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Chapter 1

Towards the Methodological Turn

in the Philosophy of Science

Hsiang-Ke Chao, Szu-Ting Chen, and Roberta L. Millstein

Abstract This chapter provides an introduction to the study of the philosophical

notions of mechanisms and causality in biology and economics. This chapter sets

the stage for this volume in three ways. First, it gives a broad review of the recent

changes and current state of the study of mechanisms and causality in the philoso-

phy of science. Second, consistent with a recent trend in the philosophy of science

to focus on scientific practices, it in turn implies the importance of studying the

scientific methods employed by researchers. Finally, by way of providing an

overview of each chapter in the volume, this chapter demonstrates that biology

and economics are two fertile fields for the philosophy of science and shows how

biological and economic mechanisms and causality can be synthesized.

1 Introduction

In the philosophy of science, interest has recently shifted from scientific concepts to

scientific practices. That means what really matters to philosophers of science, and

what philosophical discussions should be based on, is what scientists actually do

and how they do it rather than philosophers’ visage of what science is and how
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scientists should do it. This application of Hume’s guillotine is one of the prevailing

trends in the late twentieth century and is sometimes considered as a kind of

naturalism. Philosophical naturalism is received in various ways. Despite the

opposition of supernaturalistic or a priori explanations, as the name suggests, the

main theme of naturalism is to align philosophy of science with science and to pay

special attention to scientific methods. A sophisticated investigation of the naturali-

zation of philosophy of science requires addressing the questions of how philoso-

phy is naturalized to a specific science and in what respects particular sciences and

philosophies of those sciences are similar to one another (Giere 1999, 2008). In

contrast, a broadly defined naturalism, which is widely shared by philosophers of

science (even by those who do not identify themselves as naturalistic philosophers

of science), suggests a two-way study: It on the one hand focuses on scientific

practices that matter to philosophical investigations and on the other hand examines

philosophical concepts in terms of scientists’ work and the devices they employ.1

More importantly, as Ronald Giere (2008) points out, philosophical naturalism

in turn implies a methodological stance. What Giere means is to characterize

naturalism as a method that seeks a naturalistic explanation (Giere 2008, p. 214).

However, it can be easily extended to a more general naturalistic program that

stresses scientific methods. William Bechtel (2008, p. 8) well describes this type of

position by stating that the naturalistic philosophy of science attempts to understand

science by addressing the following questions: What are the objectives of scientific

inquiry? What methods are used to obtain the results? How are the methods and

results of science evaluated? How do value issues impinge on the conduct of

science? Since the answers to Bechtel’s questions crucially require examining

scientific methods, the philosophical perspective offered by naturalism necessarily

turns to methodology. This edited volume contributes to such amethodological turn
in the philosophy of science.

In this edited volume, we specifically investigate mechanism and causality in

biology and economics. Why do we target mechanism and causality? Despite the

fact that they both stand long as important conceptions in the philosophy of science,

causality and mechanism are two main guiding ideas that underlie scientists’

practices of making explanations. To identify the characteristics of a scientific

explanation, we need first to explore what causality and mechanism are and how

scientists infer their existence, then conjoin the discussion of causality with that of

mechanism for a comparative study.

We particularly focus on the context of biology and economics for three reasons.

First, recent developments in the philosophy of science have shown that the

philosophy of biology and economics are two of the most fertile fields. The findings

in these subdisciplines not only posit serious challenges to but also provide novel

ideas for traditional accounts in the philosophy of science that are based mainly on

the physical sciences. Second, the current trend of investigating biological or

1 This point is also suggested in Bechtel (2008, pp. 8–9). For philosophical investigations of

scientific devices, examples are experimental and observational instruments by Ian Hacking

(1983), models by Mary Morgan and Margret Morrison (1999), and by the semantic or model-

based view philosophers such as Ronald Giere (1988, 1999) and Bas van Fraassen (1980, 1989).

2 H.-K. Chao et al.



economic issues by employing the concepts and tools developed in the other field

(e.g., evolutionary game theory, behavioral economics) has drawn substantial

attention among scientists and philosophers of science alike. A study that

juxtaposes biology with economics and explores a deeper understanding of various

philosophical and methodological issues would prove meaningful. Daniel Steel’s

(2007) highly acclaimed book has demonstrated this. Finally, recent accounts of

mechanism and causality in the philosophy of science are often associated with

biology and economics. Whereas the philosophy of mechanism has been developed

mainly by philosophers of biology (e.g., Machamer et al. 2000; Glennan 1996,

2002; Bechtel and Abrahamsen 2005), philosophical discussions of causality have

been inspired by the practices of economists (e.g., Cartwright 1999, 2007;

Woodward 2003). Recent works on causality in economics (e.g., Hoover 2001)

have also made significant contributions to current and future research on the

methodology of causal structure in science in general. However, even though

mechanism and causality occupy the main stage of research in both the philosophy

of biology and that of economics, only few studies have been done that bring the

accounts in one discipline to the other. This edited volume can be seen as a result of

collaborative interaction and mutual understanding among philosophers from dif-

ferent disciplines.

2 Mechanism and Causality in the Philosophy of Science

Although causal inquiry has long been regarded as one of the core elements of

science, the focus of the philosophical investigation of causality has changed over

time since at least the modern era. Traditionally, the discussion tended to pay much

more attention to inquiring about the metaphysical aspect of causality. This ten-
dency reached its climax in Hume’s famous inquiry about the secret connection

between any two events—cause and effect. Then in the first half of the twentieth

century, influenced by the positivist philosophy of science and the Humean regu-

larity view of the laws of nature, the discussion shifted to a concern about the

epistemological aspects of the subject. In particular, attempts have been made to

delineate the characteristics of causality by using conditional analysis, that is, by

analyzing causality in terms of necessary or sufficient conditions, or both. By

temporarily leaving aside the question of the existence and characteristics of

causality, the new generation of philosophers tries to construct down-to-earth

accounts of causality, especially by referring to practicing scientists’ achievements

in finding patterns in the empirical data of targeted variables that they collect from

experiments or field studies. In other words, contemporary philosophers of causal-

ity, recognizing that we human beings are agents of our own knowledge, tend to use

their restricted methodological lever to tease out indications of the answers of what
previously were thought to be questions about metaphysics and epistemology.

Similarly, the conception and application of mechanisms are nothing new in

science and philosophy. From the seventeenth century onward, we observe the

1 Towards the Methodological Turn in the Philosophy of Science 3



development of “mechanical philosophy,” represented by the achievements of the

giants of science such as Galileo, Descartes, Huygens, Boyle, and Newton. Marie

Boas’s (1952) seminal article on the establishment of the mechanical philosophy

identifies the rise of the mechanical philosophy as due to the development of new

the science of mechanism that replaced Aristotelian physics and thus concludes that

explanations for the properties of bodies should be based on it (Boas 1952, p. 414).

In the contemporary philosophy of science, the first half of the twentieth century

also witnessed mechanistic explanations developed in philosophy of science when

the discussion was centered on the mechanics and physics (e.g., Nagel 1961). The

resurgence of the importance of mechanisms in recent studies in the philosophy of

science, however, is not because its application would reduce explanations in other

sciences to mechanics and physics (e.g., Nagel’s 1961 attempt to reduce biology),

but because of its involvement in how scientists actually explain. A number of

philosophical characterizations of mechanisms have been recently put forward

(Tabery 2004; Skipper and Millstein 2005). Most of them are inspired by biology.

Among them, the two most salient accounts are developed by Peter Machamer,

Lindley Darden, and Carl Craver (2000)—hereafter, MDC—and by Stuart Glennan

(1996, 2002). Glennan’s interactionist account evolves hand in hand with the

literature of causality. His recent definition adopts James Woodward’s (2003)

interventionist account of causality. In contrast, MDC endeavor to give up causal

language entirely.

Briefly, Woodward’s view is that “X is a total cause of Y if and only if under an

intervention that changes the value of X (with no other intervention occurring) there

is an associated change in the value of Y” (Woodward 2007, p. 73). More specifi-

cally, Woodward clarifies the relationship among the concepts of manipulation, the

change-relating property of a relation, and invariance. Inspired by Douglas

Gasking’s idea that a causal relation is a “means-end” or “producing-by-means-

of” relation (Gasking 1955), Woodward refines this causal idea by adding a

condition of invariance. According to Gasking, C causes E in cases in which we

can, with the aid of a certain kind of general manipulative technique, produce an

antecedent occurrence of kind C as a means to bring about a subsequent occurrence

of kind E. As with Gasking, Woodward agrees that a relation, if it is to be regarded

as having causal and explanatory import, must be explicated in terms of manipula-

tion. What is new in Woodward’s account is that he further suggests that, for a

relation R between C and E to count as being causal and explanatory, relation R
must be invariant under the manipulation of C. That is, the manipulated change in C
should bring about the change in E in the way stated in R; otherwise, C does not

cause E in the way stated in R and perhaps does not cause E at all. Clearly, for

Woodward, a causal relation should be a relation that is exploitable by manipulation

for the purposes of control. Woodward’s account seems to imply that a relation R
will express a causal relation only if R is invariant over a range of interventions.

Accordingly, Glennan (2002, p. S344) recently offered the following definition:

“A mechanism for a behavior is a complex system that produces that behavior by

the interaction of a number of parts, where the interactions between parts can be

characterized by direct, invariant, change-relating generalizations” (Glennan 2002,

4 H.-K. Chao et al.



p. S344). He thus avoids the notion of laws that was employed in his early studies

(e.g., Glennan 1996). In contrast, MDC think such causal language is too vague to

characterize the actual specific activities within a mechanism, such as pulling,

scraping, or binding. In their dualist account, mechanisms are constituted of entities
and activities: “Mechanisms are entities and activities organized such that they are

productive of regular changes from start or set-up to finish or termination

conditions” (Machamer et al. 2000, p. 3). Other definitions of mechanisms include

one by Bechtel and Abrahamsen (2005) who stress mechanisms as structures. They
argue that “[a] mechanism is a structure performing a function in virtue of its

component parts, component operations, and their organization. The orchestrated

functioning of the mechanism is responsible for one or more phenomena” (Bechtel

and Abrahamsen 2005, p. 423). Some philosophers think the differences between

these accounts are highly significant, whereas others think they are minor.

Notice that, prior to the emergence of the mechanist approach in philosophy of

biology, mechanisms have been investigated by philosophers of social sciences

such as Mario Bunge (2004) and Jon Elster (1983, 1998, 2007) and been advocated

by economic sociologists Peter Hedström and Richard Swedberg (1998). Like

MDC, the advocates of social mechanisms share Francis Crick’s view that

biologists prefer to think in terms of mechanisms rather than laws (Hedström and

Swedberg 1998, p. 3). But it should be noted that, as successfully argued by Carl

Craver and Marie Kaiser in their chapter, mechanist philosophers do not deny the

epistemic virtue of regularities, as they help scientists search for mechanisms, even

as mechanisms in turn help us to understand how regularities and generalizations

provide the basis for scientific activities such as explanations, predictions, and

control.

A general notion of social mechanisms is aptly characterized by Thomas

Schelling, a Nobel Laureate in economics, who defines social mechanisms in

contrast with laws, theories, correlations, and black boxes, conceiving them as

plausible hypotheses that explain social phenomena, where the explanation is

offered in terms of interactions between individuals or between individuals and

social aggregates (Schelling 1998). Similarly, Elster (1998) contrasts mechanisms

with black boxes (which could provide no explanations) and laws (which provide

only deterministic explanations). He defines social mechanisms as “frequently

occurring and easily recognizable causal patterns that are triggered under generally

unknown conditions or with intermediate consequences” (Elster 1998, p. 45) and

regards them intermediates between laws and descriptions (ibid.). Elster’s mecha-

nism-based explanations would consist of the form “if conditions C1, C2, . . .Cn

obtain, then sometimes E” (Elster 1998, p. 48). At present, the investigations of

social mechanisms seem to converge on the accounts developed by philosophers of

biology by reevaluating social mechanisms in terms of mechanist philosophy of

science (e.g., Hedström and Ylikoski 2010), implying an attempt to reconcile social

mechanisms in a broader conception of scientific mechanisms.

1 Towards the Methodological Turn in the Philosophy of Science 5



3 Biological Causality and Mechanism

Until recently, philosophical accounts of causation and mechanism in the philoso-

phy of biology used a very limited set of philosophical accounts of causation,

assuming they used any account of causation at all (e.g., Rosenberg 1985 and

Hodge 1987 discuss causation in biology without appeal to any particular account).

Perhaps the most common invocation was of Wesley Salmon’s “screening off”

condition (see, e.g., Brandon 1988; Lloyd 1988; Sober 1984 articulates his own

account of causation as an alternative). This is not to say that biologists and

philosophers of biology did not appeal to causes—far from it. It seems rather

that, until recently, most philosophers of biology did not find accounts of causation

such as Lewis’s counterfactual account or Salmon’s Mark Transmission/Conserved

Quantity account particularly useful for illuminating phenomena in biology.

Indeed, some recent discussions of causation in the philosophy of biology still do

not cite causation literature (e.g., Mitchell and Dietrich 2006); this is not meant as a

criticism, but simply to point out, again, that the philosophical literature on causa-

tion is sometimes not seen as helpful or necessary for illuminating philosophical

issues concerning causation in biology.

However, the recent development of the above-mentioned mechanist and

interventionist philosophies has begun to change that. It would be tedious to list

all of the philosophers of biology who have drawn on these works, so here is a short

sampling: Fehr (2004), Tabery (2004), Reisman and Forber (2005), Waters (2007),

Steel (2007), and Illari and Williamson (2010). In trying to understand the explo-

sion of literature on interventionist accounts of causation and mechanist accounts, it

is surely no coincidence that whereas accounts such as Salmon’s and Lewis’s were

derived from physics or from traditional philosophical analysis of our everyday

language, accounts such as Woodward’s and MDC’s were derived from the social

sciences, economics in particular, and from biology.

With the interventionist account of causation and accounts of mechanisms in

ascendancy in the philosophy of biology, an obvious question arises as to the

relationship between causation and mechanism in biology. The possible answers

to this question, however, are varied and complex. As Roberta Millstein’s chapter

in this volume notes, philosophers such as Glennan (2009) have argued that there

are two types of causation, contra the decades of argument over what constitutes the
account of causation: causal relevance (or causal dependence) and causal produc-

tion. Woodward’s account, falling into the broad category of counterfactual

accounts, is supposed to be a causal relevance account, whereas Glennan’s,

MDC’s, and even Salmon’s accounts are seen as causal production accounts. If

Glennan and others (e.g., Cartwright 2004; Hall 2004) who have argued that there

are two types of causation are right, then different philosophers use different

accounts of causation because they pick out different phenomena in the world (or

different aspects of the same phenomenon, though Millstein argues that Glennan

has failed to make his case for natural selection). However, aside from reservations

that one might have about there being two accounts of causation, the relationship

6 H.-K. Chao et al.



between the two accounts is unclear, because both Craver and Glennan incorporate

Woodward’s views into their accounts of mechanism (Glennan 2002; Craver 2007)

and because Woodward himself has described how interventionist accounts of

causation can be used as an account of mechanisms. Moreover, Glennan has argued

(1996, 2010) that mechanisms can serve as the basis for a theory of causation. So,

perhaps causal relevance and causal production (including mechanisms) are tightly

linked. Lindley Darden’s chapter usefully explores some of the ways in which

causes might manifest themselves in mechanisms: activities of entities, stages of

mechanisms, or as start or setup conditions. On Darden’s view, then, analyses of

“mechanism produces phenomenon” are much more detailed and specific than “C
causes E,” as the former incorporates many of the latter, plus other aspects such as

the ways in which entities and activities are organized.

A second sort of question arises as to which biological phenomena can be

profitably illuminated by accounts of causation and/or mechanisms; each of the

biology papers in this volume contributes partial answers to this question by

exploring causation and mechanism in different areas of biology. Once again,

however, we quickly realize that for every illumination, new questions are uncov-

ered. Several of the papers deal with causation and/or mechanisms in evolutionary

biology. Millstein, who has elsewhere (2006) argued that natural selection is a

population-level causal process, argues (contra Glennan) that the causation at the

population level exhibits causal production (in Salmon’s sense) as well as causal

relevance (a point on which she and Glennan agree). But she does not take a stand

on whether natural selection should be understood as a mechanism, having else-

where (Skipper and Millstein 2005) raised concerns for such a claim. However,

Rong-Lin Wang offers some criticisms of Millstein’s claim that natural selection is

a population-level causal process. For example, he argues that Millstein’s account

of natural selection does not handle cases of what Elliott Sober has called “selection

of” (as distinguished from “selection for” and random drift). Moreover, he suggests

that prospects of the view that natural selection is a population-level causal process

depend on a satisfactory solution to each of the three problems: the redundant cause

problem, the overdetermination problem, and the epiphenomenon problem. Thus,

according to Wang, we need to pay attention to the work of metaphysicians in order

to understand the nature of selection. The other philosophy of biology papers,

discussed elsewhere in this Introduction, explore causation and mechanisms in

other aspects of evolutionary biology as well as other areas of biology such as

genetics, plant breeding, and biomedicine.

4 Economic Mechanism and Causality

A mechanism is often conceived as a machine, which is on the top of Craver and

Darden’s (2005) list of ideas associated with the term mechanism. It is so because

machines provide models of intelligibility that have contributed to our understand-

ing of the mechanisms in the natural world. This understanding of mechanism in
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terms of such an artifact is commonplace in both natural and social sciences, since

such visualization helps understand the various aspects of mechanisms and how

they are constituted. A mousetrap, for instance, is used by Craver and Bechtel

(2006) to illustrate the philosophical notion of mechanism. In social science,

underneath different definitions of social mechanisms we previously discussed is

a strong perception of the society as a machine. An example is Elster’s assertion

that an explanation in social science requires of specifying social cogs and wheels.
According to Elster (1983, p. 24), “To explain is to provide a mechanism, to open

up the black box and show the nuts and bolts, the cogs and wheels of the internal

machinery.” For Bunge, a mechanism is specifically perceived as an input-output

machine, which is contrasted with black boxes by which inputs and output are

connected without knowing the inner machinery (Bunge 2004; Hedström and

Swedberg 1998), and can be understood in terms of the diagram in Fig. 1.1.

In economics, economists have also been using and adopting the concept of

mechanism for centuries. As Harro Maas (2005) demonstrates, the practices of

mechanical reasoning among the political economists had been observed in Victo-

rian Britain, where the economic world—perhaps analogous to the physical

world—was envisaged as a machine. More specifically, the type of machine is an

input-outputmachine, coinciding with the Bungean input-output mechanism. There

are two salient cases in the economic literature. First, the “market mechanism,”

which is perhaps the most fundamental concept indicating the structure and capac-

ity of the market for allocating the resources among economic units, is commonly

understood as such. To study economic mechanisms, a subfield mechanism design
emerged in the 1960s to apply proper mathematical tools to construct and analyze

how economic units and activities are coordinated and guided through the informa-

tion they receive from a fictitious “information center.” A mechanism is thus also

viewed as a communication or a dialogue between the information center and

economic units or “periphery” (Hurwicz 1973, pp. 6–7). In this regard, economic

mechanisms bear some similarity to mental mechanisms as they both are informa-

tion-processing mechanisms (c.f., Bechtel 2008). Second, the input-output analysis,
which was established in the 1930 by the economist Wassily Leontief, explicitly

treats the structure of an economy as constituted by input-output relationships. With

its ambition to quantitatively deal with all components of the economy, the input-

output analysis requires its models to be computable and statistically measurable so

that it can describe and interpret the economic operations in terms of “directly

observable basic structural relationships” (Leontief 1987, p. 860).

However, as of now, it seems causality rather than mechanism is economists’

primary concern. Mechanism in general is understood in the context of “causal

mechanism,” whose structure—causal structure—needs to be identified. Kevin

Hoover (2001, p. 24) offers one definition of causal structure as “a network of

Input → Mechanism → Output

Fig. 1.1 The Bungean input-output mechanism (Adopted from Bunge 2004)
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counterfactual relations that maps out the underlying mechanisms through which

one thing is used to control or manipulate another.” While mechanism is defined

freely in this definition, the general idea of mechanisms developed in various

mechanist accounts can surely apply to it.

With respect to Hoover’s description of causal structure, each causal path

between any two variables within a causal structure is represented as an invariant

counterfactual conditional relation. It is called “counterfactual” because it claims

that if there is a “hypothetical” change in (or manipulation of) the supposed causal

variable, then the supposed effect variable will have a corresponding degree of

change. If we represent the causal relation between two variables p and q as the

equation q ¼ αp + ε, where the parameter α represents the degree of change of p in
q, then the adjective “invariant” means that, against the background of a compli-

cated network of the causal structure, whatever unit of change in p there is, the

corresponding effect of α degree of change of p in q will “remain unchanged.” In

that case, the fact of invariance can be used as a criterion, as was pointed out by

Herbert A. Simon in his 1953 article, that would permit us to discriminate among

competing structural representations that are consistent with the same set of data.

Based on this view, it is no wonder that Hoover remarks that “causal structure is

characterized by a parameterization that governs the manner in which variables are

related to each other. . . The patterns of relative independence, dependence, and

interdependence among variables—the causal structure—are dictated by the

parameterization” (Hoover 2001, p. 59). Hoover’s structural account of causality

can be regarded as a classic metatheoretical account that aims to characterize

scientists’ attempt to use their limited methodological lever—such as the available

statistical techniques—to tease out, from the probabilistic distribution of those

relevant variables, the indications of the answers of causal inquiries. Hoover’s

chapter in this volume goes further to explicate the structural approach by

contrasting with Woodward’s manipulability account, arguing that modularity—a

critical characteristic of Woodward’s account indicating that each equation in a

system of causal relations corresponds to a distinct causal mechanism—fails in

certain cases, because in reality individual equations in a causal structure do not

necessarily correspond to distinct mechanisms. Furthermore, Hoover argues that,

unlike Woodward’s manipulability account in which the notion of causality is

defined in token level (causal relations hold among particular events), the structural

account explains causal notion in type level (causal relations hold among variables)

and could be more explanatory for causal relationships in a practical sense.

5 Representing Causal Structures and Mechanisms

Given the importance of understanding both causal structures and mechanisms,

there is a need for inquiring into the possibilities of providing epistemological

access and representation to them. One pivotal question concerns whether we can

completely know causal structures and mechanisms. Recall that the notion of
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mechanisms is employed by philosophers and scientists in a sense to contrast with

black boxes. But whether mechanisms can be completely known remains under

debate. For instance, in the above-mentioned economic approaches of mechanism

design and input-output analysis, the mechanism of the economy is regarded as

being perceivable, given suitable tools—mathematical methods for mechanism

design and statistical analysis for the input-output analysis—exist. As Leontief

put it, to understand an economy requires nothing but a “direct structural analysis,”

like a mechanic looking under the hood (Leontief 1954). Leontief thought not only

is such a direct observation possible, but it is the only promising way of under-

standing the operational characteristics of the economy (Leontief 1954, p. 230). By

contrast, Trygve Haavelmo, the pioneer of the probabilistic approach to economet-

rics, used his famous mechanical analogy to illustrate the methodology of econo-

metric models (Haavelmo 1944, pp. 27–8): The empirical relationship between the

amount of throttle and the speed of a car, under uniform circumstances, is regular.

Such a relationship is useful for driving a car in a prescribed speed, but is not

fundamental. The throttle-speed relationship not only lacks of autonomy because it
breaks down as the condition changes, but also, the relationship tells us little about

how the car works, hence it “leaves the whole inner mechanism of a car in complete

mystery” (Haavelmo 1944, 371 p. 27).

Thus, while Haavelmo thought that understanding the inner mechanism is of

primary importance, he contrasted with the economists such as Leontief in think-

ing that a direct observation is impossible. This characterizes the practices of

econometricians, who have been trying to use a mix of tools from economics,

mathematics, and statistics to analyze empirical data and, in part, concerned

whether the data-generating process, or DGP, that is regarded as being responsible
for producing the observed data is real or fictitious and whether it can be fully

known.2 Ontology aside, many have maintained that econometric models do not

allow observation of the DGP directly. One can receive only an incomplete image

of the underlying structure by inferring from observed data. Because, unlike a

mousetrap, scientific mechanisms are usually not available for direct observation,

hopes for complete descriptions of mechanisms and/or causal structures would be in

vain.

Even so, the incomplete notions of mechanisms and causal structures are still

useful for understanding science. In order to represent the underlying mechanism,

scientists use what MDC called “mechanism schemata” or “mechanism sketches”

as incomplete description. For them, mechanism sketches are black boxes, serving

to indicate required future research work in order to establish mechanism schemata.

Mechanism schemata, in contrast, contain more, but still incomplete, information

and are usually represented by diagrams. Since neither sketches nor schemata are

thorough and detailed, to understand mechanisms via sketches and schemata might

be related to the “black box inference” in the philosophy of science. Although the

term was made famous by Sober (1998) who discussed particularly the linkage

2 See Chao (2009, esp. Ch. 7) for the philosophical discussion on the DGP.
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between causes and effects, it is longstanding in the philosophy of science

concerning the structure of scientific theories. Hempel (1966), for instance, when

discussing the distinction between observables and unobservables, suggests that in

an attempt to explain the performance of a black box which “responds to different

kinds of input by specific and complex output” (p. 81), the internal structure of the

black box is in principle observable, or can be directly inspected, as long as

appropriate instruments are available. Hence “any line drawn to divide them into

actual physical objects and fictitious entities would be quite arbitrary” (Hempel

1966, p. 82). Similarly, Hanson (1963) illustrates that, as science progresses, our

understanding of phenomena switches from the stage of “black box” to that of “grey

box” and finally reaches the stage of “glass box” whence the theory and the

phenomena are of the same structure and the equations of the theory can actually

“mirror” the processes of the nature (Hanson 1963, p. 38). Hanson’s account is

shared by the mechanists. MDC, for instance, regard the schemata as essential

heuristic devices for discovering mechanisms. By reasoning with a schema,

scientists are guided to choose known and proper entities or activities to fill the

gap. Afterward, when a schema is instantiated, it provides a mechanistic explana-

tion of the phenomena that the mechanism produces (Machamer et al. 2000, p. 29).

It is thus natural to relate mechanism sketches and schemata to scientific models;

both serve inferential and representational devices to understanding science. Recent

study (e.g., Morgan and Morrison 1999) emphasizes that models are independent of

theory and the world and thus have autonomous power for representing each of

them. Literature also shows that the distinction between models of theories and

models of data that was earlier made by Patrick Suppes in his influential article

“Models of Data” (Suppes 1962) has proven useful for characterizing scientific

modeling processes. Following Suppes and the discussion of empirical models in

science and philosophy, Ruey-Lin Chen argues in his chapter that scientific discov-

ery in biology can be explained and instantiated through the models of experimental

data. In contrast, Till Grüne-Yanoff’s chapter in this volume deals with the issue of

representing mechanisms at a theoretical level. He examines evolutionary game

theory (EGT), arguing that EGT models employed in biology and economics have

different interpretations concerning what causal factors and relations they repre-

sent, interpretations that are captured by informal mechanism descriptions rather

than by the EGT formalism. An abstract model is qualified as MDC’s mecha-

nism sketch; it requires an interpretation of the model to represent a specific

mechanism in biology or in economics. In other words, biological or economic

mechanism descriptions are of a particular kind: They do not describe the compos-

ite parts of a system, but they describe in abstract form the stages through which the

mechanism runs. Because it does so in a highly abstract way, many different

mechanisms can be subsumed under these descriptions, making them general

schemata useful for many scientific purposes.

Hoover’s and Steel’s chapters demonstrate that representational devices such

as models can sometimes play a more active role. They both use directed

acyclic diagrams (DAGs) to represent causal relations, which has been a popular

representational tool employed by philosophers of causality. Hoover points out that
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results in causal analysis may not be independent of the modes of representation,

that is, equations or graphs, and clarifies the relationships between graphical and

equational representation of causality. Steel goes a step further to include DAGs as

a part of the definitions of philosophical notions of extrapolation and integration,

implying that theoretical propositions could be entranced by directly consisting of

representational tools.

Furthermore, the variations in methodologies could be represented by the change

in representational tools, and vice versa. Marcel Boumans’s chapter revisits his

(Boumans 1999) “recipe-making” account of models.3 It suggests that mathematics

provides the means of molding different ingredients into a new model. In a sense, as

Boumans points out, early econometricians such as Jan Tinbergen regarded mathe-

matical forms as determining the economic movement. However, when the focus

switched to identify causal structural relationship among variables, the primary

concern for econometricians was to seek the model’s property of invariance. Since

the econometricians then adopted the strategy of relying on theories to do the job,

the role of mathematical molding was lost. These works show how thinking about

representation and models provides new insights into mechanisms and causal

structures.

6 Mediation and Extrapolation

Let us return to our original aspirations to bring together biological and economic

mechanisms and causality. The idea promoted in this volume is that studies in the

philosophy of science would be enriched by two ways of research. The first is to

start with the concepts that scientists use most in their practices. Such investigations

provide concrete grounds of scientific methods and activities on which philosophi-

cal notions can (and arguably should) be based. Readers can observe that most of

our chapters attempt to address simultaneously the notions of causality and

mechanisms. Though the notions defined and employed in their work—and the

cases they study—do not belong to one single account, the plural meanings of

mechanisms and causality clearly show their importance to understanding science.

The second way is to conduct interdisciplinary explorations on how the concepts

are understood by different groups of scientists and philosophers. In this volume,

in addition to Grüne-Yanoff’s chapter studying biological and economic game-

theoretic models, we have three chapters dealing with comparisons and contrasts of

facts and methods between economics and biomedical science. All three chapters

start with specific scientific works in economics and biomedical science, then

conduct methodological investigations on the case studied. One central common

theme, which has been dealt with by the authors of this volume under various

topics, such as Darden’s interfield integration (Darden 2006) and Steel’s

3 The term is coined by Mary Morgan (2008).
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extrapolation (Steel 2007), is to investigate whether methods, hypotheses, and facts

of one field can be applied to another. David Teira and Julian Reiss’s chapter

compares research methods of randomization in medical and economic sciences:

randomized clinical trials (RCTs) and randomized field experiments (RFEs),

respectively. Randomized controlled trials have long been regarded as the gold

standard for finding causal relations between interventions and experimental

outcomes. One reason, as Teira and Reiss point out, is that they provide mechanical
objectivity, meaning that randomized trials usually follow rigorous and transparent

rules so that the results are immune to the bias of subjective expert judgment. They,

however, argue that such objectivity is hard to come by. It is because the

participants both RCTs and RFEs could act so strategically to obtain their best

interest from the trial experiment that the supposed invariance of the controlled

environment breaks. Consequently, it is questionable to infer from the evidence the

causal connections between treatments and the results.

Both Hsiang-Ke Chao and Szu-Ting Chen’s and Steel’s chapters deal with the

issue of extrapolation that was conceptualized by Steel (2007), and they both deal

with the studies that can be categorized as freakonomics—using economic

principles to (surprisingly) explain a social phenomenon that was first thought to

be out of the realm of economics—popularized by the economist Steve Levitt. Steel

uses John Donohue and Levitt’s (2001) controversial article of the causal relation

between legalized abortion and crime rate in the United States. Because there is no

direct evidence that can be used to check whether the hypothesis is correct, social

scientists support the US case by analyzing results derived from a survey of a

similar case that happened in the Scandinavian and Eastern European areas during

some periods in the twentieth century. But can we legitimately use evidence

obtained in a different time and a different area to support the local case? The

problem of extrapolation is analyzed by applying a mechanism-based approach—

what Steel calls “comparative process tracing.”

Another case where extrapolation could lead to possible explanation is the

“missing women” debate discussed by Chao and Chen, in which a biological

explanation—hepatitis B virus infection—for the abnormal inequality of sex ratio

at birth in Asia is offered by, extrapolated by, and instantiated by the sampling data

in the other area. But the biological explanation is claimed to be rejected by

economists who used Taiwanese population-level data. They find empirically that

cultural factors such as son preference are the cause for the missing women

phenomena. Chao and Chen argue that such empirical study does not necessarily

deny the existence of the underlying biological causal path, since what is observed

is a net causal result. Taking the net causal result as an evidence of ruling out minor

causal paths is equal to treating the underlying mechanism as a nontransparent box.

In this regard, extrapolations regarding evidence in different time and space can be

seen as complementary rather than substitutive.

This echoes our account of the ontology of mechanisms and causal structure: In

search of an explanation for a phenomenon, it is adequate to specify the mechanism

or identify the causal structure that underlies it. Science progresses thus from black

box to grey box and in turn to transparent box, but not the other way around.

1 Towards the Methodological Turn in the Philosophy of Science 13



7 Conclusion

We have argued in this introductory chapter that thinking about mechanisms and

causality enables us to access scientific practices in biology and economics. Meth-

odological investigations centering on mechanisms and causality provide a mean-

ingful way to understand science. The detailed philosophical analysis of these two

conceptions, together with specific biological and economic cases given in the

chapters of this volume, is our attempt to mediate between mechanisms and

causality and between biology and economics. We look forward to seeing more

explorations of these topics in future philosophy of science studies.
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Part I

Defining Mechanism and Causality



Chapter 2

Mechanisms Versus Causes in Biology

and Medicine

Lindley Darden

Abstract Biologists use knowledge of mechanisms for explanation, prediction,

and control. Philosophers of biology, working in the new mechanistic philosophy

of science, have identified features of an adequate description of a biological

mechanism. The very abstract schema term “cause” may refer to any of various

components of a mechanism, or even conditions needed for it to operate. A case

study of the disease cystic fibrosis illustrates the advantages (and complexities) of

identifying the various stages of the relevant mechanisms. Such knowledge is more

useful than merely claiming that a mutation in the CFTR gene causes the disease,

given the goals of explanation, prediction, and control of disease symptoms.

Knowledge of “mechanism produces phenomenon” is often much more useful for

explanation, prediction, and control than “C causes E.”

1 Introduction

Contemporary biologists often seek to discover mechanisms. Many such

discoveries were major achievements in twentieth-century biology, such as the

mechanism of Mendelian heredity (Morgan et al. 1915; Darden 1991), the numer-

ous mechanisms of cellular metabolism (Bechtel 2006), mechanisms in neurosci-

ence (Craver 2007), and the mechanisms of DNA replication, protein synthesis, and

gene expression in molecular biology (Watson et al. 2007; Darden and Craver

2002). Philosophers of biology are now studying the nature of biological

mechanisms in “the new mechanistic philosophy” (Skipper and Millstein 2005).

The team of Peter Machamer, Lindley Darden, and Carl Craver characterized

mechanisms and applied that characterization to cases from molecular biology and

L. Darden (*)

Department of Philosophy, University of Maryland, 1125A Skinner Building,

College Park 20742, MD, USA

e-mail: darden@umd.edu

H.-K. Chao et al. (eds.), Mechanism and Causality in Biology and Economics,
History, Philosophy and Theory of the Life Sciences 3, DOI 10.1007/978-94-007-2454-9_2,
© Springer Science+Business Media Dordrecht 2013

19

mailto:darden@umd.edu


neurobiology (Machamer et al. 2000; hereafter referred to as MDC). Others worked

on mechanisms in such fields as biochemistry and cell biology (Bechtel and

Richardson 1993, 2010; Bechtel 2006), evolutionary theory (Barros 2008), medi-

cine (Thagard 1998; Moghaddam-Taaheri 2011), and the social sciences (e.g.,

Hedström 2005). Philosophers work to analyze the relation of this new work on

mechanisms to traditional topics in philosophy of science, such as explanation

(Bechtel and Abrahamsen 2005; Craver 2007) and causation, addressed in diverse

ways by Jim Bogen (e.g., 2004, 2005, 2008), Bill Bechtel and Carl Craver (e.g.,

Craver and Bechtel 2007; Craver 2007, Ch. 3), Stuart Glennan (1996, 2002, 2010),

and Jim Woodward (e.g., 2002).

Biologists seek mechanisms for three reasons: explanation, prediction, and

control. In this chapter, I will argue that within the mechanistic sciences, such as

molecular biology and molecular medicine, the claim “C causes E” is impoverished

compared to the claim that “this mechanism produces this phenomenon.” Knowl-

edge of a mechanism in the biological sciences is usually more useful for explana-

tion, prediction, and control than merely being able to label something as a cause.

Furthermore, the new mechanists emphasize the importance of characterizing (and

recharacterizing as work proceeds) the phenomenon that the mechanism produces.

Such characterization is a rich description, providing guidance and constraints in

the search for the mechanism.

I proceed as follows. In Sect. 2, I summarize one current view of biological

mechanisms, the MDC characterization of biological mechanisms. In Sect. 3, I first

summarize what we said in the MDC paper about the relation of the analysis of

mechanism to an analysis of cause. Then, I expand it to conjecture what “C causes

E” might refer to, from the perspective of biological mechanisms. In Sect. 4, I take

up the extension of the MDC account to medicine and illustrate the power and

complexities that the search for mechanisms plays in an example from medicine.

Medical researchers seek mechanisms not just to give explanations for disease

symptoms but also to predict the occurrence and severity of the disease and control

the outcome for the patient’s benefit. We might say: “A mutation in the CFTR gene

causes cystic fibrosis.” But that is much too simple. To illustrate the usefulness of

knowledge of mechanisms, I trace the history of our understanding of the

mechanisms that account for, and therapies to treat, the disease of cystic fibrosis.

This example illustrates general features about the role of discovering mechanisms

for explanation, prediction, and control in fields with practical aims, such as

medical research.

2 The MDC Characterization of Mechanisms

A mechanism is sought to explain how a phenomenon is produced. Our team of

Machamer, Darden, and Craver characterized mechanisms in the following way:
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Mechanisms are entities and activities organized such that they are productive of regular

changes from start or set-up to finish or termination conditions. (MDC 2000, p. 3)

The MDC characterization of mechanisms is not a definition giving necessary

and sufficient conditions for the term’s usage in all cases. Instead it is a characteri-

zation to capture the way biologists use the term, as informed by our detailed

examination of cases from molecular biology and neurobiology and also informed

by philosophical reflection on requirements for productive changes.
An example of a biological mechanism is the mechanism of protein synthesis.

From the beginning of the field of molecular biology in the 1950s, one of the

phenomena puzzling biologists was how proteins are synthesized. By the 1970s,

molecular biologists and biochemists had discovered the key details of the mecha-

nism of protein synthesis (Darden and Craver 2002). The mechanism is often

represented by the abstract schema, called the “central dogma” of molecular

biology:

DNA! RNA! Protein

It may also be represented by much more detail as in Fig. 2.1, with structures of

entities, the organization of the mechanism components within a cell, and the

temporal stages and movements depicted by arrows. The mechanism begins in

the nucleus with the unwinding of the DNA double helix and the synthesis of

messenger RNA. The long ribbon of mRNA moves into the cytoplasm where it

attaches to the cell organelle, the ribosome. The ribosome is the site where transfer

RNAs, carrying their respective amino acids, attach to the messenger RNA (in a

specific order, determined by the genetic code). The growing chain of amino acids

will later leave the ribosome and fold into a three-dimensional protein (not shown in

Fig. 2.1).

This example illustrates many of the general features of biological mechanisms.

These are listed in Table 2.1. The first feature is “phenomenon” because the first

step in the search for a mechanism is to identify and characterize a puzzling

phenomenon of interest. Next are componency features. The mechanism is com-

posed of entities and activities, sometimes further organized into functional

modules. Functional modules are groups of entities and activities that play a

given role in the mechanism and may recur in mechanisms of the same abstract

type, e.g., the module for translation in the mechanism of protein synthesis

(discussed below).

Note that the entities in the protein synthesis mechanism are not all at the same

size level. Working entities of the protein synthesis mechanism range from small

ions to larger macromolecules to cell organelles (composed of macromolecules).

Size level and mechanism level need not, and often do not, correspond (Craver

2007, Ch. 5). Mechanisms have working components of a certain size, with

structure and with other properties that enable them to engage in the activities

that drive the mechanism.
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Fig. 2.1 Mechanism of protein synthesis

Table 2.1 Features of mechanisms

Phenomenon

Components

Entities and activities

Modules

Spatial arrangement of components

Localization

Structure

Orientation

Connectivity

Compartmentalization

Temporal aspects of components

Order

Rate

Duration

Frequency

Contextual locations

Location within a hierarchy

Location within a series

Modified from Darden (2006, Table 12.1)

and Craver and Darden (2001, Table 2.1)
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The mechanism’s components have spatial and temporal organization. Spatial

organization includes location, internal structure, orientation, and connectivity

(both among component parts within the mechanism and to other mechanisms

before the start condition and after the termination condition). Sometimes a molec-

ular mechanism is compartmentalized, e.g., occurring in one part of the cell and

surrounded by a membrane that protects its parts from dissipation and attack or

from attacking other parts of the cell. (Lysosomes, e.g., contain caustic enzymes

that break down waste materials; their enzymes are enclosed in that cell organelle

and thus do not attack other cellular components.) Also, the stages of the mecha-

nism occur in a particular order and they take certain amounts of time (duration).

Some stages occur at a certain rate or repeat with a given frequency. In addition to

the componency, spatial, and temporal features of a mechanism, the mechanism

may be situated in wider contexts—in a hierarchy of mechanism levels (Craver

2007, Ch. 5) and in a temporal series of mechanisms (Darden 2005). These features

of mechanisms can play roles in the search for mechanisms, and then they become

parts of an adequate description of a mechanism. What counts as an adequate

description (i.e., how much detail needs to be specified) depends on the context

in which an explanation of the puzzling phenomenon is sought and the purposes for

which the description is to be used.

One use is to make predictions. When the mechanism is in place and the start

conditions obtain, then the orderly operation of each stage of the mechanism results

in the production of the phenomenon. Hence one can predict what the outcome will

be. However, if a portion of the mechanism is broken, then one can predict that the

earlier stages operated and an intermediate product accumulates (or perhaps no

product at all is produced). Knowing about the intermediate stages allows more

fine-grained predictions about what is the output of each stage and what will happen

when a stage breaks. A scientist may be able to run a mental simulation of the

mechanism and thereby predict what phenomenon it will produce or to predict what

will happen if a part of the mechanism is broken. (On mental simulations of

mechanisms operating, see Bechtel and Abrahamsen 2005.) However, sometimes

the complexity of the mechanism makes mental simulations difficult. Computa-

tional simulation models of the mechanism are more useful, especially for quanti-

tative predictions about, e.g., concentrations of products (e.g., Eisenhaber 2006) or

for predicting complex spatial interactions as in molecular dynamic simulations

(e.g., Watanabe et al. 2010).

A mechanism schema is a truncated abstract description of a mechanism that we

know how to fill with more specific descriptions of component entities and

activities, such as the schema for the central dogma, discussed above. In contrast,

a mechanism sketch cannot (yet) be instantiated. Components are (as yet) unknown.

Sketches may have black boxes for missing components that are sought as the

search for the mechanism proceeds. An adequate description of a mechanism (in the

context of a given puzzling phenomenon) is an account with all the black boxes

filled, with the overall organization specified (e.g., linear or cyclic), and with the

features of Table 2.1 noted.
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3 Mechanisms and Causes

In this section, I briefly discuss ways that talk of “cause” and “effect” may possibly

be mapped to talk of “mechanism” and “phenomenon.” This is not a thorough

discussion of the many topics addressed by those analyzing causation. Rather it is

just a brief foray, from the perspective of some of the recent work on biological

mechanisms, to show howmuch more impoverished talk of “causes” is compared to

talk of “mechanisms.”

Possible referents of the term “cause” are many and varied from the mechanistic

perspective. Something that is designated as a cause may refer to a piece of a

mechanism. MDC analyzed mechanisms as composed of both entities (with their

properties) and activities. Activities are producers of change; they are constitutive

of the transformations that yield new states of affairs. As Machamer (2004) noted,

activities are often referred to by verbs or verb forms (e.g., participles, gerunds).

Molecules bond, helices unwind, ion channels open, and chromosomes pair and

separate.
In MDC, we discussed the relation between cause and activity:

Activities are types of causes. Terms like “cause” and “interact” are abstract terms that need

to be specified with a type of activity and are often so specified in typical scientific

discourse. (MDC 2000, p. 6)

We followed Elizabeth Anscombe (1971, p. l37), who noted that the word

“cause” itself is highly general. It needs to be specified by other, more specific,

causal verbs. Anscombe included the following in her list: scrape, push, dry, carry,

eat, burn, and knock over.

Activities are one way to specify causes. An important feature of activities is that

they come in types that have been discovered as science has changed. Over the

centuries, scientists discovered new types of activities and their ways of operating.

Once they are discovered and their modes of operating well understood, types of

activities become part of the “store” or “library” of mechanism parts used to

construct mechanistic hypotheses in a particular biological field (Darden 2001;

Craver and Darden 2001). The kinds of activities most important in molecular

biological mechanisms are, first, the push/pull geometrico-mechanical activities

familiar since the beginning of the seventeenth-century mechanical worldview and,

second, the many forms of chemical bonding discovered in the nineteenth and early

twentieth centuries. Each field finds the activities that drive its mechanisms.

A major advantage of the MDC view of causes as types of activities is that the

vague term “cause” must be made more specific. The specific way that a specific

change is brought about must be found in order to have an adequate description of

a mechanism.

Methodologically, activities can sometimes be identified independently of the

specific entities that engage in them. For example, the melting temperature of

the DNA double helix indicated that it contained weak hydrogen bonds, even before

the specific subcomponents (the DNA bases) exhibiting those bonds had been

identified. More generally, activities may sometimes be investigated to find their
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order, rate, duration, and sphere of influence more or less independently of the

entities that engage in those activities.

A specific kind of activity produces a specific kind of change. Finding necessary

and sufficient conditions to characterize the many diverse kinds of production is

difficult and not required for their scientific discovery (Bogen 2008). Rather than

seeking a general definition of production, it is more insightful to consider specific

kinds of activities and the means for discovering them. As Machamer suggested in

MDC, human beings directly experience many kinds of activities, such as collision,

pushing, pulling, and rotating—the activities in mechanisms often discussed in the

seventeenth century. Scientists have since discovered many kinds of activities not

directly detectable by human senses, such as attraction and repulsion, electromag-

netism, and movements across membranes to achieve equilibrium. Science students

must be trained to understand how these activities work so that, with education,

they can “see” (understand) how mechanisms employing them operate.

Moving beyond what MDC claimed about activities and causes, I note that

relating “C causes E” to mechanisms may call attention to some piece of a

mechanism other than an activity. As Stuart Glennan (1996) notes, analysis of

“C causes E” may require an entire underlying mechanism to lay out all the stages

between C and E. In such a case, C refers to the entire mechanism at a lower

mechanism level. Alternatively, C may refer to an early stage of the mechanism

(consisting of entities and their activities) with the other stages between C and E left

unspecified. Hence, “cause” may refer to nearer or more distant stages in the

mechanism, prior to the stage (E) of interest.

In addition to entities and activities and organization, MDC noted that

mechanisms have “start or setup conditions.” If a mechanism requires a signal or

start condition (some don’t, e.g., some biological mechanisms run continuously),

then that may be called a “triggering cause” or a “sufficient cause.” When the

trigger is present (and the set conditions are available), the mechanism begins to

operate. Something called a “necessary cause” might be any nonredundant part of

the mechanism or, instead, part of the setup conditions for a mechanism to operate.

Setup conditions for mechanisms are many and varied. Although some of the setup

conditions are known and indicated (such as in the materials and methods sections

of scientific papers), they cannot be fully specified, even in controlled laboratory

conditions. (This issue is well known in discussions of ceteris paribus conditions.)

My goal in this section thus far has been to try to map the C of “C causes E” onto

some piece of a mechanism or to its start or setup conditions. Now let’s turn to E,

the effect. Presumably that corresponds to the phenomenon of interest. An impor-

tant starting point for finding a mechanism is to characterize the puzzling phenom-

enon that the mechanism produces (on recharacterizing the phenomenon as

research on the mechanism proceeds, see Bechtel and Richardson 2010). Presum-

ably, the characterization of the effect is similarly important in constraining ade-

quate claims about its cause.

One of the aims in finding causes is to enable humans to exert control. As is

sometimes said, a cause is a handle that can be turned to do something. What we

wish to control is E, the outcome. The goal of control of the outcome is especially
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important in medicine, so now we turn to an example from that field. The example

shows that knowledge of the mechanisms operating or failing to operate provides a

better handle than knowing that a single “X causes disease Y.”

4 Control of the Outcome in the Disease of Cystic Fibrosis

One might say: “A mutation in the CFTR gene causes the disease cystic fibrosis.”

But this is an impoverished claim, compared to a description of the myriad

mechanisms involved in the etiology of the disease.

In medical contexts, the puzzling phenomenon may be described and

redescribed in various ways, as work proceeds to discover the mechanisms produc-

ing the disease. Also, the phenomenon of interest is different for those attending to

different stages in the progress of the disease. Yet other characterizations of the

phenomenon may be provided by those doing fundamental research versus those

tasked with treating patients, so this case also illustrates different ways of

characterizing the phenomenon within the contexts of pure versus applied research.

Different characterizations of the phenomenon focus attention on different

mechanisms or stages of a given mechanism involved in the disease etiology.

The phenomenon to be explained in what has come to be called the disease of

“cystic fibrosis” changed over time, as groups of symptoms were clustered, the gene

discovered, some of the activities of the malfunctioning protein found, and later

stages of the disease dissected. One can tell a tidy story about the discovery of the

normal mechanism, about the many ways it can break, and about how this knowl-

edge has been and is being used in designing drug therapy. This perspective views

disease as a broken-normal mechanism and therapy as aimed at restoring normal

functioning (Moghaddam-Taaheri 2011).

However, one can view the medical mechanistic picture in a more complex way.

One can ask: Is there some other mechanism that can restore chloride transport

function rather than fixing the broken mechanism? Alternatively, as is common in

medicine, one can just focus on mechanisms that will aid in alleviation of

symptoms of those living with the disease. More specifically, one can seek drugs

that will aid in preventing the lung infections that typically lead to death for cystic

fibrosis patients. For some of these cases, the current understanding of the

mechanisms provides powerful tools for medical researchers, but for other cases

many black boxes remain.

In the early 1990s, it looked as if the story of conquering cystic fibrosis would be

a simple one: gene discovered, mechanism and mutations understood, and guidance

provided for therapies for intervention. However, the genotype-phenotype relations

are more complex than anyone studying a disease (seemingly) produced by a single

gene defect had reason to expect. Some aspects of the connections between the gene

mutations and protein defects and the many phenotypic symptoms of the disease are

still not well understood.
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The following subsections proceed as follows. First, I recount the history of the

discovery of the gene associated with cystic fibrosis. Then I describe the different

mechanisms associated with the disease of cystic fibrosis, based on different ways

of choosing the puzzling phenomenon of interest. The characterization of the

phenomenon is a crucial step in delineating the mechanism of interest. The choice

of the phenomenon (the effect?) and the goal of the research focus attention on

different aspects of a single mechanism (the cause?) or on different mechanisms

(different causes?) within the framework of a single disease. It is much too simple

to say that a single mutation in a single gene causes the disease of cystic fibrosis.

4.1 History of Cystic Fibrosis Prior to the Discovery of the Gene

Work in the early to mid-twentieth century connected symptoms in the lungs,

pancreas, and sweat glands. Medical researchers found that recurrent respiratory

infections, raised levels of chloride in sweat, and insufficient pancreatic enzymes

were all problems in the epithelial tissues in those organs and glands. The disease

was named “cystic fibrosis,” but the specific nature of the defect in epithelial tissues

was unknown until the 1980s (Knol 1995).

4.2 Discovery of the CFTR Gene

Mitchell Drumm (2001), a graduate student and then postdoc who worked in

Francis Collins’s lab at the University of Michigan in the 1980s, wrote a lively

first person account of the discovery of the gene involved in cystic fibrosis (CF).

When these medical researchers started their investigation of CF, all the aspects of

the molecular genetic mechanism were a black box. Population genetic studies of

families with CF patients had shown that the disease is hereditary, not sex linked,

and requires two copies of the mutant gene to produce the disease symptoms;

carriers with one copy are not sick. In more technical genetic terms, it is an

autosomal recessive disease. It is more prevalent in those with Caucasian European

ancestry than among other groups in the USA. Before 1989, the gene was not

known and the protein it produces was unidentified. However, earlier work on the

symptom of salty sweat indicated that the protein was involved in the transport of

chloride in and out of the cell (Quinton 1983; discussed in Pearson 2009).

By the 1980s, molecular biological techniques for finding a gene could proceed

quickly if the protein and its accompanying messenger RNA could be identified.

A complementary DNA, called “cDNA,” could be constructed from the messenger

and then used as a probe for finding the nuclear DNA and the location on the

chromosome where the gene resided. But the search for the CF gene had to proceed

without such technological reversal of those later stages of the mechanism. It was
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the first gene to be discovered whose protein product was not known beforehand

(Drumm 2001, p. 86).

Three groups in North America collaborated in the gene’s discovery, bringing

different techniques and areas of expertise. Lap-Chee Tsui at the Hospital for Sick

Children in Toronto screened the chromosomes of families with CF children,

locating the gene on chromosome 7, near certain known markers. Francis Collins’s

lab at the University of Michigan did the molecular analysis of the chromosome by

a process that Collins had invented, called “chromosome jumping.” The DNA of

the chromosome was chopped up and circularized. Using this chromosome jumping

technique, the Collins lab group found related markers more quickly than permitted

by the slower technique called “chromosome walking,” which required more

laborious analysis of linear sequence overlaps. The third collaborator was John

Riordan, also in Toronto in the 1980s, who constructed complementary DNA

libraries, using messenger RNA from CF tissues. Putative stretches of DNA could

be matched against the cDNAs to see if that gene was active in CF tissues.

A comparison between a putative normal gene and the same stretch of DNA

from a CF patient found that three bases were missing in the disease gene. As

Drumm remarked: “I think we were all expecting a more striking change in the gene

if it were truly a mutation that caused CF” (Drumm 2001, p. 87). The gene was

sequenced and various hypotheses proposed as to its functional role in cellular

mechanisms. (On functions from a mechanistic perspective, see Craver 2001.)

Given the similarity of some of its structural domains to other sequences whose

function was known, the protein looked like it would reside in the cell membrane

and conduct chloride ions across the membrane. Collins, Tsui, and Riordan named

it the “cystic fibrosis transmembrane conductance regulator”—“CFTR” for short—

in three papers published in Science in 1989 (Kerem et al. 1989; Riordan et al. 1989;

Rommens et al. 1989).

The CFTR gene is large, with approximately 180,000 base pairs on the long arm

of chromosome 7. It produces a large protein with 1,480 amino acids, organized

into several different functional domains. Several classes of mutations produce the

disease. Researchers have identified the specific locations of the mutations within

the gene and traced the different ways each mutant breaks the mechanism. Some

mutations are so severe that no protein is synthesized. However, the mutation that

occurs in about 90 % of patients with cystic fibrosis in the USA (Rowe et al. 2005)

is less severe. Three bases are deleted in the CFTR gene. During protein synthesis,

this deletion results in one missing amino acid: phenylalanine at position 508 (of the

1,480 amino acids). Although missing only one amino acid, such Delta F 508

mutant proteins do not fold properly. The misfolded proteins do not implant into

the cell membrane to properly transport chloride ions in and out of the cell (Kirk

and Dawson 2003). Normally, the cellular machinery degrades misfolded proteins,

but not all such mutant protein is degraded (important in potential drug therapy as

we will discuss below). Details about the mechanism of degradation, or lack

thereof, are black boxes (Bridges 2003).

28 L. Darden



4.3 Mechanisms Related to Cystic Fibrosis

So, there is a tidy story that we can now tell about the normal gene and the synthesis

of the normal CFTR protein and about how different mutations produce different

defects. Consider the mechanism for producing the protein with the Delta F 508

mutation. Each stage of the mechanism becomes a potential target for therapy. As

Susan Lindee has discussed, the early hope was for gene therapy to replace the

defective gene. The many problems with this approach include finding an appropri-

ate vector for delivering the large gene, getting the gene into the appropriate cells

(even in the lung cells which are more accessible than those in other organs), getting

the gene to a safe location (either chromosomal or an extrachromosomal plasmid)

so as not to disrupt other mechanisms, getting sufficient amounts of genes into the

cells, preventing the immune system from rejecting any foreign matter used to take

the gene into the cell, and getting the genes to respond to cellular regulatory signals

to turn on the gene but not to overproduce the protein (Curlee and Sorscher 2003).

These problems have yet to be solved; the prospects for successful gene therapy

look dim in the case of CF (Lindee and Mueller 2011).

So, consider the next module of the mechanism, the one after the gene itself, as a

target: the messenger RNA. The CFTR gene contains not only the coding sequences

that eventually direct the ordering of amino acids during protein synthesis but also

spacer segments, called introns. A cell organelle, called a “spliceosome,” processes

the pre-mRNA to produce the mRNA; the spliceosome accomplishes this by

snipping out the introns and binding the remaining coding segments together into

the final messenger RNA. Researches have succeeded in inserting a minigene into

the DNA of human lung tissue grafted onto a mouse. The minigene has the correct

coding segment rather than the Delta F 508 three-base mutation. The gene is

expressed at the same time as the CFTR gene, thereby overcoming one of the

barriers to gene therapy. Then the splicing machinery is induced to put the correct

segment into the processed messenger RNA rather than the mutant segment. Some

success in the mouse system makes this look promising. However, it is still a long

way from human clinical trials (Liu et al. 2002, 2005; discussed in Thomson 2002).

Currently, a primary area for targeted drug therapies is the next stage of the

mechanism: the synthesis of the misfolded protein. For the Delta F 508 mutant, the

three missing bases in the gene result in one amino acid missing from the protein,

which then misfolds. Although some of the protein degrades, some of the misfolded

protein remains in the cells. Therapy can be directed to finding drugs that aid in

rescuing the undegraded misfolded protein so that it refolds and inserts into the

cell membrane and functions (albeit at a reduced level) to transport chloride ions.

A robotic process has screened millions of compounds for their effects on the

misfolded protein and some promising drug candidates have been found. One is

curcumin, a major constituent of the spice turmeric, which has shown promising

effects in vitro and in mice models (Rowe et al. 2005, p. 1999).

In contrast to this random screening, rational drug therapy is also being explored.

Medical researchers are using a more detailed understanding of the role of
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additional molecules to try to correct the defect. These additional molecules, called

chaperones, aid the CFTR protein to fold properly (Wang et al. 2006). The

discovery of the role played by such additional molecules that interact with

CFTR (produced by additional genes, called “modifier” genes) may explain a

puzzling phenomenon about the relation between genotype and phenotype. It is

puzzling why patients with the same two Delta F508 mutations can still vary in the

severity of symptoms of the disease. One hypothesis is that this difference is due to

different modifier genes in their DNA. Although cystic fibrosis seemed to be an

ideal case of a disease caused by a mutation in a single gene, we can no longer hold

such an overly simple view. The mechanism by which modifier genes work

becomes important also.

Thus, we see the importance of the way the puzzling phenomenon is

characterized in order to focus attention on the relevant aspect of the mechanism.

When the puzzling phenomenon is the synthesis of the normal CFTR protein, that

mechanism is fairly well understood. But when the puzzling phenomenon is why

the Delta F 508 mutant protein fails to function properly, aspects of the mechanism

by which the mutant form of the protein is synthesized and misfolded and degraded

still have black boxes. Nonetheless, enough is known about that module of the

mechanism to guide drug discovery efforts to find drugs to aid with refolding the

misfolded protein.

However, when the puzzling phenomenon is a broader one, namely, how the

mutant in the CFTR gene produces the symptoms of cystic fibrosis disease in the

myriad organs that it affects, many of the details of these mechanisms are unknown.

When what is taken to be puzzling is much later in the progress of the disease, even

more black boxes remain. What are the stages of the mechanism leading to the thick

airway mucus in the lungs that result in the fact that, as cystic fibrosis patients age,

they become more susceptible to particular strains of bacteria that are more resistant

to treatment? Various hypotheses as to how to fill this black box abound. As a recent

review article said: “So far, a unifying mechanism responsible for the vast clinical

expression of the disease in the CF airway has not been identified” (Chmiel and

Davis 2003, p. 173).

There are even competing hypotheses, which may not be mutually exclusive,

about why the airway mucus is thick and particularly susceptible to bacterial

infections. Several hypotheses depend on the effects of malfunctioning chloride

transport, leading to an imbalance of salt homeostasis or abnormal water absorption

producing thicker mucus (Widdicombe 2003). However, new evidence points to a

malfunctioning immune response. Neutrophils, which are a type of white blood

cell, are recruited to fight bacteria. CF patients also have defective regulation of

neutrophils, leading to an overabundance of them. The mechanism for this

malfunctioning regulation of neutrophils is not well understood, although some of

the entities and their activities have been identified (Gu et al. 2009). As neutrophils

break down, the debris, especially their DNA, accumulates in thick mucus that is a

site for colonization preferred by certain forms of bacteria. So, if the phenomenon

that the physician wishes to alter is the overgrowth of specific strains of bacteria,

then the therapeutic effects may be directed to neutrophil regulation, a much later
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stage in the disease with different targets than the CFTR protein biosynthesis

mechanism (Chmiel and Davis 2003).

This hypothesized mechanism of overexpression of the immune response to

inflammation led to the unexpected prediction that anti-inflammatory drugs would

be beneficial to CF patients. Without this hypothesis, one would have expected that

anti-inflammatory drugs, such as ibuprofen, would have deleterious effects for

lungs susceptible to infections. The normal inflammatory response, which recruits

neutrophils to the site of an infection, is beneficial in the fight against bacteria.

However, because the hypothesized mechanism suggested overexpression of this

response, the drug therapy to reduce the response was subjected to a clinical trial,

with some success (Konstan et al. 1995).

