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Preface

The subject of dynamics originated from Sir Isaac Newton’s monograph
Philosophiæ Naturalis Principia Mathematica, and Lord Rayleigh paved the way
for its further development with his Theory of Sound. These provided the basis for
the unique position of the field of dynamics in mechanics. Since then, many
scientists and engineers have applied and furthered this knowledge in various
fields of applied science and technology.

With the enormous investment made in civil, mechanical, and aerospace
engineering during the twentieth century, designs were pushed to the limits of their
performance capacity, with the trend being toward high-speed operations, adverse
environment capability, light weight, etc. With the requirement of functionality in
an unpredictable, highly uncertain environment, practitioner engineers encoun-
tered more and more problems with regard to dynamics. Pure mathematics is
sometimes satisfied with showing that the non-existence of a solution implies a
logical contradiction, while engineers might consider numerical results the
desirable goal. Although dynamics as a scientific topic is by no means fully
understood (and perhaps never will be), the great amount of activity in this field
during the last century has made it possible to form a practical subject in a fairly
systematic, coherent, and quantitative manner. All these factors have pushed
applied dynamics into a greater complexity than it has ever had before, and also
promoted the subject into one of the essential tools in current engineering.

Thanks to the rapid development of computer technology, more portable and
accurate testing equipment and techniques, as well as a few breakthroughs in
computation algorithms, during the last 50 years applied dynamics has found
efficient and unique ways of developing. This raised a vast amount of challenges in
implementing designs in reality, while also putting ever higher demands on
engineers, requiring a thorough understanding of the subject. In spite of increased
engineering knowledge, the practical problems regarding dynamics and vibrations
are in some cases handled without success despite large expenditures of money.
Moreover, even if engineers can perform sophisticated computer-based dynamic
analysis tasks, many of them lack an actual understanding of the essential prin-
ciples of dynamics, and hence of the links between theory and application. This
leads to an insurmountable barrier when they are requested to validate/verify and
provide insightful explanations of analysis results, or to further improve the
engineering designs with regard to vibrations, which poses a significant safety
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hazard and can also result in significant economic loss. These considerations
motivated the author to write this book.

With the objective of providing up-to-date knowledge of dynamic analysis,
which is of great importance from the point of view of engineering, in the prep-
aration of the book, the author tried to link the general principles of dynamics with
their applications from various angles in order to make it possible for readers from
various backgrounds to appreciate their significance. The book aims to be as
elegant as is possible given this wide-ranging treatment of the subject.

The book is intended to serve as an introduction to the subject and also as a
reference book with advanced topics. A balance between the theoretical and
practical aspects is sought. All the chapters are addressed to practitioner engineers
who are looking for answers to their daily engineering problems, and to students
and researchers who are looking for links between theoretical and practical
aspects, and between phenomena and analytical explanations. It should also be of
use to other science and engineering professionals and students with an interest in
general dynamic analysis.

The book is written in such a way that it can be followed by anyone with a basic
knowledge of structural analysis. The mathematical background assumed for
reading this book is a working knowledge of differential equations, matrix
manipulation, and an elementary knowledge of statistics/probability. In addition,
readers are also assumed to have basic knowledge on the strength of materials.

The book covers topics on the concepts, principles, and solutions of dynamics
and vibrations. These are essential for engineers and researchers to further explore
any type of dynamic analysis, such as mechanical vibrations or dynamic structural
responses due to environmental loads such as wave, wind, earthquake, and ice
loading, etc. The core knowledge of linear and nonlinear dynamics, damping
effects, random vibrations, and modal analysis is elaborated. The various solution
schemes and selection criteria for a given problem are discussed. The modeling
and measuring of damping are also elaborated. Special topics on seismic
responses, fatigue assessment, human body vibrations, and vehicle-structure
interactions are discussed. The engineering applications, relevant codes and
practice, and their links with theory are also provided in relevant chapters.

The first three chapters present and discuss the phenomena, concepts, and
principles of dynamic analysis with discussions on their applications.

Chapter 1 gives an introduction to dynamics in the physical world, distinguishes
its essential differences from its static counterpart, and briefly summarizes general
methods for treating a dynamic problem. Chapter 2 elaborates the basic formulation
of governing equations of motions, which include the formulation of and relation-
ships among Newton’s second law of motions, Hamilton’s principle, and Lagrange’s
equation, the three pillars of classical dynamics. This chapter also provides prepa-
ratory work for solving both free (Chap. 3) and forced (Chap. 11) vibration problem.
Between chapters on free and forced vibrations, important topics focusing on ei-
genfrequencies and mode shapes are examined in Chap. 4 (for presenting eigen-
analysis for discrete systems and a brief introduction on vibration-based structural
health monitoring), Chap. 5 (eigenproblem for continuous system), Chap. 6
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(vibration under axial load), and Chap. 7 (eigenproblem for nonuniform beams and
foundations).

Note that explicit and concise equations to describe a dynamic system and its
responses, like a deterministic one such as Newton’s, is seldom able to reflect real-
world phenomena, which are complex, noisy, high-dimensional, etc., and for
which the instantaneous value cannot be explicitly predicted at any time instant or
reproduced. These can be treated by statistical description and characterizing
randomness (probability distribution) of loads and responses, which promoted the
research and application of stochastic dynamics. Therefore, Chaps. 8 and 9
systematically examine the deterministic and stochastic loads and responses from a
statistical point of view. The essential concepts of Fourier and power spectrum as
well as the relationship between a spectrum and its statistical properties are dis-
cussed. These form the pillar for stochastic dynamics, which is in parallel to and
promotes a wider application of Newton’s equations.

In Chap. 10, concepts of short and long-term probability distribution and
number of occurrence are introduced. They pave the way for a reasonable
understanding of load level at a given return period and for a further extension to
reliability and risk assessment. This is also a part of background knowledge for
assessing fatigue damage due to dynamic loading (Chap. 17).

With the understanding of spectrum analysis and power spectrum (Chap. 9), the
power spectrum densities due to specific environment loads with wind, wave, ice,
and earthquake loadings are presented in Chap. 12.

As Chaps. 8, 9 and 10 provide a broad overview of loads and responses, they
enable efficient solutions for forced vibration problems as elaborated in Chap. 11.
When reading Chap. 11, readers need to bear in mind that if the excitations are of a
deterministic nature, a direct solving of equations of motions is preferred. How-
ever, if excitations are of strong stochastic nature, a random vibration approach is
more efficient.

In Chap. 13, the solution to the dynamic responses is extended from a single-
degrees-of-freedom to a multi-degrees-of-freedom system. In addition, the most
popular numerical methods (i.e., the direct/exact method, modal superposition
method, and the direct integration methods) are discussed with an emphasis on
their applicabilities.

As the estimation and modeling of the damping are rather difficult tasks for both
engineering and research purposes, and in the meantime the resulting uncertainties
with damping pose a great challenge to reach a reasonable accuracy for the cal-
culated dynamic responses (a phenomenon more apparent for dynamic sensitive
structures), Chap. 14 is therefore dedicated to an elaboration of the effects,
modeling, and measuring of various types of damping.

As almost all applied processes exhibit nonlinearities in various forms and
extents, it is of particular importance to study nonlinear dynamics and vibrations.
Therefore, Chap. 15 elaborates this topic by distinguishing them from their linear
counterpart, summarizing their causes and sources, and by presenting the relevant
numerical solution strategies used in engineering practice.
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For dynamic analysis with any extent of difficulty for a real system or a
structure, the numerical challenges generally arise from three aspects: space and
time discretization and various types of nonlinearities. In the last 60 years, these
have attracted extensive research efforts and become almost matured for engi-
neering applications by finite element analysis (for space discretization), finite
difference (Newmark’s type) method (for time discretization), and linear iteration
(Newton’s type) method (for solving nonlinearities). These three methods form the
cornerstones of current applied dynamic analysis. The finite element method can
be studied in many available literatures, and the finite difference and linear iter-
ation methods are elaborated in Chaps. 11 and 15, respectively.

After digesting the first 15 chapters, readers should have the capability to find
solutions of dynamic responses in their specific fields of applications. In Chaps. 16
to 19, the essential knowledge presented in the first 15 chapters is extended to a
few of their application areas, with discussions on seismic responses (Chap. 16),
fatigue assessment (Chap. 17), human body vibrations (Chap. 18), and vehicle-
deck dynamic interactions (Chap. 19).

While the book does not seek to promote any specific ‘‘school of thought,’’ it
inevitably reflects this author’s ‘‘best practice’’ and ‘‘working habit.’’ This is
particularly apparent in the topics selected and level of detail devoted to each of
them, their sequences, and the choices of many mathematical treatments and
symbol notations, etc. The author hopes that this does not deter the readers from
seeking to find their own ‘‘best practice’’ and dive into the vast knowledge basin of
modern dynamics, which is extremely enjoyable as readers go deeper and wider.

Most of the chapters in this book can be covered in a two-day industry course in
a brief manner, a one-week intensive course for either industry or university, or a
two-semester course in an elaborated form for graduate students. The first four
chapters together with Chaps. 11, 13, and 14 can also form a one-semester
undergraduate course on structural dynamics or mechanical vibrations.

I am indebted to many individuals and organizations for assistance of various
kinds, such as participation in book reviews, technical discussions, research
co-operation, contributing illustrations, and copyright clearance. These include:
Gunnar Bremer, Håkon Sylta, Tore Holmås, Olav Helset Lien, Zhibin Jia, Rikard
Mikalsen, Peng Zheng, Vicky McNiff (Aker Solutions), Wai-Fah Chen (University
of Hawaii), Andy Ruina (Cornell University), Wengang Mao, Jonas Ringsberg,
and Igor Rychlik (Chalmers University of Technology), Douglas Stock (Digital
Structures, Inc. Berkeley), Stefan Herion (Karlsruhe Institute of Technology),
Anders Ulfvarson (The Royal Swedish Academy of Engineering Sciences), Alaa
Mansour (University of California at Berkeley), Salvador Ivorra Chorro
(University of Alicante), Christopher Stubbs and Philip Wilmott (Colebrand
International Limited), Weicheng Cui (Shanghai Jiaotong University), Tadashi
Shibue (Kinki University), Matthew S. Allen (University of Wisconsin-Madison),
Derek A. Skolnik (Kinemetrics, Inc), Lance Manuel (University of Texas at
Austin), Rune Elleffsen, Terje Nybø, Tor Inge Fossan, and Odd Jan Andersen
(Statoil), Ketil Aas-Jakobsen (Dr. Ing. A. Aas-Jakobsen AS), Preben Terndrup
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Pedersen (Technical University of Denmark), Flemming Jacobsen, Martin J.
Sterndorff and Lyngberg Kim (Dong Energy), Jeffrey Wang (North America Wave
Spectrum Science and Trade Inc), International Organization for Standardization
(ISO), International Society of Offshore and Polar Engineers (ISOPE), Springer,
Cambridge University Press, and Elsevier. Moreover, there are numerous others
not named to whom I extend my sincere thanks.

This book has an extensive list of references reflecting both the historical and
recent developments on the subject. I would like to thank all the authors in the
references for their contribution to the area.

I wish to thank all colleagues at Aker Solutions Bergen, especially to those at
Structural and Marine Department for providing a technically and socially
inspiring working environment.

I would also like to acknowledge the support from Concept and Technology at
Aker Solutions MMO, especially from Daniel Cazòn, Nils-Christian Hellevig, and
Kristian Risdal.

Most importantly, I dedicate this book to those who live with me every day, and
who brought me into existence. I conclude this preface with an expression of deep
gratitude to them.
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Chapter 1
Introduction

1.1 Experiencing Dynamics

Every day, we are surrounded by environments full of dynamics. The ringing of
the alarm clock in the morning, the voice of your beloved, sound from radio and
TV, noise due to traffic, the swaying of masts and trees in the wind, and even the
heart beating.

A fundamental example of dynamics is a playground swing. In order to increase
the amplitude of a swing (as shown in Fig. 1.1), either the rider or the external
excitor must excite the swing in phase with the movement of the swing, i.e., the
period of excitation is close or identical to the natural period of the swing, leading
to a resonance condition. For the swing shown in Fig. 1.1, if its amplitude is small,
the natural period Tn, defined as the time that the swing spends in its arc back and
forth once, is constant:

Tn � 2p

ffiffiffi

L

g

s

ð1:1Þ

where L is the length of a single hanging rope in meter and g is the acceleration of
Earth’s gravity.

It is noted that, in the calculation above, the rope of the swing is assumed to be
weightless and the child on the swing is idealized as a point mass. For a swing with
a rope of 1.5 m in length, its natural period is 2.5 s. This equation is often referred
to as the law of pendulum, which was originally discovered in 1583 by Galileo
Galilei at the age of 19, when he noticed that a lamp was swinging overhead with a
constant period while he was sitting in Pisa Cathedral (Fig. 1.2).

We do not even think about many dynamic phenomena because they are so
common in our daily life, even though we naturally utilize them. However, if we
think them through a little bit more, we may find that our life can be safer, cheaper,
more enjoyable, convenient, and environmentally friendly.

In the engineering world, the design or maintenance of many engineering
structures such as high-rise buildings, bridges, ships, offshore structures, aircrafts,
land-based and space vehicles, mechanical equipment, tiny electronic components
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and even human bodies require dedicated considerations of their dynamic
responses.

A sense of the importance of dynamics can be conveyed through the illustration
of a few representative accidents, all of which were due to improper accounting for
dynamics.

In 1985, an 8.1 magnitude of earthquake occurred in Mexico City. 412 build-
ings collapsed and another 324 were seriously damaged (Fig. 1.3). A large per-
centage of the damaged buildings in the downtown area were between 8 and 18
stories high. Not surprisingly, those buildings had a resonance vibration period of
around 2.0 s, indicating general resonance with the soft soils under the city’s
ground, through which the seismic waves were transmitted to the ground with a
dominant period of around 2.0 s [1]. The 1994 Northridge earthquake also wit-
nessed similar structural damage due to the resonance of the upper structure with
the seismic ground excitations [2]. During seismic ground shaking, through a
process called soil liquefaction the loose sandy soils may behave more like a liquid
than a solid. This resembles the situation in which, if a person stands statically on a
layer of wet sand, the sand will easily support him or her, but if this person starts to
jump or shakes his/her body dynamically, the sand will flow as a result of liq-
uefaction, and finally the person’s feet will sink into the sand. This is exactly what

Fig. 1.1 A child on a playground swing
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happened in many earthquake events such as the one occurred during the Niigata
earthquake of 1964, shown in Fig. 1.4.

Resonance is responsible for many failures of engineering structures. For
example, many leaks in pipes are caused by cracks due to vibrations or acoustical
resonance with excessive excitation forces. Even if the resonance may not cause an
immediate structural failure, it can be responsible for significant deflection or
acceleration on a structure, leading to objects falling, termination or instability of
mechanical and electronic equipment installed on the structure, or human dis-
comfort, injury or casualty. Figure 1.5 shows the chaotic situation on board an
offshore platform that was caused by the excessive movements of the platform due
to the resonance vibrations caused by a large storm. The excess of rolling (rotate
around the longitudinal axis of the ship) can be attributed to the resonance of ship
roll motions with the sea waves. It has been reported that half of all serious
accidents on board ships are caused by vibrations, either directly through structural
failures or indirectly through symptoms of fatigue among the crew [5]. The human
body, especially the abdomen, head and neck, are also sensitive to vibrations.
When subject to vibrations with a frequency range of 1–30 Hz, people experience
difficulty in maintaining correct posture and balance [2]. Even if it may be difficult

Fig. 1.2 The lamp hanging in Pisa Cathedral (the photo was taken in 2013, it may not represent
the exact status of the lamp in 1583)
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to relate some vibration effects on the human body to specific frequencies, the
resonance of human organs is an important contribution to motion sickness.
Motion sickness can also occur in animals due to the resonance of transportation
vehicles with the animals’ organs. It has been observed that, during transportation,
healthy chickens can become ill and are unable to stand [4].

The swill of red wine shown in Fig. 1.6 is known as sloshing, and involves the
dynamic responses of liquids under excitations, which can be amplified if the
motions of a liquid container (glass) has a period close to the period of liquid
(wine) sloshing. Sloshing must be considered for almost any moving vehicle or for

Fig. 1.3 An eight-story building was broken into two during the 8.1 magnitude of earthquake
occurred in Mexico City in 1985

Fig. 1.4 Appearance of soil liquefaction after the 7.4 magnitude Niigata earthquake, Japan June
16, 1964 (courtesy of National Geophysical Data Center)
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structures containing a liquid with a free surface [6]. This means that, for example,
if similar phenomena occur for a chemical tank on a running truck, the liquids’
sloshing motions inside the tank (Fig. 1.7) can exert significant impact on the tank,
making the truck unstable or even causing a rollover. It has been reported that 4 %
of heavy-truck road accidents are directly caused by the sloshing of the liquid
cargo within the tank trucks [7]. For onshore tanks, earthquakes may also induce
tank liquid sloshing, causing structural damage. An accident of this kind was the
damage caused to seven large oil storage that occurred during the Tokachi-oki
earthquake in 2003. Forensic investigations have found that, at the tanks’ sites, the
earthquake generated ground motions with long peak period of 4–8 s, which is in
the range of the tanks’ sloshing period of 5–12 s [8]. For LNG (Liquefied Natural
Gas) ships, the coupling between liquid cargo sloshing and LNG ship motions can
be significant at certain partial filling levels of the liquid cargo, as the large liquid
movement creates highly localized impact pressure on tank walls, causing prob-
lems with regard to structural integrity and stability of the LNG ships. On various
cruise ships, sloshing of the water in the swimming pool on the sun deck occurs
frequently, often on even a monthly basis. The reader may refer to the movie
online [9] for an illustration. This is mainly caused by the surge (heading) and
pitch (rotate around the transverse axis of the ship) motions of the ship that

Fig. 1.5 The chaotic situation in the office (top) and archive room (bottom) of an offshore
platform after a significant storm (courtesy of Aker Solutions)
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coincide with the natural sloshing frequency of the pool. In addition, during a
strong earthquake or storm event, the seismic wave and wind blowing can also
excite waters in a lake or semi-enclosed sea, causing sloshing with high water
surges, known as seiches. Harbors, bays, and estuaries are often prone to small
seiches with amplitudes of a few centimeters and periods of a few minutes. The
North Sea often experiences a lengthwise seiche with a period of about 36 h.
Geological evidence indicates that the shores of Lake Tahoe may have been hit by
seiches and tsunamis as large as 10 m (33 feet) high in prehistoric times, and local
researchers have called for the risk to be factored into emergency plans for the
region [11]. On the 26th of June, 1954, eight fishermen at Lake Michigan were

Fig. 1.6 The sloshing of wine in a glass (photo by Stefan Krause)

Fig. 1.7 Sloshing of the liquid inside a tank
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swept away and drowned by a seiche more than 3 m high. Figure 1.8 shows two
photos of storm-induced seiche at Canal Park in Duluth, Lake Superior, Minne-
sota. The two photos were taken just minutes apart.

It is well known that structures loaded repeatedly tend to fail at a lower load level
than expected, a phenomenon known as fatigue failure. This type of failure is
responsible for most of the material failures in engineering structures. Furthermore,
the fatigue damages are often accompanied by unfavorable dynamic excitations
relevant to resonance, high frequency loading or repeated significant loadings.
There have been a number of accidents due to fatigue failure that have become well
known. On the 3rd of June, 1998, a high-speed intercity train traveling from
Hannover to Hamburg derailed in the village Eschede at a speed of 200 km/h, and
the train crashed into a road bridge after derailment (Fig. 1.9), leading to a loss of
102 lives and 88 injuries. The forensic study followed showed that the accident was

Fig. 1.8 a Mild seiche at Canal Park in Duluth, MN, and b the situation just minutes before the
seiche took place (courtesy of Minnesota Sea Grant)
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caused by a broken wheel tire on the first middle car, in which an undiscovered
crack grew to an unacceptable size under repeated fatigue loading.

Environmental loading such as wind or sea waves hit structures repeatedly, and
the fatigue is a typical problem posing risks for structural safety. For example, the
sinking of the MS Estonia on the 28th of September, 1994, was simply caused by the
repeated wave impact on her bow door, leading to fatigue failure of the bow visor
locking devices and the formation of opening moments about the deck hinges. This
simple failure led to 852 casualties [12]. Other well known accidents leading to
structural failure are the Ranger I jackup (Gulf of Mexico, 84 fatalities) and the
collapse of the Alexander Kielland semi-submersible (North Sea, 123 fatalities), in
1979 and 1980 respectively. The sequence of failure in the Alexander Kielland
platform accident (lower figure in Fig. 1.10) was [13]: fatigue failure of one brace
(shown in Fig. 1.10); overload failure of five other braces; loss of column; flooding
into deck; and capsizing. For Ocean Ranger the accident sequence was [13]:
flooding through a broken window into the ballast control room; closed electrical
circuit; disabled ballast pumps; erroneous ballast operation; flooding through chain
lockers; and capsizing. Except for the fatigue cracks that caused the failure, it is
noticed that both of these structures are statically determinate platforms with a lack
of redundancy. Figure 1.11 shows a member in an offshore jacket structure breaking
due to repeated wave loading. The wave induced ship vibrations are nowadays
regarded as an important source contributing to fatigue damage. The vibrations are
normally referred to as hull girder vibrations including whipping and springing, in
which the vibrations at resonance period, the so called 2-node mode vibrations, are
typically dominant. The hull girder vibrations often occur on ships. In many cases,
people on board a ship can easily feel them when the wave height reaches only a few

Fig. 1.9 The destruction of rear passenger cars that were pushed into each other and crashed into
a road bridge (Eschede accident, 3rd of June, 1998, photo by Nils Fretwurst)
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meters. Moreover, due to the low damping and large size of the blunt ships, they
may experience more vibrations than slender ships.

Tacoma Narrows Bridge, shown in Fig. 1.12, was opened to traffic on the 1st of
July, 1940. It spanned over a mile, the third longest suspension span in the world at

Fig. 1.10 Capsizing of Alexander Kielland semi-submersible (upper, photo courtesy of
Norwegian Petroleum Museum) initiated by a fatigue crack in one brace (lower)
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that time, with a combination of a cable-supported suspension structure and steel
plate girder supporting the deck. The slenderness of the suspended deck repre-
sented a distinct departure from earlier suspension bridge designs, but because of
this the bridge had shown vibratory tendencies even during construction. From the
beginning of its service, it received many complaints from users because even with
a light wind, the bridge behaved like a ship riding the waves with pronounced
vertical oscillations, causing the ‘‘seasickness’’ of many passengers in cars [14],
thus earning it the name ‘‘Galloping Gertie.’’ On 7th of November, 1940, in a wind
of 64 km/h, the bridge twisted so much that the left side of road descended
significantly, with the right side rising, and this motion alternating rapidly. The
twisting vibrations became more and more significant, finally leading to the total
collapse of the bridge, as shown in Fig. 1.12. From an aerodynamic point of view,
such violent vibrations are caused by the aero-elastic fluttering due to the feeding
of energy when the bridge was subjected to alternative unstable oscillations in
strong wind. From a structural engineering point of view, this is a type of self-

Fig. 1.11 A primary structural member of an offshore jacket structure breaks due to the repeated
wave loading. The photo was taken after the jacket structure was decommissioned and
transported onshore

Fig. 1.12 The collapse of Tacoma Narrows Bridge due to wind flutter
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excited vibrations, which are due to the sustained alternating excitations that
induce the instability of a system at its own natural or critical frequency (note that
this is different from a typical resonance phenomenon, as will be explained later on
in Sect. 3.3). The entire bridge-wind system therefore behaved as if it had an
effective negative damping, leading to exponentially growing responses.

Fig. 1.13 A large deflection amplitude of a bridge deck can be clearly observed due to the self-
excited vibrations: the left and right figures show the relative position along vertical direction at
two time instants [16]

Fig. 1.14 Proposals to avoid wind flutter for Tacoma Bridges (courtesy of University of
Washington Library)
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Figure 1.13 shows another example of self-excited vibrations of a bridge. While
they did not cause a collapse, the large deflection amplitude of the bridge deck can
clearly be observed. After the accident on Tacoma Narrows Suspension Bridge,
engineers had proposed various mitigation measures to prevent similar accidents
from occurring again, such as cutting holes in the web of the underdeck girder or
installing curved outriggers to divert the wind (Fig. 1.14), making the wind pass
through the holes and thus avoiding the wind fluttering. The Tacoma disaster

Fig. 1.15 The Golden Gate Bridge (photo by Rich Niewiroski Jr.)

Fig. 1.16 Vortex produced by fluid passing through a cylinder
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Fig. 1.17 Cracks (marked with circle) found on a tubular joint due to the wind-induced VIV on a
high-rise flare boom in the North Sea (Courtesy of Aker Solutions)

Fig. 1.18 A spiral strake installed on the upper part of a chimney to diminish VIV (photo by Jing
Dong)
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provided a great impetus to research in the field of aerodynamic stability and
structural dynamics, which led to the modifications of the Golden Gate Bridge
(Fig. 1.15) and several other significant suspension bridges [15].

Note that in the accident on Tacoma Narrows Suspension Bridge, the aero-
elastic torsional fluttering is strongly coupled with the vortex-induced vibrations
(VIV), causing a higher onset flutter velocity. For bridge decks with twin- and
multi-box girders, VIV seems to be the most important problem. VIV is normally
induced on members interacting with external fluid flows, and this produces
periodical irregularities (vortices) in the flow, as shown in Fig. 1.16. When the
vortices are not symmetrical around the body (with respect to its mid plane), lift
forces will be applied on each side of the member, leading to members vibrating
perpendicular to the fluid flow. Cylinder members, such as a subsea pipes or
chimneys, are most susceptible to VIV. Figure 1.17 shows the cracks due to fatigue
on a tubular member’s end (joint). From a forensic investigation, it is found that the
typical wind load on the members cannot cause fatigue cracking on this joint [17].
Therefore, VIV is most likely to be the reason for the development of these
particular fatigue cracks. Another example of VIV-induced vibrations is the ‘‘loud
singing’’ of external hand railings of ships during storms or hurricanes. To diminish
VIV, it is common to put obstacles around free spans of cylinders. Figure 1.18
shows spiral strakes installed on the upper part of a chimney to diminish VIV.

1.2 Utilize Dynamics

While avoiding resonance disasters is an important concern in the engineering
world, vibrations and resonance can also be put to use. Resonant systems can be
used to generate vibrations at a specific frequency (e.g. musical instruments), or
pick out specific frequencies from a complex vibration containing many fre-
quencies (e.g. filters). For example, many clocks keep time by mechanical reso-
nance in a balance wheel, pendulum, or quartz crystal.

Another example is the vibration plate (power vibration plate), which was
originally used by Russian scientists to stop the reduction of bone density and
muscle atrophy in cosmonauts, and is now used as a piece of fitness equipment to
strengthen muscle and reduce weight. As shown in Fig. 1.19, it is essentially a flat
base that vibrates. An exerciser stands on the plate while the plate is vibrating with
a frequency ranging from 0.4 to 2 Hz. This forces the exerciser’s entire body to
react to the relatively high frequency vibrations, causing the muscles to contract
and stretch in order to maintain balance. By tuning the machine to an appropriate
vibration frequency, most of the muscles in the body can be effectively tightened,
thus strengthening muscles and reducing weight.

As will be elaborated in a Chap. 4, the natural period is an inherent property of
the system. Therefore, if people can find a convenient way to measure it, several
essential characteristics of the system can be obtained. To demonstrate this, we
first go to the London Eye observation wheel, as shown in Fig. 1.20. It has a
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structural system similar to a bicycle wheel, with its rim stiffened by 16 rotation
cables and 64 spoke cables. It is obvious that part of the tension load in each cable
will be lost within the lifetime of the structure, requiring a re-tensing in order to
maintain the cable tension in accordance with the design requirement. However, it
is rather challenging to directly measure the tension force in each cable. Therefore,
engineers used a much more convenient alternative to measure the natural fre-
quency due to the transverse vibration of each cable, from which the tension load
can be calculated using the relationship between the natural period and the tension
load (see Sect. 6.3).

The measurement of important mechanical properties of materials, such as
Young’s modulus, has traditionally been carried out through a series of mechanical
tests by placing the specimen on costly traction-torsion machines. Engineers
nowadays have found a less costly and more convenient way to obtain part of the
basic mechanical properties: simply hitting the material sample and inducing
vibrations on it, as shown in Fig. 1.21. A high precision microphone close to the
sample captures vibration signals and transfers them to computers; the signals are
then analyzed, and the natural period and internal friction of the sample can be
obtained. Thereafter, the resonant frequency, together with the dimensions and the
weight of the sample, are used to calculate the elastic properties (Young’s mod-
ulus, Shear modulus and Poisson ratio).

As a counter-measure, masses with their supporting stiffness can be installed to
absorb energy (through momentum exchange) of another structure at their resonant
frequency and further dissipate the absorbed energy through the damping of the
system. Therefore, the resonance of the structure can be canceled or greatly
decreased. This is normally referred to as a dynamic absorber [18]. As shown in

Fig. 1.19 A power vibration plate as a piece of fitness equipment
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Fig. 1.22, in a dynamic absorber, the mass and stiffness of it ma and ka are tuned
such that the absorber’s natural frequency coincides with the resonance frequency
of the main structure.

Fig. 1.20 The London Eye observation wheel (upper) with the rim supported by tensioned steel
cables (lower, photo by Christine Matthews). The wheel works like a huge spoked bicycle wheel
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Fig. 1.21 Measurement of flexural and torsional eigenfrequencies to determine the Young’s
modulus and shear modulus, together with a measurement of damping through the free decay of
the sample’s vibrations (courtesy of IMCE Belgium)

Fig. 1.22 Mechanism of a dynamic absorber with mass ma, stiffness ka and viscous damping ca.
It is used to mitigate the dynamic responses of the main structure with mass Ms
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Fig. 1.23 A 660 ton pendulum tuned mass damper system installed in the Taipei World
Financial Center (with a height of 509.2 m) to mitigate the wind- and earthquake-induced
responses of the building. The TMD hangs from the 92nd to the 88th floor
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Similar to the mechanism of a children’s swing in Figs. 1.1 and 1.23 shows a
type of dynamic absorber—the tuned mass damper (TMD) installed in the Taipei
World Financial Center with a height of 509.2 m. The TMD weighs 660 tons and
is suspended by 8 steel cables, arranged in 4 pairs, from the frame on the 92nd
floor as a pendulum system. By adjusting the free cable length, the mass in this
pendulum system moves with the building at similar natural period of 6.8 s. Eight
primary hydraulic viscous dampers situated beneath the TMD automatically dis-
sipate energy from vibration impacts. A bumper system of eight hydraulic viscous
dampers beneath the TMD absorbs vibration impacts, particularly in major
typhoons or earthquakes where movements exceed 1.5 m [19]. This can greatly
decrease dynamic responses due to seismic and wind loadings.

Similar to a TMD, a tuned liquid damper (TLD), another type of dynamic
absorber, is also a passive damping system in which the damping effects are
provided by the motion of liquid in tanks. The moving liquid has a function similar
to the moving mass of a TMD, in that gravity is harnessed as a restoring force.
Energy is mainly dissipated by using damping baffles to create turbulence in the
liquid, as well as through the wave breaking and the impact of liquid on the tank
wall. The geometry of the tank that holds the water is determined theoretically to
give the desired natural frequency of water motions in accordance with the space
in which the tank is to be located. Liquid tanks used as a TLD are typically
rectangular or circular, with the former being able to be tuned to two different
frequencies in two perpendicular directions. An engineering example of TLD is
the water tanks installed on the top of the skyscraper One Rincon Hill in San
Francisco, which can hold up to 190 tons of water. The water level in the tanks is
adjusted to achieve a tank sloshing natural frequency close to that of the building
structure. Baffles are installed inside the water tanks in order to increase the
damping when the water is in motion. In addition to the function as a TLD to
mitigate wind- and earthquake-induced responses, the water tanks were also built
to hold water for fire fighters. It is noticed that, compared to a TMD, the TLD has
the advantage of low manufacturing and maintenance costs, and it can also serve
the purpose of liquid (water, fuel, crude oil or mud, etc.) storage [20] for emer-
gency, industry, or everyday purposes if fresh water is used [21, 22]. Furthermore,
without adversely affecting the functional use of tanks, TLD tanks can be designed
with proper dimensions or reconfigured with internal partitions of existing tanks,
which is helpful to cope with physical and architectural requirements [23].

1.3 Dynamics Versus Statics

Over history, the safety and serviceability of structures have basically been
measured on the basis of their static behavior, which required adequate stiffness
and strength. This was perhaps because the necessary knowledge of dynamics was
less accessible to engineers than their static counterpart. Nowadays, it is common
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knowledge that all bodies possessing stiffness and mass are capable of exhibiting
dynamic behavior.

The major difference between dynamic and static responses is that dynamics
involves the inertia forces associated with the accelerations at different parts of a
structure throughout its motion. If one ignores the inertia force, the predicted
responses can be erroneous. As an example, let’s consider a bottom fixed cantilevered

Fig. 1.24 Wave induced static versus instantaneous dynamic forces and moments in a bottom-
fixed cantilevered tower [24]

Fig. 1.25 A GBS with a heavy topside supported by four concrete shafts (legs)
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tower subjected to sea wave loadings as shown in Fig. 1.24 [24]. In addition to the
static bending moment due to wave loadings applied on the structure, as shown in
Fig. 1.24b, the stiffness and mass of the structure will react to the wave loadings and
generate internal forces on both the top mass block (Qi) and the tower (qi), shown in
Fig. 1.24c. Rather than a single function of mass, the amplitudes of the inertia forces
are related to a ratio between stiffness and mass (eigenfrequency), mass, as well as
damping, thus resulting in additional dynamic bending action (Fig. 1.24d).

As another example, consider a gravity-based structure (GBS), shown in
Fig. 1.25, that is subjected to the ground motions recorded during El Centro
earthquake, which have a high energy content at the vibration period above 0.2 s
(below 5 Hz in Fourier amplitude shown in Fig. 1.26, which will be explained in
Sects. 9.2 and 12.4). The dynamic responses of the platform are investigated by
varying the thickness of four shafts from half of the reference thickness, to the
reference thickness, to twice the reference thickness. It is obvious that the GBS
becomes stiff by increasing the shafts’ thickness. If a static analysis is performed,
under the same seismic excitations the stiffer structure would have lower
responses. However, the seismic responses involving dynamic effects may not
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obey this rule. Figure 1.27 shows the acceleration at the shaft-topside connection.
It is clearly shown that the peak acceleration for the reference shaft thickness case
is higher than that of the half-thickness case. However, the trend of peak accel-
eration response variation with the change of stiffness cannot be identified, as the
peak acceleration for the double shaft thickness (the stiffest one) is lower than that
for other cases with lower stiffness. This indicates the effects of inertia, which are
more complex than their static counterpart. As will be discussed in Sect. 12.4 and
Chap. 16, the response variation trend can be identified by relating the seismic
responses to the dynamic characteristics of both structures and excitations.

Even for dynamic insensitive structures with low periods of resonance com-
pared to that of the dynamic loading, dynamics does include the inertia effects due
to loading that varies with time, even if this load variation may be quite slow. The
inertia effects could lead to the fatigue failure of the materials at stress conditions
well below the breaking strength of the materials (Chap. 17). They may also be
responsible for the discomfort of human beings (Chap. 18). Figure 1.28 shows an
offshore jacket structure subjected to two consequent sea waves; the jacket has a
resonance period of 2.5 s. Figure 1.29 compares the calculated axial force time
history at a leg C1 with and without accounting for the dynamic inertia effects.
When the dynamic effects are ignored (right figure), the axial forces history
entirely follows the variation of the wave and has a period of wave loading (15.6 s)
well above the structure’s resonance period (2.5 s). However, when the dynamic
effects are accounted for, fluctuations (left figure) of the axial force can be clearly
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observed as a background noise with the resonance period of the structure (2.5 s).
Depending on the magnitude of this background noise, it may influence the
integrity of the structure with regard to fatigue damage.

Fig. 1.28 An offshore jacket structure subjected to a wave with a wave height of 31.5 m and a
wave peak period 15.6 s (Courtesy of Aker Solutions)

Fig. 1.29 Axial force time history on the lower part of leg C1 of the offshore jacket with and
without dynamic inertia effects. (The exact magnitude of axial forces are omitted to protect the
interests of the relevant parties)

1.3 Dynamics Versus Statics 23



From another angle, the dynamic loading often has a different orientation than
the static one. For example, the static loading of a structure under the gravity of the
Earth is strictly toward the Earth. However, when the structure is subjected to
dynamic loading due to, for example, wind, earthquake or sea waves, the direction
of resultant loadings change from downward to the one that is more toward a
horizontal orientation, this can result in an entirely different pattern regarding the
load level and load path, and this obviously influences the structural design.
Therefore, structural engineers are required to have a complete picture of load path
and level, and structures designed must have corresponding load resisting systems
that form a continuous load path between different parts of the structures and the
foundation. The structure shown in Fig. 1.28 represents a typical configuration of
the jacket structure and a clear path for load transferring, i.e., the gravity and
acceleration loads from topside, the wave load applied on the upper part of the
jacket, and the jacket gravity and acceleration loads are all transferred through legs
and braces down to the pile foundation at the bottom.

Before concluding this section, it is of great importance to emphasize that
dynamics is a rather more complex process than its static counterpart. The natural
frequency of a structure can change when a change in its stiffness, mass or
damping occurs. What makes dynamics even more complicated is that, strictly
speaking, regular harmonic loadings or responses, with a sine or cosine form at a
single frequency, do not exist in the real world, even if they can be a good
simplification when the dynamics at a single frequency is dominating. This implies
that one should always assess whether the vibrations in various frequencies need to
be accounted for or not.

1.4 Solving Dynamic Problem

With the presence of inertia effects as discussed in Sect.1.3, the dynamic analysis
is generally much trickier to solve than their static counterpart. This is mainly due
to the fact that when the inertia term appears in the equilibrium equation (Eq. 1.2)
as will be elaborated in Sect. 1.2, in order to uniquely determine the solution, apart
from the boundary conditions, initial values are also needed, earning the dynamic
analysis problem the name ‘‘initial boundary value problem.’’ Furthermore, rather
than a linear equation, as a static equilibrium has (Eq. 1.3), the additional inertia
and damping terms make the equilibrium equation an ordinary second-order dif-
ferential equation and time dependent, which requires more in-depth knowledge to
examine. In addition, if time series responses are needed, a decent time stepping
procedure has to be employed, making the dynamic problems even more
demanding than their static counterpart.

m xðtÞ
��
þc xðtÞ

�
þkxðtÞ ¼ FðtÞ ð1:2Þ
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kx ¼ F ð1:3Þ

where F, k, m and x are the external force on a body, linear stiffness (between the
body and the fixed ground), mass, and displacement of the body, respectively; t is
the time; the dot over the symbol represents differentiation with respect to t. See
Fig. 1.30 for an illustration.

Therefore, if responses can be calculated based on a static analysis, dynamic
calculation should always be avoided. However, this is unfortunately not the case
for many problems in engineering. The general rule is that if the excitations (loads)
have a dominant frequency close to the natural frequency of structures, dynamic
analysis has to be adopted. However, even if the load frequency is far from the
natural frequency of the structure, the inertia effects may still be important and
responsible for certain types of integrity problem (e.g. fatigue), such as the one
shown in Fig. 1.29. In addition, transient loads can also cause dynamic responses,
such as explosion, car collision, etc., in which the inertia effects of the relevant
structures can be rather significant. In these situations, dynamic analysis is also
normally required. It is sometimes convenient to use an amplification factor to
simulate the dynamic effects, as will be elaborated in Sect. 11.1.1, so that only
static analysis is needed and can be scaled with a dynamic amplification factor to
predict the dynamic response level. However, this method lacks a solid theoretical
background and has its limitations, and may become seriously erroneous under
certain situations, which will be discussed at the end of Sect. 11.1.1.

Before solving a dynamic problem, one needs to classify the vibration problem
in terms of whether external excitations are presented or not (forced and free
vibrations), whether the excitations are of a deterministic or stochastic type,
whether the damping is presented or not (damped or undamped), whether the
system can be modeled as a discrete or continuous one, and whether the responses
present linear or nonlinear characteristics. The relevant knowledge will be elab-
orated throughout this book.

Fig. 1.30 Essentials of applied dynamic analysis (from a presentation by the author at the 11th
International Conference on Recent Advances in Structural Dynamics, Pisa, 2013.)

1.4 Solving Dynamic Problem 25

http://dx.doi.org/10.1007/978-3-642-37003-8_11
http://dx.doi.org/10.1007/978-3-642-37003-8_11
http://dx.doi.org/10.1007/978-3-642-37003-8_11
http://dx.doi.org/10.1007/978-3-642-37003-8_11


For performing a dynamic analysis, analysts should fully understand the
essential dynamic characteristics of a system or a structure: eigenfrequencies,
mode shapes and damping. This part of the field is explained in detail from
Chaps. 3 and 7.

In order to find the solutions of vibration responses, the system or the structure
must be represented by an idealized model. This model can be either discrete or
continuous. The former one can be modeled by limited degrees-of-freedoms, while
the later theoretically has infinite degrees-of-freedoms.

For a discrete model, one needs to first construct the governing equations of
motions, which can be described in terms of a second-order differential equation
with constant coefficients (as elaborated in Chap. 2). The information with regard
to displacements or rotations (essential boundary conditions) and external forces
excitations (natural boundary conditions) need to be clarified. If time is involved,
the initial conditions (boundary conditions in time) need to be known as well.
After gathering sufficient information on these boundary conditions, the solutions
of the equilibrium equations are then unique [25]. One can then solve the equations
using decent mathematical treatment.

The system under study can be undamped or damped and with or without
external excitations. We pay particular attention to the solutions for forced
vibrations, which typically consist of a steady-state term that oscillates and
gradually becomes dominant at the forcing frequency, and a transient term at the
system’s natural frequency that may be important initially but gradually dies out
and eventually becomes insignificant due to the presence of damping. Under
certain conditions the dominant forced vibrations become rather significant,
indicating the occurrence of resonance.

Engineers sometimes need to choose the type of dynamic analysis method to be
adopted. Each method has its unique characteristics, merits and limitations, and the
various methods also fit different situations with regard to structural and load
characteristics, design requirements, limitations of computation tools, and even the
skills of analysts, in addition to other factors. Understanding all these factors is
essential for choosing the right method: on the one hand, this can increase the
accuracy; on the other hand, it may also simplify the computation efforts to a
certain extent without degrading reliability level. In certain cases, the trade-off
may be difficult to judge even for experienced researchers and engineers.

For structures or systems with single or very few degrees-of-freedoms,
depending on the types of excitations and responses (duration, shape, deterministic
or stochastic) and their eigenpairs (eigenfrequencies and mode shapes) in com-
parison with the excitations, based on the pure mathematical formulation of the
stiffness, mass and damping of the structures, various types of analytical methods
are available for solving the dynamic responses, all of which result in exact
solutions.

However, for a structure or a system with multiple or many degrees-of-free-
doms, it is almost impossible to perform a dynamic analysis by the classical
analytical methods. Therefore, two approximation methods can be adopted. The
first involves approximating the solutions using either a series of solutions or an
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energy criterion to minimize the error, such as the Rayleigh energy method
(Chap. 5). The second one is essentially a discretization of structures into many
sub-domains (elements), and an assembly of these elements expressed in a matrix
form for solving, which practically promotes the application of the finite element
method.

As illustrated in Fig. 1.30, practically, in complex dynamic analyzes for
engineering structures, the finite element method, the finite difference method
(Sect. 13.5) or the modal superposition method (Sect. 13.4), and linear iteration
method (Sect. 15.5) are the three most commonly used numerical methods in
computational solid mechanics [26], solving problems associated with space, time
and nonlinearities, respectively, but normally in a combined manner. They are
important not only because of their efficiency and generality of application, but
also due to the simplicity of their computer implementation [24].

In the modal superposition method, the coupled equations of motions are
transformed into a series of uncoupled/independent equations. Each of these
equations is analogous to the equation of motions for a single-degree-of-freedom
system, and can be solved in the same manner. The responses are calculated as the
linear sum of product between the eigenvectors (constant with time) and the
generalized/modal coordinates (varied with time) for each eigenmode. Note that
the number of uncoupled equations needing to be solved is equal to the number of
eigenmodes to be accounted for. For structures with the dynamic responses
dominated by the first few eigenmodes, the modal superposition method leads to
high computation efficiency. This is more obvious if the structure has a large
number of degrees-of-freedoms.

In linear dynamic analysis, the responses of a system/structure are proportional
to the loads/excitations to which it is subjected. This enables the utilization of
superposition, which brings significant convenience with regard to mathematical
treatment, and, in most cases, also ensures the calculation accuracy. However,
when nonlinearities appear in the system/structure, the stiffness and/or load are
dependent on the deformation, and the responses of a system are generally not
amenable to any analytical method that can provide exact solutions. A general
method for obtaining the exact solution of nonlinear differential equations is not
available, and most of the analytical methods that have been developed only yield
approximate solutions. Further, the available techniques vary greatly according to
the type of nonlinear equation [18].

Despite the significant efficiency of modal analysis, it generally applies only to
linear dynamic problems. Therefore, the nonlinearities involved in a dynamic
analysis are theoretically and practically treated with the support of the finite
difference method and linear iteration method discussed in Sect. 13.5 and
Chap. 15. The former (typically referred to as the Newmark method) is a step-by-
step time integration of the equations of motions, and it can solve for example the
transient phenomena such as nonlinear vibrations or shock wave propagation. The
latter one is a generalization of Newton–Raphson method, which is essentially the
application of a linearization in a locally approaching curve between load and
deformation, and which is able to overcome numerical challenges introduced by
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the geometric (e.g. buckling), material (e.g. plasticity), boundary (e.g. contact) and
force (e.g. follower forces with change of geometry or hydrodynamic drag load)
nonlinearities.

Fig. 1.31 The pioneers in history who contributed to dynamic analysis (from upper left to the
lower right: Galileo Galilei, Newton Isaac, Robert Hooke, the third Baron Rayleigh, Joseph Louis
Lagrange, and William Rowan Hamilton)
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Damping exists in all types of real world structures or systems. It mainly
provides a dissipation of energy. In most cases, it is beneficial to decrease dynamic
responses. Most types of damping are most effective at or close to a structure/
system’s eigenfrequencies. An elaboration of damping effects and their modeling
is presented in Chap. 14.

Dynamic loadings and responses induced by wave, wind, ice and earthquakes
are often the governing environmental loads for designing an engineering struc-
ture, and are therefore discussed in separate sections in Chap. 12 using the power
spectra to represent the loadings. Furthermore, special interest topics on seismic
responses (Chap. 16), dynamics regarding fatigue (Chap. 17), human body
vibrations (Chap. 18), and vehicle-structure dynamic interactions (Chap. 19) are
elaborated in separate chapters.

1.5 Pioneers of Dynamic Analysis

Several great scientists (Fig. 1.31) in history need to be mentioned here, as without
them and many others, classical dynamics might still today be called ‘‘modern’’
dynamics: Galileo Galilei (1564–1642), who showed that the acceleration due to
gravity is independent of mass; Isaac Newton (1642–1727), who disclosed the
three laws of motions (specifically the second law of motion); Robert Hooke
(1635–1703) who developed the law of elasticity; the third Baron Rayleigh
(1842–1919), who introduced the concept of modal analysis and viscous damping;
Joseph Louis Lagrange (1736–1813), who presented the Lagrange multipliers; and
William Rowan Hamilton (1805–1865), who illustrated the Hamiltonian formu-
lation of dynamics (which is essentially the reformulation of Newtonian
dynamics).

We should also acknowledge the more recent contributions: Goldstein [27],
Whittaker and Synege [28], Timoshenko and Young [29], Den Hartog [30],
Griffith [31], Nayfeh [32], Crandall and Mark [33], Robson [34], Zienkiewicz [35]
and many others have contributed to the development of dynamic analysis in the
last century, and have thus made the solving of rather sophisticated dynamic
analysis and real engineering vibration problems possible.

Before leaving off the general information on dynamics, it should also be noted
that the dynamic analysis elaborated in this book is for a real-time causal system,
in which the present responses depend only on the past and present inputs, and not
on the future inputs. It is assumed that non-causal systems do not exist in nature.
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Chapter 2
Governing Equation of Motions

Although all dynamic modelings are essentially “lies,” in this
book I try to present those that may prove useful about a
dynamic system in the real world.

The first step for performing a dynamic analysis is to set up the equations of

motions. We start with Newton’s second law, which is followed by the virtual

work principle (D’Alembert’s principle), Hamilton’s principles, and Lagrange’s

equations. We shall also see the important role of energy in the study of dynamic

analysis. It is noted that each of the formulations basically represents the same

dynamic equilibrium but in a unique form of expression.

2.1 Dynamic Equilibrium

We start with Newton’s second law of motions from Philosophiæ Naturalis
Principia Mathematica (Fig. 2.1), which is the most powerful of Newton’s three

laws of motions. It states that “the rate of change of momentum of a mass equals

the force acting on it.” This is illustrated in Fig. 2.2 and expressed as:

d

dt
m

dx

dt

� �
¼ F tð Þ ð2:1Þ

where F, m and a are the external force on a body and the mass and acceleration of

the body, respectively, and t is the time.

Here, we describe the position of mass in a Cartesian coordinate, which is

referred to as an inertia frame in three dimensions X, Y, and Z (in the equation

above, only one dimension X is used). Essentially, no inertia frames exist—a

conclusion derived from the debates going back to the late nineteenth. However, it

is usually convenient to find a frame for the purpose of a particular situation so that

the dynamic analysis agrees with the observations. In this sense, the Earth is

normally taken to be an inertial frame even if it rotates forever. However, the Earth

is not an appropriate inertia frame for large scale motions such as those of the

atmosphere and oceans [36]. For example, it is common knowledge that winds

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,

DOI: 10.1007/978-3-642-37003-8_2, � Springer-Verlag Berlin Heidelberg 2014

31



blow more frequently along an east–west direction, but they would blow north–

south if the Earth was not rotating.

Newton’s second law of motion was a breakthrough in the understanding of

dynamics, and it confirms that force only causes a change of velocity, correcting

the previous view, proposed by Aristotle (384–322 BC), that force maintains the

velocity.

If one attaches a spring and a damper to the mass, as shown in Fig. 2.3, by

assuming that the spring obeys Hooke’s law and the damping is of viscous type

(the damping force is proportional to the velocity of the mass), the equilibrium is

formulated by adding the terms of spring- and damping-induced forces:

mx tð Þ
��

þ c x tð Þ
�

þ kx tð Þ ¼ F tð Þ ð2:2Þ
where the dot over the symbol represents differentiation with respect to time t.

In the equilibrium equation above, all the motion parameters (displacement,

velocity and acceleration) are lower-order differentiations of displacement with

Fig. 2.1 Philosophiæ Naturalis Principia Mathematica, which laid the foundation for dynamic

equilibrium

mF(t)

x(t )

Fig. 2.2 A single mass under external force F(t)
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respect to time, and are sensible by human beings. Higher-order differentiations do

not appear in the equilibrium equation because scientists do not find their link to

equilibrium of force, but they are already used in many engineering applications.

For example, the time-derivative of acceleration is called jerk/jolt, i.e., the change

of acceleration with time. The jerk can be illustrated by the example of a person

gradually pressing the surface of a wall: one’s hand can feel that the force is

increasing (a change in the force) until it reaches a constant force pressure. The

jerk can also be sensed when, moving quickly on a bicycle, one suddenly brakes

hard. If the bicycle were to slide off a paved track onto wet grass, even though the

friction between the bicycle tire and grass is still present due to sliding, it will

decrease and the bicycle will slow down less rapidly, thus undergoing a positive

jerk. The rider would feel pressure on his/her hip, as if the bicycle were speeding

up, even if it does not really go any faster. As its name suggests, jerk is important

when evaluating the destructive effect of motions on a mechanism or the dis-

comfort caused to passengers onboard vehicles. Movement-sensitive instruments

need to be kept within specified limits of jerk as well as acceleration to avoid

damage. For passenger comfort, a train in operation will typically be required to

keep jerk below 2 m/s3. In the aerospace industry, a type of instrument called a

jerk-meter is used for measuring jerk.

A system that has a small number of degrees-of-freedoms can be evaluated

efficiently by directly using the equation of the motions above. However, when the

degrees-of-freedom become too large for an analyst to handle using this simplified

direct method, other methods for formulating and solving the equations of motions

have to be used instead. Examples of the former type are Hamilton’s principle or

the finite element method, while the latter type include the modal superposition

method (Sect. 13.4), and direct time integration method (Sect. 13.5) etc. In

addition, for continuous systems with non-uniform mass or stiffness distribution,

the Rayleigh energy method (Chap. 5) can also be used to obtain a quick but

approximate characterization of the dynamic characteristics.

2.2 Principle of Virtual Displacements

Newton’s second law can be more practically expressed as D’Alembert’s princi-

ple: the condition for dynamic equilibrium is that the total force is in equilibrium

with the inertia forces.

k

c

mF(t )

- kx

•
− xc

x (t)

Fig. 2.3 A SDOF spring-mass-damper system
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For a complex structure or a system, it is not practical to describe the forces

acting on each mass point as a vectorial addition of all those forces. In this

situation, the principle of virtual displacement is particularly appealing. It solves

the dynamic equilibrium by indirectly formulating the equations of motions, which

is essentially an energy approach, i.e., the total virtual work done by effective

forces applied on a system through virtual displacements, which is compatible

with the system constraints, will be zero. By saying “effective forces,” they contain

both the normal and inertia forces.

2.3 Hamilton’s Principle Through Lagrange’s Equations

Note that even if D’Alembert’s principle eliminates the problem of force addition

in a vectorial context, the virtual work itself is still a product of force vector and

virtual displacement vector, and the equations of motions are formulated in terms

of position coordinates that may not all be independent. This problem can be

solved by the more powerful Hamilton’s principle through Lagrange’s equations.

Many principles describe a system by minimizing certain physical quantities, as

does Hamilton’s principle, which states that (as shown in Fig. 2.4), for a conser-

vative system, of all the possible paths along which a dynamical system may travel

from one point to another within a specified time interval (consistent with any

constraints), the actual path (called the true, Newtonian or dynamical path) fol-

lowed is that which minimizes the time integral of the difference between the

kinetic and potential energy:

dI ¼
Z t2

t1

d T � Vð Þdt ¼
Z t2

t1

dLdt ¼ 0 ð2:3Þ

where d is the first variation and L is called the Lagrangian function, which

represents the difference between kinetic (T) and potential (V) energy of the

system; the former is a function of particle velocity, the latter is a function of

position. Hamilton’s principle represents the most condensed description of

motion for a given system. For a single-degree-of-freedom system, as shown in

Fig. 2.3, it can be expressed as:

T ¼ 1

2
mx tð Þ2

�
ð2:4Þ

V ¼ 1

2
kx tð Þ2 ð2:5Þ

Surprisingly, in certain senses,Hamilton’s principle coincideswith the statements

of the Chinese philosopher Laozi (Fig. 2.5), who expressed in hisDaodejing (No 48,
《道德经》) around 500 BC that “non-action is all action” (“无为而无不为”).
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The convenience of Hamilton’s principle lies in the fact that all the system

differential equations of motions can be derived from two scalar functions, the

kinetic energy and the potential energy, with the virtual work corresponding to

Fig. 2.5 Chinese philosopher Laozi (老子) (painting by Jing Yu)

Time

Location

Start 

q(t2)

q(t1)

End 

Varied path 

Varied path 

True path 

Fig. 2.4 Many paths, among which the true path (solid line) is that which follows Newton’s law

(minimize the action); varied paths are not possible [38]
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non-conservative forces [37]. Describing a system by applying Hamilton’s prin-

ciple allows people to determine the equations of motions for a system for which

we would not be able to derive these equations easily from Newton’s laws.

However, one nevertheless needs to bear in mind that Hamilton’s principle is not a

new law, but simply provides a new description of Newton’s laws.

The extension from Newton’s second law to Hamilton’s principle also makes it

possible to handle dynamic problems for deformable bodies by using continuum

mechanics. This paves the way for the development of finite element discretization

of deformable bodies [24].

In a more general case with a system comprising non-conservative forces (such

as the ones caused by frictions), one may express Hamilton’s principle via

Lagrange’s equations:

d

dt

oT

o qj
�

 !
� oT
oqj

þ oV
oqj

þ oD

o qj
� ¼ Qj; j ¼ 1; 2; . . .; n ð2:6Þ

where D is the dissipation function. For a single degree-of-freedom system shown

in Fig. 2.3, D ¼ 1
2
c x tð Þ2

�
�Qj represents the non-conservative forces and qj is the

generalized degree-of-freedom (coordinate or path), which is not unique and

related to the physical coordinate. The dot over the symbols represents differen-

tiation with respect to time. It is noted that the forces are not direct knowns;

instead, their information is contained in the kinetic and potential energy terms.

Since oT
oqj

is zero, the equation above is finally written as:

d

dt

oT

o qj
�

 !
þ oD

o qj
� þ oV

oqj
¼ Qj; j ¼ 1; 2; . . .; n ð2:7Þ

Each item in this equation exactly corresponds to the equations of motions

(Eq. (2.2)).

Fig. 2.6 Three masses resting on the horizontal ground are free to move horizontally, no friction

is assumed between the mass and the ground surface
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Example [39]: Consider a system with three masses connected by springs as

shown in Fig. 2.6. Establish the equations of motions using Lagrange’s

equations and summarize them in a matrix form.

Solution: The Lagrange’s equations are written as:

d

dt

oT

o qj
�

 !
� oT
oqj

þ oV
oqj

þ oD

o qj
� ¼ Qj; j ¼ 1; 2; . . .; n

Since there is neither friction nor external forces, D = 0 and Qj = 0.
Let q1, q2 and q3 be the generalized degree-of-freedom. We have

T ¼ 1

2
m1 q

2
1

�
þ 1

2
m2 q

2
2

�
þ 1

2
m3 q

2
3

�

V ¼ 1

2
k1 q2 � q1ð Þ2þ 1

2
k2 q3 � q2ð Þ2

¼ 1

2
k1 q22 � 2q1q2 þ q21
� �þ 1

2
k2 q23 � 2q3q2 þ q22
� �

With regard to q1:

d

dt

oT

o q1
�

 !
� d

dt

oT
oq1

� �
¼ d

dt
m1 q1

�� �
� 0 ¼ m1 q1

��

oV
oq1

¼ 1

2
k1 �2q2 þ 2q1ð Þ ¼ �k1q2 þ k1q1

With regard to q2:

d

dt

oT

o q2
�

 !
� d

dt

oT
oq2

� �
¼ d

dt
m2 q2

�� �
� 0 ¼ m2 q2

��

oV
oq2

¼ k1q2 � k1q1 � k2q3 þ k2q2

With regard to q3:

d

dt

oT

o q3
�

 !
� d

dt

oT
oq3

� �
¼ d

dt
m3 q3

�� �
� 0 ¼ m3 q3

��

oV
oq3

¼ k2q3 � k2q2

Insert the equations above into the Lagrange’s equations:

m1 q1
�� ¼ k1q2 � k1q1

m2 q2
�� ¼ �k1q2 þ k1q1 þ k2q3 � k2q2
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m3 q3
�� ¼ �k2q3 þ k2q2

Sum up the three equations above in a matrix form:ą

m1 0 0

0 m2 0

0 0 m3

2
4

3
5 q1

��

q2
��

q3
��

8><
>:

9>=
>;þ

k1 �k1 0

�k1 k1 þ k2 �k2
0 �k2 k2

2
4

3
5 q1

q2
q3

8<
:

9=
; ¼ 0

2.4 Momentum Equilibrium

Once again, we recall Newton’s second law: if there are no forces acting on the

mass, the momentum will be constant. For systems comprising more than one

body mass, each one has an individual momentum, but their sum will be constant

if there are no external forces acting on the system. The sum of the momentum is

expressed as:

Momentum sum ¼ m1v1 þ m2v2 þ . . .þ mnvn ð2:8Þ
where the lower indices serve to identify the mass.

The momentum equilibrium has abundant applications in the engineering

world. One example of its application is the calculation of the speed of two cars

before and after their collision. In structural engineering, we can also find their

applications in the design of various types of dynamic absorbers [23].

In civil engineering, this momentum equilibrium can be utilized in designing, for

example, a tuned mass damper (TMD) or an impact damper, both of which com-

prise a secondary mass attached to (in the case of TMD) or constrained by (in the

case of impact damper) a vibrating structure (main structure). This mass has

dynamic characteristics that relate closely to that of the main structure. By varying

the ratio of the mass to the primary body (main structure), the frequency ratio

between the two masses, and the damping ratio associated to the secondary mass,

the momentum exchange can control the maximum responses of the main structure.

Figure 2.7 shows a single TMD fitted to the underside of a concrete deck at the

Infinity Bridge in the north-east of England. The installation of more such TMDs is

planned for when the issue of maintenance arises. Today, many TMDs are

installed on high-rise buildings and bridge structures to mitigate the dynamic

responses due to dynamic loadings induced by wind, earthquake, impact and

mechanical vibrations [23]. Representative examples are the Taipei World

Financial Center (Fig. 1.23), Washington National Airport Tower, Sydney Tower,

Citicorp Center (New York), the John Hancock Building (Boston), and the Crystal

Tower (Osaka, Japan).

Figure 2.8 shows an impact damper, which comprises a small rigid mass placed

inside a container mounted on the side of the structure. There is a small optimal
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clearance between the small mass and the container wall, thus allowing collisions

between the mass and the container wall to occur when the displacement along the

clearance direction exceeds the optimal clearance. The collision achieves both

momentum exchange and energy dissipation, the latter of which is mainly pro-

duced on the contacting surface between the mass and the wall. A schematic

diagram of an impact damper is shown in Fig. 2.8.

2.5 Validity of Classical Dynamics

Before ending this chapter, this author would like to quote a famous conversation

that is reported to have taken place between Napoleon Bonaparte, Laplace and

Lagrange (Fig. 2.9) [41]:

Fig. 2.7 TMDs installed under the bridge deck of the Infinity Bridge (photo by John Yeadon)

Fig. 2.8 An impact damper model [40]
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Napoleon: How is it that, although you say so much about the Universe in this

huge book, you say nothing about its Creator?

Laplace: No, Sire, I had no need of that hypothesis. [This is an example of his

arrogance at that time].

Lagrange: Ah, but it is such a good hypothesis, it explains so many things!

Laplace: Indeed, Sire, Monsieur Lagrange has, with his usual sagacity, put his

finger on the precise difficulty with the hypothesis, it explains everything, but

predicts nothing.

Laplace was confident that he could predict the motions of everything, but now

we know that the equations of motions introduced in this chapter are only valid for

the mechanical universe [38] and do not apply for particles at rather small dis-

tances or with extremely high velocities. Nevertheless, they remain valid for the

scientific research in the fields of civil and mechanical engineering.

Arrogant and humble attitudes are both necessary for scientific research. In the

author’s opinion, however, it is most important to be humble when investigating

problems that are beyond our knowledge.

Fig. 2.9 Laplace (left), Napoleon (middle) and Lagrange (right)
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Chapter 3
Free Vibrations for a Single-Degree-
of-Freedom (SDOF) System–Translational
Oscillations

The grasping of truth is not possible without an empirical
basis. However, the deeper we penetrate and the more
extensive and embracing our theories become, the less
empirical knowledge is needed to determine those theories.

Albert Einstein, December 1952

3.1 Definition of Harmonic Oscillations

Even though a realistic system or a structure possesses many degrees-of-freedom,
it can be analyzed in terms of its separate modes, each of which in the case of light
damping can be considered a single-degree-of-freedom (SDOF) system.

Before we go into a detailed study of free vibrations, we shall go through a few
basic definitions of harmonic oscillations, as shown in Fig. 3.1. Those oscillations
may represent force, stress, strain, displacements, velocity, or accelerations. They
can be expressed as a function of time:

xðtÞ ¼ X cosðxt � hÞ ð3:1Þ

where x and t are angular frequency and time, X is the maximum peak of the
oscillations, ðxt � hÞ is the phase angle (rad), and h is the initial phase angle.

The time required for the oscillations to go through a complete cycle is called
period T ¼ 2p

x , as shown in Fig. 3.1.
Harmonic oscillations (sinusoidal and/or co-sinusoidal) can normally be rep-

resented in one form or another by using Euler’s equation, which states that a
complex number may be written in exponential form:

eixt ¼ cosðxtÞ þ i sinðxtÞ ð3:2Þ

sinðxtÞ ¼ 1
2i
ðeixt � e�ixtÞ ð3:3Þ

cosðxtÞ ¼ 1
2
ðeixt � e�ixtÞ ð3:4Þ

where i is the imaginary unit.
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Harmonic oscillations can generally be expressed in four forms [181]:

xðtÞ ¼ A cosðxtÞ þ B sinðxtÞ ¼ X cosðxt � hÞ ð3:5Þ

xðtÞ ¼ Ce�ixt ¼ Xe�iðxt�hÞ ð3:6Þ

where C ¼ Xeih ¼ Aþ iB is the complex amplitude containing both magnitude
Xand phase h ¼ B=A.

It is obvious that:

Cj j ¼ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

ð3:7Þ

sin h ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

¼ B=X ð3:8Þ

3.2 Undamped Free Vibrations of a SDOF System

First consider the simplest form of an oscillator—a SDOF spring-mass system
shown in Fig. 3.2. By giving an initial disturbance to the system (i.e., the mass m is
released at a distance of X0 from the neutral position), an initial velocity produced
by an impact, or a combination of the two, the resulting motions, unaffected by any
external force, are called free vibrations. Now apply Newton’s second law; the
governing linear equilibrium (differential) equation of motions for this system is:

m xðtÞ
��
þ kx tð Þ ¼ 0 ð3:9Þ

T 

t

X

-X

x

Fig. 3.1 Definition of period in harmonic oscillations

Fig. 3.2 An SDOF spring-mass system
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By dividing the equation above by m, one has:

xðtÞ
��
þ k

m
x tð Þ ¼ 0 ð3:10Þ

The equation above indicates simple harmonic vibrations, i.e., x varies sinu-
soidally or cosusoidally with time t. The motions are repetitive if no damping is
presented in the system. The general form of the solution is given as:

xðtÞ ¼ A cosð
ffiffiffiffi

k

m

r

tÞ þ B sinð
ffiffiffiffi

k

m

r

tÞ ð3:11Þ

Here we introduce a parameter xn ¼
ffiffiffi

k
m

q

, which is at this stage called the

undamped angular frequency of the motions with the unit of rad/s. It is normally
referred to as the natural frequency of the oscillatory system, which is defined as
the number of cycles per unit time.

By substituting Eq. (3.11) into (3.10), one has:

�x2
n A cos xnt þ B sin xntð Þ þ k

m
A cos xnt þ B sin xntð Þ ¼ 0 ð3:12Þ

where A and B are constants depending on the initial conditions at time t = 0.
In case there are motions in the system, it is obvious that

A cos xnt þ B sin xnt 6¼ 0. Therefore, the natural frequency is calculated as:

xn ¼
ffiffiffiffi

k

m

r

ð3:13Þ

It is noticed that Eq. (3.10) is of the second order, and two constants are
required to obtain the solution. For the condition in which the initial displacement
and velocity are X0 and V 0, respectively, from Eq. (3.5) one has A = X0 and
B = V0/xn. Substituting these expressions for the A and B constants into
Eq. (3.11), one obtains:

xðtÞ ¼ X0 cosðxntÞ þ V0

x
sinðxntÞ ð3:14Þ

The solution of the equation above represents oscillation responses with constant

natural frequency xn ¼
ffiffiffi

k
m

q

, hence giving the system the name ‘‘harmonic oscilla-

tor.’’ The displacement motions x(t) for the equation above are shown in Fig. 3.3. The
mode shape corresponding to the natural frequency xn is defined as special initial
deflections that cause the entire system to vibrate harmonically, i.e., xðt ¼ 0Þ ¼ X0.

Note that a complete harmonic cycle occurs for each angular increment 2p, i.e.,
xðtÞ ¼ xðt þ 2p

xn
Þ. The natural period, Tn, which is the time required for the system

to go through a complete cycle, is therefore expressed as:

Tn ¼
2p
xn

ð3:15Þ
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It is obvious that the natural frequency is the inverse of the natural period:

fn ¼
1
Tn

ð3:16Þ

A vertically or rotationally vibrating system can be analyzed in a similar
manner.

From an engineering point of view, the natural frequency can be explained as
the frequency at which a structure or a system can very easily be excited to vibrate,
even with a rather small excitation. This will cause resonance, as shown in
examples in Sects. 1.1 and 1.2. Figure 3.4 shows the collapse of a building during
a strong earthquake, due to the fact that the building’s natural period is similar to
that of the earthquake ground motions.

From the point of view of energy, for an undamped system, rather than a force-
equilibrium, free vibrations at the natural frequency are essentially the process of
exchanging energy between mass motions (kinetic energy) and strain variation
(potential energy). The resonance occurs when the kinetic energy is maximized

(i.e., 1
2 m xnxð Þ2) and the potential energy is minimized (i.e., 1

2 kx2). Equating the
two energy terms, one also reaches the natural frequency as:

xn ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� strain energy

m� deflection2

r

ð3:17Þ

With regard to modeling, potential energy may be minimized by an accurate
modeling of soft links in the load path. This typically relates to the modeling of
supports and structural discontinuities (e.g. joints, connections etc.). Kinetic
energy is maximized by an accurate modeling of system mass, especially in situ-
ation with a large mass to stiffness ratio [42].

Fig. 3.3 Free vibration displacement response x varies with time t, for cases of initial
displacement X0 (upper) and initial velocity V0 (lower), respectively
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The SDOF shown in Fig. 3.2 can be realized in many types of physical mod-
eling problems, such as a concentrated mass m attached to a clamped beam at one
end shown in Fig. 3.5. By assuming that the mass of the beam can be omitted, the
vibration of the beam-mass system is dominated by the inertia effects of the
concentrated mass m. By definition, the stiffness of the system k, sometimes
referred to as beam equivalent stiffness, is expressed as:

k ¼ F
d

ð3:18Þ

In the equation above, F is the force applied to represent the inertia effects of
the concentrated mass at the mass point. The transverse defection for the beam at
the mass point is:

d ¼ FL3

3EI
ð3:19Þ

The natural frequency of the system is then:

xn ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffi

3EI

L3

r

ð3:20Þ

m

L

E I

Fig. 3.5 A concentrated mass m attached to the end of a clamped (cantilever) beam

Fig. 3.4 Collapse of top stories of Hotel Continental in Mexico City during the 8.1 magnitude
Mexico City earthquake of 1985
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The equivalent stiffness of a beam-mass system with the most typical support
conditions are summarized as below:

k ¼

48EI

L3
for simply supported beam at both ends

3EI

L3
for beam clamped at one end

192EI

L3
for beam clamped at both ends

768EI

7L3
for beam clamped at one end and simply supported at the other end

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð3:21Þ

Note that, in the equation above, the stiffness is always referred to the position
of the concentrated mass, where the natural vibration mode has its maximum
amplitude. If one wants to measure the stiffness in another location along the
beam, the applied force F must be shifted to that position.

The natural frequency for the system shown in Fig. 3.2 can also be calculated
by using the static deflection approach:

xn ¼
ffiffiffiffi

k

m

r

¼
ffiffiffiffiffiffiffiffiffiffi

k

W=g

s

¼
ffiffiffiffiffi

kg

W

r

¼
ffiffiffiffiffiffiffiffiffiffi

g

W=k

r

¼
ffiffiffi

k

d

r

ð3:22Þ

where W is the weight of the mass m, and g is the acceleration of Earth’s gravity.
In engineering practice, many types of problems can be simplified as an SDOF

system. For example, for an initial estimation of the natural frequency and cor-
responding mode shape, a monopile or monotower structure can be simplified as a
vertical beam vibrating in the horizontal direction, with a mass m at its top, shown
in Fig. 3.6. The spring stiffness of the beam can be approximated as the beam’s
bending spring stiffness with appropriate support conditions. If one assumes a
fixed support condition at the bottom of the monotower, the natural frequency (first
eigenfrequency) of it can be calculated as:

fn ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI

H3ðmþ 0:23lHÞ

s

ð3:23Þ

where l is the unit mass of the tower per meter including both the structural mass
and added mass due to the surrounding water, H is the equivalent tower height, and
EI is the bending stiffness of the tower.

The derivation of the equation above is based on either an equivalent system
analysis (Sect. 4.2.2) or Rayleigh energy method (Chap. 5).
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3.3 Damped Free Vibrations of an SDOF

The undamped free vibrations described in the previous section never occur in
nature. More realistic free vibrations are modeled by adding a damper into the
spring-mass system shown in Fig. 3.2, which results in an SDOF spring-mass-
damper system as shown in Fig. 3.7. It is assumed that the damper is of viscous
type with a damping coefficient c. This represents the conditions of damping due to
the viscosity of oil in a dashpot fairly accurately, and it generates a damping force
proportional to the velocity of the mass. The governing linear differential equation
of motions for this system is then expressed as:

m xðtÞ
��
þ c xðtÞ

�
þ kxðtÞ ¼ 0 ð3:24Þ

The equation above can be solved by substituting harmonic motions in the
exponent format xðtÞ ¼ ekt into the equation, which gives:

mk2ekt þ ckekt þ kekt ¼ 0 ð3:25Þ

Fig. 3.6 Physical modeling realization from a realistic monotower wellhead platform (left) and
its geometry modeling for finite element analysis (middle) to a simplified SDOF model (right) for
hand calculation of eigenfrequencies (Courtesy of Aker Solutions for the left and the middle figure)

Fig. 3.7 An SDOF spring-mass-damper system
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Because ekt 6¼ 0 (otherwise there would be no motion), dividing the equation
above by ekt gives:

mk2 þ ckþ k ¼ 0 ð3:26Þ

The roots of the equation are k1 and k2:

k1;2 ¼ �
c

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4mk
p

2m
ð3:27Þ

Therefore, the general solution for the damped free vibrations is:

xðtÞ ¼ Cek1t þ Dek2t ð3:28Þ

where C and D are arbitrary constants and can be determined by the initial con-

ditions of the mass, i.e. xðt ¼ 0Þ and xðt ¼ 0Þ
�

.
The damping is very important in an oscillating system because it helps to limit

the excursion of the system in a resonance situation. As a reference, we first define
the critical damping cc, which is the lowest damping value that gives no oscillation
responses, i.e., the system does not vibrate at all and decays to the equilibrium
position within the shortest time. This represents the dividing line between
oscillatory and non-oscillatory motions:

cc ¼ 2
ffiffiffiffiffiffi

km
p

¼ 2mxn ð3:29Þ

The actual damping ratio can be specified as a percentage of critical damping:

f ¼ c

cc
ð3:30Þ

Therefore, Eq. (3.27) can be expressed in terms of damping ratio:

k1;2 ¼ �f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 � 1
q

� �

xn ð3:31Þ

However, it should be noted that the expression above is valid only for f� 1.

Fig. 3.8 Comparison of response decays at different damping levels
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Depending on the level of damping, five types of responses (Fig. 3.8) can be
observed:

• Undamped (f ¼ 0): the responses exhibit harmonic vibrations without decay
(see Sect. 3.2 and Fig. 3.3).

• Lightly damped/underdamped (0\f\1): the damping is less than critical, the
responses follow exponentially decaying (e�fxt) harmonic/sinusoidal oscilla-
tions (sin xdt þ /ð Þ) as shown in Fig. 3.9, k is complex, the general solution of
motions is:

xðtÞ ¼ e�fxnt Ce�i
ffiffiffiffiffiffiffiffi

1�f2
p

xnt þ De�i
ffiffiffiffiffiffiffiffi

1�f2
p

xnt
� �

¼ Xe�fxnt sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

xnt þ /

� �

¼ Xe�fxt sin xdt þ /ð Þ

ð3:32Þ

where xd ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

is the frequency of the damped oscillation. Initial dis-

placement X and phase angle/phase lag / ð/ ¼ tan�1 2f x=xnð Þ
1� x=xnð Þ2

� �

) depend on the

initial condition as shown in Fig. 3.9.
Among all types of free vibration responses, lightly damped vibrations are the

most typical responses. Fig. 3.10 shows a comparison of free vibration responses
with various damping levels, with f ranging from 0 (undamped) to 50 %. The
effectiveness of damping can be clearly observed, i.e., with only a small percent of
damping, the response decay becomes significant.

• Critically damped (f ¼ 1): the damping equals the critical damping that will
remove all vibration responses. One can obtain a double but equal root, and the
general solution of motions is:

xðtÞ ¼ e�xnt C þ Dtð Þ ð3:33Þ

Tn=2 / n

tnXe ζω−
X

t

Under/lightly damped

nωφ /

φsinX

Fig. 3.9 Response decays for an underdamped/lightly damped system
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• Overdamped (f[ 1): the damping is larger than the critical, the motions exhibit
smoothed exponential decay without any oscillatory vibration or harmonic
components, which are shown in Fig. 3.11. Similar to the case of critical
damping, the system does not oscillate and rests in the equilibrium position, but

Fig. 3.10 Free vibration responses for undamped and lightly damped systems with a natural
period of 0.5 s and phase angle / ¼ 0:3

Fig. 3.11 Response decays for overdamped system
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vibrates with a longer time (lower rate) than that of the critical damping case. k
is real, the general solution of motions (non-oscillatory) becomes:

xðtÞ ¼ Ce�ðfþ
ffiffiffiffiffiffiffiffi

1�f2
p

Þxnt þ De�ðf�
ffiffiffiffiffiffiffiffi

1�f2
p

Þxnt ð3:34Þ

• Negatively damped (f\0): this is basically a special case of a lightly damped
system. Instead, the responses in a linear system show an exponential increase as
shown in Fig. 3.12, indicating that energy is added to the system. The negative
damping is often related to the so-called self-excited vibrations (self-excita-
tions), which are due to the sustaining alternating excitations that induce the
instability of a system at its own natural or critical frequency. Different from
resonance, the self-excited vibrations are in the class of nonlinear type and are
essentially independent of the frequency of the external excitations. Typical
examples of self-excited vibrations are the flutters of bridges (Fig. 1.12), masts
and aircraft wing structures, vortex-induced vibrations (VIV) and friction-
induced vibrations (vehicle braking or vehicle-bridge interactions). Self-exci-
tations have caused abundant structural collapses. For example, many drilling
risers hung from a drilling rig experiencing high speed ocean current have failed
due to VIV. Cracks on tubular joints due to wind-induced VIV can also be found
on many structures, as shown in Fig. 3.13.

It should be mentioned that, for the positively damped (f[ 0) cases above,
even though the responses decay when the damping is modeled with viscous type,
the responses never cease. Instead, they approach infinitely small amplitude.
Therefore, for an actual structure, other types of damping (normally friction type)
must exist to make the responses cease entirely. This will be discussed in
Sect. 14.2.2.

For an SDOF system with more than one spring and damping system, one needs
to calculate the resultant stiffness of the matrix, which requires the identification of
the two basic types of combined stiffness of a spring-mass system, namely parallel
and series systems, as shown in Fig. 3.14.

