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that advice might be important in decision making.
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• the philosophical background to different concepts of uncertainty;
• the constraint of uncertainties by the collection of observations and data assimila-

tion in real-time forecasting; and
• techniques for decision making under uncertainty.
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Preface

This book has had a long gestation. It has its origins in a piece of hydrological model-
ling work carried out for my PhD about 35 years ago. The results were published
much, much later (Beven, 2001) because they were so bad. The modelling was done
scientifically and objectively, working to the best standards of the day but the model
gave very poor predictions of both the outputs of the small catchment area under
study and the internal responses of the hillslopes. At the time, computer limitations
were an issue: these were still the days when computer programs existed as boxes of
punched cards so that debugging program code and run-time errors was extremely
time-consuming. Computer memory and speed were constraints on the element size
used in the model and on the periods of simulation that could be run. I remember that
we had a small celebration when my simulations finally used less computer time on the
University “mainframe” computer than the 12 hours of real time that they were
purporting to simulate!

Computer limitations were not, however, sufficient to explain why the results were
so bad. My interpretation of the results was that the model did not take adequate
account of the nature of the flow processes and heterogeneity of soil characteristics
observed in the field, despite the fact that it was based on the best theory available at
the time and that the model parameters had been measured in the field (albeit on small
samples). Thus, my research career can be summarised as an attempt to cope with this
failure and to find ways of simulating environmental systems, in some sense,
“properly”.

Defining “properly” is, itself, a difficult issue that overlaps into areas of the phil-
osophy of science and this book includes a discussion of some of the philosophical
issues involved. It is, of course, quite possible to develop and use environmental
models without any explicit underlying philosophy. They are simply useful tools.
However, at the risk of making a gross generalisation, I would suggest that most
environmental modellers have, at least implicitly, what might be called a pragmatic
realist philosophy. I am a hydrologist. I know very well that my computer model is
only a set of logical constructs implemented on some complex electronic hardware but
I still think of the variables in the model as representing real water. If I make predic-
tions of pollutant transport I think of the concentrations in the model as representing
real contaminant. My aim is to improve the models over time, learning from each
application to come “closer” to the real quantities of interest.

In the same way, an ecological modeller will hope to represent real populations and
communities; the atmospheric modeller real energy and momentum fluxes in the



atmosphere; and the volcanologist the properties of real lava flows with their differing
mineralogies and gas contents. Their aim will also be to improve their models over
time, so that the models become more “realistic”, but most environmental modellers
will realise that there are limitations on how far we can take this process. The modeller
has to be a pragmatist, even if not wishing to be “only” an instrumentalist in retaining
any model thought to be “useful” in some sense in prediction.

This book is essentially an exploration of those limitations and their implications
for modelling practice and the use of model predictions in decision making. Those
limitations mean that there will be inherent uncertainties in the predictive capabilities
of environmental models and therefore a risk of being wrong in making a prediction.
Thus, it is the thesis of this book that such uncertainties should, wherever possible, be
explicitly evaluated and any decision that is based on such predictions should take
account of the risk of being wrong.

However, uncertainty estimation has certainly not yet become routine practice,
although the research literature is now increasing rapidly. Probability concepts and
stochastic models have been used widely but, as will be seen, often in quite a determin-
istic way. There are good reasons for this, but this does not justify the total neglect of
uncertainty that is often evident in environmental predictions. The aim here is to
outline the methods that are available and show how they can be used in practice in a
way that can be readily understood, especially by those who may need to take
uncertainty into account in making decisions. I hope that this might encourage wider
understanding in future (and even that in some areas of predicting future changes that
the use of uncertainty estimation in environmental modelling should become manda-
tory!). In a short book covering a wide range of techniques, it is only possible to
provide an introduction and guide, but references to more detailed reading are given
throughout. A variety of case studies are used to illustrate different methodologies.
One of the reasons for the wide range of available methods is that uncertainty estima-
tion for environmental models is still developing and sometimes involves contentious
issues. There have been some strong disagreements about appropriate methodologies
and the book also tries to reflect some of the current debates.

Environmental models are (or should be) run for a purpose. That purpose might
only be as a framework for trying to understand how an environmental system is
working, but often they are run to help in some form of decision making. Many people
have suggested that decision makers are “not ready” to deal with uncertain predic-
tions from the scientist, or that if the estimate of uncertainty is too large then this may
not be helpful in decision making. Both suggestions are, in my view, wrong. Indeed, in
my view, it is wrong for a scientist not to associate any prediction that might be used in
decision making with a realistic evaluation of uncertainty since this might actually
change the decision that is made. Where uncertainties are indeed large, then this might
result in a different approach to decision making that is robust to uncertainty and
adaptive to learning more about the system. Some of the methods for how to do so are
also discussed in this book.

My own research work has been primarily in the areas of hydrological and
hydraulic modelling and I have limited experience of other areas of environmental
modelling. The examples used in illustrating the techniques presented in the book are
therefore biased towards the areas I know best, but I have tried to bring in examples
from other disciplines where appropriate. Environmental science is, after all, an
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interdisciplinary activity within which physical, chemical and biological processes are
linked and coupled. Any demarcation of a particular spatial or process domain there-
fore necessarily involves simplification and, as a result, uncertainty. I hope, therefore,
that the techniques presented in this book will be applicable across a wide range of
environmental problems and that there is a sufficient range of methods presented that
readers might find one or two things that are new to them and that might be useful,
particularly in environmental modelling and decision-making applications when it is
difficult to make strong assumptions about the various sources of uncertainty. How-
ever, the literature on uncertainty estimation is growing rapidly and it is very possible
that I have missed some benchmark references from other fields (there is little on
uncertainty in geophysical applications and regionalisation techniques, for example). I
also realise that not every methodology has been included (the book is already bigger
than I originally intended as an introductory text). I can but offer my apologies in
advance to those readers who feel that more prominence should have been given to
their work.

Over the last 30 years, the ideas that are presented here have been influenced by a
wide variety of people, some of whom I have never met but whose writings have
caused me to think deeply about how best to do modelling “properly”. Citing only the
examples of good practice, I should mention first Peter Young at Lancaster University
whose attempts to show that science can indeed formally progress by induction have
been a consistent inspiration. I also benefited greatly from discussions about modelling
with George Hornberger when I worked at the University of Virginia: indeed, our later
development of the GLUE methodology for uncertainty estimation is a direct exten-
sion of the Monte Carlo sensitivity analysis work that he did with Bob Spear and Peter
Young.

Statisticians have tended to claim the realm of uncertainty estimation as their own,
but there are many aspects of uncertainty in environmental modelling that have noth-
ing to do with statistics. There are many things about the GLUE methodology that
many statisticians do not like, especially subjective likelihood measures, but I have
greatly appreciated the open-mindedness of Jonathan Tawn of the Department of
Statistics at Lancaster University and Jonathan Rougier, now at Bristol, in discussing
some of the issues involved. There have now been applications of GLUE to a wide
variety of problems, helped by a large number of graduate students, post-docs, col-
leagues and visiting scientists at Lancaster. The contributions of Bruno Ambroise,
Giuseppe Aronica, Kathy Bashford, Andrew Binley, Sarka Blazkova, Rich Brazier, Kev
Buckley, Wouter Buytaert, David Cameron, Hyung Tae Choi, Sarah Dean, Luc Feyen,
James Fisher, Stewart Franks, Hannah Green, Barry Hankin, Ion Iorgulescu, Helen
Kettle, Rob Lamb, Trevor Page, Florian Pappenberger, Pep Piñol, Renata Romanow-
icz, Karsten Schulz, Paul Smith, Phil Younger and Susan Zak have all been important.
Special thanks are due to Jim Freer for long service in trying out lots of different
hydrological modelling and GLUE ideas, enthusiastic promotion of an international
community of hydrologists interested in uncertainty in measurements and model pre-
dictions, and (not least) keeping a succession of parallel computing machines working
at Lancaster.

Tack så mycket också to the group of PhD students from Sweden and Denmark who
participated in the course at Uppsala based on a draft of this book and provided some
useful feedback, and to Uppsala Universitet and Sveriges Lantbruksuniversitet for the
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support and warm welcome during my year in Uppsala. Finally, thanks to Monique
Romanens, Susanne Abbuehl, Angela Hewitt, Thomas Tallis, Svenska Polskor, and the
Arditti, Alban Berg, Borodin, Brodsky, Emerson, Fitzwilliam, Keller, Kronos, Lindsay,
Maggini, Uppsala Kammarsolister and Zehetmaier quartets for keeping me saner than
I would otherwise have been during the last year of writing.

In the preface of my rainfall-runoff modelling book, I noted that I had written it
with Anna in mind and that, should she ever have to read it, I hoped that it would be
useful. Totally unexpectedly, she did have to use it as part of an MSc course (with the
assessment that “it was not too bad, really”!). So perhaps this time round, I can
formally dedicate this book to Anna and the next generation of environmental model-
lers, in the hope that they might start to implement some of the methods presented
here in real applications. After all, some clients are, at last, starting to ask for
uncertainty estimates in predictions – so this time I hope it might just possibly be not
too bad a guide to the methods available.

Keith Beven
Lancaster, Outhgill and Uppsala
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How to make predictions

As we know, there are known knowns, there are things that we know we know. We
also know there are known unknowns, that is to say, we know there are some things
we do not know. But there are also unknown unknowns, the ones we don’t know we
don’t know.

Donald Rumsfeld, former US Secretary of Defense, February 12th 2002

What men really want is not knowledge, but certainty.
Bertrand Russell, 1964

1.1 The purpose of this book

This book is primarily intended as a discursive examination of the process of
uncertainty estimation in environmental modelling as it is done now and how it might
be done more “properly”, and perhaps more “realistically”, in the future. It is
intended to be a book that might be useful to students, graduate students, and practi-
tioners interested in increasing their understanding of different methods of
uncertainty estimation and how that understanding might be used in decision-making.
It is written with both users of environmental models and decision makers in mind;
particularly those who have not much previous exposure to uncertainty concepts. It
can be read without reference to all the detailed technical material in the Boxes that
follow the different chapters. It cannot, of course, be a comprehensive account of
uncertainty estimation in all the different disciplines that comprise environmental
science. It is intended to be much more a first guide on how to think about the
modelling process and choose uncertainty estimation and decision making techniques
appropriate to a particular application. It cannot go into all the details and software
available for each technique but references are provided to allow the reader to explore
further.

It is based on a long experience of trying to cope with predictive uncertainties in one
particular branch of environmental science, that of hydrology. As such, it is coloured
by the particular problems of hydrology, although these are not so different from
many other areas of environmental modelling. Modelling and prediction in hydrology
are important in providing information for the practical management of natural
resources and natural hazards. Hydrology, however, also has severe limitations as a
science resulting primarily from limitations in measurement techniques at the scales at
which we want to make predictions. This is particularly the case for the examination
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of flow processes underground which is where many of the interesting and active
hydrological processes take place.

Similar limitations can be found in most areas of environmental science, whether
physical, chemical or biological process in the earth, atmosphere or oceans. In all cases
it will be difficult to make measurements at the scales at which we wish to make
predictions. It will be difficult to define the boundary conditions for a system of
interest and, for time-dependent processes, the initial conditions everywhere within
the domain of that system. It will also be difficult to specify the physical, chemical and
biological characteristics of the domain. Thus, even if we have some understanding of
how the system is working, these factors will make prediction difficult. How, then, to
make predictions in the face of such difficulties?

One, necessary, answer to this question is “approximately”. The very act of predic-
tion involves simplification of the complexity that is the real domain of interest. The
discussions that follow are primarily concerned with how to achieve that simplifica-
tion in a scientifically rigorous way taking proper account of the uncertainties in the
modelling process. In the remainder of this chapter we will consider how to approach
the environmental modelling process and some of the difficulties involved in trying to
model environmental systems “properly”.

The reader may also find that there will be some terms in this book that might be
new. For clarity, a Glossary of Terms is provided, including a discussion of different
types of usage for some of the entries. Words in the text in bold will be found
explained in the Glossary. A brief revision of matrix algebra and a guide to sources of
software for uncertainty estimation are also provided as Appendices at the end of the
book.

1.2 The aims of environmental modelling

The way in which an environmental scientist might choose to make predictions will
depend, in part, on the aims underlying the effort. One major aim for any scientist is to
show that some of the understanding that has been gained about the controlling
processes can be formalised into a system of mathematical relationships that result in
verifiable predictions about that system. This is prediction as science to show “that we
do, after all, understand our science and its complex interrelated phenomena” (W. M.
Kohler, Head of Hydrology at the World Meteorological Organisation, 1969). For
many scientists this is a sufficient aim in itself since, if the predictions do not prove to
be correct, then it should force a revision of the science that underlies the formal
statement of the model used. That this does not always happen will be discussed
further later. For now, it is sufficient to note that a secondary aim of developing a
scientific model that produces verifiable predictions is to use that model operationally
for predictions that will be useful for management and decision-making purposes.

With the growth of computer power and computer modelling capabilities, the aim
of producing operational predictions that will be useful for management has been
increasingly driven by demand. Now that the results of complex computer simulations
of weather systems are routinely shown on television it is perceived that computer
predictions should now be possible in many other areas of environmental science,
from the transport of toxic immiscible pollutants in groundwater to the impact of
climate change on vegetation patterns and floods. This is despite the fact that our
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knowledge of the properties of specific groundwater aquifers is poor; despite the fact
that our ideas about future climates rest on the results of global circulation models
that are not yet very secure; and despite the fact that we often complain about televi-
sion weather forecasts being wrong. In many areas of environmental science the
demand for predictions has outstripped the scientific understanding on which
predictions must be based. There are certainly some areas in which the answer to the
question of how to make predictions should, as yet, be don’t (or at least don’t put too
much trust in the model predictions when making decisions).

It is indicative that not many environmental modelling studies show true tests of
predictions of the models in the form of post-prediction auditing. Many will show
simulations that are compared with past data after some history matching or model
calibration has taken place. Some will show similar predictions of periods not used in
model calibration as a test of the capabilities of a model. Very few studies have made
predictions that have then been verified (or not) by data collected later (something that
we have all been taught should be part of the “scientific method”).