So, this case shows the many different ways the puzzling phenomenon can be

identified and consequently the many different mechanisms that provide candidate

“causes” for that chosen phenomenon. If the phenomenon to be explained is the

synthesis of the normal CFTR protein, then the mechanism for that is well under-

stood. If the question is the following—“what is the nature of the failure in that gene

that leads to cystic fibrosis disease?”—then the answer is that there are many

mutations that disrupt that mechanism in different ways (as we discussed, different

classes of mutants disrupt the normal mechanism at different stages). If we focus on

the most common mutant found in those with cystic fibrosis in the USA, the Delta F

508 mutation, then the puzzling phenomenon is how does the CFTR protein misfold

and get degraded (or not). Although some of the details of the degradation mecha-

nism are still black boxes, nonetheless, we know that the outcome is that some

misfolded proteins are found in the cells. Hence, enough of the mechanism is

understood to direct empirical or rational drug discovery efforts, which may find

a way to correct the misfolding and transport the protein to the cell membrane. The

goal is to elicit sufficient amounts of chloride ion transport to restore some of the

normal function and alleviate some of the disease symptoms.

However, if we want to know the mechanism by which this mutant leads to lung

disease and death in CF patients, then there are still many black boxes to be filled.

Competing hypotheses have to be evaluated about crucial stages of different

mechanisms. To decrease death due to bacterial infections, it may be possible to

direct therapeutic effects to the regulation of overexpression of neutrophils rather

than correcting the CFTR gene itself. A different mechanism, coming later in the

progression of the disease, becomes the target mechanism for controlling one

disease symptom.

This case shows that the mechanistic perspective adds much more detail than a

simple claim that a mutated gene causes the disease cystic fibrosis. That vague

claim has been eliminated in favor of a rich description of the many mechanisms

involved. One would have thought that for a disease due primarily to a single gene

defect, we could say that the mutation in the gene causes the disease and the way to

fix it is to apply gene therapy to deliver a functional, non-mutated gene. Sadly such

a simple fix did not work. This case shows the importance of knowing the different

stages of the normal mechanism and the specific ways in which it breaks and even

identifying different mechanisms that come into play as the disease progresses. All

these aid drug discovery.
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5 Conclusion

In our “Thinking about Mechanisms” paper (MDC 2000), we discussed the simple

relation between one puzzling phenomenon and one mechanism. One might have

thought one could easily identify the phenomenon as the effect (E) and the entire

mechanism (or some piece of it) that produces that phenomenon as the cause (C).

However, there are many candidates for what is to be designated as the cause and

what is to be called the effect, once specific features of a mechanism and its setup

and start conditions are identified. The cystic fibrosis case illustrates advantages and

complexities gained by discovering the relevant mechanisms, given the goals of

explanation, prediction, and control over disease in medicine.
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Chapter 3

Identity, Structure, and Causal Representation

in Scientific Models

Kevin D. Hoover

Abstract Recent debates over the nature of causation, casual inference, and the uses

of causal models in counterfactual analysis, involving inter alia Nancy Cartwright

(Hunting Causes and Using Them), James Woodward (Making Things Happen), and
Judea Pearl (Causation), hinge on how causality is represented in models.

Economists’ indigenous approach to causal representation goes back to the work of

Herbert Simonwith the CowlesCommission in the early 1950s. The paper explicates a

scheme for the representation of causal structure, inspired by Simon, and shows

how this representation sheds light on some important debates in the philosophy of

causation. This structural account is compared to Woodward’s manipulability

account. It is used to evaluate the recent debates – particularly, with respect to the

nature of causal structure, the identity of causes, causal independence, andmodularity.

Special attention is given to modeling issues that arise in empirical economics.

1 Models and Causes

Formal scientific models possess some distinct advantages over verbal accounts.

(There are, to be sure, disadvantages as well.) All representations (formal or verbal)

are partial: they omit, simplify, approximate, and idealize; they fall short of saying
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everything that could be truly said and short of saying everything that we might like

to say. Recognition of the gap between the representation and the world leads

various philosophers – among them, Paul Teller (2001) and Ronald Giere (2006) –

to reconceptualize scientific knowledge as perspectival. Part of the reconceptuali-

zation is a repudiation of the view that omniscience sets the standard for the

worthiness of scientific knowledge.

The truth in a once-common vision of science is that the only fully adequate

scientific knowledge trades in exceptionless, universal generalizations – scientific

laws. All more specific knowledge is, in principle at least, derivable from these

laws. Recognizing – as indeed any serious philosopher or scientist must – that we do

not, in fact, possess all the laws simply meant that what we did possess was a

slightly shabby, deficient version of what we wanted. We do not stand on Olympus,

but science was nonetheless to be judged from the Olympian heights.

An alternative vision of science championed by Giere and Teller, as well as by

Nancy Cartwright (1999), and William Wimsatt (2007), among others, starts lower

and builds upward. The standards of good or successful science are partial and

local, and science itself is constructed, to use an apt term from the subtitle of

Wimsatt’s (2007) book, in a piecewise manner.

The local knowledge that grounds science in this vision is often causal knowl-

edge. Yet, like other parts of science, causation has often been analyzed top down.

Many accounts of causation – for example, those of David Lewis (1973) and Daniel

Hausman (1998) – explicate causes against a background of universal laws. In

contrast, piecewise accounts of science typically take the causal relation as primi-

tive or, at least, built from something more local and specific than universal laws.

A piecewise approach is especially suited to economics and other social

sciences, biology, and areas of physical sciences, such as climatology – fields that

would be hard to analyze from a small set of universal laws on the model of

Newtonian mechanics. Economists, for example, increasingly conceptualize eco-

nomics causally, as evident in the work of Clive Granger in time-series economet-

rics, James Heckman in microeconometrics, recent developments in “natural

experiments” in economics, and counterfactual analysis.1

Causal realism is the doctrine that causal relationships exist in the world and that

the role of causal models is to represent them adequately for some purpose. Not all

scientists (nor all philosophers) who talk about causes are realists, but that is a

question for another day. Here, I want to focus on representation of causes and not

on fundamental ontology or epistemology. It is a commonplace that different

representations or notational schemes allow us to see different things and that

some schemes are more effective than others – consider Arabic numerals or

Feynman diagrams. The main goal of this chapter is to develop a scheme for

representing causal relationships and to consider the light that it sheds on how we

1 See Hoover (2008 and 2012a) on the place of causal analysis in economics and Reiss (2007) on

natural experiments and counterfactual analysis. Hoover (2004) documents the fall and rebirth of

causal analysis and language in economics.
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should understand causation generally. The roots of the approach advocated here

are found in my own work as a practitioner of economics and draw on sources, such

as the work of Herbert Simon, that were originally aimed at problems that arose in

economic and econometric analysis. The application is much broader than these

origins might suggest.

In part, this chapter reacts to Cartwright’s (2007) “pluralistic” account of

causation. In stressing plurality, Cartwright fails to illuminate the close

relationships among a number of approaches to causality that are hidden in alterna-

tive schemes of representing causal relations. In part, the chapter reacts to James

Woodward’s (2003) “manipulability” account of causation – an account which is

much criticized by Cartwright. Woodward’s understanding of causation appears to

be driven by particular schemes of representing causes. A more effective scheme of

representation suggests different conclusions with respect to several important

issues. The account proposed here in no way fundamentally conflicts with the

general approach of modeling causal relationships graphically, developed espe-

cially by Judea Pearl (2000) and Peter Spirtes et al. (2000) and used by Woodward.

Rather it clarifies the relationship between graphical representations and systems of

equations in a manner that both enriches the graphical approach and demonstrates

the fundamental kinship of the two approaches.

2 Representing Causal Structure

2.1 Graphs and Equations

While many philosophers understand causal relations as holding fundamentally

among particular events, occurrences, or properties (i.e., among tokens), Woodward

and most economists understand causal relations as holding among variables (i.e.,

among types). Token-level relationships for Woodward and the economists are

causal to the degree that they instantiate a type-level relationship. In stochastic

cases, token-level relationships are seen as the realization of random processes.

Relations among variables are often expressible in the form of systems of

equations. Equality is a symmetrical relationship, and the most distinctive charac-

teristic of causal relations is their asymmetry: A causes B gives no ground for

holding that B causes A (although we must not rule out mutual causation without

further consideration). Woodward, in common with Pearl (2000), Spirtes et al.

(2000), and other advocates of graph-theoretic or Bayes net methods of causal

inference, represents causal relations by graphs in conjunction with equations.

Figure 3.1 shows a typical causal graph (uppercase letters represent variables)

that corresponds to a system of equations:

A ¼ αA; ð3:1Þ
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B ¼ αBAA; ð3:2Þ

C ¼ αCAAþ αCBB; ð3:3Þ

where, for the moment, we regard the αij as fixed coefficients.

Systems of equations are causally ambiguous. In stochastic cases, we generally

recognize that correlation is not causation; in nonstochastic cases, the analogue is

that functional relations are not causation. The arrows in the graph represent the

primitive notion of the asymmetry of causation.

Graphs and equations interpreted causally both have a long history in economics

(see Hoover 2004). But it is fair to say that equations have gained the upper hand

and that, for many years, causation itself was rarely referred to directly, but at best

was implicit in distinctions between dependent and independent (or endogenous

and exogenous) variables and in synonyms and circumlocutions: instead of “A
causes B,” A produces, influences, engenders, affects, or brings about B, or B
reflects, is a consequence of, is a result of, or is an effect of A (see Hoover 2009).

A growing wariness of causal language went hand in hand with a wariness of

graphical representation. As Pearl puts it:

Early econometricians were very careful mathematicians; they fought hard to keep their

algebra clean and formal, and they could not agree to have it contaminated by gimmicks

such as diagrams. (Pearl 2000, p. 347)

Equations alone are causally ambiguous, since in themselves they do not repre-

sent causal asymmetry. But graphs are themselves causally ambiguous, because

quite different functional relationships can be represented by the same graph

(Woodward 2003, p. 44). Just as economists found circumlocutions to express

“cause,” they have typically – although not necessarily consistently – represented

causal asymmetry by the convention of writing causes on the right-hand side and

effects on the left-hand side of equations. Various devices have been suggested for

explicitly combining the functional detail of systems of equations with the

asymmetries of the graph. In lieu of the equal sign, Cartwright (2007, p. 13)

suggests a causal equality (c¼) which Hoover (2001, p. 40) writes as ((). With a

new notational device, the graph in Fig. 3.1 could be omitted and the system (3.1),

(3.2), and (3.3) could, then, be rewritten as

A( αA; ð3:10Þ

B( αBAA; ð3:20Þ

C

A B

Fig. 3.1 Causal graph of the

system (3.1)–(3.3)
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C( αCAAþ αCBB: ð3:30Þ

Cartwright (2007, p. 16, passim) refers to such equations as “causal laws” – that

is, laws that connect specific causes to specific effects. Woodward (2003), as well as

most of the literature on graphical causal models, considers one-way causation

only. Economists refer to such systems as recursive, while the graphical

representations are often known as directed acyclical graphs (DAGs). Cyclical
graphs (e.g., A ! B ! C ! A) are sometimes entertained, but the tight cycle of

the simultaneous system (A ! B ! A or A $ B), a bread-and-butter system in

economics, is encountered far less frequently. The equations themselves are gener-

ally taken to be linear – especially linear in parameters. While these restrictions are

by no means necessary, they highlight the inadequacy of the graphs fully to

represent various levels of causal complexity. Economists avoiding graphs (pace
Pearl) are perhaps partly motivated by an appreciation of the subtlety of causal

representation and not some intuitive revulsion toward graphical gimmickry.

2.2 Simon on Causal Order

Following Haavelmo’s “The Probability Approach in Econometrics” (1944),

econometricians focused on what Frisch had called the “inversion problem” –

namely, how to infer the original structure from passive observation of the data

that it generates (Louçã 2007, p. 95). Later dubbed the “identification problem,” a

detailed account of the mathematics was for a time the central focus of the Cowles

Commission (Koopmans 1950; Hood and Koopmans 1953). Identification naturally

requires something to identify. Simon’s contribution to the 1953 Cowles Commis-

sion volume sought to characterize the causal order of a system of equations.

Simon started with a complete system of equations – that is, a system that could

be represented as a multivariate function with a well-defined solution. He then

focused on self-contained subsystems of the complete system. To illustrate,

Eqs. (3.1), (3.2), and (3.3) form a complete system. Equation (3.1) is a self-

contained subsystem in that it determines the value of A without reference to any

other equation. Equations (3.2) and (3.3) considered separately are not self-

contained subsystems as they do not contain enough information to determine B
or C. In contrast, Eqs. (3.1) and (3.2) together are a self-contained subsystem, since

they determine the values of A and B without reference to Eq. (3.3).

Simon’s conception is closely related to his later work on hierarchies of systems

(Simon 1996; see also Hoover 2012c). Causes are the outputs of lower-level

systems and the inputs to higher-level systems. The relationship is closely

connected to the solution algorithms for systems of equations. In system (3.1),

(3.2), and (3.3), A is determined entirely by (3.1) and can be regarded as an output.

If we know A, we do not need to know (3.1) to determine B; a specific value for A
forms an input that, in effect, turns the non-self-contained subsystem (3.2) into a
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self-contained subsystem. Its output is, of course, B. Knowing B alone, however,

does not turn (3.3) into a self-contained subsystem. Substituting its value into (3.3)

leaves the variable A in place (despite the fact that B cannot have a well-defined

value unless A also has a well-defined value), and we have to substitute A directly

from (3.1). Thus, A directly causes B, and A and B directly cause C; so, A is both a

direct and an indirect cause of C. This, of course, is the causal structure of Fig. 3.1.
Suppose, however, that we modify the system slightly by replacing Eq. (3.3)

with (3.300):

C ¼ αCBB: ð3:300Þ

Then, A directly causes B, and B directly causes C, but A only indirectly causes C:
Eq. (3.1) is nested in the complete system (3.1), (3.2), (3.300), but the self-contained
subsystem (3.1) and (3.2) intervenes between the self-contained subsystem (3.1)

and the self-contained complete system (3.1), (3.2), (3.300).
Simon’s analysis assumes that the original way of writing the equations is

canonical. But he notices that the same functional relationships can be represented

by other sets of equations. So, for example, the self-contained subsystem (3.1) and

(3.2) could be replaced by

A ¼ βA þ βABB; ð3:4Þ

B ¼ βB; ð3:5Þ

which has the same numerical solution as (3.1) and (3.2) provided that

βA ¼
αA

1� αBAð Þ ; ð3:6Þ

βAB ¼
�1

1� αBAð Þ ; ð3:7Þ

and

βB ¼ αAαBA: ð3:8Þ

(Nothing depends on the fact that the βij are defined in terms of the αij. We could as

easily have started with Eqs. (3.4) and (3.5) and derived an analogous set of

restrictions defining the αij in terms of the βij to guarantee identical solutions.)

The two sets of equations have the same solution, but under Simon’s analysis B
causes A in (3.4) and (3.5), whereas A causes B in (3.1) and (3.2). Indeed, since

every linear combination of Eqs. (3.1) and (3.2) is functionally equivalent, we can

easily write down systems that would be interpreted as having no causal

connections or as displaying mutual causation. This is the sense in which systems
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of equations are causally ambiguous, which is the rationale for supplementing them

with graphs.

Simon does not appeal to graphs. Instead, he considers a higher-order relation of

direct control over parameters (Simon 1953, pp. 24–27). He invites us (and nature)

to experiment on a system by directly controlling the value of its parameters (the

coefficients now being thought of as parameters that can take different values). The

privileged parameterization is the one in which such experiments can be conducted

independently. Thus, if one represents a causal system by Eqs. (3.1) and (3.2) and

can control A directly by choosing αA and thereby control B indirectly without

altering the functional form of Eq. (3.2), then the parameter set {αA, αBA} is

privileged. No other functionally equivalent system shares this property.

If, for example, (3.1) and (3.2) represented the true causal order, but we instead

modeled the causal relationships with (3.4) and (3.5), our control of A and B would

not show the same sort of functional invariance. In fact, the only way to achieve the

same values for A and B would be for the coefficient values of {βA, βB, βAB} to shift
according to the restrictions (3.6), (3.7), and (3.8). In effect, the decision that {αA,
αBA} is the parameter set – and that any other set of coefficients (e.g., {βA, βB, βAB})
are simply functions of those parameters – determines the causal direction among

the variables: it puts the arrowheads on the shafts.

2.3 The Structural Account of Causal Order

I refer to an account of causal order based on Simon’s seminal analysis as the

structural account.2 It is structural in the sense that what matters for determining

the causal order is the relationship among the parameters and the variables and

among the variables themselves. The parameterization – that is, the identification of

privileged set of parameters that govern the functional relationships – is the source

of the causal asymmetries that define the causal order. The idea of a privilege

parameterization can be made more precise, by noting that a set of parameters is

privileged when its members are, in the terminology of the econometricians,

variation-free. A parameter is variation-free if, and only if, the fact that other

parameters take some particular values in their ranges does not restrict the range

of admissible values for that parameter.

Defining parameters as variation-free variables has a similar flavor to Hans

Reichenbach’s (1956) Principle of the Common Cause: any genuine correlation

among variables has a causal explanation – either one causes the other, they are

mutual causes, or they have a common cause. Since we represent causal connections

as obtaining only between variables simpliciter, we insist that parameters not display

any mutual constraints. Whereas, the Principle of the Common Cause is a metaphys-

ical or methodological presupposition with significant bite, the variation-freeness of

2A more formal presentation of the structural account is given in Hoover (2001, Chap. 3).
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parameters is only a representational convention. Any situation in which it appears

that putative parameters are mutually constraining can always be rewritten so that

the constraints are moved into the functional forms that connect variables to each

other.

For example, in the system

X ¼ a ð3:9Þ

Y ¼ bX; b � a ð3:10Þ

the parameters are not variation-free, since the choice of a constrains the value of b.
However, this system can be reformulated into a related (nonlinear) system with the

same solutions in which the parameters are variation-free:

X ¼ a ð3:11Þ

Y ¼ bX; if a � b
undefined; if a < b:

�
ð3:12Þ

Because of its analogy with the Principle of the Common Cause, we refer to the

stipulation that parameters be variation-free as the Reichenbach Convention.
Except for the system of Eqs. (3.11) and (3.12), we have considered only linear

equations. But the structural account can accommodate nonlinearity quite gener-

ally. The key step is that parameters are not defined as coefficients uniquely

associated with particular variables, as they are, for example, in path analysis, in

which the parameters are merely the regression weights associated with each causal

arrow.

To see the role of nonlinearity, consider a simplified example of a two-equation

system from a macroeconomic model with rational expectations3:

mt ¼ λþ mt�1 þ εt; ð3:13Þ

pt ¼ mt þ αλ� δþ νt: ð3:14Þ

The subscripts are time indices. Our concern is only with the causal relationship

betweenmt and pt, so the lagged value ofm can be regarded as a constant. While it is

not vital for our purposes, (3.13) is interpreted as a rule for fixing the money supply,

while (3.14) determines the price level.

It is obvious that in Simon’s framework mt directly causes pt. In our earlier

examples, there was a simple, natural association of individual parameters with

individual variables in equations written in a canonical form (causes on the right-

hand side; the effect on the left-hand side; the two sides connected by an

3 The model is drawn from Hamilton (1995).
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asymmetrical assignment operator (“(”)).4 But here we cannot associate the

parameter λ exclusively with either equation. Indeed, the notion of a canonical

form of equations is merely heuristic and must be abandoned in this case.

Equations displaying this sort of nonlinearity in parameters are referred to in the

macroeconometrics literature as subject to “cross-equation restrictions.” Suppose

that the monetary authority wants to loosen monetary policy; it would increase λ.
Because of the cross-equation restriction, in addition to the direct causal effect ofmt

on pt, there is a change in the functional relationship between pt and mt. In a

stochastic version of the model, the conditional probability distribution of pt on
mt would not be invariant to changes in mt. This striking conclusion is well known

to economists as the “Lucas critique” (Lucas 1976).5 Economists often discuss it in

terms of “deep parameters” (here α and λ) versus empirically observable

coefficients (say, a regression coefficient Π, which in fact equals αλ � δ, but
which is estimated as a unit). In terms of our account of causal representation, the

deep parameters are just the parameters that define causal order.

While the Lucas critique is not unknown to philosophers, it is not always

appreciated that it undermines any necessary connection between a well-defined

causal relationship and the invariance of the probability of an effect conditional on
its causes. Indeed, our account of causal order suggests that it is the invariance of

the probability distribution of the cause (the marginal probability distribution) to

independent changes of other causes of the effect that is the empirical hallmark of a

causal relation (see Hoover 2001, Chap. 8). This claim amounts to saying that it is

not the conservation of the functional relationship of causes to effect as causes vary

that is most characteristic of causal relations; rather it is that effects do not flow

backward against the causal arrow.

2.4 Causal Identity

Implicit in our discussion so far is the notion that variables in causal relationships

must be causally distinct. Let us make this notion more explicit. Variables are

distinguishable when we have some independent means of measuring, observing, or

characterizing them. Yet variables that are distinguishable in this general way need

not be causally distinct.

To take an economic example, prices (P) are distinguishable from quantities (Q),
but consider the simple supply and demand model in which quantities and prices are

mutually determined:

4Which in fact suggested the scheme of distinguishing parameters by subscripts: for example, αBC
was the parameter multiplying the variable C in the canonical equation for B.
5 For expositions of the Lucas critique, see Hoover (1988, Chap. 8, section 8.3; 2001, Chap. 7,

section 7.4).
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Q ¼ αþ βP ð3:15Þ

P ¼ δþ γQ: ð3:16Þ

Solving (3.15) and (3.16) yields

Q ¼ αþ βδ

1� βγ
; ð3:17Þ

P ¼ δþ αγ

1� βγ
: ð3:18Þ

Both variables are determined by the same set of parameters. It would be

impossible, therefore, that we alter the value of one of them without also altering

the value of the other. We might, then, regard the two variables as having a two-way

or mutual causal relationship. But should we really call variables that have no

causal relationships distinguishable from one another as standing in a causal

relationship with each other? It would be more to the point to say that, causally

speaking, there is no difference between them.

The issue arises not only in simultaneous systems of equations. Consider instead

the following system:

A ¼ α; ð3:19Þ

B ¼ βA; ð3:20Þ

C ¼ βA: ð3:21Þ

On Simon’s criterion, A clearly causes both B and C, but what is the causal

relationship between B and C? It might appear to be mutual, since there is no

intervention on either variable that does not alter the other. But this seems counter-

intuitive, because the connection is through the parameter β rather than through the

variables; yet our presumption is that causal relationships are mediated only

through variables. If we imagine the variable B and Eq. (3.20) eliminated, nothing

would change for C.
We see, then, that some systems with or without mutual or simultaneous

causation are problematic, but there is no reason to believe that problematic cases

arise inevitably in simultaneous systems. We need a way of characterizing prob-

lematic and unproblematic systems. This suggests that we characterize causal

identity and causal distinctiveness:

Causal Identity: Two variables are causally identical if aside from their mutual

relationship, they have all the same causes and effects.

Causal Distinctiveness: Variables that are not causally identical are causally
distinct.

44 K.D. Hoover



In invoking causes and effects, these definitions are not circular, since whether

or not the relevant causal relationships exist can be determined from the parame-

terization of the system in line with our elaboration of Simon’s structural account.6

When variables are distinguishable because we possess independent means of

measuring, observing, or characterizing them, a failure also to be causally distinct

will be rare. Causal identity is more likely to be a property of an impoverished

representation of the world, arising most naturally in cases in which a few variables

stand in a tight relationship. Causally, identity will rarely arise in nondeterministic

cases, as the variables that describe such cases are, in general, subject to “shocks”

that distinguish one from another. However, models are nearly always highly

simplified, and shocks that are small enough in the world may be neglected in a

model, so that, if the world produces “near causal identity,” a good model of the

world may produce exact causal identity (cf. Suppes 1970, p. 33 on ε-direct cause).
Similarly, in selecting a simplified representation of the world, we may choose to

ignore some ways in which variables could be causally distinguished – again,

producing causal identity in the model.

There is one type of case of causal identity that is not rare, but a pitfall to be

carefully avoided. Conceptual identities or variables that are “equal by definition”

belong to a special class of causal identity that does not depend on modeling

choices but on the meaning of the variables. For example, the price (per dollar of

coupon payment) of a perpetual bond or consol (PC) is, by definition, the inverse of

its yield (R): PC � 1/R. Anything that affects the yield affects the price; yet we

should not regard these variables – conceptually different and with different units of

measurement – as causally related. A system of equations that embedded this

identity would, according to our definitions, find PC and R to be causally identical

and, therefore, not stand in any other sort of causal relationship with each other.

This is exactly as it should be.

3 The Structural Account Versus the Manipulability

Account of Causation

So far the discussion of causal order has been formal. But the importance of a

representational scheme arises from its power to illuminate genuine scientific

issues, a matter to which we now turn.

6 Causal identity can be thought of as a metaphysical property of the world and as a property of a

model or representation. Elsewhere I have argued in favor of a perspectival realism in which a

successful model tells us the truth about the world from a particular point of view (Hoover 2012b,

see also 2012c), which reduces the force of a distinction between the metaphysics and the

properties of the model.
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3.1 Modularity

I have referred to the development of Simon’s scheme of causal representation as

the structural account of causation. While I will not discuss it in detail here, a

causal structure is, I believe, essentially what some philosophers mean when they

refer to mechanisms. A causal model is thus the representation of the workings of a

mechanism. The account is “structural,” in a formal sense, in that causal order

depends on nonunique functional relationships among variables acquiring a unique

form or structure through the specification of the parameter space. But what

are the appropriate semantics? That is, how in reference to the world – that is, in

reference not to the representation but to what it represents – should we under-

stand the parameters? A natural reading, suggested by Simon’s notion of an

experimenter’s ability to control or intervene directly to set parameter values, is

to regard parameters as the loci of interventions. Such an interpretation points to a

similarity to Woodward’s (2003) manipulability account of causation. While the

similarity is genuine, we should distinguish the structural account from the manip-

ulability account.

Although Woodward (2003, Chap. 2) provides a detailed and nuanced develop-

ment of the manipulability account, the essential point is conveyed in his definition

of a direct cause:

(DC) A necessary and sufficient condition for X to be a direct causes of Y with respect to

some variable set V is that there be a possible intervention on X that will change Y (or the

probability distribution of Y) when all other variables in V besides X and Y are held fixed at

some value by interventions. (Woodward 2003, p. 55)7

Despite Woodward (2003, p. 39) regarding causation as fundamentally a type-

level relationship among variables, (DC) defines direct cause in terms of a token-

level action – an intervention. For example, an intervention on the variable B in

Fig. 3.1 would set B to a particular value, say, B ¼ b, and holding it fixed at that

value amounts to wiping out or breaking the arrow from A to B, indicating that no

change in A is allowed to affect B. B is a direct cause of C, according to (DC) if

C changes (or would change, the intervention being conceived of counterfactually)

as a result of this intervention.

Pearl (2000, p. 70) represents interventions by the operators “set(X)” or “do(X).”
Woodward (2003, pp. 47–48) notes “X and set X are not really different variables,

but rather the same variable embedded in different causal structures. . .” After the

intervention, we can represent Fig. 3.1 with a new graph as in Fig. 3.2. The

transition from one graph to the other – from one causal structure to another –

presupposes that the wiping out of causal arrows without affecting other parts of the

graph makes sense. Woodward refers to the property that warrants such an inter-

vention as modularity:

7 I have written V where Woodward writes V, to remain consistent with the notation of Sect. 2

above.
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a system of equations will be modular if it is possible to disrupt or replace (the relationships

represented by) any one of the equations in the system by means of an intervention on (the

magnitude corresponding to) the dependent variable in that equation, without disrupting

any of the other equations. (Woodward 2003, p. 48)

And while he recognizes that representations of causal relationships may not

always display modularity, he assumes

that when causal relationships are correctly and fully represented by systems of equations,

each equation will correspond to a distinct causal mechanism and that the equation system

will be modular. (Woodward 2003, p. 49)

Cartwright (2007, part II) objects to modularity as an essential feature of

causation.8 The structural account illuminates both what is right and what is

wrong in Cartwright’s objections. Cartwright denies that all well-defined causal

systems are modular. And she is correct. We should notice, first, that the system

defined by Eqs. (3.13) and (3.14), which has a well-defined causal order on the

structural account, is itself not modular, since the individual equations do not

represent distinct mechanism, but can function only as a pair (see Hoover, 2011,

section 16.3.2). Cartwright herself argues largely through counterexamples. The

first example is a carburetor (Cartwright 2007, pp. 15–16). Cartwright describes the

operation of the carburetor through a system of equations in which key coefficients

depend on the geometry of its chamber9:

we can see a large number of [functional] laws all of which depend on the same physical

features – the geometry of the carburettor. So no one of these laws can be changed on its

own. To change any one requires a redesign of the carburettor, which will change the others

in train. By design the different causal laws are harnessed together and cannot be changed

singly. So modularity fails. [Cartwright 2007, p. 16]

Cartwright illustrates her point with a set of causal laws from which I reproduce

two (in an altered notation):

X ( hðG;A; γÞ; ð3:22Þ

A( jðS; T; σÞ; ð3:23Þ

where X ¼ gas exiting the emulsion tube; G ¼ gas in the emulsion tube; A ¼ air

pressure in the chamber; S ¼ suck of the pistons; T ¼ throttle valve; and

8Cartwright’s chapters are her side of a vigorous debate over modularity carried on with Hausman

and Woodward (1999, 2004).
9 I write “coefficients,” not “parameters” as Cartwright does, since she assumes that they are

functions of other things, violating the usage established in Sect. 2.3 above.

C

A b

Fig. 3.2 Causal graph of

Fig. 3.1 after the intervention

set (B= b)
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γ ¼ γ geometry of chamber; . . .ð Þ; ð3:24Þ

σ ¼ σ geometry of chamber; . . .ð Þ: ð3:25Þ

The system of equations can be represented in a causal graph as in Fig. 3.3. An

oddity of Cartwright’s exposition is that each of the principal equations has only

one coefficient. I do not think, however, that any of her critical points hang on that,

so I will treat them as vectors: γ ¼ [γ1 γ2] and σ ¼ [σ1 σ2]. In Fig. 3.3, the elements

of these vectors are listed alongside the appropriate causal arrows as indices of the

strength of the influence of each cause over its effect.10

Cartwright’s point is that modularity requires that each cause can be intervened

upon separately. So, for example, if we wish to change A, we have to change σ.
A change in σ can be achieved through a change in the geometry of the chamber,

but that necessarily changes γ as well; so the causal relationship of G and A to X is

neither distinct nor invariant with respect to that of S and T to A. Modularity fails.

(As indeed it does in the closely analogous monetary-policy example of Eqs. (3.13)

and (3.14).)

The representational conventions of the structural account force us to take a

stand on some of the details of Cartwright’s example. First, γ and σ are not

parameters as we have defined the term (see fn. 8). Their interdependence violates

the Reichenbach Convention. We must decide, then, whether they are variables or

simply coefficients (a shorthand way of grouping parameters that interact with a

variable when writing a function). Second, the “geometry of the chamber” is

unlikely to be characterized by a single variable or parameter. In practice, the

most natural way of representing it would be as a set of interrelated variables

governed by parameters that conform to the Reichenbach Convention. Imagine

representing the geometry in a computer-automated design program. The designer

can set various parameters independently to generate various shapes that constitute

the “geometry of the chamber.” Aspects of that geometry (which can be represented

as causally salient variables) are what feed into Cartwright’s “causal laws” through

γ and σ.
Figure 3.3, or even a more elaborate diagram, is too coarse to represent the

refinements to the causal structure of the carburetor needed adequately to flesh out

X

G A

S T

g1 g2

s1
s2

Fig. 3.3 The causal structure

of Cartwright’s carburetor

10 This makes the inessential, but in this case harmless, assumption that the equations are linear in

variables.
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Cartwright’s account of its working. The rough sketch of a structural causal

representation of the carburetor supports Cartwright’s view that in this case, as in

many others, a causally unambiguous system need not be modular.

Where Cartwright goes astray is in her belief that the failure of a well-defined

causal system to be modular in Woodward’s sense threatens an interventionist

account and not just Woodward’s particular formulation of it (the manipulability

account). The structural account is a type of interventionist account that relies

on a different sort of modularity – that is, modularity at the level of parameters.

By definition, parameters can change independently of each other. Cartwright

might object to the assumption that parameters are necessarily independent (or

variation-free). But as I previously argued, this is a matter of convention;

representations can always be formulated with variation-free parameters,

constraints having been moved into the functional relationship of variables. As a

conventional restriction on causal representation, however, modularity of the

parameters does not pack any punch: it does not tell us that a causal mechanism

can be disassembled into parts that operate independently of each other. Indeed,

modularity of that sort is not conventional but substantial and highly special. The

modularity of parameters is, nonetheless, the sort of modularity that we need to

define causal structure. The structural account allows us to see that Woodward’s

definition of direct cause is too strong; it rules out too many relationships that are

clearly causal in an obvious and practical sense.

Woodward may object to Cartwright’s implicit, and the structural account’s

explicit, characterization of an intervention. For Woodward, an intervention is

setting a variable to a value come what may – a severing of its relations to its

own causes. In the structural account, an intervention is a more delicate matter of

influencing a variable in some particular way by changing one or more parameters

in a context in which multiple parameters connected to the variable under some

functional constraints are the rule.

The failure of modularity does not depend on which notion of intervention we

employ. Wiping out a causal arrow (or equation) does not necessarily leave other

causal arrows intact. Consider the monetary-policy system (3.13) and (3.14)

referred to in our earlier discussion of the Lucas critique. The cross-equation

restriction (i.e., the appearance of λ in both equations) arises because of the

assumption that agents form expectations of the path of the money supply (mt)

based on knowledge of the policy rule. Woodward’s type of intervention would

amount to setting mt to a definite value independent of its past value – essentially

wiping out the causal arrow from mt�1 to mt. Eliminating that causal arrow does not

merely imply a change in the values of the parameters of (3.14), which would be a

failure of invariance of the sort highlighted by the Lucas critique and implicit in

Cartwright’s carburetor example, it would in fact render the parameter λ meaning-

less as it would undercut any basis for forming a rational expectation of the path of

mt. In effect, the wiping out of the causal arrow from mt�1 to mt does not merely

alter the causal arrow from mt to pt; it smashes it. There are plenty of real-world

examples of devices in which one part cannot be removed without breaking others,

which nonetheless possess well-defined causal structure.
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Cartwright objects to Woodward defining direct cause by interventions that set a

variable to a value come what may precisely because, as we already observed, such

interventions alter the causal system (e.g., moving from Fig. 3.1 to Fig. 3.2), even

when the other causal arrows (and the equations to which they correspond) are left

intact. We should be concerned with the normal workings of a causal system, and

the workings of some other causal system are irrelevant to them (Cartwright 2007,

p. 107; Cartwright and Jones 1991).

Another of Cartwright’s counterexamples to modularity – the operation of “a

well-made toaster” – helps to clarify the point:

The expansion of the sensor due to the heat produces a contact between the trip plate and

the sensor. This completes the circuit, allowing the solenoid to attract the catch, which

releases the lever. The lever moves forward and pushes the toast rack open.

I would say that the bolting of the lever causes the movement of the rack. It also causes a

break in the circuit. Where then is the special cause that affects only the movement of the

rack? Indeed, where is there space for it? The rack is bolted to the lever. The rack must

move exactly as the lever dictates. So long as the toaster stays intact and operates as it is

supposed to, the movement of the rack must be fixed by the movement of the lever to which

it is bolted.

Perhaps, though, we should take the movement of the lever to the rack as an additional

cause of the movement of the rack? In my opinion we should not. To do so is to mix up

causes that produce effects within the properly operating toaster with the facts responsible

for the toaster operating in the way it does; that is, to confuse the causal laws at work with

the reason those are the causal laws at work. (Cartwright 2007, pp. 85–86)

What, we may ask, is proper operation? To ask such a question requires that we

can distinguish changes in its state that constitute its proper operation from changes

that undermine the proper operation or destroy the mechanism. Surely, such a

distinction is partly a matter of perspective and often driven by pragmatic

considerations. It requires that we be able to decide when the mechanism has

been so altered that it is effectively a new mechanism and when the mechanism

is preserved – that is, we need identity conditions for a causal system

(cf. Woodward 2003, pp. 108–109).

Cartwright uses the toaster example to argue that the relevant interventions

operate only within a context of a preserved mechanism and that Woodward’s

come-what-may interventions generally break the mechanism. While she does not

provide the necessary identity conditions, they are evident in the structural account.

Two mechanisms are causally the same when they have the same parameterization

(i.e., the same privileged set of variation-free parameters) and differ only in the

particular values that the individual parameters take within their admissible ranges.

In other words, two mechanisms are causally identical when they differ not in their

parameters or variables but in the token instantiations of their parameters and the

token consequences of those instantiations for the variables.

Another example illustrates both the pragmatic and the conceptual issue. In the

movie The African Queen, Charlie Allnut (Humphrey Bogart’s character) runs a

steamboat. From time to time the pressure in the boiler of the steam engine gets

dangerously high. He hits a particular valve with a hammer, which frees up the

valve, and allows the steam to escape. Later in the film, as part of his general effort
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to make himself and the boat more presentable to Rose Sayer (Katharine Hepburn’s

character), he cleans and lubricates the valve so that the pressure is released

automatically without the use of the hammer.

In each case, with or without the sticky valve, the steam engine has a typical
operation. Which is proper depends as much on Charlie’s relationship with Rose as

on any fact about the steam engine. Charlie cleaned up is a different man; the steam

engine cleaned up is different engine. But there are important senses in which both

are still the same. In the case of the engine, if not the man, we can represent the

preserved mechanism as one in which there is a parameter (or parameters) that

governs whether the engine is in its clean or dirty state.

We may prefer one state for pragmatic reasons and, therefore, wish to analyze

the workings only within the one state. Here, John Anderson’s (1938, p. 128) notion

of a causal field is helpful (see also Mackie 1980, p. 35; Hoover 2001, pp. 41–49).

The causal field consists of background conditions that, for analytical or pragmatic

reasons, we would like to set aside in order to focus on some more salient causal

system. We are justified in doing so when, in fact, they do not change or when the

changes are causally irrelevant. In terms of representation within the structural

account, setting aside causes amounts to fixing certain parameters to constant

values. The effect is not unlike Pearl’s or Woodward’s wiping out of a causal

arrow, though somewhat more delicate. The replacement of a parameter by a

constant amounts to absorbing that part of the causal mechanism into the functional

form that connects the remaining parameters and variables. We might, for instance,

wish to conduct our analysis of the African Queen’s steam engine entirely in the

spit-and-polished state, by setting the parameter governing the state of the valve to

clean and holding it there.

Cartwright’s toaster can be treated in the same manner. A parameter might

represent the state of the bolt holding the rack to the lever: when it takes the

value tight, the operation of the toaster is “as advertized”; when loose, it is a little
wonky; when missing, it does not pop up the toast at all. While there are purposes

for which only tight matters and for which we can treat the bolt parameter as a

constant with that value, impounding the state of the bolt to the causal field, it would

miss a critical point not to notice that broken mechanisms are mechanisms of the

same type as well-functioning mechanisms or that less refined descriptions of

mechanisms are special cases of more refined descriptions. Recognizing the first

is essential to the repairman; recognizing the second is essential to the design

engineer.

The structural account supplemented with the notion of the causal field provides

a tool through which different models, different perspectives on phenomena, may

be brought into systematic relationship one to another. It also allows us to under-

stand hierarchical relationships among causal systems stressed by Simon (1996)

and Wimsatt (2007). While the examples so far involve physical mechanisms,

economic examples abound. Cochrane (1998, p. 283) points out in a monetary-

policy system similar to (3.13) and (3.14) that α is interpreted as the slope of the

aggregate-supply curve and is typically treated by monetary economists as a

parameter; yet a body of economic theory and empirical analysis treats α as a
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variable, determined by “deeper” parameters (Lucas 1972, 1973; Hoover 1988,

Chap. 2). The monetary-policy system impounds these deeper parameters in the

causal field.

The monetary-policy rule in (3.13) offers another example. As written, we can

analyze the effects of different settings of the parameter λ. We can also consider an

“institutional” change in which the rule is altered to depend on different condition-

ing variables or in different ways. As it stands, these alternatives have been

impounded in the causal field. When released and represented in a model in

which (3.13) is a special case, we can consider which is the best rule within the

now wider class of rules, which contains the current rule as one parameterization

(see Woodford 2003 for an extensive discussion of optimal monetary rules).

3.2 Interventions and Identity

The structural account of causal order is similar to Woodward’s account in a

number of ways. A key difference, however, is that direct cause is not defined

with respect to a token-level notion, such as Woodward’s come-what-may inter-

vention. Direct cause is expressed instead entirely with respect to the type-level

relationship between a privileged set of parameters and a functional relation

representing the interrelationship among variables. The structural account, as we

showed in the last section, supports a notion of the identity of causal systems: two

causal systems are identical if, and only if, they differ at most by their parameteri-

zation (i.e., they differ only in the token settings of the parameters). This under-

standing of causal identity also suggests a different conception of an intervention.

The notion of a parameter developed in the structural account was inspired by

Simon’s notion of direct control and the notion that the parameter space could be

thought of as the loci of direct control. Direct control is virtually indistinguishable

from Woodward’s notion of intervention. The only question that separates them is

direct control of what? For Woodward, it is direct control of a variable; for the

structural account, it is direct control of a parameter. But a parameter was defined to

be a variable subject to some additional constraints; so the difference seems small.

I have no doubt that the experience of manipulation and control are the source of

our original intuitions about causal powers and, therefore, are important in the way

that we learn about causes and learn to use causal language. Nonetheless, the

structural account does not actually use the notion of direct control in any physical

or metaphysical sense to define causal order. For Woodward an intervention

involves a change to the bearer of a variable – a real entity. In contrast, the notion

of a parameterization does not require that we change any parameter in a temporal

or genetic sense, but merely that we consider different settings of parameters in

otherwise causally identical systems.

Woodward accepts that the relevant intervention could be hypothetical and

certainly need not be practically implementable (e.g., removing the moon to

discover its effect on the tides would be an acceptable, but hypothetical,
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intervention). Nonetheless, the counterfactual that is entertained is still a particular

token change to a particular entity. In contrast, the structural account is a thoroughly

type-level account. The parameter space is the loci of possible interventions;

nevertheless, it is the topology that the parameterization imposes on the variables,

rather than any – even hypothetical – selection of particular parameter values that

defines the causal structure.

The difference between Woodward’s account and the structural account is

illustrated in comparative static analysis – a technique familiar to economists. For

example, we might ask, what is the effect ceteris paribus of a higher rate of inflation
on the level of prices? The answer given by the quantity theory of money is that the

level of prices is lower for the same quantity of money in circulation when their rate

of change is higher (Cagan 1956). The experiment cannot be conducted on a single,

actual economy since an increase in the rate of inflation necessarily increases the

price level. In principle, we could address the question by considering two

economies with identical causal structures differing only in the parameterization

necessary to produce distinct inflation rates and evaluate their price levels at the

time that their money stocks happen to be equal. (This is, of course, a practical

impossibility; we do not have a box of causally identical economies to draw from,

but difficulty is different from the in-principle impossibility of changing the

inflation rate without changing the price level.)11 Such comparative static analysis

may be relevant to actual economies in just those circumstances that some causal

channels are so weak that we can neglect them (or impound them in the causal field)

or that we can account for them by conditioning. These are exactly the strategies

that Cagan (1956) attempts to implement in his famous paper on hyperinflations.

Comparative statics in well-formulated models are examples of a kind of

possible-worlds analysis in which the connection to our world – or at least to the

model that we take to best represent our world – is substantially more precise than

the metrics proposed by Lewis (1973, 1979). Counterfactual analysis and which

counterfactuals are sensible to address which particular problems is straightforward

in such models (see Hoover 2011).

Something like comparative static analysis is critical to design and engineering.

One might, for example, want to understand the difference in behavior of cars of the

same model, differing only in having either a four- or a six-cylinder engine.

Motivated in part by his particular conception of an intervention and in

part by an essentialist ontology, Woodward rejects the notion that such questions

are properly causal with respect to some properties, including race, sex, and

species:

the notion of an intervention will not be well-defined if there is no well-defined notion of

changing the values of that variable. Suppose that we introduce a variable “animal” which

takes the values {lizard, kitten, raven}. . . we have no coherent idea of what it is to change a
raven into lizard or kitten. Of course, we might keep a raven in a cage and replace it with a

11My view here as a shift from my earlier understanding of the causal significance of comparative

static analysis (Hoover 2001, p. 102).
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lizard or a kitten, but this is not to change one of these animals into another. What is

changed in this case is the content of the cage, not the animals themselves. (Woodward

2003, p. 113)

The issue arises in economic and sociological research when, for example, race

discrimination in mortgage applications or sex discrimination in employment is

assessed by sending applicants who have been matched as thoroughly as feasible

for salient characteristics, differing significantly only in race or sex, through a

mortgage qualification or hiring process. With respect to sex discrimination,

Woodward (2003, p. 115) rejects the claim “[b]eing female causes one to be

discriminated against in hiring and/or salary” as “fundamentally unclear” since

“we lack any clear idea of what it would be like to manipulate it.” Woodward

argues that it is not the applicant’s sex but the employer’s beliefs about them that is

causal.

How are sex and race different from considering the causal outcomes of cars that

differ only by their engine type? Consider a coin-sorting machine – coin discrimi-

nation being less emotive than sex or race discrimination. Different coins can be

placed into the machine and fall into different slots depending on their shapes.

The mechanically relevant description of a coin is as a vector of variables – for

example [diameter, thickness, weight]. What else is it to be a coin other than having

the right values in such a vector? The social metaphysical answer might be that the

essence of being, say, a nickel is to have the imprimatur of the government (to have

been dubbed legal tender for $0.05 by the United States Mint) and to have an

appropriate standing in the social practice of money. In other contexts, such

considerations may be of genuine interest, but they are not mechanically salient.
For a causal understanding for purposes of designing, building, operating,

maintaining, and repairing the coin sorter, we do not need a penny to change into

a nickel. Each penny, nickel, dime, and quarter is just the coin in the machine – an

instantiation of a vector-valued variable and its causal fate is a realization of the

causal process represented by the causal connections among that variable and those

that describe the state of the machine.

We need to distinguish between existential and causal identity. Each may be

salient in different contexts. The critical question is which context is relevant for

what purposes. We have no notion of how to turn a penny into a nickel, but we have

a clear notion of how to change a coin from being a nickel to being a penny in the

context of the operation of a coin sorter, and it seems perfectly sensible to say that it

is “being a nickel” that is a cause of the coin falling into slot 3. Slot 3 being

configured in the right way is, of course, another cause, the causes interacting

according to the design of the machine.

How is sex discrimination different in principle from coin discrimination? In

the hiring process, we can represent people as a vector-valued variable Applicant ¼
[Race, Sex, Age, Employment Status, Wealth,. . .], which interacts with variables

describing the other factors and processes related to hiring. We do not need to

change a particular person from male to female to understand this causal process.

It is enough to reparameterize the vector. Much of the effort in conducting discrim-

ination research using such techniques goes in to establishing the relevant causal
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identity by closely matching relevant characteristics of different applicants – other

than the target characteristic of sex or race. Significant knowledge is obtainable in

such ways and there is no need to stigmatize its causal bona fides.
Woodward’s argument that it is the beliefs of the employer not the being female

that is the relevant causal variable does not persuade. The beliefs of employers may

be causes of the detailed outcomes of the discrimination – for example, not hiring or

paying a lower salary. The relevant question here, however, is what causes those

beliefs. The most common reason that we believe someone to be female is that she

is female. Woodward could object that it is not being female that causes the belief

but the appearance of being female. But this is just the analogue of saying that it is

not the “moneyness” of the nickel, but its physical characteristics that cause it to fall

into slot 3. The physical characteristics are the causally relevant ones. What is it to

be female in a causally relevant sense? It is to have a sufficient number of

stereotypical female characteristics. For purposes of the employment process, a

sufficiently plausible transvestite counts as female. Characteristics of actual

females determine the female stereotype – that is, why the values of certain

variables bundled in a certain way convey the appearance of femaleness. And

without the stereotype, variables with those values would not be causally salient.

(The same issue arises with the coin sorter: a slug is to a nickel as a transvestite is to

a female.)

Some entities may have an essence that cannot be changed while maintaining

existential identity. But if, as the structural account would have it, token

manipulations are not essential to defining cause, then it is better in these cases to

say that causal identity is determined by possession of the explicitly causally

relevant characteristics and not by some sine qua non. It is also pragmatically

superior if we accept the view that knowledge is acquired in a piecemeal fashion.

As we have seen, variables such as sex or race are avoided through substantial extra

articulation and refinement of causal mechanisms, which may lack clear conceptual

or evidential foundations. What, for example, are the detailed mechanisms by

which the appearance of being female translates into beliefs and how are they

causally relevant? We may not have grounds for knowing such details and we may

not need to know them to know what is pragmatically relevant about discrimina-

tion. And if I am correct that the coin sorter is really no different in principle than

the sex discrimination case, then we would be forced to look for such extra

articulation in a vast array of cases. But if the structural account is plausible, we

can do happily without it and without the troubling requirement of token

intervention.

4 Causation and Representation

The focus of this chapter has been on representing causes. Of course, the ultimate

importance of causal analysis is not located in its representation but in discovering

what causal relationships actually obtain in the world and using those causes to
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control the world for desirable ends – what Cartwright (2007) refers to as “hunting”

and “using” causes. Either activity, however, is greatly furthered by a good repre-

sentation: think of the utility of having a good wanted poster or a good set of

blueprints. What I hope to have shown in this chapter is that a relatively straight-

forward system of causal representation can be useful in understanding and resolv-

ing substantive debates in the philosophy of causation, as well as in the actual

applications of causal inference and manipulation in economics.
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Chapter 4

The Regrettable Loss of Mathematical

Molding in Econometrics

Marcel Boumans

Abstract Although most accounts on causality discuss the specific role statistics and

theory should have, it is taken for granted that they at least have a role in finding causal

structures. The role for mathematics is not so obvious. However, before what is called

the Probabilistic Revolution in econometrics, identification of causal relations was not

a matter of economic-theoretical and statistical significance alone. Mathematical

molding was considered as an essential tool in finding significant causal factors. In

the 1940s, mathematical molding disappeared in the changeover from methods to

specify causal mechanisms of business cycles to methods to identify economic

structures, that is, invariant relationships underlying the workings of an economy.

Mathematical molding could fulfill its role in modeling business cycle mechanisms

because of the assumed close connection betweenmathematical representations of the

business-cycle phenomenon and those of the explanatory mechanism. When the

econometric program shifted its focus from mechanisms explaining phenomena to

uncovering structural relationships, direct feedback from the phenomenon to the

mechanism was lost and the role of mathematical molding ceased to exist.

1 Introduction

Although most accounts on causality discuss the specific role statistics and theory

should have, it is taken for granted that they at least have a role in finding causal

structures.1 The role for mathematics is not so obvious. Exemplary for this general
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view of the role of mathematics is the Cowles Commission econometric approach.

The Cowles Commission view (see, e.g., Christ 1994) was that to understand a

particular aspect of economic behavior, it is necessary to have a system of descrip-

tive equations. These equations should contain relevant observable variables, be

of known form (preferably linear), and have estimatable coefficients. However,

“little attention was given to how to choose the variables and the form of the

equations; it was thought that economic theory would provide this information in

each case” (Christ 1994, p. 33). This position was explicitly expressed by Tjalling

Koopmans, director of the Cowles Commission, in a paper jointly written with

Herman Rubin and Roy B. Leipnik, “Measuring the Equation System of Dynamic

Economics.”

The analysis and explanation of economic fluctuations has been greatly advanced by the

study of systems of equations connecting economic variables. The construction of such a

system is a task in which economic theory and statistical method combine. Broadly

speaking, considerations both of economic theory and of statistical availability determine

the choice of the variables. (Koopmans et al. 1950, p. 54)

However, before what is called the Probabilistic Revolution in econometrics,

identification of causal relations was not a matter of economic-theoretical and

statistical significance alone. Mathematical molding was considered as an essential

tool in finding significant causal factors. According to Ragnar Frisch’s (1933a)

original econometric ideal, all three “viewpoints,” economic theory, statistics, and

mathematics, were necessary, but not by themselves sufficient: “It is the unification
of all three that is powerful. And it is this unification that constitutes econometrics”

(Frisch 1933a, p. 2).

This founding ideal of the Econometric Society, that is, the union of mathemat-

ics, economics, and statistics, however, was lost in later econometric-modeling

practices. In the 1940s, mathematical molding disappeared from the econometric

scene, as Mary Morgan describes in her History of Econometric Ideas (1990, p. 264):

Between the 1920s and the 1940s, the tools of mathematics and statistics were indeed used

in a productive and complementary union to forge the essential ideas of the econometric

approach. But the changing nature of the econometric enterprise in the 1940s caused a

return to the division of labour favoured in the late nineteenth century, with mathematical

economists working on theory building and econometricians concerned with statistical

work.

Mathematical molding disappeared in the changeover from methods to specify

causal mechanisms of business cycles to methods to identify economic structures,

that is, invariant relationships underlying the workings of an economy. Mathemati-

cal molding could fulfill its role in modeling business-cycle mechanisms because of

the assumed close connection between mathematical representations of the busi-

ness-cycle phenomenon and those of the explanatory mechanism. When the econo-

metric program shifted its focus from mechanisms explaining phenomena to

uncovering structural relationships, direct feedback from the phenomenon to the

mechanism was lost, and the role of mathematical molding ceased to exist.
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The works of the Jan Tinbergen, discussed in Sect. 2, show how mathematics

was and could be used for identification purposes. The method Tinbergen employed

to arrive at a causal explanation of the business-cycle phenomenon started with

a priori economic-theoretical considerations about which explanatory variables

should be included. Some of the explanatory variables appeared as differential or

integral terms in the model equations. The equations were chosen to be linear, and

the values of the parameters were found by multiple regression analysis. Statistical

tests of significance were applied to measure the accuracy of these results. And,

moreover, the parameter values found for the causal relations were adjusted to

make sure that the model yields a cyclic movement with characteristics in accor-

dance with those of the actual business cycle. As a result of this latter assessment

(which will be called “tuning”), it appeared that integral terms were not of any

significance and therefore could be neglected. Differentials were approximated by

differences. So, after starting with using mixed differential-difference-integral

equations, Tinbergen ended up with representations of the business-cycle mecha-

nism with only difference equations.

In response to Tinbergen’s reports on this method, Frisch (1995), discussed in

Sect. 3, showed that the initial close relationship between the specific mathematical

representation of the business cycle and the mathematical representation of its

mechanism was lost in the transformation to difference equations. As a result, it

was no longer possible to identify all relevant causal factors. “Passive observation”

alone is not sufficient to detect them; statistics alone cannot reveal inactive but

potential factors. Without any feedback from the phenomena, we have to rely on

economic theory to provide us with a complete list of factors. A similar critique was

brought forward by John Maynard Keynes. Although unjustly addressed to “Pro-

fessor Tinbergen’s Method,” it certainly applies to the later Cowles Commission

approach.

Am I right in thinking that the method of multiple correlation analysis essentially depends

on the economist having furnished, not merely a list of the significant causes, which is

correct so far as it goes, but a complete list? For example, suppose three factors are taken

into account, it is not enough that these should be in fact verœ causœ; there must be no other

significant factor. If there is a further factor, not taken account of, then the method is not

able to discover the relative quantitative importance of the first three. If so, this means that

the method is only applicable where the economist is able to provide beforehand a correct

and indubitably complete analysis of the significant factors. The method is one neither of

discovery nor of criticism. It is a means of giving quantitative precision to what, in

qualitative terms, we know already as the result of a complete theoretical analysis. (Keynes

1939, p. 560)

In other words, taking a strong apriorist position means that econometrics

becomes a method not of testing or of discovery, but of measurement.

Haavelmo (1944), discussed in Sect. 4, discussed the problem of finding a

complete list of causal factors under the heading of the “problem of autonomy.”

However, the problem of autonomy was broader than this; it also covered

the problem of invariance. This latter issue concerns the identification of the

relationships between the causal factors that remain unaffected by changes
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elsewhere in the system. The problem of listing the causal factors and the problem

of invariance are closely related in which the requirements of economic-theoretical

as well as statistical and mathematical significance all have equal weights.

2 Tinbergen’s Business-Cycle Schemes

In the 1920s, empirical business-cycle research mainly consisted of constructing so-

called barometers to forecast business cycles. That is to say, their research focused

on investigating whether certain economic time series were correlated. If there is a

lag between correlated time series, then it is possible to forecast the course of one

time series with the aid of the other.

The Harvard Committee on Economic Research (run by Charles J. Bullock,

Warren M. Persons, and William L. Crum) owed its international fame to such a

“barometer” based on three indices of the business cycle, the so-called A–B–C
curves. These three indices represented “speculation” (A), “business” (B), and
“money” (C) and were lag correlated. B lagged about 6 months behind A, and C
lagged about 4 months behind B. Therefore, A could forecast B and both A and B
could forecast C.

Tinbergen opposed the nontheoretical character of the Harvard barometer. His

very first scientific publication, “Over de Mathematies-Statistiese Methoden voor

Konjunktuuronderzoek” (1927; On Mathematical-Statistical Methods of Business-

cycle Research), was a review of this kind of business-cycle research. It criticized

the Harvard approach for not being based on any kind of causal theory. Moreover,

Bullock et al. (1927, p. 79) had admitted that their method was not based on any

theory whatsoever; on the contrary, the curves were “derived solely from observa-

tion of the facts.”

Causal relations have, indeed, received increasing attention from us; but no theory of

causation or of time relation between cause and effect ever entered into the construction

of the index. (Bullock et al. 1927, p. 79)

In addition, they observed “how foreign to actual experience are fixed mechani-

cal, or exact mathematical, relationships in the economic world” (p. 79).

Tinbergen (1927) claimed that the aim of correlation analysis should ultimately

be the recovery of causal connections, such as Karl G. Karsten’s “theory of

quadrature” had suggested. Karsten’s (1926) had shown the existence of two

“cumulative relations” between the three Harvard barometer indices, which he

interpreted as causal relationships. In the first place, he found, using correlation

analysis, that the cumulative values of the Harvard B-index parallel those of the

Harvard A-index, with a lag of 3 months:

Xt

i¼1
Bi ¼ Atþ3 (4.1)
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Second, he found the empirical relationship that the C-index was a cumulative

sum of both the A and B indices:

Xt

i¼1
1
4
Ai þ 3

4
Bi

� �
¼ Ct (4.2)

Thus, according to Karsten (1926, p. 417), the B-index was the “generating

force” of the three; the other two indices depended upon, and were derived from,

changes in the business index.

Equations (4.1) and (4.2) express cumulative relations of discrete processes. For

continuous processes, cumulative relations can be expressed by means of integrals,2

Z t

0

BðτÞdτ ¼ Aðtþ 3Þ (4.3)

or by differentials:

BðtÞ ¼ dAðtþ 3Þ
dt

¼ _Aðtþ 3Þ (4.4)

In classical mechanics, there is a close connection between the calculus of

variations and cause-and-effect relations. It is because of this connection that

Karsten wanted to apply the “theory of quadrature” to investigate the kind of

relations that exists between economic quantities. When a cause-and-effect relation

exists between two phenomena, then according to the quadrature theory, one

phenomenon is expected to be cumulatively affected by the other:

In the calculus such relations are familiar in the form of integrals and derivatives, and

although these functions are purely mathematical, they are useful to describe the behavior

of related forces in the physical sciences. It is the quadrature theory that economic data or

statistics betray the same relationships when similarly treated, and that when this is the

case, the economic forces or phenomena measured by statistics may be said to be in

quadrature and a real relation is strongly suggested. (Karsten 1924, p. 14)

Tinbergen found these cumulative relations exemplary for the kind of causal

relation one could expect to find in business-cycle research. It was the application of

this connection between the calculus and causal relationships that made Karsten’s

approach so appealing to Tinbergen.

Tinbergen was looking for causal explanations of business cycles, but economic

theory did not provide the appropriate mechanisms. On the one hand, business

cycles were explained by exogenous influences; on the other hand, each cycle was

examined and explained individually, or, worse still, each phase of a cycle was

2 This explains the name “quadrature theory.” Quadrature stands for the process of determining the

area of a plane geometric figure by dividing it into a collection of shapes of known area (usually

rectangles) and then finding the sum of these areas. The integral denotes this process for infinitesi-

mal rectangles.
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explained separately. However, Albert Aftalion’s (1927) “Theory of Economic

Cycles Based on the Capitalistic Technique of Production” was an exception, on

which Tinbergen commented:

An economic dynamics could be constructed based on the [lag] relation between economic

quantities, which results in the derivation of perfect cyclic oscillations of an economic

system. This is the mathematical interpretation of Aftalion’s crisis theory. I mention this

theory in particular because it explains most clearly how the relations considered here can

happen, in that every cycle already contains the seed for the next cycle and thus real

periodicity occurs. (Tinbergen 1927, p. 7153)

Aftalion’s thesis was “that the chief responsibility for cyclical fluctuations should

be assigned to one of the characteristics of modern industrial technique, namely, the

long period required for the production of fixed capital” (Aftalion 1927, p. 165). For

producers, the value of a product depends on the price it is expected to fetch; that is to

say, their value depends on the forecast of future prices. Aftalion assumed that the

expectations of these future prices are, alternately, either too optimistic or too pessi-

mistic: “the rhythm is a consequence of the long delay which often separates the

momentwhen the production of goods is decided upon and a forecast ismade from the

moment when the manufacture is terminated, and the forecast is replaced by reality”

(p. 165). Producers forecast future prices on the basis of present prices and the present

state of demand. “That is the source of their errors. In modern capitalistic technique the

actual state of demand and prices is a bad index of future demand and prices, because of

the long interval which separates the moment when new constructions are undertaken

from that when they satisfy the demand” (p. 166).