A resonance frequency is defined as the forcing frequency at which the largest
response amplitude occurs. It is normally regarded as the equivalent term of
natural frequency (first eigenfrequency). However, strictly speaking, the largest
response for a lightly damped structure occurs at slightly different frequencies

Fig. 3.12 Response increase for a system with negative damping
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Fig. 3.13 Cracks (marked with circle) found on a tubular joint due to wind-induced VIV on a
high-rise flare boom in the North Sea (Courtesy of Aker Solutions)

Fig. 3.14 Resultant stiffness (k) and damping (c) of parallel system and series system
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when measured by different terms among displacement, velocity and acceleration
as follows:

Acceleration resonance frequency: xn

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2n2
q

ð3:35Þ

Velocity resonant frequency: xn ð3:36Þ

Displacement resonance frequency: xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2n2
q

ð3:37Þ

For typical engineering structures, since the damping ratio n is small, the dif-
ferences can be neglected.

It should also be noticed that the natural frequency is defined slightly differently
from that of any of the resonance frequencies above:

xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q

ð3:38Þ
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Chapter 4
Practical Eigenanalysis and Structural
Health Monitoring

4.1 Eigenpairs, Global-, Local- and Rigid-Body Vibrations

‘‘Eigen’’ is a Germanic term that means ‘‘property of.’’ Therefore, the eigenfre-
quencies and eigenmode shapes together with damping are inherent properties of a
specific structure or a vibrating system. Eigenfrequencies and mode shapes are
determined by the structure/system’s material properties (mass, stiffness and
damping) and support conditions.

By neglecting the damping and assuming that the support conditions do not
change, the equilibrium equation at the n degrees-of-freedom-system can be
expressed as:

M½ � xðtÞ
��ffi �

n

þ K½ � xðtÞf gn¼ 0 ð4:1Þ

The solutions of the motions can then be written in a harmonic form:

xðtÞf gn¼ /f gncosðxtÞ ð4:2Þ

where the amplitudes /f gn are independent of time and x is the frequency of the
vibration.

With the two equations above, one has:

K � x2M
� �

/f gn¼ 0 ð4:3Þ

The equation above contains a set of n linear homogeneous equations in the

unknowns / 1ð Þ
n , / 2ð Þ

n , … / nð Þ
n . The solution of x2 (square of eigenfrequency) and

the associated /f gn (eigenvectors) in the equation above is known as
‘‘eigenproblem.’’

This equation always has the trivial solution when /n ¼ 0, which is not useful
because it implies no motion. On the other hand, by vanishing the determinant of
the coefficients, all these linear homogeneous equations should have a non-trivial
solution (i.e. /n 6¼ 0):

det K � x2M
� �

¼ K � x2M
�

�

�

� ¼ 0 ð4:4Þ

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
DOI: 10.1007/978-3-642-37003-8_4, � Springer-Verlag Berlin Heidelberg 2014
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The equation above is known as the characteristic equation or frequency
equation. For a multi-degree of freedom system, the equation above gives a
polynomial of degree n in the eigenfrequency x2. This polynomial equation has
n roots x2

1, x2
2,…x2

n, which are called eigenvalues, square of eigenfrequencies,
characteristic values, or normal values, and they are obviously real and positive or
zero because the stiffness and mass matrices are symmetric and positively definite.
Therefore, for N degrees-of-freedoms, there are N independent eigenvalues and
the associated mode shapes.

For each eigenvalue x2 (often denoted by k in the literature), a unique solution
to Eq. (4.3) exists for /f gn, which is known as eigenvectors or mode shapes. The
eigenvalues and associated eigenvectors together are called eigenpairs.

For an elaborated presentation of eigenpairs, see Sects. 13.2 and 13.4.
Parameters affecting the eigenfrequencies are the stiffness of a system/structure

and the mass distribution in it, support conditions, and damping. If these properties
do not change, the eigenfrequencies and mode shapes will not change. It is not
difficult to imagine that outer dimensions, such as height and length of the frame,
significantly affect the stiffness. Also, increasing beam sections will result in a
higher stiffness. A change in elastic modulus will give a linear increase of the
stiffness. The influence of mass distribution on eigenfrequencies is due to the
complexity of the structure. For example, when the mass of a structure is
increased, the stiffness may also increase.

If the eigenvalues are arranged in an escalating order, the lowest eigenfre-
quency and the corresponding mode shape is called the fundamental eigenfre-
quency and fundamental mode shape.

For a redundant structure, with the order increase of vibration modes, the
number of anti-nodes (locations with peak responses) in the corresponding mode
shape is also increased as shown in Fig. 4.1.

Even though a number of eigenpairs is equal to the number of degrees-of-
freedoms, depending on the application, normally only a number of eigenpairs
(typically the lowest ones) are of engineering interest. This will be discussed in
Sect. 13.4.

Solving eigenfrequencies normally requires an assumption or definition of
corresponding mode shapes. Compared to eigenfrequencies, the exact solutions of
mode shape are of secondary importance in many vibration problems. As will be
illustrated later on, a reasonable approximation of mode shape will result in a
calculated eigenfrequency close to the exact one.

In a general sense, the eigenmodes include not only the global and local
vibration through deformation, but also up to six rigid body motion modes along
the six degrees-of-freedoms, all of which are in a form of harmonic type. Rigid
body motions indicate that the stiffness is not positively defined.

Rigid body vibrations normally occur when a structure is installed with flexible
mounting; the structure can then move as an entire solid at the frequency of zero or
close to zero (e.g. craft in flight). However, it is normally related to the vibration
analysis of structures with intentionally designed flexibilities, such as aerospace or
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airplane structures, or certain types of machinery. Therefore, rigid body vibration is
of minor importance for most of the civil and mechanical engineering structures
because they only cause small structural deformations and stresses. Some exceptions
exist: firstly, the rigid body vibration may sometimes cause problems on structural

Fig. 4.1 Mode shapes for a beam simply supported at its two ends (0 and 500 mm in the
horizontal axis indicate two ends of the beam)
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connections if the structural acceleration and/or mass are high. Secondly, it may also
compromise the integrity of slender and flexible structures such as pipelines.

Global vibrations occur when a structure vibrates as a whole while having
various deformations on each part that are aligned together and strongly coupled.
This is normally the most important type of vibration since it can cause amplifi-
cation of global structural responses leading to catastrophic structural failure.

Local vibrations mean that a local part of the structure is vibrating without
significant interference from vibrations from other parts. An example of this is the
vibration of conductors, local frame or beam of an offshore structure, or vibrations
of individual deck plates on a ship. This type of vibration sometimes causes local
failure of a structure corresponding to the eigenfrequencies at the corresponding
local vibration modes. Figure 4.2 illustrates an example of eigenmodes for both
the global jacket vibrations and local topside frame vibrations.

4.2 Hand Calculation of Natural Frequency for Systems
with Distributed Masses

It is noticed that a simple hand calculation for eigenfrequencies is based on an
idealized model as rigid masses joined by massless stiffness items (i.e., spring or
beam) and massless damping. However, this assumption can greatly compromise
the accuracy of a hand calculation simply because an insufficient number of DOFs
are modeled. An increase in DOFs can improve the calculation accuracy but also
results in a distributed mass system.

Exact solutions of eigenpairs can be performed by the classical method, in which
the equilibrium equations based on Newton’s second law of motion are solved by
differential equations (ordinary ones for discrete system and partial ones for dis-
tributed system). This provides exact solutions. However, this can only be applied to
systems with relatively low configurations [146]. For continuous systems or systems
with large degrees-of-freedoms, other methods such as Rayleigh energy method,
equivalent system analysis, or finite element method etc. have to be adopted.

4.2.1 Classical Method for Exact Solutions

Consider the cantilever beam shown in Fig. 4.3. By assuming a small deflection of
the beam, the beam’s shear deformation can be neglected, resulting in a Euler–
Bernoulli beam formulation. The differential equation of the deflection curve for
beams with any types of end support conditions can be expressed as:

d2

dx2
EI

d2z

dx2

� �

¼ �l
d2z

dt2
ð4:5Þ

where l is the density of the beam per unit length.
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Dividing the equation above by l, one can write the equilibrium equation for
the lateral (along z in Fig. 4.3) vibrations of the beam as:

EI

l
d4z

dx4
þ d2z

dt2
¼ 0 ð4:6Þ

By assuming an approximate vibration mode shape XðxÞ, the deflection of the
beam at position x and time t is zðx; tÞ ¼ XðxÞ sinðxntÞ. We then have:

EI

l
d4 XðxÞð Þ

dx4
� x2

nXðxÞ ¼ 0 ð4:7Þ

Fig. 4.2 The global (left) and local frame vibrations of a jacket platform at two distinct
eigenfrequencies of 0.2 and 1.3 Hz, respectively (courtesy of Aker Solutions)
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Fig. 4.3 A beam with uniformly distributed mass of l
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Rearranging the equation above gives:

d4 XðxÞð Þ
dx4

¼ lx2
n

EI
XðxÞ ¼ j4XðxÞ ð4:8Þ

To fulfill the required conditions of the equation above, XðxÞ can be expressed
in the form of trigonometric function:

XðxÞ ¼ A1 sinðjxÞ þ A2 cosðjxÞ þ A3 sinhðjxÞ þ A4 coshðjxÞ ð4:9Þ

The constants A1, A2, A3, and A4 are determined from the boundary conditions
of the beam. For a convenient solution of these constants, the equation above can
be rewritten in a form with the zero constants for each of the typical boundary
conditions [146]:

XðxÞ ¼A sinðjxÞ þ coshðjxÞ½ � þ B cosðjxÞ � coshðjxÞ½ �
þ C sinðjxÞ þ sinhðjxÞ½ � þ D sinðjxÞ � sinhðjxÞ½ �

ð4:10Þ

The boundary conditions are directly related to the different order of derivatives

with respect to x: XðxÞ is proportional to deflection, d XðxÞð Þ
dx is proportional to the slope,

d2 XðxÞð Þ
dx2 is proportional to the moment, and d3 XðxÞð Þ

dx3 is proportional to the shear force.

d XðxÞð Þ
dx

¼ j
A � sinðjxÞ þ sinhðjxÞ½ � þ B � sinðjxÞ � sinhðjxÞ½ �
þ C cosðjxÞ þ coshðjxÞ½ � þ D cosðjxÞ � coshðjxÞ½ �

( )

ð4:11Þ

d2 XðxÞð Þ
dx2

¼ j2 A � cosðjxÞ þ coshðjxÞ½ � þ B � cosðjxÞ � coshðjxÞ½ �
þC � sinðjxÞ þ sinhðjxÞ½ � þ D � sinðjxÞ � sinhðjxÞ½ �

( )

ð4:12Þ

d3 XðxÞð Þ
dx3

¼ j3 A sinðjxÞ þ sinhðjxÞ½ � þ B sinðjxÞ � sinhðjxÞ½ �
þC � cosðjxÞ þ coshðjxÞ½ � þ D � cosðjxÞ � coshðjxÞ½ �

( )

ð4:13Þ

It is noticed that, for typical boundary conditions, two of the constants among A,
B, C and D are zero, leaving only the other two equations to be solved. For the
cantilever beam shown in Fig. 4.3, we have:

Xðx ¼ 0Þ ¼ 0, d Xðx¼0Þð Þ
dx ¼ 0, d2 Xðx¼LÞð Þ

dx2 ¼ 0, and d3 Xðx¼LÞð Þ
dx3 ¼ 0. This gives:

A ¼ 0 ð4:14Þ

C ¼ 0 ð4:15Þ

d2 Xðx ¼ LÞð Þ
dx2

¼ 0 ¼ B � cosðjLÞ � coshðjLÞ½ � þ D � sinðjLÞ � sinhðjLÞ½ � ð4:16Þ

d3 Xðx ¼ LÞð Þ
dx3

¼ 0 ¼ B sinðjLÞ � sinhðjLÞ½ � þ D � cosðjLÞ � coshðjLÞ½ � ð4:17Þ
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From Eq. (4.8), it is noted that the exact solutions for the eigenfrequencies are:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi

j4
EI

l

s

ð4:18Þ

The objective is to find the solutions for j, which can be used to calculate both
the eigenfrequencies and mode shapes (XðxÞ). We then have:

B

D
¼ � sinðjLÞ � sinhðjLÞ

cosðjLÞ þ coshðjLÞ ¼
cosðjLÞ þ coshðjLÞ
sinðjLÞ � sinhðjLÞ ð4:19Þ

The equation above is reduced to:

cosðjLÞ coshðjLÞ ¼ �1 ð4:20Þ

The value of jL can be calculated by checking handbooks of mathematics for
solving hyperbolic and trigonometric functions. We here list the first three values
corresponding to the first three eigenfrequencies for a clamped-free beam:

j1L ¼ 1:8751 ð4:21Þ

j2L ¼ 4:6941 ð4:22Þ

j3L ¼ 7:8548 ð4:23Þ

Table 4.1 summarizes the exact solutions for beams with uniformly distributed
mass and various support conditions.

4.2.2 Equivalent System Analysis for Approximate Solutions

Previously, we discussed how, if a system can be idealized as an SDOF system, the
natural frequency of the system can be conveniently calculated with simple hand
calculations:

xn ¼
ffiffiffiffi

k

m

r

ð4:24Þ

However, an actual engineering structure or system often possesses many
degrees-of-freedoms, and a very common scenario is that concentrated masses are
connected by a series of stiffness members such as springs or beams. In order to
use the formula above, one has to find its equivalent system counterpart with only
an SDOF, i.e., equivalent stiffness keq and mass meq. This can be performed by
finding the terms of stiffness and mass in the standard kinetic and potential energy
formulation:

T ¼ 1
2

meq xðtÞ
� 2

ð4:25Þ
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Table 4.1 Exact solution for eigenfrequencies of beams with uniformly distributed mass and
various support conditions

xi ¼
ffiffiffiffiffiffiffiffiffi

j4 EI
l

q

j1L j2L j3L

L

x

z µ E I ip ip ip

L

x

µ E Iz
4.7300 7.8532 10.9956

L

x

µ E Iz
1.8751 4.6941 7.8548

L

x

z µ E I 3.9266 7.0686 10.2102

L

x

µ E Iz 4.7300 7.8532 10.9956

L

x

µ E Iz
2.3650 5.4978 8.6394

L

x

z µ E I 3.9266 7.0686 10.2102

L

x

µ E I
z

2.3650 5.4978 8.6394

L

x

µ E Iz
(i-0.5)p (i-0.5)p (i-0.5)p

L

x

µ E Iz

ip ip ip
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V ¼ 1
2

keq xðtÞ2 ð4:26Þ

In addition, the equivalent damping ceq can also be evaluated through the work
done by the viscous damping force between two arbitrary locations x1 and x2:

E ¼ �
Z

x2

x1

ceq xðtÞ
�

dx ð4:27Þ

In the SDOF system analyzed in Sect. 3.2, the spring is assumed to be massless.
Here we make a more realistic assumption that the spring has a mass of mspring, as
shown in Fig. 4.4. Let X be a coordinate along the spring’s axis in its un-stretched
position (0 B X B l). First we assume that the deflection (displacement) of the
spring along it axial direction is:

dðX; tÞ ¼ x

l
X ð4:28Þ

The kinetic energy of the spring is then:

T ¼
Z

dT ¼ 1
2

Z

l

0

odðX; tÞ
ot

� �2

dmspring þ
1
2

m�2 ¼ 1
2

Z

l

0

x
�

l
X

 !2
mspring

l
dX þ 1

2
m�2

¼
�2mspring

2l3

Z

l

0

X2dX þ 1
2

mx
�2
¼ 1

2
mspring

3
þ m


 �

�2

ð4:29Þ

Fig. 4.4 An SDOF spring-mass system (the spring has a distributed mass of mspring

l per unit length)
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Therefore, if the mass of the spring mspring

3 is placed at its end where the mass m is
located, the kinetic energy is the same as that of the linear spring mspring with linear
vibrations of deflections [147].

The equivalent system analysis is essentially another form of Rayleigh energy
analysis, as will be elaborated in Chap. 5, which is basically a means of calculating
the eigenfrequency by equating the maximum kinetic and potential energy.

Table 4.2 summarizes the natural frequencies of spring and beams with uni-
formly distributed mass and a concentrated mass and with various support
conditions.

Table 4.2 Natural frequencies of spring and beams with uniformly distributed mass and a
concentrated mass and with various support conditions

Conditions Natural frequency fn (Hz)

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
mþmspring

3

q

m

L/2 L/2

L

x

mbeam E Iδ

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

mþ 0:5mbeam

r

¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48EI

L3ðmþ 0:5mbeamÞ
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L

x
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m
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1
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(continued)
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Table 4.2 (continued)

Conditions Natural frequency fn (Hz)

m
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1
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Example: Derive the equivalent mass for a simply supported beam with a
mass (m) attached to it as shown in Fig. 4.5. The density, the cross-section
area, the Youngs’ modulus and the moment of inertia (about the strong axis)
of the beam are q, A, E, and I.

m

L /3 2L/3

L

x
 A E Iδ ρ

Fig. 4.5 A mass attached to a beam at a distance of 1/3 beam length from the left end of
the beam
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Solution: For the beam-mass system shown in Fig. 4.5, the vibration mode
shape corresponding to its natural frequency can be assumed to be identical
to the static deflection of the beam under the gravity load:

dðxÞ ¼
1

81 ð5L2x� 9x3Þ for 0� x� L=3
1

81 ð5L2x� 9x3Þ þ 1
6 ðx� L=3Þ3 for L=3\x� L

ffi

The deflection at x = L/3 can be calculated as:

dðx ¼ L=3Þ ¼ 4FL3

243EI

where F is the force at the mass position to cause the deflection.Rewriting the
equation above in terms of dðx ¼ L=3Þ:

F ¼ 243EIdðx ¼ L=3Þ
4L3

By resembling the beam-mass vibration as the vibrations of the SDOF
shown in Fig. 4.4, the kinetic energy of the mass-beam system is then:

T ¼ 1
2

Z

L

0

qA
od
ot

� �2

dx

¼ 1
2
qA

243EI

4L3

� �2

d
�
ðx ¼ L=3Þ

� 2

�

Z

L=3

0

1
81
ð5L2x� 9x3Þ

� 2

dx þ
Z

L

L=3

1
81
ð5L2x� 9x3Þ þ 1

6
ðx� L=3Þ3

� 2

dx

8

>

<

>

:

9

>

=

>

;

¼ 0:586qAL

It is obvious from the equation above that the equivalent mass of the beam
is 0.586 times the beam mass, provided that the vibration modes are con-
trolled by a mass m located 1/3 of the way from one end of the beam.
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Example: An offshore drilling jacket platform located in the North Sea has
a topside weight of 21,600 t (mtop), the jacket weight together with the added
mass is 8,700 t (mjack), the distance between the jacket bottom and the center
of gravity of the topside is 136 m. From the response measurement, the
eigenfrequencies corresponding to two perpendicular principal directions
(horizontally) are 0.36 Hz and 0.40 Hz. Calculate the stiffness of the jacket
structure based on the assumption that the vibration modes are controlled by
the topside mass.

Solution: Assuming the weight of the jacket is evenly distributed along its
height, and the jacket bottom has a fixed support condition, by checking
Table 4.2, one obtains:

fn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kjack

mtop þ 0:23mjack

q

2p

where kjack is the bending stiffness of the jacket.
With the measured eigenfrequencies, the stiffnesses of the jacket along the

two principal directions are: 1.21 9 105and 1.49 9 105 kN/m (Fig. 4.6).

136 m
mjack

mtop

Fig. 4.6 An SDOF model (right) representing a topside-jacket system (left)
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4.2.3 Natural Frequency with Distributed Masses:
Dunkerley Method for Approximate Solutions

For systems with distributed masses, a convenient method to estimate the natural
frequencies is the Dunkerley method.

Consider a beam with N concentrated masses m1, m2, m3, … mN shown in
Fig. 4.7. First remove all the masses except the first mass m1, the natural frequency
under this condition is denoted as fn1. Similarly, remove all the masses except the
second mass m2, the natural frequency under this condition is denoted as fn2.
Repeat this operation for all the N masses. The natural frequency for the entire
system can then be calculated using the Dunkerley method:

1
f 2
n

� 1

f 2
n1

þ 1

f 2
n2

. . .þ 1

f 2
nN

¼
X

N

i¼1

1

f 2
ni

i ¼ 1; 2;N ð4:30Þ

Provided that the assumption of mode shape is exact, Dunkerley’s equation
gives a lower-bound natural frequency to the exact one, and provides a good
approximation if the mode shapes associated with different mass distributions are
similar to each other and to the fundamental mode shape of the system [148]. The
accuracy of results also depends on the beam’s boundary conditions, number of
masses and relative values of the masses. From an engineering point of view, it is
accurate if the individual frequencies fni are not close to each other. Specifically,
the natural (fundamental) frequency of the system needs to differ significantly
from the higher-order eigenfrequencies.

Example: A machine with a mass M has rather large vibration amplitude.
To solve this problem, a small mass m (m = M/80) is mounted on the top of
the machine with a stiffness that is also 1/80 of the machine’s stiffness (as

shown in Fig. 4.8). This gives the natural frequency ( 1
2p

ffiffiffi

k
m

q

) for the isolated

small mass (m)-spring (k) system identical to that of the machine mass (M)-
spring (80 k) system. Therefore, when the machine reaches a resonance
condition at its natural frequency, the resonance of the small mass also

…m1

L

x m2 mN
m3

Fig. 4.7 N concentrated masses attached to a cantilever beam at discrete points along the length
of the beam
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occurs, which can efficiently absorb energy from the machine’s vibration,
thus decreasing the vibration amplitude of the machine. Use Dunkerley’s
equation to calculate the natural frequency of the complete system (m–k-M-
80 k) and compare it with the exact solutions.

Solution: Using the Dunkerley method, the natural frequency for the system
shown in Fig. 4.8 can be calculated based on a separated calculation of the
natural frequency (fn1) of the machine with its own mass distribution and the
natural frequency (fn2) of the concentrated mass m.

1
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ffiffiffiffiffiffiffiffiffi

80k

80m

r

¼ 1
2p

ffiffiffiffi

k

m

r

fn2 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffi

80k�k
80k þ k

m

s

¼ 0:994
2p

ffiffiffiffi

k

m

r

1
f 2
n

� 1

f 2
n1

þ 1
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¼ 1
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4p2
k
m

þ 1
0:988
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k
m
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k
m

 

m  

k  

M=80m  

80k  

Fig. 4.8 Machine (M)-small mass (m) system
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Therefore, we have:

fn ¼ 0:112

ffiffiffiffi

k

m

r

The exact solution for the natural frequency is calculated as:

1
23=2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
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M þ k
m� K

M þ k
M þ k

m

� �2� 4kK
mM

h i1=2
r

We obtain that the exact natural frequency for the current example:

fn ¼ 0:151

ffiffiffiffi

k

m

r

This result is 34 % higher than the one calculated from the Dunkerley
method. Therefore, the application of the Dunkerley method is limited to
systems with the individual eigenfrequencies fni far from each other, as
discussed previously.

Example: Calculate the natural frequency of the beam-mass system shown
in Fig. 4.9.

Solution: Using the Dunkerley method, the natural frequency for the system
shown in Fig. 4.9 can be calculated based on a separated calculation of
natural frequency (fn1) of the beam with its own mass distribution and the
natural frequency (fn2) of the concentrated mass m attached to the beam
without the beam mass as shown in Fig. 4.10.

1
f 2
n

� 1

f 2
n1

þ 1

f 2
n2
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From Table 4.1, we have:

f 2
n1 ¼

1
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� j4 EI

l
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þ 4p2L3m

3EI

¼ 4p2L3ð0:080893mbeam þ 0:33333mÞ
EI

Therefore, the calculated natural frequency is:

fn �
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s

This agrees well with the value shown in Table 4.2.
However, if one wrongly assumes that the beam in Fig. 4.9 can be ide-

alized as a beam mass attached to a massless beam with half span length, as
shown in the middle figure of Fig. 4.11, the calculations following this
assumption are:
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4p2
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mbeam
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þ 4p2L3m

3EI
¼ p2L3mbeam þ 8p2L3m

6EI

This leads to an incorrect calculation of the natural frequency of the
system because the flexibility/stiffness of the other half beam span is ignored:

fn �
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mbeam E I

Fig. 4.9 A mass attached to a cantilever beam at the free end of the beam
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4.3 Using Symmetry and Anti-Symmetry in Eigenanalysis

With the presence of vibrations, the utilization of symmetry or anti-symmetry is in
many cases restricted. This is because, even if the geometry is symmetrical or anti-
symmetrical, the different order of vibration eigenmodes may show both

Fig. 4.11 Wrong assumption of the divided system used to calculate the natural frequency
of the coupled system shown in Fig. 4.9

Fig. 4.10 Breakdown of the beam-mass system into two systems to calculate the natural
frequency of the coupled system shown in Fig. 4.9 using the dunkerley method

Fig. 4.12 A simply supported beam with a symmetrical fundamental eigenmode (dotted line)
and an anti-symmetrical 2nd eigenmode (dotted line)
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symmetrical and anti-symmetrical responses, as shown in Fig. 4.12, making the
combination of the responses neither symmetrical nor anti-symmetrical. If one
enforces symmetry boundary conditions, this will eliminate all anti-symmetric
modes, and vice versa. In certain cases, one is able to utilize the symmetry by
combining the responses obtained from the same half model with both symmetric
and anti-symmetric boundary conditions. However, this will require too high an
overhead for combining two sets of results, and it is normally not used in engi-
neering practice.

For performing dynamic responses using the finite element analysis, the cal-
culated eigenfrequencies may be rather sensitive to the symmetry or anti-sym-
metry of the structure where it is applicable, i.e. slight mis-modeling of these

Fig. 4.13 A symmetric structure geometry modeled by an asymmetric mesh

Fig. 4.14 A symmetric structure geometry modeled with asymmetric mesh
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characteristics will induce unrealistic vibration modes. Therefore, not only the
structure geometry but also the meshing needs to be modeled symmetrically or
anti-symmetrically whenever it is applicable.

Figure 4.13 shows an example of wrongly modeled mesh with an asymmetrical
mesh (using shell element), which will lead to the right part of the structure being
softer than the left part, i.e. some symmetrical or anti-symmetrical modes will
disappear or appear at eigenmodes of wrong mode shapes and/or frequencies.

When one performs meshing with triangle elements, attention should also be
paid to the symmetrical or anti-symmetrical characteristics. Figure 4.14 shows
examples of meshing that is not symmetric, while their symmetric counterparts are
illustrated in Fig. 4.15.

4.4 Vibration-Based Structural Health Monitoring

Traditionally, structural damages are detected through periodic visual inspection.
Visual inspection can impose high cost. For example, for offshore structures, since
they are surrounded by water, inspections such as subsea inspection involves
certain risks for inspection divers and significant cost, and the application may
require a lengthy approval process from the regularity authorities. Furthermore,
even though periodical visual inspections are mandatory for important infra-
structures, the reliability of this method is questionable and strongly depends on
the inspection condition, and how experienced and dedicated the participating
inspectors and engineers are. A survey by Moore and his coworkers [149] from the
US Federal Highway Administration revealed that, at most, only 68 % of the

Fig. 4.15 A symmetric structure geometry modeled with symmetric mesh
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condition ratings were correct and in-depth inspections could not find interior
deficiencies given that visual examinations are very seldom carried out by
inspectors. In some cases, termination of normal operation activities on structures
may be required solely for the sake of allowing an inspection to be carried out,
such as the possible production shutdown if one wants to inspect a tip of a flare
tower for an offshore platform.

All the drawbacks above motivate the technology of structural health monitoring
(SHM), which is the process of assessing the state of health (e.g., damage) of
instrumented structures from measurements. It can be either a short-term (e.g. rep-
aration) or a long-term (monitoring parameters continuously or periodically) pro-
cess. The safety and reliability of structures can be improved by detecting damage
before it reaches a critical state [150], thus minimizing the probability of catastrophic
failures and allowing reduced efforts on inspection services and maintenance. The
reduction of downtime and improvement in reliability enhances the productivity of
the structure. The cost of SHM is relatively low, accounting for between only 2–5 %
of total structures’ cost for a period of 10 years [151]. For many infrastructures with
high value equipment and contents, this percentage is even lower. Furthermore,
SHM can also provide quick assessment after a major accident such as an earth-
quake, hurricane, explosion, or ship collision etc., which is essential for property
owners, operators and relevant insurance companies to make immediate decisions.
In addition, the immediacy and sensitivity of SHM also allows for the short-term
verification of new designs, for which there is no or limited service experiences and
which require more rigorous monitoring and inspection until adequate confidence is
gained. This is because new designs often involve a high utilization of force, new
structural details (possibly with high stress concentration), as well as large uncer-
tainties in the responses [13]. SHM also serves to confirm the design parameters and
perform quality assurance through the detection of damages that cause any changes
in properties other than expected by original designs, and in the meantime can
sometimes approve a better structural performance than expected by the design,
which provides flexibility for the structure capacity.

Vibration-based SHM detect structural damage when noticeable changes in the
measured eigenfrequencies and mode shapes occur. In addition, more detailed
assessment can be reached by studying the peak responses (accelerations, velocity
and displacement) and drift.

The physical diagnostic tool of an SHM system is the integration of various
sensing devices and ancillary systems including sensors, data acquisition and
processing systems, communication systems and health evaluation systems
(including diagnostic algorithms and information management) for damage
detection and modeling system [152, 153] as shown in Fig. 4.16.

Sensors are used to measure various mechanical and physical parameters.
Typical sensors include the accelerometers, gyroscopes, inclinometer, strain
gauges, fiber optic gauges, deflection transducers, curvature sensor, etc. For
vibration-based SHM, accelerometers are the typically used sensors. Important
specifications of accelerometers are measurable acceleration range and resolutions,
size, noise level, stability over time and temperature, frequency response and
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filters, and power consumption. As a general rule, more sensors with an appro-
priate data processing can secure a more reliable assessment.

The transfer of measurement data from sensors to the data acquisition system is
important. Lead wires are usually used to transfer data. Note that long wires may
have a negative influence due to the noise collected with the measured data;
therefore, one needs to pay attention to the allowable length of the wire corre-
sponding with the data acquisition system. As an alternative to wires, wireless
communication between the sensors and data acquisition can be used in cases
when a large number of sensors are used. In addition, for underwater monitoring,
acoustic transmissions, which are subject to underwater noise but are relatively
easy to install and operate, are also used.

The data acquisition system can accommodate many channels (typically with
12, 24, and 36 channels). It is also the most expensive single piece of equipment in
an SHM task. In some cases for onsite measurement with a duration of less than a
few days, the data acquisition system and process system are integrated together as
one equipment package.

The communication system transmits the data from the acquisition system to
the location where the data is processed (data process system). This can be a
telephone lines, internet, transmitting devices, electric wires etc.

The processing of data is of great importance. It is basically a computer that
processes the data from the sensor-acquisition system’s input. The data from
different sensor inputs will be related to each other. Typically, process tasks
include the post-processing of inter-story drift, drift hysteresis loop, accelerations,
velocity and displacement, calculation of transfer functions, etc. Ideally, the pro-
cessing should be performed prior to the data storage.

Fig. 4.16 SHM system including sensors (left, accelerometers in the current case), connection
system, data acquisition (middle, the GPS is used for precise timing), communication system
(LAN or Internet), data process system (computer in this case), and damage detection and
modeling system (computer) (courtesy of Kinemetrics Inc.)
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Despite the appealing advantages of SHM over traditional visual inspection,
significant uncertainties involved in the modal testing and its interpretation still
pose major challenges to a reliable vibration-based SHM. This is more obvious for
offshore structures, in which environmental conditions (temperature, humidity, and
wind etc.) and prevailing excitations from waves and wind impart the uncertainties
into ambient or forced vibration testing. The change of weight (mainly topside
content weight) and marine growth varying with the season also add further
uncertainties. In addition, measurement noise and bias errors arising from sensors,
cables and the data acquisition system is an important source of uncertainty [154].
On top of this uncertainty, vibration-based SHM is sometimes unable to detect the
local damages of structures simply because it measures the global vibration ei-
genfrequencies and mode shapes, and is thus insensitive to local stiffness changes.
This is especially the case for rather redundant structures.

For more details about SHM, readers can refer to references [155] and [156].
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Chapter 5
Solving Eigenproblem for Continuous
Systems: Rayleigh Energy Method

Structural members or systems in the real world are usually of a type of continuous
system with non-uniform mass or stiffness distribution. The closed form (exact)
solutions in this case are not available. Therefore, approximate solutions have to be
sought. Many methods are available for approximating the eigenvalues. All of these
methods are based on a discretization of continuous systems, i.e., replacing the
system by an equivalent discretized one. They are divided into two classes: the first
one represents the solutions as a finite series consisting of space-dependent func-
tions multiplied by time-dependent generalized coordinates, and applies to those
systems for which the non-uniformity with regard to mass and stiffness is not
significant, such as the classical method presented in Sect. 4.2.1. The second one
simply represents the system with lumped mass (as will be elaborated in Sect. 13.6)
at discrete points of the continuous system, such as the one presented in Sect. 4.2.2.

There are several approximation methods for estimating the natural frequency
without solving the differential equation of the system, such as the Rayleigh
energy method, the Dunkerley method, the Southwell method, the Galerkin
method, the collocation method, the Holzer method, the Myklestad method, the
integral formulation method, the Lumped-parameter method, and the Kantorovich
method etc., [157]. Among all these approximate methods, the most popular is the
Rayleigh energy method [158–160], simply due to its generality, convenience and
efficiency. The method is based on the conservation of energy: for a system, when
the kinetic energy is the zero, the potential energy reaches its maximum, and vice
versa. By equating the maximum kinetic energy with the maximum potential
energy of the system, the approximate estimation for the system’s natural fre-
quency can be calculated.

Consider the spring-mass system shown in Fig. 3.2. The deflection of the mass
at time t can be written as:

xðtÞ ¼ X sinðxtÞ ð5:1Þ

The maximum potential energy in the system is:

Vmax ¼
1
2

kX2 ð5:2Þ
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And the maximum kinetic energy is:

Tmax ¼
1
2

m
d2x

dt2

ffi �2

max

¼ 1
2

mx2
nX2 ð5:3Þ

Equating the two equations above gives:

1
2

kX2 ¼ 1
2

mx2
nX2 ð5:4Þ

Rewriting the equation above:

Tmax

Vmax

¼
1
2 mx2

nX2

1
2 kX2

¼ mx2
n

k
¼ 1 ð5:5Þ

We finally conclude that:

x2
n ¼

k

m
ð5:6Þ

This expression is the same as the one derived from the manipulation of the
equation of equilibrium presented in Sect. 3.2.

In order to estimate the natural frequency of the structure, when using the
Rayleigh energy method, a common procedure is to first assume a static deflection
of the structure with concentrated load at the mass points. Based on this deflection,
the kinetic and potential energy are calculated. By equating the two energy terms,
the natural frequency can be calculated.

Consider the physical realization of a monotower with varied stiffness and mass
as shown in Fig. 5.1. First, by assuming an approximate vibration mode shape
XðzÞ, the deflection of the beam at position z and time t can be written as:

xðz; tÞ ¼ XðzÞ sinðxtÞ ð5:7Þ

The maximum kinetic energy Tmax is:

Tmax ¼
1
2

Z H

0
qðzÞAðzÞ dx

dt

ffi �2

dzþ 1
2

X

N

i¼1

mið
dx

dt
Þ2z¼zn

� �

¼ x2

2

Z H

0
qðzÞAðzÞX2ðzÞdzþ

X

N

i¼1

miX
2ðznÞ

" # ð5:8Þ

The maximum potential energy Vmax is:

Vmax ¼
1
2

Z H

0
EðzÞIðzÞ d2X

dz2

ffi �2

dz ð5:9Þ

where qðzÞ and AðzÞ are the density and cross-section area in location z.
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To obtain the natural frequency, equate Tmax and Vmax, which gives:

x2 ¼

RH
0 EðzÞIðzÞ d2X

dz2

� �2
dz

RH
0 qðzÞAðzÞX2ðzÞdzþ

P

N

i¼1
miX2ðznÞ

ð5:10Þ

By reviewing the equations above, it is noticed that, in the Rayleigh energy
method, an important step in obtaining the natural frequency is to assume a rea-
sonable vibration mode shape XðzÞ. The mode shape is normally chosen based on the
displacement shape of free vibrations due to the inertial forces, and is proportional to
the mass distribution and to the displacement amplitude. In principle, any shape that
satisfies the geometric boundary conditions of the structure can be chosen.

The Rayleigh energy method can give the exact solutions provided an exact
mode shape is given. However, note that if the exact mode shape is not known, its
determination involves the solution of the vibration problem by the classical
method. If the classical solution is available, the natural frequency is already
included in it, and the adoption of the Rayleigh energy method is then not nec-
essary [146]. Any shape other than the realistic vibration shape would require the
action of additional external constraints to maintain the equilibrium, which would
stiffen the system (adding strain energy) and subsequently increase the calculated
frequency [161]. Therefore, in practice, this method does not provide an exact

H 

x(z, t )

z1

z2

z3

zn

m2 

µ2 EI2

m3 

µ3  EI3

mN 

µN EIN

m1

µ1 EI1

Fig. 5.1 The physical modeling (left) of a monotower and monopile structures for offshore wind
turbines
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solution. For example, for a cantilever beam shown in Fig. 4.3, compared to a
simple parabolic mode shape curve (dðxÞ ¼ cx2, where c is a constant), if one were
to calculate the deflection curve on the basis of the dynamic load (x2lcx2), the
error between the calculated natural frequency and the exact one

fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI
L3�0:24mbeam

q� �

decreases from 27.0 % to 0.2 % [18], which indicates that the

assumption of a simple parabolic mode shape is far from reality. However, if the
assumed mode shape curve is reasonable, the calculated eigenvalue is not very
sensitive to the approximation of the mode shape and would be accurate enough
from an engineering point of view. This is mainly because the vibration is sta-
tionary when perturbed around any of the actual system eigenvectors [180].

For a cantilever beam dominated by bending, as shown in Fig. 5.1, one may
assume a unit vibration mode shape (deflection shape) of one of the following two:

XðzÞ ¼ 1� cos
p z

2H

� �� �

ð5:11Þ

XðzÞ ¼ ð3Hz2 � z3Þ ð5:12Þ

Both the equations above satisfy the boundary conditions of the free tip and
fixed bottom end, at least geometrically. We also have:

Mðz ¼ HÞ ¼ EI
d2Xðz ¼ LÞ

dz2
¼ 0 ð5:13Þ

Xðz ¼ 0Þ ¼ dXðz ¼ 0Þ
dz

¼ 0 ð5:14Þ

In addition, it is noted that the mode shape assumption gives a non-zero shear
force at the tip, which is important as the concentrated mass mN at the tip induces
the inertia force:

Vshearðz ¼ HÞ ¼ EI
d3Xðz ¼ LÞ

dz3
ð5:15Þ

The first assumption of the mode shape expressed in Eq. (5.11) gives the natural
frequency:

x2
n ¼

p4

16H4

RH
0 EðzÞIðzÞ cos2ð pz

2HÞdz
RH

0 qðzÞAðzÞ 1� cosðpz
2HÞ

	 
2
dzþ

P

N

i¼1
mi 1� cosðpzi

2HÞ
	 
2

ð5:16Þ

The second assumption of the mode shape Eq. (5.12) gives the natural frequency:

x2
n ¼

36
RH

0 EðzÞIðzÞðH � zÞ2dz
RH

0 qðzÞAðzÞ z4ð3H � zÞ2
h i

dzþ
P

N

i¼1
mið3Hz2

i � z3
i Þ

2
h i

ð5:17Þ
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The results from the two equations above should be approximately the same.
If the tip of the beam is also restrained (such as is the case for the legs of a

jackup, the top parts of which are connected to the deck hull with certain fixtures
(Fig. 5.2)), a judicious choice of vibration mode can be:

XðzÞ ¼ 1� cos
p z

H

� �� �

ð5:18Þ

This satisfies the boundary conditions with fixed bottom and non-zero tip
restraints.

If both ends of the beam are fixed, the vibration mode shape can be assumed as:

XðzÞ ¼ 1
2

1� cos
2p z

H

ffi �ffi �

ð5:19Þ

Compared to the Dunkerley method (Sect. 4.2.3), which is limited to positive
definite systems with lumped masses (Sect. 13.6) and yields lower-bound solu-
tions, the Rayleigh energy method applies equally well to both discrete and
continuous systems [181]. Also, as mentioned before, it normally gives an upper-
bound solution, i.e., the natural frequency obtained from the Rayleigh energy
method leads to an overestimate of the exact value.

Example: Siri platform is a three-leg jackup structure located in the North
Sea, which is shown in Fig. 5.2. The legs are made of steel (Young’s
modulus E is 2.1 9 1011 Pa and density is q = 7,850 kg/m3) and have a
cross-section of / 3500 � 80 mm ð2r � tÞ. The effective height/length of
the leg H is 86 m and the vertical distance d between the water level and
the bottom of the legs is 62 m. All three legs are submerged. Calculate
the natural period of the jackup structure with regard to global bending. The
total mass (operational weight) of the deck hull mdeck is 11,600 tons. The
density of sea water qseawater is 1,025 kg/m3.

Fig. 5.2 Siri jackup structure with three legs (courtesy of Dong Energy)

5 Solving Eigenproblem for Continuous Systems 83

http://dx.doi.org/10.1007/978-3-642-37003-8_4
http://dx.doi.org/10.1007/978-3-642-37003-8_4
http://dx.doi.org/10.1007/978-3-642-37003-8_13
http://dx.doi.org/10.1007/978-3-642-37003-8_13


Solution: using the Rayleigh energy method, by equating the maximum
kinetic energy to the maximum potential energy of the system, the natural
period can be calculated.
The three legs are only restrained at the bottom and connected at the deck
level. Therefore, the resultant bending stiffness of the three legs together can
be calculated as the sum of stiffness contribution from each individual leg.
First assume a reasonable mode shape as XðzÞ ¼ ð1� cosðp z

H ÞÞ, which satisfies
the actual boundary conditions at both ends of the legs, as mentioned before.
The maximum kinetic energy Tmax is:

Tmax ¼
1
2

Z d

0
3qðzÞsubmerg AðzÞ dx

dt

ffi �2

dzþ 1
2

Z H

d
3qðzÞAðzÞ dx

dt

ffi �2

dz

þ 1
2

md
dx

dt

ffi �2

Z¼H

¼ 1
2

Z d

0
3msubmerg

dx

dt

ffi �2

dzþ 1
2

Z H

d
3mleg

dx

dt

ffi �2

dz

þ 1
2

mdeck
dx

dt

ffi �2

Z¼H

The maximum potential energy Vmax is:

Vmax ¼
1
2

Z H

0
3EI

d2X

dz2

ffi �2

dz� 1
2

mdeckg

Z H

0

d2X

dz2

ffi �2

dz

where mleg and msubmerg are the mass per unit length for legs that are not
submerged and legs that are submerged (flooded part of legs), respectively.

mleg ¼ q � 2prt ¼ 7850kg=m3 � 0:88m2 ¼ 6905 kg=m

For flooded members the added mass is modeled as twice the mass of the
water with the volume of the structure members, i.e., the added mass
coefficient CM = 2.0:

msubmerg ¼ CMpr2qseawater þ mleg ¼ 2� 9862 kg=mþ 6905 kg=m
¼ 26628 kg=m

By equating Tmax and Vmax, the natural angular frequency is calculated as:

xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 3p2EI
H2 � mdeckg

� �

=ð8HÞ
mdeck þ 3ðmsubmergkþ mlegvÞ

s
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where k and v are two parameters related to the length for submerged and
un-submerged parts of legs:

k ¼ 0:375d � H

2p
sin

pd

H

ffi �

þ H

16p
sin

2pd

H

ffi �

v ¼ 0:375ðH � dÞ þ H

2p
sin

pd

H

ffi �

� H

16p
sin

2pd

H

ffi �

The calculated angular natural frequency is therefore:

xn ¼ 1:02 rad/s

The calculated natural frequency is:

fn ¼ 0:16 Hz

The natural period is then:

Tn ¼
2p
xn
¼ 6:14 s

The calculated natural frequency is 5 % higher than the measured one
(0.154 Hz) from a modal testing, which is accurate enough from an engi-
neering point of view. Possible reasons for the errors are that the legs’ bases
in reality have some degrees of flexibility, while in the current example they
are assumed to be rigid. Also, the connection between the topside and three
legs are not perfectly rigid, as is assumed. Furthermore, the weight from
marine growth and hydrodynamic damping are not accounted for. In addi-
tion, in reality the deviation between the center of gravity of the topside and
the stiffness center may induce slight torsional vibration in the actual mea-
surement, which cannot be captured based on the current assumption. In
addition, the Rayleigh energy method is an upper-bound approach due to the
approximation of the mode shape. Finally, the actual condition during the
modal testing may differ to some extent from the assumed condition in the
current hand calculation example.
It is noticed from the natural frequency equation above that if the weight of

the deck (mdeckg) equals the Euler buckling load of the three legs, 3p2EI
H2 , the

natural frequency becomes zero. This phenomenon is called stiffness soft-
ening, which will be introduced in Sect. 6.3. Fortunately, the current deck
weight is only around 10 % of the Euler buckling load.

At this point, readers have already learned four approaches to finding the
natural frequency of a vibrating system:
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1. Using Newton’s second law (Sect. 3.2): either write the equilibrium equation of
motions and reduce it to a standard form or from the static deflection d.

2. Using Hamilton’s principle (Lagrange’s equation, Sect. 2.3) to establish the
equilibrium equation of motions.

3. Using the conservation of energy (Sect. 4.2.2 and in this chapter): either realize
the equivalent mass and stiffness, or use Vmax ¼ Tmax, or write dV

dt þ dT
dt ¼ 0.

4. For a continuous system, the classical method (Sect. 4.2.1) can also be used by
assuming a reasonable mode shape and boundary conditions, this enables the
differential equations to be solved for obtaining the eigenfrequencies.
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Chapter 6
Vibration and Buckling Under Axial
Loading

6.1 Vibration Versus Buckling

When a beam deforms transversely, its cross-sections suffer both translations and
rotations in such a manner that if axial loads are acting, they input energy to the
beam’s potential energy. The presence of axial loads on a structure tends to
increase (in case of tension) or decrease (in case of compression) the stiffness of a
structure. This effect is called stress stiffening/softening. Consequently, the change
of the stiffness will further change the eigenfrequencies of the structure. In case of
compression load, if the load magnitude is large enough, dynamic buckling can
occur.

The eigenfrequencies and mode shapes of a structure under axial loads can be
calculated in the same manner as for one without axial load effects.

m x
��þ c x

� þðk � kNÞx ¼ 0 ð6:1Þ

where kN ¼ kk is the nonlinear strain (geometric or initial stress) stiffness, k is the
eigenvalue for the linearized buckling solutions.

By neglecting the damping term, the equation for calculating the eigenfre-
quency under combined elastic stiffness k and nonlinear strain (geometric or initial
stress) stiffness kN is:

ðk � kNÞ � x2m
ffi

ffi

ffi

ffi ¼ 0 ð6:2Þ

We first study the relationship between vibration and buckling. The formulation
of linearized buckling and vibration generalized eigenproblem can be expressed
as:

kNu ¼ kku ð6:3Þ

k/ ¼ x2m/ ð6:4Þ

where u is the eigenvector for the linearized buckling solutions; k is the eigen-
value for both the buckling eigenproblem and / is the eigenvector for the vibration
eigenproblem solutions.
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It is known that the buckling eigenproblem is only related to the stiffness of the
structure, while the dynamic eigenproblem has a relation with both the stiffness and
mass distribution of structures. Both the dynamic eigenanalysis and buckling
analysis are eigenorientated: the buckling takes place when, as a result of subtracting
stress stiffness induced by axial load from elastic stiffness (k � kN), the resultant
structure stiffness drops to zero; and the vibration modes occur when, as a result of
subtracting inertia stiffness from the initial elastic stiffness (k � x2m), the natural
frequency of a structure decreases with the increase of the compressive stress in the

structure; when the frequency reaches zero (the inertial force term m x
��

vanishes), the
corresponding load magnitude equals the buckling load [186]. In practice, normally,
only the first buckling load and shape are of real significance, because the system
would have failed when the load exceeds the first buckling load [161]. However,
vibration eigenfrequencies above the first one can also be important.

6.2 Vibration and Buckling Under Harmonic Axial Loads

Under harmonic axial loading, a range of different buckling loads can be defined.
Consider the spring-mass-damper system shown in Fig. 6.1 that is subjected to
harmonic external forces with an amplitude of F0 and an angular frequency of X. The
governing linear differential equation of motions for this system can be written as:

m x tð Þ
��
þ c x tð Þ

�
þ k � kN tð Þð Þx tð Þ ¼ F0 sin Xtð Þ ð6:5Þ

The steady-state responses can be expressed as:

x tð Þ ¼ X0 sin Xtð Þ ð6:6Þ

Combining the two equations above and, by neglecting the damping and
dividing both sides of the equation above by m, we have:

k � kNð ÞX0 � X2mX0 ¼ F0 ð6:7Þ

Inserting kN ¼ kk into the equation above and rearrange it, one obtains:

k � X2m
� �

X0 � kkX0 ¼ F0 ð6:8Þ

k

c

m
F(t)

-kx

•
− xc

x(t)

Fig. 6.1 An SDOF spring-mass-damper system under an external force FðtÞ
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The first item (k � X2m) in the equation above is called the dynamic stiffness.
If the excitation amplitude is approaching zero, the buckling can occur under

the condition expressed in the eigenvalue equation:

k � x2m
� �

� kk
ffi

ffi

ffi

ffi ¼ 0 ð6:9Þ

An infinite number of combinations of vibration frequency x and buckling load
k satisfy the equation above [161].

In summary, under a buckling load k, one can calculate the vibration eigen-
frequencies using Eq. (6.2). For any given frequency of vibration x, the corre-
sponding buckling load can be obtained using Eq. (6.9).

6.3 Eigenvalues Under the Influence of Axial Loads

Consider a simply supported beam under a compressive force F at its tip as shown
in Fig. 6.2. Assuming that the beam, with a mass per unit length of l, is vibrating
transversely (along X direction) only due to its own mass inertia loads without
contribution from other mass/inertia sources, and the beam only experiences small
deformation, the differential equation of the beam’s deflection curve can be
expressed as:

o2

oz2
EI

o2x

oz2

� �

� F
o2x

oz2
¼ �l

o2x

ot2
ð6:10Þ

It is noticed that the discrete models introduced in Chaps. 2, 3 and Sect. 4.2.2 only
result in an ordinary differential equation. However, the beam modeled in Fig. 6.2 is
a continuous system, and both the kinematical relation terms (left hand side) and the
inertia term (right hand side) need to appear in the equilibrium equation simulta-
neously, leading to a partial differential equation, which is more difficult to solve.

We divide the above equation by l:

EI

l
o4x

oz4
� F

l
o2x

oz2
þ o2x

ot2
¼ 0 ð6:11Þ

By assuming an approximate vibration mode shape XðzÞ, the deflection of the
beam at position z and time t is x z; tð Þ ¼ X zð Þ sin xtð Þ. We then have:

�EI

l
d4 X zð Þð Þ

dz4
þ F

l
d2 X zð Þð Þ

dz2
� x2X zð Þ ¼ 0 ð6:12Þ

It is noted that the equation above is essentially a representation of the modal
pattern. Multiplying both sides of the equation with �l=EIgives:

d4 XðzÞð Þ
dz4

� F

EI

d2 X zð Þð Þ
dz2

þ lx2

EI
X zð Þ ¼ 0 ð6:13Þ
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The equation above can be rewritten in a standard differential equation form:

d4 X zð Þð Þ
dz4

� a2 d2 X zð Þð Þ
dz2

þ b4X zð Þ ¼ 0 ð6:14Þ

where a2 ¼ F
EI and b4 ¼ lx2

EI .
The solution is:

X zð Þ ¼ w1 sinh r1zð Þ þ w2 cosh r1zð Þ þ w3 sin r2zð Þ þ w4 cos r2zð Þ ð6:15Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4 þ b4
q

r

and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� a2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4 þ b4
q

r

For the simply supported beam, the support conditions at both ends have a zero
translations and bending moments, i.e., X z ¼ 0ð Þ ¼ 0;X z ¼ Hð Þ ¼ 0,
d2 X z¼0ð Þð Þ

dz2 ¼ 0, and d2 X z¼Hð Þð Þ
dz2 ¼ 0.

F

H

Z

X

µ EI

Fig. 6.2 A simply supported beam loaded with axial force F
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The support conditions above require that sin r2Hð Þ ¼ 0, which can be satisfied
if:

r2H ¼ ip ð6:16Þ

where i is any positive integer.
Therefore, we have:

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� a2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4
þ lx2

EI

r

s

¼ ip ð6:17Þ

The solution of the equation above is:

xi ¼
ffiffiffiffiffi

EI

l

s

i2p2

H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ FH2

i2p2EI

r

ð6:18Þ

Note that, as the Euler buckling (critical) load for a simply supported beam is

Pe ¼ p2EI
H2 , the equation above can be rewritten as:

xi ¼ xi;noF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F

n2 � Pe

r

ð6:19Þ

The above equation is called Galef’s formula [187], which illustrates the
relationship between the eigenfrequency xi under axial force F (F \ 0 for com-
pressive force and F [ 0 for tension force) and the eigenfrequency of the
uncompressed/untensioned beam xi;noF . Essentially, this reflects a change of initial
stiffness under axial load, i.e., the compressive axial force decreases while the
tensile one increases the eigenfrequency of the beam.

The Euler buckling (critical) load Pe for beams with various support conditions
is listed in Table 6.1.

Figure 6.3 shows the eigenfrequency ratio due to the presence of the axial
compressive force. It is noticed that, due to the moderating influence of the factor
1
i2, the effects of the axial force are much more pronounced for the natural fre-
quency (first eigenfrequency) than the higher-order eigenfrequencies. The effects

Table 6.1 Euler buckling
(critical) load for beams with
various support conditions

Support conditions Buckling
(critical) load Pe

Clamp-free (cantilever beam) 0:25p2EI

H2

Simply supported at both ends p2EI

H2

Clamp-simply supported
(propped cantilever)

2:048p2EI

H2

Clamp-clamp 4p2EI

H2
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are also more significant for slender members (such as offshore risers) due to its
relatively low Pe.

It should also be noted that the support conditions of a beam limit the appli-
cability of Galef’s formula: for the fundamental eigenfrequency (i = 1), Galef’s
formula is exact for pinned–pinned, sliding-pinned and sliding–sliding beams,
approximate for sliding-free, clamped-free (the case for the current analysis),
clamped-pinned, clamped–clamped and clamped-sliding beams, but not valid for
pinned-free and free–free beams. However, for the third and higher modes of
vibrations, Galef’s formula can be applied for all types of support conditions [188].

The effects of axial load can also be studied by using the Rayleigh energy
method, in which the strain energy term due to the presence of effective axial force
is added to the potential energy. This is already illustrated in the example in
Chap. 5.

By calculating with or without gravity effects, Table 6.2 shows the comparison
of the first ten eigenperiods of an offshore jacket structure (Fig. 6.4). Some rep-
resentative mode shapes are also shown in Fig. 6.4. The axial load’s effects can be
observed in almost all eigenmodes. Especially in the lower order of the eigen-
modes, the eigenperiods for the case with gravity effects are higher than their
counterpart without gravity effects. The higher the order of the eigenmode, the
smaller is the eigenperiod difference between the two cases. One exceptional case
is that for the ninth eigenmode, for which the eigenperiod with gravity effect is
even lower than that without gravity effect. Another exceptional case is that a local
vertical vibration at the bottom horizontal frames occurs at a lower eigenperiod
(1.014 s) for the case with gravity effect than that without gravity effects (1.152 s).
This is because, for a structure with large degrees of freedom, even though the
gravity can induce global compression, it may also introduce tension at some local
members. This is especially applied to the higher order of eigenmodes, where
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Fig. 6.3 The eigenfrequency ratio due to variation of the axial compressive force P, Pe: Euler
critical buckling load, xi/xinoP: the ratio of the eigenfrequency between that with and without the
presence of the axial compressive force
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Table 6.2 The first ten eigenperiods of a jacket-topside-flare tower structure (hydrodynamic
added masses are included) for the cases with gravity and without gravity effects, in calm sea
conditions

Mode number Eigenperiod (s)

With gravity (axial force) Without
gravity

Diff. (%)

1 4.173 4.120 1.3
2 4.115 4.065 1.2
3 2.453 2.442 0.4
4 1.203 1.194 0.7
5 1.193 1.187 0.5

NA 1.152 NA
6 1.090 1.086 0.4
7 1.014 NA NA
8 0.990 0.987 0.3
9 0.914 0.939 -2.7

10 0.902 0.901 0.1

Fig. 6.4 The global flexural (first), torsional (third) and significant flare tower flexural (fourth)
vibration eigenmodes
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complex local vibration modes rather than global vibration modes are exhibited.
The slight tuning of the local member stiffness can cause the eigenfrequencies of
local vibration mode to increase (due to tension), decrease (due to compression) or
even cross each other.

Based on Galef’s work, Bokaian [189] investigated the applicability of Galef’s
formula under a set of support conditions and also extended his study to tension
loads [190]. Using Galef’s formula, Shaker [191] first investigated relevant
practical problems in aerospace structures: a vibrating beam with arbitrary
boundary conditions, a cantilever beam with tip mass under constant axial loads,
and a cantilever beam with tip mass under axial loads applied on the tip directed to
the root. In addition, he extended the analysis to the tension loads as well. Virgin
[180, 192, 193] carried out a series of research work to investigate the dynamic
behavior of axially loaded structures. He experimentally illustrated that a beam
with an upward orientation experiences de-stiffening effects and a beam with a
downward orientation is stiffened by the weight of the beam through the devel-
opment of tension stress in the beam. By including the effects of large displace-
ment equilibrium paths through a nonlinear moment–curvature relationship, Virgin
and Plaut [193] further presented a formulation to obtain the eigenpairs of vertical
cantilevers. Several pieces of research discuss the use of measured vibration fre-
quencies obtained from the non-destructive modal testing to determine the
approximate buckling loads [194–196]. All these researches conclude that changes
in the measured vibration frequencies during increasing loading can be used to
predict the buckling of a structure. With the aim of developing robust low-
dimensional models, Mazzilli and his co-workers [197] used a nonlinear normal
mode method to develop a rigorous derivation of nonlinear equations, which
governs the dynamics of an axially loaded beam. They also applied the equations
for a study of dynamic characteristics of offshore risers. Readers interested in this
topic may read the relevant references cited above.
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Chapter 7
Eigenfrequencies of Non-uniform Beams,
Shallow and Deep Foundations

7.1 Non-uniform Beams

In engineering practice, non-uniform beams are sometimes constructed in the form
of a stepped beam, for which the mass (mi) and stiffness (EiIi) within each constant
cross-section segment can be assumed to be constant. A concentrated mass M is
located at the tip of the beam. With the mode shape assumed by Eq. (5.11), the
natural frequency can be calculated as:

x2
n ¼

p4

16H4

PN
i¼1 EiIili cos2 pzi

2H

ffi �

PN
i¼1 mili 1� cos i

2H

ffi �� �2
n o

þM
ð7:1Þ

where li is the length for segment i.
Furthermore, for a realistic monotower structure as shown in Fig. 5.1, it has

foundation stiffness at its base, as shown in Fig. 7.1.
The natural frequency of the rigid beam with only foundation’s rotation stiff-

ness kr and tip mass M presented is:

x2
r
¼ kr

ð
RH

0 qðzÞAðzÞz2dzþMÞ
ð7:2Þ

The natural frequency of the rigid beam (bending stiffness is infinitely high)
with only foundation’s lateral stiffness kh and tip mass M presented is:

x2
h
¼ kl

ð
RH

0 qðzÞAðzÞdzþMÞ
ð7:3Þ

The stiffness of the system by including the flexibility of the beam and foun-
dation can be taken as the individual beam stiffness (kb), the foundation’s lateral
stiffness (kh) and rotation stiffness (kr) working in series. The natural frequency is
then [182]:
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xtotal ¼
resultant stiffness of the entire system

sum of the equivalent stiffness for springs in series

¼
3
P

N

i¼1
EiIili cos2ðpzi

2HÞ=H

ð
P

N

i¼1
mili 1� cosðpzi

2HÞ
� �2

n o

þMÞH3 � H3

p4
16

P

N

i¼1

EiIili cos2ðpzi
2HÞ=H

þ H2

kr
þ 1

kh

2

6

4

3

7

5

¼ 3 EIð Þeq

ðM þ meqHÞH3 48
p4 þ Cfoundation

� �

ð7:4Þ

where ðEIÞeq ¼
P

N

i¼1
EiIili cos2ðpzi

2HÞ=H

meq ¼
X

N

i¼1

mili 1� cosðpzi

2H
Þ

h i2
� �

=H

Cfoundation ¼
3 EIð Þeq

KeqH

Keq ¼
krkhH2

kr þ khH2

kh

kr

Fig. 7.1 The physical modeling of a non-uniform beam with lateral (kh) and rotation (kr)
stiffness at its bottom to resemble the foundation stiffness
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The term Cfoundation reflects the flexibility of the foundation, which varies
between 0, for a very stiff foundation, and 0.5 for a reasonably flexible foundation.

7.2 Shallow and Deep Foundations

Foundations are critical components for ensuring stability, transferring the load
from the upper structure down to base soils or rocks. There are mainly two types of
foundations, shallow and deep foundation. A shallow foundation is used when the
earth directly beneath a structure has sufficient capacity to sustain the load
transferred from the upper structure. Typical examples of shallow foundations are
footings (spread and combined), soil retaining structures (retaining walls, sheet
piles, excavations and reinforced earth) and the foundation of a gravity-based
structure shown in Fig. 7.2. A deep foundation is used when the soil (such as clay)
near the ground surface does not have sufficient capacity to bear the weight.
Typical examples of deep foundation are piles and shafts.

For a shallow foundation such as that shown in Fig. 7.2, the physical modeling
illustrated in Fig. 7.1 can be applied. Here the essential task is to calculate lateral
(kh) and rotational (kr) stiffness. By separating the lateral (sliding) and rotational
motions as two independent components, Nataraja and Kirk [183] present the
lateral and rotational stiffness as:

kh ¼
8Gs

2� t
1� 0:05x

ffiffiffiffiffi

qs

Gs

r	 


R ð7:5Þ

kr ¼
8Gs

3ð1� tÞ 1� 0:215xR

ffiffiffiffiffi

qs

Gs

r	 


R3 ð7:6Þ

Fig. 7.2 A GBS structure with a shallow foundation directly resting on the soil. (Courtesy of
Aker Solutions)
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Fig. 7.3 Modeling of pile-soil stiffness from foundation-soil system (left) to its equivalent
counterpart with a rigid foundation

where Gs, t and qs are the shear modulus, Poisson’s ratio and density of the soil,
respectively.

The relevant damping at the corresponding degrees-of-freedom is:

ch ¼
8

2� t

ffiffiffiffiffiffiffiffiffiffi

qsGs

p

0:67þ 0:02xR

ffiffiffiffiffi

qs

Gs

r	 


R2 ð7:7Þ

cr ¼
0:375
1� t

xqsR
5 ð7:8Þ

where x is the angular frequency of the disk as shown in Fig. 7.2.
For pile foundations, the bending stiffness can simply be expressed as:

k ¼ 3EI

h3
e

ð7:9Þ

in which he is called the equivalent length (height). As shown in Fig. 7.3, it is a
hypothetical pile fully fixed at the base, which gives the same horizontal deflection
x under the same horizontal force Fx as the pile is inserted into flexible soil.

he can be approximated as [184]:

he ¼ hu 0:4þ 1:353
h

hu

	 


þ 1:875
h

hu

	 
2

þ h

hu

	 
3
" #1

3

ð7:10Þ

where hu ¼ 102:9EI
g0

� �1
5
, g0 is the horizontal subgrade reaction constant. This ranges

from 141 tons/m3 for relatively loose to 1,201 tons/m3 for dense sand [185].
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Chapter 8
Deterministic and Stochastic Motions

Essentially, all models are wrong, but some are more useful
than others.

Statistician George Edward Pelham Box 1987.

8.1 Category of Motions

Any motions or signals can be classified as either deterministic or random as
shown in Fig. 8.1. The deterministic motions are those that can be exactly pre-
dicted at any time instant, such as the rotation of a propeller shaft.

In contrast, random motions are those whose instantaneous value cannot be
predicted at any time instant or reproduced, while their essential features of pro-
cess can be described using probabilistic concepts (Sect. 8.3 and Chap. 10). To
understand these processes ‘‘one should conceptually think in terms of all time
history records that could have occurred’’ [43]. Examples of random/stochastic
processes are ocean wave height, wind speed variation for a year, or temperature
variation in the future. The complexity of these natural phenomena are such that
they can be modeled as random processes [24].

The choice of selecting a deterministic or random approach depends on the type
of motions or loads, and this also influences the type of structural analysis methods
chosen. Treating deterministic motions and structural responses is normally per-
formed by a straightforward structural dynamic analysis in the time domain. While
describing random motions and analyzing the structural responses under random
motions requires a utilization of probability methods with certain type of random
functions described statistically, this is a pillar for stochastic dynamic analysis.

In conclusion, rather than being an alternative approach to represent motions or
loads, deterministic and stochastic modeling are two sides of the same coin, of
which the former is used to represent the known motions; the latter one is to
describe the missing/unknown information of motions. They are both useful for the
prediction of structural responses.
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8.2 Deterministic Motions

As illustrated in Fig. 8.1, deterministic motions can be categorized as either
periodical or non-periodical. The former are defined as motions that repeat
themselves at regular time intervals, such as harmonic (sinusoal or cosisual)
motions, triangular motions or complex periodical motions of an arbitrary shape.
As illustrated in Fig. 8.2, all periodical motions repeat themselves with a period of
Tp, and have discrete components at one (harmonic) or more (complex periodical)
defined frequencies. Examples of periodical motions are the free vibrations of a
bridge or a building structure.

Non-periodical motions, as their name implies, do not repeat themselves. This
type of vibration occurs when a system has two or more incommensurable natural
frequencies, or contains nonlinearities, or has time-variant parameters and/or
unsteadiness of the excitations. Among non-periodical motions, quasi-periodical
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Fig. 8.1 Classification of dynamic motions and signals [44]

Fig. 8.2 Illustrations of periodical signals with a period of Tp. (a) sinusoidal/harmonic motion,
(b) rectangular motion, (c) triangular motion, (d) complex periodic motion
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motions (also called almost periodical motions) look like periodical motions but
are not strictly speaking periodical if observed closely. For example, the sum of
sines and cosines motions never repeat itself exactly as shown in Fig. 8.3, even if it
looks like periodical motions. The sum of two or more sines is periodical only if
the ratios of all pairs of frequencies are found to be rational numbers (integers) as
shown in the upper (rational number) and lower (non-rational number) figure of
Fig. 8.4. Quasi-periodical motions also have discrete components in the frequency
domain, and are normally considered periodical motions with an infinitely long
period. An example of such type of motions is the acoustic signal created by
tapping a slightly asymmetric wine glass [44].

Fig. 8.3 The sum of sines and cosines motions never repeat themselves exactly

Fig. 8.4 The sum of two sine functions
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Transient motions have the characteristics of limited duration i.e., the motion
d tð Þ ¼ 0 for t! �1 [44]. Examples are earthquake ground motions of a duration
generally less than one minute (shown in Fig. 8.5); impact loading of ship colliding
with an offshore platform structure; impact loading of dropped objects on a deck, etc.

8.3 Random/Stochastic Process

The random/stochastic process is essentially an extension from the random vari-
ables to the sequences of random variables. Mathematically, the quantity X(t) can
be defined as a random/stochastic process if X(t) is a random variable for each
value of stochastic/random process.

Analysis of random data is enhanced when the statistical properties of a random
process remain constant for every realization of a certain event. Strictly speaking,
the probability distribution of all physical motions/loadings/responses changes
with time, i.e., their mean and variance are not constant. However, in the engi-
neering world, one often encounters a wide class of problems where the type and
intensity of the motions/loadings/responses vary rather slowly in comparison to the
actual random fluctuations [45], i.e., the probability distribution does not change
over the time intervals of interest [46]. Such random phenomena are suitably
modeled by the stationary stochastic/random process.

Ground motion recorded during Kobe earthquake
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Fig. 8.5 The ground accelerations recorded at a station during Kobe earthquake, Japan, 17th of
January, 1995
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Examples of stationary loadings and motions are sea wave (not wave impact
loading) and wind loadings within a short term (in fact, wave and wind turbulence
loads are non-stationary in the long term because their mean values are not con-
stant over time), platform vibrations subjected to wave loadings, engine vibrations
or random ground excitations on running vehicle tires due to imperfections of the
road surface or railway tracks etc. It should also be mentioned that earthquake
ground motions are in general a non-stationary process of short duration. There-
fore, the mathematical treatment applicable for stationary processes may not be
applied directly to the earthquake ground motions.

Before mathematically illustrating a stationary process, we first define two most
important statistical properties: mean lXðtÞ and standard deviation rXðtÞ (a mea-
sure of the dispersion or spread about the mean) of a random process, which are
illustrated in Fig. 8.6 and expressed as:

lXðtÞ ¼ E XðtÞ½ � ¼ lim
T!1

1
T

Z T

0
XðtÞdt ð8:1Þ

rxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðtÞ � lXðtÞ½ �2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T!1

1
T

Z T

0
XðtÞ � lXðtÞ½ �2dt

s

ð8:2Þ

where E(.) stands for the mean (expected) value.
The completely/strictly stationary process is warranted if the following four

conditions are met:

1. The mean of the process is constant over time, i.e., lX tð Þ ¼ lX

2. The variance of the process is constant over time, i.e., r2
X tð Þ ¼ r2

X

3. The probability of the process is a function of time difference t2 � t1ð Þ and does
not depend on individual times t2 and t1, i.e., p x1; t1; x2; t2ð Þ ¼
p x1; t1 þ T; x2; t2 þ Tð Þ

E[X(t)] or X(t)

t

σ

μ

X(t)

x(t)

Fig. 8.6 Mean value (E[X(t)] or lX(t)) and standard deviationStandard deviation (rX (t)) of a
randomRandom process

8.3 Random/Stochastic Process 103



4. The joint probability of the process at any time is identical to the joint prob-
ability of the same vaiable displaced with an arbitrary amount of T:
i:e:; p x1; t1; x2; t2; . . .; xn; tnð Þ ¼ p x1; t1 þ T; x2; t2 þ T ; . . .; xn; tn þ Tð Þ.

If the process only satisfies the conditions 1, 2, and 3 above, it is called weakly/
simply stationary, i.e., both E(X(t)) and E(X(t) X(t ? T)) are independent of time
t and only dependent on T. Here E stands for the mean (expected) value.
E(X(t) X(t ? T)) is often referred to as autocorrelation function or autocorrelation,
denoted RX(T).

The stationary process can also be elaborated by studying Fig. 8.7, which shows
a long time history X(t), if one cuts it into N pieces of samples (X(1)(t), X(2)(t),…,
X(N)(t)) with equal duration, and the duration is of a sufficient while also finite
length to capture the essential characteristics of the motions/loadings/responses.
Here, two dashed lines across the ensemble at arbitrary times t1 and t2 are used. By
the collection of samples, each of which can be regarded as a result from a separate
experiment, one can then create a random process X(t) as:

X tð Þ ¼ X 1ð Þ tð Þ þ X 2ð Þ tð Þ þ � � � þ X Nð Þ tð Þ ð8:3Þ

Fig. 8.7 Divide the time history into units of equal duration
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Fig. 8.8 An example of a ‘‘probably’’ stationary process
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Fig. 8.9 Non-stationary process with varying mean (upper) and variance (lower). Note that the
process in the lower figure could probably be stationary as well
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The stationary process can be identified if the following two conditions are
fulfilled:

1. The value of 1
N
P

N

i¼1
Xi t1ð Þ should be approximately the same for any arbitrary

time t1, provided N is a rather large number.

2. At a preselected constant time interval T; 1
N
P

N

i¼1
Xi t1ð Þ � Xi t2ð Þ
� �

should be

approximately the same for any value of t1 and t2, provided N is a rather large
number.

The stationary process can be represented exactly by a sum of infinite number
of sinusoidal functions with random phase angles. However, using a finite number
of the functions for the summing can also give sufficient accuracy.

Figure 8.8 shows an artificial history of ‘‘probably’’ stationary motions.
Figure 8.9 shows two examples of artificial non-stationary motions. By visualizing
this figure, it is quite obvious that the motions in the upper figure show an increase
of mean value, while the lower one shows that the variance of motions is neither
stationary nor periodically stationary.

If the average calculated from each sample is the same as those of any other
samples and is equal to the average of the ensemble x(t), the random process is
then ergodic. This characteristic allows for the use of only one single time series
(one realization) to estimate all statistical parameters and characterize the random
process. An ergodic process must be stationary; however, a stationary process is
not necessarily ergodic. Many practical random processes that are nonergodic have
both ergodic and nonergodic aspects. Nonergodic variation could easily dominate
a problem if it is sensitive to small parameter variations or if the variations are
large and not well controlled [46].

It should be noted that in reality, a strict identification of a stationary process is
rather difficult. Therefore, judgment based on experiences is often needed so that a
likely stationary process can be identified. Moreover, the identification of ergo-
dicity is even more challenging and is often neglected in engineering practice,
even if this is an important characteristic of a process in statistical investigation.

To transform most time series that are of interest in the field of engineering to
their frequency domain counterpart, Fourier transformation can be used. It is based
on the assumption that random signals can be represented by the sum of a number
of sinusoids or wavelets, each with a specific amplitude, frequency and phase
angle. This will be elaborated in Chap. 9. However, not every stationary process
can be realized by a Fourier transformation. An example of this are processes with
infinite variance.

Transient, complex periodical and non-periodical motions, which are of
deterministic types, and random vibrations (Sect. 11.4), which are of a stochastic
type, all do not have a single component in the frequency domain. For analysis
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dealing with those types of motions, Fourier analysis can be performed. It is based
on the manipulation of loads and responses in the frequency domain with different
amplitudes and corresponding frequencies. This will be introduced in Sects. 11.2,
11.3.3, and 11.4.

One can also treat the transient motions/excitations as the superposition of
impulses of rather short duration, which will be discussed in Sect. 11.3.1.
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Chapter 9
Time Domain to Frequency Domain:
Spectrum Analysis

The concept of spectrum can be attributed to Isaac Newton, who, with the aid of a
prism, discovered that sunlight can be decomposed into a spectrum of colors from
red to violet in about 1700. This indicates that any light comprises numerous
components of light of various colors (wave lengths). The earliest function most
closely resembling the spectral density function was developed by Arthur
Schuster, who investigated the presence of periodicities in meteorological [47],
magnetic [48], and optical [49] phenomena. The spectrum provides a measure of
the light’s intensity varied with respect to its wavelength. This concept has been
generalized to represent many physical phenomena by decomposing them into
their individual components.

9.1 Fourier Spectrum

Invented by Baron Jean Baptiste-Joseph Fourier in 1807, but the subject of great
skepticism from his contemporaries at that time, the Fourier transform has now
become a major analysis method in the frequency domain across a wide range of
engineering applications. It states that any periodical function dðtÞ in the time
domain, not necessarily harmonic, has an equivalent counterpart in the frequency
domain, which can be represented by a convergent series of independent harmonic
functions as a Fourier series:

dðtÞ ¼ c0 þ
X

N

i¼1

ci sinðxit þ ciÞ ð9:1Þ

where:

c0 is the average value of dðtÞ, c0 ¼ 1
T0

R

T0

0
dðtÞ dt

T0is the duration of the motions

ci is the amplitude of the nth harmonic of Fourier series, ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
i þ b2

i

p
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ai ¼ 2
T0

R

T0

0
dðtÞ cosðxitÞ dt is the amplitude of cosinusoidal excitations

bi ¼ 2
T0

R

T0

0
dðtÞ sinðxitÞ dt is the amplitude of sinusoidal excitations

xi is the nth frequency of component, with the lowest one being x0 ¼ 2p
T0

ci is the phase angle, ci ¼ tan�1 ai
bi

� �

, which defines the stagger related to time

origin, and controls the times at which the peaks of harmonic motions/loadings/
responses occur, and influences the variation of dðtÞ with time.
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Fig. 9.1 Fourier amplitude spectrum (lower) of the strong ground motions (upper) recorded at
Imperial Valley, California
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Physically, the equation above is a representation of irregular records by the
sum of an N sine waves of amplitudes ci and frequency xi.

The Fourier series gives a complete description of motions since the motions
can be recovered by the inverse Fourier transform.

For most motion records, such as sea wave elevations, by judicious choice of
the datum level of the measurements, its average value (c0) can be assumed to be
zero. Equation (9.1) can then be reduced to:

dðtÞ ¼
X

N

i¼1

ci sinðxit þ ciÞ ð9:2Þ

Total energy is proportional to the average of the squares dðtÞ, which is the sum
of the energy contents for each individual component at each frequency xi

(Parseval theorem).
A plot of ci versus xi from Eq. (9.2) is called a Fourier amplitude spectrum

(normally referred to as a Fourier spectrum). To further explain the application of
this concept, let’s take the analysis of earthquake ground motions as an example.
For a given earthquake and site, in order to obtain a complete picture of the
strength of seismic ground motions (upper figure in Fig. 9.1) in each individual
frequency or period, the Fourier spectrum is introduced as the Fourier amplitude
(ci) that varies with frequency or period, as shown in Fig. 9.1. From Fourier
analysis of abundant strong ground motion time histories, it is found that the major
motion contents are below the period of 30 s.

As will be presented in Chap. 10 and Fig. 10.4, narrow-banded time series have
a dominant frequency, and it is typically the result of resonance or near-resonance
responses, while a broad/wide-banded motions or excitations have a noticeable
variety of frequencies. Since the mean values of the time series are constant and do
not contribute to the Fourier amplitude in the frequency domain, the narrow- and

Responses
Narrow-banded

Broad/wide-banded

Frequency

Fig. 9.2 Fourier amplitude spectrum for a narrow-banded and a broad-banded random process
with both of their origins of ordinate at the mean value of each time series
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broad-banded time series can be illustrated in the frequency domain using the
Fourier amplitude spectrum as shown in Fig. 9.2.

Figure 9.3 shows the Fourier amplitude spectrum of the ground acceleration
histories (Fig. 9.4) for four earthquake events of El Centro NS (Imperial Valley
1940), Kobe University NS (Hyogoken-Nanbu 1995), SCT1 EW (Mexico
Michoacan 1985), JMA Kobe NS (Hyogoken-Nanbu 1995). It is clearly shown that,
within the period range longer than 0.25 s, where the majority of seismic motion
energy is concentrated, spectrum peaks appear at different frequencies. The Fourier
amplitude spectrum for Mexico SCT1 EW record is comparatively narrow banded,
with the majority of energy concentrated at a period of around 2.4 s. For the JMA
Kobe NS record, the energy content is spread at a wide range of frequencies.