In fact, experience in this type of post-prediction audit has not been good, at least
in the field of groundwater modelling (Konikow and Bredehoeft, 1992). Post-
prediction audits made for a variety of different modelling studies showed that, in
general, the results were generally poor (see also Anderson and Woessner, 1992). This
was often for very understandable reasons, such as wrong assumptions about future
boundary conditions, but this does not change the conclusion that the results were
poor. What, then, should we conclude about the predictions of the much more com-
plex coupled ocean–atmosphere global circulation models that are being used to
predict the expected changes in climate as a result of changing concentrations of
greenhouse gases into the future? That their predictions are wrong? Quite possibly,
but not necessarily. The more common conclusion is that they are necessarily
approximate at present but will be improved as computer power increases and as any
mismatches between observed and predicted variables are evaluated and understood.
The same would now be true in the case of the groundwater models. In most cases a
post-prediction audit would lead to model improvements that would allow better
predictions to be made with the benefit of hindsight about, for example, which
boundary conditions actually occurred over the predicted period. This means that
modellers are rarely forced to admit to false predictions since they can always revise
their predictions with hindsight or with a new generation of models and auxiliary
conditions. It is worth noting that, viewed in this way, model applications become
part of a learning processes, not only about the models but also about the places they
are applied to. The idea of modelling as a learning process will be a continuing theme
in this book as it is essentially about reducing different forms of uncertainty in
making predictions.

Modelling for understanding, modelling for prediction for practical applications
and modelling as career are all part of the current practice of environmental model-
ling. Scientists and practitioners who model and make predictions tend, for the most
part, to be pragmatic realists at heart. Their goal is to bring models based on the most
comprehensive understanding to bear on prediction problems of operational or prac-
tical interest. This would combine the aims of prediction as science, of prediction as
practical tool (and of prediction as career). Gradually, as the science progresses, the
models used in prediction are expected to evolve to become a more and more realistic
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description of the real system. This pragmatic realism is one commonly held
philosophy of environmental modelling. This is not, however, the only possible philo-
sophical position to take and we will return to discuss this further in Chapter 2 after
considering the nature of the modelling process and the different sources of
uncertainty that arise in modelling environmental systems.

1.3 Seven reasons not to use uncertainty analysis

The issues that are raised by the uncertainty inherent in the application of environ-
mental models have been discussed for two decades and more (e.g. notably Beck,
1987, in the field of water quality modelling). Pappenberger and Beven (2006) have
considered why uncertainty estimation is still not yet standard practice in environ-
mental modelling. It remains common to show results without uncertainty bounds to
decision makers, at scientific conferences, in refereed publications or in consultancy
reports. It seems that there is still significant resistance to the routine use of uncertainty
analysis methods by environmental modellers, whether for reasons of expense, under-
standing of methods, or training in the requisite skills. Yet, the use of uncertainty
estimation should be routine in environmental science. As yet, despite all of the
research on methods of uncertainty estimation that is now available, it is not. Seven of
the reasons why not are as follows:

1 Uncertainty analysis is not necessary given physically realistic models.
2 Uncertainty analysis is not useful in adding to process understanding.
3 Uncertainty (probability) distributions cannot be understood by policy makers

and the public.
4 Uncertainty analysis cannot be incorporated into the decision-making process.
5 Uncertainty analysis is too subjective.
6 Uncertainty analysis is too difficult to perform.
7 Uncertainty does not really matter in making the final decision.

The reader may well be able to add some other reasons to this list (for example that the
whole idea of trying to assess the uncertainties makes his/her head hurt!). Pap-
penberger and Beven consider each of those seven reasons in turn and suggest that
none of them is tenable in many applications, at least where uncertainty estimation is
not limited by computational constraints. In particular, they discuss the interaction
between scientists and policy and decision makers. The concepts of “uncertainty” and
“risk” are perceived and understood in a variety of different ways by different com-
munities and different people. However, it can be shown that when both scientists and
public work together this gap may be bridged. For example, several studies have
shown that probabilistic weather forecasts can be understood by non-scientist users
(e.g. Luseno et al., 2003). Moreover, policy makers derive decisions on a regular basis
under severe uncertainties, because the scientific basis is not sufficient at the time.
Studies suggest that decision makers actually want to get a feeling for the range of
uncertainty and the risk of possible outcomes when it can be provided (e.g. McCarthy
et al., 2007). This point is illustrated by the political demand of “handling uncertainty
in scientific advice” to the UK Parliament (Ely, 2004). The response may, however, be
subject to the type of decision under consideration. Tyszka and Zaleskiewicz (2006)
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report that people were much less interested in probabilistic information about scen-
arios when the decision to be made had an ethical dimension.

This is a very important point for the modeller since a misunderstanding of the
certainty of modelling results can lead to a loss of credibility and trust in the model
and the modelling process (Demeritt, 2001; Lemos et al., 2002). The communication
of uncertainty to decision makers, the public and other stakeholders is all important in
this process (e.g. Brashers, 2001; Fox and Irwin, 1998; Patt and Dessai, 2005;
Faulkner et al., 2007; Stainforth et al., 2007b). Effectively, uncertainty estimation is
embedded in the wider decision-making process (e.g. Refsgaard et al., 2005, 2006).
The suggestion that scientific uncertainty cannot be understood by stakeholders and
decision makers persists (on both sides). There would seem to be little reason why this
argument should continue to be made in the future in terms of understanding. This
book is, hopefully, a contribution towards easing the communication process and
working towards the routine application of uncertainty estimation in environmental
modelling. Other initiatives are also helping, such as the more widespread availability
of software for uncertainty estimation (see Software Appendix at the end of this book)
and the decision tree for uncertainty estimation methods described in Section 1.9
below.

An open scientific discourse on uncertainty would have important implications for
the environmental decision process. Uncertainty clearly does matter in the current
debate over the significance of future predictions of climate change and its implica-
tions for future global policies (and consequent impacts on future water resources
management and capital investment). This is an area where the science has not yet
matured to the point where an open discourse is possible and expressions of
uncertainty are interpreted as simple disagreements amongst scientists. Some
disagreements exist, of course, but neither side in the climate change debate has been
open in the communication of the uncertainties involved, leading to disputed results
rather than risk evaluations. In this book I will try to show that uncertainty estimation
need not make the head hurt, and that it can be valuable in policy making and
management of environmental systems.

1.4 The nature of the modelling process

1.4.1 From perceptual to procedural models

In the study of any environmental system from the viewpoint of scientific understand-
ing it is possible to perceive much more complexity than it is possible to represent in
mathematical form to make quantitative predictions. We know that nature is complex
at many levels: we can perceive complexity of processes and the variation of control-
ling processes over time; we can perceive complexity in defining the boundaries of a
system of interest to separate it from its “environment”; we can perceive complexity of
external forcing for the system we are interested in; we can perceive complexity of the
local characteristics within the system with variations in space and in time. We can
describe many of these complexities in qualitative terms, but not necessarily in
quantitative terms. But a quantitative, mathematical, description is usually held to be
necessary for making management decisions based on firm scientific principles built
upon the aim of prediction as science.
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It is an extremely important point to note that moving from a model based on our
perceptions of the full complexity of a system (the perceptual model 1) to a mathemat-
ical description (let us call it a formal model) requires the introduction of simplifying
assumptions. This is self-evident but, in practice, the complexities that are left out in
defining the formal model are often quietly forgotten in model applications. This is
fine if the neglected complexities have a negligible effect on the system but this is not
always the case; they are certainly important enough to have been perceived as poten-
tially important. In many environmental systems the assumptions of the formal model
will often involve gross simplifications of the perceptual model (while the perceptual
model itself may yet be incomplete because of lack of measurement techniques or
other means of identifying significant processes or characteristics of the system). These
simplifications are made for good reason. Previous research may not have resulted in
an adequate description of some of the perceived complexity at the scale at which
predictions are required, while even if a description is available it may be very difficult
to estimate the parameters that will allow that description to be used to describe the
processes in a particular location or time period.

Such models are examples of what Adam Morton (1993) calls mediating models.
They mediate between an underlying theory, which is often developed largely in rough
qualitative terms (the perceptual model), and the quantitative prediction of system
responses. They have the general characteristics revealed by Morton’s analysis: they
have assumptions that are false and are known to be false; they are not, however,
arbitrary but reflect physical intuition; they tend to be purpose-specific with different
(and possibly incompatible) sets of assumptions and auxiliary hypotheses for different
purposes; they have real explanatory power but may never (nor are they necessarily
expected to) develop into full theoretical structures. They also have a history, in that
successful modelling techniques tend to be refined and inherited by later models.

A further level of simplification may be necessary in solving the equations of the
formal model for a particular application. In many environmental modelling problems
these equations are nonlinear partial differential equations that do not have general
analytical solutions. It is therefore necessary to resort to approximate numerical solu-
tions (finite difference methods, finite element methods, finite volume methods,
boundary element methods, . . .) in implementing the formal model as an algorithm or
procedural model that will run on a computer. Different implementations will, of
course, give different predictions depending on the coding and degree of approxima-
tion. The procedural model exists as a computer code that provides the quantitative
predictions required. It represents a further level of approximation to the processes of
the real system. There is a vast literature in both applied mathematics and different
application subject areas about how to solve the equations of a formal model accur-
ately and we will not consider this further here. Note only that for many nonlinear
problems it is quite possible to implement solutions that give inaccurate solutions to
the original equations and any naïve user of a modelling package should be aware that
this may be an important source of error if poor algorithms (or poor choices of time
steps, spatial discretisations or treatments of boundary conditions) are used.

The differentiation of perceptual, formal and procedural stages in the modelling

1 Definitions of all the highlighted terms will be found in the Glossary at the end of the book.
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process is a useful one, emphasising the successive level of approximation in moving
from qualitative understanding to quantitative prediction. Different terms are used in
different fields of modelling to represent these stages.

1.4.2 Parameters, variables and boundary conditions

Every formal model contains both parameters and variables. These are also words that
are used in different ways in different subject areas. For the purposes of this book we
will define a model variable as a quantity that is calculated as part of the modelling
solution and a model parameter as a quantity that represents the intrinsic character-
istics of the system and is specified external to the model by the user. The boundary
and initial conditions will also be specified external to the model. These are generally
externally prescribed values for variables in the model. The boundary conditions
apply only to the boundaries of the domain of interest; the initial conditions prescribe
the values of all variables in the model at the start of a time-stepping run. Parameter
values, boundary conditions and initial conditions are sometimes also known as the
auxiliary conditions for a particular model application.

Confusion between these terms can arise because quantities with the same name
that are parameters in one model might be variables in another, calculated on the basis
of other externally specified parameters, while in some systems the boundary and
initial conditions might also be treated as parameters of a model. In addition, par-
ameter values are not necessarily constants but might be specified as varying in space
and/or time by the user to reflect changing characteristics of the system. The basic
definitions used here, however, should still hold.

Parameters are generally of two types. There are those that are intended to reflect
the specific characteristics of the dynamics of a process; and there are those that are
intended to reflect the specific characteristics of a location where the model is being
applied. This distinction is often blurred and parameters that are given names that
indicate that they are process-related (hydraulic conductivity, dispersion coefficient,
bed roughness, aerodynamic resistance, partition coefficients, . . .) are used in practice
to adapt the model to a particular location. Put another way, these parameters have to
be calibrated in some way for each application of the model.

The calibration process is a particular problem in environmental modelling. If a
formal model could be defined such that all parameters were universal constants then
this problem would be eliminated. There are some constants and near-constants that
appear in many environmental models (e.g. the gravitational acceleration constant,
the latent heat of vaporisation of water) but achieving such universality is unlikely to
happen more generally in environmental modelling given the need to represent specific
locations with their unique characteristics (see Beven, 2000). Even if it were possible
to measure all parameters when making a model application then this problem would
be minimised but this is also not generally possible with current measurement tech-
nologies. As it is, parameters are usually calibrated on the basis of very limited meas-
urements; by extrapolation from applications at other sites, or by inference from a
comparison of model outputs and observed responses at the site of interest.

All these three means of calibration have problems. Measurements may be them-
selves subject to error and may be at scales different to that required in the model.
Heterogeneity in space and non-stationarity in time may mean that directly measured
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values mean that the measured parameter and the parameter values required in the
model to get good predictions may have the same name but they may be different
quantities. For example, measurements of soil hydraulic conductivity are often made
on small soil samples. Such measurements are known to exhibit order of magnitude
variability over short distances (e.g. Nielsen et al., 1973), but a model requires values
of hydraulic conductivity that will represent the response of a much larger spatial unit
(sometimes the whole catchment scale). In fact, the model requires effective values of
such a parameter that will provide good values of predicted states and outfluxes in the
model that might have to compensate for things that are not in the model (Cushman,
1986; Beven, 1989). Such effective values might be difficult to compare with the
measured values. The same may be true of state variables, such as representations of
mass or energy. For example, measurements of soil moisture in hydrology (a state
variable) are generally made at point scales. Such measurements often exhibit
significant variability in space (e.g. Hills and Reynolds, 1969) but a model will predict
only changes in mass averaged over some spatial unit of the catchment. Thus, these
quantities might also be difficult to compare in model calibration.

Extrapolation from other sites runs into the problem that each site has its own
unique characteristics that may affect the effective parameters required. In addition, if
the values determined from other sites have been calibrated for a different model
structure then the values may not be independent of the model structure used or even
for different numerical implementations of the same equations with different discreti-
sations or algorithms. Again, they may have the same name but they may be different
quantities. This is often called the commensurabilty problem, though even where it is
recognised as an issue, it is often ignored as a problem (see Section 1.5 below).