In a paper, “Opmerkingen over Ruilteorie” (Observations on Exchange Theory)

published in 1928, Tinbergen constructed a numerical example demonstrating how

a delayed adjustment of supply to price would generate fluctuations about equilib-

rium over time. Shortly after this, he stumbled across an empirical example of this

numerical construction in a pork-market study by Arthur Hanau (1928) (Tinbergen

1928, p. 548n; see also Magnus and Morgan 1987, p. 120). According to Tinbergen,

this scheme of delayed supply adjustment to price could be extended by taking into

account expectations based on observed past fluctuations or by attributing a delay to

demand. “All these assumptions lead to the same kind of results, of which the

essence . . . consists in the explanation of cyclic motion by the economic mecha-

nism itself” (Tinbergen 1928, p. 5463).

At the first European meeting of the Econometric Society in 1931, Tinbergen

(1933a) had a number of mathematical formalizations of an endogenous business-

cycle mechanism to offer for consideration. Hanau’s (1928) research into the pork-

market, “le cas le plus simple,” served as point of departure:

Scheme I Supply: A0 + A1p(t � θ)
Demand: B0 � B1p(t)

where A0, A1, B0, and B1 are positive constants and p(t) the deviation from the

equilibrium price P at time t. θ was the time needed to produce the relevant

3 Translated by the author.
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commodity. The mechanism represented by this scheme generated a cycle with a

period equal to 2θ. This scheme, known as the cobweb mechanism because of the

likeness between its graphical representation and a cobweb, was the simplest

explanation of an economic cycle and a mathematical generalization of Tinbergen’s

earlier numerical example.

However, the aim was to find mechanisms that could explain the so-called

Juglars. These were business cycles with a cycle period of about 6–10 years.

Therefore, Scheme I that implied a production time of 3–5 years is unrealistic for

most production processes. To arrive at a more realistic representation of business

cycles, Tinbergen examined more advanced schemes to see what influence each

added “complication” could have on the length of the cycle period.

In a second scheme, he introduced “demande spéculative.” There was some

empirical evidence that demand could also be influenced by price changes, _pðtÞ, as
was seen in the wholesale lumber trade, or corn speculation.

Scheme II Supply: A0 + A1 p(t � θ)
Demand: B0 � B1pðtÞ þ B2 _pðtÞ

In Scheme II, the period of the solution (T) lies between: 4/3 θ < T < 2θ. So, the
introduction of a differential shortens the period of the business cycle with respect

to the production lag. In other words, Scheme II could not be considered as a

possible explanation for the Juglar; it assumes an even longer production time.

Another way of advancing Scheme I was to introduce purchasing power into the
demand function. First, Tinbergen considered constant purchasing power, C.

Scheme III Supply: A0 + A1p(t � θ)
Demand: C

Pþ pðtÞ
The solution of this scheme had a period length equal to 2θ. So, constant

purchasing power did not increase the cycle period. Next, he assumed purchasing

power dependent on economic activity defined as the numbers of workers employed

during the production process:

NðtÞ ¼ α

Z t

t�θ
A0 þ A1pðτÞ½ � dτ (4.5)

If wages are constant and equal to S, then total purchasing power equals SN, and
the scheme becomes:

Scheme IV Supply: A0 + A1 p(t � θ)

Demand:
Sα

Rt
t�θ

A0 þ A1pðτÞdτ½ �
Pþ pðtÞ
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For this scheme, the cycle period was equal to 2.7θ. Thus, by assuming that

purchasing power is dependent on economic activity, Tinbergen was able to extend

the period compared with the production lag and thus arrived at a more realistic

business-cycle mechanism.

In his search for appropriate business-cycle mechanisms, Tinbergen (1931)

found an even better example than the “pork cycle”: the shipbuilding cycle. This

mechanism, a combined lag and cumulative relation, showed how a lag of 2 years

could generate a cycle of 8 years:

_XðtÞ ¼ �aXðt� θÞ (4.6)

where X represents world tonnage and θ the average needed time to build a ship,

approximately 2 years. The parameter a was a constant value between ½ and 1. The

cycle generated by this mechanism has a period equal to 4θ ¼ 8 years.

In a survey on “quantitative business-cycle theory,” Tinbergen (1935) outlined

systematically the criteria for an appropriate business-cycle theory: “The aim of

business cycle theory is to explain certain movements of economic variables.

Therefore, the basic question to be answered is in what ways movements of

variables may be generated” (p. 241). The core of the business-cycle theory was a

“mechanism” that he defined as a “system of relations existing between the

variables; at least one of these relations must be dynamic. This system of relations

defines the structure of the economic community to be considered in our theory.

Such a mechanism may perform certain kinds of swinging movements that are

characteristic of the system as such” (pp. 241–2). A mechanism, according to

Tinbergen, is a specific set of structural relations that together explain the business

cycle. Tinbergen emphasized the distinction between the mathematical form and

the economic meaning of the equations:

The mathematical form determines the nature of the possible movements, the economic

sense being of no importance here. Thus, two different economic systems obeying, how-

ever, the same types of equations may show exactly the same movements. But, it is evident

that for all other questions the economic significance of the equations is of first importance and

no theory can be accepted whose economic significance is not clear. (Tinbergen 1935, p. 242)

Mathematical molding was an essential element of Tinbergen’s business-cycle

research in the 1930s. Economic theories did not contain any guidelines that could

lead to an appropriate formalism. They either were verbal accounts or, if mathe-

matical, only gave descriptions of static systems. Mathematical molding was a trial-

and-error process that started with the assumption of a production lag. As Hanau

(1928) showed empirically and Aftalion (1927) theoretically, lags generate endog-

enous fluctuations. However, basing dynamics on a production lag alone has several

disadvantages. In the first place, as discussed above, to explain a Juglar, the

assumed production time would have to be far too long. This was the reason why

Tinbergen introduced various “complications” into his dynamic schemes. In the

second place, the disadvantage of postulating lags is that they must be stated in

advance and have a fixed length. “This has been repeatedly felt as a too rigid
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representation of reality” (Tinbergen 1933b, p. 133). However, beside lag relations

other dynamic relations are possible, namely, those containing differentials and

integrals. From physics, Tinbergen knew that second-order differential equations

can generate cycles. For example, differentiating (with respect to time) an equation

containing a differential and an integral term leads to the equation of the harmonic

oscillator.

a _yðtÞ þ byðtÞ þ c

Z t

0

yðτÞdτ ¼ 0 ! a€yðtÞ þ b _yðtÞ þ cyðtÞ ¼ 0 (4.7)

An advantage of differential equations is that differentials refer to very small

time intervals. Note that _y ¼ dy=dt; where dt can be approximated by a very small

difference in time Δt. So that:

_y � yðtÞ � yðt� ΔtÞ
Δt

(4.8)

Considering the shorter time many production processes need nowadays, the appearance of

only direct affective causes can be called a realistic feature in view of this. Thus, what

really matters is the question just posed: can quantities with an integral character and a

differential character, respectively, be found and do these quantities play an important role

in the business cycle? (Tinbergen 1933b, pp. 14–15)

At a meeting of the Econometric Society in Leiden in 1933, Tinbergen raised

this question most explicitly: “Is the theory of harmonic oscillation useful in the

study of business cycles?” He proposed to start “from the mathematical nature

of harmonic oscillations and seeking among the main economic relations those

likely to fit into the harmonic pattern” (Marschak 1934, p. 188). Accordingly, he

marshaled economic relations into two groups: (1) “differential phenomena,” that

is, functions of the rate of price change, _pðtÞ, and (2) “integral phenomena,” that is,

functions of
R
p dt . Statistical tests, however, showed him not to give too much

credit to most of the phenomena of group (2), because the correlations he had

hitherto found were too small (p. 188).

In his 1935 survey, Tinbergen discussed this issue again. To make “closer

approximations to reality” (p. 277), differentials, _pðtÞ, and integrals,
R
p dt, were

added to the lag schemes. Thus, in general, the reduced form equation of a business-

cycle scheme would have the following shape:

Xn
1

aipðt� tiÞ þ
Xn
1

bi _pðt� tiÞ þ
Xn
1

ci

Zt�ti
0

pðτÞ dτ ¼ 0 (4.9)
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The requirement was that the parameters satisfy the “wave condition” and the

“long wave condition.” The “wave condition” required that the solution to the

above reduced form equation is a sine function, p(t) ¼ Cλt sin (ωt), so that the time

shape of p(t) is cyclic. The “long wave condition” prescribed that the cycle period

should be long compared with the “time units” and that the cycle should not differ

“too much from an undamped [sic] one” (p. 280). According to Tinbergen, “these

conditions will be a guide in a statistical test of the different schemes as to their

accord with reality” (p. 280). As a first approximation to these conditions,

Tinbergen put λ ¼ 1 and ω ¼ 0. Then the period of the cycle, 2π/ω, goes to infinity.
Both conditions taken together implied that:

Xn
1

ci ¼ 0 (4.10)

In other words, mechanisms “only then lead to long, not too much damped

waves when the integral terms are of small importance” (p. 281).

Tinbergen considered several mechanisms for their ability to explain the busi-

ness cycle. The wave conditions defined the restrictions on the parameter values.

But to find out whether these possible mechanisms “can explain real business cycles

and which of them resembles reality” (p. 281), statistical verification, however, was

the necessary next step in the analysis.

Tinbergen’s research program in the first half of the 1930s can be briefly

characterized as a combination of two methods, mathematical molding and

statistical verification. Mathematical molding generated potential business-cycle

mechanisms, which had to be identified empirically. But also in his subsequent

work in the 1930s, when he built the two very first macro-econometric models,

mathematical molding was part of the modeling process, although less prominent.

The first macro-econometric model was his 1936 model of the Dutch economy. The

second was developed when he was commissioned by the League of Nations to

undertake statistical tests of the business-cycle theories, published in a two-volume

work, Statistical Testing of Business-Cycle Theories (1939a, b). The first volume

contained an explanation of a method of econometric testing and a demonstration,

using three case studies, of what could be achieved. The second volume contained a

model of the United States economy.

The procedure he employed to test existing business-cycle theories consisted of

two stages. Firstly, the variables that a given theory provides must be tested by

multiple regression analysis, and, secondly, the system of numerical values found

for the causal relations must be tested to see whether it really yields a cyclic

movement when used in the reduced form equation.

Mathematical arguments played a crucial role in the assessment of whether

integrals should be built into the model or omitted. This assessment was rather

similar to his 1935 discussion of whether integrals should be part of a business-

cycle mechanism or not. It appeared that the integrals, now called “cumulants,” in
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the reduced form equation influenced the possible movements of the system in two

ways:

(i) The period and degree of damping of the cyclical movement are to some extent

affected by the presence of such terms.

(ii) Besides that, the cumulants introduce an additional root into the characteristic

equation, which is real and positive, giving rise to a one-sided movement. This

movement is explosive (away from the equilibrium situation) if the algebraic

sum of all coefficients of cumulation terms in the final equation [reduced form

equation] is positive; the movement is damped (gradual approach of the

equilibrium situation) if that sum is negative. (Tinbergen 1939b, p. 147)

However, the cumulants appearing in the reduced form equation were “not all,

and perhaps not even the most important of the cumulants to which the economic

mechanism gives rise in reality” (p. 149). In many other cases, cumulations could

not be distinguished from trends and so remained “hidden.” A rough estimate of the

possible effects of cumulants (including the hidden ones) showed that they would

change the dampening factor at the most by �0.05. Because of the hidden

cumulants, the sign of the sum of the coefficients for the cumulants could not be

determined, but Tinbergen assumed that the positive real root lay somewhere

between 0.75 and 1.25, which leaves the possibility of either a dampened or an

explosive one-sided movement. The latter possibility had to be rejected for not

being in accordance with movements observed in reality. The influence of the

former on the cyclical movement would only be moderate. “To sum up, on the

ground of their small influence under (i) and our ignorance of their effect under (ii),

it seemed both advisable and justified to keep all terms containing cumulants out of

the elimination process” (p. 149). So they will not show up in the reduced form

equation. So, the result was consistent with his earlier result in his 1935 survey

paper that the sum of the coefficients of the integrals should be small (Eq. 4.10) to

satisfy the wave conditions.

Like the integrals, nor did the two macro-econometric models contain

differentials, but for another reason. Tinbergen had changed his view on the

meaning and role of lags in the mathematical relations. In his earlier business-

cycle schemes, lags meant production lags and referred to time intervals of about

1–2 years. One of the main reasons for introducing differentials was that they

represented more immediate reactions. But in the later macro-econometric models,

lags did not have this specific economic meaning anymore; they came to indicate

time units of, for example, 1 month. If time lags are time units, Δt ¼ 1, differentials

can be approximated by differences, cf. Eq. (4.8): _y � yðtÞ � yðt� 1Þ.

3 Frisch’s Memorandum

Although both volumes of Tinbergen’s Statistical Testing of Business Cycle Theories
were officially published by the League of Nations in 1939, copies of Tinbergen’s

research were circulated in advance in 1938. Ragnar Frisch wrote a memorandum,
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Statistical versus Theoretical Relations in Economic Macrodynamics, to assess

Tinbergen’s work.

The present memorandum does not discuss details of the various equations which

Tinbergen has obtained and whose coefficients he has determined statistically. My main

concern has been to discuss what equations of this type reallymean, and to what extent they
can be looked upon as ‘A Statistical Test of Business Cycle Theories’. (Frisch 1995, p. 407)

The memorandum discussed two problems. The first problem was the question

“what sorts of equations it is possible to determine from the knowledge of the time

shapes that are actually produced” (p. 416). The answer to this question was that

only the so-called coflux equations were discoverable. These coflux equations were

defined algebraically by the set of functions that forms the actual solution of the

complete system, including those determined by the initial conditions. The second

and deeper problem was that these coflux relations may not come near to resem-

bling the more “fundamental” equations that form the “essence of theory,” the so-

called autonomous equations (p. 417). Frisch argued that “it is only coflux relations
that are determined by Tinbergen, and the lack of agreement between these equations

and those of pure theory cannot be taken as a refutation of the latter” (p. 419).

Frisch’s analysis of the first problem, here labeled as the “identification prob-

lem,”4 stimulated various members of the Cowles Commission to work on identifi-

cation in the 1940s (Hendry and Morgan 1995, p. 57). The second problem, the

problem of autonomy, was crucial in the development of the concept of structural

equations (see Aldrich 1989). Although both problems are closely related, solving

the first does not imply a solution to the second. While the identification problem is

a mathematical problem, the autonomy problem remains basically an empirical

problem.

To understand the nature of both problems, they will be introduced according to

their original treatment in Frisch’s memorandum. We start with the identification

problem. This problem deals with the relation between the “form” of the equations

representing the assumed relations between the economic variables and the “time

shape” of these variables.

Frisch defined the form of a difference equation,

X
iθ

aiθxiðt� θÞ ¼ 0 (4.11)

as the iθ range of the summation that determines the terms involved in the equation.

The time shape of a variable is the sum of the exponentials that make up this

variable,

4 This was not Frisch’s terminology, but Koopmans’. Aldrich (1994) gives an account of the

development of the identification theory from Frisch to Koopmans by focusing on Haavelmo

(1944), including a discussion of the change in terminology.
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xiðtÞ ¼
Xn
k¼1

Cik e
γit (4.12)

In the memorandum, the identification problem was phrased in terms of “reduc-

ibility” and “irreducibility” and was linked to the time shapes of the variables.

It is clear that the property of irreducibility must be important when we are studying the

nature of those equations that can be determined from the knowledge of the time shapes of

the functions that are to satisfy the equations. (Frisch [1938] 1995, p. 413)

The (ir)reducibility of an equation was defined with respect to a set of functions.

An irreducible equation of the form (p. 11) is “one whose coefficients are uniquely
determined and allow of no degree of freedom if the equation is to be satisfied by
this set of functions (apart from the arbitrary factor of proportionality which is

always present in the case of a homogeneous equation)” (p. 413).

By inserting the function xi(t) defined in formula (4.12) into Eq. (4.11), one can

derive algebraically the following rule5:

Rule about reducibility: If the functions with respect to which reducibility is defined are

made up of n exponential components . . ., the equation is certainly reducible – and hence its
coefficients are affected in a more or less arbitrary manner – if it contains more than n + 1

terms. And it may be reducible even if it contains n + 1 terms or less. (Frisch 1995, p. 414)

In other words, only equations that contain at most n + 1 terms may be irreduc-

ible – uniquely identified – with respect to the time shape of a variable. For example,

if the time shape has the form of a (dampened, undampened, or antidampened) sine

function, then it is equivalent to a combination of two exponential components and

therefore cannot identify an equation with more than three terms.

However, the time shapes of the variables do not satisfy just one equation but

form the actual solution of the complete system, including those determined by the

initial conditions. Frisch called an equation that is identified by the time shape of

this actual solution a “coflux” equation. The other equations were called

“superflux” equations. The word “flux” suggested that both kinds of equations

were defined with respect to the time shape actually possessed by the phenomena.

Thus, only “coflux equations and no other equations are discoverable from the

knowledge of the time shapes of the functions that form the actual solution” (p. 416).

This is the nature of passive observations, where the investigator is restricted to observing

what happens when all equations in a large determinate system are actually fulfilled
simultaneously. The very fact that these equations are fulfilled prevents the observer from

being able to discover them, unless they happen to be coflux equations. (Frisch 1995, p. 416)

Should one bother about these other equations that are not discoverable through

passive observations? Frisch’s answer was yes; the other equations, the superflux

equations, are well worth knowing because they have a higher degree of

5 Boumans (1995), which discusses the more technical details of Frisch’s memorandum, also

provides the derivation of this rule.
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“autonomy.” These were the equations that “maintained unaltered while other

features of the structure were changed” (p. 417).

The higher this degree of autonomy, the more fundamental is the equation, the deeper is the
insight which it gives us into the way in which the system functions, in short, the nearer it

comes to being a real explanation. Such relations form the essence of ‘theory’. (Frisch

1995, p. 417)

Unfortunately, autonomy is “not like the irreducibility a mathematical property

of a closed system . . . but is built on some sort of knowledge outside this system”

(p. 416). Passive observation only lead to coflux equations, and generally spoken

these relations are far from able to give information about the autonomous struc-

tural relations. Therefore, it is necessary to use active observation, namely, experi-

mentation, as Frisch recommended.

In his memorandum of 1938, the concept of autonomy was not further

explicated. Ten years later, Frisch gave a more explicit description of what he

meant by the idea of autonomy:

Take any equation and ask the question: is the technical and institutional setting which

surrounds it and the behaviour of the individuals involved such that this particular equation

will hold good even though other equations involving the same variables are destroyed

through technical, institutional or behaviouristic changes or through the fixation of some

specific variables in the system, for instance through a specific economic measure. This, it

seems, is the only way in which it is possible to define a ‘causal’ relation as distinguished

from an incidental covariation between economic magnitudes. (Frisch 1948, pp. 368–369)

As we have seen above, Tinbergen used the characteristics of the business cycle

to acquire information about the causal structure: tests of mathematical significance

were used to infer the shape of the equations of the mechanism plus the relevant

causal factors. So, an essential part of the model-building process is mathematical

molding: a mathematical formalism is sought that is able to generate the relevant

characteristics of the phenomena that should be explained or described. Next, the

parameters are quantified in such a way that the model precisely picks out these

characteristics. This latter stage is called tuning. Because, in the model-building

process, mathematical molding and testing for mathematical significance are both

sides of the same coin in the model-building process, justification is built-in. In

Boumans (1999), where this argument is developed, three examples of models are

discussed of which two were built in the same period as Tinbergen’s modeling

work: Kalecki’s (1935) and Frisch’s (1933b) business-cycle model. Kalecki tuned

his parameters such that his model generated a maintained cycle with a period of

10 years. Frisch tuned the parameters such that his model generated three damped

cycles of which two had a period in accordance with the observed cycle periods.

Frisch’s memorandum, however, showed that this feedback from the shape of a

business cycle to its generating mechanisms was cut off when the mechanism was

represented by difference equations instead of (mixed difference-)differential

equations. The direct and close relationship between cyclical behavior and differ-

ential equations does not exist for difference equations.
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This practice of mathematical molding was also criticized by Trygve Haavelmo,

a student of Frisch, in his (1940) paper “The Inadequacy of Testing Dynamic

Theory by Comparing Theoretical Solutions and Observed Cycles.” On the basis

of an example, Haavelmo demonstrated that “‘correction’ of the form of a priori

theory by pure inspection of the apparent shape of time series is a very dangerous

proceeding and may lead to spurious ‘explanations’” (p. 321). The example he gave

showed that when an apparent trend, which was “not strongly justified on a priori

reasons,” is built into the model, things are often assumed to be structural, whereas

they are merely the effect of cumulation of random events and thus, in fact, are

spurious.

Haavelmo’s warning against building time shapes of the variables into the model

was one of the arguments for cutting off the empirical feedback from the phenome-

non in question to modeling its causal mechanism. The paper was the basis for his

later paper on autonomy. In it he showed that when apparent shapes of time series,

like temporary trends, are confused with structure, the real explanation for apparent

changes in structure is in fact “the disappearance of spurious elements introduced

in our theory by the trend fitting” (p. 321). It should, however, be noted that

Haavelmo only discussed the danger of building in temporary appearances which

are mistaken as steady characteristics of the phenomena or, in other words, as

stylized facts about the phenomena. It would take 30 years before the strategy of

using facts about a phenomenon to assess parameter values remerged under the new

name “calibration.” This strategy could only flourish once the high-days of the

Cowles Commission approach were over.

4 Haavelmo’s Probability Approach

Haavelmo’s (1944) The Probability Approach in Econometrics echoed Frisch’s

memorandum in many respects, in particular its terminology, but it is important to

be aware of the change in scope. There was not only a shift from linear to nonlinear

equations, and the concomitant change in mathematical technique from linear

algebra to implicit function theory, but the point of departure also differed (see

for this Aldrich 1994, pp. 205–206). Haavelmo envisaged a situation in which the

form of the equations is given by the relevant economic theory and the unknowns

are the values of the economic structural parameters, while to Frisch all that is given

is the possibility there are one or more linear relations between the variables.

Nevertheless, Haavelmo also distinguished between the identification problem

and the autonomy problem.

The problem of identification was that “one or more of the parameters to be

estimated might, in fact, be arbitrary with respect to the system of equations”

(p. 84). This problem came down to a study of the properties of the joint probability

distribution of the random (observable) variables in a stochastic equation system.

Within this framework, two “fundamental” problems could be formulated, namely,
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the “problem of arbitrary parameters” and the problem of “best estimates.” The first

problem was that if two stochastic equation systems lead to the same joint proba-

bility law of the observable random variables, we cannot distinguish between them

on the basis of observations (see Haavelmo 1944, p. 88 and p. 91). The second

problem was how to find the best estimate for the parameters given a specific

sample, in other words a straightforward statistical problem. The first problem was

considered a problem of “pure mathematics.” “This problem, however, is of

particular significance in the field of econometrics, and relevant to the very con-

struction of economic models, and besides, this particular mathematical problem

does not seem to have attracted the interest of mathematicians” (p. 92).

The “problem of arbitrary parameters” was described using Frisch’s term

“reducibility,” but with a slightly different meaning. Reducibility was not defined

with respect to linear difference equations but to the more general functional

equations and was not linked to the exponentials satisfying these equations but to

general functions of the parameters. As a result, reducibility was now defined in

terms of whether or not the partial derivatives of the functional equations with

respect to the parameters were linear dependent.

Thus, while the dual problem of estimation could be tackled in a mathematical

and statistical way, the problem of autonomy remained, as in Frisch’s memoran-

dum, “a matter of intuition and factual knowledge; it is an art” (p. 29). The problem

of autonomy was worded as the problem of “judging the degree of persistence over

time of relations between economic variables” or, more general, “whether or not we

might hope to find elements of invariance in economic life, upon which to establish

permanent ‘laws’” (p. 13). This problem is caused by the fact that real economic

phenomena cannot be “artificially isolated from ‘other influences’” (p. 14).

We have to deal with passive observations, and these are:

influenced by a great many factors not accounted for in theory; in other words, the

difficulties of fulfilling the condition ‘Other things being equal’. But this is a problem

common to all practical observations and measurements; it is in point of principle, not a

particular defect of economic time series. If we cannot clear the data of such ‘other

influences’, we have to try to introduce these influences in the theory, in order to bring

about more agreement between theory and facts. Also, it might be that the data, as given by

economic time series, are restricted by a whole system of relations, such that the series do

not display enough variations to verify each relation separately. (Haavelmo 1944, p. 18)

Let y denote an economic variable, the observed values of which may be

considered as results of planned economic decisions taken by individuals, firms,

etc. And let us start from the assumption that the variable y is influenced by a

number of causal factors, x1, x2, . . ..

Our hope in economic theory and research is that it may be possible to establish constant

and relatively simple relations between dependent variables, y (of the type described

above), and a relatively small number of independent variables, x. In other words, we

hope that, for each variable, y, to be ‘explained’, there is a relatively small number of

explaining factors the variations of which are practically decisive in determining the

variations of y. (Haavelmo 1944, pp. 22–23)
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Haavelmo distinguished between two different notions of “influence,” namely,

“potential influence” and “factual influence.” Let y be a theoretical variable defined
as a function of n independent “causal” variables x1, x2, . . ., xn:

y ¼ F x1; . . . ; xnð Þ (4.13)

Both notions of influences can be clarified by the following equation:

Δy ¼ F1Δx1 þ � � � þ FnΔxn (4.14)

The deltas,Δ, indicate a change in magnitude. The terms Fi indicate how much y
will change due to a change in magnitude of factor xi.

Then “potential influence” of the factor xi upon y can be represented by Fi. Thus,

“for a given system of displacements Δx1, Δx2, . . ., Δxn, the potential influences

are, clearly, formal properties of the function F” (pp. 23–24). The “factual

influence” upon y of the variable xi can be represented by FiΔxi.6

According to Haavelmo, this distinction between potential and factual influence

was fundamental.

For, if we are trying to explain a certain observable variable, y, by a system of causal

factors, there is, in general, no limit to the number of such factors that might have a

potential influence upon y. But Nature may limit the number of factors that have a

nonnegligible factual influence to a relatively small number. (Haavelmo 1944, p. 24)

Thus, the relationship y ¼ F(x1, . . ., xn) (see Eq. 4.13) explains the actual

observed values of y, provided the factual influence of all the unspecified factors

together were very small as compared with the factual influence of the specified

factors x1, . . ., xn.

This might be the case even if (1) the unspecified factors varied considerably, provided their

potential influence was very small, or if (2) the potential influences of the unspecified

factors were considerable, but at the same time these factors did not change much, or did so

only very seldom as compared with the specified factors. (Haavelmo 1944, p. 25)

However, “our greatest difficulty in economic research” does not lie in

establishing simple relations, but rather in the fact the empirically found relations,

derived from observation over certain time intervals, are “still simpler than we

expect them to be from theory, so that we are thereby led to throw away elements of

a theory that would be sufficient to explain apparent ‘breaks in structure’ later”

(p. 26). This was the so-called problem of autonomy of economic relations. Some of

these relations have very little autonomy because their existence depends upon the

simultaneous fulfillment of a great many other relations. Highly autonomous

relations were those that “describe the functioning of some parts of the mechanism

irrespective of what happens in some other parts” (p. 28). This was the “principal

6 In Boumans (2005), it is shown that Haavelmo’s definitions of potential and factual influences

can be represented in this way.
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task of economic theory”: to establish those relations that might be expected to

possess as high a degree of autonomy as possible.

The problem is that it is not possible to identify the reason for the factual

influence of a factor, say xn+1, being negligible, Fn+1Δxn+1 � 0. We cannot distin-

guish whether its potential influence is very small, Fn+1 � 0, or whether the factual

variation of this factor over the period under consideration was too small, Δxnþ1
� 0. We would like only to “throw away” factors whose influence was not observed

because their potential influence was negligible to start with. At the same time, we

want to retain factors whose influence was not observed because they varied so little

that their potential influence was veiled.

The variation of xn+1 is determined by other relationships within the system. In

some cases a virtually dormant factor may become active because of changes in the

economic structure elsewhere. However, deciding whether a factor should be

accounted for in the relationship under investigation should not depend on such

changes. The relationship should be autonomous with respect to structural changes

elsewhere.

How autonomous an equation is depends on our knowledge of the potential

influence of each factor, Fi, which will inform us about the formal properties of the

function F (see Haavelmo 1944, p. 24). Both Frisch and Haavelmo were pessimistic

about whether it was possible to acquire knowledge about the autonomy of an

equation through passive observation alone (therefore, they both advocated

experiments in economics). However, the problem is not insurmountable if we

use our knowledge about the time shapes of the phenomenon we want to explain.

Facts about the time shape of y can be fed back to the form F of the relation being

investigated. However, this only works if facts about the time shapes of the

phenomenon are invariant and stable, and not temporary characteristics. As we

discussed earlier, Haavelmo considered this strategy to be “very dangerous” and

therefore abandoned it. Frisch also, mistakenly, believed that the time shapes were

not sufficient to gain knowledge about the complete list of causal factors.

Unlike Haavelmo, Frisch and Tinbergen used (stylized) facts about the time

shape of the business-cycle phenomenon. For Tinbergen, whether integral terms

(hidden or not in the observations) should be included in the business-cycle

mechanism depended on assumptions about the periodicity and amplitude of the

business cycle. Frisch’s Propagation and Impulse model (1933b) also used time

shapes to gain knowledge about the business cycle’s generating mechanism. How-

ever, his 1938 memorandum shows that the possibilities to identify the full list of

causal factors depend on the connection between assumptions about the mathemat-

ical representation of the business cycle and assumptions about the mathematical

representation of the explaining mechanism.

Haavelmo’s design rules for doing econometrics were considered as an alterna-

tive to the experimental method of science (Morgan 1990, p. 262). However,

although researchers at the Cowles Commission adopted Haavelmo’s “blueprint”

for econometrics (Morgan 1990, p. 251), they scrapped the term “autonomy”

because it was believed that structural relations were autonomous (see Aldrich

1989). Only Haavelmo kept the term “autonomy” alive. If one looks at the index of
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the 1950 monograph of the Cowles Commission, one finds only one reference to

“autonomous relation,” namely, to Haavelmo’s chapter “Remarks on Frisch’s

Confluence Analysis and Its Use in Econometrics.” In it he described an autono-

mous relation as a relation that “would hold regardless of whether or not other

economic relations were fulfilled” (Haavelmo 1950, p. 263). This is again the case

in the follow-up of the 1950 monograph, namely, the 1953 monograph Studies in
Econometric Method.7 There is only one reference of “autonomous equations” in

the index, in Girshick and Haavelmo’s chapter “Statistical Analysis of the Demand

for Food: Examples of Simultaneous Estimation of Structural Equations.” But now

“structural” and “autonomous” seem to have converged.8

Why is it that we are interested in one particular member of this infinite set of true systems?

It is because, in setting up the original model, we believe that there is one particular system

of equations that is a system of autonomous, or structural equations, that is, equations such
that it is possible that the parameters in any one of the equations could in fact change, e.g.,
by the introduction of some new economic policy, without any change taking place in any

of the parameters of the other equations. (Girshick and Haavelmo 1953, p. 106)

The reason why researchers at the Cowles Commission believed that the struc-

tural equations were autonomous is that the empirically found relationships may be

simpler than theory would suggest. This could lead researchers to overlook poten-

tial influences. Moreover, there may be factors that were not only overlooked

because they were not revealed empirically but were also not yet accounted for in

theory. However, as passive observers “we cannot clear the data of such ‘other

influences’, we have to try to introduce these influences in the theory, in order to

bring about more agreement between theory and facts” (Haavelmo 1944, p. 19).

Thus, it was assumed that the problem of autonomy could be avoided by building

models to be as comprehensive as possible.

5 Conclusions

Originally, in business-cycle analysis, whether a potential causal factor was added

to the business-cycle mechanism depended on whether it was theoretically as well

as statistically and mathematically significant. Mathematical significance of a

causal factor depended on considerations of whether the model containing that

factor generated the appropriate facts about the phenomenon. Because feedback

from the phenomena was cut off, the Cowles Commission approach was not to

discover or test, but only to identify and measure.

7 Both monographs are considered as containing the main body of the Cowles Commission’s

theoretical results (see Christ 1994, p. 32).
8 For a more sophisticated account of this convergence, see Chao (2009), where he distinguishes

between the invariance view and the theory view. Autonomy is equivalent to invariance but “does

not say anything about the constitution of a system” (p. 71). So, the convergence is best described

as the “invariance view of structure.”
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Hoover (1994) shows that the Cowles Commission approach, which he labels as

“strong apriorism,” is just one of the two strategies to secure invariance. In his view,

it is better to see econometrics as an observational science such as astronomy.

Because the observations made by econometrics instruments are observations of

confluent relations, one should adopt the strategy of “weak apriorism.” Theory

guides observations but observation can suggest which elements of a theory are

unsatisfactory: “Measurement requires prior theory; equally, theory requires prior

measurement” (p. 73). Nevertheless, as Hoover emphasizes,

econometric observations would be practically useless if they were completely unstable. We

must, therefore, count on finding some stability and on supplementing econometric

observations with other information, say institutional facts, if we are to distinguish between

real changes in structure and our inability to focus our observations. (Hoover 1994, pp. 75–76)

It was this class of stable facts about business cycles that originally were used to

solve the problem of autonomy.
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Chapter 5

Models of Mechanisms: The Case

of the Replicator Dynamics

Till Grüne-Yanoff

Abstract The general replicator dynamics (RD) is a formal equation that is used in

biology to represent biological mechanisms and in the social sciences to represent

social mechanisms. For either of these purposes, I show that substantial ideali-

sations have to be made – idealisations that differ for the respective disciplines.

These create a considerable idealisation gap between the biologically interpreted

RD and the learning interpretations of the RD. I therefore argue that these

interpretations represent different mechanisms, even though they are interpretations

of the same formal RD equation. Furthermore, I argue that this idealisation gap

between the biological and economic models is too wide for the respective

mechanisms to share a common abstract causal structure that could be represented

by the general RD model.

1 Introduction

It has become fashionable in recent philosophy of science to explicate the use of

scientific models by claiming that they represent mechanisms. In this chapter, I

discuss the replicator dynamics (RD), an important model in biology and econom-

ics, and argue that it does not represent a mechanism. The argument proceeds in two

steps. First, I show that even though the same RDmodel is employed in biology and

economics, the different interpretations in these disciplines make it represent

different mechanisms. Second, I argue that these different mechanisms do not

instantiate a common, more abstract, mechanism. Rather, different kinds of

idealisations are imposed on the RD model, depending on whether it is interpreted

in economics or in biology. This opens an ‘idealisation gap’ between the different
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biological and economic models, too wide for the respective mechanisms to share a

common abstract causal structure that could be represented by the general RD

model.

The chapter is structured as follows. Section 2 introduces the needed distinctions

between mechanism sketches, abstract models and complete models on the one

hand and particular mechanisms and abstract mechanisms on the other. Section 3

surveys the formal RD model and its derivation from evolutionary game theory.

Section 4 discusses its use by population biologists, who intended it as a represen-

tation of biological mechanisms. In Sect. 5, I discuss economists’ use of the same

RD equation to represent social mechanisms and argue that these social

mechanisms are distinct from the biological ones. Section 6 contains the main

argument, showing that the biological and economic models are separated by an

‘idealisation gap’ too wide for the respective mechanisms to share a common

abstract causal structure that could be represented by the general RD model.

Section 7 concludes.

2 Models and Mechanisms

The notion of mechanism has had significant impacts on the way philosophers of

science account for the use of models in the sciences, in particular in biology,

economics and the neurosciences. According to these accounts, models explain

because they represent the mechanism that produces the phenomenon to be

explained (Craver 2006, p. 367). Models help in controlling the real world, because

their mechanism representations enable modellers to answer counterfactual

questions (Woodward 2002, p. S371). Finally, we can make true claims with

models, because they correctly represent an isolated mechanism, even when they

idealise the influence of many background condition (Mäki 2009, p. 30).

In each of these functions, models represent mechanisms. Whatever the specific

definition of mechanism is (I will remain noncommittal here, as different incom-

patible definitions are extant and the detail of these does not matter for my purposes

here), it is clear that mechanism is considered a part of the real world, characterised,

for example, as ‘material structures’ (Craver and Kaiser 2013, p. 130) or a ‘portion

of the causal structure of the world’ (Craver and Kaiser 2013, p. 141).

A mechanistic model may be designed to represent more or less details of a

mechanism. Here authors have distinguished between mechanisms sketches, sche-

mata and complete mechanistic models. A sketch is an ‘incomplete model of a

mechanism’ (Craver 2006, p. 360). While characterising some parts, activities and

features of the mechanism’s organisation, it leaves blanks. These blanks are not

necessarily visible, as they may be camouflaged by ‘filler terms’: terms like

‘activate’, ‘inhibit’ or ‘produce’ that indicate activity in a mechanism without

detailing how the activity is carried out. Thus, there is more to the represented

mechanism than a representing model sketch says.
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On the other extreme, we have an ideally completemodel. ‘Such models include

all of the entities, properties, activities, and organizational features that are relevant

to every aspect of the phenomenon to be explained’ (Craver 2006, p. 360). Even if

completeness is relativised with respect to explanatory purpose, few, if any, such

complete models can be found. More relevant, thus, seems the notion of a mecha-

nism schema, which is a somewhat complete, but less than ideally complete,

mechanistic model.

For a given mechanism, a mechanism sketch thus represents less of its features

than a mechanism schema does. The sketch does so either by not at all specifying

some features that the schema specifies (this is easier with formal models: a set-

theoretic model, say, may stay silent about the colours of the objects it represents; a

computer model may successfully evade specifying the weight of the structure it

represents). Alternatively, sketches often specify certain features, but users of the

sketch might exclude these features from the representational function of the

sketch. That is, they declare these certain features to be idealisations. Scale models,

for example, have many features, like size and weight and materiality, that are

usually considered idealisations and hence not representations of the target object’s

properties. By either way, a mechanistic sketch represents less features of a given

mechanism than a mechanism scheme does. Consequently, mechanism sketches are

more abstract than mechanism schemata.

Abstraction is often thought of in relation to generality.1 A mechanism sketch,

then, is more abstract than a mechanism schema, because those properties described

in the sketch are a proper subset of those described in the schema. Different

mechanisms, described by different schemata, may therefore be described by one

and the same sketch.

Such a view of mechanistic models is particularly plausible when seen from

an ‘exemplar’ account of mechanisms. Such an account points out that mecha-

nistic models often represent a particular, exemplary mechanism (Bechtel and

Abrahamsen 2005, p. 438). Such exemplars or prototypes are particular tokens of

causal structure in the world. A mechanistic model close to being ideally complete

might represent just a single such exemplar. A mechanism sketch, on the other

hand, might represent a large set of such exemplars. With increasing abstraction,

mechanistic models get more and more general.

Scientists use exemplars and prototypes, according to Bechtel and Abrahamsen,

in order to accommodate the subtle variations between related mechanisms. For

example, they model a mechanism in wild-type Drosophila and then extrapolate

from this prototype to mechanisms in other strains and species, all the while

acknowledging that these are not identical mechanisms. In this view, explaining

with a mechanistic model typically commences by explaining the phenomenon with

1 Take, for example, Nancy Cartwright’s Aristotelian account of abstraction: ‘A is a more abstract

object than B if the essential properties, those in the description of A, are the proper subset of the
essential properties of B’ (Cartwright 1989, p. 214).
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a prototype mechanism, which is then judged to be sufficiently similar to the

mechanism that actually produced the phenomenon.

Yet this is not the only way how one can conceive of inferences between

mechanisms. Instead of restricting one’s ontology to concrete mechanisms that

are only instantiated in one kind of organism, or one kind of social institution, one

might also accept that there are abstract mechanisms that have many concrete

instantiations in different kinds of organisms or institutions. This idea has been

floated by some writers, who propose a sort of hierarchy of mechanisms. It is

worthwhile quoting one such argument at length.

Processes identified in the causal reconstruction of a particular case or a class of macro-

phenomena can be formulated as statements of mechanisms if their basic causal structure

(e.g., a specific category of positive feedback) can also be found in other (classes of) cases.

The mobilization process observed in a fund-raising campaign for a specific project can, for

instance, be generalized to cover other outcomes such as collective protest or a patriotic

movement inducing young men massively to enlist in a war. A particular case of techno-

logical innovation like the QWERTY keyboard may similarly be recognized as a case in

which an innovation that has initially gained a small competitive advantage crowds out

technological alternatives in the long run. This is already a mechanism of a certain

generality, but it may be generalized further to the mechanism of “increasing returns,”

which does not only apply to technological innovations but has also been used in the

analysis of institutional stability and change . . . “Increasing returns,” of course, is a

subcategory of positive feedback, an even more general mechanism that also operates in

the bankruptcy of a firm caused by the erosion of trust or in the escalation of violence in

clashes between police and demonstrators. (Mayntz 2004, p. 254)

Central to this idea is that more abstract mechanisms exist in the same way as

concrete mechanisms are said to exist. Abstract mechanisms are instantiated in

more concrete mechanisms: Mayntz’ positive feedback mechanism is instantiated

in escalation of violence between police and demonstrators, in trust-erosion

mechanisms and in increasing returns mechanisms. Mechanisms of different

degrees of abstraction are also nested: positive feedback is instantiated in increasing
returns, which in turn is instantiated in technological crowding out, which in turn is

instantiated in the specific process that led to the dominance of the QWERTY

keyboard.

According to this view, inferences between mechanisms do not go from

prototypes to similar particular mechanisms, but they go through abstract

mechanisms in the form of shared ‘basic causal structure’. Explaining with a

mechanistic model commences by explaining the phenomenon with an abstract

mechanism and then showing that the mechanism that actually produced the

phenomenon is an instantiation of the abstract mechanism.

Allowing for abstract mechanisms produces an ontological mirror image to the

abstraction hierarchy of models. Unlike the exemplar account, which casts all

models as more or less abstract representations of particular mechanisms, the

abstract mechanism account allows models to represent both abstract and particular

mechanisms. Consequently, what appears at first sight to be a mechanism sketch

might either be an abstract representation of particular mechanisms or a nearly

complete model of an abstract mechanism.
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Prima facie, the abstract mechanisms account fits well with observed scientific

practice. Scientists often speak about abstract causal structures as if they were real.

They see patterns, structures and processes instantiated in various events that

produce phenomena: for example, natural selection in the genesis of traits of

many different organisms or positive feedback loops yielding dominance of certain

set-ups in many institutions. They model these abstract patterns, structures and

processes and suggest that these models represent something real.

Conversely, scientists sometimes question the legitimacy of abstract mechanistic

models by arguing that an abstract mechanistic model is a mere sketch and not a

representation of an abstract mechanism. For example, a paper glider might be a

useful mechanism sketch of flight mechanisms in both birds and flying machines.

But as parents will explain to their little paper pilots, this does not mean that bird

flight and machine flight share the same basic causal structure. Rather, birds

combine the function of providing both lift and thrust in their wings, while airplanes

separate these functions. Such an explanation implicitly distinguishes between

genuine abstract models that represent abstract mechanisms and spurious abstract
models that are mere sketches of concrete mechanisms, to be filled in different and

differentiating ways.

This is the problem that evolutionary game theorists face, too: they operate –

amongst other formalisms – with the RD model. This model is very abstract: it is

used to represent concrete mechanisms that clearly differ in some of their

properties. Crucially for my question, the RD model is used to represent mecha-

nisms both in economics and biology. The question thus arises whether the RD

model represents the same abstract mechanism in both disciplines or whether it is a

mere mechanism sketch that represents a set of disparate concrete mechanisms.

I argue that the RD is a spurious abstract model: a mere mechanism sketch that

requires filling in to represent the relevant features of the respective biological and

social mechanisms. As I will argue in Sect. 6, this ‘filling in’ of the RD follows

discipline-specific paths that increase the idealisation gap between biological and

social RD models. But before I can make that argument, I need to investigate the

modelling projects in the two disciplines in more detail.

3 The Replicator Dynamics

Evolutionary game theory (EGT) investigates the compositional stability of a

population as the result of interaction amongst its members. One of its most

prominent modelling approaches derives a differential equation for the population

composition from the game matrices that detail payoffs from interaction for each

individual in the population. Thus, in contrast to classical game theory, EGT

focuses not on decisions of individual players, but on properties of the whole

population and on the effect of properties of previous populations on future

population. This effect is represented through various population dynamics, first

and foremost the replicator dynamics (RD).
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Let me describe the RD model in more detail. A population is a set of

individuals. Individuals are programmed to play one strategy. A strategy is a

complete plan of action for whatever situation might arise; this fully determines

the player’s behaviour. A population state is defined as the vector x(t) ¼ (x1(t),. . .,
xk(t)), where each component xi(t) is the frequency of strategy i in the population at
time t.2 The replicator dynamics is a function that maps a population state at time

t onto a population state at t + 1. It exists both as a discrete version, in which

x(t + 1) ¼ f(x(t)), and as a continuous version, in which for each i, dxi/dt ¼ f(x(t)).
The RD function relates to the interaction of individuals in the population

through the following five steps. First, a population of individuals is presented

and the variation of strategies in the population described in the population state.

Second, in each period, every individual is paired at random with another individual

from the population. These individuals play the strategies that they are programmed

to play against each other. Third, a game is specified that members of the population

play between each other. Commonly, this game is a two-player simultaneous-move

game that for each player includes all strategies present in the population state. For

each strategy profile (i, j) – a combination of strategy i of one player and strategy j
of another player – the game specifies a payoff uk(i, j) for each player k ¼ {1, 2}.

Fourth, the payoff individual received from the interaction is interpreted as affect-

ing the replication of this individual: how many individuals will play strategy i in
the next period is proportional to how well individuals playing i in this period did

vis-à-vis other individuals. Fifth, proportionality of replication and payoffs leads to

differential representation of strategies in the population in the next period. Over

many periods, this differential representation may lead to the convergence of stable

state, in which differential representation of traits becomes stable over time, unless

disturbed exogenously. Alternatively, differential representation might change in

a regular fashion, for example, in regular oscillations or circles. Tracking the

outcome of the dynamics over time reveals such stability or regularity results.

Figure 5.1 depicts these five steps graphically.3

Mathematically, these steps are represented as follows. Given a population state

x(t), the expected payoff to any pure strategy i in a random match is u(i, x): an

Fig. 5.1 The general RD model

2 The population state is formally identical to a mixed strategy. Its support is the set of strategies

played by individuals in the population.
3 These and the following graphs are schematic representations of models – of the formal RD

equation and its respective interpretations. I use these graphs in order to make comparison between

the different models more palpable.
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individual that plays i against a randomly drawn opponent faces every strategy

present in the population with the associated frequency with which that strategy

occurs in the population. This is formally identical to this individual playing against

an opponent who plays a mixed strategy x(t). The associated population average

payoff is u(x, x) ¼ Σixi*u(i, x).
The frequency of strategy i changes to the degree that the expected payoff u(i, x)

differs from the population average payoff u(x, x). If u(i, x) is greater than u(x, x),
the number of individuals playing i in the next period will grow more than the

population average. If u(i, x) is smaller than u(x, x), the number of individuals

playing i in the next period will shrink more than the population average. This

relative growth is assumed to be linearly proportional to the difference between

strategy payoff and the population average payoff.4 Consequently, the continuous

RD is specified as follows:

dxi
dt
¼ u i; xð Þ � u x; xð Þ½ � � xi Weibull 1995; p: 72ð Þ (5.1)

That is, the change in xi’s population share is determined by xi’s current

population share and the difference between its expected payoff and the population

average payoff.

Through analysis of a phase diagram of these dynamics, convergent trajectories,

stable states and regular changes can be identified. Under the biological interpreta-

tion, regular changes identify the temporal predominance of certain traits in the

population, while stable states identify results of adaptation of organisms to their

environment.

4 The Biological RD

The RD was first derived in the late 1970s and quickly became the most prominent

model of evolutionary dynamics in EGT.5 The RD is derived from EGT by

implicitly presupposing EGT to describe an underlying biological mechanism.

The core idea of EGT in biology is that organisms often find themselves in strategic

situations, in which the fitness-relevant outcome of their behaviour at a certain time

depends on the behaviour of the other organisms in the population at that time. The

fitness of an organism thus is influenced by the frequency of behaviour in that

population. Consequently, there is a systematic relationship between the kind of

4 The relation between proliferation and payoffs characterises different classes of selection

dynamics. While a linear relation characterises the RD, wider classes are characterised by payoff

positivity and payoff monotonicity, respectively (Weibull 1995, pp. 139–152). Yet the RD, which

takes payoffs to represent fitness differences, is the most prominent selection dynamic in EGT and

therefore will be discussed here.
5 For a historical survey, see Grüne-Yanoff (2011a).
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composition of a population at a certain time and the differential reproduction of the

respective strategies in that population at the next time step.

In particular, the biological interpretation gives causal substance to the formal

five steps of the RDmodel above. First, individuals are interpreted as organisms and

their strategies as certain inheritable behavioural traits. Second, organisms interact,

for example, by fighting, mating, exchanging or collaborating. In this interaction,

each organism exhibits the behavioural trait it is endowed with. Third, each

organism receives an outcome from that interaction – for example, territory, food

and mating partner – depending on its own behavioural trait and that of the

organism it interacted with. Fourth, this outcome determines the number of off-

spring the organism has in the next period. Fifth, weighing growth of each trait by

overall population growth yields the differential reproduction of each kind of

organism.

The RD model is used to represent this mechanism. But it is not the formal

RD model alone that performs this representational function, but rather a biologi-

cally interpreted RD model. In particular, the causally relevant properties are not

found in the mathematical expressions of RD, but in its biological interpretation.

This interpretation has turned the RD formalism into representations of specific

causal forces and specific arrangement of these forces. Figuratively speaking, it fills

in the black boxes of Fig. 5.1 to yield a causal process from population at t to
population at t + 1, through interaction and differential reproduction, as shown in

Fig. 5.2.

The biological interpretation of the mathematical expressions specifies the causal

properties that bring about the result and that tell us how the population state changes

from x(t) to x(t + 1). Hence, the mathematical RD model in conjunction with the

biological interpretation represents the causal process from initial conditions to

specific outcome, not the formal model alone.6 The RD model is thus a mere sketch

of the biological mechanisms it represents, as various gaps are filled in by the

biological interpretation. Let me therefore distinguish the – more sketchy – formal

RD model from the – less sketchy – biologically interpreted BRD model.

Even if it is less sketchy than the RD, the BRD does not represent a particular

mechanism. Instead, it is a schema that represents mechanisms differing in many

Fig. 5.2 The biological interpretation of the RD

6 I have elsewhere argued that models consist of a formal structure and a story (Grüne-Yanoff and
Schweinzer 2008). In the case I am discussing, the RD equation (5.1) constitutes the formal

structure. The biological interpretation of its terms, and the account of interaction yielding a

fitness-relevant outcome, leading to differential reproduction, constitutes the story.
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details. BRD abstracts from these details. For example, it deals with strategies,

abstracting from any concrete content of behavioural plans. Furthermore, it deals

with generic organisms, not specific species or individuals. Finally, it abstracts from

any differences between organisms, as when it assumes that organisms have the

same fitness base rate.

Besides omitting and hence abstracting from many features, BRD also makes

many specific assumptions about the processes it purportedly represents, even

though these assumptions are likely to be false of many of these processes. Typical

idealisations of this sort include the assumption that organisms match and interact

with others randomly, hence idealising possible local interactions and network

structure. It also idealises inheritance, assuming away epigenetic effects and sexual

reproduction. BRD thus is an abstract and idealised representation of a process that

supposedly can be found in many different concrete instantiations.

That it is seen as a representation of one abstract mechanism lies in the success

of its application: many phenomena – in particular those involving frequency-

dependent selection, like sex ratios, fighting behaviour or cooperation – have

been successfully explained by reference to this abstract mechanism.

5 The Social RD

From the 1980s onwards, social scientists have increasingly adopted EGT for their

own explanatory purposes. In particular, EGT has been used in order to explain the

evolution of social institutions, in particular of conventions, norms and fairness

preferences.

Sometimes, social scientists not only employed the general RD model but also

resorted to its biological interpretation. For various reasons, this is today not

considered adequate for most social science purposes.7 Instead, specifically social

interpretations of the RD have been proposed. These social interpretations represent

mechanisms that account for the social interaction between individuals and for the

social replication of these individuals’ traits. A particularly important class of such

mechanisms has been described as learning. Learning is an extremely open con-

cept, and in the following I will only concentrate on those kinds of learning that are

7 These difficulties spring from many sources; I just want to sketch three reasons here. First, while

animals largely exist on the subsistence level, humans mainly do not. It is consequently much less

clear what the causal effect of, say, adherence to norms is for survival and reproduction in humans,

than what the causal effect of daily competition for food, shelter and mating opportunities is for

survival and reproduction in nonhuman animals. Secondly, while it may be plausible that some

basic animal behaviour is encoded in ways that can be inherited through reproduction, it is much

less clear that complex human behavioural characteristics, like compliance with norms, can.

Thirdly, the speed of cultural evolution is often much higher than human reproduction.

Conventions in small groups, for example, can emerge or change within days, thus making

reference to player reproduction inadequate. For these as well as other reasons, strategy replication

often has to be thought of in ways independent of player reproduction.
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purportedly described by the RD. Within that class, three kinds of learning can be

distinguished: reinforcement, imitation and belief learning.

In reinforcement learning, a player’s received payoffs from past interactions are

her only feedback information. That is, the probability of a strategy to be played in

the future is proportional to the success it gave the player in the past. Börgers and

Sarin (1997) present a well-known model of such learning, which conforms to the

replicator dynamic. In their model, a player at stage n plays a mixed strategy

P(n) ¼ (P1(n),. . ., PJ(n)) that includes all possible pure strategies S1,. . ., SJ in the

population. The player i observes the (pure) strategy Sk and its payoff ui(Sk, S�k),
normalized to lie between 0 and 1, that is realised when she implements her mixed

strategy against other players playing S�k. She then ‘learns’ by adjusting the weight
Pk of Sk in her mixed strategy in proportion to the payoff that Sk gave her by the

following rule:

Pk nþ 1ð Þ ¼ ui Sk; S�kð Þ þ 1� ui Sk; S�kð Þð Þ � PkðnÞ (5.2)

Pk0 ðnþ 1Þ ¼ 1� ui Sk; S�kð Þð Þ � Pk0 ðnÞ for all k0 6¼ k

For the specific case of only two actions, the expected movement of action

probabilities based on this model equals the RD, rescaled by a constant (Börgers

and Sarin 1997; Börgers et al. 2004). More generally, if the decision-maker uses

Cross’ learning rule, (and satisfies the model’s other requirements), then the

learning dynamics satisfies monotonicity and absolute expediency (Börgers et al.

2004). Both of these properties are also satisfied by the RD. Thus, there is an

analogy between Cross learning and the RD. Börgers et al. (2004, p. 358) conclude

from this that their results ‘strengthen the case of the use of RD dynamics in

contexts where learning is important’. They also speculate that it may be possible

to adopt their results ‘to an evolutionary setting’ (Börgers et al. 2004, p. 400) but

refrain from making any specific claims about this.

The reinforcement interpretation of the RD model can be graphically presented

as shown in Fig. 5.3.

This interpretation differs in a number of features from BRD. It commences with

agents playing mixed strategies (where all organisms share the same support) rather

than pure strategies. These strategies are not inherited, but adopted and adjusted by

the agents. It does not interpret payoffs as fitness, but as subjectively evaluated

outcomes. It is these subjective evaluations that cause the agent’s adjustment of her

own strategies. And it is this adjustment, and not differential reproduction, that

constitutes differential representation in the population.

In imitation learning, players occasionally sample other players in the population

and learn about their strategy and the payoff they realised in the last round. They

Fig. 5.3 The reinforcement interpretation of the RD
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then switch their strategies according to the following rule: if in a population with

state x(t) the agent i’s payoff is ui(x), and the agent samples an agent j with payoff

uj(x), the agent switches with probability8

qi ¼ max 0; b ujðxÞ � uiðxÞ
� �� �

(5.3)

(Schlag 1998, p. 150, cf. also Weibull 1995, pp. 152–161). That is, she retains her

strategy if her realised payoffs are greater than that of the sampled player. Other-

wise, she adopts the strategy of the sampled player with a probability proportional

to the difference between her and the sampled payoff. For this reason, such models

are sometimes seen as closely related to the meme concept (Börgers 1996). The

resulting population dynamic – in a large but finite population – is approximated by

a deterministic dynamic that is analogous to the discrete RD (Schlag 1998, p. 152).

Schlag furthermore points out that his model arrives at this result solely based on

individual information and induced performance, while reinforcement learning

models discussed above ‘contain axioms concerning the functional form of a

desirable learning curve’ (Schlag 1998, p. 153).

The imitation interpretation of the RD model can be graphically presented as

shown in Fig. 5.4.

This interpretation differs in a number of features from BRD. Although agents

here also play pure strategies, it drops the heritability of strategies. Like the interpre-

tation of Fig. 5.3, it does not interpret payoffs as fitness, but as subjectively evaluated

outcomes. But unlike the reinforcement schema, the imitation schema models agents

as evaluating not only their own but also others’ outcomes. It is these subjective

evaluations that may cause the agent to adopt another agent’s strategy if she finds it

more successful than her own. And it is this conditional adoption, and not differential

reproduction, that constitutes differential representation in the population.

The previous two kinds of models cast learning as an influence of past payoffs

(either of the player herself or of other players) on future behaviour. Belief learning,
in contrast, models learning as experience influencing beliefs, and only through this

influence, there is an indirect effect on behaviour. Hopkins (2002, p. 2144) has

termed the particular kinds of belief learning modelled with EGT ‘hypothetical

reinforcement’. This is because players are modelled as calculating what they

Fig. 5.4 The imitation interpretation of the RD

8The function b ensures that the difference are normalised – that is, for any payoffs ui, uj in the

population, 0 � b(uj(x)�ui(x)) � 1.
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would have received had they chosen some other action, on the basis of knowledge

of their own payoff matrices and observations of their opponents actions.

This approach reinterprets EGT in general, and strategy selection in particular,

as a theory of individual mental processes. Under this interpretation, all references

to payoffs of others in a given environment are understood counterfactually as the

payoffs that one would get in that environment if one adopted the other’s strategy.

For example, if a player knows the payoffs of each strategy profile, and knows the

frequency with which strategies are played in the population, she can compare the

expected payoffs of these strategies based solely on her own preferences. Having

compared the strategies according to her own preferences, she can then choose that

strategy that is either better than the current strategies or a best reply to her belief

about the frequencies in the population. Variants of such models have been pro-

posed by Sugden (1986), in Kandori et al.’s (1993) ‘stochastic fictitious play’ and in

Young’s (1993) ‘adaptive play’.

Take, for example, Young’s (1993) model. He defines play at time t as the

strategy-tuple s(t) ¼ (si(t),. . ., sn(t)), consisting of each player’s strategy choice at

time t. At period t, each player samples the past play h of a certain number of past

periods. From this sample, the player constructs strategy-tuple sh by weighing the

past play in some way. Strategy-tuple sh constitutes her estimate how other players

will play in the next period. Thus, for the next period, agent i chooses si as the best
reply to sh. By choosing si, the player replaces the history of past play h with a new
history h0, in which the earliest period is removed and the most recent play added.

This yields a process

P0
hh0 ¼ Πpi sijhð Þ (5.4)

Where P0
hh0 is the probability of moving from h to h0, determined as the product of

the player’s probabilities of choosing si given sample h. Young calls this process

adaptive play.
Young’s model is an example of what I call a mental play interpretation of EGT.

What is relevant for a certain strategy to be selected no longer is the effect of actual

interaction in a real population, but rather the consequence of an individual player

evaluating various options, based on her subjective value criteria and her beliefs

what her opponents will play. She forms these beliefs from her perception of and

through reasoning about others’ past play. She chooses her strategy by mentally

representing her various options in the anticipated environment, figuring out the

consequences of these counterfactual scenarios and choosing the one with the

outcomes she values better or best.

Consequently, because the causal relation is between interaction and individuals’

mental attitudes, no interpersonal payoff comparison is necessary. Players only

observe their own payoffs from past play, and this affects only their own attitudes

towards future play. Effects on aggregate properties are not directly modelled.

If noise is introduced into models of fictitious play, the expected motion of

fictitious play becomes a form of noisy replicator dynamic (Hopkins 2002, p. 2149).
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The only way that learning behaviour generated by stochastic fictitious play differs

from the population dynamics of the two previous models is that they may differ in

speed of passage along similar paths.

The belief-learning model can be graphically presented as shown in Fig. 5.5.

This interpretation differs in a number of features from BRD. It commences with

agents playing mixed strategies (where all organisms share the same support) rather

than pure strategies. These strategies are not inherited, but adopted and adjusted by

the agents. Furthermore, it makes the crucial extra assumption that the whole

population and all its strategies and payoffs are mentally represented by each

organism. Based on this representation, the agent estimates how other players

will play in the next period. Furthermore, the schema does not interpret payoffs

as fitness, but as subjectively evaluated outcomes. Based on the estimation of

others’ future play, and her own subjective evaluations, the agent then chooses

her action as a best reply. It is this deliberation, and not differential reproduction,

that causes differential representation in the population.

