the displacement vector lying in plane ABC

4.5 Displacement Vector Lying on Plane ACB

In the case of displacement lying on the plane ABC Fig. 4.8, two normal components
dn1 and dn2 of the unknown value d are determined by two observations from the
points on the holographic plate B1 and B2.

4.5.1 Case Study of Displacements Determination
in a Transparent Model

The application deals with the problem of determination of displacements of the sur-
faces of two circular discontinuities internally pressurized, embedded in a transparent
block. An application to a Fracture Mechanics problem will be shown in Chap.9.
Both discontinuities are artificially generated in the middle plane of a transparent
plexiglass block of 300× 200× 110mm3, Fig. 4.9. The transparent model is placed
on the holographic bench as shown in Fig. 4.10.

The geometric sizes are:

• 2a = 60mm crack diameter.
• h/a = 1.09 distance between the centre of each crack and the symmetry plane
over a.

The displacements field can be determined by the orders and distribution of the
fringes. Being double exposure holograms, the integer orders are associated with the
bright fringes.

http://dx.doi.org/10.1007/978-3-319-06086-6_9
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Fig. 4.9 Two co-planar circular discontinuities in a block and displacements field on a plane at a
very small distance apart, parallel to their plane

(a) (b)

Fig. 4.10 Positioning of the transparent model on the holographic bench. a General set-up, and b
detailed of displacements components

For an internal pressure of 3 bar the displacement field of one crack is shown in
Fig. 4.11 and of both cracks in Fig. 4.12.

4.6 Displacement Vector Not Lying on Plane ACB

In the most general case of vector d not lying on plane ACB, two observations
from two points B1 and B2 of the hologram plate allow only the determination of
displacement components lying on the plane defined by points ACB1 or ACB2.
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p=3 bar 

Fig. 4.11 Double Exposure Fringes of displacements field, and three-dimensional representation
of one of the the surfaces of two co-planar cracks in a transparent model internally pressurized at
3bar

Fig. 4.12 Double-exposure Fringes of displacements field of the surfaces of two co-planar
discontinuities surfaces in a transparent model internally pressurized at different pressures (2, 3, 4,
5 bar)

A third relationship Eq.4.11 can be written with reference to an ellipse with focal
points A and B3 passing through C , where B3 is a third observation point on the
plate, not lying on plane ACB1 = ACB2, Fig. 4.13. In the same way, the relationship
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Fig. 4.13 Determination of the displacement vector not lying on plane ABC

Eq.4.11 applies to ellipse A B3 C and a third component of the displacement d
is inferred. The unknown displacement is now determined by three components
dn1, dn2, dn3 in three different directions.

Vectors dn1, dn2, dn3 must be projected along the cartesian axes to determine
cartesian displacement components u, v, w in directions x, y, z:

⎧

⎪

⎨

⎪

⎩

u = dn1 cos ˆn1 u + dn2 cos ˆn2 u + dn3 cos ˆn3 u

v = dn1 cos ˆn1 v + dn2 cos ˆn2 v + dn3 cos ˆn3 v

w = dn1 cos ˆn1 w + dn2 cos ˆn2 w + dn3 cos ˆn3 w

(4.15)

or:
⎛

⎝

u
v
w

⎞

⎠ = cos ·
⎛

⎝

dn1
dn2
dn3

⎞

⎠ = λ

2
cos ·

⎛

⎝

N1/ cos γ1
N2/ cos γ2
N3/ cos γ3

⎞

⎠ (4.16)

where symbol cos means the matrix of direction cosines5 of the three bisectors
n1, n2, n3 with reference to the coordinate axes and N1, N2, N3 are the fringe orders
at point C for any set of three observation points 1, 2, 3 that must be non-aligned
on the holographic plate.

When the plate of the hologram is small, the points are very close to one another,
and the determination of the displacement is subjected to high accidental errors.

The determination of the displacement vector by more than three observations
with a minimization procedure, such as the minimum square method, can be a proper
solution for reducing errors.

5 The direction cosines of a vector are the cosines of the angles between the vector and the three
coordinate axes.
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4.6.1 Order Determination When No Zero Fringe Is Present

Let us consider the case of displacements contained in plane AC B.
If the unknown displacement has a known direction, from a first observation, this

is, since k1 = 1/cos γ1 and k2 = 1/cos γ2:

dx = N1k1
λ

2
· 1

cosα1
(4.17)

From a second observation:

dx = N2k2
λ

2
· 1

cosα2
(4.18)

N1 and N2 are not accessible as absolute values, but their difference can be deter-
mined:

N2 − N1 = m (4.19)

Equating 4.17 and 4.18, and taking into account the Eq.4.19, this is:

N1k1
λ

2
· 1

cosα1
= (N1 + m) k2

λ

2
· 1

cosα2

from which the normal component of the displacement is derived:

N1 = mk2 cosα1

k1 cosα2 − k2 cosα1
(4.20)

Finally, from Eq.4.11 the normal component is given by:

dn1 = N1k1 λ/2 (4.21)

and the actual displacement becomes:

dx = dn1

cosα1
(4.22)

If α1 and α2 are not known, but considered equal from indirect observations, Eq. 4.20
gives an approximate expression of components dn1, dn2 and thus of d:

N1 = m k2
k1 − k2

dn1 = m k1 k2
k1 − k2

· λ

2
dn2 = m k22

k1 − k2
· λ

2
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4.7 Strains from Displacements

If strains along the x axis are required, both members of Eq.4.16 must be derived
with respect to the variable x :

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂u

∂x
∂v

∂x
∂w

∂x

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= λ

2
· cos

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂ N1

∂x
/ cos γ1

∂ N2

∂x
/ cos γ2

∂ N3

∂x
/ cos γ3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(4.23)

This derivation is correct if the variations with x of the matrix terms of direction
cosines and of γ cosines are neglected.

Terms ∂ Ni/∂x may be approximated by finite differences ΔNi/Δx obtained by
interferometric images, (without knowing the absolute fringe orders), fixing a local
coordinates system at the point, taking y axis lying e.g. on the surface of the body,
andmeasuring the changesΔN1, ΔN2, ΔN3 betweenC and a second pointC0 fixed
on x axis at a certain distance Δx from the point C . Similarly, the other deformation
components can be determined.

The exposed methods are hard to apply, as they should be repeated point by point.
It is therefore very important to do preliminary qualitative analysis of the interference
fringes for identifying areas of greatest interest to which the subsequent quantitative
analysis should be restricted.

Holographic interferometry offers great advantages for measuring displace-
ments, providing:

• Total field technique suitable for laboratory use but also for industrial control
departments.

• No contact measurement.
• High accuracy.
• High sensitivity.

but presents a series of disadvantages such as:

• Slow operation.
• Possible problems with rigid displacements with generation of spurious
fringes.

• Not common availability of special photographic film at high-resolution (per-
haps new electronic recording media with very high resolutions could come
in the future, [10]). The need for high resolution film (receiver) is due to
the very small fringes steps that must be recorded. The order of magni-
tude of the fringe step p is about the same as dn for N equal to one:
λ72 cos γ . Then for the wavelength of the light emitted by a He-Ne laser
(λ = 632 nm), the frequency of recorded lines on a photographic plate is
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f = 1/p = 2/λ = 2/(632×10−6) � 3,000 lines/mm. Special photographic
plates offer such resolution and contains 1010 bits of information in an area of
100mm · 125 mm.
Conversely, a CC D sensor provides an image with 107 bits of information or
even higher, but at the present time this is still far from what is required to
build a hologram.

• High stability of the optical bench (typically a sensitivity of 0.5µm (displace-
ment/fringe order) is required.

• High power of the laser, used in the case of the examination of large areas, is
also required.

• Complexity of the optical schemes and holographic bench arrangement.
• Cost of the equipment.
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Chapter 5
Overview of Digital Image Correlation

Luca Cristofolini

Abstract This chapter provides an introduction to the methods for measuring the
field of displacement and strain on the surface of a specimen by means of digital
image correlation (DIC) techniques. Both its two-dimensional and three-dimensional
versions are presented. A simplified overview of the algorithms underlying such a
method is provided. As DIC can lead to subtle errors, which may go unobserved,
the focus of this section is on the several possible sources of random and system-
atic errors, and on possible approaches and practical solutions to keep such errors
under control. The methods for preparing the specimen’s surface are described in
detail. An extensive discussion is provided about the strategies for optimizing the
processing parameters and the post-processing filters in order to minimize the noise
while avoiding significant loss of information. The last part of this chapter provides
an overview of the volumetric version of such a method (digital volume correlation,
DVC), and some applications.

5.1 Introduction

Most of experimental stress (strain) measurement techniques seen so far suf-
fer of one of the following limitations. In some case (strain gages), accurate
measurements are possible, but only at selected locations, while the remaining
areas (between strain gages) are not investigated. The full-field techniques seen
so far involve a significant amount of labour (photoelasticity, interferometric
techniques), are associated with a limited strain resolution (photoelasticity), rely
on models in place of the actual specimen (transmission photoelasticity), or are
associated with significant perturbation of the actual system (reflection photoe-
lasticity). Digital Image Correlation (DIC) is a non-contact method that enables
measuring the full field of displacements and strains on the visible surface of the
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test object. Analysis by means of DIC relies on a comparison between series of
digital images starting from the unloaded state, and up to the selected loading
conditions (possibly including intermediate steps). The surfacemust have a high-
contrast random pattern, so that the software can univocally recognize portions
of the surface (consisting of square or rectangular subsets of pixels, often called
facets), and track them when the specimen is loaded, evaluating the field of
displacement. From the field of displacements, the strain field on the specimen
surface can then be obtained by differentiation. If images are acquired by a sin-
gle camera, then planar displacements and strains (in the plane perpendicular
to the direction of observation: two-dimensional case, 2D) are measured. If two
cameras are used, stereoscopic vision enables obtaining the full spatial field
of displacements (including out-of-plane ones: three-dimensional case, 3D) and
strains on the specimen’s surface. One of the strengths of DIC is that its operating
principle can be adjusted to all dimensional scales, frommicroscopic (specimens
smaller than a millimeter, with sub-micron resolution) to macroscopic (as large
as several meters).

Digital Image Correlation is a grandson of the first studies on optics. DIC incor-
porates the theory of projective geometry and perspective vision due to Sturms and
Haick, 1883; the principles of photogrammetry put forward by Finsterwald in 1899;
the projective equation for stereoscopic vision solved by von Gruber in 1924; the
solution of the equations for photogrammetry by Earl Church in 1945; and the matrix
notation for analytical photogrammetry developed by Schmid in 1953. This combi-
nation allowed first extracting the three-dimensional shape of objects, and later ana-
lyzing shape variations and strains by least squares solution of correlation problems.

When digital photography became commercially available, in the Sixties and
Seventies, it was first exploited to enable spatial vision and recognition of objects
in the field of robotic and artificial intelligence. At that time, photogrammetry in
engineering was mainly seen as a possible application of the enormous potentiality
of coherent light provided by the recently invented laser: the focus in those years
was on holographic and speckle laser interferometry, and on moire methods.

The concept of modern Digital Image Correlation dates back to the early Eighties,
when its 2D implementation was explored at the University of South Carolina as
a means of measuring in-plane strains, strain gradients, and crack initiation and
propagation in brittle materials. One of the first studies where digital images were
exploited to measure surface strains was published in 1982 [1]. At that time, a pure
planar technique was proposed, where a single camera enabled measuring in-plane
(but not out-of-plane) displacements and strains.

The first three-dimensional applications followed, in the early Nineties, when
the principles of stereoscopic vision were combined with those of planar digital
image correlation [2]. The system, which incorporated two digital cameras, enabled
measuring the three-dimensional state of strain around a notch. The same approach
was also applied to the investigation of the three-dimensional motion of a fluid with
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high-contrast particles in suspension (Particle Movement Velocimetry, PIV). In the
late Nineties applications to at the micrometer and nanometer scale were found.

Further improvements included the effect of prospective on the detected shape
of the subsets of pixels (facets). Epipolar constraints were also incorporated in the
analysis, to improve the accuracy by taking into account the correspondence of
geometric elements between two conjugated images. A better image reconstruction
process [3] further enhanced the calculation of displacements: high-order splines
were introduced to interpolate the pattern images. This enabled improving the accu-
racy of displacement measurements, down to the order of 0.01 pixel (therefore, the
physical accuracy depends on the magnification factor, but it can easily be demon-
strated that this corresponds to sub-micron accuracy when a camera with millions of
pixels is used on a field of view of some centimeters). At this point, the correction
of optical distortions became extremely important.

The practical feasibility and its spatial resolution improved over time as: (i) dig-
ital cameras improved (a resolution of at least one million of pixels is typically
necessary to obtain reasonable resolution on a suitable area); (ii) computation power
increased (the algorithms for image correlation can be quite cumbersomewhen high-
resolution images are processed); more accurate and efficient numerical algorithms
were developed.

Digital Image Correlation as a modern strain analysis technique was outlined in
the classic handbook of Dally and Riley [4]. More recently, an entire volume was
dedicated to the theory and methods of image correlation [5].

5.2 Operating Principle

The principle of Digital Image Correlation relies on sets of images of the surface
of the test object in the original state, and in a displaced and/or deformed state. A
sensor (which can either be the single digital camera, in the 2D implementation, or
a calibrated set of two cameras, in the 3D implementation) collects a sequence of
images as the test object is displaced and/or deformed. A software then computes
the displacements at any point on the visible surface of the test object. This enables
obtaining the field of displacements and, by derivation, the field of strain. A key
problem of DIC is that strain patterns tend to be affected by large noise. In fact,
derivation acts as the opposite of a filter, and enhances the noise in the displacement
field computed from noisy digital images [6].

To enable the software to univocally identify each point on the specimen’s sur-
face, and track them across the subsequent images acquired while the specimen
is displaced and/or strained, the specimen’s surface must have a high-contrast
random speckle pattern, Fig. 5.1. It has been demonstrated that a suitable pattern
facilitates the interpolation of the distribution of light intensity in the acquired
images, and enables estimation of displacements with sub-pixel accuracy [3].
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Fig. 5.1 Examples of specimenwith a random black-and-white pattern: a coil of a spring; b anterior
view of a vertebra; c detail of speckle pattern

While in the following pages the description will focus on a comparison between
two states (undeformed and deformed), DIC can be extended to compare three or
more steps. This is particularly useful in the case of large displacements/strains, and
in general, when the progress of strain over time must be investigated.

5.3 Computation Area (Facet)

It is useless to search for a correspondence of a single pixel in two images. In fact, the
grayscale value of a single pixel can be found at many of other pixels in the second
image. The solution is to search for the correspondence of a small neighborhood
around the pixel of interest. The acquired images are then divided in smaller subsets
of pixels (facet), which are the elementary computation area. Each facet is associated
with one point for which displacements are computed (typically the center of the
facet itself). Therefore, the larger the number of facets, the higher the computation
accuracy.

Usually, squared facets of N×N pixels are used, where N represents the facet
size. In some specific cases (large strain in one preferential direction; specimens
anisotropy), rectangular facets may be preferable. The size of the facet to some
extent can be seen as something similar to the size of the grid of a strain gage.
The advantages of larger facets are: robust identification and better correlation in
subsequent images; more accurate measurement of displacement and strain; and less
noise in the computed displacements and strains. At the same time, large facets may
result in loss of the information associated with high strain gradients. In addition,
the boundaries of the region of interest cannot be solved with a high accuracy: the
extension of the affected region is directly related to the facet size. The computational
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Fig. 5.2 Detail of a portion of the specimens’ surface with a random black-and-white pattern: two
facets are indicated (in this case they are squared, of N×N = 20× 20 pixels, with a partial overlap
of M = 5 pixels, and a step of 15 pixels between facets

cost increases proportionally with the extension of the computation area (i.e. with
the square of the facet size, N 2). Smaller facets enable observing local effects and
gradients. The disadvantages of smaller facets are: noisier calculation of the strain
pattern, and high risk of lack of correlation in some domain.

To provide some redundancy, facets may be partially overlapped by a certain
number of pixels, M Fig. 5.2. The step between consecutive facets determines the
amount of overlap between facets. An overlap to a certain extent allows amore robust
estimate of the displacements (at a higher computational cost) when the original input
images are affected by noise. When no overlap is applied (M = 0 pixels), the facets
are just tiled one next to the other. The maximum possible overlap is close to the
actual facet size (M = N − 1 pixels). In this case, the maximum possible number
of data is computed for a given image resolution. This clearly results in a higher
computational cost.

In principle, consecutive facets could even be juxtaposed with a gap between each
other (i.e. with a negative overlapM). However, this would result in a loss of informa-
tion and of spatial resolution, with limited advantage in terms of computational cost.

5.4 The Speckle Pattern

In order for the DIC method to work effectively and accurately, the surface of the
specimen (at least the portion under observation) must present a specific pattern. In
fact, as will be explained better in the following pages, image correlation exploits
non-uniform light reflection by the surface under observation. A uniform surface
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Fig. 5.3 Examples of speckle pattern: a too light (the black dots cover far less than 50% of the
surface); b optimal (black and white balanced); c too dark (the black dots cover far more than 50%
of the surface). Courtesy of Marco Palanca (University of Bologna)

would offer no features nor light gradients to be tracked. Therefore, a first requirement
is to have a pattern on the specimen’s surface. To allow the software to univocally
identify the regions on the specimen’s surface, such a pattern must be random, so
that no area resembles any other. Such a pattern needs to be an integral part of the
specimen under observation (i.e. it must move and strain together with the underlying
material).

In most cases, the test specimen does not present a natural speckle pattern. For
this reason, a speckle pattern is often painted on the specimen’s surface by means of
an airbrush gun. As a high-contrast speckle pattern is desirable to reduce the effect of
noise, in most cases a black-on-white patter is prepared, although a white-on-black
one would be suitable as well. Most DIC systems exploit black-and-white cameras
(each pixel is associated with a grayscale value), which allow achieving sharper
images. An alternative to airbrush spraying consists of application of toner powder.
The advantage is the possibility of controlling the size of the applied particles. The
main disadvantage of toner powder is that in this case the black dots displace, but do
not strain together with the underlying material. Another option is that of modifying
the material surface by etching, or by photolithography. If the specimen material
allows (as for some biological tissue), the material itself can be dyed (e.g. with
methylene blue), and subsequently prepared with a white pattern [7]. In all cases, to
achieve optimal results, it is important that the fraction of area covered by the black
(or white) speckles is approximately the same as the area where the white (or black)
background is visible Fig. 5.3.

Digital image correlation in principle can be applied to an object of any size, as
long it can be viewed by the cameras provided with suitable lenses. If a camera
sensorwith a given resolution is used, each pixel of the imagewill correspond to a
certain size on the physical object, depending on themagnification factor. A pixel
will correspond to a larger area if a large specimen is observed from a distance
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(or with lenses with a wide angle), whereas the same pixel will correspond to
a small area if a small specimen is observed from close (or with lenses with a
narrow angle).

Strict requirements apply to the optimal speckle size [5, 8–10], Fig. 5.4. If a
speckle is smaller than a pixel, it cannot be properly detected: the pixel where such
a speckle appears will have a tonality of grey, depending on the amount of black and
white included. This goes against the need for a high-contrast speckle pattern. To
over-sample the features in each speckle pattern, the minimum speckle size should
be between 3 and 5 pixels.

Conversely, if the speckles are larger than the minimum recommended size, they
also require using larger facets (i.e. sizingmore pixels). In fact, in order for each facet
to be unique, the facets must be sufficiently large to include a significant number of
features (speckles). Therefore, excessively large speckles (i.e. exceeding 5 pixels in
size) require unnecessarily large facets (i.e. containing a large number of pixels) to
track them. This in the end reduces the spatial resolution of the method, and the
suitability of the DIC to identify local gradients. In summary, an optimal pattern
has a minimum speckle size between 3 and 5 pixels (to be suitably captured by the
camera), and a low scatter (to avoid uselessly large speckles). At this point, it should
also be clear why high-resolution cameras can help to improve the resolution and
accuracy of DIC applications.

There may be cases where the surface naturally presents the required features,
but in most cases such a pattern needs to be prepared on the surface. While DIC is
considered a non-invasive measurement technique, DIC observation still somewhat
disturbs the system under observation (following Heisenberg uncertainty principle):
when a pattern is applied to the specimen, this constitutes amechanical reinforcement

Fig. 5.4 Examples of
speckle pattern on the
specimen’s surface: a if the
speckles are too small, this
results in a blurry gray
distribution among pixels; b
ideally each speckle should
have the size of few pixels
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(inmost cases this is absolutely negligible). In all cases, the specimen is to someextent
disturbed by the high-intensity light used to illuminate the area under observation.
Furthermore, care must be taken to avoid that the paints used modify the specimen’s
material properties (mainly because of the presence of solvents).

5.4.1 Case Study: Optimization of the Speckle Pattern

The quality of strain measurements by digital image correlation (DIC) strongly
depends on the quality of the pattern on the specimen’s surface. An ideal pattern
should (i) have an average size that exceeds the image pixel size by a factor of 3 to 5
(so as to have optimal pixel and facet size, improving resolution and correlation); (ii)
have a limited scatter in terms of speckle sizes (so that most speckles are indeed of
the desired size). In most cases, speckle patterns are prepared spraying black paint
with an airbrush gun so as to partially cover a previously prepared white background.
Here we will show how to define the ideal speckle size in relation to the specimen
size and acquisition system. Furthermore, we will provide practical guidelines to
identify the optimal settings of an airbrush gun, in order to produce a pattern that is
as close as possible to the desired one while minimizing the scatter of speckle sizes.
Patterns of different sizes were produced using an airbrush gunwith different settings
of the four most influential factors (dilution, airflow setting, spraying distance, and
air pressure) [8]. A full-factorial DOE strategy was implemented to explore the four
factors at two levels each.

Fig. 5.5 Example of nomograms to calculate the optimal settings for a given airbrush. Based on the
size of the area under investigation, and on the resolution of the camera, the typical pixel size can be
computed. This enables computing the desirable average speckle size can be estimated. Nomogram
a enables identifying the combination of settings to obtain the desired average speckle size. Among
such combinations, the settings that provide a reduced variability can be selected using nomogram
(b). The dotted lines are examples of two possible solutions to obtain the same average speckle size
(0.060mm), with a standard deviation of 0.030 and 0.035mm respectively. Courtesy of Giacomo
Lionello (Rizzoli Orthopaedic Institute, Bologna, Italy)
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The distribution of sizes of the speckle dots was analyzed assuming a truncated
Gaussian distribution: the average speckle size was calculated, together, with the
standard deviation. A mathematical model was built to enable prediction of the
average speckle size in relation to the airbrush gun settings. It was shown that optimal
adjustment of the airbrush allowed producing a pattern with the intended average
speckle size, and a limited scatter of speckle sizes. This enables matching the ideal
distribution of speckle sizes for DIC, Fig. 5.5.

5.5 Operating Principle of 2D Image Correlation

Although state of the art DIC usually is implemented in its three-dimensional version
(i.e. featuring two cameras, which allow the full spatial reconstruction of displace-
ments and strains), the operating principle ofDIC is easier to understand starting from
its two-dimensional embodiment. The 2D version of DIC exploits a single camera,
and enables measuring the displacements and strains in a plane that is perpendicular
to the direction of observation.

As we said earlier, each facet includes a finite subset of pixels. Each pixel is asso-
ciated with a given grayscale value (in most cases, color images offer no advantage).
If the camera operates on an 8-bit basis, each pixel is assigned a value between 0
and 255. Therefore, each facet is described by an average light intensity, and by a

Fig. 5.6 Example of
grayscale image with a
non-uniform intensity. The
portion with clouds (right
side of the picture) resembles
the appearance of the
random speckle pattern that
is desirable for DIC: the
distribution of grayscale
values contains a unique
signature if the surface
presents a random speckle
pattern. Conversely, other
regions are unsuitable either
because the signal saturates
(near the sun), or because
they lack of features and
gradients (uniform region in
the sky)



196 5 Overview of Digital Image Correlation

two-dimensional internal variation, Fig. 5.6. Such an average grayscale value and
its variability are hopefully unique to each facet thanks to the random nature of the
speckle pattern on the specimen’s surface. This allows univocally identifying and
tracking each portion of the specimen’s surface across the frames.

5.5.1 Displacements and Strains

When the specimen is loaded, each point on its surface may undergo a certain dis-
placement. In the case of a rigid body motion (i.e. with no strain), all the points will
be subjected to the same displacement vector. Conversely, if the specimen undergoes
a generic combination of displacement and deformation, each point on its surface
may be subjected to different displacement vectors. Consequently, a segment on the
specimen’s surface will undergo a state of displacement and strain, Fig. 5.7. The
strain magnitude can be obtained by deriving the components of displacement (the
second order terms need to be included in the case of large deformations). If we con-
sider a facet, a similar concept will apply: the facet will rotate and/or translate with
no deformation in the case of rigid body motion. Conversely, when the specimen
undergoes a combination of displacement and strain, the facet itself will deform,
while moving, Fig. 5.8.

Due to the speckle pattern, each point on the specimen’s surface has its own
black/white tonality. Therefore, each point and each pixel in the facet is associated
with a light intensity (recorded in terms of grayscale value). We can assume that the
displacement and strain imposed to the specimen has not altered the light intensity at
each of its point. This holds true if: (i) the state of strain is such as not to compromise

Fig. 5.7 Displacement and deformation of a segment on the specimen’s surface
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Fig. 5.8 Displacement and deformation of a portion of the specimen’s surface (facet). If the spec-
imen is uniformly illuminated, the light intensity reflected by each point of the surface (e.g. P, Q)
is the same before (I(P), I(Q), etc.) and after displacement/deformation (I(P*), I(Q*), etc.)

the surface appearance (e.g. no matting due to yielding), and (ii) a uniform lighting
it provided. In the case of large strains, each point may displace by a large number
of pixels, and this can be detected rather easily. In the case of small strains, dis-
placements can be smaller than a pixel. In this case, an interpolation of the grayscale
values enable sub-pixel resolution inmeasuring displacements, Fig. 5.9. For instance,
a bilinear interpolator or a bicubic spline can be used to interpolate the light intensity
for a number of neighboring pixels. It has been shown that a bilinear interpolation
can cause a systematic error of up to 50% on the computed strain. A bicubic spline
can reduce such an error to few percents (at a higher computational cost), providing
sub-pixel resolution in measuring displacements (of the order of 0.01 pixels) [3].

Fig. 5.9 Interpolation of the grayscale values along a line by means of a cubic spline: in DIC, the
spline parameters are used to summarize the grayscale distribution in each facet
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If, for instance, a pixel corresponds to 0.1m on the specimen’s surface, this means
that displacements can be measured with a precision of 1µm.

The correlation between two (or more) subsequent images is based on the divi-
sion of the images into facets. Once the light intensity distribution in the unde-
formed state has beenmeasured (and summarized by computing the interpolating
functions), the facet that better resembles (in terms of interpolating function) the
undeformed one can be sought in the deformed images by minimizing a suit-
able cost function that measures the cross-correlation between two images [11].
It must be noted that the result of a cross-correlation between images depends
on the actual similarity/variations of the observed object, but also on variations
over time (i.e. between acquired images) of the light intensity. Therefore, it is
extremely important to illuminate the specimenwith a constant light (fluorescent
lights must be avoided due to their intrinsic flickering). Furthermore, normaliza-
tion methods must be adopted to minimize such effects.

Thedetails of the algorithmsused to track the facets are the core of theDICmethod,
and vary between software packages. The easiest way to illustrate the correlation
process is to follow an iterative matching, Fig. 5.10: as a first step, a rigid translation
of the facet is assumed (initially neglecting the strain components, i.e. the derivatives
of the displacement field), so as to track the barycenter of the facet. In a second stage,
the normal strains in both directions are taken into account (i.e. by considering thefirst
derivatives of the displacement field). Finally, also the shear strains are considered
(i.e. the cross-derivatives of the displacement field). The procedure can be iterated
as long as the cost function exceeds a certain tolerance value.

The algorithms most frequently implemented in the DIC software are variations
of the Levenberg Marquardt non-linear optimization (this is effective when some
variables have low gradients while others have high gradients): the straight-forward
gradient steepest descent algorithm; the Hessian matrix approximation; the Newton
Raphson (either with a local quadratic functional form, or in combination with a
steepest descent).

Fig. 5.10 Exemplification of the steps of an iterative matching procedure to track a facet
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5.6 3D Image Correlation

A DIC system consisting of two cameras allows measuring the displacements in
three dimensions (including those out of plane, in the direction of the cameras). This
enables measuring the spatial state of strain, which is particularly advantageous for
specimens with a complex geometry.

5.6.1 Stereoscopic Vision

The first step of 3D image correlation consists of matching the images from two
cameras, exploiting stereoscopic vision to obtain a three-dimensional description
of the specimen’s visible surface, including the grayscale values associated with
the pattern present on its surface. In fact, while a single camera allows measuring
the displacements only in a plane perpendicular to the direction of observation,
displacements towards the camera (or away from the camera) can be detected by
comparing images from two cameras. In the case of dynamic tests, it is extremely
important that frames are synchronously acquired by both cameras (this constraint
is less important if static measurements are involved). In order for the stereoscopic
vision to be effective, the distance between the two camerasmust be sufficient, so that
the directions of observation for a same point from an angle of at least 20◦ ÷ 25◦.
While for narrower angles a trigonometric solution is still theoretically available,
computationof out-of-planedisplacements is less accurate as theproblem is ill-posed.

Knowing the relative position and alignment of the two cameras, the position in
space of any point of the test object visible by the two cameras can be computed by
triangulation based on the coordinates of such point in the images acquired by the
respective cameras. The triangulation process requires a calibration of the hardware:
the system is trained by acquiring images of known, highly precise and stable cali-
bration targets, Fig. 5.11. The calibration procedure slightly varies depending on the
software. In all cases, it consists of acquiring images of the calibration target with
different poses (i.e. translated and rotated) within a calibration volume. The software
computes the intrinsic system parameters so as to minimize a cost function. Such
calibration takes into account a number of factors such as: position and alignment of
the cameras; optical magnification factors; in most cases optical distortions.

It must be clear that only the portion of the specimen that is viewed by both
cameras can be investigated. While almost identical fields of view can be obtained
for flat specimens, this is not the case for curved specimens, where the cone of view
of each camera encompasses a portion of the specimen:as the cameras are at different
points, such portions only partly overlap.
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Fig. 5.11 Examples of calibration targets of different sizes: a adopted by GOM mbH
(Braunschweig, Germany): the largest one sizes 250mm by 200mm, the smallest one 115mm
by 12mm (pictures not to scale); and b adopted by Dantec Dynamics A/S (Skovlunde, Denmark):
the largest one sizes 150mm by 150mm, the smallest one 35mm by 35mm, Pictures courtesy of
Giacomo Lionello (Rizzoli Orthopaedic Institute, Bologna, Italy) and Marco Palanca (University
of Bologna, Italy)

5.6.2 Rectification

If the stereo matching is performed for each point of the image with no particular
strategy, this can be very slow. For a calibrated stereo system, an optimized approach
can be used, called rectification (a common method in computer vision). Based
on the calibration function of the cameras-lenses system, the paired images can
be transformed (homographic transformations) so that all epipolar lines become
horizontal. Therefore, each transformed point corresponding to a given point of the
specimens’ surface is found in the same scan line of both matched stereo images.
This makes it much faster to interrogate the paired images for corresponding points,
as after rectification the corresponding points are found with the same coordinate
in both stereo images. The use of rectified images makes it possible to use simpler
(i.e. computationally lighter) shape functions in the subsequent steps. An additional
advantage of rectification is that it allows correcting errors due to optical distortion
of the camera lenses. In fact, in the description of an optical system composed
by thin Gaussian lenses, it is assumed that each lens is perfectly aligned. However,
smallmalpositioning of the lenses cannot be completely avoided due to technological
problems. In the rectification phase, such errors can be to a large extent compensated,
and the rectified images correspond all to the same focal length.
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5.6.3 Stereoscopic Matching

The stereoscopic matching is the following phase of processing paired stereo images.
It consists in the identification of the corresponding points in the paired images. In
this phase, the image depth is calculated, i.e. the distance of each point with respect
to the camera system.

There are several strategies to address this problem. Two families of algorithms
can be found in the literature. The first family consists of feature-based strategies.
This type of algorithms aims to identify features that can be easily identified and
traced, such as lines, segments, and corners. Such algorithms can be very efficient.
However, they do not allow building a full-field correspondence, but only limited
to the features recognized in the image. The second family relies on dense-stereo
strategies, allowing to build a full-field disparity map covering the entire observed
surface. The dense stereo strategies can be further divided into local, global, and semi-
global. They all consist inminimizing a certain cost function; the difference lies in the
optimization strategy. The global-type algorithms provide the best results as to some
extent they incorporate some continuity assumption which allow reducing the noise.
However, they are associated with the highest computational cost and currently are
seldom implemented in commercial software. Local algorithms conversely rely on
a local support, the correlation window, which allows improving the signal-to-noise
ratio. The main limitation of local algorithms is that they do not necessarily provide
a completely populated disparity map, as in some regions the algorithm might be
unable to solve the optimal problem. In this case, de-correlated areas exist within
the region under investigation. In such de-correlated areas, further calculations (of
displacements and strains) are not possible.

5.6.4 3D Correlation

Once the full three-dimensional surface of the object has been built from stereoscopic
matching, a three-dimensional description of the surface is available, where each
point is associated with its grayscale value. At this stage, the correlation algorithms
described above for the planar problem can be applied.

5.7 Typical Arrangement of a DIC System

As the quality of the image (lack of distortion, limited noise, thermal stability, etc.)
is extremely important, the hardware components for a DIC system must be chosen
with extreme care.

The sensor of a digital camera can either be a CCD (charge-coupled device) or
a CMOS (complementary metal-oxide semiconductor). CCD sensors create high-
quality, low-noise images. CMOS sensors are more susceptible to noise. Because of
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the need of high-quality, low-noise images, CCD sensors are preferred in DIC
application, although they are more expensive.

In a CCD, the light reaching each pixel of the sensor is converted in an electrical
charge. The next step is to read the value (accumulated charge) of each cell in the
image. In a CCD device, the charge is transported across the chip and read at one
corner of the array. An analog-to-digital converter turns each pixel readout into a
digital value.

The resolution of the camera sensor (measured in millions of pixels) determines
the overall resolution capability of the system. If a higher resolution is adopted, this
corresponds to smaller pixels when the same physical area is observed. Alternatively,
if one wishes to keep the same pixel size, to observe a larger area a higher number of
pixels is required. In the end, a higher camera resolution enables observing a larger
specimen, with better spatial resolution.

The frame rate of the camera determineswhat type of phenomena can be observed.
Standard cameras usually provide a frame rate between 10 and 50 frames per second,
and are suitable for static or slow-varying conditions. High-speed cameras (up to
100,000 frames per second) are indicated for very fast events (destructive tests,
impacts, etc.).

Each camera must be provided with a suitable lens. If two cameras are used (3D
DIC), they must be equipped with identical lenses. To achieve high-quality images

Fig. 5.12 The portion of test specimen that can be viewed by both cameras of a 3D DIC system
depends on the distance of the DIC from the specimen, and on the focal length of the lens. a Wide-
angle lenses can be placed closer to the specimen. This results in a smaller portion of the specimen
seen by both cameras, due to occlusion. b Long-focus lenses needs to be placed farther from the
specimen. As a result, the two cameras see a larger portion of the object
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with minimal distortion, top-quality lenses need to be used. To support a wide range
of applications, the lenses must support a wide range of apertures (f-numbers). A
low f-number (high aperture) is needed if lighting is poor; this is associated with
limited image sharpness and limited depth of focus. High f-numbers (low aperture)
is recommended when possible (sufficient light) to achieve sharper images and better
depth of focus.

Using a wide-angle lens enables observing a larger specimen without the need
of moving the camera far away. However, this is associated with a higher image
distortion, which can result in higher errors in the subsequent computation. Further-
more, as a wide-angle lens enables keeping the DIC system closer to the specimen,
this can result in a smaller area to be visible by both cameras in the case of a three
dimensional specimen, Fig. 5.12a). Conversely, long-focus lenses must be placed at
a larger distance from the test specimen to view same area as with wide-angle lenses.
In this case, the portion of the specimen seen by both cameras is larger, resulting in a
larger area being investigated, Fig. 5.12b). Telecentric lenses are a completely differ-
ent class of lenses. These lenses provide a minimal optical distortion, as telecentric
lenses collect an image of an object having the same size as the lens itself. The main
limitation of telecentric lenses, apart from their cost, is that they must be at least as
large as the observed object, and therefore are unsuitable (nor even available) for
very large test specimens.

The portion of specimen investigated by the DIC with two cameras is limited to
the region that can be viewed at the same time by the two cameras. In all cases
this can never be more than 180◦ around the specimen. Although this is not
very common, a DIC system can be extended by using three or more cameras, to
expand the portion of specimen included in the analysis. In principle, the number
of cameras could be increased as much as needed to surround (and investigate)
the entire test specimen.

The DIC system must also include dedicated light sources. A first requirement of
DIC light sources is that of stable illumination, as fluctuations and flickering causes
unacceptable differences between subsequent frames. The preferred light source is
based on high-power LED. Both white LEDs (the most common ones) and green
ones (which operate in a range of frequency that is better detected by black and
white CCD sensors) can be used. The light intensity to some extent determines the
quality of the image, and as a consequence, the final error in the computed strains and
displacements. In fact, if light is insufficient the operator has to use large aperture
(small f-numbers, which results in less sharp images and shorter focal depth), or
long shutter time (which can result in motion blur, especially during dynamic tests).
Conversely, generous illumination allows obtaining sharp images (high f-numbers)
together with lack of motion blur (thanks to short shutter times).

Several all-in-one DIC systems are available on the market, supplied by
manufactures such as Dantec Dynamics A/S (Skovlunde, Denmark), GOM mbH
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(Braunschweig, Germany), LaVision (Goettingen, Germany), Correlated Solution
(Columbia, SC, USA).

The software for processing the images is generally provided together with com-
mercial system. Such software usually handles the entire process: calibration of the
system, image acquisition, stereoscopic matching, image correlation, calculation of
displacement and strain field, filtering and post-processing. In addition, several other
software packages, such as Matlab (MathWorks, Natick, MA, USA) or Mathematica
(Wolfram, Champaign, IL, USA) incorporate a library for image correlation.

5.8 Theoretical and Practical Problems with DIC

Although DIC is sometimes perceived (and sold) as a turnkey system, it should
be used with extreme caution because DIC measurements can be affected by
very large (and subtle) problems and errors. The first issue is lack of correlation:
while this can be a problem (part of the specimen cannot be investigated), it is
always detectable and, to some extent, possible to fix. The second issue relates
to the quality of measurement itself. Displacements are generally measured with
excellent accuracy (small systematic error) and precision (small random error),
well below the pixel size. Strain measurements can be quite accurate (very small
systematic error), but are generally quite imprecise (very large random error).
AnyDIC system, either commercial or homemade, needs to be extensively tested
to quantify the errors affecting displacement and strain measurements, and to
identify the optimal hardware and software settings for the specific application.

5.8.1 Possible Problems Associated with Stereoscopic
Matching

The third dimension is associated with some specific problems related to image
correlation. In fact, while recognizing the same facet at different instants in time (i.e.
in consecutive frames) involves a simple affine transformation in the two-dimensional
case, the same operation becomes more complex in three-dimensional DIC.

A second problem is related to the angle between the optical axes of the two
cameras. Increasing such an angle allows estimating more accurately distances and
displacements in the third dimension (i.e. towards and away from the cameras) as
the trigonometric problem is better conditioned. However, a larger angle is also
associated with an increased risk of lack of correlation in some areas, both because of
the additional distortion caused by prospective vision, and because of some portions
of the object being hidden, for at least one of the two cameras (occlusion, Fig. 5.12).
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5.8.2 Observation Angle

A limitation to the number of facets that are correctly recognized and correlated
derives not only from the need of both cameras to view the same area, but also from
the angle of observation of the individual cameras. When performing 2D DIC it is
obvious to place the camera right in front of the area under investigation, so that
the camera can best detect in-plane displacements and strains. In fact, if the axis
of the lens is not orthogonal to the surface of the test specimen, the estimation of
displacement and strain is biased by a systematic error due to perspective distortion.

In the 3D case (with two cameras), the perspective distortion is taken into account
during the stereoscopic matching. However, other problems may still arise. In fact,
when the pattern is prepared by spraying the black speckle dots, they form micro-
asperities on the specimen’s surface, so that when the optical axis of the camera is
almost tangent to the specimen’s surface, this will appear extremely dark as mainly
the dark spots (which protrude on top of the white surface) will be seen. Therefore, if
the specimen’s surface is curved, some areas can be seen correctly (where the optical
axis is nearly perpendicular), but the boundaries of such regions (optical axis nearly
tangent to the surface) may appear very dark, and correlation in such areas may fail.
A partial solution of this problem consists in taking more images of the specimen by
moving the DIC system around it, if the test allows doing so (i.e. if a non-destructive
phenomenon is being investigated). Another (more expensive) solution consists of
using three or more cameras to view the specimen from different angles.

5.8.3 Noise of the Input Digital Images

One of the main sources of error in digital image correlation is the noise affecting the
input images, which propagates to the estimated displacement and strain fields. Any
electronic measurement is affected to some extent by systematic error and random
noise. Image acquisition by means of digital camera makes no exception. In fact, the
readout from each sub-sensor of a CCD (i.e. each pixel) is affected by both types of
error. Therefore, error appears as a noise in the images acquired by the CCD sensor.
The first type of image noise consists of color dots due to the individual pixels having
slightly different readouts: this becomes particularly visible in areas where the color
is homogenous (chrome noise, Fig. 5.13). A second type of image noise consists of
monochromatic variations of light intensity between neighboring pixels (luminance
noise, Fig. 5.14).

Themain systematic cause of error affecting the images relates to the fact that each
pixel of a CCD sensor has slightly different gain. Therefore, if the same composition
of light wavelength and intensity reaches different pixels, each will systematically
read a slightly different value.

Randomnoise in the images is caused by a number of factors. First, the detection of
photons by the CCD sensor is a statistical process. The intensity (number of photons
detected)will vary slightly between images takenover subsequent periods of identical
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Fig. 5.13 Chrome noise in
an image acquired by a
digital camera. Pixels with
slightly different color
appear in regions where the
original color is indeed
uniform

Fig. 5.14 Luminance noise
in an image acquired by a
digital camera. The detail
illustrates the effect of
monochromatic noise in the
grayscale variations between
adjacent pixels. Courtesy of
Giacomo Lionello (Rizzoli
Orthopaedic Institute,
Bologna, Italy)

duration (the distribution of intensity between theoretically identical images follows
the Poisson distribution). Secondly, additional electrons are generated within the
CCD sensor not by the absorption of photons (i.e. the image signal), but by physical
processes within the CCD itself, which are related to thermal vibration. The number
of electrons generated in a given time depends on the operating temperature of the
CCD. This type of noise is known as thermal noise (or dark noise), and can be
reduced by cooling down the CCD sensor. An additional source of error is the so-
called excess noise, having a pink wavelength (i.e. in the low frequencies in the
visible spectrum). The excess noise has some memory effect, which makes it deviate
from a zero average.While the previous sources of noise can be somewhat attenuated
by filtering, excess noise is much harder to eliminate.

Finally, additional systematic and random errors appear in the subsequent sig-
nal processing, during the amplification and analog-to-digital conversion of the
signal from each pixel. The consequences of this combination of errors affecting
the acquired images propagate to the computation of the displacement fields. This
step is generally quite robust, and shows relatively small noise. Conversely, when
the displacement field is derived to calculate the strain distribution, errors tend to
increase: if no filtering is adopted, even a uniformly strained surface will show an
apparent strain with significant local variations noise, Fig. 5.15.



5.8 Theoretical and Practical Problems with DIC 207

Fig. 5.15 Test arrangement to produce known displacements and strains: a a flat aluminum bar was
subjected to a cantilever load, inducing amaximumstrain of f 750με at the fixed end; on the opposite
side to the DIC camera, strain gages and LVDTs were placed to measure the actual displacements
and strain. Theoretical strain distribution derived from the beam theory and the readouts from the
LVTDs (b). DIC-computed strain distribution with no filtering (c), and after Gaussian low-pass
filtering (d)

5.8.4 To Filter, or Not to Filter?

The main limitation of Digital Image Correlation (DIC) is the remarkable noise
affecting the DIC-predicted strain distributions. To reduce noise, filters are often
applied. However, this is also associated with loss of information (smoothing of
the strain gradients).

Manufacturers of commercial DIC systems seldom provide guidelines for optimal
filtering of DIC strain distributions other than go on filtering until it looks like you
expect it to be. This is clearly the opposite of a scientific process, as it can virtu-
ally prevent discovering anything that is not expected (e.g. a high strain gradient).
Therefore, it is necessary to systematically explore different filtering strategies to
reduce noise and minimize the loss of information in the DIC-predicted strain dis-
tributions [12].

To provide an evidence-based indication of the most suitable filtering strategy,
a preliminary analysis to measure the features of the noise to be removed must be
carried out. This enables identifying the features of dark noise affecting the images
acquired by the CCD cameras.
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A first strategy one could consider consists of filtering the input images with
median adaptive low-pass filters, or notch filters to eliminate the dark noise. However,
both strategies actually produce an increase (rather than a reduction) of noise in the
computed strain distributions.

A frequently used strategy is to apply a Gaussian low-pass filter to the strain
distributions. When the optimal cutoff frequency is selected, the noise is remarkably
reduced (by 70%) without excessive loss of information. At the same time, when
non-optimal cutoff frequencies used, the residual noise and/or loss of information
seriously compromised the results, Fig. 5.16.

Amore effective strategy relies on filtering the DIC-computed displacement field:
this low-pass filtering strategy incorporates a continuum assumption and is somewhat
less arbitrary than filtering the strain distribution just because it does not look good.

Finally, image combination techniques can be applied both to the input images,
and to the strain distributions. This strategy is extremely time-consuming but not
very effective (noise is reduced by less than 10%).

In conclusion, it has been shown that the only truly effective filtering strategy is
the one applied to the strain distribution [12]. An optimization of the cutoff frequency
is possible (and mandatory) to achieve reliable results.

Fig. 5.16 Variation of the two terms composing the total error after filtering (residual noise, loss
of information) as a function of the cutoff frequency. The longitudinal strains in a cantilever plate,
Fig. 5.15 were processed, when a deflection of was applied at the free end (corresponding to a
maximum strain of 750με at the fixed end). Courtesy of Jacopo Baldoni
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5.9 Case Study: Optimization of the Hardware
and Software Parameters

Before using the DIC to draw any conclusions, a focused optimization is necessary
to obtain the best results (minimum systematic and random error). The starting point
was an average systematic error of 100με, and a noise of 500με. At this stage, DIC
is neither sufficiently accurate nor precise to measure in rigid specimens where strain
does not exceed 2000με. Such errors are much worse than the performance of strain
gages.

The first stepwas optimizing the preparation of the specimen surface. The aimwas
to define the optimal airbrush settings to produce the optimal pattern for five different
measurement windows chosen for biomechanical specimens. Different patterns were
produced, to identify the optimal settings of the airbrush to generate speckles of the
desired size, with minimal scatter [8].

The following software parameters were then examined: (i) size of the subsets
of pixels (facet size), (ii) overlap between facets, (iii) filtering (contour smoothing).
Following the design of the experiment (DOE) [13], a factorial design was used to
establish a link between the software parameters and the errors. An unloaded flat
specimen, Fig. 5.15 with a dedicated pattern for the specific measurement window
was used to evaluate the effects produced by the alteration of software parameters
on the strain measurement (as the specimen was not subjected to any real strain, any
readout different from zero is an indicator of measurement error).

Subsequently, the strain distribution in a specimen with a simplified geometry
(cantilever load applied to the same aluminum flat specimen) was measured using
DIC, while two strain gages were bonded on the opposite face, as a reference.

In the end, the hardware parameters were explored in order to minimize noise:
(i) the camera gain, (ii) the shutter time. Using the results of the previous tests, it
was possible to investigate the effect produced by the alteration of the hardware
parameters. The same unloaded flat specimen was used in these tests. In the first
test, different gain levels and a fixed exposure were used. The aim was evaluate the
effects produced by the alteration of gain level on the errors affecting the measured
strain. In the second test, the best gain level was fixed, and the optimal exposure was
evaluated to obtain the minimum error and noise.

Remarkable improvements in terms of accuracy and precision were achieved,
Fig. 5.17. Starting from an average systematic error of 100με, and a noise of 500με,
using the knowledge developed during these tests, the error decreased to 10με and
the noise to 100με.
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Fig. 5.17 A flat specimen was mounted on a tiltable frame to test the DIC system, Fig. 5.15. Its
surface was analyzed in both a-zero strain condition, and when a cantilever load was applied. Plots a
and b show how the random noise and the systematic error and were dramatically high if no special
care was taken, and how errors can be reduced if the hardware and software settings are optimized
following the principles of DOE

5.10 Case Study: Strain Distribution in the Human Tibia

The strain distribution in the human tibia is particularly puzzling as it shows some
peculiar optimization [14]. In this study the displacements and strains in the human
tibia were investigated when a cantilever load was applied, Fig. 5.18.

5.11 Digital Volume Correlation

Recently, the power and resolution of diagnostic imaging has improved, so that the
distribution of material properties inside a structure can be accurately measured.
In this case, the three-dimensional images are constituted by voxels. Contemporary

Fig. 5.18 Experimental setup: a cantilever loadwas applied to a human tibia preparedwith a speckle
pattern while DIC recorded stereoscopic images. From the speckle pattern, the displacement and
strain fields were obtained. (Copyright of the LHDL consortium; reproduced with permission)
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techniques include: computed tomography (CT, with a typical voxel of 0.1–1mm),
high-resolution computed tomography (micro-CT, with a resolution down to some
micrometers), magnetic resonance (MRI, with a resolution of some millimeters) and
high-resolution-MRI (with a resolution of some tens of micrometers), and positron
emission tomography (PET).

Such imaging techniques, in combination with in situ mechanical testing, has
enabled the measurement of 3D full-field displacement and strain fields throughout
the interior of amaterial by comparison of an underformed and a deformed state. This
technique is called Digital Volume Correlation (DVC) and its operating principle is
an extension of the DIC.

One of the veryfirst implementations ofDVCwas proposed byBay et al. in 1999 to
investigate the strain distribution throughout a complex biological structure, such as
the trabecular bone [15]. Since then, the technique has gained an increasing attention
in the fields of biomechanics and biomaterials; but also in experimental mechanics
and material research related to various engineering applications [16]. DVC can
exploit more structural information than DIC, and can therefore be coupled with
finite element solvers for the calculation of the internal strain field, while applying a
continuum assumption [17].

In order to be investigated by means of DVC a structure needs to have suitable
materials properties for the selected imaging technique (e.g. radiopacity if micro-CT
is used). At the same time, the material must possess an internal inhomogeneous
structure that can be viewed by such a technique, and exploited as a natural 3D
speckle pattern, with similar limitations and requirements as the pattern for surface
inspection by means of DIC (dimensions, contrast, etc.). For instance, biological
tissues such as bone offer a suitable internal pattern thanks to the porous trabecular
structure, Fig. 5.19. Similarly, the fibres/particles of composite materials can serve
as a tracking pattern. Other materials suitable for DVC are cast iron (thanks to the
internal graphite particles), and inhomogeneous rocks and soils.

A major limitation is the very long time required to acquire 3D images of suitable
quality: a micro-CT scan with adequate resolution and quality can require between
20min and some hours. Therefore, images are acquired under stationary conditions,
after applying a known load or strain to the specimen. It is clear that if the material
under investigation is viscoelastic, deformational and failure will be affected by such
a slow procedure. Although DVC is a very promising technique, it should always
be used with extreme caution. In fact, the accuracy and precision of the predicted
displacements and strains cannot be taken for granted [17–19]. An intrinsic difficulty
in validating DVC is that currently no other technique exists that allows measuring
strains inside a loaded structure. Therefore, no golden standard is available tomeasure
the accuracy and precision ofDVC.While the calculated displacements are in general
very accurate (with a precision and accuracy better than the voxel size), the computed
strains can be affected by large errors (up to 50,000με; even with the best settings,
errors exceed several hundreds με) [19].



212 5 Overview of Digital Image Correlation

Fig. 5.19 Example of application of DVC to the mechanical characterization of a vertebra. The
specimen was loaded in a high-resolution CT. Correlation of the undeformed and deformed vol-
umetric images enabled computing the distribution of displacements and strain. Courtesy of Dr
Gianluca Tozzi (University of Portsmouth, UK)
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Part II
Developing Phenomenological Theories

and Problem Solving

In this second part of the book the authors give an overview of the main fields of
Structural Mechanics to show the extent and the effectiveness of experimental stress
analysis for the understanding of phenomena and assessment of procedures.

In order to show the interaction between theoretical models and experimental
data, each chapter offers a sufficient introduction to the main concepts and variables,
without overwhelming the reader with an excess of specialization. For more detail,
the reader is referred to more specialized publications, some of which can be found
in the References.



Chapter 6
Static Stress Models

Abstract Experimental methods to develop static stress analysis models might
appear as a superfluous option since numerical analysis has reached so high a level
of refinement and accuracy to cover practically every kind of structural mechan-
ics requirements. The field of Statics was the first to take advantage of numerical
methods. Nevertheless, experiments continue to be fundamental for building simu-
lation models. A few case studies with classic applications of experimental methods
to pressure vessels—the old history of experimental mechanics—are followed by
elementary cases of identification of unknown variables, with the purpose of show-
ing the potential of the inverse approach. Models for the simulation of constitutive
materials laws are shown for stress states under and beyond the elastic limit. The
reciprocal influence of the stress state and the behavior of the material is discussed.
A brief note on the classic elementary models of the physical theory of fracture is
finally given.

6.1 The Illustrative Advantage of a Full Field Analysis

The experimental analysis, if from one hand confirms and verifies theoretical results,
on the other hand shows the limits on applicability of the theory, e.g. of the Saint
Venant simplified theory about the concept of slender bodies or of the contact prob-
lems where the load is transferred between two bodies through small surface areas.
For a general reference, the reader can find in following books the fundaments of the
elastic and inelastic theory [1–5]. As first reference [6].

6.1.1 Force at a Point of a Straight Boundary

This classical Boussinesq theory covers a frequent design praxis, when elements are
conceived to transmit forces from one another, with localized actions on small areas.

A concentrated load acting perpendicularly to an half plane, Fig. 6.1 is the general
reference scenario of every similar structural solution. The relationship between

© Springer International Publishing Switzerland 2015
A. Freddi et al., Experimental Stress Analysis for Materials and Structures,
Springer Series in Solid and Structural Mechanics 4,
DOI 10.1007/978-3-319-06086-6_6
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Fig. 6.1 Concentrated load perpendicular to a half-plane: a radial stress distribution, b contour
curves of the radial stress

stresses and load is:

σr = −2P

πd

cos φ

r
σφ = 0 τrφ = 0 (6.1)

The radial stress is a principal stress at any point while the other is zero. From
Eq. 6.1 is obtained:

cos φ

r
= cost. (6.2)

The loci of constant shear stress are tangent at the contact point and have a circular
shape with centers on the normal x axis. The constant of the Equation, determined
by the condition φ = 0, is equal to 1/D.

Exercise 6.1 (Stress distribution due to a force on boundary of a disk) The exercise
deals with the possibility to assume the stress distribution of a semi-infinite body
for the approximated determination of the stress state in a circular disk with a con-
centrated load at a point of its boundary. It utilizes the photoelastic method: by this
analysis, Chap. 3, it is possible to verify that isochromatics (loci of constant shear
stress) are loci of constant radial stress.

(a) As first step, given the photoelastic fringes of Fig. 6.2a for a disk, the unknown
concentrated load is approximately identified, assuming the Boussinesq’s formula
of a semi-infinite body.

Data:

• Disc diameter 2a = 60 mm.
• Thickness d = 10 mm.
• Constant of fringes of Araldite B fσ = 10.2 [N/ord.mm].

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 6.2 a Patterns of a photoelastic analysis of the stress distribution in a concentrated contact
and b theoretical model of the approximated model of Eq. 6.3

Since the dimensions of variables are: [Newton/ord.mm] for fσ , mm for r , P will
be identified in Newton. Equation is:

σr = −2P

πd

cos φ

r
σφ = 0 τrφ = 0 (6.3)

Equation 6.3 can be rewritten as1:

Nord = −2P

π

cos φ

r
· 1

fσ

Figure 6.3 shows (a) the experimental data (35 points) in cylindrical coordinates r
and φ, fitted by the Eq. 6.3 through an interpolation algorithm and (b) the model
applied for fitting only to the experimental data derived on the symmetry axis for
φ = 0.

The identified value of the load is:

P = −178 N

The approximation of the theoretical model to interpolate the experimental data
shows an acceptable use of the theory of infinite half-plane, almost for points not
too far from the contact area (r ≤ 6 mm). At larger distance, stresses are influenced
by the real boundary conditions of the disk that cannot be assimilated to an infinite
plane.

1 The general equation of photoelasticity, Chap. 3, is:

σ1 − σ2

fσ
= Nord

d
.

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 6.3 Theoretical reconstruction by Eq. 6.3 in (a) and the same theoretical model fitted to the
experimental data for φ = 0 in (b)

6.1.2 Hertzian Contact

The Hertz theory of contacts is a nice application of the theory of elasticity [6].
In the case of a contact between two cylinders of radii R1 and R2 with parallel

axes, the contact surface is rectangular with one side equal to the cylinders thickness
d and the other side equal to a finite value 2b, caused by the local deformation. If
R2 tends to infinity, we have the case of Fig. 6.4 of the Hertzian contact between a
cylinder and an half-plane.