Inference of parameter values by comparison of observed and predicted responses is
most generally carried out within an optimisation framework. The values of the
parameters are changed until some “best fit” is found in representing the responses of
the model. The parameters have to be calibrated within a closed system having made
assumptions about the nature of the boundary and initial conditions. Both boundary
and initial conditions will normally be subject to some uncertainty. The difficulty of
finding an optimum model in general increases as the complexity of the problem
increases relative to the information content of the observations. As computer power
has increased it has been possible to add complexity to models. More and more
process understanding is usually built into models with the aim of improving the
science underlying the predictions at the cost of adding more and more parameters.
The information in the observations has not necessarily increased at the same rate.
These tendencies have, in very many environmental models, resulted in what is called
overparameterisation. Pragmatically, this means that the model may have sufficient
degrees of freedom in the parameter values to be calibrated to be able to give a good fit
to the observations after optimisation, but it does not follow that the parameters are
robustly estimated, or that the apparent “optimal” model is the only model that will
give a good fit to the observations, or that it will give equally good predictions in the
future with different boundary conditions.

These parameter identifiability problems are an important issue when considering
the aim of modelling as science. As scientists we want to improve our representation of
real world complexity but this will usually result in models with more parameters that
cannot easily be specified for a specific application. This would not be a problem if it
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also meant that these parameters were more fundamental in the sense of being easily
measured or estimated in any application. Unfortunately, this is usually not the case.
They are more often parameters which still have the function of representing the
physical, chemical or biological characteristics of particular locations and sometimes
also particular time periods. It also remains the case that, although those parameters
may be given names intended to reflect their physical, chemical or biological signifi-
cance, the values of those parameters needed to get good model performance will
depend on the particular model structure used. Despite their intended significance they
are then acting as effective parameter values that are not then easily transferred from
one model structure to another or one application to another. As we will see in the
later chapters (especially Chapter 4), the availability of data with which to estimate
effective parameter values then becomes of crucial significance to the value of the
model results. Again, the modeller as pragmatic realist will suggest that this may be
only a transitory phase: both descriptions and ways of estimating parameter values
will improve in the future. Later chapters will demonstrate, however, that this is a
problem that is unlikely to go away in the foreseeable future and that environmental
modellers will need to grasp this particular problem in a more explicit way.

1.5 The scale problem and the concept of
incommensurability

There is an exception to this general picture. This is particularly seen in atmospheric
and oceanographic modelling which, until very recently, have been constrained by the
available computing resources to use very coarse spatial discretisations of the atmos-
phere and oceans particularly at global scales. They have developed two methodolo-
gies for dealing with scale problems: to use nested grids to refine predictions where
more detail is required; and to use sub-grid parameterisations to represent the effects
of smaller scale processes. Treating the scale problem in terms of sub-grid parameteri-
sations (a top-down approach to the scale problem) seems to be a much more justifi-
able approach than trying to aggregate representations of small-scale processes in the
face of local heterogeneities (a bottom-up approach). The difficulty, of course, is deriv-
ing adequate sub-grid parameterisations. In atmospheric models parameterisations
are required for momentum losses associated with sub-grid scales of turbulence; con-
vection and cloud formation; snow and rain production; heterogeneous surface vege-
tation, albedo and soil moisture effects; and many other factors. Very often bottom-up
arguments have been used to justify the required parameterisations, sometimes
ignoring heterogeneities in the system (as in many past parameterisations of the land
surface). All the parameterisations are simplifications of the perceptual model; the
question is how far they can be useful in reflecting the complexity of the sub-grid scale
processes. In most cases, we do not know the answer to this because we can check the
grid-scale predictions of the processes only in very indirect ways because measured
and predicted variables are incommensurate. This top-down way of looking at the
scaling problem is, however, very useful (see discussion in Beven, 2006b).

If, as has been suggested above, the small-scale equations used in many environ-
mental models are not easily scaled up in heterogeneous and structured flow domains,
is it possible that improved parameterisations might be found? It is important to
remember that there are (at least) two problems here. One is that associated with the
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problem of change of scale and heterogeneity of parameters, even if the small-scale
equations were correct at the local scale. If this were the only problem then it might be
possible to derive a theory of scaling that would allow scale-dependent parameters to
be developed, either empirically or based on knowledge of a statistical model of the
heterogeneity (see for example Dagan, 1986, and Neuman, 1990, for examples from
groundwater flow and transport). However, it is not the only problem. The second
problem is that the small-scale equations may not be correct at the local scale.

One example is the use of Darcy’s law to describe flow in unsaturated soil. Darcy’s
law is a relationship that says that flow rate of water in a porous medium is linearly
proportional to the gradient of potential with a constant of proportionality that is
called the hydraulic conductivity of the soil (it is therefore analogous to Ohm’s law for
flows of electricity or Fick’s law for diffusion processes). The relationship was first
derived by Henri Philibert Gaspard Darcy (1803–1858) from the results of experi-
ments on saturated sand samples (Davis et al., 1992). It is still the basis for most
models of groundwater in saturated porous media. Darcian theory was later extended
to unsaturated soils by Richards (1931), allowing for the highly nonlinearity change in
hydraulic conductivity with moisture content. It has been shown to work well for
unsaturated conditions in laboratory experiments for uniform porous media. The
problem arises in taking this relationship out in the real world where soils may be
heterogeneous (spatially variable characteristics), non-stationary (temporally variable
characteristics), hysteretic (characteristics that vary depending on whether the soil is
wetting or drying), and structured (with continuous larger voids due to cracks, root
channels, earthworm channels etc that bypass parts of the soil matrix). In a structured
soil, flow may be responding to quite different potential gradients for different parts of
the pore space and may not have a simple linear relationship between flux rate and
gradient (i.e. a problem of the second type). In hydrology, more realistic descriptions
are also needed for runoff on irregular and vegetated surfaces; the controls of soil
water on water use by plants (or of water use by plants on soil moisture when the
roots grow faster than water can move by Darcian flow towards them and when a
fundamental control on evapotranspiration appears to be levels of abcissic acid in the
plant); and of the effects of soil layering on downslope flows. Similar issues will affect
the representation of geochemical and transport processes.

Thus, it is clear that these complexities mean that local-scale equations, such as
Darcy’s law, will not easily scale up to the larger scales needed for real applications.
Different representations that should ideally reflect the effects of local complexity will
generally be required. In many modelling fields local-scale equations have been used as
if they apply at larger scales because we just do not know what conceptual representa-
tions might be better at larger scales. This sort of works if effective parameter values
can be calibrated for each application but it is not really very satisfactory.

Similar examples of the difficulties of finding an appropriate conceptual representa-
tion at the scales of practical interest could be taken from many different fields, where
processes in the perceptual model are neglected in the conceptual model. The use of
increasingly complex process descriptions will share some common features, regard-
less of the process to which they refer. Being more complex, they take more computer
time and almost certainly require more parameters and state variables. Those par-
ameter values may not be readily estimated, except by calibration against some data
when observations on a particular process may not be directly available. Calibration
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of these models is already a problem; adding more parameters to be calibrated will
only make the problem worse. Hence it is sometimes easier to just leave some of the
complexity out (at least for the moment).

Thus, it would appear that there is a fundamental dilemma in “process-based”
environmental modelling. The formal model will always be a simplification of the
qualitative perceptual model. But adding more process understanding will introduce
more complex equations with more parameters. As noted already, these parameters
may not be easily measured and may also suffer from the problem of heterogeneity,
which would therefore necessitate a large number of measurements to assess the
degree and importance of spatial variability. And yet, for many environmental sys-
tems, the response to an external forcing is not that complex. In hydrology, a rainfall
occurs, surface and subsurface flow rates increase, a hydrograph results. Reproducing
the dominant modes of the integrated response at the catchment scale is not that
difficult and requires a relatively simple model with few parameters (see for example,
Young, 1998, 2003; Young and Parkinson, 2002). How can this lesson be adapted for
the general case of environmental models representing the space–time responses at
different scales? What would be the minimal model to describe the space–time
responses given all the uncertainties in the modelling process? Would it actually be
simpler than some of today’s models? Would such a model be useful in predicting
changed conditions?

These types of questions arise in most, if not all, fields of environmental modelling.
In all applications there has to be a compromise between model complexity, tech-
niques and resources available for data collection, and what needs to be predicted for a
particular purpose. Absolutely central to the discussion of such a compromise and the
model complexity dilemma are the issues of commensurability and uncertainty.

1.6 The model space

The modelling problem can be viewed as a form of mapping of the environmental
system of interest into a model space. This conceptual framework will be useful
throughout the discussions of this book. We have already noted how formal models
mediate between the real system (or at least our perceptual model of the real system)
and the predictions of practical interest. We can think of the formal models in terms of
their parameters. For any defined set of boundary conditions, the predictions of that
model will be different for different sets of parameter values. Thus, the parameter
values are defining the functionality of the formal model, and this functionality can be
mapped in a multi-dimensional space defined by axes of the parameter values.

This is demonstrated in just two parameter dimensions in Figure 1.1. For each
combination of parameter values, we can calculate a model response. For a model
producing time series of predictions, we can map the predictions at each time step, or
map a summary measure over all time steps. The map can be extended to multiple
parameter axes (although it clearly rapidly becomes difficult to visualise). Effectively,
the complete map represents the potential range of outputs of that particular model
structure, within the chosen parameter ranges, and for a particular set of inputs.

The map can be extended further by allowing for additional potential model struc-
tures (that might have their own parameter axes), by allowing for potential variability
in the initial and boundary conditions used to drive the model, and by allowing for
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stochastic rather than deterministic outputs from the model. The important point is
that, at least in principle, the model space can be filled with the model outputs. In
other words, the model space can be considered known in principle (in practice, there
may be practical difficulties in filling the model space due to computer costs, chaotic
sensitivities to small errors in nonlinear models, and instabilities of solutions for
particular sets of parameters).

So, let us for the moment consider a case where the model space can be filled. We
then know the functionality of the model (at least for the ranges of parameters and
boundary conditions considered). There is no uncertainty in the model predictions
(even for stochastic and chaotic models). The uncertainty comes from mapping the
environmental system into that model space (with one or more potential model struc-
tures) for a particular place or application, given the limited knowledge that we will
have about the system.

This picture of the modelling process is quite useful in that it can reveal the limita-
tions of the single optimal model of the system of interest. As well as the output
variables of the model, we can also map some summary performance measures (or
goodness-of-fit measures, or objective functions, or likelihood measures) for the
model. The surface described by such a measure in the model space is then generally
called the response surface of the model. It is then readily seen that choosing an
optimal parameter set is equivalent to mapping the system to a single point in the
model space, at a peak in the response surface (for maximising a performance or
likelihood measure). Optimisation methods are designed to try to find the parameter
set at the global peak for the performance measure (or lowest point for a minimisation
problem) on what might be a very complex surface. A good optimisation method will
find the optimum as efficiently as possible, without being distracted by local peaks or
valleys.

The search for the global peak is clearly much easier if the response surface is
relatively simple, as shown in Figure 1.1 (though this has some local peaks that might
divert an optimisation algorithm). Adding dimensions to the model space, and
uncertainty to the model structure and input data, however, often means that in

Figure 1.1 A two-parameter model space and response surface represented (a) in three dimen-
sions and (b) as a contour plot
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environmental modelling problems the response surface is very complex in shape, with
multiple local peaks and troughs and many different models with more or less equiva-
lent levels of performance (even if they differ in the detail of their predictions). This is
partly the result of different values of parameters in the model interacting in complex
nonlinear ways to give similar predictions and partly the result of the predictions not
actually being sensitive to changes in some parameter values.

Searching the model space will be considered in more detail in Chapter 4. For now,
it is sufficient to note that, while it might be possible to find a global optimum in the
model space, there is also a real possibility that the resulting parameters may not be
invariant to either the calibration dataset used, the model structure used, the
goodness-of-fit criterion or performance measure used, or even the initial set of par-
ameter values used in the optimisation. In particular, we may often wish to evaluate
model performance using more than one criterion. Then, because of the different
sources of error in the modelling process, it will not generally be the case that the
optimal model on one measure of performance will be the optimal model on a cri-
terion measuring some other aspect of performance. If there is no single optimum on
all criteria then there will inevitably be a compromise to be achieved in which
improvements on one criterion are offset by deterioration on another. The result is a
set of Pareto optimal models, all of which lie along the Pareto front which is the
surface in the space of performance criteria on which none of the performance meas-
ures can be further improved without loss of performance on another (e.g. Figure 1.2,
for the simple case of two criteria). Some methods for finding Pareto optimal models
are presented in Chapter 4. As with the optimum for a single criterion, however, those
models that are found to be on the Pareto front might change with calibration period
or particular realisation of the inputs.

Figure 1.2 The concept of a Pareto optimum represented on two objective function axes. Each
dot represents a model run with different parameter values. The circles are on the
Pareto front, the squares are behind the Pareto front
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As a result, it will be suggested in much of what follows in this book that environ-
mental modellers will increasingly need to recognise the potential for many different
models appearing to be acceptable descriptions of the environmental system of inter-
est. In the past this has been mostly treated as a problem of identifying parameter
values of a particular model structure given limited information. It was considered
either as a problem of non-identifiability (difficulties of identification due to the lack of
a clear optimum on the parameter response surface) or of non-uniqueness (difficulties
of identification due to multiple optima on the parameter response surface or different
optimal parameter sets resulting from different goodness-of-fit criteria). Both non-
identifiability and non-uniqueness could arise from errors in the model structure,
errors in observational data, inadequate observational data in identification, and
mismatches in scale between observables and predicted variables. Such problems will
be worse with models that are over-parameterised, and models that show interaction
and co-variation between parameters. The result is that in calibration, the “optimal”
model may vary for different calibration periods, variables or fitting criteria.

Such problems are now widely recognised but have not mitigated the continuing
search for “optimal” models in very many studies. Duan et al. (1992), for example,
demonstrated clearly the lack of a clear optimum in their hydrological modelling study
(Figure 1.3), but suggested that the conclusion to be drawn was that better global
optimisation techniques were needed. They provided a stochastic complex evolution
algorithm that has since been very widely used in the calibration of hydrological and

Figure 1.3 Three-parameter sub-space of a six-parameter model space for a rainfall runoff model.
Each dot represents a local optimum for a sum of least square objective function

Source: Duan et al., 1992
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other models. Others have suggested different types of genetic algorithm, simulated
annealing, or multiple search criteria as means of refining the optimisation in the face
of identifiability problems (see Chapter 4).