The ups and downs in a Fourier spectrum, for example for an earthquake
ground motion record, can be smoothed and plotted in a logarithmic scale. The
smoothed spectrum shown in Fig. 9.5 has a standard shape with the largest

Fig. 9.3 Fourier amplitude spectrum of strong ground motions recorded at four different
earthquake events [73]
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acceleration over an immediate range of frequency. This immediate range of
frequency is defined by its upper boundary frequency (cutoff frequency) fcutoff, and
the lower boundary frequency (corner frequency) fcorner as shown in Fig. 9.5.

In earthquake engineering, if a Fourier amplitude spectrum is used to represent
ground motions, fcorner is the one above, in which earthquake radiation spectra are
inversely proportional to the cube root of the seismic moment [74, 75] (which is the
indication of the energy release due to the rupture of the faults during an earthquake,

Fig. 9.4 Time history of strong ground accelerations recorded during the four different
earthquake events [73]
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see reference [23] for its definition). The ground motions at corner frequency are
higher for large earthquakes than that for small ones. Below fcorner, the spectra are
proportional to the seismic moment [23]. However, the characteristics of cutoff
frequency are unfortunately much less clearly understood. Hanks [76] and Papa-
georgiou and Aki [77] indicate that the cutofffrequency relates to the near-site effects
and source effects and can be regarded as constant for a given geographic region [78].

A plot of ci versus xi from Eq. (9.2) is called a Fourier phase spectrum.
Different from the Fourier amplitude spectrum, the Fourier phase spectra from
actual earthquake records do not have any standard shape [125].

9.2 Power Spectrum Density

In most cases, engineers are only interested in the absolute value of the Fourier
amplitude instead of whether it is part of the sine or cosine series. This is because
the absolute value provides the total amount of information contained at a given
frequency. Since the square of the absolute value is considered to be the power of
the signal, instead of the Fourier spectrum the motions can then be expressed in
terms of power PðxiÞ, defined as:

PðxiÞ ¼
1
2

c2
i ð9:3Þ

where ci is the amplitude of the ith harmonic of the Fourier series.
Imagining that fðtÞ is voltage, the power dissipated across a 1 ohm resistor is

then fðtÞ½ �2, and the total power dissipated across the resistor is
R

T0

0
f tð Þ½ �2dt. By

assuming that the total power of motions calculated from the sum of each indi-
vidual frequency component (Parseval’s theorem) equals that of the time domain,
one reaches:
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Fig. 9.5 Smoothed Fourier amplitude spectrum with corner and cutoff frequency logarithmic
space [125]
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X

þ1

n¼1

PðxiÞ ¼
Z

T0

0

f tð Þ½ �2dt ¼ 1
p

Z

xN

0

c2
i dx ¼ 1

p

X

N

i¼1

c2
i Dxi ð9:4Þ

where xN ¼ p
sample time interval Dt over the time historyis the highest frequency

in the Fourier series, or Nyquist frequency, i.e., the frequency range beyond which
the motion content cannot be accurately represented. In such a condition, a dis-
torted Fourier spectrum called aliasing will be introduced. Dxi is half of the
spacing between two adjacent harmonics xiþ1 and xi�1.

For an efficient (optimal) signal sampling, in order to extract valid frequency
information, one must bear in mind that the sampling of the motion/loading/
response signals must occur at a certain rate: (1) for a time record with the duration
of T seconds, the lowest frequency component measurable is Dxmin ¼ 2p

T or
Dfmin ¼ 1

T. (2) The maximum observable frequency is inversely proportional to the
time step, i.e., xobs ¼ 2p

sample time interval Dt over the time history, and the

sampling rate must be at least twice the desired frequency (xmaxor fmax) to be
measured, i.e., xobs [ 2xmax ¼ 2xN , where xN is the Nyquist frequency. With the
two properties (1) and (2) above, the sampling parameters can be expressed as:

xmax ¼ xN ¼
p
Dt

or fmax ¼
1

2Dt
ð9:5Þ

Dt ¼ p
xmax

¼ p
xN

or Dt ¼ 1
2fmax

ð9:6Þ

The description above is often referred to as the Shannon or Nyquist sampling
theorem.

By dividing the total power in the equation above with the duration T0, one gets
the average power intensity k0:

k0 ¼
1
T0

Z

T0

0

f tð Þ½ �2dt ¼ 1
pT0

Z

xN

0

c2
i dx ¼ 1

pT0

X

N

i¼1

c2
i Dxi ð9:7Þ

By observing this equation, it is also noticed that the average power intensity k0

is equal to the mean squared motion record (r2
f).

The power spectral density S xð Þ is therefore defined such that the following
equation can be fulfilled:

k0 ¼
Z

xN

0

S xð Þ dx ð9:8Þ

It is obvious that:

S xið Þ ¼
1

pT0
c2

i ð9:9Þ
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The expression above also shows the relationship between the power spectral
density S xð Þ and the Fourier amplitude ci.

The benefits of using power spectral density lie in the fact that it can charac-
terize many different motion records and identify their similarities, and can be used
for further computation to obtain the responses. This is especially the case for
characterizing stationary Gaussian (Sect. 10.2) type motions. For example, for sea
wave elevation or wind velocity, even though a one-to-one wave elevation or wind
velocity does not generally exist, all records that result in identical spectral density
do have the same statistical properties, i.e., the details of records that vary greatly
may have identical spectral density.

The calculation of power spectrum can be used to estimate the statistical
properties of many records, such as wave elevations, wind velocities, ground
surface roughness, seismic ground motions, etc., and these can then be further used
to compute stochastic responses using random vibration techniques (Sect.11.4). It
also has the merit of executing the computation much faster than the Fast Fourier
Transformation (FFT), because the computation is performed in place without
allocating memory to accommodate complex results. However, since phase
information is lost and cannot be reconstructed from the power spectrum’s output
sequence, power spectrum cannot be utilized if phase information is desired.

When using the power spectrum, various terminologies that are slightly dif-
ferent from each other exist in different fields or different purposes of applications.
For example, the ordinate of the wave spectral density can be based on an

amplitude spectrum f
2

� �2
� �

, an amplitude half-spectrum f
2

� �2
=2

� �

, a height

spectrum (f2), or a height double spectrum (2 f2) etc., [85]. The abscissa can be
chosen as angular frequency, cyclic frequency or period.
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Fig. 9.6 Power of the strong ground motion (Fig. 9.1) recorded at Imperial Valley; g represents
the acceleration of Earth’s gravity
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Figure 9.6 shows an example of the power spectrum density of strong ground
motions (Fig. 9.1) recorded at Imperial Valley.

In some applications, the power spectral density S xð Þ is normalized by its area
(k0), which gives:

Sf xð Þ ¼ 1
k0

S xð Þ ð9:10Þ

Example:
To characterize the global vibrations of a high-rise building and identify the
local vibrations and acoustic performance on certain floors in this building,
measurements of acceleration are planned. The lowest frequency Dfmin

component measurable and the maximum desired frequency (fmax) are
designed as 0.2 and 100 Hz, respectively. Determine a suitable time dura-
tion, the number of sampling points and the sample time interval for the
measurement.

Solution: One can determine the time duration for measurement using the
lowest frequency or the highest period measurable as: T ¼ 1

Dfmin
¼ 5 s.

The number of sampling points is: N ¼ fobs

Dfmin
¼ 2fmax

Dfmin
¼ 2�100 Hz

0:2 Hz ¼ 1000,

and the sample time interval over the time history is: Dt ¼ T
N ¼

5 s
1000 ¼

0:005 s (or Dt ¼ 1
2fmax
¼ 1

2�100 ¼ 0:005 s).

Readers may bear in mind that only processes with finite variance can be
represented by spectra. Fortunately, even if theoretically the variance of a process
can be infinite, almost every process in the engineering world has a finite variance.

Although using the Fourier transformation is the most common way of gen-
erating a power spectrum, other techniques such as the maximum entropy method
can also be used [78].
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Chapter 10
Statistics of Motions and Loads

The study of motion statistics is useful in many branches of dynamic analysis,
giving a quantitative measure of motions in a concise manner and therefore
proving efficient for mathematical treatment. Furthermore, it also paves the way
for structural integrity (e.g., fatigue assessment) and reliability assessment.

This chapter will go through the basic concepts of statistics, which are essential
for readers to further engage in the application of random vibrations and fatigue
assessment, which will be elaborated in later chapters.

The three most important probability density distributions, the Gaussian, Weibull
and Poisson distributions, are presented. The first one is elaborated since it directly
describes a large group of dynamic phenomena in a statistical manner. As modern
engineers work within the framework of load-resistance and performance-based
design philosophy, a proper understanding of load level from the probability point of
view is important for integrity and further risk assessment. For example, one may
need to extrapolate from a few years of measured wind speed data in order to estimate
extreme wind speed for, say, 50 years. Therefore, the latter two distributions are also
introduced because they serve to characterize the probability of load level.

It should be mentioned that, rather than being based on a theoretical back-
ground, all three probability distributions are based on experiments or real pop-
ulations from various fields of study.

When reading this chapter, readers need to understand that a random process is
a sequence of random variables defined over a period of time. It is not unusual for
new learners to mix up these two concepts, which are presented in Sect. 8.3

10.1 Narrow- and Wide-Banded Process

As an introduction, we begin with the study of narrow- and wide/broad-banded
motions, as already briefly mentioned in Sect. 9. As illustrated in Figs. 10.1 and
10.2, narrow-banded motions have a dominant frequency and are characterized by
a close to sinusoidal and smoothed time history, and the motions’ process is
relatively smooth and regular. Responses with narrow-banded characteristics are
typically the results of a resonance or near-resonance response, which have the
following properties [50]:
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• Only positive local and global maxima
• Only one maximum for each positive zero crossing (number of upcrossing

equals the number of maxima).

Given that the mean positive zero-crossing periods between the narrow- and
broad-banded processes are the same, the number of maxima for the narrow-
banded time series within a specific time interval is less than that of the broad-
banded one.

E(x) or µx

t

x(t)

x(t)

Broad/wide-banded

Narrow-banded t

E(x) or µx

Fig. 10.1 Two random motion time series showing wide- (upper) and narrow-banded (lower)
characteristics, respectively; indicates a local maximum (positive or negative peak), indicates
an upcrossing
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Fig. 10.2 Power spectrum for a narrow-banded and a broad-banded random process
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In contrast, a broad/wide-banded process has noticeable varieties of frequencies
and exhibits a jagged and irregular time history, as shown in the upper figure of
Fig. 10.1.

10.2 Gaussian Distribution

Many physical problems such as wind velocity fluctuations can be approximated
as the sum of a sufficiently large number of independent random variables under
fairly general condition (each with finite mean and standard deviations).
According to the Central Limit Theorem [51], they can be assumed to follow
Gaussian/normal distribution, after Carl Gauss (1777–1855), who applied it to the
calculation of measurement accuracy. The Gaussian process is characterized by
the probability density function (Fig. 10.3) as:

pðxÞ ¼ 1

rx

ffiffiffiffiffiffi

2p
p e

� xðtÞ�lx½ �2

2r2
x

h i

ð10:1Þ

Gaussian distribution is symmetrical about its mean and has its deviations from
the mean.

One important feature of Gaussian distribution is that it can be completely
defined by its mean and standard deviation, and the responses of a linear system to
this form of excitations still follow the Gaussian distribution.

For describing a non-normal (non-Gaussian) probability distribution of a random
process, two additional statistical properties, namely skewness (k3), which is the

p(x)

xx

Fig. 10.3 Gaussian/normal distribution
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average of xðtÞ � ux½ �3 normalized by r3
x
; and kurtosis (k4), also called peakedness,

which is the average of xðtÞ � ux½ �4 normalized by r4
x
, are also often used:

k3 ¼ E
xðtÞ � ux

rx

� �3
" #

¼ lim
T!1

1
T

Z

T

0

xðtÞ � ux

r3
x

� �3
" #

dt ð10:2Þ

k4 ¼ E
xðtÞ � ux

rx

� �4
" #

¼ lim
T!1

1
T

Z

T

0

xðtÞ � ux

r4
x

� �4
" #

dt ð10:3Þ

where E stands for the mean (average) value.
From the equations above, it is clear that the skewness characterizes the degree

of asymmetry of a distribution around its mean. And kurtosis characterizes the
relative peakness or flatness of a distribution compared with the normal distri-
bution. Compared to a Gaussian distribution with skewness equal to 0.0, positive
skewness indicates a distribution with an asymmetric tail extending toward more
positive values. Negative skewness indicates a distribution with an asymmetric tail
extending toward more negative values. A kurtosis of more than 3.0 indicates a
relatively peaked distribution. A kurtosis of less than 3.0 indicates a relatively flat
distribution. The non-Gaussian distribution of responses can be identified by a
non-zero skewness and a kurtosis of the responses unequal to 3.0. A larger
deviation of the kurtosis from the value of 3.0 indicates more significant deviation
of the responses from that of the Gaussian distribution.

Here, the question arises as to how to judge whether a process is significantly
non-Gaussian from an engineering point of view. There are no widely accepted
criteria. A possible rule of thumb is to find a range with plus and minus the double
standard error of skewness and kurtosis from the perfect Gaussian process
skewness (0.0) and kurtosis (3.0). If the skewness and kurtosis of the time series
are outside this range, the process may be regarded as significantly non-Gaussian.

There are certain types of loading acting on a structure that are of non-Gaussian
characteristics. A typical loading is the wave loading on offshore structures, which
is primarily due to the nonlinear relations induced from drag forces in Morison’s
equation [52, 53, 201], the variation of water surface causing the intermittency of
wave loading, and the variation of buoyancy forces on members in the splash zone
[53–57]. In addition, even if the loading follows the Gaussian distribution, the
nonlinearities in structural response (as will be presented in Sect. 15.2) may also
modify the probability distribution with a trend toward a non-Gaussian status.

For mathematical convenience, one can move the origin of ordinate (vertical) in
Fig. 10.1 to the mean value of each time series, i.e., ux ¼ 0. The resulting time
series are shown in Fig. 10.4.

For a general stationary Gaussian process (not necessarily narrow-banded) with
zero mean, the amplitude of the process is distributed with Rice distribution [58],
named after Stephen O Rice (1907–1986):
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pðxÞ ¼ 1

rx

ffiffiffiffiffiffi

2p
p we

� x2ðtÞ
2r2

x w2

h i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q

xðtÞ
rx

e
� x2ðtÞ

2r2
x

h i

xðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q

wrx

Z

�1

e�
t2
2 dt

8

<

:

9

=

;

ð10:4Þ

where w is the bandwidth parameter or energy density spectrum [66, 67] given by:

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
2

k0 � k4

s

for 0:0�w� 1:0 ð10:5Þ

A smaller w indicates a close to narrow-banded process and a larger one is close
to the one that shows a broad-banded process.

We define the spectral moments that can be considered as moments of area of
the energy spectrum about the vertical axis as below:

ki ¼
Z

1

0

xiSf xð Þdx ð10:6Þ

From the equation above, it is noticed that the zero moment is the area under the
spectral curve and is also equal to the variance of the process:

k0 ¼ r2
x ð10:7Þ

The mean period of motions can then be calculated as:

T ¼ 2pk0

k1
ð10:8Þ

x(t)

Broad/wide-banded

t

t

Narrow-banded

Tp Tp

Tp Tp Tp Tp

Tz Tz Tz

x(t)
Tp Tp Tp Tp

Tz Tz Tz Tz

Tp Tp

Fig. 10.4 Two random motion time series with both of their ordinate origins at the mean value
of each time series; indicates a local maximum (positive and negative peak), indicates a
zero upcrossing, Tp is the period of peaks, and Tz is the period of zero crossing
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The mean period of motion peaks/crests (peak period) shown in Fig. 10.4 can
be calculated as [58]:

Tp ¼ 2:0p

ffiffiffiffiffi

k2

k4

s

ð10:9Þ

The average of zero crossing period (mean crest period) defined in Fig. 10.4
can be calculated as [88]:

Tz ¼ 2:0p

ffiffiffiffiffi

k0

k2

s

ð10:10Þ

The bandwidth can also be indicated using an irregularity factor j in terms of
Tp and Tz:

j ¼ Tp

Tz
ð10:11Þ

The irregularity factor varies between 0.0 and 1.0. When it approaches 1.0, the
relevant motions exhibit a regular sine form in time and are narrow-banded. When
the factor approaches 0.0, the motions show a form close to white noise (the power
spectral density is constant over the entire frequency range, see Sect. 11.4.2) that is
broad-banded.

In dynamic analysis, usually, the average of the bandwidth parameter of energy
density spectrum [67] w as aforementioned is used, and its relation with the
irregularity factor is:

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
2

k0 � k4

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Tp

Tz

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2
p

for 0:0�w� 1:0 ð10:12Þ

As presented, w ¼ 1:0 indicates a broad-banded process. Motions at various
frequencies are presented. In such a condition, the probability density of peaks for
this limiting case is therefore Gaussian:

pðxÞ ¼ 1

rx

ffiffiffiffiffiffi

2p
p e

� x2ðtÞ
2r2

x

h i

( )

ð10:13Þ

In many applications, loads can be expressed as a spectrum S(x), which is the
sum of two individual spectra S1(x) and S2(x):

S xð Þ ¼ S1 xð Þ þ S2 xð Þ ð10:14Þ

The spectrum S(x) has two peaks, and is thus called a two-peak spectrum.
For example, the two-peak spectrum is often used to combine waves due to

local wind sea with spectrum S1(x) and waves due to swell generated at a distance
with the spectrum S2(x).
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Therefore, regardless of the order for the spectrum moment, the spectral
moment k for the combined spectrum S(x) is also additive [106], i.e., the com-
bined spectrum equals the sum of two spectrum moments k1 and k2:

k ¼ k1 þ k2 ð10:15Þ

It should be noticed that, in case that a process cannot be modeled by Gaussian
distribution (e.g., loads or responses exhibit significant nonlinear characteristics), other
methods have to be adopted to describe the statistical information about the process.
Among them, Monte Carlo simulation method [107] is the most direct approach.

10.3 Short-Term Distribution for Continuous Random
Process: Rayleigh Distribution

As presented in Sect. 10.2, w ¼ 0:0 indicates a narrow-banded Gaussian process.
The probability density of peaks follows Rayleigh distribution (named after Lord
Rayleigh (1842–1919), to describe the distribution of intensity of sound emissions
from an infinite number of sources). That is, the motions concentrate around a
frequency, and the probability density function is then:

pðxÞ ¼ xðtÞ
r2

x

e
� x2ðtÞ

2r2
x

h i

¼ xðtÞ
k0

e
� x2ðtÞ

2k0

h i

ð10:16Þ

At the range 0:0\w\1:0, the equation above becomes:

pðxÞ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q

xðtÞ
r2

x

e
� x2ðtÞ

2r2
x

h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q

xðtÞ
k0

e
� x2ðtÞ

2k0

h i

ð10:17Þ

Figure 10.5 illustrates the difference between Gaussian, Rice and Rayleigh
distribution. It is clearly shown that the Rayleigh distribution gives an upper limit

p(x)

x

, Gaussian
, Rayleigh

, Rice

Fig. 10.5 Comparison of Gaussian/normal, Rice and Rayleigh distribution
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for the distribution of maxima. The maximum values of a narrow-banded Gaussian
process are essentially Rayleigh distributed. For example, if the wave elevations
are an approximately narrow-banded Gaussian process (which is the case for short-
term waves with a duration of up to 10 h), the individual wave height (amplitude)
and crest height then follow the Rayleigh distribution [59]. This also means that if
Rayleigh distribution is used for estimating the probability at a certain level, it
always results in a conservative evaluation (with regard to values of a probability
of exceedence at a certain level) compared to that of the Rice distribution (with a
probability distribution closer to exact conditions).

The probability lying between –? and x is defined as the cumulative proba-
bility distribution function, or distribution function:

PðxÞ ¼
Z

x

�1

pðxÞdx ð10:18Þ

It is obvious that the probability covering between –? and þ?, i.e., the
integral over the full range, is 1.0:

PðxÞ ¼
Z

þ1

�1

pðxÞdx ¼ 1:0 ð10:19Þ

In addition, the accumulative probability distribution also possesses the fol-
lowing properties:

Pðxþ DxÞ � PðxÞ ¼ pðxÞdx ð10:20Þ

Pðx2Þ � Pðx1Þ ¼
Z

x2

x1

pðxÞdx ð10:21Þ

With the definition above, one can express the mean or expected value (first
moment of x) as:

EðxÞ ¼
Z

þ1

�1

xpðxÞdx ð10:22Þ

The rth central moment about the mean is then calculated as:

E ðx� uxÞr½ � ¼
Z

þ1

�1

ðx� uxÞrpðxÞdx ð10:23Þ

where ux is the mean value of x defined in Sect. 8.3.
Therefore, it is obvious that the second, third and fourth moment about the

mean are the variance, skewness and kurtosis of the random variable.
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It is of particular interest for engineering to calculate the maximum value that is
exceeded by a specific probability. The corresponding Rayleigh cumulative
probability that is exceeded with the probability of 1/N is:

Pðx� a1=NÞ ¼
Z

x

�1

pðxÞdx ¼ 1� e
�

a2
1=N

2r2
x

h i

¼ 1� e
�

a2
1=N
2k0

h i

ð10:24Þ

where a1=N is the value of maximum value of x.
For calculating the most probable extreme/largest amplitude of N successive peaks:

1� Pðx� a1=NÞ ¼ 1=N ð10:25Þ

One finally obtains the value of one exceeded, on average, once in N cycles is
that with an exceedence probability of 1/N:

a1=N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2
x ln N

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k0 ln N
p

ð10:26Þ

The average amplitude peak of the highest 1/N proportion of peaks is also
commonly used in statistical analysis, which is actually the center of the shaded
area in Fig. 10.6:

a1=N ¼

R

þ1

a1=N

xpðxÞdx

R

þ1

a1=N

pðxÞdx

¼ N

Z

þ1

a1=N

xpðxÞdx ð10:27Þ

p(x)

x

Na /1

Na /1

Fig. 10.6 Comparison between the average (a1=N ) and the most probable (a1=N ) amplitude peak
of the 1/N highest peaks
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Cartwright and Longuet-Higgins [58] show that a1=N is calculated as:

a1=N ¼ rx

ffiffiffiffiffiffiffiffiffiffiffiffi

2 ln N
p

þ Nrx

ffiffiffi

p
2

r

1� erf
ffiffiffiffiffiffiffiffiffi

ln N
p� �h i

ð10:28Þ

where erf xð Þ ¼ 2
ffiffi

p
p
R

x

0
e�k2

dk is the error function.
Figure 10.6 illustrates the definition of the average (a1=N) and the most probable

(a1=N) amplitude peak of the 1/N highest peaks.
With the equation above, the average value of all peaks (N = 1) is calculated as:

a1 ¼ rx

ffiffiffi

p
2

r

¼ 1:25rx ¼ 1:25
ffiffiffiffiffi

k0

p

ð10:29Þ

The average value of 1/3 highest peaks (N = 3), also named the significant value, is:

a1=3 ¼ rx

ffiffiffiffiffiffiffiffiffiffiffi

2 ln 3
p

þ 3rx

ffiffiffi

p
2

r

1� erf
ffiffiffiffiffiffiffi

ln 3
p� �h i

¼ 2:0rx ¼ 2:0
ffiffiffiffiffi

k0

p

ð10:30Þ

And the average of 1/10 peaks (N = 10) is:

a1=10 ¼ 2:55rx ¼ 2:55
ffiffiffiffiffi

k0

p

ð10:31Þ

From the three equations above, the relationship among the average of 1/N
highest peaks is:

a1=3 ¼ 1:60a1 ¼ 0:78a1=10 ð10:32Þ

Example: In ocean engineering, the wave height is typically defined as
twice the wave amplitude (peaks). Calculate the average, the probability and
cumulative density function of 1/N highest wave height H1=N .

Solution:

H1=N ¼
Rþ1

H1=N
HpðHÞdH

Rþ1
H1=N

pðHÞdH
¼ N

Z þ1

H1=N

HpðHÞdH

From the equation above, it is obvious that the average of 1/N highest
wave height H1=N is obtained by multiplying the average of 1/N highest
amplitude peak a1=N with a factor of 2.0, this gives:

H1 ¼ 2:5rx ¼ 2:5
ffiffiffiffiffi

k0

p

H1=3 ¼ 4:0rx ¼ 4:0
ffiffiffiffiffi

k0

p
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10.4 Long-Term Distribution for Continuous Random
Process: Weibull distribution

While the Rayleigh distribution may be suitable for modeling individual waves in
the short term (2–10 h), Weibull distribution [61], named after Walloddi Weibull
(1887–1979), is normally used to model the life distributions (long term) of
mechanical units or extreme environmental loads [62]:

pðxÞ ¼ bdðx� aÞb�1e�dðx�aÞb ð10:33Þ

when x C a, d[ 0 and b[ 0.
The parameter a is the lower boundary of the values that the random variable

X can take.
The distribution gives a straight line if plotted on a Weibull probability paper.
The Weibull cumulative probability distribution function (with a lower bound,

below which the probability is zero) is then:

PðxÞ ¼
Z

x

�1

pðxÞdx ¼ 1� e�dðx�aÞb ð10:34Þ

The Weibull distribution is rather useful for expressing the long-term distri-
bution for a physical process that results in a limit on the possible value of
x. Examples of using it is to calculate the extreme value distribution of wave
height (for both significant H1/3 and individual wave height) that a marine structure
may experience in its lifetime (long term) or the extreme wind speed at a location
within 50 years. In such cases, the long-term probability distribution of wave

H1=10 ¼ 5:1rx ¼ 5:1
ffiffiffiffiffi

k0

p

The probability density function in terms of wave height H is:

pðxÞ ¼ H

4k0
e
� H2

8k0

h i

The cumulative probability distribution function in terms of wave height
H is then:

PðxÞ ¼ 1� e
� H2

8k2
0

� �
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height or wind speed can be modeled in terms of three parameter Weibull
distribution:

FðuÞ ¼ 1� e�
u�a

cð Þ
b

ð10:35Þ

where u is for example the wind speed or significant wave height (typically 1 h
mean for wind speed and 3 h for wave height); a is a location parameter; b is a
shape parameter; and c is a scale parameter.

The extreme values uR, corresponding to a return period of R, are obtained by
inverting the equation above for a cumulative probability F ¼ 1� s

pR:

uR ¼ aþ c � ln
s

pR

� �� �1
b

ð10:36Þ

where s is the duration of the event (typically 1 h for mean wind speed and 3 h for
significant wave height); and, p is a sector or monthly probability, i.e., 1/12 for
monthly omni(all)-directional distributions).

A long-term observation of sea wave elevation may be performed by recording
the significant wave height H1/3 and the corresponding zero crossing period Tz for
20 min each third hour. The H1/3 and Tz are estimated for each observation period
either by directly using the short term wave statistics (zero crossing analysis) [60]
defined in Fig. 10.4 or by calculating the wave spectrum and applying the method
illustrated in the last example.

Other long-term probability distributions exist for various applications, such as
the Lognormal distribution, Fisher-Tippett I or Gumbel distribution. For a com-
plete summary of the topic, readers may read references [62, 81, 166].

It should be noted that there is no strict rule stating that the Weibull distribution
only fits long-term events or the Rayleigh distribution can only be applied to short-
term events. Their applicability is always problem dependent.

Example: In order to calculate the directional 1 h mean wind speed at 10 m
above the ground (or sea surface) at a specific site, the relevant directional
Weibull parameters in terms of location, shape and scale are obtained from
the relevant report, as given in Table 10.1. Calculate the cumulative prob-
ability for 1 h mean wind speed from 5 to 29 m/s.

Solution: The long-term cumulative probability distribution of wind speed
can be assumed to follow Weibull distribution:

FðuÞ ¼ 1� e�
u�a

cð Þ
b

By taking u as 1 h mean wind speed from 5 to 29 m/s, the corresponding
cumulative probabilities calculated for each mean wind speed are illustrated
in the white area in Table 10.1. From the sum of probability from all
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Table 10.1 Directional cumulative probability based on the given Weibull parameters

directions at each wind speed, it is shown that 91 % of wind occurs at a wind
speed below 16 m/s.

For a further screening, the scatter diagram shown in Table 10.1 may be
categorized with fewer wind blocks, and each block has an individual
probability of occurrence instead of the cumulative probability. This is
shown in Table 10.2.

(continued)
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Table 10.2 Directional probability for each individual wind block based on the cumulative
probability calculated in Table 10.1

Table 10.1 (continued)
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10.5 Number of Occurrence Within a Fixed Time or Space
Interval: Poisson Distribution

Different from Gaussian distribution, which is for modeling a continuous random
process, Poisson distribution, named after Simeon-Denis Poisson (1781–1840), is a
discrete probability distribution that expresses the probability of a given number of
events occurring within a fixed interval of time and/or space if these events occur
with a known average rate and are independent of the time since the last event. It
can also be used for estimating the number of events in specified intervals, such as
distance, area or volume. Poisson distribution is expressed as:

PðN ¼ nÞ ¼ une�u

n!
ð10:37Þ

where N and u are the number of occurrence for a particular event and the average
number of occurrences of all events within the time interval, respectively.

The distribution above has the following four properties:

• Independency: the number of occurrences (variable) in one time interval is
independent from that in any other time interval

• Non-simultaneously occurring: the probability that two or more events occur
simultaneously (or within a rather short time interval) is zero (negligible)

• Random occurrence: the events occur randomly in time or space
• Uniform distribution: the mean number of events within a rather short time

interval is proportional to the length of the time interval.

Examples of events that follow a Poisson distribution are the number of flaws in
a given length of material, the number of phone calls arriving at a call center per
hour, the number of visitors to a shopping mall within a week, and the number of
major and great earthquakes (larger than Richter magnitude of 7.0) occurring
within 1,000 years.

Essentially, Poisson probability distribution predicts the degree of spread
around a known average rate of occurrence. It is shown that the inter-event time in
a Poisson process is exponentially distributed. With the average rate of occurrence
k of the considered event and time period of interest t, the equation above can be
rewritten as:

PðN ¼ nÞ ¼ ðktÞne�kt

n!
ð10:38Þ

The probability of at least one event exceedance (N C 1) in a period of t can
then be calculated as:
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P N� 1½ � ¼ 1� e�kt ð10:39Þ

If one set period of t = 1 year, the annual probability of exceedance can be
calculated as:

q ¼ 1� e�k�1 ¼ 1� e�
1
R ð10:40Þ

where R is called return period, or recurrence interval, which is defined as the
average time between the design conditions being exceeded, and is widely used as
an estimate of the likelihood of an event.

Both return period and annual probability of exceedance are exchangeable and
are important parameters for reliability and risk analysis. For example, for design
of all types of structures, it is essential to estimate the worst load condition during
the life time of the structure. This load condition is usually calibrated with an
annual probability of exceedance or return period. This is normally carried out by
fitting the measured load data (e.g. wave height, wind speed, or earthquake ground
accelerations) to a decent probability distribution function, and by extending the
probability distribution to the entire range of values. This process is illustrated in
Figs. 10.7 and 10.8.

For example, based on the equation above, one may calculate that the annual
probability of exceedance for return period of 1, 10, 100 and 600 years are 0.63,
10-1 and 10-2, 1.665 9 10-3, respectively. In many design codes, the load levels
are given with corresponding annual probability of exceedance. Readers may
transfer this into the return period, which provides more sensible information to
the general public.

It should be noticed that the Poisson process is a memory-less model, in that it
is independent of elapsed time. In addition, it is also independent of size or
location of any previous events. Therefore, this model is only applicable for the
statistical characterization of a region with a large area [63].

10.6 Joint Probability Distribution

The idea of probability density and cumulative probability distribution function for
a single variable in the previous sections can be extended to any number of random
variables, leading to the study of joint probability distribution. For two variables
(X, Y), the probability density function pðx; yÞ can be represented as a surface
above a horizontal plane, and the cumulative probability (Pðx; yÞ) of x lying in the
range between x and x ? dx as well as y lying between y and y ? dy is pðx; yÞdxdy.
Some of the parameters that are of interest in engineering are the means (ux and
uy), the variance (r2

x and r2
y) and the covariance (rxy):
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Fig. 10.8 Observed (dots) and fitted (line) cumulative probability distribution of 1 h mean wind
speed for a typical site in the North Sea

Fig. 10.7 Observed (dots) and fitted (line) cumulative probability distribution of significant
wave heights for a typical site in the North Sea
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ux ¼ E x½ � ¼
Z

þ1

�1

Z

þ1

�1

xpðx; yÞdxdy ð10:41Þ

uy ¼ E y½ � ¼
Z

þ1

�1

Z

þ1

�1

ypðx; yÞdxdy ð10:42Þ

r2
x ¼ E ðx� uxÞ2

h i

¼
Z

þ1

�1

Z

þ1

�1

ðx� uxÞ2pðx; yÞdxdy ð10:43Þ

r2
y ¼ E ðy� uxÞ2

h i

¼
Z

þ1

�1

Z

þ1

�1

ðy� uyÞ2pðx; yÞdxdy ð10:44Þ

rxy ¼ E ðx� uxÞðy� uyÞ
	 


¼
Z

þ1

�1

Z

þ1

�1

ðx� uxÞðy� uyÞpðx; yÞdxdy ð10:45Þ

Here, we introduce the definition of normalized covariance, which is used to
identify the correlations between two variables:

qxy ¼
rxy

rxry
ð10:46Þ

qxy ¼ �1:0 indicates a full correlation (linear dependence) between the vari-
ables x and y; while if qxy ¼ 0:0, the variables x and y are uncorrelated. In engi-

neering practice, if the qxy

�

�

�

�� 0:9, the two variables x and y are regarded as highly
correlated.

Example: Based on a Poisson process, calculate the average rate of annual
occurrence k and return period of at least one event that has 10 % probability
of being exceeded in the next 50 years.

Solution: With P N � 1½ � ¼ 10 %, t ¼ 50, we then have: 10 % ¼ 1� e�k�50,
the average rate of annual occurrence k is 0.0021, and the return period
R = 1/k = 475 years. It is noted that, in many seismic design codes, this is
referred to as the ‘‘standard’’ return period.
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10.7 Long-Term Prediction

Let’s take calculating the wave-induced structural responses as an example. A
short-term sea state is for most practical purposes reasonably characterized by the
significant wave height Hs, and the corresponding spectral wave period Ts.
However, when the JONSWAP spectrum (Sect. 12.1.2) is used, the spectral wave
period Ts is often replaced by spectral peak period Tp.

In order to provide a better fit to the data in the lower tail of the distribution, the
long-term variation of the wave climate can be described by replacing the three-
parameter Weibull distribution (Sect. 10.4) with a combination of a Lognormal
and a Weibull distribution (LoNoWe):

fHSðhsÞ ¼
1
ffiffiffiffiffiffi

2p
p

ahs

e�
ln hs�hð Þ2

2a2 for hs� g ð10:47Þ

fHSðhsÞ ¼
b
q

hs

q

� �b�1

e�
hs
qð Þ

b

for hs [ g ð10:48Þ

where g is called the transition parameter that separates the Lognormal model for
small values of Hs from the Weibull model for the larger values [24]. It is geo-
graphical location dependent.

The two equations above give the marginal probability distribution for the
significant wave height Hs. However, the corresponding spectral peak period Tp

needs to be determined using the conditional probability for given values of Hs:

fTp HSj ðtp hsj Þ ¼
1

ffiffiffiffiffiffi

2p
p

r � tp
e�

ln tp�lð Þ2
2r2 ð10:49Þ

where both land r depend on the wave height:

l ¼ a1 þ a2ha3
s ð10:50Þ

r2 ¼ b1 þ b2 � e�b3�hs ð10:51Þ

where a1, a2, a3, b1, b2 and b3 are constants.
The joint probability of wave height Hs and spectral peak period Tp are then

obtained by multiplying the marginal probability density function of significant
wave height (Eqs. (10.47) or (10.48)) with the conditional probability density
function of the spectral peak period (Eq. (10.49)):

fHSTpðhs; tpÞ ¼ fHSðhsÞfTp HSj ðtp hsj Þ ð10:52Þ

The LoNoWe distribution is fitted to the data such that the extreme values
corresponding to a required annual probability of exceedance (e.g., 10-2 for a

10.7 Long-Term Prediction 137

http://dx.doi.org/10.1007/978-3-642-37003-8_12
http://dx.doi.org/10.1007/978-3-642-37003-8_12


return period of 100 years) is equal to the corresponding values obtained when
fitting a three-parameter Weibull distribution to the data (e.g., Table 10.1).

The environmental parameters may differ from one location to another. For
example, at the Oseberg field in the North Sea, b ¼ 1:363 and a ¼ 0:569, while at
the Statfjord field less than one hundred kilometers north-west of the Oseberg field,
b ¼ 2:691 and a ¼ 0:657.

10.8 Environmental Contour Line Method

For a very complex response problem, a full long-term analysis elaborated in
Sect. 10.7 will typically be out of reach. As an alternative, one can estimate the q-
annual probability response using the environmental contour line method.

For example, in the application of ocean engineering, this method is based on
an appropriate formulation of the design storm concept with combinations of
significant wave height and spectral peak period, which are located along a contour
line in the Hs and TP plane [71]. Figure 10.9 shows a contour line plot for an area
located in the North Sea.

This method is described in detail in Ref. [65]. It has been claimed to be a
rational basis for deciding the short-term design storms [64]. The major steps of
the method are [71, 72]:

• The q-annual probability contour lines are established, which provide all
combinations of Hs and Tp corresponding to an annual probability of being
‘‘exceeded’’ by q, shown in Fig. 10.9.

• For a given response problem, one has to find the most unfavorable sea state
along the q-probability contour line.

• For the worst sea state along the contour lines, the distribution function for the
3-h duration maximum response is established.

• Finally, the q-probability value of the selected response quantity is estimated by
the value of the 3-hour extreme value distribution that is exceeded by proba-
bility 1-a. For q = 10-2 (return period of 100 years), NORSOK standard N-003
[71] recommends a = 0.85–0.9.

Obviously, by using the contour line method, only a few most unfavorable sea
states need to be identified and used for calculating structural responses. However,
readers need to realize that this method is an approximate one. An appropriate
selection of values for parameter a may be challenging. Some researchers show
that the best estimate would be reached for an a-value lower than 0.85 and others
show that the ‘‘correct’’ value of a is larger than 0.9 [72]. The ‘‘true’’ value of a
can only be found if it is calibrated to the result of a long-term analysis described
in Sect. 10.7.
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For more thorough knowledge of statistics, readers may read references
[24, 44–46].
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Fig. 10.9 q—probability contour lines of HS—Tp for q = 0.63 (1 year of return period), 10-1

(10 year of return period), 10-2 (100 year of return period) and 10-4 (10,000 year of return
period) for omni-directional waves at a field in the North Sea. The duration of sea state is 3 h



Chapter 11
Forced Vibrations

By applying an external force FðtÞ on the system shown in Fig. 3.7, an SDOF
spring-mass-damper system under forced excitation is constructed as illustrated in
Fig. 11.1. The equation of motions for the system is expressed as:

m xðtÞ
��
þ c xðtÞ

�
þ kxðtÞ ¼ FðtÞ ð11:1Þ

Depending on the types of loading that are harmonic, periodical, transient or
random, special mathematical treatment can be used to find the solutions of the
equation above. This will be illustrated in the subsequent sections.

11.1 Forced Vibrations Under Harmonic Excitations

11.1.1 Responses to Harmonic Force

By exerting an external harmonic force (FðtÞ ¼ F0 sinðXtÞ) with an amplitude of
F0 and an angular frequency of X shown in Fig. 11.1, or displacement excitations
in a harmonic form on the spring-mass-damper system, an SDOF spring-mass-
damper system under forced harmonic excitation is constructed. The governing
linear differential equation of motions for this system in case of harmonic force
excitations can then be written as:

m xðtÞ
��
þ c xðtÞ

�
þ kxðtÞ ¼ F0 sinðXtÞ ð11:2Þ

Dividing both sides of the equation above by m, this equation is rewritten as:

xðtÞ
��
þ c

m
xðtÞ
�
þx2

nxðtÞ ¼ ðF0=mÞ sinðXtÞ ð11:3Þ

By realizing that c ¼ 2xnmf, the equation above finally gives:

xðtÞ
��
þ 2xnf xðtÞ

�
þx2

nxðtÞ ¼ ðF0=mÞ sinðXtÞ ð11:4Þ
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As the equation above is a second-order non-homogeneous equation, the gen-
eral solution for it is the sum of the two parts: the complementary solution xcðtÞ to
the homogeneous (free vibrations) equation and the particular solution xpðtÞ to the
non-homogeneous equation:

xðtÞ ¼ xcðtÞ þ xpðtÞ ð11:5Þ

The complementary solution exhibits transient vibrations at the system’s nat-
ural frequency and only depends on the initial condition and the system’s natural
frequency, i.e., it represents free vibrations as discussed in Sect. 3.3 and does not
contain any enforced responses:

xcðtÞ ¼ Xe�fxnt sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

xnt þ /

� �

ð11:6Þ

It is noticed that this aspect of the vibration dies out due to the presence of damping,
leaving only the particular solution exhibiting steady-state harmonic oscillation at
excitation frequency X. This particular solution is also called the steady-state solution
that depends on the excitation amplitude F0, the excitation frequency X as well as the
natural frequency of the system, and it persists motions for ever:

xpðtÞ ¼ E sinðXtÞ þ F cosðXtÞ ð11:7Þ

By substituting the equation above and its first and second derivatives into
Eq. (11.4), one obtains the coefficients E and F as:

E ¼ F0

k

1� ðX=xnÞ2

1� ðX=xnÞ2
h i2

þ 2fðX=xnÞ½ �2
ð11:8Þ

F ¼ F0

k

�2fX=xn

1� ðX=xnÞ2
h i2

þ 2fðX=xnÞ½ �2
ð11:9Þ

By inserting the expression for coefficient E and F into Eq. (11.7) and rear-
ranging it, one can rewrite the steady-state solution as:

xpðtÞ ¼
F0

km

sinðXt � uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðX=xnÞ2
h i2

þ 2fðX=xnÞ½ �2
r ð11:10Þ

- kx

c
•

− xc

k

F(t) m

Fig. 11.1 An SDOF spring-mass-damper system under an external force FðtÞ
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where u is the phase between the external input force and the response output,
with the most noticeable feature being a shift (particularly for underdamped sys-
tems) at resonance. It can be calculated as:

u ¼ tan�1 2fðX=xnÞ
1� ðX=xnÞ2

 !

ð11:11Þ

It is clearly shown that the steady-state solutions are mainly associated with the
excitation force and the natural frequency. Figure 11.2 shows an example of the
dynamic responses due to the contribution from both transient and steady-state
responses, with a X=xnratio of 0.8, a damping value of 0.05 (u ¼ 0:21), and
/ ¼ 0:1. Phases between the two types of responses can be observed.

Under harmonic excitations, the magnitude and phase of the displacement
responses strongly depend on the frequency of the excitations, resulting in three
types of steady-state responses, namely quasi-static, resonance, and inertia dom-
inant responses, which are illustrated in Figs. 11.3 and 11.4.

The dynamic responses with respect to the ratio between the forcing and natural
frequency can also be explained by the equilibrium of the spring-mass-damping
system: the inertia and elastic forces counteract each other, among which the former
ones act away from the neutral position and the latter ones act toward it. The damping
forces act in the opposite direction of motions and therefore change their directions.

When the frequencies of excitations are well below the natural frequencies of the
structure, i.e., X=xn\\1, both the inertia and damping term are small, and the
responses are controlled by the stiffness. Therefore, the excitations have a load effect
equivalent to a static load at the same location with the same amplitude and direction,
i.e., the displacement of the mass follows the time varying force almost instanta-
neously (the responses lag behind the excitation force by a phase angle u\90�as
shown in Figs. 11.3a and 11.5). The dynamic responses are therefore rather insig-
nificant and can normally be neglected. A quasi-static analysis approach is routinely

Fig. 11.2 Transient and steady-state responses due to external harmonic force excitations
applied on a system with xn = 1.0, X ¼ 0.8, f = 0.05, and / ¼ 0.1
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adopted. However, this may not always be adequate, particularly when frequencies
approach resonance condition or when there are transients with duration close to half
the natural periods of structures [68]. The left figure in Fig. 1.29 illustrates a com-
bination of complementary and steady-state solutions. The former shows fluctua-
tions similar to background noises with the natural period of the structure (2.5 s), the

Fig. 11.3 Damped responses due to harmonic excitations with the characteristics of (a) quasi-
static (X=xn \\1); b resonance (X=xnclose to 1); and c inertia dominant responses
(X=xn [ [ 1), for a system with xn = 1.0 and f = 0.03
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latter shows stiffness-controlled responses with the period of wave loading. From an
energy point of view, this reflects the condition in which the maximum kinetic energy
is lower than the maximum potential energy.

When the excitation frequencies are close to the natural frequency of the system,
i.e., (X=xn � 1), the inertia term becomes larger. In the absence of excitation and
damping, the spring and inertia forces cancel (balance) each other. Theoretically, this
results in infinite responses in cases when X=xn ¼ 1 (provided damping is absent).
The external forces are only overcome (controlled) by the damping forces. In this
situation, energy is being added to the system in a most efficient way. This also
implies that the level of damping must be near the resonance frequency. The total
dynamic responses can be calculated by the sum of both transient and steady-state
oscillations, and both types of oscillations are important. Resonance then occurs by
producing responses that are much larger than those from quasi-static responses as
shown in Fig. 11.3b, and there is a dramatic change of phase angle, i.e., by neglecting
the damping, the displacement is 90� out of phase with the force, while the velocity is
in phase with the excitation forces. In a typical situation in which the damping is well
below 1.0, the responses are much larger than their quasi-static counterparts. From an
energy point of view, when the frequency of excitations is equal to the natural
frequency, the maximum kinetic energy is equal to the maximum potential energy.

When the excitation frequencies are well above the natural frequency of the
system (X=xn [ [ 1), the external forces are expected to be almost entirely
overcome by the large inertia force, the excitations are so frequent that the mass
cannot immediately follow the excitations as shown in Fig. 11.3c, i.e., the
responses have a phase angle u [ 90� to the excitation force as shown in
Fig. 11.5. Even though the total dynamic responses can still be calculated by the
sum of both transient and steady-state oscillations, the transient vibrations are
normally more significant than the steady-state oscillations, i.e., the inertia of the
system dominates the responses. The responses of the mass are therefore small and
almost out of phase (phase angle approaches 180�) with the excitation forces [69].
From an energy point of view, this reflects the condition in which the maximum
kinetic energy is larger than the maximum potential energy. When X=xn [

ffiffiffi

2
p

,
the response amplitude is less than the corresponding static deflection (F0/k).
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ω

Fig. 11.4 Responses at different ranges of forcing frequency [81]
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Fig. 11.5 Plot of phase angle between the response output and load input, with varied xn ratio
and damping

For a convenient and quantitative discussion, the steady-state solution may be
reduced to non-dimensional form as a ratio between the displacement amplitude of
steady-state solution Xp and the maximum quasi-static deflection X0 = F0/k, under
the excitation force F0 (not to be confused with the initial condition X in Sect. 3.3.),
which is also called the magnification factor or non-dimensional gain function:

Xp

X0

�

�

�

�

�

�

�

�

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðX=xnÞ2
h i2

þ 2fðX=xnÞ½ �2
r ð11:12Þ

And the phase angle between the external forces and displacement responses is:

tan u ¼ 2fðX=xnÞ
1� ðX=xnÞ2

ð11:13Þ

With the two equations above, one can investigate the sensitivity of response
characteristics only depending on the X=xn ratio and the damping level f. For
example, the magnification factor is plotted as shown in Fig. 11.6. Obviously, with
the increase of damping, the maximum amplitude decreases and the peak of
magnification appears at a frequency increasingly below the natural frequency xn.
Again, the damping is only effective at or close to the resonance condition.

At the excitation frequency xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2f2
p

, the peak of the magnification factor
appears, which is called the amplification factor or dynamic amplification factor
(DAF):

Q ¼ 1
2f

ð11:14Þ
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In structural analysis, if appropriate, quasi-static analysis is always preferred to
dynamic analysis. When dynamic effects can be assumed to be approximately
uniform throughout the structural systems and small, one static analysis or a series
of static analyses, with a small correction to account for dynamic effects, is
sometimes adequate. The action effects due to static and dynamic (inertia) effects
can be added together. For example, in ISO 19902 [70], it is stated that, for fixed
offshore structures, the correction for dynamic effects may be determined using
one or the other of the following methods:

By performing one static analysis in which the actions are enhanced by a set of
equivalent quasi-static inertial actions representing the dynamic responses, this
method is normally applied to structural parts that normally do not experience any
quasi-static action effects, so when multiplied by a DAF (the other method
described below), the quasi-static action effects will still be negligible, whereas the
properly calculated dynamic action effects resulting from inertial actions can be
significant.

By performing a series of static analyses over an appropriate range of fre-
quencies of excitations, where, at each frequency, the corresponding actions are
applied and the calculated action effects are multiplied by the DAF of an SDOF
system at that frequency. For example, for structures subjected to wave loading
(except for quasi-static wave loading effects (Fig. 1.24b), the equivalent quasi-
static action representing the dynamic inertia part of wave loading (Fig. 1.24c) can
be obtained by a factor (DAF-1) multiplied with the static wave loading.

The DAF applied based on a static analysis should normally not be lower than
1.0 or higher than 1.5. For responses with larger DAFs, a direct dynamic analysis
should be performed.

In cases in which the excitation period is far from a structure’s natural period,
the DAF can be omitted. For example, in the NORSOK standard N-003[71], it is
specified that, for fully constrained (bottom supported) platforms, dynamic effects
need not to be accounted for when the natural period is below 3.0 and 2.0 s for

Fig. 11.6 Plot of magnification factor as a function of X=xn and damping due to the external
applied forces
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determining steady wave action effects for assessment toward ultimate limit state
and fatigue limit state, respectively.

Another way of investigating responses due to the harmonic force excitations is
to study the transfer function, also called frequency response function H(x), which
is defined as the complex displacement responses due to the complex input force of
unit magnitude (F0 = 1):

HðxÞ ¼ 1
k � mx2ð Þ þ icx

¼ k � mx2ð Þ � icx

k � mx2ð Þ2þ c2x2
ð11:15Þ

The transfer function in dynamic analysis is analogous to the stiffness inverse in
a static analysis, i.e., when x ¼ 0, Hð0Þ ¼ 1

k, which is actually a simple statement
of Hooke’s law of elasticity. This indicates that the responses for static analysis at
zero frequency and dynamic analysis can be treated separately, which is an
essential procedure for random vibrations as discussed in Sect. 11.4.1.

Obviously, transfer functions in terms of the velocity and acceleration
responses can be derived by multiplying the equation above by ix and �x2.

It should be noted that the definition of transfer functions differs depending on
their application. For example, in ocean engineering, the transfer function is often
defined as the hydrodynamic force or responses to unit wave height.

Sometimes, the gain function is also used to investigate the response charac-
teristics, which is defined as the modulus of transfer function, and it is actually the
amplitude of displacement for F0 = 1:

HðxÞj j ¼ Xp

F0
F0 ¼ 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðxÞH�ðxÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReHð Þ2þ ImHð Þ2
q

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � mx2ð Þ2þ c2x2
q

ð11:16Þ

where H� is the complex conjugate of H.

Example: An offshore wind turbine system comprises five physical com-
ponents: rotor, transmission, generator, support structure, and control system.
Each of these influences the dynamic behavior of the complete turbine
system. It is noticed that the two most significant excitations are due to the
rotation of blades and wave-induced forces. Assume that the turbine system
typically has three blades, and the tip speed of each blade is around 90 m/s
during operation. From the metocean report for the relevant offshore site, it is
known that most of the waves occur at wave periods ranging from 5.5 to
8.5 s. Give a preliminary specification of the natural period of the support
structure supporting a wind turbine with blade diameters of 60, 120, and
170 m, respectively.
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Solution: With regard to blade excitations, the support structure’s natural
period should not coincide with the first and second excitation period of the
blades. The first excitation period is calculated as (p 9 blade diameter)/
(blade tip speed). This gives the first excitation period (T1p) of 2.1, 4.2 and
5.9 s for the blades with diameters of 60, 120, and 170 m, respectively. The
second excitation period (T3p) is the blade’s passing period, which is the first
excitation period divided by the number of blades, i.e., 3 for the current
example. Therefore, the second excitation period is 0.7, 1.4 and 2.0 s for the
blades with diameters of 60, 120, and 170 m, respectively. This gives three
possible natural period ranges for designing the support structure: a natural
period larger than the first blade excitation period (soft–soft design), the one
between the first and the second blade excitation period (soft-stiff design),
and the one below the second blade excitation period (stiff–stiff design). This
design methodology is illustrated in Fig. 11.7.

Traditionally, the soft–soft design is preferred because this usually leads
to an economical design due to the need for less material and construction
cost. For the current example, this means that the natural period should be
above 2.1, 4.2 and 5.9 s for the blades with diameters of 60, 120, and 170 m,
respectively. It is noticed that the periods of 4.2 and 5.9 s are rather close to
the wave excitation period. Therefore, the support structures with 120 and
170 m blade diameters need to be designed with a natural period above the
wave period, say in the range above 12 s, which is essentially a compliant
structure.

For soft-stiff design, this means that the support structure’s natural period
should be in the range of [0.7, 2.1 s] for 60 m blade diameter, [1.4, 4.2 s] for

Fig. 11.7 Period interval for stiff–stiff, soft-stiff and soft–soft design of offshore wind
turbine support structures. a Large blade diameter. b Normal blade diameter
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120 m blade diameter, and [2.0, 6.0 s] for 170 m blade diameter. Since the
period of 6.0 is also in the range of the wave excitation period, the natural
period range for 170 m blade diameter has to be adjusted to, for example,
[2.0, 5.5 s] as shown in the upper figure of in Fig. 11.7.

For stiff–stiff design, the structures’ natural periods need to be below 0.7,
1.4 and 2.0 s for the blades with diameters of 60, 120, and 170 m, respec-
tively. This usually leads to an uneconomical design due to the cost increase
with regard to material and construction.

Note that, in the wind energy industry, the general trend is that the scale of
turbines is becoming larger and larger. This would result in an increase of the
blade’s diameter, e.g., a 170 m diameter for a 7 MW wind turbine. The first
and second excitation period are also significantly increased as shown in this
example. This motivates the engineer to shift from a soft–soft to a soft-stiff
or even to a stiff–stiff design. In addition, the variable tip speed of the turbine
also becomes a design alternative, which adds additional restrictions on the
natural period range of the structures.

As an innovative idea, it is also possible to convert the existing/abandoned
offshore rigs into support structures for offshore wind turbine systems, which
can avoid/delay enormous decommissioning costs for oil companies as well
as avoid cost and pollution for constructing new support structures for off-
shore wind turbines. Most of the existing fixed offshore platform structures
have natural periods below 3.5 s, after removing part of the topside, the
natural periods will further decrease. This period range is relevant to the soft-
stiff or even soft–soft design. For developing this idea, one also needs to
account for the cost with respect to maintenance and power grid integration.

Example: An offshore jacket structure has a natural period of 3.2 s. When it
is subjected to a 13 m design wave with the wave period of 10.7 s, a base
shear of 39 MN along the direction of vibration corresponding to the natural
period of the jacket is obtained. Calculate the corresponding equivalent
quasi-static action on the jacket due to the inertia effects. The weights for the
jacket and topside are 8,000 and 15,000 tons, respectively. The damping
(structural damping ? hydrodynamic damping ? foundation damping, as
will be elaborated in Sect. 14.5) can be assumed to be 2 %.

Solution: By assuming that the eigenperiods of the first and second
eigenmodes are close, and the dynamic responses are dominated by those
two eigenmodes, the DAF can be calculated based on the first eigenperiod of
the jacket structure:
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¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðX=xnÞ2
h i2

þ 2fðX=xnÞ½ �2
r

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðTn=TwÞ2
h i2

þ 2fðTn=TwÞ½ �2
r

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð3:2=10:7Þ2
h i2

þ 2� 0:02� ð3:2=10:7Þ½ �2
r

¼1:098

The equivalent quasi-static action on the jacket and topside is 39
MN 9 (1.098-1) = 3.822 MN.

It is noted that the equivalent quasi-static action should be applied to the
entire structure (Fig. 1.24c) instead of on the jacket where the wave loading
is applied, so it is applied as an acceleration field on the entire structure along
the direction of the wave loading. The acceleration field is tuned such that the
amplification of base shear is fairly correct for the corresponding design
wave:

3:822MN� 106
� �

/ 23,000tons�103
� �

¼ 0.167 m/s2.

More realistically, the acceleration can be applied as a uniform rotational

acceleration h
��

[rad/s2] (Fig. 11.8) with the rotation center located at the
horizontal center of the jacket bottom. Based on the distance between the
rotation center and the center of gravity (CoG) of topside (Hts) and jacket
(Hjk) respectively, the relative horizontal acceleration between the jacket and
the topside is Hjk/Hts, respectively. The acceleration on the CoG of the jacket
can then be calculated as:

ajk ¼
3:822 � 106 N

8000� 103
� 	

þ Hts
Hjk


 �

� 15000� 103
h i

The rotation acceleration on both jacket and topside is calculated as

h
��
¼ ajk=Hjk.
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It is noted that the DAF can be different not only due to the variation of exci-
tation period, but also due to the direction of excitation and different parts of a
structure under investigation. For example, if a structure is subjected to excitations
along the direction of an eigenmode other than the first one, the first eigenmode may
make little contribution to the DAF. Another example is that even though a DAF
calculated based on the wave period and eigenperiod can reasonably be applied to
the members within a narrow face or horizontal plane shown in Fig. 11.9, it cannot
be applied for jacket braces on a broad face that is perpendicular to the wave
excitations. Furthermore, different components of forces on a member and a joint
may have different DAFs. Therefore, only the relevant DAF should be used, which
may need sophisticated judgment on the part of the engineer.

11.1.2 Responses to Harmonic Base Excitations

Instead of external forces, consider the system shown in Fig. 11.1 excited by
prescribed harmonic motions (absolute motions) yðtÞ ¼ Y sinðXtÞ at its base as
shown in Fig. 11.10. This model represents a large number of practical engi-
neering problems, such as a structure subjected to earthquake loading, running
vehicles subjected to ground excitations due to road roughness etc. With a slight
modification of the solutions presented previously for the applied forces, the
responses under the base excitations can be obtained. The force on the spring is
proportional to the relative displacement zðtÞ ¼ xðtÞ � yðtÞ between the base and
the mass. The equation of motions can then be written as:

m zðtÞ
��
þ c zðtÞ

�
þ kzðtÞ ¼ �m yðtÞ

��
ð11:17Þ

Fig. 11.8 The equivalent quasi-static action may be approximated using angular acceleration h
��

at the bottom of the jacket
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Assuming that the responses are also harmonic, the steady-state solution of the
equation above is:

zðtÞ ¼ Z sinðxt � uÞ ð11:18Þ

Dividing the equation of motions with m leads to:

zðtÞ
��
þ 2fx zðtÞ

�
þx2zðtÞ ¼ X2Y sinðXtÞ ð11:19Þ

Fig. 11.9 Sea wave is perpendicular to the broad face of a jacket structure (courtesy of Aker
Solutions)

Fig. 11.10 An SDOF spring-mass-damper system under base excitations yðtÞ ¼ Y sinðXtÞ
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where u is the phase between the base excitation input and the response output:

u ¼ tan�1 2f X=xnð Þ3

1� X=xnð Þ2þ 2f X=xnð Þ2

 !

ð11:20Þ

The ratio between the steady-state amplitude (absolute motions) and the exci-
tation amplitude is:

Xp

Y

�

�

�

�

�

�

�

�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2f X=xnð Þ½ �2

1� X=xnð Þ2
h i2

þ 2f X=xnð Þ½ �2

v

u

u

u

t

ð11:21Þ

The value above is a non-dimensional gain function, which is illustrated in
Fig. 11.11. It is noticed that, regardless of damping level, the function always
reaches unity when X=xn equals to

ffiffiffi

2
p

. This characteristic is important for the
design of vibration absorber or isolator for various types of devices: by choosing a
decent stiffness k so that X=xn [

ffiffiffi

2
p

, the vibration transmitted from the excitation
sources to the protected devices can be significantly decreased.

In many cases, the relative motions (zðtÞ) between the responses and base
excitations are more interesting. Therefore, one can calculate the ratio between the
steady-state amplitude (relative motion) and the excitation amplitude as:

Zp

Y

�

�

�

�

�

�

�

�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X=xnð Þ4

1� X=xnð Þ2
h i2

þ 2f X=xnð Þ½ �2

v

u

u

u

t

ð11:22Þ

Fig. 11.11 Plot of non-dimensional gain function varying with X=xnratio and damping, due to
base excitations
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11.2 Forced Vibrations Under Complex Periodical
Excitations

Many types of excitation functions may be periodical, but not harmonic (Fig. 8.2a).
This means that even though they may repeat themselves as shown in Fig. 8.2b–d,
their responses cannot be described by vibrations at a single frequency. If the
excitations extend over a wide range of frequencies, many resonant modes may be
excited. It is more difficult to determine responses under periodical excitations than
under harmonic excitations, especially if one needs to obtain the time domain
responses.

However, for a convenient solution of responses, those excitations can be
represented using a Fourier spectrum. This applies to, for example, ground exci-
tations on running vehicles and dynamic loading due to wave and fluctuating wind
velocity. As discussed in Sect. 12.4, although some of the motion records, such as
seismic ground motions, are not perfectly periodical, in many applications they
can still be modeled by using the Fourier transform techniques.

Moreover, compared to a time-domain method that requires the solutions of
differential equations, the frequency-domain method only requires the solutions of
algebraic equations. In addition, it often gives information regarding characteris-
tics of frequency contents on the dynamic responses, which make it seldom nec-
essary to transform the frequency-domain results back to the time-domain results
through Fourier transformation.

Similar to the responses due to harmonic excitations, the complementary
solution of vibrations under periodical force excitations normally dies out due to
the presence of damping. Therefore, the steady-state solution is more interesting.
This can be obtained, for a linear system, through combining the responses due to
individual excitations in terms of the Fourier series [125].

The responses of an SDOF system subjected to periodical force excitations

(FðtÞ ¼ c0 þ
P

N

i¼1
ci sin Xit þ cið Þ) can be expressed as:

xðtÞ ¼ 1
mx2

n

c0 þ
X

1

i¼1

ciM ri; fð Þ sin Xit þ ci � /ið Þ
" #

ð11:23Þ

where:
c0 and ci are the average and the ith harmonic component of the Fourier series

in terms of excitations, respectively (see Sect. 9.1);
ri ¼ Xi

xn
is the ratio between the excitation frequency and the natural frequency

of the system;

/i ¼ tan�1 2fri

1�r2
i


 �

;

f is the damping ratio of the system;
m is the equivalent mass of the system;
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Mðri; fÞ is the magnification factor of the system, i.e., Mðri; fÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�r2
ið Þ2þ4f2r2

i

q ;

xn is the natural frequency of the SDOF.

It is noted that the responses are essentially influenced by ci and the ratio
between the excitation frequency and the system’s natural frequency. Further, ci is
influenced by the harmonic amplitude of sinuasoidal and cosinsoidal excitations.
The responses are dominated by the harmonic amplitude with a frequency close to
the system’s natural frequency.

The upper bound of the maximum steady-state responses is:

xmax	
1

mx2
n

c0 þ
X

1

n¼1

ciM ri; fð Þ
" #

ð11:24Þ

11.3 Forced Vibrations Under Non-periodical Excitations

In the previous sections we have learned how to calculate the dynamic responses
due to harmonic or periodical excitations. In particular, we notice that the total
dynamic responses comprise both the complementary solution and the steady-state
solution, of which the former is of a harmonic type with a frequency equal to the
system’s natural frequency, and the latter is of a periodical form with a frequency
equal to the excitation’s frequency X.

In this section, we will study the responses due to non-periodical excitations.
Obviously, steady-state responses do not appear any more (the responses normally
possess a non-zero steady-state) and the entire solution is transient [158]. In many
cases, the homogeneous solution (almost equal to free vibrations) interacts with
the forced responses even after the excitations have ceased.

To solve this problem, one can treat the excitations as the superposition of
impulses of rather short duration, as will be discussed in Sect. 11.3.1, or represent
the excitations by Fourier integral presented in Sect. 11.4, so that the excitations
are essentially periodical.

Examples of non-periodical excitations are wave slaming impacts on ships or
offshore platform topsides and transient pressure forces on structures due to
explosion. Ground motion excitations due to earthquake are also non-periodical
with short duration, while the maximum structural response normally occurs
before excitations cease.
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11.3.1 Transient Responses to Force Excitation with Short
Duration

Let’s consider a structure excited by suddenly applied excitations FðtÞ that are
neither harmonic nor periodical. The general form of the governing equation of
motions is:

m xðtÞ
��
þ c xðtÞ

�
þ kxðtÞ ¼ FðtÞ ð11:25Þ

By dividing the equation above with m and rearranging it, one obtains:

xðtÞ
��
þ 2fxn xðtÞ

�
þx2

nxðtÞ ¼ 1
m

FðtÞ ð11:26Þ

With the initial conditions (xð0Þ and xð0Þ
�

), the complete formulation can be
established.

Again, in the case with damping presented, the complementary solution dies out
sooner or later, leaving the particular solutions alone. However, compared to that
of the maximum responses under periodical loading, the effects of damping are
much less significant for decreasing the maximum response due to short duration
excitations. This is primarily because the maximum responses due to the short
duration excitations will appear in a short time, before the damping forces can
efficiently absorb significant energy from the structure [161]. Therefore, in many
cases, the damping can be neglected for calculating the transient responses due to
short duration excitations.

However, the initial conditions and complementary solutions to the homoge-
neous equation significantly affect the short-term transient responses, and it is
therefore advisable to obtain the complementary solutions and particular solutions
simultaneously, with the initial conditions incorporated [162].

t

F(t)

τ Δ τ

F0

Fig. 11.12 Impulsive force excitations
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11.3.1.1 Responses Due to Arbitrary Force Excitations Using
Convolution Integral

First we consider a system subjected to a force with a short duration as shown in
Fig. 11.12. For a general close-form solution of Eq. (11.26), the convolution
integral method can be used to obtain the responses. This method is derived using
the equilibrium of momentum:

Z

t2

t1

FðtÞdt ¼ m xðt2Þ
�
� xðt1Þ

�� 

ð11:27Þ

The time integral of force is designated by the symbol F
^^

:

F
^^
¼
Z

sþDs

s

F0dt ð11:28Þ

We here define an impulsive force with the amplitude of F
^^
=Ds and the time

duration of Ds. When F
^^

is equal to unity, the force in the limiting case Ds! 0 is
called the unit impulse or Dirac delta function (dðt � sÞ), which has the following
properties:

Z

þ1

0

dðt � sÞds ¼ 1 ð11:29Þ

dðt � sÞ ¼ 0 for t 6¼ s ð11:30Þ

Therefore, the impulsive force applied at time s is:

FðtÞ ¼ F0dðt � sÞ ð11:31Þ

The responses to an unit impulse applied at t = 0 with initial conditions equal
to zero are called impulsive responses and are denoted by hðtÞ. For any time later
than s, the impulsive responses hðt � sÞ can be obtained by shifting hðtÞ to the
right along the scale by t ¼ s.

Thereafter, at t = 0, a radical change in the system motions takes place when the
short duration and high amplitude forces excite an initial motion of the system, followed
by free vibrations. For a unit impulse at t = 0, i.e., F0 ¼ 1, the velocity and dis-
placement of the mass immediately after the initial impulse at t = 0+ are therefore:

hð0þÞ
�
¼ 1

m
ð11:32Þ

hð0þÞ ¼ 0 ð11:33Þ
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The velocity and displacement due to an applied step force Fð0Þ are:

xð0þÞ
�
¼ 1

m
ð11:34Þ

xð0þÞ ¼ 0 ð11:35Þ

By realizing the initial condition hð0Þ ¼ 0, one can derive the impulsive
responses [158] of the undamped system:

hðtÞ ¼
1

mxn
sinðxntÞ for t [ 0

0 for t\0

�

ð11:36Þ

Or

xðtÞ ¼
F0

mxn
sinðxntÞ ¼ F0

k 1� cosðxntÞ½ � for t [ 0
0 for t\0

�

ð11:37Þ

From the equation above it is noticed that the maximum displacement of the
system due to the step excitations is twice the quasi-static displacement F0

k .
The responses of the damped system are:

hðtÞ ¼
1

mxd
e�fxnt sinðxdtÞ for t [ 0

0 for t\0

�

ð11:38Þ

Or

xðtÞ ¼
F0

mxd
e�fxnt sinðxdtÞ for t [ 0

0 for t\0

�

ð11:39Þ

The derivation above can be extended to calculate the responses under arbitrary
excitation histories as shown in Fig. 11.13. The excitations F(t) can be regarded as
a series of impulses with different amplitudes. We here examine one impulse
starting at time s. Again, in the limiting case Ds! 0, its contribution to the total
responses at time t is:

Dxðt; sÞ ¼ FðsÞDshðt � sÞ ð11:40Þ

τ Δτ
t

F(τ)

F(t)

Fig. 11.13 Arbitrary force histories applied on a system
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For a linear system, the principle of superposition is applicable. Therefore, the
response at time t is the sum of responses due to a sequence of individual impulses,
which are known as convolution integral:

xðtÞ ¼
Z

t

0

FðsÞhðt � sÞds ð11:41Þ

Or

xðtÞ ¼
X

FðsÞhðt � sÞDs ð11:42Þ

hðt � sÞ is obtained from Eq. (11.38) by replacing t by t � s. Therefore, the
damped responses in Eq. (11.38) can be rewritten as:

xðtÞ ¼ 1
mxd

Z

t

0

FðsÞe�fxnðt�sÞ sin xdðt � sÞ½ �ds ð11:43Þ

It is obvious that the initial condition is not accounted for in the equation above.
In many cases, a closed-form solution of Eq. (11.26) of excitations does not

exist, nor does the convolution integral. Therefore, numerical methods have to be
used to either evaluate the convolution integral or directly solve Eq. (11.26).

11.3.1.2 Impulsive Responses Due to a Step/Rectangular Force
Excitation with Short Duration

For a lightly damped (damping ratio f\1) system subjected to a force with a short
duration as shown in Fig. 11.14, the entire solution for the dynamic responses is

the sum of complementary and particular solutions F0
mx2

n


 �

:

xðtÞ ¼ Xe�fxt sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

xnt � /

� �

þ F0

mx2
n

ð11:44Þ

Strictly speaking, the homogeneous solution is only equal to the free vibration
responses in cases in which there are no excitations. However, the

Fig. 11.14 Step force excitation
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particular solution is equal to the forced responses when the responses reach a
steady-state.

Because the duration of force is rather short, one can then assume the initial

condition to be xð0Þ ¼ x
�ð0Þ ¼ 0. Therefore, the final solutions for the lightly

damped system (f\1) are:

xðtÞ ¼ F0

k
1� e�fxnt

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

xnt þ u

� �

" #

ð11:45Þ

where u ¼ cos�1 fð Þ.
From the equation above it is noticed that the maximum displacement of the system

with the damping presented is less than twice the quasi-static displacement F0
k

� �

.
For a critically damped system (f ¼ 1), the responses are [165]:

xðtÞ ¼ F0

k
1� xn þ 1ð Þe�xnt½ � ð11:46Þ

For an overdamped system (f [ 1), the responses are [165]:

xðtÞ ¼ F0

k
1� e�fxnt

2xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 � 1
p k1e�k2t � k2e�k1t

� 	

( )

ð11:47Þ

where k1 and k2 are eigenvalues of the system.
The responses due to step force excitations are plotted in Fig. 11.15.

11.3.2 Responses Due to Arbitrary Base Excitations Using
Convolution Integral

As discussed in Sect. 11.1.2, the equation of motions can be rewritten in terms of
relative displacement zðtÞ ¼ xðtÞ � yðtÞ (Fig. 11.10) between the base and the
mass m:

Fig. 11.15 Responses of an SDOF system due to the step force excitations
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m zðtÞ
��
þ c zðtÞ

�
þ kzðtÞ ¼ �m yðtÞ

��
ð11:48Þ

Dividing the equation above by m, one obtains:

zðtÞ
��
þ 2fxn zðtÞ

�
þx2

nzðtÞ ¼ � yðtÞ
��

ð11:49Þ

For systems without damping and initially at rest, the relative displacement is:

zðtÞ ¼ � 1
xn

Z

t

0

yðsÞ
��

sin xnðt � sÞ½ �ds ð11:50Þ

Rewritten, the equation above gives [18]

zðtÞ¼� 1
xn

sinxnt

Z

t

0

yðsÞ
��

cos xnsð Þds� cos xntð Þ
Z

t

0

yðsÞ
��

sin xnsð Þds

8

<

:

9

=

;

ð11:51Þ

11.3.3 Responses to Non-Periodical Excitations with Fourier
Integral

The mathematical formulation in frequency domain is applicable to both period-
ical and non-periodical responses. In Sect. 11.2 we illustrated that, for a linear
system, any periodical function in the time domain that contains a wide range of
frequency (harmonic) components has an equivalent counterpart in the frequency
domain, which can be represented by a convergent series of independent harmonic
functions at the integral of the function’s frequency as a Fourier series. This is
because the system under study is stable before it is excited and for which motions
die away after the excitations.

Similarly, the hðtÞ characterizing a system in the time domain also has an
equivalent counterpart: the transfer function H(x) in the frequency domain. Their
relationships can be clearly found by making the frequency approach zero, so that
the first time interval stretches without bound, the function then becomes non-
periodical. In this process, the values of each two adjacent discrete frequencies
become closer and closer until they become continuous, leading to the Fourier
series becoming a Fourier integral [158].

Let FðtÞ ¼ eixt, the responses to non-periodical excitations can then be written
in the form of Fourier transform pairs (inverse Fourier and Fourier transform)
between xðtÞ and X(x):

xðtÞ ¼ 1
2p

Z

þ1

�1

XðxÞeixtdx ¼ 1
2p

Z

þ1

�1

HðxÞFðxÞeixtdx ð11:52Þ
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XðxÞ ¼
Z

þ1

�1

xðtÞeixtdt ð11:53Þ

where FðxÞ is the Fourier transform of FðtÞ.
Similarly, the impulsive responses (under unit excitation FðxÞ ¼ 1) are given

by:

xðtÞ ¼ 1
2p

Z

þ1

�1

XðxÞeixtdx ¼ 1
2p

Z

þ1

�1

HðxÞeixtdx ð11:54Þ

HðxÞ ¼
Z

þ1

�1

hðtÞeixtdt ð11:55Þ

The relationship between the responses and force in the frequency domain can
be clearly expressed as the Fourier transform of the responses:

XðxÞ ¼ FðxÞHðxÞ ð11:56Þ

From the equation above, it is noticed that the information regarding phase in
responses XðxÞ are included as the transfer function HðxÞ contains the phase
information.

Interested readers may conduct the proof of the relationship above as an exercise.
This expression is essential for calculating the dynamic responses due to ran-

dom vibrations, in which the frequency composition (random) rather than time
dependence (deterministic) of the responses is of interest (as will be elaborated in
Sect. 11.4). The relationship between each item in the frequency domain
expressed in Eq. (11.56) and its counterpart in the time domain in Eqs. (11.36) or
(11.38) is summarized in Table 11.1. The essential part of this relationship is the
time (hðtÞ) and frequency (HðxÞ) domain transfer functions, which are related
through a Fourier transform pair.

Due to the computation efficiency and for a straight disclosure of a system’s
dynamic characteristics, the responses in the frequency domain are more popular
than their time domain counterpart. However, the latter cherishes a better physical
meaning since the former one only assumes a fully steady oscillatory state,
whereas the real physical behaviors of many loadings and structural dynamic
responses are essentially non-steady [166].

In addition, it should also be noted that, for calculating responses due to
transient excitations, the use of Fourier transform often leads to contour

Table 11.1 Relationship of responses between time and frequency domains

Time domain Frequency domain

Excitations FðtÞ Transformed excitation: FðxÞ
System characteristics (filter) Impulsive responses: hðtÞ Transfer function: HðxÞ
Responses xðtÞ Transformed response: XðxÞ
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integrations in the complex plane due to the definite integral in Eq. (11.52) [158].
In this case, the Laplace transform method, which is a modification of Fourier
transform, is more appealing. Readers who are interested in this topic may read
references by Meirovitch [158] and Thomson [18].

11.4 Forced Vibrations Under Random Excitations

11.4.1 Method

In Sect. 8.3, random motions are presented, which are the counterpart of deter-
ministic motions. The major difference between the two motions is that the
instantaneous value of random motions cannot be explicitly predicted at any time
instant or be reproduced, while deterministic motions can. We characterize random
motions with probability distributions, such as their mean and variance.

In the previous Sects. 11.1, 11.2 and 11.3, the responses to harmonic, periodical
and transient excitations have been discussed. In this section, we are going to
combine knowledge on random motions and forced vibrations previously learned to
treat random vibration problems. Since it is not possible to explicitly predict values
of random vibrations at a time instant, we have to treat them as obtaining the
statistics of responses (unknown) from the given statistics of the loading.

To achieve this, we will present a direct method to calculate responses due to
random excitations. As elaborated in Sect. 8.3, random excitations should be
characterized by both their probabilistic properties and their frequency contents.
They normally have components at multiple frequencies. For simplicity, it is
assumed that the input is force, denoted as F, and the output is displacement, denoted
as X. Readers should take both the input and output in a generic way and apply
mathematical intuition together with the knowledge learned in the previous sections.

Fig. 11.16 Responses obtained by Fourier transfer (Figure by Lzyvzl)
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Section 11.3.3 presents that, for random vibrations, the Fourier transform of
response XðxÞ in the frequency domain can be obtained as the product of the
Fourier transform of forcing function FðxÞ and the transfer function (frequency
response function) HðxÞ. This is illustrated in Fig. 11.16.

It is noted that, in many cases, the random excitations cover a wide range of
frequencies. Therefore, rather than being proportional to the amplitude of the
individual responses at excitation frequencies, as the harmonic excitations are, the
response amplitude primarily depends on the transfer function, which is a
parameter representing the dynamic amplification properties of the excited struc-
ture/system itself, and the transfer function is independent of the amplitude of
loading.

For an SDOF damped system with force as excitations, the transfer function is
expressed in Sect. 11.1.1 as:

HðxÞ ¼ 1
k � mx2ð Þ þ icx

ð11:57Þ

Here, one should notice that the transfer function is normalized by dividing the
Fourier transform of response XðxÞ with the input force amplitude,

Example: Derive the mean square response E x2ðtÞð Þ under a harmonic
excitation force FðtÞ ¼ F0 sinðxtÞ.