The contact stress distribution q along 2b is semi-elliptically distributed with a
maximum central value equal to q0. P ′ = P/d is the load per unit thickness along the
x axis, perpendicular to the figure plane. The y and z axes are placed along horizontal
and vertical directions. The link between P ′ and q0 is given by the equation:
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Fig. 6.4 Diagram of stress components along the depth for the hertzian contact between a cylinder
and an half-plane for ν = 0.3
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q0 = 2P ′

πb
(6.4)

The analysis of local deformation gives the following expression for the half-width
of the contact segment b:

b =
√

4P ′(k1 + k2)R1 R2

R1 + R2
(6.5)

where R1 and R2 are the radii of the cylinders and k1 and k2 are elastic constants,
defined by:

k1 = 1 − ν2
1

π E1
k1 = 1 − ν2

2

π E2
(6.6)

If both cylinders are of the same material with ν = 0.3, Eq. 6.5 becomes:

b = 1.52

√

P ′ R1 R2

E(R1 + R2)
(6.7)

If cylinders are also geometrically identical (R1 = R2 = R), then:

b = 1.08

√

P ′ R
E

For contact between a cylinder and a plane Eq. 6.7 gives:

b = 1.52

√

P ′ R
E

The value of the maximum pressure q0 is obtained by substituting Eq. 6.5 in Eq. 6.4:

q0 =
√

P ′(R1 + R2)

π2(k1 + k2)R1 R2
(6.8)

If the materials of both cylinders are identical and ν = 0.3, the maximum pressure
is:

q0 = 0.418

√

P ′E(R1 + R2)

R1 R2
(6.9)

while for the contact between a cylinder and a plane is:

q0 = 0.418

√

P ′E
R

(6.10)

From the expressions of q0 and b, the stresses in any point are determined [6, p.404].
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Figure 6.4 shows the stress distribution for ν = 0.3. The maximum shear stress is
equal to 0.304q0 and is not localized on the surface, but at a certain depth from the
area of contact along the z axis (z1 = 0.78 b). This result has implication in modeling
the phenomenon of surface fatigue with repeated loads.

In case of contact between a cylinder and a plane with different elastic materials
the expressions of b and q0 of Eqs. 6.5 and 6.8 become:

b =
√

4P ′(k1 + k2)R (6.11)

q0 =
√

P ′
π2(k1 + k2)R

(6.12)

This formula must be considered for the analysis of a photoelastic experiment with
disc and plane of different materials.

The theory can be completed with the calculation of the distributions of σx , σy

and σz , Fig. 6.4b. All the previous normal stresses are compressive and principal for
symmetry reasons:
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⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎩

σx = −2νq0

(
√

1 + z2/b2 − z

b

)

σy = −q0

[(

2 − 1

1 + z2/b2

)
√

1 + z2/b2 − 2
z

b

]

σz = −q0
√

1 + z2/b2

(6.13)

and τmax becomes:

τmax = σz − σy

2
= q0

2

[

(

2 − 1

1 + z2/b2

)
√

1 + z2/b2 − 2
z

b
− 1

√

1 + z2/b2

]

(6.14)

The maximum shear stress (isochromatic with maximum order) is under the surface
contact at a depth that is function of the load and radius. For ν = 0.3 this depth is
z1 = 0.78b and the maximum shear stress is 0.304 q0.

Exercise 6.2 (Contact stress between a cylindrical disk and a plane surface) Identify
the maximum value of the pressure q0 in a hertzian contact between the disc in
plastic material and the plane surface in steel, being given the photoelastic fringes
distributions in a transparent plastic cylindrical disk.
(a) Data:

• Disc diameter 2a = 60 mm
• Elastic modulus of disc material E1 = 3,100 MPa
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Fig. 6.5 Photoelastic fringes (a) in the contact between the photoelastic disc and the plane steel
surface, fitted by theoretical model (b) of Eq. 6.15

• Elastic modulus of half-plane material E2 = 210,000 MPa
• Poisson’s coefficient for both materials ν = 0.3
• Photoelastic constant for Araldite B fσ = 10.2 [N/ord.mm]
• Photoelastic fringes given in Fig. 6.5.

(b) The theoretical model that relates the fringe orders to the maximum pressure in
the contact area is given by Eq. 6.14 for a contact between a disc and an half plane.
Being the orders of fringes proportional to (σz − σy), it is possible to identify the
load in the disk that is optically sensitive.

For this task the Eq. 6.14 can not be directly applied because it was developed for
an half plane. Nevertheless, for the high localized phenomenon of contact stress it
can be approximately utilized also for a disk but the model valid for an half-plane
must be modified for taking into account the double loading application on the disk in
a radial direction. For this reason, instead of Eq. 6.14 the new Eq. 6.15 was developed
that sums two opposite loading contributions at a distance 2a.

σz − σy = q0

[

(

2 − 1

1 + z2/b2

)
√

1 + z2/b2 − 2
z

b
− 1

√

1 + z2/b2

+
(

2 − 1

1 + (−z + 2a)2/b2

)
√

1 + (−z + 2a)2/b2

− 2
(−z + 2a)

b
− 1

√

1 + (−z + 2a)2/b2

]

(6.15)

(c) By an interpolation algorithm the value of q0 is identified (−34.15 N/mm), fitting
this model to experimental data (Sign minus means a compressive state).
(d) P ′ is a function of q0 and is given by Eq. 6.8: P ′ = 32.77 N/mm and b = 0.61 mm
(by Eq. 6.4).
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Fig. 6.6 Photoelastic fringes of contact stresses in a disc due to a a concentrated load (upper side)
and a half-plane (lower side), and b in a toothed belt acting in a pulley in a transmission device

All the examples confirm the validity of Saint Venant principle: stresses in the
upper and in the lower part of the disc at a certain distance from the applied
loads, Fig. 6.6 have the same distribution.

In spite of its clarification potential, the classical photoelasticity is overruled
by numerical methods, especially for solving forward problems. It maintains
value for inverse problems. The inherent limit due to a different material of the
model and of the real object (which makes it possible only an extended similar-
ity in the case of contact problems, see [7]), is overcome in special applications
where the plastic materials are utilized for structural solutions, as composites
or elastomeric elements for o-ring seals or toothed belts. Figure 6.6, shows the
contact singularities in a toothed belt inside a metal pulley, overlapped with
the general loading effect.

6.2 Design by Experiments of Pressure Vessels

If the shape of the body and the loads distribution are complex with three-dimensional
stress states (e.g. pressure vessels), stress concentration factors, typical of slender
bodies with elementary load conditions can not be extended and utilized and there is
no reference to classical handbooks as [8] for estimating the peak stresses at critical
points. In this case stress concentration in geometrical discontinuities can only be
evaluated numerically or experimentally.

Stress state concentration was one of the main task of experimental stress analysis
when numerical methods were not so common as today are. This original task of
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the experimental approach (when to verify the approximate numerical estimations
was recommended), is partially overruled, even if the designer choices for structural
optimization often take advantage of analyses on physical models or on prototypes
themselves.

6.2.1 Case Study of Steam Generator Reactor Head with Four
Openings on the Spherical Dome

Limiting the analysis only to some cases of special interest or complexity, it is possible
to verify some advantages of experimental methods. A photoelastic analysis was
carried out on a generator head. In Chap. 3 the casting form of the model is shown;
in Fig. 6.7 the model and fringes in a symmetry plane are shown. Figure 6.8 shows
the results of the analysis: the diagram of the normal stresses along the boundary
(σT and σN perpendicular to the symmetry plane), both normalized respect to the
membrane stress in the spherical part (σ0 = pD/2h where D is the mean sphere
diameter and h the thickness).

6.2.2 Case Study of a Reactor Pressure Vessel with Four
Nozzles in the Cylindrical Part

A reactor pressure vessel is typically constituted by a cylindrical shell with radial noz-
zles and a spherical head fastened to the main body by means of a flange. Figure 6.9
shows a sketch of the reactor container with the symmetry critical plane along the
longitudinal symmetry plane of a nozzle, where the maximum circumferential stress
is located.

Fig. 6.7 Monolithic model of epoxy resin and interferometric fringes in one of the symmetry planes
of a pressure vessel with four nozzles; the corresponding casting mold in Chap. 3

http://dx.doi.org/10.1007/978-3-319-06086-6_3
http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 6.8 Perpendicular and tangential normal stresses on the symmetry plane

Loadings are given by internal pressure, forces and moments applied to the nozzles
and tightening load on the flange. Figure 6.10 shows a comparison of circumferential
stress distributions (i.e. perpendicular to the figure plane) due to an internal pressure,
on the inner surface of the vessel, for four different designs, [9] for details and
bibliography. It is worth observing that the normalized values of the circumferential
stresses σN /σ0 in the area in the inner side, between the cylindrical vessel and the
nozzle is influenced by few geometric dimensionless factors, Table 6.1. In other words
a local optimization of the peak stress is possible by small adjustment of few factors.

This is a confirmation of an analysis that identifies the few contributions that
account for most results. It gives a measure of significance to factors that may not
appear always significant at first, such as t ′/T ′.

Fig. 6.9 Pressure vessel and nozzle sizes
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Fig. 6.10 Circumferential stress distribution in longitudinal plane for different but similar geome-
tries; data in Table 6.1

6.3 Stress Concentration Factors

The normalization of the stress diagrams introduced in the previous subsections in
the pressure vessels studies (stress at a point is expressed as a dimensionless ratio)
is only a useful representation of the stress diagrams in complex three-dimensional
systems, but does not allow full generalization of these values.

Vice-versa, when a component can be treated by the elementary Saint Venant
theory, the concept of the concentration factors is more general and can be collected

Table 6.1 Comparison of stress ratio σN /σ0 of similar nozzles as function of dimensionless vari-
ables (note that s/S = dT ′/Dt ′)
Nozzles D/T t′/T′ d/D s/S ri /T ′ ro/T ′ K (σN /σ0) Note

Experim. 17.4 1.00 0.226 0.226 0.27 0.50 2.8 Phot. [9]

Numerical 17.4 1.00 0.226 0.226 0.27 0.50 2.8 Fin.el [10]

Experim. 14.7 0.76 0.193 0.254 0.43 0.43 2.52 (2.22) Phot. [11]

Experim. 15.6 1.00 0.285 0.285 0.33 0.44 2.84 (2.55) Phot. [9]
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in specialized handbooks [8, 12], and utilized for a variety of similar geometries. The
stress concentration factors are utilized in fatigue studies, since stress concentrations
due to geometrical discontinuities are the main source of reduction of components life
when the stresses vary over time, see Chaps. 7 and 8. In case of static stress their role
in augmenting the local stress and also locally (i.e. limited to small areas) exceeding
of yield stress is not considered dangerous. In spite of this fact, the concentration
factors are defined statically and determined by the theory of elasticity or estimated
by numerical or experimental methods.

The geometrical discontinuities arise from the general outline of the body or from
imperfections due to manufacturing technology (e.g. defects in the welding joints)
and also from service conditions (such as certain concentrated forms of corrosion
that creates surface cracks). However, as it will be seen in dealing with variable loads,
it is wrong to think that strength reduction derives only by the stress increment in
discontinuities.

As it will be argued in following chapters, the effect on fatigue resistance of
notches, grooves, sections variations, cracks etc. is much more complex. To
anticipate some concepts that will be treated in them, the fatigue resistance
depends on a variety of factors not only connected to stress state such as:

• Material structure at the root of the notch (which may differ from the base
material condition for local thermo-mechanical treatments).

• Actual values of stresses and strains (only in elastic field proportional to the
load).

• Stresses and strain gradients.
• Local plastic flow.

Coming back to the determination of stress concentrations, in the case of slender
structures (e.g. beams, thin shafts and thin plates) referring to the saint-venantian
hypothesis, stress concentrations are interpreted by concentration factors Kt , for each
type of internal elementary stress distribution (normal and shear force, bending and
torsion moments). They are defined as:

ratios between maximum stress in the notch cross-section, according to a linear
elastic theory and nominal stress in the same section, calculated by the elementary
Saint Venant theory.

So defined the concentration factors are:

• Defined in elastic range.
• Independent of loads level.
• Independent of the absolute size.
• Dependent only on the kind of internal stress, as normal or shear forces, bending

or torsion moments.

For this reason e.g. in the German technical literature the concentration factor is
properly called Form Factor (with designation αk).

http://dx.doi.org/10.1007/978-3-319-06086-6_7
http://dx.doi.org/10.1007/978-3-319-06086-6_8
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6.3.1 Basic Theoretical Cases: Stress Concentration
for Circular Holes in Thin Plates

A first typical case of geometrical discontinuity is offered by a circular hole in a thin
plate of large dimensions, loaded in one direction by uniform tension at a certain
distance from the hole, Fig. 6.11. For this case a classical and ingenuous theoretical
solution was due to Kirsch quoted in [6].

Before showing the final formula for this case, it is worth recalling the way to
determine it. The compatibility equations in case of rectangular coordinates are:

(

∂2

∂x2 + ∂2

∂y2

)

(σx + σy) = 0 (6.16)

Introducing the Hamilton operator:

∇2 = ∂2

∂x2 + ∂2

∂y2 (6.17)

the previous equation can be written as:

∇2(σx + σy) = 0 (6.18)

Airy showed that if a function φ = φ(x, y) exists, such that the stress components
can be written as:

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 τxy = − ∂2φ

∂x∂y
(6.19)

The equilibrium equations are automatically satisfied, because the following holds:

∂σx

∂x
+ ∂τxy

∂y
= 0

∂σy

∂y
+ ∂τxy

∂x
= 0 (6.20)

Fig. 6.11 Circular hole in a
loaded thin plate
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The only condition for the function φ is continuity and three-times derivability respect
to x and y. This function is purely mathematic and gives stress fields that not nec-
essarily represent solutions for real problem, but can be used to describe many real
problems, as the present one.

To determine the unique solution of the problem, Eq. 6.19 must also satisfy the
previous compatibility equations Eq. 6.16:

(

∂2

∂x2 + ∂2

∂y2

) (

∂2φ

∂y2 + ∂2φ

∂x2

)

= 0 (6.21)

that, introducing the Hamilton differential operator, can be written as:

∇4φ = ∇2∇2φ = ∂4φ

∂x4 + 2
∂4φ

∂2x∂2 y
+ ∂4φ

∂y4 = 0 (6.22)

This differential equation that gives a solution to the elastic problem when the bound-
ary conditions are satisfy, is called biharmonic and functions φ that satisfy it are called
biharmonic functions.

Boundary conditions can be specified in three different ways:

• Loads or stress given on the entire boundary.
• Displacements given on the entire boundary.
• Displacements given on a portion of the boundary and stresses given on the residual

part of the boundary.

The first case is analyzed in the book of Alfirevic [13] where an important conclusion
is emphasized:

Stress distribution does not depend on elastic material constants because they
do not compare in Eq. 6.22 nor in the boundary conditions. For this reason
experimental analysis can be carried out also on materials different from the
material of the original structure. That is true for simply connected bodies or for
multiply connected bodies, when the external loads on every closed boundary
are in equilibrium, Fig. 6.12 (from [13]). In other case stresses depend on
Poisson’s coefficient.

Dealing with the problem of a circular hole, it seams natural to turn the previous
equations into polar coordinates r, θ .

In rectangular coordinates x, y the components of stress vector in a direction θ

is, for the analogy with Eq. 2.15 of Chap. 22:

σx ′ = σx + σy

2
+ σx − σy

2
cos 2θ + τxy sin 2θ (6.23)

2 σ in place of ε, and τxy in place of γxy/2.

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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Fig. 6.12 Multiply connected bodies. For the cases a, b and c the stress distribution does not depend
on elastic constants. Only for the case d stresses depend on Poisson’s coefficient (modified from
[13])

Switching from rectangular coordinates to a polar reference system, the stress vector
can be transformed in formal mathematical way and becomes:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σr = σx + σy

2
+ σx − σy

2
cos 2θ + τxy sin 2θ

σθ = σx + σy

2
− σx − σy

2
cos 2θ − τxy sin 2θ

τrθ = −σx − σy

2
sin 2θ + τxy cos 2θ

(6.24)

From these equations the invariant of the sum of the normal stresses must be verified:

σx + σy = σr + σθ

The biharmonic equation is valid independently of the coordinates system; then the
operator ∇2 becomes from rectangular to polar coordinates:

∇2 = ∂2

∂x2 + ∂2

∂y2 = ∂2

∂r2 + ∂

r∂r
+ ∂2

r2∂θ2
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and Eq. 6.18:
(

∂2

∂r2 + ∂

r∂r
+ ∂2

r2∂θ2

)

(σr + σθ ) = 0 (6.25)

In order to satisfy equilibrium equations, the relationships between stresses and the
new Airy function φ(r, θ) must be the following (see details of the steps in [13]):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σr = 1

r

∂dφ

∂r
+ ∂2φ

r2∂2θ

σθ = ∂2φ

∂2r

τrθ = 1

r2

∂φ

∂θ
− 1

r

∂2φ

∂r∂θ
= ∂

∂r

(1

r

∂φ

∂θ

)

(6.26)

Substituting Eq. 6.26 in Eq. 6.25 the biharmonic nature of φ is verified:

(

∂2

∂r2 + ∂

r∂r
+ ∂2

r2∂θ2

) (

∂2φ

∂r2 + ∂φ

r∂r
+ ∂2φ

r2∂θ2

)

= ∇4φ = 0 (6.27)

It is now possible to specialize the previous general expressions for some practical
cases.

6.3.1.1 Uniform Load in Every Direction

For an axial-symmetric problem Fig. 6.13, the dependence is only on the variable r
and the Airy function is function of r only:

φ = φ(r)

Fig. 6.13 Stress in a plate
with a circular hole,
uniformly loaded
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Equation 6.27 reduces to:

(

d2

dr2 + 1

r

d

dr

) (

d2φ

dr2 + 1

r

dφ

dr

)

= 0

This is an ordinary differential equation that admits the following solution:

φ(r) = A ln r + Br2 ln r + Cr2 + D (6.28)

where A, B, C, D are constants to be determined by boundary conditions. Substi-
tuting Eq. 6.28 in Eq. 6.26 the following stress values are derived:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σr = A

r2 + B(1 + 2 ln r) + 2C

σθ = − A

r2 + B(3 + 2 ln r) + 2C

τrθ = 0

(6.29)

For r → ∞, being the stress S a finite value, B must be zero. The other boundary
conditions are:

{

σr = S for r → ∞
σr = 0 for r = a

then:
{

2C = S

A = −S a2

and finally Eq. 6.29 give:
⎧

⎨

⎩

σr = S
(

1 − a

r2

)

σθ = S
(

1 + a

r2

) (6.30)

Exercise 6.3 (Stress concentration for a circular hole in a spherical thin vessel of
large diameter, internally Pressurized) (a) If the hole and the thickness are small
respect to the sphere diameter in order that it can be considered in membrane regime,
the previous theory can be extended to the case of a spherical vessel internally
pressurized with a circular hole.
(b) The concentration factor due to a hole in a plane membrane in uniform state of
stress is estimated through Eq. 6.30. For r = a stress components are:

{

σr = 0

σθ = 2S
(6.31)

Then the stress concentration factor, i.e. ratio between maximum circumferential
stress and uniform stress, is Kt = 2.
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Fig. 6.14 Stress in a plate with a circular hole loaded on its boundary

Exercise 6.4 (Stress concentration for a hole loaded on its boundary, in a large thin
plate) (a) This case is the over-position of the previous state plus a uniform state of
stress, Fig. 6.14. The circumferential stress around the hole is given by:

σθ = −S + 2S = S

(b) The circumferential stress due to a pressure S acting on the hole boundary is a
tension stress with the same absolute value of the applied pressure.

6.3.1.2 Load in One Direction

The problem solving proceeds according to the following steps:

• It is assumed as first step, Fig. 6.15, that the disturbance of a small hole in a large
plate uniformly loaded in one direction is localized in a limited area of the plate
and practically absent at a large distance compared with the hole radius. For the
Saint Venant principle [6], stress distribution on a radius b of a concentric circle,

Fig. 6.15 a Stress in a plate with a circular hole loaded in one direction, b annular region of the
plate
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at a certain distance from the hole center, is essentially the same as in the plate
without the hole.

• A tentative expression for the stress distribution on this circle of radius b is pro-
posed for equilibrating the stress S applied in one direction at a large distance:

⎧

⎪

⎨

⎪

⎩

σr = S

σθ = 0 for θ = 0 and r → ∞
τrθ = 0

The expression is:

⎧

⎪

⎨

⎪

⎩

σr |r=b = S cos2 θ = S

2
(1 + cos 2θ)

τrθ |r=b = − S

2
sin 2θ

(6.32)

• This stress state applied on the circle b is an over-position of the previous case of
uniform stress in every direction plus a cosinusoidal distribution; then the stresses
in the annular region of radii a and b can be regarded as composed of two parts:
the first due to a uniform load S/2 and the remaining part due to a cosinusoidal
stress distribution on the circle boundary:

⎧

⎪

⎨

⎪

⎩

1

2
S cos 2θ

−1

2
S sin 2θ

• This second distribution admits a stress function of the form:

φ = f (r) cos 2θ (6.33)

Equation 6.33 must satisfy the compatibility condition ∇4 = 0 given by Eq. 6.27.
Substituting the Eq. 6.33 in it, the condition generates the following ordinary dif-
ferential equation, because r and θ are separate in two different functions:

(

d2

dr2 + 1

r

d

dr
− 4

r2

) (

d2 f

dr2 + 1

r

d f

dr
− 4 f

r2

)

= 0 (6.34)

with the general solution:

f (r) = Ar2 + Br4 + C
1

r2 + D
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and a stress function of this form:

φ =
(

Ar2 + Br4 + C
1

r2 + D

)

cos 2θ

From Eqs. 6.26 the following stress components derive:
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⎪
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⎪

⎪

⎨

⎪

⎪

⎪
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⎪

⎪
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σr = −
(

2A + 6C

r4 + 4D

r2

)

cos 2θ

σθ =
(

2A + 12Br2 + 6C

r4

)

cos 2θ

τrθ =
(

2A + 6Br2 − 6C

r4 − 2D

r2

)

sin 2θ

The integration constants are determined by the boundary conditions that are:
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⎪

⎪

⎪

⎪
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σr |r=b = −
(

2A + 6C

b4 + 4D

b2

)

= S/2

σr |r=a =
(

2A + 6C

a4 + 4D

a2

)

= 0

τrθ |r=b =
(

2A + 6Bb2 − 6C

b4 − 2D

b2

)

= −S/2

τrθ |r=a = 0

• Assuming an infinitely large plate (b → ∞ i.e. a/b = 0), the equations give:

A = − S

4
B = 0 C = −a4

4
S D = a2

2
S (6.35)

• The final expression of the stress components is, [6]:
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σr = S

2

(

1 − a2

r2

)

+ S

2

(

1 − 4a2

r2 + 3a4

r4

)

cos 2θ

σθ = S

2

(

1 + a2

r2

)

− S

2

(

1 + 3a4

r4

)

cos 2θ

τrθ = − S

2

(

1 − a2

r2

)(

1 + 3a2

r2

)

sin 2θ

(6.36)

Along the x axis A − A (θ = 0) the principal stresses are, Fig. 6.16:
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Fig. 6.16 Stress diagrams
for σy and σx along the
transversal symmetry axis x
of the circular hole in an
infinite medium, loaded in y
direction
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(6.37)

or:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

σx

S
= 1.5a2

x2 − 1.5a4

x4

σy

S
= 1 + 0.5a2

x2 + 1.5a4

x4

(6.38)

with:

– S = uniaxial stress at infinity in y direction
– σy = longitudinal stress
– σx = transversal stress
– x = distance from the hole centre
– a = hole radius

On the hole boundary σθ is obtained from Eq. 6.29 for r = a:

⎧

⎪

⎨

⎪

⎩

σr = 0

σθ = S(1 − 2 cos 2θ)

τrθ = 0

(6.39)

Zeros of the function σθ are θ = ±Π
6 . At these points O (Fig. 6.17) both principal

stresses are null.3

Exercise 6.5 (Stress concentration due to a hole in a thin plate of a finite width,
loaded in one direction) (a) The photoelastic model is a rectangular Araldite plate
of width equal to 122 mm with a hole of 35.5 mm in diameter on the symmetry axis

3 In photoelastic theory points of this kind are called singular isotropic points, see Chap. 3 with
isochromatics order equal zero.

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 6.17 Polar stress
diagram of σθ along the hole
boundary

(Figs. 6.17 and 6.18a). The model was longitudinally loaded with 107.9 N (Newton)
and stress state frozen. (b) The hypothesis of influence of external borders on the
stress concentration in points A can be visualized by fitting the theoretical model for
a hole in an infinite plate to the experimental data. The theoretical model for a single
hole in a large plate (Fig. 6.18b) is given by Eq. 6.38:

(σy − σx )

S
= 1 + 0.5a2

x2 + 1.5a4

x4 − 1.5a2

x2 + 1.5a4

x4 = 1 − a2

x2 + 3a4

x4 (6.40)

The derivative function of Eq. 6.33 is:

f ′[x] = 1.25971 ∗ 106/x5 + 648/x3 (6.41)

Using this model is only an approximation, even if it fits very well to experimental
data of this case.

(c) The approximation error can be estimated considering the real value of the
maximum stress at hole edge, when the ratio 2a/H between the hole diameter and
the width of the plate is not zero (that happens for H tending to infinity).

The equation for evaluating the maximum value of σy for finite values of 2a/H
is the following:

σmax = 0.284 + 2/(1 − 2a/H) − 0.600(1 − 2a/H) + 1.32(1 − 2a/H)2 (6.42)

and gives a maximum value on the hole boundary of 3.35 instead of 3 for infinite
body.

(d) The stress can be expressed in MPa, remembering the relationship N · fσ /d =
0.0871 MPa, being the ratio fσ /d = 0.26/10, for a photoelastic constant 0.26 N/

ord.mm and thickness d equal to 10 mm. This value is valid for Araldite B, with the
frozen method. Since the real value of the mean stress is 0.088 MPa (Load 107.91 N
and cross-section of the bar equal to 122 cot 10 mm2), the approximation error with
the use of the formula Eq. 6.40 valid for one hole in an infinite medium loaded in

one direction is
0.088 − 0.0871

0.088
100 = 1.023 %.



6.3 Stress Concentration Factors 239

1.0 1.2 1.4 1.6 1.8
0

2

4

6

8

10

a x

O
rd

er
s

(a) (b)

Fig. 6.18 a Fringes pattern with the diagram of σ1 − σ2 � Norder ; b approximate fitting the
theoretical model to data, Eq. 6.40

6.3.2 Elliptic Hole

Thin plate with elliptic hole is an appealing case in itself and also as introduction to
the cracks study in Fracture Mechanics, Fig. 6.19.

For an elliptic hole with semi-diameters a and b, in a field of uniform tension,
the problem is theoretically solved, introducing a system of elliptic coordinates [6].
The maximum stress is tangent to the hole perpendicularly to the major diameter:
Eq. 6.43:

σmax = 2σn
a

b
(6.43)

Fig. 6.19 Elliptic hole in a
thin plate loaded in two
directions
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In the case of uniform tension in a direction perpendicular to the main diameter the
maximum stress at the border is:

σmax = σn

(

1 + 2a

b

)

(6.44)

which, for a = b, gives a concentration factor of 3, as predicted by the previous case
for a circular hole.

6.3.3 Concentration Factors for Slender Beams

For slender beams, concentration factors can be defined respectively for normal,
bending and torsion stress, as [8]:

Kt = σmax

S
where : S = F

A
or : S = M f

W
(6.45)

Kt = τmax

T
where : T = Mt

Wp

with the following meaning for the symbols (referred to the notched cross-section):

σmax = maximum stress (by the theory of elasticity)
S = nominal stress (by Saint Venant theory in the notched section)

 

max

 

S

 

M f

 

M t

 

max

 

T

max

S

 

N

Fig. 6.20 Stress states at the root of the notch in slender beams in pure tension, bending and torsion
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F = applied load
M f = applied bending moment
W = bending section modulus of inertia
Mt = applied torsion moment
Wp = polar section modulus of inertia
τ = maximum shear stress

Both stresses obtained by the theory of elasticity and by the elementary Saint Venant
theory must fulfill the equilibrium relationships with external loads. In the first case
of Fig. 6.20, the equilibrium condition is:

∫

σt (r)d A = σnom · Ak . (6.46)

6.4 Stress Beyond the Elastic Limit

Beyond the elastic limit, proportionality between stress and strain no longer is ver-
ified. Strain state at the points of high concentration can be measured by optical
or strain gage techniques as long as the analysis is limited to the surface. For high
concentrations, strain gages must be sufficiently small, in order to avoid an underes-
timation of strains caused by the average measurement on the grid size,4 see Chap. 2.

The difficulty consists in determining the corresponding stress, because it needs
the knowledge of the constitutive material law, i.e. of the relationship between strain
and stress.

6.4.1 Imposed Displacements and Imposed Forces

Beyond the elastic limit it is necessary to distinguish two opposite situations that arise
in the material when the structural element is loaded by external loads or subjected
to external displacements.

When the element is a specimen of uniform section, stress is defined, in engi-
neering hypothesis, as the ratio between uniaxial load and the cross- section area and
strain as ratio between elongation and initial length of a reference specimen segment,
and they are related one another by the so-called constitutive material law that, for
metals as steel alloys or for other structural materials, has the characteristic look of
Fig. 6.21a.

A change of this behavior must be expected not only when the specimen has other
kind of loading, but also, for the same kind of load, when notches or grooves or
geometric discontinuities are present. It is necessary to distinguish two limit cases
that can be explained by the following opposite examples:

4 Producers offer very small gages, suitable for these applications, with longitudinal grid dimensions
equal to 0.008 in. = 0.2 mm and resistance of 60 ÷ 120Ω .

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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(a) (b)

Fig. 6.21 a Diagram of constitutive law for a structural ductile material (NiCrMoV Alloy Steel),
with the indication of the two extreme cases of an imposed load i.e. stress S (point A) and an imposed
displacement, i.e. strain e (point B) and in b the intermediate most common case of a bar with a
notch where stresses do not grow proportionally to load in all the points of the cross-section at the
root of the notch

• For a thin pressurized tube the membrane stress is equal to S = pr

h
, directly

proportional to applied pressure, independent of the material behavior, because it
derives from a pure equilibrium condition. If internal pressure grows, e.g., from p
to 2p, as long the material resists, the membrane stress S doubles (2S), as shown
in the diagram of Fig. 6.21, and static state of the tube is not represented by the
point C , but by the point A.

• If a thin tube, initially loaded at elastic limit with stress S and strain e is internally
deformed by a very rigid punch, up to reach a final strain of e.g. 2e, the represen-
tative point in the diagram, at the double value of initial strain e, is represented by
the point B.

• In the most realistic case of a discontinuity between two different geometries as
in the transition zone in pressure vessels between e.g. cylinder and sphere and
generally in all the concentration points of slender beams, the state of material is
intermediate respect to both cases seen before.
While for linear elastic behavior this distinction has no meaning, beyond the elastic
limit three different models must be considered:

• In the case of imposed load (stress), the representative point in the stress-strain
diagram is A, where the stresses are the same of an elastic problem (2S) but the
strains are much greater.

• In the case of imposed deformation (strain), the representative point is B, where
the deformations are the same of the elastic problem (2e) with much lower stresses.

• The most common case given by geometric discontinuities, as, e.g. in notched
area of a shaft, Fig. 6.21b. According to the case shown in the figure, stress is
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less than the first case and strain is greater than the second case. Only a small
portion of material overcomes the elastic limit and yields, while the large vol-
ume of surrounding material remains in elastic field. The elastic volume creates
thus a constraint on the smallest volume, imposing elastic displacements to its
boundary.
As result, the stress state in the small volume is an intermediate situation, repre-
sented by a point that must be between A and B but, for the previous observation,
closer to an imposed deformation, i.e. closer to point B than to point A, as the
point P in Fig. 6.22b.

(a) (b)

(c)

Fig. 6.22 Example of determination of the strain concentration at the eye of a connecting rod by
reflection photoelasticity
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(It is also obvious that, for equilibrium reasons, in the notch section a stress
redistribution must take place, with a transfer of stresses from the most loaded
fibers to adjacent less loaded fibers that give a support effect).
It can be concluded that locally, the stress state in geometric discontinuities is
controlled more by deformation than by stress, even if the applied load keeps the
main part of the body volume in elastic range.

6.4.2 Models for the Simulation of Constitutive Materials Laws

Starting from the case of cylindrical specimens with uniaxial loads, the search for a
phenomenological model of material behavior is the first task for experimental stress
analysis.

A model that can preserves its validity for the whole field of elastic and plastic
behavior is preferable to two different models that describe separately elastic and
plastic contributions.

The model that is commonly used is due to Ramberg-Osgood, which was origi-
nally developed for uniaxial state of stress but that maintains its validity for multi-
axial states as equivalent stress in the most simple case of in-phase three-dimensional
stress state and also for special biaxial loading condition as pure torsion, see a next
Section:

εt = εe + εp =
( σ

E

)

+
( σ

K

)1/n
(6.47)

with this symbols meaning:

εt = total deformation
εe = elastic deformation
εp = plastic deformation
E = elastic modulus
K = coefficient of static plasticity
n = static plastic exponent

One of the advantage of this model is that fitting to experimental data can be done
through a simple linear regression in the logarithmic scale. Today this point is no
more so important for the capability of computer fitting procedures. Nevertheless,
the classic way is the following:

• A load test on a uniaxial specimen of constant cross-section is performed at grow-
ing load, and stress is recorded, while strain is measured through electrical strain
gages, photoelastic coating or other more recent and accurate optical techniques,
in order to build a complete stress-strain relationship.

• From the measured (total) strain, the elastic deformation contribution, estimated
with the relationship εe = σ

E is subtracted (Table 6.2).
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Table 6.2 Plastic term on the
total strain for increasing
values of applied stress in a
NiCrMo steel alloy

σ (MPa) εe εp εt

0 0 0 0

10 4.8 · 10−5 4.7 · 10−16 = εe = 4.8 · 10−5

100 4.8 · 10−4 6.58 · 10−9 ∼ εe = 4.8 · 10−4

500 2.3 · 10−3 6.4 · 10−4 2.9 · 10−3

1000 4.8 · 10−3 9.0 · 10−2 ∼ εp = 9.5 · 10−2

The residual term:
εp = εt − σ

E

represents the plastic deformation. This contribution is present only if the yield
point is overcome.
The plastic deformation term is fitted by a model as the following one:

σ = K εn
p (6.48)

• With this procedure it is possible to derive from the measured values of the plastic
deformations at several load levels, the coefficient of static plasticity K and the
plastic exponent n with a linear regression in logarithmic coordinates, Eq. 6.48.
From the previous expression the inverse of plastic deformation is:

εp =
( σ

K

)1/n
(6.49)

This term is combined with the elastic term in a single Equation that describes the
whole field of elastic and plastic behavior of the material.

The binomial structure of the formula, only apparently seems unsuitable for
describing the pure elastic behavior, for the supposed contamination of the plas-
tic term, but actually it works very well also for the mathematical simulation of the
pure elastic behavior, as it can be proved by this simple example.

Exercise 6.6 (Plastic contribution on simulation of the elastic material behavior)
(a) Given an uniaxial specimen of steel alloy with:

E = 210,000 MPa
K = 1400 MPa
n = 0.14

(b) Determine the elastic and plastic contributions on the total strain for increasing
values of the applied stress.
(c) It is clear, from the Table 6.2, that the binomial expression is suitable to describe
the material elastic-plastic behavior because the nonlinear term does not contaminate
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the linearity of the first part of the curve and the same happens for the elastic term
in the second part.

Exercise 6.7 (Fitting to the experimental data a direct non linear equation, Eq. 6.47)
(a) With the same data, determine the K and n values with a direct fitting procedure,
Chap. 1.
(b) The following values are obtained by a direct fitting through an interpolation
algorithm, to the same data of the Table in the same Exercise 6.6.

The results are: K = 1381.6 MPa n = 0.134. Such values slightly differ from the
previous ones obtained by the canonical procedure (K = 1400 MPa n = 0.14).

6.4.3 Experimental Verification of the Neuber Model

The definitions of stress concentration factor and of strain concentration factor are
respectively:

Kσ = σmax

S
Kε = εmax

e
(6.50)

where σ and ε and are the local stress and strain in the discontinuity and S and e
are the corresponding nominal values obtained by elementary beam theory. The link
between e and S is given by the proportionality law e = S/E . In the elastic range so
they have the same value.

Beyond the elastic limit, for the non-proportionality between local stress and
local strain, concentration factors for stress and strain have not identical values but
both differ from the stress concentration factor defined in elastic field for the same
geometry.

The example refers to the uniaxial circumferential stress at the end of a connecting
rod (statically loaded) in Fig. 6.22. Once it is measured the strain by strain gages
located at the root of the notch or by photoelastic coating method (or by more
accurate Digital Image Correlation method), Chap. 5, the strain concentration factor
is given by Kε = ε/e.

The corresponding stress concentration factor Kσ = σ/S can be obtained if
the constitutive law i.e. the stress-strain curve is experimentally determined and a
corresponding model (as the previous Ramberg-Osgood model) is identified.

If the loading process is shown on a local stress-strain diagram, Fig. 6.22b, the
elastic stress remains proportional until the point of coordinate e, S is reached. As it
was observed, doubling, e.g., the applied load (the nominal stress), the corresponding
point on the diagram is not C(2e, 2S) because material state is not represented by the
point A that is characteristic for an imposed local stress, nor by point B that would
be the right one for imposed local deformation. The point representative of the real
situation is an intermediate point P with a stress σ < 2S and a strain ε > 2e. In
other words:

Kσ < Kt < Kε (6.51)

http://dx.doi.org/10.1007/978-3-319-06086-6_1
http://dx.doi.org/10.1007/978-3-319-06086-6_5
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A simple model due to Neuber, which is proven useful for simulating stress and
strain behavior at discontinuities, is Eq. 6.51:

Kσ · Kε = K 2
t (6.52)

This formula comes from studies on slender beams, Neuber [14–16] later extended to
other cases of biaxial state of stress and to cyclic stress, i.e. to low cycle fatigue, where
it is a basic simulation model of the nucleation process of small cracks, Chap. 8.

Figure 6.22c shows the trend of the three factors when the nominal stress S grows.
Having considered an increment of this nominal stress, let B and C be the corre-
sponding values of Kσ and Kε at a certain level of the nominal stress.

For a theorem of elementary geometry it is possible to graphically verify the
Neuber formula for those points. The circumference of diameter A − C circumscribes
the rectangular triangle whose side AD is the mean square of the two segments AB
and AC i.e. it corresponds to the value of the stress/strain concentration factor in
elastic field, Kt .

In this example of Fig. 6.22c Kε is >4 (about 4.1) and Kσ /σ/S is < 2 (about
1.7). The stress concentration factor in elastic field is 2.6 and the Neuber equation
in this case is verified.

Substituting in Neuber equation the concentration factors formulas, we have:

σmax

S
· εmax

e
= K 2

t (6.53)

If the nominal stress remains in the elastic range, the following holds:

σmax · εmax = SKt · eKt = (SKt )
2

E
(6.54)

In Fig.6.22b, Eq. 6.54 represents a hyperbola called Neuber hyperbola that passes
through the point C of coordinates SKt and eKt . The point P is the common point
of the stress—strain curve and the hyperbola and Eq. 6.52:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

εt = εe + εp =
( σ

E

)

+
( σ

K

)1/n

ε · σ = K 2
t S2

E

(6.55)

make it possible to determine stress and strain at the root of the notch for a given
external load.

Exercise 6.8 (Model of stress and strain behavior at the root of a notch beyond the
elastic limit) (a) Determine stress and strain at the root of a notch in a structural
element with a stress concentration factor, in elastic field, equal to Kt = 2 (E =
210,000 MPa, K = 1400 MPa and n = 0.14), loaded with a static nominal stress
S = 720 MPa.

http://dx.doi.org/10.1007/978-3-319-06086-6_8


248 6 Static Stress Models

(b) Linear-elasticity dominates at all the points far from the notch. If linear elasticity
is present also at the root of the notch, the following relationships are valid:
σ = Kt S = 3 · 720 = 2160 MPa and ε = Kt S/E = 3 · 720/210,000 =
1.03 · 10−2 mm/mm = 1.03 % = 10,300 με

In a diagram of the same kind of Fig. 6.22 σ and ε are the coordinates of the
point C in the corresponding diagram. This is not the actual stress state: at the root
of the notch, represented by the point P , is:

ε · σ = 22.22

and a development of Eq. 6.55 gives:

22.22

σ
− σ

2.1 · 105
−

( σ

1400

)1/n = 0 (6.56)

Zeros of the Eq. 6.56, are found by the use of iterative techniques (for example, the
Newton’s method@Newton).

In the present case a value σ = 825 MPa is found (instead of 2,160 MPa valid for
the elastic solution). Vice versa, strain is much higher than in elastic field:

ε = 22.22

σ
= 2.69 % = 26,900 με

instead 10,300 με.

The example shows the total inapplicability of the elastic solution when the
yield point is locally overcome.

6.4.4 How Stress Modifies Material Behavior

If e.g., a slender cylindrical specimen loaded along its axis comes to failure by
increasing monotonically the load, a ductile material response can change its behavior
for various reasons that will be briefly examined, limiting the analysis to the effects
induced by the stress state. Yield stress and ultimate stress for a specimens of uniform
cross-section are assumed as characteristic data of a material, even if, as it is known,
they vary in the case of different absolute dimensions as well as of different shapes
(e.g. for unnotched and notched specimens), Fig. 6.23. The reason is due to three-
axial stress states that arises at geometrical discontinuities, that modify the macro
behavior of the specimen. At the yield stress and above, a notch tends to prevent the
natural contraction of the root section: the yield and ultimate stresses thus increase
with respect to the corresponding value of a standard specimen.
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Fig. 6.23 a Stress strain curves for ductile and brittle materials and b influence of the specimen
geometry (i.e. of stress distribution), on stress-strain curve, c local three-dimensional stress state

6.4.5 How Material Behavior Modifies Stress State

A cylindrical specimen of uniform cross section, when is close to failure, becomes
locus of multi-axial stress state, with a variety of possibility of fracture surfaces.

In ductile materials, the stress state tends to become three-axial near the speci-
men axis, phenomenon that is caused by transverse contraction (ν = 0.5) partially
hindered by the most internal fibers. It generates brittle nucleation of a transversal
crack close at the specimen axis, without appreciable plastic deformation, Fig. 6.24,
after that the crack axi-symmetrically enlarges.

Moreover, the material layer on the symmetry cross-section of infinitesimal thick-
ness is in plane strain state because it can’t either shrink nor swell. As radial σr and
circumferential σθ on the axis reach their maximum values, also the longitudinal
stress along the axis should reach its maximum in order to preserve the condition
of plane strain state. Both radial and circumferential stresses vanish on the external
specimen surface.
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Fig. 6.24 Fracture surface for a cylindrical specimen of ductile material and explanation of the
stress distribution on the mean plane

When the crack moves towards the external surface, the longitudinal stress σl

dominates and necking of the cross section occurs, with a maximum shear stress at
45◦ that generates the typical conical-crater shape.

An elementary model is the following:

εl = 1

E
· [

σl − ν(σr − σθ )
]

then:

εl = 1

E
· [

σl − 0, 5 · 2(σr )
] = k f /E
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The Mohr circle which describes the stress state in points on the symmetry section,
keeps constant diameter k f , passing from the center to the outer surface.

6.4.6 Elementary Models of Physical Theory of Fracture

The origin of a micro-structural fracture can be identify in presence of defects at
atomic lattice level which, under the stress action, evolve in macro-defects, which
may eventually generate failure surfaces. A model that makes it possible the estima-
tion of cohesion strength between two contiguous atomic planes and the calculation
of the relative breaking stress, is developed, based on the knowledge of the experi-
mental strain-stress law at atomic level, where stress is applied and strain follows as
relative displacement of two adjacent lattice planes.

Starting from a regular lattice structure without any defect, it is possible to intro-
duce two different de-cohesion models:

• Assuming the stress perpendicular to the lattice plane.
• Assuming the stress tangential to the lattice plane.

For both cases the models, on the base of experimental results, are similar. In both
cases the relationship of the applied stress (normal in the first model and shear in the
second model), can be partially represented by a sinusoidal curve.

6.4.6.1 Normal Stress Micro-structural Model

In the first case the model is shown in Fig. 6.25a. The stress required to push two
atomic planes apart of the quantity x from their equilibrium position, with the assump-
tion of a defects absence is, at a limited load level, reversible with a quasi-linear
reaction due to the mutual atoms attraction. That is true until a maximum value is
achieved. The straight line from the origin represents a initial behavior.

After this first portion, the diagram can be approximated by a sinusoidal function
with a wave length λ:

σ = σmax sin
2πx

λ

When the maximum is overcome, the attraction is reduced and finally vanishes. For
small x values the curve is approximated by this law:

σ ≈ σmax
2πx

λ
(6.57)

In the same interval the relationship between stress and strain can be considered
linear and the concept of elastic modulus E can be introduced:
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Fig. 6.25 a Stress-strain diagram between atomic planes for the first model and in b scheme of a
dislocation and even a possible inclusion that concentrates the normal stress

σ = E
x

d

where d is the distance between two lattice planes.
Since both expressions must be valid, an estimation of the maximum stress as

function of λ, d and E is:

σmax = Eλ

2πd
(6.58)

This value can be interpreted as a theoretical estimation of the maximum tolerable
stress value normal to atomic planes. Referring e.g. to steels, mean values for d and
λ are:

d = 3 · 10−7 mm λ = 2 · 10−7 mm

so that the maximum stress lies in the interval:

E

15
≤ σ ≤ E

5
(6.59)

much higher than all possible experimented value.
In fact, the crystals (or combinations of poly-crystals in grains), always, Fig. 6.25,

contain defects (a) and inclusions (b). They lead to strong stress concentration values



6.4 Stress Beyond the Elastic Limit 253

between lattice bonds and drastically reduce the previously calculated stress of two
orders of magnitude (e.g., for a microcrack of 3 μm, equal to about 104d stress on
the tip of the crack can reach a value of: σtip = 10−2 σmax).

6.4.6.2 Tangential Stress Micro-structural Model

Instead of normal stress perpendicular to atomic planes, a second mechanism of
fracture due to shear stress along the atomic planes could be more realistic of the
real material resistance.

The model is equivalent to the previous one but is developed for shear actions and
x is in tangential direction:

τ ≈ τmax
2πx

λ
(6.60)

In the first part of the curve the relationship between shear stress and shear strain can
be considered linear, introducing the concept of shear modulus G:

τ = Gγ = G
x

d
(6.61)

where d is the distance between two atomic planes and x is the displacement in τ

direction.
Since both Eqs. 6.60 and 6.61 must be valid in the same interval, an estimation of

the maximum shear stress as function of λ, d and G is approximately obtained:

τmax = Gλ

2πd
� G

2π
(6.62)

In this case hypothesized defects are dislocations (plane, three dimensional or a
combination of both), that have a direct role to favoring the generation of lattice slide
planes, both in case of static as of cyclic loading.

This is due to a simplified mechanism of movement that needs much lower stress
and energy level than the first model, as Fig. 6.26 tries to demonstrate: only one
ligament at a time is necessary to solve for shifting the entire atoms block of one step.
So dislocations movements and their stacking against the edges of the grains, with
plastic deformation or eventually micro-cracks nucleation explain different behaviors
of the material, plasticity and fracture. Only few attraction forces must be overcome
in this case and this circumstance reduces drastically the value of the failure stress
at macroscopic level.
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Fig. 6.26 Illustration of plane dislocation movement, until it reaches the grain boundary (sketch
modified from technical literature). The movement of a plane dislocation needs a much lower effort
than the one necessary to complete atomic planes to shear in the absence of dislocations

It can be concluded that the ductile and brittle behavior are not only result of
chemical composition and treatments but are also a consequence of the stress
state. It may happen that normally brittle materials can behave as ductile when
they are loaded in a way to favor dislocation movements, e.g. with a high
compressive component (i.e. with a triaxial compressive stress). In the same
manner, normally ductile materials can increase their ductility if a compression
is present and conversely reduce their ductility if a three-dimensional tensional
stress (that inhibits the dislocation movements), is applied.

6.5 Special Equipment for Static Tests

Sometimes it is convenient to design and build special equipment for static tests,
when e.g. the structural elements require very high loads that exceed the capacity
of standard universal machines. That is the case e.g., of static tests on threaded
connections for oil or gas pipes, Fig. 6.27.5 The equipment is designed for special

5 The equipment was developed for the Materials Development Center, Castel Romano (Rome)
and there was implemented by a measurement system by a custom made strain gage load cell
(Manufacturer: Giuliani-Forlí Italy).
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Fig. 6.27 Pipes joint for 2 3/8′′ ÷ 9 5/8′′ diameters

Fig. 6.28 Static test equipment for pipes joints for 13 MN in tension, 5 MN in compression [17]

loads combinations up to 13 MN in tension, 5 MN in compression and a bending
moment up to 15◦/100′ with tubes of 9 5/8′′ diameters, Fig. 6.28 [17].

An example of a larger apparatus, with an increased capacity of 25 MN in tension,
is shown in Fig. 6.29. The design of these testing machines needs special care to avoid
stress concentration points and secondary effects due to alignment tolerances that
can induce high spurious bending. Moreover, when the specimen breaks, the surplus
energy must be absorbed without damaging the machine. (Apparatus designed and
built by “ITALSIGMA” in Forlì (Italy) under the authors supervision and calculation.)
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Fig. 6.29 Static test equipment for pipes and joints of 25 MN capacity (manufacturer: Giuliani-
Forlí, Italy)
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Chapter 7
Local Stress Models for Variable Loads

Abstract This chapter presents the conceptual basis of the phenomenological theory
of fatigue at a high number of cycles; however, consistently with the approach of
this book, this is only for establishing and validating local stress models, which are
necessary steps to develop a theory as well as design criteria. The problem of local
stress state in an elastic range is dealt with separately from the Low Cycle Fatigue
controlled by local deformation. Although all these theories together with Fracture
Mechanics have the task of explaining and simulating fatigue phenomena and are
often presented together, they utilize different models for the description of the state
of local stress, local strain and stress singularities. It therefore seems appropriate
to consider them separately. After a reminder on the historical foundation of the
discipline, the chapter first discusses the identification of the loads. Following a
brief presentation of the classic models for handling the laboratory fatigue data, the
relationship between stress concentration and fatigue parameters is examined. This
is an inverse problem that is presented for slender and massive structures.

7.1 Stress Analysis for Developing a Theory
on High Cycles Fatigue

Fatigue of materials is a term introduced in the first half of the nineteenth century to
specify the phenomenon known as:

The process of progressive localized, permanent structural change, occurring in
the material subjected to a condition that produces fluctuating stresses and strains
at some point or points and that may culminate in cracks or complete fracture after
a sufficient number of fluctuations [1, 2].

The empirical nature and the importance of the phenomenon, still today the main
cause of structural failures, have led to the development of theories and models of
phenomenological character.1 The basic hypothesis for the fatigue at a high number
of cycles is the elastic behavior of the material until failure.

1 See extensive literature on Fatigue described and cited in classic books on Machine Design, Mate-
rials Science, Mechanics of Materials such as [2–5], and in reviews as e.g. [6] for specialized topics.
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Historically, the real understanding of the fatigue phenomenon and the
foundation of a theory that can overcome empirical rules required the development
of two experimental facilities: special testing equipment in controlled environment
that could reproduce in the laboratory the essential of the phenomenon as it happens
in reality, and special devices and sensors for deformation measurement in the field
and in the laboratory.

Practical phenomenological theories have been established supported by extensive
research activities carried out over the years: these theories do not cover ll applica-
tions, but they are useful for selecting a number of variables that are first responsible
for a process essentially not predictable which is reflected in a large dispersion of
data that can not be eliminated, even for tests in ideal conditions, as it happens in
laboratories.

Today, the behavior of new materials and the influence of multi-axial types of load
applied to bodies of complex shape are still intriguing problems on the research front.

The experimental approach on which every theory must be built primarily involves
the following points:

• Availability of sensors, load cells, instruments and test equipments for laboratory
and for in-field measurements.

• Measurement of the parameters for the characterization of material and geometry,
which are intimately bound in constituting fatigue resistance.

• Statistical tools for dealing with random variables: data regularization from lab-
oratory measurements (descriptive statistics) is necessary to transfer them to real
situations (inferential statistics).

• Analysis of fracture surface: the appearance of fracture surfaces is in itself a carrier
of information on the kind of loads and on the stress level.

7.2 Identification of Variable Loads

The measurement of live (or in-field) deformations and also in the laboratory, has
allowed the identification of the variables responsible for fatigue. The germinal but
complete work is due to Wöhler, [7], who developed a system for the measurement
of flexural and torsional deformations on railway axles. Figure 7.1 shows the initial
page of the first scientific document on fatigue. The method is very ingenuous and
original and its principles are essentially unchanged today [8]:

• The device for measuring and recording the flexural and torsional deformations
consists of leverages connected with the wheels that move an index with a sharp
pin that, during rotation in real service conditions, leaves a trace of the wheel-plane
deformation on a zinc plate. This deformation is proportional to the instantaneous
axle bending that, in this way, is recorded, Fig. 7.2 on the left side.

• A similar device, based on a rigid tube coaxial to the axle, records the relative
rotation between the two wheels mounted on the same axle, Fig. 7.2 on the right.
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Fig. 7.1 First page of the famous Wöhler paper of 1858 on strain measurements on railway axles

• These measurements, reproduced in the laboratory with static application of
unknown forces and torsion couples applied to the wheels, allow the identification
of the values of the real forces produced on the axles during service (This is a
rare example of an experimental solution of an inverse problem, as described in
Chap. 1).

http://dx.doi.org/10.1007/978-3-319-06086-6_1
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Fig. 7.2 Original Wöhler’s drawing with the devices for measuring and recording flexural and
torsional deformations of a railway axle. A sharp pin generates a scratch on a zinc plate, proportional
to the instantaneous bending or to the torsional deformations

• In a second step, these identified forces are cyclically applied to specimens with
the same size and shape as the axles and, from the results of the tests, a model
is built that represents the life dependence of the axles on the amplitude of the
loading cycles.
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Fig. 7.3 Device to measure the six forces and moments transmitted by a ski boot to a ski

Fig. 7.4 Example of a recording of in-field loads: three forces Fx , Fy, Fz transmitted by a ski boot
to a ski

7.2.1 Case Study of Fatigue Loads on a Sport Equipment

The previous method is applied to a case study with the same task of identifying
in-field forces like the Wöhler problem. This is an example of an identification
problem of three Forces and three Moments applied to a ski boot, Fig. 7.3a. The
loading-cell has seven micro-cells, each of which is calibrated for a force measure-
ment [9–11]. The problem is even-determined and well-posed. Figure 7.4 shows an
example of recording of the three loads.

The solution of this design problem is discussed in Chap. 2, Sects. 2.10.2.1 and
2.10.2.2 and related Exercises, Fig. 2.48. Other examples of load identifications in
sport or industrial devices by in-field tests in operation conditions are reported in
[13–18].

http://dx.doi.org/10.1007/978-3-319-06086-6_2
http://dx.doi.org/10.1007/978-3-319-06086-6_2
http://dx.doi.org/10.1007/978-3-319-06086-6_2


264 7 Local Stress Models for Variable Loads

7.2.2 Types of Loads

Structural components are generally exposed to a complex, sometimes random,
sequence of loads, of different amplitudes. In machinery, the history is in general
of constant amplitude load. The automotive components are dominated by a signifi-
cant tensile or compressive mean stress and are often random distributed, like wind
loading and ocean waves. Suspension helical springs have variable shear stress plus
a mean torsion shear stress. Vice versa, the vehicle bracket load history is essentially
fully reversed loading with zero mean stress, like a cantilever beam deflected at the
free edge and released to a free vibration. Aircraft have two different loading levels
in the air and on the ground. A thin or thick-walled pressure vessel subjected to cyclic
internal pressure represents a component subjected to mean tensile stresses, while
bridges and cranes have compressive mean stress [19, 20].

Concluding, in fatigue phenomena fully reversed loads together with tensile and/or
compressive static mean loads are very common in all fields of the engineering [21].
Figure 7.5 shows an elementary classification of loading types.

Fig. 7.5 Examples of
different types of loading,
modified from [12]

(t)

m

t

Automotive 
Wind Loading 
Ocean Waves Loading 

Machinery 

(t)

t

Aircraft 
Air and Ground 
Loading 

(t)

t

Bridge, Crane and 
Pressure Vessel Dead L. 

(t)

t

Live Load 



7.2 Identification of Variable Loads 265

For High Cycle Fatigue, stresses are elastically determined. Spectra of local
stress diagrams relating the stress levels to the number of cycles can be con-
sidered irrespectively of the order of application. In order to specify the load
history acting on a component, it is thus enough to collect the parameters of
the service stress spectra, for the amplitudes and the mean stress values.

This operation must distinguish the proportional or at least synchronous
stress (with superposition of the same type of stress as normal stress and shear
stress), from non-proportional stress case. The spectra parameters determina-
tion for the last case can become very complex and proper guidelines must be
followed, such as [22].

Under variable amplitude loading, the definition of stress cycles can become
ambiguous and it is preferable to define stress reversals. At constant amplitude,
one cycle is made up of two reversals. This aspect will be discussed in Chap. 8,
where the counting methods will also be presented.

From the point of view of stress analysis simulation models, it is only appropriate
to remember that:

• If the sequence of load is random, a statistic distribution function must be found,
hypothesizing it on the basis of experience.

• If, vice-versa, the sequence is deterministically known, a variable load history is
reduced to a series of equivalent single-cycle loadings through a counting method
such as the rainflow method (presented in Chap. 8). It is now possible to reduce
the real sequence to a histogram of stress cycles, thus creating a fatigue spectrum.

• For each stress level, the degree of cumulative damage is determined from the
corresponding S-N curves, defined together with their values of the mean stress.

• A combination of the single-cycle damage is done using the algorithm of linear
damage cumulation, such as Palmgren-Miner’s algorithm, see [22].

• Since structural components are often loaded in several directions while the fatigue
testing is obtained by uniaxial loading conditions for the elementary state of inter-
nal forces such as tension/compression, bending and torsional moments, the equiv-
alence rule is necessary. If proportional or at least synchronous stress states are
present at the reference point, they can be superposed or, in the case of different
directions, reduced to equivalent stresses.

7.3 Laboratory Testing

The Chief of the Harz mines, Wilhelm August Julius Albert, is considered as being the
first to set up an experiment to test fatigue in chains. He developed a testing apparatus
with a waterwheel Fig. 7.6a. In 1837, Albert reported the results of these experiments
[23], establishing a correlation between loads and number of chain loading cycles.

http://dx.doi.org/10.1007/978-3-319-06086-6_8
http://dx.doi.org/10.1007/978-3-319-06086-6_8
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3.5m

1550 kg

Fig. 7.6 Early testing equipments built to ascertain the phenomenon of fatigue by Albert (on the
left) and by Wöhler (on the right) [24]

Nevertheless, the engineer August Wöhler, was the first to carry out a comprehen-
sive research campaign in the fatigue area, from in-field measurements to methodical
laboratory tests, showing the way to the development of all the subsequent design
rules and of material qualification to prevent fatigue. Through a series of experiments
conducted in the second half of the nineteenth century:

• He recognized the criticality of stress concentration points and the dependence of
the effect of weakening of the axles on the geometry and material.

• He experimented with special self-made equipments, powered by a steam engine,
Fig. 7.6b, and found the existence of a limit amplitude of the applied stress.

• He determined the detrimental dependence of the amplitude of fatigue limit as the
mean positive (tension) stress increases.