There is, however, another approach. That is to accept that it is very unlikely that
our current model structures are truly realistic descriptions of the environmental sys-
tem of interest so that there may indeed be many different models that can be shown to
provide predictions that are acceptably consistent with whatever observed data are
available. This is to treat the problem of identifiability as one of equifinality of model
structures and parameter sets in reproducing the known behaviour of the system. This
is a term originally used by Ludwig von Bertalanffy (1901–1972) in the context of
General Systems Theory. It is not a view that has been widely taken but underlies the
Generalised Likelihood Uncertainty Estimation methodology that is described in
Section 4.5 (e.g. Beven, 1993, 2006a). In this view, equifinality is a result of the
difficulty of deciding between competing models as hypotheses of how the system is
working, given the limitations of the available information.

In prediction, identifiability problems, whether due to non-identifiability, non-
uniqueness or equifinality, imply uncertainty. It is a prime motivation for this book
that this uncertainty should be addressed in a much more explicit way in the future.
Prediction is not the only aim of environmental modelling, however, and such
uncertainty also has implications for explanation and understanding of the systems we
are interested in.

1.7 Ensembles of models

As computer power has become more readily and more cheaply available there has
been a change away from trying to find the optimal model in calibration (and some-
times estimating the uncertainty of the predictions in the region of the model space
close to that optimum) to carrying out ensemble experiments. An ensemble is a
collection of models, all producing different outcomes. Different types of ensemble
experiment are used in different types of environmental modelling. Three essentially
different uses may be distinguished.

The first is the use of ensembles to represent different scenarios of future conditions.
An example of this is the use of the outputs from economic models to provide different
emissions scenarios for use in modelling global climate change. The Intergovernmental
Panel on Climate Change (IPCC2) provides outputs from a variety of global climate
models running a small number of potential emissions scenarios. In this type of scen-
ario modelling, an obvious question is which of the outcomes is the most likely? The
point of modelling scenarios, however, is that it is impossible to say whether one
scenario might be more likely than another. It is not even a good idea to suggest that
they might be equally likely since we do not know that either. Scenario modelling is
one way of dealing with uncertainty that cannot be dealt with in terms of chances,
odds or probabilities (see Section 1.11 below).

A second use of ensembles is to explore the propagation of input uncertainties
through a nonlinear modelling system. In this case the input uncertainties are defined

2 See http://www.ipcc.ch/.
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a priori, very often as a form of probability distribution. For a linear system, such
propagation can often be performed analytically, but for nonlinear systems it is often
better to sample the range of input conditions and see what effect this has on the
results. In certain cases, such as the simplified three equation nonlinear atmosphere
model of Lorenz (1963, 1993), variability of the inputs can lead to chaotic behaviour
in the system (that is the solutions for initial conditions differing by arbitrarily small
amounts will diverge exponentially). We could expect similar behaviour for the effects
of misspecification of initial conditions in the numerical weather prediction models
that are used operationally in many countries of the world to provide the publicly
issued weather forecasts. It is known that the predictions of such models are useful
only up to a few days ahead before the predictions diverge from what actually hap-
pens. Thus, in many forecasting organisations (the UK MetOffice, MétéoFrance, the
US National Weather Service) an ensemble of forecasts is being produced to try and
span the range of possible developments of the atmosphere over the forecasting
period. At the European Centre for Medium-Range Weather Forecasts (ECMWF) at
Reading in the UK, ensemble forecasts up to ten days ahead are being produced (see,
for example, Figure 5.1 in Chapter 5), and being used for a variety of purposes,
including an operational system for identifying flood alert conditions for all the major
river basins of Europe at the European Joint Research Centre (JRC) at Ispra in Italy.3

Weather forecasting involves an updating or data assimilation step, each time a new
set of observations becomes available and a new set of model runs is started. In
ensemble weather forecasting, the different initial conditions for the ensemble are
defined in a way that reflects how far the real atmosphere has departed from the
past predictions. There are several different ways of updating ensembles in data
assimilation (see Chapter 5).

The third use of ensemble simulations is to characterise the response surface in a
model space. By running a sample of all possible models in the model space, the
quantity of interest can be assessed (this might be a likelihood value, or the value of a
particular output variable in the model) and, effectively, mapped in the model space.
For simple models and low-dimensional model spaces this is a relatively simple prob-
lem and how the sampling is done will not matter too much. For high-dimensional
spaces a large number of model runs would be required to characterise the response
surface, and if each model would take a long time to run, then computing constraints
would become an important limitation, even with modern high-performance parallel
computer technology. Thus, efficiency of sampling is an issue. Two strategies can be
distinguished. The first is to sample the whole space and represent the response surface
associated with a value associated with each model run. The second is to make the
density of sampling in the model space a direct reflection of the height of the response
surface. If it is a likelihood measure surface, for example, then model runs are sought
to make the density of sampling proportional to likelihood, with the highest density in
the region of the highest likelihood. This strategy tries to ensure that model runs are
only made where they are most important so as not to waste computer time. It has its
limitations, however, where the surface is complex and areas of high likelihood are
scattered through the model space. An additional step can be used with both

3 See the European Flood Alert System at http://ies.jrc.cec.eu.int/98.html.
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strategies, which is to use a simpler model as a model emulator to interpolate between
a smaller number of runs of the full model. All these strategies are considered in more
detail in the later chapters.

1.8 Modelling for formulating understanding

A primary use of models in environmental research is as a way of formalising scientific
explanation of environmental systems. Indeed, one aim of the research scientist is
often to develop a model that will properly reflect his/her understanding of the
environment in a way that will also be useful in practical prediction. Ultimately we
would like to get the right predictions for the right reasons (see Beven, 2001d; Kirch-
ner, 2006, and Chapter 2). The previous sections have outlined the main problems that
we will meet in any environmental modelling application: problems of representing
our understanding of the system in the perceptual model; problems of scale and com-
mensurability; and problems of equifinality in reproducing the available observations.

These problems effectively provide limits to the extent to which environmental
models can be used as explanatory constructs. Indeed, models used with the aim of
formulating understanding are often used in a purely deductive sense, i.e. using a
defined model to explore what the behaviour of a system might be if it did have the
same characteristics as the model (for example, in exploring the impacts of climate
change on water resources and terrestrial ecosystems).

An interesting discussion of the use of models for formulating understanding has
been provided by Stan Schumm (1998) in the context of explaining landforms in
geomorphology. Schumm has a different starting point from the modeller in wishing
to understand the landscape on the basis of empirical evidence and theoretical reason-
ing, even if in only a qualitative way. In essence, therefore, his aim is to illuminate the
perceptual model of the geomorphology of a landscape. Discussions of the application
of scientific methodologies in explaining the earth have a distinguished history in
geomorphology, and Schumm describes the contributions of Grove Karl Gilbert
(1843–1918) (1886, 1896) and Thomas Chrowder Chamberlin (1843–1928) (1890)
who each tried to formalise a method of multiple working hypotheses (see also the
discussions in Haines-Young and Petch, 1986). This is clearly the methodology of
explanation preferred by Schumm, but he recognises that in applying it to understand-
ing landform development and form there are “ten ways to be wrong”. These ten
problems relate directly to the types of modelling problems already noted here. They
are grouped by Schumm into three classes as follows:

Problems of scale and space
• Time (observations are available only over a particular period and time span)
• Space (observations are available only at particular scales)
• Location (observations are available only at particular places)

Problems of cause and process
• Convergence (similar effects from different sets of causes, geomorphological

equifinality)
• Divergence (different effects from similar causes)
• Multiplicity (effects due to multiple processes operating simultaneously)

How to make predictions 17



• Efficiency (response to energy expended may not be a simple function of energy
inputs)

Problems of system response
• Singularity (local differences due to unexplained variation or indeterminacy)
• Sensitivity (different responses to different initial conditions, especially close to

thresholds)
• Complexity (complex responses of systems with multiple interconnected parts).

Schumm’s discussion therefore serves to illustrate the limitations of even the
perceptual model in describing the real system. His conclusion, however, is optimistic:

The discussion of ten problems faced during explanation and extrapolation is not
an attempt to discourage scientific investigation. Rather it is an attempt to
emphasize the complexity of natural systems and to explain why explanation and
extrapolation can often be suspect. The identification of these problems does not
by a process of name magic solve anything, but it does help to develop a rational
scientific approach to complex systems. Furthermore, recognition of the problems
will lead to more thorough research plans. Consideration of the problems may,
therefore, be difficult, time-consuming and expensive, but never as expensive as
failure.

(Schumm, 1998, p119)

In addressing the application of environmental models in what follows, we shall adopt
a very similar attitude. The concept of models as multiple working hypotheses of how
the system is working has much in common with an approach to modelling that
recognises the equifinality of multiple models consistent with the available observa-
tions and it has been suggested that model evaluation be treated as a form of hypoth-
esis testing rather than a matter of finding the optimal model (Beven, 2002a,b, 2006a).
However, we must also then consider the possibility, suggested for example by Haines-
Young and Petch (1986), that having multiple feasible models simply means that we
are using poor models if we have not been able to properly distinguish between them
(we will return to this question in Section 7.3). It may still be, of course, that our
models (as hypotheses) are fine, but we simply do not have adequate observational
data to really distinguish between them as explanations or predictions of the system of
interest.

1.9 Modelling for practical applications

1.9.1 Simulation with no historical data available

Using models to simulate the environmental system of interest without any historical
data available implies using models in a form of deductive reasoning. We are often
forced into this situation. There are many applications where data are non-existent, or
there is a lack of resources to collect data, or predictions are only made of future
conditions (where it is impossible to collect data on what those conditions might be).
Deductive reasoning has a long and prestigious history in science. It allows the
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consequences of a given theory and set of assumptions to be enumerated and, in many
cases, later tested experimentally. There have been a number of well-documented
cases of deductive predictions in science that have later been confirmed by observation
(or at least by selected observations, see Press and Tanur, 2001). The implication is
then that the assumptions of the theory are a good approximation to reality and from
a strong realist viewpoint that the variables embodied in the theory are real variables.
Confirmation in this way may be very important in persuading scientists to accept a
theory, despite the fact that there may be numerous anomalies between theory and
observation that still need to be explained. As noted earlier, the assumptions of the
theory may be known to be wrong (or approximate), but anomalies will often be
shelved pending further developments. One thing that the history of science teaches us
is that even in 20 years time we will not be using the same methods and theories as
now.

It is not necessary to make such strong realist claims for quantitative theorising
about environmental systems, which will be necessarily incomplete, often at least
partially based on empirical expressions and recognised as approximate. The import-
ant point is that precise deductions can be drawn from precisely defined assumptions
and premises, regardless of whether those assumptions actually apply to any real
system. Common sense suggests, of course, that it is more valuable to explore sets of
assumptions that have some relationship to real environmental systems rather than
those that do not!

Deductive models of this type define a virtual reality, or what Cartwright (1999)
calls a nomological (law-like) system (see Chapter 2). The predictions of such models
are valid only within the context of the model structure itself. As such, any reasoning
about the nature of the real system that follows from deductive model predictions does
so by analogy. A typical example would be the use of such models to examine the
sensitivity of the outputs to different types of change in boundary conditions or par-
ameter values. A deductive model might give an (approximate) indication of how the
real system might operate conditional on the specific assumptions made about the
processes, boundary conditions and parameter values but will not necessarily be very
useful in predicting a specific instance of a particular application where the boundary
conditions and parameter values might not be well known. The use of such deductive
models will be considered in more detail in Chapter 3 in the context of exploring the
model space.

The difficulty of such an approach, of course, is that the results depend precisely on
the assumptions made in setting up the analysis. Whether these assumptions are real-
istic or not will depend very much on the value of the expert judgements made in
deciding which models to use, which parameters to vary, what distributions should be
used for each parameter, whether interaction between parameters can be taken into
account, how much uncertainty should be allowed in initial and boundary conditions,
and so on. Experience has shown that such expert judgements are not necessarily
reliable in applications to real systems. It is probably best, therefore, if this approach is
treated as the first stage in a learning process such that the initial expert judgements
will be refined as some data become available for the model predictions to be evalu-
ated (see Beven, 2007).
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1.9.2 Simulation with historical data available

In many modelling studies, however, it is possible to gather together some data on how
the system has responded in the past, subject to some limitations and uncertainties.
Data will have been collected at specific points in space and time (which may not
match the time and space discretisation of the model) and for only a restricted number
of variables. Such data are commonly now stored and provided in the form of elec-
tronic files of numbers, without any record of how they have been collected or pro-
cessed. A common problem in hydrology, for example, is to model discharges from a
catchment given rainfall records. There are very many sites where discharge data are
available to calibrate or evaluate model predictions. These can be obtained from the
relevant agencies or, in some cases, directly on the Internet from public databases. The
discharge in a stream is not normally, however, measured directly. It is inferred from
another measurement, normally water level, by applying a “rating curve” developed
for the discharge measurement site. The rating curve is often based on measurements
of velocities in the cross-section taken at different water levels. As the level increases,
however, it becomes more difficult and expensive to take such measurements, so that
the discharges at flood water levels tend to be associated with a significant uncertainty
that is rarely reported. Thus, modellers obtaining a file of such data will, lacking any
further information about the uncertainties, generally take the numbers as “true”.
They should, however, be wary of doing so. Many other similar examples of different
measured environmental variables could be added here, but there is still an expect-
ation that such historical data should be useful in constraining the feasible models for
a particular site.

Any reasonably complex environmental model is difficult to apply in a specific
instance. Unlike a deductive model where the dependence of simulations on model
assumptions, boundary conditions and parameter values is simply part of the deduct-
ive process, in any application to a specific place assumptions, boundary conditions
and parameter values must be chosen to represent that particular part of reality in
space and time. One of the implicit assumptions of a pragmatic realist approach to
environmental modelling is that this should be possible; that, in principle, if we have a
correct model structure then specific cases can be treated in terms of their specific
boundary conditions and parameter values. In fact, the assumption made in practice is
often stronger than this: that it should be possible to represent the unique character-
istics of a specific case with specified boundary conditions by a unique set of parameter
values. This ideal may not be reached because of data or measurement technique
limitations but the principle underlies many modelling studies.