Solution: The responses can be expressed as:

xðtÞ ¼ Xeixt þ X�e�ixtð Þ
2

where X� is the complex conjugate of X.
Therefore, the mean square responses can be written as:

E x2ðtÞ
� �

¼ lim
T!1

1
T

Z

T

0

X2e2ixt þ 2XX� þ X�2e�2ixtð Þ
4

dt ¼ XX�

2
¼ Xj j2

2

The mean square force can be expressed as:

E F2ðtÞ
� �

¼ lim
T!1

1
T

Z

T

0

F2
0

2
1� cosð2xtÞ½ �dt ¼ F2

0

2

From Eq. (11.56), one has:

E x2ðtÞ
� �

¼ E F2ðtÞ
� �

HðxÞH�ðxÞ ¼ HðxÞj j2E F2ðtÞ
� �

where H�ðxÞ is the complex conjugate of HðxÞ.
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i.e., XðxÞ=FðxÞ. We will soon show that, to be consistent with the definition of the
power spectrum density that has been elaborated in Sect. 9.2, the response spec-
trum XðxÞ can have a unit of square of the response amplitude per Hz or rad/s,
which requires that the transfer function be squared during the calculation of the
response spectrum in the form of power spectrum density.

In random vibrations, the phase angle has little meaning. Instead, the mean
square value (E x2ðtÞð Þ) of responses associated with the average energy over a
time interval T is our main concern:

E x2ðtÞ
� �

¼ lim
T!1

1
T

Z

T

0

x2ðtÞdt ð11:58Þ

The equation in the example above indicates that the mean square responses are
equal to the mean square excitation multiplied by the square of the modulus of
transfer function [18]. This conclusion can be extended to study the responses due
to random loadings induced by wave, wind, earthquakes, etc.

In general, the mean square responses of a system are of engineering interest.
Their contribution in each frequency interval Dx due to the increment of fre-
quency from between xi � Dx=2 and xi þ Dx=2 is:

xðxiÞ ¼ HðxiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DxSFðxiÞ
2p

r

ð11:59Þ

where SFðxiÞ is the contribution from power spectra density of the excitation force
between xi � Dx=2 and xi þ Dx=2:

SF xið Þ ¼ lim
Dx!0

E F2ðtÞ between xi � Dx=2 and xi þ Dx=2ð Þ
Dx

ð11:60Þ

The process of the equation above is actually to make the F(t) pass a band-pass
filter with Dx band and within the frequency interval xi � Dx=2 and xi þ Dx=2,
the output is squared, averaged and divided by Dx [18]. Provided that Dx is
constant, the time history generated by power spectra density will be repeated with
a period of 2p=Dx. In order to increase this period, one may adopt a small value of
Dx or give frequency spacing uneven intervals [53].

Since the excitations and responses at M different frequencies xi are assumed to
be randomly phased, the variance of the total response is the sum of the variances
of components. The root of mean square responses, i.e., the square root of the
variance, is written as:

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

M

i¼1

x2ðxiÞ

v

u

u

t ð11:61Þ

The power spectra density (mean square response spectrum) of the responses—
which is also called the auto-spectra density function, indicating that only one
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process is involved (in contrast to the cross-spectra density function, involving two
processes)—introduced in Sect. 11.5, can then be calculated as:

SX xið Þ ¼ H xið Þj j2SF xið Þ ð11:62Þ

The above equation is widely used in many fields of engineering applications.
For example, the response spectrum SX xið Þ for linear displacement responses of
offshore structures or linear ship motions is calculated by filtering the wave energy
spectrum (hereSF xið Þ ¼ Sf xið Þ, see Sect. 9.2) with an appropriate motion transfer
function. This is achieved by multiplying each ordinate of the wave spectrum with
the square of the modulus of motion transfer function at the corresponding fre-
quencies, provided that the transfer function is normalized by dividing the wave
amplitude [91].

Again, in the equation above, the information regarding phase in power spectra
density responses SX xið Þ gets lost as the phase information is included in the

Fig. 11.17 Elevation drawing of a gravity-based structure (GBS) located in the North Sea
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transfer function H xið Þ (Eq. (11.57)), but not in H xið Þj j, in which only the
information for amplitude amplification can be found Fig. 11.17.

The transfer function can be expressed using various response measures, such
as motions, forces, stresses or strains etc. Figures 11.18 and 11.19 show the
modulus of transfer functions of base shear and section force on one shaft of a
GBS structure shown in Fig. 11.17. It is clearly shown that the highest peak of the
responses occurs at around the period ranges from 2.6 to 2.8 s, which is in the
range between the second and the first eigenperiod of the GBS structure.

In many cases, the power spectra density is also expressed in terms of frequency
in Hz. We then have:

SX fið Þ ¼ 2pSX xið Þ ð11:63Þ
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Fig. 11.18 The modulus of transfer function of base shear force for the GBS structure
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Fig. 11.19 The modulus of transfer function of section force at the GBS shaft
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The mean square or the variance of the fluctuating responses is the area under
the mean square response spectrum:

r2
X ¼

Z

1

�1

SXðxÞdx ð11:64Þ

The two equations above are rather important for the random dynamic analysis.

11.4.2 White Noise Approximation

For structures subjected to loadings with frequencies far from the structures’
natural frequency, and if the damping of the structure is also low, by revisiting
Eq. (11.62) it is noticed that H xið Þ is narrow banded and the responses of the
structure are concentrated at the structure’s natural frequency. In addition, if
the excitations have similar energy content in all frequencies, the influence from
the excitation spectrum SF xið Þ is less significant than that from the structure’s
transfer function H xið Þ. In this situation, the excitations can be assumed to be
white noise, with its power spectrum density W0ðxÞ defined as a constant covering
the entire frequency range, known as white noise approximation:

W0ðxÞ ¼ SFðxÞ ¼ C �1\x\1 ð11:65Þ

where C is a constant value.
The equation above indicates a flat power spectrum. Strictly speaking, it does

not exist physically. However, it is a rather useful assumption in many fields
related to vibration and control.

Table 11.2 Mean square responses to white noise excitations for an SDOF with stiffness k and
the damping ratio f[167]

W0, power spectra density of the
excitation inputa

Measure of the mean square
responsesa

Formula

Force excited system
F(t) X(t) r2

X ¼ 0:785fnW0=fk2

F(t) X(t) Responses are not finite
F(t) FTR(t) r2

FT ¼ 0:785fnW0ð1þ 4f2Þ=f
Base excited system
Y(t) X(t) r2

X ¼ 0:785fnW0ð1þ 4f2Þ=f

Y
��
ðtÞ X

��
ðtÞ r2

X
�� ¼ 0:785fnW0ð1þ 4f2Þ=f

Y
��
ðtÞ Z(t) r2

Z ¼ W0=ð1984ff 3
n Þ

Y
��
ðtÞ Z

��
ðtÞ Responses are not finite

a Note F(t) is the force applied on the system; X(t) is the absolute displacement of the mass;
Z(t) is the displacement of the mass relative to the ground; Y(t) is the base displacement; FTR(t) is
the force transmitted to the base
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With the aid of white noise excitation, Table 11.2 shows the closed form of
expression of mean square of response r2

X .
The white noise approximation is widely adopted in the modern vibration

analysis and measurement. For example, when the environmental dynamic load-
ings are unknown, in order to measure the eigenfrequencies of a structure, the
unknown loadings may be assumed to follow white noise, which significantly
simplifies the modal testing task and the subsequent analysis.

11.5 Cross-Covariance, Cross-Spectra Density Function
and Coherence Function

11.5.1 Cross-Covariance in Time Domain

In Sect. 11.4, it is noted that the power spectra density (mean square response
spectrum) of the responses does not contain any information regarding phase
between the response and the loading. This information can be conveniently
included by introducing cross-covariance or cross-correlation function:

CXYðsÞ ¼ E XðtÞYðt þ sÞ½ � ð11:66Þ

where s is the time lag, X(t) and Y(t) are two stationary processes.
The time lag s at which the maximum occurs often has physical significance

[46].
It is possible to reverse the order of the subscripts in the equation above, so that

the following relationship also holds:

CYXðsÞ ¼ E YðtÞXðt þ sÞ½ � ð11:67Þ

The cross-covariance possesses the property of symmetry, i.e., the two equa-
tions above are reflections of one another about the origin:

CXYðsÞ ¼ CYXð�sÞ ð11:68Þ

The cross-covariance has an upper and lower bound:

�rXrY þ lXlY 	CXYðsÞ	 rXrY þ lXlY ð11:69Þ

Cross-covariance has its limitations when studying dispersive propagation
problems in which the time delay is frequency dependent, such as the propagation
of seismic wave from bedrock to ground, which travels faster and farther at low
frequencies than at high frequencies [46]. In this case, the cross-spectra density, as
will be introduced in Sect. 11.5.2, need to be used.
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11.5.2 Cross-Spectra Density in the Frequency Domain

The cross-spectra density function is defined as the Fourier transform of the cross-
covariance:

SXYðxÞ ¼
1

2p

Z

1

�1

CXYðsÞe�ixsds ð11:70Þ

SYXðxÞ ¼
1

2p

Z

1

�1

CYXðsÞe�ixsds ð11:71Þ

As briefly mentioned in Sect. 11.4.1, different from the power spectra density
(auto-spectra density), which includes only one process and is real valued, the
cross-spectra density function includes two processes, and is therefore complex so
that the information regarding the phase shift between the two processes is
accounted for.

Similar to cross-covariance, symmetry also holds for the cross-spectra density
function, i.e., SXYðxÞ and SYXðxÞ are complex conjugates of each other:

SXYðxÞ ¼ SYXð�xÞ ¼ S�YXðxÞ ð11:72Þ

Note that the area under spectrum density function SXðxÞ (discussed in
Sect. 11.4) is the mean-square (variance) of the process X(t), the integral of the
cross-spectral density is equal to the expected value of the product X(t)Y(t), which
is their covariance.

11.5.3 Coherence Function in the Frequency Domain

The linear dependence of two processes X(t) and Y(t) can be expressed with non-
dimensional coherence function:

CohXYðxÞ ¼ c2
XYðxÞ ¼

SXYðxÞj j2

SXðxÞSYðxÞ
¼ SXYðxÞS�XYðxÞ

SXðxÞSYðxÞ
ð11:73Þ

Since SXYðxÞj j2	 SXðxÞSYðxÞ, the coherence function is bounded by:

0	 c2
XYðxÞ	 1 ð11:74Þ

c2
XYðxÞ ¼ 1 indicates a purely linear dependence between X(t) and Y(t). On the

other hand, c2
XYðxÞ ¼ 0 shows that there is no linear relationship between X(t) and

Y(t) at all. However, the value of coherence function normally lies between these
two extreme cases, indicating that systems are either not perfectly linear or
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unconsidered simultaneous loads/noises other than F(t) exist to corrupt the
measurements.

In modal testing to obtain the eigenfrequencies and mode shapes, engineering
environments always involve measurement noise, which comes from many sour-
ces, such as the environment (non-source related vibrations), quantization noise
and electrical components etc. The obtained coherence function can be seen as a
signal-to-noise ratio of the measurements. A coherence function equal to 1 indi-
cates zero noise in the measurement, while when the value of the coherence
function is 0, a pure noise situation is indicated.

Figure 11.20 shows coherence functions from a modal testing of a ship deck. It
is clearly shown that, at the eigenfrequencies that are of interest (5–20 Hz) for
structural engineers, the coherence function is close to 1 for almost all measure-
ment positions (2–6). This indicates that the proportion of noise energy in the
measured signal is in the order of a few percent. In general, the best signal-to-noise
ratio was obtained at those measurement positions close to the excitation position.

In Sections 12.2.2.2 and 12.4.2, the coherence function will be applied to
simulate the spatial variation of wind speeds and earthquake-induced ground
motions.
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Fig. 11.20 Coherence functions at various locations on a ship deck during a modal testing
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Chapter 12
Calculation of Environmental Loading
Based on Power Spectra

Wave, wind, ice and earthquake loadings are by their nature dynamic and are
normally the major environmental loading to which structures are subjected.

As discussed in Sect. 11.1.1, when the frequencies of excitations due to these
environmental loadings are well below the natural frequencies of the structure or
the system, the responses are controlled by the stiffness. The dynamic responses
will not exhibit resonance and can normally be neglected. A quasi-static analysis
approach is routinely adopted to evaluate the behavior in this case. However, this
may not always be adequate when excitation frequencies approach resonance
condition or when there are transients (e.g. explosions, wave slamming on offshore
structures or ships, ice floes impacting on ships and offshore structures), as dis-
cussed in Sect. 11.3. Furthermore, for structural responses that are sensitive to
their self-vibrations, even if resonance does not occur, the self-vibration itself can
cause problems such as fatigue. Dynamic effects are therefore also important to
consider. An example of this is the responses of slender structures under both
strong and mild wind loading.

As a convenient way of expressing the loading, the power spectra of environ-
mental loads can give a direct feeling of the frequency contents of loads and
responses, and are therefore often applied in structural dynamic analysis. They can
be used primarily in the random vibration analysis (Sect. 11.4) or to generate the
loading time histories used in time domain analysis (a way that is often called
indirect time domain method).

12.1 Wave Loads

12.1.1 Calculation of Hydrodynamic Wave Loads

The hydrodynamic forces on a structural member such as a tubular component per
unit length are calculated by Morison’s equation [79]:

F ¼ q � A � aþ q � Cm � Ar � ar þ
1
2

q � CD � vr vrj j � d ð12:1Þ

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
DOI: 10.1007/978-3-642-37003-8_12, � Springer-Verlag Berlin Heidelberg 2014
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where q is the density of the fluid; A is the cross-section area of the body; a is the
component of the water particle acceleration normal to the member axis; CM is the
added mass coefficient; Ar is the reference area normal to the structural member
axis; ar is the relative acceleration between water particle and member normal
to member axis; CD is the drag coefficient; vr is the water particle velocity relative
to the member normal to the member axis; d is diameter of the member exposed to
the water.

Morison’s equation is only applicable when the diameter of the structural
member d is less than 1/5 of the wave length, which is the case for many offshore
structures such as jacket or jack-up structures.

The first item q � A � a on the right hand side of the equation is the wave
potential related Froude Krylov excitation force, which is the sum of the hydro-
dynamic pressures acting on the surface of the body.

The pressure disturbance due to the presence of the body is taken into account
in the second item q � Cm � Ar � ar, which is the added mass (q � Cm � Ar) related
force due to the relative acceleration (ar) between the body and the fluid. In
general, this depends on the flow condition as well as the location of the body. The
wave frequency-dependent characteristics of the added mass may be disregarded
for deeply submerged bodies provided that the dimensions of the body are smaller
than the wave length.

Note that both the Froude Krylov force and added mass force are due to the
inertia of the structures and the surrounding fluid. The viscous effects are then
accounted for in the third item (drag force) 1

2 q � CD � vr vrj j � d. This item also
indicates a nonlinear relationship between the resultant forces on structural mem-
bers and the wave particle velocity or current speed. This nonlinearity will affect the
determination of both statistical properties (non-Gaussian trend) and frequency
contents of loading. For a submerged horizontal member subjected to regular wave
(presented in Sect. 12.1.2.1) with horizontal water particle velocity u / sinðxtÞ, the
drag force can be studied based on the following relationship [24, 80]:

Fd / vr vrj j / sin xtð Þ sin xtð Þj j � 0:85 sin xtð Þ � 0:17 sin 3xtð Þ � 0:02 sin 5xtð Þ. . .

ð12:2Þ

From the equation above, it is obvious that the higher-order harmonic com-
ponents will appear in the total wave loading, for example, at a wave frequency 3
x the Fourier component is 20 % of that at a frequency of x. With the presence of
the current, the component at 3 x will be reduced while a component at 2 x
occurs. These two components are roughly identical when the current velocity is
20 % of the wave particle velocity (18.5 and 17 % at 2 x and 3 x, respectively)
[81]. This effect is difficult to address in any frequency domain approach, while it
can be taken into account by a time domain analysis, as will be discussed in
Sects. 17.3.5.4 and 17.3.1.
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12.1.2 Power Spectrum Density for Ocean Wave Kinematics

12.1.2.1 Long Crest Waves

Ocean waves are, in general, the most important phenomenon to consider among all
environmental conditions affecting marine structures. The most typical waves are
the wind-driven type: they appear as the wind starts to below, grow into mountainous
swells in storms and completely disappear after the wind ceases blowing [82].

If one stands on a ship or an offshore platform, the sea waves can be observed as
being made up of large and small waves essentially at various frequencies moving
in many directions. This irregularity is an essential feature of sea waves. The wave
environment comprises sea states, which are random processes described by a
random wave model using wave amplitude energy density spectrum, often being
abbreviated as wave energy spectrum SðxiÞ. Discretizing the wave energy spec-
trum into N number of components SðxiÞ � Dx, the average wave energy per
square meter of the sea surface for the wave component ai at xi is:

E xið Þ ¼
qga2

i

2
kJ/m2 ¼ qgS xið ÞDx ð12:3Þ

where q is the density of the sea water, g is the acceleration of Earth’s gravity, ai is
the amplitude of wave components at frequency xi. Dx is the difference between
successive frequencies xi � Dx=2 andxi þ Dx=2.

From the equation above, it is obvious that the spectrum density is:

S xið Þ ¼
a2

i

2Dx
kJ/m2 ð12:4Þ

The model may be visualized as a linear summation of a large number of
periodical wavelets. Each of these wavelets has its own amplitude (ai) and fre-
quency (xi), as illustrated in Fig. 12.1. It is noted in the figure that all waves are
assumed to travel in the same direction, i.e., the wave crests remain straight and
parallel. Such waves normally referred to as long crested.

To calculate the irregular wave in one dimensional space, the linearized (Airy)
wave theory [83] can normally be adopted to model the regular wave elevation at
each frequency xi, leading to a long-crested sea or unidirectional random wave,
which may be represented by linear superposition of N harmonic wave trains with
random phase angles:

f x; tð Þ ¼
X

N

i¼1

ai cosðkix� xit þ ciÞ ð12:5Þ

where ai is the amplitude of component i; xi is the angular frequency of com-
ponent i with respect to a fixed position; ki is the wave number; and ci is the
random wave phase with uniform distribution at the interval ranging from -p to p,
which ensures that the wave elevation is stationary [84].
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In the absence of current, the wave number is related to the wave frequency by:

x2
i ¼ g � ki tanh ki � dð Þ ð12:6Þ

where d and g are the water depth and acceleration of the Earth’s gravity,
respectively.

For infinite water depth, the wave number is:

ki ¼
x2

i

g
ð12:7Þ

For the irregular wave in two dimensional space, at location (x, y) with respect
to an inertial reference frame, the irregular wave elevation can be calculated as:

f x; y; tð Þ ¼
X

N

i¼ 1

ai cosðkix cos /þ kiy sin /� xit þ ciÞ ð12:8Þ

where / is angle with respect to the inertial frame.
Within a short time interval, i.e., within the time frame of 20 min [86] to

perhaps 10 h [87], the instantaneous irregular wave elevations can be assumed to
follow Gaussian distribution and are stationary with the mean value equal to zero

(c0 ¼ fðtÞ ¼ 0). The elevations can be calculated by a linear superposition of the
wave components. According to the stationary stochastic process (Chap. 10) and
linear random wave theory, the water surfaces elevations and particle kinematics
(the velocity and the acceleration) are all Gaussian distributed and are therefore

Fig. 12.1 Relation between the frequency and time domain representation of long crest wave
elevation [87]
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fully defined by the variances of their associated probability distributions, which
are equal to the area under their energy spectra. The variance of the wave elevation
is then expressed as:

r2
fðtÞ ¼ E fðtÞ � fðtÞ

ffi �2
� �

¼ 1
Tz

Z

T

0

d2ðtÞdt ¼
Z

1

0

Sf xið Þdx ð12:9Þ

where Tz is the zero crossing wave period and E denotes the expected value.
The relation between the wave energy spectrum and the amplitude of wave

components can be approximated as:

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2SfðxiÞDx
q

ð12:10Þ

where i = 1, 2,…, N.
Provided that Dx is constant, the wave elevation will be repeated with a period

of 2p=Dx. In order to increase this period, a large number of N of discrete
frequencies as well as giving the frequency spacing uneven distances may be used
for the energy inputs to calculate the wave elevations and other items regarding
wave kinematics. Depending on the frequency characteristics of the waves and
structures, the frequency range of the wave energy spectrum is chosen slightly
differently, while it normally ranges from 0.05–2.5 rad/s.

Associated with the water surface elevation in the equation above, at a position
ðx; zÞ and time t, with a water depth of d, the horizontal and vertical water particle
velocity u and w, respectively, can be expressed as:

uðx; z; tÞ ¼
X

N

i¼ 1

ai � xi � vhi � cosðkix� xit þ ciÞ ð12:11Þ

wðx; z; tÞ ¼
X

N

i¼ 1

ai � xi � vvi � cosðkix� xit þ ciÞ ð12:12Þ

where the horizontal and vertical depth attenuation vhi and vvi can be expressed as:

vhi ¼
cosh kiðzþ dÞ½ �

sinhðkidÞ
ð12:13Þ

vvi ¼
sinh kiðzþ dÞ½ �

sinhðkidÞ
ð12:14Þ

It is noticed that, due to the depth attenuation, the base shear force of an
offshore structure subjected to wave loadings generally increases with the decrease
of water depth.
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By differentiating the velocity equations (Eqs. (12.11) and (12.12)) with respect to
time t, the horizontal and vertical water particle accelerations can then be written as:

u
�ðx; z; tÞ ¼

X

N

i¼ 1

ai � x2
i � vhi � sinðkix� xit þ ciÞ ð12:15Þ

w
� ðx; z; tÞ ¼ �

X

N

i¼ 1

ai � x2
i � vvi � cosðkix� xit þ ciÞ ð12:16Þ

The spectral ordinates in terms of velocity and acceleration have a relation with
their elevation (displacement) counterpart:

SuðxiÞ ¼ x2
i vhiSfðxiÞ ð12:17Þ

SvðxiÞ ¼ x2
i vviSfðxiÞ ð12:18Þ

S
u
� ðxiÞ ¼ x4

i vhiSfðxiÞ ð12:19Þ

S
v
�ðxiÞ ¼ x4

i vviSfðxiÞ ð12:20Þ

By assuming that waves are narrow banded, i.e., w ¼ 0 so that Tz ¼ Tp

(Sect. 10), indicating that all waves have more or less the same period, one can
obtain the significant wave height by integrating the wave energy spectrum
(Sect. 10.3) [89]:

H1=3 ¼ 4:0
ffiffiffiffiffi

k0

p

ð12:21Þ

Typical wave energy expression in a frequency domain has the form:

SPMðxiÞ ¼
A

x5
i

e�
D
x4 ð12:22Þ

A and D are two coefficients determined by wave characteristics. x is the
angular frequency of the wave.

The Pierson-Moskowits (PM) spectrum [90] can be used for the fully developed
sea wave condition, i.e., the fetch and the duration are large and there is no distur-
bance from other sea areas. This is because, after a certain period of wind blowing,
the sea elevation becomes statistically stable. The PM spectrum is mainly developed
for the description of waves in the North Atlantic Ocean. It can be expressed using the
mean significant wave height H1=3 and mean zero crossing mean period Tz as
independent parameters and be input into the typical wave energy equation as:

A ¼ 123:95H
2
1=3

.

T
4
z ð12:23Þ

D ¼ 495:8
.

T
4
z ð12:24Þ
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In shallow waters with limited fetch due to geographical boundaries, and for
extreme wave conditions, the JONSWAP spectrum, developed by the Joint North
Sea Wave Project [92, 93], is recommended. Compared to the PM spectrum, the
JONSWAP spectrum is narrow banded and extensively adopted by offshore
industry. It is expressed by enhancing the peak of the PM spectrum, as shown in
the following equation and Fig. 12.2:

SJONSWAPðxiÞ ¼
A

x5
i

e�
D
x4 � cd ð12:25Þ

where A ¼ a � g2, D ¼ 1:25 � x2
m, d ¼ e

�ðx�xmÞ2

2�r2 �x2
m , g = 9.8 m/s2.

A, D and c are functions of H1=3and Tz. a represents the level of high frequency
tail, gis the acceleration of Earth’s gravity. The JONSWAP spectrum has five
parameters: a, xm, c, ra, and rb. a can often be assumed to be 1.0. xm is the peak
angular frequency of the wave spectrum.

r represents the narrowness of the peak, and has a different value for fre-
quencies lower (ra) and higher (rb) than the peak frequency xm as expressed as:

r ¼ ra ¼ 0:07; x \ xm

rb ¼ 0:09; x � xm

�

ð12:26Þ

The c value indicates the enhancement of the spectrum peak. It normally ranges
from 1.0 (flat) to 7.0 (very peaked) with 3.3 as an average value. For example, for
most of the storms in the North Sea, c can be assumed to be approximately 3.0 or
less [93]. When c is not specified, the following value may be taken [24, 94]:

r ¼ 5; for
Tp
ffiffiffi

Hs
p � 3:6

e
5:75�1:15

Tp
ffiffiffi

Hs
p

; for
Tp
ffiffiffi

Hs
p [ 3:6

8

>

<

>

:

ð12:27Þ

Figure 12.3 shows the power spectrum axial force responses for joint 10,754 in
the upper part of a jacket structure (Fig. 12.4) located in the North Sea. Since all

Fig. 12.2 Illustration of JONSWAP spectrum and the sampling frequency with 64 samples (D)
per rad/s
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the modal wave periods in the three adopted sea states are higher than the jacket’s
fundamental and second eigenperiod, generally two spectrum peaks can be iden-
tified at each sea state. One is close to the second eigenperiod of the jacket
structure, indicating the free vibrations of the jacket. The other is close to the
modal period of the wave loads. In addition, the magnitude of this part of power
spectrum increases with the increase of the significant wave height Hs. It is noticed
that the waves for all three adopted sea states come from the south, which explains
why the global flexural vibration mode along the north–south (second eigenmode)
is more relevant to the free vibrations of the jacket structure (for each sea state, one
of the two spectrum peaks occurs close to the second eigenperiod).

12.1.2.2 Short Crest Waves

Strictly speaking, the long crest sea on which Fig. 12.1 is based only occurs in a
laboratory or towing tank. In an actual ocean environment, the waves travel in many
different directions, with the majority of energy contained along a ‘‘primary’’
direction t. The corresponding sea condition is referred to as a short crested irregular
sea or confused sea [90]. Due to the angular dispersion or spreading of many wave
systems coming from different directions, short-crestedness is especially apparent at
locations closer to storm areas or coast lines with irregular sea bottom topology, and
at conditions if the dominant wind direction is changing [91]. To account for this
wave spreading effects, the average wave energy per square meter of the sea surface,
for the wave component aij and in the direction band Db at xi is:

E xið Þ ¼
qga2

ij

2
kJ/m2 ¼ qgS xið ÞDxDb ð12:28Þ

Fig. 12.3 The power spectrum of the axial forces at node 10,754 in the upper part of a jacket
structure (shown in Fig. 12.4) due to the wave loads at three individual sea states (Hs is the
significant wave height, Tp is the modal wave period.)
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where b = t0-t, is the angle between the direction under consideration t and the
primary wave direction t0, ranging from � p

2 to p
2 (see Fig. 12.5 for an illustration);

aijis the component of wave appropriate to the ith frequency and jth direction.
Therefore, the directional wave energy spectrum is written as:

Sf xi; bð Þ ¼
a2

ij

2DxDb
ð12:29Þ

Fig. 12.4 The position of joint (node) 10,754 for the fatigue damage calculation
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The variance of the wave elevation is then expressed as:

r2
fðtÞ ¼

Z

1

0

Z

p

�p

Sf xi; bð Þdbdx ð12:30Þ

The irregular wave elevation for the short crested sea can be calculated as:

f x; tð Þ ¼
X

N

i¼ 1

X

M

j¼ 1

aij cosð�xit þ ciÞ ð12:31Þ

Note that the measurement of directional wave spectrum due to dispersion or
spreading is rather difficult. In engineering practice, the short crested wave
spectrum is expressed as a simple scaling of the long crested wave spectrum
Sf xið Þ, i.e., the scaling factor A bð Þ is only a function of b without accounting for
the influence from the frequency :

Sf xi; bð Þ ¼ A bð ÞSf xið Þ ð12:32Þ

where the scaling factor A bð Þ by definition must have its peak at b ¼ 0 and satisfy
the following relationship :

Z

p

�p

A bð Þdb ¼ 1:0 ð12:33Þ

Therefore, the directional wave spectrum normally takes the form of:

Sf xi;bð Þ ¼ CðnÞ cosnðbÞSf xið Þ ð12:34Þ

Primary wave direction 
Direction under  
consideration  

Limit of spreading 

Limit of spreading 

Fig. 12.5 Definition of directions for short crested wave
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where n indicates the significance of short crestedness, it ranges from 2.0 to 4.0 for
wind seas, and 6.0 or higher for swells (in many cases, swell seas are considered as
being long crested, i.e., n is infinitely large), and CðnÞ is a normalizing constant to
satisfy Eq. (12.33):

CðnÞ ¼ Cðn=2þ 1Þ
ffiffiffi

p
p

Cðn=2þ 1=2Þ ð12:35Þ

For ship design purposes, n is often taken to be 2.0, which gives:

Sf xi; bð Þ ¼ 2
p

cos2ðbÞSf xið Þ ð12:36Þ

For most cases, the long crest sea is more conservative to use for extreme value
predictions. The only exception may be the ship rolling for a weather vaning ship.

For final design of a new installation it is recommended that long crest sea be
used when it is a conservative approach. However, if the short crested sea is to be
used, n should be taken as the most conservative value in the range 2.0–10.0 for
the wind sea. When utilizing short crest sea, it should as far as possible be verified
that the modeling of short crest sea is representative of the wave events causing the
governing loads on the structure.

It should also be noticed that, in severe sea conditions, water surface elevations
and particle kinematics will no longer follow Gaussian distributions [95]. Nev-
ertheless, this nonlinear non-Gaussian effect of wave kinematics is of less
importance than other nonlinear effects such as nonlinear drag force effects (drag is
proportional to the square of the wave particle velocity) [96] and can normally be
neglected.

12.2 Wind Loads

12.2.1 Calculation of Aerodynamic Wind Load

The aerodynamic forces applied on a structural component per unit length are
calculated by:

F ¼ 1
2

q � CL � vr � vrj j � Aþ
1
2

q � CD � vr vrj j � d ð12:37Þ

where q is the density of the air (normally taken to be 1.25 kg/m3). However, it
should be noticed that from the sea surface to a height of 20–30 m above, the water
spray may cause an increase of air density in this area; CL is the lift coefficient; CD

is the drag coefficient or wind pressure coefficient; vr is the wind velocity relative
to the member normal to the member axis (note that if the wind load causes the
structure to oscillate, the oscillation velocity of the structure should also be
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accounted for when calculating vr); A is the projected area on a plane normal to the
coming wind direction; and d is the diameter of the member exposed to the air.

For tubular members, lift force does not exist. The first term on the right-hand
side of the equation above then becomes zero. Thus, the forces on a member only
include the viscous effects as included in the second term (drag force)
1
2 q � CD � vr vrj j � d. Similar to the wave-induced drag force, this second term also
indicates a nonlinear relationship between the drag forces and the wind velocity.
Unlike the wave drag load nonlinearities discussed at the end of Sect. 12.1.1, the
effects of wind drag nonlinearities are generally insignificant for mild wind con-
ditions (fatigue-dominated wind condition). However, for extreme wind loading
conditions with strong wind or high wind turbulence intensity, these nonlinear
effects may be relevant.

From the equation above, it is also noted that, due to the deformation or rotation
of structures, the drag and lift forces may also change with time even if the wind
velocity may not change over a short time duration.

The drag coefficients are a function of Reynolds number [97], Table 12.1 shows
drag coefficient values for smooth tubular members.

Obviously the wind speed and the drag coefficient are the environmental
parameters determining the wind load on structures.

Similar to wave-induced force presented in Sect. 12.1.1, inertia force also
contributes to wind-induced force. However, since this inertia force is about two
orders of magnitude smaller than the drag force [24], it is therefore neglected in
almost all engineering calculations.

12.2.2 Power Spectrum Density for Wind Velocity Fields

Winds are generated due to the variation of temperature. Figure 12.6 shows the
spectrum of the wind speed over a broad range of frequency from 1 s up to more
than a year. The frequency content on the left side represents the yearly changes of
seasons, the meteorological cycle of around 4 days’ duration, and daily changes.

Table 12.1 The drag coefficients specified by DnV RP-C205 [106] and NORSOK N-003 [71]
for smooth tubular members

DnV RP-C205 NORSOK N-003

Reynolds numbera CD Reynolds numbera CD

Re \ 3.7�105 1.2 Re \ 5.0�105 1.2
3.7�105 \ Re \ 5.0�105 1.0
Re [ 5.0�105 0.6 Re [ 5.0�105 0.65

a Reynolds number Re ¼ UL
m , where U is the mean velocity of the object relative to the fluid (for

wind, it is the mean wind speed); L is the characteristic linear dimension (for circular cylinders
(tubular members), it is the diameter of the member); mis the kinematic viscosity of the fluid (for
air, it can be taken as 1.45�105 m2 /s at 15 �C and standard atmospheric pressure)
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On the other hand, the wind turbulence with a period from tens of seconds to a
couple of minutes can be clearly seen on the right side of the figure.

The gap around the 1 h period is also referred to as the ‘‘spectral gap.’’ This
separates the slowly changing wind (extremely low frequency) and the turbulent
wind. Since at this period range the wind speed is more or less constant, it is
defined as the constant mean wind speed, while the instantaneous wind speed
changes are only due to the turbulence part, which can normally be assumed to be
Gaussian, stationary and homogeneous over a short period of time (e.g. 10 min).
Even though recent research on the spectral gap reveals that the gap is more a
coincidental feature of the analysis technique [69, 99], the assumption that in the
10 min to 1 h range the mean wind speed is constant has proved to be an effective
model for the relevant design of most types of engineering structures [69].

Therefore, the instantaneous wind speed is modeled as the summation of a slow
varying mean wind part and a high frequency turbulent part as shown in Fig. 12.7.
The mean wind speed U’(z) is flowing horizontally and varies with height above
ground or sea surface. The turbulent part varies in both time and space. By
denoting the turbulence wind components u, v, and w in the along-wind (x),
horizontal across-wind (y) and vertical across-wind (z) direction and the mean
wind component as U’, a wind velocity vector at time t can then be expressed in a
Cartesian coordinate system:

V x; y; z; tf g ¼ U0 þ u; v;w½ �T ð12:38Þ

Within the atmospheric boundary layer, which is the lowest 2 km of the Earth’s
atmosphere, the wind speed is strongly affected by the friction with the Earth’s
surface, known as wind shear. This reduces the wind speed from its undisturbed
value at 2 km above to nearly zero at the ground or sea surface. The mean wind
speed can be calculated by assuming a reasonable wind profile (Fig. 12.7) together
with reference wind speed for a specified return period and time duration.

Fig. 12.6 Wind speed spectrum over a broad range of frequencies. On the right side, the solid
line represents high turbulence during a period of high wind speeds, while the dotted line
represents the reduced turbulence at lower wind speeds [98]
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Fig. 12.8 Typical mean wind speed distribution (upper) varying with height for each reference
wind speed ranging from 5 to 30 m/s, and an example of wind speed distribution including its
turbulence part (lower)

Fig. 12.7 Typical wind profile composed of mean wind speed components (U’(z)) and
fluctuating wind speed component u(z, t) varying with height z and time t
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Figure 12.8 shows the typical mean wind speed profiles and the turbulent part
of wind speed.

As illustrated in Fig. 12.9, the mean wind speed is normally assumed to govern
the static loads on structures (left figure). It is the fluctuating (gust or turbulent)
part of wind that causes dynamic wind loading on structures. As shown in the right
figure of Fig. 12.9, the dynamic part of the responses can be separated into three
mean wind speed regions [100]. At low mean wind speed region, vortex-induced
vibrations (Sect.1.1) can occur; at intermediate mean wind speed region, buffeting
effects (due to the pressure fluctuation in the oncoming flow) may govern; in high
mean wind speed regions, the motion-induced load effects, which are due to the
interaction between the wind flow and the oscillating structural members, may be
dominant [100]. The calculation of wind induced structural responses in these
three regions is usually treated separately using different methods [100].

For both static and dynamic responses, when the wind speed is increased and
approaches to a limiting value Vcr, a slight increase of mean wind speed will cause
a dramatic increase of either static or dynamic responses. Vcr is here referred to as
the upper statibility limit.

12.2.2.1 Calculation of Mean Wind Speed U’(z) for Along Wind

To describe the wind shear effects on the mean speed, two wind profile models are
normally used, the logarithmic profile and the power law profile. Both profiles are
widely used, and there is no general preference for either profile.

Fig. 12.9 Response characteristics varied according to the mean wind speed V. The left and

right figures show the static and dynamic part of the responses, respectively (r
�

is the mean value
of the responses, rR is the standard deviation of the fluctuating part of the responses, Vcr is the
wind speed corresponding to upper stability limit) [100]
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By using the logarithmic profile, the mean along-wind speed at height z above
the ground or sea surface can be expressed as:

UðzÞ ¼ U10

ln z
z0

ffi �

ln 10
z0

ffi � ð12:39Þ

where U10 is the reference wind speed with an average period from 10 to 60 min,
and z0 is the surface roughness length. Typical values of z0 can be taken from
Table 12.2.

In NORSOK standard N-003 [71], the mean along-wind speed at a height
z above the sea surface and the corresponding mean period t [s] of not more than
3,600 s can be calculated by a mean wind profile:

U 0ðz; tÞ ¼ UðzÞ � 1� 0:41IuðzÞ � ln
t

3600

ffi �h i

ð12:40Þ

where the one-hour mean wind speed UðzÞ [m/s] is given by:

UðzÞ ¼ U0 � 1þ C � ln z

10

ffi �h i

ð12:41Þ

where C ¼ 5:73 � 10�2 � 1þ 0:15U0½ �0:5
IuðzÞ is the turbulence intensity, which is defined as the ratio between the

standard deviation of the wind speed and the mean wind speed, which typically
ranges from 0.1 to 0.4. For offshore sites, it is given in NORSOK standard N-003
[71] as:

IuðzÞ ¼ 0:06 � 1þ 0:043U0½ � � z

10

ffi ��0:22
ð12:42Þ

where U0 (m/s) is the one-hour mean wind speed at z = 10 m above ground or sea
surface, the information for U0 and its probability of occurrence are normally
given in the relevant wind-specification or metocean (meteorological and ocean-
ographic) document.

From the equation above, it is shown that the greater the height, the lower the
turbulence intensity will be. However, it should be clarified that the turbulent

Table 12.2 Surface
roughness length for various
types of terrain

Type of terrain z0 (m)

City centers 1–10
Cities, forests 0.7
Suburbs, wooded countryside 0.3
Villages, countryside with trees and hedges 0.1
Open farmland, few trees and buildings 0.03
Flat grassy plains 0.01
Flat desert, rough sea 0.001
Calm sea 0.0002
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intensity will also be influenced by the topology and surface condition of the
ground, which are not explicitly indicated by the equation above, which is only
valid for offshore sites. Moreover, it should be noted that the standard deviation of
the wind speed has little variation with increases in height. This is due to the
increase of the wind speed with height that results in a decreased turbulence
intensity with height.

In many engineering applications, the mean wind speed can also be simply
taken with a power law profile:

UðzÞ ¼ U10
z

10

ffi �a
ð12:43Þ

where U10 is the reference wind speed with an average period from 10 to 60 min, a
is the parameter depending on the topology of the terrain [101]. For flat desert or
rough sea, its value ranges from 0.12 as 0.14; for open terrain with very few
obstacles (e.g. open farm or grass land), it is normally taken to be 0.16; for terrain
uniformly covered with obstacles 10–15 m in height (e.g. residential suburbs,
small towns, small fields with bushes, tress and hedges), a can be taken to be 0.28;
if the terrain has large and irregular objects (e.g. city centers), a can be taken to be
0.40.

12.2.2.2 Calculating the Turbulence (Fluctuating) Wind Components
u, v, and w Using a Wind Spectrum

Along-Wind Spectrum

The fluctuating part of wind is simulated from wind spectra and coherence
functions, so that the spatial statistical properties are maintained.

The fluctuating part of the along-wind speed component u is approximately
constant in space but varies with time. It can be defined as 1 point spectrum SuðfiÞ
([m2s-2/Hz]) for all locations in space.

The most widely used wind energy spectra are the Harris and Davenport
spectra.

The Harris spectrum [101] is expressed as:

SuðfiÞ ¼ r2
u

4 Lu
U10

1þ 70:8 � fiLu

U10

ffi �2
� �5

6

ð12:44Þ

where fi denotes the frequency in Hz, Lu is the integral length scale, typically
between 60 and 400 m with a mean value of 180 m; U10 is the 10 min mean wind
speed; rU is the standard deviation of the wind speed.
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The Davenport spectrum [102] is expressed as:

SuðfiÞ ¼ r2
u

2
3

Lu
U10

ffi �2
fi

1þ fiLu

U10

ffi �2
� �4

3

ð12:45Þ

where the Lu is specially referred to as the Davenport integral length scale, which
can normally be taken to be 1200 m.

Both Harris and Davenport spectra are developed for wind over land, and are
not recommended for application for wind fields with significant components
within the low frequency range (fi \ 0.01 Hz).

For situations in which excitations in the low-frequency range are of impor-
tance, such as wind over water, the Frøya (NPD) spectral density proposed by
Andersen and Løvseth [103, 104] is widely used:

SuðfiÞ ¼
320 � U0

10

� 	2� z
10

� 	0:45

1þ f n
	ffi �

5
3n

ð12:46Þ

where n ¼ 0.468.

f
	
¼ 172 � fi �

z

10

ffi �0:667
� U0

10


 ��0:75

ð12:47Þ

where z is the height above the sea surface and U0 is the one hour mean wind speed
at 10 m above the sea surface.

The Frøya spectrum was originally developed for neutral conditions over water
in the Norwegian Sea. The use of the Frøya spectrum can therefore not be rec-
ommended in areas where stability effects are important. A frequency of 1/
2400 Hz defines the lower bound for the application of the Frøya spectrum [106].
Whenever it is important to estimate the energy in the low frequency range of the
wind spectrum over water, the Frøya spectrum is considerably better than other
wind spectra such as Davenport or Harris spectrum [101, 106].

The two upper figures in Fig. 12.10 show typical Frøya wind spectra at two
locations with a distance of 36.6 m. They illustrate that the target (solid lines) and
the simulated (dots) values for both wind power spectra and the coherence function
between two points (series) agree very well.

By observing Fig. 12.10, it is clearly shown that the majority of wind spectra
energy is below 0.1 Hz, meaning that the wind loads’ peak frequency is far below
the natural frequencies of typical engineering structures (above 0.3 Hz), i.e. the
structural resonance is not likely to occur due to wind flutter effects. However,
strong winds can excite structures exhibiting a large amplitude of forced vibra-
tions, which may cause integrity problems due to plasticity or stability. Moreover,
the self-vibrations of structure itself can also cause fatigue failure of structural
joints or components. Figure 12.11 shows the stress history and response spectra
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of the axial, in-plane and out-of-plane forces in a conical joint at the upper part of a
flare boom, under the wind speed of 30 m/s from the direction perpendicular to the
longitudinal direction of the flare boom. Axial stress makes the most significant

Fig. 12.10 A verification of wind simulation (dots in the figure) in the frequency domain
between the two locations (series) in space with the separation of D = 36.6 m. The solid lines
represent the target wind spectra
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contribution to fatigue damage. Except for large responses close to a rather low
frequency (0.1 Hz) due to the quasi-static responses of the flare boom subjected to
wind, response peaks appear around the frequency of 1.2 Hz, which is close to,

Fig. 12.11 The stress history (upper figure) of joint 714 and response spectra (middle figure) at a
wind speed of 30 m/s from the north (outward from the paper plane and perpendicular to the
longitudinal direction of the flare boom); the response peak frequency clearly indicates the
contribution from the fundamental eigenmode (lower figure)
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and slightly lower than, the global fundamental frequency (vertical flexural
vibration of the flare tip) of the flare boom. This indicates that the free vibrations
of the flare boom top significantly contribute to the dynamic responses of this joint.
This response peak frequency is slightly lower than the fundamental eigenfre-
quency of the flare boom mainly because of the damping and stress-softening
effects (a reduction in initial elastic stiffness due to axial compressive force, dis-
cussed in Sect. 6.3) of the structure. By varying the reference wind speed and
calculating the flare boom’s responses, it is discovered that the higher the wind
speed, the more significant dynamic effects (as compared with quasi-static
response) the structure will exhibit.

Several other wind spectra are also widely used, such as the Kaimal spectrum
[108], Simiu and Leigh spectrum [109], Ochi and Shin spectrum [110]. Interested
readers may consult the relevant references.

Across-Wind Spectrum

For structures that are not vertical, such as an obliquely-oriented flare boom, the
across-wind turbulence may make a more significant contribution to the total
structural responses. Based on the calculation of nonlinear wind-induced responses
of a high-rise tubular structures, Jia [17] performed a fatigue assessment by rain-
flow counting (Sect. 17.3.5.1) the nonlinear stress responses and applying the
Miner summation rule (Sect. 17.2.5). It is found that, in many structural joints, the
fatigue life without including the across-wind components is significantly higher
than that including the across-wind contribution. Generally, the vertical across-
wind components make a slightly more significant contribution on the fatigue
damage of the structure than that of the horizontal across-wind components.

Different from the way of multiplying a scaling factor to the spectrum of the primary
direction, as a short crest sea wave spectrum does, the one point spectra for across
fluctuating wind components v and w are specified in a separated spectrum [105]:

Svorwðf Þ ¼
r2

e

fi


 �

� Ae � fe
1þ 1:5Ae � feð Þ1:667 ð12:48Þ

where r is the standard deviation; e is a symbolic index indicating the direction in
y–z plane (horizontal across wind direction or vertical across wind direction); and
fe ¼ fi�xLe

e , where xLe is the integral scale length of the relevant turbulence com-
ponent, which may be determined from ESDU 86,010 [111]. It can be assumed
that Ae ¼ 9.4 if it is not specified.

Spatial Variation of Wind Speed by Coherence Function

Since wind gusts vary in space, i.e., wind speeds vary at different locations, but the
speed at any two arbitrary locations are correlated, the correlation decreases with
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the increase of the distance between the two locations. This correlation can be
expressed in terms of single-point spectra Sh and Sj (with the separation D between
locations h and j) with the corresponding coherence spectra as expressed by:

Shj D;xif g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ShðxiÞ � SjðxiÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cohhjðxi;DÞ
q

e
ffiffiffiffiffi

�1
p

uij xif g ð12:49Þ

where /hj xif g is the phase spectrum, which, for simplicity, can be assumed to be 0.
For wind over water, the Frøya coherence spectrum CohðD;xiÞ for both either

the wind components v or w between any two points (x1, y1, z1) and (x2, y2, z2) can
be expressed by:

Cohðxi;DÞ ¼ e
� 1

U0
�
P3

h¼1
A2

h

� 	0:5
h i

ð12:50Þ

where:

• U0 is the 1 h mean wind speed
• D is the separation between the two points (x1, y1, z1) and (x2, y2, z2)

• Ah ¼ ah � xi
2p

� 	rh �Dqh
h

ffiffiffiffiffiffiffi

z1�z2
p

10

ffi ��ph

m=s½ �

The coefficients ai, ri, qi, pi and the separations Dh can be taken as illustrated in
Table 12.3.

Since the wind velocity is assumed to be stationary and homogeneous, in some
cases, the along-wind separation is disregarded. Thus, the along wind may be rep-
resented by the one-point wind spectra without accounting for the spatial variation.

Simulation of Turbulent Wind Speed Time Series

In order to reduce the computation efforts, the cross-covariance (Sect. 11.5.1)
between u, v and w may be assumed to be insignificant, indicating that the u, v and
w components can be obtained independently. The fluctuating parts of the wind
spectra can then be expressed by:

S D;xnf g � diag Suu; Svv; Sww½ � ð12:51Þ

By subdividing the frequency range into N segments (i = 1, 2,…, N) and the
wind fields into M points in space grids, an M by M cross-spectral density matrix
can then be expressed for each sample frequency xi and each flow component as:

S xif g ¼

S11ðxiÞ S12ðxiÞ . . . S1MðxiÞ
S21ðxiÞ S22ðxiÞ . . . S2MðxiÞ

. . . . . . . . . . . .
SM1ðxiÞ SM2ðxiÞ . . . SMMðxiÞ

2

6

6

4

3

7

7

5

ð12:52Þ
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If one wants to simulate the wind speed time series from the wind spectrum, a
Cholesky decomposition can first be performed on the matrix above so that it can
be rewritten as the product of lower triangular matrix HðxiÞ and its transposed
complex conjugate:

SðxiÞ ¼ H xif g � H
T xif g ð12:53Þ

where:

H xif g ¼

H11ðxiÞ 0 . . . 0
H21ðxiÞ H22ðxiÞ . . . 0

. . . . . . . . . . . .
Hm1ðxiÞ Hm2ðxiÞ . . . HmmðxiÞ

2

6

6

4

3

7

7

5

ð12:54Þ

Aas-Jakobsen and Strømmen [112] present a criterion for selecting the element
length in the finite element-based structure model as:

Dl� min Ltot=3; 2f Wg : symmetric modes
min Ltot=3;f Wg : anti-metric modes

�

ð12:55Þ

where Dl is the element length; Ltot is the total length of the structure (or the active
mode); and W is the span-wise integral of the coherence function at a dominating
eigenfrequency [112].

By realizing the fact that the wind grid size and element length are inter-
changeable quantities, this criterion may provide practical recommendations for
selecting a decent wind grid size.

Based on the assumption of Gaussian process, the simulated wind velocity
components u, v, and w in space (at point m) at time t can finally be expressed as:

vmðtÞ ¼
X

m

k¼1

X

N�1

i¼1

HmkðxiÞj j �
ffiffiffiffiffiffiffiffiffiffi

2Dx
p

� cos xit þ wmkðxiÞ þ hki½ � ð12:56Þ

where:

• Dx is the sample density in the frequency domain

• wmk xif g ¼ arctan
Im Hmk xif g½ �
Re Hmk xif g½ �

ffi �

is the phase angle between two points in space.

If Eq. (12.51) is fulfilled, then wmk xnf g ¼ 0
• hki is a random phase angle uniformly distributed between 0 and 2p

Table 12.3 Coefficients and separation for the 3 (h = 1, 2, 3)-dimensional coherence spectrum

h ah rh Dh(m) qh ph

1 2.9 0.92 x2 � x1j j 1.00 0.4
2 45.0 0.92 y2 � y1j j 1.00 0.4
3 13.0 0.85 z2 � z1j j 1.25 0.5
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In order to optimize computer storage and computation speed, Eq. (12.56) can
be rewritten in an exponential format expressed by:

vmðtÞ ¼
X

m

k¼1

X

N�1

i¼1

HmkðxiÞj j �
ffiffiffiffiffiffiffiffiffiffi

2Dx
p

� e
ffiffiffiffiffi

�1
p

wmk xif gþhkið Þ½ �
ffi �

� e
ffiffiffiffiffi

�1
p

xi t ð12:57Þ

It should be noticed that the calculation of the wind turbulence in the current
section is based on the assumption that the wind occurs on an open landscape with
free flow condition. The blocking and speed-up effects of the nearby structures or
topology may modify the wind field to a great extent [17].

12.3 Ice Loads on Narrow Conical Structures

Our knowledge on the ice load is rather limited even if it has attracted extensive
research efforts in recent years. Ice load differs significantly between static and
dynamic loading [113]. For dynamic ice loading, the initial contact conditions are
invariably irregular and non-uniform. The duration of the ice impact is generally
determined by kinetic energy of the impacting ice feature, which may come to rest
during the impact process.

The ice load on marine structures can be divided into two types: total or global
load, and local loads (pressures). The global load affects the overall motion and
stability of structures, while local load affects areas from 1 m2 to as much as
100 m2 [24]. For both types of loads, the ice thickness and velocity are two
essential parameters to determine the load level.

With respect to local ice load, close observations show that, when ice crushes a
structure, local ice pressure on small patches or a narrow line-like area can reach
rather high values [114]. Such areas are termed high pressure/critical zones, as
discussed in reference [115]. This pressure may be well beyond the normal uni-
axial crushing strength of ice [115]. The explanation is that the stress field is in fact
multi-axial. The process of ice-structure interaction is characterized by fracture
and damage processes, which play a key role in the appearance and disappearance
of high pressure zones. Further, the high pressure has an important effect on local
ice actions. However, the global ice pressure is significantly lower than the local
ice pressure because in local regions of ice the intense pressure occurs over a short
time.

It is noted that the strength of ice due to bending is less than half of that due to
crushing, and the use of conical or sloping structures will induce the bending
failure of the ice sheet when the ice crushes structures. Therefore, they are often a
preferred design option for structures located in ice-covered waters. Recently, field
measurements also indicate that the adoption of conical structures can avoid severe
steady-state vibrations [116]. Figure 12.12 shows that a cone (right) is installed on
an offshore monopod structure originally with a vertical leg (left) at China Bohai
Sea.
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Even though the ice loads on offshore structures are generally limited by the
failure of the ice itself [117], the ice-induced vibrations in offshore structures can
be rather severe when the ice is moving driven by winds or current. Dynamic
loading scenarios include both transient impact loads and continuous ice failure
loads. Resonance of fixed offshore structures due to ice loading may occur, as
discussed later in this section.

Kärnä et al. [118] derived the spectrum density function of the crushing-level
ice force on vertical structures.

Ice loads on conical and sloped structures are generally narrow banded with a
long tail toward higher loads in the probability distribution. Several researchers
[119, 120, 121] have proposed the power spectrum density of level ice forces on
narrow conical structures, all of which are in the form of a Neumann spectrum
[122]:

Sice�cone fð Þ ¼ AF
2
0T
�v

f p
e
�B 1

T
a

f b

ffi �

ð12:58Þ

where A, B, v, p, a, and b are parameters obtained from experiments. By applying
curve fitting from observation data from the Bohai Sea to the Neumann spectrum,
the values of A, B, v, p, a, and b are 10, 5.47, 2.5, 3.5, 0.64 and 0.64, respectively
[121]; F0 is the force amplitude on the target structure; T ¼ Lb

V is the mean period
of ice force on the structure; Lb the ice breaking length; and V is the ice velocity.

Fig. 12.12 A monopod structure with vertical leg structure (left) during the first winter, later
modified with an ice-breaking cone (right) installed during the second winter [116]
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Based on the panel test to measure the ice force time history on a jacket leg at
China Bohai Bay [121], Fig. 12.13 shows a comparison between the power spec-
trum density functions of ice forces obtained from test data and results of curve
fitting using Neumann’s formula presented above. The two curves match each other
well. By observing this figure, it is also noticed that the local peak frequencies and
the majority of the spectra energy are concentrated in a frequency range between 0.3
and 2.5 Hz, which is in the frequency range of most of the offshore jacket platforms,
i.e. a noticeable dynamic response amplification due to ice loading may be expected,
which can interfere with the serviceability due to excessive vibrations on platforms
or even structural integrity with regard to fatigue and plasticity development.

Note that the formula above only applies for calculating level ice-induced
loading, even though this type of forces are generally higher than that caused by
ice floes impacting.

In addition, the spatial variability of ice load exists for offshore structures with
multiple legs [123]. This further complicates the prediction of the ice loading and
the subsequent structural responses.

12.4 Earthquake Ground Motions

12.4.1 Power Spectrum of Seismic Ground Motions

Even though many excitations are nearly periodical and stationary, such as wave
and wind loadings on structures, ships’ propeller excitation forces etc. [124],
earthquakes’ ground motions are neither periodical (e.g., strong ground motions

Fig. 12.13 One-sided power spectrum density functions of ice force obtained from load panel
data (test data) and Neumann’s formula (curve fitting) [121]
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have not repeated themselves during any earthquake event), nor stationary, i.e., the
intensity builds up to a maximum value in the early part of the motions, then
remains constant for a period of time, and finally decreases near the end of the
motions [125].

However, as a modification of the traditional power spectrum density function,
Kanai [126] and Tajimi [127] presented that, for both engineering and research
purposes, one may still assume that strong ground accelerations are a stationary
stochastic process by passing a white noise process (the power spectral density is
constant over the entire frequency range, see Sect. 11.4.2) through a filter, i.e., the
actual excitations are regarded as a function of output from a series of filters
(usually a linear second-order system) subjected to white noise input S0. In terms
of acceleration amplitude, the Kanai-Tajimi model can be expressed as:

SgðxÞ ¼
x4

g þ 4n2
gx

2
gx

2

x2
g � x2

ffi �2
þ 4n2

gx
2
gx

2
S0 ð12:59Þ

where xg and ng are characteristic ground frequency and damping ratio, respec-
tively. S0 is a scaling factor to define the white noise intensity level. The power
spectral density is often filtered twice in order to remove the singularities at x ¼ 0,
i.e., the non-zero power spectrum density occurs for zero frequency.

The spectral density has its maximum value when x ¼ xg. By a proper
selection of xg and ng, Eq. (12.59) can be used to represent different spectral
density shapes [128]. Kanai [126] and Tajimi [127] reported that ng varies from 0.2
(relatively narrow banded) for soft soil to 0.6 (relatively wide banded) for hard
rock sites. While many researchers and engineers tend to use ng ¼ 0:6, from a
geotechnical engineering point of view, it is reasonable to assume that the power
spectra of the horizontal ground motions have a similar shape, while the vertical
motion component is more wide banded. Based on this assumption, Kubo and
Penzien [129] simulated the San Fernando Earthquake with ng ¼ 0:2 and ng ¼ 0:3
for two horizontal ground motion components and ng ¼ 0:6 for the vertical
component. Figure 12.14 [130] illustrates the Kanai-Tajimi power spectral density
functions for soft, medium and stiff soil conditions. It is obvious that the spectrum
under soft soil conditions is more narrow banded than that of the stiff soil con-
ditions. Therefore, resonance of structures is more likely to occur under soft soil
conditions than under stiff soil conditions.

Compared to the selection of ng, the determination of xg is more important.
This is because even if the wide-band power spectral density tends to overestimate
the contribution from high frequencies, this normally does not result in a signifi-
cant change of ground motions. However, the xg determines the dominant fre-
quency of ground motion input [131]. When the dominant frequency is close to the
natural frequency of a structure subjected to the ground motions, resonance of
structural responses would occur. A typical value of xg ¼ 5p can be assigned for
rock sites.
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A few previously adopted values of ng and xg are listed as follows [132]: for EI
Centro 1940 N–S component, xg ¼ 12 and ng ¼ 0:6; for Kobe 1995 N–S com-
ponent, xg ¼ 12 and ng ¼ 0:3; for Uemachi, the simulated ground motion using
fault rupture model gives xg ¼ 3 and ng ¼ 0:3. Those selections of values are
widely used in the research of tuned mass dampers [133, 134].

It should be noted that models expressed with the power spectral density
elaborated above can only provide the excitation information phenomenally, they
give no information on how spectra amplitudes are scaled with earthquake source
and distance (the attenuation effects [23]). This drawback may be eliminated by
calibrating the model to the measured ground motions. In cases when no such data
is available, an alternative is to fit them into physical power spectra density models
based on seismological description of source and wave propagation [135]. Inter-
ested readers may read references by Hanks and McGuire [136], Boore [137] and
Herman [138].

12.4.2 Spatial Variation of Ground Motions by Coherence
Function

Similar to that of the wind field simulation, the spatial variation of earthquake-
induced ground motions can have a significant effect on the responses of extended
structures. Section 16.1.4 briefly discusses the effects of spatial variation of ground
motions. The spatial variation can be described mathematically either by auto-
covariance and cross-covariance (in the time domain), or by coherence functions
(in the frequency domain). In engineering practice, the ground motions at sig-
nificant different locations can normally be defined by a homogeneous and

Fig. 12.14 The Kanai-Tajimi power spectral density functions for different types of soil (ng is
assumed to be 0.2 for soft soil, 0.4 for medium soil and 0.6 for stiff soil) [130]

200 12 Calculation of Environmental Loading Based on Power Spectra

http://dx.doi.org/10.1007/978-3-642-37003-8_16
http://dx.doi.org/10.1007/978-3-642-37003-8_16


isotropic Gaussian stochastic model, with its spatial variability then expressed by
its coherency spectrum, or coherence function. In establishing the coherence
functions, it is normally sufficient to account for the effects of seismic wave
passage and the loss of coherence; the function depends on the frequency and
separation distance. The most widely used model to represent the spatial variation
of ground motions is based on the Luco and Wong coherency function [139]. This
establishes the coherence of any pairs of locations, which can be expressed as:

Cohðn;xnÞ ¼ e �ð
axnn

vs
Þ2½ � � e

ixnnL

vapp

h i

ð12:60Þ

where a indicates the mechanical characteristics of the soil; a low value of a (e.g.
2�10-4) represents a slow exponential decay in the coherency as the frequency xn

and separation distance n increase. On the other hand, a high value of a (e.g. 10-3)
represents a sharp exponential decay in the coherency as frequency and separation
distance increase.

The first term in the equation above also shows an exponential decay of
coherence due to the variation of separation distance n between two locations,
shear wave velocity ts and frequency xn. This item controls the geometric inco-
herence of ground motions, which decreases as soil becomes stiffer. The second
term in the equation above represents the seismic wave passage effect. It gives the
longer signal arrival delay when the projected horizontal distance nL and the
frequency xn increase, and the apparent velocity tapp decreases. The coherence
level is mainly governed by shear wave velocity and apparent surface wave
velocity. When the surface wave travels at infinite speed (tapp ¼ 1), the second
term equals to 1, the seismic waves arrives at all locations simultaneously, and the
loss of coherence is only due to the geometric incoherence (first term). The shear
wave velocity is generally much lower than the apparent wave velocity. For soft
soil, ts is in a range of 200–300 m/s [140].

It should be noted that several other models are available to simulate the coher-
ence of asynchronous ground motion, such as the Harichandran-Vanmarcke model
[141], Loh-Yeh model [142], Feng-Hu model [143], Oliveira-Hao-Penzien model
[144], and Qu-Wang-Wang model [145] etc. For more details of those models, the
reader may read the references cited above.

A distinction needs to be made between the power spectrum and response
spectrum (Sect. 16.2) in earthquake engineering applications. Even if both of them
are expressed in the frequency domain, the former one is of a stochastic nature
while the latter is based on a calculation of maximum responses under ground
motion history, i.e., the response spectrum is essentially a deterministic type. For
details of these two types of spectra, see reference [23].
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Chapter 13
Vibration of Multi-Degrees-of-Freedom
Systems

In most cases, a system or a structure possesses more than a SDOF, which indi-
cates that the vibrations on each degree-of-freedom are likely to be different from
the others but also coupled. The number of degrees-of-freedom is equal to the
number of independent coordinates necessary and sufficient to describe complete
motions of the system. Therefore, the system will have the same number of
eigenfrequencies and mode shapes as degrees-of-freedom. The free vibrations of
the system involve several simultaneous oscillations at various eigenfrequencies.
What distinguishes the free vibrations of multi-degree-of-freedom (MDOF) from
that of SDOF is that, when all degrees-of-freedoms (all parts of the system) move
harmonically at the same eigenfrequency as the system, a certain displacement
configuration or shape, called the principal mode or normal mode of vibrations, is
formed. Moreover, the number of normal modes is equal to the number of degrees-
of-freedom. This means that the system can be modeled as a series of masses. The
number of normal modes is equal to the number of masses multiplied by the
number of directions that masses can move translationally and rotationally.
Through the superposition of the normal mode vibrations, more general types of
vibrations for the system can be obtained.

Generally, three methods are used for solving the vibration problem for systems
possessing more than one DOF: direct/exact method, mode superposition method
and direct time integration method.

Table 13.1 shows the applicability of three methods for solving the equations of
motions. It is noticed that, compared to the direct integration method, the mode
superposition is more efficient for solving the linear dynamic problem, as will be
discussed in Sect. 13.4. Practically, only the latter two methods are suitable for the
analysis of systems with MDOF.

13.1 Equations of Motions

We start with the vibrations of two degrees-of-freedom-system as shown in
Fig. 13.1a, and then extend the method to an MDOF system. The governing
equations of motions are formulated by the following two equations, each of which
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corresponds to an equilibrium state (free body diagram shown in Fig. 13.1b) for
one mass:

m1 x1ðtÞ
��
þ c1 x1ðtÞ

�
� c2 x2ðtÞ

�
� x1ðtÞ

�ffi �

þ k1x1ðtÞ � k2 x2ðtÞ � x1ðtÞ½ � ¼ F1ðtÞ

ð13:1Þ

m2 x2ðtÞ
��
þ c2 x2ðtÞ

�
� x1ðtÞ

�ffi �

þ k2 x2ðtÞ � x1ðtÞ½ � ¼ F2ðtÞ ð13:2Þ

Note that the two equations above are coupled in that the first one contains x2ðtÞ
and the second one contains x1ðtÞ. Further, it is realized that the number of dif-
ferential equations is equal to the number of degrees-of-freedom.

The equations above can also be expressed in a matrix form as:

m1 0
0 m2

ffi �

x1ðtÞ
��

x2ðtÞ
��

8

<

:

9

=

;

þ ðc1 þ c2Þ �c2

�c2 c2

ffi �

x1ðtÞ
�

x2ðtÞ
�

8

<

:

9

=

;

þ ðk1 þ k2Þ �k2

�k2 k2

ffi �

x1ðtÞ
x2ðtÞ

� �

¼ F1ðtÞ
F2ðtÞ

� �

ð13:3Þ

The more general form of the equation above can be written as:

Mn�n½ � Xn�1

��n o

þ Cn�n½ � Xn�1

�n o

þ Kn�n½ � Xn�1f g ¼ Fn�1f g ð13:4Þ

where n is the number of degrees-of-freedom.
We extend our study from the spring-mass system to a cantilever beam model

fixed at one end as shown in Fig. 13.2a with five degrees-of-freedom: three
translations and two rotations. The beam is divided into three segments. At node 1

Fig. 13.1 A two degrees-of-freedom-system under external force excitations FðtÞ: a spring-
mass-damper system; b force equilibrium for each mass
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of the two adjacent segments, half of the mass sum (m1) for the two adjacent
segments and rotation inertia (J1) associated with node 1 are concentrated together
with the moment of inertia I1. At node 2 of the beam, half of the mass sum (m2) for
the two adjacent segments and rotation inertia (J2) associated with node 2 are
concentrated together with the moment of inertia I2. At node 3 of the beam, half of
the mass of the third segment (between node 2 and node 3) and any additional
mass attached to node 3 (m3) are concentrated together with the moment of inertia
(I3) of the third segment. This approach of assigning mass and rotation inertia
properties lumped at the nodal coordinates is called the lumped mass method. It is
normally applicable to represent the essential inertia feature of the mass distri-
bution for a typical structure. The major advantage of the lumped mass method is
that, as will be discussed in Sect. 13.6, a diagonal mass matrix can be used, which
reduces the computational effort. Therefore, it is widely adopted as an efficient
way of formulating mass matrix in both analytical and finite element methods.

For segment 1, the relationship between the elastic forces (F)/moments (M) and
deflection (x) and rotation (h) at nodes 0 and 1 is:

m0 0 0 0
0 J0 0 0
0 0 m1 0
0 0 0 J1

2

6

6

4

3

7

7

5

x0ðtÞ
��

h0ðtÞ
��

x1ðtÞ
��

h1ðtÞ
��

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

þ

12EI1

L3
1

� 6EI1

L2
1
� 12EI1

L3
1
� 6EI1

L2
1

� 6EI1

L2
1

4EI1
L1

6EI1

L2
1

2EI1
L1

� 12EI1

L3
1

6EI1

L2
1

12EI1

L3
1

6EI1

L2
1

� 6EI1

L2
1

2EI1
L1

6EI1

L2
1

4EI1
L1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

x0ðtÞ
h0ðtÞ
x1ðtÞ
h1ðtÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

F0ðtÞ
M0ðtÞ
F1ðtÞ
M1ðtÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð13:5Þ

Fig. 13.2 A beam with three segments and five degrees-of-freedom (x1(t), x2(t), x3(t), h1(t), h2(t))
under external force FðtÞ at each segment’s end: a beam model; b space diagram
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Note that the fixed support condition at node 0 indicates that all the displace-
ments and rotations at node 0 are zero. The equation above is then simplified as:

m1 0
0 J1

ffi �

x1ðtÞ
��

h1ðtÞ
��

8

<

:

9

=

;

þ
12EI1

L3
1

6EI1

L2
1

6EI1

L2
1

4EI1
L1

2

4

3

5

x1ðtÞ
h1ðtÞ

� �

¼ F1ðtÞ
M1ðtÞ

� �

ð13:6Þ

Similarly, for segment 2, the relationship between the elastic forces (F)/
moments (M) and deflection (x) and rotation (h) at nodes 1 and 2 is:

m1 0 0 0
0 J1 0 0
0 0 m2 0
0 0 0 J2
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ð13:7Þ

Note that any stiffness term in the assembled stiffness matrix may be obtained
by adding together the corresponding stiffness associated with those nodal coor-
dinates. Similarly, the force and moment contribution at a node can also be
obtained by adding the forces and moments at this node and the adjacent nodes.
We can then assemble the stiffness at node 1 by calculating the contribution of
forces and moments from both segments 1 and 2:

K½ � ¼

kð1Þ11 kð1Þ12 kð1Þ13 kð1Þ14 0 0

kð1Þ21 kð1Þ22 kð1Þ23 kð1Þ24 0 0

kð1Þ31 kð1Þ32 kð1Þ33 þ kð2Þ11

� �

kð1Þ34 þ kð2Þ12

� �

kð2Þ13 kð2Þ14

kð1Þ41 kð1Þ42 kð1Þ43 þ kð2Þ21

� �

kð1Þ44 þ kð2Þ22

� �

kð2Þ23 kð2Þ24

0 0 kð2Þ31 kð2Þ32 kð2Þ33 kð2Þ34

0 0 kð2Þ41 kð2Þ42 kð2Þ43 kð2Þ44
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6
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7

7

7

7

5

ð13:8Þ

where k mð Þ
ij is the stiffness coefficient. Its lower indices serve to locate the appro-

priate stiffness coefficients in the corresponding stiffness matrix, while the upper
indices are used to identify the beam segment.

From the equation above, it is noticed that the stiffness matrix of two adjacent
elements overlap by a 2 by 2 matrix. In addition, the assembling of the mass matrix
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for the entire beam model is exactly the same as described for assembling the
stiffness matrix.

We therefore conclude a more general form of the equation of equilibrium for
beams with N degrees-of-freedom, which is expressed in 2 9 2 N mass and
stiffness matrix form as:

m1

J1

�
�

mN

JN
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ð13:9Þ

The equation above is the basic matrix formulation of the equations of a lumped
mass (Sect. 13.6) system. The knowledge of the matrix theory is required to solve
this equation. It is noted that, for large degrees-of-freedom, the solutions using the
direct/exact method can be extremely tricky and therefore impractical. The solu-
tion for a two-degrees-of-freedom system using the direct/exact method will be
presented in Sect. 13.2.

13.2 Free Vibrations of the Two-Degrees-of-Freedom
System: Direct/Exact Method

By neglecting the damping in Fig. 13.1, and further by assuming that if the system
is vibrating in a normal mode, the displacements of two masses are in phase and
harmonic, the solutions of the motions can then be written as:

x1ðtÞ ¼ X1 cosðxtÞ ð13:10Þ

x2ðtÞ ¼ X2 cosðxtÞ ð13:11Þ

By substituting the equations above into Eq. (13.3) and also setting the external
force as zero for free vibrations, one obtains:

k1 þ k2 � x2m1 �k2

�k2 k2 � x2m2

ffi �

X1

X2

� �

¼ 0
0

� �

ð13:12Þ

Again, the equation above indicates that the vibrations of two masses are
coupled. It can only be valid for nontrivial X1 and X2, leading to the determinant of
the coefficient matrix being vanished:

k1 þ k2 � x2m1 �k2

�k2 k2 � x2m2

�

�

�

�

�

�

�

�

¼ 0 ð13:13Þ
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The equation above results in the characteristic, or frequency equation:

m1m2x
4 � m1k1 þ m2ðk1 þ k2Þ½ �x2 þ k1k2 ¼ 0 ð13:14Þ

The solution of the two eigenfrequencies for the system can then be calculated
as the real positive roots of x:

x1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1k2 þ m2ðk1 þ k2Þ½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1k2 þ m2ðk1 þ k2Þ½ �2� 4m1m2k1k2

q

2m1m2

v

u

u

t

ð13:15Þ

In free vibrations, the relative deflections of x1 and x2 define the mode shape. At
eigenfrequency xi:

x1 ¼
k2

k1 þ k2 � m1x2
i

x2 ð13:16Þ

Or

x1 ¼
k2 � m2x2

i

k2
x2 ð13:17Þ

where i = 1 or 2.
The two equations above indicate that the relative value between x1 and x2

forms a unique ‘‘shape’’ but not a unique value, i.e., they do not express the real
responses until known excitations are applied on the system. By arbitrarily
choosing one of these two (x1 and x2), the other can be calculated as well. This also
means that any comparison between x1 and x2 only makes qualitative sense within
the same vibration mode, i.e., the comparison between different modes of vibra-
tions does not make any sense unless the associated modal mass (as will be
presented later in this section) and the excitations are known.

By applying the equations presented above, the two vibration mode shapes
( /f g1 and /f g2) at the two eigenfrequencies (x1 and x2) of the beam (without
rotational degrees-of-freedom) are shown in Fig. 13.3. These resemble the
vibrations of a system with two degrees-of-freedoms, and have a unique shape at
each eigenfrequency even though the amplitude is arbitrary. By observing the
figure, it is also found that at the second eigenmode, the vibration amplitude x1 and
x2 is out of phase.

It should be noted that one can also assume that the solutions of the motions
(x1ðtÞ and x2ðtÞ) are a function of cos(xt), which will finally reach the same
conclusion.
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13.3 Forced Vibrations of Two Degrees-of-Freedom
Systems: Direct Method

This time, we still assume that the external forces are harmonic but expressed in
another format:

F1ðtÞ ¼ F10eixt ð13:18Þ

F2ðtÞ ¼ F20eixt ð13:19Þ

And the steady-state solution is:

x1ðtÞ ¼ X1eixt ð13:20Þ

x2ðtÞ ¼ X2eixt ð13:21Þ

The equilibrium equation (Eq. (13.3)) can be rewritten as:

ð�x2m11 þ ixc11 þ k11Þ ð�x2m12 þ ixc12 þ k12Þ
ð�x2m12 þ ixc12 þ k12Þ ð�x2m22 þ ixc22 þ k22Þ

ffi �

X1

X2

� �

¼ F10

F20

� �

ð13:22Þ

Let Zij xð Þ ¼ �x2mij þ ixcij þ kij


 �

, which is called impedance. We then
define:

ZðxÞ½ � ¼ Z11ðxÞ Z12ðxÞ
Z21ðxÞ Z22ðxÞ

ffi �

ð13:23Þ

At ω1 At ω2

x2=constant

m

m2

x2=constant

x1
m

m2

x1

Fig. 13.3 Mode shapes at two eigenfrequencies of a beam with two translational degrees-of-
freedoms
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The system of equation can be expressed as:

XðxÞf g ¼ ZðxÞ½ ��1 F0ðxÞf g ¼ HðxÞ½ � F0ðxÞf g ð13:24Þ

where HðxÞ½ � ¼ ZðxÞ½ ��1 is the transfer function.
The responses in the frequency domain are then expressed as:

x1ðxÞ ¼ H11ðxÞF1ðxÞ þ H12ðxÞF2ðxÞ ð13:25Þ

x2ðxÞ ¼ H21ðxÞF1ðxÞ þ H22ðxÞF2ðxÞ ð13:26Þ

where HijðxÞ is complex that represents the relationship between responses at ith
degree-of-freedom and forces acting at jth degree-of-freedom [168].

13.4 Forced Vibrations of MDOF: Modal Superposition
Method

We recall the general expression of the equation of motions in a matrix form:

Mn�n½ � X
��

n�1

� �

þ Cn�n½ � X
�

n�1

� �

þ Kn�n½ � Xn�1f g ¼ Fn�1f g ð13:27Þ

Regardless of which types of excitation force Fn�1f g is, the equation above can
always be solved either directly or by transforming it into a simpler form.

We have already, by using an N-segment beam model, presented the relevant
knowledge on how to assemble the stiffness and mass matrix and implement them
into the equation of motions, i.e., direct/matrix method. It is noticed that for a
rather large degrees-of-freedom system, not only the solution of the assembled
equation in the matrix form, but also the process of matrix assembling itself is
complicated. This difficulty promotes the application of modal analysis, which is a
convenient method for solving vibration problem for systems with a large degrees-
of-freedoms, providing that the stiffness matrix is constant, i.e., the structure/
system is linear (see Sect. 15.2 for the definition of nonlinearities).

In the modal analysis, the coupled equations of motions are transformed into a
series of uncoupled/independent equations. Each of these equations is analogous to
the equation of motions for an SDOF system, and can be solved in the same
manner. The equivalent single degree-of-freedom-system is the one for which the
kinetic energy, internal strain energy, and work done by all external forces are at
all times equal to the same quantities for the complete MDOF system when
vibrating in this normal mode alone [169].

By excluding the eigenfrequencies and mode shapes associated with rigid
motions, in which the system moves as a solid part with a zero eigenfrequency
(Sect. 4), the number of eigenfrequencies and mode shapes is equal to the number
of degrees-of-freedom of the system. It is noticed that the number of uncoupled
equations needed to be solved is equal to the number of eigenmodes to be
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accounted for. For structures with the dynamic responses dominated by the first
few eigenmodes, great computational efficiency can be achieved.

From a physical point of view, an initial excitation of a structure/system will
cause it to vibrate and the system responses will be a combination of eigenmodes,
where each eigenmode oscillates at its associated eigenfrequency.

Let’s assume that a structure has n degrees-of-freedoms and is vibrating at an
eigenfrequency x with the mode shape /n�1f g. The mode shape does not vary
with time. The solution of time variation of the responses can then be expressed as
a harmonic function multiplied by the mode shape:

xðtÞf gn¼ /f gncosðxtÞ ð13:28Þ

where the lower indices serve to identify the order of the vibration mode.
By neglecting the damping and inserting the equation above into Eq. (13.27),

one has:

� Mn�n½ � /f gnx
2 þ Kn�n½ � /f gn¼ Fn�1f g ð13:29Þ

For free vibrations, set Fn�1f g ¼ 0f g. The equation above will yield n eigen-
pairs (eigenfrequencies and mode shapes). It is necessary to solve this linear
eigenproblem by rearranging the equation above:

Kn�n½ � � x2 Mn�n½ �

 �

/f gn¼ 0 ð13:30Þ

This equation is called the matrix eigenvalue problem, and actually includes
n linear homogenous equations. The non-trivial solutions of /f gn exist if all
eigenvalues are different, this can be obtained by vanishing the determinant of the
coefficient matrix as expressed in the characteristic equation:

Kn�n½ � � x2 Mn�n½ �
�

�

�

� ¼ 0 ð13:31Þ

To avoid the solutions for rigid body vibrations, all elements in Kn�n½ � must be
positively defined, as is the case for structures with supports to the ground.