• He developed a special testing machine to apply fatigue tests in torsion.

7.3.1 Rotating Bending Test

The specimen, generally with an hourglass shape to facilitate rupture in the central
cross-section, is mounted on two oscillating supports with the constraint of two
hinges, Fig. 7.7.

Two equal forces applied to the collars, generate a constant bending moment
along the specimen. Taking movement from an electric motor, the system generates
a rotating bending, since each fiber is cyclically subjected in variable time to a
sinusoidal stress variation, as shown in the same figure. From the point of view of the
stress analysis, the only necessary control concerns the measurement of the applied
force and the counting of loading cycles until specimen failure.

The symbols have the following meaning, Fig. 7.7:

• σo upper stress
• σu lower stress
• R = σu/σo stress ratio
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Fig. 7.7 Scheme of a rotating bending machine and stress variation in the central cross-section of
the specimen

• σm = σo + σu

2
mean stress

• σa = σo − σu

2
amplitude

• Δσ = σo − σu range
• f = frequency

R = −1 called fully reversed condition, is the first reference test, while R = 0 is
another common reference test, called pulsating tension.

7.3.2 Tension/Compression Test and Bending Test
in One Plane

There are other classic modes of fatigue testing with the specimen loaded axially
with uniform stress distribution or in bending in one plane only. They can be carried
out with a resonance machine, Fig. 7.8 (a) [25] or with servo-hydraulic or electro-
mechanical machines. With an added device, (b) a bending moment can be applied
alternately on a plane containing the axis of the machine.

The load cell that employs electrical strain gages must have high stiffness, Chap. 2,
Sect. 2.8.

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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Fig. 7.8 Push/pull test or bending test in a resonance machine, with the schemes of the specimens
and a special device for generating bending in one plane

7.3.3 Torsion Test

This test too can be performed with a resonance machine with a special device
that transforms push/pull into pure torsion [26] or with a servo-hydraulic univer-
sal machine, both equipped with a mechanism that converts axial load into torsion
moment, Fig. 8.14 in Chap. 8, that shows the functional principle of the method.

In Fig. 7.9 the specimen is instrumented with two strain gages at 45◦ from the
axis, in order to control the deformations transmitted by the system at the resonance
condition. This is a suggested precaution to make sure of the torsional load actually
transmitted.

Fig. 7.9 Instrumented test specimen for alternate torsion and related equipment to be mounted on
a vibrofore [26]

http://dx.doi.org/10.1007/978-3-319-06086-6_8
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7.4 Fatigue Data Processing

To understand how a state of cyclic stress influences material behavior, the phenom-
enon must be isolated by applying a stress state associated with one type of internal
force (e.g. tension/compression, or rotating bending or alternate torsion), in smooth
specimens, with a very high degree of surface finishing in order to prevent unwanted
variability on the results. Every test is repeated with different values of the amplitude,
recording the cycle numbers corresponding to the complete failure of the specimen.

7.4.1 Fatigue Data Collection

The pairs of values (amplitude of the stress cycle versus number of cycles to failure)
are reported in a cartesian diagram:

• In the ordinate, the stress amplitudes (in the middle cross-section of the specimen)
σa in the case of tension/compression or completely reversed bending moment
(or similarly τa in the case of completely reversed torsion moment). Both are
calculated with the Saint Venant theory from the knowledge of the applied loads.

• In the abscissa, the corresponding number of cycles to failure.

The simulation models are obtained in the form of interpolating curves, plotted in
logarithmic coordinate on one or on both axes. In the first case, data compression for
the logarithmic scale is achieved on the horizontal axis only, and the curve shows
a tendency to an asymptote. In the second case, the experimental points tend to
order themselves in straight lines, with considerable simplification and help to the
simulation.

Figure 7.10 shows a comparison between the curves for steels in semi-logarithmic
coordinates Fig. 7.10a and in double logarithmic coordinates Fig. 7.10b. The first
segment is an uncertain zone, despite some models developed for dealing with this
region. The reason can be found in the different behavior of a failure in this zone that
is dominated by a high stress level, which corresponds to a local plastic deformation.

log ND 

log a D 

log Rm 

log 5 104 log N

log

(a) (b)
a 

Fig. 7.10 Representations of the fatigue curve in semi-logarithmic and double logarithmic coordi-
nates with their asymptotes
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Nevertheless, at least for some kind of materials, an elastic behavior in this area too
cannot be excluded.

As reference, material curve tests must be performed with a stress ratio R =
σmin/σmax ratio (between the minimum and maximum cycle stress) equal to −1, for
bending or for tension/compression loadings. The hourglass shape of the specimen
with an increment of stress of about 5 % in the central cross-section, with respect to
a cylindrical specimen with constant cross-section, slightly alters the results, but it
is sometimes preferable to ensure that the failure is generated in the central area, far
from the grip zones, whose fracture would invalidate the test.

• Fatigue damage is a phenomenon of stochastic nature which must be inter-
preted statistically. The distribution of the values of the cycles to failure, for
the same stress amplitude applied, is supposed with a normal distribution for
the logarithms of the coordinates. The variance is greater than that typical of
static behavior and the coefficient of variation (ratio between the standard
deviation and the mean) varies for the sloped segment, from 0.25 to 1.50,
with mean values of about 0.4–0.6.

• The number of cycles to failure increases as the amplitude of the applied
stress decreases.

• Below a certain amplitude value, the failure likelihood decreases strongly,
to justify, for practical engineering use, the definition of a threshold, called
endurance fatigue limit (for infinite lifetime).

• Fatigue failure occurs macroscopically like a brittle fracture, not accompa-
nied by plastic deformation and, vice-versa, like a phenomenon of progres-
sive modification of material structure, with damage accumulation for each
loading cycle.

• The structural modification is generated where the stresses are highest,
generally in the surface layers, then proceeding inward.

• A fatigue test different from the rotating bending test (e.g. in alternating
bending or in tension/compression) has qualitatively a similar trend, but the
characteristic values are different. In other words, the Stress distribution
influences the fatigue behavior and the duration of the test.

• Frequency of stress cycle has little influence if overheating of the specimen
and the effect of the environment, (e.g. corrosion) are avoided. Vice-versa,
a synergic action stress/environment takes place and the frequency of load
assumes a significant role.

• The mean stress has a strong influence on fatigue life and must be simulated
in fatigue modeling. Sometimes it is the result of a residual stress state that
can be originally present or sometimes introduced in a controlled way, to
increment fatigue life.

• The enucleation of fatigue fracture is a highly localized phenomenon that is
manifested only in a limited volume of stressed material with macroscopic
and/or microscopic geometrical discontinuities.
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• The surface state has an important role in fatigue resistance. A great deal
of research has been developed on this topic. The difficulty to achieve com-
plete simulation confines this point to the use of tables and diagrams that
give coefficients to modify the resistance parameters.
For this reason the material fatigue tests must be performed in strictly con-
trolled surface conditions and the results can, with care, be transferred to
real cases.

7.4.2 Model for Fatigue Behavior

The presentation is limited to the fundamental parameters of fatigue at a High Number
of Cycles.

With reference to Fig. 7.10 the fatigue curve is interpreted in semi- and in double
logarithmic coordinates. In the last case, three fields are discriminated:

• fatigue at a very low number of cycles, conventionally in first approximation,
represented by a horizontal segment, N < 5 · 104

• limited life-time at a finite number of cycles, represented by an oblique segment

5 · 104 < N < 2 · 106

• σa D resistance to infinite life (endurance fatigue limit), represented by a horizontal
asymptote N > 2 · 106

In the curve (b) of Fig. 7.10 the symbols have the following meanings:

• Rm static resistance
• k slope of the limited resistance
• ND number of cycles at the knee.

Parameters k, σa D , ND describe the whole fatigue behavior in addition to Rm , the
value to which the curve tends for a very small number of load cycles.

The first horizontal segment can enter the elastic analysis only if stress remains
under the elastic limit, that is a rare situation for ductile materials at a low number
of cycles (and high stress level). This explains why a second theory of fatigue is
developed, Chap. 8, based on the analysis of local deformations, particularly suit-
able for stress states beyond the elastic limit. Some steels have a quite pronounced
endurance fatigue limit while others, such as e.g. aluminum alloys, do not show an
asymptote parallel to the x axis. Recent experiences show that even steels can fail
for a number of cycles much higher than those generally regarded as limits, (for
N ≥ 109 ÷ 1010). The endurance fatigue limit, a conventional parameter, requires a
statistical method to be determined, Sect. 7.13. Given a point with coordinates σa D

and ND , corresponding to the beginning of the horizontal segment, the slope of the

http://dx.doi.org/10.1007/978-3-319-06086-6_8
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Fig. 7.11 Slope of the
fatigue curve in log-log scale log a

log aWD

logN logND

k

1

inclined portion can be expressed with a constant k positive definite, as the ratio
(Fig. 7.11):

k = (log ND − log N )/(log σa − log σa D) (7.1)

or:

log
ND

N
= k log

( σa

σa D

)

i.e.:
ND

N
=

( σa

σa D

)k

or:
N · σa

k = ND · σa D
k = A0 (7.2)

In logarithmic coordinates (Basquin model) we have:

log N + k log σa = log
(

ND · σ k
a D

)

i.e.:
x + k · y = a (7.3)

with: x = log N y = log σa a = log
(

Na D · σ k
a D

)

The constant k has typical values in the interval from about 3 for specimens with
geometrical discontinuities, to 5 for beams in bending or to 12 for beams in torsion,
[27, 28].2

2 The smaller values of k correspond to a more pronounced slope, while for higher values of k the
oblique portion tends to become horizontal.
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7.5 Models for Notch Effect

For slender structures with geometrical discontinuities (e.g. a cylindrical body with
circumferential groove) subject to cyclic loading with (R = −1), the Notch Fatigue
Factor K f (in German literature βk) is defined for each basic stress state (push/pull,
bending, torsion) as:

K f = βk = σa D

σa Dk
(7.4)

where σa D is the nominal endurance fatigue limit of a smooth specimen with the
diameter of the notch root, and: σa Dk is the nominal endurance fatigue limit of
the notched reference specimen. The semi-logarithmic diagram in Fig. 7.12 is an
example [29], for push/pull tested specimens. It might be argued that notched spec-
imens have fatigue limits of smooth specimens reduced by the factor Kt .

The dotted curve at the bottom of the diagram (a) shows that this estimation
does not agree with the experimental results (triangular marks) of the actual notched
specimens.

The most realistic estimation (especially beyond 5 · 104 cycles, i.e. in actual
high cycle fatigue condition) of the endurance fatigue limit for notched specimens,

Fig. 7.12 a Semi-logarithmic and b double-logarithmic fatigue curves for notched specimens,
obtained from the fatigue curve for smooth specimens reduced by the stress concentration factor
Kt and by the fatigue factor K f
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is obtained from the fatigue curve of the corresponding smooth specimens, with a
reduction K f , being 2 < K f < Kt . In this example Kt = 3. The experimental
measurements for fatigue at a low number of cycles do not agree with this prevision,
as it is possible to observe in Fig. 7.12a.

The fatigue factor (defined for the loading condition R = −1) interprets the
reduction of the fatigue life in a notched specimen compared to a smooth specimen.
This conclusion depends on material properties, as well as on the concentration factor
Kt but also on the kind of load (tension/compression, bending, torsion).

7.5.1 Models for the Micro-plasticity Zone

In order to clarify the difference between K f and Kt , it is necessary to look at the
physics of the material at the root of the notch.

The crack nucleation can be explained by the dislocations theory, Chap. 6,
Sect. 6.4.6.2, Fig. 6.26. This explains the displacements of the atomic planes placed
in the most favorable directions of shear stresses at 45◦ with respect to the maximum
normal stress (that is tangent to the surface). This slip movement generates not totally
reversible extrusions and intrusions from which small plastic valleys and peaks and,
progressively, micro-cracks arise after a sufficient number of cycles. The formation
of the plastic slip is confined to a small but finite volume of material, Fig. 7.13.

This volume is circumscribed by a curve at τmax = const. i.e. the threshold
value for a critical shear stress at the root of the notch, Fig. 7.14 and can thus be
visualized by the isochromatic curves, see e.g. Fig. 7.18. The observations of the
micro-cracks clarify the reason for a lower value of K f in comparison with Kt and
justify a hypothesis on the fatigue notch factor: fatigue damage is due not only to
a single stress value but to the whole state of stress in a small volume, close to the
maximum value. It is thus reasonable to consider thus the effective critical stress
not as the maximum elastic value but as the mean value on a finite small volume:
σeff = K f · σnom . A second definition of K f , can thus be obtained as, Fig. 7.14:

Fig. 7.13 Generation of extrusions and intrusions for a cyclic load at the surface of a body

http://dx.doi.org/10.1007/978-3-319-06086-6_6
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Fig. 7.14 Shape of the
maximum shear stress at the
root of a notch

max = Kt  nom

eff  

K f = σe f f

σnom
< Kt = σmax

σnom
(7.5)

The reduction of K f is not to be interpreted as due to an extensive plasticity, that
is not compatible with the fatigue phenomenon at a high number of cycles. The
phenomenon remains essentially elastic, hypothesizing only a local effect of micro-
plasticity.

7.6 Support Factor

In order to overcome the limits of the Saint Venant theory based on slender (1D rod-
shaped) or thin (2D shell-shaped) components, a theory was developed for extending
the integrity assessment to 3D block-shaped bodies. It is not unusual for some parts to
be massive in mechanical systems or, more often, for some details in slender construc-
tions to have three-dimensional states of stress. In these cases neither the elementary
theory hypothesis is respected, nor a reference cross-section can be defined.

The theory introduces the concept of Support Factor at the most stressed points,
sometimes called critical points or reference points [22] where a potential fatigue
crack can nucleate. This hypothesis assumes that the fatigue strength is not a material
property but a component property (at its reference points), so that the assessment
of fatigue strength for a component is done comparing the state of stress with the
fatigue limits at those points. The theory defines the strength, through the concept
of the stress gradient, a local value that takes into account the support effect of the
points close to the reference ones, i.e. of the effect of the confining material volume.

This is not the only theory that tries to evaluate the support of internal fibers. A
proposal [30] based on an idea of Lazzarin et al. [31], argues that the local fatigue
strength is sensitive to the integral of the stress contiguous to the most stressed points.
This integral can be extended on a critical volume, on a critical area or on a critical
length, depending on the geometry of the discontinuity.
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The difficulty of this theory is the practical determination of these volumes, areas
or length sizes. These parameters are determined by the value of ΔKth , a Frac-
ture Mechanics parameter. In this way a unified theory between fatigue and Frac-
ture Mechanics is achieved [32]. In spite of this attractive perspective, the Fracture
Mechanics parameter is not easy to determine, especially in the case of surface treat-
ments and possible states of residual stresses in thin surface layers.

7.6.1 Support Factor in Slender Bodies

Starting from slender bodies for which the stress concentration factor as well as the
fatigue factor can be defined, it is possible to write in a different way the previous
Eq. 7.4, here repeated3:

σa Dk = σa D

K f

Multiplying both members for Kt , having called n the ratio:

n = Kt

K f
(7.6)

the following equation is obtained:

σa Dk · Kt = σa D · n (7.7)

or:

n = σa Dk · Kt

σa D
(7.8)

In spite of the relationship between n and η, the n factor, called Support Factor,
expresses a more general concept than η, because it keeps its validity also for not
slender bodies.4 Before demonstrating this point, it is appropriate to remember two
points:

3 The authors decided to adopt, for mathematical symbols, indexes and formulas, the notation used
in the German Fatigue Handbooks (as [22]). It offers unambiguity in distinguishing among symbols,
in spite of a high number of suffixes. The apparent difficulty of the choice avoids a number of doubts
that arise in interpreting the meaning of a great number of variables.
4 This factor is related to the more common Notch Sensitivity Factor so defined:

η = K f − 1

Kt − 1
(7.9)

by the equation:

n = Kt

η(Kt − 1) + 1
. (7.10)
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• The stress concentration for each kind of internal stress state (push/pull, bend-
ing, torsion) is defined referring it to the nominal area of specimen cross-section,
cleansed by the discontinuity.

• the Notch Fatigue Factor K f , for each kind of internal stress state (push/pull,
bending, torsion) is defined as:

K f = βk = σa D

σa Dk
(7.11)

where σa D is the endurance fatigue limit (max. value for R = −1) of a smooth
specimen with the diameter of the notch root and: σa Dk is the endurance fatigue
limit (max. value for R = −1) of the notched specimen. It is important to remark
that both factors are conventionally defined, all the values of σa being nominal
values and, conventionally, the endurance limit of a smooth specimen could be
assumed, for each type of internal stress, for a tension/compression fatigue case.

7.7 From Slender to 3D-Bodies

Equation 7.8 can be read as follows (see Fig. 7.12):

n = σa D local

σa D smooth
(7.12)

where:
σa D local = σa Dk · Kt (7.13)

i.e. the n factor can be defined as:

The ratio between the (endurance) local limit at a reference point of the body
(peak, not nominal, strength value) and the (endurance) limit of a smooth specimen
of the same material having uniform stress distribution, assumed as reference.

The term:
σa Dk · Kt (7.14)

has the meaning of a Local Endurance Fatigue Limit because it represents the material
fatigue resistance at a given point. The maximum stress at that point must be compared
to this value.

With this extension, the theory of the support factor is able to model three-
dimensional bodies, remaining compatible with the simplified theory for slender
bodies. Factors K f , Kt and consequently n have an alternative meaning if they refer
to material or to applied stresses:

• Referring to material: the n factor represents the support given to the fatigue
resistance by the material close to it, due to the beneficial effect of local limited
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plasticity that redistributes the strain on the nearest points.5 This is the reason for
the name Support Factor.

• Referring to the applied stress: n represents the reduction of the actual stress with
respect to the static one. In this meaning, the factor assumes, in some books, the
alternative name of Dynamic Stress Reduction Factor.

• No support is offered to local strength in two cases:

1. For absence of material plasticity.
2. For uniform stress distribution on the cross-section.

7.7.1 Modeling Non-uniform Stress States by Means
of the Relative Stress Gradient

The parameter that distinguishes a non-uniform stress distribution in a geometrical
discontinuity from the uniform stress distribution in a reference specimen is the stress
gradient, normalized with respect to the maximum stress at the reference point. It is
thus the Relative Stress Gradient RSG, defined as:

χ ′ = 1

σ

dσ

dx
(7.15)

Figure 7.15 explains the meaning of his parameter, keeping the maximum stress
constant. When the stress gradient is high, Fig. 7.15a, the χ ′ is high and the volume
affected by local shear deformation is small: the support effect is high, because the
nearest fibers collaborate and give support to the most loaded ones. Figure 7.15b
shows the other extreme case of low stress gradient, i.e. the low value for χ ′. The
volume affected by maximum stress is larger and support effect is minimum with a
reasonable probability of micro-crack nucleation.

Moving from the beams theory to three dimensional bodies, instead of:

K f = f (Kt , mat.)

the following relation has to be considered:

n = g(χ ′, mat.) = σa Dk χ ′ �=0

σa D χ ′=0
(7.16)

where χ ′ takes the place of Kt .

5 Satisfying the equilibrium of stresses over the section leads to a partial transfer of the load from
the most loaded to the less loaded fibers, that is not possible when stresses are uniformly distributed
in the cross-section.
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Fig. 7.15 The relative stress gradient χ ′ determines the dimensions of the most stressed material
zone for a fixed value of σmax

7.7.1.1 Relative Stress Gradient in Slender Beams

For simple shapes the χ ′ can be calculated, at least approximately, by the theory of
elasticity. Equivalence theories like the Von Mises theory can handle the simplest
cases of multi-axial states of stress (Fig. 7.16).

According to the definition of Eq. 7.15, the following expressions should be
applied in the cases of push/pull and bending stresses:

Fig. 7.16 Approximate theoretical expressions of RSG for common discontinuities in structural
elements
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X ′ = 1

σmax
· dσ

dx
= 0 X ′ = 1

σmax
· dσ

dx
= 2

d

7.7.1.2 Example of Experimental Determination of the Relative Stress
Gradient

An experimental method is based on the photoelastic analysis [33].
The Relative Stress Gradient can be written as:

χ ′ = 1

σ1

dσ1

ds2
(7.17)

where σ1 is the principal stress along the isostatic s1, assuming a positive stress value,
Fig. 7.17. The stress σ1 is tangent to the boundary in a vertical direction and s1 is the
isostatic of the first family. Since σ2 = 0 , Eq. 7.17 gives:

χ ′ = 1

σ1 − σ2

d(σ1 − σ2)

ds2
+ 1

σ1 − σ2

dσ2

ds2

Remembering the equilibrium equations according to Maxwell:

dσ2

ds2
+ σ1 − σ2

ρ1
= 0

the χ ′ is:

χ ′ = 1

σ1 − σ2

d(σ1 − σ2)

ds2
− 1

ρ1
(7.18)

where ρ1 is the curvature radius at the root of the notch.

Fig. 7.17 Direct
measurement of χ ′ from
photoelastic isochromatic
fringes
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The χ ′ is derived directly as inverse of the intercept AB of the straight line on the
s2 axis, minus the inverse of ρ1:

σ1 − σ2

AB
= d(σ1 − σ2)

ds2

1

AB
= 1

σ1 − σ2

d(σ1 − σ2)

ds2
(7.19)

then:

χ ′ = 1

AB
− 1

ρ1
(7.20)

Exercise 7.1 (Relative Stress Gradient for a circular hole in a thin plate; theoretical
calculation and experimental determination)
(a) Before solving the problem experimentally, let us develop the theoretical solution
for a hole in an infinite plate loaded in one direction.

The principal stress σ1 = σy and the difference between the principal stresses
σy − σx along the loading axis, Eq. 6.38 (together with Eq. 6.33 of Chap. 6) are used
for determining the χ ′ factor.

Theoretically, it is possible to calculate it in two ways: either through the two
terms of Eq. 7.18 or directly through the single term of Eq. 7.17. In the first case
1/AB is obtained as a limit of the ratio 1

σ1
/d(σy − σx )ds2 for x tending to a,6 while

in the second case χ ′ is directly obtained as a limit for x tending to a of Eq. 7.17.
Figure 7.18 shows plots of both derivatives that achieve their limit values for x

tending to a, respectively equal to +0.1852 for the first case, and +0.1296 for the
second case. Consequently, the second term 1

ρ1
of Eq. 7.18 must be 0.0556.

(b) Given the image of Fig. 7.18b, determine the RSG according to Eq. 7.20.
From Fig. 7.17, the first term of the equation is 1/AB. In the present example it is

0.1852 1/mm, i.e. AB = 5.4 mm. Then the theoretical ratio between the radius of the
hole AC and AB is: 18/5.4 = 3.333. Vice-versa, the ratio determined experimentally
is 2.65. This means that the value of AB is 18/2.65 = 6.792 and 1/AB = 0.147.
This value is considerably lower than the theoretical one (0.1852), obtained for a
large plate (2a/H = 0).

The experimental value of χ ′, according to Eq. 7.20, is:

0.147 − 1/18 = 0.0914 mm−1

valid for 2a/H = 36/122 = 0.295.7

Another approximate solution is given in Table 7.16. The χ ′ for a hole in a plane
strip is given by the formula 2/ρ that in the present example gives 2/18 = 0.111.

6 σx is zero for x = a.
7 Incidentally, Eq. 6.42 gives 3.35, as maximum value of σy for 2a/H = 0.295, a value about 10 %
higher than the theoretical value for a large plate (3).

http://dx.doi.org/10.1007/978-3-319-06086-6_6
http://dx.doi.org/10.1007/978-3-319-06086-6_6
http://dx.doi.org/10.1007/978-3-319-06086-6_6
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Fig. 7.18 a Plot of Eq. 7.17, (χ ′) and for the first term of Eq. 7.18, (1/AB) and b direct measurement
of the χ ′ from photoelastic isochromatic fringes (External forces along the horizontal axis)

7.7.2 Relative Stress Gradient for Three Dimensional Bodies

Numerical and experimental methods are the proper tools for determining χ ′ at
reference points of complex structures, in which three principal stress values are
originated in terms of amplitudes and mean values, σ1a, σ2a, σ3a and σ1m, σ2m, σ3m .
Generally, reference points are located at the surface, and χ ′ is evaluated along the
perpendicular direction for the stress components lying on the surface.

7.8 Dependence of Fatigue Strength on the Support Factor

Fatigue resistance at a reference point is different for uniform and non-uniform
stress distribution because of the different support effect offered by the surrounding
material. For example, the analysis of data in Table 7.1 [4] for a variety of metals
shows this property: bending fatigue limits, with a χ ′ greater than zero are always
bigger than the corresponding ones for push/pull load, Table 7.2.

A drawback of predicting models based on RSG estimation is that, if the stress
distribution is very steep, it could be critical to estimate the gradient values.
It would require the adoption of a finite-element model with very high mesh
refinement with relatively long computational times, or an alternative very
accurate high cost experimental analysis. Nevertheless, it must be observed
that the support factor does not increase indefinitely as the gradient increases:
the risk of an overestimation of the support factor is rare for high values of χ ′.
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Table 7.1 Fatigue limits versus static limits, from [4]

1 M 2 P/P a 3 P/P 4 Ben.a 5 Ben. 6 Ben. 7 Tor.a 8 Tor. 9 Tor.

σzdW σzdo σbW σbo σbs τW τo τs

1 0.45Rm 1.3σW 0.49Rm 1.5σbW 1.5Rs 0.35Rm 1.1τW 0.7Rs

2 0.41Rm 1.7σW 0.44Rm 1.7σbW 1.4Rs 0.30Rm 1.6τW 0.7Rs

3 0.40Rm 1.6σW 0.41Rm 1.7σbW 1.4Rs 0.30Rm 1.4τW 0.7Rs

4 0.25Rm 1.6σW 0.37Rm 1.8σbW 0.36Rm 1.6τW

5 0.30Rm 0.40Rm 0.25Rm
a P/P = Push-Pull (Uniaxial Tension/Compression) Test
Ben. = Rotating Bending Test
Tor. = Alternate Torsional Test

1. Construction Steels
2. Hardened Steels
3. Case hardened Steels
4. Gray Cast Iron
5. Light Metal

Symbols

Rm = Ultimate Stress in Tension
Rs = Yielding Stress in Tension for 0.2 %
Rbs = Yielding Stress in Bending
τs = Yielding Shear Stress in Torsion
σzd W = Fatigue Amplitude Limit for Alternate Load (R = −1) in Push/Pull Test (The German
symbols are adopted)
σzd o = Upper Fatigue Limit for (R = 0) in Push/Pull Test
σbW = Fatigue Amplitude Limit for Alternate Load (R = −1) in Bending Tests

(with Moment in one plane or with rotating Moment)
σb o = Upper Fatigue Limit for (R = 0) in Bending Tests

(with Moment in one plane)
τW = Fatigue Amplitude Limit with Torsional Alternating Moment (R = −1)
τo = Upper Fatigue Limit for (R = 0) in Torsion Test
a = Amplitude
zd = Tension/compression stress
b = Bending stress
W = Fully reversed stress (R = −1)
o = Stress at origin (R = 0)
s = Yielding

7.8.1 Size Effect

The relative stress gradient RSG, whose dimension is the inverse of a length, auto-
matically takes into account the size effect: as the body dimensions increase, stress
gradients and support factors decrease and larger volumes of material support higher
stress levels. The most loaded fibers do not take advantage of local stress redistrib-
ution and the likelihood of presence of micro-structural defects also increases; both
effects are responsible for a fatigue strength reduction.
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Table 7.2 Comparison of
fatigue limits for alternate
bending and alternate
push-pull load for columns
2, 4 of Table 7.1

No.
σbW

σzdW
Materials

1 1.09 Structural steels

2 1.07 Hardening and relieving

3 1.03 Case hardening steels

4 1.48 Grey cast iron

5 1.33 Light metals

7.8.2 Model of the Support Factor as a Function
of the Relative Stress Gradient

Historically, the simulations were proposed by the researchers that first developed
extensive experimental tests on this factor [34, 35], summarized in Fig. 7.19 together
with the correspondent curves in log-log coordinates [22].

7.8.2.1 Siebel-FKM Model

The original model due to Siebel and Stieler [4, 34–36] is a function of two para-
meters, χ ′ ([1/mm) and Sg . The last one is the size of the critical volume in a
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Fig. 7.19 Examples of curves of support factor (or dynamic stress reduction factor) for normal
stress versus relative stress gradient for various metals on the left, a (after Siebel and Stieler) and
on the right, b in logarithmic coordinates from [22]
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perpendicular direction to the surface where the shear deformations are located and
has the same order of magnitude as the grains diameter.

The following expression holds for the support factor:

n = 1 +
√

Sg · χ ′ (7.21)

where Sg is equal to:
Sg = −0.0375 · ln Rm + 0.27 (7.22)

(Rm in MPa).
The model suggested by FKM guidelines [22] distinguishes three fields of the

support factor, for different relative stress gradient ranges:

For χ ′ ≤ 0.1mm−1:

n = 1 + χ ′ · 10
−
(

aG−0.5+ Rm

bG

)

(7.23)

For 0.1 mm−1 < χ ′ ≤ 1 mm−1:

n = 1 + √

χ ′ · 10
−
(

aG+ Rm

bG

)

(7.24)

For 1 mm−1 < χ ′ ≤ 100 mm−1:

n = 1 + 4
√

χ ′ · 10
−
(

aG+ Rm

bG

)

(7.25)

Constants in the formula must be chosen as material functions, according to the
Table 7.3.

• GS = Cast Steel,
• GG = Grey Cast Iron,
• GGG = Spheroidal Gray Cast Iron,
• GT = Hardened Cast Iron
• χ ′ in 1/mm and Rm in MPa.
• These formulas are valid at the reference points for a stress gradient normal to the

surface, for normal stresses only. Numerical values in the diagram: 1/0.65 ÷

Table 7.3 aG and BG as a function of the kind of material

Mat. Stainless steels Other steel GS GGG GT GG

aG 0.40 0.50 0.25 0.05 −0.05 −0.05

bG 2400 2700 2000 3200 3200 3200
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1/0.95 give the difference of the fatigue limit for reversed stress in tension-
compression and in bending, for specimen of diameter d0 = 7.5 mm, (and χ ′
equal to 0.267).

• In the case of slender bodies the diagrams and the models give the support
factor that in this case is n = Kt/K f . These factors are valid only for ten-
sion/compression.

• The same diagram is valid for a 3D-shaped body, where n is the ratio between the
local fatigue strength for (χ ′ �= 0) and the fatigue strength in a reference specimen
of the same material, in uniaxial loading condition (χ ′ = 0), and also for massive
details with 3D stresses, in slender bodies.

• The local values of component fatigue limit (for totally reversed stress) are obtained
from the material fatigue limits, multiplying by the support factors.

Equation 7.24 is shown in Fig. 7.19b in double-logarithmic diagrams: (χ ′ in 1/mm
and Rm in MPa).

For χ ′ ≤ 0.1 mm−1:

log (n − 1) = log χ ′−
(

aG − 0.5 + Rm

bG

)

(7.26)

For 0.1 mm−1 < χ ′ ≤ 1 mm−1:

log (n − 1) = 1/2 · log χ ′−
(

aG + Rm

bG

)

(7.27)

For 1 mm−1 < χ ′ ≤ 100 mm−1:

log (n − 1) = 1/4 · log χ ′−
(

aG + Rm

bG

)

(7.28)

From this point of view:

• The approach defines the concept of component fatigue limits; the fatigue limit is
no longer a characteristic of a material but a property of a structural component that
can have one or more reference points in which the fatigue life must be assessed.

• In 3D-components the calculation of the local stress state is supposed to be done
by finite-elements methods or obtained by an experimental analysis, in order to
evaluate principal stresses σ1 σ2 σ3 at each reference point, in terms of amplitudes
and means values.

• If the all stresses vary proportionally to the load and consequently to their amplitude
and mean values, the directions of principal stresses remain unchanged and the
principal stresses can be treated with the equivalence stresses.

• In the case of non-proportional stresses, it is necessary to distinguish the case of
proportional amplitudes but non-proportional mean values from the more general
case of total non-proportionality. In the first case, since the amplitudes are the
dominant parameters of fatigue life, the problem can be re-conducted to the case of
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proportional stresses. In the second case, approximate methods can be developed,
but a direct experimental assessment is always recommended [22].

• At the reference point, that is generally located on the external surface of the
component, if 1 and 2 are the principal stress directions on the surface and 3 is the
direction normal to the surface, only gradients along 3 are taken into account for
the calculation of the endurance fatigue limits σa1 σa2. The diagram of Fig. 7.19a
or b or the relative mathematical models, give the values of support factors for σa1
and σa2, respectively nσa1 and nσa2 .

For example, according to [22], the fatigue limits of 3D components, in directions
1, 2 and 3 are:

⎧

⎪

⎨

⎪

⎩

σa1,WDK = nσa1 · σa1 zd DW

σa2,WDK = nσa2 · σa2 zd DW

σa3,WDK = σa3 zd DW

(7.29)

where index a means amplitude, the index W totally reverse stress and K Component,
for which χ ′ �= 0.

7.8.2.2 Eichlseder Model

Unlike the [22] model, the simulation for the support factor in [27] is based on the
knowledge of fatigue response of the same material under two reference fatigue tests,
for χ ′ equal to zero (tension/compression of smooth specimen) and for χ ′ = 2/d0,
(bending test). The n = f (χ ′) model [27] (recalled also in [37–42]) is the following:

n = σaW DK

σzd W D χ ′=0
= 1 +

( σb W D

σzd W D
− 1

)

·
( χ ′

2/d

)K D
(7.30)

where:

• σaW D χ ′ �=0 = σaW DK = local amplitude fatigue (endurance) limit at a reference
point in the case of σm = 0.

• σzd W D χ ′=0 = fatigue (endurance) limit for the amplitude in a tension/compression
test with R = −1 (χ ′ = 0).

• σb W D = fatigue (endurance) limit for the amplitude in a bending test with R = −1,
(χ ′ = 2/d)

• χ ′ = 2/d for the specimen in bending.
• K D = Material coefficient for taking into account the non-linear behavior of the

function, Fig. 7.20.

In double logarithmic variables Eq. 7.30 becomes a linear equation:

log (n − 1) = log (
σb W D

σzd W D
− 1) + K D · (log χ ′ − log 2d) (7.31)
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Fig. 7.20 Curve of support factor versus relative stress gradient derived from two reference tests
of Push-Pull (χ ′ = 0) and fully reversed bending moment (χ ′ = 0.267 1/mm)

7.8.2.3 Slope Modeling of the Local Fatigue Curve

From an idea of [27], modified in [43], a model has been proposed for simulating the
S/N local curve. The local k value is inferred by elementary values of Push/Pull and
Bending tests slopes, with an analogy to Eq. 7.30. If kzdW is the slope of the fatigue
curve obtained by a Push/Pull test, and kb W is the slope of the fatigue curve obtained
by a rotating bending test, the local value of k can be derived as, Fig. 7.21:

klocale

kzd W
= 1 +

( kb W

kzd W
− 1

)

·
( χ ′

2/d

)m

The value of m, for Low Alloy Steels is equal to 0.05.

Fig. 7.21 Local fatigue curves at different χ ′ values, modified by [43] from [27]
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(a) (b) (c)

Fig. 7.22 Specimens geometry: smooth (a), shallow notched (b) and sharply notched (c)

7.8.3 Modeling Support Effect Through Rotating Bending
Fatigue Tests: Case Study on Characterization
of a Titanium Alloy

One difficulty in the FKM model is represented by the high number of specimens
necessary to describe the whole useful field of relative stress gradient, together with
the impractical use of two different testing machines.

As regards the simpler Eichlseder’s method, an additional observation is that the
interpolation is performed between two χ ′ values that are close to one another.8 These
values can be very different from χ ′ values corresponding to most notch geometries.

Establishing a unified theory mixing axial tests and bending tests, performed
on specimens of different shapes and dimensions with different testing machines
(push/pull and bending tests), is a weak point of the classic procedure.

A method is suggested utilizing only rotating bending tests for modeling the sup-
port factor of new materials [44]. The case study refers to the fatigue characterization
of a material Ti-6Al-4V alloy, widely used in aerospace industries for its high specific
strength, excellent fatigue properties and corrosion resistance, but not classified in
fatigue handbooks.

The Ti-6Al-4V grade 5 has an ultimate strength of 950 MPa and a yield strength
of 880 MPa. Its composition is shown in Table 7.4.

Ti-6Al-4V specimens, with notches of different severity, were selected to demon-
strate the assumptions, Fig. 7.22. The three kinds of specimens have a common
reference diameter at the notch roots of 6 mm. The notched specimens were chosen

8 χ ′ is equal to 0 in tension/compression and 2 divided by the sample diameter in bending, which,
considering most widely used diameters of about 6 ÷ 8 mm, gives a range of χ ′ from 0.33 to
0.25 1/mm.
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Table 7.4 Chemical composition of the Ti6Al4V alloy

Element Ti Al V Fe O C N H

Content (%) Balance 5.50–6.75 3.50–4.50 ≤0.40 ≤0.20 ≤0.080 ≤0.030 ≤0.015

Fig. 7.23 Experimentally
determined nominal fatigue
limits for smooth, shallow
and sharply notched samples
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Table 7.5 K f Kt n for three values of χ ′

σbDk σD K f Kt Kt/K f χ ′ σloc

598 598 1.00 1.00 1.00 0.33 598

560 598 1.07 1.3 1.22 1.40 728

361 598 1.66 1.9 1.15 1.90 686

with known values of Kt and χ ′ [4, 45]. For Kt = 1.3 the relative stress gradient is
χ ′ = 1.40 mm−1 (shallow notched specimen) and for Kt = 1.9 is χ ′ = 1.90 mm−1

(sharply notched specimen). For smooth specimens χ ′ is 0.33 mm−1 (Fig. 7.23).9

7.8.3.1 Predictive Model Based on Four Points

Table 7.5 shows the local values of the fatigue limit obtained multiplying the (nomi-
nal) fatigue limit σbDk of notched specimens by Kt .

In order to add the reference point for χ ′ = 0 to this interpolation on three points
(all obtained for χ ′ �= 0), the following escamotage is suggested:

• A fourth case is introduced of a virtual bending moment applied to a smooth spec-
imen with χ ′ equal to 0. This case is equivalent to the tension/compression case
with uniform stress distribution on the cross-section, Fig. 7.24.

9 The Dixon staircase method, Sect. 7.13 with 8 ÷ 10 specimens for each specimen type and a stress
step of 26 MPa is adopted, corresponding to about 5 % of the expected fatigue limit, according to
the literature suggestions.
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Fig. 7.24 Equivalence
between a bending
triangular stress distribution
and a bending uniform stress
distribution on the same
circular cross-section of the
smooth specimen
(c = 16/(3 ∗ Π) =
16/(3 ∗ 3.14) = 1.698

equiv.

recttriang

R
M triang

M triang

dr

r

The corresponding uniform stress value that is equivalent to the bending stress
distribution on the same circular section is calculated. This is the new reference
point for χ ′ = 0. For the equivalence between the two distributions it is necessary
to equalize the static moments with respect to the neutral axis of a triangular dis-
tribution and of a constant stress distribution, Fig. 7.24.

For a rectangular distribution the static moment with respect to the diameter is

M =
∫

A
σrect yd A

For a triangular distribution:

M =
∫

A

σtr iang

R
y · ydA

where dA = r dr dθ and y = r sin θ .

Substituting and equalizing the two expressions:

∫ π

0

∫ R

0
σrectr sin θr dr dθ =

∫ π

0

∫ R

0

σtr iang

R
· r2 · sin2 θ r dr dθ.

From this equality we have:

σrect · R3

3
· 2 = σtr iang

R
· R4

4
· π

2

from which:

σrect = 3

16
π · σtr iang = σtr iang

c

with the constant c equal to: c = 16/(3π) = 1.698
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Table 7.6 Support factor n = σχ ′ �=0/σχ ′=0 as function of four values of RSG

σbDk new Kt n χ ′ n − 1

352 1.00 1.00 0.00 0.00

598 1.70 1.70 0.33 0.70

728 2.21 2.07 1.40 1.07

686 3.23 1.95 1.90 0.95

Fig. 7.25 Interpolating the
spline of (n−1) versus χ ′ of
four points
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• The previous values of the bending stress found for the three geometries must be
now referred to this new stress parameter, the virtual case of uniform stress value
(e.g., the previous value of 598 MPa, is thus equal to 598/c = 352); adding the
new value for χ ′ = 0 and n = 1 to Table 7.5 gives a new list of four local fatigue
limits, shown in Table 7.6.

The interpolation of these new four values gives the mathematical models of the
support factor on the whole domain for which the function n is defined. It is easy
to see the difference between the spline that crosses the points, Fig. 7.25 and the
fitting function in Fig. 7.26, (n − 1) = C · χ ′m where C and m are the constants to
be determined minimizing the functional of discrepancies between model and data.
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Fig. 7.26 a Fitting to four points with a non-linear function. b Fitting with the use of logarithms
and a linear function
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The minimum squares method gives the following result:

C = 0.886 m = 0.292 (7.32)

A linear fitting can be done for the logarithms of the data by the equation:

log (n − 1) = log C + m log x (7.33)

A fitting obtained by logarithms equation offers approximate values of the parame-
ters, Fig. 7.26b as will be shown later:

C = 0.874 m = 0.953 (7.34)

7.8.3.2 Shot-Peening Treatment for Finding Other n Values

A curve relating n to the RSG can be extended to consider the shot-peening effect
as a source of increment of the RSG.

χ ′ = 1

(σx − σres.)

dσx

dx
(7.35)

Residual stress distribution can be carefully estimated by diffractometric measure-
ments. The in-depth measurements required step-by-step removal of thin material
layers: this operation was performed by using an electropolishing facility to prevent
considerable alteration of the pre-existent residual stress state; details in [44].

Fatigue tests were performed on two specimen types: respectively smooth and
sharply notched. Three different treatments were experimented on them:

1. Almen intensity of 12N, with ceramic shots having a diameter of approximately
150 mm with a 200 % coverage (Z150-12N).

2. Almen intensity of 6A, with steel shots having a diameter of approximately
280 mm with a 200 % coverage (S110-6A).

3. Almen intensity of 12A, with steel shots having a diameter of approximately
580 mm with a 200 % coverage (S230-12A).

The results of the fatigue tests are shown in the histogram in Fig. 7.27. The data are
shown in Table 7.7. Also in this case it is necessary to refer all the local maximum
stresses to the virtual case of uniform stress value and the new Table 7.8 is determined.

The interpolation curves are shown in Fig. 7.28. It is enough to add only one
point, (for a total of five points), obtained by shot-peening of a smooth specimen
with χ ′ = 0.33 mm−1 to considerably improve the model that fits well to the all ten
experimental data. The most reliable mathematical model is the following:

C = 0.849 m = 0.239 (7.36)
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Fig. 7.27 Nominal fatigue limits for shot-peened smooth, shallow and sharply notched samples

Table 7.7 Data for n and χ ′
tot calculation

Notch Shot-pee χ ′
load Kt σD σDk (dσ/dx)load σres. σtot χ ′

tot load + res.str.

No notch no 0.33 1 598 598 199 0 598 0.33

Mild no 1.40 1.30 560 756 1008 0 756 1.33

Severe no 1.90 1.90 361 635 1207 0 635 1.9

No notch Z150-12N 0.33 1 736 736 254 −695 41 5.97

Severe Z150-12N 1.90 1.90 500 879 1671 −695 184 9.07

No notch S110-6A 0.33 1 648 648 254 −528 120 1.80

Severe S110-6A 1.90 1.90 428 754 1433 −527 226.2 6.33

No notch S230-12A 0.33 1 610 610 204 −532 79 2.58

Severe S230-12A 1.90 1.90 433 762 1448 −531 −531 6.28

Table 7.8 Ten points Data χ ′ σDk n n−1

0 352.3 1 0

0.333 598.0 1.698 0.698

1.400 728.0 2.067 1.067

1.900 685.9 1.947 0.947

5.976 775.2 2.201 1.201

9.075 879.5 2.497 1.497

1.803 719.4 2.042 1.042

6.334 793.7 2.253 1.253

2.581 709.8 2.015 1.015

6.283 828.3 2.352 1.352

Exercise 7.2 (System Parameter Identification for the Support Factor Determina-
tion) In order to clarify the general criticality of building a mathematical model
through linearized logarithmic relationships, several minimization algorithms are
used, with the dubious result of obtaining different minima values with different
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Fig. 7.28 Interpolating curve for (n − 1) as a function of χ ′ in five points and comparison with
four and ten points
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Fig. 7.29 Comparison between fitting models, varying algorithms of the optimization method

minimization techniques for finding factors aG and bG in the FKM model and also
the previous K D values. Fitting of straight lines to experimental data is shown in
Fig. 7.29.10

10 FindFit of Mathematica® by default finds a least-squares fit but possible settings are foreseen for
other methods, including “ConjugateGradient”, “Gradient”, “LevenbergMarquardt”, “NMinimize”,
and “QuasiNewton”, being the default “Mean Square Method”.
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Fig. 7.30 Stress cycles at different R values; the sinusoidal shape is only indicative but not necessary
for the theory. The cycle can consist of segments of straight line. R = 0 pulsating tension R = −1
fully reversed tension R = −∞ pulsating compression

7.9 Models for the Evaluation of Mean Stress Effect

Figure 7.30 shows the main reference tests with three kinds of mean stresses.11 In
mechanical components a steady mean stress superimposed on the cyclic loading is
very common. The mean stress has a strong influence on fatigue behavior: as we
will see, tensile mean stresses are detrimental and compressive mean stresses are
beneficial.

In order to describe this behavior in a mathematical way, a synthesis of a large
number of experiments was done to build acceptable models for phenomenon sim-
ulation. The main points of this process are the following:

• The first experimental evidence of the influence on fatigue of the mean stress is
shown in Fig. 7.31, where stress amplitude σa is plotted versus number of cycles
to failure for different mean stress values σm . A positive value reduces fatigue
limit while a negative value raises it. The central curve is the relationship between
the stress amplitude for full inversion (mean stress equal zero) and cycle number
to failure obtained by tests on smooth specimens, loaded in tension/compression,
bending or torsion modes are always the fundamental information on the fatigue
behavior, since the fatigue strength is determined in the first place by the stress
amplitude.

• Investigations performed comparing the fatigue limits σaN versus the cycles num-
bers N with the mean stress, σm , for tension/compression and τm for torsion, give

11
σm = σo + σu

2
mean stress

σa = σo − σu

2
amplitude

Δσ = σo − σu range
f = 1/T frequency
R = σu/σo stress ratio.
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Fig. 7.31 Effect of a mean stress on endurance limit shown in semi-log (a) and log-log (b) diagrams
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Fig. 7.32 First approximation (a) and second approximation (b) of Haig plots on the influence of
mean stress on fatigue life for N cycles

the experimental results shown in Fig. 7.32a, b.12 The plots, called Haigh diagrams,
in Fig. 7.32a are described by the following equation:

σaN

σaW
+ σm

Rm
= 1 (7.37)

from which:
σaN

σaW
= 1 − σm

Rm
(7.38)

The ratio between σm �=0 and endurance limit for alternate stress (σm=0) is:

σa D

σaW D
= 1 − σm

Rm
(7.39)

12 The models are valid for the endurance limit, for finite life as well as for long life when the
endurance limit does not exist. In the latter case, σaN is the fatigue limit for a fixed long life N .
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Fig. 7.33 Haig (a) and Smith (b) plots for several values of the mean stress

This is an approximate model, modified by several researchers, to improve the
fitting to experimental data that this model tends to underestimate.13

An improvement consists in limiting the plot to the yield point Rp0.2, Fig. 7.32b,
the plastic behavior being excluded by the elastic field of High Cycle Fatigue.

• According to the previous observations, the simplest (even approximate) way to
take into account the influence of the mean stress on the local fatigue limit of
Eq. 7.29 is to modify them in the following way, Eq. 7.38:

⎧

⎪

⎨

⎪

⎩

σa1,DK = nσa1 · σa1 zd DW · (1 − σm

Rm
)

σa2,DK = nσa2 · σa2 zd DW · (1 − σm

Rm
)

(7.40)

• Another illustration of the modification of the endurance fatigue limit when a mean
tensile or compressive stress is over-imposed is the Smith-Goodman diagram,
Fig. 7.33b. It plots the sum of the mean stress σm and the stress amplitude σW D
versus the mean stress, up to the yield point Rp 0.2.

A negative low mean stress favors a closure of the micro-cracks. Conservatively, as
a first approximation, Eq. 7.38 can be used to model the fatigue curve, in this way:

N · σa
k = ND · σa D

k = ND ·
(

1 − σm

Rm

)k
σ k

aW D = A1 (7.41)

Comparing this equation with the Eq. 7.2 an elementary model of mean stress effect
can be represented in double logarithmic plot as shown in Fig. 7.32a.

Equation 7.41 gives the elementary approximated influence of the mean stress on
the fatigue curve. It can be written, N being equal to = ND for all the fatigue curves
with different value of σm , as:

σa = σaW D ·
( ND

N

)−1/k ·
(

1 − σm

Rm

)

= σaW D ·
(

1 − σm

Rm

)

(7.42)

13 A model suggests, e.g. the true fracture strength σ ′
f [5] instead of Rm .
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or:
σa = σaW D · K AK (7.43)

with:
K AK =

(

1 − σm

Rm

)

(7.44)

The FKM guidelines [22] give a more detailed Haigh diagram for steels that differ-
entiates the mean stress influence as a function of the way in which the component
reaches the failure condition (at constant mean stress or at constant stress ratio or at
constant minimum or maximum stress) as a function of the stress ratio R. Summa-
rizing, the design against (high cycle) fatigue requires:

1. Calculation of the amplitudes of stresses (or equivalent ones) at the reference
points.

2. Simulation of Local Fatigue Limit, i.e. the evaluation of the local strength at
critical points of a mechanical component

The simulation proceeds according to the following steps:

• Determination of the endurance fatigue limit of the base material through
laboratory tests on classic tension/compression as well as on bending spec-
imens.

• Evaluation of the relative stress gradient in the reference points (inspected
points) of the component. Since this parameter is defined in the elastic
field, finite elements methods are suited to this task, even if the numerical
estimation of a gradient, i.e. of a derivative of a function defined on a discrete
domain, can present uncertainties.

• Evaluation of the support factors and the relative local fatigue limits at the
reference points.

• Mean stress correction on the fatigue limit (amplitude).
• Comparison of these values with the principal stresses at those points.

7.10 Fatigue Assessment of Mechanical Components
Through Relative Stress Gradient Theory

The following case study is an example for evaluating the fatigue life through the
theory of Relative Stress Gradient. The results of the two theories will be presented.
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Fig. 7.34 Three basic configurations: low, ground level and high

7.10.1 Case Study for the Fatigue Assessment
at a Three-Dimensional Protrusion
in an Excavator Arm

After an analysis of different working geometries of the excavator arm, the load con-
figurations and the reference points in the component are selected for the maximum
loading condition, Fig. 7.34:

1. Excavator at low position
2. Excavator at ground level
3. Excavator at high position

The reference point is localized close to a protrusion at which a hydraulic cylinder
is connected. The theory for a shell-shaped (2D) component is not suitable for this
case, while the local stress approach in a 3D area has to be considered preferable.

7.10.1.1 Calculation of the Principal Stresses at a Reference Point

The determination of the equivalent stress according to Von Mises theory (and of the
max. principal positive stress), are performed in the most critical geometrical discon-
tinuities, (called reference points), by the Finite Element Method for three loading
conditions, see details in [46, 47]. Figure 7.35 shows the map and the Table 7.9 the
relative values, of the equivalent stress for two of the three loading conditions.

7.10.1.2 Determination of the Local Strength at Each Reference Point

The strength at the reference points is determined by the application of the previous
models according to the following steps:

1. Determination of the relative stress gradient at the reference points.
2. Evaluation of the support factors and of the local fatigue limits at the reference

points.
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Fig. 7.35 Maximum equivalent stress (Von Mises) in the excavator arm

Table 7.9 Comparison of stress levels at the most critical point for the three loading conditions of
the excavator arm

Condition σ1max σ1mean σ1min Von Mises Excavator position

(MPa) (MPa) (MPa) (MPa)

1 166 42 4 147 Excavating at low level

2 103 27 3 91 Excavating at ground Level

3 −4 −38 −154 137 Excavating at high level

Evaluation of the Relative Stress Gradient at the Reference Points

The stresses at two points along the thickness at a distance Δx from one another (the
first point on the surface and the second point close to the surface) is done by the
Finite Element Method and the stress gradient is calculated through a finite difference
estimation. From the difference of their spatial coordinates, the relative equivalent
stress gradient along the direction x perpendicular to external surface is given by:

χ ′ = 1

σmax

Δσ

Δx

with:
Δσ = σ1 − σ2

and:

Δx =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

where 1 is a node at the surface and 2 a node immediately under the surface; σ is
the Von Mises equivalent stress; and x, y, z are the spatial coordinates of the nodes.
Figure 7.36 shows the equivalent stress distribution close to the reference point and
the distance calculation in the selected point, Table 7.10. The section is identified by
taking as a first point the node on the surface and as the second the node on the lower
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Fig. 7.36 Stress Gradient Calculation by FEM

Table 7.10 Spatial Coordinates of the nodes and Δx calculation (mm)

x1 x2 y1 y2 z1 z2 Δx

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

−54.89 −55.27 642.0 641.2 −1818 −1817 1.534

surface of the sheet that constitutes the thickness of the tubular section of the arm,
choosing the closest node to an orthogonal line, Fig. 7.36b. The segment was divided
into 40 intervals, and for each of them the FEM determined the principal stresses
and the stress gradient for the Von Mises equivalent stress, Table 7.11.

Due to the automatic meshing algorithm, it could happen that the nodes of the
elements under the surface do not rigorously stay on the line perpendicular to the sur-
face. Nevertheless, due to the high number of the elements, the discrepancy between
the correct values on the real perpendicular line and the computed values in the
nearest nodes is very small.

Evaluation of the Support Factors and of the Local Fatigue Limits

The component is built in Steel E N : S 355 (C N R − U N I : Fe 510 or DI N :
St 52−3). The support factors can be estimated by several models as a function of χ ′.
The first model that is used in this example [39] is determined by Eq. 7.30. It is based
on the knowledge of two material endurance fatigue limits for tension/compression
and for bending moment, plus a third parameter K D , typical for a class of materials.

Table 7.11 Example of a finite element calculation of principal stresses and of RSG of the maximum
principal stress at the reference point, corresponding to three loading configurations

Configuration σ1max
(MPa)

σ2 (MPa) σmax
(MPa)

Δσequiv.
(MPa)

χ = Δσ
Δx

(MPa/mm)
χ ′ = 1

σmax

Δσ
Δx

(1/mm)

1 147 133 147 14 9.13 0.0621

2 91 83 91 8 5.22 0.0573

3 137 125 137 12 7.82 0.0571
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Table 7.12 Comparison of local strength at the reference points for three loading configurations
of the excavator arm

Load nx σaW D χ ′ �=0 σmean KaK σaDK χ ′ �=0 = σaW D · KaK

1 1.201 269 42 0.93 250

2 1.196 268 27 0.95 255

3 1.196 268 −38 1.06 284

σaDK χ ′ �=0 = σaW D · KaK with KaK =
(

1 − σm

Rm

)

, RM = 597 MPa, Rp 0.2 = 400 MPa

The local fatigue endurance limit obtained by this model is shown in Table 7.12.
Other models, such as Eq. 7.21 or FKM equation or the plots of Fig. 7.19, give other
estimation values, shown in Table 7.13.

The model needs the preventive knowledge of the following basic fatigue values:

• Ratio σb W /σzd W χ ′=0 = 1.07 ÷ 1.09, see Table 7.2 for (χ ′ = 2/d = 0.33)
• K D = 0.3 for this kind of steel and the corresponding n values in Table 7.13.

7.10.1.3 The Mean Stress Effect

The correction for the mean stress effect on fatigue life is done with the simplest
model, Eq. 7.44. Table 7.12 shows the values of KaK for different σm and the final
estimations of the local strength (fatigue endurance limit for the component K ),
expressed as amplitude σa DK χ ′ �= 0 with its mean value.

7.11 Macroscopic Fractography as Stress Analysis Tool

In the second half of the 19th century, the description of the fracture surfaces became a
useful integration in understanding fatigue behavior. Rankine made accurate obser-
vations on fractures of railway axles in Britain.14 This description still holds true

Table 7.13 Support Factor n estimated by Eq. 7.21 and diagram of Fig. 7.19

Equation 7.21 and Table in [4] Figure 7.19 [22, 33] Equation 7.30 [39]

1.05 1.03 ÷ 1.05a 1.04 ÷ 1.05a

aMean value of three values of Table 7.11

14 William John Macquorn Rankine (1820–1872), Professor at the University of Glasgow, clarified
the phenomenon of fatigue in fractured axles in railway vehicles: “…the broken end of the journal
was convex, and necessarily the body of the axle was concave, until the thickness of sound iron in the
centre became insufficient to support the shocks to which it was exposed. It is therefore proposed,
in manufacturing axles, to form the journals with a large curve in the shoulder, before going to the
lathe, so that the fibre shall be continuous throughout” [48].
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(b)(a)

Fig. 7.37 From the top left Crack not loaded; crack loaded with the formation of flow lines at the
tip at 45◦; closing of the crack; advancement of the tip with residual traces of the first plastic shear;
b different stages of crack propagation

as can be seen in a railway disaster where an axle broke in proximity of a wheel,
Fig. 7.40.

Load cycles generally leave markings on the fractured surfaces, due to plastic
deformation at the crack tip generated by the crack progress. This generates a suc-
cession of so called beach marks.15 The formation of beach marks can be explained
by the model shown in Fig. 7.37 on the left. A formation mechanism of the marks on
the fracture surface is shown, while, on the right, the two typical stages of propaga-
tion (stage I and stage II) plus a final stage of fracture are shown: at the beginning
the process of fatigue is dominated by the maximum shear stress agent at 45◦ with
respect to the load direction and after that by the maximum tensile stress. Close to the
final rupture, the fracture follows a 45◦ direction, again controlled by shear stresses.

Macroscopic fractographic analysis describes the formation of marks limited to
stage II, while in the first stage they do not occur and for some materials are not
formed at all even in the second stage.

An example of this behavior is shown in Fig. 7.38. Qualitative but useful informa-
tion can be deduced on the state of stress from the careful observation of the fracture
surfaces and the shapes of the plastic beach marks:

• With the simple failure hypothesis of the maximum tensile stress (that is substan-
tially verified for many structural materials), it is possible to conclude that the
crack follows the shape of the second isostatics curve, materialized by a family of
the isostatics curves seen in Chap. 3.