We are perhaps unlikely ever to reach a stage where attaining such an ideal is
actually feasible but in any application it is necessary to use the available observations
to decide on what the boundary conditions and parameter values appropriate to that
case might be. In most cases this will entail a calibration process and in what follows in
this book that calibration process will be represented as a form of inference from the
observations about appropriate models for the specific case under study. Note that the
form of model structure used may be exactly the same as a model chosen for deductive
experimentation. The aim in inference will always be to use the available observations
to obtain the best model or models for the application, or at least constrain the set of
plausible models (as hypotheses) and reduce the prediction uncertainties. Induction as
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model calibration is an important tool in environmental modelling, albeit fraught with
difficulties (see Chapter 2). It is an essential tool in applications to particular locations.

There is also the possibility that inference from model observations might be used as
a more direct way of deciding on model structures by a process of hypothesis rejection.
In situations where the model predictions do not appear to be consistent with the
available observations then we might be able to learn about the usefulness of a model
structure (or the data that are being used to drive it). There are certainly some pub-
lished cases where this type of model evaluation has led to the rejection of all the
models tried.

The role of induction and deduction in science has been the subject of extensive and
continuing debate in the philosophy of science. We cannot really fully discuss the
application of environmental models without at least some appreciation of the nature
of the debate and its relevance to modelling. The next chapter therefore offers a short
summary of the issues involved in the form of a philosophical diversion, while Chapter
4 deals with the techniques used in practice for making use of historical data in
conditioning model predictions and constraining uncertainties.

1.9.3 Forecasting the near future

The last type of model application that we will consider is in making forecasts of the
near future (sometimes called real-time forecasting or nowcasting). Examples include
weather forecasting using atmospheric models and flood forecasting for decisions
about warnings using hydrological models. In some cases coupled models might be
required, for example in forecasting the transport of a pollutant wave down a river
system when stream discharge is changing or for the effects of atmospheric pressure,
tide and river flows on the forecast of a tidal surge in a river estuary.

In each of these cases, the issue is less about having a model that is correct in
simulating the detail of the processes than having one that gives accurate forecasts
with minimum uncertainties at the required lead time into the future. The concept of
lead time is important in real-time forecasting, since in a decision-making context the
lead time must be sufficiently long for any reaction, for example, by the emergency
services and the general public, to be effective. We might be able to get very accurate
predictions of flood discharges for a particular site at risk of flooding one hour ahead
of time, but they would not be as useful as a much more uncertain prediction 6 hours
or 12 hours ahead of time that would allow flood warnings to be issued to the public.
The difficulty of providing warnings in systems with short response times is discussed
in Section 5.1 with reference to floods in Boscastle, UK and Vaison-la-Romaine,
France.

A second issue in forecasting the near future is that the speed with which model
predictions can be made is important. This is currently an issue with numerical wea-
ther prediction models. The forecasters would like to do two things to improve their
predictions. They would like to refine the grid scale of the models and they would like
to increase the number of ensemble runs of the model for each forecast. The ensemble
is made up of a number of different runs of the model, each with different patterns of
initial conditions, reflecting the uncertainty in the knowledge of the atmosphere at the
start of the run. Both decreasing the grid scale and increasing the number of runs
would increase the computer run time.
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Perhaps the most important issue, however, is the need for data assimilation in real-
time forecasting. We expect, in any forecasting situation, that the model predictions
will drift away from what actually happens. If we are making forecasts and it is
possible to have some information about what is actually happening in the system, we
can use that information to improve the forecasts. This is known as data assimilation
or adaptive forecasting such that as the observations about the real system are received
at the forecasting centre, any model bias or drift can be corrected. This requires that
the observations are transmitted sufficiently rapidly to be useful within the lead time of
the system but communication systems are now becoming cheaper and much more
reliable, even in remote areas. There are now a number of different techniques of
implementing adaptive forecasts that will be described in more detail in Chapter 5.

1.10 Guidelines for effective modelling

There have been a number of practical discussions about effective practice in
environmental modelling. Reichert and Omlin (1997) discuss the use of process
models in ecology in terms of the guiding principles of physicality, characterisability
and identifiability, together with decision criteria of quality of fit, parsimony and
“balanced accuracy” for model selection. Hill and Tiedeman (2007) discuss 14 guide-
lines for effective modelling in their particular context of groundwater modelling;
Refsgaard et al. (2007) summarise work on the European Union HarmoniQuA
project4 in terms of five major steps and 48 tasks for good practice in integrated water
management modelling. There is a lot of good common sense advice involved in these
suggestions that is transferable to many other modelling problems and methodologies.
There is also much more recognition that the modelling process should be expected to
be imperfect and that the modeller should be aware of these limitations when interact-
ing with the stakeholders who will use the model predictions in making decision (e.g.
Olsson and Andersson, 2007; Stainforth et al., 2007b). The process of uncertainty
estimation can provide a useful framework with which to structure such a discourse.
Pappenberger and Beven (2006) and Faulkner et al. (2007) suggest the need to
develop, with the input of stakeholders, codes of practice in different application areas
(see also Section 6.11 later in this book).

My own experience suggests that the sets of questions below might be useful in
structuring an approach to modelling applications that takes account of the potential
uncertainties. The questions are addressed both to the modeller and to the relevant
stakeholders.

1 Define the context of the problem, in discussion with the appropriate stake-
holders. What type of predictions are required and at what degree of accuracy for
effective decision making or hypothesis testing? What data are available to con-
strain the model predictions (for input data, boundary conditions and model
parameters)? Are there qualitative data available that might constrain the model
processes to be considered in the application? What additional data could be
collected? What sorts of uncertainties are associated with the data?

4 See http://www.harmoniqua.org.
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2 Define the modelling approach to be used. What model concepts are consistent
with the context of the problem and the stakeholders’ understanding of the sys-
tem? Will the available model(s) provide the predictions required? Should more
than one competing model structure be considered? (Would a simpler model do
the job?)

3 Set up the model(s) carefully, including making basic consistency checks on the
available data. Are there any obvious deficiencies in the data revealed by mass or
energy balance checks? Are there space/time resolution issues in making accurate
predictions? Are there discretisation issues in representing heterogeneities in the
system?

4 Evaluate the performance of the model, including prediction uncertainties, against
the available quantitative and qualitative data (where this is possible, of course).
What is an appropriate uncertainty estimation method (see Section 1.9)? Where
the model needs to be calibrated against observations of the system response,
make sure that the predictions are also evaluated against additional data not used
in the calibration exercise. Are there obvious deficiencies in the model predictions?
Could these be the result of data errors/uncertainties? Could they be the result of
model deficiencies (poor estimation of effective parameter values; poor represen-
tation of heterogeneities; poor representation of processes; missing processes,
. . .)?

5 Consider whether the uncertainties associated with the model predictions can be
constrained. Uncertainty estimation is not the end point of the modelling process
but can be a guide to further work that might better define the response of the
system. Would a particular set of additional measurements allow model param-
eters to be better identified in a cost-effective way? Would a particular experiment
allow different model structures to be differentiated as hypotheses about how the
system is responding?

Most readers will see straight away that many of these questions have implications for
the resources available to the project. This will consequently have an effect on what is
possible or necessary to achieve the aims of a project and needs to be the subject of a
discussion between modeller and stakeholder in the light of the importance of the
application. In the UK, some £800m per annum is spent by the government and
Environment Agency on flood risk management, including the design and mainten-
ance of flood defences. About 1% of that sum is spent on modelling studies but the
point has been made in formulating a modelling strategy for flood risk management
that if that 1% is not spent wisely then there is the potential that the remaining 99%
will not be used to greatest effect.

1.11 The meanings of uncertainty

Uncertainty means different things to different people. It is also sometimes used syn-
onymously with other terms such as ambiguity, vagueness, imprecision and
indeterminacy. There have been a number of attempts to define it in a more restricted
way so as to avoid uncertainty in its meaning, but since such constrained definitions
conflict more or less with everyday usage, it is probably more realistic to try and
enumerate the various meanings of uncertainty.
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There are two classical technical formulations of uncertainty, one derived from set
theory and one from statistics. In set theory uncertainty arises when there is a set of
possible alternatives when only one is required. In statistics, probability theory allows
the expression of uncertainty in terms of some measure, in the range 0 to 1, on a
universal set of alternatives. The probability expresses the likelihood that any given
alternative is the one that is required.

Both classical definitions of uncertainty have their limitations. In the case of set
theory the limitation is primarily that of assuming that the set has a crisp boundary,
i.e. any given element is either in the set or outside it (even if degree of membership for
elements within the set might be described by a fuzzy measure). In the case of prob-
ability theory it is the assumption that the primary cause of uncertainty is randomness
so that the probability measures can be interpreted as the long term (asymptotic)
averages of a random process (these are called aleatory uncertainties, or sometimes
just noise). The asymptotic assumption can be relaxed in a Bayesian interpretation of
statistics (see Section 4.3 and Box 4.1) but there is still an expectation that for a
stationary statistical process, the probabilities will converge to their long-term
averages given sufficient information.

Both sets of assumptions can be questioned in practical applications and this has led
to the development of some different representations of non-random uncertainty in
terms of fuzzy sets, rough sets, fuzzy measures (e.g. Klir, 2006) and the Info-Gap
approach of Ben-Haim (2006). Klir (2006) points out that uncertainty arises because
of a lack of information or because of conflicting information. Thus, in order to
constrain uncertainty it is necessary to take action to collect additional information
(which may involve a cost) where this is possible. It is not always possible, of course,
either because the measurement technologies do not exist or because we are unsure of
the future. There may be many uncertainties about the future (in climate change,
political and social change, technological change, and natural catastrophes) that can-
not be assessed in any probabilistic way. Such non-random factors (epistemic
uncertainties) will arise in environmental modelling in a variety of ways, but most
particularly because of model structure and future boundary condition deficiencies
that cannot be considered as simply random (though they can sometimes be treated as
if they were random components where we have no better knowledge of how they
might be non-random; see the discussion of the total error equation later in Chapter
4). Thus, alternative views of uncertainties will be worth considering, particularly
where decision making in a practical application can tolerate a degree of imprecision
in predictions. Fuzzy set methods aim to estimate the possibilities of potential out-
comes rather than probabilities. The relationship between fuzzy set theory and prob-
ability theory is dealt with from a practical engineering viewpoint quite nicely by Ross
(1995, Chapter 15) and more extensively by Klir (2006).

Fuzzy set theory derives from work in the 1960s by Lotfi Zadeh, though some of the
ideas are recognised as being older. Klir (2006) notes that the theory of possibility has
origins in the work of Ralph Hartley (1928) and the concept of potential surprise
developed by the economist George Shackle (Shackle, 1949; 1955). In his 1965 paper
Zadeh introduces the concept of a set with imprecise boundaries. One of the most
important aspect of fuzzy set theory is that it allows descriptions of quantities in terms
of imprecise linguistic variables (large, small, . . .) rather than simply crisp numerical
values. Fuzzy sets are also capable of expressing vagueness and non-specificity. Both
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may be considered to be components of uncertainty within a fuzzy framework.
Vagueness results from imprecision of definitions, as in the case of linguistic variables.
Non-specificity results from lack of information about a quantity; as more information
is gained, so our reasoning about that quantity should become more specific.

A closely related concept is that of the rough set (Pawlak, 1991). A rough set is an
imprecise representation of a crisp set in terms of a lower and upper approximation.
The lower approximation includes all elements from the universal set that are included
in the set. The upper approximation includes all elements whose intersection with the
set is not empty. An extension of the concept of rough sets is to make the approxima-
tions themselves fuzzy (fuzzy rough sets), or to represent a fuzzy set in terms of a rough
set approximation (rough fuzzy sets) (Dubois, 1990; Dubois and Prade, 1992).

Fuzzy measure theory derives from work by Michio Sugeno (1977). It relaxes the
assumption of additivity associated with classical measures in favour of weaker
assumptions of monotonicity and continuity. There are several different classes of
fuzzy measures based on different forms of monotonicity and continuity including
plausibility measures, belief measures, possibility measures, necessity measures and,
indeed, classical probability (Wang and Klir, 1992). Each allows the representation of
forms of uncertainty in different types of applications.

The starting point for the Info-Gap theory of Yakov Ben-Haim (2006) is that there
are many sources of uncertainty that cannot easily be represented by any form of
distribution, either probabilistic or fuzzy. The Info-Gap theory is designed to cope
with cases of extreme uncertainty by formulating nested sets of increasingly uncertain
possibilities. He refers back to the work of Frank Knight in the 1920s. Knight (1921)
differentiated between risks that people would be prepared to insure against (i.e.
uncertainties that can be represented as statistical odds or probabilities) and what he
called “true” uncertainties that cannot be assessed in this way. The latter, essentially
unquantifiable epistemic uncertainties are now sometimes known as Knightian
uncertainties. Many of the uncertainties in predictions of future economic change and
its effect on climate change are of this type (e.g. Stainforth et al., 2007a).

The fact that Knightian uncertainties are difficult to quantify does not mean that
they are unimportant or can be ignored. Many future scenarios used as boundary
conditions in modelling change in environmental systems are of this type. We can
make some guesses (create scenarios) about what the boundary conditions might be in
the future, but we cannot very easily assess whether one scenario is more likely than
another, or whether we have missed some likely potential futures because of lack of
knowledge or understanding (Type III errors or Donald Rumsfeld’s unknown
unknowns).

There is one particular type of epistemic uncertainty that is often overlooked in
the application of environmental models, that Linkov and Burmistrov (2003) call
“modeller uncertainty”. Their study of the uncertainty in model predictions in an
International Atomic Energy Agency Biosphere Modelling and Assessment project
demonstrates how the interpretation of scenarios and the use of different assumptions
was greater in controlling the range of predicted outcomes than the effects of allowing
for parameter uncertainty in the models used. In part, this was explained by the
tendency for modellers to use approximate reasoning in making decisions in the face
of uncertainty in ways that can lead to biased outcomes (as do other decision makers,
see Morgan and Henrion, 1990). Linkov and Burmistrov (2003) report how the
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differences between different modelling groups decreased following meetings to
develop a consensus interpretation of the scenarios to be modelled, and when data
were available for (partial) model calibration. Whether such a consensus will reduce
the potential for bias in the predictions, of course, is another question that can only
be answered when there is the possibility of a post-audit analysis. Other model
inter-comparisons have revealed large differences between different modelling
groups, especially when different model structures are used. Refsgaard et al. (2006)
report an interesting example from a groundwater water modelling exercise, when
different consultancy companies were asked to evaluate the available geological data
for an area west of Copenhagen in Denmark to define a conceptual model of the
aquifer structure. The different groups produced quite remarkably different
interpretations.