It is noted that the equation above is of a polynomial order in terms of the
number of degrees-of-freedom. It is not easy to solve this equation because no
explicit formulas are available for directly obtaining the eigenvalues (roots) of the
equations when the degrees-of-freedom are higher than four. Therefore, iteration
methods must first be adopted to find one of the eigenpairs (eigenfrequencies or
mode shapes), and the other one can then be calculated directly. For the detailed
technique for solving the eigenvalue, the textbook by Chopra [124] is
recommended.

An eigenvector is arbitrary to the extent that a scalar multiple of it is still a
solution of the equation above, i.e., it only indicates the vibration shape in space
given by the relative values as aforementioned in Sect. 13.2. However, it is con-
venient to choose this multiplier in such a way that /f gn has some desirable
property. Such /f gn is called the normalized eigenvector [170]. The most common
procedures are to either scale /f gn such that its largest component is unity or so
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that the modal mass (also called the generalized mass as described later on in this
section) is unity:

/f gT
n Mn�n½ � /f gn¼ 1 ð13:32Þ

Up to now, we have learned the method for how to obtain eigenpairs (eigen-
frequencies and mode shapes). But the objective of this section is to find the
solution of the equation of motions (Eq. 13.27). The difficulty of solving the
equation lies in the fact that this equation is coupled through the response terms by
the virtue of the stiffness, damping and mass matrix. In order to solve this problem,
one has to find a way to uncouple the equations so that each normal mode can be
determined separately as an SDOF system. For this purpose, we need to be
familiarized with the property of mode shape orthogonality.

We first present this property mathematically through studying the matrix
eigenvalue Eq. (13.30) with two separate eigenfrequencies, xr and xs:

Kn�n½ � � x2
r Mn�n½ �


 �

/f gr¼ 0 ð13:33Þ

Kn�n½ � � x2
s Mn�n½ �


 �

/f gs¼ 0 ð13:34Þ

Pre-multiplying the first equation above by /f gT
s and the second equation by /T

r

gives:

/f gT
s Kn�n½ � � x2

r Mn�n½ �

 �

/f gr¼ 0 ð13:35Þ

/f gT
r Kn�n½ � � x2

s Mn�n½ �

 �

/f gs¼ 0 ð13:36Þ

where the upper indices T means the transpose of the mode shape vector.
Since both Kn�n½ � and Mn�n½ � are symmetric, we can transpose the second

equation (eq. (13.36)) above:

uf gT
s Kn�n½ � � x2

s Mn�n½ �

 �

uf gr¼ 0 ð13:37Þ

Subtracting Eq. (13.37) from Eq. (13.35) and rearranging the result, the
obtained equation is:

x2
s � x2

r


 �

/f gT
s Mn�n½ � /f gr¼ 0 ð13:38Þ

For different eigenpairs, i.e., r = s and xr = xs, we have:

/f gT
s Mn�n½ � /f gr¼ 0 ð13:39Þ

Substituting the equation above into Eq. (13.35) and rearranging it, one obtains:

/f gT
s Kn�n½ � /f gr¼ 0 ð13:40Þ

Physically, the mode shape orthogonality means that the work done by the sth
mode inertia forces in going through the rth mode displacements is zero. Another
implication is that the work done by the equivalent static forces associated with the

13.4 Forced Vibrations of MDOF 213



displacement in the sth mode in going through the rth mode displacements is zero
[125].

With the knowledge of mode shape orthogonality, we can now express the
displacement response vectors of a structure/system due to the initial conditions or
excitations by transforming the responses to a set of uncoupled equations, which is
also called the modal superposition:

xð1ÞðtÞ
n o

¼ /ð1Þ1 q1ðtÞ þ /ð1Þ2 q2ðtÞ þ � � � þ /ð1Þn qnðtÞ

xð2ÞðtÞ
n o

¼ /ð2Þ1 q1ðtÞ þ /ð2Þ2 q2ðtÞ þ � � � þ /ð2Þn qnðtÞ

� � �

xðnÞðtÞ
n o

¼ /ðnÞ1 q1ðtÞ þ /ðnÞ2 q2ðtÞ þ � � � þ /ðnÞn qnðtÞ

ð13:41Þ

where qiðtÞ is the generalized/modal coordinates varied with time. The upper indices
indicate the location of the deflection along the structure/system, while lower
indices indicate the order of the eigenmode. The procedure is illustrated in Fig. 13.4.

The essential feature of modal superposition is to use eigenmode shapes to
uncouple the equations of motions. The uncoupled equations are in terms of modal
coordinates qiðtÞ, which can be obtained by solving each equation independently.

With the absence of damping, qiðtÞ will be infinite when a forcing frequency
reaches xi. Therefore, to avoid resonance, for a system with N (n = N) degrees-
of-freedom, the forcing frequency has to be away from the N eigenfrequencies xi.

Rewrite the equations above in a compact form:

xðtÞf g ¼ /½ � qðtÞf g ð13:42Þ

Or conversely,

qðtÞf g ¼ /½ �T xðtÞf g ð13:43Þ

Fig. 13.4 Illustration of modal superposition in which the responses (x(t)) in ‘‘real’’ coordinates
are the linear sum of product between the eigenvectors (constant in time) and the generalized/
modal coordinates (varied with time) for each eigenmode
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Where u½ � is called the modal matrix and is constructed from the n modal
column vectors or mode shapes.

It is clearly seen that, rather than from the summation of Cartesian deflections,
the transformation to the generalized coordinate is equivalent to the deflection
from the summation of mode shapes. The solution for the generalized coordinate
will be presented later in this section.

Inserting the equation above into the equation of motions Eq. (13.27), one gets:

Mn�n½ � /n�n½ � qðtÞn�1

��� �

þ Cn�n½ � /n�n½ � qðtÞn�1

�� �

þ Kn�n½ � /n�n½ � qðtÞn�1

� 

¼ / /n�n½ � FðtÞn�1

� 

ð13:44Þ

For an ith order normal mode of vibrations, the equation above can be written in
a compact form:

mi qiðtÞ
��
þ ci qiðtÞ

�
þ kiqiðtÞ ¼ FiðtÞ ð13:45Þ

where:

mi ¼ /if gðjÞ
h iT

M½ � /if gðjÞ
h i

is called the generalized mass or modal mass;

ci ¼ /if gðjÞ
h iT

C½ � /if gðjÞ
h i

is called the generalized damping or modal

damping;

ki ¼ /if gðjÞ
h iT

K½ � /if gðjÞ
h i

is called the generalized stiffness or modal stiffness;

FiðtÞ ¼ /if gðjÞ
h i

FðtÞf g is called the generalized excitation force or modal

force.
In the mode superposition method, the modal mass is of special importance in

determining the characteristics of dominated dynamic responses and how many
eigenmodes need to be included in a dynamic analysis. Let rst be the static dis-
placement of the masses along a particular direction, resulting from the static
application of a unit base displacement without damping. We hereby define a
coefficient vector:

Lif g ¼ /½ �T M½ � rst
� 

ð13:46Þ

The modal mass participation due to the ith eigenmode is then defined as:

Pi ¼
L2

i

mii
ð13:47Þ

where mii = 1 for each index if the eigenvectors have been normalized with
respect to the mass matrix (Eq. 13.32). Due to the orthogonality of the eigen-
vectors, for both lumped mass and consistent mass matrix M½ � (as will be elabo-
rated in section 13.6), mij (i = j) is always zero. If all modes are used, these ratios
will be equal to 1.0.
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Engineering experiences indicate that, for most of the dynamic analysis prac-
tices, only the first few eigenmodes are required to obtain the responses with
sufficient accuracy. As a rule of thumb, along each principal direction of a
structure, more than 85 % of the participating mass should be included in the
calculation of the dynamic responses. It should be noted that this criterion is
intended to estimate the accuracy of a solution for the structure’s base motion only.
Strictly speaking, it cannot be used as an exact error estimator for other types of
loading such as point loads acting on the structure [171], even though it is used in
many cases as a judgment on the reliability of the set-up for performing dynamic
analysis. Figure 13.5 shows the modal mass participation influenced by the
number of eigenmodes included for a gravity-based structure (GBS). It is noticed
that the mass participation in global X and Y reaches to more than 90 % when only
the first five eigenmodes have been included. However, the mass participation in Z
direction converges to more than 90 % after 11 eigenmodes have been included.

Table 13.2 describes a flare boom’s eigenfrequencies, mode shapes and the
corresponding modal mass along each direction. It is clearly shown that, instead of
the fundamental eigenmode, the 2nd and 4th eigenmode (shown in Fig. 13.6) have
the largest modal mass along the horizontal X and Y direction, respectively. By
observing Fig. 13.7, which shows the power spectra of wind induced displacement
responses at various locations of the flare boom, it is clearly shown that almost all
response peaks occur at periods close to the 2nd and 4th eigenperiod of the flare
boom, indicating the significant influence due to the high percent of modal mass
participation by these two eigenmodes.

Since the mode shape is governed by the dynamic characteristics of a structure
and has no absolute magnitude, the responses can only be obtained if the gen-
eralized coordinate qiðtÞ in Eq. (13.43) is known.

For free vibrations, the qiðtÞ can be obtained by setting the modal force and
damping in Eq. (13.45) to zero:

qiðtÞ
��
þx2

i qiðtÞ ¼ 0 ð13:48Þ

It shows that the vibrations of the ith eigenmode are independent of vibrations
in other modes. The general solution is then:

qiðtÞ ¼ Ai cosðxit þ uiÞ ð13:49Þ

where Ai and ui are the amplitude and the phase, respectively.
For forced vibrations, the total responses of the system are to solve qiðtÞ for a

total of N equations with the form of Eq. (13.45) and by substituting them into
Eq. (13.41). Convolution integral may be used for obtaining qiðtÞ as:

qiðtÞ ¼
1

mixi

Z t

0
FiðsÞ sinðxiðt � sÞÞds ð13:50Þ

where s is the time when the loading has been applied. For a causal system, it
affects the responses if t [ s.
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The equation above can be integrated numerically or by parts if the force is an
analytical function. A number of textbooks address the solutions of this equation.
See the detailed solution strategies in the reference by Bathe [173].
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Fig. 13.5 Modal mass participation (left) influenced by the number of the eigenmodes selected
for a GBS platform (right) [172]

Table 13.2 A flare boom’s eigenfrequencies, mode shapes and the associated modal masses
along three perpendicular directions

Mode
order

Eigenperiod
(s)

Mode shape Modal mass
along X
direction
(tons)

Modal mass
along Y
direction
(tons)

Modal mass
along Z
direction
(tons)

1 1.462 Local sway vibration at the tip
of the original high and
lower pressure pipes

0.0 10.8 0.0

2 1.424 1st bending eigenmode of the
main flareboom

132.0 0.0 158.0

3 1.070 Local coupled sway vibration at
the tip of all pipes and flare
boom

0.0 32.3 0.0

4 0.810 Global torsional vibration of the
flare boom coupled with the
sway vibration at the tip of
all pipes and flare boom

0.0 103.0 0.0

5 0.751 2nd bending eigenmode of the
main flare boom

51.7 0.0 78.5

6 0.734 1st torsional vibration of the
wind struts coupled with the
sway vibration at the tip of
all pipes and flare boom

0.5 1.0 0.6
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Note that the modal damping matrix ci½ � is diagonal, the usual way of imple-
menting it into the equation of motions (Eq. 13.44) is through the damping ratio fi

in each eigenmode:

qiðtÞ
��
þ 2fixi qiðtÞi

�
þx2

i qiðtÞ ¼
FiðtÞ
mi

ð13:51Þ

Even though the implementation of damping ratio fi is not mathematically
correct, it provides a reasonable response calculation if fi is small. In addition, for
MDOF systems, this does not satisfy the dynamic equilibrium: modal damping
introduces additional loads on the system, leading to the difference between the
sum of inertia forces of all masses and base shear (sum of the forces at members
attached to the base).

Significant computation cost can be reduced by using the modal superposition
method. This is especially the case for structures with a large number of degrees-of-
freedoms and with the dynamic responses dominated by the first few eigenmodes.
Consider Eq. (13.41) applied to an structure with 9,000 degrees-of-freedom. If only
the first six eigenmodes are significant in contributing to the dynamic responses, we
then have:

xiðtÞ
� 

9;000�1

¼ /i� 

j

h i

9;000�6

qðtÞf gj
6�1

ð13:52Þ

Fig. 13.6 The 2nd and 4th eigenmode shapes of the flare boom (courtesy of Aker Solutions)
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Fig. 13.7 Power spectra of displacement responses on various locations of a flare boom, which
is subjected to a wind load with a reference mean wind speed of 24 m/s (courtesy of Aker
Solutions)
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Rather than solving 9,000 simultaneous coupled equations, only six uncoupled
equations are needed to be solved for q1ðtÞ; q2ðtÞ. . . q6ðtÞ.

However, the modal superposition technique is generally limited to the smooth
solutions of a linear structure/system.

13.5 Forced Vibrations of MDOF: Direct Time Integration
Method

13.5.1 Introduction to the Method

Exact/analytical solutions to equations of motions are usually not possible if
the excitations vary arbitrarily with time or if the system is nonlinear [125]. The
solutions can be obtained by using a numerical step-by-step procedure for the
integration of the equations of motions, which is called the direct integration
method.

The major difference between the modal superposition method and the direct
integration method is that in the former, a transformation is always performed
prior to the numerical integration.

Since the solutions are time histories, it is obvious that the excitations varying
with time must be defined at every time step, i.e., the excitations must be a
deterministic function.

Let’s first set up the governing equations of motions for a system at two
adjacent time instants ti and tiþ1 so that Dti ¼ tiþ1 � ti:

m xðtiÞ
��
þ c xðtiÞ

�
þ kxðtiÞ ¼ FðtiÞ ð13:53Þ

m xðtiþ1Þ
��

þ c xðtiþ1Þ
�
þ kxðtiþ1Þ ¼ Fðtiþ1Þ ð13:54Þ

Generally, three types of time-stepping procedures are available for obtaining
the responses: interpolation (normally linearly) of the excitation input between two
adjacent time instants ti and tiþ1; finite difference expression of acceleration and
velocity; and variation of accelerations.

The first type of method is only applicable for linear systems. The second and
third type of methods are especially suited for solving equations of motions for
nonlinear systems. The most commonly used methods are the central difference
method, the Houbolt method, the Wilson-h method, and the Newmark method
[173]. Among them, the Newmark method is perhaps the most popular tool in
many practical dynamic analyses for solving second-order differential equations
with MDOF, mainly due to its accuracy. It is a type of the finite difference method
and is a ‘‘single time step’’ method. Using this method, the motions at each
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degree-of-freedom are updated step by step through iterative calculations, which
enable the calculation of the responses in the time domain.

The Newmark time-stepping scheme is based on the following assumptions:

xtþDt ¼ xt þ Dt x
�

t
þ Dt2

2
ð1� 2bÞ x

��

t
þDt2b x

��

tþDt
ð13:55Þ

x
�

tþDt ¼ x
�

t þ Dt ð1 � dÞx��t þ Dtdx
��

tþDt ð13:56Þ

where Dt is the time increment and b and d are the coefficients that define the
variation of acceleration over a time step, and are related to the integration
accuracy and stability. The coefficient b denotes the variation in the acceleration
during the time-incremental step from t to t ? Dt. Different values of b indicate
different schemes of interpolation of the acceleration over each time-step. For
example, b = 0 indicates a scheme equivalent to the central difference method,
and b = 1/6 together with d = 1/2 corresponds to the linear acceleration method;
the latter can also be obtained if h = 1 in the Wilson-h method (see Ref. [173]). In
addition, the Newmark method is unconditionally stable, i.e., the time-step Dt can
be chosen without requirements, since there is a guarantee of solution stability,
provided that b C 0.25(0.50 ? d)2 and d C 0.50.

For a linear system, at each time step, the solutions can be obtained without
iteration. However, for a nonlinear system, as will be presented in a Sect. 15, a
decent iteration scheme has to be used.

Note that the number of operations in the direct integration method is directly
proportional to the number of time steps in the analysis. Hence, the direct inte-
gration scheme is effective when the duration of an event to be analyzed is short
(i.e., for a few time steps).

The direct integration may be performed by either explicit (conditionally stable,
Sect. 13.5.2) or implicit (unconditionally stable, Sect. 13.5.3) schemes [173].

Example: A vehicle dynamics code based on the Newmark scheme for
direct time integration.

In order to calculate a car’s vibrations and tire reaction forces when the
tire is subjected to base excitations, a code for calculating the vehicle
dynamic responses subjected to the base excitations has been developed. In
the code, the car is modeled with 27 degrees-of-freedom as shown in
Fig. 13.8 [177]. It comprises the stiffness and damping between vehicle tire
and deck (1–12) in longitudinal (x), transverse (y) and vertical (z) directions;
stiffness and damping between vehicle body and tire (15, 18, 21, 24) in the
vertical direction; stiffness between vehicle body and tire (13, 14, 16, 17, 19,
20, 22, 23,) in the longitudinal and transverse directions. The degrees-of-
freedoms 25 and 26 represent the coupling of front and rear suspension,
respectively. The deformation of these two stiffness components is propor-
tional to the difference of deformation between 15 and 18 for the front and
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21 and 24 for the rear. Position 27 is an elastic component to take care of an
eventual coupling in the horizontal plane. Its deformation is proportional to
the angle between the rear axis (rear wheel centers) and the normal to the
symmetry line of the body. The equations of vehicle motions were derived
by using the Lagrangian principle for non-conservative systems from
Eq. (2.6) (Sect. 2.3):

d

dt

oT

o q
�

j

0

B

@

1

C

A

� oT

oqj
þ oV

oqj
þ oD

o q
�

j

¼ Qj; j ¼ 1; 2; . . .; n

The equation above can also be written as the equilibrium of forces:

Fkinetic q
��
; q
�
; q; t

� �

þ Finternal q
��
; q
�
; q; t

� �

¼ Fexternal q
��
; q
�
; q; t

� �

where Fkinetic; Finternal; Fexternal are the vector-functions of generalized
kinetic, internal and external forces, respectively.

For solving the equation above, the Newmark scheme is used to obtain the
initial value, and the Newton–Raphson iteration method (Sect. 15.5.2) is
used for reaching an equilibrium state (minimize the residual of the equa-
tion) for every time step as well as for solving the static problem (such as the
displacement under a static load) of the vehicle system.

First the ship motions in all degrees-of-freedoms (Fig. 13.9) need to be
obtained from either measurement or seakeeping calculations. The motions
are then transferred to the position of the deck that is in contact with the car
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Fig. 13.8 Mechanical modeling of a full car with 27 degrees-of-freedoms
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tires and input into the model. The vehicle’s dynamic responses can then be
calculated. By comparing the simulation results with the real measurement
of reaction forces for a real car on board a ship, it is concluded that the
model can predict the motions of the vehicles with sufficient accuracy. It is
therefore suggested that the code can also predict the reactions between the
tire and decks with sufficient accuracy [178].

Figure 13.10 shows the vertical tire reaction forces for a sea stern wave
with a wave height of 3.5 m, a wave period of 5 s and at a ship advancing
speed of 20 knots. It is shown that the values of vertical forces are quite
different among different tires. For the vertical force, the front right and rear
right tires vary almost in phase, while the amplitude of the former one is
larger than the latter. The front left and rear left tire also vary almost in
phase, but the former is larger than the latter. The sum of vertical forces for

Fig. 13.9 A ship’s fixed coordinate system (X: surge, Y: sway, Z: heave)

Fig. 13.10 An example of the vertical reaction force time series between the tire and the deck in
the time domain at a position of X = 100 m, Y = 10 m and Z = 15 m from the center of ship
motions, with the wave coming from the stern (back) and the ship speed being 20 knots (10.3 m/s)
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all four tires is normally in the same scale as, but not exactly equal to, the
gravity load of the vehicle. This small difference is mainly due to the roll
motion, but is also influenced by motions at other degrees-of-freedom [179].

13.5.2 Explicit Integration Method

For physical problems that are short duration transient events, and which are often
in combinations of nonlinearities such as large deformation or contact, the most
popular explicit method is the central difference method, in which the acceleration
and velocity can be evaluated at time t with displacements at time t � Dt, with
Taylor series expansion:

x
��

t ¼
1

Dt2
ðxt�Dt � 2xt þ xtþDtÞ ð13:57Þ

x
�
t ¼

1
2Dt
ð�xt�Dt þ xtþDtÞ ð13:58Þ

where Dt is the time step.
It is noted that both the expressions above have the same order of errors Dt2.
By combining the two equations above, the xt�Dt can be eliminated:

xtþDt ¼ xt þ Dt x
�
t þ

1
2
ðDtÞ2 xt

�� ð13:59Þ

By substituting the relations for x
��

t and x
�

t in Eqs. (13.57) and (13.58) into the
equations of motions, one can solve for xtþDt:

ð m

Dt2
þ c

2Dt
ÞxtþDt ¼ Ft � ðk �

2m

Dt2
Þxt � ð

m

Dt2
þ c

2Dt
Þxt�Dt ð13:60Þ

It should be emphasized that an explicit integration method such as the central
difference method requires a time step Dt smaller than the critical time step Dtcritical.
Under such conditions the integration is said to be conditionally stable. If a time
step is larger than Dtcritical, erroneous unbounded time-history responses will occur.
In a finite element analysis, the critical time step can be determined by the fact that a
wave is not allowed to pass through two nodes in the same time increment:

Dtcritical\
Tn

p
¼ L

C
ð13:61Þ

where Tn is the smallest period of the finite element assembly; L is the element
length; C is the wave propagation speed, for isotropic elastic material; and C ¼
ffiffiffiq
E

p

(square root of ratio between material density and Young’s modulus).
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Courant number is usually adopted to measure the relative size of time step
when using an explicit integration method:

Cn ¼
Dt

Dtcritical
ð13:62Þ

Theoretically, the time step should be as small as possible to achieve a high
numerical accuracy. However, when the explicit integration method is used in a
finite element analysis, regardless of how much smaller than the critical one the
time step is, the analysis only results in an accurate calculation of highest fre-
quency responses that the finite element mesh size can handle, which is not of any
engineering interest. Therefore, the time step close to the critical one is usually
satisfactory to guarantee numerical accuracy. For a typical dynamic analysis, a
maximum Courant number is recommended to be 0.95–0.98 [223].

Equation (13.61) indicates that the critical time step for an FE modeling with the
same material is determined by the size of the smallest element in the model. In
practice, this requires that the size among each element be as equal as possible. In many
cases, this leads to an increase of time step. For structures with large deformations,
some elements may deform to a shorter length, this should also be taken into account by
assigning a relatively large element length for areas that can deform to a shorter length.

In addition, the critical time step can also be increased by increasing the density
of the modeled material, which is often referred to as ‘‘mass scaling.’’ Apparently,
the drawback of the ‘‘mass scaling’’ is that the dynamic inertia forces are over-
estimated. Therefore, the ‘‘mass scaling’’ can only be applied to a small number of
elements that are not critical with respect to strength and stability, this normally
refers to the elements with smallest size on uncritical areas.

A step-by-step procedure for using the central difference method consists in:

(1) Form the stiffness (k), mass (m) and damping (c) term/matrix
(2) Solve the equations of motions to obtain the initial value of xt¼0

(3) Select a time step Dt Dt\Dtcriticalð Þ
(4) Calculate xtþDt using xtþDt ¼ xt þ Dt x

�
t þ 1

2 ðDtÞ2 xt
��

(5) For each time step, repeat the solution:

ð m

Dt2
þ c

2Dt
ÞxtþDt ¼ Ft � ðk �

2m

Dt2
Þxt � ð

m

Dt2
þ c

2Dt
Þxt�Dt

From the procedure above, the advantage of explicit integration becomes
apparent: no stiffness, mass and damping term/matrices are re-calculated in each
time step, the solutions can be carried out on the element level, and relatively little
high-speed storage is required. Furthermore, if the stiffness, mass and damping
matrices for each element are the same, one only needs to calculate or read from
back-up storage for the matrices of the first element in the series [173].

The disadvantage of the explicit integration method mainly lies in the fact that
it requires a small time increment to make the solution stable. Therefore, the
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method is not suitable for simulating long duration time events. In addition, the
effectiveness of the method strongly depends on the use of diagonal stiffness and
damping matrices (or neglects the damping for lightly damped system). In addi-
tion, explicit integration normally presents more accurate results with lumped
mass modeling than that with consistent mass modeling (see Sect. 13.6). This
sometimes also requires a fine mesh size in order to obtain a necessary accuracy
due to the diagonal mass requirement.

There are also other types of explicit direct integration methods such as the
Runge–Kutta method [174], but the central difference method is thus far the most
efficient one and has been adopted by many commercial finite element analysis
codes such as LS/DYNA, ABAQUS as the representative explicit integration
technique.

13.5.3 Implicit Integration Method

Contrary to the explicit integration method, an implicit method is suited for
dynamic analysis with relatively long time durations with regard to both loading
and responses, regardless of whether nonlinearities are involved or not. This fits
for dynamic analysis in the civil engineering field where typical dynamic loadings
due to earthquake, wave and wind are represented by an event with a duration of
more than 30 s. The implicit scheme requires a factorization of effective element
matrices at each time step while not requiring a maximum (critical) time step, i.e.,
it is unconditionally stable. However, the computation accuracy cannot be guar-
anteed without a careful consideration of the time step.

In the implicit integration approach, the responses at each time t þ Dt are
evaluated based on the equilibrium conditions at time t þ Dt. The commonly used
implicit integration methods are based on the following assumption:

xtþDt ¼ xt þ Dt x
�

t þ
Dt2

2
ð1 � 2bÞ x

��
t þDt2b x

��
tþDt ð13:63Þ

Table 13.3 Numerical accuracy based on the choice of the a and b [42]

d b Accuracy

0:5� d� 2b Unconditionally stable, but does not guarantee accuracy
d	 0:5 b	 0:25 aþ 0:5ð Þ2 Improved accuracy with artificial damping in higher

vibration modes
d ¼ 0:5 b = 0.25 Improved accuracy, and the formulation corresponds to a

trapezoidal rule with constant average acceleration
d	 0:5 b C 0.25 Improved accuracy with artificial damping in higher

vibration modes. Performs better for small time step
d ¼ 1

6
b = 0.5 Improved accuracy, and the formulation corresponds to a

linear acceleration. Performs better for small time step
and tends to be unstable for large time step

226 13 Vibration of Multi-Degrees-of-Freedom Systems



x
�

tþDt ¼ x
�

t þDt ð1 � dÞ x
��

t þDtd x
��

tþDt ð13:64Þ

It is noted that the parameters d and b not only define the types of method, but
also determine the stability and accuracy as described in Table 13.3. Typical
implicit methods are the Houbolt method, the Wilson-h method, and the Newmark
method, which have been presented in Sect. 13.5.1.

Because the stiffness, mass and damping matrices have to be re-evaluated at
each time step, the computational cost for implicit methods is directly related to
the model size and time step.

As aforementioned, numerical stability and accuracy can be achieved if the
time step length in the direct time integration algorithm is small enough to

Fig. 13.11 One hour duration time history responses at a structural joint of a jacket structure
subjected to wave loading, with Dt = 0.25 s (left) and 0.75 s (right), respectively
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accurately integrate the responses in the lowest period component. However, this
may require a rather small time step and consequently lead to an increased
computation cost. In reality, the vibrations in the lowest period (highest frequency)
range may not be a necessary contributor to the dynamic responses.

Note that the implicit method is unconditionally stable, the choice of time step
is only based on accuracy considerations. Compared to the explicit method, the
computational effort at each time step is higher. Therefore, the implicit method is
only competitive when a much larger time step than that of the explicit method is
adopted. As mentioned above, while the implicit integration method is uncondi-
tionally stable, an overly large time step will result in an inaccurate calculation
results. Basically, the time step should ensure an accurate representation of the
excitations and forced and free vibration response components [124]. Therefore, it
depends on both a structure’s eigenfrequencies and loading frequencies. By pre-
senting that structural vibration modes with frequency higher than 3 times of the
highest frequency (xu) of interest only participate quasi-statically in the modes
with frequency lower than 3 xu, Cook and his co-workers [233] recommended that
20 time steps per period of (2p/xu) could provide sufficient accuracy, i.e.,
Dt \ 2p=xuð Þ=20 ¼ 0:3=xu, unless a smaller Dt is required because of conver-
gence difficulties caused by nonlinearities. It is noted that the similar recom-
mendation is also given by Bathe [173]. On the other hand, too small a time step
may gradually increase the responses with time due to the artificial vibration
responses/noises related to higher vibration modes.

Fig. 13.12 The Siri jack-up structure located in the North Sea (courtesy of Dong Energy
Denmark)
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Strictly speaking, the implicit time integration is only unconditionally stable for
linear dynamic analysis. For dynamic analysis involving any types of nonlineari-
ties, the unconditional stability cannot be guaranteed. Figure 13.11 shows the force
response history at a joint of a jacket structure subject to dynamic wave loadings. It
is observed that both the response amplitudes and cycles are significantly lower for
Dt = 0.75 s than that for Dt = 0.25 s. Especially for the out of plane bending
moments, the average value of the moments is increased with time, which shows a
sorts of ‘‘unstable’’ phenomenon in the numerical computation. This may be caused
by the increased numerical damping due to the large time step set-up [225].

13.5.4 Comparison between Modal Superposition and Direct
Time Integration Method

As previously discussed, the major difference between direct time integration and
modal superposition is that in the latter, a transformation is always performed prior
to the numerical integration.

To calculate the dynamic response under wave load of the Siri jack-up platform
shown in Fig. 13.12, both modal superposition and implicit direct time integration
methods are used in the finite element analysis. Figure 13.13 shows the compar-
ison of the displacement at the top of a jack-up leg (the circle shown in Fig. 13.14)
due to the waves coming from different directions (0, 30 and 90�). The time step
for both methods are set as 0.1 s, which gives more than 60 calculations for each

Fig. 13.13 Dynamic displacement responses at the top of a jack-up leg (the circle shown in
Fig. 13.14) due to waves coming from different directions of 0, 30 and 90� (courtesy of Dong
Energy Denmark)
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natural period (around 6.5 s). In the calculation using modal superposition method,
10 eigenmodes ranging from 6.5 to 0.7 s are included. From the figure, it is clearly
shown that the calculated responses between the two methods agree quite well.

For problems where the responses are linear and are dominated by only up to a
couple of ‘‘lowest’’ eigenmodes, the modal superposition method is more efficient than
the direct integration method. Otherwise, the direct integration method is preferred.

In practice, the dynamic responses calculated using the modal superposition
method require a pre-run to obtain the eigenpairs, which is followed by the
superposition of the modal response.

13.6 Lumped and Consistent Mass

We recall that the equation of motions for a system in a matrix form is:

m½ � xðtÞ
��� �

þ c½ � xðtÞ
�� �

þ k½ � xðtÞf g ¼ FðtÞf g ð13:65Þ

Fig. 13.14 The geometry model of Siri jack-up structure for finite element analysis for which the
dynamic responses are calculated (courtesy of Dong Energy Denmark)
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where m½ �; c½ �, and k½ � are the global mass, damping and stiffness matrices obtained

from the assembly of the individual element matrices. xðtÞ
��� �

; xðtÞ
�� �

; and xðtÞf g

are the nodal acceleration, velocity and displacement vectors, respectively. FðtÞf g
is the force vector.

The global mass and damping matrices can be formulated by using the same
element shape function matrix N½ �:

m½ � ¼
Z

qe N½ �T N½ �dV ð13:66Þ

c½ � ¼
Z

ce N½ �T N½ �dV ð13:67Þ

where qe and ce are the mass density and viscous damping coefficient for element
e.

The mass represented using the same shape functions as element stiffness and
damping matrix is called the consistent mass. The consistent mass matrix is
symmetric and generally full at the element level but has the same sparse topology
as the system stiffness matrix on the global level.

Besides consistent mass modeling, a simple and historically prior formulation is
lumped mass, which is formulated by placing discretized masses mi at the nodal
point of an element, such that the summation of all nodal masses

P

mi is the total
element mass. Compared to that of the consistent mass, a lumped mass is diagonal
and normally has no rotary inertia unless it is arbitrarily assigned.

The lumped mass matrix for a two-node truss or beam element can be expressed
as:

m½ � ¼ qeLA

2
1 0
0 1

ffi �

ð13:68Þ

m½ � ¼ qeLA

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

ð13:69Þ

where L and A is the length and cross-section area of the element.
Generally, consistent mass modeling gives a higher accuracy of dynamic

responses than lumped mass modeling, especially for dynamic responses that are
significantly influenced by the higher order of eigenfrequencies. This applies to
structures possessing high redundancy and with loading in frequency range corre-
sponding to higher-order vibration modes. However, for dynamic responses domi-
nated by the first few eigenmodes, a lumped mass modeling normally gives sufficient
calculation accuracy and requires less computational efforts and storage space than
that of the consistent mass. For wave propagation problems, the lumped mass
modeling may even be more accurate because there are fewer spurious oscillations.
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Chapter 14
Damping

14.1 Types of Damping and its Effects

A structure subjected to oscillatory deformation contains a combination of kinetic
and potential energy. During this process, energy will always be dissipated, leading
to a response decrease in case of free oscillations. This dissipation of energy is
caused by damping, which is essentially the conversion of the mechanical energy of
a structure into thermal energy. Therefore, forces due to damping are non-con-
servative. For dynamic sensitive structures, the structural dynamic performance
may highly depend on the initial assumption of damping, which is essential to
decrease the dynamic responses through energy absorption and dissipation.

Damping that occurs on a structure can be categorized as either inherent
damping, which occurs naturally within the structure or its environment, or
external damping through installed apparatus such as a damper.

The inherent damping can be generated by various mechanisms such as vis-
cosity, hysteresis, yielding and friction, and also externally by the actions at
supports, radiation of energy (radiation damping) into the ground and fluid
damping (aerodynamic and hydrodynamic damping). It is influenced by many
factors such as the surface finish, lubrication, area of contact, normal load, damage
or wear, temperature, humidity etc. [198–200].

Note that the amount of inherent damping cannot be estimated with certainty. A
known level of damping may be introduced through the energy dissipation of
devices added to structural systems, known as supplemental damping or artificial
dampers [23]. For example, damping can be introduced by installing external
dampers, such as base isolation bearings made of rubber, plastic or sliding
material, or mechanical dampers such as dynamic absorber [18] and viscous
dampers etc. Figure 14.1 shows hydraulic shock absorbers (a type of viscous
dampers) that can decelerate the motions in a controlled manner.

Generally, for a lightly damped structure, the contribution from inherent damping
is much less than that of inertia and stiffness. Frequency-dependent damping is
normally only effective at or close to the lower order of eigenfrequencies,
and normally most effective at or close to the natural frequency, i.e., when a structure

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
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is vibrating in resonance or is impulse-excited and the resulting vibrations are
allowed to die out exponentially (in case of viscous dampers) at its natural fre-
quency. In the latter case, damping is most effective when the time interval of
impulsive forces allows the vibrations to decay down to the background level [203].

Despite the importance of damping on the dynamic response calculation, it is
also noted that both the estimation (Sect. 14.3) and modeling (Sect. 14.2) of the
damping are rather difficult tasks. The resulting uncertainty poses a great challenge
for evaluating the calculated responses of dynamic sensitive structures.

14.2 Damping Modeling

Modeling of damping may take the form of viscous (proportional to velocity), dry
friction/Coulomb (constant), hysteresis, yielding or fluid (proportional to the square
of the velocity). The approaches of modeling damping are to some extent empirical,
and aim to capture the essential energy dissipative effects relative to the dynamic
behavior of interests [204]. Today, there is no unified damping model that can
perfectly represent various types of energy dissipation. Figure 14.2 illustrates major
types of damping modelings that will be discussed in the subsequent sections.

Fig. 14.1 Mechanical dampers to protect shock–shock absorber (courtesy of ITT Enidine Inc, USA)
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14.2.1 Pure Viscous Damping

Viscous damping model (Figs. 14.3a and 14.4) is widely used for structures within
the elastic deformation limits. When structures deform further to the inelastic
range, the viscous damping coefficient varies depending on the deformation
amplitude. However, in a dynamic analysis, this variation of damping coefficient is
not usually explicitly accounted for. This situation can be handled by approxi-
mating a damping value corresponding to the expected deformation amplitude
level at the deformation close to the linear elastic limit [125].

For viscous damping, under free vibration decay, the damping force is pro-
portional to the velocity. It can be written as:

Damping modeling

Velocity
dependent viscous

(linear)

Modal damping Rayleigh damping

Displacement
dependent

Frequency
dependent (linear)

Frequency
independent
(nonlinear)

Friction (constant)
damping

(nonlinear)

Damping by
external dampers

Fig. 14.2 Categories of damping modeling

Fig. 14.3 Modeling of different types of damping (Fd: force due to damping only, F: force due to
stiffness and damping, d: extension), the shaded area indicates the energy dissipated per cycle
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Fd ¼ c xðtÞ
�
¼ cxX0d cos xt � /ð Þ

¼ cx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0d � X2

0d sin2 xt � /ð Þ
q

¼ cx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0d � x2 tð Þ

q

ð14:1Þ

where X0d ¼ F0=k
cxn

is the steady-state displacement due to the harmonic force
excitation with the maximum amplitude of F0.

Rearranging the equation above, one obtains:

d
X0d

� �2

þ Fd

cxX0d

� �2

¼ 1 ð14:2Þ

where d is the extension of the mass.
The equation above shows an ellipse shape in the force-extension diagram as

shown in Fig. 14.3a. The area enveloped by the ellipse is the dissipated energy per
cycle pX0dcxX0d.

14.2.2 Friction/Coulomb Damping

Due to its mechanical simplicity and convenience, friction/Coulomb damping
exists in many mechanical and structural systems, such as the damping generated
by the friction of structural joints, between members and connections, or between
structural and non-structural components etc. It is typically constant within the
static (before a system begins to move) or kinetic (after the system begins to move)
regime. But at the boundary between these two regimes, the friction force dra-
matically changes. An example to illustrate a typical friction phenomenon is the
friction between car tire and ground. Figure 14.5 shows a test set-up of a car tire
under a horizontal displacement (transversely) with a speed of 1 mm/s. The fric-
tion coefficient is defined as:

l ¼ T=N ð14:3Þ

where T and N are contact forces tangent to the deck surface (horizontal force) and
normal to the ground surface (normal force), respectively.

The friction coefficients during this moving are documented as shown in
Fig. 14.6. It can be seen that immediately after the tire begins to slide at point C,

Fig. 14.4 Physical representation of viscous damping modeling force
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the friction coefficient significantly decreases, which illustrates a shift from a static
to kinetic friction regime.

However, for simplicity, the friction is often modeled as inherently linear by
assuming that the coefficient of kinetic friction is equivalent to its static
counterpart.

For a realistic structure, the friction damping force (Fd) is always accompanied
by the elastic force (Fe) due to stiffness, making the total resisting force
(Fig. 14.3b) the sum of the two:

Fig. 14.5 Friction testing under the horizontal moving loads T and normal load N

Fig. 14.6 Friction coefficients varied with displacement (proportional to sample points) from the
original location. The displacement is applied at the center of the car tire
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F ¼ Fd þ Fe ¼ lN þ kd ð14:4Þ

where l is the coefficient of sliding or kinetic friction, and N is the normal force.
The equation of motions due to Coulomb damping can be written as:

m xðtÞ
��
þlNsgnðxðtÞ

�
Þ þ kxðtÞ ¼ 0 ð14:5Þ

where sgnðxðtÞ
�
Þ is a sign function depending on the instant velocity.

The equation above is nonlinear, and can be solved either numerically or
analytically by breaking the time axis into segments with an altered sign of
velocity. Interested readers may read references by Chopra [124] and Rao [205]
for the solutions of the equation.

There are several characteristics that distinguish Coulomb damping from vis-
cous damping:

• The equation of motions is nonlinear with Coulomb damping and linear with
viscous damping.

• Coulomb damping is independent of velocity and displacement.
• The magnitude of Coulomb damping does not affect the frequency of motion,

i.e., the eigenfrequency does not change with the addition of Coulomb
damping.

• The transient responses for free vibrations decay linearly by a constant
amount 4lN

k

� �

per cycle (i.e., in time 2p
xn

) due to Coulomb damping and decay

exponentially for viscous damping.
• Friction damping force can overcome restoring elastic force when the

extension is small enough. This indicates that it can stop the motions typi-
cally with a permanent displacement from the neutral position. However,
viscous damping can theoretically never stop motions.

• The responses are periodical with the addition of Coulomb damping, but it
can be non-periodical for a viscously overdamped system.

Friction type of damping is widely used in engineering mechanism or struc-
tures. For example, to resist earthquake loading, friction dampers were installed in
almost 100 land-based structures worldwide, for both concrete and steel buildings,
elevated water towers, and for new construction and retrofit of existing structures.
Examples are T Boeing Commercial Airplane Factory in Everett, WA, Sonic City
Office Tower in Ohmiya, Asahi Beer Tower in Tokyo, and Moscone West Con-
vention Center in San Francisco etc. [23].

14.2.3 Frequency-Dependent Hysteretic Damping

Pure viscous damping is mathematically convenient due to its linearity of the
resulting equation of motions, and it can capture the essential damping behavior of
the observed behavior in many practical circumstances. However, it is not nec-
essarily the best damping model to represent an actual structure, in which the
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viscous damping force (Fd) is always accompanied by the force (Fe) due to
stiffness, making the total resisting force the sum of the two (Figs. 14.3c and 14.7):

F ¼ Fd þ Fe ¼ cx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0d � d2

q

þ kd ð14:6Þ

This is called frequency-dependent hysteretic damping force. The word ‘‘fre-
quency dependent’’ means that the damping is dependent on displacement
amplitude instead of instantaneous velocity. The equation above represents the
behavior for typical yielding materials. It essentially implies a rotation (Fig. 14.3c)
of viscous damping force diagram (Fig. 14.3a) due to the presence of stiffness term
kdð Þ. However, since the stiffness term is elastic, the dissipated energy enveloped

by the ellipse is still the same as that of the viscous damping model.
Readers need to understand the common and distinguishing features between

the dynamic and static hysteresis loop. Both dissipate energy through deformation,
but whereas the formal one is frequency dependent, the dissipated energy is
proportional to the excitation frequency. For the latter, the excitations are statically
applied, i.e., the excitation frequency is zero, the dissipated energy (area enveloped
by the closed ellipse shape) is zero because the force-extension diagram becomes a
single valued curve within an elastic limit; when a structure exhibits yielding and
subsequent plastic deformation, the force-extension diagram becomes hysteresis
loops again purely due to the plasticity and it is not related to the extension rate
(excitation frequency is zero). This is known as static hysteresis.

The lightly damped system comprising frequency-dependent hysteretic damp-
ing can be measured from either a free decay (Sect. 14.3.1) or by reading the
sharpness of frequency response curve (half power method, see Sect. 14.3.5).

In real structures, except for the forms of damping described above, many other
mechanisms may also contribute to energy dissipation. Therefore, in a dynamic
analysis, the damping is normally modeled in a highly idealized manner, and in
most cases, by the modeling of viscous damping. The damping value is selected so
that the dissipated energy in the modeled damping mechanism is identical or close
to that of the realistic situation. This is also called equivalent viscous damping, as
will be discussed in Sect. 14.2.6.

Under extreme dynamic loading such as seismic excitations, especially in
dynamic time history analysis, the dominant damping contribution is likely to be
due to the plastic deformation of a structure, i.e., the energy dissipates through the
inelastic force and deformation loop. Therefore, a more accurate and direct
modeling of damping is to define the plastic material properties of a target
structure. There is then usually no need to use viscous damping modeling.

Fig. 14.7 Physical representation of frequency dependent hysteretic damping mechanism
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Note that with the modeling of the viscous or frequency dependent hysteretic
damping, linear equation of motions can be formulated. However, frequency-
independent hysteretic damping (Sect. 14.2.4), friction/Coulomb damping
(Sect. 14.2.2), and hydrodynamic damping (Sect. 14.2.5) will result in nonlinear
equations of motions.

14.2.4 Frequency-Independent Hysteretic Damping

For certain materials (such as sand), with the energy losses due to internal friction
the damping force increases when the mass moves away from and decreases when
it moves toward the origin, the resisting force can then be expressed as the sum of
a force due to stiffness kd and a force proportional to the instantaneous dis-
placement but in the opposite direction of the instantaneous velocity, which is
formulated as:

F ¼ kdþ kk
dðtÞ
�

dðtÞ
��

�

�

�

�

�

�

�

d ð14:7Þ

Unlike the viscous damping or frequency dependent hysteretic damping, the
equation of motions for frequency-independent hysteretic damping is nonlinear.

14.2.5 Fluid (Hydrodynamic or Aerodynamic) Damping

Fluid damping, also called drag damping, arises due to the relative motions
between the material/member and the fluid (water or air) surrounding the material/
member. The damping or drag force per unit length along a member is propor-
tional to the square of the relative velocity normal to the member axis, which is
expressed by the Morison equation [201]:

F ¼ 1
2
q � CD � vr vrj j � d ð14:8Þ

where q is the density of the fluid; CD is the drag coefficient; vr is the relative fluid
particle velocity relative to the member and normal to the member axis; and d is
the cross-section dimensions (for tubular members, it is the diameter of the
member exposed to the fluid).

The equation above also indicates a nonlinear relationship between the relative
velocity and the damping force, which leads to mathematical difficulties for
solving the nonlinear equation of motions. In many cases, it is solved by a line-
arization with respect to the maximum fluid velocity or an equivalent energy of the
fluid particle kinematics.
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14.2.6 Equivalent Viscous Damping

Even though viscous damping modeling has obvious advantages, the energy dis-
sipation for an actual structure is more prone to be displacement proportional
rather than velocity proportional, and is sometimes a combination of the two. This
leads to the concept of equivalent viscous damping [202], which is to define the
damping of a system using viscous damping based on the equivalent energy dis-
sipation between the viscous damping and that of the actual system (elaborated in
Sect. 14.2.6.2). In case of relatively low damping (less than 15 %), viscous,
friction and hysteretic damping can be conveniently expressed by equivalent
viscous damping, which will be presented in Sects. 14.2.6.2, 14.2.7 and 14.2.8.

14.2.6.1 Specific Damping Factor and Loss Factor

Consider an SDOF system with viscous or hysteretic damper subjected to har-
monic loading FðtÞ ¼ F0 sinðXtÞ. It is noted that the work done by conservative
forces such as elastic, inertia and gravitational forces in a complete loading cycle
will be zero. Therefore, the net work will be dissipated by damping only. When the
motions reach steady-state, the energy dissipation (Ed) during a complete cycle by
viscous damping is illustrated in the left figure of Fig. 14.8, which can be
expressed as:

Ed ¼
Z

Fddd ¼
Z 2p=x

0
c d
�

� �

d
�

dt ¼ c

Z 2p=x

0
XX0d cos Xt � /ð Þ½ �2dt ¼ pXcX2

0d

ð14:9Þ

From the equation above, it is found that, rather than being a constant value, the
energy dissipation is proportional to the excitation frequency X or the square of the
motion amplitude X0d.

Fig. 14.8 Energy dissipation and strain energy by a viscous damper (left, strain energy is zero),
hysteretic damper (middle) and measurement from real structures (right)
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The equation above is only valid with the presence of spring stiffness k, as
shown in the middle figure of Fig. 14.8, which gives:

Ed ¼ pXcX2
0d ¼ 2pf

X
xn

kX2
0d ð14:10Þ

With total energy expressed as either the maximum potential/strain energy
1
2 kX2

0d

� �

or the maximum kinetic energy 1
2 mX2X2

0d

� �

, one can measure the dissi-
pation as the fraction of the total energy, which is called specific damping
capacity:

Ed

Etotal
¼

2pf X
xn

kX2
0d

1
2 kX2

0d

¼ 4pf
X
xn

ð14:11Þ

If the loss of energy due to damping is only supplied by the excitations, the
steady-state responses can only be reached if the excitation frequency X is equal to
the system’s nature frequency xn. Therefore, the specific damping expressed by
the equation above can be rewritten as:

Ed

Etotal
¼ 4pf ð14:12Þ

In a more common way, the energy dissipation can be investigated by a loss
factor defined as:

g ¼ Ed=2p
Etotal

¼ 2f ð14:13Þ

Realistic measurement of force-response diagram (right figure of Fig. 14.8)
does not show a perfectly ellipse shape. However, damping level can be conve-
niently calculated by measuring the total energy (Etotal) and energy dissipation (Ed)
as shown in the right figure of Fig. 14.8.

14.2.6.2 Equivalent Damping Measured by the Hysteretic Loop

The most convenient determination of equivalent damping feq is by measuring the
harmonic force and harmonic responses at X ¼ xn:

Ed ¼ Etotal4pfeq
X
xn
¼ Etotal4pfeq ð14:14Þ

This gives:

feq ¼
Ed

4pEtotal
ð14:15Þ
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The concept and calculation procedure of equivalent viscous damping can be
extended to MDOF systems, in which each eigenmode has an individual equiva-
lent viscous damping so that the dissipated energy in viscous damping matches the
energy loss when the system vibrates at that eigenfrequency and corresponding
mode shape. This is assumed by dynamic analysis using the modal superposition
method (Sect. 13.4). In many engineering structures, the damping level increases
with the increase of eigenmode orders.

It should also be noted that, strictly speaking, equivalent viscous damping
modeling is only valid for frequency domain analysis where the excitation is
harmonic. However, as will be shown in Sect. 14.2.9, practically, the use of this
concept has been extended to model the damping in the form of modal damping,
Rayleigh damping, and even non-proportional damping, for both time and fre-
quency domain analysis.

14.2.7 Equivalent Viscous Damping with Coulomb Damping

For an SDOF system under the harmonic force excitations FðtÞ ¼ F0 sin Xtð Þ, the
equivalent viscous damping with Coulomb damping is:

feq ¼
2Fc

pvF0

1
X=xn

ð14:16Þ

where Fc is the constant friction/Coulomb damping force.
The magnification factor v, which is a ratio between the displacement ampli-

tude and the maximum quasi-static deflection X0 = F0/k under the force F0, is
calculated as:

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4Fc
pF0

� 	2
r

1� ðX=xnÞ2
for

4Fc

pF0
\1 ð14:17Þ

14.2.8 Equivalent Viscous Damping with Frequency
Dependent Hysteretic Damping

A hysteretic damping coefficient can be obtained from the logarithmic decrement
Dxð Þ test (Sect. 14.3.1):

h ¼ Dx

p
ð14:18Þ
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For an SDOF system under harmonic force excitations at the frequency of X,
the equivalent viscous damping is:

feq ¼
h

2X=xn
ð14:19Þ

The magnification factor can then be calculated as:

v ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X=xnð Þ2
h i2

þ h2

r ð14:20Þ

14.2.9 Practical Damping Modeling for Dynamic Analysis

It is rather difficult to explicitly implement and formulate detailed damping forces
for an entire structure. Therefore, for the sake of both mathematical convenience
and the representativeness of energy dissipation, practical damping models have to
be adopted for a dynamic analysis. This mainly includes proportional (modal
damping and Rayleigh damping) and nonproportional damping.

14.2.9.1 Modal Damping

Physically, an actual structure comprises abundant damping mechanisms all along
it. However, even with the most convenient viscous damping modeling, it is still
impossible to model all those mechanisms by one by one individual dampers.
Therefore, in most cases, modal damping (Sect. 13.4) is widely adopted in com-
puter modeling to approximate the energy dissipation within the structure. In order
for the modal equations to be uncoupled, the damping must fulfill the condition:

2xifi ¼ /T
i ci/i ð14:21Þ

where fi is the viscous modal damping at ith eigenmode.

14.2.9.2 Rayleigh Damping

Damping effects can be conveniently accounted for in modal superposition anal-
ysis with the fulfillment of the equation above. However, in nonlinear dynamic
analysis for which the mode shapes are changing with stiffness changes (especially
for dynamic analysis with direct time integration methods), and with more realistic
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damping that is varied with frequency, Rayleigh damping [173] is commonly used.
It is a linear combination of the system’s mass and stiffness as shown in Fig. 14.9
and the damping at frequency xi is:

ci ¼ ami þ bki ð14:22Þ

where a with the unit of s-1 and b with the unit of s are two coefficients to be
determined from two given damping ratios at two specific frequencies of vibrations.

ami and bki, namely mass proportional and stiffness proportional damping,
respectively, are the simplest way to formulate a proportional damping matrix because
the undamped mode shapes are orthogonal with respect to each of these [161].

a and b can be evaluated by the solution of a pair of simultaneous equations at
two separate frequencies as follows:

With the orthogonality properties of mass and stiffness matrix, the equation
above can be rewritten by inserting it into Eq. (14.21) as:

2xifi ¼ aþ bx2
i ð14:23Þ

Rearranging the equation above, the relationship between modal damping (fi)
and Rayleigh damping is finally expressed as (Fig. 14.9):

fi ¼
a

2xi
þ bxi

2
ð14:24Þ

It is normally recommended that the two specific frequencies for determining
Rayleigh damping should ensure reasonable damping values in all the modes
significantly contributing to the vibrations. At the frequency outside the range of
these two frequencies, the damping will dramatically increase and the modal
responses at the corresponding frequency range will almost be eliminated. Prac-
tically, this can be used to damp out the high and low frequency vibrations/noises
that are outside the frequency range of interests. In many cases, the variation of
damping ratio with frequency is not available, and one can then assume the
damping at the two specific frequencies to be identical.

Fig. 14.9 Rayleigh damping as a function of frequency
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Even though Rayleigh damping is very convenient for modeling, it cannot be
physically justified: the mass proportional damping introduces externally supported
dampers, which do not exist for a fixed structure. As illustrated in Fig. 14.9, the
stiffness proportional damping increases the damping dramatically at a higher order
of eigenmodes, which is not physically true either, even if it is numerically efficient.

Example: In a modal testing for an offshore structure, the two important
eigenfrequencies are 0.12 and 0.23 Hz with the corresponding modal
damping of 3 and 5 %. Establish the Rayleigh damping that will be used in a
dynamic analysis using direct time integration methods.

Solution: Using Eq. (14.24): fi ¼ a
2xi
þ bxi

2

3 % ¼ a
2ð2p� 0:12HzÞ þ

b 2p� 0:12Hzð Þ
2

¼ 0:66aþ 0:38b

5 % ¼ a
2 2p� 0:23Hzð Þ þ

b 2p� 0:23Hzð Þ
2

¼ 0:35aþ 0:72b

Therefore, we obtain a ¼ 0:0076 and b ¼ 0:0658.

14.2.9.3 Caughey Damping

If one needs to specify damping ratios at more than two eigenmodes, instead of
Rayleigh damping, an extended or more generalized form of Rayleigh damping
called Caughey damping can be used:

c ¼ mi
P

g�1

i¼0
ci m�1

i ki

� �i
(14.25)

where ci is a constant, and g is the number of modes one wants to specify damping.
The modal damping ratio fr at modes r higher than g can then be expressed as:

fr ¼
1
2

X

g�1

i¼0

cix
2i�1
r ð14:26Þ

Similar to modal damping, the mass and stiffness matrices adopted in formu-
lating Caughey damping also satisfy the mode shape orthogonality condition.
However, Caughey damping normally results in a full matrix, which is compu-
tationally demanding for solving the equations of motions. Therefore, it is gen-
erally not practical to use this type of damping.
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14.2.9.4 Nonproportional Damping

Both modal and Rayleigh damping are proportional damping, the corresponding
damping matrices can be diagonalized in the modal matrix of the undamped system
[206]. This provides computational convenience, but only applies for lightly
damped structures with uniformly distributed damping mechanism, where off-
diagonal terms in the damping matrix can be neglected. However, for many types of
structures such as an offshore jacket structure shown in Fig. 14.10, the majority of
the structural damping (Sect. 14.5.2) is concentrated at the joints between structural
members, which in many cases does not result in a proportional distribution in
damping [207]. Moreover, with the advent of external artificial dampers to mitigate
the dynamic structural responses, the damping force values may be in the same
levels as that of stiffness or inertia forces. The locally-installed dampers will also
make the distribution of damping disproportional to that of mass or stiffness, and
the equations of motions will then be coupled by means of undamped mode shapes.
Furthermore, if various parts of a structure are constructed with different materials,
the energy dissipation mechanisms in the different parts also vary, and the

Fig. 14.10 A typical offshore jacket structure with braces and legs connected at joints (courtesy
of Aker Solutions)
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distribution of inertia and elastic forces will differ from one part to another. In
addition, many structures have locally concentrated defects that also exhibit a non-
uniformally distributed damping through the structures. All the factors above
emphasize the significance of off-diagonal terms in the damping matrix and result in
nonproportional damping matrices. In those conditions, both analytical and com-
puter model must account for this effect in a more detailed and exact manner.

Similar to proportional damping matrices, nonproportional damping matrices
can be obtained by a direct assembly of viscous damping matrices from different
parts of a structure. This introduces a coupling between the undamped modal
coordinate equations of motions. Note that the resulted modal coordinate damping
matrix is a full matrix; therefore, the superposition method cannot be employed for
structures/systems with nonproportional damping.

Generally, the equations of motions with nonproportional damping can be
solved by using either a step-by-step integration of the geometric coordinate
system or normal coordinates [208]. In addition, a so-called pseudo force iteration
method, developed by Claret and Vinancio-Filho [209], can also be used to solve
the equations by moving the off-diagonal coefficients to the right side (external
force) of the equations of motions.

For computer modeling, the majority of commercial finite element analysis
codes do not have the capability to solve the equations of motions with nonpro-
portional damping. In order to overcome this challenge, user programd scripts
have to be added to the codes. This also adds the physical requirement of data
storage space for finite element based damping matrices and the combined system
damping matrix.

By modeling the Tsing Ma Bridge (a 1,377 m span with a steel truss stiffening
deck and two concrete towers) and the Humen Bridge (a 888 m span with a steel
box deck and two concrete towers) with both nonproportional damping and pro-
portional Rayleigh damping (2–5 %), and exciting them with three component
acceleration time histories recorded from the El Centro earthquake, Qin and Lou
[208] showed that the maximum relative response differences between the two
types of damping modeling can be up to 36 % for bridge decks, 42 % for towers,
and 16 % for main cables.

However, in many cases, the off-diagonal coupling coefficients can be
neglected, yielding uncoupled equations that can finally be solved by linear
methods such as modal superposition.

14.3 Measuring Damping

Nowadays, an accurate estimation of damping is still an extremely challenging
task for dynamic analysis. The major challenge is caused by the difficulty of
isolating various types of damping (e.g., material, structural, and hydrodynamic
damping etc.) from an overall measurement. Furthermore, realistic damping can
only be obtained from measurements conducted under actual operating conditions.
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The methods for measuring damping are usually divided into two major groups
according to whether the responses are expressed in the time domain or the fre-
quency domain, i.e., time response or frequency response methods. Typical time
response methods include the free decay method, the hysteretic loop method and
the step response method [165]. The free decay method (Sect. 14.3.1) aims to
measure the rate of response decay of transient oscillations in free vibrations,
which show an exponential decay (logarithmic decrement, Fig. 3.9 in Sect. 3.3)
for viscous damping and linear decay (Sect. 14.2.2) for Coulomb damping. The
hysteretic loop method is performed by measuring the harmonic force and
response at a resonance condition as introduced in Sect. 14.2.6. Readers may
notice that the utilization of time response methods implies that the system’s
transient vibrations only contain one particular eigenmode that is of engineering
interest (this is in practice performed by exciting a structure at the corresponding
eigenfrequency in anti-node positions with initial impacts). However, strictly
speaking, the modal interactions from other orders of eigenmodes will influence
the measured data, which will introduce a certain amount of errors in the calcu-
lated damping. This dilemma can be solved by the frequency response methods.

The frequency response methods indirectly assess the energy loss balanced by
external excitations. Typical examples of this type of method include the half-
power (bandwidth) method (as will be discussed in Sect. 14.3.5) and the ampli-
fication-factor method [165] presented in Sect. 14.3.4.

Before performing the measurement of damping for a system or a structure, one
needs to select a model that can sufficiently characterize the nature of the energy
dissipation of the target system or structure, which is followed by choosing items
to be measured in order to describe the damping model.

Before each measurement method is elaborated, one should notice that the
damping obtained from the methods previously mentioned is based on the
assumption of linearity for a system. In many cases, this assumption cannot be
justified, because in a nonlinear system, the damping is affected by the response
amplitude, especially when a system/structure vibrates violently. For example,
significant damping can be produced when a structure sustains large plastic
deformation. Table 14.1 briefly summarizes the applicability of time and fre-
quency methods for measuring damping.

Table 14.1 Applicability of time and frequency methods for measuring damping

Time methods Frequency method

Damping level Lightly to extremely damped system Lightly damped system
Linearity Linear Linear
Modal interaction from other

vibration modes
No Yes
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14.3.1 Free Decay Method

The free decay method, also called the logarithmic decrement method, measures
the free vibration responses of a system excited by an impulse (or an initial
condition excitation).

For a system with viscous damping, the two consecutive free vibration response
peaks shown in Fig. 14.11 are expressed as:

x1 ¼ Xe �fxnt1ð Þ sin xdt1 þ /ð Þ ð14:27Þ

x2 ¼ Xe �fxnt2ð Þ sin xdt2 þ /ð Þ ¼ Xe �fxnt2ð Þ sin xd t1 þ
2p
xd

� �

þ /


 �

¼ Xe �fxnt2ð Þ sin xdt1 þ /ð Þ ð14:28Þ

The ratio of the two consecutive response peaks is:

x1

x2
¼ Xeð�fxnt1Þ sin xdt1 þ /ð Þ

Xeð�fxnt2Þ sin xdt1 þ /ð Þ ¼ e �fxnt1þfxnt2ð Þ ¼ e
�fxnt1þfxn t1þ 2p

xd

� 	h i

¼ e
fxn

2p
xd

� 	

ð14:29Þ

The logarithm decrement is then defined as the natural logarithm of the
response peak ratio:

d1�2 ¼ ln
x1

x2
¼ fxn

2p
xd
¼ fxnTd ð14:30Þ

where Td is the damped eigenperiod of the system or structure.

tnXe ζω−

t

x1

x2

x3

t1 t2 t3

Td Td

x

Fig. 14.11 Responses of an oscillator with viscous damping in a free decay test
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Therefore, the damping ratio can then be calculated as:

f ¼ d1�2xd

2pxn

ð14:31Þ

For calculating the damping ratio based on the ratio of any two response peaks
xi and xj (i \ j), a more general form of expression is:

f ¼ di�jxd

2p j� ið Þxn

ð14:32Þ

In case of low damping (f\ 0.1), one can assume xd ¼ xn, and the equation
above can be approximated as:

f ¼ di�j

2pðj� iÞ ð14:33Þ

It is worth mentioning that the free decay method is not only used in deter-
mining damping characteristics of a structure or a mechanical system, but also
adopted to measure the stabilizing performance of floating structures (floating
platforms or ships) from oscillations due to water wave excitations [163]. Since
unexpected large motions can cause discomfort for people and breakdown of
facilities on floating structures [164], this is important to improve the serviceability
of floating structures.

Example: Under an initial impulse excitation at the free end of a cantilever
beam, the 3rd and 6th peaks of damped free vibration amplitudes measured
are 0.16 and 0.09 m. Determine the system damping ratio of this cantilever
beam.

Solution: f ¼ d3�6xd
2pð6�3Þxn

¼ ln0:16
0:09

ffiffiffiffiffiffiffiffi

1�f2
p

xn

6pxn

Solving the equation above, we obtain f ¼ 3:051 %
If a small damping is assumed, we have:

f ¼ d3�6

2pð6� 3Þ ¼
ln 0:16

0:09

6p
¼ 3:052 %

Virtually, the calculated damping between the two assumptions is iden-
tical from an engineering point of view

Example: For a system with small damping, if the response amplitude needs
to decay with a factor of W within n cycles of oscillations, what is minimum
damping ratio for the system?

Solution: f� ln W
2pn
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As discussed in Sect. 3.3, the response decay due to viscous damping in free
vibrations never ceases. The energy dissipation can be caused by many different
types of damping, such as joint friction and radiation damping at supports.
Therefore, other damping, typically Coulomb friction damping, must exist to stop
the dynamic responses.

14.3.2 Step Response Method

In Sect. 11.3.1, it is presented that, by assuming an initial condition

x 0ð Þ ¼ x
�

0ð Þ ¼ 0, the responses of a lightly damped SDOF system due to a step
force excitation can be written as:

xðtÞ ¼ F0

k
1� e�fxnt

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

xnt þ u

� �

" #

ð14:34Þ

where u ¼ cos�1 fð Þ.
It is noticed from the expression above that the first peak response occurs at a

time Tp, which is also called peak time:

Tp ¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

xn

ð14:35Þ

And the displacement response at the peak is:

xmax tð Þ ¼ F0

k
1þ e�fxnTp
� 

¼ F0

k
1þ e

� pf
ffiffiffiffiffiffi

1�f2
p


 �

ð14:36Þ

Tp t

x(t)

)(max tx

kF /0

Fig. 14.12 Responses of a lightly damped system due to an initial step force excitation
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By obtaining any one of the measured Tp or xmax(t) as shown in Fig. 14.12, one
can compute the damping as:

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p
Tpxn

� �2
s

ð14:37Þ

f ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

ln
xmaxðtÞ

F0=k
�1

� 	

p

2

4

3

5

2

v

u

u

u

u

t

ð14:38Þ

Readers need to bear in mind that the two equations above are valid only for
SDOF systems or modal excitations in MDOF systems [165].

14.3.3 Hysteresis loop method

This method is elaborated in Sect. 14.2.6 (specific damping factor and loss factor).

14.3.4 Amplification-factor Method from Forced Vibrations

For a lightly damped system, by using the relationship between the amplification
factor Qi and the relevant damping ratio in the frequency domain, i.e., peaks of the
magnification factor at each eigenfrequency and their corresponding damping as
shown in Fig. 14.13, one can calculate the damping ratio as:

fi ¼
1

2Qi
ð14:39Þ

Magnitude

Q1

Q2

Q3

1

Fig. 14.13 Normalized frequency responses with respect to the maximum quasi-static deflection
X0 = F0/k of a system
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14.3.5 Half-power/Bandwidth Method from Forced
Vibrations

Another way of determining the equivalent damping is based on the damping that
provides the same bandwidth (at resonance) in the frequency–response curve
measured from a vibration test.

The equivalent damping at the ith eigenfrequency xni (Fig. 14.14) is given by:

fi ¼
xhi � xli

2xni
¼ Dxi

2xni
ð14:40Þ

where xhi and xli are frequencies on either side of the eigenfrequency xni, and the
amplitudes of frequency response curve at xli and xhi is defined as having 1/

ffiffiffi

2
p

(corresponding to 3 dB) times the amplitude at the ith eigenfrequency xni.
Therefore, the sharpness of each peak on the frequency curve indicates the

value of the loss factor (gi) at each natural frequency.
Since the half-power method is based on the frequency ratio, compared to the

equivalent damping measured by the hysteretic loop, it has the merit of not
requiring the measurement of static force acting on the system. In many practical
cases, this force is difficult to measure.

It should also be noticed that the equation above is derived from a system that is
lightly damped, which assumes that f2

i
is negligible. And, strictly speaking, it is

only valid for a linear system.
However, for rather low damping ratio (\1 %) system, the damping determined

by frequency methods are not accurate, this is mainly due to the reason that, the
frequency response curve for a rather low damping system has an extremely sharp
shape near each eigenfrequency. Therefore, it is very difficult to obtain a sufficient
number of points in this narrow range of frequency responses. As a result, for low
damping system, it is recommended to use a time-response method to determine
the damping.

li ni hi

iω

ω ω ω ω

Δ

3dB

Magnitude

2/Q

Q

Fig. 14.14 Normalized frequency responses with respect to the maximum quasi-static deflection
X0 = F0/k of a system
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On the other hand, at high damping level, the response decay could be so
dramatic that the measurements may contain large errors [165].

Furthermore, if adjacent eigenmodes are closely spaced in the frequency
domain, they add distortion to each other, which also induces errors of the mea-
sured damping.

14.4 Relationship Among Various Expressions of Damping

Damping can be represented by various parameters. The relationship of damping
expressed by the different parameters is summarized as:

g ¼ 2f ¼ 2c

cn
¼ 2c

2xnm
¼ 1

Q
¼ tanu ¼ d

p
¼ D

2pU
¼ Dx

xn
ð14:41Þ

Fig. 14.15 Cyclic stress and strain time histories and load extension behavior for (a) linear-
elastic, (b) viscous, and (c) viscoelastic materials
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where g is the loss factor; f is the ratio of critical damping; c is the viscous
damping coefficient; cn is the critical viscous damping; xn is the resonant fre-
quency; Q is the amplification factor; / ¼ Dt � x is the phase angle between cyclic
stress and strain (Fig. 14.15); d is the logarithm decrement of transient responses
(Sect. 14.3.1); D is the energy dissipation per cycle; U is the stored energy during
loading; and Dx is the frequency space determined from the half-power bandwidth
point down from the resonance peak (Sect. 14.3.5).

14.5 Damping for Engineering Structures

In the dynamic analysis of engineering structures, damping is one of the most
difficult parameters to model with sufficient accuracy. It is contributed by various
sources, typically from materials and the structural joints, of which the former is
typically of hysteretic type and the latter is of friction type. As discussed previ-
ously, based on the equivalent energy loss, an equivalent viscous damping can be
obtained. Even if the major contribution of damping is, in most cases, not of a
viscous type, for a convenient modeling and the subsequent mathematical treat-
ment, viscous damping is still the most widely used damping measure.

14.5.1 Material Damping

Material damping occurs due to energy dissipation in a volume of macro-con-
tinuous media. Hysteretic damping modeling is normally used to represent
material damping. Detailed study of material damping is a task of solid physics
and thus beyond the scope of the current book.

Table 14.2 illustrates typical values of material damping, expressed as a per-
centage of critical damping (2mxn), for use with the modeling of viscous damping.
It is noted that the damping for an un-cracked concrete structure is lower than for a
cracked one, which is due to the damping mechanism of concrete: in the un-
cracked state only viscous damping presents; in the cracked state, both viscous
damping in the un-cracked compression zone and friction damping between the
concrete and the reinforcing steel in the cracked tension zone contribute to the
damping [210].

Generally, high damping materials usually exhibit low strength accompanied
with high cost, and are therefore not suitable for structures with load carrying
functions. An exception is manganese copper, which has high damping at a large
strain level together with high strength.
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14.5.2 Structural/Slip Damping

From Table 14.2 above, it is noticed that, for most of the engineering structures
made of steel or concrete, the material damping is rather small. For example, with
a damping of 0.0005 for steel, the amplification factor Q is 1,000 (Eq. 14.41),
which is not realistic. Therefore, there must be other damping sources to limit the
dynamic responses.

The damping generated by structural joints is typically such a type of damping,
which is called structural damping, or slip damping. Rather than generating
damping in a volume of macro-continuous media as material damping does, slip
damping arises from the boundary shear effects at joints between distinguishable
parts or at mating surfaces. It can be a type of viscous in case of lubricated sliding,
Coulomb friction or hysteretic. For Coulomb friction type of joint interface, effi-
cient energy dissipation can be achieved with optimum interface pressure and
geometry. However, a small deviation from this optimum condition may lead to a
significant damping reduction. In addition, the optimum condition may result in
serious corrosion due to wear. This leads to the development of other types of
interface treatment, such as lubrication or adhesive separator at interface [212].

14.5.3 System Damping

System damping arises due to the energy dissipation from materials, joints, fas-
teners and interfaces. It is basically the sum of material and structural damping and
in some cases also accounts for the radiation damping due to the radiation of waves
in a continuous medium away from the area of excitations. This type of damping is
usually what is actually used for modeling in a typical structural dynamic analysis.

Table 14.2 Typical values of material damping [211]

Material Damping of the critical (%)

Reinforced concrete 0.5 (uncracked)–3 (cracked)
Steel 0.05–0.4
Cast iron 0.15–1.5
Pure aluminum 0.001–0.1
Dural aluminum alloy 0.02–0.05
Manganese copper alloy 2.5–5
Lead 0.4–0.7
Natural rubber 5–15
Hard rubber 50
Glass 0.03–0.1
Wood 0.25–0.5
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14.5.4 Hydro- and Aerodynamic Damping

The relative velocity between the fluid and the encountering objects produces
either hydrodynamic or aerodynamic damping, depending on the type of media.
Both possess viscous characteristics and are categorized as fluid damping. This
topic is discussed in Sects. 14.2.5, 12.1.1 and 12.2.1.

14.5.5 Typical Damping Levels

Table 14.3 shows the typical system damping value for land-based structures
without accounting for the soil damping.

Table 14.4 illustrates typical values used for the modeling of offshore struc-
tures, which include the damping due to structures’ energy dissipation, fluid–
structure interactions (drag), and soil damping. It is noticed that, under extreme
loading conditions such as significant seismic excitations or wave load during a
major storm, a higher damping value due to structures’ energy dissipation shall be
used. This is because, under significant loading, the strain level is higher than that
under a normal loading such as the one associated with high-cycle fatigue [243],
leading to a higher damping level.

Table 14.3 Typical system damping for land-based structures and non-structural elements under
seismic excitations [216, 217]

Structure type System damping without soil damping (%)

Reinforced concrete 4 (uncracked)–7 (cracked)
Prestressed concrete 2–5
Reinforced masonry 4–7
Natural stone 5–7
Welded or bolted steel with friction connections 2–4
Bolted steel with friction connections 4–7
Large diameter ([304.8 mm) piping 2–5
Small diameter (B304.8 mm) piping 1–3
Mechanical or electronic components 2–3
Storage tank (sloshing mode) 0.3–0.7
Storage tank (impulsive mode) 2–3
Transmission lines (aluminum or steel) 4–6
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14.6 Comparison of Cyclic Responses Among Structures
Made of Elastic, Viscous and Hysteretic (Viscoelastic)
Materials

When structures made of elastic material vibrate, all the energy stored during
loading is returned when the loading is removed. As a result, there is no time lag
between the responses and loading, i.e., the displacement of the structure responds
immediately (in phase), to the cyclic load. The stress and strain time histories are
also completely in phase (Fig. 14.15a). Furthermore, for linear elastic materials,
Hooke’s law applies, where the stress is proportional to the strain.

Conversely, for a purely viscous material, no energy is conserved after the
loading is removed. The input stress disappears due to ‘‘pure damping’’ as the

Table 14.4 Typical damping level for modeling of offshore structures [81, 215]

Structure type Damping

Jacket fatigue loading* 1–3 % for fundamental global bending mode and 2–3 % for higher-
order mode

Jacket extreme wave
loading*

2–3 % for fundamental global bending mode and 3–4 % for higher-
order mode

Welded pile in soil* 0.6 % (land-based)–1.4 % (offshore)
Welded brace* 0.3 % (land-based)–0.8 % (offshore)
Welded mast (in air) * 0.8 %
Bolted mast (in air) * 0.3–3 %
Piled support structure

(e.g., offshore wind
turbine supporting
structures) under
extreme wave [215]

Radiation damping from wave
creation due to structural
vibrations

0.1–0.3 %

Hydrodynamic damping 0.1–0.2 %
Steel material damping (without

ground connections)
0.15–0.3 %

Soil damping Internal
friction

2–7 %

Geometric damping
0.6 % (elastic)–0.8 %

(plastic)
Jacket under seismic

loading
Structural damping 0.5 (elastic) %–2 % (plastic)
Hydrodynamic damping 0.5 (elastic) %–1.5 %

(plastic)
Soil damping 1 (elastic structure) %–5 %

(significant soil
inelasticity)

GBS under seismic loading Structural damping 1 % (elastic)–3 % (plastic)
Hydrodynamic damping 0.5 %
Soil damping Under calculation

Note: *see Ref. [81], the damping includes both structural and hydrodynamic damping, but the
soil damping is not accounted for
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vibratory energy is transferred into internal heat energy. The stress and strain time
histories are out of phase as shown in Fig. 14.15b.

For all other types of damping that do not fall into one of the two category
classifications above, the assumption of viscoelasticity may be used for modeling,
which has both elastic and viscous properties as shown in Fig. 14.15c.
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Chapter 15
Nonlinear Dynamics

15.1 From Linear to Nonlinear

Many investigations start with linear models, in which the effects are assumed to be
always proportional to their causes. This assumption greatly simplifies the problem
since it enables a superposition of all relevant elementary cases, which are normally
well handled by physical modeling and mathematical treatment [218]. In addition,
most of the more advanced problems in scientific calculations require the solution of
only linear systems, having real or complex coefficients, often of very large dimen-
sions [219]. However, strictly speaking, proportional phenomena do not exist in the
real world. As a matter of fact, we often observe effects that saturate in spite of an
increase of their causes, or which go in different and somehow unexpected ways. One
example of this can be found in both the physical and social world, e.g., when a steel
bar under axial tension is well above its yielding, the elongation of the steel bar is not
proportional to the applied tension load anymore, i.e., the material nonlinearity
appears due to stiffness change. Another example is an ideal rigid pendulum, with a
mass at the end of a weightless rod and revolving around a horizontal axis under
gravity field. Strictly speaking, the torque due to the mass’s self-weight is a sine
function of the revolving angle rather than the revolving angle (linear), i.e., mechanical
constraints nonlinearities occur. The third example is that the income tax rate in almost
all countries is not a fixed fraction of and depends on the total volume of one’s income,
i.e., the total tax one pays is not proportional to the total income one earns.

For treating nonlinear problems regarding dynamics, people instinctively try to go
back to a problem that they know how to handle by linearizing the dynamics around it
and treating small departures from it, and then reproducing this scheme as far as
possible to reach other fully nonlinear states [220]. The most widely used method is
perturbation theory, which has its roots in early celestial mechanics, where the theory
of epicycles was used to make small corrections to the predicted paths of planets [221].

As we have discussed previously, to carry out a dynamic analysis, in a more
practical sense, the finite element method, the finite difference method (Sect. 13.5),
often referred to as the direct time integration method to distinguish it from that
based on the modal superposition method) or modal superposition method
(Sect. 13.4), and the linear iteration method (Sect. 15.5) are the three most
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commonly used numerical methods in computational solid mechanics, solving
problems associated with space, time and nonlinearities, respectively, but normally
in a combined manner.

Since, in linear dynamic analysis, the responses of a system/structure are pro-
portional to the load/excitation it is subjected to, again, this enables the utilization
of superposition, which brings significant convenience with regard to computation
cost and convenience, and in many cases also ensures the calculation accuracy.
However, when nonlinearities appear in the system/structure, the stiffness and/or
load are dependent on the deformation, and the responses of a system are generally
not amenable to an analytical method with exact solutions. ‘‘Exact’’ here means
that the solution is obtained either in a closed form or in a mathematical expression
that can be evaluated to any degree of accuracy by numerical means, e.g., a series
of expressions [222]. The modal superposition rule is also often regarded as
inapplicable [223], or at least applying only for mild and localized nonlinearity,
provided that a relatively few mode shapes need to be considered. In the latter
case, the same principles presented in Sect. 13.4 are also applicable to nonlinear
analysis, and the eigenmodes have to be updated at each time step, so that the
nonlinearities (e.g., constitutive laws) can be evaluated. However, the complete
mode superposition analysis is only effective when the solution can be obtained
without updating the stiffness matrix too frequently [173]. For readers interested in
this topic, references [173, 224] and [223] are recommended.