• The beach marks are the traces of the crack front during the propagation phase.
They follow the laws of propagation examined in Chap. 9: the speed of a point

15 These marks, called also arrest lines are cancelled only if the fracture surfaces are cyclically in
contact.

http://dx.doi.org/10.1007/978-3-319-06086-6_3
http://dx.doi.org/10.1007/978-3-319-06086-6_9
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Fig. 7.38 Failure surface of a curved bar. The enucleation point, the propagation area and the final
brittle failure area at 45◦ can be detected

at the front of the crack strongly depends on the Stress Intensity Factor in that
direction.

• Let us consider a two-diameter shaft with an internal corner between the two parts.
Fractures nucleate close to the corner. The mark curvature on the fracture surface
depends on the stress level and on the three-axiality of the stress state, compare
Fig. 9.7 of Chap. 9: at the internal points of the mark line, characterized by a plane
strain state, the brittle propagation is favored, while at the surface points, in plain
stress state, the formation of a plastic barrier is present, see Figs. 9.4 and 9.5. The
shape of the beach mark is thus a balance of two different mechanisms: the surface
bi-axiality with a high stress level due to the concentration factor in the corner and
the internal three-axiality sustained by a lower principal stress level. According to
the sharpness of the corner, one of the two effects can prevail, originating different
curvatures for different cases.

7.11.1 Rotating Bending of a Shaft with Two Diameters

• In the case of a large corner radius between the two parts of the shaft, the maximum
stress concentration is localized at the shaft surface with the smaller diameter, due
to the stress trajectories shape that tend to be concentrated as shown at the top
of Fig. 7.39. The appearance of the fracture surface, which is flat, see dotted line,
is diversified for low and for high nominal stress, because in the first case marks
arise from a single nucleation point while in the second case they have multiple
origins. It is also possible to recognize the rotation direction of the shaft: in fact,
the marks’ asymmetry is due to the opening mode of the crack that is favored by
the first quarter of the sinusoidal stress cycle that tends to open the crack in the
phase of a rising stress.

• Conversely, in the case of a sharp corner, the maximum stress concentration occurs
in the corner itself.

http://dx.doi.org/10.1007/978-3-319-06086-6_9
http://dx.doi.org/10.1007/978-3-319-06086-6_9
http://dx.doi.org/10.1007/978-3-319-06086-6_9
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Fig. 7.39 Comparison between the position and the shape (dotted lines) of the fracture surfaces
for rotating bending in the case of smooth (top) and sharp (bottom) corners, for low (left) and high
(right) nominal stress

Fig. 7.40 Concave and convex surfaces in an axle in a railway failure

The appearance of the fracture surface, which is slightly curved and internal to the
larger cross-section, Fig. 7.40, differs for low and high nominal stress, respectively
as regards the origin of the progress lines from single or from several points. In
the first case, propagation is faster at the surface where the stresses are highest
with consequent change of the concavity of the marks. In the second case, the
propagation tends to be uniform over the entire surface of the fracture.
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Fig. 7.41 Comparison between the position and the shape (dotted lines) of the fracture surfaces
for unidirectional bending R = 0 in the case of uniform section (top), smooth (middle) and sharp
(bottom) corners, for low (left) medium (center) and high (right) nominal stress

7.11.2 Shafts in Bending at a Stress Rate R = 0

If the shaft cross-section is uniform along the length, the maximum bending stress is
constant along the surface. The trigger point is the weakest point, often due to a defect
at the surface. The curved and symmetrical shape of the marks indicates the unique
origin of the crack, and the concave shape of the beach mark that remains during the
propagation is a sign of a propagation speed that is higher internally, characterized
by states of three-axial stresses. The single origin and the final small residual area
statically broken are typical of a propagation at low nominal stress, Fig. 7.41. A large
final area conversely indicates a higher stress than the stress of the previous case.
Further, this surface is often characterized by multiple triggers and radial grooves
between the enucleation points and final closure of the marks. All of these points
indicate a high stress, Fig. 7.42.

In the case of geometrical discontinuity with a low stress concentration, a bending
moment applied in one direction (R = 0) gives rise to three cases:

1. the stress concentration in the surface fibers causes an increase in the propagation
speed at the surface, for which the marks’ concavity tends to change direction.
The single-source and the reduced final area both indicate a propagation at low
nominal stress.
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Fig. 7.42 Example of
fracture surface in a sharp
corner for (R = 0) bending
and high stress level

2. A final extended fractured area conversely indicates a nominal stress higher than
the previous case.

3. The case of multiple enucleation points and grooves between the points and final
connection of the marks indicates a very high nominal stress.

In the case of a sharp corner with high stress concentration, the crack propagates
in the internal direction of the biggest portion of the shaft, as shown in Fig. 7.41,
following the stress lines and the bending, gives rise to three cases, depending on
its level: slow mark convexity changes due to the higher surface stress than internal
stresses.

Faster convexity changes due to the higher surface stress, until marks surround
the area of final fracture.

Faster convexity changes due to the even higher surface stress, until marks sur-
round the area of the final fracture, with the nucleation starting from several surface
points.

7.11.3 Shafts in Bending at a Stress Rate R = −1

The previous description can be extended to the case of a bending in the vertical plane
Fig. 7.43, acting in both directions, R = −1. An example of a broken cylindrical pin
with constant cross-section and constant bending plane, subjected to low nominal
stress is shown in Fig. 7.43b.

7.11.4 Shafts in Torsion at Shear Stress Rate R = −1

Figure 7.44 shows two types of fracture for alternate torsion in both directions. The
first figure on the left side is characteristic of the fracture with a high number of cycles
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Fig. 7.43 Fracture surface for shafts in bending at stress rate R = −1

Fig. 7.44 Comparison between the fracture surfaces of a specimen with a circular cross-section
loaded in torsion statically and dynamically, at high number of cycles

and low stress level, in which the crack follows the line of the maximum principal
stresses σ1 and σ2 at 45◦ with respect to the axis.

In brittle materials or in conditions of brittle behavior (three-dimensional states of
stress), the micro-defects are formed directly from the discontinuities at the surface
or internally without the formation of beach marks and they propagate in the direc-
tion perpendicular to the maximum normal stress; the marks are not always visible
because the hammering of the surfaces of the crack resulting from the compressive
half-cycle, leaves smoothed areas, without marks.
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7.12 Influence of the Surface Finishing

The presentation of the stress analysis models for high cycle fatigue phenomenon
does not discuss the influence on fatigue of the surface state, since this very important
and fundamental aspect is of an empirical nature and is not modeled by mathemati-
cal laws.

The surface roughness is a result of micro notches on the surface and the average
roughness Rz is the parameter that represents them. The effect of surface condition
on the fatigue strength reduction is synthesized in a factor, called surface factor bs

(with value equal to 1 in the case of lapped surfaces). The trend of this factor is shown
in Fig. 7.45 as a function of average surface roughness and the static resistance Rm

of the material. An extensive presentation of this subject can be found in [22] where
a roughness factor and treatment and coating factors are shown and evaluated for
different cases.

The experimental analysis guarantees that phenomenological theories of
fatigue respect a principle of consistency between slender and massive bodies.

Moreover, phenomenological theories can be established without forcing
models against the empirical evidence: e.g., the theory of fatigue at a high
number of cycles can not be used to describe the dubious correlations between
the number of cycles and stresses of high amplitude. In these cases it is better
to abandon this theory.

This observation explains the need for a second fatigue theory based on the
local deformations that take the place, as control parameter, of the local stress
and gradient, concepts defined only in the elastic range.

Another critical aspect of the High Cycle Fatigue theory is the search for
a stress limit of the S/N curves for materials that have uncertain horizontal
asymptote: for a number of cycles of a higher order of magnitude, this con-
ventional limit may lose significance in establishing a level of safety for the
design against fatigue.

7.13 Dixon Method

The determination of the fatigue limit of a component is usually quite a difficult
task, as it requires the design and the development of a specific loading device. In
particular, it is important that the experimental set-up correctly reproduces the actual
load on the component during real service. One consequence is that performing tests
on real parts is quite an expensive task, which can be time consuming when a high
testing frequency cannot be used or if tests must be continued up to a huge number of
cycles at the fatigue limit. From the methodological point of view, some Standards are
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Fig. 7.45 Effect of the
surface state on fatigue
strength in high cycle fatigue lapped 
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available and can be followed for the design of the experiment and for the statistical
processing of the results. More details can be found in Refs. [49–53]. Among these
Standards, ISO 12107 2012 [52] is the most widely used, even if it has the drawback
of requiring a minimum of 15 tests to be performed to properly determine a fatigue
limit. Therefore, other methodologies may be adopted to achieve the determination
of the fatigue limit by a smaller number of tests.

This section deals with this issue: focus is given to the up & down method by
Dixon [54], with successful applications by Guagliano and Vergani in [55] and in
many other References, e.g. [44, 46, 56–59]. The following subsections deal with
its application for the conduction of a fatigue campaign and for the processing of the
results, along with their statistical assessment.

The up & down method can be used for any study concerned with sensitivity. In
the specific case of fatigue tests, the investigated sensitivity must be intended with
respect to the load amount, in particular to its range or its amplitude, considering
fully reversed or pulsating loads. For loads below the fatigue limit, the tested part
has theoretically infinite life. On the other hand, when an incremented load that
exceeds the fatigue limit is applied, failure occurs after a finite number of cycles.
The up & down procedure derives from the experimentations that were conducted
on explosives during the second world war.

Let us consider an experimental campaign aimed at the determination of the
minimum height, below which a bomb dropped from that height does not explode.
The first issue consists in a rough estimation of this height, usually based on previous
experimental or theoretical outcomes. Afterwards, a suitable height step, not too high
and not too low, must be chosen. The first test is performed dropping the bomb from
the approximately estimated minimum height. The height for the second test is then
provided by the outcome of the first test: if the bomb explodes, the height must be
decreased by one step. Otherwise, if explosion does not take place, a height increase is
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Fig. 7.46 Fatigue Testing on a tooth gear with shot peened steel

suggested. In synthesis, every test must be performed at the upper or at the lower level
with respect to the previous one, based on this simple approach. When considering
explosive testing, an explosion is traditionally indicated by the symbol X , whereas
a symbol O stands for a misfire.

Back to fatigue testing, the same symbols can be used, where X denotes sample
failure, whereas O stands for not-failure after a suitably selected number of cycles,
usually regarded as the run-out life. The following example shows how the UP &
DOWN method can be applied to a fatigue campaign and how the methodology by
Dixon [54] can be utilized for the estimation of the fatigue limit and for managing
its uncertainty.
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7.13.1 Case Study on the Determination of the Local Fatigue
Limit of a Mechanical Component

The described task is tackled here with reference to the fatigue limit of gears, con-
sidering bending fatigue at the tooth root.

The cyclic load is applied by a pair of twin punches, as shown in Fig. 7.46. The
load trend is basically a pulsating one, even if a non-zero minimum load is applied
to ensure the correct positioning of the gear with respect to the horizontal surfaces
of the punches throughout the test. As a consequence, the load ratio is not exactly
zero, but is increased to 0.1.

The tests are performed on a resonant testing machine, operating at a frequency
of approximately 110 Hz. The fatigue limit is initially determined in terms of the
maximum load (Fmax ) applied by the pair of punches. Afterwards, a simple linear
relationship, determined by Finite Element Modeling (FEM), will be introduced to
provide the conversion of loads into stresses.

The first step, like in the examples concerned with explosives, consists in the
estimation of the most likelihood value for the fatigue limit. In the present case, this
value is estimated, based on the material data (high strength steel), on the heating
and surface treatments (quenching, carburizing, shot-peening and super-finishing)
and on the literature [55, 57, 60–67]. The resulting value, in terms of Fmax , is 12 kN.
Afterwards, an important issue consists in the most proper choice of the load step.
This is not an easy choice, as in [54] it is specified that the most suitable value should
range between 0.5 and 2 σ , where σ stands for the standard deviation affecting the
fatigue limit. It is clear that problems arise from the occurrence that the value of
the standard deviation can be retrieved only at the end of the campaign. The only
available option lies in a reasonable estimation of the standard deviation and therefore
of the step value, with a final check of it being within the aforementioned interval.
Moreover, it is interesting to observe that the optimal value for the load step is the
result of a compromise. A low value would lead to a refined estimation of the fatigue
limit; however, it would require many tests, especially considering the many like
responses that could be obtained at the beginning of the series.

For instance, if the initial load value is too high, we could have many failure
responses before a not-failure occurs.

Conversely, if it is too low, many subsequent tests would lead to not-failure, before
having a failure outcome. On the other hand, a higher value is likely to lead to a coarse
estimation of the fatigue limit with a fewer number of trials.

In [54] a distinction is made between the overall number of fatigue tests and that
of the so-called nominal tests. This number, usually regarded as N , can be defined as
the total amount of tests (N ′), reduced by one less than the number of like responses
at the beginning of the series. The response of a fatigue test may be failure or not-
failure, when the test is stopped upon run-out (corresponding to the number of cycles
at the fatigue limit in the Wöhler curve). When considering specimens in steel, this
number usually lies between 106 and 5 ·106, to be incremented up to 107 for the sake
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of safety. For aluminium alloy samples, higher run-out values must be set, usually
between 107 and 108.

The Dixon method [54] makes it possible to roughly estimate the fatigue limit,
based on the results of even just two nominal tests. However, the recommended
amount for the nominal tests is at least 6, to obtain a sufficiently reliable result. The
uncertainty decreases, as the number of tests increases and becomes generally quite
low for 10 nominal tests (or more). The proposed formulation for the processing of
the experimental data and for fatigue limit computation depends on the number of
nominal tests. Two cases are possible: N between 2 and 6, or N beyond this amount.

7.13.1.1 Fatigue Limit for N Between 2 and 6

Table 7.14 shows the trend of the responses of the bending fatigue tests. The values
in the first column refer to the aforementioned Fmax. The symbols O and X have the
previously explained meaning. Based on previous studies [46, 56, 59], the values of
12 and 0.25 kN were respectively assumed as the initial value of Fmax and as the
load step. According to the up & down approach, the failure for the maximum load
of 12 kN led to the set-up of a following test, considering a lower Fmax, 11.75 kN. A
further failure led to the further decrease to 11.5 kN of the maximum load. This latest
test led to a not-failure response. Consequently, the maximum force was increased
by 0.25 kN: the following trial, with the maximum force set at 11.75 kN, led to a
not-failure response. Therefore, the load was increased again, and so on ….

As can be observed, considering the summary of the responses in Table 7.14, the
overall number of the trials (N ′) is 7, whereas the number of like responses at the
initial stages is 2. Thus, N = N ′ − 2 + 1 = 7 − 2 + 1 = 6. Considering the two
initial trials with the same response, i.e.: failure, only the second one (preceding the
trial that led to a not-failure result) must be considered in the computation of the
amount of the nominal tests. According to [54], the fatigue limit can be estimated as
in Eq. 7.45. Let X f _N≤6 be the fatigue limit at the 50 % probability of failure, and X0
the load level of the last test in the UP & DOWN sequence. X f _N≤6 is determined
from that of X0, with the addition of an adjustment term, k · d. The symbol d stands
for the load step, while k is a tabled coefficient that takes the failure/not-failure
sequence and the number of initial like responses into account. Its value is yielded
by Tables 7.15 and 7.16 [54], where every possible response series is listed.

Table 7.14 Summary of the
responses of the fatigue tests
(N ≤ 6)

Fmax (kN) Test number

1 2 3 4 5 6 7

12.00 X X

11.75 X O X

11.50 O X
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Table 7.15 Determination of the value of k, for initial not-failure responses (O) [54]

Second part of series k for initial like responses …

O O O O O O O O O O

X −0.500 −0.388 −0.378 −0.377

X O 0.842 0.890 0.894 0.894

X X −0.178 0.000 0.026 0.028

X O O 0.299 0.314 0.315 0.315

X O X −0.500 −0.439 −0.432 −0.432

X X O 1.000 1.122 1.139 1.140

X X X 0.194 0.449 0.500 0.506

X O O O −0.157 −0.154 −0.154 −0.154

X O O X −0.878 −0.861 −0.860 −0.860

X O X O 0.701 0.737 0.741 0.741

X O X X 0.084 0.169 0.181 0.182

X X O O 0.305 0.372 0.380 0.381

X X O X −0.305 −0.169 −0.144 −0.142

X X X O 1.288 1.500 1.544 1.549

X X X X 0.555 0.897 0.985 1.000

X O O O O −0.547 −0.547 −0.547 −0.547

X O O O X −1.250 −1.247 −1.246 −1.246

X O O X O 0.372 0.380 0.381 0.381

X O O X X −0.169 −0.144 −0.142 −0.142

X O X O O 0.022 0.039 0.040 0.040

X O X O X −0.500 −0.458 −0.453 −0.453

X O X X O 1.169 1.237 1.247 1.248

X O X X X 0.611 0.732 0.756 0.758

X X O O O −0.296 −0.266 −0.263 −0.263

X X O O X −0.831 −0.763 −0.753 −0.752

X X O X O 0.831 0.935 0.952 0.954

X X O X X 0.296 0.463 0.500 0.504

X X X O O 0.500 0.648 0.678 0.681

X X X O X −0.043 0.187 0.244 0.252

X X X X O 1.603 1.917 2.000 2.014

X X X X X 0.893 1.329 1.465 1.496

X f _N≤6 = X0 + k · d = 11.5 + 0.266 · 0.25 = 11.57 kN (7.45)

The value of 0.266 was determined for the parameter k, considering the sequence
X X − O O O X X and Table 7.16. Finally, the last step consists in the determination of
the local fatigue limit at the component reference point. In this case, considering the
gear geometry, it was determined at the tooth root. This issue is usually tackled by
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Table 7.16 Determination of the value of k, for initial failure responses (X ) [54]

Second part of series −k for initial like responses …

X X X X X X X X X X

O −0.500 −0.388 −0.378 −0.377

O X 0.842 0.890 0.894 0.894

O O −0.178 0.000 0.026 0.028

O X X 0.299 0.314 0.315 0.315

O X O −0.500 −0.439 −0.432 −0.432

O O X 1.000 1.122 1.139 1.140

O O O 0.194 0.449 0.500 0.506

O X X X −0.157 −0.154 −0.154 −0.154

O X X O −0.878 −0.861 −0.860 −0.860

O X O X 0.701 0.737 0.741 0.741

O X O O 0.084 0.169 0.181 0.182

O O X X 0.305 0.372 0.380 0.381

O O X O −0.305 −0.169 −0.144 −0.142

O O O X 1.288 1.500 1.544 1.549

O O O O 0.555 0.897 0.985 1.000

O X X X X −0.547 −0.547 −0.547 −0.547

O X X X O −1.250 −1.247 −1.246 −1.246

O X X O X 0.372 0.380 0.381 0.381

O X X O O −0.169 −0.144 −0.142 −0.142

O X O X X 0.022 0.039 0.040 0.040

O X O X O −0.500 −0.458 −0.453 −0.453

O X O O X 1.169 1.237 1.247 1.248

O X O O O 0.611 0.732 0.756 0.758

O O X X X −0.296 −0.266 −0.263 −0.263

O O X X O −0.831 −0.763 −0.753 −0.752

O O X O X 0.831 0.935 0.952 0.954

O O X O O 0.296 0.463 0.500 0.504

O O O X X 0.500 0.648 0.678 0.681

O O O X O −0.043 0.187 0.244 0.252

O O O O X 1.603 1.917 2.000 2.014

O O O O O 0.893 1.329 1.465 1.496

FEM, in order to find a relationship between the applied load and the corresponding
locally generated stress. For instance, in the described application, one-eighth of the
gear (a quarter cut along a plane perpendicular to the gear axis) was meshed by solid
eight-node linear brick elements and constrained for a free rotation around its axis
[46, 56, 59].
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The FEM simulation included also one infinitely rigid punch, transmitting a force
to the tooth face. Further details are provided in Fig. 7.47. Numerical modelling in
the linear-elastic field led to the simple linear relationship in Eq. 7.46, based on the
occurrence that a 10 kN load transmitted by the pair of punches generates a stress of
1115 MPa at the tooth root.

The local fatigue limit corresponding to the previously determined (Eq. 7.45) load
of 11.57 kN is indicated as σ f _N≤6 (cycle peak in terms of local stress) in Eq. 7.46

σ f _N≤6 = 1115

10
· 11.57 = 1290 MPa (7.46)

7.13.1.2 Fatigue Limit for N Exceeding 6

The experimental campaign described in Sect. 7.13.1.1 was continued, proceeding
with the up & down series. Following the failure response for the maximum force of
11.5 kN, the related value was decreased to 11.25 kN. A summary of all the responses
is contained in Table 7.17.

Therefore, considering this augmented campaign, the overall number of trials is
10, with 2 like responses at the beginning. Thus, the number of nominal tests is:
N = N ′ − 2 + 1 = 10 − 2 + 1 = 9, for the full sequence X X − O O X X X O O X .

According to [54], the fatigue limit X f _N>6 at the 50 % probability of failure for
N exceeding 6 must be computed as in Eq. 7.47.

X f _N>6 =

N
∑

i=1

Xi

N + d·(A+C)
N

= 12+11.75·4+11.5·3+11.25
9 + 0.25·(−1.53−0.16)

9 = 11.59 kN

(7.47)

In Eq. 7.47 the symbol Xi stands for the load levels of the nominal tests, whereas
A and C are tabled coefficients, related to the failure/not-failure sequence and to the
number of like responses at the beginning of the series.

They can be determined, based on the data in Tables 7.17, 7.18 and 7.19 [54],
where nX and nO stand respectively for the number of nominal tests with failure and
with not-failure responses.

In the present case, we have nX − nO = 5 − 4 = 1 and, considering the
initial failure events, the data in Table 7.19 must be used. It can be observed that
the estimated value for the fatigue limit, X f _N>6 = 11.57 kN, is very close to that
determined in the previous Paragraph (X f _N≤6 = 11.59 kN).

The local fatigue limit is finally computed by the same linear relationship
described above. Its value, corresponding to the previously determined maximum
load of 11.59 kN (Eq. 7.47) is determined in Eq. 7.48 and indicated by the symbol
σ f _N>6 (cycle peak in terms of local stress).
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Fig. 7.47 Scheme of numerical stress analysis of the tooth gear

Table 7.17 Resume of the responses of the fatigue tests (N > 6)

Fmax [kN] Test number nO nX

1 2 3 4 5 6 7 8 9 10

12.00 X X 0 1

11.75 X O X X 1 3

11.50 O X O 2 1

11.25 O 1 0

Table 7.18 Determination of the parameters A and C , for initial not-failure responses (O) [54]

nO − nX A C for initial like responses …

O O O O O O O O O O O O O O O

5 10.8 0 0 0 0 0

4 7.72 0 0 0 0 0

3 5.22 0 0.03 0.03 0.03 0.03

2 3.20 0 0.10 0.10 0.10 0.10

1 1.53 0 0.16 0.17 0.17 0.17

0 0 0 0.44 0.48 0.48 0.48

−1 −1.55 0 0.55 0.65 0.65 0.65

−2 −3.30 0 1.14 1.36 1.38 1.38

−3 −5.22 0 1.77 2.16 2.22 2.22

−4 −7.55 0 2.48 3.36 3.52 3.56

−5 −10.3 0 3.5 4.8 5.2 5.3



7.13 Dixon Method 319

Table 7.19 Determination of the parameters A and C , for initial failure responses (X ) [54]

nX − nO −A −C for initial like responses …

X X X X X X X X X X X X X X

5 10.8 0 0 0 0 0

4 7.72 0 0 0 0 0

3 5.22 0 0.03 0.03 0.03 0.03

2 3.20 0 0.10 0.10 0.10 0.10

1 1.53 0 0.16 0.17 0.17 0.17

0 0 0 0.44 0.48 0.48 0.48

−1 −1.55 0 0.55 0.65 0.65 0.65

−2 −3.30 0 1.14 1.36 1.38 1.38

−3 −5.22 0 1.77 2.16 2.22 2.22

−4 −7.55 0 2.48 3.36 3.52 3.56

−5 −10.3 0 3.5 4.8 5.2 5.3

σ f _N>6 = 1115

10
· 11.59 = 1292 MPa (7.48)

7.13.2 Statistical Analysis of the Results

The previous Sections have dealt with the estimation of the fatigue limits, based
on the experimental results. However, a statistical analysis is required to determine
the reliability of the retrieved values. Moreover, an important issue consists in the
estimation of the confidence interval to be applied to the retrieved limit, depending
on the scattering of the results that led to its computation.

The recommended procedure for the statistical analysis is explained here with
reference to the case in Sect. 7.13.1.2 (with 9 nominal tests) due to the greater sta-
tistical evidence of the results. However, the data can be processed in the same way
for whatever number of nominal tests, below or above 6.

The first step consists in the assumption that the critical levels of stress or load,
considering fatigue failure, are normally distributed. Let μ ans σ 2 be the mean value
and the variance of the corresponding stochastic distribution. Their real values could
be determined only if a very largely sized (theoretically infinite) data population were
available. For a limited size database, their maximum likelihood estimates can be
processed, based on the mean value and on the variance of the available test results.
Indicating the stress or load levels by the letter y, the symbol ȳ is used here to denote
their mean values and s2

y to indicate their variance.
One important issue consists in the remark that only failure or only not-failure data

must be used in the following computations, depending on which has the smaller
total. In other words, first of all, it is necessary to establish if there were fewer
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failure (symbol X ) or fewer not-failure (symbol O) responses. In the experiment
described in Sect. 7.13.1.2 there were fewer not-failures (4) rather than failures (5)
(see Table 7.17), therefore, only the not-failure data must be used. Let n stand for
the smaller total of events (in this case: n = nO = number of not-failure events),
and let n0, n1, n2, …, ni , …, nk denote the frequencies of the less frequent event,
where n0 is related to the lowest level and nk corresponds to the highest. It must be:
∑k

i=0 ni = n. The following equations provide details on the computation of the
mean ȳ, of the mean estimate μ, and of the standard deviation σ (Table 7.18).

Considering the results in Sect. 7.13.1.2, the not-failure events O occurred at
11.25, 11.5 and 11.75 kN, which are respectively levels 0, 1, and 2. Therefore, the
corresponding frequencies are: n0 = 1, n1 = 2 and n2 = 1, with n = 4. The mean
ȳ is yielded by Eq. 7.49.

ȳ =

k
∑

i=0

ni yi

k
∑

i=0

ni

= n0 y0 + n1 y1 + n2 y2

n0 + n1 + n2
= 11.25 + 2 · 11.5 + 11.75

1 + 2 + 1
= 11.5 kN (7.49)

The estimate for μ is given by the previously computed fatigue limit X f _N>6.
The estimation of the standard deviation σ is achieved by Eq. 7.50. This is an

empirical relationship, having the particular feature of providing the estimate of σ

as a linear function of the variance s2
y , whereas it could be expected that σ 2 ∝ s2

y .
As a first step, the variance term must be computed, as in Eq. 7.50.

s2
y =

k
∑

i=0

[

ni · (y1 − ȳ)2
]

k
∑

i=0

(ni ) − 1

= 0.042 kN2 (7.50)

σ ≈ 1.62 ·d ·
(

s2
y

d2 + 0.029

)

= 1.62 ·0.25 ·
(

0.042

0.252 + 0.029

)

= 0.28 kN (7.51)

The expression in Eq. 7.51 may be regarded as an acceptable estimation of the stan-
dard deviation σ , when the ratio s2

y/d2 is higher than 0.3. Otherwise, it becomes
quite rough in the determination of σ on the basis of s2

y , when the aforementioned
ratio is much lower than 0.3.

Considering the linear relationship between the applied load and the generated
local stress determined in Sect. 7.13.1.1, a standard deviation of 0.28 kN corresponds
to 31 MPa.

An important issue at this stage consists in the computation of the ratio between the
step entity and the standard deviation, i.e.: d/σ . In this case we have: d/σ = 0.89:
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the retrieved value is well contained in the interval between 0.5 and 2, which confirms
the good choice of the load step and makes sure of the reliability of the determined
fatigue limit.

As a final step, the standard error σ̄ must be computed. According to [54], consid-
ering a normally distributed data population, σ̄ can be approximated as σ · √

2/N .
N indicates again the overall number of the nominal tests and the ratio N

2 is very
close to n. In the present case, the standard error, which accounts for the scattering of
the results in Sect. 7.13.1.2, Table 7.17, is 0.13 kN. This outcome makes it possible
to finally compute a confidence interval to be applied to the fatigue limit X f _N>6
computed in Eq. 7.47. The procedure for the computation of the 95 % confidence
interval is shown in Eq. 7.52.

X f _N>6 ± 1.96 · σ̄ = 11.59 ± 1.96 · 0.13 = [11.33; 11.85] (7.52)

Considering again the linear relationship determined in Sect. 7.13.1.1, the standard
error in terms of stress is 14.5 MPa. As a consequence, the 95 % confidence interval
for local stresses is between 1263 and 1321 MPa. The real value of the local fatigue
limit is likely to be contained within this interval.
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Chapter 8
Local Strain Models for Variable Loads

Abstract In many practical applications of fatigue loadings with low amplitudes a
number of higher load cycles are applied that overcome the threshold of the material
yield strength, even if only locally. This circumstance is not taken into account by
the classic theory of fatigue at a high number of cycles that assumes elastic states
of stress at any point of a loaded body and a limited micro-plasticity at critical
points. In the field of high load cycles, damage due to local plasticity is instead
the governing phenomenon. Simulation models are developed based on a strain-
controlled approach, especially in the cases of complex (i.e. not constant but time-
varying) loads amplitudes. This local nonlinear cyclic behavior leads to a damage that
occurs for a limited number of cycles < 5×104. This numerical limit is conventional,
based on experience and therefore subjected to different estimations by different
authors. A similar convention emerges in establishing the test conclusion when the
first visible crack appears (an event subjected to interpretation).

The fatigue process in real structures or in samples during laboratory tests, shows
a damage evolution at different characteristic stages, see also Fig. 7.37 in Chap. 7:

1. A initial stage characterized by a number of load cycles (hereinafter also
referred to a portion of component life), up to the nucleation of initial barely
visible defects of the order of magnitude of 0.5 ÷ 1 mm that are limited to
the first material grains.

2. A stage of propagation up to a critical crack size. When this value is reached,
a complete static rupture of the specimen occurs.

While the first stage is not practically discernible in High Cycle Fatigue due to
the rapid cycles accumulation, so that only the final rupture is considered a reli-
able parameter for a fatigue limit evaluation, in the case of Low Cycle Fatigue, the
first limit must be identified by the record of the cycles corresponding to a crack
nucleation, even if with a certain approximation and conventionality. The num-
ber of load cycles until the formation of the first visible defects may constitute a
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significant part of the total component life: in some design methodologies only
the life up to the formation of the first defect is considered useful.

The second phase relative to propagation of macroscopic defects, is the classic
fatigue propagation phase. The propagation of a crack until it reaches a critical
dimension may, in some cases, constitute a significant portion or even the only
acceptable period of life.
This stage is interpreted by the Fracture Mechanics models, see Chap. 9.

8.1 Experimental Analysis of Local Deformation

A Low Cycle Fatigue Theory must take into account all the following limitations:

• The developed models must restrict the analysis to a local non-linear behavior
of small areas at high stress and strain concentrations, since the phenomenon is
localized, while the remaining part of the body still exhibits elastic behavior [1].

• The uncertainty on the resolution of the defect visibility at the test end (even if
validated by NDT techniques and by measurements on the compliance of the body),
must overcome the limit of a personal judgment, such as to allow a comparison
between results obtained in different laboratories on identical materials.

• The theory must be able to handle the possible variation of the load amplitudes
over time. This is a reasonable problem when stress amplitudes remain in elastic
field and can be collected in stress spectra, Chap. 7 and [2], while when cycle
amplitudes exceed the elastic limit, the local damage depends not only on the
parameters of the cycle but also on the entire previous load history. In this case,
the actual sequence of the load cycles must be taken into account, since material
(over the elastic limit) maintains a memory of the previous loads and they can not
be collected in spectra, insensitive to the sequence.

• As it was seen in Chap. 7, under variable amplitude loading the definition of load
cycles can become ambiguous and in the new Low Cycle fatigue theory it is
preferable to define load reversals. At constant amplitude one cycle consists of
two reversals.

• Finally, it is necessary to establish a theory that takes into account high load cycles,
for which material locally exceeds the elastic limit [3, 4] but it is also able to con-
sider loads with low amplitudes with stresses that remain in the elastic field [5, 6].

8.2 Laboratory Testing

Figure 8.1 shows two commercial servo-hydraulic universal testing machines used
for low but also for high cycle fatigue tests; the presentation in this chapter is justified
by their specific capability of controlled deformation by a sensor mounted on the

http://dx.doi.org/10.1007/978-3-319-06086-6_9
http://dx.doi.org/10.1007/978-3-319-06086-6_7
http://dx.doi.org/10.1007/978-3-319-06086-6_7


8.2 Laboratory Testing 327

Fig. 8.1 Example of universal testing machines of 250 and 500 kN capacity (INSTRON Ltd.)

specimen itself. This is a special device on the specimen or a simple strain gage
placed at a reference point. The machines also employ high stiffness load cells of
the kind shown in Chap. 2.

They work under ideal conditions for frequencies in the interval 0.01 ÷ 5 Hz,
while they are not the most suitable for high-frequencies due to the strain controlling
difficulty. Large deformations, typical of low cycle fatigue, would also be incompat-
ible with high frequencies due to the overheating of the specimen and other serious
drawbacks.1

In Fig. 8.2, in order to perform tests in special environments, e.g. at low tem-
peratures in cryogenic conditions, a frame was designed with a hydraulic cylinder
mounted on the upper cross-head and a tank for liquid nitrogen to the lower cross
member. This avoids a possible damage by a leakage of nitrogen on the cylinder of
the classic testing machines.

On the basis of these premises of a physical character, it is necessary to develop
several models for the simulation of each of the following steps [7–9]:

• Simulation of cyclic behavior in the elastic-plastic field.
• Simulation of geometrical discontinuities beyond the elastic limit.
• Simulation of the strain-controlled fatigue life.
• Simulation of loads sequences of variable amplitudes.
• Simulation of the damage for each load cycle and of the accumulated damage for

the whole load history.

1 Details in A.S.T.M. standardized procedure to determine the fatigue curve in deformation control
for lives at low number of cycles, in accordance with ASTM—StandardE606−12.

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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Fig. 8.2 Special self-manufactured testing apparatus with the hydraulic cylinder on the upper
cross-head for 250 kN tests, without and with a tank for liquid nitrogen for low temperature and
low cycles fatigue tests

8.3 Strain-Controlled Versus Stress-Controlled Tests

Let us consider a sample of homogeneous and isotropic material and analyze the
relationship between stress and strain at a point. The material shows an asymmetry
of behavior if, after loading in tension beyond the yield point, the specimen is loaded
in compression Fig. 8.3a, since the yield strength in compression is affected by the
previous tensile load, Bauschinger effect.

2 a 

2 p 2 e 

2 t 

(b)(a)

Fig. 8.3 a Stress/strain diagram for a compression after tension (Bauschinger effect) and b a
hysteresis cycle. Symbols σa = stress amplitude, εt = total strain amplitude, εe = elastic strain
amplitude, εp = plastic strain amplitude
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If, however, the specimen is reloaded several times, maintaining the interval of
the applied strain constant, hysteresis cycles are generated that tend to stabilize on a
final shape after a certain number of load cycles, Fig. 8.3b.

8.3.1 Repeated Loading in Stress-Controlled Tests

Figure 8.4a, b shows the material response for stress-controlled axial load. Differ-
ences of behavior of the stabilized loop depend on the state of the material before the
test: a soft materials show cyclic hardening and cold-worked materials show cyclic
softening.

8.3.2 Repeated Loading in Strain-Controlled Tests

If the specimen is loaded with a constant amplitude of the applied strain, the behavior
of the material is characterized by hysteresis cycles that tend to stabilize after a certain
number of load cycles, reducing or increasing the value of the maximum cycle stress;
a soft material shows cyclic hardening and vice-versa a cold-worked material shows
cyclic softening Fig. 8.5. When the specimen is loaded and unloaded several times
while keeping the strain amplitude at constant value, a new stress/strain curve can be
defined that synthetically represents the cyclic behavior of the material. It is obtained
with the following procedure:

• A series of cycles of constant strain amplitude are applied to the sample; the
hysteresis cycle tends to stabilize on a final configuration.

stabilized cycle

first cycle

+ a 

a 

first cycle

stabilized cycle

+ a 

a 

(b)(a)

Fig. 8.4 Stress-controlled axial load: a cyclic hardening of a material initially annealed and b cyclic
softening of a material initially cold-worked
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Fig. 8.5 Stress-strain behavior for strain-controlled axial load: a cyclic hardening of a material
initially annealed and b cyclic softening of a material initially cold-worked

St
re

ss
 

Strain 

Static Curve 

Cyclic Stress/Strain Curve 

Fig. 8.6 Device for strain control (Instron Ltd.), mounted on the specimen and envelope of the
cuspids of the stabilized hysteresis loops for building the cyclic curve

• Strain amplitudes are increased by a discrete quantity and a second hysteresis loop
is obtained and stabilized.2

• The procedure is repeated for a number of increased strain amplitudes.

The cuspids envelope of the cycles of stabilized hysteresis cycles is named the cyclic
stress/strain curve of a material.

Figure 8.6 on the left shows a device named extensometer, mounted on a cylindri-
cal specimen. The axial extensometer controls the deformation through the displace-
ment measurement between two points on the surface of the specimen, at a certain
distance one to another. Its simple scheme is presented in Chap. 9, Sect. 9.6.1.2. Pos-
sible alternatives to the use of an axial extensometer like that in Fig. 8.6 consist
in the application of a transverse extensometer (also known as diametral clip gage)

2 Using the same specimen could produce results invalidated by the material training by the previous
cycles. The best practice is the use of a new specimen for each test.

http://dx.doi.org/10.1007/978-3-319-06086-6_9
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[10–12] or in the adoption of an optical extensometer [13–17]. However, these devices
are rarely utilized for closed loop control of the testing machine due to insufficient
measurement accuracy and reliability [18]. A further alternative, which is suitable for
closed-loop strain-controlled testing of both uniform gage and hourglass specimens,
is described in [18].

The same Figure on the right shows the hysteresis loops of several constant strain
amplitudes and the cyclic stress/strain curve obtained by the envelope of the cuspids
of hysteresis cycles (continuous line). It is compared with the static stress/strain curve
(dotted line).3

8.4 Model for Material Behavior

The behavior of the material in the elasto-plastic field (the constitutive law between
stress and strain) is considered independent of the presence or absence of a notch and
can therefore be determined with the reference to smooth specimens. The simplest test
is on a cylindrical specimen loaded in tension/compression, in which the constitutive
law concerns a single stress and a single strain parameter.

In the case of multi-axial states of stress varying with the time, the problem
becomes much more difficult and a general method to deal with it is not yet known.
However, a considerable effort was made for classify and regularize the cases that can
be approached and it is necessary to refer to the literature to find possible solutions.
Multi-axial stresses varying with time have to be classified as follows [2]:

• proportional stresses,
• synchronous stresses,
• non-proportional stresses.

Here, the presentation will be limited to the most simple assumption of the first case of
proportional stresses when all stresses at a reference point of an element vary propor-
tionally to each other in amplitudes and also in mean value, or at least of synchronous
stresses in which proportionality is limited to the stress amplitudes. This hypothesis
can be accepted, due to the prominent importance of the amplitudes compared to the
mean values, with regard to the influence on the fatigue strength of a component.

In these cases it is possible to approximate the behavior of multi-axial stress states
through equivalent stress and strain.4

3 A difficulty could occur in the identification of the stabilized hysteresis loop. Often, depending on
the material and strain level, dynamic stability is not reached, i.e. stress amplitude corresponding
to an imposed strain amplitude tends to vary continuously during the test and, in some cases, until
the rupture of the specimen. In this case a conventional definition of stabilized cycle is given, as the
hysteresis cycle that corresponds to the mid-life of the specimen, i.e. to the half number of cycles
to failure.
4 In the case of components with states of non-proportional biaxial or triaxial stress (with loads agents
not in phase with each other), in order to establish some reasonable estimation of the component
strength, the reference specimen for analyzing the cyclic properties of the material must be arranged
in such a way as to reproduce the same phase relationships that occur in reality [2, 19].
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For the analytic representation of the cyclic curve, the same formula seen for the
static case is utilized, but with an update of the parameters that describe the material
(i.e. K ′ and n′):

εt = εe + εp = σ

E
+

( σ

K ′
)1/n′

(8.1)

In Eq. 8.1 the symbols have the following meaning, referring to Fig. 8.3:

• σa = true stress amplitude
• εa = total true strain amplitude
• εe = true elastic strain amplitude
• εp = true plastic strain amplitude
• K ′ = cyclic strength coefficient
• n′ = cyclic strain hardening exponent.

The cyclic curve permits the analytical description of the ascending and descending
branches of the hysteresis cycles that have generated it. For the way in which it was
obtained, if the lower cuspids are overlapped and the rectilinear ascending parts of
all the cycles are superimposed, the higher cuspids lie on a curve that is homothetic
with respect to the cyclic curve in a ratio 2 : 1, i.e. the branches can be described by
the same Eq. 8.1 as long as the variables σ and ε are replaced with the new variables
σ/2 and ε/2, Fig. 8.7.

The ascending and descending curves of the hysteresis loops can then be described
by the following equations, using the amplitudes of stress and strain for referring

Fig. 8.7 Similarity between the cyclic curve and the branches of the hysteresis loops
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them to the origin of the diagram:

ε − εr

2
=

(σ − σr

2E

)

+
(σ − σr

2K ′
)1/n′

εr − ε

2
=

(σr − σ

2E

)

+
(σr − σ

2K ′
)1/n′

σr e εr are the cuspids coordinates, i.e. the inversion point of the preceding cycle,
taken as the origin.

Both equations can be summarized in one: Eq. 8.2:

Δεt

2
= Δεe

2
+ Δεp

2
=

(Δσ

2E

)

+
( Δσ

2K ′
)1/n′

. (8.2)

8.4.1 Concentration Factors for Variable Loads

Similarly to the static case,at the root of the notch the elastic limit can be exceeded
and a small plastic zone is formed. Since the surrounding material behaves elastically,
the strain in the plastic zone, as the load increases, tends to be redistributed at the
points contiguous to the most loaded ones, with the same mechanism discussed for
static loads.

For variable strains, the model of Neuber is still appropriate [20] for simulating the
local values of stress and strain. The model given for monotonically increasing loads:

Kε · Kσ = K 2
t

can be extended to describe the stress and strain that arise at the first monotonic
increment of load at the reference point.

For cyclically variable loads, the relation is still valid if it is referred to the new
reference system located in the cycle hysteresis cuspids and the concentration factors
are defined in this way:

Kε = Δε

Δe
Kσ = Δσ

ΔS
Δε · Δσ = K 2

t · Δe · ΔS (8.3)

Equation 8.3, associated with Eq. 8.2, gives the local stress and strain at the root
of the notch if the ranges of variation of the nominal stress and strain are known.

With reference to slender bodies, Eq. 8.3 with the coordinates Δσ −Δε describes
an hyperbola with origin at the reversal points, while the Eq. 8.2 describes the ascend-
ing or descending branch of the hysteresis curve. The hyperbola passes through the
point with coordinates: Kt · Δe − Kt · ΔS, the virtual stress and strain that would
occur in the elastic hypothesis, while the common point of both curves gives the real
values in elasto-plastic hypothesis.
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Exercise 8.1 (Local Stress and Strain for cyclic deformation) Suppose, to better
highlight the role of variables loads, that the parameters of the material are the same as
the static case, Sect. 6.8 in Chap. 6. The material has not suffered, as a result of fatigue,
cyclic hardening or softening. Then: K ′ = 1,400 MPa, n′ = 0.14e Kt = 3. The ele-
ment is subjected to alternate fatigue load which produces a nominal alternate stress:

(ΔS/2) = ±360 MPa

Calculate stress and strain amplitudes at the bottom of the notch under the hypothesis
of a stabilized hysteresis loop.

Equations are the following:

Δε · Δσ = K 2
t · Δe · ΔS = K 2

t ΔS2

E

Δε

2
= Δσ

2E
+

( Δσ

2K ′
)1/n′

Substituting the numerical values Δε · Δσ = 22.22

Δσ

2 · 22.22
− Δσ

2 · 2.1 · 105
−

(

Δσ

2 · 1,400

)1/0.14

= 0

from which: Δσ = 1,651 MPa e Δε = 1.35 %
The hysteresis loop is characterized by the previous data with mean value equal to:

σm = 0 εm = 0.

8.5 Fatigue Life Model in Strain Controlled Problems

For the previous reasons, the strain is the dominant factor in Low Cycle Fatigue,
and it is more significant to simulate the fatigue life curves in terms of the strain
amplitude instead of the stress amplitude.

Curves strain/number of cycles or, better, strain versus the number of reversals
in double-logarithmic coordinates, are schematically shown in Fig. 8.8.5 The curve
obtained by fitting experimental data is described by the following equation:

Δε

2
= Δεe

2
+ Δε

2
= σ ′

f

E
(2N )b + ε′

f (2N )c (8.4)

5 Reversals number (equal to the double number of cycles) distinguishes the semi-cycle with positive
strains from the semi-cycle with negative strains and it is more suitable to describe the load history.

http://dx.doi.org/10.1007/978-3-319-06086-6_6
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Fig. 8.8 Fatigue life curve with the local strain amplitude compared with the number of load
reversals (equal to the double of the load cycles number)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σ ′
f = fatigue strength coefficient

ε′
f = fatigue ductility coefficient

c, b = fatigue strength exponent and fatigue ductility exponent

E = elasticity modulus

The symbols used in this representation have an historical reason.
In the early years of the theory development, in the absence of direct experi-

mental data, any efforts were made to establish correlations between σ ′
f , ε′

f , c
and b and parameters obtained by static tests.

Today this effort is a non-sense: in any case, methods to simulate the fatigue
behavior avoiding fatigue tests must not be encouraged, because they have to
be considered scientifically poor and detrimental with respect to the evidence
of this phenomenological theory and perhaps greatly dangerous in instilling
false conclusions. The value of the fatigue tests resides in the fact that they are
precisely fatigue tests, i.e. they record the material behavior over the time and
clearly demonstrate the cumulate damage phenomenon.

Each term of the sum in Eq. 8.4 in a double-logarithmic diagram is represented
by a straight line:

{

ln(σ ′
f /E) + b ln(2N )

ln ε′
f + c ln(2N )
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Fig. 8.9 Influence of a mean stress on the strain fatigue curve

The curve Δε/2 = f (2N ) is obtained summing both functions (not the logarithm
of the functions!). The fatigue curve is obtained by the logarithm of this sum.

8.5.1 Influence of the Mean Stress

Given a local strain amplitude, the presence of a local average tensile stress in the
hysteresis loop reduces the number of load reversals to a first visible crack, and vice-
versa for a local mean compression stress. The following model quantifies the extent
of this effect:

Δε

2
= σ ′

f − σm

E
(2N )b + ε′

f (2N )C (8.5)

It is assumed that the presence of a mean stress changes only the elastic part of
the equation, Fig. 8.9 (A mean stress, like other kinds of residual stresses, would be
cancelled by plastic deformation). Other models take into account the mean stress
influence in different ways [21].

8.6 Model for Variable Amplitudes

If the hysteresis cycles for a variable load are built according to the described models,
following the loadings cycles step by step, Fig. 8.10a, the local hysteresis loops are
not closed, but some branches of them cut the preceding ones as in the example in the
Figure, and the final point 7 does not necessarily coincide with the point 1, Fig. 8.10b.

In the physical reality, the hysteresis larger loop is not affected by smaller inter-
mediate hysteresis loops: when smaller cycles follow a larger incomplete hysteresis
cycle if, after such interruptions, the load increases again at the previous level, the
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Fig. 8.10 Building of hysteresis cycles by Ramberg-Osgood and Neuber equations: a loads
sequence, b hystereses cycles respecting the sequence but not the memory effect of the mater-
ial and c hystereses cycles respecting the sequence and the memory

material remembers the previous history and completes the local stress-strain cycle
that had been interrupted, as shown in Fig. 8.10c.

To overcome this discrepancy between reality and model, the steps in the following
sections are necessary.

It is remarkable to observe that a local mean stress of the hysteresis loop can
arise even in the absence of an applied mean load.

If a series of cycles of constant amplitude is preceded by a cycle of larger
amplitude, the subsequent hysteresis cycles assume a local positive or negative
mean stress depending on whether the first starting branch of the cycle is
increasing in a positive or in negative direction.

In other words, the actual sequence of load cycles is responsible for the
onset of the states of positive or negative residual stress, thus of the fatigue life
of the component itself. Life can be shortened or lengthened compared to the
case of the absence of the first load cycle.

A mean non-zero local stress can thus occur in the absence of the mean
value of the load and the sign depends upon the sequence of load cycles.
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8.6.1 Cycle Counting Method

For High Cycle Fatigue estimation it was necessary to develop methods of counting
the load cycles for reducing and synthesizing the loads history in stress spectra for
the amplitudes and mean values.

For Low Cycle Fatigue the counting procedures also have the task of establishing a
procedure for building the local hysteresis cycles, respecting the real loads sequence,
since the overcoming of the plastic limits is an irreversible action that needs the
temporal load sequence to be respected.

The real load sequence must be reduced to an equivalent sequence of closed load
cycles. This is the first step in order to generate local closed hysteresis loops, through
which a damage evaluation is possible. For this purpose a counting method due to
Matsuishi and Endo [22] named Rainflow, is able to identify closed load cycles
equivalent to real load sequence.6

If the method is applied to the sequence of loads shown in Fig. 8.10a, three equiva-
lent closed loading cycles are identified that generate the following closed hysteresis
loops (1−2−7) (3−4−3′) (5−6−5′).

The method starts by identifying as first the larger load cycle, cutting out with hor-
izontal lines cycles of smaller amplitudes, and subsequently identifying the smaller
cycles in descending order, using the same rule. This method of counting, even if it
reduces the actual series to a series of closed cycles, keeps the actual sequence of
hysteresis loops, respecting the memory of the material.7

In this way, the different hysteresis loops are obtained closed and in proper
sequence, attached one after the other, at the points identified by the intersection
between the ascending branch of the hysteresis cycle and the Neuber hyperbola, that
have the same origin as the hysteresis branch. By means of this artifice the hysteresis
loops take the appearance of Fig. 8.10c.

8.6.2 Damage Per Cycle and Accumulated Damage

The way to assess the local damage due to a cycle is the following: for each i th
cycle the amplitude εi and the mean stress σm i are determined and can enter the
mathematical model of Eq. 8.5. Solving this equation, or utilizing the corresponding
fatigue curve of Fig. 8.9, gives the reversals to failure 2Ni for the i th cycle.

Cycle i th is responsible for a life reduction equal to 1/Ni . The damage due to
ni repetitions of the same cycle is then ni/Ni . If a sequence of hysteresis loops
(constituting a group of cycles that are periodically repeated), is formed by k cycles,

6 The concept of equivalence is related to an equivalent damage produced by the sequence of the
hysteresis loops generated by real and by the virtual loads.
7 Properly only if the load cycles are followed in descending order.
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the damage of a group of k cycles can then be estimated by a linear accumulation
law as:

k
∑

i=1

ni

Ni

and the damage for the repetition of this sequence for a number m of times is:

D = m ·
k

∑

i=1

ni

Ni
(8.6)

This is an application of the so-called The Palgrem-Miner’s rule, that, like the
Rain-Flow Counting Method, is a general rule in Fatigue, not limited only to
Low Cycle Fatigue, because this rule can be used for stress as well for strain-
controlled phenomenon.

The Palgrem-Miner’s rule [23], assumes a linear damage hypothesis. Accord-
ing to this theoretical assumption, failure would occur for D = 1. This can be a
good estimation in a design phase. Nevertheless, experimental evidence shows
that failure occurs when D is larger than 1, with values up to 2.2.

A doubt can arise on its capability to predict effects in a phenomenon largely
influenced by the load history, i.e. by the order in which the reversals occur.

In High Cycle Fatigue, where stresses remain always in elastic field, a linear
combination of cycles damage can be accepted.

In Low Cycle Fatigue the described counting method makes it possible to
build the local hysteresis loops in the real sequence in which they are generated,
respecting the loads sequence. After this treatment, a linear damage accumulation
law is used.

The described equivalent sequence of closed load cycles takes into account
the effect of an overload that generates a residual stress state that is the real
factor responsible for the sequence effect: in fact, a compressive residual stress
visualized as negative mean stress, may delay the crack growth and vice-versa
for a positive mean stress. The Palgrem-Miner rule can fail to recognize the
probabilistic nature of fatigue. For this reason, in a Chap. 11 the use of design
curves will be adjusted to account for scatter of experimental data.

8.6.3 Application of Neuber Hypothesis Without
Concentration Factors

When concentration factors are not known, the Neuber equation: Eq. 8.7.

Δε · Δσ = K 2
t · Δe · ΔS (8.7)

http://dx.doi.org/10.1007/978-3-319-06086-6_11
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can be modified in the following way that avoids the introduction of concentration
factors:

Δε · Δσ = Δεelastic · Δσelastic

According to this observation, the area of the rectangle built with the coordinates of
the real point is identical to the area built with the coordinates of the virtual point
that represents the perfectly elastic behavior. These can be numerically computed by
an elastic model.

Since the equation of the ascending or descending branch of the hysteresis loop
is known for that material, it is therefore possible to determine the local hysteresis
cycle. Nevertheless, the calculation is approximate because it implies the simplified
Neuber model.

Exercise 8.2 (First monotonic load followed by fatigue cycles that produces stabi-
lized hysteresis cycles) With the data of Exercise 8.1 determine the local stabilized
hysteresis cycle, assuming a new (not previously loaded) material with a nominal
stress equal to:

S1 = +460 MPa S2 = −260 MPa

(a) It is necessary to distinguish the tension side from the compression side. The
loading phase from zero to S coincides with the monotonic curve. Equations to
describe the load increment from 0 to S1 are the following:

ε · σ = K t2 · e · S = K t2(S2/E)

ε = (σ/E) + (σ/K )1/n

Solving both equations gives the coordinates σr1 and εr1 of the point.
(b) In the descending phase from S1 to S2 the equations are:

(εr1 − ε)(σr1 − σ) = K 2
t · (S1 − S2)

2

E

εr1 − ε

2
= σr1 − σ

2E
+

(σr1 − σ

2K ′
)1/n′

The solutions of both equations gives the coordinates σr2 εr1.
The hysteresis loop closes with the load passing from S2 to S1, because the point is

reached with the coordinates σr1 , εr1 . Substituting these data in the previous equations
gives: σr1 , εr1 and σr2 , εr2 .

(c) The loop parameters are:

Δσ = σr1 − σr2

Δε = εr1 − εr2
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σm = σr1 + σr2

2

εm = εr1 + εr2

2

The preceding hysteresis cycle pulls the hysteresis cycle that follows it. This explains
the role of the load history, i.e. the irreversible effect of load cycles.

As a consequence, the mean values of σ and ε of a hysteresis loop are not directly
related with the mean value of the nominal stress, since they also depend on the
hysteresis cycles that precede. That confirms how mean stress and strain can be
generated at the bottom of a notch also in the case of variable load amplitudes with
mean values equal to zero.

The calculation of the mean local stress and strain is important because they
influence the fatigue life of the component.

8.7 Case Study of a Damage Evaluation

To overcome the approximation of all simulation models, a direct deformation mea-
surement, instrumenting and recording the local strain, cycle after cycle, at the points
where nucleation of first defects is expected, would be necessary.

Strain gages with a size properly selected in comparison to the deformation gra-
dient, can be usefully employed. It is not necessary to use strain gages particularly
resistant to fatigue [24], because the strain can be recorded only for a sequence
of hysteresis loops which is repeated periodically, as usually happens in machines
components.8

In some cases, the application of experimental analysis may be the only method
for solving complex simulation problems together with a numerical model for the
counting of the hysteresis loops and for the damage assessment. Component life is
thus evaluated by a hybrid numerical-experimental approach as follows [25]:

1. The load sequence (with load variable amplitudes) is applied to the component.
Often this phase is an in-field measurement on real components with real loading
conditions.

2. A diagram of the local deformation versus time is recorded by strain gages placed
at the reference point. If the deformations in both principal directions vary pro-
portionally or at least in phase to each other, the concept of the equivalent strain
is applied.9

3. The recorded strain sequence at the reference point is applied to a smooth speci-
men of the same material.

8 Strain gages provided for large deformations have a very limited fatigue resistance and cannot be
used for long load sequences.
9 Otherwise, criteria of multiaxial fatigue [2, 26, 27], must be used.
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Fig. 8.11 Experimental determination of the sequence of hysteresis loops in a geometrical
discontinuity

4. The corresponding stress history on this specimen is recorded and stored in a
computer memory together with the strain history.

5. The sequence of the local hysteresis cycles is derived from strain and stress
histories at the reference point, Fig. 8.11.

6. Local damage is estimated for each hysteresis cycle and for all cycles.

Figure 8.12 shows an example for an earth-moving machine where, in a discontinuity
of a complex component, fatigue cracks were revealed in previous experiments.

Fig. 8.12 Example of strain gage measurements at a reference point
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A new component is mounted in place of the fractured one and instrumented by
strain gages set out in the direction perpendicular to the expected cracks. The earth-
moving machine was operated with a sequence of movements, in such a way that the
same load history as the replaced component was applied to the instrumented one.
In this way a reliable damage assessment is done.

Similar approach for the estimation of the fatigue life in turbo-machinery on
experimental base, is applied in the following papers [28, 29].

8.8 Torsional Low Cycle Fatigue

A general relationship between stresses and strains in the case of multi-axial states
of stress in the simplest case of proportional (or in-phase) loading condition, is
introduced by the concept of octahedral tangential stress and strain [30–33]:

τoct = f (γoct) (8.8)

or its inverse:
γoct = g(τoct) (8.9)

where:
τoct = 1

3

[

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2]1/2 (8.10)

and:
γoct = 2

3

[

(ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2]1/2 (8.11)

The following relationship is valid in the elastic field :

τoct = G · γoct (8.12)

Vice-versa, to build a theory on hardening the following assumptions are required:

• Small components of the strain state.
• Isotropic material yield.
• Invariance of the material volume when it is deformed beyond the elastic limit

(ν = 0.5).
• Negligible influence on the permanent deformation of mean stress σm =

(σ1 + σ2 + σ3)/3 (normal stress on the octahedral planes).

With these limitations, Eq. 8.9 can be used to establish comparisons between the
results of tests in conditions of uniaxial and multi-axial loadings, in particular
between uniaxial and torsional loading [34].