6 Relating the Mechanisms

It should be clear from the comparison of the previous section that the three learning

mechanisms are not identical with what the BRD represents. In particular, what kind

of strategies individuals play, how payoffs are realised and what information and

what mental capacities individuals employ in replicating strategies differ consider-

ably between BRD and the learning interpretations of the RD (as well, to a lesser

extent, between these interpretations themselves). Thus, the BRD and the respective

learning interpretations of the RD represent different mechanisms, even though all

these mechanisms are represented by the same RD model.

The RD model thus appears in the first instance as a highly abstract mechanism

sketch. It is used to represent different kinds of mechanisms, but for each of these

representation tasks, it needs to be filled in with a more domain-specific interpreta-

tion or story.

Nevertheless, one might still want to defend the claim that the general RD

represents one mechanism – namely, by arguing that the BRD and the learning

mechanisms all instantiate a more abstract mechanism and that this abstract mech-

anism is represented by the general RD model.

This idea seems prima facie plausible, particularly when one recalls that the BRD

and the learningmodels themselves are abstract representations of mechanisms. As I

discussed in Sect. 4, the BRD abstracts from any concrete content of behavioural

plans, from specific species or individuals and from any differences between

Fig. 5.5 The belief-learning interpretation of the RD
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organisms. For example, it omits representations of how organisms reproduce and

instead describes the stage as a general process of reproduction in all its possible

forms. So if the BRD is an abstract representation of a class of mechanisms, why

should the general RD not be an even more abstract representation?

Furthermore, the fact that both the BRD and the learning models use the RD for

their representational tasks seems to provide evidence that indeed there is an

abstract mechanism instantiated both in the more concrete biological and social

mechanisms and that this more abstract mechanism is represented by the RDmodel.

Because the RD contains those features shared by the BRD and the learning models,

it might seem plausible to conclude that the RD represents that abstract causal

structure shared by the biological and the social mechanisms.

Against this appearance, I will now argue that the general RD model is not a
representation of an abstract mechanism, instantiated by both the biological and the

social mechanisms. Rather, the way the two disciplines ‘fill in’ the RD model in

order to represent their respective mechanisms differs considerably. Users of the

RD model, when filling it in, make systematically different kinds of idealisations,

depending on whether it is interpreted in economics or in biology. This leaves little

to be shared between the respective represented mechanisms – little that could be

represented by a single RD, however interpreted. Instead, the RD model faces an

idealisation gap: it can be interpreted either biologically or in one of the learning

senses, but it cannot be interpreted to capture the essence of all, because there is

little essence to capture. To clarify my argument, let me illustrate it with a joke.

The joke’s not mine – it was published 120 years ago in the Fliegende Blätter, a
German satirical weekly. Most philosophers know its subject, the duck-rabbit, from

Wittgenstein’s discussion of aspectual perception or from Kuhn’s discussion of a

paradigm shift. What those discussions ignore is the way the joke was posed, as

shown in Fig. 5.6. The German headline reads ‘which animals are most similar?’,

and the answer is ‘rabbit and duck’.

Fig. 5.6 Fliegende Blätter
(Oct. 23, 1892, p. 147, Nr.

2465)
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The author of this little vignette thus did not solely intend to entertain with the

Gestalt shift, but rather used this shift in order to infer an obviously absurd and

hence satirical conclusion: because the same image represents both a rabbit and

duck, it is suggested, we must conclude that rabbit and duck are indeed most

similar.

Obviously, this inference is absurd for a number of reasons. I want to focus here

on a rather subtle one, namely, that the same image relates to the two objects it

supposedly represents in different ways. When we use the above image as a

representation of a rabbit, we make certain kinds of idealisation. For example, we

idealise the size of the rabbit’s mouth and nose, as well as the shape of its ears.

When we use the image as a representation of a duck, however, we make different
idealisations: the back of a duck’s head looks different, and it has different

markings on its feathers. Thus, when using the image to represent either the one

or the other, we make different allowances for which part of the image may not be

representationally accurate. The ingenuity of the draughtsman lay in creating one

image that allowed us to make the respective idealisations in such a way that it can

function either as a representation of a rabbit or a duck. By making these different

idealisations, we adapt the image for its respective uses. Although a duck shares

some features with the image, and a rabit also share some features with the image,

these are not the same features. Thus understood, there is little reason to believe in

the similarity of rabbits and ducks because they are representable with the same

image.

The same holds for the RDmodel. To use a model as a representation, we always

have to make some idealising assumptions. But when interpreting the RD model

biologically, we make idealisations that systematically differ from those we make

when interpreting the RD model socially. Let me list some of these differences.

First, all three learning models require that players in some way identify actions

and strategies – either of their own or possibly of others. If agents could not identify

strategies in this way, they would not be able to link a diagnosis of ‘success’ with

the choice of a successful strategy. This stands in contrast to the biological model,

where the strategy notion only fulfils a theoretical role: differential reproduction

does not require that the organism identify the strategies.

This additional requirement pushes these learning models beyond a simple

notion of copying. Rather, it involves the ability to attribute goals and intentions.

‘Something other than copying is taking place’ (Sperber 2000, p. 171), and this

other factor may have the power to lead the process in directions that mere

copying would not. Yet such factors are idealised away in all of the three learning

models.

Second, unlike the biological model, the learning models make specific

assumptions about the learning rules players employ, at the exclusion of other,

possible rules. In the biological model, if the payoffs are interpreted as fitness, there

is a natural justification for a linear relationship between payoffs and differential

reproduction. Yet in the learning models, specific imitation and reinforcement rules

have to be chosen to arrive at a linear relationship.
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Other imitation rules – as plausible as Schlag’s – yield processes different from any

biological ones. (Börgers 1996, p. 1383)

This is even more obvious with respect to belief learning. For example, choice of

different reasoning principles or heuristics may lead to different beliefs about

strategies, strategy outcomes, etc., even when based on the same actual interactions.

This sensitivity of the population dynamic to the specifics of the learning rules

increases the ‘idealisation gap’ between the biological and the learning models.

Third, and related to the previous point, all learning models have to make strong

assumptions about players not making mistakes – they never switch from a better to

a worse strategy. This is a real possibility in all learning models – as agents have

to actively identify strategies, associate payoffs with them and choose their

own actions on that basis – while it has no significance in the biological model.

The way this is dealt with usually involves taking expected values. Averaging this

way over the possible behaviours of an agent idealises the influence of players’

mistakes away: even if there is a positive probability that a player will switch from

better to worse, on average the player will not (cf. Gintis 2000, p. 192).

Fourth, stochastic fictitious play models face the particular problem of excessive

time horizons. As Sobel starkly puts it,

the long-run predictions [of stochastic fictitious play] only are relevant for cockroaches, as

all other life forms will have long been extinct before the system reaches its limits. (Sobel

2000, p. 253)

To turn the stochastic belief-learning models into representations of social

mechanisms, the time horizons thus must be idealised.

Fifth, the imitation learning model faces the particular problem of requiring

interpersonal comparisons of utility (Grüne-Yanoff 2011b). The biological RD

model does that, too – yet while this requirement is innocuous under the fitness

interpretation, it is highly problematic when payoffs are interpreted as numerical

representations of preferences. Thus, this extra requirement constitutes an impor-

tant difference between the belief-learning models and the other models discussed

here.

Certain substantial idealisations need to be taken also when the RD model is

interpreted biologically. A different set of substantial idealisations needs to be taken

when the RD model is interpreted socially. By making these different idealisations,

we adapt the model for its respective representative uses. This is standard scientific

practice: most, and possibly all, model uses involve idealisations.

Yet when the same formal structure is employed to construct different, more

specific mechanistic models, and each of these models involves different

idealisations, one has to be careful when inferring purported similarities between

these different mechanisms based on the common formal structure. Like the duck-

rabbit, the RD equation is adapted for its respective representative tasks. In the

course of each adaptation, certain features of the RD are drawn on – others are

accepted as useful or at least harmless idealisations. Which features are drawn on

and which are accepted as idealisations differ with each adaptation. The mechanism

that each adaptation of the RD represents is substantially different from each other

and does not share any or little causal structure between each other. Thus, there is
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no abstract mechanism that is instantiated by the biological and learning

mechanisms, and consequently the RD cannot represent such a mechanism.

7 Conclusions

The general RD is a model that is used in biology to represent biological

mechanisms and in the social sciences to represent social mechanisms. Substantial

idealisations have to be made for these purposes – idealisations that differ for the

respective disciplines. These create a considerable idealisation gap between the

BRD and the learning interpretations of the RD. This gap is sufficiently large to

conclude that the general RD does not represent an abstract mechanism that

subsumes both the biological and the social cases. Just like the duck-rabbit image

does not represent the essence of both duck and rabbit, but rather either a duck or a

rabbit (depending on what idealisations one accepts), so the general RD represents

either biological or social mechanisms, but not the shared causal structure of both.
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Chapter 6

Experimental Discovery, Data Models,

and Mechanisms in Biology: An Example

from Mendel’s Work

Ruey-Lin Chen

Abstract The aim of this chapter is to argue that there are experimental discoveries

that could have been made independent of theories. I will explore the questions of
whether there are experimental discoveries and, if so, what counts as an experi-

mental discovery and what the relation is between experimental discovery and the

discovery of a mechanism. Gregor Mendel’s work on peas will be taken as the main

example. Frederick Griffith’s experiment with Pneumococcus bacteria in mice and

Hans Driesch’s experiment on sea urchin embryos will be discussed as foils.

I conclude that an experimental discovery can be identified and recognized by the

following conditions: (1) An experimenter must propose data models to reveal

significant phenomena, (2) no established theories can predict and explain the

phenomena, and (3) the experimenter must envisage searching for underlying
mechanisms for the phenomena, whether or not he or she proposes correct mecha-

nistic explanations. I also argue that experimental discovery usually precedes and is

a prerequisite for the discovery of mechanism. It plays a role in three ways:

organizing data into significant phenomena, producing the need and motivation

to discover mechanisms, and constraining the direction for construction of theoret-

ical hypotheses.

1 Introduction

In the philosophy of science, the problem, research foci, and terms related to

scientific discovery have evolved over time. In the beginning, philosophers of

science had to resist the dominant idea in the field—that of the distinction between

discovery and justification—and argue for the philosophical significance of
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discovery. Thomas Nickles (1980a) convincingly argued against the old dichotomy,

showing that there were abundant philosophical problems related to discovery.

Influenced by the historical approach in the 1970s, philosophers during the 1980s

and 1990s explored the emergence of new theories in scientific changes (Nickles

1980b, c; Darden 1991). In addition, they searched for heuristic strategies leading to

the generation of plausible hypotheses (Schaffner 1974, 1993; Nickles 1987;

Darden 1991; Kleiner 1993; Bechtel and Richardson 1993). After the mid-1990s,

a number of philosophers adopted the term “scientific reasoning” instead of “the

logic of discovery,” exploring patterns and strategies of reasoning in the discovery

of theories (Darden 1991, 2006; Magnani et al. 1999; Bechtel 2006). In spite of the

change of foci and terms, these works largely addressed the methodological ques-

tion: How do scientists produce plausible hypotheses and reliable theories?

In the mid-1990s, some advocates of discovery shifted their interest to the

metaphysical question: What exactly is discovered in a scientific discovery? The

problem of the discovery of mechanisms was spotlighted. Philosophers proposed a

new mechanistic philosophy, debated the conception of mechanism, investigated

the relations between mechanism and other topics, and explored ways to discover

mechanisms in biology (Bechtel and Richardson 1993; Glennan 1996, 2002, 2005;

Machamer et al. 2000; Darden 2002, 2005; Craver 2002, 2005; Bechtel and

Abrahamsen 2005; Bechtel 2006). These scholars are usually called the “new

mechanists.” It is easy to see the relevance of the metaphysical problem to method-

ology, because the goal of producing plausible hypotheses and reliable theories in

many fields of science (probably excluding mathematical physics) is to discover

mechanisms. Lindley Darden (2006) convincingly proposed an integrative meth-

odology, connecting reasoning strategies with the discovery of mechanisms.

Despite the fruitful work that has taken place on scientific discovery, there are, in

my view, still two deficiencies: First, the scope that philosophers have explored is

so restricted that they have paid little attention to other sorts of scientific discovery.

Second, philosophers seem to have left untouched the problem of the nature of

scientific discovery.

Scientists and historians of science usually use the term “discovery” to refer to

finding new phenomena, new entities, hidden structures, hidden patterns, and

mechanisms. For instance, the discoveries of the photoelectrical effect, the electron,

the helical structure of DNA, and the correspondence between specific amino acids

and specific nucleic acid codons (the genetic code) are usually regarded as great

events in the history of science. The new mechanists may think that the recognition

of the discoveries of new phenomena, entities, and structures relies on discovering

relevant underlying mechanisms. This view is plausible. However, we still need to

carefully investigate the way that underlying mechanisms are used to recognize

new discoveries.

Scientists always make discoveries by some means, for instance, theoretical

predictions, model-based reasoning, experiments, or observations. The planet Nep-

tune was discovered by theoretical computation and observation, the glow of the

cathode ray by experimental instruments, the mechanism of protein synthesis by a

set of experiments and theoretical models, and so on. Scientists have made a large
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amount of discoveries by testing the predictions of a theory. For instance, the

curved path along which light passes through a large gravitational field had been

exactly predicted by the theory of relativity before it was discovered. The history of

science seems to be filled with great discoveries made by confirming the predictions

of overarching theories.

Moreover, a number of philosophers believe that even if an experimental or

observational result is not predicted by any established theory, its recognition is

based on theoretical interpretations. They would suppose that, for example, the

discovery of oxygen was recognized only when Antoine Laurent Lavoisier devel-

oped a new theory of combustion and the elements. If all observational and

experimental results require a theoretical basis, as theory-oriented philosophers

believe, then people might conclude that no discoveries can be made without

theories. Is this true? Are there no discoveries that could be made simply by

conducting an experiment? Could discoveries be made without the engagement

of theories?

To date, philosophers have focused on the role and contribution of theories when

investigating various cases of scientific discovery. Recently, a few philosophers of

science (Hacking 1983; Mayo 1996; Galison 1998; Waters 2004) have discussed

experiments in their own right but have paid little attention to the way experiments

lead to new discoveries. By contrast, philosophers who analyze discoveries have

not neglected experiments but have focused mainly on the experimental testing of

theoretical hypotheses rather than the experimental discovery of phenomena or

entities (Schaffner 1993; Craver 2002; Darden 2006). As a result, the problem of

whether there exist experimental discoveries has not yet been explored. Of course,

theory-oriented philosophers may think that recognition of an experimental discov-

ery relies on discovering an explanatory theory. Again, we need to carefully

investigate whether this is so.

The aim of this chapter is to argue that there are experimental discoveries that

could have been made independent of theories. I will explore the questions of

whether there are experimental discoveries and, if so, what counts as an experi-

mental discovery and what the relation is between experimental discovery and the

discovery of a mechanism. Gregor Mendel’s work on peas will be taken as the main

example. Frederick Griffith’s experiment with Pneumococcus bacteria in mice and

Hans Driesch’s experiment on sea urchin embryos will be discussed as foils.

My argument proceeds in the following order: First, I specify problems with the

identification of scientific discoveries and the recognition of the discoverers and the

discovered in Griffith’s and Driesch’s experiments. Second, I introduce historical

controversies about Mendel’s discovery and argue that what Mendel discovered is

two data models extracted from his experiments with peas. Following this argu-

ment, I discuss the relationship between experimental discoveries and mechanisms.

I conclude that an experimental discovery can be identified and recognized by

the following conditions: (1) An experimenter must propose data models to reveal

significant phenomena, (2) no established theories can predict and explain the

phenomena, and (3) the experimenter must envisage searching for underlying
mechanisms for the phenomena, whether or not he or she proposes correct
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mechanistic explanations. I also argue that experimental discovery usually precedes

and is a prerequisite for the discovery of mechanism. It plays a role in three ways:

organizing data into significant phenomena, producing the need and motivation to

discover mechanisms, and constraining the direction for construction of theoretical
hypotheses.

2 Problems with the Identification and Recognition

of Experimental Discoveries

In 1928, Frederick Griffith conducted a novel experiment on two strains of Pneu-
mococcus bacteria, known as the smooth (S) strain and the rough (R) strain for the

formation of colonies with smooth or rough surfaces, respectively. It was known

that the S-strain was virulent enough to kill mice and the R-strain avirulent. When

Griffith heated S-strain cells, killing them, and injected them into mice, the mice

lived. When he injected both heat-killed S-strain and live R-strain cells together

into mice, the mice frequently died. The process is summarized in Fig. 6.1.

In examining the dead mice, Griffith found living S-strain cells in their bodies!

To Griffith, the experiment suggested that there must be something in the S-strain

heat-killed cells that could convert the R-strain avirulent cells to the lethal form.

What was this “something”? Why did it have such a capability? Griffith did not

find this something before he died in 1941. In a biology textbook, the authors

wrote, “This ability of some chemical substance in the dead bacteria to convert a

related strain to a genetically stable, new form was termed transformation. Later,

Avery, Macleod, and McCarty of the Rockefeller Institute determined that the

‘transforming principle’ was in fact DNA” (Villee et al. 1989, p. 298).

Many historians recognize that Griffith did make a discovery,1 but is it adequate

to call his findings from that experiment an experimental discovery? If so, what did

he discover? The novel phenomenon of transformation? Does he deserve recogni-

tion for that discovery? Does the recognition of his discovery rely on determination

of the transforming substance?

In 1892, Hans Driesch shook a sea urchin embryo at the two-cell stage so

vigorously that it became two separate cells. He observed that they developed

into complete embryos that were normal in configuration but smaller than natural

counterparts. He tried to separate cells from the embryo at the four- or eight-cell

1 A historian of molecular biology described this event: “[I]n 1928, Griffith in London had

published a startling discovery” (Judson 1996, p. 18). Another historian of molecular biology

wrote: “In 1928, the British physician Fred Griffith discovered the strange phenomenon of

transformation” (Morange 1998, p. 31). The evolutionist Ernst Mayr (1982, p. 818) described

this event with similar locution: “In 1928 the British bacteriologist F. Griffith discovered that. . .”
The historian of general biology Lois Magner (2002, p. 428) commented on Griffith’s results: “In

retrospect, it can be said that Griffith has observed genetic transformation, but he probably did not

realize that the phenomenon he had discovered involved the transfer of hereditary material.”
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stage and observed that all separated cells could develop normally. This result was

quite different from Driesch’s expectation before the experiment, a surprising

phenomenon. Later, he explained it by adopting vitalism and the concept of vital

force. Driesch’s experimental process is depicted in Fig. 6.2.

This famous experiment conducted by Driesch at the end of the nineteenth

century provides an interesting contrast to Griffith’s case. Some historians of

biology describe Driesch’s experiment against the background of Wilhelm

Roux’s hypothesis of mosaic development and frog-egg experiment,2 treating

Driesch’s work as a disproof or anomaly of Roux’s “developmental mechanics.”

Instead of describing Driesch’s experiment as a discovery, however, they label his

views as “extreme” or involving “confusion.”3

Here we have a puzzle. Neither Driesch nor Griffith correctly interpreted his

experimental results. Why are historians pleased to declare that Griffith discovered

a new phenomenon but hesitant to attribute the same achievement to Driesch

S-strain R-strain heat-killed S live R+heat-killed S

injected

mouse dies mouse lives mouse lives mouse dies

Fig. 6.1 Griffith’s experimental procedure and results

embryo at two-cell stage embryo at four-cell stage
separated by shaking

c1(cell) c2 c1 c2 c3 c4

development

ce1(complete embryo) ce2 ce1 ce2 ce3 ce4

Fig. 6.2 Driesch’s experimental procedure and results

2 Roux and Driesch are regarded as the cofounders of experimental embryology. But they held

opposite positions. Roux believed that the development of an embryo is determined by intrinsic

factors of eggs in a mechanistic way. He called this “self-differentiation” or “mosaic” develop-

ment, which means the capacity of the egg or of any part of the embryo to undergo further

differentiation independently of extraneous factors or of neighboring parts in the embryo. In other

words, parts of an embryo correspond to parts of a developed individual. Thus, Roux called the

new discipline employing his view and experimental approach “developmental mechanics.” To

confirm his beliefs, Roux conducted the famous “pricking experiment,” in which he destroyed one

of the cells of a frog embryo at the two-cell stage by pricking it with a hot needle. As a result, the

undamaged cell developed into a half embryo. See Magner (2002, pp. 195–197).
3Mayr (1982, p. 118) wrote: “This unexpected amount of self-regulation induced Driesch, who

had performed this experiment, to embrace a rather extreme form of vitalism. . .”. Magner (2002,

p. 198) commented: “. . .Driesch had apparently reached a more profound level of confusion,

which seemed to end all hope of finding a mechanistic explanation for development.” Neither did

other historians who mentioned Driesch describe his experiment in terms of “discovery” (Carlson

2004; Bowler 1989). Whatever their positions, all have expressed an ambiguous attitude toward

Driesch.
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(although they respect him as one of the founders of experimental embryology)?

Historians have not given us a reasonable account.

In his discussion of “anomaly and the emergence of scientific discoveries,”

Thomas Kuhn (1970, p. 62) specified three characteristics appearing in the process

of scientific discoveries: the previous awareness of anomaly, the emergence of both

observational and conceptual recognition, and the consequent change of paradigms.

Kuhn claimed that these are characteristics of all discoveries, from which new sorts

of phenomena emerge. One may well read the three characteristics as Kuhnian

conditions defining scientific discovery. The first condition would be satisfied when

an experimental result directed by a paradigm conflicts with the paradigmatic

theory and the result is treated as an anomaly by scientists in the normal period;

the second, when the anomaly is recognized as significant in both observation and

concept; and the third, when a new theory that is able to solve the anomaly is

generated.

One may invoke the three conditions to interpret why historians have such a

different assessment of the two cases above. Griffith’s case satisfies these

conditions, because a new theory of hereditary material that could explain the

transformation was proposed by Avery and his team4; Driesch’s case does not

satisfy these conditions, because Driesch indulged in the old vitalistic paradigm.

The problem is that Griffith himself did not explain his experimental result,

although he did not commit to any “old” theory. If a new theory that is able to

solve anomalies proposed by other scientists can give the experimenter Griffith

credit for his “discovery,” then the later theory about conditional specification of

development should also entitle Driesch to be credited as a discoverer.5 We should

regard Driesch as the discoverer of conditional specification in accordance with

Kuhnian definition of discovery, although a “correct” explanation of this phenome-

non came much later.

In appealing to Kuhn’s view of scientific discovery, however, one should not

forget his doctrine of the theory-ladenness of observation. Based on this doctrine,

scientists’ experimental observations presuppose their precedent paradigmatic

beliefs. Thus, Griffith did not observe and interpret the transformation pheno-

menon, nor Driesch the phenomenon of conditional specification, because they

could not correctly interpret their experimental results in accordance with their

paradigms. Thus, neither would be entitled to be called a discoverer. Here we see an

inconsistency in the Kuhnian view of discovery. According to the conditions of

4 Judson (1996, p. 18) described the community’s response to Griffith’s experiment: “It raised

clouds of speculative and spurious explanations. . .Avery at first found it impossible to credit

Griffith’s paper. The findings seemed to overthrow his own fundamental demonstration of the

fixity of immunological types. But bacterial transformation was confirmed that same year in Berlin

and in 1929 was repeated at the Rockefeller Institute.” The description seems to accord with the

three characteristics of scientific discoveries specified by Kuhn.
5 In fact, Scott Gilbert, the author of a textbook of developmental biology, claimed that Driesch

“provided the first experimentally observable evidence of conditional specification” (Gilbert 2010,

p. 114). The current theory of developmental biology states that “conditional specification is the

ability of cells to achieve their respective fates by interactions with other cells” (Gilbert 2010, p. 112).
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discovery, both Griffith and Driesch are discoverers. Based on the doctrine of

theory-ladenness of observation, however, neither Griffith nor Driesch is a

discoverer.

Furthermore, the Kuhnian view suggests that scientific discoveries usually occur

over a period of time and involve a number of scientists. Therefore, discoveries

should be regarded as collective rather than individual achievements. In this sense,

Griffith’s experiment was nothing but part of the collective discovery of transfor-

mation and the “transforming principle,” and Driesch’s was part of the collective

discovery of conditional specification. Such a view is plausible; however, it seems

to reject the concept of experimental discovery and indicates that neither Griffith

nor Driesch made a discovery by experiment. Yet it is not clear how much they

contributed to the two collective discoveries. From a historical perspective, we

want to know how to precisely assess their role in the related discoveries. From a

philosophical perspective, we wonder whether there are events or activities that can

be qualified as experimental discoveries. The answer to the historical question may

rely on the solution to the philosophical one.

3 Historical Controversies About Mendel’s Discovery

Almost all textbooks of biology or genetics honor Mendel as the father of classical

genetics, because he was regarded as the discoverer of the first two fundamental

laws of heredity: the law of segregation (or Mendel’s first law) and the law of
independent assortment (or Mendel’s second law). The fist law states that the two

copies of a gene segregate (or separate) from each other during transmission from

parent to offspring (Brooker 2009, p. 23). The second law states that two different

genes will randomly assort their alleles during the formation of haploid cells

(Brooker 2009, p. 27). However, almost every textbook provides different

formulations for the two laws.6 Scientists have continued to rewrite them by adding

new terms and concepts from later theories of genetics (see Villee et al. 1989;

Watson et al. 2004; Hartl and Jones 2005). How was Mendel supposed to discover

the two laws by his experiments on plant hybrids?

In the beginning, Mendel thought that “the value and validity of any experiment

are determined by the suitability of the means used as well as by the way they are

applied” (Mendel 1966, p. 3). The experimental object, pea, was selected because it

possesses constant differing traits in the shape of the ripe seeds (round vs. wrin-

kled), in the position of flowers (axial vs. terminal), in the length of stem (long and

short), and so on. Mendel treated each plant having a distinct trait as a form and then

6 Take the formulations from Villee et al. (1989) as an example. In this textbook, the first law is

formulated as “when gametes are formed, the genes behave like particles, becoming separated so

that each sex cell (egg or sperm) contains only one member of each pair” (Villee et al. 1989,

p. 242). The second law is formulated as “[A]lleles of two or more different loci are distributed

randomly with respect to one another during meiosis” (Villee et al. 1989, p. 252).
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made the first series of experiments by hybridizing two forms with a pair of

contrastive traits. For instance, crossing a long-stem pea plant with a short-stem

one would produce the first generation of offspring (the hybrids), in which all plants

possess a long stem. Then he made the first generation of offspring self-fertilize and

got a ratio of 3 long stem to 1 short stem in the second generation. Mendel called the

traits of the majority of the offspring “dominant” and the minority traits “reces-

sive.” He used the sign A to denote the dominant traits and a the recessive; he then

expressed the experimental results as a symbolic formula: A + 2Aa + a (Mendel

1966, p. 16). The result has been interpreted as empirical evidence for the first law

of heredity.

Mendel conducted the second series of experiments by hybridizing two forms

possessing a combination of two pairs of contrastive traits—for example, long

stem with axial flowers and short stem with terminal flowers. Using the same

procedure as in the first series of experiments, Mendel obtained a second “mathe-

matical formula”: AB + Ab + aB + ab + 2ABb + 2aBb + 2AaB + 2Aab + 4AaBb,
in which A denotes the dominant of the first pair of contrastive traits and B that of the

second pair; a denotes the recessive of the first pair and b that of the second (Mendel

1966, p. 20). This result has been interpreted as empirical support for the law of

independent assortment. Therefore, Mendel was credited with the discovery of the

two fundamental laws of heredity.

When he finished his work, Mendel wrote a paper titled “Versuche über

Pflanzen-Hybriden (Research on plant hybrids)” to discuss the result and published

it in a local journal, Proceedings of the Natural History Society of Brno, in 1866.

The paper with his “discovery” was neglected for 34 years, until 1900, when three

botanists—Hugo de Vries, Carl Correns, and E. Tschermak—rediscovered the laws

of heredity and Mendel’s paper. Almost all scientists and authors of textbooks

believe this story, as do many historians of biology (Mayr 1982; Magner 2002;

Carlson 2004). It is the orthodox view of Mendel’s discovery. Some historians of

biology began to challenge this orthodox view in the 1980s. They attributed

Mendel’s work to the old tradition of breeding and hybridization experiments rather

than the new genetics. They questioned whether Mendel was really a Mendelian,

arguing that Mendel had no idea of a gene or paired factors and presented no law of

heredity in his 1866 paper. What concerned Mendel was not the problem of how a

trait is transmitted from parents to offspring but whether new species could arise by

hybridization (Olby 1985; Bowler 1989; Corcos and Monaghan 1993). The histo-

rian Bowler (1989) reconstructed the Mendelian revolution based on Kuhn’s theory

of scientific revolution.7 Bowler placed Mendel’s research and experiments under

7 Bowler (1989, p. 15) emphasized the importance of the paradigm concept to the history of

science: “The fact that paradigms are entities with definite beginnings and ends turns the history of

science into a genuinely historical discipline, since it implies that one can only understand the

science of a past era by trying to think oneself into the conceptual scheme of the then-dominant

paradigm.” In Bowler’s view, the invention of Mendelian genetics (i.e., the general acceptance of

Mendel’s laws of heredity) required the construction of a new conceptual framework of “hard

heredity.” Therefore, Mendel’s contemporaries naturally failed to understand the significance of

his findings to heredity.
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the paradigm of developmentalism, which dominated biological research in the

nineteenth century. Developmentalists do not separate the problem of heredity from

that of genesis and development. Therefore, developmentalism implies a concep-

tual framework of “soft heredity,” which makes no commitment to the idea of

particulate factors.8 Only after developmentalism was replaced by the shift to the

new paradigm of hard heredity at the end of the nineteenth century were scientists,

at the beginning of the twentieth century, able to see the hereditary significance of

Mendel’s experiment in a new light. Mendelian genetics was then built gradually,

because the rediscoverers, along with American geneticist Thomas Hunt Morgan’s

team, reinterpreted Mendel’s results based on the new conceptual framework of

hard heredity (Bowler 1989: ch. 6). Let me call this alternative to textbook

orthodoxy the “paradigm-based account.”

If one carefully reads Mendel’s paper, one finds that Mendel’s original text is

more consistent with the paradigm-based account than with the orthodox view. In

the first and second paragraphs of the 1866 paper, Mendel clearly stated the

background and the goal of his experiment:

The striking regularity with which the same hybrid forms always reappeared whenever

fertilization between like species took place suggested further experiments whose task it

was to follow the development of hybrids in their progeny. (Mendel 1966[1866], p. 1)

That no generally applicable law of the formation and development of hybrids has yet

been successfully formulated can hardly astonish anyone who is acquainted with the extent

of the task. . . (Mendel 1966[1866], p. 2)

If an experimenter’s background and goal guide him to perform an experiment

and interpret its result, then certainly Mendel did not perform an experiment on

heredity, nor did he interpret the result from the perspective of genetics. In this

sense, Mendel did not discover the laws of heredity nor could he be regarded as the

founder of classical genetics. After the 1980s, some biologists and historians of

biology regarded Mendel as a hybridist, but still insisted that he fully realized the

hereditary significance of his experiments; he was therefore entitled to be called the

father of classical genetics (Mayr 1982; Hartl and Orel 1992). For instance, Mayr

argued that the strongest testimony in Mendel’s paper is the word “Elemente”

(element), which Mendel postulated to account for the experimental result. Mayr

contended,

He postulated that the characters are represented by “gleichartige [identical] oder

differierende [differing] Elemente.” He does not specify what these “Elemente” are –

who could have done so in 1865? – but considers this concept sufficiently important that

he refers to these “Elemente” no less than ten times on pages 41 and 42 of the Versuche.
Evidently they correspond reasonably well to what we could now call genes. (1982, p. 716)

8 “Soft heredity” means that transmission of characteristics to the offspring could be modified by

changes taking place in the parents’ bodies due to new habits or a new environment. In contrast,

“hard heredity” rejects the notion of soft heredity and holds that characteristics are transmitted

unchanged from one generation to the next. See Bowler (1989, p. 3).
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I do not think that “Elemente” correspond well to “genes.” Here are several key

paragraphs where “Elemente” occurs in Mendel’s paper.

This development proceeds in accord with a constant law based on the material composi-

tion and arrangement of the elements that attained a viable union in the cell. (Mendel 1966

[1866], p. 42)

In the formation of these cells all elements present participate in completely free and

uniform fashion, and only those that differ separate from each other. In this manner the

production of as many kinds of germinal and pollen cells would be possible as there are

combinations of potentially formative elements. (Mendel 1966[1866], p. 43)

The distinguishing traits of two plants can, after all, be caused only by differences in the

composition and grouping of the elements existing in dynamic interaction in their primor-

dial cells. (Mendel 1966[1866], p. 43)

Although these paragraphs can be interpreted easily in terms of the later

Mendelian theory of genetics, no occurrence of the word clearly indicates that

those elements are particulate genes or Mendelian factors. These statements prove

only that elements exist, work within cells, are responsible for traits of plants, and are

responsible for producing different types of germ cells. It is possible and plausible to

interpret Mendel’s text as saying that many elements are jointly responsible for a
unitary trait. What is more, in Mendel’s discussion about experiments on Phaseolus
at the end of his 1866 paper, the occurrence of signs A1 and A2 is puzzling and might

refer to multiple “elements” for one color or color range.9 So Mendel’s use of

“element” did not conclusively prove that he had an embryonic idea of the gene.

Darden (1991) reviewed some of the historical literature about Mendel’s story,

concluding that “a complete consensus has not emerged among Mendel scholars.

A means of choosing among competing historical interpretations is often difficult,

because the extant historical evidence is insufficient and underdetermines any one

account” (Darden 1991, p. 40). Regarding the issue we are concerned with, I think

that we could choose a historical account which is most coherent with Mendel’s text

(see the next section).

In sum, the historical issues concerning Mendel’s discovery can be expressed in

the following questions:

Q1. Did Mendel discover the two laws of heredity?

Q2. Did Mendel have an embryonic idea of what was later called a Mendelian

factor or gene?

Q3. Did Mendel play a key role in the research on heredity?

These questions are interrelated, but they can be answered separately. One will

get three affirmative answers according to the orthodox view. Scholars who agree

with the paradigm-based account will answer all questions in the negative. Some

9 In the discussion, Mendel said, “Were blossom color A composed of independent traits

A1 + A2. . ., which produce the overall impression of crimson coloration, then, through fertilization

with the differing trait of white color a, hybrids associations A1a + A2a + . . .would have to be

formed” (Mendel 1966, p. 35). This seems to mean that A1 and A2 correspond to different elements

responsible for one and the same characteristic A.
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historians of biology may accept that Mendel did not discover the laws but insist

that he had an embryonic idea of the gene and therefore certainly played a key role

in classical genetics.

I accept that Mendel did not discover the two laws of heredity, nor did he have an

embryonic idea of the gene, but I argue that he definitely played a crucial role in the

research on heredity. Still, one may wonder, if Mendel had no embryonic idea of a

gene, in what sense can one say that Mendel’s experimental work can be regarded

as a key? What did Mendel discover if he did not discover the laws? Could his

“discovery,” whatever it may be, be regarded as an experimental discovery?

4 What Did Mendel Discover?

I think that Alain Corcos and Floyd Monaghan (1993) convincingly analyzed

Mendel’s discovery in their detailed explication of the entire text of Mendel’s

“Verschue.” They first claimed:

A close study of his paper reveals that the laws of heredity, which are supposed to be there,

are not present. Instead, one finds a series of laws relating to the formation of hybrids,

which are entirely different from the traditional “Mendelian” laws of heredity. (Corcos and

Monaghan 1993, p. xvi)

The two authors reconstructed the series of five laws from Mendel’s original

text. However, one may find that they are more like “generalizations” than scientific

laws. Given also the fact that the notion of “a law” in biology is often questioned,

I will call Corcos and Monaghan’s five laws “generalizations.” They are:

G1. The hybrid offspring of parents, each true-breeding for one of the contrasting

characters of a trait, are all alike and like one of the parents. No intermediate

types are formed. (Corcos and Monaghan 1993, p. 81, p. 89, p. 97)

G2. Reciprocal fertilizations yield the same hybrid forms. That is, the hybrid trait

will be that of the dominating parent regardless of whether that is the seed

parent or the pollen parent. (Corcos and Monaghan, p. 81, p. 89, p. 97)

G3. When the hybrids are allowed to self-fertilize, the offspring always appear in

two classes: one class like the hybrids and like one of the original true-breeding

parents (the dominating); and one class like the parental character not visible in

the hybrid generation (the recessive). No intermediate forms are produced. The

two classes occur in the approximate ratio of 3 dominating to 1 recessive.

(Corcos and Monaghan, p. 89, p. 97)

G4. (a) When the recessive offspring of the hybrids are allowed to self-fertilize,

they always breed true. (b) When the dominating offspring of the hybrids are

allowed to self-fertilize, approximately one-third of them breed true while two-

thirds of them behave exactly like the hybrid generation. (Corcos and

Monaghan, p. 97)
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G5. The behavior of each pair of differing traits in a hybrid association is indepen-

dent of all other differences in the two parents. (G5 is directly extracted from

lines 144–146 of Mendel’s text. See Corcos and Monaghan, p. 113, p. 118)

One can see that these five generalizations are formulated in terms of traits, true-

breeding, hybrids, and other observable objects. No terms from gene theory are

used. By contrast, the formulations of the two Mendelian laws of heredity, as later

presented in many biology textbooks, include many theoretical terms such as

“gene,” “allele,” “locus,” “meiosis,” and others from gene theory and cell theory.

Because these five generalizations were obtained from Mendel’s experiments, one

can see that they together describe the two diagrams shown in Fig. 6.3a, b, which

represent Mendel’s experimental process. In Fig. 6.3a, A and a refer to the traits

representing different forms of true-breeding individuals; Aa refers to the trait

representing the hybrid from crossing A with a. In Fig. 6.3b, A and a, and B and b
refer to a pair of forms of two different traits; ABb, AaB, and AaBb refer to a form of

hybrids. Ab and Aab refer to the second form of hybrids, and aB and aBb refer to the
third one. So the numbers in the four forms of true-breeding and hybrids imply a

ratio of 9:3:3:1, but Mendel himself did not express this ratio explicitly.

Figures 6.3a, b can be understood as two data models, because they do not

include theoretical or hypothetical terms such as “Mendelian factors,” “gene,”

“locus” (in chromosomes), and the like. Rather, they organize the raw data from

Mendel’s series of experiments into intelligible phenomena, model the experimen-

tal results, and envisage the need to search for an underlying mechanism to be

A×a (true-breeding)

cross

Aa×Aa (hybrid)

self-fertilization

A (true-breeding)

+2Aa (hybrid)=

3 (dominating)

A(true-breeding)

1 (recessive)

AB×ab (true-breeding)

cross

AaBb×AaBb (di-hybrid)

self-fertilization

1AB

2ABb

2AaB

4AaBb

1Ab

2Aab

1aB

2aBb

1ab

9 3 3 1

a

b

Fig. 6.3 Mendel’s first (a)

and second (b) experimental

procedures and results
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explained. They are also models of experimental data in the sense that they organize

and model the data from the experiments. So Mendel really discovered phenomena

by proposing two data models—which were expressed in terms of “laws” or

“generalizations” in his 1866 paper. Mendel used the generalizations (implying

two data models) to describe the patterns of the formation of hybrids. Although

Mendel had no notion of a data model, the models described by his generalizations

further represent significant phenomena: the regularities of the combination and

transmission of traits in some certain crosses between true-breeding forms and

hybrids. Therefore, Mendel did make a scientific discovery—this was an experi-
mental discovery of phenomena—and Mendel’s discovery consisted of the empiri-
cal modeling of experimental data. Mendel’s discovery is a key to classical

genetics, because the phenomena and the models are necessary for the later

“Mendelian” theories of genetics.10 The view can be confirmed by the fact that

the rediscoverers and the ensuing geneticists “invented” the two fundamental laws

of heredity and the concept of the gene to explain the genetic phenomena and the

models.

What is the notion of a data model, and why is it significant? The notion of a data

model has been widely used by philosophers who discuss the role of models in

science. They generally agree that there exist models of data that mediate between

theories and data, although they have slightly different but largely similar

frameworks (Suppes 1962; Mayo 1996; Giere 1999, 2010; Teller 2010; Brading

2010). In order to fit with the goal of this chapter, I adopt the hierarchical

framework for theories, models, and data as shown in Fig. 6.4. The framework

shows that a model of experimental procedure can guide the performance of an

experiment and produce raw data. It can also provide a frame for a data model to

organize raw data produced from the experiment. Representational models can be

Theoretical principles (or principled models)

de-idealized

Representational models (or mediating models)

explaining

Phenomena 

providing frames for data models 

Data models Models of experiments (experimental procedures)

organized guiding

Raw data (out of the world) experiments

Fig. 6.4 A hierarchical framework for theories, models, experiments, and data

10Mendelian genetics or Mendelian theories of genetics underwent a continuous micro-change

from the rediscoverers Hugo de Vries and Carl Correns, to the British Mendelian William Bateson,

to the American geneticist Thomas Hunt Morgan. They all have similar but different versions of

classical genetics. Darden (1991) impressively and convincingly showed this developmental

process of Mendelian genetics.

6 Experimental Discovery, Data Models, and Mechanisms in Biology 113



obtained by de-idealizing principled models and be used to explain phenomena

revealed by data models.

By and large, a data model represents the structure of data from observations,

measurements, or experiments. Different philosophers have different character-

izations of data models.11 There is no need to develop a general conception of

data model here; I intend to give only an account of models of experimental data.

A model of experimental data can be produced, constructed, and extracted from a

specific experimental design, arrangement, and results (i.e., the whole process),

with some conditions for control.12 Because the experimental process can be

represented by a symbolic or conceptual diagram (for instance, the diagrams

shown as Figs. 6.1, 6.2, 6.3a, b), the diagram in turn can be seen as a data model.

One can also call those diagrams diagrammatical models, each of which represents

some specific pattern, structure, or regularity. The diagrammatical model in Fig. 6.1

represents the pattern of effects produced by injecting two different strains (R and S)

of bacteria into mice. The diagrammatical model in Fig. 6.3a represents the pattern of

effects produced by crossing certain forms of plants possessing pairs of contrastive

traits. Therefore, a data model can reveal a significant phenomenon (in Bogen and

Woodward’s sense; see next section).

Why were the data models of the formation of hybrids in effect a key to the

research about heredity? What allowed the models and generalizations to be

reinterpreted into the so-called fundamental laws of heredity by later geneticists?

From the view of genetics, G1, G2, and G3 can be interpreted as generalizations of

trait transmission, a view that presupposes that there are bearers of traits that can

move from parents to offspring. In addition, these generalizations also show that

dominating traits appear in the offspring of every generation, whereas recessive

traits hide in the second generation and reappear in the third generation. One can

infer from the phenomenon that the bearers of these traits would not be blended, and

thus one can derive the law of segregation (of the trait bearers). G3 and G4 describe

the occurrence or nonoccurrence of paired traits and the fixed ratios in the number

of offspring. From this one can infer the “law” of dominance—that is, the existence

of dominating and recessive bearers—though this is not a general case for most

traits. G5 corresponds to the law of independent assortment; it is an empirical

expression of the independent distribution of trait bearers. According to such a line

of thinking, we should note that “Mendelian” laws of heredity, two or three, are

really theoretical rather than empirical, for they imply the notion of trait bearer,

11 Recently, there have been several waves of debate over the relation between data and phenom-

ena, stemming from Jim Bogen and James Woodward’s 1988 paper (Bogen and Woodward 1988).

For review articles, see Harris (2003), Bogen (2010), Woodward (2010), McAllister (2010), Teller

(2010), and Brading (2010).
12Mendel set up three control conditions for his experimentation with plants: (1) The experimental

plants must necessarily possess constant differing traits, (2) their hybrids must be protected from

the influence of all foreign pollen during the flowering period, and (3) there should be no marked

disturbances in the fertility of the hybrids and their offspring in successive generations (Mendel

1966[1866], p. 3).
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elaborated into the notion of a particulate Mendelian factor or gene. The notion of

trait bearer was envisaged by Mendel in his use and speculation of “Elemente,” but

he did not specify Elemente as particulate, nor did he discover any law of heredity,

nor did he develop a theory of genes.

The foregoing discussion shows how Mendel’s data models were “grafted” to

Mendelian theory of genetics and were interpreted by later geneticists as the

empirical evidence for the theory. This process with Mendel’s experimental dis-

covery is important, and even crucial, to the discovery of Mendelian mechanism of

heredity.

5 Experimental Discovery and Mechanism

Recall Kuhn’s views of scientific discovery. Kuhn (1970) argued that the occur-

rence of anomalous phenomena is usually a prelude to the emergence of new

paradigms or theories. It suggests that searching for a plausible explanation of

anomalous phenomena should be scientists’ main motive for establishing a new

theory. In other words, from the perspective of scientific practice, identifying a

crucial anomaly seems to play a pivotal role in shaping the pattern of theory

changes.

Kuhn’s description seems to be consistent with the general process of scientific

discoveries. However, for Kuhn, the discovery of a new phenomenon would be

recognized only when the anomaly is solved, accompanied by a paradigm shift. In

other words, scientists develop a new paradigm to provide a solution for that

original anomaly and recognize the solution as a new discovery. On this point I

disagree with Kuhn, because the recognition of a new phenomenon usually occurs

prior to rather than posterior to the building of new theories. I think that the general

process of scientific discoveries would consist of the following stages: the occur-

rence of novel data, the recognition and discovery of new phenomena, and the

building and discovery of new theories, in that order. Mendel’s case shows that the

experimental discovery of hereditary phenomena led to the construction of Mende-

lian theories. Now the question is: How can discovery of new phenomena be

recognized in the absence of new theories? I have argued, taking Mendel’s work

as an example, that the establishment of models of experimental data in the

recognition of new phenomena is entitled to be called an experimental discovery.

However, this is not complete; there is a need to supply a mechanistic condition.

According to the new mechanistic philosophy, a theory can explain a phenome-

non by describing its underlying mechanism. Synthesizing my view on the process

of scientific discoveries with the mechanistic view of theories, one can see that the

experimental discovery of new phenomena is usually a prelude to a scientific

discovery—meaning the formation of a new theory and the discovery of

mechanisms from the mechanistic perspective. This indicates the key role experi-

mental discovery plays in the discovery of mechanism. If there were no new

phenomena to be explained, scientists would have no motive to construct new
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hypotheses. Therefore, producing the need and the motive to discover mechanisms
is an important function of experimental discovery.

Look at Mendel’s case. Mendel himself postulated the existence of “elements”

to explain his experimental results. The speculation or imagination of elements

suggested an underlying mechanism in which elements engage in certain activities

to produce a fixed ratio in the number of offspring. Yet Mendel did not realize what

those elements were. Nonetheless, his speculation, based on his experimental

results, envisaged the need to disclose a hidden mechanism, and that need led

ensuing biologists to interpret his paper from the view of hard heredity. Explaining

data models of the formation of hybrids involves the transmission of traits, because

“hybrid” and “true breeding” are defined by the combination and recombination of

traits. This indicates that the search for a mechanism is a later step in the process

from Mendel’s discovery to the development of Mendelian genetics. People can

thus recognize Mendel’s findings as a genuine experimental discovery that is prior

to the discovery of Mendelian mechanism of heredity.

There are various characterizations of mechanisms in the philosophy of science.

The one I adopt was proposed by Peter Machamer, Lindley Darden, and Carl Craver

(hereafter MDC):

Mechanisms are entities and activities organized such that they are productive of regular

changes from start or set-up to finish or termination conditions. (MDC 2000, p. 3)

In subsequent works, Darden and Craver have articulated the notion of mecha-

nism and have developed a philosophical theory, taking molecular biological and

neurobiological cases as examples (Craver and Darden 2001; Craver 2001, 2002,

2005; Darden 2002, 2005, 2006). For the relation between mechanism and phe-

nomenon that is one of the central concerns of this chapter, MDC presented a

preliminary connection: “To give a description of a mechanism for a phenomenon

is to explain that phenomenon, i.e., to explain how it was produced,” and “The

organization of these entities and activities determines the ways in which they

produce the phenomenon” (MDC 2000, p. 3). As for the meaning of phenomena,

Craver and Darden (2001, p. 122) advocated Bogen andWoodward’s (1988, p. 317)

argument that phenomena should not be confused with data. They agreed that a

phenomenon can be understood as follows: “We think of phenomena as relatively

stable and repeatable properties or activities that can be produced, manipulated, or

detected in a variety of experimental arrangements” (2001, p. 114). Craver and

Darden further pointed out that “different experimental arrangements reveal differ-

ent aspects of the phenomenon” (2001, p. 122). In addition, in discussing

“constraints on the organization of mechanisms,” Darden and Craver identified

“the characterization of phenomena” as a constraint on the search for mechanisms.

They concluded (2001, p. 123):

Characterizing the higher-level phenomenon to be explained is a vital step in the discovery

of mechanisms. Characterizing the phenomenon prunes the hypothesis space (since the

mechanism must produce the phenomenon) and loosely guides its construction (since

certain phenomena are suggestive of possible mechanisms).
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I entirely agree with Darden and Craver. Their insight indicates another function

of experimental discovery: constraining the direction for construction of
hypotheses to discover mechanisms.

Experimental discovery has still another function: organizing data into signifi-
cant phenomena. To show this, I want to emphasize that “the phenomenon” to be

explained by the description of a mechanism is usually a “significant” phenomenon

possessing a repeatable pattern, structure, or regularity. A significant phenomenon

is intelligible, raising a why question and a motive for its explanation. It is worth

exploring and investigating. But the phenomenon may be hidden and invisible, or

not fully revealed, and the data by themselves are not sufficient to reveal it. An

experimental discovery makes it present, visible, and intelligible. The discoverer

does so by constructing adequate and correct models to organize fragmentary data,

endow data with significance, and reveal hidden structures, patterns, and

regularities. Therefore, organizing data into significant phenomena or creating
phenomena in Hacking’s sense (Hacking 1983) is really the first and primary

function of experimental discovery.

As I have argued, Mendel discovered (or created) the significant phenomenon of

trait transmission by implicitly constructing two data models (Fig. 6.3a, b) as

described by the five generalizations. Observations on the number of offspring

alone would not be enough to constitute a significant phenomenon. This would have

amounted only to a large amount of insignificant data about the transmission of

traits from parents to offspring, data that would have been fragmentary and unin-

telligible. Some hybridists before Mendel had obtained Mendelian ratios (Mayr

1982, pp. 648–649), but they were not and should not be regarded as discoverers,

for they never proposed any data model or envisaged a mechanism to give signifi-

cance to their data. (This will be discussed further in the next section.) Thus, I

conclude that the relation between experimental discovery and discovery of mech-

anism can be characterized by the three functions of the former: organizing data,

producing a motive to search for a mechanism, and constraining the space of

possible mechanisms.

6 What Counts as an Experimental Discovery

Are experimental discoveries recognized without accompanying theories? The

answer is an emphatic yes. What conditions are necessary to recognize an experi-

mental result as a discovery? In other words, what conditions define an experimen-

tal discovery? In order to synthesize the discussion in the preceding sections, I

suggest the following conditions:

(ED1) An experimenter must explicitly or implicitly propose data models to reveal

significant phenomena.

(ED2) No established theories can explain the new phenomena.
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(ED3) The experimenter must envisage searching for underlying mechanisms for

the phenomena, whether or not he or she proposes correct mechanistic

explanations.

One may raise a few questions: How are these conditions to be justified? Why is

a data model not theoretical? Can experimental discoveries really be recognized

without theories?

Because a model of experimental data is the output of an experimental process

(a combination of models of experiments and raw data according to the framework

in Fig. 6.4), they are not theoretical. They can be constructed without theories.

However, one can still question whether designing an experiment does or does not

depend on theories—the question of the theory-ladenness of experimentation. It is

the case that one can apply theories when designing experiments, but not all

experiments are designed based on theories. We should distinguish between the

concept of theory and that of background ideas. All experimental designs require

background ideas, but not all background ideas are theoretical. Mendel designed his

experiments with peas on the basis of his ideas about the formation and develop-

ment of hybrids, for which he did not have a complete theory. Furthermore, a data

model and a phenomenon allow a variety of theoretical explanations. Mendel

himself and Mendelian theorists (including Hugo de Vries, William Bateson, and

Thomas Hunt Morgan and his team) proposed different theories to explain the

identical ratios, the data models, and the phenomena of trait transmission (see

Darden 1991).13 In this case and other similar ones, phenomena and data models

were constructed prior to and independent of any theory.

According to the three conditions, Mendel did make an experimental discovery;

it was a key to genetics. Griffith’s case also satisfies these conditions, for a data

model can be extracted from Griffith’s experimental process, and Griffith envisaged

searching for an underlying mechanism to explain the phenomenon of transforma-
tion. Driesch rejected the possibility of searching for a mechanistic explanation,

although by his experimental process, he did find a new phenomenon that no

established theories could explain. However, his explanation fails to satisfy ED3,

so Driesch did not make an experimental discovery. One may question whether this

judgment is fair to Driesch, because he did really discover something novel.

Answering the question involves a deeper justification for ED3: Why is the

envisaging of mechanisms necessary for recognizing an experimental discovery?

The term “discover” means “not to cover,” that is, “to remove a cover or shelter

over something.” When one removes a cover over something, one makes something

13David Gooding (1990) provided another example. The phenomenon that the current in a long

wire can produce a round magnetic field is extracted from the physicist Jean-Baptiste Biot’s

experimental process. The contemporary physicists André Ampère, Humphry Davy, Michael

Faraday, and Biot himself, respectively, constructed different theories to explain the phenomenon.

So a (significant) experimental phenomenon is always revealed by some certain “adequate” and

“correct” experimental arrangement. If the experimental arrangement or procedure is inadequate

or incorrect, the experimenter may find no significant phenomenon.
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visible or transparent. Appropriating Darden’s metaphor, to discover is to cause a

black or gray box to become a glass (transparent) box. If a scientist’s work cannot

help herself or others look inside a black or gray box, she has not discovered

anything. Driesch turned a black box about the development of embryos into a

gray box, but he re-covered it with another facade: the vital force. This prevented

people from seeing inside the gray box. So Driesch did not really discover the

phenomenon of conditional specification. Admittedly, Driesch did discover some-

thing novel, but what he discovered was irrelevant to conditional specification, a

phenomenon that requires a mechanistic explanation. Driesch identified it as a

phenomenon of embryonic development directed by a vital force, so Driesch is

the discoverer of that anomalous phenomenon rather than of conditional specifica-

tion. Of course, Driesch’s experiment still made a contribution to the discovery of

conditional specification, by providing an anomaly to be solved.

Kuhnians hold that a scientific discovery needs paradigmatic theories to offer

conceptual recognition. Thus, neither Mendel nor Griffith nor Driesch is a discov-

erer. None of them identified or recognized his findings in accordance with a new

paradigm, because none proposed such a thing. The Kuhnian holistic view is

problematic because it depends on grand paradigms, complete theories, or theoreti-

cal principles in the hierarchical framework in Fig. 6.4.

The orthodox view presupposes that a discoverer is the first person who sees a

novel phenomenon by observation or experimentation, without conceptual cogni-

tion. This explanation produces inconsistent results in certain cases—for instance,

Driesch’s and Mendel’s. Driesch should be the discoverer of conditional specifica-

tion, for he first produced and observed “that phenomenon.” Mendel should not be

the discoverer of the Mendelian pattern of trait transmission, because other

hybridists had observed it before Mendel did. The orthodox view is problematic

because it identifies a discovery only on the basis of pure experience, neglecting the

role of conceptual recognition.

My proposal takes a middle way. My judgment of whether Mendel, Driesch, and

Griffith, respectively, made scientific discoveries is in agreement with some historians’

general view (e.g., Mayr’s and Magner’s), but I made my judgment for quite different

reasons.14 I agree that a discovery requires a conceptual recognition, but the recognition

may not be theoretical; a data model can play the role. A scientist can use the model to

recognize that a set of data represents a significant phenomenon—a repeatable pattern

or regularity rather than an illusion, trivial appearances, or “mystery experience.”

However, data models by themselves are not sufficient to complete a discovery.

A discoverer should point out a direction that can lead to an advanced discovery. His

data model should indicate possibilities for further research, that is, the envisaging of

mechanisms. In the sense that ED3 can provide the most coherent explanation for

14 By contrast, Mayr and Magner did not explain why they regarded Griffith as a discoverer but

Driesch as not, given the similar structure of Griffith’s and Driesch’s experiments.
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the cases of Driesch, Griffith, andMendel—compared with those of other competitors,

of Kuhnians, of the advocates of the orthodox view, and of general historians such

as Mayr and Magner—ED3 is justified.

7 Conclusion

I have argued that what Mendel found in his experiments is the phenomenon of trait

transmission, represented by data models compiled from repetitive modeling of

experimental data, and that his experiments are entitled to be called an experimental

discovery of a new phenomenon. Instead of being regarded as incomplete, this

experimental discovery of the transmission pattern functioned as the basis for the

discovery of the mechanisms of Mendelian heredity—which amounts to the con-

struction of classical genetics—by ensuing generations of biologists. One can see

that the pattern of experimental discoveries leading to discoveries of mechanisms

recurs in many cases of experimental biology—for example, the discovery of

chromosomes, of the crossover of chromosomes, of point mutations, of the double

helix of DNA, of retrotranscription, and so on.

This chapter concludes by claiming that if an experimental discovery can indeed

be justified as a precursor and prerequisite for the later generation of a new theory in

experimental biology, it can be adopted by biologists as a strategy for further

discovery: Scientists are advised to find data models to represent significant phe-

nomena before constructing theories or discovering mechanisms. This conclusion

reveals the independent contribution of experimentation to scientific discovery in

addition to the function of testing. It thus can be regarded as a complementary

account to Darden’s work on building reasoning strategies for the discovery of

mechanisms in biology.
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Part III

Reconsidering Biological Mechanisms
and Causality



Chapter 7

Mechanisms and Laws: Clarifying the Debate

Carl F. Craver and Marie I. Kaiser

Abstract Leuridan (2010) questions whether mechanisms can really replace laws

at the heart of our thinking about science. In doing so, he enters a long-standing

discussion about the relationship between the mechanistic structures evident in the

theories of contemporary biology and the laws of nature privileged especially in

traditional empiricist traditions of the philosophy of science (see, e.g., Wimsatt

1974; Bechtel and Abrahamsen 2005; Bogen, Stud Hist Philos Biol Biomed

Sci, 36:397–420, 2005; Darden 2006; Glennan, Erkenntnis, 44:49–71, 1996;

MDC, Philos Sci, 67:1–25, 2000; Schaffner 1993; Tabery 2004; Weber 2005).

In our view, Leuridan misconstrues this discussion. His weak positive claim that

mechanistic sciences appeal to generalizations is true but uninteresting. His stron-

ger claim that all causal claims require laws is unsupported by his arguments.

Though we proceed by criticizing Leuridan’s arguments, our greater purpose is

to embellish his arguments in order to show how thinking about mechanisms

enriches and transforms old philosophical debates about laws in biology and

provides new insights into how generalizations afford prediction, explanation,

and control.
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1 Introduction

Over a decade ago Machamer et al. (2000) suggested that the philosophy of science,

especially the biological sciences, could usefully be reconfigured by thinking about

how scientists construct, evaluate, and revise their understanding of mechanisms.

They boldly asserted that traditional philosophical topics such as causation, discov-

ery, explanation, functions, laws, levels, models, and reduction would be funda-

mentally transformed by recognizing the centrality to many areas of science of the

search for mechanisms. The revolution they envisioned replaced the last vestiges of

the once-received positivist gestalt with a new mechanistic vision, expressed in the

very language in which scientists talk about their work and sensitive to problems

faced within mechanistic research programs in areas as diverse as biology, cogni-

tive science, ecology, and neuroscience.

Though this way of thinking about the philosophy of science has gained rapid

and widespread acceptance, it has unsurprisingly attracted a good deal of criticism

from those who wonder whether the mechanical philosophy is really as revolution-

ary as its proponents suggest and from those who think that traditional ways of

thinking about the philosophy of science address problems that the mechanical

philosophy is ill equipped to handle. And one might be forgiven for thinking that

there is no more central battleground in that debate than the perennial issue of the

laws of nature. Positivist philosophy of science and its descendents place the

concept of a law of nature at the very heart of their thinking about causation,

explanation, prediction, and reduction in particular. From that traditional vantage

point, it is reasonable to ask precisely how the concept of mechanism, which plays

many of the same roles in the new paradigm, is related to the concept of a law of

nature.

So conceived, one naturally sees the concept of mechanism as replacement for

the concept of laws. And indeed, a casual reading of the mechanistic literature

would give the impression that this is precisely what the mechanists intended to do.

Mechanists regularly note that the term “law” is descriptively out of place in the

biological sciences. Biologists and other scientists of the middle range (neuro-

scientists, physiologists, psychologists, etc.) seem to avoid the term “law” and

conceive of their work instead in terms of the discovery of mechanisms. Further-

more, the mechanist’s rejection of a law-centered picture of science is a part of their

general rejection of the “Euclidean ideal” (Schaffner 2008) of science, according to

which knowledge is arranged in closed deductive axiomatic systems with strict law

statements as the axioms. How, they ask, would the philosophy of science look if

this formal gestalt, which had already worn quite thin in places, were replaced by a

more material, mechanistic, gestalt: one emphasizing the causal structures that

scientists much more frequently discuss (see Craver 2002)? Seeing the mechanistic

project in this light leads one to ask, as Bert Leuridan (2010) does in a recent paper,

whether mechanisms can really replace laws at the heart of our thinking about

science.
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Leuridan believes they cannot. In this chapter, we assess his arguments. Though

his arguments, as we show below, leave one with no compelling reason to maintain

the traditional view, his discussion demonstrates the need for greater clarity about

the place of laws in mechanistic sciences.