It is known that a general method for obtaining the exact solution of nonlinear
differential equations is not available. Most of the analytical methods that have been
developed yield approximate solutions, and the available techniques vary greatly
with the type of nonlinear equations [18]. In engineering practice, especially with
the wide utilization of finite element method, the direct time integration for time
stepping combined with decent integration methods for reaching equilibrium within
each time increment is the dominant approach for obtaining nonlinear responses.

Compared to linear dynamic analysis, nonlinear dynamic analysis can detect
certain critical dynamic responses due to the variation of stiffness. It can also avoid
over-design of a structure through a more accurate calculation of responses. This is
particularly true with respect to structural failure and collapse, which typically
involve any or all types of nonlinearities. Nonlinear dynamic analysis can be used
to assess structural behavior with regard to strength, stability, service configura-
tion, reserve strength and progressive failure etc.

The essential difference between linear and nonlinear analysis is typically the
treatment of stiffness, which is influenced by material properties, structural
geometries and boundary conditions. For example, when the deformation of a
beam structure is small, and the stress levels are well below the yielding of the
structural materials, the deformation as such will not create a significant additional
bending moment. Also, when the material stress–strain relationship also remains
linearly elastic, the change of stiffness is insignificant. A linear elastic analysis can
then be adopted for the analysis. This means that the stiffness matrix is assembled
and solved only once, with no need to update it. However, when rather high loads
are applied on a structure, yielding and large deformations can be expected, both
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the geometry (force-deformation) and material stress–strain relationship as will be
presented in Sect. 15.2 experience a significant change, leading to a change in
stiffness. This requires that the stiffness matrix has to be updated during the
deformation through a decent interactive solution process. This linear iteration
method will be introduced in Sect. 15.5. It is essentially a procedure to find the
equilibrium between the external forces and internal forces for each time step
increment, which can be applied to solve both static and dynamic problems.

15.2 Sources of Nonlinearities

Although all nonlinear analyses relate to the stiffness changes, their causes can be
quite different, leading to different categories of nonlinearities.

15.2.1 Material Nonlinearity

Material nonlinearity appears because the material does not exhibit a perfectly
linear behavior, but its properties vary with the strain. Structural materials and
components have limits on strengths coupled with different loading and unloading
paths, leading to nonlinear inelastic behavior. This is illustrated in Fig. 15.1, which
shows the stress–strain diagram obtained from uni-axial tensile tests for a specimen
made from typical structural steel. Below the proportional point, the strain and
stress has a linear (proportional) relationship, and the slope of the curve is constant
and referred to as modulus of elasticity E. For typical low carbon steel, this point is
in the range 200–300 MPa. With a load increase from the proportional point, the
linear stress–strain relationship no longer exists. Instead, the slope of stress–strain
curve becomes smaller and smaller until the yielding point is reached. After the
yielding point, the curve becomes flat with a significant elongation, i.e., strain
increases without noticeable change in stress. This flat part of the curve indicates a
process of yielding. This is followed by strain hardening in which the stress level
rises again with a declined slope (compared with the slope during the linear-elastic
range) of the curve until the ultimate strength (maximum load value) is reached.
The strain level corresponding to the ultimate strength is many times that at yielding
point. After the ultimate strength point, the increase of strain is actually accom-
panied by a reduction in stress (load), and the fracture finally occurs.

Figure 15.2 shows the constitutive relationship for typical mild steel from a real
measurement. It is noticed that the majority of strain increase occurs during the
strain hardening, and the yielding process also contributes to a significant strain
increase, while the strain at the initial yielding is comparatively small.

It should also be mentioned that, above the yielding point, with any removal of
the load, the stress–strain curve will have a slope identical to that before the
proportional limit point. This is illustrated as the unloading process shown in
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Figs. 15.1 and 15.3. Moreover, it is noticed that, if a loading is completely
removed, only the elastic strain is recovered and the plastic part of strain remains.
Therefore, the plastic part of strain is permanent. This strain is often called plastic
(permanent) strain, and it leads to changes of the test member’s dimensions and/or
shape, which is in most cases undesirable. However, there are some instances in
which plastic deformation is desirable. For example, car bodies are designed in
such a way that they can absorb a large amount of impact energy through plastic
deformation. The second example is the utilization of work hardening to increase
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Fig. 15.1 Engineering stress (r) -strain (e) curve for a typical ductile steel material that has an
obvious yield strength (not to scale), A0 is undeformed cross-section area

Fig. 15.2 The engineering stress-strain curve obtained from an experimental test for typical mild
steel with a yield stress of 314 MPa, and an elastic modulus of 206 GPa [246]
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the yield strength of mild steel. Steel structural members can be preloaded beyond
the original yield strength as shown in Fig. 15.4, and then unloaded, making the
updated yield strength significantly higher than the original one, with this normally
being accompanied by a decrease of ductility.
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Fig. 15.3 The engineering stress–strain curve for materials that do not have an obvious yield
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15.2.1.1 Yield Criterion and Hardening Rule Under Uni-Axial Stress
Condition

Many ductile materials such as aluminum, heat-treated higher strength steels or
cold formed steels do not have a clearly defined yield point. The yield strength of
such materials is defined by projecting a line parallel to the curve at the initial linear
elastic region starting at 0.2 % plastic (permanent) strain as shown in Fig. 15.3.

Because the yield strength in those cases is determined by an arbitrary rule that
does not indicate an inherent physical property of the materials, it is referred to as
the offset yield strength [226], or proof stress. For ductile aluminum, the yield
strength point is slightly above the proportional limit, while for the higher strength
or cold formed steel, the yield strength is essentially identical to the stress level at
the proportional limit.

In some cases, the strain hardening may be neglected, leading to elastic-perfect
plasticity as shown in Fig. 15.5 and this is generally conservative:

r ¼ E e for r\ry ð15:1Þ

r ¼ ry for e� ry

E
ð15:2Þ

Under this simplification and by assuming that the entire cross-section of a
beam can be fully utilized when the beam reaches the plasticity, the stress dis-
tribution along the beam’s cross-section can be divided into three processes:
elasticity, partial plasticity and full plasticity, as shown in Fig. 15.6. There is a
dilemma in this assumption such that, when yielding is initiated, the plastic
deformation can be infinite. Therefore, a slight hardening is normally assigned to
simulate perfect plasticity for numerical stability. For example, in finite element
analysis involving plasticity, to reach numerical stability, the strain hardening is
normally assumed to represent either a realistic material behavior or only a slight
hardening with a slope of 1/1,000 to 1/100.

The strain hardening can be accounted for through the elastic-linear-hardening
rule, elastic power-hardening relationship or by separating the plastic deformation
from the total deformation and applying an exponent on the plastic hardening
(Ramberg–Osgood relationship).
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Fig. 15.5 Idealized elastic-plastic engineering stress–strain diagram

266 15 Nonlinear Dynamics



As a rough approximation of stress–strain curves that rise appreciably after
yielding, a linear hardening relationship can be used by assuming that, after
yielding, the slope in the stress–strain curve is a fraction of the elastic modulus,
i.e., dE (Fig. 15.7):

r ¼ E e for r\ry ð15:3Þ

r ¼ ð1� dÞry þ dE for e� ry

E
ð15:4Þ

where d is a slope reduction factor after initial yielding.
Note that, in the discussions above, the engineering stress r and strain e are

used. This is based on the assumption that the area of a beam cross-section does
not change during deformation and is identical to the initial one A0. This can be
justified for small strain conditions where the reduction of cross-section area is
small. When the plastic strain level is sufficiently high, the changes in the beam’s
cross-section are not negligible and are related to the Poisson’s ratio of the
material as shown in Fig. 15.8. The engineering stress and strain are then not
appropriate to use for defining the stress–strain curve. Instead, the true stress
should be used, in which the initial area A0 is replaced by the updated (current)
cross-section area A:

Fig. 15.6 Process of elasticity-initial yielding (ii), partial plasticity (iii) and full plasticity (iv) for
a rectangular cross-section beam under pure bending [248]
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Fig. 15.7 Elastic-linear plastic hardening relationship using engineering stress-strain curve
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rtrue ¼
F

A
¼ F

A0
� l

l0
¼ rð1þ eÞ ð15:5Þ

where l0 is the initial length of the specimen and l is the updated (current) length
due to the deformation.

And the corresponding true strain is:

etrue ¼
Z

l

0

dl

l
¼ ln

l

l0

ffi �

¼ lnð1þ eÞ ð15:6Þ

An illustration of the relationship between engineering (nominal) and true
stress–strain is shown in Fig. 15.9. The difference between the two increases with

Poisson ratio: υ=εy/εx
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Fig. 15.9 The uni-axial tension test measured with both the engineering (r and e) and true
stress–strain (rtrue and etrue) curve (not to scale)
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the increase of strain. It is also noticed that a power hardening relationship can be
applied using the measure of true stress–strain curve with a log–log plot. This
provides the possibility to represent a more realistic plastic deformation. In the
following, we will introduce two power hardening relationships based on the
measurement of true stress and strain.

Figure 15.10 shows a power hardening relationship and can be expressed as:

rtrue ¼ Eetrue for rtrue\ry ð15:7Þ

rtrue ¼ H1e
n1
true for en1

true�
ry

E
ð15:8Þ

where n1 is called the strain hardening exponent, which typically ranges from 0.05
to 0.4 for metals; H1 is the stress value when e ¼ 1.
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Fig. 15.10 Elastic power-plastic hardening relationship plotted on log–log coordinates using
true stress–strain relationship
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Fig. 15.11 Ramberg-Osgood relationship curve plotted on log–log coordinates using true stress–
strain relationship
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It is noticed from Fig. 15.10 that in the log–log plot, the curve within the elastic
region has a slope of unity, and it intersects with the curve in the plastic region at
the yield stress ry.

A more popular relationship, namely Ramberg–Osgood rule, is to separate the
elastic strain (ee) and plastic strain(ep), and the total strain is the sum of the two as
shown in Fig. 15.11 and expressed as:

etrue ¼ ee þ ep ¼
rtrue

E
þ rtrue

H

� �r�1

ð15:9Þ

where r is Ramberg–Osgood strain hardening exponent that is defined differently
from the strain hardening exponent used for power-hardening relationship. H is the
stress value when the plastic strain ep ¼ 1.

It is noticed that the exponential relationship in the Ramberg–Osgood rule only
applies to the plastic strain. At a low strain level, the total strain e approaches the
elastic curve with the slope of unity; while at a large strain level, the total strain
approaches the plastic strain with the slope of r.

By comparing the Ramberg–Osgood and elastic power-hardening relationships, it
is found that when the strains are rather large, the elastic strain is insignificant, and the
two relationships are essentially equivalent. Therefore, when the total strain is rather
large, the first term on the right hand side of the equation above can be neglected.

Furthermore, in many commercial finite element analysis codes for nonlinear
analysis, to represent the plastic hardening relationships, the strain obtained from
the material test can be directly implemented into the material modeling.

Regardless of which model is being used, numerically, the nonlinear part of the
stress–strain curve is generally approximated as a series of piece-wise linear
segments. Each linear segment is represented by a tangent modulus, which is the
ratio between the stress and strain for that particular segment.

15.2.1.2 Yield Criterion, Flow and Hardening Rule Under Multi-Axial
Stress Condition

The constitutive laws commonly adopted for structures with nonlinear inelastic
material properties are characterized by a yield criterion/surface, a flow rule and
the hardening rule [173, 223].

The yielding criterion and hardening rule obtained under uni-axial stress con-
ditions must be extended to deal with multi-axial stress state. In such a condition,
the yield criterion determines the onset of the yielding for multi-axial stress by
accounting for the contribution from different stress components. The strain related
to a stress component rij in any location of a solid can be decomposed into strains
due to change of volume and shape. It is well approved from abundant experiments
that for most of the materials (especially for metal materials), the volume change
(due to uniform hydrostatic pressure from all directions) is purely elastic, and does
not contribute to any plastic deformation, i.e., the plastic deformation occurs under
incompressibility conditions, leaving the deviator stress as the only cause for

270 15 Nonlinear Dynamics



plastic flow. For a three-dimensional stress state, the stress component due to the
volume change, namely spherical stress rm, and the stress component due to the
change in shape, namely the deviator stress rij obey the relationship as follows:

r½ � ¼
r11 r12 r12

r21 r22 r23

r31 r32 r33

2

4

3

5 ¼
rm 0 0
0 rm 0
0 0 rm

2

4

3

5þ
r11 � rm r12 r12

r21 r22 � rm r23

r31 r32 r33 � rm

2

4

3

5

ð15:10Þ

where the subscript denotes the axis along three arbitrary axes that are perpen-
dicular to each other; rm ¼ ðr11 þ r22 þ r33Þ=3.

It is noticed that the deviator stress tensor is obtained by removing the
hydrostatic pressure form:

s ¼ r½ � � rmI ¼ r½ � � ðI1=3ÞI ð15:11Þ

In Eq. 15.11, I1 is the first stress invariant among the three stress invariants
(independent of axes as long as the three axes are perpendicular to each other):

I1 ¼ Tr r½ � ¼ r11 þ r22 þ r33 ð15:12Þ

I2 ¼
1
2

Tr r2
� �

¼ 1
2

rijrji

¼ � ðr11r22 þ r22r33 þ r33r11Þ þ r2
12 þ r2

23 þ r2
31

ð15:13Þ

I3 ¼
1
3

Tr r3
� �

¼ 1
2
rijrjkrki

¼ r11r22r33 þ 2r12r23r31 � ðr11r
2
23 þ r22r

2
31 þ r33r

2
12Þ

ð15:14Þ

If the three principal stress (r1, r2 and r3) directions are used, the three
invariants can be simplified as:

I1 ¼ r1 þ r2 þ r3 ð15:15Þ

I2 ¼ �ðr1r2 þ r2r3 þ r3r1Þ ð15:16Þ

I3 ¼ r1r2r3 ð15:17Þ

In the same manner, the deviator stress also has three components:

J1 ¼ Tr s½ � ¼ s11 þ s22 þ s33 ¼ ðr11 þ r22 þ r33Þ � 3rm ð15:18Þ

J2 ¼
1
2

Tr s2
� �

¼ 1
2

sijsji

¼ � ðs11s22 þ s22s33 þ s33s11Þ þ s2
12 þ s2

23 þ s2
31

ð15:19Þ

J3 ¼
1
3

Tr s3
� �

¼ 1
2

sijsjkski

¼ s11s22s33 þ 2s12s23s31 � s11s2
23 þ s22s2

31 þ s33s2
12

� 	

ð15:20Þ
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Typical yield criteria are Tresca theory (maximum shear stress theory), pro-
posed by Tresca in 1864, and von Mises theory (octahedral shear), proposed by
von Mises in 1913. They are both used for the application of ductile metal
materials and differ slightly from each other.

Tresca theory states that the material reaches yielding when the plastic potential
QTrescaðrÞ reaches zero, that is, the maximum shear (max ri � rj











) in each prin-
cipal stress plane reaches yield strength as shown in Fig. 15.12 and is expressed as:

QTrescaðrÞ ¼ max ri � rj











� ry ¼ 0 ð15:21Þ

Different from Tresca theory, which only involves the maximum shear, the von
Mises criterion (Fig. 15.12) involves the maximum shear in each principal plane
ri � rj. It states that the materials reach yielding when the plastic potential
Qvon MisesðrÞ involving the second deviator stress invariant J2 reaches zero as
expressed:

Qvon MisesðrÞ ¼
ffiffiffiffiffiffiffi

3J2

p

� ry ¼ 0 ð15:22Þ

From the energy point of view, von Mises criterion assumes that the yielding
occurs when the energy of distortion reaches the same energy at yielding in uni-
axial tension. In the principal stress space, the von Mises yield criterion for two-
dimensional case is shown in Fig. 15.12 and expressed as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r2

2 � r1r2

q

� ry ¼ 0 ð15:23Þ

In three-dimensional principal stress space, both criteria above are represented
by a cylinder whose axis is (1, 1, 1).

By comparing the two yield criteria, it is noticed that in the two-dimensional
tension-shear plane, Tresca criterion gives:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4s2
p

� ry ¼ 0 ð15:24Þ

And the yield strength in shear due to Tresca criterion is:

2

1
y

y

- y

- y 

Fig. 15.12 von Mises (solid lines) and Tresca (dashed line) yield criteria in principal stress space
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sy ¼
ry

2
ð15:25Þ

While the von Mises criterion gives:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 3s2
p

� ry ¼ 0 ð15:26Þ

And the yield strength in shear due to von Mises criterion is:

sy ¼
ry
ffiffiffi

3
p ð15:27Þ

For one dimension uni-axial tension or compression, both criteria are identical:

r� ry ¼ 0 ð15:28Þ

Compared to the Tresca yield criterion, the von Mises criterion is less con-
servative and therefore can avoid an over-design when ductile materials are used.

Different from most materials, for certain materials such as soil or powders, and
also for models that take damage into account, a compressive hydrostatic pressure
can decrease the plastic flow [232]. The relevant yield criteria to calculate this
effect include the Drucker–Prager, Mohr–Coulomb, Lade [227], Bresler–Pister
[228], and Ottosen [229] theories etc.

The hardening rule prescribes the work hardening as aforementioned and describes
how the yield surface changes with the progression of plastic deformation, and depends
on the type of materials. Typical hardening rules includes isotropic hardening, which
states that the center and shape (e.g., ellipse in the case of von Mises yield criterion) of
yield surface do not change in the principal normal stress space while the size of it
expands uniformly as a result of strain hardening. This is illustrated in the left figure of
Fig. 15.13. The isotropic hardening is best suited for problems in which the plastic
strain is significantly higher than the strain at initial yield.

From Figs. 15.13 and 15.12, it can be observed that the yield surface separates
the plastic region from its elastic counterpart. Any movement of stress state toward
the outside of the yield surface indicates a plastic loading, and the change of stress
state toward the interior of the yield surface indicates elastic unloading.

2

1

Isotropic hardening

2

1

Kinematic hardening

Initial yield 
surface

Subsequent 
yield surface

Elastic loading

Elastic unloading

Initial yield 
surface

Plastic deformation 
with hardening

Initial yield

Subsequent 
yield surface

Fig. 15.13 Isotropic and kinematic hardening rule in principal stress space
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Furthermore, the change in stress state along or within the yield surface will only
cause elastic deformation.

It is also noticed that, following the isotropic hardening rule, the yield strength
in tension and compression is initially the same, i.e., the yield surface is symmetric
about the principal stress axes, and the yield strength remains equal as the yield
surface develops with plastic strain. However, under reversal loading (the load
changes its direction), yielding due to unloading normally occurs prior to the stress
reaching the yield strength ry, as shown in Fig. 15.14, i.e., a hardening in tension
will lead to a softening in subsequent compression. This early yielding behavior is
called the Bauschinger effect. To account for this effect, the kinematic hardening
rule has to be applied, which states that the shape and size of yield surface do not
change, while the center of the yield surface changes in the stress space, this is
illustrated in the right figure of Fig. 15.13.

In addition, by combining the two hardening rules shown in Fig. 15.13, one
may also use the mixed hardening rule, such as Prager’s rule [230], in which both
the size and the center of the yield surface change, but the shape is kept
unchanged, i.e., the yield surface expands uniformly.

The isotropic hardening rule is most widely used simply because of its con-
venience for mathematical treatment and its representativeness with regard to the
hardening characteristics of a wide range of materials. However, as mentioned
above, under reversal loading with repeated yielding, kinematic hardening should
be used to account for the Bauschinger effect. The mixed hardening rule is rarely
used due to its numerical complexity.

Readers should also bear in mind that the yield surface cannot only expand
under strain hardening, but also shrink under strain softening when the necking
shown in Fig. 15.1 occurs.

Fig. 15.14 Stress–strain diagram due to reversal loading, with isotropic hardening or kinematic
hardening (due to Bauschinger effect) rule applied
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Besides the yield criterion and hardening rule, one also needs to describe the
progression of yielding in the plastic domain, i.e., to define plastic strain rate outside the
yield surface. However, different from what occurs in the elastic stage, the stress and
strain in the plastic region do not generally exhibit a one to one correspondence.
Therefore, a ‘‘constitutive law’’ has to relate the plastic strain increments to the current
stress and stress increments subsequent to yielding, which is called the flow rule:

dep ¼ dk
dQðrÞ
drtrue

ffi �

ð15:29Þ

where k is a scalar factor that is determined from the yield criterion [231, 232].
Q is a plastic potential.

From the equation above, it is obvious that the plastic strain increment dep is
perpendicular to the surface defined by the plastic potential. Therefore, the
equation is also referred to as the normality rule [231]. With this geometrical
explanation, one can focus on the plastic strain and rewrite the flow rule as:

ep ¼ kgradðQðrÞÞ ð15:30Þ

Therefore, an essential task in defining a flow rule is to define the plastic
potential Q. For the majority of metal materials, Q can be assumed to be equal to
the plastic potential defining the yielding surface as presented previously, such as
QTrescaðrÞ or QvonMisesðrÞ. Such a flow rule is called an associated flow rule. If not,
it is non-associated. Experimental results show that the associated rule applies well
to the plastic deformation of metals, while for some porous materials such as
rocks, soil and concrete, the non-associated flow rule provides a better represen-
tation of the plastic deformation [231].

The most commonly used associated rule is the Prandtl–Reuss relation (also
called the Levy–Mises equation) that is suited for typical metal materials. By
applying the von Mises yield criterion, one obtains:

dep ¼ dk
dJ2

dr

ffi �

ð15:31Þ

where J2 is the second deviator stress invariants as described previously.
It should mentioned that material nonlinearity not only includes nonlinear

plasticity, but is also relevant for materials with nonlinear elasticity, viscoelasticity
and creep effects.

The text regarding the material plasticity covered in the current book provides a
fundamental basis for performing relevant nonlinear dynamic analysis. Readers
can find a complete coverage of this topic in references [231, 232].

15.2.2 Geometrical Nonlinearity

Geometrical nonlinearity is due to changes in geometry, when either the system is
to support large strains and large displacements (the strains exceed the order of
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tenths) or there are large displacements (membrane stress effect) or rotations with
small strains and buckling. For example, if a structural member such as a beam or
plate is restrained against the in-plane deformation, the membrane forces will
develop with a finite deformation. Figure 15.15 shows an idealized load-carrying
capacity curve for a simply supported rectangular beam with both geometrical
nonlinearities and perfect plasticity involved. It is clearly shown that with the
increase of deflection, the membrane forces developed in the beam become more
and more significant while the effects of bending forces behave in the opposite
way. When the deflection ratio reaches 0.5, i.e., the entire cross-section becomes
fully plastic, the bending contribution vanishes. Under further deformation the
axial force remains constant and equal to the one at full plasticity state. Further-
more, for geometrical nonlinearity, the applied loads will either have an effect on
the deformed configuration, or the configuration will have an effect on the loads,
e.g., follower loads [242, 243]. The geometrical nonlinearity can be significant for
cable structures and inflatable membranes, slender structures, metal and plastic
forming, the stability of structures [246], and structures made of materials showing
significant creep and plasticity, etc.

Figure 15.16 shows an example of the load–deflection curve corresponding to a
line load applied along the center line of an HP-beam’s top flange as shown in
Fig. 15.17. The material’s constitutive relationship for this beam is modeled
according to the one shown in Fig. 15.2. It is clearly shown that the initial yielding
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Fig. 15.15 Load carrying capacity curve for a simply supported rectangular beam due to a
middle point transverse load at large deformations and with perfect plasticity involved
(w deflection, h beam height, P/P0 ratio between applied load and the load of initial yielding)
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Fig. 15.16 The line load (applied on the top flange of an HP-beam shown in Fig. 15.17), q,
versus deflection (the maximum deflection at the intersection between the web and the shell plate)
with the maximum line loads applied along the center line of the top flange of the HP-beam

Fig. 15.17 The von Mises stress (in MPa) distribution and deformation of the HP-beam at
maximum load level (upper figure, with the maximum line load of 1,400 N/mm) and after
unloading (lower figure, with the load level decreased to zero)
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occurs at a line load level of 1,134 N/mm. Then the plasticity begins to develop on
the beam in that the load–deflection curve’s slope dramatically decreases until it
reaches a maximum line load value of 2,195 N/mm. By observing the upper figure
in Fig. 15.17 that shows the von Mises stress of the beam at this maximum load
level, plasticity developed at the two ends and middle of the beam can be clearly
identified. After the maximum load is applied, the unloading process then takes
place until the load reaches zero, at which a 71 mm of permanent deflection due to
the plasticity can be identified. The von Mises stress after unloading is shown in
the lower figure in Fig. 15.17. It is also observed that the slope of the curve for the
unloading process is less than that of the loading process before the yielding. As
discussed in Sect. 15.2.1, the slope between loading and unloading would be
identical if only plasticity without geometrical nonlinearity is involved. Note that
the beam’s span is relatively large, this difference in slope is due to the contri-
bution of geometrical nonlinear membrane stresses developed in the beam.

15.2.3 Buckling

Linear analysis assumes that all members work equally well in tension or com-
pression, neglecting the tendency of slender members to buckle in compression.
This alters the effective stiffness of the structure and also changes its buckling
load. Buckling is a dominant failure mode for slender structures as shown in
Fig. 15.18.

Fig. 15.18 Buckling of a beam web panel
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15.2.4 Displacement Boundary Nonlinearity

Displacement boundary nonlinearity arises due to a change of boundary condi-
tions, such as a change of support conditions or loads. An example of this non-
linearity is the contact between a conductor and its guide as shown in Fig. 15.19.
Under normal conditions, there is a gap between the conductor and its guide.
During adverse weather, large sea wave loads along the horizontal direction can
push the conductor to impact/contact its guide, and this contact immediately acts
as an additional support on the conductor to restrain its deflection in the horizontal
direction, leading to a significant increase of the conductor’s stiffness.

15.2.5 Force Boundary Nonlinearities

Force boundary nonlinearities may be caused by the hydrostatic pressure load
variation due to the variation of the wet surface, by the nonlinear drag forces
induced by the passing fluid, such as the wind (Sect. 12.2.1), wave and current
loads (Sect. 12.1.1) on structures, and also by the aforementioned follower loads
due to geometrical nonlinearities.

15.2.6 Nonlinearities Due to Temperature Effects

Temperature dependence and degradation of mechanical material properties due to
temperature change, such as elastic moduli, thermal expansion coefficients, and
nonlinear stress-strain relations as a function of temperature etc., also exhibit

Conductor guide 

Conductor Gap 

Fig. 15.19 Conductor and conductor guide installed on an offshore platform (courtesy of Aker
Solutions)
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nonlinear characteristics. An elaboration of them is omitted since they are beyond
the scope of the current book.

15.3 Load Sequence Effects

During the service life of a structure, it may be subjected to a large number of
loads (essential boundary conditions). The sequence/order of the loads and its
application with respect to the occurrence of the plasticity, change of boundary
conditions or stiffness can affect the responses of the structure, which is known as
load sequence effects. In Ref. [247], Jia classified the load sequence effects
encountered in structural engineering practice into four types, which are now
summarized as three categories:

(1) Category 1 is associated with changes of the global and/or local stiffness.
The changes of the stiffness may be due to the occurrence of plasticity, geometrical
nonlinearities, cracking or damages in structures, the change of structures’ support
conditions, the installation of additional structural members and reinforcements.

In arctic engineering, the plasticity development of ships’ hull structures or
offshore structures under repeated ice floe impact [250] is an example that is
relevant to load sequence effects associated with plasticity. Due to the sequence of
the ice loads, it is still difficult to identify the exact cause of the structure’s damage
because the solutions for these types of inverse problems (knowing the conse-
quences, causes are sought) are not unique.

The load sequence effects due to a combination of material and geometrical
nonlinearities are shown by the load–deflection curve in Fig. 15.16. Obviously, the
global stiffness at different stages of loads are changing.

Figure 15.20 shows the plastic utilization of a subsea tank after the permanent
load is applied, with and without crack modeling. It is clearly shown that the
cracks significantly decrease the structure’s stiffness and induce local plasticity in
the tank, i.e., the load sequence effects cannot be neglected.

The load sequence effects due to the installation of additional structural
members and reinforcements may be difficult to understand. When the rein-
forcements or structural members are installed without pre-stressing them to the
original structure, the reinforcements or the members should be considered to only
carry future changed (added or deducted) loads together with the existing struc-
tural members. By performing a series of linear elastic analyses for an offshore
topside frame structure shown in Fig. 15.21, which is subjected to various per-
manent and environmental loads, and both the support condition changes and the
reinforcements are applied at different stages of the structure life, Jia [247]
investigated the ultimate strength of the frame structure influenced by the sensi-
tivities of the support condition changes and the reinforcements installations. It is
found that the changes of the support conditions and the added stiffness from the
reinforcements only slightly change the global stiffness of the structure, while they
do influence the local stiffness and reaction forces on reinforced members and
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members close to the supports and reinforced members. The load and support
condition sequence effects may have a significant influence on the utilizations of
those members. For this particular structure, the load sequence effects are more
significant from the change of the support condition than that from the installation
of the reinforcements.

In order to practically account for the load sequence effects, in the same ref-
erence, Jia [247] also presented a method for specifying the consequent analysis
phases that depend on factors such as whether the loads are acting at the time the
structure is altered, whether only the final state of the structure is of analysis

Fig. 15.20 The plastic utilization of a subsea tank without (upper figure) and with (lower figure)
modeling of cracks in the tank (courtesy of Dong Energy, Denmark)
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interest or intermediate states are as well, etc. In general, the occurrence of
stiffness changes should be considered as the ‘‘boundary’’ between analysis phases.
In each phase, the pertinent loads and support conditions should be applied on the
structure model corresponding to the condition in that phase. In addition, two types
of loads should be applied with care: (1) the environmental loads varying with
time, especially for the wave and wind loads, which always exist and vary during
the entire lifetime of the offshore installations: they are recommended to be
applied in the final phase/time of the analysis. (2) The operating loads (e.g.,
drilling machinery loads, moving crane loads) moved in different locations within
structures in different analysis phase: they should be applied in the way that the
relevant loads being applied in the current analysis phase should first include the
operating loads with the same location and magnitude but in the opposite direction
(negative sign) as the previous analysis phase; by doing this, the operating load
effects from the previous analysis phase on the current analysis phase are ‘‘can-
celed’’. Then the new operating loads corresponding to the current analysis phase
can be applied.

(2) Category 2 is concerned with the load sequence effects on the fatigue
damage estimation under variable amplitude of fatigue loadings and the transition
from the variable amplitude of fatigue loadings in reality into the constant
amplitude of fatigue loadings in laboratory tests.

In engineering practice for fatigue estimations, load cycle counting by the rain-
flow method [243] (Sect. 17.3.5.1), the Miner rule (Sect. 17.2.5) defining the
linear damage accumulation and the S–N curve (Sect. 17.2.2) representing the
material performance determined from constant-amplitude fatigue tests are often
used for the fatigue damage estimation of structures subjected to random loadings.
Although in most cases this is the best available method, the accuracy of it remains
questionable. The selection of the damage models is highly dependent on the load
time history being considered. The widely adopted Miner rule may lead to a

Fig. 15.21 A topside frame structure under investigation (courtesy of Aker Solutions)
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conservative estimation when the load history contains an isolated overload. This
is also the case when the nonlinear damage model is adopted. However, when the
load history comprises large cycles separated by few small cycles, and the mean of
the small cycles is highly relative to the mean of the large cycles, the fatigue
estimation by using Miner rule, the interaction models or the nonlinear models will
be non-conservative [305].

(3) Category 3 is the combination of the two categories of load sequence effects
described above.

15.4 Eigenfrequencies Influenced by Nonlinearities

15.4.1 Material Nonlinearity

15.4.1.1 Materials with Hardening Nonlinearity

For a beam with a hardening nonlinearity (please note that this hardening non-
linearity is different from a strain hardening nonlinearity where the second item in
the following equation does not exist in the elasticity range and the first item does
not appear in the plasticity range, see the left figure in Fig. 15.22), one may
assume that the material model can be expressed as:

r ¼ Eeþ He3 ð15:32Þ

where r is the normal stress, E is the elastic Youngs’ modulus, e is the strain, and
H is a parameter related to the significance of hardening.

The calculation of the natural frequency with material hardening can be found
in Ref. [188]. Consider a simply supported beam shown in Fig. 15.23 and assume
that the beam is massless but with a concentrated mass m located at the middle of
the beam where the fundamental eigenmode has its maximum amplitude of
vibrations. The differential equation of beam deflection can be expressed as:

d2

dx2
EI2

d2z

dx2

ffi �

þ 6HI4
d2z

dx2

d3z

dx3

ffi �2

þ3HI4
d2z

dx2

ffi �2
d4z

dx4
þ m

d2z

dt2
¼ 0 ð15:33Þ

where I2 and I4 are the second and fourth moment of inertia of the beam’s cross-
section with the area of A, i.e., Ii ¼

R

A zidA, z is the distance from the neutral axis
of the cross-section; t is the time.

By assuming an approximate vibration mode shape XðxÞ, the deflection of the
beam at position x and time t is zðx; tÞ ¼ XðxÞ cosðxntÞ, one then has:

d4X

dx4
EI2 þ

9
4

HI4
d2X

dx2

ffi �2
" #

þ 9
2

HI4
d2X

dx2

d3X

dx3

ffi �2

�mx2
nX ¼ 0 ð15:34Þ
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The natural frequency can then be calculated as:

xn ¼
p2

L2

ffiffiffiffiffiffiffi

EI2

m

r

1

1� 27p4HI4
64L4EI2

z2
max

� �2 ð15:35Þ

15.4.1.2 Materials with Softening Nonlinearity

For a material with softening nonlinearity (right figure in Fig. 15.22), one may
assume that the stress–strain relationship can be expressed as [233, 234]:

r ¼ Ee� bE2e3 ð15:36Þ

where b is a parameter related to significance of softening.
Considering the simply supported beam shown in Fig. 15.23. Again, by

assuming an approximate vibration mode shape XðxÞ, the deflection of the beam at
position x and time t is:

zðx; tÞ ¼ XðnÞZðsÞ ð15:37Þ

where n ¼ p x
L � s ¼ xnt:

Fig. 15.22 Hardening (not strain hardening in plasticity) and softening nonlinearity

Fig. 15.23 A simply supported beam
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The detailed calculation of the natural frequency due to softening nonlinearity
can be found in Ref. [188]. The differential equation for the time function ZðxntÞ is:

d2Z

ds2
þ v2a2

x2
n

Z 1� 1
3
kbZ2

ffi �

¼ 0 ð15:38Þ

where

a2 ¼ p2EI2

mL4

k ¼ 3p4bE2I4

L4I2

v2 ¼ 1
b0

Z

p

0

d2X

dn2

ffi �2

dn

b0 ¼
Z

p

0

X2dn

b ¼ 1
v2b0

Z

p

0

d2X

dn2

ffi �4

dn

The natural period can then be calculated as:

Tn ¼
2
va

1þ 3
8
kb

2
z2

max þ
57

256
kb

3

ffi �2

z4
max þ

315
2048

kb

3

ffi �6

z6
max þ � � �

" #

ð15:39Þ

Table 15.1 lists the natural period of beams due to softening nonlinearity with
various support conditions. In the table, zmax is the maximum deflection of the beam.

From the calculations above, it can be concluded that a hardening nonlinearity
increases the natural frequency, while a softening nonlinearity decreases the nat-
ural frequency. In addition, it should be mentioned that both nonlinearities influ-
ence the mode shape.

15.4.2 Geometrical Nonlinearity

As explained previously, for a beam restrained against the in-plane deformation
(geometrical nonlinearity), increase in stiffness can be expected due to the
development of membrane forces at the finite deformation. Therefore, geometrical
nonlinearity decreases the eigenperiod of a beam and also has an influence on the
shape of eigenmodes.
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Based on the differential equation involving the geometrical nonlinearity [235],
the natural period of beams due to geometrical nonlinearity with various support
conditions is listed in Table 15.2; the notations in Fig. 15.23 are used.

15.4.3 P-Delta (P-D) Effects

P-Delta (P-D) effects, sometimes referred to as the secondary moment effects, are
due to the variation of a structure’s lateral deformation in the horizontal plane.
This changes the action point of the structure’s resultant vertical force, and con-
sequently induces additional actions on the structure and a change of its stiffness.
This is illustrated in Fig. 15.24. Such changes in stiffness further alter the force
distribution along the structure. It is obvious that the significance of P-Delta effects
depends on the applied load and the structure’s characteristics. For slender
structures with significant weight and experiencing large lateral deflections, the
P-Delta effects play an important role in increasing the effective load.

There are different procedures for including the P-Delta effects in an analysis,
such as the second-order stiffness matrix, in which the stiffness matrix is the sum-
mation of the first-order stiffness matrix and the geometric stiffness (second-order

Fig. 15.24 Realization of a simplified structure modeling with P-Delta (P-D) effects involved: a
vertical beam fixed at bottom with a concentrated top mass
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stiffness) matrix. By applying equilibrium equation to the deformed shape of a beam-
column element, the geometric stiffness matrix for a beam-column element can be
written as a function of element length (L) and its axial load (P ¼ M � g) [237]:

KP ¼
P

L

0 0 0 0 0 0
6
5

L
10 0 � 6

5
L
10

2L2

15 0 � L
10 �L2

30
0 0 0

Sym 6
5 � L

10
2L2

15

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð15:40Þ

For a structural system with many elements, the axial load on each element is
an unknown and a decent nonlinear analysis algorithm is needed to solve the
problem [238].

Except for the second-order stiffness matrix method, the negative stiffness
method [239, 240] is also used to account for the P-Delta effects. In this method,
The P-Delta effects are considered by either directly reducing the stiffness or
indirectly introducing virtual elements in the structure. It is therefore possible to
modify the stiffness matrix and include the global P-Delta effects in analysis by
conducting a linear (first-order) analysis [241].

As the P-Delta effects change (normally decrease) a structure’s stiffness, they
also alter (normally lengthen) the eigenperiod. Figure 15.25 shows the variation of
natural period with the change of the displacement at the top of a 100-m high
offshore jackup structure. It is clear that the natural period increases with the
increase of displacement (Delta).

However, for stiff structures with small deflection, the P-Delta effects are
normally insignificant. Figure 15.26 shows the time history of the base shear,
overturning moment and the resultant horizontal displacement at the center of the
topside for an offshore jacket (presented in Sect. 6.3) subjected to wave loading
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Fig. 15.25 Variation of natural period (dot) with the change of the displacement (solid line) at
the top of a 100-m high offshore steel structure, which is subject to a 12-m high wave
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from either platform south or west. It is noticed that the base shear, overturning
moment and horizontal displacement vary almost in phase. Four time instants are
selected for investigation: t = 2.0 and 4.0 s, when the global responses are small,
and t = 13.75 and 19.25 s when the horizontal displacement responses approach
peak values. Table 15.3 lists the calculated eigenperiods at those four time
instants. It is shown that the calculated eigenperiod at different time instants are

Fig. 15.26 The global base shear, overturning moment and horizontal displacement at the center
of gravity of the topside due to waves from platform south (upper figure) and west (lower) with
significant wave height of Hs = 12.8 m, and modal wave period of Tp = 13 s
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identical. This indicates that the P-Delta effects for this particular structure and the
loadings are insignificant on tuning the structure’s stiffness and eigenperiods. This
is mainly due to the fact that the sea states (wave height and wave period) used for
the current investigation does not induce any plastic structural deformation, i.e., no
stiffness degradation due to plasticity, and the horizontal deflection of the structure
also remains limited with a maximum value of 0.14 m, i.e., the stiffness changes
due to geometric nonlinearities are very marginal. However, the current conclusion
is based on the foundation modeling with a constant linear spring system in all six
degrees-of-freedom. The P-Delta effects may have certain influence on tuning the
foundation stiffness through the action of overturning moment and vertical loads.
Therefore, if the topside deflection is higher under adverse sea state, and/or the
structure is more slender, and/or if the nonlinear foundation stiffness is accounted
for, the P-Delta effects may then be more relevant.

15.5 Numerical Solutions for Nonlinear Problem

15.5.1 Characteristics of Nonlinear Responses

The equation of motions with nonlinearities involved can often be expressed as:

xðtÞ
��
þx2

nxðtÞ þ #FðxðtÞ; xðtÞ
�
; tÞ ¼ 0 ð15:41Þ

where FðxðtÞ; xðtÞ
�
; tÞ represents the nonlinear forces due to both internal and

external effects; # is a factor controlling the force.
It is noticed that if # is small enough, the equation becomes quasi-linear, and

the periodical solutions close to the xn exist. Several analytical methods can be
adopted to find such solutions in an approximate manner, such as direct integra-
tion, free oscillation, Duffing’s equation etc. [18]. Among these, the most widely
used for both analytical and computer-based analysis is the direct integration
method.

Table 15.3 First three eigenperiods of the jacket-topside-flare tower structure (hydrodynamic
added masses are included) for the cases with gravity and without gravity effects, waves from
platform south or platform west

Eigenmode number Wave platform direction Eigenperiod (s)

2 s 4 s 13.75 s 19.25 s

1 Wave from South 4.173
Wave from West

2 Wave from South 4.115
Wave from West

3 Wave from South 2.453
Wave from West
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In order to have a reasonable understanding of solution algorithm for nonlinear
responses, we will first review the characteristics of the nonlinear responses in a
form of load-displacement paths. Figure 15.27 shows the three basic types of load-
displacement responses, namely linear, stiffening and softening curve.

The linear curve (linear until fracture) represents the responses of structural
members made of linear brittle materials, such as glass, crystals and many types of
composite materials (comprising brittle fibers).

The stiffening curve shown in Fig. 15.27 illustrates the responses involving
geometrical nonlinearity, such as cable structures and inflatable membranes,
slender structures, metal and plastic forming, as mentioned before. This behavior
is also illustrated in Fig. 15.15.

The softening curve represents typical behaviors of structural members made of
ductile materials exhibiting plasticity behavior, such as aluminum, mild steel etc.
It is commonly used in structural engineering.

It is noted that the tangent stiffness for both linear and stiffening curves at any
state is positive, while it becomes negative for a softening curve after passing the
peak load limit point, indicating an unstable equilibrium. Moreover, readers need
to know that a positive stiffness is necessary but is only sufficient for stability for a
single-degree-of-freedom system [249].

Based on the combination of linear, stiffening and softening curves shown in
Fig. 15.27, one can reach various types of nonlinear equilibrium curves that can be
realized in the physical world. The most used ones are snap through, snap back,
and bifurcation curves.

Let’s consider a shallow arch hinged at its two ends that is subjected to a con-
centrated load F in the vertical direction, shown in Fig. 15.28. As shown in
Fig. 15.29, after reaching the load limit point, the path will experience a sudden drop
of the load (unloading) from B to E, and these two points are two load limit points.
The response portion between the two points has a negative stiffness and is therefore
unstable. After passing the second load limit point E, the load increases again and the
responses show a stiffening behavior (E–F—in Fig. 15.29). The snap through curve
is actually a combination of softening (before load limit point E) and stiffening (after

Hardening/stiffening
x

Linear
x

F F

Softening

F Softening

x

Fig. 15.27 Three basic types of nonlinear responses in the form of load-displacement paths
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Fig. 15.30 Load-displacement curve with snap back phenomenon in nonlinear equilibrium paths
( denotes bifurcation or stability point, denotes load limit points, and denotes
displacement limit points/snap-back points)
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point E). The slightly curved structures such as a shallow arch under gradually
increased transverse loads generally exhibit snap through responses [249].

More complicated than the snap through, the snap back (which is essentially an
exaggerated snap through) curve illustrated in Fig. 15.30 has a response (dis-
placement) turn back at the first displacement limit point (point C in Fig. 15.30). It
possesses more characteristic points: load limit points (points B and E in
Fig. 15.30) occur when a local maximum or minimum load is reached, with a
horizontal tangent at these points. Displacement limit points, which are also
referred to as snap back points or turning points (points C and D in Fig. 15.30),
occur with vertical tangents on the curve. Between the two load limit points B and
E, the structure is unloaded, indicating the occurrence of instability such as
buckling. The structure exhibits softening between the points O and B, and stiff-
ening after the load limit point E. Examples of structures that exhibit snap back
behavior are trussed-dome, folded and thin-walled structures in which the
‘‘moving arch’’ effects occur [249], and cylindrical shells under compression etc.

For a member under axial compression load, in many cases, the bifurcation or
buckling appears prior to the load-limit point. In addition to the load limit point,
there is also a stability point (point A in Fig. 15.30) where the structure loses
stability (e.g., buckling) or where bifurcation occurs (i.e., the solution switches to
two or more branches) [251]. If this occurs for an axial loaded member, the
strength after the bifurcation point cannot be utilized. When the bifurcation or
buckling is presented, the load path may not be unique (shown in Fig. 15.31). An
example of a structure that exhibits this type of behavior shown in Fig. 15.31: thin
cylinder shells under axial compression [249].

As will be discussed later on, the trace of the nonlinear equilibrium path can be
carried out by load control methods, which can only capture the path from O to B
(the first load limit point) shown in Fig. 15.30, or displacement control method,
which can normally capture the path from O to C (the first displacement limit
point), or a combination of the two approaches such as the arc-length method,
which can capture the entire path shown in Fig. 15.30.
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Fig. 15.31 Load-displacement path showing bifurcation (point B) combined with snap back

phenomenon ( denotes the bifurcation or stability point, denotes the load limit point and

denotes the displacement limit points/snap-back points)
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It should be noted that the load-displacement responses elaborated in this
section are different from a response time history, in which time instead of dis-
placement is used as the variable in the abscissa. Therefore, the solution algorithm
for the nonlinear problem elaborated in Sect. 15.5 applies to both static and
dynamic problems.

15.5.2 Load Control (Newton-Type) Methods

Regardless of whether the problem is dynamic or static, as long as nonlinearity is
involved, in the regime of load control methods, either an incremental procedure
or an incremental-iteration is needed to find the equilibrium between the external
and internal forces for each load increment. Hence, the methods are often referred
to as load control. It should be noticed that, when the finite element method is
used, the internal forces are actually the nodal forces that are equivalent to the
element stresses.

15.5.2.1 Load Increment Procedure

Let’s consider a generic load increment from t to t ? Dt, and assume that a
balance between external and internal forces is obtained at load level at t. As
shown in Fig. 15.32, in an incremental procedure, the load is applied at relatively
small increments and the structure is assumed to respond linearly within each
incremental step. This method is convenient to implement and computationally
efficient. However, with the increase of load, it diverges considerably from the
actual equilibrium path (shown in Fig. 15.32) because the equilibrium may not be
reached for every load step [251–253]. To circumvent this problem, incremental
iterations have to be performed from load at t to t ? Dt until the force equilibrium
is fulfilled for the load level at t ? Dt. This procedure is denoted as incremental
iterative [254, 255].

Δx

xt         xt+Δt x

F

ΔFxt

Actual path

Incremental path

Fig. 15.32 Incremental procedure
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For obtaining the dynamic responses involving nonlinearities, one has to first
formulate the difference of the governing equation of motions for a system at two
adjacent time instant t and t ? Dt:

m DxðtÞ
��
þ c DxðtÞ

�
þ kDxðtÞ ¼ DFðtÞ ð15:42Þ

The stiffness k in the equation above is the secant stiffness (kt)sec. For a nonlinear
system, the stiffness depends on the displacement, and it can thus only be deter-
mined by two points at t and t ? Dt as shown in Fig. 15.33. However, the dis-
placement at t ? Dt is an unknown. Therefore, one has to replace the secant
stiffness by the tangent stiffness (kt)tan at t. Due to the adoption of tangent stiffness,
and the constant time interval/step also delaying the detection of transitions in the
force–deformation relationship (the reversal of velocity causes the departure from
the exact load-deformation path), significant errors may be introduced when solving
the equation of motions [125]. To minimize the errors, load increment control using
an iterative procedure can be used to obtain the solutions. This is done by rewriting
the equation above and make it compatible with the Newmark method:

KtanDxðtÞ ¼ DFðtÞ ð15:43Þ

where Ktan ¼ ktð Þtanþ
d

bDt
cþ d

b Dtð Þ2
m

d and b are two constants that define the variation of acceleration over a time
step, and are related to the integration accuracy and stability. c and m are damping
and mass respectively. Furthermore, the equation above is based on a constant
damping assumption, which in most cases can be justified from an engineering
point of view.

Obviously, the nonlinear equations above can also be applied to static problems
by replacing the indices of time (t) with a load step number.

Since a direct method cannot be used for solving the nonlinear equation above,
within each time step or load step, iterative procedures must be adopted to solve the
equation of motions. This involves a guess on an unknown at the beginning of the
first iteration. Obviously, this iteration will introduce error, which in turn is

Δx

xt                        xt+Δt

ΔF(t)

(kt)sec

(kt) tan

x

F

 (kΔx)t+Δ t

  (kΔx)t

Fig. 15.33 Incremental solution of equation of motions
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essential to adjust the original guess value in the first iteration and for the second
iteration. If the error is rather high, the time step (in dynamic analysis) or load step
(in static analysis) can even be divided into smaller steps. This procedure continues
for each time step or load step until a full load is applied on the structure model.

15.5.2.2 Newton–Raphson Method

The most popular interactive procedures are the Newton–Raphson method and
modified Newton–Raphson method. For both methods, the tangent stiffness matrix
is formed at the beginning of each time step and the equilibrium iterations provide
convergence within specified tolerance limits at the end of each time step. While
within each time step, based on a function of current internal forces and defor-
mation state in each iteration, the formal one uses the tangent stiffness matrix in
the previous iteration to calculate the current deformation using a linear solution.
The calculated deformation is projected back onto the load deformation curve that
is in parallel with the load axis, and the latter one uses an identical stiffness for
each iteration throughout this time/load step, as illustrated in Fig. 15.34.

For the Newton–Raphson method, imagine that a load applied at time t is F(t) at
point A (start of each time step) in Fig. 15.34 and it is then increased to

Fig. 15.34 Iteration within a time step for nonlinear systems with Newton–Raphson method
(upper) or modified Newton–Raphson method (lower)
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F (t ? Dt) at time t ? Dt. By using the tangent stiffness KtanA at point A, the first
iterative step can be performed as:

Ktan ADx1 ¼ DF ð15:44Þ

Associated with Dx1 is the true force difference Df1 between points B and A,
which is obviously less than DF. This then gives a residual force (load imbalance):

DR1 ¼ DF � Df1 ð15:45Þ

Again, it is worth mentioning that in the finite element analysis, the load
corresponds to the element stress.

By using this residual force, one can further obtain an additional displacement
Dx2 by using tangent stiffness Ktan1 at point B and perform the second iterative step:

Ktan1Dx2 ¼ DR1 ¼ DF � Df1 ð15:46Þ

Again, this additional displacement Dx2 is used to find a new value of residual
force:

DR2 ¼ DF � Df1 � Df2 ð15:47Þ

The process above is repeated until the residual force is small enough (con-
vergent) to fulfill the convergence criteria:

DRi ¼ DF �
X

n

i¼1

Dfi\e ð15:48Þ

e must be carefully chosen by considering both the accuracy and computation
cost. If it is too large, the calculation may give inaccurate results. If it is too small,
considerable computation efforts are required that give unnecessary accuracy.

15.5.2.3 Modified Newton–Raphson Method

It is noticed that, for systems with a large number of degrees-of-freedoms, the
Newton–Raphson iteration may require a prohibitive amount of computation
efforts due to the calculation/updating of the tangent stiffness in each iteration,
even though this frequent updating of stiffness leads to a quadratic (i.e., fast)
convergence in solution. The modified Newton–Raphson method is then intro-
duced to overcome this difficulty. In this method, within each time step, the initial
tangent stiffness KtanA at point A in Fig. 15.34 is used throughout the iterations.
Therefore, there is no need to recalculate the stiffness within each time/load step.

In the modified Newton–Raphson method, the choice of time/load steps (readers
need to distinguish the time/load step from the load increment within each time
step) when the stiffness should be updated depends on the degree of nonlinearity in
the system, i.e., the more nonlinear the responses are, the more updating (i.e.,
smaller time/load steps) should be performed. However, as aforementioned and
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shown in Fig. 15.34, in general, the Newton–Raphson method converges much
faster (quadratically) than the modified Newton–Raphson method.

The determination of the time/load step (DF in Fig. 15.34) is an essential
parameter for load-control methods. As mentioned before, generally, large time/
load steps are allowed where the equilibrium path is almost linear and smaller
steps are normally used where the path is highly nonlinear. Furthermore, the time/
load step also depends on the objective of the calculation. If one wants to study the
entire equilibrium path accurately, it is recommended to use small time/load steps,
while if only the responses at a limit state load level are of interest, larger time/
load step can be used until the applied load is close to a load limit point. Finally,
the choice of time/load step is also related to the iteration algorithm used. For
example, as discussed previously, due to the utilization of an initial or non-fre-
quently updated stiffness in the modified Newton–Raphson method, a smaller
time/load step is required than that used in Newton–Raphson method, which is
also shown in Fig. 15.34.

Itshouldbenoticedthat,forloadcontrolmethods,thehardeningofstructuresisusuallymoredifficultto
analyze than that of softening, primarily due to the fact that the relevant iterative processes are likely to
converge slowly or fail to converge [223].

Many advances in solving the nonlinear problem consist of variations of the
Newton–Raphson method. For in-depth knowledge in this topic, readers may read
references [257, 258].

For a more elaborated discussion of the force controlled numerical iteration
method for nonlinear dynamic analysis, references [125, 173, 223] are
recommended.

15.5.3 Displacement Control Methods

Note that the Newton–Raphson method or the modified Newton–Raphson method
may perform poorly when the buckling of a structure is involved, in which the
slope at limit points is 0. Furthermore, even though the load control method is
capable of reaching the load limit point (point B in Fig. 15.36), passing it is
impossible regardless of how small an increment is used.

Again, let’s consider an arch hinged at its two ends that is subjected to a
concentrated load F in the vertical direction, shown in Fig. 15.35. After reaching
the first load limit point B, if one adopts load control methods, the path will
experience a sudden ‘‘snap’’ through B directly to F as shown in Fig. 15.36, for
which the unloading path (B–E) and the reloading path (E–F) are lost.

Therefore, to further capture more information with respect to the load path, one
has to shift from load control to displacement control methods. For many cases, the
displacement control methods can capture the entire equilibrium path [259, 260].

Analogous to the Newton–Raphson methods with the utilization of a load
parameter, the displacement methods use a displacement component as the control
parameter to trace the equilibrium path.
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However, by using a displacement method, it is difficult to obtain the equi-
librium path after a displacement limit point appears, such as the ones that occur at
snap back equilibrium path shown in Fig. 15.30. To solve this problem, a com-
bined load-displacement control method has to be adopted, which will be dis-
cussed in Sect. 15.5.4.

For more details on displacement control methods, readers may read references
[251, 256, 259–261].

15.5.4 Load-Displacement Control Method—Arc-Length
Method (ALM)

Note that the load or displacement method keeps either the external load or dis-
placement constant through iterations, and this introduces difficulties at load or
displacement limit points, respectively. To overcome this problem, it is feasible to
simultaneously change both the load and displacement levels along the
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Fig. 15.36 Load-displacement path (solid line) when using load control methods ( denotes
the load limit points), the path shows a snap through
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Fig. 15.35 An arch under transverse load F
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incremental-iterative process [251], leading to a combined load-displacement
control. It is more robust and particularly suitable for searching the collapse
behavior of a structure.

In load-displacement control methods, the load is normally treated as an
additional variable, so that the equilibrium configuration can be followed beyond
limit points [251].

Among all the load-displacement control methods, the Arc-length method
(ALM, also called Riks method [262]) is the most popular one. Unlike the
Newton–Raphson method, during each time/load step, the load-factor at each
iteration is treated as a variable and is modified so that the solution follows a
specified path until convergence is achieved. Generally, for the first increment, the
trial value of the load-factor is assumed to be 1/5 or 1/10 of the total load.

Basically, the method simultaneously controls both the load and displacement
increment by imposing a constraint where a constant Euclidean norm Dsi (arc-
length) of the increment (fi and xi) is prescribed at the beginning of each time/load
step t, and Dsi keeps constant for every load increment iteration within that time/
load step (t ? t ? Dt). This procedure is illustrated in Fig. 15.37 and expressed
as:

ðDsiÞ2 ¼ x2
i þ wf 2

i ð15:49Þ

Fig. 15.37 Iteration within a time step (t ? Dt) for nonlinear systems using Arc-length method
for a one dimensional problem, DSt and DSt+Dt are the constant arc-length for time step t and
t ? Dt
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where w is a non-negative real parameter, the value of which depends on which
type of arc-length method is used.

By observing Fig. 15.37, it is noticed that after an initial arc-length (DSt) is
determined, the subsequent load and displacement iterations (fi and xi) follow a
constrained curve determined by DSt.

All arc-length methods consist of a prediction phase to determine the arc-length
and a correction phase to find a new point in the equilibrium path based on the
incremental form of the equation of motions and the constraint equation. For more
details of the Arc-length method, references [246, 251] merit attention.
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Chapter 16
Structural Responses Due to Seismic
Excitations

16.1 Seismic Ground Motions

16.1.1 Transmission of Seismic Wave from Bedrock
to Ground

The determination of the earthquake ground motions is an essential part of
earthquake engineering. However, as the rate and duration of energy released from
earthquakes is relatively random, it is not possible to obtain the exact excitation to
which the structure will be subjected. Extrapolating the effects of the energy
released from sites of potential seismic activity to the location of the structure
under investigation is a rather complex process. Four major characterizations
enable the determination of the earthquake ground excitation (seismic input): the
seismic sources (i.e. the rupture mechanism at sources); the transmission of the
excitation from the sources to the sites (i.e. wave propagations); the local geo-
technical effects on the motions of the soil; and soil-structure interactions (SSI)
during the earthquakes. Therefore, the level of ground shaking is essentially
influenced by the seismic source excitations, distance of source to site and local
soil effects. Figure 16.1 shows the typical transmission from the seismic source
(bedrock) to the earthquake ground (seabed) excitation.

Generally, three types of computation tools are available for calculating strong
ground motions: physics-based models, stochastic models and combined (hybrid
models). Physics models calculate ground motions by modeling the fault rupture,
the resulting wave propagation, and the near-surface site amplification, and they
require precise information about the earthquake source, wave propagation path,
and SSI, leading to high computation efforts. This brings especial difficulties when
calculating low period motions. Without the modeling of the fault rupture, wave
propagation and SSI, the stochastic models directly calculate the ground motions,
and therefore require less computation efforts and are equally applicable for both
high and lower period motions. While the conventional stochastic models are
based on the Gaussian process assumption, for motions with significant change
with time, the time localized nonstationary process cannot be captured by the
stochastic models. The drawbacks of both methods promote the combined models,
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which utilize the physics-based models for computing high period components of
motions and stochastic models for lower period components through frequency
filter [264].

16.1.2 Resonance Period of Soil—Site Period

During the seismic wave propagation from the bedrock to the ground as shown in
Fig. 16.1, the soil media acts as a filter to bedrock motions and influences both the
frequency and the duration of the ground motions. If the soil is stiff, e.g. the
foundation is founded on rock, the ground motions will generally be short period,
and vice versa. If the natural period of soil is close to the predominant period of
bedrock motions, the ground motions will be amplified compared with the bedrock
motions. Furthermore, such amplification may be further magnified if the natural
period of the structures at the soil sites is close to the period of ground motions. To
avoid double resonances (resonance of seismic wave in soil and then again res-
onance with the natural period of structures), in a preliminary design stage of a
structure engineers should design a structure with the natural period far away from
(normally above) the natural period of ground motions, which is also called the site
period. By assuming the soil is elastic and the bedrock displaces dominated by
shear motions, the site period can be calculated as:

Tsite ¼ 4H=vs ð16:1Þ

where H (in meters) is the depth of soil layers. vs is the shear wave velocity of soil,
which varies with different soil type and depth.

For a rough estimation, the wave shear velocity in soil media can be assumed to
be 300 m/s. Therefore, for a soil with thickness of 30 m, the site period is 0.4 s
(= (4 9 30) m/300 m/s). At this period, both the ground motions and structures
with shallow foundations above the soil will vibrate at an amplitude much greater

Fig. 16.1 Illustrations of transmissions from the seismic source (bedrock) to the earthquake
ground (seabed) excitation [263]
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than the bedrock motions. This can be clearly shown by reading the response
spectrum as elaborated in Sect. 16.2. However, for rather loose and soft soil, the
shear wave velocity can be as low as 60 * 80 m/s, then the above example gives
a site period of only 1.5 * 2.0 s, which is in the possible range of the natural
vibration period for an offshore platform.

Site amplification can be the cause of abundant structural damages during large
earthquake events. An example of this was the massive damage in downtown
Mexico City during the 8.1 magnitude Mexico City earthquake 1985, which is
discussed in Sect. 1.1.

For layered soils, several empirical relations [265, 266] are available for cal-
culating the site period:

1. Based on the weighted average of shear wave velocity:

vs ¼
Xi¼n

i¼1
vsiHi

ffi �

=H ð16:2Þ

where vsi and Hi are shear velocity and depth of the soil layer i, n is the total layer
of the soil, H ¼

P

Hi.
2. Based on the weighted average of the soil’s shear modulus and density:

Tsite ¼ 4H=
Xi¼n

i¼1
liHi

ffi �

=
Xi¼n

i¼1
qiHi

ffi �h i

ð16:3Þ

where liqi and Hi are shear modulus, density and depth of the soil layer i, n is the
total layer of the soil, H ¼

P

Hi.
3. Based on the sum of site period for each layer

Tsite ¼
X

n

i¼1

ð4Hi=vsiÞ ð16:4Þ

4. Based on the linear approximation of fundamental mode shape

Tsite ¼ 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
Xi¼n

i¼1
ðv2

i HiÞ=H3

r

ð16:5Þ

For seismic design of offshore and land-based structures, based on the soil
properties in the uppermost 30 m of the soil, ISO 19901-2 [267] and Eurocode 8
[268] provide the estimation value of vs.

16.1.3 The Amplitude and Duration of Bedrock Motions

The amplitude and duration of bedrock motions are also an important factor
influencing the soil responses and the subsequent ground motions. High amplitude
of bedrock motions tends to cause inelasticity in the soil, i.e. the soil will absorb a
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large amount of seismic wave energy, and the ground motions are then not
amplified proportionally to the bedrock motions any more. Compared to a case in
which the soil is elastic, this will in general decrease the ground accelerations
while increase the displacements, posing higher demand on structures with med-
ium and long natural periods. Examples of such type of structures are typical
offshore platforms, long span bridges and high-rise buildings.

Long duration bedrock motions induce a large number of cycle loadings, and
may cause a degradation of soil stiffness and strength and a significant increase of
pore water pressure, leading to the liquefaction of saturated and partially saturated
soil through the loss of cohesion [1], which is due to the loss of grain-to-grain
contact in loose sandy soils media, causing the flow of material and the loss of
strength and stiffness, which makes the soil behave more like a liquid than a solid.
This has been occurred in many earthquakes, for example during the Niigata
earthquake of 1964 as shown in Fig. 1.4.

Depending on the time required to release accumulated strain energy, the
duration of ground motions is correlated to the length or area of the fault rupture.
Therefore, with the increased magnitude of an earthquake, meaning an increased
rupture size, the duration of the resulting ground motions also increases.
Table 16.1 shows the duration of ground motion corresponding to various levels of
earthquake magnitude [269]. It is also worth mentioning that during the 9.0

Table 16.1 The duration of
ground motions associated
with various levels of
earthquake magnitude

Richter Magnitude Ground motion duration (second)

8–8.9 30–180
7–7.9 20–130
6–6.9 10–30
5–5.9 2–15
4.4.9 0–5

Fig. 16.2 Ground motion records from El Centro NS 1940, Taft EW 1952, Hyogoken-Nanbu,
Kobe University NS 1995 and Mexico Michoacan SCT1 EW 1985 [73]
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magnitude Sendai earthquake in 2011, strong shaking is reported to have contin-
ued for a duration of up to 5 min [270].

However, due to the variability of individual earthquake characteristics, the
durations of two earthquake events can be significantly different. This is illustrated
in Figs. 16.2 and 9.4, which show the ground motion records from different
earthquake events.

16.1.4 Spatial Variation of Earthquake Ground Motions

For extended-in-plan structural systems (both above ground and buried ones)
covering a large area such as bridges (Fig. 16.3), tunnels and dams, large gravity
base structural foundations, structural system comprising several structures

Fig. 16.3 A bridge approach span collapse during the 7.2 magnitude 1995 Kobe earthquake
(photo courtesy of Kobe Collection, EERC Library, University of California, Berkeley)
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(Fig. 16.4), pipelines (Fig. 16.5) etc., the earthquake ground motions will arrive at
different support locations at different times. During this arriving time period, the
amplitude, frequency content and the phase (arriving time) of the motions are
likely to change depending on the distance between the support points and the
local soil conditions, local seismic motions may be enhanced with out-of-phase
displacements at various locations, and different parts of the structural system may
respond asynchronously with large displacement responses. This phenomenon is
called spatial variation of earthquake motion (SVEGM).

Fig. 16.5 Layout of the subsea pipelines of the Nini field on the Danish Continental Shelf
(courtesy of Dong Energy, Denmark)

Fig. 16.4 Several offshore jackets and tripod structures connected by bridges at Ekofisk fields of
North Sea (courtesy of Aker Solutions)
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Figure 16.6 illustrates the recorded accelerograms at two locations 200 m apart
[271, 272]. It shows that at some time instants, the accelerations at the two
locations are different in both amplitude and phase. In an extreme case, the dif-
ference in motion amplitudes due to the SVEGM is comparable with the input
ground motion amplitudes [273].

Numerous damages of extended land-based structures have been observed as a
possible consequence of SVEGM, such as the falling off of Gavin Canyon
Bridge’s under-crossing and the span unseating in the 1994 Northridge earthquake
[274], the unseating of deck and spans falling off (due to large longitudinal dis-
placements between piers) at elevated highway bridges (Fig. 16.3) during the
Kobe earthquake 1995 [275] etc.

It is noted that, due to the effects of SVEGM, both horizontal and vertical
motions may not only induce the bending of structures, but also exert large tor-
sional moments between the principal structural planes. If one of the relevant
ground motion frequencies is close to the structures’ natural frequency, resonance
will occur with a magnification of structures’ responses.

The simulation of SVEGM is presented in Sect. 12.4.2 by using a coherence
function. For a more detailed account of SVEGM, readers may read references
[139, 276] and those cited in the description above.

16.2 Seismic Response Spectrum

16.2.1 Introduction

Once the ground excitations for a structure have been determined, depending on
the seismic analysis demand with respect to characteristics of excitation and
structures, and also with the analysis purpose and accuracy requirement, the
ground motions must be represented in certain formats using either a deterministic

Fig. 16.6 Recorded seismic ground motion at two locations 200 m apart [271]
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(time series or response spectrum) or a stochastic (energy spectrum) way. They
can then be applied to a structure model representing both the superstructure
together with the foundation and the effects of surrounding water (for offshore
structures) and/or ice. Depending on the level of excitations accounted for, many
of the properties during structural modeling may be nonlinear in nature, such as the
degradation of foundation stiffness, yielding and large deformations of the struc-
tural members, fluid–structure interactions (for offshore structures). This can lead
to considerable demand on structural modeling and calculation algorithm. By
doing so, the structural responses can be calculated with a reasonable accuracy and
a reliable demand modeling can be established.

After demand modeling is established, capacity control can then be carried out.
If the structural responses are still in the elastic range, demand can be expressed as
force and capacity control in terms of strength. If the structural members reach
yielding, demand can normally be expressed with displacement, and the capacity
control is then strain based. As strain-based control may need to reflect cyclic
degradation and strain rate effects, dynamic testing is therefore required to set
appropriate limits. In addition to the strength and strain capacity, the stability
check should also be included in the capacity control.

Since the earthquake ground motions are by nature of short duration, non-
stationary, transient and non-periodical, and also broad-band in frequency content,
they can never reach steady-state vibrations. This means that even if the structure
has a zero damping, the motion amplitudes are limited to finite values. Therefore,
stochastic based root of mean square responses, which are utilized by the power
spectrum method, are in many cases not appropriate to represent the earthquake
ground motions. A deterministic time history analysis is desired to estimate the
responses, but it requires considerable computational efforts for a complex
structure. Moreover, for design purposes in a conservative manner, only the
maximum amplitude of the response time history is needed for carrying out the
seismic analysis. This also leads to a special consideration for combining each
individual component of the responses.

The discussions above promote the utilization of seismic response spectrum to
evaluate the seismic responses.

16.2.2 Construction of Response Spectrum

In practice, a single degree of freedom (SDOF) system with a constant damping
ratio of a few percent representing the target structure is subjected to ground
excitation time histories. As the ground motions typically excite a large number of
vibration modes of the upper structure, by varying the natural period (Tn) of the
SDOF in a range of engineering interest for the structure’s eigenperiod (e.g.
0.02–10 s), and using numerical time integration methods such as Newmark’s
method etc., the maximum calculated relative displacement magnitude of the
SDOF at each natural period is then plotted on a response spectrum graph. This
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spectrum is often referred to as the deformation/displacement response spectrum.
The value of its ordinate Sd is expressed in Eq. (16.6) and Fig. 16.7:

Sd ¼ max ðuðtjTnÞÞ ð16:6Þ

By assuming harmonic vibrations at each natural period, the velocity spectrum
Sv (also called pseudo relative velocity spectrum, denoted PSV) and acceleration
response spectrum Sa, shown in Fig. 16.7, are expressed as:

Sv ¼ xSd ¼
2p
Tn

� �

Sd ð16:7Þ

Sa ¼ x2Sd ¼
2p
Tn

� �2

Sd ð16:8Þ

It is noticed that the acceleration spectrum indicates the acceleration due to
ground motions, without the involvement of the constant acceleration of gravity.
By reviewing the concept of acceleration, velocity and displacement, it should
further be emphasized that the spectra accelerations are absolute accelerations of a
structure in space, since the force causing the acceleration itself is determined by
the relative compression/extension of the spring with respect to the ground
motions, while the spectral velocity and spectral displacement are relative values
with respect to the moving ground [403].

Essentially, the seismic response spectrum is distinguished from a power
spectrum in that the power spectrum is of a stochastic nature while the analysis
method generating a seismic spectrum is deterministic. This is because the
response spectra are generated from deterministic time history responses [23]. The
unit of the ordinate for a response spectrum should exhibit the same unit as the
name of the spectrum stands for, i.e., acceleration spectrum has a unit of accel-
eration, velocity spectrum has a unit of velocity, etc.

Fig. 16.7 Comparison of earthquake design spectrum shapes with acceleration, velocity and
displacement measures
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16.2.3 Modal Combination Techniques for Response
Spectrum Analysis

In order to obtain the peak modal responses for a multi-modal period structural
system and calculate the responses such as forces and displacements, an appro-
priate method for combining the modal response at each individual period must be
adopted. Three popular methods used by engineers to perform modal combination
are:

(1) Sum of absolute value: by assuming that the maximum modal values for all
modes occur at the same time and their algebraic sign can be neglected, the
straightforward but most conservative method is to sum the absolute modal
response value together, expressed as:

R ¼ R1 þ R2 þ � � � þ Rn ð16:9Þ

where R1 R2 � � �Rn are peak modal response, i.e., peak response in each mode. It
can be a displacement, force, stress etc.

It is obvious that this method is over-conservative, and is not popular in
engineering applications.

(2) Square Root of the Sum Squares (SRSS) method: by assuming that the
maximum modal values in each individual mode are statistically independent
and randomly phased, the peak response can then be calculated as SRSS:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1
þ R2

2
þ � � � þ R2

n

q

ð16:10Þ

This combination rule provides excellent response estimates for systems with
well separated natural period. However, for a structure with large degrees of
freedom or high redundancy, such as complex offshore topside modules, complex
piping systems and multistory buildings with asymmetric plans etc., in which a
large number of modes appear at close or even identical frequencies, the use of
SRSS method is then limited [124].

The SRSS method can be non-conservative when the eigenfrequencies of two
modes are closely spaced, i.e. the two modes are coupled and the responses due to
the two modes are dependent. In this case the method can be modified by using
absolute summation of all modes whose eigenperiods are less than 10 % apart and
the SRSS of those and all other modes [81], which is expressed as:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
1
þ R

2

ffi �2
þ. . .þ R2

n

r

ð16:11Þ

where R1 and R2are peak modal responses of closely spaced modes.

(3) Complete Quadratic Combination (CQC) method: in order to account for
potential phase correlation when modal frequencies are close, as a replacement
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for the SRSS method, the most popular method used nowadays is the Com-
plete Quadratic Combination (CQC) method [404], which overcomes the
limitations of SRSS methods by including cross modal contributions:

Rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

X

N

n¼1

qinRikRnk

v

u

u

t ð16:12Þ

where qin is the correlation coefficient of mode i and mode n, it varies between 0
and 1 for i = n. Therefore, the equation above can be rewritten as:

Rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

n¼1

R2
nk þ

X

N

i¼1

X

N

n¼1

qinRikRnk

v

u

u

t for i 6¼ n ð16:13Þ

If the eigenfrequencies of structures are well spaced, i.e., the modal responses
are uncorrelated, the off-diagonal terms of qin tend to be zero (qin ¼ 0 for i 6¼ n),
and the CQC method approaches SRSS method [81].

It should be noticed that the response parameters must be always calculated
directly by summing the response parameter of interest, and cannot be calculated
from other response parameters [81]. For example, the peak response at the bottom
of a jacket structure must be calculated by combining peak modal response at the
jacket bottom. It cannot be calculated by summing up the peak forces at each
elevation of the jacket. This is because the modal combination does not contain the
information of signs.

The SRSS and CQC methods would be most accurate for ground motions with
wide-banded frequencies and long phases of strong ground motions, which are
several times longer than the natural period of structures having not too light
damping ([0.5 %). If the ground motions are short duration impulsive or contain
many cycles of essentially harmonic excitations, the two modal combination
methods will become less accurate [124].

Furthermore, based on the random vibration assumption, the peak response R
can be interpreted as the mean of the peak values of responses to an ensemble of
ground motions. Therefore, the two modal combination methods are well appli-
cable by using a smoothed design response spectrum, which is calculated from the
mean or median or even more conservative spectra (e.g. mean plus one standard
deviation spectrum) obtained from many individual ground motion histories. The
calculated peak response may be either conservative or non-conservative, but is
generally within a few percent. However, if the two combination methods are used
for calculating peak response due to a single ground motion characterized by a
jagged response spectrum, the errors are larger, in the range of possibly 10–30 %,
depending on the natural period of a target structure [124].

Other modal combination rules are also available, such as the A. Der Kiureghian
[404, 405] or Rosenblueth-Elorduy [406] methods. Interested readers may further
read relevant literatures.
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16.3 Characteristics of Seismic Responses Varying
with Frequencies

Different from dynamic loads due to wind, wave and ice impact on structures, the
loads generated on a structure during an earthquake are in a sense purely due to the
inertia of the structure, which is caused by the acceleration of the structural
masses. The acceleration is the sum of the ground acceleration and the acceleration
of the structural masses relative to the ground. Chapter 11 elaborates the response
characteristics under harmonic excitations. Similarly, the dynamic structural
responses measured with different units (acceleration, velocity or displacement)
under seismic excitations are here quantitatively discussed by categorizing the
dynamic characteristics of both structures and seismic ground motions.

When the structure is stiff (such as a low rise building) with a natural period
below 0.5 s, it is more sensitive to acceleration than displacement, and the struc-
ture tends to move in the same acceleration amplitude as the ground, the accel-
eration of the structural masses relative to the ground is negligible, and the
resultant earthquake loading is then purely proportional to the structure’s mass.

However, when a structure is more flexible with a natural period above 2 s
(such as high-rise buildings or many fixed offshore structures, some fluid tanks and
base-isolated buildings), by observing the earthquake design spectrum shown in
Fig. 16.7, it is found that the structure is more sensitive to ground displacement
than acceleration, i.e., the structure undergoes large relative horizontal displace-
ment, which may result in damage to non-structural elements, equipment etc. The
acceleration of the structural masses tends to oppose the ground acceleration
motions, and the sum of the acceleration is therefore low. For a preliminary design
for those more flexible structures, the resultant acceleration responses are
approximately proportional to the square root of the sum of structure masses.
Figure 16.8 shows the comparison between the excitations at the bottom and the
responses at a location of a topside for a fixed gravity-based offshore structure with
a water depth of 100 m. The natural period of the structure corresponding to the
first global bending vibration mode is around 2 s. It shows that the acceleration
responses at the topside in all three directions are much less than the excitations,
indicating that this structure may work as a filter to decrease accelerations due to
the earthquake excitations transferred from the foundation.

For a very flexible structure, such as a compliant offshore tower structure with a
natural period above 10 s, the structural masses tend to remain motionless, which
do not generate any significant loading, and the structure subjected to seismic
ground motions is free from damage.

Furthermore, if a structure’s natural period is close to the period of earthquake
ground motions, the energy is effectively fed into the structure and the structural
responses are amplified. In this case, the damping in the structure will absorb the
energy from the structural response and dissipate it, then slow down the build-up
of the resonant responses and reduce the response amplitudes.
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Because the peak velocities and peak accelerations are typically associated with
motions at different frequencies, in order to determine the significance of seismic
responses and the potential damage, the seismic excitations can be categorized
based on the ratio between the peak ground accelerations and peak ground
velocities, namely a/v ratio [262]. This ratio is interpreted as the angular frequency
of the equivalent harmonic motions. It provides a rough indication of which fre-
quency contents of ground motions are most significant, and reflects the charac-
teristics of sources, travel path, site conditions, and structural responses. A low a/v
ratio smaller than 0.8 g/ms-1 (g is the acceleration of Earth’s gravity) indicates
that significant responses are contained in a few long duration ground motion
acceleration pulses, which are likely to occur at a soft soil site. Such ground
motions can amplify responses of flexible structures with high natural period. A
high a/v ratio greater than 1.2 g/ms-1 indicates that the ground motions contain

Fig. 16.8 Comparison between the seabed ground excitations and responses at topside of a fixed
offshore structure with a natural period of 2 s
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many high frequency oscillations with large amplitude, which are likely to occur at
a rock and rather stiff soil site, a stiff structure is sensitive to oscillations within this
frequency range. Ground motions with an a/v ratio in between 0.8 and 1.2 g/ms-1

have significant energy content for a wide range of frequencies [278].
Except for inertia forces due to ground accelerations transferred to structures,

for offshore structures, the relative motions between the submerged structural
members and their surrounding fluids also create hydrodynamic damping forces.
Furthermore, the surrounding fluids will also enhance the inertia effects of the
submerged structural members, which are normally referred to as the effects of
added mass. The hydrodynamic damping in a seismic analysis can normally be
neglected. However, when a strong earthquake occurs together with a significant
storm (i.e., large wave height), the hydrodynamic damping forces can dramatically
increase. Note that the joint probability of occurrence of both events is practically
extremely low, the simultaneous occurrence of both events is therefore not con-
sidered by typical offshore structural design codes.