For a uniaxial load the relationship between octahedral and uniaxial parameters is:

τoct =
√

2

3
σ (8.13)
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For the shear strain expression, two different equations exist, depending on the value
of the Poisson’s ratio10:

⎧

⎪

⎨

⎪

⎩

γoct = √
2ε for ν = 0.5

γoct = 2

3

√
2 (1 + ν) ε f or ν �= 0.5

(8.16)

and for torsional loads:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

τoct =
√

2

3
τ

γoct =
√

2

3
γ

(8.17)

where τ is the maximum stress tangential to the shaft surface.

8.8.1 Ramberg-Osgood Model for Torsional Loads

Material hardening for cyclic load for multi-axial proportional stress state is described
by the following relationship:

γoct = γe + γp = τoct

G
+

(τoct

C ′
)1/n′

(8.18)

10 In order to overcome this difficulty a variable expression of ν is introduced that must be determined
by the cyclic stress-strain curve [35, 36]:

_
ν = 0.5 − (0.5 − νe)

Es

E
(8.14)

where:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

_
ν = variable Poisson coefficient

E = elasticity modulus

Es = secant modulus on the cyclic curve

νe = Poisson’s coefficient in the elastic field

Secant modulus Es is obtained from the cyclic curve utilizing the effective strain
_
ε:

γoct = 2

3

√
2 (1 + _

ν) · _
ε

that for Eq. 8.11 gives:

_
ε = 1√

2(1 + _
ν)

[(ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2] 1

2 . (8.15)
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where:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

τoct = amplitude of tangential octahedral stress

γ, γe, γp = amplitude of total, elastic and plastic, tangential octahedral stress.

G = tangential elastic modulus.

C ′ = cyclic strength coefficient.

n′ = cyclic strain hardening exponent.

1. For axial load [3], Eq. 8.18 is reduced to the following, substituting Eq. 8.13 and
the first of Eq. 8.16 in Eq. 8.18:

ε = σ

E
+

( σ

K ′
)1/n′

(8.19)

where the cyclic strength coefficient for axial case K ′ holds:

3 · 2(n′−1)/2 · C ′ (8.20)

2. For torsional alternate load, substituting Eq. 8.17 in Eq. 8.18, we obtain:

γ = τ

G
+

( τ

H ′
)1/n′

(8.21)

with:
H ′ = 2(n′−1)/2 · 3(1−n′)/2 · C ′ (8.22)

where:
⎧

⎪

⎨

⎪

⎩

τ = amplitude of shear stress

G = E/2 (1 + ν) shear elastic modulus

H ′ = cyclic strength coefficient in torsion

Exponent n′ remains unchanged for axial and torsional stress.
Cyclic torsional strength coefficient H ′ can be obtained from the cyclic strength
coefficient for axial load, comparing Eq. 8.21 with Eq. 8.19:

H ′ = K ′(1

3

)(n′+1)/2
(8.23)

We can summarize the points observing that, if Eqs. 8.8 or 8.9 are appropriate, i.e.
if the state of multi-axial stresses and strains can be described by octahedral shear
stress and shear strain, it is possible to experiment under uni-axial load conditions
and to obtain the parameters of the cyclic curve in torsion. The Ramberg-Osgood
parameters for torsional loadings H ′ are obtained by Eq. 8.23 with Eq. 8.21 instead
of Eq. 8.19.
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8.8.2 Neuber Model for Torsional Loads

Neuber formula [37], becomes:

Δτ · Δγ = Kt
2 · ΔT · ΔΓ (8.24)

where:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Δτ = local shear stress range

Δγ = local shear strain range

ΔT = nominal shear stress range

ΔΓ = nominal shear strain range (=ΔT /G)

Going from Eqs. 8.7–8.24 needs the following substitutions:

γ instead of ε

τ instead of σ

G instead of E .

8.8.3 Fatigue Curve for Torsional Loads

The simulation of the uni-axial fatigue curve is:

Δε

2
= εa = σ ′

f

E
(2N f )

b + ε′
f (2N f )

c (8.25)

Similarly, in the case of torsional fatigue the points that correlate the amplitude of
shear strain to the number of reversals to failure can be interpolated by a relationship
of the same type.

Δγ

2
= γa = A (2N f )

α + B (2N f )
β (8.26)

Even these two equations may be correlated by the theory of octahedral tangential
shear [4, 38, 39].

Equating the octahedral torsional shear strains to the axial case, the link between
the constants σ ′

f /E, ε′
f , b and c and A, B, α e β is obtained.

1. In plastic field relationships Eqs. 8.16 and 8.17, are still valid; since the octahedral
shear strains γoct must be equal, the following holds:

√
2 ε =

√

2

3
γ
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from which:
ε = γ√

3
(8.27)

It must be thus:

ε′
f (2N f )

c = B√
3

(2N f )
β

then:
{

c = β

ε′
f = B/

√
3

(8.28)

2. For the elastic contribution, remembering that the condition of volume conserva-
tion (assumed for the plastic part of the deformation) is not valid, equating the
octahedral shear strain gives, for the second relationship of Eq. 8.16:

2

3

√
2 (1 + ν) ε1 =

√

2

3
γ

then:

ε1 =
√

3

2(1 + ν)
γ (8.29)

Equating the elastic parts of Eqs. 8.25 and 8.26, we have:

σ ′
f

E
(2N f )

b =
√

3

2(1 + ν)
A (2N f )

α

and finally:
⎧

⎪

⎨

⎪

⎩

b = α

A = 2√
3

(1 + ν)
σ ′

f

E

(8.30)

With this assumption the fatigue curves derived under the conditions of uniaxial
stress can be interpreted as fatigue curves for torsional by this equation:

γa = A (2N f )
α + B (2N f )

β (8.31)

with:

A = 2√
3

(1 + ν)
σ ′

f

E
α = b

B = √
3 · ε′

f β = c

The algorithms developed for the uniaxial case can still be used for the torsional
case, replacing ε with γ and σ ′

f /E , ε′
f , b and c with the new constants A, B, α

and β given by Eq. 8.31.
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8.8.4 Effect of Mean Shear Stress

The influence of the mean stress in the case of torsion tests must be assessed with a
different criterion to the uniaxial case, since now it is not possible to distinguish the
damage on the basis of the stress sign.

A new damage function is introduced [38], of this type:

Pswt = √| τmax | ·γa · G = √| τm + τa | ·γa · G (8.32)

The double-logarithmic diagram of Pswt versus the reversals to failure, reduces the
data obtained from different tests (with several values of the ratio R = σmin/σmax)
to a single curve that still has the characteristic shape of a fatigue curves.

The Manson-Coffin equation for zero mean stress and its elastic part is:

{

γa = A (2N f )
α + B (2N f )

β

τα = A · G · (2N f )
δ

(8.33)

If Pswt is expressed as a function of the maximum stress τmax and of the amplitude of
the equivalent stress that, for zero mean stress, produces failure for the same reversals
number, the following equivalence can be written:

√

τmax · γa · G = √

τaeq · γa · G

valid for a given number of reversals to failure. Since τaeq is:

τaeq = A · G · (2N f )
δ

then:

τmax γa = AG (2N f )
α [A (2N f )

α + B (2N f )
β ]

that can be reduced to the form:

τmax · γa = A2 · G · (2N f )
2α + ABG (2N f )

α+β (8.34)

Equation 8.32 becomes:

Pswt = √

τmax · γa · G = [(AG)2 (2N f )
2α + ABG2 (2N f )

α+β ]1/2 (8.35)

The damage function Pswt has the dimension of a stress. It can be normalized dividing
P by τ = σ/

√
3 [38]:

P∗
swt = Pswt

τ

(a dimensionless parameter).
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8.9 Case Study of Notched Shafts in Torsion

The present case study [40–42], shows the simulation of the low cycle fatigue life
for a shaft with circumferential notches, as shown in Fig. 8.13.

In order to create a simulation model for this case, the following steps are devel-
oped, having defined the kinds of loads on the prototype (constant amplitude or
variable amplitude loads and the relative load sequence):

• Utilizing special equipments for material characterization in shear strain controlled
mode. This could require the development of special torsion machines with capac-
ity appropriate to the prototype dimensions.

• Determining the cyclic curve parameters for torsional loads.
• Determining the Manson-Coffin curve parameters for torsional loads.
• Performing the torsional tests.

8.9.1 Special Equipment for Material Characterization
in Shear Strain-Controlled Mode

Figure 8.14 shows a device developed for transforming the tensile load-compression
operation of a universal testing machine, into an alternating torsion machine at low-
frequency. The same concept, designed with high stiffness members, is developed
for high frequency tests, like the device shown in Chap. 7.

Fig. 8.13 Notched cylindrical specimen for torsion tests

http://dx.doi.org/10.1007/978-3-319-06086-6_7
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Fig. 8.14 Self-manufactured testing apparatus for torsional low cycle fatigue tests (developed by
A. Maggiore Private communication)

Fig. 8.15 The hollow cylindrical specimen used for material characterization in low cycle fatigue

Fatigue parameters of this material are obtained from hollow cylindrical speci-
mens shown in Fig. 8.15 by shear strain-controlled test. The investigated material is
a Low Alloy Steel for Turbine shafts, Table 8.1.

8.9.2 Determination of Cyclic Curve and Fatigue Curve
Parameters

The torsional cyclic curve obtained from the hollow specimens is shown in Fig. 8.16,
Eq. 8.21. The dotted line is the octahedral prevision. The fatigue curve is obtained
from the same specimens and is shown in Fig. 8.17. The parameters of both models
are reported in Table 8.2.
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Fig. 8.16 Cyclic curve for test in torsion of hollow cylindrical specimens. Mat. data: G = 77,990
MPa H ′ = 504.5 MPa n′ = 0.092. Circular marks experimental data for hollow specimens.
The dotted line is the octahedral prevision
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Fig. 8.17 Shear strain fatigue curve for torsional test of hollow cylindrical specimens, Eq. 8.31:
A = 0.0067 α = −0.058 B = 1.39 β = −0.63

Table 8.2 Torsional low cycle fatigue parameters

E G H′ n′ A B α β

(MPa) (MPa) (MPa)

202,774 77,990 504.58 0.0919 6.7×10−3 1.39 −0.058 −0.63

8.9.3 Special Equipments for Torsional Tests on Shafts

Figure 8.18 shows a special testing machine built for testing low cycle torsion fatigue
on shafts. A crank mechanism applies an alternating torque up to ±25 kN m to the
shafts specimens mounted in the machine.
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Fig. 8.18 Self-manufactured
testing apparatus built for
alternate torsion testing with
loading capacity up to
±25 kN m

The cell, Fig. 8.19, is made with a tubular body (on the right side), instrumented by
four electrical strain gages placed at 45◦ with respect to the axis, with the full-bridge
scheme described in the Chap. 2, Fig. 2.17, by the equation:

Δe

e0
= K

4
·
(

ε1 + ε1 + ε1 + ε1

)

= 4K

4
· ε1 = K ε1 (8.36)

8.9.4 Torsional Tests with Assigned Loads Sequence

The first tests are planned with constant amplitudes torsional loads. The sequences
derived by in-field measurements are successively applied.

It is acceptable practice to simplify the in-field measurements, condensing the
peak loads and neglecting the smallest load cycles that have low influence on the
damage. After this first screening, load sequences with descending peaks have more
interest than sequences in which the largest peak is preceded by cycles of lower
amplitude.

http://dx.doi.org/10.1007/978-3-319-06086-6_2
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Fig. 8.19 On the left, a control device of the torsional deformation with a below for absorbing
spurious bending and, on the right, the loading cell

Table 8.3 Load sequences for low cycle fatigue tests

Sequence H I L M Peak amplitude Ratio Nominal

moment (Nm) Amplit. (MPa)

I 1 4 8 5 1,502 1 423

II 12 50 100 62 1,197 0.8 342

III 112 450 900 562 900 0.6 279

IV 625 2,500 5,000 62 3,125 0.5 252

Life (cycles) 6,000 3,000 5,750 4,754

In this case study the sequences of constant and of variable amplitudes reported
in Table 8.3, have been considered.

An example of the comparisons between simulated and measured cycles numbers
is shown in Fig. 8.20, based on the following models:

1. Estimation of the equation of the branches of hysteresis loops obtained from the
cyclic curve as previously presented.

2. Use of the Neuber equation for each local cycle.
3. Use of the Manson-Coffin equation taking into account the local mean stress of

each hysteresis loop.
4. Use of the Rain Flow counting method.

8.9.5 Appearance of the Cracks Directions in Torsional Low
Cycle Fatigue

Figures 8.21 and 8.22 show different kinds of fracture appearances of cylindrical
hollow and solid specimens, loaded by strain-controlled torsional low cycle fatigue.
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Fig. 8.20 Comparison between simulated and experimental fatigue life (number of cycles to first
visible crack) for specimens of Fig. 8.13

Fig. 8.21 Cracks directions in hollow specimens of 25 mm, loaded by shear-controlled torsional
low cycle fatigue (R = −1)

In hollow specimens of small thickness, with a quite uniform distribution of shear
stress in the cross-section, cracks lines follow the directions of τmax that occurs either
at the circumferential direction or along the specimen axis.

In the case of solid specimens, (with triangular distribution of shear stress along
the cross-section), the fracture is developed along the cross-section, differently from
the typical fracture shapes for high cycle fatigue, see Chap. 7.

http://dx.doi.org/10.1007/978-3-319-06086-6_7


356 8 Local Strain Models for Variable Loads

Fig. 8.22 Crack directions in solid specimens of 50 mm loaded by shear-controlled torsional low
cycle fatigue (R = −1)

8.10 Preventing Loads Misalignments

Many types of loading conditions are theoretically possible for material characteri-
zation, but the adoption of an axial load is the most common approach for static and
cyclic tests, see standards [43–46].

When performing a test, where a specimen is loaded by a longitudinal force, it is
important to prevent or drastically reduce misalignments, which could induce unde-
sired bending or even buckling, when a compressive component is present. Additional
bending implies a severe reduction of resistance [47, 48] and the falsification of the
test results.

Besides, when an experimental research is developed in cooperation with several
laboratories (with tests performed on different machines), a problem arises when the
results are compared and collated together, due to the scatter of data, mainly because
of uncertainties in measurement. In Refs. [49–51] it is remarked that one of the main
causes for these uncertainties is the misalignment of the test piece with respect to
the axial load.

Misalignments may be due to a poor alignment in the loading train or to a bad
alignment between the fixed and the moving cross-heads of the machine.

• The first type of misalignment is usually greatly reduced by adopting very rigid
frames and stiff coupling tolerances between the actuator rod and its bearings.

• The second type of misalignment is often related to a lateral or an angular dis-
placement between the machine grips.

Some Standards, such as [43, 44], recommend a careful check of misalignment,
usually achieved by an instrumented specimen, but provide very little information
about the technical solutions to be utilized to fulfill an acceptable alignment.
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8.10.1 Functional Analysis of the Fixtures

Functional analysis [52] may be suitable to split the global function of the fixture
into sub-functions.

All the conceptual solutions for sub-functions F1, F2 and F3 are summarized in
Fig. 8.23 in the form of a Morphological matrix [52, 53]. Three main sub-functions,
referred to as F1, F2, and F3, can be detected.

The first one, F1, refers to complete constraining at one specimen end, whereas
the second one, F2, is the most difficult to achieve, since it involves constraining at
the other end, together with the possibility of adjustment either at the beginning of
the test or as a self-alignment during the test.

Fig. 8.23 Morphological matrix [52] containing the three sub-functions and the available concep-
tual solutions
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Sub-function F3 guarantees that no clearance occurs at force sign inversion,
through a slight pre-compression at the specimen ends to prevent any clearance
between the transverse faces at the ends and the loading device.

1. The first sub-function (F1) can be easily achieved by threaded or button-head
connections at specimen ends, as suggested for instance by [43, 44].

2. Regarding misalignment compensation, i.e.: sub-function (F2), the most recom-
mended approach [43] lies in the adoption of Wood’s eutectic metal: one specimen
end is inserted into a specifically designed heated pot, containing the Wood’s metal
in the liquid state, in a perfectly aligned position. Afterwards, the metal is returned
to its solid state and consequently the specimen is frozen in the aligned position.
However, this fixture technique has some drawbacks: only misalignments due
to a transverse offset between clamps can be compensated, whereas an angular
misalignment cannot be cancelled. Moreover, the Wood’s metal contains lead and
cadmium and has toxic properties: it can be harmful if poured on skin in its molten
state. Finally, the application of Wood’s metal is strongly limited by its low shear
strength, about 24 MPa, according to [54], which also implies significant safety
problems, when high loads are applied.
Other possible solutions include a spherical coupling [55], double cardanic joints
[56, 57], the use of two spherical roller thrust bearings posed at mirrored locations
and the addition of members with a high bending compliance [58].
A further option, with details below, consists in the mounting of a a thrust ball
bearing beneath the sample head.

3. The third sub-function F3 may be achieved by calibrated disks or wedges that
fix the loading train in the axial direction, or by lowering a cylindrical member
towards the specimen upper end, applying a pre-load to the head.

8.10.2 Adopted Solution

The proposed solution is sketched in Fig. 8.24, with a detail in Fig. 8.25: its main
issues are summarized below.

First of all, the specimen lower end is completely fixed by a threaded coupling.
Pre-compression of the horizontal specimen surface towards a punch and a cylindrical
element of the machine clamp is performed here by means of a wrench. The specimen
is then constrained at its upper side: a bushing is connected to the threaded head.
The bushing is placed on the inverted ring of a thrust bearing with sphered housing
washers, to perform compensation of both transverse offset and rotations between
clamps.

The upper head pre-compression is finally achieved, by lowering a screw, having
a machined head, and by then fixing it in its final position by a locknut. The described
device is able to work with or without lubrication: it is however advisable to place
a thin lubricant layer at the interface between the hemispherical surface and the
sphered housing. The upper member must be designed, so that a sufficient space is
left available for the tightening procedure by a wrench. Reference [59] provides some
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Fig. 8.24 The selected solution [53], realized by thrust bearing with sphered housing washers

Fig. 8.25 A detail of the thrust bearing with an inverted ring

indications regarding this issue. This solution was successfully validated by experi-
mental tests that made use of a specimen instrumented by electrical strain gages. Full
details are contained in [53], while reference values for acceptable misalignments
can be found in [43, 44, 60].
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Fig. 8.26 Total fracture and first crack in a specimen axially loaded in low cycle fatigue

The specimen at the end of the test shows enucleation of cracks perpendicular to
the load, circumferentially distributed, Fig. 8.26.
Many experimental results along with information regarding the experimental set-
tings and the different options for data processing, are contained in [13, 61–66] with
a recent contribution by Atzori.
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Chapter 9
Elementary Models for Stress Singularities

Abstract Fracture Mechanics began in the first decade of the 20th century as the
science oriented to enlighten the state of stress and strain near a crack in a stress
field, in order to explain structural collapses that were not clarified by classical
mechanics. Some catastrophic cases of rupture stimulated the development of this
discipline, which is strongly connected to fatigue theories. After a pioneering work,
the discipline flourished due to the collective work of a great number of scholars and
research centers and today it accompanies every interpretation of fracture and fatigue
phenomena. Experimental stress analysis offers appropriate tools for material char-
acterization (i.e. its capability to tolerate the presence of a crack) and for establishing
design methodologies to prevent fracture and to assess the safety of structures. In
this chapter the use of strain gages, photoelasticity and holographic interferometry
is applied to case studies of Stress Intensity Factors determinations for several kinds
of cracks in structures encountered in laboratory and industrial applications.

9.1 Behavior Classification

A large thin plate with a through-thickness crack is loaded by a uniform stress at a
certain distance, perpendicularly to the crack plane. If the load increases monotoni-
cally, the relationship between load and crack mouth opening displacement is shown
in Fig. 9.1. The diagram has the typical trend of the static σ–ε curve: for low loads
the diagram has a linear behavior, even if a limited plasticity occurs at the crack tip,
while additional loading will cause response to deviate from a linear behavior when
a limited but larger plastic area takes place at the crack tip.

• Region I is the field of Linear Elastic Fracture Mechanics LEFM, where plastic
deformation is confined to the crack tip region and is small enough (Small Scale
Yielding) to be determined through yield criteria of Von Mises and Tresca in an
elastic environment.
The stress calculation is possible using the Irwin-Westergaard model with the
concept of Stress Intensity Factor.

• In region II the thin plate is subject to plastic deformation before the crack propa-
gates. In this case the plastic crack tip zone is too large to be dealt with an elastic

© Springer International Publishing Switzerland 2015
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Fig. 9.1 Load versus crack
mouth opening displacement
in a thin large rectangular
plate of ductile material,
loaded perpendicularly to the
crack plane

theory. The material behavior is presumed to be properly nonlinear but elastic, i.e.
the unloading curve of the so called elastic-plastic behavior follows the original
loading curve without hysteresis loop. This assumption is a simplification for met-
als and an exact hypothesis for other nonlinear elastic material (e.g. polymers and
composites). For this Elastic-Plastic Fracture Mechanics (EPFM) special models
are derived that will not be considered in the present elementary handling: e.g.,
the CTOD parameter suggested by Wells and the J Integral proposed by Rice.1

• This presentation does not take into account a next region of the diagram for higher
loads, when the plastic zone is very large and the plate becomes totally plasticized.
For a further discussion see [1–10].

9.1.1 Elastic Behavior

The analysis of a crack is obviously connected to the propagation risk that can
vary between two extremes: on the one hand an instantaneous collapse at a much
lower static stress than the classic admissible one, with a net parts separation (brittle
fracture), on the other hand stabile propagation for cyclic loads.

The fracture behavior is influenced by several parameters, as metallurgical vari-
ables, such as steelmaking practice and inclusions, heat treatments and microstruc-
ture, temperature, stress type (static, dynamic), residual stress and environment
effects.

In a simplified phenomenological theory, all these variables are summarized in a
material parameter that represents the capacity to offer resistance to a crack prop-
agation, called Fracture Toughness. This parameter is compared with a structural
parameter, the Stress Intensity Factor that is a function of the working stress, as in
classical strength theory, but also of the crack shape and size.

1 Shih showed that between J and CTOD a relationship exists for a given material. Thus, these two
parameters are both valid in characterizing crack tip toughness for elastic-plastic materials.
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Fig. 9.2 Three modes of crack loading, opening, shearing and tearing

9.1.2 Crack Loading Modes

Irwin was one of the first to study the behavior of cracks, with reference to three
different loading modes.

If a through-thickness crack is placed in a loaded body, in the most general con-
dition it is subjected to three overlapped basic types of loading, shown in Fig. 9.2.

• The opening mode I, due to loads that produce displacements of the crack surfaces
perpendicular to the plane of the crack. The dominant stress is σy .

• The shearing mode II, due to in-plane shear loads which cause the two crack
surfaces to slide on one another. The dominant stress is τyx .

• The tearing mode III, due to out-of-plane shear loadings. The crack surfaces slide
in a direction parallel to the tip front. The dominant stress is τyz .

9.1.3 Plane Stress and Plane Strain

Plane Stress There is no stress on a certain plane assumed as principal plane
(1, 2-plane) and consequently all the stress components are parallel
to that plane.

Plane Strain There is no elongation and shear in/ and perpendicular to one direction
assumed as the 3-direction, perpendicular to the 1, 2-plane.

These two distributions are the limit cases of a weak and a strong stress three-
dimensionality (that means respectively two prevalent values (e.g. σ1, σ2) or three
similar values of the principal stress (σ1, σ2 and σ3) which happen when the cracked
body is thin or when it is thick (comparing its thickness to the crack size), or, even
in a thick body, on the outer surface (plane stress), and in the middle plane of the
thickness (plane strain). For e.g. the case in Fig. 9.1 is supposed in a plane stress
state, because the plate is thin, then:

σz = τxz = τyz = 0
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while the case of:
τxz = τyz = 0 εz = 0

then σz = ν(σx + σy) that is the condition of a plane strain state.

9.2 The Field Equations for the Region Close
to the Crack Tip

Formodeling the singularity in the stress field due to a crack, defined as a geometrical
discontinuity with a crack tip radius equal to zero, the theoretical modeling starts
from the case of an elliptical hole with a semi-diameter a much longer than the
semi-diameter b.

With reference to the analytical elastic solution for an elliptic hole of this type in
a large plate loaded by a uniform state of stress [11], it is possible to demonstrate,
introducing an elliptical coordinates system, that the maximum stress tangent to the
hole and perpendicular to the larger diameter is, Fig. 9.3:

σmax = 2σn
a

b
(9.1)

where:

a = larger semi-diameter
b = shorter semi-diameter

σn = stress at large distance perpendicular to the longer diameter

2a 

y

x

a

η

Fig. 9.3 A crack in a plate with the stress distribution at a point of the plane close to the crack tip
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For a uniform stress in one direction only, perpendicular to the larger diameter, the
following holds:

σmax = σn

(

1 + 2
a

b

)

(9.2)

A crack is considered an elliptical hole with a � b, i.e. with a curvature radius at the
extreme of the larger diameter tending to zero. With this assumption Eq.9.2 tends
to 9.1.

Equivalent to the previous one, another expression for maximum stress at the
extreme of the larger diameter, as a function of the curvature radius ρ, is:

σmax = σn

(

1 + 2
√

a

ρ

)

(9.3)

where: a is the larger semi-diameter. For a radius value tending to zero, as in a real
crack, Fig. 9.3 on the left, holds:

σmax ≈ 2σn

√

a

ρ
∝ σn

√
a (9.4)

for a � ρ.
If ρ tends to zero the maximum stress tends to infinity, i.e. a singularity in the

stress field arises and the Stress Concentration Factor loses its meaning.
The present analytical approach is specific to a biaxially loaded infinite plate,

Fig. 9.3. The theory starts from the general equations seen in Chap.6, Sect. 6.3.1.

9.2.1 The Westergaard Stress Function

The earliest work dates back to Inglis, and other important developments were made
by Griffith in 1920, Westergaard in 1939.

For our specific problem of an infinite, biaxially loaded plate containing a crack,
Westergaard suggested the following way, introducing a φ function as [12, 13]:

φ = Re Z(z) + y · Im Z(z) (9.5)

where Z(z) is a complex function of the complex variable z(x + iy), analytic on the
domain:

Z(z) = Re Z + iIm Z (9.6)

http://dx.doi.org/10.1007/978-3-319-06086-6_6
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and
z = x + iy = reiθ (9.7)

The functions Z(z) and Z(z) are the integrals of the first and second order.

d Z

dz
= Z(z)

d Z

dz
= Z(z)

d Z

dz
= Z ′(z) (9.8)

or:

Z =
∫

Z(z)dz Z =
∫

Z(z)dz Z =
∫

Z ′dz

The function is analytic since it satisfies the condition of Cauchy-Riemann. From
Eq.9.8:

∂ Z

∂x
= d Z

dz
· ∂z

∂x
= Z

∂ Z

∂y
= d Z

dz
· ∂z

∂y
= i Z (9.9)

Thus:
∂Re Z

∂x
= Re

d Z

∂x
= Re Z

∂Re Z

∂y
= Re

d Z

∂y
= −Im Z

∂Im Z

∂x
= Im

d Z

∂x
= Im Z

∂Im Z

∂y
= Im

d Z

∂y
= Re Z

and:
∂Re Z

∂x
= ∂Im Z

∂y

∂Re Z

∂y
= −∂Im Z

∂x
(9.10)

or:
∇2Re Z = ∇2Im Z = 0 (9.11)

This result shows that the Westergaard stress function satisfies the biharmonic equa-
tion Eq.6.22 in Chap.6 with the real and imaginary parts as well as with the products
of these with the variables x and y. In other words the analytical function Eq.9.5 can
be used as Airy function.

http://dx.doi.org/10.1007/978-3-319-06086-6_6
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It is now possible to find with some steps2 the (obviously real) expressions of the
stresses σx , σy, τxy , differentiating the Eq.9.5 according to the Eq.9.12:

⎧

⎪

⎨

⎪

⎩

σx = Re Z(z) − y Im Z ′(z)
σy = Re Z(z) + y Im Z ′(z)
τxy = −y Re Z ′(z)

(9.13)

Equations9.13 yield stresses for the functions Z(z), while Eq.9.5 correctly accounts
for the stress singularity at the crack tip, but the Airy function must be selected to
satisfy boundary conditions of the investigated problem.

The boundary conditions for a flat plate with uniform biaxial load, equal to σ∞,
are the following:

⎧

⎪

⎨

⎪

⎩

σy = 0 for −a < x < +a and y = 0

σy → σ∞ for x → ±∞ and any y

σy → ∞ for x = ±a

An example of a complex analytic function Z that satisfies these boundary conditions
is the following:

Z(z) = σ
√

1 − a2

z2

(9.14)

One can indeed verify that along the axis x , i.e. for y = 0. from the second of
Eq.9.13, σy = Re Z(z) holds and from Eq.9.14, for −a < x < +a.

Re Z(z) is equal to 0. Thus σy = 0, as the first boundary condition requires.
For x tending to ±∞ and for any value of y, i.e. for z → ∞, Z(z) tends to σ∞

and for y = 0 and x = ±a, z2 becomes a2 and Z(z) tends to infinity and also σy ,
in this way fulfilling the condition of a singularity.

For the present purpose it is more convenient to relocate the origin of the coordi-
nates in the crack tip; defining with η and γ the coordinates with respect to the new
reference system, the following holds:

2 For e.g. for the first equation, utilizing the definitions of Eq.9.9 and the Cauchy-Riemann theorem,
9.10 (and in a similar way for the other stress components):

σx = ∂2φ

∂y2
= ∂

∂y

[

∂
∂y (Re Z(z) + y · Im Z(z))

]

= ∂
∂y

[

∂Re Z(z)
∂z

∂z
∂y + Im Z(z) + y ∂Im Z(z)

∂y
∂z
∂y

]

= ∂
∂y [i Re Z + Im Z + i y Im Z ] = i ∂Re Z

∂y + ∂Im Z
∂y + i Im Z + y i · i Im Z ′

= −i Im Z + Re Z − i Im Z − y Im Z ′ = Re Z − y Im Z ′.
(9.12)

.
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η = x − a

γ = y

Then the new complex variable η is η = (x − a) + iy = (x + iy)a = z − a, from
which the expression of Z is derived as function of the new variable z = η + a:

Z(η) = σ
√

1 − a2/(a + η)2
= σ(a + η)

√

(a + η)2 − a2
(9.15)

Now let us consider a small area near the crack tip, where η 
 a.
With this restriction the previous equation can be approximated in this way3:

Z(η) = σa√
2aη

= σ
√

a√
2η

(9.16)

This expression is the first term of a series expansion of Eq.9.15.
It is also advisable to make a change of variables, expressing the complex variable

η, with origin at the crack tip, with exponential notation:

η = (x − a) + iy = r · eiθ

where r , modulus of the complex number, is:

r =
√

(x − a)2 + y2

that is the distance of the point (x, y) from the new origin at the crack tip, Fig. 9.3.
Equation9.16 now becomes:

Z(η) = σ
√

a√
2η

= σ
√

a√
2r · eiθ

= σ
√

πa√
2πr

· e−(1/2)iθ (9.17)

The real and imaginary parts of the stress expressions, Eq.9.13 are:

Re Z(η) = σ
√

πa√
2πr

· cos θ/2

Im (Z ′) = Im
σ
√

πa√
2π

· d

dη

1√
η

= σ
√

πa√
2π

Im

(−1

2

)

η−3/2

= −σ
√

πa

2
√
2π

r−3/2 sin
3

2
θ = σ

√
πa

2
√
2πr

(1/r) · sin 3

2
θ

(9.18)

Equation9.13 becomes:

3
√

(a + η)2 − a2 = √

η2 + 2ηa = √
η(η + 2a) � √

2aη.
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σx = Re Z − y · Im Z ′ = σ
√

πa√
2πr

·
[

cos
θ

2
− y

1

2r
sin

3

2
θ

]

since: y
1

2r
= 1

2
sin θ

σx = σ
√

πa√
2πr

·
[

cos
θ

2
− 1

2
sin θ sin

3

2
θ

]

Remembering that:
1

2
sin θ = sin

θ

2
cos

θ

2

σx becomes:

σx = σ
√

πa√
2πr

cos
θ

2

[

1 − sin
θ

2
sin

3

2
θ

]

(9.19)

In a similar way, the expressions of the other stress components are derived.
Concluding,with the approximation of thefirst termof a series expansion (justified

by the condition of r 
 a), Eq. 9.15 can be approximated by a simplified expression
of the stress function Z Eq.9.19, that leads to the following equations:

σx = K I√
(2πr)

cos
θ

2

(

1 − sin
θ

2
sin

3

2
θ

)

σy = K I√
(2πr)

cos
θ

2

(

1 + sin
θ

2
sin

3

2
θ

)

(9.20)

τxy = K I√
(2πr)

cos
θ

2
sin

θ

2
cos

3

2
θ

τxz = τyz = 0 σz = 0 for Plane Stress

σz = ν (σx + σy) for Plane Strain.

and ν is the Poisson’s ratio.
All the stresses tend to infinity at the crack tip (for r = 0) and can be expressed

by the product of σ
√

πa and other standard terms as 1/
√
2πr f (θ).

The term σ
√

πa is a function of applied stress, i.e. of the load, and of the square
root of the half length of the crack. This factor, indicated with K I , is called Stress
Intensity Factor (SIF), because it is responsible for the intensification of the stress
at the crack tip and then of its possible propagation.

From the equilibrium equations, the corresponding relationships for the principal
stresses in mode I can be derived:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ1 = K I√
2πr

cos
θ

2

(

1 + sin
θ

2

)

σ2 = K I√
2πr

cos
θ

2

(

1 − sin
θ

2

)

σ3 = 2νK I√
2πr

cos
θ

2

(9.21)

Theprevious formulas are conceptually justifiedobserving thatσy , for r anda tending
to zero, tends to a finite value that must be the nominal stress σ . Since:

σy(r, a) ∝ σ
√

a√
r

we have:

lim
a→0 r→0

σy(r, a) = 0

0
.

9.2.2 Displacements Close to the Crack Tip

The presentation is limited to the biaxial case thatwill be illustrated by an experiment,
remembering the relationship between stress and strain in this case:

εx = 1

E
(σx − νσy)

εy = 1

E
(σy − νσx )

τxy = 1

G
τxy

(9.22)

Integrating the equations like this:

εx = ∂u

∂x

the following relationships are obtained for the Plane Stress state:

u = 2
K I

E

√

r

2π
cos

θ

2

(

1 + sin2
θ

2
− ν cos2

θ

2

)

(9.23)

and a similar one for the other displacement components:

v = 2
K I

E

√

r

2π
sin

θ

2

(

1 + sin2
θ

2
− ν cos2

θ

2

)

(9.24)
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Similarly for the Plane Strain state:

u = K I

G

√

r

2π
cos

θ

2

(

1 − 2ν + sin2
θ

2

)

(9.25)

v = K I

G

√

r

2π
sin

θ

2

(

2 − 2ν − cos2
θ

2

)

(9.26)

where G = E

2(1 + ν)
.

As a particular case, referring to Eq.9.26, for θ = π the following holds:

v = 2K I

G

√

r

2π
(1 − ν).

9.2.3 Stress Field for Modes II and III

In a similar way, the local stresses near the crack tip can be expressed for the stress
fields of Mode II and Mode III.

For Mode II: (KII = τ
√

πa):

σx = −KII√
2πr

sin
θ

2

(

2 + cos
θ

2
cos

3

2
θ

)

σy = KII√
2πr

sin
θ

2

(

cos
θ

2
cos

3

2
θ

)

(9.27)

τxy = KII√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3

2
θ

)

and for Mode III: (KIII = τ
√

πa):

τxz = −KIII√
2πr

sin
θ

2
(9.28)

τyz = −KIII√
2πr

cos
θ

2

In the general case, the relationship between the stress state in a region near the tip
and the Stress Intensity Factors is the following:
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σi j = 1√
2πr

(

K I f I
i j + KII f II

i j + KIII f III
i j

)

(9.29)

where K I , KII , KIII are the Stress Intensity Factors for the three Modes.

9.2.4 Magnification Factor

In a small region near the crack the stress field generated by a crack depends only
on the stress intensity factors that varies as a linear function of the applied stress and
of the square root of the crack length. We can say e.g. that, for Mode I the stress, σy

at the tip reaches a critical value when K I reaches a critical value.
For a plane crack (θ = 0), holds:

σy = K I√
2πr

(9.30)

Thus the real asymptotic meaning of the stress intensity factor is the following:

K I = lim
r→0

σy
√
2πr (9.31)

In the most simple case of a crack of length 2a in a large plate loaded by a stress σ

perpendicular to the crack plane, K I holds:

K I = σ
√

πa (9.32)

Taking into account the effect of finite boundary and of different loads distributions,
for Mode I the Stress intensity factor can be expressed in the form:

K I = Mσ
√

πa (9.33)

where the factor M modifies the elementary solution developed for an infinite plane
under bi-axial loadings for adapting it to different boundary and loading conditions.

For three-dimensional cracks, the K -Factors must be defined for each direction
perpendicular to the front of the crack tip. In the particular case of a circular defect
with uniform loading perpendicular to its plane, the value of stress intensity factor
K I which is constant for all radial directions, becomes:

K I = 2

π
σ
√

πa (9.34)

Also in this case for Mode I the value of K is always of the form:
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K I = M
2

π
σ
√

πa (9.35)

where: M is a multiplier, called Magnification factor that refers any particular case
to a basic solution.

In all other three-dimensional cases, the same factor forMode I is variable at every
point of the tip front and can be determined, when possible, theoretically [14–17] or
more frequently, by numerical or experimental approaches.

9.2.5 More Terms of Series Expansion

Referring again to Z function (Westergaard function), a question arises about what
happens when only the first term of Taylor series of the function Z , Eq. 9.16 is not
sufficient to describe the function and more terms must be taken into account.

For the sake of simplicity, the analysis is limited to the determination of the stress
value σx along the crack axis, where σx = Re Z and η = r (being θ = 0), but the
same thing happens at every point in the plane.

Considering the function Z in the complete form of Eq.9.15, the Taylor series
expansion, e.g. for the first three terms, is4:

σx = Re Z(r) = σ
√

a√
2r

+ 3σ
√

r

4
√
2a

+ 5σr3/2

32
√
2a3/2

+ 0(r5/2) (9.36)

By introducing the expression of SIF (K I = σ
√

πa) in all the series terms, the
Eq.9.36 becomes:

σx = K I√
2πr

+ 3

4

K I√
2πr

r

a
+ 5

32

K I√
2πr

(

r

a

)2

+ 0(r5/2) (9.37)

4 In general, the Taylor series for f (x) is:

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2
(x − x0)

2 + · · · + f n(x0)

n! (x − x0)
n + o((x − x0)

n)

where o is such that: lim
x→x0

o((x − x0)n)

(x − x0)n
= 0

Instructions text for Mathematica® is:

Series[s ∗ (a + r)/Sqrt[(a + r)2 − a2], {r, 0, 2}]

Then the following holds until the third term in the series expansion:

√
as√
2
√

r
+ 3s

√
r

4
√
2
√

a
− 5sr3/2

32(
√
2a3/2)

+ o(r)5/2.
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or:

σx = K I√
2πr

[

1 + 3

4

r

a
+ 5

32

(

r

a

)2]

+ 0(r5/2) (9.38)

It would be erroneous to use the Eq.9.38 for determining the K value by one mea-
surement of σx at one point. It is necessary to estimate the SIF value at a large number
of points by Least Squares procedure. See an example in the next Sect. 9.5.1.3.

Generalization of the three terms can be extended to each stress and strain com-
ponent for any value of the angle θ [3, 12].

9.3 Identification of the Stress Intensity Factor Utilizing
More Terms of the Series

Stress Intensity Factors are determined for existing cracks in order to assess the
integrity of structural components.Magnification Factors have a role similar to Stress
Concentration Factors in the fatigue theory of beams. The elementary case assumed
as reference is the crack in an infinity body. For other cases of different geometries
and loading conditions, if the analysis is circumscribed to a region near the crack tip,
the singularity is yet represented by the single value of the stress intensity factor even
if its value is influenced by the stress (strain) values at points not very close to the
tip. A more accurate description of the stress state near the crack is thus necessary
for the experimental determination of the right value of the Stress Intensity Factor.

The stress Intensity factor identification can be done modeling the theoretical
expression of the stress (or strain) state with series developments of the stress func-
tions with a number of terms adequate to be fitted to the experimental data [12]. The
Westergaard function is thus modified, in order to express stresses and strains with
at least three terms of a series development, plus a term σ = const. for accounting
the constant value of stress in x direction [12, 18, 19].

The determination of the stresses (or strains) must be done in a not too near but
not too far region from the singularity: it would be impossible to fit data at points
far from the crack tip, for the great number of series coefficients required. Not
only: data taken too far from the crack tip would generate an ill-posed problem of
SIF identification, since the singularity of the stress field tends to reduce rapidly
its influence at point not close to the tip.

The field variables become in this hypothesis:

⎧

⎪

⎨

⎪

⎩

σx = Re Z − y Im Z ′ − y Im Y ′ + 2Re Y

σy = Re Z + y Im Z ′ + y Im Y ′

τxy = −y Re Z ′ − y Re Y ′ − Im Y

(9.39)
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where the stress functions are given as series relationships in term of z as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Z(z) =
N

∑

n=0

Anz(n−1/2)

Y (z) =
M

∑

n=0

Bm zm

(9.40)

Substituting Eq.9.40 in Eq.9.39 gives5:

σx = A0r−1/2 cos
θ

2

(

1 − sin
θ

2
sin

3

2
θ

)

+ 2B0

+ A1r1/2 cos
θ

2

(

1 + sin2
θ

2

)

+ A2r3/2
(

cos
3θ

2
− 3

2
sin θ sin

θ

2

)

(9.41)

σy = A0r−1/2 cos
θ

2

(

1 + sin
θ

2
sin

3

2
θ

)

+ A1r1/2 cos
θ

2

(

1 − sin2
θ

2

)

+ A2r3/2
(

cos
3θ

2
+ 3

2
sin θ sin

θ

2

)

(9.42)

τxy = A0r−1/2 cos
θ

2
sin

θ

2
cos

3

2
θ

− A1r1/2 sin
θ

2
cos2

θ

2
− 3A2r3/2 sin

θ

2
cos2

θ

2

(9.43)

where the constant A0 the following holds:

A0 = K I√
2π

(9.44)

If, for small values of r , only the first term of the series is kept and the others are
neglected, Eq.9.43 is reduced to:

σx = K I√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3

2
θ

)

(9.45)

5 The B0 constant is called uniform remote stress or biaxial correction.
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To increment the accuracy, selecting two terms (n = 0, 1) instead of one, Eq.9.16,
it is possible to take into account the constant stress σ0

6:

2B0 = −σ (9.46)

Augmenting the distance but remaining close to the crack tip, the number of terms of
series Ai can be limited to three values (A0, A1, A2) and to one value of Bm (B0).

Similar equations can be written for the Sharing Mode II [12].

9.4 Crack Tip Plasticity

The elastic solution for a singularity in the stress field, is not able to deal with the
3-D stress state at the tip of the crack, where the yield strength is overcome and a
plastic deformation occurs.

The plastic zone size must be small with respect to the crack dimension and with
respect to the ligament, i.e. the thickness from the crack tip to the closest boundary, in
order to validate the use of an approximate elastic solution. The plastic zone size can
be analytically estimated applying a plasticity criterium to the Eqs. 9.20 and 9.21,
for several values of r and θ , and for the yield condition in Plane Stress and in Plain
Strain.

If the specimen is thin, the Plane Stress is present along the whole thickness and
the principal stresses are σy = σx = 0 and σz = 0, while if the body is thick the
Plane Stress condition is only at the free surfaces and the condition of Plane Strain
tends to be inside the thickness.

It is necessary to distinguish the plastic zone size along the crack direction (θ = 0)
from the plastic zone size in other directions.

9.4.1 Apparent Plastic Zone Size According
to Von Mises Criterion

At the tip of the crack and in a very close region near the tip, the local stress exceeds
the material yield strength and the stress singularity, foreseen by the elementary
elastic theory, cannot occur. In order to preserve a general elastic analysis, the size
of the plastic zone must be small with respect to the ligament dimension from the
crack tip to the nearest boundary.

6 This correction is necessary when the stress analysis is not confined only to a region very near to
the crack tip, since theWestergaard model of a crack in a large sheet was theoretically developed for
a uniform state of stress, i.e. for a stress along the y but also the x axis. This value does not modify
the SIF calculation in the previous elementary hypothesis, but its influence can become relevant if
the K factor derives from experimental data taken from a larger region around the crack tip (as it
happens by optical but especially by strain gages methods).
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Let the Von Mises criterion be applied at plane stress and strain states for
describing the plastic zone shape and size at the front of the crack tip. It will be
shown why there must be a difference between the concept of apparent size dimen-
sions and true size dimensions [12].

The apparent size derives from a simple direct plasticity condition, i.e. the con-
dition of material yielding.

The true size derives from the further condition of a global re-distribution of
stresses as a consequence of the apparent plastic zone size.

9.4.1.1 Plane Stress State

Substituting, in the following condition of plasticity:

σeq = 1√
2

√

(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2 = σY (9.47)

the expressions of σ1 and σ2 from Eq.9.21 (in this case σ3 = σz = 0), a condition is
derived for the apparent plastic radius of the plastic zone rpl :

rpl = 1

2π

(

K I

σY

)2

cos2
θ

2

(

3 sin2
θ

2
+ 1

)

(9.48)

For θ = 0 i.e. along the direction of the crack, the (apparent) radius of the plastic
zone is:

rpl = 1

2π

(

K I

σY

)2

(9.49)

The shape of the plastic zone is described by the Eq.9.48, and shown in Fig. 9.4 as
the largest area.

9.4.1.2 Plane Strain State

From the same Eq.9.47 with the three Eq. 9.21, the following relationship is derived
for the apparent plastic radius:

rpl =
(

K I

σY

)2

cos2
θ

2

(

3 sin2
θ

2
+ (1 − 2ν)2

)

(9.50)

The shape of the plastic zone is described by the Eq.9.50, shown in Fig. 9.4 (smallest
area).

For θ = 0 the radius of the plastic zone on the crack axis is:



382 9 Elementary Models for Stress Singularities

Fig. 9.4 Example of polar
plots of plastic radius in
Plane Stress (larger curve)
and in Plane Strain (smaller
curve). Mat.: steel with
K I = 100MPa

√
m,

σY = 400MPa, ν = 0.35,
rpl and axes in (mm)

rpl = (1 − 2ν)2

2π

(

K I

σY

)2

(9.51)

The size depends on the Poisson coefficient value. For ν = 0.5 this dimension is
zero, that means on the line of crack the material behaves in a brittle way.

9.4.2 Apparent Plastic Zone Size According
to the Tresca Criterion

By means of the Tresca criterion, along the crack direction only, we find the same
values of the previous model: for the plane stress condition (σ3 = 0):

σx = σy = K I√
2πr

σ1 − σ2 = σy − σx = 0

σ1 − σ3 = σy = σx

σ2 − σ3 = σy = σx

then:
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σeq = σy = σx = K I√
2πr

≤ σY

rpl = 1

2π

(

K I

σY

)2

(9.52)

while in the case of plane strain:

σeq = σy − σz = σy − ν(σy + σx ) = σy(1 − 2ν) ≤ σY

rpl = (1 − 2ν)2

2π

(

K I

σY

)2

(9.53)

An analogy exists between the shape of the border of the plastic zone at Plane Strain
state, when ν = 0.5, and the shape of isochromatics around the crack tip, because
both curves are loci of the difference between the two principal stresses in the plane
(1–2), see Fig. 9.12 in Sect. 9.5.

As a consequence, in the cracked body with considerable thickness, the shape of
the apparent plastic zone follows a form that is a larger curve at the surface, according
to Fig. 9.4a, and a smaller curve in the internal part, Fig. 9.4b, with a gradual passage
from one to the other shape along the specimen thickness. This typical shape shown
in Fig. 9.5 is called at dog-bone.

This criterion indicates the direction of maximum shear stress and clarifies the
reason for the thickness contraction, Fig. 9.6 in the case of plain stress: reasoning on
the Mohr’s circles, the shear planes are the planes at 45◦ of the solid angle between
the plane (1–2) and the plane (1–3).

Vice-versa, in the case of plane strain the shear planes are in the directions shown
in Fig. 9.7. In the case of Plane Strain the plastic zone is smaller and offers a lower
barrier to the crack propagation, until the value of K I is less than a critical value
K I c. When this value is reached, the fracture takes place in a brittle mode.

Fig. 9.5 Dog-bone plastic
zone at the crack front in a
thick body
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Fig. 9.6 Thickness contraction in the case of Plane Stress state in the plastic zone near the tip in a
compact cracked specimen

Fig. 9.7 Plane Strain state and brittle fracture of the compact specimen. The dark area was con-
trolled with a penetrant liquid during the pre-cracking phase

9.4.3 Apparent and True Plastic Zone Size

Especially in the case of Plane Stress, once the equivalent stress has reached yield
strength, a redistribution of stresses on the front of the crack is produced, in a way
similar to that seen in a notch.

The equilibrium relationships between stresses and loads require that the actual
radius r , and then the stress curve as function of r , is shifted by a quantity equal to
rpl , Fig. 9.8. With this assumption, if the plastic zone is small, the elastic solution
can still be employed, taking care to hypnotize an equivalent crack of length equal
to a + rpl , where rpl is the size of the plastic area along the crack axis x . In this
hypothesis, it therefore has a value of K I p larger than K I such that:
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Fig. 9.8 New stress
distribution (diagram on the
right) at the crack tip due to
plasticization, in the case of
plane stress

K I p = Mp · K I (9.54)

where:

Mp = K I p/K I =
√

1 + rpl

a

Remembering that K I = Mσ
√

πa we have:

Mp =
√

1 + α

(

M · σ

σpl

)2

α = (1 − 2ν)2

2π
or : 1

2π
(9.55)

From this observation it can be concluded that the true plastic zone radius is not the
value of the apparent plastic zone radius rp but its double. 2rp. All the observations
on the shape of the plastic zone are right, but they must be considered valid for the
double of the apparent plastic radius.

9.5 Case Studies of the Stress Intensity Factor
Identification for Internal Cracks

The parameter K (=Mσ
√

πa) is a combination of load and geometry data. Through
a fatigue propagation of an initial crack and experimental measurements at selected
propagation instants, thewhole phenomenon of propagation and of stress distribution
around the crack can be clarified together with the limits of the theoretical models.
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9.5.1 Identification of SIF by Photoelasticity

Physical models of transparent plastic (of Araldite epoxy resin) were utilized for
simulating the crack propagation:

1. For visualizing the crack during the propagation phase.
2. For freezing the stresses at a certain instant of time and thus determining the

Fracture Mechanics Parameters (as the Stress Intensity Factor SIF), in special
configurations.

For generating a circular crack in a block of epoxy resin (Araldite), a simple procedure
proved quite adequate:

• Very accurate cracks of circular form are obtained by an impact of a sharp pin
inserted in a small hole, Fig. 9.9.

• The crack is pre cracked (propagated) by cyclic internal pressurization up to a
desired front diameter size.

• Once the desired size has been reached, the crack is statically pressurized and the
stresses are frozen, following the protocol described in Chap. 3. The stress state dif-
fers from that produced by an external uniform load by a constant value, Fig. 9.10,
but the Stress Intensity Factor SIF is not influenced, to a first approximation, by
this alteration of the load distribution and is the same in both cases.

• The frozen block is cut in slices along several radial directions, Fig. 9.11. The
fringe pattern is shown in Fig. 9.12a.

Fig. 9.9 Circular crack
obtained by an impact load
on a sharp pin inserted into a
small hole

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 9.10 Equivalence of SIF (Stress Intensity Factor) for internal and external loads acting on a
cracked massive body

9.5.1.1 SIF Identification by the Simplest Data Extrapolation

The Fracture Mechanics Equations for Mode I, give the following expression for the
difference of the principal stresses in the slice plane [20]:

σ1 − σ2 = 2A

√

sin2
θ

2
sin2

3

2
θ + sin2

θ

2
cos2

3

2
θ = 2A sin

θ

2
(9.56)

where:

A = K I√
2πr

cos
θ

2

Fig. 9.11 Slicing of the
block epoxy frozen model
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Equation9.56 becomes:

σ1 − σ2 = 2
K I√
2πr

sin
θ

2
cos

θ

2
= K I√

2πr
sin θ

and for θ = π

2
σ1 − σ2 = K I√

2πr
= fσ

N

d
From this equation the following is derived:

K I√
2π

d

fσ
= N

√
r

or, if C = 1√
2π

d

fσ
:

C · K I = N · √r (9.57)

Given a fringe pattern, the elementary and simplest procedure for the determination
of the Stress Intensity Factor of Mode I is based on a linear regression of data along
the vertical direction, selected since this line is the richest in information, cutting
numerous interferometric fringes in a brief segment, Fig. 9.12:

• After recording the fringe orders N and the relative distances on the vertical axis
r from the crack tip, Fig. 9.12a, a graphics of the points of the product N · √r on
the ordinate versus

√
r on the abscissa, is shown, Fig. 9.12b.

The term N · √
r , for Eq.9.57, is equal to the K I factor, multiplied by a constant

(that depends on the model thickness and on the photoelastic constant).
• The points are linearly extrapolated up to the intercept on the ordinate axis.
• The intercept is proportional to the limit of K for

√
r tending to zero, i.e. for

definition, the value of K I .

Fig. 9.12 Photoelastic determination of K I for a circular crack in a uniform stress field by a
simplified extrapolation in a single direction. a The interferometric image, b the linear extrapolation
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In the case study, the straight line in Fig. 9.12b is determined for the following
values of the constants:

• E = 36MPa
• ν = 0.45
• λ = 577 · 10−9 m
• p = 0.2MPa

9.5.1.2 Errors Due to Fitting Data to a Straight Line

It must be observed that linear extrapolation of a curve for estimating the intercept
is an operation subjected to numerical errors that could be unacceptable and lead
to false results [21]. The following numerical results show the discrepancy between
theoretical and experimental solutions.

Exercise 9.1 (Comparison between theoretical and experimentally extrapolated
results) For the material data of this example, if we compare the estimated K I value
with the corresponding theoretical value, we find a significant discrepancy:

K I = fσ
d

√
2π · I = 0.688MPa

√
mm

Since p = 0.188MPa, a = 15.11mm, d = 3mm, while the theoretical value is:

2p

√

a

π
= 0.825MPa

√
mm

The difference is about 17%, too large and not justified by the relative accuracy
of the frozen stress three dimensional photoelastic technique. A different approach
should be developed for finding, with the same technique, much better results.

The error on intercept due to the extrapolation can be estimated [21]. Given the
straight line of equation (Fig. 9.13):

Fig. 9.13 Error on the intercept of a regression straight line in the extrapolation of experimental
data
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y = a + bx (9.58)

the standard deviation of the intercept a and of the slope b are, respectively:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σa = σ

√

√

√

√

∑

i

x2i
σ 2

i

/Δ

σb = σ

√

∑

i

1

σ 2
i

/Δ

(9.59)

where:

σi =

√

√

√

√

√

√

nk
∑

k=1

[dk − a − bxi ]2

nk − 2
(9.60)

and

σ =
√

J 2

n − 2

with

J 2 =
2

∑

i

[di − a − bxi ]2 (9.61)

Δ =
∑

i

1

σ 2
i

∑

i

x2i
σ 2

i

−
∑

i

xi

σ 2
i

∑

i

xi

σ 2
i

(9.62)

9.5.1.3 The Optimization Problem

If the systemcanbe formulated in amatrix form, the solution is the (pseudo)-inversion
of the matrix.

Since the system cannot be formulated in an explicit matrix form a functional of
error must be written and optimization/minimization methods should be used. As it
is shown in Chap.1, the solution is obtained comparing a number of experimental
data (orders N ) measured in several points of the interferometric pattern, with the
theoretical predicted N values at the same points, derived from the forward model,
andminimizing the difference that is a function of theoretical unknownparameters K :

J (K ) =
n

∑

i

[

ypred
i (K ) − ymeas

i

]2 = min (9.63)

where: y pred
i (K ) is the theoretically predicted output.

http://dx.doi.org/10.1007/978-3-319-06086-6_1
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ymeas
i for i = 1 . . . n are the experimental data. Thus:

J = ‖ N pred − N meas ‖2 (9.64)

We can develop this equation, introducing the expression of Npred :

J (K ) =
n

∑

i

[

d

fσ · √
2π

K · sin θi√
ri

− N (ri , θi )

]2

= min (9.65)

The value that minimizes J is the best estimation of K . The Least Squares method
for this linear problem yields the normal equation:

d J

d K
= 0

d J

d K
= K

fσ

d√
2π

∑

i

sin2 φi

ri
−

∑

i

Ni · sin φi√
ri

= 0

from which:

K

fσ

d√
2π

=

∑

i

Ni · sin φi√
ri

∑

i

sin2 φi

ri

All the following exercises utilize the algorithm FindFit Mathematica®.

Exercise 9.2 (SIF determination for a single circular crack in an uniform state of
stress) The constant C is:

C = d

fσ
√
2π

= 16

0.688
= 23.256

The model compared to experimental data is:

C · K · sin φi√
ri

→ N (ri , φi )

This fits the experimental values with the Eq.9.79.
The advantage of an optimization technique is a comparison between theoretical

and experimental K values at several points distributed on a large portion of the
definition domain, unlike the previous extrapolation of data in a single direction.
Versus a theoretical value of 0.825MPa

√
mm this procedure gives an experimental

evaluation equal to 0.812MPa
√
mm, Fig. 9.14, that is a good approximation, versus

the previous one in a direction extrapolated value of only 0.688MPa
√
mm.
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Fig. 9.14 Fitting the experimental data with a theoretical model along r and in the whole field. The
K value found is 0.8120MPa

√
mm

9.5.1.4 Non-coplanar Defects in a Thick Body

An experiment was performed for determining the stress intensity factors (in the
direction of minimum distance), of two interacting circular cracks located in parallel
planes of a massive body, during a stop of the fatigue propagation phase due to
cyclically variable internal pressure, Fig. 9.15. Also in this case, a physical model
of a homogeneous and isotropic and transparent material had been chosen, in order
to visualize the front tips directions at several propagation stages and, for a material
suitable for a three dimensional photoelastic analysis, to freeze the stress state in
selected configurations. Figure9.16 shows the visualization of the front shapes of

Fig. 9.15 Fatigue propagation of non-coplanar defects, initially of circular shape, internally pres-
surized
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Fig. 9.16 Front shapes of non-coplanar defects for an increasing number of fatigue cycles and the
perpendicular slice profile A–A

no-coplanar defects, when both are internally cyclically pressurized at increasing
number of cycles. A perpendicular slice, whose profile A–A is shown, is the slice
that is selected for the photoelastic analysis at one propagation stage of both cracks.
This slice is cut after a freezing procedure, described in Chap.3, Sect. 3.12.2.