But first the ground rule: All parties to this discussion, as Leuridan points out,

agree that the traditional notion of a “strict law,” the universally quantified material

conditional with unrestricted scope and a good deal besides, has little application in

biology and other special sciences. Mechanists have openly embraced a number of

arguments for this conclusion, most notably John Beatty’s (1995) suggestion that

the laws of biology are evolutionarily contingent and Stuart Glennan’s (1996, 2002)

idea that the generalizations of biology are mechanistically fragile and so probabi-

listic and prone to breakdown. Other mechanists emphasize that theoretical claims

in biology are typically limited in scope, applying only to some species and strains

(cf. Hull 1978), and that the scope of such generalizations is restricted to life on

earth in a particular epoch (cf. Smart 1963). Whatever the reason, mechanists have

been happy to echo these criticisms as evidence of the limited applicability of the

traditional law-based view to the philosophy of biology. But contra Leuridan’s

suggestion, it should also be noted that the mechanist’s general opposition to strict

laws does not entail opposition to the idea that biologists and other scientists of the

middle range seek to learn about and describe general facts. None of these

arguments showing that the idea of a strict law distorts crucial features of biology

shows that there are no general facts about biology or that generalizations play no

important role in biological research practice. And no mechanist has ever made

such claims.

Though we proceed by criticizing Leuridan’s arguments, we have a larger

purpose, namely, to illustrate how thinking about mechanisms enriches and

transforms the philosophical debate about the role of laws in biology. In our

view, the debate over whether or not there are laws in biology has outlived its

usefulness. Nobody anymore denies that there are stable regularities that afford

prediction, explanation, and control of biological phenomena. Whether such stable

regularities count as laws depends on what one requires of laws, but it is undeniable

that generalizations of this sort do many kinds of work in biology. What remains is

the admittedly difficult work of showing how this is possible. If one takes the

biological sciences to be largely dedicated to the search for mechanisms, in

contrast, one can begin to ask in relatively precise ways how generalization

contributes to the search for mechanisms and, conversely, what the idea of mecha-

nism brings to long-standing questions about how generalizations afford prediction,

explanation, and control.

We begin by clarifying Leuridan’s thesis and his central ontological and episte-

mological arguments (Sect. 2). In Sect. 3 we consider Leuridan’s ontological claims

and argue that Leuridan fails to show that mechanisms must involve regularities

(Sects. 3.1 and 3.2) or that there must be fundamental laws without underlying

mechanisms (Sect. 3.3). Despite the emphasis Leuridan places on the notion

of projection (i.e., extrapolation), he fails to explain why the generalizations

of biology are stable and why certain facts can be extrapolated while others

7 Mechanisms and Laws: Clarifying the Debate 127



cannot (Sect. 3.1). We show further how the mechanistic perspective provides new

resources to ameliorate these extrapolation problems. In Sect. 4 we turn to the

epistemological issues. We reject Leuridan’s claim that mechanistic models must

contain law statements, and we show howmechanistic knowledge contributes to the

search for stable generalizations. We conclude that continued debates over whether

mechanisms can replace generalizations are likely to be unproductive. We con-

clude, second, that by taking a mechanistic stance, one gains a new vantage point on

old problems about laws and a view to new problems about the construction,

evaluation, and revision of models of biological mechanisms.

2 Leuridan’s Thesis

In his title, Leuridan asks, “Can mechanisms really replace laws of nature?” He

answers, “No.” In fact, Leuridan’s positive thesis is much weaker than this title

suggests.

Before formulating this weaker claim, it is necessary first to clear up some

terminology. Leuridan defines laws as “generalization[s] describing a regularity,

not some metaphysical entity that produces or is responsible for that regularity”

(2010, fn 1). This definition ignores three traditional distinctions that have brought

much-needed clarity to the discussions of laws in the philosophy of science. First,

we distinguish laws (metaphysical entities that produce or are responsible for

regularities) and law statements (descriptions of laws). If one does not respect

this distinction, one runs the risk (as Leuridan does) of unintentionally suggesting

that sentences, equations, or models are responsible for the fact that certain stable

regularities hold. In like fashion, we distinguish regularities, which are statistical

patterns of dependence and independence among magnitudes, from generalizations,

which describe regularities. Finally, we distinguish regularities from laws, which

produce or otherwise explain the patterns of dependence and independence among

magnitudes (or so one might hold).

Let us now reconstruct Leuridan’s real thesis. First, Leuridan endorses the

ground rule of our discussion. Strict law statements, as Leuridan understands

them, are nonvacuous, universally quantified, and exceptionless statements that

are unlimited in scope, apply in all times and places, and contain only purely

qualitative predicates (2010, p. 318). Noting that few law statements in any science

live up to these standards, Leuridan argues that the focus on strict law statements

(and presumably also on strict laws) is unhelpful for understanding science. Instead,

he focuses on the concept of a pragmatic law (or p-law). Following Sandra Mitchell

(1997, 2000, 2003, 2009), Leuridan understands p-law statements as descriptions of

stable and strong regularities that can be used to predict, explain, and manipulate

phenomena. A regularity is stable in proportion to the range of conditions under

which it continues to hold and to the size of the space-time region in which it

holds (2010, p. 325). A regularity is strong if it is deterministic or frequent. p-law

statements need not satisfy the criteria for strict law statements. Thus, Leuridan’s
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question is not whether mechanisms can replace laws, simpliciter. Rather it is

whether mechanisms can replace p-laws and, correlatively, whether descriptions

of mechanisms can replace p-law statements in our thinking about science.

Yet Leuridan’s thesis is narrower still. He distinguishes two “kinds” of

mechanism: complex system mechanisms (cs-mechanisms) and Salmon/Railton

mechanisms. Leuridan characterizes cs-mechanisms as stable configurations of

robust objects that produce stable behaviors (2010, p. 319; see also Glennan

2002, pp. 344–46).1 Leuridan does not define Salmon/Railton mechanisms, except

to say that they involve causal processes and causal interactions (2010, p. 319).

However, if we follow Glennan, they might be understood as “sequences of

interconnected events” or “a chain or web of events leading to a particular event”

such as “a boy hit a baseball; the baseball ricocheted off the tree and crashed into the

window” (Glennan 2002, p. 345). Salmon/Railton mechanisms are singular causal

chains. Substituting into Leuridan’s title question yields something closer to the

question he in fact addresses: “Can cs-mechanisms really replace p-laws?” Leuridan

is not always clear to distinguish this ontological question from its epistemological

twin: “Can models of cs-mechanisms replace p-law statements?”2 But in either case,

he concludes they cannot.

More precisely, Leuridan presents four theses, two of which he describes as

ontological, and two of which he describes as epistemological:

First, [cs-] mechanisms are ontologically dependent on stable regularities. There are no

[cs-]mechanisms without both macrolevel and microlevel stable regularities. [L1]

Second, there may be stable regularities without any underlying [cs-]mechanism. [L2]

Third, models of [cs-]mechanisms are epistemologically dependent on pragmatic laws.

To adequately model a [cs-]mechanism, one has to incorporate pragmatic laws. [L3].

Finally, pragmatic laws are themselves not epistemologically dependent on mechanistic

models. They need not always refer to a mechanism underlying the regularity at hand. [L4]

(Leuridan 2010, pp. 318–19)

We have inserted the qualification to cs-mechanisms specifically, given that

Leuridan offers no argument even purporting to show that non-cs-mechanisms are

dependent upon p-laws (see Bogen 2005, 2008), a gap to which we return below.

Leuridan argues that cs-mechanisms cannot replace p-laws in our thinking about the

ontology of science because cs-mechanisms are ontologically dependent on p-laws

(L1), but the opposite is not the case (L2). Furthermore, he claims that cs-mechanisms

cannot replace p-laws in our thinking about epistemology because models of

cs-mechanisms are epistemically dependent on p-laws (L3) and not vice versa (L4).

1 The full passage is “Contrary to Salmon/Dowe mechanisms, complex systems mechanisms

(cs-mechanisms) are robust and stable. They form stable configurations of robust objects, and as

a whole they have stable dispositions: the overall behaviors of these mechanisms” (Leuridan 2010,

p. 319).
2 On closer inspection, Leuridan’s question is still too imprecise since it does not specify the

purpose for which cs-mechanisms are intended to replace p-laws (or vice versa). Mechanisms and

stable generalizations serve many functions in our thinking about science. Perhaps mechanisms are

useful for some philosophical purposes and laws are useful for others.
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Before we address Leuridan’s arguments, it is necessary first to set the record

straight. When Leuridan asks “Can cs-mechanisms really replace p-laws?” the word

“really” suggests that somebody has claimed that they can. Is this true? Do

mechanists really insist that scientists can discover, explain, predict, and control

the action potential, heredity, long-term potentiation, natural selection, and neuro-

transmitter release (to name a just few of the lengthy examples that mechanists have

discussed) without forming generalizations about them? Do mechanists think that

the Hodgkin-Huxley model of the action potential, the theory of evolution by

natural selection, and the current models of long-term potentiation and neurotrans-

mitter release make no appeal to regular occurrences? In a word, no. They are quite

explicit on this matter (see, for instance, Bechtel and Richardson 2010, p. 232;

Glennan 1996, p. 52, 2002, p. 345; Machamer et al. 2000, p. 3, p. 7; Bechtel and

Abrahamsen 2005, fn. 1, 437; Craver 2007, Ch. 3, pp. 233–34). James Bogen

(2005), the mechanist most critical to the role of generalizations and regularities

in our thinking about causation, stresses at great length the importance of Mitchell’s

treatment of p-law statements (and the regularities they describe). He also

emphasizes the many epistemic roles that generalizations play in the search for

mechanisms (cf. Bogen 2005, p. 401):

(a) to describe the phenomenon to be explained;

(b) to suggest and sharpen questions about causal mechanisms;

(c) to describe constraints on acceptable mechanistic models;

(d) to measure or calculate quantities relevant to the mechanism;

(e) to support inductive inferences without which mechanisms could not success-

fully be studied;

(f) to support extrapolation of mechanistic knowledge to new cases;

(g) to design effective experiments to test mechanisms;

(h) to simulate the behavior of mechanisms.

The list could no doubt go on. In short, no mechanist denies that biologists

search for regularities and routinely formulate generalizations (p-law statements)

that can be used for prediction, explanation, and control of phenomena. Indeed, it is

hard to see how any significant human activity could be pursued without discover-

ing and representing (in some sense) such regularities. The mechanist claims simply

that it is useful to ask further about the material structures those generalizations

describe and about how this affects the various tasks scientists perform. In many

areas of science, scientists seek to describe mechanisms in order to explain, predict,

and control phenomena. If one places the idea of mechanism at the center of one’s

thinking about those sciences, one suddenly sees p-laws in a new light, with new

roles to play (compare Bogen’s list to Leuridan’s emphasis on prediction, explana-

tion, and control). The question is not whether biological phenomena operate in

accordance with p-laws or exhibit p-regularities but rather how the search for those

regularities fits into the central aim of describing mechanisms.

130 C.F. Craver and M.I. Kaiser



3 The Ontology of Mechanisms

Let us now consider Leuridan’s argument that p-laws are ontologically fundamental

to cs-mechanisms. He argues for two component theses (2010, p. 329):

(a) There can be no cs-mechanism without some stable behavior produced by that

mechanism (Leuridan calls this the “macrolevel regularity”).

(b) There can be no cs-mechanism without some regular behaviors, operations, or

activities displayed by or engaged in by the mechanism’s component parts

(Leuridan calls these “microlevel regularities”).

Given Leuridan’s definition of a cs-mechanism (cf. 2010, p. 319; see also

Sect. 2), (a) is a tautology: “There can be no stable configurations of robust objects

that produce stable behaviors without some stable behavior produced by that

mechanism.” We agree.

Surprisingly, Leuridan offers historical evidence to shore up his case. “In the life

sciences,” he writes, “reference to mechanisms cannot be detached from matters of

projectability” (2010, p. 329). For example, he notes, Thomas H. Morgan intended

his work on the mechanisms of heredity in Drosophila (see Morgan et al. 1915),

work summarized in a book aptly titled The Mechanisms of Mendelian Heredity, to
apply outside of the laboratory and to other organisms as well.

Mechanists deny neither that Morgan sought projectable generalizations nor that

he succeeded in finding them. However, a mechanist might well insist that scientists

sometimes seek details about a particular causal mechanism without any interest in

generalizing to other cases. Evolutionary biologists might describe the mecha-

nisms that increased the prevalence of a single adaptive trait in a population or

that produced a single speciation event. Epidemiologists might be interested in

how AIDS first came to South Korea. Archeologists might be interested in the

origins of maize cultivation in North America. Ecologists might be interested in

the mechanisms causing fish populations to dwindle in the Chesapeake Bay.

Morgan was interested in generality, we grant, but sometimes scientists just want

to know how some particular event came to pass, and so they describe the particular

mechanism that is responsible.

Bogen (2005, 2008) argues persuasively that the concept of causation (under-

stood in terms of “causally productive activities” (2008, p. 112)) and the concept of

regularity can (and do) come apart from one another.3 We have no difficulty

imagining quite irregular mechanisms, such as the mechanisms of neurotransmitter

release, that work roughly 10 % of the time or a rusty chainsaw that starts arbitrarily

infrequently. What matters for the existence of a mechanism is not how frequently

it runs in the limit but how it works when it works, however infrequently. Viewed

from this perspective, singular, unrepeated causal chains (so-called one-off

3 Leuridan mentions Bogen’s work but rejects it summarily on the ground that Bogen’s criticism of

regularism relies on a strict (i.e., universal) notion of “regularity” (see 2010, p. 330). But this is

false. Bogen frames his discussion in terms of Mitchell’s view of generalizations.
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mechanisms or Salmon/Railton mechanisms) are a special, limiting case of

cs-mechanisms, not something altogether different. While Leuridan’s thesis that

there can be no cs-mechanisms without some stable behavior produced by that

mechanism (cf. 2010, p. 330) is tautologically true, Leuridan’s unqualified thesis

that “there are no mechanisms without. . . macrolevel. . . stable regularities” (2010,
p. 318; our emphasis) is clearly false. One-off mechanisms are mechanisms without
a macrolevel regularity. So much for the ontological claim.

3.1 Extrapolation of Generalizations

Things look a bit more promising if we reconstruct Leuridan’s projectability thesis

as a purely epistemic thesis. Morgan wanted to apply what he learned about the

mechanisms of heredity by studying Drosophila in the lab both to flies outside the

lab and to other species. Surely the mechanist owes some kind of story about how

this is possible. The clear solution, one might think, is to recognize that there are

laws – however exception-ridden, probabilistic, and mechanistically fragile – that

license this application. And one might insist that Morgan referred to, and indeed

formulated, Mendel’s second law while making a career of discovering exceptions

to independent assortment (see Allen 1978; Darden 1991). Scientists form

generalizations, and then they use those generalizations to say what will happen

in new cases. Of course, no mechanist denies that induction and extrapolation (or

projection) are important to science. But how are p-laws supposed to help with this

task? If p-laws are merely law statements, as Leuridan defines them, then they are

clearly not the kind of thing that can explain why a given regularity is stable and

strong. Law statements express that, but do not explain why, certain regularities are
stable and strong. It seems we must understand Leuridan to mean that stable

p-regularities themselves (rather than descriptions of p-regularities) are necessary

for one to extrapolate mechanistic knowledge. Here, in full, is Leuridan’s discus-

sion of stability: “What are the conditions on which the regularity under study is

contingent? How spatiotemporally stable are these conditions? And what is the

relationship between the regularity and its conditions (is it deterministic, probabi-

listic, etc.?)” (2010, p. 325). Given that stability is defined in terms of the range of

circumstances in which a generalization holds, the epistemological thesis that

extrapolation to conditions outside of the laboratory and to conditions in other

organisms requires p-regularities, again, amounts to a tautology: if the regularities

discovered about Drosophila in the laboratory are to hold outside of the laboratory

and for other organisms, then there must be organisms outside of the laboratory for

which the regularity holds. If a regularity holds only in Morgan’s laboratory or only

for Drosophila, then there is nothing outside of the laboratory or in other organisms

about which to extrapolate. But this is not an explanation of why knowledge

extrapolates beyond the laboratory; it is simply a claim that it does extrapolate

outside the laboratory. Put this point another way: by helping himself to the idea of

p-laws, which are by definition stable regularities, Leuridan does nothing to explain
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why certain facts can be extrapolated and others cannot. Nor does he tell us how to

discern which features of a system can be extrapolated from those that cannot.

Rather, by invoking the idea of a p-law, he merely asserts that there is a distinction
between knowledge that can be extrapolated and knowledge that cannot be

extrapolated. But the bald statement that there is a difference between the

predicates that project and those that do not, conditions that project and those that

do not, and times when the consequent really ought to obtain and times when it

should not is not a victory for p-laws but simply an assertion that a central problem
for any theory of p-laws has a solution.

Let’s push a bit deeper. For a defender of strict laws, which by definition apply

always, without exception, and without limitation of scope, it is reasonably clear

how knowledge of the laws would warrant extrapolation. For a defender of a robust

metaphysical notion of a law, where a law is part of the structure of the world that

explains (rather than merely describes) the p-regularities we observe, then knowl-

edge of the laws would presumably warrant extrapolation. But Leuridan weakens

the notion of a law so that p-laws are mere regularities and p-law statements are

descriptions of these regularities; further, such descriptions are nonuniversal, have

exceptions, and apply only in restricted regions of space-time. In effect, he turns

p-laws into imperfect regularities with no robust metaphysical backing. Whether

such a weakened p-law warrants extrapolation outside of the laboratory depends

upon whether one in fact finds that the regularity continues to hold outside of the

laboratory, whether the necessary background conditions hold, whether the target

instance under consideration is one of the exceptions, or whether it is not. p-laws, as

Leuridan understands them, might not warrant extrapolation. The laws might hold

only in Morgan’s laboratory, after all. At the very least, if one believes that p-laws

offer a solution to the problem of extrapolation, then one owes a further story about

how one knows when the conditions for extrapolating the regularity have been met.

Leuridan offers no such story.

Bechtel and Abrahamsen (2005), whom Leuridan picks out for particular criti-

cism on this matter, argue on independent grounds that it is philosophically

unfruitful to think about the problem of generalization (or extrapolation, in

Leuridan’s vocabulary)4 in terms of laws. In a section of their paper called

“Generalizing without Laws,” they criticize law-based views of generalization

and develop an alternative, prototype-based account. Because Leuridan does not

mention these arguments, we repeat them here. They argue that if one thinks of

biologists as attempting to build law statements, paradigmatically represented in

terms of material conditionals, then it is difficult to understand the prototypical

structure of biological theories. One is tempted to think of biologists as

constructing, for example, a law statement of heredity (such as Mendel’s laws).

When one encounters variation in that mechanism (as Morgan did), one is tempted

4One might distinguish generalization (i.e., expanding the scope of the schema within a species/

class) from extrapolation (i.e., expanding the scope of the schema beyond the species/class). Given

that the parties to this dispute do not draw this distinction, we treat them as synonymous.
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to package the variation into the antecedent of the conditional. In fact, however, one

finds that biologists typically characterize a mechanism in a particular strain of a

particular species (such as wild-type Drosophila) and then recognize that there will
be subtle variations on that mechanism in other strains, mutants, and species. They

are not looking for general law statements that cover all of them but rather for sets

of prototypical models that stand in family resemblance relations to one another

(cf. Schaffner 1993). To push Bechtel and Abrahamsen’s point one step further,

prototype models need not be general descriptions. Bechtel and Abrahamsen also

call their view an “exemplar” (2005, p. 438) account, noting that models of

mechanisms often describe a particular, exemplary case. (Open a biology textbook

and look at some diagrams of mechanisms; more often than not, they are cartoons of

a single representative mechanism.) On such an exemplar view, generalization is

extrinsic to the mechanistic models (exemplars, prototypes); that is, the model need

not contain general statements or general representations at all.5 Leuridan’s insis-

tence that the model must contain such things is simply the imposition of a

philosophical prejudice onto actual scientific models that have the capacity rather

to surprise us if only we open our eyes to them. The generality of such a mechanistic

model is a matter of its scope of application and not something that must be

represented within the model itself. If one attempts to put the generality in the

model itself, to return to Bechtel and Abrahamsen’s point, the model has difficulty

accommodating the variability characteristic of biological mechanisms.

Curiously, Leuridan fails to consider the possibility that most p-regularities are

stable and strong because they are produced or maintained by mechanisms (see,

e.g., Bechtel 2009; Craver 2007; Darden and Craver 2002; Glennan 2010; Steel

2008; Wimsatt 1998). Why might Morgan have expected the apparent exceptions to

Mendelian heredity he discovered in his lab to apply outside of the lab and in other

organisms? The simple answer is this: he expected the mechanisms of heredity

outside the lab and in other organisms to be more or less similar to the hereditary

mechanisms at work in his Drosophila. The p-laws of heredity are stable and strong
precisely because there is an underlying mechanism (e.g., involving crossing over

and replication of chromosomes) that explains them.

In his book Across the Boundaries (2008), Daniel Steel builds on early

suggestions by Darden and Craver (2002) to develop an elaborate analysis of how

one can extrapolate scientific knowledge based on an understanding of the relevant

mechanisms. The idea behind his “comparative process tracing” (Steel 2008, p. 85)

approach is simple and helpful: First, one uses a variety of strategies to learn about

the mechanism in the model organism. Second, one compares the mechanism in the

model organism to the mechanism of the extrapolational target at certain key

junctures. That is, one compares the two mechanisms at stages at which the

mechanisms are most likely to differ significantly from one another. The fewer

significant differences one discovers at these key points, the stronger is the basis for

5 This view fits with the semantic view of theories that Bechtel and Richardson embrace (cf. 2010,

p. 232).
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the extrapolation. Crucially, one need not compare all of the entities, activities, and

organizational features of a mechanism to those in the target organism in order to

assess the likelihood that one’s extrapolation will work: one might, for example,

compare downstream (rather than upstream) portions of a mechanism, given that

crucial differences downstream will indicate crucial differences earlier. Con-

versely, similarity at a key bottleneck point in the mechanism might allow one to

neglect any differences upstream in the mechanism to focus on what comes later

(see Steel 2008, p. 90). Furthermore, if one is interested simply in gross qualitative

differences, such as whether a given drug is positively relevant for a side effect or

negatively relevant for a side effect, certain minute and highly specific differences

in the mechanisms might be less germane than the simple matter of whether there is

a positive (excitatory) or negative (inhibitory) causal or correlational relationship in

the model organism. Thinking about underlying mechanisms, in short, provides

new tools for assessing when our knowledge is likely to extrapolate and when

extrapolation is more precarious.

Steel’s strategies rely primarily on considering the mechanisms that underlie a

regularity, but one might also justify extrapolation on the basis of antecedent

mechanisms, such as the mechanism of natural selection. That is, one might

claim that the hereditary mechanisms in Drosophila can be expected to apply

outside of the laboratory and in other species because hereditary mechanisms are

evolutionarily ancient and therefore widely conserved across the tree of life. As

Bechtel (2009) argues, this mechanistic fact about the history of life warrants

tentative (heuristic) extrapolation about closely related species: they might use

the same mechanism, or a mechanism composed of similar entities and activities,

or mechanisms with similar organizational structures. And one might expect evo-

lutionarily ancient mechanisms to be more widely conserved, and so more fitting

for extrapolation, than are relatively recent adaptations. This kind of heuristic is

especially interesting in the present context given that, according to this heuristic, a

singular mechanism (the one-off mechanism that produced the tree of life as we

now know it) warrants extrapolation of p-laws in extant species.

While we admit that these mechanistic contributions to our understanding of

extrapolation solve neither the problem of induction nor Goodman’s new riddle of

induction (1955), we insist they nonetheless have considerably more content than

the bare tautology that p-laws warrant extrapolation because they are stable and

strong. Indeed, extrapolation is at least often justified by appeal to knowledge of

mechanisms. In sum, it appears that our epistemic reformulation of Leuridan’s

argument runs into a dilemma. Either his claim is a tautology to the effect that

mechanisms must be general if one is to form true generalizations about them, or it

is a substantive epistemological thesis that extrapolation is possible only if there are

p-laws. If the latter, then we have shown how Leuridan begs the question by

presuming, rather than showing, that p-laws solve the extrapolation problem and

by asserting, rather than defending, the disputed thesis that p-laws are required for

extrapolation. Most importantly, however, we have reviewed some of the progress

mechanists have made in thinking about the problem of extrapolation. Focusing on

mechanisms provides fruitful and substantive ways of thinking about how
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generalizations are extrapolated in scientific practice. It is unclear why Leuridan

refuses the mechanist’s help in addressing the extrapolation problem.

3.2 Do cs-Mechanisms Require Micro-regularities?

Let us move on, then, to the second route (b) by which Leuridan argues that cs-

mechanisms are ontologically dependent on stable regularities (L1). Leuridan

claims: “There can be no cs-mechanism without some lower-level (c)P-regularities

(i.e., the regular behaviors, operations, or activities displayed or engaged in by the

mechanism’s parts)” (2010, p. 331). A (c)P-regularity is a causal p-law, a p-law that

is “invariant under some range of interventions” (2010, p. 328). Leuridan argues for

this thesis using a thought experiment. If the behaviors of all of the parts of the

mechanism were to behave completely randomly, by which he means that they do

what they do as the result of a “completely random internal process,” “this would

make it very unlikely to produce a macro-p-regularity, let alone a (c)P regularity”

(2010, p. 331).6 What shall we make of this argument?

Clearly, Leuridan’s thought experiment does not support the ontological conclu-

sion that there can be no cs-mechanisms without some p-regularities among the

parts. At most, it supports a probabilistic conclusion that cs-mechanisms are

unlikely without p-regularities, and such an argument cannot support the negated

existential quantifier in Leuridan’s second ontological claim (b). The thesis that x is

unlikely to have property F is consistent with the claim that x is F and, for nonzero

probabilities, entails that x is possibly F (directly contradicting Leuridan’s stated

thesis). Although randomly behaving components such as those in Leuridan’s

example would not form a mechanism (given that the behavior of each is causally

independent of the behaviors of the others), it is still possible that together they

would produce a regularity, even a (c)P-regularity, of some stability and strength.

Just how improbable this would be depends upon the number of variables and the

number of values they might take. In order to make experimental progress in the

discovery of causes and mechanisms, we regularly presume that regularities do not

arise merely from chance. However, as the statistics attached to any causal experi-

ment acknowledge, there is always some nonzero probability that the results of the

experiment did arise strictly from chance. Now if macro-regularities can obtain

even among causally unconnected random events (as in Leuridan’s example), then

6 It should be noted that Leuridan defines “irregularity” in such a way as to effectively exclude

discussion of stochastic mechanisms, mechanisms that work only infrequently or whose frequency

of operation and stability in space vary over time. A mechanism that works with probability

0.000001 will count as regular on Leuridan’s account because one can write a generalization of the

form P(X) ¼ 0.000001. This is unfortunate as there are a number of interesting questions that one

might ask about probabilistic mechanisms and mechanisms whose probability of working varies

over time (as one might expect in systems that are regulated). Thanks to Jim Bogen for calling this

to our attention.
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why would one ever suppose that it would be impossible for them to obtain among

causally connected random events (whatever sense we can make of that notion)?7 It

seems there is no interpretation of the idea of irregularly behaving components that

sustains even the negative existential thesis entailed by Leuridan’s modal claim that

no (c)P-regularity can be produced by irregularly behaving components.

Perhaps what Leuridan means to claim is that very few of the mechanisms

described in biology textbooks explain higher-level (c)P-regularities without

appealing to regularly behaving components. If one wants to discuss the kinds of

mechanism that biologists typically study, then one must acknowledge that there

are true p-generalizations about the components of mechanisms. True enough. But

this claim is entirely independent of the ontological thesis that cs-mechanisms

depend on lower-level regularities. And no mechanist denies that there are true

p-generalizations about the components of mechanisms.

If the argument does not work for cs-mechanisms, it certainly will not work

for mechanisms in general (as his title and introduction suggest). That is, it

cannot establish, as Leuridan claims, that there can be no mechanisms without

microlevel stable regularities. It seems one-off mechanisms (the “Salmon/Railton

mechanisms” discussed above) might well work without microlevel stable

regularities. Such mechanisms probably would not be so scientifically interesting,

and we might never know about them, but they might well exist.

Leuridan might, at this point, have entered a long debate about the regular

character of causality. Perhaps he could endorse the view that the components in

a mechanism can properly be said to causally interact with one another only if there

exists a p-regularity relating events of one type to events of another type. If all

mechanisms have interacting parts, and if there can be no interactions among parts

without p-regularities, then there can be no mechanisms without p-regularities.

That’s certainly an ontological thesis, and it’s one with a grand tradition. It’s also a

view that some mechanists (such as Bogen 2005, 2008; Machamer 2004; Darden

2006) explicitly challenge.

As we mentioned above, Bogen (2005, 2008) argues that causation and regular-

ity are conceptually distinct. One set of Bogen’s arguments turns on the implicit

thesis that causation is local (or, in other words, intrinsic): that whether A causes B

depends on facts about A, B, and their relation to one another and does not depend

on how other A-type things and B-type things behave when they interact. What

matters instead is whether A and B are connected by some determinate sort of

activity. One need not buy the metaphysics of activities to appreciate the intuitive

pull of locality. Imagine a world composed only of two billiard balls traveling

through space-time toward one another until one day they clack together and fly

back in the directions whence they came. Whether they interacted would seem not

to depend on whether any other billiard balls ever meet or on whether the same

billiard balls ever meet again; neither is true in the world we are considering. The

causal interaction is a fact about them and them alone (i.e., an intrinsic feature of

7Again, note that Leuridan is operating with a most unorthodox notion of “irregularity.”
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their interaction); nobody else matters, and so no p-regularity (or any regularity)

matters, to whether they interact.

A second kind of argument for the separability of regularity and causation turns

on the possibility of causal relations that have no echo in the correlational structure

of the world. For example, one might have a mutation that reduces the overall

chance that one will get lung cancer (i.e., the mutation has negative statistical

relevance for cancer) but that, in a few unfortunate individuals, is, in fact, the

trigger for lung cancer. And one might get lung cancer in virtue of having that

mutation. One might smoke three packs a day (raising the chance of getting lung

cancer) and in fact get lung cancer because of the mutation. The actual causal

structure in such cases would appear to run counter to the regularities. To borrow a

kind of example first described by Jonathan Schaffer (2000), we might imagine two

neurons, A and B, synapsing on a third neuron, C. Suppose we know from experi-

mental investigation that the probability of C’s firing given A’s firing alone is 0.5,

that the probability of C’s firing given B’s firing alone is 0.5, and that the probabil-

ity of spontaneous firing in C is 0. Now suppose that A, B, and C all fire. These facts

leave the causal facts under-determined. For in this situation, it might be that A

caused C to fire, that B caused C to fire, or that both A and B caused C to fire. The

difference between these possibilities cannot, ex hypothesi, depend on the

regularities involved. It would seem that there is a further fact about the actual

causal structure of the situation. Regularities, it might be thought, provide evidence

about the causal structure of a mechanism. But the causal structure of the mecha-

nism is something over and above the regularities by which that structure can be

detected.

We do not insist on the view that causation is intrinsic, actual, and singular. We

simply note that Leuridan does not address the heart of the debate about whether

regularities are more fundamental than causation and mechanisms. Some

philosophers, most explicitly Glennan (2002), Woodward (2002), and Craver

(2007), appear to agree (to a first approximation) with the idea that the interactions

in a mechanism should be characterized in terms of invariant change relating

generalizations. They stress, for example, that knowledge of causes is practically

valuable precisely because it is general. And they emphasize the close connection

between the generality of causation and the methods used to test causal relations

(see Woodward 2004). Bogen, we have seen, disagrees. The merits of and relations

among these approaches have been discussed at some length by Craver (2007),

Glennan (2002, 2010), Psillos (2004), Tabery (2004), and Woodward (2002, 2010).

Leuridan again does not address this discussion.

One last point deserves mention before almost leaving Leuridan’s putatively

ontological discussion. Leuridan distinguishes between p-laws and (c)p-laws. This

distinction is required for Leuridan to distinguish p-laws that are merely useful for

prediction from those that, in addition, allow one to explain and control events. One

might predict that one is about to run out of gas by looking at one’s gas gauge, but

the reading on the gas gauge does not explain the emptiness of the tank. Nor could

one make it further down the road by breaking the gauge. For this reason, Leuridan

(like the mechanists Glennan (2002) and Craver (2007)) appeals to Woodward’s
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systematic theory of causation (2003). According to that theory, very roughly,

causal regularities are stable regularities that continue to hold when one intervenes

to change the cause variable. This view of (c)P-regularities, however, depends

fundamentally on the idea of an intervention. It also depends on the notion of an

ideal intervention, which is one that intervenes via some causal paths and not
others. It also depends on a thesis of modularity: that it is possible to intervene

independently on the different components of a mechanism. As Woodward

acknowledges time and again, this view of the semantics of causal claims is not

intended as a reductive, metaphysical analysis of the notion of cause. It would be

circular as such because one requires an antecedent notion of causation to ground

these features of the account (interventions, uncontrolled paths, and modularity).

Ironically, a singular notion of causation such as Bogen defends might be just what

Woodward’s account of intervention and modularity need for their metaphysical

ground. If so, then the claim that (c)p-laws are metaphysically more fundamental

than singular causation would have the story exactly backwards. But these are

complicated matters that we must leave for now.

3.3 Laws Without Mechanisms?

Above we focus on Leuridan’s claim that cs-mechanisms ontologically depend on

macrolevel (a) as well as on microlevel (b) (c)P-regularities (L1). For the sake of

completeness, let us consider Leuridan’s second ontological thesis (L2) that there

can be (c)P-regularities without underlying mechanisms. Leuridan needs this sec-

ond thesis to establish the desired “ontological asymmetry between P-regularities

and cs-mechanisms” (2010, p. 331). In his hands, this amounts to the claim that it is

possible that there are fundamental (c)p-laws, that is, (c)p-laws for which no

mechanisms exist. Leuridan does not argue for this thesis, but it seems to us at

least conceivable that the world is structured with fundamental (c)p-laws (Glennan

1996, 2002, 2010 embraces this view). To decide whether this conceivable onto-

logical picture is actual, however, would require further argument. It is also

conceivable that the world has an infinite series of mechanisms within mechanisms,

or that it grounds out ultimately in individual singular causal relations (as Bogen

recommends), or perhaps that it grounds out in occurrent matters of fact. Leuridan

has no argument to convince us that we are in one of these worlds rather than the

other, and we therefore see no compelling reason for a mechanist to take sides.

4 Mechanism and Epistemology

Let us turn finally to Leuridan’s claim that p-law statements are epistemically

fundamental to mechanistic models. First, he argues that explanatory mechanistic

models must include p-law statements (L3), and so mechanistic explanation cannot
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proceed in the absence of p-law statements.8 Second, he claims that mechanistic

knowledge is dispensable in our search for p-laws. For instance, by using

randomized experimental designs, one can control for disturbing mechanistic

factors without knowing what they are. This latter argument is supposed to show

that although (explanatory) mechanistic models are “epistemologically dependent”

on p-law statements (in the sense that the former require the latter), p-law

statements are not “epistemologically dependent” on mechanistic knowledge (L4)

(some p-law statements can be discovered without relying on knowledge about

mechanisms). Finally, he argues that if our knowledge of laws did depend upon

knowledge of mechanisms, then we would face an “infinite (and vicious) epistemo-

logical regress” (2010, p. 333). Because knowledge of mechanisms requires knowl-

edge of laws, our knowledge of laws and mechanisms would never ground out in

fundamental facts. Fortunately, Leuridan claims, we can know the p-laws without

knowing anything about mechanisms, and this blocks the regress.

Leuridan’s first point about explanatory models derives from the above discus-

sion (see Sect. 3). If cs-mechanisms require (c)p-laws, then an adequate model of

the cs-mechanism requires (c)p-laws. Above, we reject the antecedent. Given that

not all mechanisms produce a behavior in a regular way (granted, many do), there

exist cases of one-off mechanisms (Salmon/Railton mechanisms) in which the

mechanistic model for the irregular behavior necessarily involves neither a macro

p-law statement nor a micro p-law statement. Similarly, in cases where a mecha-

nism behaves regularly even though this macro-regularity is sustained by micro-

irregularities, a mechanistic model might involve a macro p-law statement but not a

micro p-law statement.

But what shall we do about the cases in which biologists explain a general

phenomenon in terms of general facts about components and their activities?

Mechanists should not, and do not, deny the existence of such explanations. Instead,

mechanists deny that an explanatory model must be formulated in terms of

generalizations.9 One would think that explanatory models of cs-mechanisms

must include p-law statements if one embraced a covering law (CL) model of

explanation, according to which explanations are arguments that subsume

descriptions of events under general law statements. No mechanist, however,

accepts the CL model of explanation (see especially Salmon 1984 and Craver

2007). The reasons are too widely known to be repeated here, and it would be

8One might have expected Leuridan to defend the epistemic claim that one cannot learn about

mechanisms in the absence of p-laws. One might hold that one can test causal connections only on

the basis of regularities. Such a claim would be false, of course, as we might make causal

inferences on the basis of temporal succession or spatiotemporal contiguity, for example. Leuridan

might claim (correctly) that such inferences are fallible, but all inductive inferences are fallible,

including those involving p-laws.
9 Thus, we deviate from the central thesis Holly Andersen (2011) defends in her short response to

Leuridan’s paper: “The existence of stable regularities in nature is necessary for either model of

explanation: regularities are what laws describe and what mechanisms explain” (2011, p. 325).
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uncharitable to saddle Leuridan with this much-maligned view when he has not

explicitly endorsed a view on the matter.

For mechanists, in contrast, mechanistic explanatory models have explanatory

value in virtue of the fact that they represent the relevant portion of the causal

structure of the world, not in virtue of the fact that they have a canonical represen-

tational form. Explanatory models of mechanisms might be diagrams, equations,

exemplars, prototypes, texts, videos, or what have you. In each case, the represen-

tational object of the model might be singular or general. What makes these models

explanatory, to the extent that they are, is that they correctly (or approximately)

describe the causal structures that produce, underlie, or maintain the explanandum

phenomenon. Videos and diagrammatic models, for example, need not include any
linguistic expressions or equations (cf. Perini 2005). Exemplar models, such as a

labeled diagram of a single mechanism working from beginning to end, by their

very nature describe representative instances rather than general types. The

intended scope of the explanatory model, in other words, need not be represented

in the model itself. Once one thoroughly abandons the CL model, there is no

justification for demanding that explanatory models must include p-law statements.

Leuridan’s claim that all mechanistic models must include macro p-law statements,

that is, generalizations about the behavior of the mechanism, is an unnecessary
restriction on mechanistic models that ignores the plain fact that mechanistic

models are frequently developed without asserting within the model that it can be

generalized to other phenomena. This narrow focus blinds one (as it blinded earlier

generations in the philosophy of biology) to the diversity of representational forms

one finds in science. Mechanists such as Salmon (1984) and Craver (2007) have

therefore rightly separated the question of explanation from the question of how

explanatory knowledge is represented.

Let us now consider Leuridan’s second epistemic thesis. For the record, we

know of no mechanist who insists that one can test p-law statements only if one
relies on prior mechanistic knowledge. However, let’s think through Leuridan’s

argument. His sole example is a randomized clinical drug trial, in which subjects

are randomly sorted into two groups, one of which is given a drug, and one of which

is given a placebo. Leuridan perhaps should have acknowledged that the effective-

ness of one’s randomization procedure might depend upon the mechanism of

randomization. What counts as random with respect to one experimental situation

will not count as random with respect to another. Were one to survey the extent of

homelessness in a geographic region by conducting a poll randomized by street

address, the mechanism of randomization would be systematically biased to target

people who have homes. Were one to randomize drug trials by zip code, environ-

mental factors could confound the results. The procedure would not be random in

the relevant respect. What matters is whether the apparent randomization procedure

is likely to sort participants into two groups that have the same distribution of

potentially confounding causal factors. Whether the randomization procedure

achieves that depends on assumptions about the relevant causal mechanisms at

play (even if those assumptions are often so obvious as to be not worth mentioning).

Likewise, Leuridan might have acknowledged that the standard procedure of giving
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placebos to control groups reflects prior knowledge of the mechanism of the

placebo effect. Indeed, experimenters generally take extreme measures to match

the experimental and control groups in every way that might possibly confound the

results. They test for missing control conditions by asking whether there is some

possible difference between the two groups that could plausibly account for the

observed changes in the result/effect. Background knowledge about possible

mechanisms is often central to that task.

Consider in a bit more detail about how such experiments work. A standard

experiment for testing a (c)p-law involves intervening into a putative cause vari-

able, C, and detecting from the putative effect variable, E. Mechanistic details are

often crucial for assessing the appropriateness of one’s interventions. As discussed

briefly above, one wants to ensure that one’s intervention produces the effect in E
(if any) via C and not via some other mechanism. That is, the intervention should

change C. It should not change E directly. It should not change directly the value of

any variable between C and E. Furthermore, the intervention on C itself should not

be correlated with any other variable that is a cause of E (unless it is causally

intermediate between C and E). In some cases, one wants to ensure that the

intervention severs the causal influences of other variables on C so that one can

attribute any change in E to the intervention alone. All of these assumptions behind

the use of interventions to test (c)p-laws are assumptions about the causal structure,

the mechanisms, involved in the intervention technique and in the system under

study. An adequate philosophy of experimental intervention thus might make

considerable progress by asking how mechanistic knowledge enters into these test

procedures (see Woodward 2003; see summary diagram in Craver 2007, Ch. 3).

What about the detection component of a test for a (c)p-law? Allan Franklin

(2009) has generated a useful list of strategies by which scientists confirm that their

techniques are reliable indicators of phenomena such as E. Many of these strategies

rely crucially on facts about the mechanisms at play. One might, for example, argue

that there could be no other cause of the measured value of E besides the fact that E
has that value. One might show that one’s technique reliably registers reliable

artifacts known to be produced under aberrant causal conditions. One might rely

on a theoretical understanding of the mechanism by which the detection technique

works. One might check the results of one’s technique against another technique

that relies on causally independent mechanisms (see Franklin 2009). In each of

these cases, one relies on knowledge about the mechanisms involved in the system

and in the detection technique to argue that the methods in question provide an

adequate measure of E in these circumstances. In short, even if it is possible to test

(c)p-laws without knowing the mechanisms (and we deny that Leuridan’s example

shows as much), one might learn a great deal about how (c)p-laws are tested by

thinking about the mechanisms involved in the test conditions. By casting the

debate as a forced choice between laws and mechanisms, one occludes far more

interesting questions about how mechanistic knowledge contributes to the design

and interpretation of experiments for testing p-laws.

Finally, Leuridan claims that if our ability to test (c)p-laws relies exclusively on

cs-mechanisms, then we face an infinite regress. The regress arises because if
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cs-mechanistic knowledge relies upon knowledge of (c)p-laws (or, more precisely,

mechanistic explanations must involve p-law statements), and if knowledge of

(c)p-laws requires knowledge of cs-mechanisms, then we never reach the epistemic

bottom. It is not clear to us that this is a well-formed problem, and so we are not

clear how to solve it.10 We know of no foundationalist who proposes to build

scientific knowledge out of the basic building blocks of mechanisms or laws.

Foundationalists tend to construe the epistemic foundation of science in terms of

particular matters of fact, sense data, or innate ideas, not in terms of p-laws or

mechanisms. We think that both p-laws and mechanisms contribute to the advance-

ment of science, and we feel no pressing need (and have been given no compelling

argument) to place one above or below the other in the order of our knowledge.

Furthermore, it is not at all clear from Leuridan’s formulation how laws stop the

regress. If one must know p-laws in order to adequately test p-laws (e.g., p-law

statements that one’s randomization procedure regularly randomizes, that one’s

interventions work the same way each time, and so on), then one still has a regress

of sorts, and Leuridan has not shown how it will come to an end. How can we design

a randomized experiment if we cannot trust that our randomizing procedure gener-

ally randomizes? And how can we control for confounding factors if there are no

general facts about which factors are confounding? How do we know that our

intervention is adequate if there are no general facts about how our intervention

works? It would appear that laws are no more epistemically secure than are

mechanisms in the foundationalist view that Leuridan apparently embraces.

5 Conclusion

For the discussion of these matters to move forward, it is crucial not to manufacture

an artificial conflict between philosophers who emphasize the centrality of

mechanisms in our thinking about science and philosophers (such as Mitchell)

who seek a plausible way to talk about generalization in science. No mechanist

denies that there are pragmatically useful regularities. And nobody who thinks there

are pragmatically useful regularities should feel any pressure to deny that the search

for mechanisms is central to the practice of biology and many other sciences.

It is a surprising fact about the history of the philosophy of science that of these

two correlative concepts, generalizations have tended to dominate the discussion.

Against this backdrop, mechanists should be read as suggesting something of a

gestalt shift in which mechanisms are moved into the foreground. Such a shift leads

attention away from the formal structure of scientific theories (and questions about

the logical structure of law statements and models) and toward the material

structures that scientists endeavor to describe. Attention to such material structures

10 Contrary to Leuridan’s claim, Machamer et al. (2000) discuss bottom-out activities not as a way

of solving some sort of epistemic regress but as a disciplinarily relative way of identifying when

explanations come to an end.
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provides resources for thinking about how generalizations and mechanisms are

discovered, evaluated, and extrapolated and into how such concepts are deployed in

explanation, prediction, and control. The perceived need to defend laws, no matter

how much they have been weakened and stripped of their once-robust metaphysical

content, reflects a conservative refusal to acknowledge that perhaps the philosophy

of science might benefit from coming at its subject matter from a fresh perspective.

Mechanists decenter laws in their thinking about science because the old paradigm,

centering laws, has become mired in debates that are inconsequential and, as a

result, have stopped generating new questions and producing new results. In this

chapter, we have argued that by trying on the mechanistic gestalt, one can make

progress on problems concerning explanation, laws, prediction, and manipulation

where the nomic approach seems to have run out of gas. Moving forward, there are

far more interesting and better-motivated questions to ask than whether

mechanisms can replace generalizations or vice versa.
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Chapter 8

Natural Selection and Causal Productivity

Roberta L. Millstein

Abstract In the recent philosophical literature, two questions have arisen

concerning the status of natural selection: (1) Is it a population-level phenomenon,

or is it an organism-level phenomenon? (2) Is it a causal process, or is it a purely

statistical summary of lower-level processes? In an earlier work (Millstein,

Br J Philos Sci, 57(4):627–653, 2006), I argue that natural selection should be

understood as a population-level causal process, rather than a purely statistical

population-level summation of lower-level processes or as an organism-level causal

process. In a 2009 essay entitled “Productivity, relevance, and natural selection,”

Stuart Glennan argues in reply that natural selection is produced by causal pro-

cesses operating at the level of individual organisms, but he maintains that there is

no causal productivity at the population level. However, there are, he claims, many

population-level properties that are causally relevant to the dynamics of evolution-

ary processes. Glennan’s claims rely on a causal pluralism that holds that there are

two types of causes: causal production and causal relevance. Without calling into

question Glennan’s causal pluralism or his claims concerning the causal relevance

of natural selection, I argue that natural selection does in fact exhibit causal

production at the population level. It is true that natural selection does not fit with

accounts of mechanisms that involve decomposition of wholes into parts, such as

Glennan’s own. However, it does fit with causal production accounts that do not

require decomposition, such as Salmon’s Mark Transmission account, given the

extent to which populations act as interacting “objects” in the process of natural

selection.

R.L. Millstein (*)

Department of Philosophy, University of California, Davis,

One Shields Avenue, Davis, CA 95616, USA

e-mail: rlmillstein@ucdavis.edu

H.-K. Chao et al. (eds.), Mechanism and Causality in Biology and Economics,
History, Philosophy and Theory of the Life Sciences 3, DOI 10.1007/978-94-007-2454-9_8,
© Springer Science+Business Media Dordrecht 2013

147

mailto:rlmillstein@ucdavis.edu


1 Introduction

In the recent philosophical literature, two questions have arisen concerning the

status of natural selection: is natural selection a causal process or is it a purely

statistical aggregation? And second, is natural selection at the population level or at

the level of individual organisms? In an earlier work, I argue that natural selection

should be understood as a population-level causal process, rather than a purely

statistical population-level summation of lower-level processes or as an organism-

level causal process (Millstein 2006).1

In reply, Stuart Glennan (2009) argues that (1) natural selection is produced by

causal processes operating at the level of individual organisms but that there is no

causal productivity at the population level and (2) there are many population-level

properties that are causally relevant to the dynamics of evolutionary processes. In

making these replies, Glennan relies on a claim that there are “two types of

causes,”2 causal productivity and causal relevance.

I agree with Glennan’s second claim concerning the causal relevance of natural

selection at the population level, but I disagree with his first claim concerning the

lack of causal productivity of population-level selection processes. Thus, my focus

in this chapter will be on the first claim; I will argue that natural selection is

produced by causal processes operating at the population level.

In what follows, I will first review Glennan’s distinction between causal produc-

tion and causal relevance, followed by an exegesis of his arguments for the claim

that there is no causal production at the population level of natural selection. I then

respond to each of his arguments. Finally, I offer positive reasons for thinking that

there is casual production at the population level of natural selection processes.

1 In this earlier work (Millstein 2006), I referred to an “individual-level” causal process instead of

an “organism-level” causal process. This was a somewhat unfortunate choice of terminology on

my part, since, as I will discuss below, populations are themselves individuals. On the other hand,

the advantage of that terminology was that it was agnostic with respect to the units of selection; the

individuals in question could be genes, cells, organisms, etc. So, to be clear – in this chapter, for the

sake of simplicity – I discuss only populations of organisms, with the understanding that selection
can occur in populations of other entities. The more general question, then, which I will not be

discussing here, is whether natural selection consists of causes that act on the individuals of any
sort that constitute a population (including a population of populations) or whether natural

selection consists of causes that act on the population as a whole. Also, in this chapter I will be

discussing Salmon’s sense of the term “causal process”; what I call a “causal process” in my 2006

paper would probably be, in Salmon’s terms, part of a “causal nexus.” I will return to this point

briefly at the end of this chapter.
2 Others have also argued for causal pluralism, for example, Cartwright (2004) and Hall (2004).
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2 Glennan’s Causal Pluralism: Causal Productivity

and Causal Relevance

Glennan gives the following examples of causal productivity:

• The bowling ball knocked over the pin.

• The explosion made Edward deaf.

• The firing of neuron A caused the firing of neuron B.

Causal productivity, according to Glennan, is:

• A relation between events (where an event is an object doing something).

• Local – spatiotemporally contiguous or connected by contiguous intermediates.

• Transitive – if A produces B, and B produces C, then A produces C.

• Tied to mechanistic accounts of causation.

It is the connection to mechanistic accounts of causation that most concerns us

here. Glennan mentions the following mechanistic accounts as exhibiting causal

production: his own (1996, 2002); Salmon’s (1984); Machamer, Darden, and

Craver’s (2000) [hereafter MDC]; and Dowe’s (2000). In Glennan’s terms, causally

connected events require intervening mechanisms involving interacting objects (or

parts or components3). In MDC’s terms, mechanisms consist of entities engaging in

activities that produce change. In Salmon’s terms, causal processes “are continuous

paths of objects through space-time that can interact when they intersect, producing

changes in the properties of the objects that constitute those processes” (Glennan

2009, p. 328). Although of course Glennan has defended his own account of

mechanisms, for the purposes of his arguments concerning productivity and natural

selection, he deems the differences in terminology and detail among the accounts of

mechanisms to be not significant.

According to Glennan, causal relevance is a counterfactual relation of depen-

dence between a fact f and an event e. Glennan gives the following examples of

causal relevance:

• The fact that Mom did not turn off the hose was causally relevant to her

basement flooding.

• The fact that the key has a certain shape is causally relevant to whether it will

open the door.

• The fact that the wind is over 30 mph increases the likelihood that a serious fire

will occur.

Glennan argues that there are some cases of apparent causation that fit causal

relevance but not causal production. In the “Mom” example above (a so-called

omission cause), it is true that if Glennan’s mother had turned off the hose, her

basement would not have flooded; since the counterfactual is satisfied, failure to

3 See Bechtel and Abrahamsen (2005).
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turn off the house is causally relevant to the basement flooding. However, failure to

turn off the hose is not an event (there is no object doing something), and as a result,

locality is not satisfied, either; thus, the “Mom” example fails to exhibit causal

production, according to Glennan. That is, we cannot, Glennan asserts, say that the

fact that his mother did not turn off the hose produced her flooded basement. On the

other hand, Glennan maintains that there are some cases of apparent causation that

fit causal production but not causal relevance, such as cases of overdetermination

(Glennan 2010b). In overdetermination cases, each putative cause is sufficient to

produce the effect, but neither is necessary, so that one cannot say that if the cause

had not occurred, the effect would not have occurred (i.e., the counterfactual is not

satisfied).

Glennan claims that full understanding of the causal basis of an event requires

both the causally productive causes and the causally relevant causes and can be

expressed in the form: event c causes event e in virtue of fact f. I myself am not fully

convinced that there are two types of causes; indeed, I suspect that accounts of

causal relevance and causal production reveal different aspects of the same phe-

nomenon and that there are ways of handling the omission and overdetermination

cases. However, as nothing I intend on arguing for in this chapter turns on causal

monism, I will assume, for the sake of argument, that causal pluralism of the type

that Glennan endorses is true. Moreover, I will mainly focus on causal production,

since the question I am examining is whether natural selection exhibits causal

production at the population level.

3 Glennan’s Arguments Against Population-Level Causal

Production in Natural Selection

To try to show that natural selection fails to exhibit causal production at the

population level, Glennan gives an example of frequency-dependent selection,

which seems like it would exhibit population-level causation if any kind of selec-

tion does (Millstein 2006). He asks us to imagine a population of light and dark

water bugs whose survival depends on not being seen by a predator fish. The rarer

form is always fitter than the more common form because the predator fish form a

stereotypic searching image associated with the more common color. Thus, when

the light-colored bugs are rarer, they are fitter, but once the light bugs come to

predominate in the population, the dark bugs become rarer and thus fitter.

Glennan says that the water bug example shows how and why the frequency of a
color form (a population-level property) is causally relevant to that form’s fitness as

well as to changes in the distribution of forms within the population (a population-

level effect). Indeed, I have argued that natural selection in general (i.e., not just

frequency-dependent selection) satisfies counterfactual accounts of causation; if

there were no heritable differences in physical characteristics among the organisms

in a population (a population-level property), then there would be no differences in

reproductive success. In other words, there would be nothing to be selectively
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favored or disfavored, as all the organisms would be of the same genotype

(Millstein 2006). However, Glennan claims, we cannot strictly say that increased

frequency of a form within a population produces decreased fitness of that form,

because production is a relation involving objects and events, while the population

is not (in this case at least) an individual object and the increase of frequency or

decrease of fitness are not individual events:

The only entities here are the fish and the bugs, the only activities are the activities of

individual fish and bugs, and the only interactions are when the fish eat the bugs and when

the bugs make baby bugs. (Glennan 2009, p. 331)

It is only at the level of the activities and interactions of individual bugs, he

argues, that we find the mechanisms that produce new bugs.

Glennan’s crucial claim here is that populations are not objects (or in MDC’s

terms, entities) in this example. Glennan gives three reasons for thinking that

populations are not objects: (1) entities need to be localized in space and time;

they need to engage in particular activities at particular times and places. But, he

asserts, the population in the water bug case does not have these properties; the

population as a whole is spread out and does not engage in collective activities. The

only activities are those of the individual organisms – swimming, evading

predators, eating, etc. – and these are not activities of the population as a whole.

(2) What makes a collection of parts into a single entity is that these parts have a

stable structure, that the stable structure engages in activities as a unified entity, and

that these collected parts share a common fate. But, Glennan claims, when a fish

kills a water bug, it kills the whole water bug – it cannot kill its legs but not its body.

On the other hand, when a fish kills a water bug, it does not kill the whole

population of water bugs. The life of one water bug is more or less independent

of another. (3) One cannot say categorically that populations either are or are not

individual entities; the question of whether they are individuals only makes sense in

the context of analyzing a particular causal process. He allows that an ant colony or

a baboon troop may be an individual, but in this case the bugs in the pond are not.

Furthermore, according to Glennan, population-level properties do not produce

change because the population is not a part of the mechanism that produces changes

in genotype and phenotype frequencies. On Glennan’s account of mechanisms, the

parts of the mechanism have to interact with other parts in order to produce the

behavior of the whole. But, he asserts, the population as a whole does not interact

with other entities as a whole in order to change its genotype and phenotype

frequencies.

4 Responses to Glennan’s Arguments

It is this last presupposition of Glennan’s – that causal production is mechanistic

production involving parts and wholes – that I will question first. I will then argue

that populations do exhibit the characteristics that Glennan says are necessary to be
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causally productive. Thus, populations as a whole, at a given point in time, can
causally produce future states of the same population.

4.1 Non-decompositional Causal Production

Elsewhere, Rob Skipper and I (Skipper and Millstein 2005) argue that natural

selection is not a mechanism in Glennan’s (or MDC’s) senses. So, to some extent

Glennan and I agree. However, the problem is not, as Glennan states, that “the

population as a whole does not interact with other entities as a whole in order to

change its genotype and phenotype frequencies” (Glennan 2009, p. 335). Indeed,

there is at least prima facie reason to think that populations of water bugs as a whole

often do interact with other entities as a whole. For example, a 1969 study of Sigara
distincta (the organism on which Glennan’s water bug example was based) suggests

that an increase in water bugs in a particular location was due to an invasion

(discussed in Macan 1976). Here “invasion” is not in the sense of an “invasive

species,” where a few organisms colonize a new area and reproduce rapidly; rather,

it is an invasion analogous to that of an invading army. That is, the water bugs

migrated as a whole, which undoubtedly changed the genotype and phenotype

frequencies in the populations that they migrated from and to. (I give other

examples of populations acting as a whole below.) So again, the problem is not

that the population as a whole does not interact with other entities as a whole in

order to change its genotype and phenotype frequencies.

Rather, one of the reasons that Skipper and I were unable to construe natural

selection as a mechanism in Glennan’s sense is that, on his account, the interactions

among the parts of a mechanism are supposed to explain the behavior of the whole.

In other words, mechanistic explanations involve decomposing the whole into its

parts (or entities and activities, on theMDC view). However, if it were the case that a

population could interact with other entities as a whole to produce changes in the

very same population, this would not seem to fit the Glennan and MDC models of

mechanistic explanation: the interactions of the whole would be what explain the

behavior of the whole. In other words, the explanation would not be decompositional

in the way that mechanistic explanations on the Glennan and MDC accounts –

instances of what Skipper and I call the “new mechanistic philosophy” – seem to be.

Here it might be objected that the accounts propounded in the new mechanistic

philosophy are not, in fact, decompositional.4 After all, Darden argues that “finding

the mechanism for the segregation of genes did not require decomposing genes into

their parts, but required finding the wholes, the chromosomes, on which the parts,

the genes, ride” – in other words, finding the mechanism required going “up” in size

level rather than “down” (Darden 2005; see also Darden 1991). Glennan, for his

part, has recently given an example of an ephemeral mechanism which occurs “at”

4 Thanks to Carl Craver, Lindley Darden, and Stuart Glennan for each pushing me on this point.
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a level: the death of the French literary critic, Roland Barthes, who was struck by a

laundry truck while crossing a Paris street on the way home from meeting with

then-President François Mitterrand (Glennan 2010a). Other defenses of the new

mechanistic philosophy, such as Bechtel and Abrahamsen (2005), Craver (2007),

and Craver and Bechtel (2007), emphasize both the multilevel nature of mechanis-

tic explanation and the importance of situating of a mechanism in its context (see

especially Craver 2001 on this latter point). So, how can I claim that accounts under

the new mechanistic philosophy are decompositional?

A distinction made by Salmon between etiological explanations and constitutive
explanations is useful in answering this question. Salmon states that both types

of explanation are “thoroughly causal.” However, according to Salmon, etiological

explanations “explain a given fact by showing how it came to be as a result of

antecedent events, processes, and conditions” (1984, p. 269). Constitutive explana-

tions, on the other hand, show “that the fact-to-be-explained is constituted by underly-

ing causal mechanisms”; they exhibit “the internal causal structure of the

explanandum” (1984, p. 270). I would suggest that etiological explanations are “at” a

level, whereas constitutive explanations cite lower levels by citing the parts that make

up the whole (i.e., they are decompositional). According to Salmon, we can expect that

most explanations will have both etiological aspects and constitutive aspects, but we

should also recognize that there are some cases of pure etiological explanation and

some cases of pure constitutive explanation. Salmon gives the explanation of “the

presence of aworked bone that is thirty thousand years old in anAlaskan archaeological

site” as an example of a pure case of etiological explanation, noting that “to explain this

fact, it is not essential to look for the causal constituents of the bone” (1984, p. 270).5

In general, the newmechanists seem to agree with Salmon that most explanations

include both etiological and constitutive aspects; however, whereas Salmon’s

account emphasizes etiological explanations, the new mechanist philosophy

emphasizes constitutive ones. Indeed, Craver explicitly distinguishes his project

from Salmon’s in exactly this way, stating, “The variety of explanation that I am

interested in is constitutive (or componential) causal-mechanical explanation: the

explanation of a phenomenon, such as the opening of a Ca2+ channel, by the

organization of component entities and activities” (2007, p. 8). Similarly, Bechtel

acknowledges that “mechanistic explanations are inherently reductionistic insofar

as they require specifying the parts of a mechanism and the operations the parts

perform” (2011, p. 538). Thus, Darden’s example of the mechanism for the segrega-

tion of genes seems to be the exception rather than the rule, and Glennan distinguishes

ephemeral mechanisms from his primary account of systems mechanisms, which

do involve the decomposition of a system into parts (Glennan 2010a, p. 258).6

5 He also states, “Microphysics is invoked to ascertain the age of the bone, but not explain its

presence in the site where it was discovered” (1984, p. 268).
6 Illari andWilliamson (2010) also seem to understandMDCmechanisms as being decompositional.