Regan et al. (2002) also discuss the issue of linguistic uncertainties in the context of
ecology and conservation management which arises because “much of our natural
language, including a great deal of our scientific vocabulary, is underspecific, ambigu-
ous, vague, context dependent, or exhibits theoretical indeterminacies” (p.618). They
discuss each of these types of linguistic uncertainty in turn and, from the discussion, it
is clear that there is significant linguistic uncertainty about the classification of differ-
ent types of uncertainty in applications to environmental problems. When, for
example, is something that is vague (they use examples such as “endangered species”
or “viable population”) simply a result of epistemic uncertainty? Certainly some vague
variables can be addressed using the fuzzy approaches briefly outlined above, while
the indeterminacy of theoretical terms might also be considered as a form of epistemic
uncertainty as outlined above. Their advice is to try to be as precise as possible in
dealing with linguistic uncertainties, to accept that not all uncertainties can be dealt
with in probabilistic terms, and to seek to represent vagueness using fuzzy, rough set,
or similar measures.

This brief overview of different meanings of uncertainty is by no means complete
but it is clear that these different ways of representing different sources of uncertainty
in the modelling process will result in different estimates of the uncertainty of a model
predicted outcome. Environmental modelling problems are complex enough that there
is no clear consensus about which form of representation should be used for different
types of application (except perhaps among those who think that probability is the
only framework for dealing with uncertainty and who are prepared to gloss over the
real difficulties in real applications of forcing some sources of uncertainty into a prob-
abilistic representation; see Chapter 4). In one sense it does not really matter how the
estimates of uncertainty are made as long as the assumptions of any analysis are set
out clearly and openly. Scientists, decision makers and stakeholders can then assess
those assumptions in an open way. Within those assumptions, each form of analysis
can be carried out objectively. In another sense, however, it does matter a lot, because
the possibility of multiple representations of uncertainty exacerbates the communica-
tion problem from scientists to decision makers and stakeholders. That communica-
tion problem remains an important hindrance to the more widespread use of
uncertainty estimation in environmental policy and decision making.
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1.12 Deciding on an uncertainty estimation method

It will be clear from the sections above and from simply reading the table of contents
of this book that there are a wide variety of uncertainty estimation methods available
to the environmental modeller. There are also some important controversies about
what methods should be used for different applications. To try and guide potential
users through the choice of an uncertainty estimation method a decision tree has been
developed and included as part of the Wiki pages on risk and uncertainty developed
within the UK Flood Risk Management Research Consortium5 (Figure 1.4). The site
includes descriptions of different methods, including illustrative case studies. Wiki
pages are Internet sites where users can edit and add material themselves. In the case of
the Risk and Uncertainty pages it is hoped that users will report additional case studies
and report experience of using different methods (see also Pappenberger et al., 2006a).

It is immediately evident that Figure 1.4 assumes that a suitable model is already
available. The approach taken in this book is similar. It does not attempt to deal with
fitting statistical distributions or relationships to data. There are many books on stat-
istics and geostatistics already available that cover that material well (see, for example,
Clarke, 1994, and Hipel, 1995, in hydrology, or MacGarigal et al., 2000, in ecology,
or the geostatistics texts of Clark, 1979, Cressie, 1993, and Kitanidis, 1997). The
classical methods of linear statistics still have value in environmental modelling,
although the user sometimes needs reminding that those methods can be used to
estimate the uncertainties in, for example, multivariate regression relationships or
geostatistical interpolations, as well as the best estimate values. Good recent examples
are the regionalisation studies of Jones and Kay (2007) and Yadav et al. (2007) in
which purely statistical models of catchment hydrological variability are used to
extrapolate to ungauged catchments with estimates of uncertainty. Here, our starting
point is to assume that a formal model structure has already been constructed and that
the user wishes to investigate the uncertainties associated with its use (Chapter 3) and
constrain those uncertainties by taking new observations or different types of observa-
tions into account (Chapter 4), perhaps for real-time forecasting (Chapter 5) or as an
input into risk-based decision making (Chapter 6).

1.13 Uncertainty in model predictions and
decision making

Models are often applied in the framework of a decision-making process. Indeed it is
generally the case that an agency or company with responsibility for making decisions
compatible with current legislation will commission a modelling study to help fulfil
that obligation in a way that demonstrates that science has been brought to bear on
the decision. Decisions made frequently, such as the definition of flood risk zones for
planning purposes, might be associated with recognised modelling methods and
standards for data collection (in that case for estimating flood frequencies and predict-
ing the inundation associated with a design flood). In other cases, important decisions,
such as where to site a nuclear waste repository, might involve a multi-million dollar

5 See http://www.floodrisknet.org.uk/methods/Introduction.
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Figure 1.4 A decision tree for choosing an uncertainty estimation method

Source: http://www.floodrisknet.org.uk/methods/Introduction
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data collection and model development programme to inform the decision-making
process. The proposed radionuclide waste disposal sites at Yucca Mountain in the
US and Sellafield in the UK are both good examples of this where, despite a huge
expenditure and modelling effort, the uncertainties of what might happen to radio-
nuclides stored at depth were not adequately resolved because of different interpret-
ations of the data and model implementations by different scientists.

It is important to recognise that most such decisions have to do with individual sites,
and that there will always be some uncertainty about the model representation and
characterisation of the site given the limitations of the data that might be available.
This suggests that the decision-making process should take account of such uncertain-
ties (at least for any non-trivial decision). This has rarely been the case in the past.
Environmental modellers have not been very good at assessing the uncertainties in
their predictions, and decision makers have not been very good at knowing how to
deal with scientific uncertainties when the modeller supplies them. There is a myth that
decision makers, in government, environmental agencies and local authorities do
not want to know about scientific uncertainty. They only want to be given the best
possible scientific estimate on which to base their decision.

And yet, decision and policy makers have always had to deal with uncertainties in
making decisions, whether formally or informally, and it is surely a duty of the scien-
tist to make the best estimate of uncertainties possible in any application as an input to
that decision-making process. There are a variety of methods available for decision
making under uncertainty (see Chapter 6) and perhaps both modellers and decision
makers just need to be better trained about what is possible and how to discuss and
communicate the nature and meaning of prediction uncertainties from scientist to
decision maker to public and vice versa (van der Sluijs et al., 2005a; Faulkner et al.,
2007).

However, it is also true that any decision will not depend simply on the science;
other political and societal considerations will also come into play with their own
uncertainties (and in fact those factors can already be seen in shaping some model
prediction uncertainties provided to policy makers, such as the range of potential
climate changes produced by the IPCC which provide a censored consensus range of
outcomes without any attempt yet – for good computational reasons – to assess the
real range of uncertainty in the climate dynamics). Environmental decisions involve a
complex interplay between scientific, societal, and political questions and uncertain-
ties. Indeed, social scientists have often argued that the framing of the scientific
question itself is not without a political and social context that often does not
include the input from all stakeholders in the problem. They advocate a much more
participatory decision-making process. The way in which modelling can inform
decision-making processes will be considered in more detail in Chapter 6, including
the use of Info-Gap theory to deal with the non-probabilistic Knightian
uncertainties.

1.14 Summary of Chapter 1

This chapter has been a general introduction to some of the issues and problems that
arise in trying to apply environmental models for real applications, and the sources
and types of uncertainty that are involved. These may be summarised as follows:
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Problems of representation of understanding
• The expected limitations of our perceptual models as representations of the real

system
• The simplification inherent in moving from a perceptual model to a formal model
• The additional approximation that might arise in solving the formal model on a

digital computer

Problems of scale and space
• The need for system closure by defining appropriate boundary and initial

conditions
• The fact that the procedural model will require scale-dependent effective bound-

ary conditions, initial conditions and parameter values that may be different for
different model implementations

• The problem of calibrating the model boundary conditions, initial conditions and
parameter values in any application to particular places

• The problem of incommensurability of measurements (and theory) with what is
required at scales of modelling

• The problem of transferring parameter values from one model application to
another

Uncertainty and practical applications
• Different methods of uncertainty estimation are required for different types of

problem
• In particular, uncertainty estimation without historical observations available,

uncertainty estimation with conditioning on historical observations, and real-time
forecasting are distinguished

Problems of representation of uncertainty
• The problem that not all uncertainties are quantifiable
• The problem that models of modelling errors may be difficult to construct and

may involve non-stationarities arising as a result of input and model structural
error

• The problem that different model structures and parameter sets may do equally
well in fitting the available observational data

• The problem of using different representations of uncertainty in decision making

Uncertainty and decision making
• In real application, uncertainty estimation is only a means to an end: the end of

making better decisions
• Methods for decision making in the face of uncertainty exist but how to best

represent uncertainties, and the basis for the estimation of uncertainties, to
decision makers is still an unresolved issue.
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A philosophical diversion

When looking for positive guidance from philosophy we must rest content with some
vague generalisations about the need to be specific.

Alan Chalmers, 1989

All models are wrong, but some models are useful.
George Box, 1979

2.1 Why worry about philosophy?

It is, of course, quite possible to develop and use environmental models without any
explicit underlying philosophy. Many practitioners do, although most might have the
aim of developing and using models that are as “realistic as possible”, given the
constraints of current knowledge, computing capabilities and observational technolo-
gies. This type of implicit or pragmatic realism seems quite natural and appears to be
intrinsic to modelling efforts such as the coupled Global Circulation Models being
used to predict future climate change. The philosophical subtleties are not really
necessary to the practising environmental modeller who only needs to know that
achieving realism is still difficult in the practical prediction of complex environmental
systems. Current implementations of such models are known to have their limitations
but it is implicitly accepted that they will continue to evolve towards more realistic
representations of the earth–ocean–atmosphere system.

While this pragmatic realism has served environmental science well it has long been
demonstrated that it has major flaws. It should be replaced, but experience suggests
that philosophical arguments alone have had little impact on the way in which model-
ling is actually done. This is, perhaps, beginning to change and there is the start of a
recognition of the need for a more scientifically robust assessment of the foundations,
capabilities and limitations of model predictions. This view stems not from any deep
notions of environmentalism, nor from any higher-level holistic principles of nature,
nor directly from philosophical arguments about the concept(s) of realism itself,
but from practical experience of the difficulties of modelling in different areas of
environmental science. In this chapter, a philosophical framework for environmental
modelling is outlined that might satisfy this need while allowing for model structural
error and the incorporation of improved knowledge over time.

What I am calling pragmatic realism here naturally combines elements of
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foundationalism,1 actualism, empiricism, idealism, instrumentalism, Bayesianism,
relativism and hermeneutics; of multiple working hypotheses, falsification, and critical
rationalism (but allowing adjustment of auxiliary conditions); of confirmation and
limits of validity; of competing scientific research programmes while maintaining an
open mind to paradigm shifts; and of the use of “scientific method” within the socio-
logical context of competing research groups and the politics of grant-awarding pro-
grammes. Within the philosophic tradition, refined and represented in terms of ideals
rather than practice, it probably comes closest to the transcendental realism of Roy
Bhaskar (see Section 2.3). However, in environmental modelling, at least, the
practice often appears to have more in common with the entertaining relativism of
Paul Feyerabend (1975), not least because theories are applied to open systems, arti-
ficially treated as closed by the specification of approximate boundary and initial
conditions (Morton, 1993).

As Nancy Cartwright (1999) has pointed out, in open systems, even the funda-
mental equation force=mass*acceleration may be difficult to verify or apply in prac-
tice. Hydrologists also know only too well the difficulties of verifying or applying the
mass and energy balance equations in open systems (Beven, 2001a,b, 2006b). Other
areas of environmental science will have similar examples of fundamental principles
that cannot be verified or easily applied because of lack of knowledge of all the factors
influencing the system of interest. This does not, of course, mean that such principles
or laws should not be applied in practice, only that we should be careful about the
limitations of their domain of validity (as indeed are engineers in the application of the
force and force balance equations when they will often be careful by applying a factor
of safety to design calculations).

Cartwright (1999) suggests that open systems might best be represented in terms of
the capacities of real entities to respond in a particular way to external influences. She
argues that representation of capacities is only possible within a nomological system
(law-based formal system) with its own defined constraints and limitations. Thus, the
problem of defining a formal model of the system is, within this framework, a matter
of defining a nomological system that may not in itself be realist in terms of being
totally consistent with the perceptual model but which can be used to produce quanti-
tative predictions within the limits of its own definition. We should also note here that
even having designed a consistent nomological representation of an environmental
system then there may be further approximations necessary in implementing
that system on a digital computer, such as in the approximate discrete numerical
solution of the continuum partial differential equations that are the basis of many
environmental models (what was called the procedural model in Chapter 1).

It is in the critical rationalist idea that the description of reality will continue to
improve that many of the problems of environmental modelling have been buried for a
long time. This apparent progress is clearly the case in many areas of environmental
science such as weather forecasting and numerical models of the ocean. It is not nearly
so clear in areas such as hydrological modelling even though many people feel that, by
analogy, it should be. It has led to a continuing but totally unjustified determinism in

1 Definitions of all the highlighted terms will be found in the Glossary at the end of the book.
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many applications of modelling and a lack of recognition of the limitations of the
available predictive models.

There may be a fundamental difference between different areas of environmental
modelling here. It seems that some areas, such as hydrology, are no longer primarily
limited by computational requirements but by other informational constraints,
whereas areas that apparently continue to advance are still primarily computationally
limited. If this is the case then the scope for improvement in areas where information
limitations are more important than computational limitations may be severely con-
strained (at least until new measurement techniques become available). On the other
hand, areas where computational constraints are still a controlling limitation (such as
in atmospheric modelling) may not yet have reached their limit of improvement, but
can be expected to do so some time in the future. That will be the point at which know-
ledge of system characteristics, boundary and initial conditions, for everywhere in the
domain of interest and limited by the available measurement technologies, starts to
become a dominant controlling factor on prediction uncertainties.