A question arises as to whether this experiment can be utilized for studying the
Stress Intensity Factor for two interacting cracks externally loaded, instead of
internally pressurized.

The equivalence is not valid in general. It can be considered only qualitatively
useful, with a restriction to the mean plane A–A in which the state of stress is
essentially two-dimensional. The original application of this casewas of different
nature [22], but it can be an interesting case study.

Figure9.17 shows the photoelastic fringe pattern around the tips of two interacting
non-coplanar cracks, internally pressurized, in a large block of isotropic material.

A Non-linear Identification Problem

Equation9.64must be applied to the two cracks geometry.Unlike the case of Eq.9.65,
in the case of two non-coplanar defects, there are two variables to be identified, K I

and KII , and the equation is no longer linear with respect to these variables [23], now
being:

[

fσ
d

N (ri , φi )

]2

= 1

2πri

[(

K I sin φi + 2KII cosφi

)2

+
(

KII sin φi

)2]

(9.66)

http://dx.doi.org/10.1007/978-3-319-06086-6_3
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Fig. 9.17 Frozen fringes in the mean plane of two non-coplanar interacting cracks located in a
large block, loaded by internal pressure

The minimization is possible through the application of an Incremental/Iterative
approach of the Least-Squares Method.

The error functional in two variables, starting from the previous equation, is now:

J =
n

∑

i

{

[(K I sin φi + 2KII cosφi )
2 + (KII sin φi )

2] −
(

fσ
d

)2

2πri N 2(ri , φi )

}2

= min (9.67)

where N is the measured orders and i is the i-point label, variable from 1 to n, total
number of measurements. The first term of the sum is the ith theoretically predicted
(P) value while the second term is proportional to the fringe order measured (M) at
the ith point. The sum is extended to all the n points.

Approximation by Linearization

The previous non-linear expression is linearized by a Taylor series expansion, limited
to the first term:

P(K I , KII , φi ) = [(K I sin φi + 2KII cosφi )
2 + (KII sin φi )

2]
≈ P2

0 (ri , φi , K I0, KII0) +
(

∂ P2

∂K I 0

∣

∣

∣

0
ΔK I + ∂ P2

∂KII 0

∣

∣

∣

0
ΔKII

)
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Substituting the first term of a Taylor series into the error function, the problem is
reduced to the minimization of a linear functional:

J =
n

∑

i

{(

fσ
d

)2

2πri N 2(ri , φi ) − P2
0 −

(

∂ P2

∂K I 0

∣

∣

∣

0
ΔK I + ∂ P2

∂KII 0

∣

∣

∣

0
ΔKII

)}2

= min (9.68)

Linear Least-Squares Newton-Raphson Method

In order to apply the Linear Least-Squares Newton-Raphson Method, minimization
goes on with the corresponding normal equations in the variables:

ΔK I ,ΔKII

At the minimum value, the derivative vector with respect to both parameters has its
components equal to zero:

∂ J

∂K I
= 2

∑

i

[

. . .

]

∂ P2

∂K I
= 0

∂ J

∂KII
= 2

∑

i

[

. . .

]

∂ P2

∂KII
= 0 (9.69)

thus:

∂ J

∂K I
=

∑

i

[(

fσ
d

· N (ri , φi )
2 − P2

0 )

)

· ∂ P2

∂K I
−

(

∂ P2

∂K I
∂K I + ∂ P2

∂KII
∂KII

)

· ∂ P2

∂K I

]

= 0

For the first vector:

∑

i

(

∂ P2

∂K I
· ∂ P2

∂K I

)

∂K I +
∑

i

(

∂ P2

∂KII
· ∂ P2

∂K I

)

∂KII

=
∑

i

(

( fσ /d
√
2πr)2 · N (ri , φi )

2 − P2
0

)

· ∂ P2

∂K I

For the second vector:

∑

i

(

∂ P2

∂K I
· ∂ P2

∂KII

)

∂K I +
∑

i

(

∂ P2

∂KII
· ∂ P2

∂KII

)

∂KII
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=
∑

i

(

( fσ /d
√
2πr)2 · N (ri , φi )

2 − P2
0

)

· ∂ P2

∂KII

In matrix form, for finite differencesΔK I andΔKII (remembering that all the partial
derivatives as well as P2

0 are functions of K I , KII and φi ), the following relationships
shall be valid, see [21]:

⎛

⎜

⎜

⎜

⎝

∑

i

(

∂ P2

∂K I
· ∂ P2

∂K I

)

∑

i

(

∂ P2

∂KII
· ∂ P2

∂K I

)

∑

i

(

∂ P2

∂K I
· ∂ P2

∂KII

)

∑

i

(

∂ P2

∂KII
· ∂ P2

∂KII

)

⎞

⎟

⎟

⎟

⎠

·
(

ΔK I

ΔKII

)

=

⎛

⎜

⎜

⎜

⎝

∑

i

(

( fσ /d
√

2πri )
2 · N (ri , φi )

2 − P2
0

)

· ∂ P2

∂K I

∑

i

(

( fσ /d
√

2πri )
2 · N (ri , φi )

2 − P2
0

)

· ∂ P2

∂KII

⎞

⎟

⎟

⎟

⎠

Briefly:
A · ΔK = B (9.70)

where A and B are two (2 × 2)-matrices and ΔK is a (2 × 1)-vector.
Partial derivatives have the following expressions:

∂ P2

∂K I
= 2K I sin

2 φi + 4KII sin φi cosφi

∂ P2

∂KII
= 8KII cos

2 φi + 4K I sin φi cosφi + 2KII sin
2 φi

The minimization procedure starts with a guess for K I0 and KII0 and computes the
values:P2

0 (ri , φi , K I 0, K I I 0). Equations9.70 must be solved for ΔK I ΔKII . The
tentative values K I 0, KII 0 must be incremented by this amount and the process must
be repeated incrementally and iteratively until a minimum value for J is reached.

Exercise 9.3 (Least-squares Newton-Raphson Method for K I , KII identification)

• Internal pressure in both cracks: p = 0.0866MPa.
• External stress applied in longitudinal direction: σ0x = 0.
• Number of fatigue cycles (0 ÷ 0.0866) of internal pressure Ncycl = 32,400.
• Starting tentative values, Fig. 9.17:

K I = 0.825MPa
√
mm

KII = 0.157MPa
√
mm.

Solution

• A minimum of J (= 10.76), is reached after about 27 iterations.
• The final values are: K I = 0.739MPa

√
mm and KII = 0.283MPa

√
mm.
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9.5.2 Identification of SIF by Holographic Interferometry

Holographic interferometry can also be successfully applied to the determination
of Fracture Mechanics parameters, remembering the relationship that links the dis-
placements field.

9.5.2.1 Two Circular Co-planar Cracks Interaction

The application deals with the problem of two circular cracks lying on the same
plane, uniformly loaded in a direction perpendicular to the plane. The experiment
is set up through two cracks that are artificially generated in the middle plane of a
transparent plexiglass block, Fig. 4.9 and Eq.4.13 in Chap.4.

The experiment wishes to investigate the propagation effect for cycling load and
verify if cracks tend to join, forming a single more dangerous crack. This intuitive
conjecture needs a physical validation.

From the point of view of Fracture Mechanics the stress state at any points of
cracks tips is equivalent to the state due to external uniform load for plane strain
condition.

The displacements contour lines for a given internal pressure p = 2 bar are shown
in Fig. 9.18. The small shift of the centre of the circular contour lines with respect
to the geometrical centre of the cracks is pointed out by a small eccentricity of the
contour lines. Their distances from the cracks border in direction A are a little bigger

Fig. 9.18 Detail of the contour lines of the displacements field of the circular surfaces of two
co-planar cracks, artificially produced in a transparent model. Uniform state of stress due to internal
pressurization of p = 2 bar

http://dx.doi.org/10.1007/978-3-319-06086-6_4
http://dx.doi.org/10.1007/978-3-319-06086-6_4
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than the distances in direction B. This small displacement is the symptom of a bigger
value of the stress intensity factor in direction B with respect to direction A, as it
will be proved below.

For the determination of the Stress Intensity Factor in the two radial directions
at points A and B, the method of optimization of the error functional, based on the
Least Squares Solution, was utilized. Remembering the equations7:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u = K I

G

√

r

2π
cos

θ

2

(

1 − 2ν + sin2
θ

2

)

d = K I

G

√

r

2π
sin

θ

2

(

2 − 2ν − cos2
θ

2

) (9.71)

a solution can be found minimizing the object function:

J = ‖dpredict − dmeas‖2 = min (9.72)

i.e. minimizing the norm of the vector of the residuals.
Substituting the second equation of Eq.9.71 in Eq.9.72, and also for Eq.4.13 the

following relationship is derived:

J =
n

∑

i

[

K I

G
√
2π

√
ri sin

θi

2

(

2 − 2ν − cos2
θi

2

)

− λ

2 cos γ cos δ
N (ri )

]2

= min

where, with reference to Figs. 4.9b and 4.10 in Sect. 4.6 in Chap.4:

• G = E/2(1 + ν) = shear modulus of elasticity
• ν = Poisson’s ratio
• ri = distance from the crack tip, along direction θi

• λ = wave length of laser light
• cos γ cos δ = geometrical position of the model on the holographic bench.

For θ = π the functional Eq. 9.72 becomes:

J =
n

∑

i

[

K I
√

ri − λG

2(1 − ν) cos γ cos δ

√

π

2
N (ri )

]2

= min (9.73)

where:

• K I
√

ri = N predict

• N (ri ) = N meas

• λG

2(1 − ν) cos γ cos δ

√

π

2
= Const.

7 In the following formulas the displacement v is called d.

http://dx.doi.org/10.1007/978-3-319-06086-6_4
http://dx.doi.org/10.1007/978-3-319-06086-6_4
http://dx.doi.org/10.1007/978-3-319-06086-6_4
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Normal Equations

The corresponding normal equation is:

∂ J

∂K I
= K I

G
√
2π

n
∑

i

[√
ri sin

θi

2

(

2 − 2ν − cos2
θi

2

)]2

−
n

∑

i

N (ri )λ

2 cos γ cos δ

[√
ri sin

θi

2

(

2 − 2ν − cos2
θi

2

)]

= 0

The Least Squares Solution is equal to:

K = λG

cos γ cos δ

√

π

2
·

n
∑

i

Ni

[√
ri sin

θi

2

(

2 − 2ν − cos2
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∑

i

[√
ri sin

θi

2

(

2 − 2ν − cos2
θi

2

)]2 (9.74)

By the L SM , K is obtained in directions A and B for a loading pressure (p = 2).
The result of the analysis is K B/K A = 1.08.

Exercise 9.4 (The application of the LSM by a direct algorithm, (avoiding writing
the normal equation)) The application of the FindFit algorithm simplifies the cal-
culation of normal equations because it directly provides the expression of K I in
points A and B. The algorithm works directly on the Eq.9.73. Figure9.19 shows the
two curves that fit to the experimental data, minimizing the residuals, providing both
values of the stress intensity factors. For an internal pressure of p = 2 bar the values
are the following:

K in Direction A K = 1.261MPa
√
mm

K in Direction B K = 1.362MPa
√
mm

K B/K A = 1.080
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Fig. 9.19 The two curves of the algorithm FindFit in Mathematica® for fitting holographic inter-
ferometry data in the case of p = 2bar. The constant is 0.5800
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The value derived from LSM (Least Squares Method) application for p = 3bar is
K B/K A = 1.102.

The holographic interferometry images prefigure the propagation shape of both
cracks, showing a quasi-elliptic zone of influence towhich the defects have a tendency
after junction, Fig. 4.12 in Chap.4.

The magnification effect M = K B/K A in the direction of minimum distance
between the cracks is about 10÷11% greater than that of a single crack and is much
more independent than the single values K A and K B , from the material parameters
and loadings (E, ν, p, etc.). This is consistent with Chap.1, Sect. 1.1 which recom-
mends selecting the unknown output parameters so that they are insensitive to other
model parameters selected in the experiment, as it happens in this case where the
material of the model (Plexiglass) is different from the structural material in which
the real cracks arise, but it does not influence this result.

The industrial application that suggested this experiment is related to the prop-
agation of very small but numerous circular cracks located in rotors of turbo-
machinery. The small circular defects formation occurs in the practice of the
industrial production of molding and subsequent forging phases of large steel
ingots. The propagation arises by centrifugal forces acting in low cycle fatigue
stage, Chap. 8, due to starts and stops of the rotors in normal functioning condi-
tions.

Ultrasonic investigations are able to detect defects that are presumed, in the
absence of other information, to be circular and lying in the most stressed radial
planes. The small co-planar cracks, if close to one another, can interact, i.e.
magnify the stress intensity factors, with the risk of a possible junction, after a
sufficient number of fatigue cycles.

In the present example of two co-planar defects cyclically pressurized, the
evolution of their shapes is shown in Figs. 9.39 and 9.40. The fronts evolve into
a common quasi-elliptical shape hat later becomes circular.

9.5.3 Identification of the Stress Intensity Factor
by Strain Gages

Strain gages measurements offer several ways to identify the plane-stress K value,
with one or more higher order terms of series expansion of strain close to the crack
tip. Let us assume that strain gages can be placed in a region near (but not very near)
the crack tip along the crack axis, with their grids in the direction perpendicular to
the crack plane [13]. The case study deals with a corner crack in a component of
rectangular section in a portal frame consisting of two columns, subjected to tensile
stress, and two crossheads.

http://dx.doi.org/10.1007/978-3-319-06086-6_4
http://dx.doi.org/10.1007/978-3-319-06086-6_1
http://dx.doi.org/10.1007/978-3-319-06086-6_8
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Fig. 9.20 Sketch of angular crack in a tensilemember. In a a theoretical form of a quarter of circular
crack in infinite body; in b the real shape of angular crack after propagation

During the tests on a prototype, after a relevant number of working cycles, an
angular crack enucleated in a corner that developed in the form of a quarter of a
circle and then in a more complex shape, Fig. 9.20a. Data are the following:

• Material: Fe 510 with E = 2.1 · 105MPa
• ν = 0.3 Poisson’s ratio
• b > 400mm column width
• t > 600mm column thickness
• a1 ≥ 45mm crack length for 3.5 · 106 cycles
• a2 ≥ 45mm that grows up to 200mm for 3.5 · 106 cycles.
A chain of nine strain gages is located on the crack axis on the shorter side of the
crack, at a distance 15 ÷ 30mm from the crack tip, Fig. 9.20b.

According to themodel of linear elastic fracturemechanics (LEFM), three regions
are defined surrounding the crack tip, see Sect. 9.3. Locating the strain gages either
in a zone very close to the tip where the material yields with large deformation, or
in a too far region, where boundary effects dominates and the model is no longer
representative of the state of the local stress, must be avoided.

The measured values of the nine strain gages along the crack plane are reported
in Table9.1.

9.5.3.1 Identification by the First Term of the Series

Measurements of strains along the crack plane can offer enough information for the
K I identification. In order to fit the theoretical model to the data, the Least Squares
method is applied as follows, comparing the predicted strainswith themeasured ones:

J = ‖ε predict − εmeas‖2 = min (9.75)
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Table 9.1 Strain
measurements along the crack
plane

# SG Distance ri (mm) Meas. strain (με)

1 15.30 762

2 16.90 699

3 19.15 656

4 20.80 623

5 22.80 591

6 24.70 566

7 26.90 557

8 29.10 537

9 30.70 527

J =
n

∑

i

[

(1 − ν)

E
√
2π

· K I√
ri

− εmeas(ri )

]2

= min (9.76)

where:

ε predict = (1 − ν)

E
√
2π

· K I√
ri

(9.77)

Exercise 9.5 (Identification of K I by the First term of the Series Expansion with
the previous data) The constant C is equal to:

C = (1 − ν)

E
√
2π

= 0.7

2.507 · 2.1 · 105 = 1.330 · 10−6 1

MPa

By FindFit of Mathematica® [24], the identified value of the stress intensity factor
with only the first term of series expansion is: K I = 2, 166.85MPa

√
mm, Fig. 9.21a.

Fig. 9.21 Theoretical model fitting experimental data according to Eq.9.76. a With one term, and
b with three terms of the series expansion. Note the difference of the variables on the horizontal
axis: in a is

√
r and in b is r
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9.5.3.2 Identification by More Terms of the Strains Series Expansion

In order to check the accuracy of K identification by strain gages, the use of more
terms of the series expansion is suggested because the chain of strain gages, due to
their natural transversal dimensions, tends to overcome the limited area close to the
crack tip and they could record strain contributions at points relatively far from the
tip to justify the use of models with more terms (almost four) of the series.

The relationships for the strains can be derived substituting Eqs. 9.41 and 9.42
into the general stress-strain relations (Hooke’s law); for the strain component εy

perpendicular to the crack line, the equation is:

Eεy = A0r−1/2 cos
θ

2

[

(1 − ν) + (1 + ν) sin
θ

2
sin

3

2
θ

]

− 2νB0

+ A1r1/2 cos
θ

2

[

(1 − ν) − (1 + ν) sin2
θ

2

]

+ A2r3/2
[

(1 − ν) cos
3θ

2
+ 3

2
(1 + ν) sin θ sin

θ

2

]

(9.78)

For θ = 0. Eq.9.78 is reduced to the following:

Eεy = A0r−1/2(1 − ν) − 2νB0 + A1r1/2(1 − ν) + A2r3/2(1 − ν) (9.79)

Exercise 9.6 (Fit the experimental data of Table 9.1 by Eq. 9.79, with three
(A0, A1, A2) terms of a series expansion and compare the result of this inter-
polation with the corresponding result obtained with only one term) Through the
use of algorithm FindFit, the estimated value of the Stress Intensity Factor is
K I = 2973.38MPa

√
mm, Fig. 9.21b.

The improvement of the three terms model observing the differences between
the diagrams a and b of Fig. 9.21 seems minimum, but the estimation of the Stress
Intensity Factor changes considerably: 2973.4 instead of 2166.8MPa

√
mm.

9.6 Stress Analysis for Brittle Fracture

In order to proceed with the theory of the Fracture Mechanics it is necessary to
evaluate the material answer to a singularity in the state of stress, described by the
K I factor of a crack in a loaded structural element, i.e. the material capacity to
tolerate the presence of a crack without fracturing. This is called Fracture Toughness
and represents the critical value of the stress intensity factor K I c, when the specimen
exhibits a sudden crack propagation.
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While the corresponding behavior of the stress/strain curve in the static or in the
fatigue cases was simulated by mathematical models, such as the Ramberg-Osgood
equation, and by the mathematical description of the fatigue curve as well as of the
hysteresis cycles in the low cycle fatigue, it is not equally possible to describe the
behavior of a crack when it is loaded monotonically up to the brittle propagation of
the crack. The phenomenon is much more complex and it is necessary, in this case:

1. to develop special specimens that must be representative of the real cracks in a
structure,

2. to develop special testingmachines suitable to realize plane state of strain. Only in
this case does the test gives a result that is independent of the material thickness,
since the size of the plastic zone accompanying the crack tip is very small relative
to the specimen thickness, and the fracture toughness does not depend on it. As
it will be shown below, this condition could require testing machines of high
capacities.

3. to develop special testing protocols for covering a variety of materials behaviors.

The protocol is regulated by standards, covering the Test Methods for Linear-Elastic
Plane-Strain Fracture Toughness K I c of the materials.8

9.6.1 Experimental Equipments

As regards the first point, the choice of the specimen type, in order to remove any
doubt on the opportunity of considering the study and determination of the fracture
toughness as a task of stress analysis, it must be remembered that a critical value of
the stress intensity factor (i.e. the Fracture Toughness) is not only a material property
but also depends on the stress state in the specimen, chosen to represent the real
situation of risk of an artifact.

The Stress Intensity Factor is defined only in the elastic field, with only a small
area of plasticization close to the tip: then testing must be rigorously performed in
this condition, if we want to maintain similarity with the real risk of brittle fracture
(i.e. a sudden fracture not announced nor followed by any visible plasticity of the
structural element).

For example in Mode I, that is the most important fracture mode, since the stress
near the crack tip and K I factor are proportional one to the other, (σ · √2πr = K I )
an increment of stress corresponds to an increment of the stress intensity factor, thus
a crack propagation will happen when K I reaches a critical value K I c.

8 For e.g.: ISO 12135: Metallic materials Unified method of test for the determination of quasi-
static fracture toughness, First edition 2002-12-01 with a Technical Corrigendum 1, Published on
2008-06-01.
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9.6.1.1 Specimens

The classic test procedure needs a proper choice of a cracked specimen. The most
common forms suggested by international previously quoted ISO Standards are the
Compact Test Specimen CT , Fig. 9.22 and the three-points bending specimen, pre-
pared with a sharp notch exacerbated with a pre-cracking operation (in order to
simulate real cracks), obtained by a fatigue controlled test.

The calibration formula for K I is approximately obtained by a series expansion
as a function of the non dimensional term a/W which compares with powers of
1/2; 3/2; 5/2; 7/2; 9/2.

The approximation derives from the complex boundary conditions of the spec-
imen that was developed for reducing the quantity of material necessary for the
characterization (Fig. 9.23):

Fig. 9.22 CT specimen proportion: (B = 1/2 W a = 0.45 ÷ 0.55 W S = 2 · 0.275 W ) and the
photoelastic fringes of the stress distribution around the tip

Fig. 9.23 Typical dimensions of the CT Compact Test specimen for toughness measurements
(length in mm), see details in [25]
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Fig. 9.24 The three-point bending specimen
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(9.80)

This equation is valid for 0.45 ≤ a/W ≤ 0.55 and for the following dimensioning:

W = 2B a = 0.55 B S = 0.55 W H = 1.2 W
a = 0.45 ÷ 0.55 W D = 0.25 W Wt (Sometime called G) = 1.25 W

Another common specimen geometry that is used for K I c determination is the
so-called three-point bending, Fig. 9.24:

K I = F L
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(9.81)

In these Equations, all the parameters are known except the force F that must be
measured at the instant of sudden crack propagation.

9.6.1.2 Special Devices

With the use of the previous specimens,9 the toughness testing is performed by
relating the applied load with crack opening displacement Δ of the crack mouth.
The relative displacement of two points located symmetrically on opposite sides

9 Many other kinds of specimen geometry can be used. In Fracture mechanics handbooks suggest
a variety of solutions with the relative calibration formulas [10, 26, 27].
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Fig. 9.25 Devices for themeasurement of the crack opening displacement in the fracture toughness
testing

of the crack plane of the pre-cracked specimen, is measured by a device Fig. 9.25,
and recorded simultaneously with the monotonically increasing load, applied to the
specimen. The specimen is loaded at a rate of stress intensity K I /s, within the range
0.55 ÷ 2.75MPam1/2/s.

The device has the task ofmeasuring the distance between the two reference points
and is called an extensometer. It is formed by two small cantilevers of harmonic steel
mounted with a pre-load between the two blades, in such a way to keep the contact
when the mouth enlarges.

Four strain gages are mounted on the blades in a full Wheatstone bridge and the
extensometer is calibrated with a centesimal measuring tool before the test. Com-
mercial instruments are available but a device built in-house can be adjusted at the
necessary sensitivity, varying the position of the gages on the two cantilever beams.

There are other types of commercial extensometers such the one shown in
Fig. 9.26.

9.6.1.3 The Specimen Thickness

The K I c parameter must be independent of the thickness of the body. In order to
guarantee this condition, the specimen must be in plane strain state because only in
this condition is the plastic zone size at a minimum, with a dimension on the crack
plane practically equal to zero, Fig. 9.4 and with a full brittle fracture on the entire
thickness. This is the most dangerous situation and this is the lower limit of the
material that we wish to measure, Fig. 9.27 on the right side.

This condition occurs if the size of plastic zone is small compared with a and B:
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Fig. 9.26 Commercial extensometer

Fig. 9.27 Trend of the fracture toughness as a function of the thickness [5, 6, 25, 28]

rpl = 1

2π
·
(

K I

σsn

)2

≤ a, B

10 ÷ 20
that gives the following disequalities:

a, B ≥ 2.5

(

K I c

σsn

)2

e
a

W
≤ 0.55 (9.82)

where: a, B, W are the crack and body dimensions Fig. 9.22. The same Figure shows
the calibration formula for calculating K I c for given dimensions and for a determined
load and the Critical Crack Length.
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The first of Eqs. 9.82 is a condition on the plasic radius rpl , that must be small
compared to a, while the second guarantees that a small error on a length does not
generate notable variations of the value of K I c. All these conditions imply a limit on
the minimum thickness of the test specimen for valid K I c measurements.

In order to choose the specimens sizes before knowing the fracture toughness of
the material, it is advisable to find a first tentative value of it with a large specimen
test, and to reduce the size after this first estimation. If this second value is identical
to the first one, that means we are beyond the limit value Blim of Fig. 9.27 and the
test with the smaller thickness specimen is valid. Since the fracture toughness is
strongly influenced by the temperature, the specimen thickness is dependent on it
and the estimated value of K I c must be determined for the working temperature of
the artifact from which the specimen derives. The estimation of the crack length is
shown in Fig. 9.28.

9.6.2 Fracture Mechanics Testing

Fracture toughness determination of very tough materials requires testing apparatus
in-house designed for high capacity, Fig. 9.29 in order to:

• Test thick specimens.
• Maintain the load rigorously centered on the mean plane of the specimen cross-
section.

• Control the applied load that must be incremented at a constant rate.

Fig. 9.28 Estimation of the
most likely value of
semi-length critical crack as
the average of three values
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Fig. 9.29 Special self-manufactured testing apparatus [29] for the measurement of K I C in compact
tension specimens up to 150mm thick, and 375 × 360mm with a maximum load of 2 M N , see
Fig. 9.23

• Control the test temperature through the use of a refrigerating fluid.

The critical load related to the value of fracture toughness is obtained from recorded
curves, in agreement with the standards that are focused on assuring an estimate in
real plane strain state. The procedure is stated in the following steps, Fig. 9.30:

• The mouth of the notch is instrumented by the device of Figs. 9.25 and 9.26 to
detect the crack opening displacement v.

• The specimen is loaded at a constant rate F/v and the maximum force Fmax is
recorded in the diagram F − v.

Fig. 9.30 Kinds of the curves load-crack opening at the mouth of the notch
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• A secant line is drawn with a slope equal to 95% of the slope of the straight
line tangent to the first linear portion of the experimental curve: (F/v)secant =
0.95(F/v)tang .

• The ordinate of the point of intersection is stored as the value Fs .
• The ordinate value equal to 0.8 · Fs is recorded and the segment x1 is compared
with the segment x0 as indicated in the same Fig. 9.30.
The distance x1 between the straight line O A and the curve, corresponding to the
ordinate 0.85 Fs must be such that: x1 ≤ 0.25x0.

• The same standard establishes that, for the proof validity, the ratio Fmax/Fs must
be less than or equal to 1.1.
If all the conditions are verified, the three possibilities shown in Fig. 9.30, present
in different materials, are acceptable and the value of the force FQ to be utilized in
the calibration formulas Eqs. 9.80 or 9.81, is given respectively for the three cases,
by:

1. The value of Fs in the first case.
2. The relative maximum of the curve lying between tangent and secant in the

second case.
3. The absolute maximum in the third case.

• The test is concluded with the measurement of the critical crack length, with the
Fracture Toughness calculation and with the validity verification of the thickness
of the specimen obtained by themeasured value of K I c through the use of Eq.9.82.

A Case Study on a Tentative Way for Fracture Mode I Measurement

There could be other possibilities of carrying out tests for the Fracture Toughness
determination of mode I with non-conventional specimens. Even with many reser-
vations, just to investigate a new way to find less demanding methods for Fracture
Toughness determination, let us consider a cylindrical specimen of circular section
loaded by pure torsion with a crack along a helical line at 45◦. It can be theoretically
used to achieve a state of plane strain with a small material volume, compared to that
of standard specimens.

The photoelastic stress image in a section perpendicular to the helical curve in
Fig. 9.31 shows that the distribution of local stresses is identical to that in a plane
specimen of finite size, with a through-thickness crack, uniformly loaded. The plain
strain condition is guaranteed by a very long crack and by the axial constraint along
the crack that avoids contraction.

In Fig. 9.31 the stress singularity at the tip of the plane specimen is compared with
the singularity at the tip of helical cracks, while Fig. 9.32 shows: (a) the specimen
machining with a milling machine for obtaining the helical notch in the cylindrical
specimen, (b) the fracture surface with the highlighting of the regular crack obtained
in the pre-cracking phase in torsion: (c) the specimen with two rings to accommodate
the measuring device of Fig. 9.23 for measuring the crack opening displacement and
in (d) the curve that correlates the torque and the opening of the mouth of the crack,
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Fig. 9.31 Comparison between contour lines of the maximum shear stresses in a plane specimen
and in a plane at 45◦ (with respect to the symmetry axis) in a cylindrical specimen in pure torsion,
with a crack along a helical curve at 45◦ [30]

fromwhich the value of K I c is inferred. The calibration is done identifying the Stress
Intensity value by the photoelastic fringes.

For a steel of the NiCrMoV family, at the test temperature of−120 ◦C, the average
of three measurements of Fracture Toughness gave a value of 30MPa

√
m, consistent

with the value obtained frommuch larger specimens ofCT type. This method should
be applied to a variety of cases and materials in order to obtain a scientific evidence.

9.6.3 A Case Study on the Temperature Influence on SIF

It is known that temperature influences thematerial behavior with particular effect on
the material parameters connected with the strength and the fracture resistance, such
as resilience and yield stress. There are mainly two kinds of fracture and a material
can exhibit both types if the test temperature varies widely. Consequently it is clear
that Fracture Toughness too must be strongly influenced by the temperature. This
can be verified in Fig. 9.33 where Fracture Toughness and yield stress are reported as
functions of temperature for aNICrMoV steel together with the Fracture Appearance
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(a) (b)

(c) (d)

Fig. 9.32 Tentative way to perform the test characterization for the measurement of Fracture
Toughness K I c
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Fig. 9.33 Fracture Toughness trend (on the left) and yielding stress trend (on the right) as a function
of test temperature for a NiCrMoV steel

Transition Temperature (FATT) that discriminate between the brittle T ≤ F AT T
from the ductile T > F AT T behavior on the basis of the aspect of the fracture
surfaces.10

The influence of the test temperature on the fracture Toughness is well clarified
in Fig. 9.34 for low alloy steels suitable for rotors of electrical machineries. A lower-
ing of the temperature influences the maximum plastic zone size for a concomitant
reduction of K I c and an increment of σY , with a quadratic dependence. The material
assumes a brittle behavior that favors unstable crack propagation.

A similar phenomenon happens for a crack progressing at high speed that has
no time to realize a ductile fracture mode. The deformation rate too has thus a big
influence on fracture toughness, so that a new material parameter is introduced K I D

a dynamic stress resistance that is lower than the static fracture toughness K I c.
The high speed is generated by the releasing of stored energy of deformation that
can accelerate the crack, up to reach high speeds such that it can destroy structural
elements as pipelines, in few seconds.11

9.7 Models for Sub-critical Fatigue Crack Growth

So farwehave dealtwith the analysis of cracks under static loadings and examined the
critical condition of brittle fracture that occurs when the value of the stress intensity
factor K I reaches or exceeds the value of the material Fracture Toughness K I c.

10 Empirical formulas of correlation exist between this Transition Temperature and the one obtained
by the Charpy test [1].
11 If the speed reaches 1km/s, 5 s are enough to destroy 5km of a gas pipeline.
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Fig. 9.34 Example of Fracture Toughness dependance on test temperature of a low alloy steel for
large electrical machinery rotors (hardened and relieved NiCrMoV steels with σY = 370MPa),
obtained by an author from compact test specimens with thickness from 25 to 150mm [25]. Two
limit curves taken from the literature have been shown: both are conservative, but especially the curve
of A.J. Brothers et al. seems inadequate. Experiences performed for Ansaldo s.p.a. (Genova) [31]

Even limiting the presentation to the concepts related to the stress analysis, it is
necessary to examine the phenomenology of the sub-critical crack growth when the
applied load is fluctuating, both in the condition of high cycle fatigue as well of
low cycle fatigue. The crack propagation reacts in different way when is affected by
innocuous (inert) or aggressive environments with temperature influence.

Modeling the sub-critical crack growth from the point of view of stress state is a
difficult task that has found a variety of phenomenological interpretations, expressed
by a number of laws. The sub-critical crack growth for cyclic loads can be highlighted
in the first instance, directly recording the advancement of crack at increasing values
of the number of stress cycles. Figure9.35 show this type of correlation, being the
propagation unstable and strongly accelerating as the length of the defect increases.

Fig. 9.35 Trend of
semi-length of a crack in a
plate versus N the fatigue
cycles. aN DT is the
minimum detectable value
by NDT methods. a0 is the
initial semi-length

a

N

ac

aNDT

a0
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It is intuitive that, rather than finding a direct correlation between the length of
the crack and the number of load cycles at a certain propagation instant, it is better to
discover, at a certain instant of time, a correlation between the crack length and the
value of the local stress cycle that is connected with the difference Kmax − Kmin =
ΔK .

Having observed a non linear increment of the crack length (and also of the its
derivative da/d N ) with the number of cycles, all the propagation laws have assumed
a correlation between the range of the Stress Intensity Factor ΔK and the derivative
da/d N .

Experiments have shown that in double logarithmic scale the link between
da/d N and ΔK have a linear correspondence at least in the central interval of
values, Fig. 9.36a. A more accurate analysis shows a weak dependence of the ratio
R = σmin/σmax = Kmin/Kmax that becomes significant in the low as well as in
the high part of the diagram, with the trend shown in Fig. 9.36b with curves of S
form. This observation, due to Paris, allows a synthesis of modeling the propagation
phenomenon, because it is possible to synthesize the data for cracks of different sizes
and with different loading values, simply relating the ΔK to the measurement of the
rate of growth. The curves da/d N as function of ΔK = Kmax − Kmin for several
values of R = Kmin/Kmax = σmin/σmax = can be classified in three regions:

1. In the first, called region I, a characteristic value ΔK th represents the threshold
value of stress intensity factor behind which the rate of advancement tends to zero
value and the logarithm to −∞.

2. For intermediate values of K (region II), it is observed a linear law between
Log da/d N and Log ΔK , that can be described, in the most simple way, by the
Paris law that:

da/d N = C · (ΔK )m (9.83)

where C and m are material constants. The reference test is performed with a
cyclic load with zero minimum value and the influence of R and load frequency
is considered negligible.

Fig. 9.36 Trend of crack rate with ΔK and influence of R
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3. For high values of ΔK (region III) the behavior becomes unstable with a rapid
increment of the propagation rate up to the total specimen fracture. This condition
is reached for a stress intensity factor equal to a critical value a Kc, not necessarily
equal to K I c since the specimen cannot be in the condition of plane strain.

Two different conditions can be verified in this sub-critical growth test:

• The first condition is realized for high resistance materials with low toughness:
the specimen behavior remains elastic up to a value of the Stress Intensity factor
equal to K I c. In his case the maximum stress in the loading cycle is such that,
for a critical crack length, the stress intensity factor reaches the critical value K I c

maintaining plane strain condition: in this case the fracture is brittle.
Other relationships have been developed for taking into account of the influence
of other variables as the critical factor K I c and the ratio R. One of the most used
is the Forman equation:

da

d N
= C · (ΔK )n

(1 − R) · (Kc − ΔK )
(9.84)

where C ed n are material constants, of course, other than the Paris equation. This
equation describes the type of behavior for accelerated da/d N for high values of
ΔK , that is not taken into account by the Paris model.
The Forman model also accounts for the influence of R and describes the behavior
in the case where K is close to Kc. This occurs for metals at high resistance and
low tenacity in which the specimen sizes justify elastic behavior also for values of
K close to K I c.12

• The second condition is verified when the crack length reaches a certain value,
the frontal specimen ligament yields overcoming the elastic limit, entering the
plastic behavior. This happens for ductile materials. When the yield controls the
phenomenon the ΔK values are no more referable to the fracture toughness. The
limit of small yielding zone, hypothesized for the linear elastic fracture mechanics,
is overcome.
New concepts for the elastic-plastic fracture mechanics must be introduced as the
Rice integral J , or COD [1].

9.7.1 Case Study on Sub-critical Crack Growth for Turbine
Steels and Design Criteria

The following reflexions have been suggested about the modeling of sub-critical
crack growth in different case studies:

12 Let observe the difference between Kc and K I c. Due to the different tests conditions (between the
static Fracture Toughness and propagation tests), not necessarily plane strain conditions are realized
in sub critical growth tests. Thus the critical value Kc is, in general, a function of the thickness B
of the specimen.
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Fig. 9.37 Crack propagation data for a NiCrMoV steel in region II in an inert environment [25]

• Figure9.37 show tests examples onNiCrMoV steels for low-pressure turbine discs
with a thermal treatment of austenizing, hardening and relieving as described in
[25]. Three straight lines for three specimens series show the band of dispersion
for the same material and the same test conditions. As consequence the material
parameters C and m are subjected to a variability that can be estimated through
the Eq.9.59. Thus it is suitable to obtain from the tests not deterministic values
but mean values with the relative variances. Besides, the behavior in region II is
important for components subjected to a finite number of fatigue.

• The threshold value ΔK th is a design parameter for those applications, as low
stressed rotating shafts at high cycle fatigue, for which is not considered as useful
life the cycles spent in the sub-critical propagation phase. In region I the defects
growth is negligible for an unlimited number of alternations.

• Region III, where size of the defect is rapidly increasing, is significant only for
components subject to a few cycles of load (of the order of 10 or little more),
as e.g.for the case of pressure vessels which are decompressed and compressed
only a few times during their lives. Summarizing, parameters of fracture can be
employed for the fatigue design, to estimate, for a component, themaximumdefect
size corresponding to the limit of its fatigue life.

9.7.1.1 Integration of the Paris Law and Its Criticality

The Paris Law can be integrate for intervals a in which the magnification factor M
can be considered constant:
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d N = da

CΔK m
= da

C[M(a/W )Δσ
√

πa]m

d N = 1

C · (MΔσ
√

π)m
· da

am/2

integrating from an initial to a final value of a, the corresponding number of cycles
is obtained:

N f =
∫ N f

0
d N = 1

C · (MΔσ
√

π)m

∫ a f

a0
a−m/2 da

then:

N f = 2

C · (m − 2)(MΔσ
√

π)m

(

1

a
m−2
2

0

− 1

a
m−2
2

f

)

(9.85)

Thus the formula offers the way to estimate the residual fatigue life of a component
from an initial defect to the critical one, known the relative M factor.

Analyzing the formula Eq.9.85, it becomes clear that the number of cycles to
failure is an ill-posed result with respect to the variable a0. In fact, a small
variation of this, leads to great variations on the number of cycles necessary
to reach the critical dimension. Figure9.38 illustrates this case for a numerical
example taken as a reference.

It should therefore only be used for not too small values of the initial crack
length. It is not possible e.g. to correctly describe the fatigue life for the values
of the initial length corresponding to a newly formed crack or, as it was called,
to a visible crack as result of a nucleation of low cycle fatigue.

It remains totally not treatable by Paris Equation the field of propagation of
the small defects on which there is still a large specialized literature [4].

Other influence variables have not been taken into account and it could be neces-
sary to investigate on them by the stress analysis point of view:

• Specimen configurations other than standards when they are chosen more geomet-
rically similar to the cracked component.

• Residual stresses superimposed on the applied cyclic stress and interaction with
other variables such as environment and heat treatment.

• Crack closure effect.
• Load sequence in case of variable amplitude loading.
• Small fatigue cracks.
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Fig. 9.38 Criticality of the Paris Law for small initial defects

Fig. 9.39 Visual analysis of the propagation of two coplanar cracks in a plexiglass block [22]

9.8 Visual Analysis of Crack Propagation

The direct visual analysis in a transparent but elastic and isotropic material offers
a valuable insight of the propagation phenomenon and a way to verify propagation
laws. Plexiglass or epoxy resins are suitable for this purpose in the limit of their elastic
behavior. In this case the internal pressurization is equivalent to uniform external
state of stress, Fig. 9.10 (Figs. 9.39, 9.40 and 9.41). Fig. 9.42 shows the relationships
between dfferent units.
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Fig. 9.40 Shape of the crack tips of two coplanar circular cracks in a plexiglass block

Fig. 9.41 Propagation crack tip front at different number of cycles
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Fig. 9.42 Unit conversion
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Chapter 10
Stress Models in Biomechanics

Luca Cristofolini

Abstract In this chapter some applications of experimental stress analysis to
biomechanical problems are presented,with special regard to thefieldof orthopaedics.
First, an overview of the basic science applications is provided: this allows to under-
stand the functioning of the musculoskeletal system. Models of the part or of the
entire musculoskeletal system are built to describe, interpret and predict its function.
Biomechanics also enables to measure the structural and mechanical properties of
our musculoskeletal system in itself, and when incorporating an orthopaedic device.
In this chapter a description is also provided of the experimental stress analysis tools
applied in vitro and in silico to measure the most relevant mechanical quantities
(forces, moments, strain, displacement, strength, mode of failure) in musculoskele-
tal structures. In the last part, a role of biomechanics closer to practical application is
described, focusing on the design and validation of orthopaedic implantable devices.
This issue is very relevant to manufacturers, practitioners and patients alike, and
integrates a large number of biomechanical experiments as well as numerical simu-
lations.

10.1 Introduction

This chapter provides an overview of the possible applications of the methods of
experimental stress analysis to biomechanical problems, focusing on orthopaedics.
One possible classification of the applications of biomechanics relates to the scopes.
Some activities are directed to the understanding of the basic principles of our mus-
culoskeletal system (i.e. it relates to basic research). Other applications relate to the
design and/or validation and/or optimization of biomedical implantable devices (i.e.
it consists of applied research).

© Springer International Publishing Switzerland 2015
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10.1.1 Biomechanics of the Musculoskeletal System

To understand the biomechanics of the musculoskeletal system, one must consider
both its components, and how they interact with each other. While in the past such
elements have in most cases been considered separately, the current state of our
knowledge and the simulations recently developed make it possible (and almost
mandatory) to take an integrative multidisciplinary approach, where each element is
considered in its multiscale contexts.

First of all, let us analyze the structural components of the musculoskeletal sys-
tems, Fig. 10.1. The mechanical properties and the architecture of the tissues and
organs involved are extremely important in determining the whole-body muscu-
loskeletal biomechanics (movement, etc.). The muscles are the engines, with their
ability of generating forces by converting metabolic energy in fibre mechanical con-
traction. The skeletal bones are the stiffest structures in our body. They serve as
a scaffold and provide rigid leverage systems to convert muscle contraction into
motion. The articular cartilages cover the extremities of the bones thus providing
low-friction motion between interconnected bones. The ligaments link the bones to
one another, avoiding excessive inter-segmental motion. The tendons link the mus-
cles to the bones, and transfer the muscle (tensile) force to the bones.

Fig. 10.1 Example of
structural elements of the
musculoskeletal system:
details of the knee
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10.1.2 Methods for Measuring Musculoskeletal Kinematics
and Dynamics

Models of the musculoskeletal system (and of its sub-systems) have been imple-
mented with different strategies. This requires a combination with experimental
measurements, to provide the input parameters, as well as to validate such mod-
els. Such experimental data are used both to be incorporated into numerical models,
and as a diagnostic tool in itself (e.g. to evaluate the conditions of a patient). The
measurement of the forces/moments is the background of any biomechanical model.

Measuring the musculoskeletal forces is an extremely difficult task. Direct mea-
surement of the loads exerted by the muscles or transmitted by the tendons has
been attempted for more than forty years in living subjects. Results have been quite
frustrating, because of the difficulty of interposing an accurate transducer in the
musculoskeletal system [1]. The first possibility that probably a mechanical engi-
neer would consider consists in implanting a miniature transducer in the muscle or
in the tendon. However, this is an extremely invasive solution, and offers poor accu-
racy because of the modifications caused by such implantation. Non-invasive tools
such as ultrasonography, magnetic resonance imaging (MRI) are possible alternative
options with less ethical and practical implications. However the latter approach is
definitely less accurate.

The magnitude of the strain experienced by human and animal bones in real life
during physiological activities has been measured by means of strain gages bonded
to the bone itself [2, 3]. In other instances, instrumented staples and extensome-
ters have been used to measure bone strain in vivo [4]. However, the actual loads
transmitted by the bones are not directly measured this way. Moreover, these are
very invasive techniques, involving dedicated surgery to expose the bone surface,
and temporary attachment of a sensor onto the bone itself. For such reasons, this
approach has been abandoned. Direct measurement of the internal loads becomes
possible when a patient is treated with a prosthesis (e.g. hip or knee replacement).
Telemetric prostheses have been designed and implanted, which enable measuring
the magnitude and direction of the loads transmitted in an operated joint [2, 5–7].
This technique can obviously be applied only to patients undergoing joint replace-
ment. Therefore, the measured loads are not necessarily representative of what hap-
pens in healthy subjects. Moreover, due to the high costs, data have been obtained
on very small groups of patients. Despite such limitations, telemetrically measured
joint loads [8–12] are the most extensive and reliable resource to understand how the
musculoskeletal system works. Such information serves as an input to design pre-
clinical validation methods for implantable devices, and to validate musculoskeletal
models (see below). One of the most extensive databases of telemetrically mea-
sured joint loads at several anatomical sites has been made available by the research
group of Bergmann and Rohlmann (http://www.orthoload.com/, Fig. 10.2). Alterna-
tively, muscle activation can be measured in living subjects using electromyography

http://www.orthoload.com/
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Fig. 10.2 Two examples of load profiles over time, which were measured in vitro using telemetric
implants. In the top diagram the loading in the hip joint during gait (3 consecutive gait cycles) is
reported. The bottom part shows the load components in the shoulder while lifting a cup (reproduced
from http://www.orthoload.com/)

(EMG, [13]). EMG relies upon measurement of the electrical signal associated with
muscle activity. As EMG measurement is unavoidably affected by large errors (e.g.
noise, crass-talk between neighboring muscles), it is suitable to detect the timing of
on-off activation of the muscles, rather than measuring the actual force exerted by a
muscle.

http://www.orthoload.com/
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Movement analysis by means of stereophotogrammetry allows gathering
quantitative information about the kinematics of the musculoskeletal system dur-
ing motor tasks, including an amount of directly measured quantities (e.g. motions
and accelerations of the different segments, ground reaction forces), and numeri-
cal models describing the relationship between the segments. Marker locations are
needed for the calculation of joint kinematics (e.g., inverse kinematics), which, in
conjunctionwith themeasured external forces (e.g. bymeans ofmultiaxial force plat-
forms) are used for the calculation of joint loads, representing the resultant action
of the muscles groups crossing that articulation, through inverse dynamics methods.
EMG recordings are typically injected in this kind of models or used for validation
purposes.

10.1.3 Biomechanical Musculoskeletal Models

Biomechanical models (and models in general) are simplified representations of a
more complex reality. Because of their nature, one cannot take for granted thatmodels
predictions are representative of reality. For this reason, all models need a systematic,
rigorous, quantitative verification and validation [14].

Accurate knowledge of the loads inside the skeleton during daily activity is
extremely important for its scientific and clinical implications, as it may improve
the diagnosis and treatment of various orthopaedics disorders. To analyze mus-
cle and joint biomechanical function the following information is needed: external
forces applied to the body, relative motion of the body segments, muscle and joint
forces. Therefore, mechanical quantities (chiefly forces and motions) need to be
measured as an input for computational models. The continuing improvement of
computing power, together with more efficient and reliable modelling strategies, and
accurate measurement of mechanical quantities (loads and motion) in living subjects
is improving musculoskeletal models.

Biomechanical models driven by experimentally measured data enable investigat-
ing how the geometry of themuscles affects their effectiveness in generatingmoments
around the articulations [15, 16], how the lengths and lever arms of skeletal mus-
cles are altered by surgical procedures [17], or the ability of muscles to accelerate
the body segments during movement [18]. In all such cases, the most common and
challenging part relates to the estimation of loads transmitted by the muscles and
joints during movement [19, 20]. Possible impacts of such biomechanical models
include a better understanding of the events leading to bone fracture [21], and the
prediction of clinical outcomes after implantation of a joint prosthesis (to estimate
joint function, implant stability, bone adaptation to an altered strain distribution)
[22, 23].

What should be included in a multibody dynamic model of the musculoskele-
tal system depends on the scopes of the model itself. If the goal is to analyze the
kinematics and the skeletal loads, bone segments can be described as infinitely rigid
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Fig. 10.3 Main parts of a musculoskeletal model for simulations of the dynamics of human move-
ments. Courtesy of Giordano Valente (Rizzoli Orthopaedic Institute, Bologna, Italy)

bodies (bone tissue is orders of magnitude stiffer than any other living tissue), moved
by the muscles, and connected by ideal joints, Fig. 10.3. Measurement of the input
parameters (i.e. model identification) requires several complex operations on the
specific subject, unless generic models based on average anatomy from population
studies are adopted. The most common paradigm for the prediction of muscle and
joint forces in human movement adopts a combination of musculoskeletal models,
ground reaction forces (measured by multiaxial force platforms), and forward or
inverse dynamics. In forward dynamics methods, muscle forces are estimated by
integrating the equations of motion forward in time, using muscle excitation signals
as a driver. This approach has high computational costs without significant advan-
tages over the inverse dynamics approach. A more efficient implementation of the
forward dynamics method is to follow a parameter optimization strategy: muscle
loads are estimated to minimize a cost function, while targeting an experimentally
measured kinematics dataset.

Inverse dynamic models rely on gait stereophotogrammetric measurements,
applied to algorithms to calculate the articular moments associated with such kine-
matics. Muscle loads are then estimated by applying optimization methods to solve
an indeterminate problem (agonist and antagonist muscles make the problem over-
determined), under the hypothesis of some optimal performance criterion (e.g. uni-
form stress, or minimum metabolic cost).
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10.2 Biomechanical Investigations in Orthopaedics
at Different Dimensional Scales

Implantable devices have originally been tested pre-clinically in vitro, long before
computer models could provide reliable and relevant information. The main strength
of in vitro testing is that a physical specimen (for instance incorporating a bone
segment and a prototype of the implantable device) is tested under application of
real loads. Therefore, in vitro experiments closer to reality than numerical models.

Mandatory tests (often described by international standards) focus on the
implantable device alone. More complex in vitro experiments focus on the biome-
chanical function of the devicewhen implanted in the host bone: in these cases the test
needs to include one or more bone segments. Bone segments for such tests can either
be human cadaveric specimens, or animal bones, or artificial bone replicas. Artificial
bone models (usually made of composite material to mimic the specific properties of
bone tissue) have the advantage of being available in large numbers, easy to handle,
and highly reproducible. In addition, bonding a transducer (e.g. a strain gage) to a
synthetic bone is much easier than with a real bone specimen (which incorporates
organic fat molecules and needs to be kept hydrated). The strengths of syntheticmod-
els can also be seen as a limitation: their high reproducibility makes them unsuitable
to represent the variability among subjects. Animal tissue specimens are relatively
easy to obtain through the food supply, and have mechanical properties that are to
some extent comparable to human bone. In most cases the anatomy and the structure
of animal specimens are different from human bone because of the different biome-
chanics of humans (with bipedal locomotion) compared to such animals (quadrupeds
in most cases). For these reasons, artificial bone models and animal specimens are
suitable for the first stages of validation, but are unsuitable for more refined studies
where similarity to the human is fundamental. Cadaveric human tissue specimens
are difficult to obtain. Finally, correct preservation of specimens of human or animal
is extremely critical [24, 25].

Biomechanical testing of bone segments involves application of relevant loads
to the specimen, while applying well-defined constraints. A critical issue is proper
identification of the load magnitude and direction to be applied, as the loading con-
ditions can vary significantly, Fig. 10.4. In some cases a simplified loading scenario
is to be preferred: load components are applied singularly (e.g. a pure compressive
force, or a pure torsional moment, or a pure bending moment). In other cases more
complex loading scenarios are simulated either to replicate physiological motor tasks
or a trauma loading, by incorporating more load components [26].

The in vitro test includes a number of transducers for measuring the relevant
biomechanical quantities. First of all, load cells measure the applied loads. Strain
on the bone surface can be measured means of strain gages, Fig. 10.4. Due to the
complex geometry, and the anisotropic nature of the tissues under investigations, the
principal directions of strain are unknown. Therefore, the use of triaxial strain gages
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Fig. 10.4 Examples of in vitro biomechanical experiments to measure the stiffness, strain distri-
bution and strength of intact and operated bone segments: a four-point-bending of a human tibia;
b single-leg-stance loading of a femur implanted with a hip stem; c sideways fall simulation on a
human femur; d compressive testing of an isolated vertebra and e compression-bending of a three-
vertebrae spinal segment. The strain gages that were used for measuring strain on the bone surface
are visible (Copyright of the VPHOP consortium; reproduced with permission)

is mandatory to enable meaningful measurement of the principal components of
strain and their direction. In addition, to measure internal strain, strain gages may be
embedded inside the layer of acrylic cement surrounding an implant, Fig. 10.5 [27].
Alternatively, the strain distribution can be measured using digital image correlation
(DIC) [28]. DIC allows full-field measurement of displacements and of the strain
distribution, with larger noise and error than strain gages. In addition, to elucidate the
failure mechanism and the point of fracture initiation, high-speed videos (with frame
rates of the order of 10,000–20,000 frames per second, Fig. 10.6) can be extremely
useful [29]. Experimental measurements in biomechanical applications are affected
by a number of limitations that in some cases make them difficult to implement
or insufficient. The first, obvious limitation is that experimental measurements are
affected by both random and systematic error: such errors may become large when
biomechanical structures are tested, which have an irregular geometry and complex
material properties. In addition, biomechanical testing often requires complex setups
and several measurements: obtaining any additional single information from an in
vitro experiment typically involves adding more transducers, more actuators, more
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Fig. 10.5 Strain gages
prepared on a cement layer
surrounding a standard hip
stem (a) and a resurfacing
hip prosthesis (b): the stem is
then inserted thus embedding
the strain gage inside the
cement layer, to enable
measurement of internal
strains

(a)

(b)

controllers and more data loggers, with the associated costs. Moreover, there is little
scale economy if several samples need to be compared such aswhen different loading
scenarios need to be explored, or when different versions of an implantable device are
tested. Because of such limitations, numerical models are often seen as an alternative
to in vitro biomechanical experiments.

The considerations above to some extent may push towards numerical modelling.
In most cases Finite Element (FE) models are used to predict the biomechanical
response (state of stress/strain, stiffness, strength, etc.) of orthopaedic constructs.
However, the intrinsic limitations of numerical models still apply, also in a biome-
chanical context. First of all, numerical models (like indeed any sort of model) are
unverified hypotheses (that is: opinions). From an epistemological point of view,
a model can never be proven true, but can only be falsified [30]. In the best case,
a numerical model can be validated by checking that the predictions have a suf-
ficient accuracy [14]. Validation must be performed by comparing the numerical
model against experimentally measured magnitudes under specific loading condi-
tions. Challenging the model under the most critical and diverse conditions involves
applying several loading scenarios to a physical specimen, and to the corresponding
numerical model. Mechanical magnitudes (forces, strain, etc.) must be measured
and qualitatively compared to quantify the fidelity of the numerical model to the
validation experiment. A validated numerical model is by no means a shortcut: it is
expensive, it requires a variety of facilities and know-how, and it involves significant
effort before reasonable agreement is obtained. Once available, a validated numerical
model is an extremely powerful tool.
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(a)

(b)

(c)

Fig. 10.6 Fracture mechanism observed during a simulated sideways fall observed with in the
high-speed videos (12,500 frames/s). The image in the centre of each picture is a direct view of
the femoral neck from the lateral side; the ones on the left and right are reflected images (posterior
and anterior sides respectively) obtained from the two mirrors placed next to the femur and suitably
oriented. Picture a shows the femur shortly before the first signs of fracture are seen (0.3ms before
Picture b). Picture b shows the instant when compression failure is seen on the superior-lateral side
(indicated by the yellow pointers). Picture c (70ms after Picture b) shows the final stage, when the
medial sides fails (in tension). The pictures have low resolution (1 pixel = approximately 0.2mm
on the physical specimen) because they were acquired by the high-speed camera (Copyright of the
VPHOP consortium; reproduced with permission)
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As discussed above, both biomechanical experiments and numericalmodels suffer
from intrinsic limitations: verifiability, accuracy and fields of application [31]. Direct
in vivomeasurements performed on living subjects are in principle themost desirable
option in scientific terms, as they are close to the physical reality. However, because
of practical and ethical limitations discussed above, data available from in vivo mea-
surements is limited. In vitro experiments enable more extensive simulations, includ-
ing, more extensive and better accurate measurements, and even destructive testing.
Experiments (whether in vivo or in vitro) can support and improve numerical models
along three paths, Fig. 10.7. First of all, in vitro measurements enable a preliminary
identification of the relevant failure scenario(s) to be modelled. In a second instance,
in vitromeasurements enable the identification of themodel parameters (e.g.material
properties, friction coefficient, etc.). Finally, in vitro experiments support a quantita-

(a)

(b)

Fig. 10.7 Pathways along which numerical simulations and in vitro experiments should comple-
ment each other: a flow of information from in vitro experiments to numerical models; b role of
numerical models in improving in vitro experiments
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tive validation of the model based on mechanical magnitudes (strain, displacements,
micromotions, fracture, etc.) directly measured on a physical specimen [32].

At the same time, numerical models can be an invaluable resource to improve in
vitro experiments, Fig. 10.7. First of all, numerical models can be used to identify the
most relevant loading configurations among a number of motor tasks that cannot be
practically/economically replicated in vitro. Numericalmodels can then help identify
which simplifications are acceptable for the in vitro simulations. Sensitivity analyses
supported by numerical models can also help optimize the use of transducers to
providemeasurements at themost relevant locationswhileminimizing errors. Finally,
numerical models are more effective than in vitro experiments in order to explore a
variety of different conditions (e.g. material properties, interface conditions [33] etc.)

Therefore, an integration of numerical models and in vitro experiments is
desirable as it provides more reliable and more exhaustive information than
any of the two approaches taken individually. To exploit the synergies at best,
experiments and numerical simulations should be designed together [31]. To
prevent possible bias, experiments and numerical simulations should be carried
out independently, in a double-blinded fashion [34]. Comparisons must be
based on quantitative indicators, with clearly defined metrics and thresholds.