Kuorikoski (2009) usefully distinguishes between mechanisms that involve decomposition and those

that do not; he agrees with Skipper and Millstein (2005) that natural selection falls into the latter

category. (Thanks to Till Gruene-Yanoff for the pointer to the paper by Kuorikoski).
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So, to return to the point at hand, recall my claim that, contra Glennan, there

seems to be at least prima facie reason to think that populations of water bugs as a

whole often do interact with other entities as a whole. If it were the case that a

population could interact with other entities as a whole to produce changes in the

very same population, then a pure “at a level” etiological explanation would better

illuminate this phenomenon than a constitutive explanation. Thus, Salmon’s

account, which emphasizes etiological explanations over decompositional ones –

an account that Glennan accepts as providing an account of causal production, as

mentioned earlier – is a more promising strategy for characterizing natural selection

than the new mechanist accounts, which emphasize decompositional explanation

over etiological explanation.7

To that end, let me briefly review Salmon’s views. Salmon’s (1984) account8

describes both causal propagation and causal production. Salmon suggests that a

baseball at rest or in motion is a causal process because it is capable of transmitting

(or propagating) a mark through time without further interactions. For example, if

one makes a scuff on a baseball, the scuff simply persists on the baseball; the

baseball, with its mark, propagates through time. On the other hand, changes in

causal processes are produced by causal interactions, that is, intersections of

processes where changes in the characteristics of the processes occur at and persist

beyond the space-time point of intersection. For example, the interaction of a

moving baseball (a causal process) and a window (another causal process) can

produce a change in both the window and the baseball, namely, the breaking of the

widow and a change in the trajectory of the baseball. Note that there is no

decomposition here; neither the baseball nor the window needs to be broken

down into parts in order to explain the interaction between the two causal processes

or the production of change. Indeed, the mass of the entire ball is one factor

(aside from velocity, wind resistance, etc.) in the window’s breaking exactly the

way it did.9

7 Skipper and Millstein (2005) offer additional reasons for thinking that the new mechanistic

philosophy does not, in its current form, adequately characterize natural selection. I have focused

on the issue of decomposition here in order to address the decompositional assumption behind

Glennan’s claim that population-level properties do not produce change because the population is

not a part of the mechanism that produces changes in genotype and phenotype frequencies. I thus

seek to highlight the way in which Salmon’s account can provide a non-decompositional picture of

causal production in natural selection.
8 I focus on Salmon’s Mark Transmission account rather than his later Conserved Quantity account

because I believe that it is more broadly applicable to causation outside the domain of physics.

Indeed, Salmon explicitly states that his 1984 account of scientific explanation is intended to cover

many different disciplines, such as the behavioral sciences, the physical sciences, and the biomed-

ical sciences (1984, p. 267).
9 Similarly, Salmon notes that when two moving pool balls intersect in space-time, energy and

momentum are transferred, altering the states of motion of both balls; thus, the intersection is a

causal interaction in which the change in each process can be said to be produced by the other

process (1984, pp. 169–170).
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Although Salmon distinguishes between causal propagation and causal

production, it seems to me that causal propagation can be construed as a type of

causal production, or, at least, it can be construed as causal production in Glennan’s

sense. Recall that, according to Glennan, causal production is (1) a relation between

events, (2) local, and (3) transitive. Propagation very clearly satisfies all three of

these criteria. The events in question are the ball at one point in space-time and the

ball at a subsequent point in space-time; these events are contiguous in time and

space and, given a third event in space-time, transitive. I will refer to my claim

that causal propagation is a type of causal production later in the chapter.

Now suppose that, like a baseball, a population were capable of transmitting a

mark; it would then be considered a causal process on Salmon’s account, capable of

propagating causal influence through space and time. If so, the population could

interact with other causal processes, producing a change in the characteristics of

those processes at the same time that the other processes produced a change in the

characteristics of the population. Then it would seem as though a population could

be causally productive of its own changes without citing the activities of the

organisms that compose it. But for this to be the case, a population would need to

be an object (categorically, and not just in certain situations), so let us turn to that

question.

4.2 Populations as Individuals

Elsewhere (Millstein 2009, 2010), I argue that populations are individuals

(“objects”), using the Ghiselin-Hull individuality thesis as my inspiration (Ghiselin

1974, 1997; Hull 1976, 1978, 1980). Briefly, my argument is that populations are

composed of individual organisms, just as organisms are composed of individual

cells; a population is a particular thing – not a class, since it exists in space and time,

and not merely a set, since it is integrated via the survival and reproductive

interactions of its constituent members with members having a shared fate (albeit

less so than organisms); a population has a beginning in time (e.g., migration

of organisms away from a population) and an ending in time (e.g., death of the

last organism in a population); a population does change over time, but so do

organisms; and a population is continuous in time via the causal interactions that

occur over time.10

10 Here one might worry about circularity if individuals (“objects”) are characterized in terms of

interactions, if causal processes are objects persisting and changing through space-time, and if

interactions are intersections of causal processes. However, Salmon (1994) clarifies that

interactions are not to be defined in terms of causal processes, only in terms of processes more

generally, where “[a] process is something that displays consistency of characteristics” (1994, p.

299). Causal processes are then characterized by their ability to transmit marks, where a mark is a

type of interaction – “an alteration to a characteristic that occurs in a single local intersection”

(Salmon 1994, p. 299). An object persisting or changing through space-time is one example of a
causal process; however, a carrier wave is another.
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The main aspect that Glennan seems to miss here is the extent to which

populations are integrated. Recall his claim that “when a fish kills a water bug, it

doesn’t kill the whole population of water bugs. The life of one water bug is more or

less independent of another” (2009, p. 333). But it is not true that the life of one

water bug is more or less independent of another. If a fish kills a water bug, then

there are more resources (e.g., food, mates) available for the other water bugs.

Conversely, a water bug who is adept at obtaining food and mates affects other bugs

because those resources are no longer available to them. Indeed, on my view,

populations are characterized by their survival and reproductive interactions, with

the boundaries of the population as the largest grouping where the rates of interac-

tion are much higher within the grouping than outside. Thus, it seems prima facie as

though populations can be causally productive in the process of natural selection.

4.3 Potential Worries

But further worries remain. Glennan implies that for populations to be causally

productive, they would need to (1) be localized in space and time, (2) have a stable

structure, (3) engage in activities as a unified entity in particular times and places,

(4) be individuals in the natural selection process, and (5) have parts that share a

common fate. I will take up each of these criteria one at a time and show that

populations do, contra Glennan, in fact meet them.

With respect to localization in space and time, Glennan worries that in the water

bug scenario, “the population as a whole is spread out,” which is certainly the case.

But there are spaces between the cells that compose an organism, and yet, there is

no difficulty conceiving organisms as individuals (“objects”). So, the issue is not

space per se; rather, the issue is whether the parts are close enough in space and

time so that they can be interacted with as a whole. In Glennan’s natural selection

example, the predator fish is able to form a stereotypic image of the water bug with

the more common color, suggesting that the predator fish is able to perceive the

population (or at least a significant percentage of it) as a whole. Thus, the popula-
tion is sufficiently localized in space and time to engage in causal production.

The second worry is that populations are not sufficiently stable in the face of

interventions to interact as a whole, and it is true that populations are not entirely

stable. Even without changes in the environment (“interventions”), organisms may

be born (increasing the size of the population) or die (decreasing the size of the

populations). Immigration or emigration may also change the size of the popula-

tion. However, consider fire (a type of “intervention”) – a process that would

destabilize many otherwise stable entities. Even if many of the organisms of a

population were to die in a large fire, the population would generally still retain

many of the characteristics that it had before the fire: it would be composed of

members of the same species that it was composed of before the fire, some of the

same organisms would remain, and some of the genetic and trait variations would

remain. Thus, populations seem sufficiently stable to engage in causal production.
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The third worry is that populations do not seem to engage in activities as a

unified entity in particular places and times. Here, it is not entirely clear what counts

as an activity or whether Glennan means to fully take on the MDC notion of activity

(which is itself not entirely clear). However, here are some candidate activities that

populations can engage in as a whole: invading (as discussed above), changing

other populations (e.g., as with predator/prey interactions), splitting, going extinct,

speciating, and changing their environments in a way that facilitates colonization

by populations of other species. Indeed, if it turns out that that these do not count as

activities, so much the worse for the requirement that entities engage in activities.

They all involve interactions (the term used in Glennan’s own account of

mechanisms) between populations and other entities, including interactions

between populations and entities in the populations’ environments.

Glennan does acknowledge that populations sometimes act as individuals, for

example, in migration processes. However, he says, “With respect to selection

processes, the question of whether or not populations or sub-populations should

be treated as individual entities depends upon whether or not group selection is at

work” (Glennan 2009, p. 333). More generally, “The question of whether they are

individuals only makes sense in the context of analyzing a particular causal

process” (Glennan 2009, p. 333). So, this raises a fourth worry, whether populations

are individuals in the natural selection process specifically.

However, it seems to me that the population is acting as an individual with

respect to the selection example that Glennan describes, even in the absence of

group selection. Again, recall that the fish form an image associated with the more

common color. This in itself is evidence that there is an interaction between the fish

and the population as a whole – the fish forms an impression of the population as a

whole, and the image is a result of the interaction. Of course, when a predator fish

kills a water bug, there is an interaction between an individual predator and an

individual bug. But that single interaction does not constitute a natural selection

process, just as the interaction of your fingers with a keyboard does not constitute

the creation of a document; that involves your interaction with the whole computer.

Or, to invoke an analogy for selection processes more generally, a single particle of

flour falling through the hole of a sifter does not constitute sifting. One sifts not a

single particle of flour, but rather a “population” of flour particles, with particles

jostling against each other, some falling through and some remaining in the sifter.

Similarly, selection occurs with respect to the whole population. Types are only

selectively favored or disfavored as compared to other types in the population; a

type that might appear reproductively successful when considered individually is

actually unsuccessful in the selection process if other types outreproduce it

(Millstein 2006). Thus, for selection in general, the population acts as an individual.

Finally, there is the worry that populations do not have parts that share a

common fate. However, the fact that the organisms (the “parts”) of a population

are engaging in survival and reproductive interactions implies that they do have a

shared fate, at least to some extent. For example, consider a new advantageous

variation introduced into a population. If there is interbreeding among the

organisms (one kind of reproductive interaction), then that variation may spread
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in the population, enhancing the survival of the population as a whole. Indeed, there

are many kinds of interactions among the members of the population.11 Survival

interactions include direct physical combat; competition for limited food, sunlight,

or shelter resources; and cooperation, whereas reproductive interactions include

mating successfully or unsuccessfully and offspring rearing. Lots of interactions

imply that the organisms will share a common fate to a high degree.

To summarize, I have argued that populations, to a sufficient extent, are cate-

gorically individuals (objects) and are localized in space and time, that they do have

a stable structure, that they engage in activities as a unified entity, and that the

members of a population share a common fate. Thus, populations are not excluded

from being causally productive on that basis. But to make the positive case for

populations as causally productive, I return to Salmon’s account of causal propaga-

tion, causal production, and the baseball example, which I use as an analogy.

5 Populations Can Be Causally Productive

First, like a baseball, a population is capable of transmitting a mark. For example, if

an organism in the population is born or killed, that “mark” persists in future states

of the population. However, Michael Strevens (personal communication) raises the

worry that if an organism disappearing from the population counts as a mark, then

Salmon’s criterion will collapse. According to Strevens, Salmon wants to say, for

example, that a shadow traveling across a wall is not a causal process because

“marks” made on the shadow at one point (e.g., by a blemish on the wall) do not

persist to the next point – but the effect on a population of killing a member seems

very much like that (at one moment there, at the next moment not). Here I would

respond that, on my account, an organism is a member of a population in virtue of

the fact that it is interacting with other members of the population. So, if a new

organism is born, it will affect other organisms: eat their food, offer them some

food, mate with them, refuse to mate with them, etc. The population is changed

because of that new organism. So, when that organism later dies, the rest of

population is similarly affected – perhaps a small amount, but an effect nonetheless.

And since most organisms are more than just ephemeral shadows (let us suppose

most of them live more or less the average for the species), I think their appearance

and disappearance is different than the appearance and disappearance of a shadow.

The organisms persist, and thus, the mark on the population persists as well. That

being said, there are probably more obvious sorts of marks, such as a disease that

quickly spreads through a population, and, of course, all that really needs to be

11 The interactions within (or among) the members of a population are to be distinguished from the

interactions between the population as a whole and other entities. It is the occurrence of the former

interactions that binds the population together as a whole and thus makes possible the latter kinds

of interactions.
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shown for a population to be a causal process on Salmon’s account is that a

population is capable of transmitting a mark. My point in choosing birth and

death as examples of marks is that mark transmission is not only possible for a

population, it is commonplace.

Second, like a baseball at rest or in motion, the state of the population (the entity)

at one point in space-time can propagate its influence to another point in space-time

simply by persisting or even while changing (e.g., moving). The genotype and

phenotype frequencies of a population at one point in time probabilistically12

propagate the genotype and phenotype frequencies to future points in time.

This propagation is reflected in transition probability models, equations that

describe the probability of various possible future states, given the current state

of a population. Future states of the population are partially the result of, and are

constrained by, present states. As I suggested above, this propagation itself is a

type of causal production, albeit different than the type of causal production that

occurs as the result of an interaction.

Third, like a baseball that hits a window, the population can produce changes in
other causal processes through causal interactions and be changed in turn. As

Skipper and Millstein (2005, p. 345) suggest, “To capture natural selection as a

mechanism, an account of productive continuity is required that captures the ways

in which relevant property differences among a population of entities entering into

causal interactions with their environment is productive of change in that popula-

tion.” To return to Glennan’s example, recall that each predator fish is forming a

stereotypic searching image representing the most common water bug color in the

population; this is an interaction between the fish and the water bug population.

Thus, we can say that a population of water bugs, with dark forms rarer, repeatedly

interacts with predator fish to probabilistically produce relative increases in the

darker form as a result of preferential predation (discriminate sampling) of the

lighter forms. In this way, natural selection can, contra Glennan, exhibit causal

production at the population level.

Or consider one of the cases discussed in Skipper and Millstein (2005) where

frequency-dependent selection is not involved. Suppose there exists a population of

finches that vary in their beak length, a heritable trait, with the varying beak lengths

conferring variable abilities to obtain seeds for food. The population of finches

repeatedly interacts with the seeds in the environment, so that some finches are

favored over others based on the differences among the finches, producing future

changes in distributions of types in the population. In other words, the environment

(in the form of seeds) discriminates among the members of the finch population;

this interaction between population and environment produces changes in both the

population and the environment (analogous to an interaction between flour and a

sifter). Again, it is of course true that a particular finch can also interact with a

particular seed, but that interaction neither constitutes selection nor prevents an

12 Salmon intends his account to include probabilistic processes; see, for example, his 1984 work,

p. 268.
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interaction from occurring at the population level. This case illustrates how even in

non-frequency-dependent situations, natural selection exhibits causal production at

the population level.

These three points taken together clarify the way in which populations can be

seen as causally productive via Salmon’s Mark Transmission account. However, I

must make a few caveats. I am not endorsing Salmon’s account over other accounts

of causation or mechanisms; other accounts may be needed to supplement Salmon’s

account or may handle other sorts of cases better.13 Moreover, I do not think this

discussion of Salmon’s account captures everything there is to be said about natural

selection as a population-level causal process (or, to be consistent with Salmon’s

terminology, perhaps I should say “natural selection as a population-level causal
nexus,” since there are many interactions between populations and their

environments and populations and other organisms); for example, I have not said

anything about the way in which natural selection can be distinguished from other,

similar causal processes, such as sexual selection and artificial selection. But I do

think that Salmon’s views on causal propagation and causal production can capture

some important aspects of the role of populations in natural selection. His views

help elucidate the ways in which populations propagate their influence through

space and time as well as the ways in which populations’ interactions with various

other entities in their environment produce changes in those populations.

6 Conclusions

My main goal in this chapter has been to respond to Glennan; Glennan argues that

entities like populations can only give rise to causally relevant causes in the process

of natural selection, but as I have sought to show, populations can be causally

13One worry that has been raised by a number of recent authors, including Glennan (Glennan

2009; see also Hitchcock 1995 and Craver 2007), is that Salmon’s account fails to pinpoint which

of the causal processes that produce an effect are explanatorily relevant. In one version of an

example which purports to illustrate the problem, Ms. Slims chalks her cue stick with blue chalk

and deftly hits the cue ball, which hits the eight ball, which proceeds to the corner pocket. The

claim seems to be that, while the blue “mark” has been transmitted (perhaps even to the eight ball),

it is not explanatorily relevant to the effect. However, I think we need to be clear on what the effect

is; if we are talking about a token chain of events (and not a type of chain of events), then the effect

that occurred is that an eight ball with a blue mark dropped into a corner pocket. And the blue mark

is explanatorily relevant to that token event, just as the momentum of the cue ball is. We still might

be worried that Salmon wanted his account to be able to give an explanation for the event type

“ball in the corner pocket” and that the blue mark is not relevant to that. Here, I think three possible

responses are open. One is that explanatory relevance and causal relevance come apart; the blue

mark is always causally relevant, but it simply is not explanatorily relevant to the event type.

Second is to insist that in explaining why an eight ball with a blue mark has gone into the corner

pocket, we have already explained why the eight ball has gone into the corner pocket. Third is to

give up on using Salmon’s account to explain event types and only use it to explain event tokens.

(Thanks to Christopher Hitchcock for helpful discussion).
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productive, too, both through causal propagation and causal interactions. I was

initially motivated to respond to Glennan because it seemed to me that, if correct,

his claims would imply that the merely causally relevant causes occurring at the

population level were somehow “lesser” than the more robust causally productive

causes at the level of individual organisms. These thoughts probably have more to

do with my views about causation than Glennan’s, although I am apparently not

alone in this way of thinking; as Jaegwon Kim suggests, “causal production, which

respects the locality/contiguity condition,” involves “real connectedness between
cause and effect” (2007, p. 236; emphasis in original). Furthermore, Glennan

claims that full understanding of the causal basis of an event requires both the

causally productive causes and the causally relevant causes even though he believes

that at the population level of natural selection, there can be causal relevance

without causal production. This seems to leave bare causal relevance at the popula-

tion level a bit free-floating and weird. Finally, although in this chapter I have not

sought to question the claim that there are two kinds of causes, I find it somewhat

troubling. For all of these reasons, it seemed to me that he was mounting a serious

challenge to my claim that natural selection is a population-level causal process

(Millstein 2006): that those population-level causes were “lesser” or “free floating

and weird” or part of a distinction that was not fully coherent and thus perhaps

ephemeral. So, responding to Glennan here is, in part, a defense of my earlier work.

However, I hope to have made some other, more general points along the way.

One is that while I find the new mechanists’ approach appealing for many areas of

biology (such as molecular biology and neuroscience), I do not think it illuminates

all cases. This echoes a claim of Skipper and Millstein (2005), but here I go beyond

that negative claim to show how Salmon’s Mark Transmission account can be more

helpful in understanding other sorts of biological phenomena, such as natural

selection. Salmon eventually abandoned his Mark Transmission account because

he felt it relied too much on counterfactuals; however, for people like me who do

not find counterfactuals ontologically objectionable (and anyone who defends a

causal dependence view of causality cannot find counterfactuals ontologically

objectionable), there is much insight to be gained by analyzing cases in terms of

Salmon’s account. In part, this is because (as I argued above) phenomena such as

natural selection are better suited to non-decompositional, etiological accounts,

rather than the constitutive decompositional accounts that the new mechanists

emphasize. Sometimes, all we need is to cite causation “at” a level. However, I

also think that concepts such as “causal processes,” “causal propagation,” and

“causal interaction” are rich and powerful tools. I recommend Salmon’s Mark

Transmission account as an alternative to the new mechanists’ approach – again,

not as a replacement but as a supplement. I expect that other areas of biology and

science more generally might be fruitfully examined through the lens of Mark

Transmission. Whether Salmon’s account should itself be considered a type of

mechanist approach is a matter for another time, and I do not think anything I have

said here turns on that question.

Finally, I think it is important that we understand what sort of entities can enter

into causal relations and in what ways. I think we have certain human-centered
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biases about what entities count as individuals, and these biases can lead us to

mistaken conclusions about causality. If populations can be causally productive,

perhaps other, similar entities can as well: communities, ecosystems, etc.

Organisms are not a privileged level of organization.
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Chapter 9

Is Natural Selection a Population-Level Causal

Process?

Rong-Lin Wang

Abstract Recent discussions of natural selection focus on two questions: first, is

natural selection a causal process or is it a statistical consequence of lower-level

events? And second, is natural selection at the population level or at the level of

individuals? Bouchard and Rosenberg (Br J Philos Sci, 55:693–712, 2004) argue

that natural selection is causal and at the level of individuals, as opposed to Matthen

and Ariew (J Philos, 99:55–83, 2002) and Walsh et al. (Philos Sci, 69:452–473,

2002), who argue that natural selection is at the population level and purely

statistical. In addition to these two polar extreme positions, Millstein (Br J Philos

Sci, 57:627–653, 2006) tries to steer a middle course by arguing that natural

selection is a population-level causal process. I will make three points in this

chapter: first, Millstein’s account of natural selection is incomplete, in the sense

that nowhere in her account can one find a place for cases of natural selection-of.

Second, we should prefer Brandon’s account of natural selection and drift over

Millstein’s, on the grounds that her account fails to meet a plausible requirement

that Brandon’s account succeeds in meeting: namely, whenever natural selection

and drift operate together, a change in the strength of natural selection implies an

inverse change in the strength of drift, and vice versa. Third, the prospects of the

view that natural selection is a population-level causal process depend on a satis-

factory solution to both the epiphenomenon and the overdetermination problems.

With the help of an analogy, I will show how the two problems can be dealt with.

Recent discussions of natural selection focus on two questions: first, is natural

selection a causal process or is it a statistical consequence of lower-level events?

And second, is natural selection at the population level or at the level of

R.-L. Wang (*)

Department of Philosophy, National Taiwan University, 1, Sec. 4, Roosevelt Rd.,

Taipei 10617, Taiwan

e-mail: rlwang@ntu.edu.tw

H.-K. Chao et al. (eds.), Mechanism and Causality in Biology and Economics,
History, Philosophy and Theory of the Life Sciences 3, DOI 10.1007/978-94-007-2454-9_9,
© Springer Science+Business Media Dordrecht 2013

165

mailto:rlwang@ntu.edu.tw


individuals? Bouchard and Rosenberg (2004) argue that natural selection is causal

and at the level of individuals, as opposed to Matthen and Ariew (2002) and Walsh

et al. (2002), who argue that natural selection is at the population level and purely

statistical.

In addition to these two polar extreme positions, Millstein (2006) tries to steer a

middle course by arguing that natural selection is a population-level causal process.

On this view, (1) natural selection can be a cause of evolution, namely, it is able to

make a change in the frequency of traits among a population from one generation to

the next; (2) natural selection is by nature comparative: whenever it acts as a cause

of evolution, it impinges on comparative and thus population-level properties (e.g.,

variation in fitness, frequency of traits) rather than on individual-level properties

(e.g., fitness, traits). According to Millstein (2002, 2005, 2006), who endorses a

modified version of Beatty’s (1984) account, “natural selection should be

characterized as a discriminate sampling process whereby physical differences

between organisms are causally relevant to differences in reproductive success.

Drift, by contrast, is an indiscriminate sampling process whereby physical

differences between organisms are causally irrelevant to differences in reproductive

success” (2006, p. 640). Such a sampling process, discriminate or not, operates at

the population level.

I will make three points in this chapter: first, Millstein’s account of natural

selection is incomplete, in the sense that nowhere in her account can one find a

place for cases of natural selection-of. Second, we should prefer Brandon’s account
of natural selection and drift over Millstein’s, on the grounds that her account fails

to meet a plausible requirement that Brandon’s account succeeds in meeting:

namely, whenever natural selection and drift operate together, a change in the

strength of natural selection implies an inverse change in the strength of drift, and

vice versa. Third, the prospects of the view that natural selection is a population-

level causal process depend on a satisfactory solution to both the epiphenomenon

and the overdetermination problems. With the help of an analogy, I will show how

the two problems can be dealt with.

1 Why Is Millstein’s Account of Natural Selection Incomplete?

Sober (1984) draws a contrast between selection-of and selection-for. To see why,

consider the following two propositions:

(1) There is selection-of trait T in population p if and only if T is fitter than not-T

in p.

(2) There is selection-for trait T in population p if and only if T is fitter than not-T

in p.

166 R.-L. Wang



According to Sober, (1) is true but (2) is false. That is how selection-of differs

from selection-for. Here is a case of selection-of:

Consider a population in which there is selection for being green; this selection pressure

exists because being green camouflages organisms in the green environment they occupy,

thus protecting them from predators. Suppose further that there is no selection for being

small—body size is selectively irrelevant. And now imagine that all and only the green

organisms in the population are small. In this situation, the green organisms are selected,

which means that the small ones are too. However, though there is selection for being

green, there is no selection for being small. Selection-of is the concept that is tightly

connected to variation in fitness; if there is selection of green (small) organisms, then

they are on average fitter than those that are not. But the fact that small organisms are fitter

than organisms that are not small does not entail that there is selection for being small.

(Shapiro and Sober 2007)

It is noteworthy that selection-of is a discriminate sampling process in the sense

that such a process of selection is not random. In fact, selection-of is a sampling

process which, based on differences in fitness between organisms, favors fitter

organisms. And that is how small organisms are favored and selected. On the

other hand, it is also noteworthy that, in the course of selection-of process,

differences in fitness are causally irrelevant to differences in survival and repro-

ductive success among organisms. The fact that small organisms are fitter is

causally irrelevant to that fact that small organisms have a greater success in

survival and reproduction. Small organisms are selected accidentally.

Now, let’s turn to selection-for. It is beyond question that selection-for is a

discriminate sampling process. And such a sampling process, to be sure, is no less

discriminate than selection-of. Still, selection-for is distinguishable from selection-

of, and that is why Sober draws a contrast between them. In the case of selection-

for, as opposed to selection-of, differences in fitness among organisms are causally
relevant to differences in survival and reproductive success. Recall that Millstein

characterizes natural selection as “a discriminate sampling process whereby physi-

cal differences between organisms are causally relevant to differences in reproduc-

tive success.” Such a characterization, as one can see now, fits well and only well

with selection-for. As to selection-of, it is missing in Millstein’s account of natural

selection.

Consider Brandon’s (2005) account of natural selection. Brandon takes natural

selection to be a discriminate sampling process where discriminate means unequal

probability of being chosen in the course of sampling process. So, without any

difference in fitness among a population of organisms, there would be no discrimi-

nate sampling process. Difference in fitness among organisms is a sine qua non

condition for natural selection. In this sense, Brandon’s account has the advantage

of putting natural selection-of into its place: natural selection is a discriminate

sampling process including both selection-for and selection-of processes. By con-

trast, in Millstein’s account, there is a conflation between natural selection-of with

drift if (1) between the discriminate and the indiscriminate sampling processes that

she characterizes, there is no third option and if (2) by drift she means each and

every sampling process whereby physical differences between organisms are caus-

ally irrelevant to differences in reproductive success.
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Although Millstein succeeds in offering a right characterization of natural

selection-for, she does not offer a right characterization of natural selection tout

court. In contrast, Brandon’s account of natural selection is right, but he fails to

make a distinction between selection-for and selection-of. In this regard, Millstein

and Brandon are half right and half wrong with respect to the characterization of

natural selection. In my view, a more complete picture would be like this (Fig. 9.1):

And a more satisfactory distinction would be as follows:

Natural selection-for: a discriminate sampling process whereby physical

differences between organisms are causally relevant to differences in reproduc-

tive success

Natural selection-of: a discriminate sampling process whereby physical differences

between organisms are causally irrelevant to differences in reproductive success
Drift: an indiscriminate sampling process whereby physical differences between

organisms are causally irrelevant to differences in reproductive success

One might wonder whether I use the term “discriminate” in an equivocal way: on

the one hand, “discriminate” means sampling processes in which differences in

reproductive success are connected to differences in fitness (i.e., discriminate

between fitter and less fit traits). On the other hand, “discriminate” means sampling

processes whereby differences in reproductive success are causally relevant to

physical differences (i.e., discriminate between causally more and causally less

accountable traits). Indeed, given my intention to use the term in a broader sense so

as to cover both selection-for and selection-of, it is not surprising that the problem

of equivocality arises.

To deal with the problem, let me draw a distinction between the two senses of

“discriminate” and call them, respectively, F-discriminate and C-discriminate. The

term “F-discriminate” is intended to refer to discrimination between fitter and less fit

traits. In F-discriminate sampling processes, physical differences among organisms

are still statistically, though not causally, relevant to differences in reproductive

success. As for the term “C-discriminate,” it refers to discrimination between

causally more and causally less accountable traits. In C-discriminate sampling

processes, physical differences among organisms are causally relevant to

differences in reproductive success. It turns out that selection-of is anF-discriminate

sampling process, whereas selection-for is a C-discriminate sampling process.

Selection-for

Discriminate

Sampling Process Selection-of

Indiscriminate — Drift

Fig. 9.1 Distinction between

selection-for, selection-of,

and drift in terms of

discriminate/indiscriminate

sampling processes
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Generally speaking, causal relevance, as is well known, implies statistical

relevance. That means in C-discriminate sampling processes, physical differences

among organisms are statistically relevant to differences in reproductive success.

So F-discriminate and C-discriminate sampling processes turn out to have some-

thing in common, namely, statistical relevance. It is statistical relevance as common

core that permits the term “discriminate” to have a meaning broad enough to cover

both selection-for and selection-of. Now, the term “discriminate,” in its broader

sense, means sampling processes in which physical differences among organisms

are statistically relevant to differences in reproductive success.

So a solution to the problem of equivocality is available, and it helps to secure

the characterization of selection-of as a kind of discriminate sampling process, in

contrast to Millstein’s account. Despite the solution, I suspect that what is really at

issue concerns not whether I use the term “discriminate” equivocally; the real issue

concerns instead why natural selection, as Millstein proposes, should be confined to

C-discriminate sampling processes alone. Indeed, Millstein’s account of natural

selection is causalist in its entirety, which definitely bars F-discriminate sampling

processes, in general, and selection-of, in particular, from counting as selection

processes. It is interesting to note that Millstein never characterizes natural selec-

tion in terms of fitness. Although Millstein (personal communication) does not

doubt that one can have a fitness-based account of natural selection, she avoids

using the term “fitness” because it is a controversial term, and she does not need it to

make the points she wants to make. In Millstein’s view, a causalist account of

natural selection remains defensible without resort to the contentious term “fitness.”

I surely agree with her on this point. Nonetheless, it seems appropriate to separate

two questions apart: what is an adequate causalist account of natural selection? And

what is an adequate account of natural selection tout court? Indeed, though I agree

that Millstein succeeds in offering an adequate causalist account, I have been

arguing contra Millstein that the idea of natural selection should be broadened

enough to include F-discriminate sampling processes. Given that the argument I

offered above is based on the controversial term “fitness,” its strength accordingly

is limited if it is to be addressed to a causalist like Millstein. So let me try not to

argue against her in terms of fitness.

Consider again the case of selection-of. Selection-of is a sampling process that

biologists often name “hitchhiking.” Such a name suggests that selection-of cannot

occur all by itself: whenever there is selection-of, there is selection-for. Let’s call

such a property of selection-of hitchhikliness. Needless to say, the property of

hitchhikliness is essential to selection-of. Recall that on Millstein’s causalist

account of natural selection, there is no way to count selection-of as a discriminate

sampling process. Thus, whenever selection-of and selection-for are both present,

granting that selection-for is a discriminate sampling process, there must be two,

rather than one, sampling processes. In short, Millstein’s causalist account implies

that it is impossible for selection-of to be numerically identical to selection-for.

However, such an implication is problematic, for it surely is possible that a

selection-of sampling process is numerically identical to a selection-for sampling

process. I would say the property of hitchhikliness, which is essential to selection-

of, provides evidence in support of this claim: selection-of and selection-for on
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which it hitchhikes actually are numerically identical. Namely, despite the appear-

ance, they are, ontologically speaking, one and the same sampling process. It is

noteworthy that in order to show the implication of Millstein’s account is problem-

atic, such a strong claim is not necessary. A weaker claim would suffice: when

selection-of and selection-for are both present, it is possible that only one single

sampling process is occurring. But is it really possible?

Recall the example of selection-of offered in Shapiro and Sober (2007). Onto-

logically speaking, selection for being green and selection of being small are not

two separate sampling processes. The distinction between them is made in the

human mind, not in the world. It is we who separate selection of being small from

selection for being green. Nature never separates the two sampling processes. Green

organisms and small organisms are selected all at once and in one shot. It is not the

case that green organisms are first selected, and then it’s the turn of small organisms

to be selected. Being numerically identical, selection for being green and selection

of being small are one and the same sampling process. Since selection-of and

selection-for are, arguably, one single sampling process, an adequate account of

natural selection should be broad enough to include both selection-for and selec-

tion-of. The problem with Millstein’s account is that it defines discriminate sam-

pling process (natural selection) too narrowly to include selection-of: not only is it

impossible for selection-of and selection-for to be one single sampling process, it is

also impossible that natural selection and drift, when operating together, are one

and the same sampling process. As is clear now, if a sampling process is discrimi-

nate, then it surely is not indiscriminate. Thus, if it counts as natural selection, then

it cannot count as drift, and vice versa. In short, natural selection and drift,

according to Millstein, are mutually exclusive. In my view, Millstein should

leave open the possibility that natural selection and drift coact as one single

sampling process. This includes two things: first, it is possible that natural selection

and drift act together. Second, it is possible that when they act together, only one

single sampling process is occurring.

Let’s consider the first requirement. Indeed, the coexistence of natural selection

and drift, far from being unusual, makes better sense of biologists’ practice. When

biologists debate whether natural selection or drift predominates in an evolutionary

event, they are presupposing that natural selection and drift may act together.

Otherwise, their debate, if not pointless, would be highly misleading. Note that

although Millstein characterizes natural selection and drift as mutually exclusive, it

does not follow that they cannot act together. To be sure, a sampling process, if it

counts as natural selection, will not be drift, and if it counts as drift, it will not be

natural selection. However, it is possible that two sampling processes act together,

one of which counts as natural selection and the other as drift. Hence, it is possible

that natural selection and drift act together. In this sense, Millstein would have no

problem with the first requirement.

As is evident now, I will argue that Millstein should meet the second require-

ment, namely, when natural selection and drift act together, it is possible that only

one single sampling process is occurring. In my view, this is a move that Millstein

should make. Although making such a move may not require Millstein to abandon
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the idea that natural selection is characterized as a (C-)discriminate sampling

process, it does require Millstein to revise her characterization of drift so as to

make room for its being numerically identical to natural selection when they act

jointly. I will begin my argument by pinpointing a problem with Millstein’s account

of drift. That brings me to a disagreement between Brandon and Millstein with

respect to drift.

2 Why Is Brandon’s Account of Natural Selection and Drift

Preferable?

According to Millstein, natural selection, as a causal process, is probabilistic. That

is why she characterizes natural selection in terms of causal relevance rather than
causal determination. When natural selection acts, it is true that physical

differences among organisms are causally relevant to differences in reproductive

success. However, the physical differences do not causally determine the

differences in reproductive success: given the same physical differences, different

differences in reproductive success are possible. Among the many possible results,

there may well be a distribution of probabilities, and every possible result is not

equally probable. The most probable result is surely the most expected when natural

selection acts, but the other results, even improbable, remain possible. That is how

natural selection, though a causal process, is nonetheless probabilistic.

Recall that Millstein characterizes drift, in terms of causal irrelevance, as an

indiscriminate sampling process. When drift occurs, physical differences among

organisms are not causally relevant to differences in reproductive success, let alone

causally determine them. Thus, drift is no less probabilistic than natural selection.

Like natural selection, drift has many possible results, among which there may well

be a distribution of probabilities, and every possible result may not be equally

probable.

Millstein claims, on the one hand, that the distinction in terms of discriminate/

indiscriminate sampling process alone suffices to separate, at least conceptually,

natural selection from drift. On the other hand, she claims that an improbable result

of natural selection might be indistinguishable from a product of drift. At first sight,

it appears paradoxical to make the two claims at once. Millstein argues, however,

that one should separate process from outcome in order to get things clear: although

natural selection as outcome might be indistinguishable from drift as outcome,

natural selection as process is conceptually distinguishable from drift as process.

And such a distinction can be made without regard to outcomes.

To Millstein’s view, Brandon (2010) raises an objection:

[N]atural selection and drift are co-products of the same process, namely a probabilistic

sampling process (Brandon and Carson 1996; Matthen and Ariew 2002; Walsh et al. 2002).

Thus, although it is of crucial importance to separate selection and drift, one cannot do so

on the basis of process alone (contra Millstein 2002), one must do so on the basis of

outcomes. (Brandon 2010)

9 Is Natural Selection a Population-Level Causal Process? 171



According to Brandon, random drift is any deviation from expected result due to

sampling error.1 Now, sampling error occurs whenever the sampling process is

unrepresentative. Thus, any deviation from the expected result is a proof that the

sampling process is unrepresentative; conversely, only deviation can prove that the

sampling process is unrepresentative. On this account, deviation and sampling

error/unrepresentative sampling are, so to speak, two sides of one coin. And that

is why, on Brandon’s view, drift as process (viz., sampling error/unrepresentative

sampling) cannot be defined independently of drift as outcome (viz., deviation from

expected result).2 For Brandon, deviation and only deviation indicates a sampling

process is not representative, which in turn requires that the effective population

size be finite.3

Not surprisingly, Millstein disagrees with Brandon’s account of drift. As men-

tioned above, the idea of “fitness” on which Brandon heavily relies to make his case

is highly controversial, and Millstein does not need it to make the points she wants

to make. In my view, one can appreciate Brandon’s account without drawing on the

notion “fitness.” And that is why, as shown in the preceding paragraph, I rephrased

his remarks without using “fitness.” To parallel Millstein’s process-oriented

account, I would say what is essential to Brandon’s view is that drift is an

unrepresentative sampling process.

Millstein (2005) points out a second problem with Brandon’s view: granting that

natural selection is a probabilistic sampling process, any result, with or without

deviation, is no proof of whether natural selection as process has occurred. And

since drift is also a probabilistic sampling process, the same can be said of drift as

process. So contrary to Brandon’s view, outcome is neither sufficient nor necessary

to distinguish conceptually natural selection from drift.

Granting that discriminate sampling process is probabilistic and that indiscrimi-

nate sampling process is probabilistic as well, I think Millstein is right that process

alone suffices to make a conceptual distinction between them. But it does not follow
that process alone suffices to make a conceptual distinction between natural selec-

tion and drift. Unless it is the case that natural selection surely is a discriminate

sampling process and that drift surely is an indiscriminate sampling process,

Millstein would not be justified in inferring that outcome is neither sufficient nor

necessary to distinguish conceptually natural selection from drift. As it turns out,

the crucial issue is whether drift surely is an indiscriminate sampling process.

1 As an anonymous referee points out, Brandon’s views on drift may have changed since 2005.

Because my paper focuses on Brandon’s (2005) argument where he responds directly to Millstein,

I will not refer to Brandon’s (2006) “The Principle of Drift: Biology’s First Law,” where he seems

to offer a fleshed out alternative view of drift.
2 Note that Brandon deliberately separates deviation from sampling error in using the expression

“due to,” which suggests, among others, that he views deviation as outcome and unrepresentative

sampling/sampling error as process.
3 In an infinite population, it is extremely unlikely that deviation arises. Alternatively speaking, it

is extremely likely that sampling process is representative.
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The idea that drift is equivalent to an indiscriminate sampling process, as shown

in Millstein’s account, is problematic. According to Millstein, natural selection is a

causal process in the sense that physical differences among organisms are causally

relevant to differences in reproductive success. The strength of natural selection

depends accordingly on the degree of causal relevance. By contrast, drift is

characterized in terms of causal irrelevance. Can the strength of drift depend on

the degree of causal irrelevance? Note that on Millstein’s account, causal irrele-

vance, unlike causal relevance, cannot be a matter of degree. Causal irrelevance is a

matter of all or nothing, not a matter of more or less. If causal irrelevance were a

matter of degree, granting that “highly causally irrelevant” is equivalent to “barely

causally relevant” and that “moderately causally irrelevant” to “moderately caus-

ally relevant,” the clear-cut distinction between natural selection and drift would be

blurred. As a result, there might be cases where one and the same sampling process

is both natural selection and drift, with a variation in degree of strength. Such cases

would threaten to undermine Millstein’s efforts to distinguish conceptually natural

selection from drift. In short, causal irrelevance, unlike causal relevance, cannot be

a matter of degree. Hence, although the strength of natural selection varies with the

degree of causal relevance, the strength of drift can vary neither with the degree of

causal irrelevance nor with the degree of causal relevance. In other words, causal

relevance is a factor of strength in the case of natural selection, but not in the case of

drift.

Let’s consider a second factor that affects, as Millstein (personal communica-

tion) agrees, not only the strength of natural selection but also the strength of drift,

namely, the effective population size. Indeed, the effective population size, as a

factor of strength, affects any sampling process, discriminate or not. Now, is there
any connection between the two factors, namely, the size of population and causal

relevance? Here is Millstein’s favorite example of drift:

To use Hartl and Clark’s example, imagine shellfish that ‘produce vast numbers of pelagic

larvae that drift about in the sea’ (Hartl and Clark 1989, p. 70). Although Hartl and Clark do

not elaborate, the image is of virtually identical larvae, subject to the vagaries of tides and

predators (i.e., indiscriminate sampling). (Millstein and Skipper 2007)

Note that an indiscriminate sampling process can operate in any population,

whatever its size. Pelagic larvae among a large population would drift about in the

sea no less than larvae among a small population. Conversely, the size of population

has no impact on how indiscriminate a sampling process would be when it operates

in the population. The sampling process occurring in a large population of larvae

would be as indiscriminate as the sampling process occurring in a small population.

Now, if one reads “indiscriminate” as “causal irrelevance,” then causal irrelevance

has nothing to do with the size of population. A similar inference would lead to the

conclusion that causal relevance also has nothing to do with the size of population.

Not surprisingly, for any information about the size of population would be

unnecessary to tell whether or not physical differences among organisms are

causally relevant to differences in reproductive success. It follows that the two
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factors of strength, namely, the size of population and causal relevance, are

independent from each other.

To sum up, on Millstein’s view, the strength of natural selection depends on two

independent factors, namely, causal relevance and the effective population size. In

contrast, the strength of drift depends exclusively on the effective population size.

When the degree of causal relevance is higher and the effective population size

larger, the strength of natural selection increases. And the larger is the effective

population size, the smaller is the strength of drift.

Now, a problem with Millstein’s account is that it would lead to a disagreement

with most biologists on how to determine the relative strength of natural selection to

drift. When natural selection and drift operate together, biologists are interested in

telling whether one of them predominates. And their judgment is based on a crucial

quantity, namely, 4Ns, where N is the effective population size and s is the selection
coefficient. If the quantity increases, then natural selection tends to dominate drift;

on the contrary, if the quantity decreases, then it is drift that tends to predominate. It

is noteworthy that interpreting “s” as “the degree of causal relevance” makes

perfect sense of Millstein’s view that causal relevance and the effective population

size represent indeed two separate factors in determining the strength of natural

selection. In addition, since s is the selection coefficient, it also makes perfect sense

of Millstein’s view that the effective population size is the only factor that affects

the strength of drift. Thus, when both s and N increase, the crucial quantity 4Ns
increases accordingly, and it turns out that natural selection tends to dominate drift,

because the strength of natural selection increases, whereas the strength of drift

decreases, and vice versa for decreasing s and decreasing N. So far so good for

Millstein’s account.

However, recall that on Millstein’s view, natural selection and drift, when they

operate together, are two separate sampling processes and that the effective popu-

lation size affects not merely the strength of natural selection but also the strength

of drift. In contrast, causal relevance affects only the strength of natural selection.

Now consider a case where N decreases but s increases in such a way that the crucial
quantity 4Ns increases. In such a case, because the crucial quantity increases,

biologists would predict that natural selection tends to dominate drift. However,

on Millstein’s account, such a prediction would not be justified: when N decreases,

the strength of drift increases accordingly. As to the strength of natural selection, it

is hard to say whether it increases or not: on the one hand, the strength of natural

selection tends to diminish because N decreases. On the other hand, it tends to

increase because s increases. Since the two tendencies oppose each other, one might

wonder which one wins out. Even if the fact that the crucial quantity increases

suggests that the strength of natural selection ends up increasing, one might still

wonder whether it increases greatly enough to outcompete drift. Hence, this is a

case where it would be hard to say whether natural selection or drift tends to

predominate, even if the crucial quantity increases. To be sure, this is not the

only case where a disagreement arises between Millstein and the majority of

biologists. A similar argument can be provided in considering a second case

where N increases but s decreases in such a way that the crucial quantity 4Ns
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decreases. In such a case, although most biologists would predict that drift tends to

dominate natural selection, Millstein would decline to make such a prediction.

These cases represent a divergence of Millstein’s account from a broad consen-

sus among biologists. Such a divergence arises ultimately from Millstein’s view

that when natural selection and drift operate together, there must be two separate

sampling processes. As a result, it is possible for the two separate sampling

processes either to increase their strengths at the same time or to decrease their

strengths at the same time. When such a possible scenario happens, it would be hard

to tell whether natural selection or drift tends to predominate. In contrast, if natural

selection and drift, when they operate together, are one single sampling process and

if their strengths always counteract each other, then neither is it possible for the two

strengths to go up together nor is it possible for them to diminish at the same time.

And an increase in the crucial quantity 4Ns means definitely two things: both an

increase in the strength of natural selection and a decrease in the strength of drift,

which in turn means that natural selection tends to dominate drift, and vice versa for

a decrease in the crucial quantity. It is unclear how, on Millstein’s account, two

separate sampling processes would be so linked together that there definitely is a

trade-off between each other’s strengths. Given that the causal relevance affects

only the strength of natural selection, such a trade-off would seem impossible.

Now, consider the following statement (T):

(T) Whenever natural selection and drift operate together, a change in the strength of

natural selection implies an inverse change in the strength of drift, and vice versa.

I would say that any account of natural selection and drift would be dismissed as

inadequate if it fails to show that (T) is the case. Thus, one problem with Millstein’s

account is clearly this: it fails to meet the statement (T). It turns out once again that
the problem with Millstein’s account arises ultimately from her view that natural

selection and drift are two separate sampling processes.

Admittedly, Millstein’s account, most of the time, leads to no divergence from

biologists’ judgment as to whether natural selection or drift tends to predominate.

That is because when natural selection and drift operate together among a real
population of organisms, it seems reasonable to suppose that the degree of causal

relevance, which is essential to natural selection, remains constant, namely, a fixed

nonzero value. Accordingly, both the strength of natural selection and the strength

of drift depend exclusively on one single factor, i.e., the effective population size.

So although natural selection and drift are two separate sampling processes, there

could be a trade-off between their strengths. Still, theoretically speaking,
Millstein’s account is not consistent with (T).

Now let’s return to Brandon’s account. Recall that he characterizes drift as any

deviation from expected result due to sampling error. Brandon’s characterization

has an immediate and significant advantage: drift as unrepresentative sampling

process is inherently related to the effective population size. The smaller the

effective population size is, the more likely it is that drift would be unrepresenta-

tive, and accordingly, the larger its strength would be. Although a sampling process

is drift if and only if it is unrepresentative, not every representative sampling
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process is natural selection. Nonetheless, when natural selection and drift operate

together, they are one single sampling process, and if this sampling process is

representative, then it surely is natural selection or otherwise drift. It follows that if

this sampling process is more likely to be representative, then it is less likely to be

unrepresentative, and vice versa. So when natural selection and drift operate together,

if there is any change in terms of strength, there surely is a trade-off between each

other’s strengths. In this sense, Brandon’s account meets the requirement (T).
As shown above in my argument, the trouble with Millstein’s causalist account

turns out to be the view that natural selection and drift are, ontologically speaking,

two separate sampling processes. A question arises: could Millstein avoid the

trouble without undermining her causalist account? In my view, it suffices for

Millstein to revise her characterization of drift in such a way that drift ceases to

be equivalent to an indiscriminate sampling process. To this end, it suffices that

unrepresentative sampling processes count as drift. Note that an indiscriminate

sampling process could still count as drift, provided that when it operates together

with natural selection, the requirement (T) is satisfied. As is evident, if unrepresen-
tative and indiscriminate sampling processes both count as drift, then it is not the
case that drift and natural selection are necessarily mutually exclusive. And the

trouble with Millstein’s account would be avoided. Such a revised concept of drift

is de-unified to the extent that it seems to cover heterogeneous cases. I would say

that such a de-unification, instead of showing the revised concept is inappropriate,

serves to show what is characteristic of drift. Indeed, drift is an umbrella concept

supposed to cover all cases where chance plays a role in a sampling process. Given

that chance might play a role in a variety of ways and in a variety of situations, it is

no wonder why the concept of drift is un-unified and even un-unifiable. Thus,

Brandon’s account of drift as unrepresentative sampling process turns out to be

helpful to Millstein’s account of drift as indiscriminate sampling process, and both

could be incorporated into an un-unified account of drift.

3 Could Natural Selection Be a Population-Level Causal

Process?

According to Millstein, natural selection is by nature comparative: whenever it acts

as a cause of evolution, it impinges on comparative and thus population-level

properties (e.g., variation in fitness, frequency of traits) rather than on individual-

level properties (e.g., fitness, traits). On this view, natural selection is a population-

level causal process. One problem with such a view is that it threatens to make

natural selection into a shadow process. Indeed, this problem has been identified by

Shapiro and Sober (2007) as follows:

Natural selection is not a population-level causal process. If it were a sampling process

operating at the population-level, it would be, so to speak, a shadow process, an epiphe-

nomenon of individual-level causal processes. (Epiphenomenon problem)
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To see how the epiphenomenon problem arises, one should be reminded that

each of the population-level properties supervenes on individual-level properties

(Shapiro and Sober 2007). Now, at the level of individual organisms, few would

deny that there are already many causes for individual births and deaths and that the

summation of such individual births and deaths constitutes the supervenience base

of the change in the frequency of traits (Fig. 9.2).

If many individual-level causes suffice to make a change in the frequency of

traits, then natural selection, which is supposed to be the population-level cause of

such a change, threatens to be redundant—a shadow process. Or to put it another

way, granting that a change in the frequency of traits is the summation effect of

many individual-level causes, if natural selection were the population-level cause

of such a change, then the same change would be overdetermined. To avoid

overdetermination, one cannot help but annihilate natural selection into a shadow

process. Without a satisfactory solution to the epiphenomenon and the overdeter-

mination problems, any claim that natural selection is actually a population-level

causal process would seem premature.

Shapiro and Sober (2007) have tried to debunk an argument which,

supervenience base being equal, requires natural selection to have extra causal

efficacy in order to be a population-level and separate cause (in addition to the

many individual-level causes). They hold that such a requirement is too demanding.

To meet such a requirement is, in their view, a “mission impossible.” I am not sure

that Shapiro and Sober are on the right track when they say that no extra causal

efficacy is needed to qualify natural selection as a separate cause. It is doubtful that

natural selection without extra causal efficacy qualifies as a separate cause. Extra or

not, one has to show first of all where the causal efficacy of natural selection lies.

And that is the crux of the whole issue: on the one hand, natural selection, operating

at the population level, must have causal efficacy; otherwise, it would fade into a

shadow process. On the other hand, to avoid the overdetermination problem, natural

selection should not have causal efficacy. Here lies a dilemma.

In my view, the way out of the dilemma would be a division of labor between

natural selection and individual-level causes. The question is how such a division of

labor can be envisaged. Here are some basic ideas: natural selection is part of the

cause of a change in the frequency of traits. The many individual-level causes do

not suffice for such a change. The many individual-level causes have individual

births and deaths as their effects. Although such effects suffice to sum up the

frequency and calculate the way the frequency changes, the many individual-

level causes do not suffice to explain causally why it changes in the way that it

does. Let me explain.

Population-level:   Natural selection → change in the frequency of traits

↓(supervene on)

Individual-level:       The many causes → individual births and deaths

Fig. 9.2 Individual births and deaths constitute the supervenience base of the change in the

frequency of traits
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It would be helpful to start with an analogy. Suppose two ethnic groups—call

them N and I, respectively—coexist in a kingdom, ruled unfortunately by a tyrant.

An apartheid regime is rigorously maintained in the kingdom. Though the two

groups currently have about the same population size, group I is known to be much

more fertile than group N. Fearing that the noble group N would be outnumbered by

the ignoble group I, the tyrant has a purge plan in mind and cannot wait to execute

it. He promulgates a law according to which the ratio of population size between

group N and I should remain x:1, where x represents the number of years after the

promulgation of the law. The imperial army is responsible for the enforcement of

the law. Since the promulgation of the law, each New Year’s Eve, the imperial army

kills enough members of group I to achieve the right ratio and ensure that the law

would not be violated. Each New Year’s Eve, the whole population of group I is
chased by the imperial army into a forest. And then officers of the imperial army

compete with each other to hunt as many people of group I as possible. The hunting
game will not end until the legally required ratio of the year is definitely achieved.

Let’s see how such a scenario helps to shed light on the causal role played

respectively by the tyrant’s law and by the brute action of the imperial army.

Consider first the tyrant’s law. Apparently, without the tyrant’s promulgation of

the law, the relative frequency in population size between group N and I would not

have changed in accordance with the ratio x:1. In this sense, it seems safe to say that

each annual change in the relative frequency is caused by the tyrant’s law.

Now consider a member of group I, say, Ian, who unfortunately was hunted

down and fell victim to an officer of the imperial army, say, Ned. What is the cause

of Ian’s death? Undoubtedly, Ian was killed by Ned. So without Ned’s killing, Ian

would not have died. In this sense, Ned’s killing causes Ian’s death. But didn’t Ian

get killed also by the tyrant’s law? That is, doesn’t the tyrant’s promulgation of the

law also cause Ian’s death? The answer is apparently yes, for without the law, Ned

would not have killed Ian. Few, if any, would deny that the tyrant’s law is part of the

cause of Ian’s death. Indeed, to tell a causal story about Ian’s death, one needs to

invoke not only Ned’s brutal behavior but also the tyrant’s enactment of the law.

Otherwise, the causal story would be regretfully incomplete.

However, the fact that the two factors contribute jointly to Ian’s death shouldn’t

mislead us into conflating their separate effects. A definite number of people among

group I are killed due to the tyrant’s law, while it is Ned’s killing that makes Ian one
of them. The tyrant’s law determines how many people will die, while each officer

of the imperial army determines exactly who are going to be victims. What is the

separate effect of the tyrant’s brutal law? Answer: the (change in the) relative

frequency in population size between group N and I. And what is the separate effect
of Ned’s killing? Answer: Ian’s being among the dead. From the combination of the

two separate effects, one gets the result: Ian’s death. So the fact that both the

tyrant’s law and Ned’s killing are part of the causal story of Ian’s death does not

imply that either of them fails to have a separate effect. Indeed, the tyrant’s law is

causally responsible for a definite number of people’s death, while Ned’s killing is

for Ian’s being among one of them. To causally explain Ian’s death, one needs to

pinpoint not merely Ned’s brutal killing but also the tyrant’s terrifying law.
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If the preceding analysis is correct, then we have a ready answer to the epiphe-

nomenon problem. Suppose someone raises the epiphenomenon problem in the

following way:

One may wonder: to explain why the relative frequency in population size

between group N and I changes in accordance with a yearly increasing ratio, is it

really necessary to invoke the tyrant’s law? It seems that annual genocides,

committed by the imperial army, suffice to explain why the relative frequency

changes in a yearly increasing way. If one has each and every causal story about

how, each year, each officer of the imperial army kills his victims and how

survivors escape death, then such many causal stories, in addition to a little

statistics, suffice to show why the relative frequency changes in a yearly increasing

way. So the tyrant’s law is causally redundant: it has no effect at all. The change in

the relative frequency is not caused by the law. Rather, it is a summation result due

to many causes that one can only find in each gory and detailed causal story.

The epiphenomenon problem, in this case, fails to cast doubt on the causal efficacy

of the tyrant’s law. Few, if any, would deny that the tyrant’s law is part of the cause

of each annual change in the relative population size between group N and I.
On the other hand, though the many detailed causal stories, in addition to a little

statistics, suffice to sum up the annual relative frequency and calculate the way the

relative frequency changes, they do not suffice to explain causallywhy it changes in
the way that it does. A complete explanation of why the relative frequency changes

in a yearly increasing way must invoke the tyrant’s law. The distinction between

“suffice to sum up” and “suffice to explain causally” permits an answer to the

overdetermination problem: the annual change in the relative frequency is

not overdetermined, for the many detailed causal stories, along with statistics,

do not suffice to explain causally why the relative frequency changes in a yearly

increasing way.

As mentioned above, the view that natural selection is a population-level cause

of the change in the relative frequency among a population from one generation to

the next faces a dilemma: it gets into trouble either with the epiphenomenon

problem or with the overdetermination problem. However, with respect to causal

efficacy, if the tyrant’s law can serve as an analogy for natural selection, then a way

out of the dilemma is accessible to natural selection. So my argument, if successful,

would be good news for the population-level cause view of natural selection. More

specifically, it would be an argument in support of Millstein’s view that natural

selection is a population-level causal process in the sense that it acts as a cause of

evolution and that it impinges on comparative and thus population-level

properties.4 The fact that natural selection operates at the population level provides

no support for it being a shadow process. Despite appearances, natural selection is

part of the cause of the change in the relative frequency.

4 I leave open an interesting question as to whether natural selection, operating at the population

level, is as causally robust as the many events occurring at the individual level. Stuart Glennan

(2009) distinguishes causal relevance and causal productivity and argues that at the population

level of natural selection, there can be causal relevance without causal production. In response,

Millstein (2013) argues that there is causal production at the population level of the natural

selection process.
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4 Conclusion

Selection-of and selection-for, arguably, are one and the same sampling process.

Thus, an adequate account of natural selection should be broad enough to include

both selection-for and selection-of. Millstein’s causalist account, however, defines

discriminate sampling process (natural selection) in terms of selection-for only. Her

view would be more complete if the notion of discriminate sampling process

includes both F-discriminate (selection-of) and C-discriminate (selection-for) sam-

pling processes.

A second problem with Millstein’s causalist account is that it does not meet a

plausible requirement: namely, whenever natural selection and drift operate

together, a change in the strength of natural selection implies an inverse change

in the strength of drift, and vice versa. In contrast, Brandon’s account makes perfect

sense of the trade-off between the two factors’ strengths. The problem with

Millstein’s account arises from the view that, ontologically speaking, natural

selection and drift are two separate sampling processes. To avoid the problem, it

suffices for Millstein to de-unify the concept of drift in such a way that drift

comprises both unrepresentative and indiscriminate sampling processes. Since

drift is an umbrella concept supposed to cover all cases where chance plays a role

in a sampling process, such an un-unifying (even un-unifiable) drift concept, of

which Brandon’s and Millstein’s account of drift are a part, turns out to be credible

rather than ad hoc.

The view that natural selection is a population-level cause seems to face a

dilemma: it is undermined either by the epiphenomenon problem or by the

overdetermination problem. The prospects of the view thus turn on a satisfactory

solution to both the problems. With the help of an analogy, I show how the two

problems can be dealt with: natural selection is not a shadow process, for it is part of

the cause of a change in the relative frequency of traits. On the other hand, the

overdetermination problem can be avoided, for although many individual-level

causes suffice to sum up and calculate how the relative frequency changes, they

do not suffice to causally explain why it changes in the way that it does.

Millstein’s causalist account of natural selection and drift is instructive and

persuasive as well. Still, one may wonder whether it is too incomplete to be

adequate. It is noteworthy that the idea of fitness plays no role in Millstein’s

characterization of natural selection and drift. To be sure, Millstein has good reason

to refrain from using the term “fitness”: it is contentious, and she does not need it to

make the points she wants to make. Nonetheless, it seems undeniable that biologists

routinely use (variation in) fitness to account for evolutionary events. Though it

remains unclear whether an explanation in terms of (variation in) fitness would

properly be called causal, it seems safe to say that any account of natural selection

and drift, in which fitness plays no significant role, would hardly be adequate.

Indeed, any such account would seem to throw out the baby with the bath water.

How to put fitness into the causalist account and give it due weight? An answer to

this question must await, however, another paper.
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Chapter 10

Mechanisms and Extrapolation

in the Abortion-Crime Controversy

Daniel Steel

Abstract John Donohue and Steven Levitt’s seminal and controversial article, The
Impact of Legalized Abortion on Crime, famously argues that the legalization of

abortion in 1973 in the Unites States is a significant factor explaining the surprising

decline in crime rates that occurred there in the 1990s. In this chapter, I examine the

role of extrapolation in Donohue and Levitt’s study and draw three main philosoph-

ical conclusions. First, several different types of causal claims might be at issue in

an extrapolation—including claims about mechanisms and probabilistic causal

effects—and these distinctions matter for methodology because different

conditions may be required to support extrapolation in each case. Secondly, scien-

tific study of a phenomenon typically generates evidence at a variety of levels of

aggregation, and this has important implications for extrapolation. The third and

final point follows on the heels of the second. Like almost all other scientific

inferences, extrapolations are normally components of a complex web of interre-

lated evidence that must be considered together in assessing a hypothesis.