2.2 Pragmatic realism

Computer simulation has become a common research and practical methodology in
the environmental sciences. It can be used as a framework for formulating and testing
theories. It can be used to make predictions for practical applications in response to
demands from policy and decision makers. As noted in Chapter 1, particularly inter-
esting examples are the predictions of global climate change and its consequences, and
predictions of the impacts of underground repositories for nuclear waste. Very large
research programmes have been funded with a view to improving the accuracy of these
predictions. There is an implicit belief underlying these efforts that such improvements
are possible, despite the nonlinear and open nature of the systems being studied
and the approximations necessary to implement our qualitative understanding of the
systems under study in a working computing program.

The foundation of this belief is the form of pragmatic realism noted above. I am a
hydrologist. As a hydrologist I intend that the computer simulation models I develop
should represent real water; in modelling contaminant transport in flowing water I
intend that the models should represent the real contaminant. This is in spite of the
fact that, as a hydrologist, I would recognise the varied nomological status of many of
the concepts that are used in my models (Beven, 1989; 1996b; Shrader-Frechette,
1989; Davis et al., 1992; Hofmann and Hofmann, 1992; Section 3.1). In the same
way, the atmospheric modeller will intend that the variables in his computer should
represent the real atmosphere and the aquatic geochemist will intend that the
(approximate) computer solutions to systems of stoichiometric equations should rep-
resent real aqueous solutions. In time, new understanding and knowledge gained from
experiment about reality will be incorporated into improved simulations. In this way
the research programme of environmental science should progress.

This common working version of realism is, of course, rather naïve. It is naïve not
only from a philosophical point of view (a more sophisticated realist position is out-
lined in the next section) but also from a scientific point of view, since it requires that
the systems under study be knowable. Clearly, for many environmental systems the
complexities that can be included in a purely qualitative perceptual model are such
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that all the boundary conditions, auxiliary conditions and system characteristics can-
not be knowable given current measurement technologies. Thus, in applying this
pragmatic realism to any particular open environmental system, it is clear that we can
recognise much more complexity than it is possible to represent in a mathematical
model that, implemented as a computer simulation, will make quantitative predic-
tions. In these cases the need for approximating the perceptual model into a set of
mathematical concepts at a certain scale is obvious (Beven, 2006b). A good example is
the parameterisations of sub-grid scale processes in global circulation models that are
as much a result of computational constraints as lack of understanding of smaller-
scale processes. In other cases the process is not so self-evident, such as when
equilibrium geochemical codes for solutions are applied to mixtures of waters (and
mineral surfaces and organic colloids) from multiple sources at field scales. Even
though the principles of the perceptual model may be well understood, the implemen-
tation of those principles in practice may be difficult both for reasons of finding
realistic approximations of complex open systems (within the limitations of computa-
tional constraints) and also because of lack of knowledge of the local characteristics of
the system and its boundary conditions.

This may be in part because we still have some surprises to learn about the nature of
the processes but it would seem that even if we had a perfect theoretical description,
the real problem is that the detailed characteristics of the system, that have an import-
ant control on how the system works, may be essentially unknowable. Keeping to the
sphere of water, there is an analogy here with the study of turbulence. Homogeneous
turbulence has received much study and simplified representations of the energy dissi-
pation down to viscosity-dominated scales are used widely in computational fluid
dynamics (CFD). It is true that there are still debates about the best closure schemes to
use at modelling scales above what is computationally possible with direct numerical
simulation, but for systems that are largely self-organising, even approximate CFD
models appear to produce reasonable results.

However, there are many fluid dynamic systems in both laminar and turbulent flow
regimes in which the interactions with the boundaries dominate the energy dissipa-
tion. This is true for shallow turbulent water flows in streams and rivers (where form
roughness and the aquatic and bankside vegetation may also play an important role in
energy dissipation depending on the discharge in the channel), requiring the specifica-
tion of effective roughness parameters to reflect these small-scale effects; it is true for
(mostly) laminar porous media flows in soils and groundwaters. Again, it is not so
much that the principles of the interactions are not understood in the perceptual model
(though we may still have much to learn) but that it is necessary to characterise
the energy dissipation at every point in the flow domain or, more correctly, at the
scale of the elements of the approximate representation of that flow domain in the
implementation of a formal model to produce quantitative predictions.

It could be argued from a pragmatic realistic perspective that the problems of defin-
ing the parameterisations of a formal model and defining effective parameter values in
system characterisation are not, in themselves, sufficient to require a new philosophy
of environmental modelling but merely reflect the technological constraints of today
(computing limitations, measurement limitations, theoretical limitations etc). The
expectation is that new technological developments will reduce the significance of
today’s problems. There is always the hope of unforeseen technological innovation
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but this argument does not survive an examination of the effects of trying to apply
models to specific locations with their own unique characteristics.

2.3 Other philosophical concepts of realism

The pragmatic realism of the previous section does not correspond directly to any of
the concepts of realism expounded by philosophers of science, of which there are
many. In fact, there are almost as many concepts or modifications of concepts of
realism as there are philosophers of science who have written on the subject. A good
(and relevant) example is provided by the article by Alan Chalmers (1989) entitled “Is
Bhaskar’s concept of realism realistic?” Philosophers, of course, tend to be concerned
primarily with clarifying the principles underlying a realistic approach to science, as
opposed to the rather messy practice sketched in the view of pragmatic realism out-
lined above.

One of the more interesting realist accounts of science produced in recent years is
that due to Roy Bhaskar (1980; 1989). This is his transcendental realism, sometimes
referred to by others (and accepted by Bhaskar) as critical realism (see, for example,
Collier, 1994). Bhaskar’s realism is transcendental in the sense that it uses the form of
transcendental argument made popular in philosophy by Immanuel Kant (1724–
1804) as, if X is observed what are the conditions necessary for the observation of X.
This is the type of argument used all the time in applications of models when the
model is being used to formalise the conditions necessary to reproduce an observable
(at least approximately).

It is worth noting, however, that this argument involves three stages. The first is the
capacities necessary in the system for the occurrence of X; the second is the set of
conditions necessary for the occurrence of X (which may involve a specific trajectory
of the system); and the third is the translation of the real quantity X into an observed
quantity, X′. Within this framework, however, X and the conditions and capacities
that caused it to happen can be considered to be real. Indeed, any conditions and
capacities that are currently non-observable can also be given a realist interpretation.
Many practising environmental modellers would, I am sure, be quite happy to
incorporate this type of position into their pragmatic realism, however difficult it is in
practice to represent those real capacities and conditions in their current models.

Chalmers (1989) provides a useful critique of Bhaskar’s approach in respect of the
use of models. Although he states quite clearly that he considers transcendental real-
ism to be the best account of a philosophy of science yet available, he suggests that it
can still be criticised on some points of detail.

2.4 Models as instrumentalist tools

There is another philosophical position that, given the many practical problems of
environmental modelling, might often seem attractive. This is instrumentalism, in
which models are seen only as tools, without making any realist claims. In the philo-
sophical literature, instrumentalism is therefore often presented as an anti-realist pos-
ition, though this is not necessarily the case. There will be many practitioners and
environmental modellers who will be pragmatic realists in intention, but instrumental-
ists in practice. Instrumentalism is, if you like, the engineering view of environmental
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modelling. Practical engineering requires models for prediction in practical
applications. Model limitations may be recognised and factors of safety introduced in
the use of the predictions, but one suspects that predicted pressures are still usually
understood as “best estimates” of the real pressure distribution; predicted velocities
are still usually understood as “best estimates” of the real velocity distribution;
predicted contaminant concentrations are still usually understood as “best estimates”
of real concentrations. The model is a tool, but the best tools should have a basis
in reality.

Recent expressions of instrumentalism are due to Bas van Fraassen (1980), Nancy
Cartwright (1983, 1999) and Susan Haack (2003). At the centre of the instrumentalist
view is that all scientific theories of the past have proven to be false so that it is logical
to expect that all current theories will turn out to be false. This need not, however,
prevent us from making statements about the nature of things, including quantities
that are not directly observable. Such statements, including models, can allow us to
make useful predictions in practice, it is just that we should not believe that they are
real. This is the sense in which instrumentalism is anti-realist, especially since it also
allows that some statements about the nature of things may be subjective. It follows
that the only justification for scientific theorising is empirical adequacy, a concept that
is also intrinsic to the pragmatic realism outlined above (and in much of what follows
in this book).

2.5 The model validation issue

The concept of model validation appears widely in the environmental modelling litera-
ture. It tends to be used in the context of testing a model that has been previously
calibrated for a particular purpose. The test might comprise prediction of a different
period of observations to that used in calibration, or a different set of variables (see,
for example, Klemeš, 1986, and Refsgaard, 1996, in the context of hydrological
models; and Rykiel, 1996, in the context of ecological models). Models that survive
such a test are deemed validated or verified.

This terminology is not acceptable from a philosophical point of view since the
terms “validation” and “verification” imply a truth value or degree of realist belief
that we are aware that models, as approximations, do not have. The issues of valid-
ation and verification in respect of environmental models have been discussed in detail
by Oreskes et al. (1994) in a contribution from professional philosophers as a
response to the evaluation of the predictions of groundwater models by practising
environmental scientists (Konikow and Bredehoeft, 1992). Similar issues arise in other
areas of the application of simulation models (e.g. Herskovitz, 1991; Kleindorfer et
al., 1998). Oreskes et al. suggest that verification and validation of models of open
natural systems is impossible, despite their widespread use in the modelling literature.
They point out that few, if any, models are entirely confirmed by the available data,
but equally few are entirely refuted. Models of such systems may be non-unique and
only a conditional confirmation is possible. It is conditional because it may depend on
the calibration of parameters or other auxiliary conditions and may also depend on
the period of data used in evaluation.

If models cannot be verified or validated but only conditionally confirmed, can we
have any belief in their predictions? This is not just a philosophical issue but also a
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very practical issue, for example when there are competing model predictions involved
in a court case or public inquiry. Bair (1994), for example, describes his experiences as
an expert witness in the $500m lawsuit that concerned the injection of hazardous
wastes into a deep groundwater system. Two models produced by the plaintiffs and
defendants produced very different predictions. That submitted by the plaintiff pre-
dicted waste migration three times greater than that submitted by the defendant. In
addition, the lawyer for the plaintiffs produced a copy of the Konikow and Bredehoeft
(1992) article in court with a view to casting doubt on all groundwater model
predictions.

Bair notes that, although two different codes, both quality-assured, were used, they
were not both used to the same standards of good practice. In this case, it was possible
to demonstrate more belief in one set of predictions than the other or that one model
was more valid as a description of the real system than the other. The jury apparently
agreed, despite the impossibility of validation in principle.

Another interesting example, also involving two groundwater modelling exercises,
occurred during an official public inquiry into a proposed deep-rock characterisation
facility at Sellafield in the UK. The application for the facility was submitted by
NIREX Ltd., a company set up by the UK government, which has responsibility for
planning for the disposal of intermediate-level radioactive waste in the UK. Having
originally failed to get approval for a proposed near-surface disposal site (which hap-
pened to be in a marginal constituency held by the government of the day), they had
developed a plan for a deep-rock disposal site at 650 m below sea level beneath
Sellafield (the site in West Cumbria of the nuclear fuel reprocessing plant run by British
Nuclear Fuels plc.). This site has the advantage that waste from the Sellafield nuclear
fuel reprocessing plant would only have to be transported a short distance. The site
has the disadvantage that it lies beneath the water table within the Borrowdale Vol-
canic Group geological series which, while not highly porous, is subject to significant
fracturing. There would therefore be potential for radionuclides to eventually move
from the depository back to the surface. It turned out that the safety case for the
depository depended on the nature of the assumptions made about the geology and
boundary conditions over the next 10,000 years. The deep-rock characterisation facil-
ity was proposed, at huge cost, to reduce the uncertainties inherent in predicting the
groundwater flows.

The amount of information about the geology at depth was limited. Some 13 bore-
holes had been drilled for NIREX (at a cost of some £1 m each) but this still allowed
a significant degree of flexibility in interpretation of the geological structure of the
Borrowdale Volcanic Group. AEA Harwell produced a model, on behalf of NIREX,
that suggested than the groundwater flows would only reach the surface below the
Irish Sea. Haszeldine and McKeown (1995) produced a model, on behalf of Green-
peace who were opposing the planned facility, that suggested that the proposed
repository was in a zone of flow towards the surface and that the range of experi-
mentally measured conductivities in the boreholes actually spanned the range over
which the repository would fail the safety requirements. Both models were based on
quality-assured groundwater modelling codes; both made assumptions about the
nature of the system that were consistent with the geological evidence and future
scenarios; but the resulting predictions were quite different. In this case, neither
model was considered to be more valid than the other; both appeared to be feasible
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representations of the groundwater flow system. However, even though the public
inquiry was convened only to consider the establishment of the deep-rock character-
isation experimental facility and not the waste repository itself, there was enough
doubt about the possible safety implications arising from the modelling that the
NIREX planning application was rejected. The UK was left with no plans for an
intermediate-level waste disposal site.

2.6 The model falsification issue

One of the most influential 20th-century philosophers of science, Karl Popper (1902–
1994), argued that the most that could be hoped for from a scientific theory was a
degree of verisimilitude with respect to the real phenomena (Popper, 1963). This
neatly avoids (by a simple change of words) any debate about verification or valid-
ation in terms of truth value, but raises questions about whether there are measures of
verisimilitude that would allow theories or models to be ranked or preferences to
be expressed. Popper never really addressed this issue in that way but put much more
focus on the possibility of falsifying models as a means of avoiding the problems of
induction in developing theory (Popper, 1979). Indeed, the primary requirement that
Popper demands for a theory or model to be scientific is that it should be falsifiable by
empirical observation. He did, however, admit that there may be degrees of falsifica-
tion or testability. He suggests that theories that survive testing by a wider range of
potential falsifying statements are to be preferred, while those that cannot be falsified
(the set of potential falsifying statements is empty) should be considered as
unscientific.