16.4 Influences from Structures’ Orientations and Ice
Covering

It is obvious that the orientation of the structure also influences seismic responses.
For horizontally-oriented structures such as a horizontal cantilever, its seismic
responses can be more sensitive to the vertical excitations at its base. However, for
vertically-oriented structures such as a tower structure or a building, the horizontal
acceleration is more dominating. For oblique structures such as a flareboom

Fig. 16.9 A flare boom (marked with a circle) installed on a gravity based offshore structure in
the North Sea (courtesy of Aker Solutions)
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(shown in Fig. 16.9), the responses are sensitive to both vertical and horizontal
accelerations at its base.

For ice-covered offshore installations, interaction between the ice and structures
during earthquakes may significantly affect the responses of offshore or coastal
structures under seismic loading. The ice can affect a structure’s dynamic
responses with respect to both motions and their frequency content [279]. Ice
sheets can also stiffen a structure by providing lateral support to it. This beneficial
effect to resist miscellaneous horizontal seismic loads was witnessed during the 9.2
magnitude earthquake that occurred in Anchorage in March 1964, which caused
massive destruction in the Anchorage area, but the marine structures in the Port of
Anchorage survived with only minor damage [280].

16.5 Whipping Effects

Note that if a structure has a rather slender tip, seismic responses at this tip may be
significantly amplified. This phenomenon is called the whipping effect, and is
mainly due to the decrease of lateral stiffness at the tip compared to the rest of the
structure [23]. Subject to ground motions with acceleration spectra shown in
Fig. 16.11, Table 16.2 illustrates the maximum accelerations and the relative
displacements at 14 representative locations on the platform shown in Fig. 16.10.
The first three eigenperiods are marked in the acceleration spectra in Fig. 16.11. It
is shown that the accelerations at these three periods are not high and well below
the peak value of spectra acceleration. Furthermore, whipping effects can be
clearly identified in that the responses at the tip of the derrick (location 10) and the

Table 16.2 Maximum seismic accelerations and relative displacements in all three directions
(X, Y and Z, shown in Fig. 16.10) on 13 locations of the topside and 1 location at the top of the
jacket structure

Location ax (m/s2) aY (m/s2) az (m/s2) dx (cm) dY (cm) dz (cm)

1 1.0 1.5 2.1 9.7 8.9 4.0
2 1.3 1.2 1.7 11.5 10.3 3.0
3 1.4 2.3 1.4 12.4 12.0 1.9
4 1.9 2.1 2.2 13.3 12.7 3.2
5 1.6 2.1 1.5 12.7 11.5 1.7
6 2.0 2.6 1.6 13.7 12.0 2.4
7 1.9 2.7 2.0 13.8 11.5 3.1
8 1.0 1.0 1.4 10.8 11.5 1.8
9 1.8 2.6 1.7 14.0 13.2 1.4

10 5.2 9.1 1.7 20.5 16.6 1.7
11 1.1 1.5 1.5 9.8 9.1 3.1
12 3.7 2.9 3.2 16.3 13.5 6.5
13 5.3 3.7 4.0 18.9 15.2 7.9
Jacket top 1.4 1.7 1.1 8.2 7.1 1.7
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tip of the flare boom (location 13) have significantly higher accelerations and
displacements than the rest of the topside and jacket.

Readers who are interested in more detailed knowledge on seismic response
calculation and earthquake engineering may read Ref. [23].

Fig. 16.10 14 representative locations on the structure under investigation

Fig. 16.11 First three eigenperiods marked on the accelerations spectra graph with 10,000 years
of return period for the target offshore jacket structure
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16.6 Seismic Analysis Methods

The major objective of seismic analysis is to develop a quantitative measure or a
transfer function that can convert the strong ground motions at a structure’s
foundation to loading and displacement demands of the structure, which can
finally lead to a reliable assessment of structural capacity.

Traditional methods calculate various aspects of structural effects due to non-
linearity and dynamics. With respect to ground motion characteristics, different
methods can also account for the effects due to spatial variation, non-Gaussian and
non-stationary properties. Five traditional seismic analysis methods are as follows:

• Simplified Static Coefficient Method
• Response Spectrum Analysis (Sect. 16.2)
• Nonlinear Static Pushover Analysis
• Random Vibration Analysis
• Nonlinear Dynamic Time Domain Analysis

With the advent of Performance Based Design (PBD) [281] for land-based
structures, which is a design philosophy for engineers to manage the cost of
construction as well as maintaining the safety of structures, various seismic
analysis methods are emerging. Note that the traditional seismic analysis methods
aim to pursue accuracy of the calculated responses, while the recently developed
methods focus more on the compatibility between the structural response calcu-
lation and the evaluation of detailed performance demand, on revealing a struc-
ture’s intrinsic seismic response and essential performance characteristics, and on
improving the robustness of analysis results. The most widely presented or
researched methods are:

• Incremental Dynamic Analysis (IDA), also named Dynamic Pushover Analysis
[282]

• Endurance Time Analysis (ETA) [283]
• Hybrid method
• Probability-Based Seismic Design (PBSD)
• Critical Excitation Analysis
• Wavelet Analysis

However, it is noted that almost no industry sectors have kept pace with the
newly developed methods. This is mainly due to the difficulties of implementing
PBD into structural design. It is therefore a strong intention of the present author to
promote them for facilitating the modern seismic design of both offshore and land-
based structures.

Furthermore, readers should note that regardless of the sophistication of the
numerical method, it is not exact. Many uncertainties still exist. Therefore, in the
development of new methods for future seismic analysis, more attention should be
paid to their robustness.

For more details of various seismic analysis methods, Ref. [23] is
recommended.
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Chapter 17
Fatigue Assessment

17.1 Failure of Structural Components

The failure of a component can be related to extensive deformation, which is the
loss or impairment of functions for components due to changes in their physical
dimensions or shape. This type of failure can be either time dependent or inde-
pendent. An example of the former is so-called creep, which is the accumulation of
deformation with time. This occurs for almost all types of materials, but it is more
pronounced for plastics and low-melting-temperature metal materials or at high
temperatures. An example of time-independent failure is yielding and subsequent
plasticity development, which can cause the collapse of entire structures or the
significant deformation normally related to the loss of serviceability. In addition,
buckling, as previously presented in Sect. 15.2.3, can also be regarded as a
deformation failure.

The failure of a component can also be due to fracture, which includes brittle
fracture under impact loading, ductile fracture, and creep rupture. For more details,
readers may refer to the abundant textbooks on the mechanics of materials, such as
Ref. [243].

An even more typical failure type for many structures exposed to dynamic
loadings is due to fatigue. Under cyclic (repeated) loading, a component can reach
premature failure or damage well below the yielding stress of the component
material, known as fatigue. This is because small crack-like defects exist and when
they are subject to a sufficiently large cyclic tension stress, they will grow in size
and eventually cause the member to reach fatigue failure. The cracks are devel-
oped in four stages:

1. Crack initiation (usually starts from the surface and can be detected by common
technical means, e.g., 1 mm in length and 0.5 mm in depth)

2. Stable crack-growth
3. Unstable crack-growth (rupture)
4. Ultimate ductile failure.

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
DOI: 10.1007/978-3-642-37003-8_17, � Springer-Verlag Berlin Heidelberg 2014
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What distinguishes fatigue failure from plastic deformation failure is that when
the former occurs, the atomic bonds of the material break at a right angle to the
applied tensile stress, while during plastic deformation, even if the atomic bonds
break due to the shear stress, they form new atomic bonds with their neighbors,
thus returning to a stable configuration with the new neighbors after the dislocation
has passed. From a continuum mechanics point of view, the changes in the
material’s atomic bonds at the microscopic level have inherent changes in stress,
strain and energy density at the macroscopic level, which are used for studying
various stages of crack development in fatigue assessment or plasticity develop-
ment for strength evaluation.

Fatigue crack initiation is rather unpredictable, and crack defects are present
immediately after fabrication, such as the ones in welds. Crack initiation can be
quite rapid. Once the cracks are initiated, they propagate perpendicular to the
direction of tensile stress.

Figure 17.1 is a photo taken by a remote control vehicle that shows a crack
going through the entire height of a stiffener’s web inside a subsea steel tank. This
crack has the potential to cause the global failure of the entire subsea tank and the
repair of it can be rather costly.

In terms of the number of loading cycles, a small number of cycles (not more
than a few thousands) with significant amplitude (approaching ultimate tensile
strength with plasticity development) can be relevant to low cycle fatigue, which is
generally accompanied by a significant amount of plastic deformation (Sect.
15.2.1). High cycle fatigue, in contrast, is a more typical failure mode than low
cycle fatigue, and is normally associated with a large number of cycles (more than
104 cycles) and low amplitude of loading inducing only elastic deformation. For
example, for offshore structures, the main contribution to fatigue damage is caused
by frequently occurring wave load effects that are of the order of 10–20 % of the
extreme load effects in the service life [24].

Fig. 17.1 A crack through the entire height of a stiffener’s web inside a subsea steel tank at a
depth 165 m below the sea surface
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In addition, corrosion (loss of material due to chemical reaction, and/or creation
of surface notches, can finally lead to fatigue crack initiation), wear (removal of
surface due to abrasion or sticking between solid surfaces) and erosion (wear
caused by a fluid) can also cause failures of structural component.

17.2 Fatigue Damage Assessment

17.2.1 Classification of Fatigue Assessment Approaches

The assessment of fatigue damage can generally be performed in three different
approaches: stress (S–N curve)-based approach related to high cycle fatigue,
strain-based approach related to low cycle fatigue, and fracture mechanics. These
three approaches will be presented in Sects. 17.2.2, 17.2.3, and 17.2.4. Among
them, the S–N curve-based fatigue assessment approach is most commonly used
due to its convenience and accuracy for the assessment of high cycle fatigue. The
dynamic analysis methods presented later in Sect. 17.3 are mainly associated with
the stress-based approach.

Note that, except for the fracture mechanics approach, other fatigue assessment
methods are based on the concept that the fatigue damage increases with applied
cycles in a cumulative manner. The existing fatigue assessment approaches can
also be divided into cumulative fatigue damage theory and fatigue crack propa-
gation theory [284].

On the other hand, the fatigue assessment methods can be divided into global
and local approaches [285]. In a global approach, external forces and moments or
the nominal stresses (Sect. 17.2.2.2.3) in the critical cross-section are measured to
assess the fatigue damage. Developed from the global approach, in a local
approach, local stress, local strain or other local parameters are used. Such mea-
sures are related to the notch stress method described in Sect. 17.2.2.2.5 or strain-
based method introduced in Sect. 17.2.3, and the fracture mechanics approach
introduced in Sect. 17.2.4. By this categorization, crack initiation, propagation and
final fracture are all termed local approaches [286]. Yet another method acting as a
link between the global and local approach is the hot-spot or structural stress
method described in Sect. 17.2.2.2.4, in which the stress increases due to the joint
geometry (size and type of welded joints), but not local toe geometry (notch
effects), which is implicitly accounted for by degrading the S–N curve. For sim-
plification, we here still classify the hot-spot stress method as a local approach.

It should be noted that the local parameters such geometry, material and loading
have a predominant influence on the structural performance with regard to fatigue,
apart from the dynamic response calculation. The treatment of these parameters is
an essential part of fatigue assessment.

Fatigue assessment for complex structures is often performed with the aid of FE
analysis. This requires a reasonably good understanding of FEM, the influence of
calculated fatigue damage by various dynamic analysis methods, and the
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philosophy behind each type of fatigue assessment methods. This entire chapter
highlights these three essentials, especially the latter two.

Apart from the stress- and strain-based approaches and fracture mechanics,
which are the most popular ones, other methods are available for fatigue assess-
ment, such as the energy-based approach [287], which uses an energy-based
damage parameter to assess the damage caused by various types of loadings such
as creep, fatigue and thermal and damage mechanics [288]. This uses state vari-
ables to represent the damage on the stiffness, and remaining life of the material
that is damaging as a result of thermomechanical load and aging.

17.2.2 Stress-Based Approach

17.2.2.1 General Method

As mentioned in the previous section, failure due to fatigue is not rare for struc-
tures exposed to dynamic loading. With respect to high cycle fatigue, the material
performance is typically characterized by the S–N curve (Wöhler curve), which
defines the log-linear dependence between predicted number of cycles to failure N
and a stress range S as shown in Fig. 17.2. For practical fatigue design of welded
structures, welded joints are divided into several classes according to the geo-
metrical arrangement of detail, the direction of the fluctuating stress relative to the
detail, and the method of fabrication and inspection of the detail, each with a
corresponding design S–N curve.

It should be noted that, for a harmonic stress history, the stress range S is twice
that of the stress amplitude ra as shown in Fig. 17.3:

S ¼ 2ra ¼ rmax � rmin ð17:1Þ

Based on sufficient data obtained from test samples, known as coupon testing,
where a regular harmonic stress is applied by a testing machine that also counts the
number of cycles to failure, the regressed S–N curve (mean curve in Fig. 17.4) is
formulated as:

logN
10 ¼ logA

10 �mlogS
10 ð17:2Þ

where N is the predicted number of cycles to failure under stress range S; A is a
constant relating to the mean S–N curve; m is the inverse slope in the S–N curve;
both A and m are obtained from test data; logA

10 is actually the intercept of logN
10

axis by mean S–N curve;
Because the relationship between S and N cherishes a high uncertainty, the

parameters A and m in the equation above can be regarded as random variables
[289].

For structure components made of low-alloy steels or plain carbon [311], a
threshold stress (also called fatigue limit, endurance limit or non-damaging stress)
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Fig. 17.2 Examples of design S–N curves
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S0 is introduced below, for which the number of cycles leading to fatigue damage
will be assumed to be infinite, i.e., no fatigue damage or infinite fatigue life:

N ¼ A � S�m; for S [ S0

1; for S� S0

ffi

ð17:3Þ

From the equation above, it is noticed that the fatigue damage is proportional to
the stress amplitude with the power (m) typically in the range from 3.0 to 5.0. A
slight variation of the stress amplitude may induce significant change of the cal-
culated fatigue damage. This requires a more dedicated dynamic analysis to reduce
uncertainties and to increase the accuracy regarding the calculated responses.

Threshold stress can also be explained from a fracture mechanics point of view,
as will be discussed briefly in Sect. 17.2.4.1.

It is always desirable to design a structure with an operating stress level below
the threshold stress level. An example of this is the power trains that operate at
high speed. However, for many types of structures such as offshore structures, the
fatigue limit has lost much of its significance because it is typically in the range of
20–80 MPa depending on type of joints and test conditions, and it would be rather
uneconomical to design such types of structures with design load below the initial
threshold level. Furthermore, the fatigue limit obtained from small scale tests may
not be representative of fatigue limits in large scale structures, e.g., the probability
of exceeding a certain size of defect for a detail of an offshore structure will be
significantly higher than that for a small test specimen. In addition, localized
corrosion can also introduce pits and crevices on welds, causing a time-dependent
growth of initial defects.

Note that the mean S–N curve implies a 50 % failure probability, which is
definitely not acceptable from an engineering point of view. Based on statistical
analysis of fatigue data, the S–N curves with various probabilities of failure can be
obtained, which are sometimes referred to as S–N–P curves. For design purposes,
the design S–N curve is normally based on the mean-minus-two- (e.g., for civil
engineering applications) or mean-minus-three- (e.g., for the application of aircraft
industry) standard-deviation of the mean curve from relevant experimental test

S=2 a

t

a

min

max

Fig. 17.3 Definition of stress amplitude ra and stress range S
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Fig. 17.4 Mean and design S–N curves (m0 and m1 are the inverse slope for the first and second
segment of the S–N curves)

data. For the case with the mean-minus-two-standard-deviation, the design S–N
curve is associated with a 97.6 % probability of survival:

logN
10 ¼ logA

10 � 2rlogN
10
�mlogS

10 ð17:4Þ

where rlogN
10

is the standard deviation of logN
10; logA

10 � 2rlogN
10

is actually the

intercept of logN
10 axis by design S–N curve.

Figure 17.4 illustrates a comparison between a mean and the corresponding
design S–N curve based on the mean-minus-two-standard-deviation.

17.2.2.2 Stress Measures

Stress Measure for Welded Plated Structures

As welding is extensively used as an effective and economical way of connecting
metal plates, various codes describe methods for fatigue assessment of welded joints
based on the stress-based approach, such as DnV RP-203 [330], Eurocode 3 [331],
ASME Boiler and Pressure Vessel Code [332], and British Standard BS7608 [333],
etc. In those codes, the welds are categorized by the type of joint, the geometry, the
loading direction and the potential failure direction. Different design S–N curves are
assigned to each weld category (class) for fatigue damage calculation. The stress
level is typically based on the principal stress with the largest range.

In this process, the location and nature of stress for fatigue calculation is some-
what difficult to determine. The commonly used stress definitions associated with the
stress-based approach are nominal stress, structural hot-spot stress and local notch
stress. Fatigue assessment using all three stress definitions are widely applied in
various industry sectors, which will be elaborated in the subsequent sections.
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Stress Measure for Welded Tubular Joints

For tubular joints, i.e., brace to chord connection, the utilization of tubular
members gives rise to significantly high stress concentrations in the joints. Fatigue
life is one of the major concerns for tubular structures. Apart from the other
elaborated methods in this section, the stress to be used for design purpose is the
range of idealized hot-spot stress, which is defined by the greatest value of the
extrapolation of the maximum principal stress distribution, immediately outside
the region affected by the geometry of the weld. A relationship between the hot-
spot stress (rht) at weld toe and the nominal stress (rnom) is:

rht ¼ SCF � rnom ð17:5Þ

where SCF is the stress concentration factor of tubular joints depending on the
geometrical parameters of tubular members, which can be obtained through
experiments or FE analysis. Various parametric formulas are available for a simple
calculation of SCFs, with Efthymiou’s [326], Kuang’s [328], and Gibstein’s [329]
formulas being the most popular. Many design codes and standards present similar
parametric formulas for calculating the SCFs for tubular joints.

Unless otherwise specified, the stresses in this section are defined as principal
stresses.

Global Stress Approach: Nominal Stress

Nominal stresses are those stresses derived from simple beam models or from FE
calculations based on coarse mesh models. Even though the stress concentrations
resulting from the gross shape of the structure are included in the nominal stress
measure, it does not include any stress increase/concentration due to the structural
detail or the welds. Therefore, the nominal stress is only valid in the parts of
structure at some distance from the welded joints.

As shown in Fig. 17.5, typically, the stress increase (concentration) at a weld
toe is contributed by both the joint geometry (size and type of welded joint) and
local toe geometry (toe angle and toe radius). It is clearly shown that the stress
decreases with the increase of distance from the weld. Only above a certain dis-
tance that mainly depends on the stressed plate thickness t does the stress approach
the constant nominal stress.

However, for a given weld and structural geometry, the nominal stress can be
used with an S–N curve associated with the ‘‘notch class,’’ ‘‘detail class’’ or
‘‘fatigue class’’ (FAT), which is typically determined experimentally for that
specific weld and structure geometry, i.e. this S–N curve already implicitly
includes the influence from material, geometry (joint and toe geometry) and/or
surface (residual stress introduced in Sect. 17.2.2.3) with statistical scatter due to
parameter variations. Therefore, the nominal stress is not suitable for fatigue
damage evaluation of various new welds and joint geometries.
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In engineering practice, for an initial screening of fatigue critical locations on a
structure, the nominal stress can be used with a rather conservative S–N curve.
After the fatigue critical locations are identified, a more dedicated stress measure
such as hot-spot stress can be used with an appropriate S–N curve to calculate the
fatigue damage.

Local Stress Approach: Hot-Spot Stress Method

Introduction to the Hot-Spot Method. Despite of simplicity of the method itself, in
many cases the nominal stress is difficult to estimate due to geometric and/or
loading complexities of welded structures.

Therefore, local stress approaches have to be adopted, in which the stress in the
vicinity of the crack initiation is obtained by either numerical analysis (mostly by
FE modeling) or experimental measurements. This approach includes the hot-spot
stress and notch stress method, both of which decrease the scatter in the fatigue life
predictions associated with the stress concentration.

The hot-spot is the critical point in a structure from where a crack can be
assumed to propagate. In a welded structure this point is usually located close to
the weld toe or weld root. This method is only applicable for fatigue assessment
with fatigue failures starting from the weld toe [290].

Unlike nominal stress, hot-spot stresses, also known as structural stresses or
geometric stresses, include nominal stresses and stresses due to the structural
discontinuities and the presence of attachments, i.e., it contains the stress increase
due to the structure geometry, but not the nonlinear stress peak due to the local
weld geometry (which usually refers to the weld toe), which is implicitly taken
into account in the hot-spot stress method by degrading the relevant S–N curve.
This is because singularities at the weld toe are difficult to predict with a rea-
sonable accuracy even by using FE modeling [291, 292]. The relationship between
the hot-spot stress rhtð Þ and the nominal stress rnomð Þ is:

rht ¼ Kgrnom ð17:6Þ
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Stress concentration due to local toe geometry
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Fig. 17.5 Stress concentration at a weld toe
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where Kg is the structural/geometric stress concentration factor.
Therefore, unlike the nominal stress method, in the hot-spot stress method, a

unique structural class for each joint type is not required, leading to a decrease in
the number of joint classes and a reduced number of S–N curves needed. The
relevant S–N curves that are linked to the hot-spot methods can be found from
various design codes and recommendations such as DnV-RP-203 [330] for off-
shore structures, DnV CN 30.7 [339] for ship structures, and IIW [338] for air
environments. In addition, misalignment of plates at welded connections and weld
imperfections can also be roughly taken into account by suitable stress magnifi-
cation factors from various design codes and recommended practices.

Without a sound theoretical basis, the hot-spot stress method is rather an
engineering means to perform more efficient fatigue assessment. A failure criterion
is no longer well defined when the fatigue test data based on nominal stress is
transferred into a hot-spot stress associated S–N curve [293]. Developed in the
1970s in a combined effort by classification societies, offshore platform operators
as well as research institutes, the general method for calculating the hot-spot stress
is to determine the largest value at the weld toe by using FE modeling. This has
been widely used in engineering design since the 1990s. FE models are normally
created by assuming an ideal geometry of structures. As the hot-spot stress cannot
be read directly from the FE calculation, it is often obtained by linearly extrap-
olating stress at two reference locations at some distance from the weld toe, which
is illustrated in Fig. 17.6. Sometimes, three reference locations are used to make a
quadratic stress extrapolation for calculating the hot-spot stress. Research [294]
has shown that no significant difference can be found between the results of the
linear and quadratic extrapolations. Furthermore, Fricke [295] suggested a simple
calculation in which the hot-spot stress can be obtained by multiplying the stress at
a reference point of 0.5 t from the weld toe with a factor of 1.12, where t is the
thickness of the stressed plate.

FE modeling for the hot-spot method. The stresses calculated by FE analysis are
highly mesh sensitive, as the structural hot-spot stresses are often in an area of high
strain gradients. Depending on the type and size of elements and the procedure
used to extract the values of the hot-spot stresses, the resulting stresses may differ
substantially. This is regarded as a drawback that leads to the increased effort for
FE modeling.

Many design codes and recommended practices provide a method to determine
the hot-spot stress. For example, DnV [330] recommends that, by using either 20
node solid elements with a size of t/2 9 t/2 or 8 node shell element with a size of
t 9 t, linear extrapolations of the component stresses from points at t/2 and 3t/2
can be used to derive the hot-spot stress at the weld toe, which is illustrated in
Fig. 17.6. Slightly different from the DnV recommendation, ABS [334] recom-
mends that the solid or shell element can be applied with a size of t 9 t. Eurocode
9 [335] defines hot-spot stress as the largest value of component stress extrapolated
in the normal direction to the weld. Figure 17.7 illustrates typical meshes and
evaluation paths for stress extrapolation. A benchmark study by Fayard et al. [336]
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suggests that, compared to that of the shell element, the modeling with solid
elements does not increase the accuracy of calculated hot-spot stress.

In engineering practice, if 4 node shell elements are used for modeling, the
recommended mesh sizes at the hot-spot region are from t/2 9 t/2 to 2t 9 2t; in
this case, larger mesh size may result in non-conservative results. In cases with
steep stress gradients, 8 node shell elements are recommended for modeling, the
recommended mesh sizes at the hot-spot region are then from t 9 t to 2t 9 2t; in
this case, both larger and smaller mesh size may result in non-conservative results.

It is also possible to obtain hot-spot stress with coarse meshing, such as in that
conducted by Hobbacher [316], who presented a review of the procedure to
determine the FE meshing with coarse mesh.

If possible, it is strongly recommended to read the stress values at the element
integration points rather than the element nodes, as the nodal stress is normally
taken as the average of two elements located on both sides of the weld toe normal.
If the element size is t 9 t, for shell or plate elements, the surface stress may also
be evaluated at the corresponding mid-side points; for solid elements, the stress
may first be extrapolated from the integration points to the surface. Then these
stresses can be interpolated linearly to the surface center or be extrapolated to the
edge of the elements [330].

Figure 17.8 [337] presents an example of meshing of two FE models that
represent a panel joint. In order to calculate the stress concentration factor due to
joint geometry, which is defined as the ratio between the hot-spot stresses and the
nominal stresses, two mesh modelings are used: the coarse mesh shown in the left
figure is used for nominal stress calculation, and the fine mesh in the right figure is
for hot-spot stress calculation.

Readers need to bear in mind that the S–N curves are generally based on test
results from uni-axial loading, and the hot-spot stresses are normally derived from
stresses normal to the weld toe. However, in a real structure, the hot-spot stresses
are in many cases bi-axial, and the principal stress range direction can deviate
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Fig. 17.6 Derivation of hot-spot stress and its relation with nominal and notch stress
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significantly from the weld toe normal. It then becomes conservative to use the
principal stress range together with a classification of the connection for stress
range normal to the weld toe [339, 286]. There are various recommendations on
how to determine hot-spot stresses under multi-axial stress state. One of the
treatments is to define a range of the deviation angle from the weld toe normal
direction, so that if the principal stress range direction lies within this angle range,
it can be used to calculate the hot-spot stresses. This angle range is normally within
±60�, but varies from one guideline document to another. For example, for ship
structures, DnV [339] recommends an angle range of ±45�, while IIW [338]
recommends that this range be ±60�. If the direction of principal stress range is
outside this angle range, the stress normal to the weld toe may be taken as the hot-
spot stress. Normally the stress range in both the two principal directions should be
assessed with respect to fatigue. On the other hand, the effects of deviation of the

Fig. 17.8 FE models of a panel joint: a coarse mesh for nominal stress calculation and b fine
mesh for hot-spot stress calculation with t 9 t mesh [337]

Fig. 17.7 Typical meshes with shell and solid elements to calculate the hot-spot stress.
Extrapolations are normally performed along the stress evaluation paths (marked with arrows)
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principal stress range direction from the weld toe normal can also be accounted for
by assigning an appropriate class of S–N curve. Table 17.1 shows the selection of
S–N curves using the nominal stress and hot-stress methods, which is recom-
mended by DnV DnV-RP-C203 [330] for offshore structural design. Obviously,
when the angle between the principal stress range direction and the weld toe
normal direction becomes larger, a better class of S–N curve is assigned to reduce
the conservativeness.

For fatigue check of a complex structure with a large number of degrees-
of-freedoms, or for a structure in which only a part of it is of interest for fatigue
assessment, it is not economical or even possible to model a complete structure
down to the last detail. In these cases, the hot-spot stress is often calculated by
using the sub-modeling technique.

In the sub-modeling technique, without excessively increasing the calculation
efforts, an analysis based on the global model with coarse mesh is first performed.
Based on this global model, a dynamic analysis can then be performed to obtain
the nominal stresses. A fatigue screening check can then be carried out to identify
the critical parts with regard to fatigue damage. By using the sub-modeling
technique, the fatigue critical parts are then modeled with finer mesh and analyzed
separately by transferring the prescribed displacement (computed from the pre-
vious analysis of global model) along the boundary/interface where it has been cut
free from the rest of the global structure. If the refinement of the mesh adds more
nodes along the boundary that is not presented in the global model, a decent
interpolation method should be adopted to obtain the prescribed displacement on
the added nodes.

Figure 17.9 illustrates the sub-modeling process for a transition ring on the top
of an offshore gravity based structure. In the global model, the transition ring is
modeled mainly by 4 node shell elements with coarse mesh, and some parts of it
having sharp edges are modeled with 3 node triangle elements. A dynamic analysis
subjected to wave loadings is performed followed by the fatigue screening check
based on the calculated nominal stress and the associated (conservative) S–N
curves. The welds on the transition ring are identified as the possible critical area
with regard to fatigue damage. In its sub-model, the areas close to the transition
welds are modeled by 8 node shell elements with a finer mesh size comparable to

Table 17.1 Selection of S–N curves using nominal stress and hot-stress method by DnV DnV-
RP-C203 [330] for fatigue assessment of offshore structures

The angle between principal
stress range direction and the
weld toe normal direction

Detail classified as F
for stress direction
normal to the weld

Detail classified as E
for stress direction
normal to the weld

S–N curve when
using the hot-spot
stress methodology

0�–30� F E D
30�–45� E D C2
45�–60� D C2 C2
60�–75� C2 C2 C2a

75�–90� C2a C2a C2a

a A higher S–N curve may be used in special cases
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the thickness of the plate (‘‘t 9 t’’ mesh). Figure 17.10 shows an example of the
sub-model with ‘‘t 9 t’’ mesh, and the total number of nodes for the global and
sub-models are 3898 and 142952, respectively. ‘‘Node to element’’ coupling is
used between the global model and the sub-model boundaries. This means that the
spatial (element shape function) interpolation of the global model’s solution is
used to calculate the prescribed displacement values for both the global model and
the sub-model. Different from the screening process, more relevant S–N curves are
assigned for fatigue check for each identified critical area.

Figure 17.11 illustrates an example of the fatigue life distribution for welds
based on the hot-spot stress calculation. It is found that part of the welds between
the MSF cellar deck and transition rings are likely to be fatigue critical, with
calculated fatigue lives of less than 44 years.

Various studies have been carried out to find a hot-spot method that is not mesh
sensitive. Xiao and Yamada [340] suggested computing the hot-spot stress at a depth
1 mm below the surface at the weld toe in the direction of the expected crack path,
which is assumed to represent the stress gradient over the plate thickness. This
approach has been demonstrated to be valid by the authors [340] for non-load-
carrying fillet welds and by Noh et al. [341] for load-carrying fillet welds. Dong and

Fig. 17.9 Illustration of the sub-modeling process for a transition ring C28 installed on the top of
a gravity-based structure (courtesy of Aker Solutions)
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Fig. 17.10 ‘‘t 9 t’’ mesh on the fatigue critical weld areas of an extended geometry from the
original transition ring boundary (courtesy of Aker Solutions)

Fig. 17.11 Hot-spot check of fatigue life (based on D curve in air from DnV DnV-RP-C203
[330]) at the critical welding area (fatigue lives are between 40 and 88 years) of the transition
ring (courtesy of Aker Solutions)
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his co-workers [342–344] proposed that the hot-spot stress can be calculated as the
sum of membrane and bending components at a small distance from a weld toe.
However, this method is demonstrated to be valid mostly in simple two-dimensional
structure details such as fillet weld lap joint [292, 340, 345].

It should be noted that, since the hot-spot stresses are calculated on the basis of
the stresses read at plate surfaces, this can lead to an erroneous assessment when
stresses vary significantly over the plate thickness. An example of this is that in
which the plate stresses due to bending are dominant. In such a condition, other
methods such as the fracture mechanics method are more suitable for assessing the
fatigue life.

Finally, it is worth mentioning that the hot-spot stress method is so far only
applied to thick plate structures in engineering applications. However, develop-
ments for thin plate structures are receiving more and more research efforts,
especially in the automotive industry [354, 355].

Local Stress Approach: Effective Notch Stress Method

Introduction to the effective notch stress method. Even though the hot-spot stress
method is a powerful tool, its application is restricted to weld toe cracking [296,
297]. For fatigue damage assessment with root cracking, the notch stress method is
applicable, which can handle not only root crack, but also the toe cracking.

When notches emanate from geometrical discontinuities such as holes, joints,
or defects from welds, they contribute to higher stress concentrations.

The effective notch stress consists of the sum of both geometrical (hot-spot)
stress and nonlinear stress peak at the root taking into account the stress con-
centration caused by the local notch, which is shown in Fig. 17.6. It can be
calculated by multiplying the hot-spot stress with a stress concentration factor Ks,
which is defined as the ratio of the maximal notch stress rmaxð Þ and the nominal
stress rnomð Þ:

Ks ¼ rmax=rnom ð17:7Þ

The notch stress is strongly affected by several weld details, most of which are
very difficult to measure even by using non-destructive tests. Therefore, by
assuming the microstructural support effect [346, 347], the effective radius qe is
used to simulate the notch, which is represented by increasing the actual radius q
with an additional material-dependent microstructural length q* multiplied by the
support factor s, which is illustrated in Fig. 17.12 and expressed by:

qe ¼ qþ sq� ð17:8Þ
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As an conservative estimate, for welded steel joints, Radaj [346] recommended
using q = 0 mm, s = 2.5 and q* = 0.4 mm, i.e., a effective radius of 1 mm.

FE modeling for the effective notch stress method. Obviously, in FE modeling
aiming for obtaining notch stresses, welds need to be modeled. The notch for the
weld root is modeled with a radius, and similarly, the edges in the weld toes are
replaced by a hole cut-out with a radius typically of 1 mm. This is shown in
Fig. 17.13. Very fine mesh should be applied to the parts close to the weld toes and
root. It is recommended that at least six elements be used around the root hole or
toes per 908 [348]. In addition, subdivision should be sufficiently fine normal to the
surface in order to model the steep stress gradient in thickness direction [349].
Alternatively, the weld root can also be modeled as an oval shaped cut-out as
shown in Fig. 17.14 [349]. Since the stiffness with an oval shaped cut-out for
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Fig. 17.12 The effective radius qe is represented by increasing the actual radius q with an
additional material dependent microstructural length q* multiplied by the support factor s
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Fig. 17.13 Modeling of notch for both weld root and toes
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Fig. 17.14 The weld root can also be modeled as an oval shaped cut-out

Table 17.2 Pros and cons of different stress measures for fatigue assessment [298]

Stress measures Pros Cons

Nominal stress
method

Simple calculations
Well-defined
Widely used
Available experimental data
Available parametric formula
Available fatigue classes in

design codes
Suitable for weld root and toe

cracking

Fatigue detail category dependency
Limitation for misalignment and

macrogeometric changes
Less accuracy in complex structures
Thickness effect not included

Hot-spot stress
method

Reduced number of S–N
curves needed

The use of existing stress
analysis

Acceptable accuracy
Less FE modeling effort
Macro geometric effect

included
Utilized for tubular structures

for many years

Dependent on element size
Dependent on element arrangement
Different stress determination procedures
Thickness effect not included
Limited to weld toe cracking

Effective notch
stress method

Thickness effect included in
calculations

Not affected by the stress
direction

Suitable for weld roots and
toes cracking

A single S–N curve

Applicable only with FE analysis
Dependent on mesh density

Dependent on radius size
Larger FE models
Time consuming for modeling
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modeling the root notch is generally lower than that of the hole cut-out, this leads
to an increased stresses at the weld toe. Therefore the stress evaluation with an
oval shape cut-out is generally conservative [349].

It is noticed that, in the calculation of effective notch stress, if a structure is
modeled by solid elements, the geometry and stiffness of the welds can be con-
veniently modeled. However, if shell elements are used for modeling, additional
efforts need to be made in order to correctly model the stiffness of the welds [350,
351]. Available methods are to represent the welds by using shell elements [352],
by increasing the thickness in the intersection region of welded joints [353], or by
using rigid links [336].

Finally, it should be mentioned that, similar to the hot-spot stress method, in
engineering applications, the effective hot-spot method is so far mainly applied to
thick plate structures with the thickness of more than 5 mm.

Pros and Cons of Different Stress Measures

Based on the literature study by Aygül [298], Table 17.2 summarizes the advan-
tages and disadvantages of three stress measures for fatigue damage assessment.

17.2.2.3 Influencing Parameters

Increasing the thickness of the adjoining plates in relation to the weld toes would
reduce the fatigue life. The design S–N curve for a weld influenced by the
adjoining plate thickness can be expressed as:

logN
10 ¼ logA

10�2rlogN
10
�m log

S t
tref

� �k

10 ð17:9Þ

where tref is a reference thickness. In DnV RP-203 [330] for offshore structural
design, for welded connections other than tubular joints or bolts, tref is normally
taken to be 25 mm, for tubular joint it is 32 mm, and for bolts it is 25 mm; t is the
plate thickness through which a crack will most likely to grow; when t is less than

tref, t
tref
¼ 1; k is the thickness exponent on the fatigue strength, e.g. k = 0.10 for

tubular butt welds made from one side, and 0.25 for threaded bolts subject to stress
variation in the axial direction [330].

The internal stress in a material, known as residual stress, also has an effect on
the fatigue damage. Compressive residual stress has a positive effect to decrease
fatigue damage, which can be introduced through permanently stretching a thin
surface layer by yielding it in tension; this is realized in reality through shot
peening [243], even though it may have negative effects on corrosions of base
materials. High tensile residual stress can induce crack propagation even if the
applied external stress is compressive. For welded structures, residual stress nor-
mally exists in areas close to the welded joints. It is therefore necessary to use the
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full stress range in the fatigue calculation for welded details unless they have been
subjected to stress relief [81]. In practical fatigue assessments of welded joints, for
simplicity, it is assumed that all stress cycles effectively drive the crack due to the
presence of the tensile residual stresses. However, it should be noticed that residual
stresses due to welding and construction are reduced over time due to the external
loading, known as residual stress relief.

For fatigue analysis at regions of the base material not significantly affected by
residual stress due to welding, mean stress needs to be accounted for. Mean stress
can be caused by slowly varying stress due to payloads, which has a similar effect
as residual stress. With the presence of compressive stress, the stress range can be
reduced. Goodman, Gerber or Söderberg relations [60, 243] are typically used to
account for the mean stress effects. Rather than modifying the S–N curve, the
effects of mean stress can be accounted for by multiplying a reduction factor fm of
the calculated stress range before entering the S–N curve, such as the one proposed
by Joint Tanker Project [244, 245] and adopted by A number of fatigue design
codes such as DnV RP-203[330]:

fm ¼
rt þ 0:6rc

rt þ rc
ð17:10Þ

where rt and rc are the maximum tension and maximum compression stress of the
stress range, respectively. The numerator in the above equation rt þ 0:6rc is
normally referred to as the effective stress range.

This effect is more significant in case of through-thickness cracks [24].
In addition, as elaborated in Sect. 17.2.2.2, the local stress concentration caused

by the shape of welds will also reduce the fatigue life. In order to calculate the hot-
spot stress used in the fatigue damage calculation, a stress concentration factor
(SCF) is adopted as the factor by which the nominal stress due to pure axial force
or pure in-plane/out-of-plane bending (at the stress point in question) needs to be
multiplied by. The majority of the design codes account for the stress concen-
tration with designated design S–N curves for plate and stiffener details. For
tubular joints, the SCFs need to be calculated through various parametric equations
[60, 330] as briefly mentioned in Sect. 17.2.2.2.

The adverse environment with regard to fatigue, e.g., freely corroded condition
at sea, will also reduce the fatigue life. The influence of the environmental con-
ditions is accounted for by most of the design codes (e.g. ‘‘Tubular in Air’’ or
‘‘Tubular at Sea’’ in DnV Recommended Practice [330]).

For welds, their non-homogeneous material properties, welding defects and
imperfections are not usually accounted for in a local approach [356], and the
material characteristic value of the welds are normally assumed to be the same as
that of the base material.

As mentioned above, even though the stress-based method is widely used, it
does not deal with any of the physical phenomena within the material, i.e., it does
not separate the crack initiation from the propagation stage, and only the total life
to fracture is considered [289].
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17.2.3 Strain-Based Approach

For low cycle fatigue associated with plastic deformation, the account in terms of
stress is less useful, and the strain in the material offers a simpler description. This
can be justified because, in reality, the critical location is often a notch in which
plastic strains are imposed by surrounding elastic materials, and the situation will
then be strain-controlled [284]. Therefore, the strain-based approach is normally
adopted. The low cycle fatigue is often characterized by the Coffin-Manson
relationship, the name of which arises from the separate development of related
equations in the late 1950s by LF Coffin and SS Manson [243, 357]:

Dep

2
¼ e

0

f 2Nð Þc ð17:11Þ

where Dep

2 is the plastic strain amplitude; e
0
f is an empirical constant known as the

fatigue ductility coefficient, which is the failure strain for a single reversal; 2 N is
the number of reversals to failure (N cycles); and c is an empirical constant known
as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7 for metals,
applied for time-independent fatigue. Slopes can be considerably steeper in the
presence of creep or environmental interactions.

A similar relationship for the material zirconium is also used in the nuclear
industry [366].

In contrast to high cycle fatigue, for which the weld geometry and initial defects
are the most important parameters, in the assessment of low cycle fatigue, tensile
strength and ductility of materials are important parameters for determining
structural performance [60].

17.2.4 Fracture Mechanics Approach

17.2.4.1 Introduction to Fracture Mechanics Method

Note that both the stress- and strain-based approaches are empirical kinds. Though
they allow life prediction and design assurance, life improvement or design
optimization can be enhanced by using fracture mechanics, which can account for
various stages of crack development, and are essential for inspections and repairs.
In the fracture mechanics method, the steady (region II described in Sect. 17.2.4.2)
and the subsequent unstable crack growth (fracture, region III described in Sect.
17.2.4.2) are explicitly modeled, while the crack initiation is only based on
empirical data. It can also model crack growth beyond what is regarded as fatigue
failure (e.g., through-thickness crack) in the S–N-based approach [24].

A cracked body can be loaded in any one or combination of the three dis-
placement modes shown in Fig. 17.15. In mode I (opening or tensile mode), the
crack faces move apart due to the tension loading, and this mode gives rise to a
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significant stress intensity factor, which characterizes the magnitude (intensity) of
the stress in the vicinity of an ideally sharp crack tip in a linear-elastic and
isotropic material [243]. The stress intensity factor is hereby defined as:

KI ¼ rnom

ffiffiffiffiffiffiffiffiffi

p � a
p

� f ð17:12Þ

where rnom is the nominal stress, a is the crack length, and f is a dimensionless
function depending on the crack geometry and loading, and usually also on the
ratio of crack length to another geometric dimension, such as the member width or
half width, b.

The stress intensity factor can be checked in many handbooks [307–309]. It can
also be calculated by FE analysis. For an elaborated discussion of this concept,
readers may read Ref. [243].

Both mode II and mode III are due to shear. In mode II (sliding or in-plane
shear), the surfaces of the crack slide over each other. In mode III (tearing or anti-
plane shear), the surfaces of the crack move parallel to the leading edge of the
crack and relative to each other.

Mode I is the predominant loading mode for most of the engineering problems
associated with fracture failure or potential fracture failure. Therefore, the majority
of assessment using linear elastic fracture mechanics is based purely on mode I.
Similar treatment can be readily be extended to mode II and mode III.

The crack growth rate can be described by the sigmoidal shape relationship

between cyclic crack growth rate da
dN and stress intensity range DK as shown in

Fig. 17.16. Three regions in the plot are of engineering interest. At low stress
intensity (region I), the crack growth rate is rather slow and goes asymptotically to
zero before DK reaches a crack growth threshold DKth, which is regarded as the
lower limiting value of DK below which the crack does not grow or grows at too
slow a rate (2.5 9 10-7 mm/cycle, which corresponds to the spacing between
atoms in metals) to measure, i.e. this corresponds to the endurance or fatigue limit
mentioned in Sect. 17.2.2.1. The crack growth in this region has been formulated
by several researchers such as Donahue et al. [310]. The crack growth threshold
DKth mainly depends on the stress ratio (the ratio between the minimum and
maximum stress), frequency of loading and environment. Engineering design with
DK below DKth would be very desirable, but this is in many cases not practical due
to the low stress range required, which leads to an uneconomical design. As an
alternative, limiting defect size so that the DK is below DKth would also be

Fig. 17.15 Three basic modes of crack surface displacement
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desirable, but this is even more difficult than limiting the stress range, and prac-
tically unattainable [311].

In the intermediate region (region II), the crack shows a stable growth and the
curve is essentially linear when using a log–log plot. Many engineering structures
with fatigue failure potential operate in this region.

At region III, the crack shows a unstable rapid growth prior to final failure (the
growth rate is approaching infinity) of the cracked body and little fatigue life is
involved, i.e., in engineering practice, this region may be neglected for the fatigue
life estimation. The boundary between region II and region III is dependent on the
yield strength of the material, stress intensity factor KI and stress ratio. The curve
approaches the fracture toughness Kc for the material and thickness of interest,
which has been formulated by Forman et al. [324] to present the nonlinear and fast
growing portion of the curve. This will be presented at the end of Sect. 17.2.4.2.
This rapid unstable growth at high DK sometimes also involves fully plastic
yielding (the size of the associated plastic zone is comparable to or even larger
than the size of the crack), i.e., ductile tearing and/or brittle fracture, which should
be analyzed using the elastic–plastic fracture mechanics approach such as J-inte-
gral or the crack-tip opening displacement (COD) method [311, 312].

17.2.4.2 Formulation of Crack Growth at Regions II and III

Most of the current applications of linear elastic fracture mechanics (LEFM)
concepts to describe crack growth are associated with the intermediate region
(region II) [311], and Paris’ law [313, 314] is widely used to describe the crack
growth curve in this region:

da
dN
¼ C DKð Þm ð17:13Þ

Fig. 17.16 Mode I sigmoidal crack growth rate curve with three regions of behavior assumed by
linear elastic fracture mechanics
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Table 17.3 Representative values of m and C

m C (mean value) (10-12) Material type

3.0 5.38 Weld metal [321]
3.0 3.9 Base and weld metal [322]
3.0 5–6 Low and medium strength steel [323]

2c

BSy
t

ai

Fig. 17.17 A semi-elliptic crack at a weld toe with an initial crack size of ai

where a is the crack length; C is the crack growth rate constant found by extending
a straight line to, for example, DK ¼ 1 MPa

ffiffiffiffi

m
p

; and m is the slope on the log–log

plot of da
dN�DK relationship; for welded steel joints, m is typically in the range

between 3.0 and 5.0, with m = 3 being more typical [315–318]. Both C and m are
dependent on the environmental conditions, and can be found in many handbooks
and other studies, such as the ones suggested by NORSOK N-004 [326]. Some
representative values of them are shown in Table 17.3.

The stress intensity range DK can be expressed as:

DK ¼ f að Þ � S
ffiffiffiffiffiffiffiffiffi

p � a
p

¼ Fmb � Smb þ Fb � Sbð Þ
ffiffiffiffiffiffiffiffiffi

p � a
p

ð17:14Þ

where f(a) is a one-dimensional compliance function, depending on the geometry
and the relative crack length; subscripts mb and b refer to membrane (axial) and
bending stress effects, respectively.

When DK is less than the crack growth threshold of stress intensity factor DKth,
the crack does not grow.

By using Paris’ law, the number of the cycles for a crack to propagate from the
initial crack size ai (Fig. 17.17) to the final critical crack size af is calculated as:

N ¼
Z

af

ai

da
C DKð Þm ð17:15Þ

The initial crack size is a rather difficult parameter to define. A typical initial
crack size (depth ai shown in Fig. 17.17) is between 0.05 mm and 0.2 mm. Many
researchers use an initial crack size (depth) of 0.1 mm [306, 315]. In BS 7608
[333], an initial crack size (depth) of 0.15 mm is specified. For offshore structures,
ai can be taken to be 0.5 mm [319] or lower [320]. The final critical crack size af is
mainly dependent on the type of structure and the level of safety requirement. For
example, for ships, the utilization of residual strength allow the criteria of ‘‘leak
before break’’ [24], even though a formal assessment of crack sizes of the order of
the plate thickness is specified by codes such as BS 7910 [327].
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It has been found that the fracture mechanics approach using Paris’ law gives
results comparable to the S–N approach when certain material parameters C and m
are used and a reasonable initial crack size is assumed.

Since DK is a function of the crack length and one dimensional compliance
function f(a) expressed in Eq. (17.14), the equation above cannot be integrated
analytically and is normally solved numerically. To obtain the solution in a closed
form, F(a) can normally be determined at the initial crack length.

It is worth mentioning that, when the initial crack size ai is much smaller than
final critical crack size af, the number of cycles to fatigue failure is strongly
dependent on ai, but not sensitive to the changes of af, i.e. the fatigue life is not
sensitive to the fracture toughness. If the initial crack size ai is close to the final
critical crack size af, such as in a case in which a rather hard material is subjected
to large stresses, such as the working condition for gears [311], the fatigue life is
also sensitive to the fracture toughness.

For cracks with rather small sizes, the application of Paris’ law must be cali-
brated based on the S–N data. This is because the uncertainties involved in the
initiation of cracks are difficult to quantify. For more details, see references by
Moan et al. [358] and Ayala-Uraga and Moan [359].

Note that Paris’ law only models the region II (linear portion of the crack
growth curve), as the stress intensity factor range increases to region III with a
much faster growth rate than that of region II. Paris’ law was modified by Forman
[324] to not only account for stress intensity range DK, as Paris’ law does, but also
to explicitly take account of the influence of the mean stress, by introducing a
factor depending on (1-R) in the denominator, where R is the stress ratio for
cyclic loading (= minimum stress/maximum stress). For a given DK, the crack
growth rate increases with the increase of R. This is known as Forman’s equation:

da
dN
¼ C DKð Þm

1 - Rð ÞKC � DK
ð17:16Þ

The stress intensity factor DKth and fracture toughness Kc in Paris’ law were
accounted for by Vasudevan and Sadananda [360] who presented a two-parameter
unified approach. Cui et al. [361] extended this two-parameter model so that all
three regions of crack growth shown in Fig. 17.16 can be calculated.

As mentioned before, if the crack is loaded in a combination of the two or three
displacement modes shown in Fig. 17.15, the stress intensity factor in Paris’ law
can be modified by an effective stress intensity factor, Keff. Readers may read Ref.
[315] for a detailed formulation of DKeff .

It should also be noticed that, in reality, straight cracks seldom exist. Therefore,
the straight crack assumption involved in the conventional fracture mechanics
method introduces certain uncertainties.

Finally, readers also need to bear in mind that the curve illustrated in Fig. 17.16
is for a cracked body with little or no plasticity. For a condition of full plasticity,
the definition of stress intensity is no longer valid.
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17.2.4.3 FE Modeling for Fracture Mechanics Analysis

In linear fracture mechanics, by assuming the presence of a small crack, the
propagation of the crack through the material can be simulated. It is normally
assumed that a crack is initiated perpendicular to the maximal principal stress.
However, unlike the notch stress method, the fracture mechanics method does not
normally account for the radius of the transition between the welds and the base
materials. Therefore, the transition is typically modeled sharp as shown in
Fig. 17.18.

In a number of commercial FE analysis codes to perform the fatigue check
using fracture mechanics, quadratic elements are used to simulate the singularity
effects at the crack tip so that the crack tip can be simulated by skewing the
midside nodes to a shorter (typically 20 to 30 %) distance from the crack tip as
shown in Fig. 17.19. Since the crack tip has much higher stress and strain gradients
than the remaining part of the structure (the stresses and strains are proportional to
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Fig. 17.18 Modeling of the transition between the weld and the base plate material

Crack surface

Crack tip

25%R

Rr

Fig. 17.19 Modeling of crack surface and crack tip in fracture mechanics
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where r is the distance from the crack tip), the mesh nearby the crack tip
region has to be very fine.

17.2.5 Cumulative Damage

In reality, the stress amplitudes experienced by a structural member often vary
under dynamic loading. The direct use of S–N curve, which is derived from
experiments under constant force amplitude operation, is not possible. Therefore, a
proper method to calculate the fatigue damage under variable amplitude of loading
has to be adopted. The method most typically used in civil and mechanical
engineering fields is the Miner summation [362], also called the Palmgren [363]-
Miner rule, which assumes that the fatigue damage on a structure produced by an
individual cycle i is constant:

Di ¼
1
Ni

ð17:17Þ

where Ni is the number of cycles to fatigue failure at a given stress range Si.
The Miner summation also implies that, in a stress history with various stress

ranges Si, each with a number of cycles ni, the fatigue damage is a result of a linear
accumulation of partial fatigue damage produced by individual cycles, and cycles
of different stress ranges do not interact to retard or accelerate crack growth:

D ¼
X ni

Ni

ð17:18Þ

Experimentally, fatigue failure occurs when D ranges from 0.5 to 2.0 [304].
However, for design purposes, it is assumed that fatigue failure occurs when the
sum of partial damage is unity:

D ¼
X ni

Ni

¼ 1:0 ð17:19Þ

A number of researchers have reported that damage produced by individual
cycles in variable amplitude load time histories is strongly affected by prior
loading history, i.e., the damage in one cycle is not a function of that cycle, but
also depends on the preceding cycles. Note that the Miner rule does not account for
these sequence effects (stress interaction) [60, 243, 289], i.e., it assumes that the
damage caused by a stress cycle is independent of where it occurs in the load
history. Therefore, Miner’s rule cannot be justified under certain choice of stress
sequence, such as applying several high stress cycles followed by several low
stress cycles, and vice versa [46]. This may introduce a significant bias. What
makes things even more complicated is that no general rule exists to predict if
Miner’s rule is conservative or non-conservative, primarily because people still
lack knowledge of exactly which parameters are related to Miner’s rule that
influence the fatigue damage results. If Miner’s rule is applied in a time history
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with isolated overload, the cumulated fatigue damage will normally be conser-
vative. On the other hand, if the model is applied to a time history containing large
cycles separated by few small cycles, and the mean of the small cycles is high
relative to the mean of the large cycles, the calculated fatigue life will generally be
non-conservative [305].

To account for various types of uncertainties mainly related to Miner’s rule, in
most of the design codes, an additional safety factor is introduced as fatigue design
factor (FDF) ranging from 1.0 to 20, which depends on the damage consequence in
terms of fatalities, economic losses, pollution, and inspection accessibility. FDF
generally results in a much lower Miner’s sum than unity:

D� 1:0
FDF

ð17:20Þ

Table 17.4 shows required FDFs for offshore structures in accordance with
Norwegian standard NORSOK N-001 [325].

For ships and floating production storage and offloading vessels (FPSOs), the
FDF is normally taken to be 1.0. This is because cracks in the majority of those
marine vessels do not cause an immediate risk of global failure.

For the fatigue assessment of TLPs’ (tension leg platforms) tendon, due to the
high consequence, this FDF is typically taken to be 10.

However, one can argue that, in addition to the general condition of inspection
and consequence, the selection of FDF is also a function of a more precise measure
of residual strength and explicit measure effects from inspection, including the
quality of the inspection [24].

For vehicle design, there is no unified FDF specification and it is normally
company specific, i.e., it differs from one company to another, and this factor is in
many cases confidential to protect the interests of relevant companies. It varies at
different parts of a vehicle.

Fortunately, the uncertainty associated with the relative Miner sum seems to be
smaller than the inherent uncertainty in the S–N curve [60], and the test series also
show a reduced scatter in Miner sums as compared to the S–N curve data [299].

Miner’s summation can also be applied to the fracture mechanics method to
assess fatigue. Interested readers may refer to references [60, 243].

Despite the drawbacks of using Miner’s rule, in engineering practice of fatigue
estimations, load cycle counting by the rain-flow method (Sect. 17.3.5.1), Miner’s
rule defining the linear damage accumulation rule, and the S–N curve (Sect.
17.2.2) representing the material performance determined from constant-amplitude

Table 17.4 Fatigue design factors for offshore structures [325]

Classification of structural
components based on damage
consequence

Not accessible for
inspection and repair or in
the splash zone

Accessible for inspection, change or
repair and where inspection or
change is assumed

Substantial consequences 10 2
No substantial consequences 3 1
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fatigue tests represent the state of practice, and are often used for fatigue damage
estimation of structures subjected to random loadings.

17.3 Dynamic Analysis Methods for Calculating Fatigue
Damage

There are several analysis methods for calculating fatigue based on the S–N-based
method: deterministic approach, simplified fatigue analysis approach (based on a
proper assumption of long-term probability distribution of stress responses), sto-
chastic approach for narrow band and broad band stress ranges, and semi-sto-
chastic time domain approach. In the following, we will discuss each method by
presenting a procedure for calculating wave- or wind-induced fatigue. However,
readers can generalize each method to calculate the fatigue life due to other types
of dynamic loadings.

17.3.1 Deterministic Fatigue Analysis Method

Deterministic fatigue analysis is based on the assumption that each load and
corresponding responses possess one individual frequency as well as a stress range
with zero mean. A schematic procedure for performing a deterministic fatigue
analysis is illustrated in Fig. 17.20.

In this type of analysis, a deterministic load (hydrodynamic loading in the case
of wave or wind load) analysis is performed followed by a dynamic or static
structural analysis. For example, to calculate sea wave-induced fatigue, regular
waves each with a design wave height (H) and wave period (T) combination need
to pass through a target structure, generating a cyclic wave loading. It is noticed
that in order to adopt a regular wave in the deterministic analysis, design wave
height and period instead of significant wave height (Hs) and the corresponding
zero crossing period (Tz) should be used. At required locations on the structure, the
stress time history responses through a structural analysis, covering the steps
through the entire wave cycle, are calculated at sufficiently small time intervals.
Thereafter, the stress range at those locations for each individual wave (sea state q
and direction j) can be obtained and then fitted into the design S–N curve to find
the corresponding fatigue damage (D1cycle(j,q)) for one cycle.

For each given load state (sea state or wind state) from a defined direction
specified in the hydrodynamic analysis, it is necessary to specify the total number
(n) of loads passing through the structure within a certain period s (in seconds), for
example, 1 year:

n ¼ s
T

ð17:21Þ
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where s = 365 days 9 24 h 9 60 min 9 60 s = 31,536,000 s; and T is the
period of the loading.

Hence, the individual (partial) fatigue damage (Dj,q) by each load state q with
the corresponding load direction j is calculated as the fatigue damage (D1cycle(j,q))
due to one cycle of stress range under that load state multiplied by the number of
cycles n for 1 year.

Dj;q ¼ n � D1cycle j;qð Þ ð17:22Þ

where D1cycle j;qð Þ ¼ 1
N j;qð Þ

; N j;qð Þ is the number of cycles to fatigue failure under load
state q with the corresponding load direction j.

From load (wave or wind) statistics, one can obtain that a given load state q (sea
state or wind state) from a defined direction j occurs a fraction Wj;q (probability of
occurrence) of the entire life time for the target structure.
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Fig. 17.20 Schematic procedure for performing deterministic fatigue analysis
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Based on Miner’s rule, partial damages are then weighted over this probability
of occurrence Wj;q with various load states and directions, the total damage (Dtotal)
due to all load states from all directions can then be summed up as:

Dtotal ¼
X

j

X

q

Wj;q � Dj;q

� �

ð17:23Þ

Since the fatigue damage is based on one year’s duration for all load cases
together, the fatigue life in years can simply be calculated as the inverse of the
1 year fatigue damage:

Ltotal ¼
1

Dtotal

ð17:24Þ

For sea wave-induced fatigue analysis, deterministic fatigue analysis applies
especially to members within splash zone (areas of the structure that are period-
ically wetted due to waves and tidal variations), where the local wave loading on
members and wave load nonlinearities (due to the variation of wave surface and
drag-induced nonlinearities) can be significant, neither of which the stochastic
fatigue analysis presented in the Sect. 17.3.3 can handle properly.

17.3.2 Simplified Fatigue Analysis Approach

For establishing the general acceptability of fatigue resistance, or as a screening
process to identify the most critical details [300] to be considered in a stochastic
fatigue analysis, as will be elaborated in Sect. 17.3.3, an even more simplified
deterministic fatigue analysis can be performed through a proper assumption of
long-term probability distribution of stress responses. This is similar to the case in
which environmental data measured for only a few years are extrapolated in order
to estimate the long-term environmental loads. This enables a significant reduction
of analysis efforts, i.e., one only needs to carry out hydrodynamic and subsequent
structural analysis using one wave from each wave direction, and the entire life
time distribution of the stress can be obtained and used for fatigue assessment. The
method is a type of ‘‘simplified fatigue analysis,’’ which is efficient but conser-
vative as a tool to extrapolate results of detailed fatigue analyzes among similar
offshore structures [81].

For example, based on a Weibull distribution of stress exceedence, Marshall
and Luyties [301] proposed that the number of stress cycles exceeding stress r in
n0 cycles is:

n stress [ rð Þ ¼ n0e
� r

r0

� �h

ln n0ð Þ

� 	

ð17:25Þ
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where r0 is the stress range that is exceeded once in n0 cycles; and h is the Weibull
shape parameter determined according to the characteristics of load and structural
responses, typically ranging from 0.5 to 1.5.

From the equation above, it is noted that the determination of the Weibull shape
parameter h is an essential task in the simplified fatigue analysis method.

When the long-term stress range distribution is defined using two parameter
Weibull distribution for various load conditions, the fatigue damage in n cycles is
then:

Dn ¼
C 1þm

h

� �h i

� n0rm
0

A ln n0ð Þ½ �
m
h

ð17:26Þ

where C xð Þ is the gamma function (in cases where x is a positive integer,
C xð Þ ¼ x� 1ð Þ!Þ.

By setting the allowable cumulative fatigue damage as D, one obtains the
maximum allowable stress range as [60]:

Aallow ¼ m

ffiffiffiffiffiffiffi

DA
n0

r

� ln n0ð Þ½ �
1
h

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þm
h

� �

r ð17:27Þ

It is noted that the two equations above are based on a single slope S–N curve,
which generally yields conservative assessment with regard to fatigue damage.

Table 17.5 gives some values of m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þm
h

� �

r

.

Using the allowable stress calculation above, and by giving the estimated
maximum number of cycles (typically 108 for offshore structures), Weibull shape
parameter h, the allowable cumulative fatigue damage D, and the type of S–N
curve (e.g., W3, W2, … B1 in DnV RP 203 [330]), one can calculate the allowable
local stress range that serves for pre-engineering design. In some codes, a design
chart with various combinations among allowable stress range Aallow, Weibull
shape parameter h and type of S–N curves is given for a convenient check.

Table 17.5 Values of m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þm
h

� �

r

h m 3.0 3.1 3.3 3.5 3.7 4.2

0.4 24.12 25.78 29.28 33.04 37.08 48.38
0.5 8.96 9.43 10.41 11.42 12.49 15.35
0.7 3.35 3.46 3.69 3.93 4.17 4.79
0.9 2.10 2.15 2.26 2.37 2.47 2.47
1.0 1.82 1.86 1.94 2.02 2.10 2.29
1.1 1.63 1.66 1.72 1.78 1.85 2.00
1.3 1.39 1.42 1.46 1.50 1.54 1.64
1.5 1.26 1.28 1.31 1.34 1.37 1.45
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As mentioned above, the determination of Weibull shape parameter h is
essential for performing simplified fatigue analysis. However, there is no explicit
answer for determining its value. The value is normally selected either based on
experience from fatigue analysis of similar structures or by carrying out relevant
numerical analyses. And in practice, the parameter is influenced by the structure
type, dynamic amplification, water depth, wave climate (long term distribution of
wave height) and position of the joint in the structure [60].

Alternatively, by assuming a log-linear long-term wave height distribution, a
similar method is proposed by Williams and Rinnie [302].

17.3.3 Stochastic Fatigue Analysis Method
with Narrow-Banded Responses

Since the deterministic fatigue analysis approach does not contain the information
regarding the energy content at various frequencies, it is not suitable to be directly
used to calculate the dynamic responses. Specifically, it cannot successfully handle
dynamic sensitive structures for which the dynamic loading has a band of periods
close to the structure’s important eigenperiods. This is due to the fact that a slight
variation of assumed period in the loading can significantly alter the responses. In
addition, dynamically, it is possible that the number of response cycles is not
identical to the number of loading cycles.

Moreover, for performing deterministic fatigue analysis, a significant element
of engineering judgment is needed to properly select the collection of discrete
deterministic waves, which need to be sufficient to establish the fatigue demand
that a structure would experience. Therefore, when an explicit fatigue assessment
is to be pursued for offshore structures that are designed on a site-specific basis,
preference is given to stochastic fatigue assessments over a deterministic approach
[303].

However, mobile offshore units are not based on site-specific sea state data, and
self-elevating units could experience significant variations with regard to water
depth and large variations of wave-induced responses can be expected. For
example, the fatigue assessment on the most important locations on the legs of a
mobile jack-up structure are site specific [303]. In this case, preference is given to
deterministic fatigue assessments over a stochastic approach.

Furthermore, the deterministic approach requires a significant amount of data
storage for each combination of wave height and period, stress responses at a
number of (typically more than nine) steps need to be stored. With a large amount
of waves, the required data storage is massive. For example, considering an off-
shore structure subject to waves from 12 directions with a 30� direction interval,
with 100 combinations of wave height and period per direction and responses at 15
steps per wave, the stresses at only 1 location require 18,000 (12 9 100 9 15)
response calculations to determine the 1,200 stress ranges.
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In addition, as mentioned previously, deterministic fatigue analysis implies that
loading is produced by a regular wave, which does not take into account the
stochastic nature of the sea waves.

All the drawbacks and difficulties of deterministic fatigue analysis above can be
solved by using stochastic analysis, as will be elaborated in the following.

A stochastic fatigue analysis requires a linearized frequency domain hydrody-
namic analysis followed by a quasi-static or dynamic structural analysis. It is
applicable for structures subjected to dynamic loading that have statistically sta-
tionary properties for a large number of stress cycles [81]. The essential feature of
stochastic analysis is the fact that the stress response ranges and periods (i.e.,
number of cycles) can be determined from the stress response spectrum, which is
calculated by multiplying load spectrum with the square of the modulus of stress
transfer function. For each calculated stress response spectrum, by assuming that
the short-term stress range responses follow Rayleigh probability distribution
(whereby it is assumed that the variation of stress is a narrow-banded random
Gaussian process as discussed in Sect. 10.3), the number of cycles in each stress
range category can be simply obtained and used to calculate the partial fatigue
damage contributed by each stress range. When a narrow band assumption is not
valid for the stress process, a correction factor can be applied in the calculation of
short-term fatigue damage as will be presented in Sect. 17.3.5.2. Having calculated
the short-term damage, by using Miner’s rule the fatigue damage from all stress
ranges can be calculated for the defined stress response spectrum. The entire
procedure is illustrated in Fig. 17.21 and elaborated as follows.

Load (stress) transfer functions (for waves, this is with respect to the wave height
and period) are obtained by passing a harmonic loading function (for waves, this is
for example the airy wave [364]) with predefined load conditions (for waves, this is
the wave height at different periods and directions; for wind, this is the wind speed
at different directions) through the target structure. Figure 17.22 shows a set of the
modulus of the stress transfer functions H fð Þj jð , see Sect. 11.1.1) to unit wave
height (from various directions) at a selected structure location obtained through a
structural analysis. The stress transfer function must be determined on the basis of
analyses of a sufficient number of wave/wind directions. For each direction of stress
transfer function, tens of load (wave or wind) periods are incorporated at a period
range of engineering interests (accounting for the influence from both loading and
responses).

Thereafter, the load spectrum is multiplied by the square of the modulus of
hotspot stress transfer function for each of the load (wave or wind) directions in
order to provide the hotspot stress response spectrum Srr fð Þ:

Srr fð Þ ¼ H fð Þj j2S fð Þ ð17:28Þ

where S fð Þ is the load (wave or wind) energy spectrum at various frequencies
f. For waves, this is the wave spectrum corresponding to each sea state with
predefined significant wave height and zero crossing period (not design wave
height and period) combinations from each direction; for wind, this is the wind
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Fig. 17.22 Modulus of transfer functions H fð Þj jð Þ of principal stress at a shell element surface at
a location on the top of a GBS shaft (12 wave directions with an interval of 30�, wave periods
range from 1.25 s (f = 0.80 Hz) to 30.0 s (f = 0.033 Hz))
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Fig. 17.21 Schematic procedure for a stochastic fatigue calculation (s is 1 year measured in
seconds, Wj;q is the probability of occurrence for a given load state q (sea state or wind state) from
the load direction j)
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spectrum at each wind speed from each wind direction; f is the frequency in Hz;
H fð Þ is the stress transfer function at various frequencies f.

It should be noted that the abscissa of the spectra used here have a unit of
frequency Hz instead of an angular frequency, which is used in Sect. 10.2.

The zero moment (variance) k0, which is equal to the area under the stress
spectrum curve about the vertical axis (at f = 0), is also equal to the square of the
root of mean square of the stress process:

k0 ¼ r2
RMS ¼

Z

1

0

Srr fð Þdf ¼
Z

1

0

H fð Þj j2S fð Þdf ð17:29Þ

For every load state from a defined load direction, there is an associated average
load (wave or wind) period Tz:

TZ ¼

ffiffiffiffiffi

k0

k2

s

ð17:30Þ

where k2 ¼
R

1

0
Srr fð Þf 2df is the second moment with respect to the vertical axis.

Similar to the deterministic analysis method, one can assume that the given load
state (sea state or wind state from a defined direction) occurs with a predefined
duration s in seconds, for example 1 year as s = 365 days 9 24 h 9 60 min 9

60 s = 31,536,000 s.
The corresponding number of cycles that occur for this load state within a year

is then:

n ¼ s
TZ

¼ s

ffiffiffiffiffi

k2

k0

s

ð17:31Þ

By assuming that the short-term stress range follows Rayleigh distribution
(Sect. 10.3) in a given stress response spectrum, the probability density of stress
range banded around rs is given as:

p rsð Þ ¼
rs

4k0
e
� r2

s
8k0

� �

ð17:32Þ

Within s seconds, the number of stress cycles banded around rs is:

dn ¼ n � p rsð Þdrs ð17:33Þ

The fatigue damage dD associated with this band of stress cycles using the S–N
curve data is:

dD ¼ dn
N
¼ dn

Ar�m
s

¼ n � p rsð Þdrs

Ar�m
s

¼
n � rs

4k0
e
� r2

s
8k0

� �

drs

Ar�m
s

ð17:34Þ
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The 1 year partial fatigue damage for an entire stress response spectrum cor-
responding to a load state q and a load direction j is simply obtained by integrating
the expression above:

Dj;q ¼
Z

1

0

dDdrs ¼
Z

1

0

n � rs

4k0
e
� r2

s
8k0

� �

Ar�m
s

drs ¼
n

4Ak0

Z

1

0

r 1þmð Þ
s e

� r2
s

8k0

� �

drs ð17:35Þ

For a constant m, the integral above has a gamma function solution [81]:

Dj;q ¼
8k0ð Þ

m
2

A
� s

ffiffiffiffiffi

k2

k0

s

� C 2þm
2


 �

ð17:36Þ

By equating the fatigue damage calculation above to the fatigue damage under
constant stress amplitude, one has

8k0ð Þ
m
2

A
� s

ffiffiffiffiffi

k2

k0

s

� C 2þm
2


 �

¼ nSm

A
ð17:37Þ

One obtains the equivalent fatigue stress range re (also called effective stress
range) that would produce the same amount of fatigue damage:

re ¼ 8k0ð Þ
1
2 C

2þm
2


 �� 	1
m

ð17:38Þ

Note that the root of the mean square of stress range is:

rRMS ¼
ffiffiffiffiffiffiffi

8k0

p

ð17:39Þ

And the significant stress range is:

rs ¼
ffiffiffiffiffiffiffi

4k0

p

ð17:40Þ

One can also obtain the relationship among the three stress terms as:

re ¼ rRMS C
2þm

2


 �� 	1
m

¼ rs

C 2þm
2

� �� 1
m

ffiffiffi

2
p ð17:41Þ

From load (wave or wind) statistics, a given load state q (sea state or wind state)
from a defined direction j occurs with the probability of occurrence Wj,q. Partial
damages are then weighted over this probability of occurrence with various load
states and directions in order to assess the total damage:

Dtotal ¼
X

j

X

q

Wj;q � Dj;q

� �

ð17:42Þ
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And the total fatigue life L in years is calculated as:

Ltotal ¼
1

Dtotal

ð17:43Þ

It should be noted that almost all responses due to environmental loadings are
not narrow banded, or at least not strictly narrow banded. The narrow band
assumption always leads to a conservative evaluation with regard to fatigue, even
though this in many cases fulfills the requirement of engineering accuracy. The
fatigue assessment due to wide-band load effects can be addressed in the frequency
domain, by either modifying the fatigue damage calculated from a narrow band
assumption or by manipulating the probability density of stress ranges calculated
from rain-flow counting, which will be discussed in Sect. 17.3.5.2.

Example: Assume that the wave-induced responses for fixed offshore
structures are narrow banded and dominated by a single vibration mode
corresponding to the fundamental eigenfrequency. Establish the relationship
between fatigue lives and the variation of fundamental eigenfrequencies.

Solution: Note that the fatigue damage accumulation experienced by a fixed
offshore structure, such as a jacket or a jack-up structure, is mainly caused by
the inertia force-dominated (rather than drag force-dominated) wave loading
due to small and medium sized sea waves. Therefore, by neglecting the
wave-induced drag forces, and assuming that the fundamental eigenmode
dominates the dynamic responses of the structure, i.e. the quasi-static con-
tribution to the mean square stress is assumed to be small, the ratio of fatigue
damage at two different natural frequencies can be expressed by:

FL
0

FL
¼ f

0
1

f1


 �

r
0
dl

rdl


 �m

ð17:44Þ

where rdl and r
0

dl are the mean square root stress from the dynamic responses
of the vibration mode at the two different natural frequencies, and m is the
negative inverse slope of the S–N curve for the material.

Depending on whether the cause of natural frequency change is due to
stiffness or mass change, the mean square root stress is influenced differently
[213].

For stiffness change-dominated dynamic responses, rdl can be expressed
as:

rdl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

M1

S x1ð Þ
x5

1

s

ð17:45Þ
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For mass change-dominated dynamic responses, rdl can be expressed by:

rdl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

K1

S x1ð Þ
x3

1

s

ð17:46Þ

where A is a constant depending on structural and wave characteristics such
as damping, wave spreading, etc. M1 and K1 are modal stiffness and modal
mass, and are related by:

K1 ¼ M1 � x2
1 ð17:47Þ

For wind-driven sea states, the upper bound of the wave spectrum value can
be modeled at frequencies higher than the frequency of the peak [214]. The
wave spectrum can then be written as:

Smax xð Þ ¼ 2:5783 � 10�4 x
2p

� ��4:6
ð17:48Þ

By assuming that, for small variation in natural frequency x1, the ratio
between mean square modal deflection and mean square stress remains
constant, i.e. the mode shape does not change with the variation of natural
frequency [213], and by further assuming that all of the constants of the
spectra in Eq.(17.48) are absorbed into a constant A, Eqs. (17.45) and
(17.46) can then be rewritten as:

For the stiffness change-dominated case:

rdl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

M1

1

x9:6
1

s

ð17:49Þ

For the mass change-dominated case:

rdl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

K1

1

x7:6
1

s

ð17:50Þ

By substituting the two equations above into Eq. (17.44), one finally obtains
the fatigue damage ratio as expressed in Eq. (17.51) for the stiffness change-
dominated case, and Eq. (17.52) for the mass change-dominated case:

FL
0

FL
¼ f

0

1

f1


 � �4:8mþ1ð Þ

ð17:51Þ

FL
0

FL
¼ f

0
1

f1


 � �3:8mþ1ð Þ

ð17:52Þ

where f
0
1 and f1 are the natural frequencies that are assumed to dominate the

dynamic structural responses.
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Based on the two equations above, Fig. 17.23 shows the fatigue life ratio
varying with the ratio of natural frequency. It is noticed that a 1 % variation
of natural frequency can result in a fatigue life change of up to 13 %, 17 %,
and 21 % for m = 3.0, m = 4.1 and m = 5.0, respectively. If the natural
frequency decreases to less than 80 % of the original one, the fatigue life is
close to zero, as marked by the circles in Fig. 17.23.

It should be noticed that, in a practical case, both quasi-static and
dynamic responses contribute to the mean square stress, while the derivation
of the two equations above omits the contribution from the quasi-static part
of the responses. Therefore, the results from these equations are regarded as
the upper-bound solutions. In reality, the sensitivity of fatigue lives due to
the variation of natural frequencies may not be so high.

17.3.4 Deterministic Versus Stochastic Fatigue Analysis
for Structures Subjected to Wave Loads

As discussed in Sects. 17.3.1 and 17.3.3, for sea wave-induced fatigue analysis,
deterministic fatigue analysis applies especially to members within the splash zone
because the load nonlinearities involved in the splash zone are mainly due to
variations of the water surface, while stochastic analysis applies to dynamic sen-
sitive structures. Experience shows that the fatigue life calculated by deterministic
fatigue life is often lower than that calculated by stochastic fatigue analysis.

Fig. 17.23 The fatigue life ratio due to the variation of natural frequency, m is the negative
inverse slope of the S–N curve
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The fatigue lives of an offshore jacket structure shown in Fig. 17.24 are cal-
culated by both stochastic and deterministic fatigue analysis. The fatigue lives on
different locations of legs are selected for checking as shown in Table 17.6. It is
clearly shown that the stochastic fatigue calculations generally result in a higher
calculated fatigue life.

Fig. 17.24 Geometry model of a jacket structure for fatigue analysis (PN stands for platform
north direction) (courtesy of Aker Solutions)
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17.3.5 Fatigue Analysis Methods Accounting for Bandwidth,
Multi-modal Frequency and Nonlinearities

It is noticed that the assumed Rayleigh distribution of short-term stress range
(stress responses follow a Gaussian distribution) in the stochastic fatigue calcu-
lation is only valid if the responses are approximately narrow banded. When the
loading frequencies are far from a structure’s important eigenfrequencies, the
structural responses will have a noticeable variety of frequencies, and jagged and
irregular time history, which are obviously a broad-banded process.

Furthermore, when structures’ oscillation frequencies or important eigenfre-
quencies are well separated from that of the loading, the resulting responses may
exhibit multi-modal frequency components. The fatigue calculation of the relevant
responses then requires special assumptions and mathematical treatment.

In addition, if significant nonlinearities are involved, the stochastic analysis is
no longer valid, and the responses are non-Gaussian. As discussed in Sect. 10.2,
examples of these nonlinearities for offshore structures are the variation of the
water surface causing the intermittency of the wave loading, the variation of

Table 17.6 Fatigue lives for
leg nodes along row A and
row B shown in Fig. 17.24

Joints Fatigue life (years)

Stoch. Determ.