10.3 Case Study: Strain Distribution in the Human
Tibia, a Uniform Stress Structure

Most biomechanists and evolutionists agree that bones are structured to resist daily
loads in an optimal way. One of the main loads components acting in the tibia during
daily motor tasks is a cantilever load. In fact, the antero-posterior load component
acting during locomotion causes a linearly varying bendingmoment.We investigated
if the cross-section of the shaft of the tibia, and its variation along the tibia make it
an optimized structure with respect to such loads [35]. The geometry and material
properties were extracted from the computed tomography, and analyzed. A linear
variation along the tibiawas found for the secondmoments of area and inertia, and for
the section modulus. This suggests that the structure is optimized to resist a bending
moment that varies linearly along the tibia. Each of the six tibias was prepared
with 28 triaxial strain gages (84 strain grids on each tibia) equally spaced along
the tibia, on its anterior, posterior, medial and lateral sides. The tibias were loaded
in the elastic range under cantilever loading in the sagittal and frontal planes, under
quasi-constant-bending in the sagittal and frontal planes, under torsional loading, and
with an axial force. The strain distribution was remarkably uniform when cantilever
loading was applied in the sagittal plane, Fig. 10.8 and slightly less uniform when
cantilever loading was applied in the frontal plane. Strain variations were one order
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Fig. 10.8 Tibias were loaded in a cantilever fashion (the proximal part, on the left, was constrained
while a loadwas applied perpendicular to the tibia at the distal end). The strain plots for six specimens
show a rather uniform strain distribution

of magnitude larger for all other loading configurations. Therefore, these in vitro
strain measurements confirm that the tibia acts as a uniform-stress structure when
subjected to daily loads which generate a cantilever force.

10.4 Case Study: Bone Strains Caused by Press Fitting
of a Hip Stem

Somehip stems are inserted in the host femurwith nomeans of fixationother than fric-
tion due to press fitting. In some cases this causes intraoperative bone fractures. The
aim of this study was to investigate the magnitude and distribution of the strain/stress
caused by press fitting [36, 37]. Composite femurs were prepared by an experienced
surgeon to host a cementless hip stem. The stem was firmly press fitted in place. A
photoelastic coating (2mm of araldite) were applied with a reflective glue. When
the stem was extracted, the state of stress induced by press fitting was removed and
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Fig. 10.9 This composite
femur was prepared with a
photoelastic coating to
measure the strains induced
by insertion of a press-fit hip
stem. The full-order (a) and
half-order (b) isochromatic
fringes highlight the strain
distribution induced by press
fitting

(a) (b)

isochromatic fringes appeared, Fig. 10.9. The state of strain due to removal of the
stem is identical in magnitude (and of opposite sign) to that caused by press fitting.

10.5 Case Study: Deformations of an Acetabular Cup
by Means of Holographic Interferometry

Most orthopaedic devices consist of an assembly of two or more components. Defor-
mations of implantable component sometimes play a crucial role for their survival.
As an example, the deformations of the metal backing of the acetabular cup of a total
hip replacement were investigated, as they can play a role in the failure mechanism of
the insert, both due to contact stress concentration, and fretting. Holographic interfer-
ometry was chosen as it allowed: (i) investigating the full field of displacements and
strains in 3D, and (ii) was capable of measuring the extremely small displacements
expected in this case, Fig. 10.10. Images were then digitally processed to compute
the field of displacements and strains [38].

Fig. 10.10 Measurement of the displacements in an acetabular cup by means of holographic inter-
ferometry: a specimen; b rigid-body rotation (0.015◦); c 33% load; d 100% load
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10.6 Biomechanical Risk Assessment: Experimental Stress
Analysis and Modelling

Tocompensate, either in a temporary or permanentway, to different diseases affecting
the musculoskeletal system a number of diverse devices have been designed in the
past hundred years, Fig. 10.11. Because of the many biomechanical challenges, the
focus in this section will be on implantable devices. Total joint prostheses will be
taken as a representative instance. Currently, joint prostheses are implanted in an
enormous number of patients: in the 30 member countries of the Organisation for
Economic Co-operation and Development (OECD) the rate varies between 0.50 and
1.40 hip replacements per year per 1000 inhabitants [39], corresponding to a total
of well over one million hip replacements per year. Similar, and increasing trends
are observed for other joint prostheses such as the knee, shoulder, ankle and elbow.
Extreme caution is needed before a new prosthetic design is introduced to the mar-
ket: the risk associated with known failure scenarios should be equal to, or possibly
lower than that observed in devices already in use, while providing some addi-
tional benefit/feature. The validation paradigm includes extensive numerical and/or
experimental tests (pre-clinical validation), a clinical trial on a controlled small and

(a) (b) (c)

Fig. 10.11 Examples of orthopaedic devices. a Fracture fixation devices: spinal fixation, radial
plate and screws, femoral screw and plate, tibial intramedullary nail. b Articular prostheses: total
shoulder, elbow, hip, knee, and ankle replacements. c External prostheses: arm, finger, and leg above
and below the knee
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Fig. 10.12 Schematic of the path fromwhen an implantable device is first conceived, to introduction
to widespread clinical use

selected set of patients (clinical trial) and eventually commercialization of the device,
Fig. 10.12. The valuable load data recorded during physiological motor tasks using
telemetric prostheses [8–12] provide fundamental information on the biomechanical
conditions in which joint replacements must safely withstand operate. A balanced
mix of experimental studies on synthetic bone analogues [40, 41], animal models
[26, 42] and human cadaver preparations [43, 44] enables thorough investigation of
the most relevant failure scenarios. At the same time, biomechanical computational
models allow an integrated approach where fully validated models are combined
with experiments so as to explore every possible failure scenario [45, 46].

There are two fundamental issues that have emerged over the years that need to
be addressed, which may jeopardize further innovation in joint replacement. First:
considering the extremely good outcome of some joint replacement (the best hip
joint prostheses fail in less than 2–3% of cases over 10–15 years), is it possible to
improve? Secondly: considering all the known failure scenarios, and assuming that
the risk of each of them should be assessed during the pre-clinical validation stage,
the validation cost would become unbearable. Can we decide what risks need to be
addressed and which ones can be neglected? To achieve the best possible validation
for a given budget/time frame, the state of the art process combines formal analysis,
numerical modelling, and in vitro experiments.

10.6.1 Risk Analysis

In order to obtain approval for widespread use of a medical device, the manufacturer
must prove according to a well-established paradigm, the lack of risk and possibly
the improvement compared to existing devices. For instance, to obtain CE approval
for use within the European Union, the device must be analyzed according to the ISO
14971:2007 Standard (Application of risk management to medical devices). Simi-
larly, to introduce a medical device to the USA market, clearance must be obtained
from the FDA by demonstrating that all foreseeable risks are avoided, and the device
is similar or better than existing ones. There are various methods to perform a risk
analysis; all follow a common scheme [47]. First of all, a multidisciplinary team that
should include regulatory experts, engineers, and clinicians must identify potential
hazards. Then, the probability of occurrence and the risk must be identified for each
hazard, using either a top-down Fault Tree Analysis (FTA), or a bottom-up Failure
Mode andEffectAnalysis (FMEA). Then, themost critical hazardsmust be identified
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and mitigated until the risk level is low enough to be acceptable. The risk analysis
starts from considering the known clinical failure scenarios (the undesired effects in
the FTA approach). These are usually identified from previous experience, ruling out
scenarios that are definitely not relevant to the device under investigation. For instance
femoral neck fracture is a known complication of epiphyseal replacements, but it is
not relevant for conventional hip prostheses where the femoral neck is removed. Each
clinical failure scenario must then be associated with the corresponding mode(s) of
failure that could generate such a failure scenario. The FMEA approach highlights
only the primary associations. In principle, top-down approaches should use themore
complex FTA approach, which can establish all the combinations of failure modes
that can produce an adverse effect (for instance, a negative a synergy of insufficient
primary stability and wear can induce implant loosening). This is clearly a more
rigorous approach; unfortunately, in most cases it cannot be implemented because
of the lack of basic information. Even if a simple FMEA approach is taken, the iden-
tification of the clinical failure scenarios that are associated with the failure modes
are the basis of the prevention of failures. The failure modes should then be used to
design the set of tests/simulations for the pre-clinical validation. As the validation
is limited in time and cost, it is ethical to use such resources to address the failure
modes that according to the risk analysis are most critical. It is important to note
that, no mater how carefully and extensively the risk analysis is carried out, it cannot
predict the unpredictable: if a device is totally innovative, it could induce a type of
failure scenario that has never been observed before.

Three elements of the bone with an implanted prosthesis could fail under cyclic
load: the prosthesis, the fixation material (typically acrylic bone cement, if present),
and the host bone itself. Thanks to the severe mandatory tests, mechanical failure
of the device in itself is an extremely rare event (yet not impossible [48]). Fretting
corrosion may occur in modular solutions, especially when two different metals are
coupled: fretting analyses are recommended [49], under worst case scenario chem-
ical and mechanical conditions [50]. Acrylic bone cement (typically polymethyl-
methacrylate, PMMA) poses completely different issues: the cement itself is fre-
quently the weak link of the chain. Thus, it is important to determine the state of
stress/strain inside the bone cement. Strain gages embedded inside the cement can
provide reliable strain measurements at selected locations, Fig. 10.5 [27]. Therefore,
it can be advantageous to use this experimental information to validate a model, and
use the model to predict the entire stress field in the cement. Estimating the risk of
bone fracture by numerical models is very difficult as the ultimate properties of bone
vary greatly. This uncertainty is due to a number of factors, including the inability
of actual modeling techniques to recognize small features on the bone surface where
the initial crack may occur and lead to failure [51]. Thus, an experimental validation
is preferable in this case. In addition, the presence of the implant (which is orders
of magnitude stiffer than the host bone) generally causes an alteration of the stress
distribution know as stress shielding. This can cause adverse adaptation of the bone
tissue (loss of bone stock). In order to exclude severe bone resorption over time, the
strain distribution in the implanted bone should not be too different from that in the
intact one [52, 53].
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10.6.2 Case Study: The Paradigm for Pre-clinical Validation
of New Implantable Devices

In these pages the path to thoroughly validate a new implantable device is illustrated
using a specific paradigmatic example: a total hip prosthesis. In most cases, new
devices can be compared to the similar devices already on the market (the so-called
predicate devices). So, the focus on the biomechanical validation should be on the
aspects on which such a device may be different (advantageous and/or more risky)
than known ones. For instance, the claim of a new hip prosthesis could be a reduced
risk of fracture of the implanted bone. The risk analysis must be performed. Themost
commonly reported clinical failure scenarios for this type of device are identified,
and various failure modes are associated to each of them, Fig. 10.13. The validation
should combine the best of in vitro tests and numerical models. Validation must use
a set of human cadaveric bones as a test bench, both for the mechanical tests, and
for the numerical models. The bones must be scanned with computer tomography
(CT) [54]; the CT dataset is used to create a finite element model [55]. The physical
specimens must then be instrumented for measurement of the relevant mechanical
magnitudes (e.g.: strain, displacements, relative micromotions, fracture), and sub-
jected tomultiple load cases. The in vitromechanicalmeasurementswill complement

Fig. 10.13 Overview of common clinical failure scenarios, together with the various failure modes:
three cases are reported, which are typical for a femoral resurfacing prostheses
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the predictions obtained by the model under the same load cases, so as to provide a
validation of the FE model.

For each failure mode a numerical model or an experimental test is designed
to assess the risk of occurrence of such a failure, for this specific new device. To
investigate the risk of fracture, the intact bone and the implanted bone are subjected
to multiple load cases, mimicking the peak loads observed during relevant activities,
while the strain distribution is measured in the host bone. The focus must be on the
load case, which induces the highest risk of fracture in the implanted bone, which
can be assessed in terms of strain distribution (in fact, bone fracture is driven by
a strain-based failure criterion [56, 57]), Fig. 10.14. A surgeon applies the surgical
procedure that is considered standard for that device to deliver the prosthesis to
the cadaver bones. In many instances it is preferable to use paired contralateral

(a) (b)

Fig. 10.14 Mechanical test tomeasure strains on the bone surface bymeans of strain gages to detect
deviations between the intact femur, and the same femur after implantation with a hip prosthesis.
a Anterior view of a femur prepared with 16 triaxial strain gages, a cylindrical block on the greater
trochanter (for application of the gluteal load), and of the distal pot to hold them aligned during the
tests. b Loading set-up to replicate the loads during a one-leg stance. The direction and magnitude
of the hip and abducting forces are such as to balance the resultant force applied to the top of
the cantilever. Their ratio and direction is controlled by adjusting the lever arms. The following
components are connected to the cantilever (1), a movable hip socket (2), whose position can be
adjusted with the screw (3), an abducting rod (4), free to pivot together with the angle indicator (5),
its length is adjusted by tightening the bolt (6), a plumb line (7), indicates if the cantilever (1) is
horizontal; a slide (8), is adjusted by means of the screw (9)
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Fig. 10.15 Example of loading setup to measure implant-bone micromotions for a resurfacing hip
prosthesis by means of high precision LVDTs (overview and details)

bones to enable comparison against a control (either intact, or implanted with a well-
established similar device to provide a baseline value). The mechanical stability of
the implanted prosthesis in the host bone can be investigated with an FE model
simulating implant-bone contact, or, more reliably, with a mechanical test. Bone-
implant and cement-implant inducible micro-movements are typically measured by
means of LVDTs under different loading conditions, Fig. 10.15. Normally cyclic
loads are applied so as to measure the inducible micromotion (elastic movement at
every cycle) and permanent migration (settling that accumulates cycle after cycle).
The typical precision of such relative micromotion measurements can be as high as
few microns, which is sufficient to predict the risk of implant loosening [58, 59].
When there is concern about the integrity of the cement mantle surrounding the
implants, the implant can be inspected by means of dye penetrants to highlight the
presence of cracks after cyclic loading Fig. 10.16.
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(a) (b)

(c)

Fig. 10.16 Example of cement mantle surrounding a hip prosthesis sectioned after mechanical
cyclic testing in vitro (a). Dye penetrants are used to highlight the presence of cracks in the whole
mantle (b), and in its cross-sections (c)
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Chapter 11
Reliability Models Based on Experiments

Giorgio Olmi

Abstract An engineered system may be affected by several uncertainties, which
can be classified as aleatory or epistemic ones. To be able to manage the effects of
these uncertainties is nowadays more and more important, especially in those cases
where an accident may have catastrophic effects and it is necessary to predict its
probability of occurrence. This is the case, for instance, of life extension problems,
where the final decision must be supported by a probabilistic approach, to make sure
that the probability of a fatality is sufficiently low. Experimentation is of course also
important, as it is the way to estimate or reduce the uncertainty affecting the studied
system. This chapter tackles the aforementioned issues, from the estimation of sta-
tistical distributions, based on experimental data, to the adoption of a Most Probable
Point Method to estimate the probability of failure of engineered systems, depend-
ing on several variables, in an efficient and accurate way. Theory is accompanied
by several practical case studies and exercises taken from existing research, which
confirm the strict relationship between the outcomes of experimental campaigns and
the development of analytical models for probability of failure prediction.

11.1 Introduction

Let us consider a quite recurrent and easy problem in the practice of a mechanical
engineer: the structural analysis of a rod under a tensile load (see Fig. 11.1a). First
of all, the axial load N should be determined, considering the forces acting on the
entire structure and the amount of load being transmitted to the rod. Then, a suitable
cross section should be worked out, let the term A denote its area. The rod should
be verified, computing the stress σ = N

A , to be compared to the resistance. If only
static loads are acting on the structure, then the static (ultimate or yield, depending
on the application) strength, determined by a tensile test on a specimen of the same
material, should be considered. Otherwise, if the loads experience a cyclic variation
withmillions of loops expected over the rod life, the fatigue limit should be accounted
for. The structure is therefore verified, if σ is lower than the related static or fatigue
strength. A safety coefficient is commonly introduced, to quantify the degree of
safety, i.e. how greater the strength is with respect to the expected stress level. The

© Springer International Publishing Switzerland 2015
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Fig. 11.1 aAsketch of the rod under tension to be verified,b deterministic approach, c probabilistic
approach and probability of failure (highlighted area)

same procedure can be followed when a multi-axial stress state is generated in a
component. In this case, an equivalent stress must be computed and compared with
the corresponding strength. What has been described is the typical deterministic
approach, where stress and strength are regarded as constants, and the structure is
expected to be safe or to collapse, respectively when the stress level is lower or
greater than strength.

What can be remarked is that an engineered system may be affected by several
uncertainties. In Refs. [1, 2] it is pointed out that uncertainty can be viewed as the
difference between the present state of knowledge and the complete knowledge and
is usually classified into aleatory and epistemic types. The first one is due to the
inherent variability of the system, whereas the second one is a consequence of a poor
level of information. For instance, in the case of the rod, the load entity may have
unexpected fluctuations during use. Sometimes, in view of the fact that a load history
is transmitted to the rod, it may be difficult to achieve an accurate measurement of the
load trend. The aforementioned uncertainties can be regarded as epistemic. A further
issue regards strength: this strictly depends on the material and can be determined,
in the case of a static load, by running a tensile test. Problems may arise from the
occurrence that characteristics may be different, depending on the material lot. As
a consequence, if the tensile test is repeated many times on different specimens, a
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scattering of results is likely to be observed, which can be regarded as an aleatory
uncertainty. In addition, material mechanical testing is indeed also affected by an
inherent uncertainty, arising from the noise in the measuring chain for the detection
of the applied load.

Coming back to our example, the final outcome is that both the load (and, con-
sequently, the stress) and the strength must be conveniently regarded as random
variables. Each of them has a distribution that can be estimated by in-field monitor-
ing of loads and by the statistical analysis of the yields of a sufficiently large number
of tensile tests. The two approaches of deterministic and probabilistic verification
of the rod are compared in Fig. 11.1b, c; in this last case, a deterministic load and a
randomly normally distributed strength are considered.

Being able to compute a probability of failure, indicated by the highlighted
area in Fig. 11.1c, makes it possible to manage the effects of uncertainty and to
develop engineering solutions that take randomfluctuations of variables into account
[3–17]. This is particularly important in all those applications, where the variability
of factors is significant or/where failures may result in catastrophic effects [10]. In
all these cases a probability approach is required, which enables the comparison
between the determined probability of failure and reference values, or acceptability
thresholds, depending on the severity of the effects. Practical examples are in the
fields of aerospace, of nuclear power plants, and of structures under low- and high-
cycle fatigue. Highly difficult problems in the practice of the engineer, such as the
life extension of a largely scaled and expensive machine, for instance a turbine, a
pressure vessel, a plane cockpit, are more conveniently tackled from a probabilistic
point of view. A life extension decision must be supported by a probability of failure
being below an acceptability threshold.

The main questions that are going to be tackled in this chapter are summarized in
the following points.

• How to determine the statistical distribution of a random variable, based on exper-
imentally sampled values.

• How to process experimental data in regression lines and how to account for their
scattering.

• How to determine a likelihood band of a regression and how to assign a reasonable
statistical distributions to its slope and offset terms.

• How to determine the distribution of an output variable, being related to a number
of input variables, in the general case of an implicit relationship.

• How to conduct reliability assessments in common case studies in the engineering
field, determining a probability of failure supported by experimental data.

11.2 Determination of the Distributions of Sets of Data

This Section is organized in three Case Studies, developed in the next Subsections.
The following questions are tackled:
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• Estimation of a statistical distribution, based on a finite set of data.
• Determination of the probability of failure when one single random variable is
affecting the output.

• Quality control.

A further example dealing with industrial quality improvement is provided in [18].

11.2.1 Case Study: Height Distribution in a Class of Students

This first Case Study introduces to the general procedure to arrange a set of data in
a histogram and then to work out the related statistical distribution.

11.2.1.1 Introduction to the Problem

The data in Table11.1 refer to the heights of a population of 80 students. How is
it possible to convert these data into a distribution? How is it possible to test the
adequacy of the distribution in the representation of the data?

11.2.1.2 Histograms for the Graphical Representation of the Results

The first remark to be made is related to the size of the population. In order to obtain
a statistically significant distribution, estimated on the basis of a sufficiently sized
finite number of yields, it should not be lower than 50 [19, 20]. The first step in
the processing of the data consists in their discretization: in other words, the entire
population, distributed over an overall range, called excursion, must be split into a
discrete number of categories. The first issue lies in the determination of the most
suitable number of categories (k). According to many References (e.g., [19, 20]), it

Table 11.1 Heights of a population of 80 students

Sample
number

Height (m)

1–10 1.83 1.85 1.49 1.85 1.71 1.46 1.61 1.68 1.91 1.92

11–20 1.55 2.00 1.86 1.67 1.81 1.51 1.66 1.85 1.77 1.91

21–30 1.74 1.39 1.85 1.85 1.75 1.75 1.75 1.66 1.72 1.55

31–40 1.75 1.31 1.61 1.40 1.46 1.85 1.75 1.62 1.86 1.34

41–50 1.66 1.66 1.75 1.79 1.55 1.67 1.66 1.72 1.75 1.75

51–60 1.61 1.75 1.72 1.55 1.49 1.67 1.91 1.65 1.71 1.56

61–70 1.75 1.60 1.68 1.75 1.85 1.91 1.68 1.50 1.52 1.61

71–80 1.85 1.59 1.82 1.56 1.85 1.66 1.55 1.57 1.71 1.66
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can be computed as in Eq.11.1, where the symbol N stands for the overall number
of the data and log indicates a 10-base logarithm.

k = 1 + 3.3 · log (N ) (11.1)

In the present case, for N = 80, we have k = 7.2, to be rounded to 7. The most
suitable value yielded by Eq.11.1 must be intended as a compromise between a too
low value, which would lead to a rough discretization, and a too high one. In this last
case, the processing of the data would be made ineffective. With the data split into a
high number of classes, it would be impossible to find the interval where the results
are more concentrated and therefore to get an interpretation of the distribution. The
size of each category can be easily determined as the quotient between the excursion
and the determined number of categories, considering uniformly sized categories. In
this case, we obtain 0.10m-wide categories.

Therefore, the results can be collected in a table, like the one in Table11.2, and
graphically represented, as in the histogram in Fig. 11.2. The occurrence ni stands
for the number of students, whose heights are within each category. It is clear that
∑k

i=1 ni = N .
The following step consists in the computation of the frequencies fi of the results,

easily determined as the ratios between the occurrences and the total number of
results: fi = ni

N . It is clear that
∑k

i=1 fi = ∑k
i=1

ni
N = 1. The results in terms of

frequencies are summarized in the histogram in Fig. 11.3.
The last step consists in the computation of category densities δi . Each density

is given by the ratio between the related frequency ( fi ) and the category size (d):

Table 11.2 Categories: ranges and occurrences of results

Categories

Ranges (m) 1.30−1.40 1.40−1.50 1.50−1.60 1.60−1.70 1.70−1.80 1.80−1.90 1.90−2.00

Mean values (m) 1.35 1.45 1.55 1.65 1.75 1.85 1.95

Occurrences (ni ) 4 5 12 19 20 14 6

Fig. 11.2 Height measurements split into the seven categories and related occurrences
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Fig. 11.3 Data frequencies over the seven categories

Fig. 11.4 Data densities over the seven categories

δi = fi
d (δi = fi

di
, should the categories have different sizes). The histogram in terms

of densities is shown in Fig. 11.4.
Considering this last graph, it can be easily shown that the sum of the areas of the

bars is unitarian. The total area A is yielded by
∑k

i=1 (d · δi ) = ∑k
i=1

(

d · fi
d

)

= 1.

Therefore, the graph in Fig. 11.4 may be regarded as a discrete representation of the
distribution.

11.2.1.3 Normal Probability Plot

A careful examination of the histogram in Fig. 11.4 suggests that the data are nor-
mally distributed around their mean value. However, hastily concluding that they
are normally distributed could be questionable at this stage. An important issue is
therefore a check of the adequacy of the normal model. For this purpose, the tool
of the normal probability plot, and in particular of the quantile-quantile plot, can
be used, to overcome the aforementioned question. In order to apply this tool, the
data in Table11.1 must be arranged in increasing order. Afterwards, it is neces-
sary to compute the standardized normal quantiles, to be related one-by-one to the
ordered data. Generally considering N yields to be processed, the first standardized
normal quantile can be defined as value Z1 that corresponds, in a standard normal
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distribution, to a cumulated area (from −∞ to Z1), whose extension is 1
1+N . In the

same way, the jth quantile is the value Z j along the horizontal axis of a standard

normal distribution, corresponding to a cumulated area of j
1+N . Finally, the N th

quantile (the last one) is the Z N value for a cumulated area, equating N
1+N , i.e. a

bit lower than one, corresponding to the cumulated area of the full distribution. In
short, the jth quantile is yielded by Eq.11.2, where φ stands for the standard normal
cumulative distribution.

Z j = φ−1
(

j

1 + N

)

(11.2)

Some results, obtained by the application of Eq.11.2, are summarized in Table11.3.
The normal probability plot is finally obtained plotting the experimental data

versus the corresponding quantiles. In particular, the yield for j = 1 (i.e.: the lowest
one in the ordered list) is plotted versus the quantile Z1, and so on. Considering
the present application, the described procedure is implemented in the diagram in
Fig. 11.5, where the ordered heights are plotted versus the Z terms, referring to the
rows of Table11.3. The analysis of the resulting graph suggests that the points follow
a linear trend, as confirmed also by the high linear correlation coefficient R2 being
very close to 1.A linear trend indicates that a normal distribution adequately describes
the data population. [21]. Should the trend be non-linear, asymmetric distributions
(generally, Weibull distributions) must be considered for the processing of the yields
[20–22].

Table 11.3 Computation of
quantiles Sample

number ( j)
Height (m) Cumulative

area
(

j
1+N

)

Z j

1 1.31 0.0123 −2.246

2 1.34 0.0247 −1.965

3 1.39 0.0370 −1.786

4 1.40 0.0494 −1.651

5 1.46 0.0617 −1.540

… … … …

76 1.91 0.9383 1.540

77 1.91 0.95063 1.651

78 1.91 0.9630 1.786

79 1.92 0.9753 1.965

80 2.00 0.9877 2.246
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Fig. 11.5 Normal probability plot, where the data in increasing order are plotted versus thequantiles

11.2.1.4 Distributions

Once it has been asserted that the data are normally distributed, this distribution is
univocally defined by its mean and standard deviation. Reliable estimations of these
terms can be retrieved by the computation of the mean and of the standard deviation
of the finite number of yields in Table11.1. The results in terms of the probability
density function (pdf ) and of the cumulative distribution function (cdf ) are shown in
Fig. 11.6.

Fig. 11.6 a Retrieved probability density function (pdf ) and b cumulative distribution function
(cdf )
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11.2.2 Case Study: Probability of Static Failure
of a Tensioned Rod

This second Case Study is a first approach to the probability of failure in a structural
problem.

11.2.2.1 Introduction to the Problem

A rod, having a circular cross section with diameter d = 26mm, is loaded by an
axial static force of F = 120kN. The material has been characterized, by running 60
tensile tests, according to the Standard [23]. The yields are listed (in the trial order) in
Table11.4. The problem consists in determining the distribution of the static strength
of the bar material and the probability of failure of the rod under the aforementioned
load.

The first issue to be considered consists in the size of the finite population to
be considered to infer the statistical distribution. The number of 60 samples can
be regarded as large enough to determine the distribution. The steps described in
Sect. 11.2.1 must be followed, to process the data in the form of histograms, to test
the adequacy of the distribution model and to determine the distribution itself.

11.2.2.2 Histograms for the Graphical Representation of the Results

The results range from approximately 210–290MPawith an overall range of 80MPa.
This range must be split into a suitable number of categories, determined by Eq.11.1.
The result for N = 60, 6.87, suggests that seven categories can be properly utilized.
Thus, considering uniformly sized classes, a width of about 11.4MPa can be easily
obtained. The yields are collected and grouped into the seven categories in Table11.5.

The related histogram, with the occurrences split into the seven categories, is
shown in Fig. 11.7. The following steps consist in the calculation of the frequencies

Table 11.4 Strengths of a population of 60 specimens

Sample number Strength (MPa)

1–10 249 262 253 251 268 245 255 254 249 253

11–20 226 225 251 257 270 235 253 251 223 249

21–30 241 257 247 251 242 253 245 254 254 254

31–40 251 233 244 267 240 262 251 286 232 250

41–50 235 275 212 256 262 264 233 249 245 260

51–60 249 266 243 245 236 236 265 253 252 236
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Table 11.5 Categories: ranges and occurrences of results

Categories

Ranges (MPa) 210.0− 221.4− 232.9− 244.3− 255.7− 267.2− 278.6−
221.4 232.9 244.3 255.7 267.2 278.6 290.0

Mean values (MPa) 215.7 227.2 238.6 250.0 261.4 272.9 284.3

Occurrences (ni ) 1 4 12 28 11 3 1

Fig. 11.7 Determined tensile strengths split into the seven categories and related occurrences

Fig. 11.8 frequencies of the strength results over the seven categories

fi = ni
N and of the densities δi = fi

d , where d indicates the uniform category size.
The related histograms are plotted in Figs. 11.8 and 11.9.

11.2.2.3 Normal Probability Plot

In this case too, the results appear to bewell distributed around their central value. The
adequacy of the normal distribution can be verified by the tool of the quantile-quantile
plot. For this purpose, the datamust be rearranged as inTable11.6,where the columns

refer to the data arranged in increasing order, to the probability terms
(

j
1+N

)

and

to the Z j terms, corresponding to the cumulated probabilities in a standard normal
distribution φ (see also Eq.11.2).
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Fig. 11.9 Data densities over the seven categories

Table 11.6 Computation of
quantiles Sample

number ( j)
Strength
(MPa)

Cumulative

area
(

j
1+N

)

Z j

1 212 0.0164 −2.1347

2 223 0.0328 −1.8413

3 225 0.0492 −1.6529

4 226 0.0656 −1.5096

5 232 0.0820 −1.3920

… … … …

56 267 0.9180 1.3920

57 268 0.9344 1.5096

58 270 0.9508 1.6529

59 275 0.9672 1.8413

60 286 0.9836 2.1347

The normal probability plot is shown in Fig. 11.10,where the yields of thematerial
characterization are plotted versus the quantiles Z indicated in Table11.6. The data
are included in the graph, maintaining their increasing order, so that the j th value

Fig. 11.10 Normal probability plot: strengths in increasing order plotted versus the Z j quantiles
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of strength (corresponding to the j th row of Table11.6) is plotted versus Z j . The
dots are well aligned along a straight line, as confirmed by the high linear correlation
coefficient R2 = 0.97. Therefore, a normal distribution can be correctly assumed
to describe the population of data.

11.2.2.4 Distributions and Probability Estimation

The mean and the standard deviation of the normal distribution can be reasonably
estimated as the mean and the standard deviation of the finite population of yields,
respectively 249.4 and 13.12MPa. The related distributions, pdf and cdf , are plotted
in Fig. 11.11.

Coming back to the initial question, the tensile stress σ on the rod, uniformly
distributed over its circular cross section, can be easily determined as in Eq.11.3.

σ = F
π ·d2

4

= 120 × 103

π ·262
4

= 226MPa (11.3)

Failure occurs when the strength is lower than the computed stress, therefore the
probability of failure p f is given by the highlighted area, i.e. the tail of the pdf

Fig. 11.11 a Retrieved probability density function (pdf ) and b cumulative distribution function
(cdf ), determination of p f



11.2 Determination of the Distributions of Sets of Data 461

or the cumulated probability yielded by the cdf, entering the retrieved value of σ .
Considering the distributions in Fig. 11.11, p f is approximately 3.7%.

11.2.3 Case Study: Quality Control of Pin Diameters

This last Case Study shows how the described procedure can be used as a support to
Quality Control in industrial applications.

11.2.3.1 Introduction to the Problem

Pins with a nominal diameter of 30mm are manufactured to be coupled to hubs.
A population consisting of 50 samples is extracted to perform a dimensional con-
trol on the entity of the coupling diameters. The results are collected in Table11.7.
Considering that the tolerance band is between 29.8 and 30.2mm, it is necessary to
determine the probability of pins being not conformal with the design specifics and
to indicate a possible strategy to improve the quality of the process, reducing the
rejection rate.

The first issue to be considered consists in the size of the finite population of data
to be processed to determine the statistical distribution. A number of 50 samples
can be regarded as the minimum one to estimate a probability distribution with a
sufficient statistical relevance. The steps in Sects. 11.2.1 and 11.2.2 are followed to
determine the related distributions.

11.2.3.2 Histograms for the Graphical Representation of the Results

The results range from approximately 29.75–30.10mm with an overall range of
0.25mm. This range must be split into a suitable number of categories. According
to Eq.11.1 this number is between 6 and 7, therefore seven categories can be conve-
niently utilized. Considering uniformly sized classes, their width is 0.05mm. This

Table 11.7 Coupling diameters of a population of 50 samples

Sample
number

Diameter (mm)

1–10 30.00 29.93 29.89 29.93 29.90 29.80 29.88 29.84 29.88 29.89

11–20 29.91 29.79 30.03 30.04 29.92 29.91 29.89 30.02 29.90 29.82

21–30 29.97 29.90 29.89 29.90 29.82 29.86 30.04 30.07 29.93 29.80

31–40 29.88 29.89 29.97 29.77 29.78 29.86 29.94 29.95 29.94 29.91

41–50 29.93 29.89 29.96 29.88 29.94 29.87 29.90 29.94 29.96 29.82
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Table 11.8 Categories: ranges and occurrences of results

Categories

Ranges (mm) 29.75− 29.80− 29.85− 29.90− 29.95− 30.00− 30.05−
29.80 29.85 29.90 29.95 30.00 30.05 30.10

Mean values (mm) 29.78 29.83 29.88 29.93 29.98 30.03 30.08

Occurrences (ni ) 5 4 18 13 5 4 1

Fig. 11.12 Measured diameters split into the seven categories: related occurrences

Fig. 11.13 Data densities over the seven categories

leads to the discretization in Table11.8, where the measurements are grouped into
the seven categories.

The related histogram is shown in Fig. 11.12. Afterwards, the occurrences ni have
been converted into the related frequencies fi = ni

N and into the densities δi = fi
d ,

where d stands for the uniform width of each class. The histogram with densities
plotted versus the category ranges is shown in Fig. 11.13.

11.2.3.3 Normal Probability Plot

It is interesting to remark that in the present case there is no clear evidence that the
results are symmetrically distributed around their central value. Therefore, it is very
important to check the adequacy of the normal distribution model by the tool of
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the quantile-quantile plot. Should it not be suitable, more complicated distributions,
such as the Weibull distribution, should be used to account for the non symmetric
shape. In order to arrange the data in the normal probability plot, they have been
ordered in the second column of Table11.9. The values of the cumulated probability
(

j
1+N

)

and of the quantiles Z j are appended in the remaining columns of the same

Table.
The normal probability plot is shown in Fig. 11.14, where the sample diameters

are plotted versus the quantiles in Table11.9. The results appear to follow a linear
trend, with a linear correlation coefficient R2 = 0.97. Therefore, the hypothesis of
a normal distribution can be accepted.

Table 11.9 Computation of
quantiles Sample

number ( j)
Diameter
(mm)

Cumulative

area
(

j
1+N

)

Z j

1 29.77 0.0196 −2.0619

2 29.78 0.0392 −1.7599

3 29.79 0.0588 −1.5647

4 29.80 0.0784 −1.4157

5 29.80 0.0980 −1.2928

… … … …

46 30.02 0.9020 1.2928

47 30.03 0.9216 1.4157

48 30.04 0.9412 1.5647

49 30.04 0.9608 1.7599

50 30.07 0.9804 2.0619

Fig. 11.14 Normal probability plot, where the retrieved diameters are plotted versus the related
quantiles
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11.2.3.4 Distributions and Probability Estimation

The mean and the standard deviation of the normal distribution can be reasonably
estimated as the mean and the standard deviation of the 50-sized population of data,
respectively 29.91 and0.069mm.The related distributions,pdf and cdf , can therefore
be plotted in Fig. 11.15.

Coming back to the initial question, the probability that the manufactured pins
are out of range (i.e.: with a diameter lower than 29.8mm or higher than 30.2mm)
is given by the complement to one of the highlighted area in the pdf in Fig. 11.15a.
The probability of part rejection is therefore around 6%, which is quite high for an
industrial process.

The analysis of the obtained distribution leads to the remark that the pins are gen-
erally rejected, due to their low diameter, being below the threshold of 29.8mm. On
the other hand, themaximum threshold of 30.2mm is generally accomplished.More-
over, it is interesting to observe that themean value, 29.91mm, is a longway from the
nominal dimension of 30mm. Therefore, the quality can be strongly improved, if the
manufacturing process can be modified to increase the pin diameter, so that its mean
is made comparable to the nominal dimension. Supposing that the same standard
deviation, which can be regarded as acceptable, can be maintained, this improve-
ment leads to a shift of the pdf, as in Fig. 11.16. The probability of non-conformity
in this case, again computed as the complement to one of the highlighted area, is
significantly reduced to the value of 0.35%.

Fig. 11.15 a Retrieved Probability density function (pdf ) with highlighted area corresponding to
the complement to one of the defect rate and b cumulative distribution function (cdf )
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Fig. 11.16 New Probability density function (pdf ) in the case of process improvement with high-
lighted area corresponding to the complement to one of the defect rate

11.3 How to Linearly Interpolate a Set of Data and How
to Account for Their Scatter

Linearly interpolating a set of points is quite a common practice in experimental
mechanics and basic statistics. The question can be easily tackled and assisted by
many software and spread sheets. For instance, let xi and yi , Table11.10, be the
coordinates of a set of points, where x stands for the independent variable (input)
and y indicates the dependent one (output).

The regression line is in the form y = mx + q, where the slope m and the offset
term q can be easily determined by Eqs. 11.4 and 11.5, according to the mean-square
approach.

Table 11.10 Points to be
linearly interpolated

Sample number (i) xi yi

1 0 3.675

2 2 4.023

3 4 5.140

4 6 5.300

5 8 5.156

6 10 5.958

7 12 5.890

8 14 7.154

9 16 7.352

10 18 7.210

11 20 8.545
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m =

N
∑

i=1

[(xi − x̄) · (yi − ȳ)]

N
∑

i=1

(xi − x̄)2

(11.4)

q = ȳ − m · x̄ (11.5)

The values of x̄ and ȳ (averages) are yielded by Eqs. 11.6 and 11.7.

x̄ =

N
∑

i=1

xi

N
(11.6)

ȳ =

N
∑

i=1

yi

N
(11.7)

The result of the interpolation procedure is shown in Fig. 11.17, where the regres-
sion line is sketched in a solid line. An important issue is represented by the scattering
of the data points, distributed around the determined regression line. This is crucial,
when the experimental data are used to process an analytical law, describing the
response of a device, for instance a load cell, or that of a material under a cyclic
load, for instance the load-life relationship. Especially in this last case, the use of
the plain regression line may result in an uncertain estimation, and sometimes in an
overestimation of the expected life, with unsafe dimensioning in design applications.
Therefore, it is important that the inferred model also accounts for the scattering of
the experimental evidence. A possible option to overcome the problem is the deter-
mination of a maximum likelihood band, wrapped around the regression line and
enclosed between two bounds. For instance, regarding fatigue, the procedure for

Fig. 11.17 Interpolation of a set of points, with related lower and upper bounds
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the determination of the aforementioned bounds is provided in some Standards and
papers [24–26].

In the described application, the following approach can be used for the determi-
nation, at a first stage, of the standard deviations of the slope (m) and of the offset
term (q), respectively σm and σq . First of all, based also on [27], the terms Sx , Sy ,
Sxx, Sxy and Δ must be computed, according to Eqs. 11.8–11.12.

Sx =
N
∑

i=1

xi (11.8)

Sy =
N
∑

i=1

yi (11.9)

Sxx =
N
∑

i=1

x2i (11.10)

Sxy =
N
∑

i=1

(xi · yi ) (11.11)

Δ = S · Sxx − S2
x (11.12)

Secondly, a standard deviation that accounts for the scattering of the dots with respect
to the determined line,must be computed. This term, named σ̄ is yielded byEq.11.13,
where ŷi stands for the estimation of the value of the dependent variable yi for xi ,
according to the determined regression line. It can be easily observed that the term
at the numerator stands for the sum of the squares of the residuals, whereas the
denominator contains the number of degrees of freedom.

σ̄ =

√

√

√

√

√

√

N
∑

i=1

(

yi − ŷi
)2

N − 2
(11.13)

Finally, the standard deviation to be applied to the slope, σm and that of the offset
term, σq , are respectively yielded by Eqs. 11.14 and 11.15.

σm = σ̄ ·
√

S

Δ
(11.14)

σq = σ̄ ·
√

Sxx

Δ
(11.15)
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The last step is the determination of the lower and upper bounds. Considering for
instance a scenario of twice the standard deviation, the lower and upper values for
m and q can be determined by Eqs. 11.16 and 11.17.

mmin = m − 2 · σm

mmax = m + 2 · σm
(11.16)

qmin = m − 2 · σq

qmax = m + 2 · σq
(11.17)

Finally, the lower and upper bounds, respectively in the form ymin = mminx + qmin

and ymax = mmaxx + qmax , are plotted in the dashed line in Fig. 11.17.

11.3.1 How to Determine the Coefficient of Plasticity
and the Hardening Exponent of a Material
and Related Distributions

A tensile test is usually performed according to the recommendations by the Standard
[23] and operating in the displacement controlled mode. During the test, the strain
and the stress at the specimen gage are measured respectively by an extensometer
and by the testing machine load cell. Many models are available in literature for the
analytical description of the obtained stress-strain curve, considering its elastic and
plastic parts and related transition [28–31]. One of the most used is the model by
Ramberg and Osgood [30], whose formulation is recalled in Eq.11.18.

ε = εel. + εpl. = σ

E
+
( σ

K

) 1
n

(11.18)

In the stress-strain (σ −ε) relationship of Eq.11.18, the term E stands for theYoung’s
modulus, whereas K and n are respectively the static coefficient of plasticity and
the hardening exponent. They can be easily determined, separating the amounts of
elastic (εel.) and plastic εpl. strains. A linear regression in the logarithmic scale must
be subsequently run on the plastic part of strain, as in Eq.11.19.

log (σ ) = n · log (εpl.
)+ log (K ) (11.19)

The terms n and log (K ) are finally determined as the slope and the offset term of
the interpolating straight line. Therefore, the procedure described in Sect. 11.3 and
the formulations in Eqs. 11.14 and 11.15 can be applied for the computation of the
standard deviations of these terms.

The question related to the distributions of the static coefficient of plasticity and of
the hardening exponent must be properly tackled, considering first the most widely
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accepted approaches in the literature. Regarding the coefficient of plasticity (both
static and cyclic), it is generally [11, 12, 32–35] presumed to be log-normally dis-
tributed, meaning that its logarithm has a normal distribution. As far as the hardening
exponent (both static and cyclic) is concerned, different options are considered in
the existing studies. Sometimes it has been regarded as deterministic [36, 37], in one
case a log-normal distribution was attributed [33], while in the other cases [11, 12,
34, 35] the normal distribution was indicated as the most suitable.

Therefore, in agreement with the literature, both n and log (K ) can be supposed
to be normally distributed: related distributions are univocally determined by their
nominal values, which can be regarded as the means, and by the computed standard
deviations. Finally, the Young’s modulus E can be conveniently considered as a
deterministic constant, as supported by several references [11, 12, 33, 36–38].

Exercise 11.1 (Cyclic curve of a steel material: distributions of the cyclic coefficient
of plasticity and of the hardening exponent) The procedure described in Sect. 11.3.1
can also be applied to the determination of the cyclic curve of a material and related
parameters. The following example considers this case.

A steel material (E = 193.8GPa), with wide applications in the manufacturing of
turbogenerator rotors, has been characterized under low cycle fatigue [26, 39, 40],
according to the Standards [41, 42]. In particular, its cyclic curve has been determined
as an envelope of the upper tips of steady-state stress-strain hysteresis loops. The
experimental results, considering 25 loops, are summarized in Table11.11.

The linear regression of the points in the two last columns of Table11.11 leads
to the computation of the slope and of the offset term, namely n′ = 0.052 and
log
(

K ′) = 2.949. A superscript has been added to denote that these are the cyclic
coefficient of plasticity and hardening exponent. According to the procedure in the
present Section, the following terms can be easily calculated, based on the data in
Table11.11.

• S = 24
• Sx = −63.89
• Sy = 67.44
• Sxx = 176.59
• Sxy = −179.19
• Δ = 156.34
• σ̄ = 0.0091

Finally, the previous results make it possible to calculate the standard deviations of
the slope n′ and of the offset log

(

K ′) are respectively 3.6 × 10−3 and 9.7 × 10−3.
This outcome makes it possible to determine the distributions of the parameters that
characterize the cyclic behaviour of the studied material.

The interpolating line is shown in the graph in Fig. 11.18 in a log (σ ) − log
(

εpl.
)

reference system, together with its bounds, for a scenario of twice the standard
deviation. The determined cyclic curve is depicted in Fig. 11.19 alongwith the steady-
state loops. Lower and upper bounds, wrapped around its plastic part, are added,
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Table 11.11 Steady state stress-strain hysteresis loops

Strain (%) Strain (−) Elastic
strain (εel.
(−))

Plastic
strain (εpl.
(−))

Stress (σ
(MPa))

x
(

log
(

εpl.
))

y (log (σ ))

0.30 0.003 0.003 9.53× 10−5 563 −4.021 2.750

0.30 0.003 0.003 1.98× 10−4 543 −3.703 2.735

0.30 0.003 0.003 1.48× 10−4 553 −3.830 2.743

0.39 0.004 0.003 0.001 616 −3.141 2.789

0.42 0.004 0.003 0.001 630 −3.023 2.799

0.43 0.004 0.003 0.001 622 −2.962 2.794

0.51 0.005 0.003 0.002 650 −2.758 2.813

0.58 0.006 0.003 0.003 637 −2.600 2.804

0.59 0.006 0.003 0.003 655 −2.598 2.816

0.63 0.006 0.003 0.003 657 −2.536 2.818

0.62 0.006 0.003 0.003 648 −2.544 2.812

0.64 0.006 0.004 0.003 682 −2.540 2.834

0.65 0.007 0.003 0.003 663 −2.511 2.821

0.72 0.007 0.003 0.004 666 −2.425 2.824

0.72 0.007 0.003 0.004 664 −2.423 2.822

0.73 0.007 0.003 0.004 666 −2.413 2.823

0.85 0.009 0.003 0.005 674 −2.299 2.828

0.84 0.008 0.004 0.005 686 −2.313 2.836

0.83 0.008 0.003 0.005 668 −2.314 2.825

0.96 0.010 0.003 0.006 669 −2.211 2.825

0.95 0.010 0.003 0.006 671 −2.219 2.827

0.96 0.010 0.004 0.006 691 −2.219 2.840

1.07 0.011 0.003 0.007 658 −2.136 2.818

1.07 0.011 0.004 0.007 696 −2.148 2.842

Fig. 11.18 Linear regression for the determination of the cyclic curve parameters, with related
lower and upper bounds
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Fig. 11.19 Experimentally determined cyclic curve and bounds wrapped around its plastic part

considering the same scenario of twice the standard deviation, affecting the log
(

K ′)

and n′ parameters. This scenario can usually be regarded as the worst one, as in
[11, 12, 25, 26, 43, 44].

11.3.2 How to Determine the Manson-Coffin Curve
Parameters and Related Distributions

The Manson-Coffin curve of a material, representative of its low cycle fatigue
response must be determined, running a sufficiently high number of fatigue tests in
strain controlled conditions. The reference standards are [24, 41, 42], where details
on the experimental procedure and on the data processing techniques are provided.
The Manson-Coffin model is recalled in Eq.11.20, where σ ′

f and ε′
f stand respec-

tively for the fatigue strength and the fatigue ductility coefficients, whereas b and c
are the related fatigue strength and the fatigue ductility exponents.

Δε

2
= Δεel.

2
+ Δεpl.

2
= σ ′

f

E
· (2Nf

)b + ε′
f · (2Nf

)c (11.20)

In Eq.11.20, the term Δε
2 stands for the controlled strain amplitude, while the sub-

scripts el. and pl. are appended to indicate respectively the elastic and plastic amounts
of the total strain amplitude. Finally, the symbol N f refers to the number of cycles
to failure and 2N f has the physical meaning of the number of reversals in the stress-
strain hysteresis loops.
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Theparametersσ ′
f , ε

′
f ,b, c are easily determined, separating the amounts of elastic

and plastic strain and by running linear regressions in the logarithmic scale. The effect
of the application of a 10-base logarithm to the elastic part of the strain amplitude
is shown in Eq.11.21, whereas the same procedure is performed in Eq.11.22 for the
plastic field.

log

(

Δεel.

2

)

= b · log (2N f
)+ log

(

σ ′
f

E

)

(11.21)

log

(

Δεpl.

2

)

= c · log (2N f
)+ log

(

ε′
f

)

(11.22)

Therefore, the fatigue strength and the fatigue ductility exponents can be computed as
the slopes of the regression lines, whereas the corresponding coefficients are retrieved
as regression line offset terms.

As for the static/cyclic curve, in this case it is also important to make a litera-
ture survey, regarding the statistical distributions to be presumed for the parameters
involved in the Manson-Coffin model. The fatigue strength and ductility coefficients,
σ ′

f and ε′
f , are usually regarded as log-normally distributed random variables. This

approach is confirmed by [36, 37] and by more recent studies [11, 12, 32, 33], even
if in one case [38] normal distributions were considered. Regarding the fatigue expo-
nents, b and c, some studies [36, 37] accounted for them as deterministic constants,
whereas in all the other cases [11, 12, 32, 33, 38], theywere supposed to have normal
distributions.

Therefore, according to the most widely applied approach, σ ′
f and ε′

f are log-
normally distributed, which means that their logarithms log (σ ′

f ) and log (ε′
f ) follow

normal distributions. The exponents b and c are also normally distributed. Therefore,
the determination of the standard deviations of the slopes and of the offset terms of the
regression line, as in Sect. 11.4, makes it possible to univocally determine the normal
distributions of the aforementioned terms. It is clear that the standard deviation of

log

(

σ ′
f

E

)

is the same as that of log (σ ′
f ), as the Young’s modulus E is deterministic.

Exercise 11.2 (Manson-Coffin curve of a steel material: distributions of the related
coefficients and exponents) A numerical example of the procedure in Sect. 11.3.2 is
provided here.

With reference to the same steel material of Sect. 11.1, characterized in agreement
with [41, 42], the results, in terms of the controlled strain amplitudes

(

Δε
2

)

, of their

elastic
(

Δεel.
2

)

and plastic
(

Δεel.
2

)

parts and of the retrieved cycles to failure
(

N f
)

,

are listed in Table11.12 [11, 26].
The model in Eq.11.21, with reference to the elastic part, leads to a rearrange-

ment of the data, with the computation of the log
(

2N f
)

and log
(

Δεel.
2

)

terms. The

reworked yields, to be linearly interpolated, are shown in Table11.13.
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Table 11.12 Results of the low cycle fatigue tests and observed lives N f

Total strain
amplitude

(

Δε
2

)

(%)

Total strain
amplitude

(

Δε
2

)

(−)

Elastic strain
amplitude
(

Δεel.
2

)

(−)

Plastic strain
amplitude
(

Δεpl.
2

)

(−)

Cycles to failure
(

2N f
)

0.20 0.002 0.002 1.13 × 10−5 50,258

0.20 0.002 0.002 1.76 × 10−5 51,516

0.30 0.003 0.003 1.30 × 10−4 17,158

0.30 0.003 0.003 1.55 × 10−4 14,575

0.43 0.004 0.003 0.001 4,885

0.43 0.004 0.003 0.001 4,719

0.50 0.005 0.003 0.002 1,080

0.50 0.005 0.003 0.002 1,100

0.58 0.006 0.003 0.002 905

0.58 0.006 0.003 0.002 1,117

0.63 0.006 0.003 0.003 749

0.65 0.007 0.003 0.003 385

0.65 0.007 0.003 0.003 779

0.73 0.007 0.003 0.004 449

0.73 0.007 0.003 0.004 347

0.85 0.009 0.003 0.005 260

0.85 0.009 0.004 0.005 296

0.96 0.010 0.004 0.006 250

0.96 0.010 0.004 0.006 251

1.07 0.011 0.004 0.007 100

The linear regression of the points in the two columns of Table11.13 leads to the

computation of the slope and of the offset term, namely b =−0.043 and log

(

σ ′
f

E

)

=
−2.340. According to the procedure described in Sect. 11.4, the following terms can
be easily calculated, based on the data in Table11.13.

• S = 18
• Sx = 58.48
• Sy = −44.61
• Sxx = 196.66
• Sxy = −145.22
• Δ = 119.70
• σ̄ = 0.0081

Finally, the previous results make it possible to calculate the standard deviations

of the slope b and of the offset log

(

σ ′
f

E

)

are respectively 3.1 × 10−3 and 1.03 ×
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Table 11.13 Data for the
linear interpolation in the
elastic field

log
(

2N f
)

log
(

Δεel.
2

)

4.535 −2.542

4.465 −2.546

3.990 −2.494

3.975 −2.496

3.334 −2.484

3.342 −2.484

3.258 −2.482

3.349 −2.475

3.176 −2.471

2.886 −2.469

3.193 −2.475

2.953 −2.464

2.841 −2.464

2.716 −2.458

2.772 −2.456

2.699 −2.451

2.701 −2.452

2.297 −2.448

10−2. Regarding the fatigue strength coefficient, its logarithm can be easily obtained,
considering that E = 193.8GPa, therefore we have a normal distribution with mean
value log (σ ′

f ) = 2.948 and the aforementioned standard deviation of 1.03 × 10−2.
Operating in the same way, considering the model in Eq.11.22, it is possible to
determine the normal distributions of c (mean value: −0.546, standard deviation:
3.9 × 10−2) and of log (ε′

f ) (mean value: −0.83, standard deviation: 0.12).

Fig. 11.20 Linear regression for the determination of σ ′
f and b, with related lower and upper

bounds
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Fig. 11.21 Experimentally determined Manson-Coffin curve together with wrapped around hyper-
bolic bounds

The retrieved interpolating line is shown in thegraph inFig. 11.20 in a log
(

Δεel.
2

)

−
log
(

2N f
)

reference system; lower and upper bounds for the worst scenario of twice
the standard deviation are also appended. Finally, the determined fatigue curve is
depicted in Fig. 11.21 with indication of the experimental dots and of the results in
the elastic and plastic fields. The curve is plotted along with its hyperbolic bounds,
determined according to the recommendations of [24] and to the original procedure
proposed in [26].

11.4 Multi-variable Problems: Application of a Most
Probable Point Method

In many applications the output variable is a function of more than one variable,
therefore a relationship in a multi-dimensional space must be used. In addition, many
complications often arise from two issues. First of all, the relationships between
the inputs and the output are often non-linear. Regarding this, possible examples
are the relationships that relate the expected life to the load entity and to material
parameters in high- or low-cycle fatigue and in fracture mechanics. The second issue
is concerned with the determination of a closed form analytical relationship that
is able to directly yield the output as a function of the inputs. Unfortunately, this
closed form solution is often unavailable and impossible to retrieve. For instance, in
low cycle fatigue the strain amplitude to be used as an input in the application of the
strain-life model must be determined by simulating the stress-strain hysteresis loops.
This procedure requires the numerical solution of a set of inter-related non-linear
equations. These kind of functional relationships are usually indicated as black-box
or implicit functions.Moreover, a numerical approach is usually required to overcome
the non-linearities.

Let g indicate the functional relationship between the output and the inputs.AMost
Probable Point (MPP) Method, e.g. the Advanced Mean Value (AMV ) [37] utilizes
a Taylor expansion to achieve a suitable polynomial approximation of the unknown
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function g in the neighbourhood of an MPP. The MPP is usually referenced as the
design point: it indicates a particular combination of the values of the input variables,
which is likely to result in a failure. The physical meaning of the design point will be
clarified below. As a consequence of the need to achieve a polynomial approximation
in the surroundings of the design point, this point and related coordinates should be
chosen as the expanding point for the expansion. However, a further criticality arises
from the occurrence that the design point is not known a priori, consequently an
iterative approach is required for its determination. Therefore, the expanding point
for the Taylor expansion is conventionally initially set as the point defined by the
mean values of the input variables: a = [a1, . . . , ar ]T . A number of r input variables
is considered here, denoting the related vector as U = [U1, . . . , Ur ]T . It is assumed
that all the variables are normally distributed. Should some of them be affected by a
different distribution, they could be transformed into equivalent normal variables by
the Rosenball transformation. For full details regarding its application, Ref. [45] is
recommended.

Different approaches can be used in the determination of the polynomial expres-
sion of g by Taylor expansion: first- or second-order models are usually applied.
The linear models are the most widely used, according to [11, 12, 33, 37] and may
be suitable, even if the output-input relationship is not linear. Whereas, when great
non-linearities are present, second order models are required. Both approaches will
be described in the following lines.

According to a first-degree Taylor expansion, the function g can be approximated
by the polynomial Y , as in Eq.11.23.

Y (U1, . . . , Ur )

= g (a) + ∂g

∂U1
|(a) · (U1 − a1) + · · · + ∂g

∂Ui
|(a) · (Ui − ai ) + · · ·

+ ∂g

∂Ur
|(a) · (Ur − ar ) + (H.O.T .)

= g (a) +
r
∑

i=1

[

∂g

∂Ui
|(a) · (Ui − ai )

]

= α0 + α1 · (U1 − a1) + · · · + αi · (Ui − ai ) + · · · + αr · (Ur − ar )

(11.23)

The term H.O.T. in the first-order expansion in Eq.11.23 stands for negligible higher
order terms. The derivative terms (α1, . . . , αr ) may be numerically calculated by
the finite difference methods. In particular, the partial derivatives are approximated
by quotients of finite differences, determined by operating slight perturbations of
the random variables in the neighbourhood of the expanding point. Equation11.24
shows the computation of the (i th) derivative term, by the forward finite difference
approach [2], considering a positive increment affecting the (i th) variable.

∂g

∂Ui
|(a)≈ Δg

ΔUi
|(a)= g (a1, . . . , ai + ΔUi , . . . , ar ) − g (a1, . . . , ai , . . . , ar )

ΔUi
(11.24)
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The term ΔUi in Eq.11.24 stands for the entity of the (i th) perturbation: it must be
a good compromise from being too high (which would imply a rough estimation of
the partial derivative punctual value) and being too low (which would imply a very
stiff polynomial approximation, being reliable only in a small surrounding of the
expanding point). For this purpose, Refs. [36, 37] suggest choosing the perturbation
size ΔUi as 10% of the standard deviation of the (i th) variable. Therefore a suitable
choice for the increment is ΔUi = 0.1 · ST D (Ui ), where ST D indicates the stan-
dard deviation. It can be pointed out that a linear model requires in general (r + 1)
evaluations for the computation of the αi derivative coefficients in the last row of
Eq.11.23 [37].