John Donohue and Steven Levitt’s (2001) seminal and controversial article, The
Impact of Legalized Abortion on Crime, famously argues that the legalization of

abortion in 1973 in the Unites States is a significant factor explaining the surprising

decline in crime rates that occurred there in the 1990s. Their argument is interesting

from a philosophical perspective for a number of reasons, one of which is its use of

a variety of methodological approaches in building a case for a causal claim.

Although most of the debate surrounding Donohue and Levitt’s hypothesis has

focused on the interpretation of the statistical data, an important part of their case

involves tracing a mechanism whereby legalization of abortion could reduce crime

rates. The central idea is that unwanted children—whose births were likely to have
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been prevented by abortion were it available—are more likely to be born into

circumstances that increase the chance that they will engage in criminal behavior

upon entering early adulthood. One line of evidence cited by Donohue and Levitt

for this hypothesis consists of data from Scandinavia and Eastern Europe, where for

some periods of the twentieth century, women desiring an abortion were required to

receive legal permission. Thus, data concerning the life outcomes of children whose

mothers requested but were denied abortions are directly relevant to the mechanism

proposed by Donohue and Levitt. The use of data from Scandinavia and Eastern

Europe to support a claim about a mechanism in the United States is an example of

an extrapolation, that is, using a causal relationship found in one context as a basis

for an inference about causal relationships in another that may differ in a number of

relevant respects. Extrapolation is essential for imparting significance to scientific

research beyond the confines of the original investigation, yet relatively little

philosophical attention has been devoted to the question of how and under what

circumstances such inferences are justifiable.

In this chapter, I examine the role of extrapolation in Donohue and Levitt’s study

from the perspective of some recent attempts to clarify the underlying logic and

principles of such inferences (Pearl and Bareinboim 2011; Steel 2008). This project

is intended both to explicate the methodology of the Donohue and Levitt study as

well as to advance philosophical understanding of extrapolation. Three main

philosophical themes emerge from the discussion below. First, several different

types of causal claims might be at issue in an extrapolation—including claims about

mechanisms and probabilistic causal effects—and these distinctions matter for

methodology because different conditions may be required to support extrapolation

in each case. Secondly, scientific study of a phenomenon typically generates

evidence at a variety of levels of aggregation, and this has important implications

for extrapolation. The Donohue and Levitt study, for example, discusses data

concerning psychosocial effects of unwantedness on individual children in addition

to comparisons between rates of abortion and crime among different states in the

USA. As explained in the final section, data from the macro-level can provide a

means of indirectly testing assumptions about similarities of the model and target

made at the level of mechanisms. The third and final point follows on the heels of

the second. Like almost all other scientific inferences, extrapolations are normally

components of a complex web of interrelated evidence that must be considered

together in assessing a hypothesis. Thus, to focus on whether extrapolation alone
could have established a conclusion in a real scientific example (see Lafollette and

Shanks 1996) would be, more often than not, to miss the point. In real-life cases, the

question can only be whether and to what extent the extrapolation strengthens the

overall body of evidence.

I begin with a synopsis of the Donohue and Levitt study. Next in Sect. 2, I

consider the role of multiple levels in the study, in particular, the connection

between the psychosocial mechanism concerning unwantedness and criminal

behavior and the state-level comparisons concerning abortion and crime rates. I

introduce the notion of a “scale-up model” that links a micro-mechanism to a

macro-level statistical relationship. In Sect. 3, I present a framework for
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conceptualizing extrapolation that combines elements from Steel (2008) and Pearl

and Barienboim (2011) and explain its relevance to the Donohue and Levitt study.

Section 4 explains how macro-level data can be used to support an extrapolation

made at the level of mechanisms and links this to the final of the three philosophical

themes listed above.

1 Donohue and Levitt’s Argument

In this section, I examine the structure of Donohue and Levitt’s argument for their

hypothesis that the legalization of abortion in 1973 is the primary cause of the

abrupt, nationwide, and persistent drop in crime rates that began in the early 1990s

in the United States. Their case can be usefully organized into three main

intertwined sub-arguments. First, they argue that the decline in crime rates is not

adequately explained by alternative causes, such as increased incarceration or the

decline of the crack epidemic. Secondly, tracing a mechanism through which

legalized abortion in 1973 could result in a drop in the crime rate 18–24 years

later when the first post-legalization birth cohort entered its peak crime age. Finally,

a statistical argument focused on differing timing of declines in crime rates between

earlier and later legalizing states and on the timing of which types of crime dropped

first.

Nationwide statistics of rates of violent and property crimes in the USA peaked

in the first half of the 1990s and then began a steady decline that has continued into

the first decade of the new century (Truman and Rand 2010). The abrupt, wide-

spread, and persistent nature of this decline constrains possible explanations. Any

explanation must be able to explain why the decline began when it did, why it

occurred throughout the USA, and why it has persisted, now, for over 15 years.

Donohue and Levitt’s hypothesis directly explains each of these features. First, the

impact of abortion legalization on crime would begin to be felt approximately

18 years after the Roe v. Wade decision in 1973—that is, in 1991—when the first

post-legalization cohort entered its peak crime years. Secondly, Roe v. Wade

invalidated legal bans on abortion in all jurisdictions in the USA and hence is a

cause of nationwide scope. Finally, abortion legalization is a cause that exerts its

impact over an extended period of time. The effect of legalization would continue

to be felt as prelegalization generations age out and post-legalization generations

age in. Thus, Donohue and Levitt predict that the crime-reducing impact of

legalized abortion would continue to be felt until around 2020 (2001, p. 415).

Donohue and Levitt argue that a number of alternative explanations of the

decline fail to account for one or more of the three basic features listed above.

For example, consider one of the most popularly cited explanations, innovative

policing strategies. These were instituted in New York City only after the decline in

crime had already begun there and were not implemented in many other cities, such

as Los Angeles, that also experienced significant crime reductions (Levitt 2004, pp.

172–173). Another explanation points to the crack cocaine epidemic, which struck
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many American cities in the late 1980s and subsided in the 1990s. However, the

subsidence of the crack epidemic does not explain drops in crime in suburban and

rural areas in which crack was never a serious problem and fails to explain why the

crime would persistently fall below pre-crack levels (Donohue and Levitt 2004;

Fryer et al. 2005; Levitt 2005). In addition, although increased incarceration and

swelling ranks of police forces likely played a role in reducing the nationwide crime

rate, these factors predate the decline in crime in the 1990s by at least a decade

(Donohue and Levitt 2001, p. 380; Levitt 2004). Since Donohue and Levitt’s (2001)

essay, a few new explanations of the surprising 1990s crime decline have been

proposed. One explanation that accounts for all three basic features of the decline

focuses on the phase out of leaded gasoline required by the 1970 Clean Air Act

(Reyes 2007). Early childhood lead exposure is known to cause a number of

cognitive deficits, some of which are related to aggressive and violent behavior in

adulthood. Thus, environmental regulations enacted by the federal government that

sharply reduced lead exposure could have had a crime-diminishing effect a genera-

tion later, in much the same manner as legalized abortion according to Donohue and

Levitt’s hypothesis. The lead-crime hypothesis also has the advantage of explaining

rising crime rates in the two decades prior to the 1990s, which could have partially

resulted from increased lead exposure throughout the mid-twentieth century to the

early 1970s (Reyes 2007, p. 33). Of course, the causes surveyed above are not

mutually exclusive, and the most likely scenario is that fluctuations in crime rates

are due to a variety of factors, including some not mentioned here.1

The next part of Donohue and Levitt’s case consists of tracing the mechanism

from legalized abortion to reduced crime (section III of their 2001 article). They in

fact propose two mechanisms through which legalized abortion could reduce the

crime rate: cohort-size reduction and selection. Cohort-size reduction is the idea

that legalized abortion would reduce the birth rate, which in turn would mean a

smaller cohort of individuals aging into the high-crime years of 18–24 in the early

1990s. Selection is a more interesting and controversial mechanism and is the one

that will occupy our attention here.

In general, the term “selection effect” refers to a situation in which a group of

individuals defined in an inquiry is not a random sample of the population but

instead differs in some further way that is relevant to topic under investigation. In

this context, the selection mechanism operates if children born to mothers who

wished to terminate their pregnancy are not a random sample of births generally but

are much more likely to be born into adverse family, social, or economic

circumstances that put them at greater risk for criminal activity later in life. The

selection mechanism can be helpfully further divided into two separate sub-

mechanisms. The first concerns the impacts of being born unwanted on the child’s

1 Reyes (2007, p. 36) regards both reduced lead exposure and legalized abortion as significant

factors. Levitt (2004) critically examines several further proposed explanations of the crime drop,

including demographic factors and improved economic conditions. Wadsworth (2010) proposes

that immigration may have contributed to the 1990s decline in crime rates.
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psychological and social development, while the second has to do with factors that

would make the pregnancy unwanted in the first place. To illustrate the first of these

two sub-mechanisms, a mother might resent a child resulting from an unwanted

pregnancy and thus have a more negative and less affectionate attitude towards it,

which could exert a damaging psychological effect on the child. To illustrate the

second, the mother might desire to terminate the pregnancy because she is an

unmarried teenager, and children born to unwed teens, regardless of whether they

are wanted or unwanted, may be at greater risk for a number of adverse life

outcomes, including criminality.

The most direct empirical test of the selection mechanism would identify

children whose mothers desired to terminate their pregnancies but were prevented

from doing so by legal restrictions on abortion. Data sets of this kind exist for

several European countries wherein, during the 1930s–1960s, women desiring to

terminate a pregnancy were required to file an application to obtain legal permis-

sion to do so. Thus, cases of women whose applications for abortion were denied

and who subsequently gave birth constitute precisely the type of sample in question.

Samples of this kind exist for Sweden and the former Czechoslovakia and have

been the basis for a number of studies documenting the psychological and social

effects on children of being born unwanted (see David et al. 1988). The most

thorough of these studies concerns the Prague cohort of 220 children born to

women whose request for abortion was twice denied, on the initial application

and then on appeal. This cohort is known as UP (for unwanted pregnancy) and was

matched with 220 AP (accepted pregnancy) control children. Since the Prague

study was designed to test of the effects on the child of being unwanted (i.e., the first

sub-mechanism mentioned above), the UP and AP subjects were matched on

socioeconomic terms as well as on a number of other factors such as family size.

In addition to collecting medical, school, and legal data, the study conducted

double-blind interviews of parents, teachers, and children, which for the latter

group included psychological and intelligence tests. The study focused on several

age points: birth, age 9, ages 14–16, and ages 21–23. The study found no physio-

logical or health differences between the UP and AP children at birth but a

consistent pattern of less favorable outcomes in the subsequent follow-ups. For

example, at age 9, UP children were significantly more likely to be rejected by peers

(Matejcek et al. 1988, pp. 69–70) and to have difficulty in adapting adequately to

frustration (ibid. 70–71). By the age 14–16 follow-up, the gap in school achieve-

ment between UP and AP children had become statistically significant (ibid. 88).

By the age 21–23 follow-up, more than twice as many UP subjects had been

sentenced in court, and the average prison term of those sentences for the UP

subjects was more than double the average sentence of the AP controls (Dytrych

et al. 1988, p. 94). Since UP and AP families were matched for socioeconomic

status, most of these differences appear to be due to the less favorable internal

family dynamics of the UP subjects (Matejcek et al. 1988, pp. 74–75).

The European studies are cited as support for the selection mechanism in both

the original Donohue and Levitt article (2001, p. 388) as well as in a summary of

that argument given by Levitt (2004, p. 182). The importance of these studies in
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arguing for the selection mechanism is easy to appreciate given that there are no

known records in the USA of women who desired to terminate pregnancy but were

denied legal right to do so.2 However, there are studies using USA data that bear on

the selection mechanism less directly. For example, Donohue and Levitt cite studies

finding that women who terminate pregnancies are, not surprisingly, significantly

more likely to be in circumstances known to adversely affect the life prospects of

children, such as being an unmarried teenager (Levine et al. 1999). Similarly, it is

possible to study overall effects of abortion legalization on the well-being of birth

cohorts. Gruber et al. (1999) do this and find that post-1973 birth cohorts exhibited a

marked reduction in a number of adverse factors, including single-parent

households and poverty.

In addition to tracing a mechanism from legalized abortion to the 1990s decline

in crime rates, Donohue and Levitt argued for their hypothesis on the basis of

statistical data concerning abortion and crime rates. Donohue and Levitt’s statistical

argument turns on three main points. First, since five states in the USA (Alaska,

California, Hawaii, New York, and Washington) legalized abortion around 1970,

Donohue and Levitt’s hypothesis predicts that the declines in the early legalizing

states began about 3 years before those in the other states. And since abortion rates

continued to vary between states after Roe v. Wade, Donohue and Levitt’s hypoth-

esis predicts that states with higher abortion rates would experience greater

reductions in crime. Secondly, because teenagers are much more likely to commit

property crimes than violent crimes, Donohue and Levitt’s hypothesis predicts that

the decline in crime rates would begin with property crime and then spread to more

violent crimes. Finally, given the “age in” impact of abortion legalization, Donohue

and Levitt’s hypothesis predicts that the decline in crime would disproportionately

result from cohorts born after legalization. Donohue and Levitt argue that the data

support all three of these predictions.3

Besides its intimate link to a perennial “hot button” social issue, the above

complex argument makes a fascinating case study in social science methodology.

Numerous philosophers and social scientists have discussed the role of mechanisms

in providing support for causal claims in social science (Elster 1989; George and

Bennett 2005; Hedstrom and Swedberg 1999; Kincaid 1996; Little 1992, 1998;

Reiss 2007; Steel 2004). Two features of the Donohue and Levitt study make it

interesting and relevant in connection to these discussions: (1) the interconnected

role of mechanisms and macro-level statistical data in supporting its central

hypothesis and (2) the role of extrapolation in providing evidence for a mechanism.

2No doubt such women exist. But since there was never any official process of applying for

permission to terminate a pregnancy in the USA, there is no way to identify which women these

were.
3 Several critics have challenged these statistical arguments (Joyce 2003; Foote and Goetz 2008).

See Donohue and Levitt (2004, 2008) for replies.
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2 Mechanisms and Scale-Up Models

Tracing a mechanism can strengthen a causal inference in several ways. It allows

for additional tests of the hypothesis and creates further lines of relevant evidence.

In addition, experimental or quasi-experimental studies of important aspects of the

mechanism may be possible even when no such studies are feasible at the macro-

level (Steel 2011). These points are illustrated in the Donohue and Levitt, wherein

studies of women who requested but were denied abortion constitute “natural”

experiments of the effects of being born unwanted on child development. But in

order for inquiries concerning mechanisms to support macro-level causal claims,

there must be some reasonably clear connection between the mechanism, which

typically involves individual behaviors and interactions, and the macro-level,

which makes general claims about a population. What I will call a “scale-up

model” is used to forge a link between micro and macro. A scale-up model specifies

how an inference can be made from mechanisms to macro-level phenomenon.

Donohue and Levitt in fact explicitly present a scale-up model, which they describe

as a “back-of-the-envelope” calculation that provides a “crude prediction of the

impact of legalized abortion on crime” (2001, p. 389).

Their approach combines research on how legalized abortion affects the compo-

sition of birth cohorts as judged by four factors—race, teenage motherhood,

unmarried motherhood, and unwantedness—along with research on the impact of

each of those factors on criminality (ibid). The model then breaks down 1990

Census data using the eight possible combinations of the first three factors (appar-

ently assuming that race is either white or black), finding the proportion of the

population in each group. They then use estimates from a study of the impact of Roe

v. Wade on birth rates (Levine et al. 1999) to decide what those proportions would

have been if abortion had not been legalized. Next, Donohue and Levitt use

previous research to assign crime rates for each cell (e.g., for children of a white

unmarried teenage mother). Thus, the effects of abortion on crime mediated by the

first three factors can be estimated by summing the proportion-weighted crime rates

for each cell with two different proportion weightings: one based on 1990 Census

data and the other set based on estimates of what these proportions would have been

if abortion had not been legalized. Since unwantedness is not measured in the data,

Donohue and Levitt estimate the number of unwanted births by assuming that 75 %

of unwanted births would be prevented by abortion.4 They then extrapolate the

result that children born from unwanted pregnancies are about twice as likely to

4 That is, number of abortions � 75 % ¼ number of unwanted births (if abortion had not been

legalized). Thus, given the number of abortions (for which there is data), the number of unwanted

births in the hypothetical nonlegalization scenario can be estimated. The number of unwanted

births in the actual legalization case would just be this number minus the number of additional

abortions performed due to Roe v. Wade.
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commit crimes.5 For homicide, this rough model predicts an 11 % reduction due to

legalized abortion by 1997, when homicide rates had fallen from their peak by

30–40 % (Donohue and Levitt 2001, p. 390).

This scale-up model is relevant to the present discussion in several respects. It

explicitly involves an across-population extrapolation, as the estimate for the

impact of unwantedness on criminal behavior is directly borrowed from the Euro-

pean studies described above. In addition, the scale-up model is important for

understanding the relation of extrapolation to multiple levels of aggregation in

making an overall case for a causal claim. In particular, the scale-up model provides

an indirect way to test the claim that the populations are sufficiently similar to

justify the extrapolation. This point is discussed in greater detail below in Sect. 4.

3 A Conceptual Framework for Extrapolation

Transferring or extrapolating results across populations is essential for making

scientific inquiry relevant to practical problems. Reasoned answers to questions

about the causes of the decline in crime rates in the 1990s, or about the health

impacts of a pesticide, and many other issues must consider a variety of studies

whose data sets are not all drawn from the same population. The role of the

European studies on the impacts of unwantedness is the most obvious but not

sole example of this in the Donohue and Levitt study. In tracing the mechanism

they propose, Donohue and Levitt cite studies—for example, about the effects of

teenage motherhood on the life outcomes of the child—that use distinct US data

sets. In this section, I synthesize and further develop approaches to extrapolation

proposed by myself (Steel 2008) and Pearl and Bareinboim (2011).

3.1 Selection Diagrams and a Definition of Extrapolation

I will use the term model to refer to the population that is the basis of the

extrapolation and the term target for the population that is the object of the

extrapolation. In the Donohue and Levitt study, the European women in Sweden

and Czechoslovakia during times in which terminations of pregnancies required

legal approval are the models and the USA is the target. As this example illustrates,

there may be more than one model. Extrapolating (or transporting, to use the term

favored by Pearl and Bareinboim) depends on some background knowledge about

ways in which the model and target are likely to differ and ways in which they are

5Note that this last assumption is consistent with the results of the Prague cohort study described

above. However, Donohue and Levitt cite a study concerning a Finnish data set here (Rasanen

et al. 1999).
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likely to be similar (Steel 2008, pp. 88–89). Typically, the model does not resemble

the target in all relevant respects, and hence extrapolation can involve some

adjustment for to account for differences. A first step towards a conceptual frame-

work for representing extrapolation, then, is a means for compactly and

perspicuously representing causally relevant similarities and differences between

the model and target. Steel (2008) and Pearl and Bareinboim (2011) develop similar

representational frameworks for this purpose through an extension of directed

acyclic graphs (DAGs), which are often used to represent causal relationships. A

DAG consists of a set of nodes linked by arrows, for example, as in Fig. 10.1. A

DAG is directed in that every line (or “edge”) has an arrowhead attached at one end,
and it is acyclic in that it does not contain loops, that is, a sequence of arrows

aligned head to tail that begin and end with the same node. If there is an arrow

pointing directly from node X to node Y, then X is said to be a parent of Y. For
example, X is a parent of Y in Fig. 10.1, and Y is a parent of Z. If Y can be reached

from X by following a chain of arrows aligned head to tail, then Y is said to be a

descendant of X.6 Thus, in Fig. 10.1, X, Y, and Z are all descendants ofW. The nodes

in a DAG are normally taken to represent variables. When DAGs are interpreted

causally, parents are direct causes and descendants are effects. A Bayesian network

consists of a DAG together with a probability distribution that satisfies something

known as the Markov condition with respect to that DAG. The Markov condition

asserts that every variable in the DAG is probabilistically independent of its non-

descendants conditional on its parents. For example, in Fig. 10.1, Z is probabilisti-

cally independent ofW and X conditional on Y. Intuitively, this means that once the

value of the variable Y is known, learning the values ofW and X provides no further

information concerning the value of Z. The graphical concept of d-separation

allows one to read off all of the independence relationships entailed by the Markov

condition for a DAG (see the Appendix 1 for the “Definition of d-Separation”). The

Markov condition will play an important role in the account of extrapolation

described below.

A simple extension of DAGs can be used to represent similarities and differences

between causal relationships in model and target populations. That extension

consists of adding additional variables to a DAG to represent differences between

model and target populations that may alter the relationships represented in the

DAG. For example, consider the diagram in Fig. 10.2. This diagram represents a

X Y Z

W
Fig. 10.1 A DAG

6This definition should be understood to entail that every node is descendant of itself (as any node

is trivially reachable from itself). This seemingly odd feature of the definition simplifies the

statement of the Markov condition.
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hypothesis about the causal relationship between unwantedness and crime. The

variable U indicates whether or not the person was born from an unwanted

pregnancy, E is a variable indicating harmful psychological effects (e.g., an

impaired ability to adapt to frustration), A indicates whether or not the child was

adopted, and C indicates whether the person has been convicted of a crime. In

contrast, S is a variable that represent unmeasured factors that may create

differences between the two populations. In Steel (2008, pp. 58–62) these are called

disrupting factors, while in Pearl and Bareinboim (2011, p. 6) they are called

selection variables. I follow Pearl and Bareinboim’s terminology here, as the

term “disruption” suggests factors that entirely block a causal relationship, while

the differences between model and target could come in other forms. To understand

selection variables, it is important to realize that two causes may interact with one

another in bringing about an effect. For example, by altering the adoption rate, S
may change the impact of U upon E. That is, a child born from an unwanted

pregnancy but adopted into a loving family shortly after birth would presumably be

spared the deleterious psychological effects of unwantedness. In the extreme case,

if every child born unwanted were adopted, the harmful effects of unwantedness

might be eliminated entirely. That extreme scenario seems rather improbable—a

survey of studies concerning children born from unwanted pregnancies found a

maximum adoption rate of around 20 % (Dagg 1991, p. 582)—but the important

point is differences in the selection variable S could mitigate the deleterious

psychological effects of unwantedness. Note that the absence of selection variables

pointing into variables other than A in Fig. 10.2 is also significant. For instance, the

diagram in Fig. 10.2 says that E impacts C in the target exactly as in the model.

Pearl and Bareinboim (2011) refer to graphs like the one in Fig. 10.2 as selection

diagrams. Selection diagrams, then, represent judgments about similarities and

differences between model and target populations. A selection variable indicates

a source of potential difference between the model and target. For example, the

selection diagram alerts us to the possibility that the effect of unwantedness upon

psychological difficulties in the target may differ from that in the model due to

differences in adoption rates between the two populations. A selection diagram,

then, represents the causal structure in the target, namely, the DAG that results from

removing the selection variables. In addition, the selection diagram indicates ways

in which the causal structure in the target may differ from the model. For example,

in Fig. 10.2, it is possible that the selection variable changes the distribution of A in

such a way as to eliminate all influence of U upon E in the target. Even if the causal

structure represented by the DAG is the same for model and target, the quantitative

S

U E C

A

Fig. 10.2 A selection

diagram with an unmeasured

common cause
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causal relationships may differ as a result of the selection variables. A key feature of

a selection diagram is that the selection variables explain all of the differences

between the probability distributions in the model and target. Letting P and P* be

the probability distributions in the model and target, respectively, this means that

any P* probability is equal to the corresponding P probability conditional on the set

of selection variables, S. This is particularly important when a probabilistic causal

relationship can be estimated in the model but not in the target (e.g., because an

experimental intervention was performed in the former but not in the latter). Causal
effects are one important type of probabilistic causal claim. The causal effect of X
upon Y is the probability distribution Y conditional on an intervention on X (see

Pearl 2000, p. 70). Pearl uses the “do-operator,” written as “do(x),” to indicate that

the value of the variable X has been set by an intervention rather than passively

observed, so that the causal effect of X upon Y would be written as P(y | do(x)).7

Thus, if Fig. 10.2 is the correct selection diagram,P�ðcjdoðuÞÞ ¼ PðcjdoðuÞ; sÞ, that
is, the causal effect of U on C in the target is equal to the corresponding causal

effect in the model conditional on the selection variable S. Since selection variables
are assumed to be unmeasured, it may not be possible to estimate PðcjdoðuÞ; sÞ
directly from data drawn from the model population. Consequently, extrapolating a

causal effect from the model to target requires some means of reducingPðcjdoðuÞ; sÞ
to a formula in which do(u) and s never occur in the same probability. In the

subsequent section, we will consider an example of how this can work. Pearl and

Bareinboim’s selection diagrams also include dashed-double-headed arrows to

represent the presence of unmeasured common causes (as in Fig. 10.2).8 As a result

of the unmeasured common cause of U and E, the causal effect of U upon C cannot

be identified from observational data in the target (see Pearl 2000, p. 94).

I now use selection diagrams to define extrapolation and integration. The

definition of extrapolation and direct extrapolation mostly parallel those given in

Pearl and Bareinboim (2011, p. 9) but diverge from them in one important respect

that I explain below. The definition of integration is original and useful for the

thinking about the Donohue and Levitt study.

Definition 10.1 (Extrapolation). Let Π be the model population and Π* the

target characterized by the probability distributions P and P*, respectively, and
let D be a selection diagram relating Π and Π*. Then a causal relation R can be
extrapolated from Π to Π* if and only if R(Π*) is identifiable given the conjunc-

tion R(Π), P, P*, and D.

Extrapolation is direct when R(Π) is the same as R(Π*). When extrapolation is

direct, no modification or adjustment to the causal relationship estimated in

the model is needed; it transfers as is to the target. As will be illustrated in the

7Here I follow the convention of having lower-case letter represent particular values of the

variables represented by the corresponding upper-case letters.
8 DAGs with double-headed arrows representing unmeasured common causes are known as semi-

Markovian models.
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subsequent section, extrapolation need not be direct and can involve adjustments to

the causal relationship found in the model.

A few clarifications of Definition 10.1 are in order. First, for simplicity, Defini-

tion 10.1 is limited to the case in which there is only one model. The generalized

version of the definition allowing for multiple model populations Π1 through Πn

would have corresponding probability distributions P1 through Pn, as well as

selection diagrams D1 through Dn (as each model could differ from the target its

own way). A further generalization of the definition would allow for distinct causal

relationships to be extrapolated from each model. The result of this generalization is

more properly regarded as a definition of integration rather than extrapolation,

since it involves the combination of a number of studies performed on several

populations.

Definition 10.2 (Integration). Let Π1 through Πn be model populations

characterized, respectively, by the probability distributions P1 through Pn, and let

Π* be the target population, with probability distribution P*. Let D1 through Dn be

selection diagrams for the pairs hΠ1, Π*i through hΠn, Π*i, respectively. Then
causal relations R1(Π1) through Rn(Πn) can be integrated to learn R(Π*) if and only
if R(Π*) is identifiable given conjunction of R1(Π1) through Rn(Πn), P1 through Pn,

P*, and D1 through Dn.

This definition pertains to cases in which results from a number of studies of

disparate model populations are combined to infer a potentially new causal rela-

tionship in the target. For instance, Donohue and Levitt’s scale-up model described

in Sect. 2 integrates a number of distinct results from studies performed in several

populations in order to form a rough estimate of a causal relationship not studied in

any of them, namely, the effect of legalized abortion in 1973 on crime in the 1990s

in the USA. Notice that Definition 10.1 is a special case of Definition 10.2 in which

there is only one model and the causal relationship to be inferred in the target is the

same one as that in the model.

A second clarification concerns the causal relation R. There are in fact several

types of causal relationships one might wish to extrapolate. Pearl and Bareinboim

(2011) focus on extrapolating causal effects. Steel (2008) is primarily concerned with

extrapolation of positive causal relevance, which is what is often the issue in cases

involving animal extrapolation, as when one wishes to know whether a chemical is a

human carcinogen. A causal effect is more informative than a claim about positive

causal relevance, and there are claims that fall between them in terms of specificity.

This is illustrated by Donohue and Levitt’s extrapolation, from European studies, of

the claim that unwantedness doubles the chance of criminality later in life. In

addition, one might wish to extrapolate a claim about causal structure, for instance,

that socioeconomic status is a common cause of unwantedness and crime. The type of

claim at issue matters because more stringent background assumptions are typically

required for extrapolating more informative claims, a point which will be elaborated

more fully in the subsequent section.

The definition itself does not assume that the causal structures in the model

and target are represented by DAGs (with confounding arcs added) or that
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the probability distributions satisfy the Markov condition with their respective

causal structures. So, Definition 10.1 could be used for cases involving cyclic

causal structures. However, for the purposes of this essay, I will assume that causal

structures are acyclic and that the Markov condition is in force. Finally, R(Π*) is
identifiable given R(Π), P, P*, andDmeans in effect that it is a logical consequence

of these premises together with the Markov condition (see Pearl 2000, p. 77). It may

seem surprising that extrapolation, which seems to be a type of inductive inference,

would be defined in terms of logical consequence (of R(Π*) from R(Π), P, P*, and
D). However, inductive inferences would be inevitably be involved in learning

R(Π), P, P*, and D, so Definition 10.1 is not a covert expression of a deductivist

perspective on scientific methodology. Moreover, stating the definition in this

manner has the advantage of allowing for proofs about conditions in which extrap-

olation is and is not possible.

Definition 10.1 is similar to Pearl and Bareinboim’s (2011, p. 8) definition of

transportability. The main difference is that in Definition 10.1 here, extrapolation is

premised on R(Π), P, P*, and D, while in Pearl and Bareinboim’s definition of

transportability, it is premised on R(Π), P, P*, G, and G*, where G and G* are the

causal graphs for populations Π and Π*, respectively. That is, Pearl and

Bareinboim’s definition is designed for cases in which the both causal structure

and probability distribution are known for the target prior to the extrapolation. This

is a rather restrictive assumption, as it entails that Pearl and Bareinboim’s definition

would not be useful for cases in which the causal structure in the target is not fully

known. For example, animal extrapolation in toxicology often occurs in a back-

ground in which there is substantial uncertainty as to what adverse effect, if any, the

chemical has in humans. In such cases, causal structure is part of what one wishes to

learn by the extrapolation. In contrast, premising extrapolation on the selection

diagram does not presume that the causal structure in the target is fully known,

since a selection diagram indicates uncertainties about causal relations in the target

population. Moreover, the proofs of the main theorems in Pearl and Bareinboim

(2011) depend on knowing the selection diagram, not the causal structure of the

target.

3.2 Making Adjustments

Since the model and target typically differ in some causally relevant respects,

extrapolation usually requires making some adjustments. In other words, when

extrapolation is not direct, some adjustment must be made to R(Π) in order to

infer R(Π*). Pearl and Bareinboim (2011) prove several theorems about how this

can be done. The most general of these is their Theorem 3, which I restate below

(but with “can be extrapolated” substituted for “is transportable” for consistency

with the foregoing section):
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Theorem 3. Let D be the selection diagram characterizing two populations,Π and
Π*, and S the set of selection variables in D. The causal effect R ¼ P� ðyjdoðxÞÞ
can be extrapolated from Π to Π* if and only if the expression P(y | do(x), S) is
reducible, using the rules of do-calculus, to an expression in which no do-operator
is conjoined with S. (Pearl and Bareinboim 2011, p. 32)

As noted above, the causal effect of X upon Y, represented by the formulaPðyjdoðxÞÞ,
is the probability distribution of Y conditional on an intervention on X. An interven-

tion or manipulation on X is an exogenous cause that targets X alone and eliminates

all other causes of X. To illustrate, consider the U-manipulated version of the

selection diagram from Fig. 10.2 (i.e., the version of that diagram resulting from an

intervention on the variable U). As shown in Fig. 10.3, this modified selection

diagram eliminates the confounding arcs and adds a new variable labeled I,
representing the intervention, with an arrow pointing directly into U. The do-calculus
consists of three basic rules, derived from the Markov condition, for manipulating

probabilities that contain do-operators, such as do(x) (Pearl 2000, pp. 85–86).
To understand Theorem 3, first recall that the selection variables are assumed

to account for all differences between the probability distributions in the model

and target, so that P�ð�Þ ¼ Pð�jsÞ. Thus, any P-formula from which S is eliminable

can be directly extrapolated from the model to the target, since in that case

P�ð�Þ ¼ Pð�jsÞ ¼ Pð�Þ. On the other hand, since Pð�jsÞ ¼ P�ð�Þ, any P-formula

without a do-operator can be derived from the probability distribution of the target.

In contrast, since no experimental manipulation was performed in the target popu-

lation and selection variables are unmeasured, P probabilities with both an irreduc-

ible do(u) and s are unidentifiable. Consider, then, how Theorem 3 applies to the

selection diagram in Fig. 10.2, when PðcjdoðuÞÞ is the causal effect to be

extrapolated. This proceeds as follows:

P�ðcjdoðuÞÞ ¼ PðcjdoðuÞ; sÞ
¼

X
a

PðcjdoðuÞ; a; sÞPðajdoðuÞ; sÞ

¼
X
a

PðcjdoðuÞ; aÞPðajdoðuÞ; sÞ

¼
X
a

PðcjdoðuÞ; aÞPðajsÞ

¼
X
a

PðcjdoðuÞ; aÞP�ðaÞ

S

U E C

I

A

Fig. 10.3 The U-manipulated

version of the selection

diagram in Fig. 10.2
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Using the rules of probability, the second equation expands PðcjdoðuÞ; sÞ by
summing over A. The next equation eliminates the s from PðcjdoðuÞ; a; sÞ, which is

justified by the Markov condition applied to the selection diagram. Now all that

needs to be done is to reduce PðajdoðuÞ; sÞ to probabilities in which do(u) is absent,
which is easily done in this case as A is independent ofU.9 The final equation results
from a reapplication of the assumption that the selection variables account for all

differences between model and target. The right-hand side of the final equation,

then, consists of one probability, PðcjdoðuÞ; aÞ , that can be directly extrapolated

from model to target and another, P*(a) that can be estimated using observational

data sampled from the target population. The right-hand side of the final equation is

an example of what Pearl and Bareinboim call a transport formula. A transport

formula specifies how a causal effect in the model can be adjusted so as to be

extrapolated to the target. In this example, then, P*(a) is the only probability in the
transport formula that need be measured in the target.

However, whether extrapolation is possible depends on the selection diagram.

For example, consider the selection diagram resulting from adding a selection

variable pointing directly into E (as in Fig. 10.4). The presence of this selection

variable blocks the step from the second to third equations in the reasoning above,

because A does not d-separate S2 from C. Indeed,PðcjdoðuÞÞ cannot be extrapolated
from model to target given the selection diagram in Fig. 10.4 (see Appendix 2 for a

proof of this claim). Yet the harmful psychological effects represented by E would

plausibly be impacted by a variety of social, cultural, and economic factors that are

likely to vary from one place and time to another. As a result, it would be difficult to

justify the assumption that A or any other set of measured variables mediates all

selection variables relevant to E. In general, then, extrapolating a causal effect is

often very sensitive to difficult-to-justify assumptions about the absence of selec-

tion variables at crucial junctures in the selection diagram.

One way to deal with the problem of sensitivity to uncertain assumptions about

the selection diagram is to be less ambitious about what one wishes to extrapolate.

Causal effects are not the only type of causal claim that one might be interested in,

and extrapolating other sorts of claims may require less demanding assumptions

(see Steel 2008, chapters 5 and 6). Examples include claims about positive or

9 In the selection diagram in Fig. 10.3, U is d-separated from A by the empty set, so P*(a | do(u))
¼ P*(a) by rule 3 of Pearl’s do-calculus.

U E C

A

S2

S1

Fig. 10.4 A selection

diagram in which the causal

effect cannot be extrapolated
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negative causal relevance and claims about causal structure. For instance, suppose

our concern was to extrapolate the claim that there is a causal chain from U to C. In
this situation, we would not need to suppose that A mediates all selection variables

impacting the effect ofU upon C, nor would we have to assume that all causal paths

from U to C pass through E. Extrapolating the claim that U has an effect on C only

requires the premise that no circumstances are present in the target population that

could completely eliminate this effect. Although it is easy to think of factors that

could modulate the effect of U upon E, plausible circumstances that obliterate this

effect entirely, if it exists, are much more difficult to come by. So, directly

extrapolating a causal chain from U to C may be reasonable in this case. Such

reasoning could be naturally extended into an extrapolation of positive causal

relevance. The takeaway point of this example is that extrapolating claims about

causal structure or positive causal relevance depend on much less stringent

assumptions about the selection diagram. That makes such extrapolations more

robust, though less informative.

This section has illustrated two central points concerning extrapolation. First, it

is not necessary that the causal relationship to be extrapolated is the same in the

model as in the target. Given knowledge of the probability distributions for the

model and target along with the selection diagram, it can be possible to make

adjustments to account for differences. Secondly, the conditions needed for extrap-

olation vary with the type of claim to extrapolated. In general, the more informative

the causal claim, the more stringent the background assumptions needed to justify

its transfer. This second point is very important for explaining how extrapolation

can remain possible even when substantial uncertainty exists about the selection

diagram. In the next, section I consider, in relation to the Donohue and Levitt study,

how distinct levels of analysis can be helpful for assessing assumptions about the

similarity of model and target.

4 Levels and Evidence

Extrapolation depends on background knowledge about ways in which the model

and target are and are not likely to differ, knowledge that can be represented by a

selection diagram. One obvious question, therefore, is where this knowledge comes

from. Some similarities might be known only as a result of studies performed

separately on the two populations. In other cases, the assumed similarity may be

grounded in the acceptance of a common fundamental mechanism concerning, say,

human psychology. For instance, it is natural to suppose that negative psychologi-

cal impacts on a child of, say, insensitive and unconcerned parents are likely to be

fairly stable across populations. In this type of situation, one might infer a causal

relationship in the target on the grounds that it is found in the model and that model

and target are unlikely to differ in that respect. However, it would be difficult to

justify extrapolating a quantitative causal claim on the basis of such general

theoretical considerations. Such background psychological knowledge might, for
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instance, support extrapolating the claim that being born unwanted increases the

risk of criminality, but it would be unlikely to justify the claim that unwantedness

doubles that risk. It would be desirable, therefore, to have some means of testing

assumptions about similarities between model and target. In this section, I consider

how distinct levels of analysis can be helpful here.

Recall the connection between the concepts of extrapolation and integration as

defined in Sect. 3.1. In extrapolation, a causal relationship R in the model is used,

possibly with some adjustments, as a basis for inferring R in the target. Integration,

by contrast, involves the extrapolation of R as part of a larger inference whose

object is to infer another causal relationship, R0. Donohue and Levitt’s reasoning fits
this pattern because it extrapolates a claim about the effects of unwantedness on

criminal convictions in order to draw an inference about the impact of abortion

legalization in 1973 on crime rates in the 1990s. These observations suggest an

approach for testing assumptions that underlie an extrapolation. Suppose that the

causal relation R is directly extrapolated from model to target. Suppose, moreover,

that R together with other background knowledge entails a further causal relation-

ship R0. Then tests of R0 will be indirect tests of the correctness of the direct

extrapolation of R. In the Donohue and Levitt study, R is the claim that being

born unwanted doubles the chance of criminal conviction later in life, while R0 is
the result of the scale-up model (or “back-of-the-envelope” calculations) described

in Sect. 2. The results of the scale-up model, then, can be compared to estimates of

the effect of abortion from Donohue and Levitt’s state-level comparisons

concerning abortion and crime rates. Donohue and Levitt characterize their statisti-

cal estimates of the impact of legalized abortion on crime as “roughly consistent,

but somewhat larger than” their back-of-the-envelope result (2001, p. 391, p. 405).

This rough consistency, then, is presumably taken as a reason for thinking that the

scale-up model—including the extrapolated claim that being born unwanted

doubles the chance of criminal conviction later in life—is a decent first

approximation.

This example illustrates how differing levels of analysis can provide a means for

testing assumptions about similarity and difference between model and target.

Extrapolation at the level of a mechanism can be integrated with other information

to generate an estimate of a macro-level causal effect, which then can in turn be

compared with estimates directly made on the basis of macro-level data. The result

of this process is an inference in which distinct lines of evidence, each with its own

inevitable uncertainties, may mutually support or conflict with one another. The

effect in the case of mutual support is, naturally, to strengthen the overall inference.

Let us briefly consider the uncertainties in the present example. The uncertainties in

the scale-up model are fairly easy to see. First, extrapolations rest on background

assumptions concerning similarities and differences between model and target,

assumptions which are often difficult to directly test. For instance, it is plausible

that being born unwanted approximately doubles the chance of criminal conviction

later in life in the USA just as found in the European studies described in Sect. 1.

But it would be difficult to decisively eliminate the possibility that some divergence

between the two populations exists that undermines this assumption, especially as
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the key factor of being born unwanted is unmeasured in USA data. Similarly, many

uncertainties would be involved in the details of the scale-up model through which

this extrapolated result is integrated with other information to produce the estimate

of the impact of legalized abortion in the 1970s on crime rates in the 1990s.

Estimates of the impact of legalized abortion on crime based on national-level

statistical data also confront a variety of uncertainties, for instance, concerning the

proper modeling approach and how to account for other factors—such as the crack

epidemic of the late 1980s—that might affect the results. Indeed, the discussions

between Donohue and Levitt and their critics have predominantly focused on such

issues (see Foote and Goetz 2008; Donohue and Levitt 2004, 2008; Joyce 2003).

However, I should emphasize that the point here is definitely not to insist upon the

infirmity of causal inferences grounded in extrapolation and observational data.

Uncertainties frequently arise in experiments too, especially those involving human

subjects (for instance, due to noncompliance, i.e., the failure of some subjects in the

experiment to follow the experimental protocol). Such uncertainties are inherent in

any attempts to learn about causation in large complex systems wherein numerous

practical and ethical concerns restrict the types of studies that are possible. Conse-

quently, scientific inference in such situations usually must build a cumulative case

from a variety of lines of evidence none of which is decisive in isolation.

Although that may seem a rather obvious point, it does seem to get overlooked in

some critical discussions of extrapolation. For instance, LaFollette and Shanks

(1996) argue that results from animal experiments can never be extrapolated across

species boundaries (e.g., from rats to humans) because causally relevant differences

between populations are always present. The discussion of extrapolation in Sect. 3.2

has already illustrated several shortcomings with this line of argument. Extrapolation

need not be direct, and it may be possible to adjust for relevant differences between

the model and target. Moreover, some types of causal claims—such as claims about

positive causal relevance—can be directly extrapolated even when considerable

differences exist. Nevertheless, it is true that extrapolation is often haunted by the

possibility that relevant differences between model and target have not been ade-

quately accounted for. But this is only to say that there is often an unavoidable

element of uncertainty inherent in extrapolations, just as there is in any other method

for learning about causation in very complex systems. That in no way precludes

extrapolations from being one useful line of evidence among others.

However, one might object that extrapolation can never be more than very weak

evidence, useful only when information concerning the target population is grossly

incomplete. Suppose that in initial stages of the investigation, studies performed on

the target alone provide only rather uncertain evidence for the causal relationship

and that in this context the extrapolation strengthens the overall case. Moreover,

suppose that subsequent studies of the target population are able to make a

compelling argument for causal claim in a way that does not require any reliance

on the model.10 This type of situation shows that the importance of extrapolation in

10 Reiss (2010) suggests that an example discussed in (Steel 2008, chapter 5) follows this plot line.
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providing evidence for a causal claim may wane as researchers become better able

to study the target population. But there is a simple reason why such a course of

events is unlikely to occur in relation to the impact in the USA of legalized abortion

in the 1970s upon crime rates in the 1990s, namely, that being born from an

unwanted pregnancy is unmeasured in the USA data. This variable can only be

accurately measured in rather unusual circumstances, as illustrated by the European

studies described in Sect. 1. Moreover, the claim that being born unwanted increases

the likelihood of criminal activity later in life is a basic premise of the mechanism

underlying Donohue and Levitt’s hypothesis.11 Furthermore, that mechanism plays

an important role in reinforcing their arguments that the inverse correlation they find

between abortion rates and lagged crime rates reflects a causal impact rather than the

presence of some latent confounding factor. Finally, this important and apparently

inescapable role of extrapolation does not, in and of itself, demonstrate any grave

infirmity in Donohue and Levitt’s overall argument. It is commonplace for

mechanisms to play an important role in causal inference in social science. And in

this case the extrapolation appears sufficient for the case at hand. First, a plausible

case can be made for extrapolating claim about positive causal relevance (i.e., that

being born unwanted makes a person more likely to be convicted of crimes later in

life). Secondly, Donohue and Levitt’s quantitative extrapolation—that being born

unwanted doubles the chance of criminal conviction—need only be roughly accurate

for the purposes of their argument, and this rough accuracy is supported by the

compatibility of the results of their scale-up model and their estimates from national-

level statistical data. Of course, the purpose of this chapter is not to defend the

correctness of Donohue and Levitt’s hypothesis. The point here is merely that

extrapolation plays an important role in that argument and, furthermore, that this

role of extrapolation is not a reason for thinking that they have failed to make a strong

case for their conclusion. If Donohue and Levitt’s statistical arguments are basically

correct, then the extrapolation is one significant supporting plank in the overall

structure of a strong argument. Therefore, this case belies the objection that extrapo-

lation can be relevant as evidenced only in a context of massive uncertainty.

5 Conclusions

Let us recap the three interconnected philosophical themes relating to mechanisms

and extrapolation that are highlighted by the case study discussed here. The first of

these is that there are different types of causal claim that one might wish to

extrapolate and that extrapolations of more informative causal claims typically

11 For example, Levitt characterizes the hypothesis as resting on two premises: “(1) unwanted

children are more likely to commit crime, and (2) legalized abortion leads to a reduction in the

number of unwanted births” (2004, pp. 181–182).
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rely on harder-to-justify assumptions. This point was illustrated by the Donohue

and Levitt study, wherein extrapolating a qualitative claim about positive causal

relevance rested on much firmer ground than extrapolating a quantitative claim

about the strength of that impact. The second theme had to do with the connection

between extrapolation and distinct levels of inquiry. Studies of causal relationships

in social systems can focus on mechanisms linking individual people or take a

bird’s-eye statistical view of the population as a whole. Since the causal processes

at these levels are not independent, claims about the one can have implications for

the other. This idea is illustrated by the role of Donohue and Levitt’s scale-up model

in linking an extrapolated claim that being born unwanted doubles the chance of

criminal conviction to statistical estimates of the impact of legalized abortion on

crime. The correspondence of the results from these two lines of reasoning provides

indirect support for the adequacy of that extrapolation as a rough approximation.

The interplay between levels of inquiry leads to the third philosophical theme that

extrapolation is normally one interwoven component of a complex and interdepen-

dent collection of arguments and, hence, is rarely a knockdown proof in its own

right. Consequently, critiques which observe that extrapolations rarely if ever

constitute definitive evidence sail wide of the mark. Building a case based on the

coherence of multiple lines of imperfect evidence is the norm for social science and

other sciences that study complex systems that are widely diffused across space and

time. To insist otherwise is to misconstrue the nature of science and to obstruct

applications of scientific knowledge to many pressing real-world problems.

Appendices

Appendix 1: Definition of d-separation

For completeness, I include the definition of d-separation, cited from Pearl (2000,

pp. 16–17).

A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if

1. p contains a chain i ! m ! j or a fork i  m ! j such that the middle node m is in Z,
or

2. p contains an inverted fork (or collider) i ! m  j such that the middle node m is not in
Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a
node in Y.

D-separation is important because it indicates all and only those probabilistic

independence relationships entailed by the Markov condition. That is, the Markov

conditions entails that X and Y are probabilistically independent conditional on Z in

a DAG G if and only if Z d-separates X and Y in G.
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Appendix 2: Causal Effect Cannot Be Extrapolated in Fig. 10.4

The selection diagram in Fig. 10.4 adds a selection variable pointing directly into E
and thereby prevents deriving a transport formula by summing over A. Since Pðcj
doðuÞÞ cannot be directly extrapolated, Pearl and Bareinboim’s Theorem 3 tells us

that PðcjdoðuÞÞ can be extrapolated given the selection diagram in Fig. 10.4 only if

one of the following can be reduced by means of the do-calculus to a formula in

which a do-operator and an s never occur in the same probability:

1.
P
e
PðcjdoðuÞ; e; sÞPðejdoðuÞ; sÞ

2.
P
e;a

PðcjdoðuÞ; e; a; sÞPðe; ajdoðuÞ; sÞ

In 1, it is not possible to reduce PðejdoðuÞ; sÞ in this manner due to the selection

variable pointing directly into E and the confounding arc linkingU and E. The same

reasons preclude reducing Pðe; ajdoðuÞ; sÞ in 2.
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Chapter 11

Causality, Impartiality and Evidence-Based

Policy

David Teira and Julian Reiss

Abstract The overall aims of this chapter are to compare the use of randomised

evaluations in medicine and economics and to assess their ability to provide

impartial evidence about causal claims. We will argue that there are no good

reasons to regard randomisation as a sine qua non for good evidential practice in

either science. However, in medicine, but not in development economics,

randomisation can provide impartiality from the point of view of regulatory

agencies. The intuition is that if the available evidence leaves room for uncertainty

about the effects of an intervention (such as a new drug), a regulator should make

sure that such uncertainty cannot be exploited by some party’s private interest. We

will argue that randomisation plays an important role in this context. By contrast, in

the field evaluations that have recently become popular in development economics,

subjects have incentives to act strategically against the research protocol which

undermines their use as neutral arbiter between conflicting parties.
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1 Introduction

Randomisation, the assignment of experimental subjects to treatment groups by

means of a random number generator, was first systematically applied in psychic

research in the late nineteenth century and became popular in statistics after Ronald

Fisher advocated its use in 1926 (Hacking 1988). In medicine and development

economics, the two sciences we will focus on in this chapter, randomised trials are

now widely regarded as the ‘gold standard’ of evidence. The overall aims of this

chapter are to compare the use of randomised evaluations in these two sciences and

to assess their ability to provide impartial evidence about causal claims. In short, we

will argue that there are no good reasons to regard randomisation as a sine qua non

for good evidential practice in either science. However, in medicine, but not in

development economics, randomisation can provide impartiality from the point of

view of regulatory agencies. The intuition is that if the available evidence leaves

room for uncertainty about the effects of an intervention (such as a new drug), a

regulator should make sure that such uncertainty cannot be exploited by some

party’s private interest. We will argue that randomisation plays an important role

in this context. By contrast, in the field evaluations that have recently become

popular in development economics, subjects have incentives to act strategically

against the research protocol which undermines their use as neutral arbiter between

conflicting parties.

2 Background: Randomised Clinical Trials

as a Public Policy Tool

Randomised clinical trials (RCTs) are medical experiments in which alternative

treatments for a condition are administered to at least two groups of patients in

order to see which one is the safest and most effective for future cases. Unlike other

experimental designs in medicine and elsewhere, RCTs have achieved some public

notoriety throughout the last five decades thanks to the role they play in pharma-

ceutical regulation. The commercial distribution of novel drugs will only be

authorised by regulatory agencies such as the American Food and Drug Adminis-

tration (FDA) if their safety and efficacy is proved in two RCTs.

RCTs come to solve a problem in public policy: by their own means, consumers

cannot ascertain the quality of a drug, either by simple inspection of their appear-

ance (shape, size, smell, etc.) or by their price. Depending on the circumstances of

the patient, the natural rate of variability of their effects (positive or negative)

prevents a reliable assessment on the basis of individual experience alone. When

buyers or sellers cannot directly determine the quality of a good or service,

economic adverse selection can lead to the elimination of all trade in a market
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(Akerlof 1970; Wilson 2008): putting it very simply, if consumers know that there

is a percentage of cheap, bad-quality drugs, they will be reluctant to pay the price

requested for good-quality compounds, and the producers of the latter may end up

leaving the market. Regulation may be justified to remedy this type of market

failure whose consequences can be fatal for the consumers (because they need the

good-quality drugs).

RCTs are one way to provide the grounds for an evidence-based pharmaceutical

policy: the regulator will make a decision on the marketing of a new drug

depending on the evidence RCTs yield about its safety and efficacy. One may

wonder, however, why RCTs are regarded as credible, given the conflicts of interest

that pervade the pharmaceutical markets. Historically, physicians, pharmacists and

patients have supported their favourite treatments, seeking whatever evidence

confirmed their views and questioning, with the same passion, the quality of any

piece of adverse evidence. Why should they now accept RCTs?

A standard sociological response is because in democratic societies RCTs

provide an appearance of mechanical objectivity that seems more acceptable than

mere expert clinical judgement: the statistical apparatus underlying RCTs proceeds

impartially, impervious to the particular interests that may bias the judgement of the

individual expert. But, so the standard response continues, mechanical objectivity is

a mere appearance caused by numbers whose statistical justification lay audiences

cannot grasp (see, for instance, Porter 1995; Marks 1997).

In these sociological accounts ‘mechanical objectivity’ contrasts with ‘expert

judgement’. The so-called evidence-based medicine (e.g. Sackett et al. 1996) is a

paradigmatic example for the perennial attempts to replace the latter by the former.

In pre-evidence-based medicine, the standard approach to assessing the efficacy of

new treatments was heavily influenced by clinicians’ judgements. But clinicians,

like all experts, may be inattentive, ill informed, partial (to this or that therapy) or

otherwise biased. Moreover, an expert’s decision is not transparent to outsiders (in

this case, patients). There are therefore good reasons to limit the influence of the

clinician’s judgement to a minimum and replace it with ‘objective evidence’.

Objective evidence is sometimes called ‘mechanical’ when it is produced by

mechanical methods such as RCTs. An RCT is a mechanical method in that its

implementation follows strict and explicit rules – divide the test population into two

groups by means of a random allocation mechanism, blind subjects and treatment

administrators, follow specific stopping rules, etc. Unlike expert judgements, such

mechanical rules are transparent. This means that they can be publicly debated,

scrutinised and criticised.

Over the last 10 years, philosophers of science such as Nancy Cartwright and

John Worrall have challenged the epistemic foundations for RCTs (e.g. Cartwright

2007; Cartwright and Munro 2010; Worrall 2002, 2007). They appraise RCTs as

tools for causal inference. In their – philosophers’ – approach, impartiality is at best

a by-product of causal analysis: if one can establish objectively that a drug is

effective in curing a given condition, this judgement is independent from whatever
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interest there might be at stake in the experiment. Both Cartwright and Worrall

conclude that RCTs are not completely reliable tools for causal inference, and

therefore, we should consider alternative sources of evidence for our regulatory

decisions, including expert judgement. In the following section, we will examine

Cartwright’s criticism in more detail.

3 RCTs as ‘Gold Standard’ of Evidence for Causal Claims

According to Nancy Cartwright, RCTs are just one method among others for

warranting causal claims. In her terminology, it is a ‘clinching’ method in that it

proceeds in a deductive fashion: if its assumptions are met and the observable

evidence is positive, then we can safely affirm the causal claim. However, the

premises are restrictive, and therefore, the range of conclusions narrow (Cartwright

2007).

Ideal RCTs test causal claims about the narrow efficacy claims of drugs in a

given population following Mill’s method of difference. Given an observed out-

come (O), we study the probability of the difference between outcomes with and

without the treatment intervention (T) in two groups of patients drawn from a

population φ. In these two groups, all causally relevant factors other than T are

equally distributed. (This is what randomisation is supposed to achieve; more on

that later.) Therefore, the observed difference in O must be an effect of T. To show

that the effectiveness claim follows deductively, we need a number of further

assumptions.

The first assumption is a causal fixing condition (Cartwright and Munro 2010,

p. 261): the probability of an effect is fixed by the values taken by a full set

of its causes. Cartwright adopts a version of Patrick Suppes’ probabilistic theory

of causality which states that for an event-type T preceding event-type O in a

population Θ,

T causes O in Θ iff PðO=T&KiÞ > P O=:T&Kið Þ
for some subpopulation Ki; with P Kið Þ > 0:

Cartwright further assumes that the individuals in the sample are all governed by

the same causal structure CS, described by a probability distribution P. According

to Cartwright, ‘P is defined over an event space {O, T, K1, K2, . . ., Kn}, where each

Ki is a state description over ‘all other’ causes of O except T’. Conditioning on these

potential confounding factors, we can attribute the remaining difference between P

(O/T&Ki) and P(O/¬T&Ki) to the causal link between T and O. In an ideal RCT,

claims Cartwright (2007, p. 15), the Ki are distributed identically between the
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treatment and control groups. Hence, any difference in outcome between groups

can be causally attributed to T in at least one Ki relative to the causal structure CS

described by P. This is the conclusion ideal RCTs can clinch. However, according

to Cartwright, we need further assumptions still if we want to generalise this

conclusion to some target population Θ.
If we want to affirm, for instance, that T causes O in at least some members of Θ,

Cartwright (2007, p. 17) argues, we need assumptions of this kind:

(a) At least one of the subpopulations (with its particular fixed arrangement of

‘other’ causal factors) in which T causes O in φ is a subpopulation of Θ.
(b) The causal structure and the probability measure are the same in that sub-

population of Θ as it is in that subpopulation φ.

The warrant for these assumptions too is supposed to come from randomisation,

but we cannot judge whether a group of patients constitutes a random sample

without a previous idea of what factors are to be equally represented (Cartwright

2007, p. 18). In a trial, we want to form, on the one hand, two treatment groups

that are balanced with respect to known relevant prognostic factors. On the other

hand, we want to avoid unknown confounders to affect the result. Randomisation

supposedly helps us in achieving both goals, but it is neither necessary nor

sufficient to that effect. By sheer chance, a random allocation may yield an

unbalanced distribution of the prognostic factors between the treatment groups

(these are called ‘baseline imbalances’). This may bias the comparison between

treatments and invalidate the experimental results, and when imbalances occur,

trialists usually try to correct them (e.g. by repeating the randomisation).

Unknown confounders may differentially influence the outcome in one of the

groups even after a randomised allocation of treatments. Further randomisations

at each step in the administration of the treatment (e.g. which nurse should

administer the treatment today?) may avoid such interferences, but this is imprac-

ticable. Declaring such disturbances as negligible, as many experimenters do,

lacks any justification in the assumed statistical methodology (Urbach 1985;

Worrall 2007).

Both the correction of imbalanced allocations and the decision to randomise at

different stages of the trial beyond the allocation of treatments require extra-

statistical expert judgement. Against the ideal of mechanical objectivity, we need

an expert who can handle different sources of evidence other than the trial to justify

the acceptance of assumptions (a) and (b). More precisely, we need someone who

can certify that randomisation, the main warrant of (a) and (b), has indeed worked.

Without this judgement, subjective and intransparent as it may be, we cannot safely

generalise the conclusions of the trial to its target population, i.e. ascertain its

external validity. Expert judgements are naturally fallible too, but, according to

Cartwright (2007, p. 19), to rely on mechanical methods without expertise and

watch out for failures is no satisfactory response.
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4 External Validity and Impartiality in Regulatory RCTs

Today, FDA is probably the institution that makes the most systematic use of RCTs

for regulatory purposes in the world, but has not always been so. Between 1900 and

1950, expert clinical judgement was the main criterion in the assessment of the

properties of pharmaceutical compounds in the United States as well as in other

countries such as Britain. An experienced clinician would administer the drug to a

series of patients he would consider likely to benefit. His or her conclusions would

be presented as a case report, informing of the details of each patient’s reaction to

the treatment. The regulatory authorities in the United States and Britain arranged

official drug testing depending on the standards adopted by the research community

within their respective medical professions. Until the 1960s, regulatory decisions

were fundamentally based on expert judgements of this sort. Clinical judgement

came to be discredited in the United States because a group of methodologically

minded pharmacologists took over the FDA and imposed their views on the

superiority of RCTs through regulatory means. This was the triumph of mechanical

objectivity against expert judgement.

During the 1960s and 1970s, RCTs became mandatory for regulatory decisions

in different degrees. In the United States, before the 1960s, the FDA was entitled

only to test the safety but not the efficacy of pharmaceutical compounds. In the late

1950s, there were voices in the FDA demanding stricter testing standards linking

safety and efficacy, under increasing public mistrust in the pharmaceutical industry,

prompted in part by the thalidomide scandal.

Under the trade name Contergan, one million West Germans consumed thalido-

mide as a sedative in the early 1960s and many more people around the world after

that. Reports showing an association between the drug and peripheral neuropathy

were soon published in medical journals. Later reports of serious birth defects when

the drug was consumed by pregnant women surfaced. Only then did the manufac-

turer withdraw the drug from European markets. Eight thousand babies had been

already born with severe deformities. At that point, there was no clear regulatory

standard about the safety of a compound, neither in the United States nor in Europe.

The thalidomide scandal gave them the opportunity to put their views in effect in

the 1962 Drug Efficacy Amendment to the Food, Drug and Cosmetics Act. It

required from the applicant ‘adequate and well-controlled clinical studies’ for

proof of efficacy and safety (although the definition of a well-controlled investiga-

tion would not be clarified until 1969, when it was formally quantified as two well-

controlled clinical trials plus one prior trial or posterior confirmatory trial). It has

been claimed, correctly in our view, that this set of regulations created the modern

clinical trial industry (Carpenter and Moore 2007). In the following three decades,

pharmaceutical funding would boost the conducting of RCTs (by the thousands) in

the United States and abroad.

The regulatory approach of the FDA surely constitutes a canonical instance of an

evidence-based policy or, more precisely, an RCT-based policy. It is worth noting
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that the FDA does not take the external validity of an RCT for granted. A drug trial

is usually divided in four phases. Phase I focuses on finding the appropriate dosage

in a small group of healthy subjects (20–80 patients); toxicity and other pharmaco-

logical properties of the drug are examined. In phase II, between 100 and 200

hundred patients are closely monitored to verify the treatment effects. If treatment

effects are detected, a third phase involving a substantial number of patients begins

in which the drug is compared to the standard treatment. This is usually referred to

as ‘the’ RCT. If the new drug proves to be at least as good as the existing therapies

and the pharmaceutical authorities approve its commercial use, phase IV starts: the

drug is freely prescribed and sold; adverse effects are monitored and morbidity and

mortality studies are undertaken.