Joints on various
locations along
row A and B

242 92
367 273
358 181
379 229
990 158

1190 252
1480 154
1500 359
1740 468
2200 1240
1880 310
1820 336
1980 318
1810 399
2050 237
2250 663
2330 570
2700 507
2750 833
3590 3400
3470 688
2980 321
3520 716
3530 356
3930 898
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buoyancy forces on members in the splash zone [53–57], large structural defor-
mation and nonlinear plasticity, and the nonlinearities induced from drag forces
(Morison’s equations) [52, 53, 201]. The spectrum fatigue analysis method cannot
efficiently handle non-Gaussian responses in an accurate manner. For instance, the
fatigue damage induced by the wave-induced drag force can be as much as several
times that under the Gaussian assumption [24].

The problems with regard to the bandwidth can be solved by a simple modi-
fication to fatigue damage calculated from a narrow-banded assumption (Sect.
17.3.3), which will be illustrated in Sect. 17.3.5.2. The problem regarding both
bandwidth and nonlinearities can be solved by the semi-stochastic analysis in the
time domain, as will be elaborated in the Sect. 17.3.5.4, even if the method in the
time domain requires a significant increase of computer memory storage.

17.3.5.1 Cycle Counting of Stress Response Time History

Figure 17.25 shows two stress time history samples that are wide and narrow
banded. For the narrow-band stress history, the stress ranges can be easily iden-
tified between the two adjacent upcrossing points. However, with the increase of
bandwidth, numerous small peaks occur and it is not immediately obvious how to
count stress cycles to be used in Miner’s accumulation rule, as is shown in the
lower figure of Fig. 17.25. The stress history is normally reduced to a sequence of
events that can be regarded as compatible with constant stress range in S–N
curves, such a reduction is cycle counting. It is also known that pairing large peaks
and troughs gives an upper-bound solution with regard to fatigue damage, while
paring sequential peaks and troughs gives a lower bound.

(t)

Narrow-banded t

S1
S2

S3 S4

t

(t)

Broad/wide-banded

Fig. 17.25 Samples of random stress response time series showing narrow- (upper) and wide-
banded (lower) characteristics, respectively ( indicates indicates a local maxima (positive and
negative peak), � indicates an upcrossing)
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A number of algorithms [367, 368] have been proposed for stress counting for the
wide-band process, such as peak counting, range counting, level crossing counting,
and rain-flow counting. All of these construct effective stress ranges based on series
of peaks (local maxima) and valleys (local minima). The output from each counting
method is the stress range with the associated number of occurrences, which can be
further used in combination with relevant S–N curves and cumulative laws such as
Miner’s summation, so that the final fatigue damage can be obtained. The most
widely recognized method is the rain-flow counting method [243] originally pro-
posed by Matsuishi and Endo [369]. The method received its name because it
resembles rain flowing off a pagoda roof [369]. It uses a specific cycle counting
scheme to account for effective stress ranges and identify stress cycles related to
closed hysteresis loops in the material stress–strain diagram [81, 304].

Over time, several versions of rain-flow counting methods have been proposed,
such as the Range-Pairs count, Wetzel’s method, and pagoda roof method, all of
which are fairly complicated. To make this description simpler, one needs to
perform the counting with a time history that starts and ends at either the highest
peak or lowest trough [81]. Each local maximum is paired with one particular local
minimum such that the minimum is the lowest drop before reaching the value of
the local maximum again both forward and backward in time. See references [60,
243, 370] for elaborations of the background for rain-flow counting methods.

By using a Gaussian load process, Rychlik [376] has formulated the rain-flow
counting method in an explicit mathematical manner and provided the basis for
deriving the long-term distribution of rain-flow cycle amplitudes. As illustrated in
Fig. 17.26, suppose that the stress r(t) (-T \ t \ T) has a local stress maximum r
(d) at time d. One needs to search for the lowest values in both forward and
backward direction (t+ for forward direction and t- for backward direction) in time
between the time point of the local maximum and the nearest at which the stress
exceeds the value of the local maximum r (d), i.e., t+ is the first time at which the
first up crossing point occurs after time d, and t- is the first time at which the last
down crossing occurs before time d. If one cannot find the first up crossing point,
t+ = T; similarly, if one cannot find the last down crossing point, t- = -T.
Thereafter, one can define the difference between the local stress maximum r (d)
and the stress value at t+ and t-:

rþa dð Þ ¼ max r dð Þ � r sð Þf g for d\s\tþ ð17:53Þ

t

(t)

a
-

t-
t+

a
+ = a

Fig. 17.26 Illustration of rain-flow counting method proposed by Rychlik [376] ( indicates a
local maxima (positive and negative peak), � indicates a crossing point)
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r�a dð Þ ¼ max r dð Þ � r sð Þf g for t�\s\d ð17:54Þ

The rain-flow cycle amplitude ra (d) is the minimum of the two values above:

ra dð Þ ¼ min rþa dð Þ; r�a dð Þ
� �

ð17:55Þ

For a more elaborated description of the rain-flow counting method, readers
may read references [46, 243, 368].

Rychlik [377], and Frendhal and Rychlik [378] have proved the following
rigorous relation with regard to fatigue damage by various counting rules:

DRC �DRFC �DLCC ¼ DNBð Þ�DPC ð17:56Þ

where DRC;DRFC;DLCC;DNB;DPC represent the fatigue damage calculated by
range counting, rain-flow counting, level-crossing counting, narrow band
approximation, and peak counting.

For an elaboration of range counting, level-crossing counting, and peak
counting, ASTM Designation E 1049-85 [367] is recommended for reading.

From the equation above, it is important to know that fatigue damage based on
rain-flow counting has an upper-bound limit that is equal to the damage estimated
from the narrow-band approximation. Furthermore, range counting is less con-
servative than either rain-flow counting or narrow band approximations.

The rain-flow counting method has its limitation in that it is difficult to
determine the probability distribution of rain-flow stress amplitudes.

Since rain-flow stress counting does not have a closed form solution in the
frequency domain for a bi- or tri-modal or generally wide-band Gaussian process
[24], in a spectrum fatigue analysis, it can be implicitly accounted for either by
amending the narrow band fatigue damage with a correction factor or by a direct
calculation of the rain-flow counting [243] from the response spectrum of stress
range. Both approaches provide closed form expression, and they result in a lower
fatigue damage than their narrow band counterpart. For example, Gao and Moan
[379] presented that for bandwidth parameter (defined in Sect. 10.2) ranging
between 0.3 and 0.5, the narrow-band assumption gives an overestimation of
fatigue damage by less than 10 % and 30 %, respectively.

17.3.5.2 Spectrum Fatigue Analysis Methods Accounting
for Bandwidth

Modifying Narrow-Banded Fatigue Damage

Bandwidth can conveniently be accounted for by modifying the fatigue damage
calculated from a narrow-band assumption (elaborated in Sect. 17.3.3).

In Sect. 10.2, the average bandwidth parameter of energy density spectrum [67]
w is introduced as:
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w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

k0 � k4

s

ð17:57Þ

w ¼ 1:0 indicates a broad/wide-band process and 0.0 a narrow-band process.
To calculate the fatigue damage with responses being wide-banded, by ana-

lyzing the time series samples from 17 uni-modal and 17 bi-modal spectra, with
the inverse slope in the S–N curve m varying at 3.0, 4.0, 5.0, 6.0 and 10.0 and with
the bandwidth parameter ranging from 0.45 to 1.0, Wirsching and Light [371]
proposed an empirical rain-flow correction factor U m;Wð Þ to the narrow band
fatigue damage D as:

DWB ¼ D � U m,Wð Þ ð17:58Þ

where DWB and D are the wide- and narrow-band fatigue damage, respectively;
The correction factor U m,Wð Þis expressed as:

U m;Wð Þ ¼ 0:926� 0:033mþ 0:074þ 0:033mð Þ � 1�Wð Þ 1:587m�2:323ð Þ
h i

ð17:59Þ

A number of researchers [372, 373] have presented approaches similar to the
effective stress range (weighted average stress) discussed in Sect. 17.3.3. One such
is that proposed by Kam and Dover [372]:

reWB ¼ 8k0ð Þ
1
2 U m;Wð Þ � C 2þm

2


 �� 	1
m

ð17:60Þ

Direct calculation of Rain-Flow Counting From the Stress Response Spectrum

Note that the methods introduced above are based on the narrow-band fatigue
damage. A completely different approach is based on the probability density of
stress ranges calculated from rain-flow counting.

Here we first introduce another set of parameters to define bandwidth as
functions of spectral moments:

aX ¼
kX
ffiffiffiffiffiffiffiffiffiffiffi

k0k2X
p for X ¼ 1; 2; 3. . . ð17:61Þ

Thus we have:

a1 ¼
k1
ffiffiffiffiffiffiffiffiffi

k0k2
p � 0:0 ð17:62Þ
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a2 ¼
Tp

Tz
¼ k2

ffiffiffiffiffiffiffiffiffi

k0k4
p � 1:0 ð17:63Þ

a2 is sometimes also named the irregularity factor.
where ki is the spectral moment defined in Eq. (10.6).
Both a1 and a2 approach unity when the random process is narrow banded and

zero when the process is wide banded, and the two fatigue estimation methods
introduced as follows are explicit functions of a1 and a2.

• Dirlik’s method

Based on the Monte Carlo simulation to generate a large amount of signals that
are fitted into 17 power spectrum density functions varying in shape, Dirlik [374]
presented an empirical probability density function p rrð Þ of rain-flow counting
stress ranges rr as:

p rrð Þ ¼
D1

Q e�
Z
Q þ D2Z

R2 e�
Z2

2R2 þ D3Z e�
Z2
2

ffiffiffiffiffiffiffi

4k0
p ð17:64Þ

where D1 ¼
2 xm�a2

2ð Þ
1þa2

2
; xm ¼ Tp

T
¼

ffiffiffiffi

k2
k4

q

= k0
k1
¼ a1a2; T ¼ k0

k1
is the mean period of

motions described in Sect. 10.2; R ¼ a2�xm�D2
1

1�a2�D1þD2
1

; D2 ¼ 1�a2�D1þ

D2
11� R; D3 ¼ 1� D1 � D2; Q ¼ 1:25 a2�D3� D2Rð Þ½ �

D1
; Z ¼ rr

2
ffiffiffiffi

k0
p ;

Based the probability density function described above, the effective stress
range can be obtained as:

rer ¼
Z

1

0

rm
r

p rrð Þdrr ð17:65Þ

Assuming that the number of cycles n occurs with a predefined duration s in
seconds, when the duration is 1 year, n is calculated as:

n ¼ s

Tp
ð17:66Þ

One finally obtains the fatigue damage within duration s [376, 380]:

DWB ¼ n
rer

A
¼ s

Tp

R

1

0
rm

r
p rrð Þdrr

A
ð17:67Þ

where A is a constant related to the mean S–N curve.
Though obviously lacking of theoretical justification, Dirlik’s method has been

proved to be far superior to other existing solutions for rain-flow damage pre-
diction [381, 382].
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• Benasciutti and Tovo’s method

A more recent method proposed by Benasciutti and Tovo [383] states that
fatigue damage of wide-banded responses can be approximated by a linear com-
bination of narrow-banded and range counting results, both of which have a closed
form expression in the frequency domain:

DWB ¼ qDNB þ 1� qð ÞDRC ¼ qþ 1� qð Þam�1
2

� 

D ð17:68Þ

where DNB and DRC are fatigue damage under narrow-band assumption and using
range counting method, respectively; and q is a weighting parameter dependent on
power spectral density, which again is obtained from extensive numerical
simulations:

q ¼
a1 � a2ð Þ 1:112 1þ a1a2ð Þ � a1 þ a2ð Þ½ �e2:11a2 þ a1 � a2ð Þ

� �

a2 � 1ð Þ2
ð17:69Þ

The equation above is calibrated on the results from 286 numerical simulations
considering Gaussian random processes with different spectral densities having
various combinations of bandwidth parameters a1 and a2.

An independent investigation performed by Gao and Moan [384, 385] shows
that the empirical formulas proposed by both Dirlik and Benasciutti and Tovo are
accurate enough for all types of wide- and narrow-banded Gaussian processes.

17.3.5.3 Fatigue Damage Accounting for Multi-modal Frequency
Components

For structures with eigenfrequencies or flexible oscillation frequencies that are
well separated from that of the loading, the responses appear with multi-modal
characteristics, typically of bi-modal or tri-modal type. Structures relevant to
bi-modal responses are typical land-based structures under dynamic wind loadings,
responses of large ships and the marine mooring system, wave-induced responses
or springing responses of tension leg platforms. Tri-modal process could also be
relevant for structural responses involving vortex-induced vibrations [385]. In
order to calculate fatigue damage, the spectrum is normally divided into several
well separated frequency regions.

Let’s take the bi-modal spectrum as an example. As shown in Fig. 17.27, the
bi-modal spectrum can be divided into two regions: a low frequency (LF) region
and high frequency (HF) region, where within each region the spectrum is narrow
banded. Applying rain-flow counting, essentially, two types of cycles are extrac-
ted: large cycles accounting for interaction between the LF and HF regions, and
small HF cycles only [24].

A number of methods are proposed for calculating fatigue due to responses
possessing a bi-modal spectrum, the majority of which are based on the
assumption that the process follows a Gaussian distribution.
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Sakai and Okamura [388] showed that fatigue damage under a bi-modal
spectrum can simply be calculated as the sum of each narrow-band component
without interaction between the two components. Therefore, the fatigue damage
calculated from this method is often underestimated.

Fu and Cebon [387] discussed a method that involves assuming that the number
of large cycles is directly associated with the LF cycles, while that of small cycles
is equal to the difference of the HF number and the LF number by keeping the total
number of counted cycles the same as that of the HF cycles.

Based on Fu and Cebon’s work, Benasciutti and Tovo [386] proposed that the
number of long-period cycles can be determined by using the mean zero
up-crossing rate of the equivalent process.

By combining an envelope HF process and an LF process, Jiao and Moan [389]
presented that the fatigue with bi-modal spectrum can be calculated by summing
up the HF damage caused by small cycles and the damage due to an equivalent
process of the HF envelope plus the LF process. They proposed a bi-modal fatigue
damage as a correction of the narrow band approximation:

DBi�modal ¼ UD ð17:70Þ

where D is the fatigue damage under narrow band assumption (Sect. 17.3.3); and U
is a correction factor due to the bi-modal responses, which is formulated as:

U ¼ mHF

mY

g
m
2
HF þ

mP

mY

g
m
2þ2ð Þ

LF 1�
ffiffiffiffiffiffiffi

gHF

gLF

r


 �

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pgHFgLF

p mC mþ1
2

C mþ2
2

 !" #

ð17:71Þ

where mHF is the mean zero up-crossing rate (inverse of zero upcrossing period) for

spectrum within HF region; gHF ¼
r2

HF

r2
HF
þr2

LF

and gLF ¼
r2

LF

r2
HF
þr2

LF

are the normalized

variance of process in HF and LF regions, respectively; rHF and rLF are the

standard deviation of spectrum in HF and LF region, respectively. mY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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2
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Fig. 17.27 A bi-modal stress spectrum with low frequency (LF) and high frequency (HF) region
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bandwidth parameter for spectrum within HF region, and can be set as 0.1; mLF is
the mean zero up-crossing rate for LF components; and m is the inverse slope in
the S–N curve.

From the equation above, it is noticed that the first item on the right hand side of
the equation represents the number of small cycles, determined by the mean zero
up-crossing rate of the HF component. The number of large cycles is given by that
of the equivalent process in the second item.

The method by Jiao and Moan presented above has been implemented in a few
offshore standards including ISO 19901-7 [390], API RP 2SK [391] and DnV OS-
E301 [392], to estimate the fatigue damage in mooring lines.

All the methods for calculating fatigue damage mentioned above with a bi-
modal spectrum provide accurate assessment [385].

17.3.5.4 Fatigue Assessment Accounting for Both Bandwidth
and Nonlinearities: Semi-stochastic Fatigue Analysis Method
in the Time Domain

It is noted that all the methods above cannot completely handle the problems
induced from a combination of bandwidth and nonlinearities.

If such situation occurs, a semi-stochastic fatigue analysis (sometimes also
called a direct calculation method) is recommended. In this method, the stochastic
load histories in the time domain are generated from various load spectra for
different load conditions with a scattered probability of occurrence. After applying
each load time history on a structure and performing a dynamic structural analysis,
the stress responses on various locations of the structure can be obtained, and are
for example rain-flow counted to calculate the partial fatigue damage. All the
partial fatigue damages are then summed up to obtain the total fatigue damage or
life.

Let’s take the wave-induced fatigue damage as an example. The procedure is
illustrated as follows:

1. Establish the FE modeling of a target structure.
2. Divide scatter diagram of waves into representative blocks.

– q sea state blocks with relevant probability.
– j wave directions with relevant probability.
3. Generate the load history of wave loading from a relevant wave energy spec-

trum (Sect. 12.1.2).
4. Include hydrodynamic coefficients, accounting for the buoyancy effects.
5. Dynamic analysis.

– Start with the first sea state and the first wave direction and proceed through the
q 9 j analysis.

– Time histories of the forces/stresses for selected locations are documented.
6. Calculate the stress concentration factors.
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7. Choose a suitable S–N curve. For welded joints, the mean stress effects may not
be taken into account due to its insignificant influence compared to the presence
of residual stress. However, if a structure is constructed with mean stress
sensitive material such as composites, its effects should be considered.

8. Calculate the fatigue damage for each sea state:
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Hs (m) 2 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5
0.25 25 14 18 14 24 17 8 9 5 0 2 3 1 1 6
0.75 79 235 408 539 496 488 426 225 111 46 16 7 6 3 2
1.25 71 466 896 1223 1227 1219 911 626 470 252 108 70 36 12 13
1.75 3 134 768 1342 1443 1288 1143 854 618 404 205 129 44 21 10

Hs =1,4 m Tp=5 s Pb=0,06 Hs =1,5 m Tp=7,5 s Pb=0,178 Hs =1,5 m Tp=10,3 s Pb=0,103 Hs =1,6 m Tp=13,1 s P b=0,024 Hs=1,5 m Tp=16,1 s Pb=0,003
2.25 0 22 292 1013 1328 1359 1056 921 669 431 188 186 56 27 17
2.75 1 2 79 491 1037 1276 1031 795 678 479 208 193 81 35 13
3.25 0 1 16 189 701 1038 896 729 532 386 235 197 97 40 15
3.75 0 0 3 57 318 814 767 562 447 371 193 168 89 50 17

Hs =2,4 m Tp=5,4 s Pb=0,008 Hs =2,9 m Tp=7,8 s Pb=0,184 Hs =3 m Tp=10,3 s Pb=0,173 Hs =3,1 m Tp=13,2 s P b=0,062 Hs=3,2 m Tp=16 s Pb=0,01
4.25 1 0 1 11 130 568 731 500 341 306 146 142 67 29 25
4.75 0 0 0 3 44 329 533 444 337 248 122 95 40 31 20
5.25 0 0 0 1 15 112 339 396 280 195 121 98 31 26 16
5.75 0 0 0 1 4 46 193 244 224 138 73 70 27 15 15

Hs =4,6 m Tp=8,3 s Pb=0,024 Hs =4,9 m Tp=10,4 s Pb=0,087 Hs =4,9 m Tp=13,2 s P b=0,033 Hs=4,9 m Tp=16,2 s Pb=0,007
6.25 0 0 0 0 0 18 91 177 156 125 65 51 20 15 7
6.75 0 0 0 0 1 1 34 108 137 106 46 40 14 5 1
7.25 0 0 0 0 0 1 11 53 93 74 50 30 14 7 8
7.75 0 0 0 0 0 0 1 29 61 63 27 19 6 3 1

Hs =6,7 m Tp=10,8 s Pb=0,018 Hs =6,9 m Tp=13,2 s P b=0,013 Hs=6,8 m Tp=16,1 s Pb=0,002
8.25 0 0 0 0 0 1 0 14 31 43 24 13 6 5 1
8.75 0 0 0 0 0 0 0 8 19 27 17 8 7 1 0
9.25 0 0 0 0 0 0 0 2 5 18 13 9 2 1 1
9.75 0 0 0 0 0 0 0 1 2 7 7 4 3 3 0

Hs =8,6 m Tp=11,2 s Pb=0,002 Hs =8,8 m Tp=13,2 s P b=0,004 Hs=8,9 m Tp=16 s Pb=0,001
10.25 0 0 0 0 0 0 0 0 3 3 7 4 4 1 0
10.75 0 0 0 0 0 0 0 0 0 3 1 2 0 0 0
11.25 0 0 0 0 0 0 0 0 0 4 2 1 0 0 0
11.75 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Hs =10,7 m Tp=13,4 s P b=0,001
12.25 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
12.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
13.25 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
13.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 17.28 The semi-stochastic fatigue analysis procedure for offshore structures subjected to
dynamic wave loading (courtesy of Aker Solutions) [365]
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– For tubular members, calculate the hot-spot stresses for joints at the eight spots
in the crown and eight spots in the saddle side from the force time histories.

– The number of cycles and stress ranges are calculated using the rain-flow
counting rule.

9. Calculate the 1 year fatigue damage at each hotspot of a joint.
10. The fatigue damage at each hotspot of a joint for q 9 j load cases are mul-

tiplied by the probability for each sea state and accumulated to the 1 year
fatigue damage. Then select the maximum damage among those hotspots as
the 1 year fatigue damage.

The procedure shown above is also illustrated in Fig. 17.28.
For a detailed description of the semi-stochastic fatigue analysis procedure,

readers may read Ref. [365].
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Chapter 18
Human Body Vibrations

18.1 General

Even if most vibrations do not cause damage to structures and equipment, they
may introduce a sudden change of forces on human bodies, causing discomfort and
local injury known as whiplash.

The balance organs located in the inner ear can detect changes in the magnitude
and the direction of gravitational and angular accelerations. For most individuals,
excessive stimulation of these organs will cause motion sickness. Motion sickness
can be exacerbated if the individual is inside a room and cannot see the horizon.
Motion sickness can also be magnified by anxiety, fatigue, hunger, odors (e.g.
cooking and fuel oil, greasy food, reading, and carbonated alcoholic drinks) [91].
Some studies indicate that human beings are more sensitive to horizontal trans-
lational motions than vertical ones because horizontal motions can directly ‘‘throw
people off their feet.’’ People are more sensitive to rotations about their vertical
axis than that other axes because the rotations about their vertical axis produce a
large sight displacement of distant objects. Experiments [393] also indicate that
young children and women are more susceptible to motion sickness than men.
Generally, middle-aged people are more affected by motion than elderly people.

It is noted that the human body does not directly perceive displacement or
velocity, but perceives accelerations. This can be easily explained by an example
of a passenger on board an airplane. He or she can feel comfortable at a normal
speed ranging from 400 to 1,000 km/hour. But when the plane suddenly meets
turbulence and strongly shakes, the change of speed, i.e. accelerations, will be
perceived by the passenger with discomfort or even fear, simply because the
accelerations induce forces on the human body and balance organs in the inner ear.
For this reason, the effects of motions on human beings are normally measured
with accelerations.

Motion effects are also dependent on a number of parameters [394]:

• The duration of motions: motions acceptable for a short duration may not be
acceptable for long durations.

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
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• The activities in question: general office work, operating work, or precision
tasks.

• The form of excitations: e.g. earthquake with a Richter scale 5.0, average sway
amplitude of a ship lasting for minutes due to a storm, traffic at rush hour etc.

• The kind of vessels or structures in which the human beings are located: e.g.
office buildings, residential houses, chemical plants, bridges, ships, and offshore
platforms.

• The time of day: day time or night time.

As mentioned above, the kinematics of the human body make people more
sensitive to accelerations in the horizontal direction (along the axis from the spine
to breast bone X and from the right shoulder to the left Y) than the vertical plane
(the axis from feet to head Z). Therefore, an effective amplitude ae contributed
from accelerations from all three directions (aX , aY , and aZ) is formulated as:

ae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða2
X þ a2

YÞ þ a2
Z

q

ð18:1Þ

The formula above is widely used for evaluating the limiting amplitudes for
various activities and situations.

There are no unified limits of acceptable and unacceptable levels of motions.
The sensitivity of a human being to motions strongly depends on his/her indi-
vidual’s characteristics, the activities in which he/she is engaged, the environ-
mental noise, and even his/her emotions [394].

As mentioned in Sect. 2.1, jerk, which is the time-derivative of acceleration, is
also an important parameter when evaluating the discomfort caused to passengers
onboard vehicles. For passenger comfort, a train in operation will typically be
required to keep the jerk less than 2 m/s3. In the aerospace industry, a type of
instrument called a jerk-meter is used for measuring jerk.

18.2 Criteria Related to Human Body Vibrations

When a person is subjected to motions, each part of the body has its own resonance
frequency. Vibrations transmitted to human bodies can be amplified at or close to
the resonance frequencies of each part of the body, giving stretching or com-
pression of tissues and limbs to a variable degree depending on intensity, fre-
quency and directivity of vibrations. Figure 18.1 illustrates a mechanical model of
a human body with resonance frequencies for each part of the body.

The most important parts of the human body with respect to vibrations are the
abdomen, head and neck area. Posture is another example of human body function
that can be influenced by external vibrations. For vibrations with frequencies
ranging from 1 to 30 Hz, people experience difficulty in maintaining correct
posture and balance [2]. Specifically, in the longitudinal direction of the human
body (feet to head), the human body is most sensitive to vibrations in the
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frequency range between 4 and 8 Hz, while in the transverse direction, the body is
most sensitive to vibrations in the frequency range 1–2 Hz. Some vibration effects
on the human body may be difficult to relate to specific frequencies, but are related
to the cumulative effects of exposure over a range of frequencies. In general, they
cause imbalance, disorientation, lack of coordination, and motion sickness [395].

ISO 2631-1 [2] provides guidance on the evaluation of vibration perception and
comfort of humans in sitting, standing and reclining positions.

Based on the abundant measurements and experiences on how vibrations affect
human beings, ISO 2631 provides probable subjective reactions of people subject
to vibrations at various acceleration levels, as shown in Table 18.1.

For offshore structures, based on boundaries presented in ISO 2631, NORSOK
S-002 [399] specifies the maximum limits for continuous whole body vibrations
due to the vibrations of machinery and equipment. The limits are derived from the
acceptability of the exposure of human beings to vibrations based on a 12 h
working day. The vibration limits are specified graphically as combined levels for
vertical and horizontal movements as shown in Figs. 18.2 and 18.3. It should be
noted that extrapolation beyond this range is not allowed. In the two figures, the
vibration limits are categorized as follows:

• Category 1—Limits for central control room and living quarter areas.
• Category 2—Limits for workshops, laboratories, control rooms, offices and

equipment rooms outside living quarters.

Fig. 18.1 Mechanical model and resonance frequencies of a typical human body [396, 397]
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• Category 3—Limits for process, utilities and drilling areas.
• Category 4—Limits for vibrations locally to equipment.
• Category 5—Maximum limits (normally unmanned areas).

Table 18.1 Human perception of motions [2, 403]

Acceleration
level m/s2

Degree of discomfort Acceleration
level m/s2

Degree of
discomfort

\0.05 Human beings cannot perceive motions \0.315 Not
uncomfortable

0.05–0.1 Sensitive people can perceive motions; hanging
objects may move slightly

0.1–0.25 Most people can perceive motions; the level of the
motions may affect desk work; long-term
motions may produce motion sickness

0.25–0.315 Desk work become difficult
0.315–0.5 People strongly perceive motions; it is difficult to

walk naturally; standing people may lose their
balance

0.315–0.63 A little

uncomfortable
0.5–0.6 Most people cannot tolerate the motions and are

unable to walk naturally
0.6–0.7 People cannot walk or tolerate the motions 0.5–1 Fairly

uncomfortable
0.8–1.6 Uncomfortable; objects begin to fall and people

may be injured
1.25–2.5 Very

uncomfortable[2Extremely uncomfortable(continued)

Fig. 18.2 Vertical vibration limits defined by NORSOK S-002 [399]
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Fig. 18.3 Horizontal vibration limits defined by NORSOK S-002 [399]

Fig. 18.4 Human sensitivity curve (the curve in bold defines the boundary between the
unacceptable vibration level in the upper part and acceptable level in the lower part) [400]
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It should be noted that higher levels than those given in category 4 may be
tolerated for exposure shorter than 12 h. Categories 1, 2 and 5 shall also apply for
intermittent operation.

For ships, by considering the influence of work, recreation and rest for the crew
as well as the sensitivity of advanced electronic equipment on board, ISO 6954
[400] establishes the limits of maximum desirable vibration levels varying with
frequency, which are known as the human sensitivity curve (shown in Fig. 18.4).
The curve in bold defines the boundary between the unacceptable vibration level in
the upper part and acceptable level in the lower part. It should be noted that the
value in the graph is the highest peak value (maximum repetitive value) of each
harmonic component over 1 min duration [401], which is the measurement in a
wider frequency band or root of mean square values multiplied by a factor of 2.5.
NATO 4154 [402] has also specified the operating criteria for sea vessels, as
shown in Table 18.2

More detailed elaborations of human body vibrations can be found in studies by
Driffin [398], Harris and Piersol [212] and ISO 2631 [3].

Table 18.2 Operability
criteria by NATO Standard
4154

Responses Criteria

Vertical acceleration (RMS) 1.96 m/s2

Lateral acceleration (RMS) 0.98 m/s2

Roll amplitude (RMS) 4�
Pitch amplitude (RMS) 1.5�
Motion sickness incidence 20 % in 4 h
Motion-induced interruption 1 per minutes
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Chapter 19
Vehicle-Structure Interactions

The vehicle-structure interactions elaborated in this chapter are a summary of
research by Jia [179, 410], Jia and Ringsberg [411], and Jia and Ulfvarson [68,
177, 178, 412–414].

19.1 Introduction to the Topic

Vehicle-structure interaction is an interdisciplinary topic that relates to several
fields of engineering such as bridge and road engineering, railway engineering,
marine engineering, aerospace engineering, vehicle engineering, and sound and
vibrations. It originated in the field of civil engineering where in the nineteenth
century attention was paid to the dynamic amplification effects of bridges due to
vehicle loading [178, 179, 415]. Abundant research can be found concerning the
interactions of, for example, train-track, train-bridge, train-track-bridge, vehicle-
bridge, wind-bridge-vehicle, earthquake-bridge-vehicle, and aircraft/taxiway–
bridge systems. Due to the increase in train traffic density, vehicle speed and
heavier train axle loads, together with restricted maintenance time and limited
budgets for bridges, tracks and roads, the knowledge concerning vehicles-structure
interactions became increasingly important. In particular for the design of bridges,
the high speed of running vehicles implies a large amount of kinetic energy that is
transferred into the bridge structure, resulting in resonance of the bridge under
certain circumstances. Also, large amplitude vibrations of a bridge affect the ride
comfort, stability, service life, and safety of vehicles and passengers that are
located on the bridge.

In vehicle engineering, the ride comfort and handling stability are of great
importance, and they are determined by vehicle mechanisms, i.e., the vehicle
suspension system. The prediction of service loads for durability studies is another
important application of vehicle dynamics simulation in the automotive industry.
Such studies require accurate predictions of, for example, the loads that tires
transmit to the spindle rather than accurate predictions of the detailed tire defor-
mation and stress fields [416].

J. Jia, Essentials of Applied Dynamic Analysis, Risk Engineering,
DOI: 10.1007/978-3-642-37003-8_19, � Springer-Verlag Berlin Heidelberg 2014
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In the field of marine engineering, increasing demands on RO/RO ships (vessels
designed to carry wheeled cargo, such as cars, trucks, semi-trailer trucks, trailers
and railroad cars that are driven on and off the ship on their own wheels. This is in
contrast to lo-lo (lift-on/lift-off) vessels that use a crane to load and unload cargo)
with less damaged vehicles during transport require a further understanding of the
responses of deck structures under vehicle loads. Figure 19.1 shows that vehicles
are secured on decks with lashings during transportation. To obtain more efficient
and reliable vehicle securing and handling, studies of the reaction forces between
vehicles and decks during ship motions are of great interest. Due to the special
dynamic characteristics of lightweight deck structures, they may be more sensitive
to interactions with the loaded vehicles compared to conventional deck structures.

There are similarities between applications that are concerned with vehicle-
structure interactions modeling: they all consist of a vehicle model and a structure
model that supports the vehicle, where the vehicle is represented by mass-

Fig. 19.1 Lashed cars secured on ship decks
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suspension systems. It can also be seen that the modeling techniques and con-
siderations for different types of interactions share common characteristics
between applications. Modeling of the interactions between vehicles and their
supporting structures is a complicated task because of the modeling of the complex
vehicle-structure mechanisms: one moving or standing vehicle system interacting
with its supporting structures, or even moving structures.

Ahlbeck [417] studied railway wagon-track interactions and identified some
typical problems corresponding to each frequency bandwidth. If stability and ride
comfort are of primary interest, a frequency bandwidth of about 100 Hz is suffi-
cient. Wheel-rail impact loads and rail corrugations require a frequency bandwidth
of over 1,000 Hz, which leads to additional degrees-of-freedom in the numerical
analysis such as axle and rail bending modes. That is, the frequency range of
interest affects the degrees-of-freedom and the distributed flexural modes neces-
sary to account for in the model. Since vehicle-track interaction forces are well
below the natural frequency of track structures, the simplified spring-damper-track
models are sufficient to describe the wheel-rail contact forces and the response of
track components.

In addition, Table 19.1 [411] presents an overview of various engineering
applications of vehicle-structure interaction problems in different frequency ran-
ges. It should be noted that the vehicle’s dynamic characteristics (natural fre-
quencies and mode shapes) are normally not influenced by the interactions (but the
vehicle’s vibration amplitude is influenced by the interactions). However, the
supporting structure’s dynamic characteristics are influenced by interactions from
vehicles. This is because the forces applied on the vehicles (interaction forces,
dead weight, wind loads, etc.) do not significantly influence the natural vibrations
of vehicles. One can utilize this phenomenon if the structures are rigid enough.
Then it is only necessary to apply the rigid motions of the structures on the
vehicles, without considering the small amplitude of structural vibrations.

In the field of marine engineering, various mathematical models for trailer-
lashing deck systems have been studied, such as that by Dallinga [418], who stated
that the target trailer he studied will overturn instead of sliding if the friction
(friction is hereafter referred to as the fraction between the resultant tangential
force and the normal force, see [179, 418]) is larger than 0.5. By modeling a trailer
deck system at different levels of detail, Turnbull [419–421] found that the
reduction of suspension flexibility (i.e., tire flexibility ? spring flexibility) leads to
a decrease of maximum lashing loads and the maximum loads can also be reduced
by increasing the friction between the trailer tire and the deck surface. It was also
stated that the distribution of loads among lashings is not uniform, and when one
lashing yields, it starts to shift its loads onto other lashings that have to carry more
loads until they yield. By studying the dynamic behavior of flexible semi-trailers
on board RO/RO ships, Turnbull concluded that the chassis stiffness has only a
secondary effect on the lashing force.

Car-deck interactions were studied by Mora [422] who presented the phenomenon
that a decrease in lashing stiffness increases the friction between the tire and the ship
deck, which is in agreement with Turnbull’s conclusions on the relation between the
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lashing stiffness and the friction. In order to study the fatigue behavior of a ship deck
using trapezoidal-shaped stiffeners during the rolling of a truck on the deck, Eylmann
et al. [423] performed a test that simulated a truck tire (isolated from the sprung
system) rolling (rolling length: 1.5 m) on a deck plate right above the stiffener. It was
observed in the test that the first and the second visible crack occurred at the web
frame intersection on two opposite sides of the tire.

Sternsson [424] measured lashing forces of a car parked on one of the worst
places for cargo securing on a PCTC (Pure Car Truck Carrier) vessel operating in
the North Atlantic. He concluded that even if the head sea caused the greatest
lashing force amplitude, the influence of wave directions on the forces was small.
The lashing forces and the required friction coefficient were also found to be small
and the largest measured friction occurred in the lateral direction of the car as the
lashings in this direction gave little support.

In Jia and Ulfvarson [178], a review of systematic studies on various levels of
problems concerning the dynamics of vehicle-ship deck interactions was pre-
sented. It incorporated the investigation of the dynamic structural behavior of
vehicle-deck systems, vehicle vibrations, damping effects of vehicles on structural
systems, dynamic interactions between tires and deck surfaces, and vehicle
securing on decks during ship motions. The results and observations from this
investigation identified some interesting topics that were investigated systemati-
cally in detail in the references by Jia [179], Jia and Ulfvarson [68, 177, 178,
412–414], and Jia and Ringsberg [411], using numerical analyses (analytical and
the finite element (FE) method) and experiments:

• Vehicle modeling.

– Numerical modeling of a vehicle using masses and coupled spring-damper
systems.

– Numerical modeling of tires.
– Simplified numerical modeling of the contact between the tire and the ship

deck.

• Structure/ship deck modeling.

– Parametric study of lightweight structure design.
– Comparison between different deck designs, conventional and lightweight.

• Vehicle-deck interactions.

– Modeling of contact forces between tire and ship deck structure.
– Dynamic responses of a deck structure depending on where on a ship deck

vehicles are parked.
– Dynamic responses of a deck structure depending on the number of cars

parked on a ship deck.
– Securing of vehicles on ship decks using lashings or without lashings.

The following sections give an overview of the methodologies used and results
achieved in comparison to research work published in the literature. Section 19.2

19.1 Introduction to the Topic 383



describes the detailed physical modeling of vehicles, supporting structures, lash-
ings and tires, followed by interaction models for vehicles and supporting struc-
tures, and ship motions. Results from some numerical analyses and experiments
are presented and discussed in Sect. 19.3. By utilizing the knowledge presented,
Sect. 19.4 presents the application of the method on the evaluation of vehicle
securing onboard a ship.

19.2 Physical Modeling

19.2.1 General

This section describes mechanisms for vehicles and supporting structures (decks,
beams, bridges, rails, etc.) needed for performing a dynamic vehicle-structure
interaction analysis. The mechanisms are described in detail, since the interactions
between them are highly influenced by the characteristics of one single part of the
system.

19.2.2 Vehicle, Lashing and Tire Models

The loads applied from vehicles on structures mainly include the vehicles’ gravity
loads and the inertia loads. Based on the vehicle load effects, the vehicle inter-
action models can be distinguished as the following types:

• The sprung mass model reduces the vehicle body, suspension and wheel to a
discrete system by modeling them as masses connected by springs and dampers.
Most of the vehicle-structure interaction research is based on this type of model,
with various degrees-of-freedoms to represent vibrations of a vehicle’s body-
suspension-tire system. The vertical direction normal to supporting structures is
generally the most important direction with respect to the degrees-of-freedom.
Thus, most of the sprung mass models are created based only on the consideration
of vertical dynamics. In addition, when studying the vehicle-structure interactions
instead of the structural behaviors of vehicles, compared to the contributions from
the suspension systems and tires, the displacements and motions of vehicle frame
structures may be neglected if resonance does not occur.

• The mass model is a simplification of the sprung mass model, since the model
keeps the inertia effects (mass) of the sprung mass model but it neglects the spring
and damper modeling. The model can account for the inertia effects in all
directions. One of the drawbacks of the mass model is that it ignores the bouncing
actions that are rather significant in the presence of rail irregularities or pavement
roughness, or when vehicles are moving at rather high speeds. Occasionally, the
‘‘jumping’’ action (when vehicles jump from structures and re-contact with the
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structures) may occur due to, for example, bad road conditions or large excitations
through the movement or vibration of structures, and under those situations the
bouncing effects are important to consider (see Yang et al. [425]).

• The dead weight (force) model is a further simplification of the sprung mass
model. When the inertia forces of vehicles are much smaller than the dead
weight of the vehicles, the coupling of vehicles and structures can be neglected,
which means that the inertia and elastic effects of vehicles are not taken into
account. In this case, if only the responses of structures in vertical directions are
of interest, the vehicles can then be described as vertical forces applied on the
supporting structures. The majority of the design codes for designing supporting
structures are based on this assumption, and, as a merit, it can guarantee a closed
form of solution of the equations of equilibrium. The factors contributing to the
inertia effects mainly comprise the supporting structure motions (e.g., acceler-
ations of decks due to ship motions or accelerations of bridge decks due to
strong wind loads and earthquake excitations), deformations, and irregularities
(when vehicles are moving on structures, etc.). The detailed cases for the inertia
effects to be considered include:

– Large excitation accelerations to supporting deck/beam structures, e.g., under
slamming and springing, the accelerations of ships may be quite significant to
make the inertia effects of parked vehicles more obvious.

– Flexible (slender) structures.
– Large vehicle mass.
– Low structural mass.
– Stiff suspensions.
– Large structural irregularities (for moving vehicles).
– High vehicle speed (for moving vehicles).

Since the vehicle mass inertia effects are not included in the modeling of the
dead weight model, the fundamental frequency of the vehicle-structure system is
higher than that of the moving mass model and it is generally higher than that of
the sprung mass model.

Note that the mass model and the dead weight model can be seen as simplifi-
cations of the sprung mass model. In the following, the sprung mass model is used
for the description of different types of vehicles.

19.2.2.1 Car Models

It is assumed that the influence from the vibrations of continuous structural ele-
ments on the vehicle frame is normally small and can therefore be neglected [426].
It is also suggested by Cebon [427] from vehicle interaction simulations that the
sprung masses can be assumed to be rigid. The vehicle body is then assumed to be
connected to the axles through the suspension system. The vehicle body is referred
to as the sprung mass, whereas the vehicle’s axles are the unsprung masses. A
parallel connection of springs and dampers is used to represent the suspension and
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vehicle tire. In the present section, three types of car models with different levels
of detailed modeling are presented (see Fig. 19.2): a full-car model, a half-vehicle
model, and a quarter-car model. Detailed descriptions of these three types of
sprung-mass models with various degrees-of-freedoms can be found in Jia and
Ulfvarson [178].

There are no unified selection criteria for which type of vehicle model should be
adopted. Generally, the full-car model is the most general and accurate model to
study. However, in order to simplify the problem, one needs to select as simple a
model as possible without losing the necessary accuracy. This selection is mainly
based on the problems being studied. For example, if one just needs to perform a
dynamic analysis to obtain the overall structural behavior of decks, such as
eigenpairs of a ship deck under vehicle loads, a quarter-car model is generally
sufficient for modeling the vehicle. However, when the study is extended to obtain
the local detailed dynamic structural behavior, at least a half-car model may be
adopted, since the coupling between roll and bounce motions of the vehicles may
be relevant in influencing the local structural behavior at different positions.
Furthermore, if the detailed information concerning interactions (along both ver-
tical and horizontal directions) between the tire and the supporting structure as
well as the lashing forces (in case cars are lashed to decks) are required, a full-car
model is highly recommended for use due to the fact that the complexity of the
interaction is far more than a quarter-car model can represent. In addition, the
selection criteria also depend on the requirement for accuracy.

Note that if the suspension’s vertical stiffness is much lower than the tire’s
vertical stiffness, the vertical motions of the vehicle body and the tires are almost
uncoupled. Hence, a change in the stiffness of the suspension has only a secondary
effect on the vehicle body’s vertical motion, and may therefore be neglected.

In some specific cases, the vehicle suspension has ‘‘critical damping’’ (relative
damping n = 1), which means that the suspension reaches a limiting case between
oscillatory and non-oscillatory motions and does not give any vibrations, i.e., the
damped fundamental frequency is close to zero. In those cases, only the stiffness
and the damping for the tire need to be considered.

Fig. 19.2 Full-car, half-vehicle, and quarter-car models with various degrees-of-freedom [410]
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It should also be noticed that, for vehicles in which partially filled tanks with
free surface liquid are equipped, eigenfrequencies of the vehicle may shift to lower
values.

19.2.2.2 Lorry and Trailer Models

The shifting of trailers has been found to contribute to a number of RO/RO ship
casualties. Some research efforts have been devoted to the securing of trailers; see
Turnbull [419–421] and Andersson [428] for the numerical modeling of trailers. In
addition, a trailer that is lashed on board a ship constitutes a complicated system,
which can be simplified to a system of girders and springs with different stiffness
and damping coefficients. A typical model representation of a trailer is shown in
Fig. 19.3. On the deck of a ship, the trailer usually rests on a trestle close to the
‘‘fifth wheel’’ (i.e., the part of the trailer that rests on the motor unit) and its own
suspension. It is normally lashed to the deck using chain lashings or web lashings
(Fig. 19.5), and, if possible, these lashings are attached to anchor points on the
deck and special anchor points on the trailer’s chassis. In practice, however, very
few trailers have anchor points fitted to their chassis, and the deck crew have to
find any possible place they can to attach the lashings to the trailers. Due to the
high center of trailer mass and the relative low positions of lashings, large lashing
loads and large movements of the trailer on decks may occur [179].

Figure 19.4 shows the trailer models developed by Turnbull [419] with various
levels of detail. The main differences between each model are characterized by the
modeling of bending and torsion stiffness of chassis, and the mass distributions,
which are shown in Table 19.2.

Note that suspensions on vehicles are either air suspension or steel leaf sus-
pension. Air suspension gains stiffness through the action of a pressurized

Fig. 19.3 A typical illustration of a semi-trailer from Turnbull [419]: L and R refer to the left and
the right hand side of the trailer; the numbers refer to the positions of the lashings along the trailer
axis
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Fig. 19.4 Semi-trailer models from Turnbull [419–421]
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elastometric bag used to provide the lift force, and uses hydraulic shock absorbers
to obtain necessary damping. Stiffness in steel leaf suspension is gained through
the size, geometry, and alignment of steel strips, which bend elastically during
loading, while the damping effects are due to the dry (‘‘Coulomb’’) friction
between the steel strips at a number of contact points. Thus, leaf-sprung vehicles
normally induce higher supporting structure responses than air-sprung vehicles do
[426, 429].

19.2.2.3 Modeling of Lashings

During the transportation of cars and trailers, lashings may be used to secure the
vehicles. For cars, they are normally attached to the front and the back of the cars
and fixed to the lashing holes on the deck; for trailers, see Figs. 19.3 and 19.4.
Lashings should be applied very tightly and firmly. For example, in the shipping
industry, the International Maritime Organization (IMO) [430] states that if
vehicles are to be secured on ship decks during transportation, lashings should be

Table 19.2 Differences between chassis models and trailer models from Turnbull [419]

Types of chassis model

Bending stiffness
assumption

Torsional
stiffness
assumption

Mass distributions

Two-dimensional
model

Rigid Flexible Uniform

Uniform-mass-
distribution model

Rigid Rigid Uniform

Two-concentrated-
mass model

Rigid Flexible Two concentrated masses

Two-concentrated-
mass-plus-two-
swing-mass model

Rigid Flexible Two concentrated masses plus
two swinging masses
with ± 10� of free swing

Six-concentrated-
mass model

Flexible in both
vertical and
horizontal
directions

Flexible Six concentrated masses

Fig. 19.5 Typical lashings for vehicles: web and chain lashings
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of high strength and have elongation characteristics that are at least equivalent to
steel chains or wires. The vehicle should be stowed in a fore-and-aft direction
rather than athwart ships to prevent shifting. The main types of lashings for
securing vehicles are web and chain lashings as shown in Fig. 19.5. Conven-
tionally, the lashing can be modeled as a component with axial linear stiffness and
damping that is active during elongation but zero during shortening. The lashing
can even be simplified as an elastic component with only axial stiffness. It should
be noted that pretension (in the magnitude of 0.2 kN to several kNs, or around
10 % of the breaking load) of lashings may have to be included in the modeling.
Moreover, in some severe cases, yielding of the lashing may have to be taken into
consideration in the modeling and analysis.

19.2.2.4 Tire Models

For cars, trucks and trailers, tire characteristics are of crucial importance for the
dynamic behavior. The component of an air-filled tire includes the tread, carcass,
air-filled volume belt (only with radial ply tires) and rim. For studying vehicle-
structure interactions, most spring-damper systems can represent the characteris-
tics of the tire for the calculations of vehicle-structure interactions with sufficient
accuracy, provided that the deformations of the tires are small. However, because
of the continuous nature of deformation and contact, tires actually exhibit sig-
nificant nonlinear behavior due to contacts (in reality, not point contacts or contact
with uniform contact pressure) and large tire deformations. When the detailed
information about tire vibrations or noise (during the driving of a car on structures)
needs to be calculated, the tire must be modeled in more detail. These detailed
models are based on diverse theories of shell vibrations [431].

Tire pressure has an influence on the structural behavior of supporting struc-
tures. It is presented in Jia and Ulfvarson [68] that during the same static vehicle
loading, the higher the tire pressure is (corresponding to a small contact area with
the same tire-loading value), the higher the deformation and local stress the
supporting deck structure will be. In addition, when the vehicle ride and durability
loads are of interest, the nonlinear behavior of a tire can be essential. Thus, in
reality the dynamic responses of vehicles may be simulated by coupling the cal-
culation from the multi-body system program to simulate vehicles without tires
and the responses from the nonlinear FE analysis to simulate tires.

Even though most of the pavement analysis is based on the assumptions that the
contact pressure between tires and road surfaces is equal to the inflation pressure
and uniform, experiments show that the pressure in the shoulder area (around the
edge of the contact areas) is higher. It should be noted that, due to the difference in
the stiffness of the side walls and the tread, even in a straight-line steady-speed
motion of vehicles, the contact pressure between tires and road surfaces contains
significant lateral and longitudinal shear tractions as well as vertical pressure
[427].

390 19 Vehicle-Structure Interactions



19.2.3 Modeling of Supporting Structures

Before calculating structural responses, a number of assumptions (idealizations)
must be made in order to simplify the modeling without losing its accuracy. The
main assumptions should be made after considering the following items: support
conditions, material constitutive relations (elastic or elastic–plastic), geometric
linearity or nonlinearity, shear deformations, rotary inertia effects, initial imper-
fections, structural details modeling (welds, joints, brackets, etc.), damping,
inclusion of orders of vibration modes, geometric symmetry, etc. It should be
noted that when geometric symmetry/asymmetry is adopted, one may lose
asymmetrical/symmetrical vibration modes as discussed in Sect. 4.3. For calcu-
lating the structural responses during vehicle-deck interactions, it is normally
assumed that the contribution from higher-order vibration modes of the supporting
structure can be neglected. However, if acoustic characteristics are to be studied
during vehicle-deck interactions, the higher order of vibration modes must be
included.

In cases in which the supporting structures are of a type of deck structures, there
are different levels for describing the structural models. One of the most sophis-
ticated methods is to model the structure by using the orthotropic plate theory
[413]. An analytical model that uses an orthotropic plate to describe a typical deck
is shown in Fig. 19.6. In two opposite edges, the deck is fixed for translation in the
global X, Y, and Z directions with two torsion stiffnesses K1 and K2 around the
Y direction. The other two edges are either free to resemble bridge edges or fixed
for translation in the Y direction to resemble the in-plane constraints of decks. In
the middle of the deck, a centerline (CL) girder is installed that can resemble either
the centerline girder of ship decks or the middle support for continuous bridge
decks.

Fig. 19.6 Description of an analytical model of a typical deck
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Using the orthotropic thin plate theory [432], the governing differential equa-
tion can be expressed as:

DX
o4xðX; Y; tÞ

oX4
þ 2H

o4xðX; Y ; tÞ
oX2oY2

þ DY
o4xðX; Y ; tÞ

oY4
þ � � �

C
oxðX; Y; tÞ

ot
þ q tz

o2xðX; Y; tÞ
ot2

¼ f ðX; Y; tÞ
ð19:1Þ

H ¼ ðDXtY þ DYtXÞ=2þ 2DXY ð19:2Þ

where DX and DY are the flexural stiffnesses in the X and Y directions, respectively;
DXY is the torsion stiffness; f(X, Y, t) is the lateral moving load at time t and
position (X, Y); q and tz are the density and the thickness of the plate, respectively;
and x is the vertical deflection at point (X, Y). tX and tY are the Poisson’s ratios
associated with the X and Y directions, respectively, along the plate. For a surface
panel with isotropic material, tX and tY are equal to the Poisson’s ratio t. H is
defined as the effective torsional rigidity of the orthotropic plate.

Provided that a deck structure is supported by evenly distributed transverse
beams, and only the structural responses in the vertical direction are of interest, it
can be simplified as a beam with appropriate support conditions. Figure 19.7
shows two types of supported beams where the beam clamped at its two ends is
often used to resemble a deck with transverse beams connected to stiff side-
girders, while the beam simply supported at its two ends can generally resemble
the case of decks with relatively thin cross-sections.

For the two cases presented in Fig. 19.7, a beam model can be expressed using
the Euler–Bernoulli differential equation (classical beam theory):

EIz
o4xðx; tÞ

ox4
þ q A

o2xðx; tÞ
ot2

þ c A
oxðx; tÞ

ot
¼ f ðx; tÞ ð19:3Þ

where E is Young’s modulus of the beam material; Iz is the second moment of area
of the beam cross-section, A; x(x, t) is the vertical deflection of a beam at point
x and time t; q is the density of the beam material; c is the viscous damping
coefficient; and f(x, t) represents the force applied at position x and time t, for
example due to the interactions with vehicles.

In addition, for high-frequency structural vibrations, which may be of interest in
the study of noise, the cross-sectional deformation becomes significant. Hence, the

Fig. 19.7 A beam with different support conditions to resemble supporting structures [411]
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Euler–Bernoulli beam model may be replaced by the Timoshenko beam model.
Differences in displacement amplitude can then be observed, since the Timoshenko
beam theory accounts for transverse shear and rotary inertia-induced flexibility. In
other words, the Euler–Bernoulli beam model is not preferred in analyses of short
and thin-webbed beams and beams where higher modes are excited. From a wave
point of view, the Euler-Bernoulli beam theory predicts the unrealistic wave speed
because it approaches infinity for very high frequencies [433].

Selection and design of a deck model depends on output requirements and
loading conditions. For example, if the reaction forces or the motions of a car are
of interest, given that the excitation frequency is well below the natural frequency
of the flexural vibration modes of a relatively stiff deck structure, the deformation
of the deck can then be neglected. Hence, the deck structure can be assumed to be
a rigid surface that simplifies the vehicle-deck interaction problem to a situation
where the vehicle (car) is attached to/interacting with a rigid surface.

In reality, for a vehicle moving on a deck structure, the initial surface profile
and the dynamic deflection of the structure contribute to the excitation of the
vehicle and the tire forces/contact forces between the tires and the deck, which
vary in time. Large vibration displacement amplitudes of the deck structure may
occur when the excitation frequency of the vehicle is close to the natural frequency
of the supporting structure.

Table 19.3 illustrates various types of modeling for vehicles and supporting
structures and their coupling relations. If a dead weight (force) model is used for
modeling the vehicle, see Ref. [68] for simulation of vehicles running on decks,
or if the supporting structure (deck) is modeled as a rigid surface, see references
[177, 179]. There is no dynamic coupling between the vehicle and the supporting
structure. Consequently, the solution procedure of these cases can be simplified
to a great extent, since only the responses of the structure or the vehicle need to
be analyzed.

19.2.4 Interaction Models for Vehicle and Supporting
Structures

The interaction between a vehicle and its supporting structure (e.g. ship deck or
rail track) can be calculated by coupling the responses from the vehicle and the
supporting structure:

Table 19.3 Coupling relations for various types of vehicle and supporting structure models

Vehicle models Rigid surface with or
without irregularities

One-dimensional beam
model

Plate model

Dead weight (force) model Uncoupled Uncoupled
Mass model Uncoupled Coupled Coupled
Spring-damper mass model Uncoupled Coupled Coupled
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1. Prescribe an initial excitation from the structure to the vehicle; this excitation
may represent, for example, an initial surface irregularity of the structure
surface, or a motion or deformation of the structure.

2. The prescribed excitation gives rise to the contact forces between the vehicle
tires and the supporting structure. It will also give information about the
dynamic characteristics (vibrations) of the vehicle for the given excitation.

3. The calculated contact (reaction) forces are applied to the supporting structure,
which, in turn, result in a dynamic response of the structure.

4. Iteratively, the registered dynamic response in step 3 is used as an updated
excitation and steps 1–3 are repeated until the response of the vehicle in the
contact with the structure agrees with the structural response in the same
position.

Numerically, two equations of motions for the vehicle and the supporting
structure are defined, respectively. A coupling between them is formulated as an
equation system with matrices through the contact forces. In the condition when
the vehicle is moving, the matrices are time-dependent, which then requires that
the equations are updated for every time step [425].

19.3 Finite Element Simulations

For simplified structural layouts and idealized support conditions, analytical
models can be used to analyze vehicle-structure interaction problems. However,
the finite element (FE) method is more convenient to use as a tool in investigations
with complex structures with many degrees-of-freedom.

There are several ways of utilizing the FE method for calculating or analyzing
dynamic interactions. One of the most simplified ways is to use structure elements,
such as beam or shell elements, for representation of the supporting structure, and
lumped masses connected by spring and dashpot elements for representation of the
vehicle. These types of models are suitable in the evaluation of interaction
responses when the vehicle is no longer moving in relation to its supporting
structure; see [178, 411] for a thorough description of vehicle models.

Figure 19.8 shows an example from an FE calculation where a truck is running
on a concrete deck bridge [435]. In this calculation, which requires a higher order
of the finite elements used and also a more complex FE model, the concrete part of
the bridge is represented using solid elements, and the steel rebars and strands are
modeled using a one-dimensional bar element, the nodes of which coincide with
the corresponding nodes of the solid elements. The truck is modeled with a three-
dimensional suspension system as well as pneumatic and rotating wheels, and
appropriate contact algorithms are used to simulate the contacts between the tires
and the bridge deck. Fig. 19.8 shows the FE mesh (top) and parts of the time
history of the rear suspension resultant forces (bottom) when the truck is running
on the bridge.
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Fig. 19.8 Finite element mesh (top) and time history of rear suspension resultant forces (bottom)
when the truck is running on a concrete bridge deck at a speed of 80 km/h [435]

Fig. 19.9 Response spectra of the vertical displacement at the center of the deck for four
different load cases; the horizontal axis represents the excitation frequency. See the text for
explanation of the different load cases [411]
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Jia and Ulfvarson [68] modeled the vehicles as spring-mass systems and the
lightweight decks with thin shell elements. The results in Fig. 19.9 show the
vertical displacement of a lightweight high-tensile steel deck structure under dif-
ferent vehicle load cases. The load cases are: (II) deck loaded with six cars parked
on the right half of the deck; (III) deck loaded with one car at the center of the deck
above the CL-girder; (IV) deck loaded with one car on the right side of the deck
close to the side-shell; (V) deck loaded with a rigid cargo load on the right half of
the deck. The value of the cargo load in case (V) is equal to the load of six cars
parked on the deck. It is found that the cars act as a dynamic absorber of the
vibrations. As such, the cars reduce the structural responses when the excitation
frequency is below 11 Hz, while above 11 Hz the carloads increase the structural
response. Therefore, it is suggested that carloads have a similar mechanism as that
of mass dampers, i.e., through the momentum exchange between the spring-mass
system and the deck structure, the system will absorb the energy initially provided
through the vibrations of the deck. The above observations are specific to the deck
structure; similar analyses may give different results for another structure. How-
ever, it is reasonable to point out that parked vehicles can reduce at least one mode
shape response. It is also shown that the locations of the cars parked on the deck
have an influence on the dynamic response of the deck. When a car is parked at the
center of the deck (i.e., an anti-node location), the maximum dynamic response is
lower than that for a case with the car parked on the panel close to the side-shell
(i.e., node location). Obviously, if the car/cars are placed on the locations of the
structure where vibration amplitude is lowest, less influence of the parked car/cars
on the natural frequencies and eigenmodes would be seen.

19.4 Analysis of Vehicle Securing

A practical problem addressed in dynamic vehicle-ship deck interaction research is
schematically described in Fig. 19.10. Vehicles such as cars, train wagons, trailers
and trucks, are parked on RO/RO vessels for transportation. During the ship
motions and other types of load/motion excitations, the vehicles may vibrate
together with the deck structures. In order to prevent the vehicles from moving on
the deck when the vessel is at sea, all vehicles are nowadays fixed to the deck
structure using different types of lashings. If the lashings are for any reason dis-
connected/fractured during transportation, the cargo may shift and unstable sea-
faring can result, which poses great risk for the entire vessel.

Mechanical testing experiments were carried out in order to investigate, during
dynamic excitations, the friction coefficients between a tire and two different types
of deck surfaces. From the testing, it was shown that the friction coefficients were
not sensitive to the variation of the deck excitation frequencies, but they were quite
sensitive to the normal forces caused by the wheel loads (see Jia and Ulfvarson
[177]).
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In the mechanical friction testing, it was assumed that the tire had the same
friction characteristics regardless of which direction the resultant tangential force
is applied along the deck surface. However, due to the variation of the tire surface
pattern, it may yield a different friction coefficient when the resultant tangential
horizontal force is applied in different directions along the deck.

In Jia and Ulfvarson [177], a car was modeled numerically as a spring-damp-
ing-mass system. Harmonic roll and pitch motions were applied on it, and it was
concluded that the value of maximum required friction coefficients between tires
and decks to prevent sliding was highly relevant to the roll and pitch amplitude,
the pitch period, the orientation of vehicles on decks, and the vertical location of
vehicles from the base line of the vessel.

A ‘‘lashing-free’’ concept for cargo securing in ships was investigated in Jia
[179]. A computational code was developed for the calculation of vehicle-deck
interactions under ship motions. It was found that, for a target ship of a 6,000-car
unit RO/RO vessel, vehicle securing was mainly influenced by the ship’s roll
motions, which were highly dependent on the wave height and the loading con-
dition. It was suggested that, based on the analyses, vehicles can be secured
without being lashed in a large area of the ship on some voyage routes in specific
weather conditions with less adverse sea states. However, it was still suggested
that conventional lashing holes on the deck should be constructed to cope with
severe sea states.

Contrary to the suggestions from cargo-securing codes by IMO [430] and
experience, Jia and Ulfvarson [177] found that the fore-and-aft direction for
securing vehicle cargoes may not be the most optimal direction to prevent sliding,

Fig. 19.10 Schematic description of a practical problem addressed in dynamic vehicle-ship deck
interaction research [410]
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as shown in Fig. 19.11. The influence of the phase angle between the roll and the
pitch motions and the effects of the car locations on the friction are important
parameters that can be elaborated with.

The criterion of vehicle securing in the references [177, 179] was based on the
assumption that shifting of vehicles occurs when any of the tires reaches the
maximum required friction coefficient between the tire and the deck surface.
Realistic contact, which involves dynamic contact effects, is more complex than
that treated in those publications, and should therefore be addressed in future work.
Additionally, Jia and Ulfvarson [177] found that, theoretically, the maximum
required friction coefficient normally occurs when the phase angle between the roll
and the pitch is 40�, even though the phase angle will normally not exceed 30�
[439]. In order to get a better understanding of the relation between the phase angle
and the vehicle-deck interaction, it is still worth investigating in a future study why
this happens.

Fig. 19.11 The maximum required friction coefficient to resist sliding of vehicles with the
variation of orientation and location of a car parked on decks (X the distance from the center of a
ship along the surge direction; the phase angle between roll and pitch motions: 0�)

398 19 Vehicle-Structure Interactions



References

1. Amr S Elnashai and Luigi Di Sarno, Fundamentals of Earthquake Engineering, John Wiley

and Sons, UK, 2008.

2. BM Broderick, AS Elnashai, NN Ambraseys, JM Barr, RG Goodfellow and EM Higazy,

The Northridge (California) earthquake of 17 January 1994: Observations, strong motion

and correlative response analysis, Engineering Seismology and Earthquake Engineering,

Research Report No ESEE 94/4, Imperial College, London, 1994.

3. ISO 2631-1, Mechanical vibration and shock – evaluation of human exposure to whole body

vibration – Part 1: General requirements, International Organization for Standardization,

2nd ed., Geneva, 1997.

4. Tianjian Ji and Adrian Bell, Seeing and Touching Structural Concepts, Taylor and Francis,

Oxon, 2008.
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Benasciutti and Tovo’s method, 368–369
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Broad band. See Wide band
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Buffeting effects, 187
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Cholesky decomposition, 195

Coefficient vector, 215

Coffin–Manson relationship, 341
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Conditionally stable. See Numerical stability
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Continuous system, 33, 79, 83, 86
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CQC method, 313

Crack growth rate, 342–345

Crack growth threshold, 342, 344
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Critical viscous damping, 256
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Design wave height, 349, 354
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Deterministic fatigue analysis, 349, 341, 353,
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Deviator stress, 270–272, 275
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Dirac delta function. See Unit impulse
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Directional wave energy spectrum. See Short

crest waves

Dirlik’s method, 367

Discontinuous system, 44

Displacement boundary nonlinearity, 279

Displacement control, 294, 299, 300

Displacement limit point, 293, 294, 300

Displacement resonance frequency, 53

Distributed mass, 58, 59, 61, 63, 64, 68

Drag coefficient, 174, 183, 184, 240
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Dynamic equilibrium, 31–34, 218

Dynamic stiffness, 89

E
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Eigen-analysis, 72, 88
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Elastic power-hardening, 266, 270

Endurance limit. See Threshold stress

Energy dissipation, 40, 233, 234, 239, 241,

242, 244, 247, 249, 252, 256–258

Engineering strain, 264–268

Engineering stress, 264–267

Environmental contour line, 138
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Equilibrium equations, 26, 58
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Erosion, 323

Euler-Bernoulli beam, 58, 393

Euler’s equation, 41

Euler buckling, 85, 91

Euler’s equation, 41
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F
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282, 283, 373, 383

Fatigue design factor, 348

Fatigue ductility coefficient, 341
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Finite difference, 27, 220, 261
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Fourier spectrum, 111, 112, 114, 115

Fracture, 196, 263, 292

Fracture mechanics, 323, 324, 326, 336, 341–

343, 345, 346, 348

Fracture toughness, 343, 345

Free decay, 17, 239, 249–251

Free vibration, 25, 81, 100, 180, 193, 203, 208,

209, 212, 216, 228, 235, 238, 249–252

Frequency domain, 101, 106, 107, 109, 111,

112, 174, 178, 191, 195, 200, 201, 211,

243, 249, 253, 255

Frequency response function, 148

Friction coefficient, 236, 237, 383, 396–398

Friction/Coulomb damping, 236, 240, 243

Frøya (NPD) spectral density, 190

Froude Krylov force, 174

Full-car model, 386

G
Galef’s formula, 91, 92, 94

Gaussian distribution, 121, 122, 125, 133, 176,

183

GBS, 20, 21, 97, 217

General solution of motions, 49, 51

Generalized coordinate, 79, 215, 216

Generalized damping, 215

Generalized excitation force, 215

Generalized mass. See Modal mass

Generalized stiffness, 215

Geometric stress. See Hot-spot stress

Geometrical nonlinearity, 276, 278, 285, 287,

288, 292

Global vibrations, 117

Ground motion duration, 306

Ground motions, 5, 21, 102, 103, 110–114,

116, 117, 198–201, 303–311, 313–317,

319

H
Half-vehicle model, 386

Hamilton’s principle, 31, 33–36, 86

Hardening nonlinearity, 283, 285

Hardening rule, 266, 270, 273–275

Harmonic excitations, 313, 314

Harris spectrum, 189, 190

Homogeneous equation, 55

Hot-spot stress, 323, 327–333, 336, 338, 372

Houbolt method, 220, 227

Human body vibration, 29

Hydraulic shock absorber, 233, 389

Hysteresis loop, 76, 239

Hysteretic damping, 238–241, 243, 256

I
Ice breaking length, 197

Ice load, 196–198, 379

Ice velocity, 197

Impact damper, 39, 40

Implicit integration, 226, 228

Impulsive force, 234

Impulsive responses, 158–160, 163

Incremental iterative, 295

Inertia dominant, 143

Inhomogeneous material, 340

Instantaneous wind speed, 185

Integration point, 331

Interpolation, 220, 221

Irregular wave, 176, 182

Irregularity factor, 124

Isotropic hardening, 273, 274

J
Jacket, 8, 10, 22–24, 58, 59, 92, 93, 174, 179,

180, 198, 227, 229, 247, 289, 291, 313,

317, 318

Jack-up, 174, 228–230

Jerk, 33

Joint probability distribution, 136

JONSWAP spectrum, 137, 179

K
Kanai–Tajimi model, 199

Kinematic hardening, 273, 274

Kinetic energy, 35, 63, 64, 79, 80, 84, 196,

211, 242, 379

Kurtosis, 122, 126

L
Lagrange’s equation, 31, 34, 36, 37

Lashing, 381, 383, 384, 386, 387, 389, 390,

397

Lift coefficient, 183

Lightly damped, 226, 233, 239, 247, 252–254

Linear iteration, 27, 261, 263

Linearized (airy) wave theory, 175

Load control, 294, 295, 299, 300

Load-displacement control, 300, 301

Load imbalance. See Residual force
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Load limit point, 292–294, 299, 300

Load sequence effects, 280–283

Load step, 295–297

Local maximum, 120, 123, 294

Local vibrations, 117

Logarithmic decrement, 243, 250

Lo-lo, 380

Loss factor, 241, 242, 253, 254, 256

Luco and wong coherency function, 201

Lumped mass, 79, 83, 206, 208, 215, 226, 231,

394

M
Magnification factor, 243, 244, 253

Mass matrix, 206, 207, 211, 213, 215

Mass model, 384, 385, 393

Mass proportional, 245, 246

Mass scaling, 254–256

Material damping, 263, 275, 283

Material nonlinearity, 261, 273, 281

MDOF. See Multi-degrees-of-freedom

Mean period of motions, 123

Mean S–N curve, 324, 326

Mean wind speed, 130, 135, 184–190, 194,

219

Membrane stress, 278

Meteorological cycle, 184

Microstructural length, 336, 337

Miner rule, 282, 283

Miner summation. See Miner rule

Miner’s accumulation rule. See Miner rule

Mixed hardening, 274

Modal analysis, 27, 29, 211

Modal combination, 312, 313

Modal damping. See Generalized damping

Modal force. See Generalized excitation force

Modal mass, 209, 213, 215–217

Modal matrix, 215, 247

Modal stiffness. See Generalized stiffness

Modal superposition, 27, 33, 211, 214, 218,

220, 229, 230, 243, 244, 248, 261, 262

Modal testing, 77, 85, 94, 246

Mode shape, 26, 55–57, 59, 61, 68, 74, 75, 77,
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247, 262, 283–285, 305, 381, 396

Mode shape orthogonality, 213, 214, 246

Modified Newton–Raphson method, 297, 299

Modulus of transfer function, 148, 166, 168,

355

Moment of inertia, 206, 283

Momentum equilibrium, 40

Morison’s equation, 122, 173

Motion induced load effects, 187

Multi-degrees-of-freedom, 56, 203

Multi-modal frequency, 359, 362

N
Narrow band, 112, 178, 179, 197, 199

Narrow conical structure, 196, 197

Natural frequency, 15, 16, 19, 24–26, 58, 61,

68, 72, 79–83, 85, 88, 91, 95, 199, 233,

234, 254, 283–285, 309, 381, 393

Natural period, 1, 14, 15, 19, 83–85, 230, 285–

289, 304, 306, 310–315

Negative damped, 51

Neumann spectrum, 197

Newmark method, 27, 220, 221, 227, 296

Newton–Raphson method, 27, 297–299, 301

Nominal stress, 323, 327–333, 336, 338, 340,

342

Non-damaging stress. See Threshold stress

Non-dimensional gain function, 146, 154

Non-homogeneous equation, 140

Nonlinear, 25, 27, 87, 94, 122, 125, 174, 183,

184, 193, 220, 221, 238, 240, 244, 249,

310, 390

Nonlinear elasticity, 275

Nonlinear equilibrium, 292, 294

Non-periodical excitations, 156, 162

Nonproportional damping, 244, 248

Non-stationary, 103, 105, 106, 310, 319

Non-trivial solution, 55, 212

Non-uniform system, 33, 79

Normal distribution, 122, 130

Normality rule, 275

Normalized eigenvectors, 212

Normal value. See Eigenvalue

Notch stress, 323, 327, 329, 331, 336–339, 349

Numerical integration, 220, 229

Numerical stability, 227

Nyquist frequency, 115

Nyquist theorem, 115

O
Off-diagonal term, 247, 248, 313

Over-damped, 50

P
Palmgren–Miner rule. See Miner rule

Paris law, 343–345
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Particle velocity, 34, 174, 177, 183, 240

Particular solution, 142, 157, 160

PCTC, 383

P-delta effects, 288–291

Peak time, 252

Performance Based Design, 319

Period of peaks, 123

Period of zero crossing, 123

Phase angle, 106, 110, 195, 256, 398

Plastic potential, 272, 275

Plasticity, 28, 190, 198, 239

Plastic strain increment, 275

PM spectrum, 178, 179

Poisson distribution, 119, 133, 134

Potential energy, 34–36, 61, 64, 79, 80, 84, 87,

92, 233

Power hardening, 266, 269, 270

Power spectra density, 200

Prandtl–Reuss relation, 275

Principal stress, 272–274, 327, 331, 332, 346,

355

Probability density function, 121, 125, 136,

138

Q
Quarter-car model, 386

Quasi-static, 173, 192, 193, 228, 243, 253, 254

R
Radiation damping, 252, 257

Rain-flow counting, 193

Ramberg–Osgood rule 266 270

Random, 99, 102–104, 106, 111, 116, 119–

121, 123, 125, 126, 129, 133, 136, 173,

175, 176, 195, 303, 313

Random excitation, 164

Random process, 99, 102, 103, 106, 111, 119,

121, 175, 367, 368

Rayleigh distribution, 125, 126, 129, 130

Regular wave, 174, 175

Residual force, 298

Residual stress, 328, 339, 340, 371

Resonance, 1–4, 7, 11, 14–16, 22, 23, 26, 111,

119, 173, 190, 197, 199, 214, 234, 249,

254, 256, 304, 309, 379, 384

Resonance frequency, 16, 51, 53

Resonance period, 22, 304

Response spectrum, 201, 305, 309–313

Reynolds number, 184

Rice distribution, 122, 126

Rigid-body vibrations, 55

Riks method. See Load–displacement control

RO/RO ship, 380, 381, 387

S
SDOF. See Single-degree-of-freedom

Seismic analysis, 309, 310, 319

Secant stiffness, 296

Seismic wave, 2, 6, 201, 303, 304, 306

Seismic wave passage effect, 201

Semi-stochastic fatigue analysis method, 370,

372

Shallow foundation, 97, 304

Shannon theorem, 115

Shape function, 231

Shear wave velocity, 201, 304, 305

Short crest waves, 180

Short term distribution, 125

Significant wave height, 130, 135, 137, 138,

178, 180

Simplified fatigue analysis, 349, 351, 352

Single-degree-of-freedom, 27, 34

Singularity, 346

Site period, 304, 305

Skewness, 121, 122, 126

Sloshing, 4–6, 19

Snap back, 292–294, 300

Snap through, 292–294, 299

S–N curve, 282, 323–331, 333, 334, 338–340,

347, 352, 358, 363, 366, 367, 370

Softening nonlinearity, 284–286

Soil-structure interactions, 303

Spatial variation, 194, 200, 201, 308, 319

Spectral gap, 185

Spectral moment, 123, 125

Spherical stress, 271

Spring-damper, 381, 383, 390

Sprung mass, 382, 384, 385

SRSS method, 312, 313

Stability point, 294

Stable crack growth, 321

Standard deviation, 103, 121, 187–189, 193,

313

Stationary process, 103–106, 303

Statistics, 119, 130, 164, 350, 357

Steady-state solution. See Particular solution

Steel leaf suspension, 387, 389

Step excitations, 159

Step response, 249

Stiffness matrix, 207, 208, 211, 231, 245

Stiffness proportional, 245, 246

Stochastic, 25, 26, 99, 102, 106, 116, 176, 199,

201, 303, 304, 310, 311

Stochastic fatigue analysis, 353, 354, 360, 370,
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Strain based approach, 323, 324, 341

Strain hardening, 263, 264, 266, 269, 270, 273,

274, 283, 284

Stress amplitude, 324, 326, 348, 359, 365

Stress based approach, 323, 324, 327

Stress concentration factor, 328–331, 370

Stress intensity factor, 342–345

Stress interaction, 347

Stress invariant, 271, 272, 275

Stress range, 324, 326, 331–333, 340, 343,

347, 349–354, 356–358, 361, 363, 366,

367, 370, 371

Stress stiffening/softening, 87

Structural discontinuities, 45

Structural health monitoring, 74, 75

Structural stress. See Hot-spot stress

Structural/slip damping, 257

Sub-modeling, 333, 334

Support factor, 336, 337

Suspension system, 379, 384, 385, 394

Swell, 183

Symmetry, 72, 73, 221, 391

System damping, 248, 251, 258

T
Tangent stiffness, 292, 296–298

Taylor series expansion, 224

Threshold stress, 324, 326

Through thickness crack, 340, 341

Time domain, 99, 173, 174, 176, 200, 221,

223, 249, 319

Time lag, 259

Timoshenko beam, 393

TMD. See Tuned mass damper

Trailer model, 387, 389

Train-track interaction, 382

Transfer function, 76, 211, 319

Transient responses, 238, 256

Tresca theory, 272

Tri-modal, 365, 368

Tuned mass damper, 18, 19, 40, 200

Turbulence intensity, 184, 188, 189

Tire, 8, 33, 221, 223, 236, 237, 379, 381, 383,

384, 386, 390, 393, 397

U
Ultimate ductile failure, 321

Unconditionally stable. See Numerical

stability

Uncoupled/independent equations, 27, 211

Uniform system, 79, 147

Unit impulse, 156, 158

Unstable crack-growth, 321

Upper stability limit, 187

V
Variance, 102, 105, 106, 177, 182

Variation of accelerations, 220

Vehicle–bridge interaction, 51

Vehicle securing, 380, 382–384, 396–398

Vehicle–structure interactions, 382, 384, 390

Velocity resonant frequency, 53

Vibration perception, 375

Virtual displacement, 33, 34

Viscoelasticity, 260

Viscous damping, 17, 29, 63, 231, 235, 238–
241, 243, 244, 248–250, 252, 256

VIV. See Vortex induced vibrations

von Mises criterion, 272, 273

Vortex induced vibrations, 14, 51, 368

W
Wave elevation, 175–177, 182

Wave energy, 175, 177, 178, 180, 181

Wave kinematics, 175, 177, 183

Wave load, 8, 10, 21, 22, 24, 103, 173, 174,

177, 180, 227, 229, 258, 259

Wave propagation speed, 224

Wave spreading, 180

Wear, 233, 257

Weibull distribution, 129, 130, 138, 351, 352

Weibull shape parameter, 352

Weld toe, 328–339, 344

Whipping effects, 317

White noise, 199

Wide band, 199

Wilson–method, 220, 221, 227

Wind load, 14, 183, 184, 190, 219, 282, 349,

381, 385

Wind turbulence, 103, 184, 185, 196

Wind velocity fields, 184

Y
Yield criterion, 266, 270, 272–275

Yield surface, 273–275

Youngs’ modulus, 65, 283

Z
Zero crossing period. See Period of zero

crossing

Zero upcrossing, 123, 369
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