If we skip to a non-linear model, a polynomial approximation of the relationship
g is yielded by a second-order Taylor expansion, as in Eq.11.25.

Y (U1, . . . , Ur )

= g (a) + ∂g

∂U1
|(a) · (U1 − a1) + · · · + ∂g

∂Ui
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+ · · · + ∂g
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2

∂2g

∂U 2
1
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+ · · · + 1
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⎫

⎬

⎭

+ (H.O.T .)

∼= α0 + α1 · (U1 − a1) + · · · + αi · (Ui − ai ) + · · · + αr · (Ur − ar )

+αr+1 · (U1 − a1)2 + · · · + αr+i · (Ui − ai )
2 + · · · + α2r · (Ur − ar )

2

= α0 +
r
∑

i=1

[αi · (Ui − ai )] +
r
∑

i=1

[

αr+1 · (Ui − ai )
2
]

(11.25)

It can be observed that the polynomial expression in its compact form consists of
four terms: the first and the second are the same as the first-order model, whereas
the third and the fourth ones contain higher order derivatives. In particular, the last
one, containing mixed derivatives, is usually regarded as the mixed term. In Ref.
[37] it is remarked that the number of evaluations required for the computation of
all the derivative terms in Eq.11.25 is (r+2)·(r+1)

2 . The size of the data set is more
conveniently reduced to (2r + 1), when the mixed term is neglected. The question
related to whether the mixed term should be considered or discarded is discussed in
some Refs., eg. [12, 37]. The conclusion is that neglecting the mixed term not only
simplifies the computational procedure, but has also an additional positive outcome.
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It derives from the occurrence that in the polynomial approximation of highly non-
linear functions, problems of numerical ill-conditioning may arise from this term,
thus reducing the accuracy of the Taylor expansion.

Considering the first three terms, the unknown coefficients α0, α1, . . . , αr , αr+1,

. . . , α2r can be determined by (2r + 1) function evaluations. According to [12, 37],
the data sets can be conveniently determined as in Table11.14, where the ΔUi terms
retain the same meaning as slight perturbations of the random variables around their
values at the expanding point. Considering the data set along each row, the func-
tion output value Y , indicated at the right side of the same line, must be computed.
Subscripts from 1 to (2r + 1) are appended to relate the output values to the corre-
sponding data set.

Following the plan for function evaluations in Table11.14 makes it possible to
compute the (2r + 1) αi values as unknowns of the linear system in Eq.11.26.

α0 = Y0

α0 + α1 · ΔU1 + αr+1 · (ΔU1)
2 = Y1

α0 − α1 · ΔU1 + αr+1 · (−ΔU1)
2 = Y2

. . .

α0 + αi · ΔUi + αr+i · (ΔUi )
2 = Y2i−1

α0 − αi · ΔUi + αr+i · (−ΔUi )
2 = Y2i

. . .

α0 + αr · ΔUr + α2r · (ΔUr )
2 = Y2r−1

α0 − αr · ΔUr + α2r · (−ΔUr )
2 = Y2r

(11.26)

The rest of the numerical procedure is the same for both linear and second-order
models. The following step consists in the formulation of a failure function. This
passage requires a brief explanation.

The goal of the probabilistic analysis consists in the determination of the probabil-
ity of Y ≤ y, where y is a threshold value for Y . The curve relating the probability to
y, for different threshold values, is called the cumulative distribution function (cdf )

Table 11.14 Data sets for the computation of αi constant terms

U1 … Ui … Ur Y

a1 … ai … ar Y1

a1 + ΔU1 … ai … ar Y2

a1 − ΔU1 … ai … ar Y3

… … … … … …

a1 … ai + ΔUi … ar Y2i−1

a1 … ai − ΔUi … ar Y2i

… … … … … …

a1 … ai … ar + ΔUr Y2r−1

a1 … ai … ar − ΔUr Y2r
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of Y . The described problem could obviously be tackled by a Monte Carlo simula-
tion, for which full details can be found in specialistic references, e.g. see Birolini [3].
However, this approach often has the drawback of being computationally expensive,
especially in the applications with a very high (close to 1) reliability and a very low
probability of failure [2].

If we suppose that Y has the meaning of the expected (computed) life for a
component under fatigue and that y is the threshold, corresponding to the required
life (design specifics), we can have three different cases. If Y < y, it means that the
expected life is lower than what is required by the specifics, therefore a failure must
be expected during the component’s life. Consequently, the probability of Y < y
assumes the meaning of the probability of failure of the studied part. Conversely,
Y > y indicates that the expected life is longer than specifics, thus the part should
theoretically complete its full life without failures. Finally, the condition of Y being
equal to y corresponds to the boundary between the unsafe (failure likely to occur)
and safe (no failure expected) domains. The function describing this boundary is
usually regarded as the failure function and is easily obtained, subtracting y from
Y . In this case, in stead of Y , its first- or second-order polynomial approximation is
used. It is easy to understand that a failure function retains positive values in the safe
domain, negative ones in the unsafe region and has zeroes at the boundary. The failure
function is indicated by h in Eq.11.27, considering the general case of second-order
approximating function. The equation of the boundary between the safe and unsafe
domains is therefore expressed by Eq.11.28.

h (U1, . . . , Ui , . . . , Ur ) = Y (U1, . . . , Ui , . . . , Ur ) − y

= α0 +
r
∑

i=1

[αi · (Ui − ai )] +
r
∑

i=1

[

αr+1 · (Ui − ai )
2
]

− y (11.27)

α0 +
r
∑

i=1

[αi · (Ui − ai )] +
r
∑

i=1

[

αr+1 · (Ui − ai )
2
]

− y = 0 (11.28)

The further step consists in variable reduction, i.e.: the transformation of the basic
variables into the reduced ones. The reduced variables exhibit a normal distribution
with a mean of zero and standard deviation normalized to one. This procedure is
generally performed by the application of Eq.11.29, which refers to the reduction of
the (i th) random variable Ui into the corresponding ui .

ui = Ui − μ (Ui )

ST D (Ui )
⇔ Ui = ui · ST D (Ui ) + μ (Ui ) (11.29)

All the basic variables in the formula of the failure function, Eq. 11.28, must therefore
be turned into the corresponding reduced variables. For this purpose, the term Ui

must be expressed as a function of the term ui (as in the secondmember of Eq.11.29),
to be substituted in Eq.11.28. This computational procedure may be regarded as a
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change of the reference system: in the new one the point defined by the mean values
of all the input variables is moved to the origin.

Finally, the last calculation step leads to the determination of the design point and
of its distance from the origin of the new reference system in the reduced variables:
this distance is called safety index, β. From the analytical point of view, the design
point and the safety index are yielded by the solution of the following constrained
optimization problem, Eq.11.30.

h (u∗) = 0
β = min ||u∗|| (11.30)

The symbol ∗ in Eq.11.30 indicates the reduced coordinates at the design point.
The formulation of the constrained system of Eq.11.30 may be explained as fol-
lows. The design point is unequivocally determined as the point lying on the failure
function (limit state between the safe and unsafe conditions), being at the minimum
distance from the origin of the reduced reference system. It is possible to give a brief
explanation of the physical meaning of the design point. The failure function is the
location of all the points, corresponding to different combinations of the values of
the input variables, which are likely to lead to a failure. If we suppose that the output
variable is fatigue life, then, the points on the curve correspond to states, where the
computed expected life equals the life required by design specifics. Among the infi-
nite points with this property, there is a specific point, the design point, that has the
peculiarity of being the closest to the origin. It corresponds to the input parameter
combination that leads to failure and is the closest to the condition, corresponding
to all the variables at their mean value. This state (graphically related to the origin)
corresponds to all the variables assuming those that are usually reported as their
nominal values. The described graphical interpretation, with indication of the failure
function, safe and unsafe domains, the design point and the safety index, is shown
in Fig. 11.22. For the sake of clarity, the figure is sketched in a bi-dimensional refer-
ence system

(

ui − u j
)

, while, in reality, the failure function h should be plotted in an
r-dimensional space. From the computational point of view, the constrained system
can be easily solved by the Lagrange multipliers method, which is summarized in
Eqs. 11.31 and 11.32.

λi =
∂h

∂ui
| ai −μ(Ui )

ST D(Ui )
√

√

√

√

√

√

r
∑

j=1

[

∂h

∂u j
| ai −μ(Ui )

ST D(Ui )

]2 (11.31)

u∗ = β · [λ1, . . . , λi , . . . , λr ]
T (11.32)

In Eq.11.31, the partial derivatives of the failure function h are calculated at the
expanding point, expressed here in its reduced coordinates. The application of
Eq.11.31 enables the computation of the terms indicated by λi , which are the
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Fig. 11.22 Graphical interpretation of the failure function, separating the same and unsafe domains
and of the reliability assessment

direction cosines of a vector that defines the design point. Therefore, considering
the relationship between u∗ and the [λ1, . . . , λi , . . . , λr ] vector in Eq.11.32, the
solution of the first equation of Eq.11.30, yields the safety index β. The reduced
coordinates of the design point u∗ are finally determined by Eq.11.32, considering
the actual value of β.

The probability of failure p f is finally calculated by Eq.11.33 [37], where the
symbol φ stands for the Standard Normal cumulative distribution function, with
the assumption that the output variable Y is normally distributed [2, 37]. From the
graphical point of view, p f is given by the area of the distribution tail, highlighted
in Fig. 11.22.

p f = φ (−β) (11.33)

The determined solution is usually regarded as the Mean value (MV ) Solution [46]
and is usually inaccurate. This occurrence can be explained by observing that the
result depends on the determined coordinates of the design point, determined by
Eqs. 11.30, 11.31 and 11.32. All the computation process is based on the first- or
second-order polynomial expression (Eqs. 11.23 and 11.25 respectively), relating
the output variable to the inputs. As previously stated, this expression is a Taylor
expansion in the neighbourhood of the expanding point. In theory, the expansion
should be performed at the design point or in the surroundings of it. However, as
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remarked at the beginning of this Section, the design point is not initially known,
therefore, the first expanding point is arbitrarily chosen and may even be far away
from the real design point. This expansion at an arbitrary point is the main reason
for the determined polynomial expansion often being a rough approximation of the
output-input relationship at the design point. As a consequence, the found solution is
inaccurate. This problem can be overcome by an iterative procedure. A new expand-
ing point is therefore set at the just determined design point and a different Taylor
expansion is determined. The same algorithm is then repeated for the determination
of a new design point. At the following step, a new expanding point is set at the
just determined design point, …Iterations are repeated until convergence. Only a
few are usually required: just two or three are usually sufficient [11, 12, 37]. Upon
convergence, the final value for the probability of failure p f can be re-computed by
Eq.11.33.

In order to determine the whole CDF, different values of the threshold y must be
chosen over a sufficiently wide range. If the output variable Y represents fatigue life,
this procedure leads to the determination of a curve that shows the increase of the
probability of failure versus life.

11.4.1 Low Cycle Fatigue on Turbogenerators
and Probability of Failure

In Sect. 11.4, low cycle fatigue was mentioned as a field, where the discussed MPP
Method can be applied for a reliability assessment. First of all, it can be remarked that
the output, consisting in the observed life, is dependent onmany variables. It is indeed
dependent on the local state of load, in terms of the strain amplitude, and it is also
dependent on the material response under a cyclic load. A further remark regards the
non-linearity. Low cycle fatigue occurs, when a particularly severe load is applied,
so that the yield strength of the material is locally overcome and plastic deformations
occur. It is clear that both the static and the cyclic curves are no longer linear in the
plastic range, independently if the Ramberg-Osgood model (like in Sect. 11.3.1 and
Exercise 11.1) or another one is used for the analytical description. The Manson-
Coffin strain-life model (used in Sect. 11.3.2 and Exercise 1.2) to be applied for life
estimation is also non-linear. A final issue is that they cannot be written in a closed
form, i.e. it is not possible to work out a relationship that yields the life as a function
of thematerial parameters and of the state of load. Therefore, the only possible option
is trying to determine a polynomial approximation of the relationship between the
inputs and the output. A typical application of these concepts is in the design of
turbogenerators, whose architecture is shown in Fig. 11.23.

The main components of a turbogenerator are the rotor and the coil retaining rings
(CRRs). The machine architecture must be briefly introduced, in particular to clarify
the role of the CRRs. The rotor exhibits uniformly spaced longitudinal slots, where
copper conductors and related insulating materials are packed. Copper emerges at

http://dx.doi.org/10.1007/978-3-319-06086-6_1
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Fig. 11.23 Typical architecture of a turbogenerator

the ends, to join the circumferential arc portion of the windings to form a coil, which
is wound around the rotor. During rotation the copper masses must be restrained
against the centrifugal forces. This restraint is generally provided by metal wedges
applied along the slots. At the ends, where the coils emerge at the surface, wedges
cannot be applied and constraining is achieved by the assembly of CRRs that are
shrunk fitted onto the rotor body over the coils. The interference coupling generates
tangential and radial stresses, acting both on the rotor and on the CRRs.

Turbogenerators are designed for energy production at a constant rotational speed
in the order of 3,000 rpm; therefore, the centrifugal force and the induced stresses and
strainsmaintain a constant value during rotation in steady-state conditions, Fig. 11.24.
When the machine is switched off, its speed is gradually lowered, and the centrifu-
gal force drops to zero. When switched on, the rotor starts to rotate and its speed
is increased to 3,000 rpm. As a consequence, local stresses and strains experience
fluctuations at every on and off. This cyclic variation can be regarded as low cycle
fatigue, since the expected number of cycles in the entire machine life is about 10,000

Fig. 11.24 A sketch of the forces acting on the rotor and on the CRR, a prospect and b lateral
views
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and has an increasing trend towards 15,000; moreover, the local stresses and strains
may exceed the yield limit.

Considering the regions of the rotor and of the CRR at the shrink fit, the stress
variation can be qualitatively explained as in the following points.

• Compression of the rotor upon shrink-fit during machine assembly. Compression
stresses act both along the radial and the tangential directions. Tensile stresses are
generated in the tangential direction on the CRR.

• Machine speed increases up to 3,000 rpm. During rotation, the centrifugal force
tends to eject the copper coils, which are restrained by the CRR: as a consequence
the CRR swells in tension. Therefore, considering the tangential direction (the
direction where the highest stresses occur in both components) the compressive
stress is released on the rotor, whereas the tensile stress is incremented on the
CRR.

• The speed is lowered down to zero upon machine switch off. The cycle is com-
pleted: the compressive stress on the rotor is incremented again, whereas the tensile
stress on the CRR is decreased.

Rotor and CRR design are usually tackled by the deterministic application of the
models for the simulation of the local stress-strain hysteresis loops and for life esti-
mation, based on the estimated local strain amplitudes. However, nowadays there is
increasing interest in a probabilistic approach to turbogenerator design, mainly due
to two issues. First of all, the consequences of an in service failure involving the
rotor or the CRR may be very serious, since an explosion and resultant fire are likely
to occur [47–49]. Secondly, the turbogenerator components have a life in the order
of about fifty years and the number of switch on and switch off cycles is expected
to increase, due to the new policies for energy production. An important question in
the last stages of the life is related to the residual life and to the level of safety if the
machine is left in service. This question can be tackled only from the probabilistic
point of view, considering the variability of the involved random parameters. The
determined probability of failure can thus be compared to thresholds mentioned in
the literature, mainly in the nuclear and aeronautical fields.

The next question to be tackled is related to the random parameters to be con-
sidered. The existing references [11, 12, 32–38] suggest considering the material
parameters, in particular the coefficients of the static of the cyclic and fatigue curves.
Examples dealing with their determination have been shown in Sect. 11.3.1 and
Exercise1.1, Sect. 11.3.2 andExercise1.2. TheYoung’smodulus is usually presumed
to be deterministic [11, 12, 33, 36–38]. Regarding load, the random properties of the
shrink-fit coupling process suggest randomizing the state of load. However, the rotor
and the CRRs are coupled under very strict tolerances. Moreover, a severe quality
control is implemented, also to prevent any damage to the coils, upon CRR heating
during shrink-fit. As far as the rotational speed is concerned, it is accurately con-
trolled and maintained at the set constant value. For this reason, it can be reasonable
to regard the load range during each cycle as a deterministic constant. This approx-
imated approach is supported by [11, 12, 50]. In addition, the study performed in

http://dx.doi.org/10.1007/978-3-319-06086-6_1
http://dx.doi.org/10.1007/978-3-319-06086-6_1
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[51] confirmed that if the variability of load is also considered, this has a negligible
impact on the reliability assessment.

11.4.2 Case Study: Probability of Failure
of a Turbogenerator Rotor

A turbogenerator rotor, made of 26NiCrMoVa 10 5, undergoes a cyclic load during
its life, due to switch ons and switch offs. Its state of load is regarded as deterministic
and can be summarized by the hysteresis loops of the local stresses and strains at the
shrink-fit location, highlighted in Fig. 11.25. The loops, sketched in the stress-strain
diagram in Fig. 11.26, refer to the following three stages:

• initial assembly of the CRR to the rotor;
• pretrial condition during the machine set-up, where the rotor starts rotating up to
the speed of 3,600 rpm, before being stopped;

• normal use conditions with frequent switch ons and shut downs and a controlled
speed of 3,000 rpm.

Thematerial parameters (K , n, K ′, n′, σ ′
f , b, ε

′
f , c) are regarded as random variables,

except for the Young’s modulus, considered as a deterministic constant. A summary
of the input variables (indicated as Ui ) and of the related mean values and standard
deviations, identifying their normal distributions, is provided in Table11.15.

Fig. 11.25 Surfaces of the rotor involved in the shrink-fit



486 11 Reliability Models Based on Experiments

Fig. 11.26 Stress-strain hysteresis loops

Table 11.15 Input random variables and related distributions

Variable Parameter Mean value Standard deviation

U1 n 0.057 2 × 10−3

U2 log (K ) 3.001 4 × 10−3

U3 n′ 0.052 4 × 10−3

U4 log
(

K ′) 2.949 10−2

U5 log
(

σ ′
f

)

2.948 10−2

U6 log
(

ε′
f

)

−0.830 0.122

U7 b −0.043 3 × 10−3

U8 c −0.546 3.9 × 10−2

The reliability assessment, with the computation of the safety index and of the
failure probability of the rotor during its life, can be implemented, following the
procedure described in Sect. 11.4 (see also [11]).

The results in terms of the safety index β versus life are shown in Fig. 11.27. It can
be observed that β assumes values higher than 4 in the whole machine life range. A
threshold for the safety index is usually set at 3 [52]. Safety index reference ranges for
structures under fatigue are contained in [53, 54]. In the case of buildings or bridges,
the suggested interval is between 1.5 and 3.8, while in ship design the target safety
index is usually between 2 and 3.5.

The cdf of the probability of failure versus themachine life is plotted in Fig. 11.28.
The results are compared here with those of a Monte Carlo simulation with 5× 106

iterations. The outcomes can be commented on the basis of two issues: efficiency
and accuracy.

Regarding the first item, a Monte Carlo simulation may require several hours and
is unsuitable to estimate very low probability of failure. In this case, it was capable
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Fig. 11.27 Safety index β plotted versus the machine life

of processing probabilities greater that 10−6, providing just a rough approximation
in the range 2 × 10−7 − 10−6, but was completely unable to provide probability
estimates below 2 × 10−7. Conversely, the applied MPP method is highly efficient
in the dot-by-dot determination of the cdf. Two iterations are generally sufficient
to achieve convergence, as confirmed also by [36, 37], which makes it possible to
retrieve the cdf in just a fewminutes. Regarding the second issue, accuracy, the MPP
method yields results that are comparable to those of a Monte Carlo simulation.

The estimated probability of failure is in the order of 10−10 after 6,000 loops, and
of 10−9 at 8,000 loops and increases up to 5×10−8 after 10,000 loops and to 3×10−6

at the maximum extended life of 15,000 cycles. These values can be compared with
the probabilities of failure of other components, whose failure is potentially highly
dangerous, due to its catastrophic effects. An interesting study is reported in [38],
regarding the reliability assessment of an aeronautical engine turbine disc structure:
in this case the probability of failure is in the order of 10−8.

Therefore, the obtained results would support a turbogenerator life extension up to
its maximum of 15,000 cycles, beyond which, generally after a fifty-year life, the
machine obsolescence becomes significant.
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Fig. 11.28 Probability of failure p f plotted versus the machine life

11.4.3 Fracture Mechanics and Reliability Assessment

A common problem in the mechanics of materials is related to the generation of
cracks. Under a cyclic load cracks tend to propagate, until a critical length is reached.
When it takes place, the propagationmode turns from stable to unstable and complete
breakage is likely to occur. Being able to predict the life of a mechanical part where
a crack is present can be very important, when a component is designed according to
a damage tolerant strategy, an approach that presumes the presence of the crack. In
many industrial applications, components undergo periodical refurbishments, where
they are checked by non-destructive techniques for the presence of internal or surface
cracks. A really difficult question to be tackled is related to the residual life, should
cracks be detected. In many cases, for instance in the field of nuclear or power
plants, or in aeronautics, in-service failures may even lead to catastrophic events.
Therefore, the most proper approach is to tackle the aforementioned question from
the probabilistic point of view, determining a probability of failure to be compared
to a threshold. For this purpose, a Monte Carlo simulation or an MPP method can
be applied.

Regarding the tools for life prediction, themostwidely used in FractureMechanics
is the Paris Law, reported in Eq.11.34.

da

d N f
= C · ΔK r (11.34)
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The two coefficientsC and r inEq.11.34 arematerial-dependent parameters,whereas
ΔK stands for the range of the stress intensity factor K . Finally, a is the crack length

and N f stands for the number of cycles to failure, the derivative term
(

da
d N f

)

has

the meaning of the crack propagation rate. This relationship can be integrated to
determine life estimation: the final result is shown in Eq.11.35.

N f = 2

C · (r − 2) · (MΔσ
√

π
)r ·

⎛

⎝

1

a
r−2
2

0

− 1

a
r−2
2

f

⎞

⎠ (11.35)

The term Δσ stands for the stress range far away from the crack, this term is related
to the stress intensity factor by the well known relationship. ΔK = MΔσ

√
πa,

where M is a magnifying factor, depending on the crack shape and on the loading
model. Finally, a f stands for the final length of the crack upon breakage. This term
can be determined in the case of pulsating load, as in Eq.11.36, presuming that the
crack propagation becomes unstable, when ΔK = KIc and when a f = ac, where
the subscript c stands for critical. The parameter KIc is a material property, the well
known fracture toughness.

ΔK = KIc ⇔ MΔσ
√

πac = KIc ⇔ ac = 1

π
·
(

KIc

MΔσ

)2

(11.36)

Considering Eqs. 11.36 and 11.35 can be reworked as in Eq.11.37.
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(11.37)

The uncertainty in the estimation of the residual life N f , regarded as the output
variable Y , by Eq.11.37, usually arises from the material response under fracture, in
particular from the parameters, C , r and KIc and from the estimation of the initial
length of the crack a0. This term may be the source of high errors in the prediction
of life, especially when it is low with respect to ac. In this condition, a small error in
the estimation of a0 may result in a huge error in that of the residual life. Finally, a
further source of uncertainty may be the nominal loadΔσ , even if, when considering
a component, whose cyclic load is strictly controlled, it is reasonably a constant.
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11.4.4 Case Study: Fracture Mechanics and Reliability
Assessment

A numerical example of the application of an MPP method for the probabilistic
analysis of the residual life in fracture mechanics is provided here.

A press column is a typical component that withstands a particularly severe pulsat-
ing tensile load, with one cycle being completed at every pushing-in and pushing-out.
We suppose that a crack has initiated on the column and is experiencing growth under
the periodic load. Determining the residual life of the press is really a crucial prob-
lem. However, uncertainties may arise from the material fracture behaviour and from
the crack actual extension, often difficult to accurately estimate. The distributions of
C , r , KIc and a0 are reported in Table11.16. According to [36], normal distributions
have been chosen for C , r and KIc and a log-normal for a0. The standard deviations
account for the typical uncertainty in the determination of these parameters, also on
the basis of [55, 56]. The term MΔσ is regarded here as a deterministic constant,
due to the strict control on the load cycle followed by the machine (see also the
remarks at the end of Sect. 11.4.3). Its value, assumed as MΔσ = 100MPa, can be
experimentally determined, for instance by strain gage testing.

The procedure described in Sect. 11.4 can be applied for the reliability assessment.
In this case, like for low cycle fatigue (see Sects. 11.4.1 and 11.4.2), the relationship
between life and the inputs is again non-linear. However, what can be remarked is
that an explicit formula does exist in the present case for the direct computation of
life (Eq.11.35, with the adjustments in Eq.11.37). The use of a polynomial approxi-
mation by Taylor expansionmakes it possible to obtain a function that can be handled
for the computation of the design point in an easier way. In order to test the accuracy
of the applied MPP model, a Monte Carlo simulation with 5 × 105 samplings was
also performed. The best matching between results was found here, when consid-
ering a second-order model, presumably due to the high non-linearity of Eqs. 11.35
and 11.37. The second-order model also proved to be more efficient, as two or three
iterations were generally sufficient to achieve result convergence. The Taylor poly-
nomial expansion was determined, running 9 function evaluations, according to the
plan of Table11.14 at p. 478.

The results of the probabilistic study are shown in Fig. 11.29: it can be observed
that the probability of failure p f increases up to about 0.1% after 30,000 cycles, and
then to 1% after 40,000 and even to 10% after 60,000 cycles. These are quite high

Table 11.16 Input random
variables and related
distributions

Variable Parameter Mean value Standard
deviation

U1 C 6.9 × 10−12 6.9 × 10−13

U2 r 3 5 × 10−2

U3 KIc 60MPa
√

m 5MPa
√

m

U4 log (a0) −1.347 5 × 10−2
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Fig. 11.29 Failure probability p f prediction, if the press is kept in service

values of the probability of failure, considering that a standing press, involved in
industrial production (for instance in the ceramic industry field), may even perform
10,000 cycles or more in just one day.

Therefore, these results indicate that it is highly unsafe to keep the machine work-
ing, as the probability of a serious failure is beyond the usually accepted thresholds.
This is also confirmed by the trend of the safety index β, shown in Fig. 11.30, which
drops below the threshold of 3 (see Sect. 11.4.2 and Ref. [52]), after just 40,000
cycles, corresponding to approximately 3 working days.

Fig. 11.30 Safety index β prediction, if the press is kept in service



492 11 Reliability Models Based on Experiments

References

1. Helton JC (1997) Uncertainty and sensitivity analysis in the presence of stochastic and subjec-
tive uncertainty. J Stat Comput Simul 57(1–4):3–76

2. Huang B, Du X (2008) Probabilistic uncertainty analysis by mean-value first order saddlepoint
approximation. Reliab Eng Syst Saf 93(2):325–336

3. Birolini A (2014) Reliability engineering: theory and practice, 7th edn. Springer, Berlin
4. Creveling CM, Slutsky JL, Antis D (2003) Design for six sigma: in technology and product

development. Prentice Hall, New Jersey
5. Du X, Chen W (2000) Towards a better understanding of modeling feasibility robustness in

engineering design. ASME J Mech Des 122(4):385–394
6. Du X, Chen W (2004) Sequential optimization and reliability assessment for probabilistic

design. ASME J Mech Des 126(2):225–233
7. DuX, SudjiantoA,ChenW(2004)An integrated framework for optimization under uncertainty

using inverse reliability strategy. ASME J Mech Des 124(4):562–570
8. Haldar A, Mahadevan S (2001) Probability, reliability, and statistical methods in engineering

design. Wiley, New York
9. Mailhot A, Villeneuve JP (2003) Mean-value second-order uncertainty analysis method: appli-

cation to water quality modeling. Adv Water Resour 26(5):491–499
10. Nikolaidis E, Chen S, Cudney H, Hatftka RT, Rosca R (2004) Comparison of probability

and possibility for design against catastrophic failure under uncertainty. ASME J Mech Des
126(3):386–394

11. Olmi G (2012) An efficient method for the determination of the probability of failure on the
basis of LCF data: application to turbogenerator design. SDHM Struct Durab Health Monit
8(1):61–89

12. Olmi G, Freddi A (2014) Reliability assessment of a turbogenerator coil retaining ring based
on low cycle fatigue data. Arch Mech Eng 61(1):5–34

13. Putko MM, Newman PA, Taylor A, Green LL (2002) Approach for uncertainty propagation
and robust design in cfd using sensitivity derivatives. ASME J Fluids Eng 124(1):60–69

14. Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using
three-point information. Int J Prod Res 40(4):931–944

15. Taguchi G (1993) Taguchi on robust technology development: bringing quality engineering
upstream. ASME, New York

16. Wu YT, Shin Y, Sues R, Cesare M (2001) Safety-factor based approach for probabilistic-
based design optimization. In: Proceedings of 42ndAIAA/ASME/ASCE/AHS/ASC structures,
structural dynamics and material conference and exhibition, Seattle, Washington

17. Youn BD, Choi KK (2004) An investigation of nonlinearity of reliability-based design opti-
mization approaches. ASME J Mech Des 126(3):403–411

18. Olmi G (2015) Statistical tools applied for the reduction of the defect rate of coffee degassing
valves. Case Stud Eng Fail Anal 3:17–24. doi:10.1016/j.csefa.2014.10.002

19. Belingardi G (2014) Strumenti statistici per la meccanica sperimentale e laffidabilità. Levrotto
& Bella, Turin

20. KellerG (2014) Statistics formanagement and economics, 10th edn. Cengage Learning, Boston
21. Chambers JM,ClevelandWS, Tukey PA,Kleiner B (1983)Graphicalmethods for data analysis.

Duxbury Press, Pacific Grove
22. Levine DM, Krehbiel TC, BerensonML (2010) Business statistics: a first course. Prentice Hall,

Upper Saddle River
23. EN ISO 6892-1:2009 (2009) Metallic materials—tensile testing. Part 1: method of test at room

temperature
24. ASTM E739-10 (2010) Standards practice for statistical analysis of linear or linearized stress-

life (S-N) and strain-life (ε-N) fatigue data. ASTM International, West Conshohocken, PA,
USA

25. ISO 12107:2012 (2012) Metallic materials—fatigue testing—statistical planning and analysis
of data. International Organization for Standardization (ISO), Geneva, Switzerland

http://dx.doi.org/10.1016/j.csefa.2014.10.002


References 493

26. Olmi G (2012b) Low cycle fatigue experiments on turbogenerator steels and a new method for
defining confidence bands. J Test Eval (JTE) 40(4):539–552

27. Doyle JF (2004) Modern experimental stress analysis. Completing the solution of partially
specified problems, vol 1. Wiley, New York (ISBN 0-470-86156-8)

28. Gardner L, Nethercot DA (2004) Experiments on stainless steel hollow part 1: material and
cross-sectional behaviour. J Constr Steel Res 60:1291–1318

29. Hertelé S, De Waele W, Denys R (2011) A generic stress-strain model for metallic materials
with two-stage strain hardening behaviour. Int J Non-Linear Mech 46:519–531

30. RambergW, OsgoodWR (1943) Description of stress-strain curves by three parameters. Tech-
nical report 902, NACA

31. Rasmussen KJR (2003) Full-range stress-strain curves for stainless steel alloys. J Constr Steel
Res 59:47–61

32. Choi KK, Youn BD (2002) On probabilistic approaches for reliability-based design optimiza-
tion. In: Proceedings of 9thAIAA/NASA/USA/ISSMOsymposiumonmultidisciplinary analy-
sis and optimization, Atlanta, Georgia

33. Grujicic M, Arakere G, Bell WC, Marvi H, Yalavarthy HV, Pandurangan B, Haque I, Fadel
GM (2010) Reliability-based design optimization for durability of ground vehicle suspension
system components. J Mater Eng Perform 19(3):301–313

34. Zhang ZP, Qiao YJ, Sun Q, Li CW, Li J (2009) Theoretical estimation to the cyclic strength
coefficient and the cyclic strain-hardening exponent for metallic materials: preliminary study.
J Mater Eng Perform 18(3):245–254

35. Zhu SP, Huang HZ, Ontiveros V, He LP, Modarres M (2012) Probabilistic low cycle fatigue
life prediction using an energy-based damage parameter and accounting for model uncertainty.
Int J Damage Mech 21(8):1128–1153

36. Wirsching PH, Torng TY,MartinWS (1991) Advanced fatigue reliability analysis. Int J Fatigue
13(5):389–394

37. Wu YT, Wirsching PH (1984) Advanced reliability method for fatigue analysis. J Eng Mech
110(4):536–553

38. Liu CL, Lu ZZ, Xu YL, Yue ZF (2005) Reliability analysis for low cycle fatigue life of the
aeronautical engine turbine disc structure under random environment. Mater Sci Eng A 395(1–
2):218–225

39. Olmi G (2011) A new loading-constraining device for mechanical testing with misalignment
auto-compensation. Exp Tech 35(6):61–70

40. Olmi G (2012) A novel method for strain controlled tests. Exp Mech 52(4):379–393
41. ASTM/E606M-12 (2012) Standard practice for strain-controlled fatigue testing. ASTM Inter-

national, West Conshohocken
42. ISO 12106:2003 (2003) Metallic materials—fatigue testing—axial-strain-controlled method.

International Organization for Standardization (ISO), Geneva, Switzerland
43. Dixon WJ, Massey FJ Jr (1983) Introduction to statistical analysis, vol 1. McGraw-Hill, New

York
44. Olmi G, Freddi A (2013) A newmethod for modelling the support effect under rotating bending

fatigue: application to Ti-6Al-4V alloy, with andwithout shot peening. Fatigue Fract EngMater
Struct 36(10):981–993

45. Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472
46. Wu YT, Millwater HR, Cruse TA (1990) Advanced probabilistic structural analysis method for

implicit performance functions. AIAA J 28(9):1663–1669
47. Kilpatrick NL, Schneider MI (1987) Update on experience with in-service examination of

non-magnetic rings on generator rotors. In: Proceedings of generator retaining-ring workshop
(EPRI-EL-5825). Charlotte, North Carolina, pp 103–109

48. Skorchelletty VV, Silina EP, Zaytsev VA, Maslov VV, Lubeznova TD (1981) Stress corrosion
cracking of turbogenerators rotors retaining rings. Elektrychiskie stantsii 12:40–42

49. Speidel MO (1981) Nichtmagnetisierbare stahle fur generator-kappenringe, ihr widerstand
gegen korrosionermundung. VGB Kraftwerkstechnik 61(5):1048–1053



494 11 Reliability Models Based on Experiments

50. Zhao YX (2000) A methodology for strain-based fatigue reliability analysis. Reliab Eng Syst
Saf 70(2):205–213

51. Bandini L (2012) Valutazione della probabilità di guasto di rotori per turboalternatori, con-
siderando l’aleatorietà del materiale e della sollecitazione. Bachelor degree thesis, University
of Bologna

52. Avrithi K, Ayyub BM (2010) A reliability-based approach for low-cycle fatigue design of class
2 and 3 nuclear piping. J Press Vessel Technol 132(51):202-1-6

53. ENV 1991-1 (Eurocode 1) (1994) Basis of design and actions on structures—part I: basis of
design. CEN (Comite Europien de la Normalisation), Brussels, Belgium

54. Mansour AE, Wirsching PH, White GJ, Ayyub BM (1992) Probability-based ship design:
implementation of design guidelines. Technical report SSC 392, NTIS, Washington

55. Several Authors (1976) Rapid inexpensive tests for determining fracture toughness report of
the committee on rapid inexpensive tests for determining fracture toughness. Technical report,
National Academy of Sciences, Washington

56. Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2000) Metal fatigue in engineering, 2nd edn.
Wiley, Hoboken (ISBN 978-0-471-51059-8)



Index

A
Advanced Mean Value, 475
Airy, 229, 232, 370
Ajovalasit, 23, 101
Albert, 265
Aleatory, 450
Alfirevic, 230
Ambramson, 178
Apparent strain, 35
Araldite, 147–149, 218, 223, 237, 238
Atzori, 360

B
Band

Maximum likelihood band, 466
Basquin, 272
Bedzinski, 436
Biharmonic function, 230
Birefringent, 111, 112, 114, 159
Birolini, 479
Borbas, 158
Bounds

Cyclic curve bounds, 469
Fatigue curve bounds, 466, 475
Hyperbolic bounds, 475

Boussinesq, 217
Brewster, 116

C
Calibration

Calibration matrix, 72, 79, 86
Compliance matrix, 71, 79, 86
Coupling coefficients, 80, 87

Cauchy-Riemann, 370
Charpy, 414
Chrome-Nickel, 27
Circular polariscope, 120, 132
Coherence, 167, 170

length, 168, 178
Colors, 103, 124, 125, 129, 162

Absorbed, 124
Transmitted, 124

Compensator, 128, 131
Babinet, 131
Wedge, 128

Conjugate, 114
Constantan, 26
Crack, 488
Critical temperature, 146, 148, 150
Cumulative distribution function, 456, 460,

464
Curioni, 415
Cyclic curve, 332
Cyclic stress/strain curve, 330

D
Damage tolerant strategy, 488
Damped Least Squares Solution, 18
Damping factor, 94
Deformed, 167
Design point, 476
Determined

Even, 263
Deterministic, 450
Digital photoelasticity, 101
Dislocations, 253

© Springer International Publishing Switzerland 2015
A. Freddi et al., Experimental Stress Analysis for Materials and Structures,
Springer Series in Solid and Structural Mechanics 4,
DOI 10.1007/978-3-319-06086-6

495



496 Index

Double refraction or birefringence, 109
Doyle, 45, 389, 396

E
Eichlseder, 287
Electric field, 102
Ellipse, 176–178, 181
Epistemic, 450
Error

Systematic error, 33
Euler, 133
Excursion, 452
Expanding point, 476
Extensometer

Axial extensometer, 330
Optical extensometer, 331
Transversal extensometer, 330

F
Failure

Failure function, 479
Probability of failure, 451, 460, 479, 484,
486

Fast and slow axes, 115, 120
Fatigue

Fatigue ductility coefficient, 471
Fatigue ductility exponent, 471
Fatigue strength coefficient, 471
Fatigue strength exponent, 471

Figure of merit, 148, 149
Finite difference approach, 476
FKM, 285, 287
Forces identification, 9
Frozen stress, 146

Procedure, 150
Limitation, 151

G
Gage factor, 33
Generalized Cross Validation, 95
Griffith, 369
Guagliano, 311

H
Haigh, 297
Hamilton, 229
Hardener, 152
Harmonic vibration, 103
Hertz, 220, 222
Histeresis

Stress-strain hysteresis loops, 469
Histogram

Category density, 453, 458, 462
Category frequency, 453, 457, 462
Category occurrence, 453, 457, 462
Category, 452, 457, 461

Hologram, 168–171, 173, 176, 177
Hooke, 5, 40, 116, 146

I
Identification, 263
Ill-conditioning, 71, 94
Implicit relationship, 451, 475
Indigo-violet, 103, 162
Inglis, 369
Input reproducibility matrix, 13
Integration of equilibrium equations, 141
Interference

Black fringes, 123, 125, 129, 174, 175
Irwin, 367
Isochromatic order, 124, 126, 129, 130, 132,

158
Isocline, 126, 134, 136, 139, 141, 150, 154,

156, 158, 160
Isostatic, 27, 136
Isotropic, 127, 137

J
Joule effect, 29

K
Kirsch, 229

L
L-Curve, 95
Laermann, 6
Lagrange multipliers method, 480
Lagrangian multipliers, 16
Lamé-Maxwell, 138
Laser, 168, 172, 178, 184
Lazzarin, 275
Life

Life extension, 451, 487
Residual life, 484, 489

Light
Circular Polarized, 112
Circularly polarized, 106
Complex amplitude, 103, 108, 170, 175
Elliptic polarized, 112
Elliptical polarized, 107



Index 497

Extinction, 119, 121, 123, 125, 126, 129,
133–135, 174, 175

Full-wave, 111
Half-wave, 111
Intensity, 114, 170, 174
Modulus, 171, 177
Phase, 170, 171, 175
Plane polarized, 104
Polarized, 104
Quarter-wave, 111, 112, 115–117, 120,
132, 134, 135, 159

Vector, 104
Wavefront, 102
Wavelength, 102, 103, 108, 115, 116,
123–125, 134, 162

Linear matrix algebra, 111
Lippman, 178
Liu, 9
Load cell, 64, 71, 94

M
Maggiore, 350
Manson-Coffin model, 471, 482
Manson-Coffin, 348, 349, 354
Maxwell, 101, 280
Michelson, 178
Minimum Length Solution, 16
Model, 269, 271, 274, 278, 284, 285

FKM, 287
Mean stress, 336
Neuber, 333
Ramberg-Osgood, 331
Reggiani, 288
Three tests, 289

Mohr, 123, 139, 251
Mohr’s circles, 383
Mold, 152, 153
Mold design, 152
Monochromatic light, 102, 111
Monomer, 152
Most Probable Point, 475
Musculoskeletal, 425

N
Neuber, 246, 247, 346, 354
Newton, 248
Normal probability plot, 454, 459, 463

O
Output reproducibility matrix, 13

P
Paris, 416
Paris law, 488
Phase, 168
Phase angle, 102
Phase difference, 104, 111, 115, 116
Photoelastic coatings, 159
Photoelastic constant, 116, 122, 139, 148,

223
Photoelastic material, 114
Photoelasticity-Holography analogy, 176
Photoengraving, 29
Piezo-resistive effect, 58
Plane polariscope, 118, 121, 134
Plane Polarizer, 108
Plasticity

Coefficient of plasticity, 468
Hardening exponent, 468

Platinum-Tungsten, 27
Poisson, 223, 230
Polarizer axis, 108
Posed

Ill-posed, 4, 8
Well-posed, 4

Press column, 490
Pressure vessels, 224
Principal strain, 116
Principal stress, 115, 116, 119, 121, 122,

126, 127, 130, 134, 154, 155, 160,
161

Separation, 139, 142
Probabilistic, 451
Probability density function, 456, 460, 464
Propagation front, 102
Pseudo-inverse matrix, 19

Q
Quantile

Quantile-quantile plot, 454, 458, 463
Standardized normal quantile, 454, 459,
463

R
Rainflow, 338, 354
Rainflow counting method, 265
Ramberg-Osgood model, 468
Ramberg-Osgood, 244, 246
Rankine, 303
Reference point, 275, 278, 282, 286, 287,

291, 300, 302, 303, 315, 331, 333
Refractive index, 114
Regression line, 465



498 Index

Regularization, 5
Regularized Least Squares, 91
Reliability, 319, 321
Reversal, 334
Reversibility, 6
Rice, 366
Rosenball transformation, 476
Rosette

Strain gage rosette, 38

S
Safety index, 480, 486, 491
Saint Venant, 217, 224, 227, 234, 241, 269,

275
Secondary effect, 77
Secondary principal stress, 143, 150
Senarmont, 128
Sensitive

Square sensitive area, 60
octagonal sensitive area, 60

Shear stresses, 139
Shih, 366
Siebel and Stieler, 284
Silicon layer, 58
Simulation model, 265, 349
Singular, 127
Singular Value Decomposition, 91
Ski, 87
Slender bodies, 217
Slice, 150, 154–156, 158
Smith, 259
Stiffness identification, 10
Strain sensitivity, 116, 144, 148, 149
Stress

Multi-axial, 331
Stress sensitivity, 116, 144, 148
Stress sign, 139
Sub-slice, 154, 155

T
Tardy, 128
Taylor, 377, 394
Taylor expansion, 475
Temporary birefringence, 114
Three-dimensional photoelasticity, 150
Threshold

Acceptability threshold, 451, 484, 486,
491

Tikhonov-Miller, 91
Tikhonov-Phillips regularization method, 94
Tikhonov-Phillips, 91
Timoshenko, 217
Tovo, 275
Transition Temperature, 414
Transmission function, 170, 171
Transpose vector, 114
Tresca, 365, 382
Turbogenerator, 469, 482
Two phases theory, 146

U
Uncertainties, 450
Undeformed, 167

V
Vergani, 311
Von Mises, 279, 300, 365, 381

W
Wöhler, 266
Wells, 366
Westergaard, 369
Wheatstone bridge, 48, 59, 68, 70

Z
Zero-order fringe, 177


	Foreword
	Preface
	Contents
	Introduction
	Part I A Brief Review of the Experimental Methods Utilized in the Book
	1 Introduction to Inverse Problems
	1.1 Premise
	1.1.1 General Rules
	1.1.2 Rules for Inverse Problems

	1.2 Forward and Inverse Problems for Elastic Discretized Structures
	1.2.1 Quality Indicators of Inverse Solutions
	1.2.2 Inverse Solution for Systems in Matrix Form

	1.3 Systems in Functional Form
	1.3.1 Regularization Method of Tikhonov-Phillips
	1.3.2 Regularization Using Regularization Matrix
	1.3.3 Further Reading

	References

	2 Introduction to the Application  of Strain Gages
	2.1 Properties of Strain Gages
	2.1.1 Relationship Between Strain and Resistance Change
	2.1.2 Materials for Metal Strain Gages
	2.1.3 Resistance Values
	2.1.4 Transverse Sensitivity and Strain Gage Factor
	2.1.5 Influence of a Temperature Variation
	2.1.6 Compensation for Thermal Output

	2.2 Strain Gage Rosettes
	2.2.1 Three-Gage Rectangular (0°45° 90°) Rosettes
	2.2.2 Three-Gage (0°120°240°) or (0°60°120°) Rosettes

	2.3 Potentiometric Circuit
	2.3.1 Measurement of Dynamic Strains

	2.4 Wheatstone Bridge
	2.4.1 Shunt Calibration
	2.4.2 Bridge Excitation

	2.5 Bridge Configurations
	2.5.1 Quarter Bridge
	2.5.2 Half Bridge
	2.5.3 Full Bridge
	2.5.4 Eliminating Cable Effects with Three-Wire Circuit

	2.6 Semiconductor Strain Gage
	2.7 Tests on Piezo-Resistive Hydrogenated Amorphous Silicon Strain Gages
	2.7.1 Gage Preparation and Testing
	2.7.2 Calibration and Test Results
	2.7.3 Temperature Response

	2.8 Load Cells with Strain Gages Sensors
	2.8.1 Bending Load Cells
	2.8.2 Ring Load Cells
	2.8.3 Shear Load Cells

	2.9 Load Cell Calibration
	2.10 Load Cells with More Degrees of Freedom
	2.10.1 Load Cell for Three Forces
	2.10.2 Load Cell for Two Forces and One Torsional Moment
	2.10.3 Load Cells at Six Degrees of Freedom
	2.10.4 Regularization of the Six-Degrees Load Cell
	2.10.5 Determination of the Damping Factor

	References

	3 Introduction to Photoelasticity
	3.1 Premise
	3.2 Nature of Light
	3.2.1 Polarized Light
	3.2.2 Plane Polarized Light
	3.2.3 Circularly Polarized Light
	3.2.4 Elliptically Polarized Light
	3.2.5 Plane Polarizer
	3.2.6 Double Refraction or Birefringence

	3.3 Light Treatment in an Optical System
	3.3.1 Optical System with a Polarizer and a Birefringent Filter

	3.4 Light Intensity
	3.5 Optics of Photoelasticity
	3.6 Polariscopes
	3.7 Plane Polariscope
	3.7.1 Polarizer and Analyzer with Crossed Axes

	3.8 Circular Polariscope
	3.8.1 Polarizer Along y Axis and Analyzer Along x Axis
	3.8.2 Both Polarizer and Analyzer Along the y Axis

	3.9 Isochromatics
	3.10 Isoclines
	3.10.1 Isotropic and Singular Points
	3.10.2 Determination of Fractional Fringe Orders
	3.10.3 Measurement of Fractional Orders by Means  of Quarter-Wave Plates
	3.10.4 Drawing Stress Trajectories from Isoclines

	3.11 Principal Stresses Separation
	3.11.1 Shear Stresses and Normal Stresses Difference Determination
	3.11.2 Determination of Stress sign
	3.11.3 Integration of Equilibrium Equations
	3.11.4 Overview of Experimental Methods for Principal Stresses Separation

	3.12 Materials for Photoelastic Models
	3.12.1 Boundary Effects
	3.12.2 Stress Freezing
	3.12.3 Calibration of Photoelastic Material
	3.12.4 Material Sensitivity

	3.13 Three-Dimensional Photoelasticity: The Frozen  Stress Method
	3.13.1 Limit of Three-Dimensional Photoelasticity
	3.13.2 Overview of the Mold-Making and Casting Technique
	3.13.3 Stress State in Plane External Surfaces and in Planes Perpendicular to the External Surface
	3.13.4 Determination of Stress State at Points Inside the Model

	3.14 Birefringent Coating Method
	3.14.1 Measurement of Principal Strains Directions
	3.14.2 Strains and Stresses Measurement
	3.14.3 Coating Calibration

	References

	4 Introduction to Holographic Interferometry
	4.1 Holography
	4.1.1 The Laser Light
	4.1.2 Hologram
	4.1.3 Reconstruction

	4.2 Holographic Interferometry
	4.2.1 Interference Fringes in a Double Exposure Hologram
	4.2.2 Interference Fringes in a Real Time Hologram

	4.3 Description by Means of Ellipses
	4.4 Other Arrangements
	4.5 Displacement Vector Lying on Plane ACB
	4.5.1 Case Study of Displacements Determination  in a Transparent Model

	4.6 Displacement Vector Not Lying on Plane ACB
	4.6.1 Order Determination When No Zero Fringe Is Present

	4.7 Strains from Displacements
	References

	5 Overview of Digital Image Correlation
	5.1 Introduction
	5.2 Operating Principle
	5.3 Computation Area (Facet)
	5.4 The Speckle Pattern
	5.4.1 Case Study: Optimization of the Speckle Pattern

	5.5 Operating Principle of 2D Image Correlation
	5.5.1 Displacements and Strains

	5.6 3D Image Correlation
	5.6.1 Stereoscopic Vision
	5.6.2 Rectification
	5.6.3 Stereoscopic Matching
	5.6.4 3D Correlation

	5.7 Typical Arrangement of a DIC System
	5.8 Theoretical and Practical Problems with DIC
	5.8.1 Possible Problems Associated with Stereoscopic Matching
	5.8.2 Observation Angle
	5.8.3 Noise of the Input Digital Images
	5.8.4 To Filter, or Not to Filter?

	5.9 Case Study: Optimization of the Hardware  and Software Parameters
	5.10 Case Study: Strain Distribution in the Human Tibia
	5.11 Digital Volume Correlation
	References

	Part II Developing Phenomenological Theories and Problem Solving
	6 Static Stress Models
	6.1 The Illustrative Advantage of a Full Field Analysis
	6.1.1 Force at a Point of a Straight Boundary
	6.1.2 Hertzian Contact

	6.2 Design by Experiments of Pressure Vessels
	6.2.1 Case Study of Steam Generator Reactor Head with Four Openings on the Spherical Dome
	6.2.2 Case Study of a Reactor Pressure Vessel with Four Nozzles in the Cylindrical Part

	6.3 Stress Concentration Factors
	6.3.1 Basic Theoretical Cases: Stress Concentration  for Circular Holes in Thin Plates
	6.3.2 Elliptic Hole
	6.3.3 Concentration Factors for Slender Beams

	6.4 Stress Beyond the Elastic Limit
	6.4.1 Imposed Displacements and Imposed Forces
	6.4.2 Models for the Simulation of Constitutive Materials Laws
	6.4.3 Experimental Verification of the Neuber Model
	6.4.4 How Stress Modifies Material Behavior
	6.4.5 How Material Behavior Modifies Stress State
	6.4.6 Elementary Models of Physical Theory of Fracture

	6.5 Special Equipment for Static Tests
	References

	7 Local Stress Models for Variable Loads
	7.1 Stress Analysis for Developing a Theory  on High Cycles Fatigue
	7.2 Identification of Variable Loads
	7.2.1 Case Study of Fatigue Loads on a Sport Equipment
	7.2.2 Types of Loads

	7.3 Laboratory Testing
	7.3.1 Rotating Bending Test
	7.3.2 Tension/Compression Test and Bending Test  in One Plane
	7.3.3 Torsion Test

	7.4 Fatigue Data Processing
	7.4.1 Fatigue Data Collection
	7.4.2 Model for Fatigue Behavior

	7.5 Models for Notch Effect
	7.5.1 Models for the Micro-plasticity Zone

	7.6 Support Factor
	7.6.1 Support Factor in Slender Bodies

	7.7 From Slender to 3D-Bodies
	7.7.1 Modeling Non-uniform Stress States by Means  of the Relative Stress Gradient
	7.7.2 Relative Stress Gradient for Three Dimensional Bodies

	7.8 Dependence of Fatigue Strength on the Support Factor
	7.8.1 Size Effect
	7.8.2 Model of the Support Factor as a Function  of the Relative Stress Gradient
	7.8.3 Modeling Support Effect Through Rotating Bending Fatigue Tests: Case Study on Characterization  of a Titanium Alloy

	7.9 Models for the Evaluation of Mean Stress Effect
	7.10 Fatigue Assessment of Mechanical Components Through Relative Stress Gradient Theory
	7.10.1 Case Study for the Fatigue Assessment  at a Three-Dimensional Protrusion  in an Excavator Arm

	7.11 Macroscopic Fractography as Stress Analysis Tool
	7.11.1 Rotating Bending of a Shaft with Two Diameters
	7.11.2 Shafts in Bending at a Stress Rate R=0
	7.11.3 Shafts in Bending at a Stress Rate R=-1
	7.11.4 Shafts in Torsion at Shear Stress Rate R=-1

	7.12 Influence of the Surface Finishing
	7.13 Dixon Method
	7.13.1 Case Study on the Determination of the Local Fatigue Limit of a Mechanical Component
	7.13.2 Statistical Analysis of the Results

	References

	8 Local Strain Models for Variable Loads
	8.1 Experimental Analysis of Local Deformation
	8.2 Laboratory Testing
	8.3 Strain-Controlled Versus Stress-Controlled Tests
	8.3.1 Repeated Loading in Stress-Controlled Tests
	8.3.2 Repeated Loading in Strain-Controlled Tests

	8.4 Model for Material Behavior
	8.4.1 Concentration Factors for Variable Loads

	8.5 Fatigue Life Model in Strain Controlled Problems
	8.5.1 Influence of the Mean Stress

	8.6 Model for Variable Amplitudes
	8.6.1 Cycle Counting Method
	8.6.2 Damage Per Cycle and Accumulated Damage
	8.6.3 Application of Neuber Hypothesis Without Concentration Factors

	8.7 Case Study of a Damage Evaluation
	8.8 Torsional Low Cycle Fatigue
	8.8.1 Ramberg-Osgood Model for Torsional Loads
	8.8.2 Neuber Model for Torsional Loads
	8.8.3 Fatigue Curve for Torsional Loads
	8.8.4 Effect of Mean Shear Stress

	8.9 Case Study of Notched Shafts in Torsion
	8.9.1 Special Equipment for Material Characterization  in Shear Strain-Controlled Mode
	8.9.2 Determination of Cyclic Curve and Fatigue Curve Parameters
	8.9.3 Special Equipments for Torsional Tests on Shafts
	8.9.4 Torsional Tests with Assigned Loads Sequence
	8.9.5 Appearance of the Cracks Directions in Torsional Low Cycle Fatigue

	8.10 Preventing Loads Misalignments
	8.10.1 Functional Analysis of the Fixtures
	8.10.2 Adopted Solution

	References

	9 Elementary Models for Stress Singularities
	9.1 Behavior Classification
	9.1.1 Elastic Behavior
	9.1.2 Crack Loading Modes
	9.1.3 Plane Stress and Plane Strain

	9.2 The Field Equations for the Region Close  to the Crack Tip
	9.2.1 The Westergaard Stress Function
	9.2.2 Displacements Close to the Crack Tip
	9.2.3 Stress Field for Modes II and III
	9.2.4 Magnification Factor
	9.2.5 More Terms of Series Expansion

	9.3 Identification of the Stress Intensity Factor Utilizing More Terms of the Series
	9.4 Crack Tip Plasticity
	9.4.1 Apparent Plastic Zone Size According  to Von Mises Criterion
	9.4.2 Apparent Plastic Zone Size According  to the Tresca Criterion
	9.4.3 Apparent and True Plastic Zone Size

	9.5 Case Studies of the Stress Intensity Factor  Identification for Internal Cracks
	9.5.1 Identification of SIF by Photoelasticity
	9.5.2 Identification of SIF by Holographic Interferometry
	9.5.3 Identification of the Stress Intensity Factor  by Strain Gages

	9.6 Stress Analysis for Brittle Fracture
	9.6.1 Experimental Equipments
	9.6.2 Fracture Mechanics Testing
	9.6.3 A Case Study on the Temperature Influence on SIF

	9.7 Models for Sub-critical Fatigue Crack Growth
	9.7.1 Case Study on Sub-critical Crack Growth for Turbine Steels and Design Criteria

	9.8 Visual Analysis of Crack Propagation
	References

	10 Stress Models in Biomechanics
	10.1 Introduction
	10.1.1 Biomechanics of the Musculoskeletal System
	10.1.2 Methods for Measuring Musculoskeletal Kinematics and Dynamics
	10.1.3 Biomechanical Musculoskeletal Models

	10.2 Biomechanical Investigations in Orthopaedics  at Different Dimensional Scales
	10.3 Case Study: Strain Distribution in the Human  Tibia, a Uniform Stress Structure
	10.4 Case Study: Bone Strains Caused by Press Fitting  of a Hip Stem
	10.5 Case Study: Deformations of an Acetabular Cup  by Means of Holographic Interferometry
	10.6 Biomechanical Risk Assessment: Experimental Stress Analysis and Modelling
	10.6.1 Risk Analysis
	10.6.2 Case Study: The Paradigm for Pre-clinical Validation of New Implantable Devices

	References

	11 Reliability Models Based on Experiments
	11.1 Introduction
	11.2 Determination of the Distributions of Sets of Data
	11.2.1 Case Study: Height Distribution in a Class of Students
	11.2.2 Case Study: Probability of Static Failure  of a Tensioned Rod
	11.2.3 Case Study: Quality Control of Pin Diameters

	11.3 How to Linearly Interpolate a Set of Data and How  to Account for Their Scatter
	11.3.1 How to Determine the Coefficient of Plasticity  and the Hardening Exponent of a Material  and Related Distributions
	11.3.2 How to Determine the Manson-Coffin Curve Parameters and Related Distributions

	11.4 Multi-variable Problems: Application of a Most Probable Point Method
	11.4.1 Low Cycle Fatigue on Turbogenerators  and Probability of Failure
	11.4.2 Case Study: Probability of Failure  of a Turbogenerator Rotor
	11.4.3 Fracture Mechanics and Reliability Assessment
	11.4.4 Case Study: Fracture Mechanics and Reliability Assessment

	References

	Index