In other words, the FDA, as other regulatory agencies, does not take the external

validity of the RCTs for granted when it approves a new substance. In the post-

market surveillance phase IV, the FDA collects adverse event reports from various

sources and conducts epidemiological studies to assess their relevance, keeping

track of the validity of the results of their trials in the general population. The

authority and resources of the FDA at this stage are disproportionately smaller than

at any previous point in the approval process. And the assignment is large: apart

from monitoring adverse reports, the agency also has to consider issues in labelling,

advertising or the inspection of production and storage facilities, to name but a few.

Hence, one should appraise the figures collected at this fourth phase cum mica salis.
But we think they are relevant in the context of our analysis of the reliability of

RCTs.

Changes in drug labelling constitute a first approximation to the number of

minor or major failures at phase III trials. According to Dan Carpenter (2010,

p. 212), the FDA has relied on these changes as a cheap regulatory strategy,

given the available resources, as compared with pursuing withdrawal or a change

in advertising and prescribing practices (advertising and prescription are only

lightly regulated in the United States as compared to Europe). As long as the

label records potential safety threats, the FDA can claim that the consumer has

been warned. Each label change requires an application for approval, which creates

a data record. Dan Carpenter has compiled it in the following table, where it

is compared to other product changes for the same periods (Fig. 11.1):

Carpenter (2010, p. 623) summarises it as follows: from 1980 to 2000, the

average new molecular entity received five labelling revisions after approval,

about one for every 3 years of marketing after approval. Only one in four drugs

had no labelling revisions at all. The data are obviously too coarse to decide what

went wrong, if anything, in the phase III RCTs. Several explanations are possible:

for instance, the trials might have been too brief to detect adverse effects (e.g.

toxicity or cardiovascular events). In the context of Cartwright’s analysis, we may

suspect that the patients’ sample might have been unrepresentative of the patients

that finally used the therapy. In a rough sense, the list of prognostic factors and

potential confounders used to define the eligibility criteria was incomplete and

randomisation could not correct this flaw. If we take external validity in an equally

rough sense, Carpenter’s data would suggest that Cartwright points out correctly the
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limitations of causal inference in RCTs: the two phase III RCTs that granted the

approval of the drug do not usually capture the full range of effects of a drug.

However, it is useful to compare these figures with drug withdrawals. We should

always bear in mind that phase III trials are testing the safety and efficacy of a

compound, but not their full range of effects, which are only seen in phase IV. The

figures should be taken again with caution, since, as Carpenter (2010, ch. 9) warns,

the negotiation of each withdrawal depends on a number of circumstances outside

and inside the agency, among which a prominent one is the time constraints for the

review process (cf. Carpenter 2010). However, very few compounds have been

withdrawn from the market in the United States during the last five decades for lack

of safety or efficacy after receiving the authorisation of the FDA: if we exclude the

drugs approved just before the new legal deadline established in 1992, for which

security issues seem to be more prominent, between 1993 and 2004 only 4 out of the

211 authorised drugs were withdrawn.

If we thus take label revisions and market withdrawals as rough indexes of the

external validity of the regulatory trials approved by the FDA, we may conclude

that the procedure is not foolproof (in the sense of anticipating every safety threat a

drug may pose), but that it does not fare completely badly either. Its main effects are

reasonably well anticipated. Of course, this is a black box argument: we know that

the four-phase regulatory system at the FDA screens off dangerous compounds, but

perhaps this is just because the pharmaceutical industry does not dare to submit any

potentially dangerous new compound. Assuming that the FDA system works (and

very few people question that it does), RCTs certainly do not explain its success

Fig. 11.1 Drug changes requiring a supplemental new drug application, 1970–2006 (Carpenter

2010, p. 613)
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alone. Lots of formal and informal causal knowledge are acquired in the first two

phases, and it is put to test not only in the RCTs, but by the subsequent epidemio-

logical surveillance, if the drug is approved.

Expert judgement contributes to all the four phases, and even if the decision to

authorise a drug is taken at the third phase, the decision is not mechanical, precisely
because the external validity of a trial cannot be taken for granted. But this is

something pharmacologists have known right from the beginning: the regulatory

system at the FDA was established to deal with causal uncertainty. During most of

the second half of the twentieth century, pharmaceutical research advanced through

a so-called molecular lottery: compounds were synthesised and tested on animals

without any clear theoretical guidance, and even when they had an interesting

therapeutic effect, there often was no grasp of the precise mechanism responsible

for it. RCTs allowed pharmacologists to deal with this causal uncertainty about

drugs, focusing on the probability of attaining certain treatment outcomes under a

given range of prognostic factors.

But if RCTs rely so crucially on expert judgement, we may wonder why they

were considered an improvement over the older methodology. One of us has

defended elsewhere that all the involved parties explicit sought a testing methodol-

ogy with warrants of impartiality against the potential conflicts of interest arising in

the trial (Teira 2011a, b). The 1950s saw a boom in industrial drug production

(some of which were ‘wonder drugs’ such as antibiotics, but many were just

combinations of already available compounds) and, simultaneously, in pharmaceu-

tical advertising that caused much confusion among practitioners about the thera-

peutic merit of each product (Marks 2000, p. 346). For therapeutic reformers, RCTs

with their strict research protocol provided the information about drugs that ‘sleazy

advertising’ was trying to disguise with ‘badly scissored quotes’, ‘pharmaceutical

numbers racket’, ‘detail men’ visits and so forth (Lasagna 1959, pp. 460–461).

Adopting RCTs as a regulatory tool allowed the FDA to justify the impartiality of

their decisions about treatments before patients, physicians and the pharmaceutical

industry (Teira 2011a, b).

In this respect, randomisation was considered more as a debiasing procedure

than a tool for causal inference. Randomisation prevents researchers from

allocating treatments to patients according to their personal interests, so that the

healthiest patients get the researcher’s favourite therapy. As mentioned above, such

unbalanced allocations can happen nonetheless by chance. But randomisation is

still a warrant that the allocation was not done on purpose with a view to promoting

somebody’s interests. A priori, the experimental procedure is impartial with respect

to the interests at stake.

Of course, in Cartwright’s causal approach, randomisation would just be a tool

for controlling the probabilistic dependences arising from selection biases in the

experimental and the control group, making sure that they are the same in both

treatment groups except for the treatment. To understand randomisation in this way

is perfectly appropriate from a methodological point of view, but this is not how it

was understood by those who introduced it into the regulatory system. Given how

little was known about causation in RCTs at the time, randomisation was not sought
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for its contribution to causal analysis but rather for preventing anyone to exploit this

uncertainty about causation for her own benefit. The same justification applies to

other standard features of RCTs such as masking treatments or having pre-

established decision rules for the interpretation of the results (as in significance

testing): they provide a priori warrants for the impartiality of the trial.

The research protocol in RCTs constrains expert judgement at various critical

points in the generation and interpretation of clinical evidence during a trial. In this

sense, pharmaceutical regulation is based as much on the impartiality of its eviden-
tial base as on the accuracy of its causal conclusions. Perhaps there are other

sources of evidence whose external validity is as good as RCTs, but it is an open

question if they can be as impartial as the latter. Impartiality is crucial for public

policy, and it seems a defensible decision to adopt RCTs instead of mere expert

judgement for regulatory purposes: at least, the former provide certain warrants of

impartiality.

An obvious objection, of course, is that RCTs are not actually impartial. There is

evidence showing, for instance, a sponsor bias: industry-funded trials published are
more likely to support the experimental therapy than the standard alternative,

despite their good methodological quality. We know that RCTs do not control

every possible source of bias, e.g. the research protocol does not impose any

constraint on the research question that trials should address, and there is no

obvious way to decide which one should it be. But rather than an objection against

RCTs, it should be a general caveat about every possible source of clinical evi-

dence: the easier it is to manipulate the method, the less we should rely on the

evidence it produces for regulatory purposes.

Summing up, despite the problems with their external validity, regulatory

RCTs have been reasonably efficient in keeping the American pharmaceutical

market clear of unsafe or inefficacious compounds. Moreover, despite all the

label revisions, the American public has considered the FDA a reliable regulator

(Carpenter 2010), and we contend that this is because RCTs provided a warrant of

impartiality for their decision, despite the inherent uncertainty of phase III trials.

If we had full information about the effects of a therapy, impartiality would be

warranted by default. However, short of that, we need to make sure that a regulatory

decision is fair despite their inherent imperfection.

5 The Impartiality of Randomised Field Evaluations

The assessment of public policy programmes through large-scale randomised field

evaluations (RFEs) is already several decades old (the 1968 New Jersey negative

income tax experiment is often considered to be a pioneering example). Usually the

interventions assessed deal with one or another aspect of the welfare of large

populations, and testing them is expensive, though the cost of the actual implemen-

tation of the programme would be significantly more so. Around 200 RFEs were

216 D. Teira and J. Reiss



run in the United States between 1960 and 1995 (Orr 1999), with more or less

convincing results.

In the last decade, there has been an explosion of interest in RFEs among

development economists. Several programmes for improving health or education,

different microfinance and governance schemes have been tested in a number of

developing countries. A success story is the PROGRESA programme implemented

in Mexico in 1998. PROGRESA aimed at improving school performance through a

system of direct transfers conditional on family income, school attendance and

preventive health measurements. The amount of the allocation, received directly by

the mothers, was calculated to match the salary of a teenager. In order to test the

effects of PROGRESA (and with a view to secure its continuation if there was a

change in government), a team at the Ministry chose 506 villages, implementing

PROGRESA in a randomly selected half of them. The data showed an increase in

teenager enrolment in secondary education significantly higher in the experimental

group, with concomitant improvements in the community health. The experiment

was considered convincing enough to ground the extension of the scheme to more

than 30 countries.

The boom of RFEs in development economics may owe something to their

costs: in developing countries, the costs for running these programmes are signifi-

cantly lower than, say, in the United States, and non-governmental organisations

can implement them in a quick and efficient manner. But there is also a sense of

political opportunity among these social experimentalists. A leading one, Esther

Duflo, puts it as follows: just as RCTs brought about a revolution in medicine, RFEs

can do the same for the assessment of our education and health policies in fighting

poverty (Duflo 2010, p. 17).

Nonetheless, Duflo acknowledges that RFEs can involve many methodological

pitfalls. Randomisation is a case in point. Field experimentalists in economics

expect it to provide a solid foundation for causal analysis, and we have already

discussed Cartwright’s criticism of this idea. In this section we discuss further

whether we can take RFEs in development economics to be impartial. More

precisely, our question is whether randomisation is as credible warrant of

impartiality in field trials development in economics as it is in medical RCTs.

We think not.

Let us present our case by drawing on an analysis due to James Heckman. In

1992, Heckman published a seminal paper containing ‘most of the standard

objections’ against randomised experiments in the social sciences. Heckman

focused on the non-comparative evaluation of social policy programmes, where

randomisation simply decided who would join them (without allocating the rest to a

control group). Heckman claimed that even if randomisation allows the experi-

menters to reduce selection biases, it may produce a different bias. Specifically,

experimental subjects might behave differently if joining the programme did not

require ‘a lottery’. Randomisation can thus interfere with the decision patterns

(the causes of action) presupposed in the programme under evaluation.
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Let us briefly present Heckman’s semiformal analysis. Let D represent

participation in a programme and Y the outcome of participating. These two

variables are related as follows:

Y ¼ Y1 if D ¼ 1 The outcome of participating½ �

Y ¼ Y0 if D ¼ 0 The outcome of not participating½ �

Heckman presumes that the values of Y0 and Y1 are causally determined by some

umbrella variables X0 and X1:

Y1 ¼ g1 X1ð Þ

Y0 ¼ g0 X0ð Þ

If we are evaluating a training programme, and Y1 is the outcome attained by the

participants, we may presume it to be determined by their previous education, age,

etc. (X1). Participation in the programme is determined in turn by another umbrella

variable Z, with a subset of values Ψ:

If Z 2 Ψ; D ¼ 1; otherwise; D ¼ 0

For instance, participation may depend on certain values of income, employ-

ment, etc., all captured by Z. The collection of explanatory variables in the

programme assessment is thus C ¼ (X0, X1, Z): the outcome depends on certain

antecedent factors (captured by Xi) and on participation (Z). We usually do not have

full information about C: the available information is represented by Ca. If we

conduct an experiment to assess this programme, we try to determine the joint

probability distribution of Y1, Y0, D conditional of a particular value of Ca ¼ ca:

F y0; y1; djcað Þ:

In order to make his first objection, Heckman suggests we should distinguish

between regular participation in a programme (captured by D) and participation in

the programme in an experimental regime, where participation is randomised. This

is captured by a second variable D*:

D� ¼ 1 if a person is at risk for randomisation:

D� ¼ 0 otherwise:

If p is the probability of being accepted in the programme after randomisation,

the possibility of testing the programme through randomised tests depends on the

following assumption:
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Pr D ¼ 1jcð Þ ¼ Pr D� ¼ 1jc; pð Þ:

In other words, we need to assume either that:

1. Randomisation does not influence participation, or

2. If it does influence participation, the effect is the same for all the potential

participants, or

3. If the effect is different, it does not influence their decision to take part in the

programme.

Heckman’s main objection is that randomisation tends to eliminate risk-averse

persons. This is only acceptable if risk aversion is an irrelevant trait for the outcome

under investigation – i.e. it does not feature in C. However, even if irrelevant, it

compels experimenters to deal with bigger pools of potential participants in order to

meet the desired sample size, so the exclusion of risk-averse subjects does not

disrupt recruitment. But bigger pools may affect in turn the quality of the experi-

ment, if it implies higher costs. One way or another, argues Heckman, rando-

misation is not neutral regarding the results of the experiment.

Heckman’s analysis is causal: randomisation can create a self-selection bias

distorting the sample of participants on which any inference should rest. We are

going to argue that it is impossible to correct this self-selection bias without putting

in question the impartiality of the trial. The threat of partiality does not come in this

case from the researchers but from the participants themselves. In RFEs,

participants may have their own preferences about the compared treatments, and

the risk aversion elicited by randomisation is just one of them: people may prefer to

make choices about treatments. In order to preserve randomisation and to correct

self-selection biases, Duflo and her coauthors try to control the participants’

preferences by blinding, i.e. by disguising or hiding the randomised nature of the

experiment. We argue that these attempts assume the indifference of the

participants regarding the experimental outcome. If the participants have strong

preferences about the outcome, masking randomisation will not be enough to

enforce the experimental protocol.

According to Banerjee and Duflo (2009), we can avoid the self-selection bias if

we either disguise or hide randomisation. Both solutions are feasible in many

programmes, at least if we conduct the experiment in a developing country. As to

the former, randomisation can be disguised as a lottery by which the scarce

resources of the programme are allocated. If the potential participants perceive

this lottery as fair, it may not dissuade them from taking part in it. The fairness of

lotteries as allocating procedures can be certainly defended on theoretical grounds

(Stone 2007), and we know that there is empirical evidence about the acceptability

of unequal outcomes when they come from a lottery perceived as fair (Bolton et al.

2005). However, not everybody likes lotteries, even fair ones: for instance, surveys

show that people oppose the use of lotteries by colleges and universities in order to

choose which students are admitted (Carnevale et al. 2003).
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It is an empirical question to be solved on a case-by-case basis if disguising

randomisation as a lottery influences participation. Banerjee and Duflo certainly

acknowledge that even fair lotteries can provoke a self-selection depending on the

way they are presented: if the participants in the control group are told that the

experimental treatment will be available to them in the future (once the resources

are gathered), this may affect their willingness to participate or their compliance.

In addition, organising a lottery to distribute aid seems to be politically contro-

versial for governments that are expected to serve an entire population (Duflo et al.

2007, p. 21).

Hiding randomisation altogether from participants seems a more effective strat-

egy. As Banerjee and Duflo observe, ‘ethics committees typically grant an exemp-

tion from full disclosure until the endline survey is completed, at least when the fact

of being studied in the control group does not present any risk to the subject’ (2009,

p. 20). Participants in the experimental group will not know how they got involved,

and those in the control group may never know they have been excluded. If the

latter live in different villages, as it often happens in trials run in developing

countries, they may not get to know about the experimental treatment. In this

way a totally different scenario arises: in order to avoid a self-selection bias, we

deceive the participants about the comparative structure of the experiment. The

experimenters are assuming here that participants only care taking part in a lottery,

but, as a matter of fact, they may also have preferences about the treatments tested.

They may want to get one rather than the other. Or, if they understand the nature of

the experiment, they may even have a favourite treatment that they want to see

succeed – e.g. we may well imagine parents preferring direct allocations of cash to

send their kids to school rather than paid meals. If these preferences exist, disguis-

ing randomisation will only succeed to the extent that the disguise is successful: the

participants have been ‘blinded’ to the comparison, but shall we just assume that

such blinding is successful?

There is some evidence that deception in medical trials can fail. Patients have

preferences about treatments, and they usually neither understand nor like

randomisation (Featherstone and Donovan 2002): their compliance is usually

explained by their lack of alternatives to get access to experimental treatments,

they would not get the medication outside the trial. And they play by the research

protocol only to a point: they try to find out which treatment they are receiving (and if

they succeed, this has an effect on the experiment). However, in most medical trials,

the researchers have means to make patients comply with the research protocol,

e.g. they may mask the treatments well enough for an ordinary participant not to be

able to distinguish them. They would need a laboratory.Whether they have access to

a laboratory often depends on the social organisation of the patients. The testing of

early anti-AIDS treatments in the USA, documented by Epstein (1996), illustrates

this point: the participants wanted to have experimental treatments and not placebos,

so they resorted to all sort of strategies to make sure they would receive the

treatment, drawing on their connections in the gay activism networks. Many

abstained from taking part in trials if they didn’t think the drug was promising

enough (in order to remain ‘clean’ and thus eligible for other tests); those who
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participated exchanged the pills between them (at the cost of halving the dose) or

took them to independent laboratories to verify the active principle. They

completely undermined the trial protocol.

Drug trials in developing countries illustrate how access to experimental

treatments becomes a politically contentious issue within the country (Macklin

2004; Petryna 2009). We can probably expect the same from RFEs in economics: if

they address interventions about which the potential participants have preferences,

randomisation may elicit a different type of self-selection. Participants may behave

differently depending on their taste for a treatment, over-complying if they want it

to succeed or the opposite if they want to see it fail. Randomisation will only

succeed in breaking any correlation between the participants’ preferences and the

trial outcome if these former remain ignorant about the comparative nature of the

experiment. But if they have strong preferences about the treatments, how far can

we go in deceiving them about the comparison?

In order to control for such post-randomisation effects, Duflo et al. (2007)

suggest two additional strategies. The first is continue collecting data after the

experiment is terminated in order to verify whether the interaction with the experi-

menter was making any difference in the behaviour of the participants (e.g. Duflo

and Hanna 2006). One way or another, we need participants to remain ignorant

about the controls: they should not know they are still being observed. And we need

to test this ignorance, just as in medical trials with blinding; we just cannot take it

for granted.

To sum up, in RFEs, randomisation may generate a self-selection bias; we can

only avoid with a partial or total masking of the allocation procedure. We have

argued that this is a viable solution only insofar as the trial participants do not have

strong preferences about the trial outcome. If they do, we cannot assume that

blinded randomisation will be a control for their preferences unless we test for its

success. We will only be able to claim that the trial has been impartial regarding the

participants’ preferences if we have a positive proof of them being ignorant of the

comparative nature of the experiment. Hence, in RFEs, randomisation is not a

strong warrant of impartiality per se: we need to prove in addition that it has been

masked successfully.1

6 Can Field Trials Ground an Evidence-Based Policy?

In order to use RCTs as regulatory tools, it is necessary to provide some warrant of

their external validity and impartiality. If we could have perfect causal knowledge

of the effects of an intervention, impartiality would be warranted by default. But if

there is uncertainty about it, RCTs should incorporate some warrants of impartiality.

1 For a further discussion of the possibility of dispensing with randomisation in field experiments,

see Deaton (2010) and Imbens (2010).
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A regulatory decision should be impartial, and if we are going to ground it on

inconclusive evidence, we need to make sure that nobody exploits such uncertainty

in their own interest.

We have seen that the use of randomisation requires expert judgement, so the

mechanical objectivity of RCTs is mere appearance: we need a subjective (judge-

ment-based) assessment of its actual implementation in order to decide about the

external validity of the trial. Nonetheless, randomisation provides a warrant of the

impartiality of a clinical trial at the crucial stage of allocating treatments – not

beyond that. Such warrant contributes to the credibility of the experimental out-

come: we may question its external validity, but at least we can presume it is

unbiased – at least more than unconstrained expert judgement.

As regulatory tools, RCTs have proven to be most successful at the FDA, where

they are part of a system in four phases: the first two provide causal background

knowledge for the trial, and the last one – post-marketing surveillance – controls for

possible lacks of external validity. The number of label revisions, on the one hand,

and market withdrawals, on the other, signals the levels of uncertainty with which

the FDA is dealing. Randomisation, together with other means (such as blinding),

has contributed to the impartiality of such uncertain regulatory decisions, making

them more acceptable to the American public. However, it seems as though belief

in the regulatory system has weakened today, and a debate has been started on how

to strengthen the fairness of the FDA regulatory process.

If we are going to adopt RFEs as a public policy tool, we will probably need to

work on two fronts. In Sect. 5, we have argued that randomisation needs to be

successfully hidden from experimental subjects in order to be a warrant of impar-

tiality in field trials, since we are not dealing with the biases of the researchers

alone, but also with the preferences of the experimental subjects. On the other hand,

as Cartwright has argued, and the example of the FDA seems to illustrate, a

randomised trial per se does not warrant the external validity of its conclusions.

We need to keep a record of the fallibility of the conclusions of field trials in order

to measure the degree of uncertainty we are dealing with.

If we follow the institutional paradigm of the FDA, the question is how to

integrate RFEs into an institutional system that makes their results credible. As of

today, there is no clear answer as to which sort of institution should this be (Duflo

and Kremer 2005). Government-sponsored programmes are rare because it is

difficult to attain the high level of political consensus required for a successful

implementation. Without this consensus, RFEs can easily fall prey to the sort of

manipulations described in the previous section, in which each party will try to

make the experiment support its views. Non-governmental organisations (NGOs)

are more active, because they are interested in finding the most efficient way of

spending their (usually scarce) resources and they are comparatively free to choose

where and how they distribute them. However, NGOs create their own biases: the

culture of the organisation implementing the assessment (e.g. the motivation of its

employees) may impact on the participants’ reaction in a way difficult to replicate

in further extensions of the programme.
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NGOs (or non-profit organisations in general for that matter) have also a

problem of credibility, not unlike the pharmaceutical industry: they usually have

a stake in the programmes they evaluate (Pritchett 2002). And randomisation does

not seem to be a good enough warrant of impartiality to convince governments that

they can trust an assessment and implement it at a bigger scale. This is probably

why Duflo and Kremer (2005, pp. 115–117) advocate the creation of a sort of

international ‘regulatory agency’ for development policies. International organi-

sations involved in development should establish an office with the following

mission. It should assess the ‘ability of the evaluation to deliver reliable causal

estimates of the project’s impact’ and ‘conduct credible evaluations in key areas’

(p. 115).

In other words, international organisations should provide the impartial expertise

required to make the trials credible to the involved parties. This is probably the best

solution. However, it remains an open question why would the participants in the

trial see the international organisation as a neutral third party they can trust. Only if

they do, one can be certain that the trials it sponsors are a credible source of

knowledge about their target population.
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Chapter 12

Explaining the Explanations of 100 Million

Missing Women

Hsiang-Ke Chao and Szu-Ting Chen

Abstract This chapter studies the methodology in the missing-women debate

among economists and biologists. One of the central philosophical and methodo-

logical issues at stake in the missing-women debate is natural and social scientists’

attempts for discovering the underlying causal structures and mechanisms.

Although they encounter the same problem of inferring the mechanism and causal

structure in face of available data, the discovering strategies vary. In this chapter,

we will comparatively study the strategies of discovering causes and mechanisms in

the case of missing women.

1 Amartya Sen’s Missing Women

Nobel laureate economist Amartya Sen opened his 1990 New York Review of Books
article, “More Than 100 Million Women Are Missing,” with the following

sentences:

It is often said that women make up a majority of the world’s population. They do not. This

mistaken belief is based on generalizing from the contemporary situation in Europe and

North America, where the ratio of women to men is typically around 1.05 or 1.06, or higher.

In South Asia, West Asia, and China, the ratio of women to men can be as low as 0.94, or

even lower, and it varies widely elsewhere in Asia, in Africa, and in Latin America. How

can we understand and explain these differences, and react to them?
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Sen referred to the observations of exceptionally low female-male population

ratios in certain Asian countries compared with those in Western countries.

Recently, this issue has been referred to in the literature as the “missing-women”

problem. It is a problem, as Sen sees it, because the observations reveal an

abnormality. The normal circumstance would consist of the following elements.

At the outset, the laws of nature suggest that the number of male births is higher

than female births; therefore, the men-women sex ratio at birth should be higher

than unity.1 But the mortality of males is also higher than that of females, a fact that

is thought to be compensated for by the higher male birth rate—a natural “regu-

latory mechanism” that should result in an actual men-women ratio of unity

(Chahnazarian 1988, p. 217). This suggests what the observed sex ratio should be

if biological factors were the only ones to affect human reproduction.

However, for Sen, the natural laws are conditional on gender equality; that is,

they are conditional on whether men and women receive similar nutritional and

medical attention and health care. Consequently, when the observed sex ratio

deviates from that which biology would indicate in such a way as to favor the

number of men, then there are missing women, and that calls for explanations and

calculations. Moreover, such a deviation should be attributed to the unequal social

and cultural treatment of women. Sen argues that these sociocultural causes could

be expressed in the single composite factor of son preference, meaning the parental

preference for boys over girls. Sen subsequently concludes that there are 100

million women missing due to the prevalence of son preference in the non-Western

countries—50 million in China alone.

There are some methodological issues concerning Sen’s assertion. On the one

hand, there is the question of exactly how many women are missing; on the other

hand, there is the question of the cause of this phenomenon. The answers to these

questions are dependent on each other. To calculate the number of missing women,

we must determine the numbers of males and females in an entire population to

calculate the sex ratio, which in turn is affected by factors that cause either low

birthrates, high mortality rates, or shortened life expectancy of females. Sen thus

provides a possible explanation for the way the factors categorized as son prefer-

ence result in missing women.

Sen’s study reflects the long-standing issue of the human sex ratio, which has

been studied since the seventeenth century, when statistical data were first col-

lected. For example, John Graunt (1662) and John Arbuthnot (1710) statistically

analyzed the English data and showed that the high male-female sex ratio at birth

(around 105 boys per 100 girls) was not due to chance (Hacking 2006). Evolution-

ary theories of sex ratio were developed in the nineteenth century (Sober 2007).

These studies provide the foundation for the normal, or natural, state, in which

nonnatural factors do not intervene with the sex ratio at birth.

1 Sex ratio at birth is also called offspring sex ratio. Throughout this chapter, the sex ratio is defined
as the number of men per women.
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Based on this work, social scientists conducted research on the socioeconomic

mechanism behind and the causes of the missing women. In Chahnazarian’s (1988)

extensive review of the biological and sociodemographic determinants of the sex

ratio at birth, the latter includes factors such as maternal age, paternal age, and birth

order. In addition, economists have investigated the explanatory power of economic

factors such as income and wage. They go even further to study whether and how

son preference is affected by such factors. Sen, for instance, implied that the

anomalous sex ratio may have been caused, and might be cured, by the economic

factor “gainful employment,” defined as the condition of having paid work outside

the household. Women’s gainful employment may have an effect on other factors—

such as son preference and women’s inequality—and in turn on the sex ratio.2

Hence, Sen urges policy interventions, such as providing better education for

women, as a cure.

In this chapter, we review the debate about the cause of the missing-women

phenomenon—that is, the debate about whether the phenomenon is caused by

biological or cultural determinants. Our purpose is to show a crucial role that the

conception of causal structure plays in explaining or explaining away the supposed

observation of missing women. It is also argued that the complementary strategy has

been adopted to form a relatively more complete causal structure that can be used to

tell a relatively more complete causal story about the underlying mechanism that is

thought to be responsible for the occurrence of Asian countries’ missing women.

2 How Baruch Blumberg Explains His “Strangest Observation”

In biomedical science, researchers attempted to seek different explanations for the

missing women. One example is Baruch S. Blumberg, the 1976 Nobel laureate in

medicine. Blumberg’s research focuses on the hepatitis B virus (HBV), which he

discovered in 1965. He observed during his fieldwork in Greece possible

associations between HBV infection and sex ratio (Hesser et al. 1975). He later

found similar results in the countries having high HBV prevalence, such as

Greenland, Kar Kar Island, and the Philippines.3 Specifically, Blumberg found

that “carrier” families, that is, either parent was a chronic carrier who is a person

who tests positive for hepatitis B surface antigen (HBsAg) but does not develop an

antibody against HBsAg (anti-HBs), had a higher sex ratio (i.e., more boys) than did

the families that had no evidence of HBV infection. In contrast, the “antibody”

2 See Qian (2008) for an empirical study of the relation between women’s gainful employment and

sex ratios.
3 Oster (2005, Table 3) summarizes the original data of these micro-studies of offspring sex ratio

by parental HBV infection.
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families (either parent had anti-HBs) had the lowest sex ratio. Moreover, Blumberg

found that HBV carrier mothers have fewer female births and consequently

conjectured that HBV may cause a high sex ratio at birth.

The observation of the relation between the response of a parent to infection with

HBV and the gender of his or her offspring is Blumberg’s “strangest” one, because

it means that HBV is gender biased (Blumberg 2002, p. 182). In a sense, there is

biological evidence supporting Blumberg’s observation. Before Blumberg pro-

posed his hypothesis, scientists had already known that HBV infections are gender

sensitive. For instance, males are more likely than females to become HBV carriers,

that is, more likely to be HBsAg(+), whereas more females than males develop anti-

HBs. As a result, Blumberg thought that he had provided a “biological explanation”

for the issue of the missing women, an issue he had learned about from a prominent

demographist, Ansley J. Coale:

[Coale] published a paper concerning the high sex ratios that have been observed in China.

He proposed that, because there is no other biological explanation, the apparent deficit in

female births in China could be a consequence of female infanticide. As might be expected,

his findings and conjectures had a big play in the media. I pointed out to him that there

might be a biological explanation. China, and particularly South China, has some of the

highest frequencies of HBV carriers in the world. If our observations on the relation

between carriers and gender of offspring in Greece and elsewhere were also valid in

China, then this might provide a biological explanation for apparent loss of female children.

(Blumberg 2002, p. 185)

Carrier families are more likely than antibody families to have male children.

Consider the countries where the incidence of both HBV and son preference is high.

If families would like to have children until they reach the desired number of boys,

then antibody families, who are more likely to have girls, would have a lower sex

ratio and a larger family size than carrier families. The hepatitis B hypothesis hints

at one intriguing policy implication: if an HBV vaccination program were success-

ful, then there would be fewer carriers and hence a lower sex ratio at birth, with the

consequent effect on family size and the sex ratio of the population.

Drew et al. (1978) first offered a theory on the way HBV affects sex ratio. Based

on the facts that males are more likely to be HBsAg(+) and females are more likely

to be anti-HBs(+) and the statistical facts that parents with HBsAg(+) have a higher

sex ratio (more boys) and parents with anti-HBs(+) have lower sex ratio (more

girls), Drew et al. (1978, p. 691) conjecture that males would recognize HBsAg as

“self” and remain HBsAg(+) persistently (i.e., become carriers). By contrast,

females would be more likely to recognize HBsAg as “foreign” and thus produce

anti-HBs. Hence, HBsAg(+) is associated with the possibility of giving birth to

more boys, and anti-HB(+) is associated with giving birth to more girls. Drew et al.

(p. 691) provided some possible explanations: either HBsAg protects male fetuses

or anti-HBs hinders fertilization by a Y-bearing sperm. But the proposed mecha-

nism is still a conjecture, as Blumberg recently admitted that there is no evidence

for such effects of HBV in utero (2007, p. 229).
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3 How Economists Explain 100 Million Missing Women

Blumberg’s hepatitis B hypothesis is interesting, but no economist took it seriously

until Emily Oster’s (2005) article was published. Oster tested Blumberg’s idea on a

population level using both time-series and cross-sectional data. In particular, Oster

used the historical data of Taiwan’s universal vaccination of all newborns begin-

ning in 1984 to conduct an empirical test to see whether there is indeed a significant

positive correlation between the variable of HBV prevalence and an increase in the

sex ratio at birth. Taiwan’s vaccination case forms a natural experiment that is ideal

for testing the correlation, because economists can analyze the historical data of

births to vaccinated and unvaccinated mothers to see whether there is a great gap in

offspring sex ratio between these two groups; if there is indeed a significant

difference in sex ratio at birth, then HBV has a positive effect on the percentage

of children who are male; otherwise, it does not.

Although Oster’s testing result showed that there is a significant correlation

between HBV prevalence and sex ratio at birth, she noted a caveat to her conclu-

sion. Oster observed that Taiwan’s vaccination program coincided quite closely

with an increased availability of fetal sex-determination technology and a probable

increase in sex-selective abortion. Consequently, the magnitude of the difference in

sex ratio at birth between vaccinated and unvaccinated mothers is likely to be

smaller than it otherwise would be, because the effect of vaccination on decreasing

sex ratio at birth is offset by the countervailing behavior of adopting fetal sex-

determination technology, which was motivated by the cultural cause of son

preference.

However, in a cross-country analysis, Oster, by applying the least-square method

on single equations, found a significant correlation between HBV and sex ratio at

birth. She also stated that about 75 % of Sen’s 100 million missing women could be

explained by parental infection with HBV, implying that son preference plays a

lesser role in explaining the missing women. Soon after, Blumberg (2006a, b)

characterized Oster’s finding as one of the great achievements of HBV research,

because it supported his previous findings and confirmed that HBV does have

effects on gender.

In response to Oster’s biological explanation, Monica Das Gupta, a supporter of

the cultural explanation, maintained that the Chinese sex ratio at birth for the first

birth was always within the normal range of 1.05–1.06. A higher sex ratio at birth

was observed only in subsequent births. In addition to these two empirical testing

results, Das Gupta found that an extremely high sex ratio at birth was observed

mainly among women who had previously given birth only to daughters. Together,

these results strongly suggest that it is son preference, rather than HBV, that has the

significant effect on distorting sex ratio at birth and therefore it is the former, rather

than the latter, that is the cause of the missing women (Das Gupta 2005, 2006). In

response, Oster (2006) pointed out that she does not disagree with the cultural

explanation; rather, she opposes Das Gupta’s position that “the support for cultural

explanations allows to conclude that the biological explanation is not particularly
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salient” (Oster 2006, p. 324). To reconcile her biological explanation with the

cultural one, Oster, with her coauthor, proposed a further hypothesis: it is possible

that HBV interacts in a complicated way with birth order and the sex of previous

children (Oster et al. 2008).

Against this background, a pair of Taiwanese economists—Ming-Jen Lin and

Ming-Ching Luoh—conducted a study that was designed mainly to test whether

Oster’s further hypothesis is sustainable (Lin and Luoh 2008). They acquired a

unique dataset of Taiwan’s nationwide hepatitis B vaccination program that was

launched in July 1984. The data, more substantial than Oster’s Taiwanese data in

size, are the comprehensive historical data obtained from the Hepatitis B Mass

Immunization national databank of Taiwan, which includes gender, year and month

of birth, birthplace, mother’s age, birth order of the child, unique ID of the mother,

and mother’s HBV status at the time of pregnancy. Lin and Luoh conducted a

regression analysis to see whether there was any significant correlation among

gender, birth order of the child, and mother’s HBV status. The specification of

their regression is as follows:

Boy ¼ αþ β1 HBsAg

þ β2 Birth Order 2ð Þ
þ β3 Birth Order 3 and higherð Þ
þ β4 HBsAg� Birth Order 2ð Þ
þ β5 HBsAg� Birth Order 3 and higherð Þ
þ β6 Mother Age Dummiesð Þ
þ β7 Child Birth Year Dummiesð Þ
þ β8 Birth Township Dummiesð Þ
þ ε ð12:1Þ

Parameter β1 measures the effect of HBV on sex ratio at birth; parameters β4 and β5
investigate whether the effect of HBV differs among different birth orders. Lin and

Luoh’s argument appeals to both substantive and statistical significance. If the

testing results are that the estimated value of β1 is small and statistically insignifi-

cant and if there is no significant difference between β4 and β5, it then suggests not

only that HBV plays no role in determining sex ratio at birth but also that some part

of the further hypothesis—that is, the hypothesis that there are complex biological

mechanisms in operation between HBV and birth order—should be ruled out. On

the other hand, the magnitude of the values of β2 and β3 indicates whether the

offspring in higher birth orders are more likely to be male; if the magnitudes are

large enough to be significant, then the result supports the son-preference explana-

tion. The end result of Lin and Luoh’s testing is that β1 is small and sometimes

insignificant; measuring the effect of HBV on sex ratio at birth, parameters β4 and
β5 are small and insignificant, confirming that birth order does not amplify the

effect of HBV. Together, these two results show that the biological explanation is
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not sustainable. As for β2 and β3, the value of β2 is small and insignificant, and β3 is
very large and significant; these results together indicate that variation in the sex

ratio at birth mainly affects third and later children and thus suggests that the

cultural explanation is more plausible.

To test the other part of the further hypothesis—that the effect of HBV varies

with the sex of previous children—Lin and Luoh ran another regression as follows:

Boy ¼ αþ β1 HBsAg

þ β2 First two children are girlsð Þ
þ β3 HBsAg� First two children are girlsð Þ
þ β4 Mother Age Dummiesð Þ
þ β5 Child Birth Year Dummiesð Þ
þ β6 Birth Township Dummiesð Þ
þ ε ð12:2Þ

Again, following the same logic of identifying whether the effect of HBV varies

with birth order, Lin and Luoh checked whether the values of β1 and β4 were large
and significant; if they were, the result would indicate both that HBV indeed plays

an important role in determining the offspring sex ratio and that there is indeed

some interaction between HBV and the sex of the first two children. According to

Lin and Luoh’s result, both β1 and β3 are small and insignificant, but β2 is very large
and significant. This result thus also suggests that the son-preference explanation is

more plausible. So this allows the authors to rule out the “complex biological

mechanisms” of HBV inflections on the sex ratio (Lin and Luoh 2008, p. 2264).

Oster soon struck back. She teamed up with Blumberg (Blumberg and Oster

2007). They argue that, empirically, paternal, not maternal, hepatitis carrier status is

more strongly correlated with sex ratio at birth. Yet their 13-page manuscript was

never completed and published. Perhaps Oster found that the hypothesis was not

sustained; her recent 2010 paper, written with three Chinese medical officials and

researchers (Oster et al. 2010), claims that by analyzing the data of Haimen City in

Jiangsu Province, China (sample size ¼ 67,511 individuals), no relationship

between paternal HBV and the missing women is found. Consequently, she

conceded that HBV cannot explain the missing women in Asia.

4 Difference in Methodology

The case of missing-women debate can be seen as an example of extrapolation in

the sense of Daniel Steel (2008; see also Steel’s chapter in this volume, 2013).

Researchers compare the target with the sources originating from other disciplines

and geographic regions and draw similarities that could serve as a guide for further

investigation. Where the strategy of discovering the missing women is concerned,
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we notice methodological similarities and dissimilarities among economists and

biomedical scientists. First, we find that Sen’s and Blumberg’s theorization pro-

cesses may best be understood in terms of Inference to the Best Explanation
formulated by, inter alia, Peter Lipton. Lipton’s Inference to the Best Explanation

has a root of Charles Sanders Peirce’s abduction, which consists the form of

inference: “The surprising fact, C, is observed; but if A were true, C would be a

matter of course, hence, there is reason to suspect that A is true.” Inference to the

Best Explanation stresses also on inductive inference. Lipton maintains that

scientists infer from available evidence to the hypothesis that would provide the

best explanation for that evidence. For instance, as Lipton states, Darwin inferred

from his biological evidence the theory of natural selection because natural selec-

tion would best explain that evidence (Lipton 2000, p. 184). Conversely, inference

is guided by explanatory considerations, particularly by those explanations that

provide most understanding if true—the loveliest explanations.4 This seemingly

circular argument in fact describes well how a hypothesis is formulated in science,

how it is justified as the best hypothesis among many competing hypotheses, and

how it can heuristically guide the inference process. It is also stressed that Inference

to the Best Explanation is fallible. Because all available evidence does not neces-

sarily lead to truth, the best explanation may not be the actual explanation. Lipton’s

reconstruction of Carl Hempel’s (1966) discussion of Ignaz Semmelweis’s attempt

to explain different rates of childbed fever in two hospital wards well demonstrates

how the best explanation to such observation can be derived from the account of

Inference to the Best Explanation (Lipton 2005).

It seems both of Sen’s and Blumberg’s studies fit well the account of Inference to

the Best Explanation. In our case study, Sen and Blumberg seek to infer from

evidence the best explanations for Asia’s missing women. Sen derives missing-

women phenomenon from the sex ratios in Asia from those in the Western

countries, and then he infers from the evidence that the son preference induced

by women’s gainful employment is the best explanation for Asia’s missing women.

Similarly, Blumberg infers from his data that the hepatitis B hypothesis is the best

biological explanation for the missing women, in which he uses his knowledge of

the hepatitis virus, especially the feature of gender sensitivity. Despite the fact that

both Sen’s cultural hypothesis and Blumberg’s hepatitis B hypothesis provide the

best explanation for their evidence, we observe that the consideration of explaining

the missing-women phenomenon has been the guiding force to direct them to adopt

a particular inference strategy for carefully developing their accounts by explaining

and explaining away the adequacy of explanatory components. So doing makes

their explanation better than others. Yet it would still be understandable should

Sen’s and Blumberg’s hypotheses have turned out to be false explanations in the

face of newly acquired data, and have been replaced by a theory providing better

account for the data.

4 By contrast, a likeliest explanation is the explanation that is best warranted by the evidence.
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Contrasting with Sen’s and Blumberg’s attempts to theorize the missing-women

phenomenon, Oster’s and Lin and Luoh’s studies are conducted by running

regressions on data to find significant statistical relations between high sex ratio

at birth and factors that might influence it. Although they intend to find the causal

power of the factors, it is not obvious whether they are concerned with finding the

true causal relationships. For instance, Oster (2005, p. 1164) stated that “after one

adjusts for differences in the sex ratio at birth caused by hepatitis B, the number of

missing women (based on population estimates from 1980 to 1990) drops to 32

million” (our emphasis), but she has been cautious in using causal language in other

places. In Blumberg and Oster (2007), she used correlation (“paternal, not maternal,

infection is correlated with higher offspring sex ratios”) more often than causation.

Oster is concerned only to justify the hepatitis B hypothesis by claiming that the

causal relation is supported by relevant correlations. Similarly, although Lin and

Luoh found that cultural factors are causal to the missing women and they claimed

that the biological mechanism is ruled out, they could not, or would not, find the

true causal mechanism.

We might use Trygve Haavelmo’s (1944) famous mechanical analogy to

illustrate. We could derive the functional relation between the pressure on the

throttle and the speed of a car on a flat road under usual conditions, but such a

relation will break down as soon as there is a change in any working part of this

car, or a change in an external condition. The throttle-speed relation is less

autonomous because this type of relation is not invariant to changes in the

surrounding conditions and thus is not fundamental to economics. For Haavelmo,

the general laws of thermodynamics and the dynamics of friction are examples of

highly autonomy relations, because they “describe the functioning of some parts

of the mechanism irrespective of what happens to some other parts” (Haavelmo

1944, p. 28). The real automobile mechanism is hard to be discovered without

opening the hood, one might still be able to find out what causes the throttle/speed

relationship to break down. The econometric studies of Oster and of Lin and Luoh

focus on economic relations such as the one between throttle pressure and speed;

they are interested in whether or not certain relations sustain, rather than opening

the hood and seeing the engine of the car. They intend to find factors that causally

relate to sex ratio at birth, empirically speaking, and use the empirical finding to

vindicate or repudiate hypotheses.

5 Causal Structure and Net Result

Given Lin and Luoh’s empirical result that the effect of hepatitis B on an increase in

the sex ratio at birth is limited, we might conclude that economists are no longer

willing to endorse the idea that hepatitis B has the efficiency to affect the sex ratio.
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This description seems to be further justified by Oster’s remarks about the idea of

science:

I’d be lying if I told you it wouldn’t be great if I was right all the time. . .If you work like

this, especially if it’s something that people care about, and you get to collect some more

data that is maybe going to be even more informative than what you had before, it’s your

responsibility to do that. This is the way science works.5

On the face of it, Oster’s statement might be regarded as representing two

methodological points. One is the doctrine that follows the tradition of Popperian

falsificationism; the other is that the size of data does matter. The aim of science,

including economics, is to identify stable connections—or regularity laws—among

variables (or factors) of interest so that, by using these connections or laws, scientists

are able to explain the phenomena that are thought to be governed by the connections

or laws. If, in the process of hypothesis testing, the scientists somehow find out that

there are no stable connections or lawlike relations among the targeted variables, the

correct action is for scientists to repudiate their hypotheses about those connections

or laws. In our case, the hepatitis B hypothesis is that there is a positive connection

between the prevalence of hepatitis B amongmothers of newborns and the increased

ratio of newborn males to females and thus the number of missing women. In her

2005 paper, Oster, by using various quantitative strategies and a larger dataset than

Blumberg’s, concluded that there is indeed a robust connection between hepatitis B

and the missing women, so she suggested that hepatitis B could explain the phe-

nomenon. Later, Lin and Luoh’s study of three million newborns rejected the

hepatitis B hypothesis. In order to respond to Lin and Luoh, Oster et al. (2010)

used new empirical data and found no effect of hepatitis B carrier status on the sex

ratio. This finding led her to reject the hepatitis B hypothesis and claim that hepatitis

B does not explain male-biased sex ratios in China. Oster’s practice of rejecting her

previous hypothesis thus illustrates that her action following her doctrine of science.

However, if we interpret the missing-women debate in this methodological

sense, then the following short paragraph, which is quoted from the 2008 working

paper version of Oster et al. (2010), may seem puzzling (Oster et al. 2008, p. 6):

[After showing] that hepatitis B carrier rates cannot explain male-biased sex ratios or the

‘missing women’ in China . . . [a]n important remaining issue is whether it is possible to

reconcile the biological results in the original paper (Oster 2005) with these [2008] results

and, in particular, how the individual-level data from outside of China and the evidence

from vaccination campaigns in Alaska can coexist with new results from China . . . We re-

visit the original individual-level data from Greece and the Philippines and continue to find

support for the connection between paternal hepatitis B carrier status and offspring sex

ratio. Moreover, in the data from China discussed here, we also find some interaction

between hepatitis B, gender and fertility: women with the hepatitis B e antigen (carriers

who are also replicating an additional viral antigen) seem to have fewer male children.

Further, women who are carriers of the virus have fewer children overall, even with

extensive controls. Together, this evidence suggests that there may still be some interaction

between hepatitis B and fertility outcomes (in general) but that clearly the pathways are

much more complicated than the simple carrier-male offspring connection.

5 Quoted in Justin Lahart, “Economist Scraps Hepatitis Theory on China’s ‘Missing Women,’”

The Wall Street Journal, May 22, 2008.
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If we read between the lines, the quotation seems to suggest that even though the

new empirical result does not support the hepatitis B hypothesis, the hepatitis

hypothesis should not be rejected immediately; economists would rather at one

stage hang on to the refuted hypothesis and try to find a way to reconcile the old

findings with the new ones. In this sense, we might define two methodological views

of science. On the one hand, science is traditionally regarded as being constituted by

a great number of theories. The aim of each theory is to provide an explanation for a

phenomenon in question. Each theory in turn contains a number of hypotheses, each

of which posits a general law that is supposed to govern or regulate a corresponding

part of the targeted phenomenon if that part can be logically derived from the general

law. Once all the relevant hypotheses—that is, the relevant regularity laws—of the

theory can be used to derive the corresponding parts of the phenomenon, the theory

is said to provide an explanation of the phenomenon. When a new phenomenon of a

similar kind can no longer be derived from—or explained by—the same theory

(the same set of regularity laws), then the theory and its component laws should be

substituted or replaced by other new theories and their component new laws.

We may call the idea that involves the description of scientists’ practices the

substitutive conception of scientific practices. This is Popperian in spirit.

On the other hand, our case study shows that the substitutive framework does not

necessarily appear in economists’ practices. The empirical result of Lin and Luoh is

thought to reject the hepatitis B hypothesis by their findings of little effect of HBV on

the sex ratio at birth and a significant correlation between higher birth order and the

sex ratio at birth. Yet we also witness the so-called complementary conception of

scientific practice as followed in Oster’s work: when scientists want to check

whether there is a significant correlation between any two targeted events, they

usually apply empirical tools, such as regression analysis, to run a significance test.

When they find that the estimate that represents the correlation does indeed fall

within the prescribed confidence interval, they accept the correlation hypothesis and

confirm that there is a correlation between the two events. In contrast, if the estimate

falls outside the confidence interval, it is normally presumed that such a hypothesis

should be rejected and no correlation is acknowledged. Yet in practice it is intended

to append additional conditions to the failed hypothesis to explain why the hypothe-

sis conflicts with the testing result. In other words, some explanation is provided to

reconcile what is stated in the hypothesis and the contradictory testing result. In fact,

Oster herself used the term complementary that fits precisely into our observation.

In her reply to Das Gupta’s comments, Oster stated (Oster 2006, pp. 325–326),

The key to thinking about the relative potential of culture and biology to explain the over-

representation of men in a population is understanding that marginal effects may be seen to

operate and still tell us relatively little about the average. In the end, it seems better to think

of these two explanations as complementary. The issue of gender imbalance in Asia—the

causes and consequences—is an important one; we should endeavor to have a complete
understanding, not just a partial one. (our emphasis)

In order to have a complete understanding, it needs first to understand the fact

that the observed correlation between any two targeted events is in fact the net
result of a complicated interaction among a great many relevant factors involved in
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the two events. Based on this supposition, thinking in terms of causal structure is

helpful. Hypothesis testing is conducted under an overarching assumption that the

relevant factors interact with each other to form a causal structure, defined by

Nancy Cartwright as “a fixed (enough) arrangement of components with stable

(enough) capacities that can give rise to the kind of regular behavior that we

describe in our scientific laws.” Cartwright (1997, p. 343) explains that “capacity

is used to mark out abstract facts about economic factors: what they would produce

if unimpeded” (Cartwright 1998, p. 45). According to the idea of causal structure, it

may seem that what is supposed to be stable are the capacities (or causal powers)

possessed by those member factors of the structure. However, the regular associa-

tion of the targeted factors that is described in the regularity law is generated from a

causal structure, and therefore the stability of the association—that is, the degree to

which the law is regular—depends on whether the causal structure itself is in a

stable condition. If, however, an unexpected new factor intrudes into the original

layout of the structure, this new factor will destroy the original stable condition of

the causal structure and therefore bring about a new equilibrium state that is not

consistent with what is stated in the original regularity law. From this perspective,

Cartwright argues that, contrary to the general belief that regularity laws are

necessary regular associations that regulate or govern any two targeted factors,

“[regularity] laws are transitory [or contingent] and epiphenomenal, not eternal”;

the stability of regularity laws is subject to whether the causal structure is capable of

repeatedly generating them (Cartwright 1999, p. 122).

Based on this structural thinking, it may seem that a regularity law should be

repudiated when the result of hypothesis testing tells us to do so. But we shouldn’t

throw out the baby with the bath water; we shouldn’t throw out the causal factors with

the defective regularity laws, but rather should attribute the failure of their hypothesis

to the instability of the causal structure rather than to the causal factors, which possess

stable capacities or causal powers. Whenever there is an anomalous phenomenon that

is inconsistent with their hypothesis about a regular correlation between two factors,

we can still consult the old knowledge of the capacities of the relevant factors and then

imagine a new causal structure fromwhich, by using these two pieces of information, a

new regularity law can be derived. The new regularity law can in turn be used to

explain why and how the previously unexplainable phenomenon occurs. The old

knowledge of capacities is in this sense complementary to the knowledge of the new

causal structure and regularity law. We may then call this description of economists’

practices the complementary conception of scientific practices.

6 Strategies for Discovering Asia’s Missing Women:

Causal Structures

Let’s again use the case of missing women to illustrate how economists develop

complementary scientific practices. The hepatitis B hypothesis states that HBV has

a positive effect on sex ratio at birth (SRB). This simple causal structure is

illustrated in Fig. 12.1.
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where the symbol “+” indicates positive effect.

where the symbol “�” denotes negative effect; the dotted line denotes the disrup-

tion of the original effect.

Figure 12.2 illustrates that, because of the introduction of a universal vaccination

program for newborns (VNB), the original causal path is disrupted by the intrusion of

VNB, and the figure also shows that VNB has the negative effect of reducing SRB.

Figure 12.3 shows that, by further considering that Taiwan’s universal vaccina-

tion programwas launched about the same time as the use of fetal sex-determination

technology (SDT) became prevalent, the original causal structure should be supple-

mented with an additional causal path leading from SDT to SRB; the figure shows

that SDT has the positive effect of increasing SRB.

In Fig. 12.3, there are two competing causal paths that jointly determine the

degree of SRB, and the entire causal structure represented in Fig. 12.3 also reflects

the concern that, because of the introduction of SDT, the magnitude of VNB’s

effect on reducing SRB is likely to be offset by the new effect of SDT, which has a

positive effect of increasing SRB to a certain degree.

It is mentioned in Oster (2005, p. 1185) that this offsetting effect would be

mitigated if a large portion of the population were indifferent to whether they have

sons or daughters. With the addition of this further concern, the causal structure

HBV prevalence •  
+

• SRB

Fig. 12.1 The simple causal structure of hepatitis B hypothesis

disrupt point

• • SRB

VNB •

HBV prevalence •
−

Fig. 12.2 The biological causal path being disrupted by vaccination campaign

HBV prevalence • • SRB
disrupt point

VNB •

SDT •

•
−

+

Fig. 12.3 The relatively more complicated causal structure with the further causal influence of

SDT
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depicted in Fig. 12.3 is revised into the new structure represented in Fig. 12.4.

Depending on whether the population has a high or a low degree of son prefer-

ence, SDT will have very strong positive (++) or mild positive (+) effect on

increasing SRB. In other words, if a high percentage of the population prefers

having sons, the VNB’s effect of decreasing SRB would be much lower than it

would otherwise be. In contrast, if most people in the population are indifferent to

their offspring’s gender, then the indicators estimated from Taiwan’s vaccination

campaign representing the correlation between HBV prevalence and SRB likely

would more reliably reflect the VNB’s undisturbed magnitude of the effect on

decreasing SRB.

Note that the upper part of Fig. 12.4 represents the cultural and social causal

paths that are formed by the connections of the cultural causes and would have a

certain degree of influence on SRB, and the lower part of the figure consists of the

biological causal paths that are shaped by the combinations of the biological causes

and would also have a certain degree of effect on SRB. Also note that, in the process

of building the relatively most complicated causal structure represented in

Fig. 12.4, at each step an additional causal path is appended to the original relatively

simple causal structure to form a relatively more complex figure; one important

characteristic of the theory-building methodology is that, in the end, both the

cultural and the biological groups of causal paths seem to be accommodated

by the relatively most complicated causal structure to form the relatively most

complete causal story. It is obvious that, in our description of the methodology, no

win-lose strategy is applied in choosing between two competing causal stories.

What it shows is that these two competing causal stories complement each other to

form a more complete causal story.

HBV prevalence • • SRB

disrupt point

VNB •

SDT •

+ + or +?

+ + or +?

DSP •

The degree of 
- son preference
- willingness to abort

•
−

Fig. 12.4 The relatively most complete causal structure with the cultural and biological causal

paths
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This complementary methodology can also be illustrated by the debate between

Das Gupta and Oster. According to Das Gupta, the change of sex ratio at birth is so

closely correlated with the sex composition of the existing children in the family

that it is very unlikely that biological factors could play any significant role in

determining that ratio; she therefore concluded that the cultural explanation should

replace the biological one. In response, Oster provided a miniature formal model to

show that, regardless of the naturally occurring average, resource-constrained

utility-maximizing parents would still behave in a way that has the marginal effect

of changing the sex ratios (Oster 2006, pp. 326–327). In addition to the formal

presentation of the difference between the average and marginal effects, Oster gave

an example to illustrate her main point. Consider that there are two countries:

country A is in the desert, and country B is in the Arctic. On average, due to its

location, country A is hotter than country B. Imagine that we also observe that

country A is cooler when the weather is cloudy, and country B is hotter when the

weather is sunny. It is obvious that we won’t therefore conclude that the entire

difference between the weather of country A and that of country B is cloud cover;

instead, we would say that “there is a naturally occurring difference in the average
temperature but on the margin the temperature in both places can move” (Oster

2006, p. 325; emphasis added).

Thus, we can interpret Oster’s example in terms of Cartwright’s notions of

causal structure and capacity. HBV can be regarded as a factor possessing the

capacity to produce a naturally occurring difference—that is, a change in sex ratio

at birth—if unimpeded. In the actual world, economists surely know that no factor

can operate in an undisturbed environment. They, however, can assume that the

various effects of these disturbances can be averaged out so that the phenomenon of

interest—normally a relation between two targeted factors—can be observed as if
the observed phenomenon were undisturbed. By using the ideas of capacity and

causal structure, we can thus describe the positive relation between HBV (targeted

factor 1) and sex ratio at birth (targeted factor 2) as a net result produced by HBV’s

capacity under a stable causal structure; the various effects of the relevant factors

are all averaged out except the two targeted factors. According to such thinking, we

can thus suppose that HBV, on average, can have a positive effect on the sex ratio.

Next, by following the logic illustrated in Oster’s weather analogy, let’s suppose

that there are two countries: country A, which has a high percentage of HBV-

infected population, and country B, which has low rate of HBV infection. And let’s

further suppose that we observe that people in country A have no tendency for son

preference, but people in country B, for local reasons (such as the need to have more

males to do hard agricultural work), prefer having more male births. We can then

expect that when the families in country B already have two girls, they will try their

best—for example, they may try fetal sex-determination technology—to have a boy

in their third birth. As a result, in country B, we can observe a high correlation

between the sex of the previous children in a family and the sex ratio of subsequent

births. Therefore, just as we may perceive in the weather example that “there is a

naturally occurring difference in the average temperature but on the margin the

temperature in both places can move,” we can also observe in the HBV case that
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there is a naturally occurring difference in the average sex ratio (country A, due to

the effect of HBV, on average has a higher sex ratio than country B) but on the

margin the sex ratio in both places can move (country B, due to its own local

concern, may have a higher sex ratio than it would normally have). In the case of

country B, we observe that there is a negative relation between HBV and sex ratio, a

result that is contradictory to what is described in the capacity claim of HBV (HBV

is a factor possessing the capacity to produce a positive change in sex ratio).

However, just as we have noted in the discussion of causal structure and capacity,

this paradoxical conclusion can be reconciled by resorting to a change in the

original structure. Our original simple causal structure contains only one causal

path: the HBV infection rate of country B leads directly to the sex ratio at birth of

country B. To accommodate the new fact that country B is a son-preference

country, we need to add a new causal path leading from country B’s degree of

son preference to its sex ratio at birth. These two causal paths together constitute a

more complicated new causal model from which a new net result—a negative

association between HBV and the sex ratio—is generated.

7 The Causal Images of Mechanisms

We have identified two methodological approaches in the missing-women debate:

substitutive and complementary. We have also argued that the complementary

approach can be understood as an attempt to identify the causal structure. Studies

that seem to significantly conflict (such as Blumberg and Oster 2007) with the test

that is regarded as decisive (i.e., Lin and Luoh 2008) may be interpreted as attempts

to find the strengths of causal paths. Because it is the net result of the causal

structure that the empirical test tests against, the data cannot reject the existence

of the causal structure. All in all, there is an image of a causal structure in scientists’

minds.

Because of the influence of the received image of science, we often find that

empirical economists refer to correlation and regularity but seldom discuss mecha-

nism. In the sense of Machamer et al. (2000), we can say that the genuine underly-

ing structure that produces the phenomenon of the correlation between HBV and

sex ratio at birth—be it a positive or a negative relation—is the mechanism that

makes the relation what it is. When the manifest regularity between HBV and sex

ratio at birth is a positive relation, it is the mechanism that makes it so; when the

regularity is a negative one, it is still the mechanism that makes it so, but, this time,

the mechanism operates under a different structure that makes the originally

positive relation become negative. By ignoring the underlying mechanism, the

biological explanation is ruled out simply because a robust relation between HBV

and sex ratio at birth can no longer be found. However, a faint image of causal

structure—like Machamer, Darden, and Craver’s mechanism schemata and

sketches of the underlying mechanisms—is still possessed by anyone who is

interested in the missing-women phenomenon. We can infer a great many possible
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situations that may correspond to the causal structure of the sea of disturbances;

then, based on this partial causal image, we thus append a complementary causal

story to our original biological explanation, as in our case of the missing women, to

make the explanation more complete and plausible.6

This patch-up methodology is not conducted for the purpose of preserving

a falsified hypothesis; instead, the methodology is supplemented with the process

of theory-building in an attempt to obtain—as illustrated in our case—a more

complete understanding of the targeted phenomenon, be it a normal or an

anomalous one.
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