This does not really allow for the practical application of environmental models
which mediate between some theory and some practical application with all its com-
plexities of process and place. As has already been pointed out, mediating models are
necessarily approximate and require additional auxiliary conditions (effective
parameter values, boundary conditions) that may be specific to that application but
can only be determined by some process of calibration against observed variables.
This calibration process can save a model from being falsified. If the model fails some
test, it may be possible to avoid rejection by changing the auxiliary conditions or
simplifying assumptions (Beven, 1993; Morton, 1993). This may be the case even if
the observations really do call the assumptions of the model into question. Models are,
in consequence, purpose-specific. The process can become even more circular if the
interpretation of observational data depends on the theory that underlies the model,
further reducing the possibilities for falsification.

In practice, it would appear that falsification is not really an issue in most environ-
mental modelling. This is partly due to the fact that all models can be considered false
if examined in sufficient detail, and partly due to the fact that, in any practical problem
that demands some predictions, at least one model must be retained to carry out the
simulations. As long as a set of parameters can be found that give some acceptable fit
to the available observations, then predictions can be made. We will address the issue
of when a model is acceptable in later chapters. For the moment it is sufficient to note
that in the same way that there will be degrees of confirmation or degrees of falsifica-
tion of a scientific theory, the environmental modeller will have to deal with degrees of
acceptability of one or more models for a particular purpose.
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2.7 The model confirmation issue: Bayesian approaches

The fact that all environmental models can be falsified does not mean that all models
are equally poor; some might be useful as the eminent statistician George Box sug-
gested in the quotation at the head of this chapter. Any modeller knows from practical
experience that some models (or parameter sets, or sets of boundary conditions) will
do a better job at reproducing the limited observed data that is normally available than
others. We should therefore expect to have a greater belief in the predictions of some
models than others; we should also expect that there will be an infinite class of models
of a particular system in which we should have no belief at all. The class of models that
are, in some sense, acceptable is likely to be much smaller. Those models can be
considered, to some degree, confirmed by the available data as hypotheses of how the
system being predicted actually functions. A probabilistic approach to model confirm-
ation can be formalised in terms of Bayes theory. The philosophical background to a
Bayesian approach to science is discussed more extensively in Earman (1992) and
Howson and Urbach (1993).

The Rev. Thomas Bayes was a Sussex clergyman who also studied mathematics.
After his death a paper titled An essay towards solving a problem in the doctrine of
chances was discovered amongst his effects and communicated posthumously to the
Royal Society of London by his friend Richard Price in 1763. The paper contained the
first expression of what is now called Bayes theorem. For our purposes here we can
define Bayes theorem in a form that, given a set of feasible models or hypotheses M
and evidence E, then the probability of any M given E is given by

P(M|E) = P(M) L(E|M) / C [2.1]

where P(M) is some prior probability defined for all feasible models, L(E|M) is the
likelihood of simulating the evidence given the model, and C is a scaling constant
to ensure that the cumulative of the posterior probability density P(M|E) is unity.
Bayes himself allowed only for a uniform prior probability distribution.

Bayes theorem can be applied sequentially as new sets of evidence become available.
The posterior probability density at the end of one step becomes the prior density at
the next step. It therefore provides a rigorous mathematical basis for the expression of
degrees of confirmation of different models as long as the different components of
[2.1] can be defined adequately (see, for example, Bernado and Smith, 1994).

This sequential process must of course start somewhere, so that some initial or prior
probability density is required. This is often defined subjectively by the modeller on
the basis of past experience or subjective judgement. After repeated application of
[2.1], however, the effect of different subjective assumptions about the initial prior
should be reduced by the information introduced by the evidence E (at least providing
that the available evidence does add information about how far one model or hypoth-
esis is better than another). For this reason, when there is no strong prior evidence to
express greater belief in one model than another, a non-informative prior is often used.

The second requirement is a definition of the likelihood P(E|M). Bayesian statistics
is predicated on the assumption that a likelihood function can be defined that formally
represents the probability of predicting the evidence E given a model M. A large body
of theory is available for likelihood functions appropriate for different assumptions
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about the nature of the errors in modelling the available observations (the evidence).
As will be seen later in Section 4.5, it is also possible to use subjective likelihood
assessments, though then, clearly, the resulting posterior will be conditional on the
assessment criterion chosen. If, however, the posterior is interpreted as a measure of
belief (or disposition to accept risk on the basis of the correctness of the predictions for
a particular model), and the subjective likelihood assessment reflects the effect of the
evidence on that belief, then Bayes theorem would appear to be still useful to assess
the changing degree of confirmation over a set of feasible models. This may include the
rejection of some models that are no longer consistent with the new evidence.

2.8 The information content of observations as
evidence for the confirmation of models

The use of Bayes theorem in estimating predictive uncertainties of environmental
models depends on the use of a measure of likelihood, L(E|M) in [2.1], determined
from how well the model fits any available observations. The likelihood measure
should therefore represent the information content of the observations in conditioning
the feasible models of the system.

In the theory of Bayesian statistics, the specification of the likelihood function
has generally been based on assuming that all the different sources of error in the
modelling process can be represented in the summary additive form

O(x, t) = M(Θ, I, x, t) + ε(x, t) [2.2]

where O(x, t) is an observation made at position X and time t; M(Θ, I, x, t) is the
output of a model at x, t given vectors of parameter values Θ, and inputs I; and
ε(x, t) is the model error for that observation. Multiplicative errors can also be han-
dled simply in this approach by simply using the logarithms of all three terms. The
simple form of [2.2] assumes that the effect of all sources of error in predicting any
observation O(x, t) can be subsumed into the total error series as if the model was
correct and that the input and boundary condition data and observations were
known precisely.

Furthermore, if the total error ε(x, t) can be assumed to have a relatively simple
form (or can be suitably transformed to a simple form, as in the log transformation for
multiplicative errors, though other transformations are often used in attempts to sta-
bilise the variance of the error series, see Box 4.1) then a formal statistical likelihood
function can be defined, dependent on the assumed error structure. As an example, for
an evaluation made for observations at a single site for total model errors that can be
assumed to have zero mean, constant variance, independence in time and a Gaussian
distribution, the likelihood function takes the form:

L(ε | M(Θ, I, x, t)) = (2πσ2)−T/2 exp �− 1

2σ2 �
T

t = 1

εt
2� [2.3]

where εt = O(x, t) − M(Θ, I, x, t) at time t, T is the total number of time steps and σ2 is
the residual error variance. For total model errors that can be assumed to have a
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constant bias, constant variance, autocorrelation in time and a Gaussian distribution,
the likelihood function takes the form:

L(ε | M(Θ, I, x, t)) = (2πσ2)−T/2 (1 − α2)1/2

exp �− 1

2σ2 �(1 − α2)(ε1 − µ)2 + �
T

t = 2

[εt − µ − α(εt−1 − µ)]2�� [2.4]

where µ is the mean residual error (bias) and α is the lag 1 correlation coefficient of the
total model residuals in time (the background to these equations is given in Box 4.1).

A significant advantage of this formal statistical approach is that, when the assump-
tions are satisfied, the theory allows the estimation of the probability with which an
observation will be predicted, conditional on the model and parameter values, and the
probability density functions of the parameter estimates (which under these assump-
tions will be multivariate normal). As more data are made available, the use of these
likelihood functions will also lead to reduced uncertainty in the estimated parameter
values (even if the total error variance is not reduced). The amount of information
added by new observations can also be formally evaluated within this framework.
Lindley (2006) and O’Hagan and Oakley (2004) suggest that this probabilistic
framework is the only satisfactory way of addressing the issue of model uncertainty.
They suggest that without a formal theory for making probability estimates,
statements about modelling uncertainty will have no meaning.

Others (e.g. Klir, 2006; Ben-Haim, 2006; Beven, 2006a) would disagree. There is
an important issue about when probability estimates based on additive (transformed)
error structures are meaningful. From a purely empirical point of view, a test of the
actual model residuals ε(x, t) for validity relative to the assumptions made in formulat-
ing the likelihood function might be considered sufficient to justify probability state-
ments of uncertainty. From a theoretical point of view, however, there has to be some
concern about treating the full sources of error in Equation [2] in this type of
aggregated form. Model structural errors will, in the general case, be nonlinear,
non-stationary and non-additive. Input and boundary condition errors, and any par-
ameter errors, will also be processed through the model structure in nonlinear and
non-stationary and non-additive ways.

Kennedy and O’Hagan (2001) have tried to address this problem by showing that
all sources of error might be represented within a hierarchical Bayesian framework. In
particular, where any model structural error is simple in form, it might be possible to
estimate this as a “model inadequacy function”. In principle, this could take any
(nonlinear) form (although the most complex in the cases they considered was a
constant bias, which can, in any case, be included as a parameter in [2.4]). The aim is
to extract as much structural information from the total error series as possible, hope-
fully leaving a Gaussian iid (independent and identically distributed) residual error
term. The model discrepancy function can then also be used in prediction, under the
assumption that the nature of the structural errors in calibration will be “similar” in
prediction.

It should be noted, however, that the model discrepancy function is not a direct
representation of model structural error. It is a compensatory term for all the unknown
sources of error in the modelling process, conditional on any particular realisation of
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the model (including specified parameter values and input data) and which might well
change in different ways between different simulation periods. These sources of error
could, in principle, be considered explicitly in the Bayesian hierarchy if good informa-
tion were available as to their nature. This will be rarely the case in environmental
modelling applications. In applications of hydrological models, for example, rainfall
inputs to the system may be poorly known for all events in some catchments, and even
the most fundamental equation – the water balance – cannot be closed by measure-
ment (Beven, 2001c, 2002a,b, 2006b). Thus, disaggregation of the different error
components will be necessarily poorly posed and ignoring potential sources of error,
including model structural error, may result in an overestimation of the information
content of additional data, leading to an unjustified overconfidence in estimated par-
ameter values. In representing the modelling process by the simplified form of [2.2],
the error model is required to compensate for all sources of deficiency.

This can be expressed in a more complete form of the modelling error equation as
follows (Beven, 2005, 2006a):

O(x, t) + εO(x, t) + εC(∆x, ∆t, x, t) = M(Θ, εθ, I, εI, x, t) +
εM(Θ, εθ, I, εI, x, t) + εr [2.5]

The error terms on the left-hand side of [2.5] represent the measurement error, εO(x, t),
and the commensurability error between observed and predicted variables,
εC(∆x, ∆t, x, t) for the model discretisation scale defined by (∆x, ∆t) (see section 1.5).
The model prediction, M(Θ, εθ, I, εI, x, t), will depend on the error in input and
boundary conditions εI, model parameters εθ, and model structure. The model
structure error term, εM(Θ, εθ, I, εI, x, t), can now be interpreted as a compensatory
error term for model structural deficiencies, analogous to an inadequacy or discrep-
ancy function in a Bayesian statistical approach, but which must also reflect error in
input and boundary conditions, model parameters, and model structure. Finally there
may be a random error term, εr.

Equation [2.5] has been written in this form both to highlight the importance of
observation measurement errors and the commensurability error issue and to reflect
the real difficulty of separating input and boundary condition errors, parameter errors
and model structural error in nonlinear cases. There is no general theory available for
doing this in nonlinear dynamic cases. The one simplification that can be made in [2.5]
is that, if it is applied on a model-by-model basis, model parameter error has no real
meaning. It is the model structure and set of effective parameter values together that
process the (non-error free) input data and determine total model error in space and
time. Thus [2.5] could be rewritten, for any model structure, as:

O(x, t) + εO(x, t) + εC(∆x, ∆t, x, t) = M(Θ, I, εI, x, t) + εM(Θ, I, εI, x, t) + εr [2.6]

and εM(Θ, I, εI, x, t) is a model-specific error term. However, in any model application,
all that can actually be determined is:

ε(x, t) = O(x, t) − M(Θ, I, εI, x, t) [2.7]

so that:
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ε(x, t) = εO(x, t) + εC(∆x, ∆t, x, t) − εM(Θ, I, εI, x, t) + εr [2.8]

for which only the random error term εr is likely to have a simple form (and that by
assumption). The other terms may exhibit non-stationarities and complex nonlineari-
ties that will be difficult to determine in any particular application. It is then clear how,
in fact, it is impossible to separate all the different sources of error in [2.6], unless
some very strong assumptions are made about each of the terms, assumptions that
would generally be difficult to justify.

The issue that then arises is just what is the real information content of an observa-
tion or the associated total model residual ε(x, t) in conditioning the choice of an
appropriate model? The value of ε(x, t) will certainly reflect the model error, but it will
also reflect the other, impossible to separate, sources of error. The extended model
inadequacy function of Kennedy and O’Hagan (2001) is one way of trying to allow for
these more complex error terms in the formal Bayes approach, but one that introduces
additional statistical parameters to be estimated. All the terms on the right-hand side
of [2.6] could also be included, if we were prepared to make strong assumptions about
their form, although this would add even more statistical parameters to be estimated.
Yet, by neglecting these terms, the formal Bayes approach will, in general, overestim-
ate the information content of new observations in conditioning the feasible models.
This can lead to over-conditioning of the model space, which can be visualised as a
likelihood response surface that is much too peaky, giving the impression that the best
models are far better defined than is really justified by the data (see for example the
discussion of the paper by Thiemann et al., 2001, in Beven and Young, 2003, although
in that study the assumptions of the Bayesian analysis neglected very obvious correl-
ations in the residuals, so some over-conditioning could have been avoided within a
formal Bayesian approach by a better set of assumptions about the nature of the
errors).

The conclusion therefore is that Dennis Lindley and Tony O’Hagan are right when
they say that the best approach to estimating model uncertainties is a Bayesian stat-
istical approach, but that this will only be the case if all the assumptions associated
with the error model can be justified. Given all the different terms in [2.6], the form of
[2.1] with simple assumptions about the error term may be difficult to justify as more
than a convenient approximation to the real nature of the errors.

So what is the real information content of observations in model conditioning or
choosing between different models as hypotheses of how the system is working? The
fact is that we do not actually know. But we do know that oversimplifying the problem
by making convenient formal Bayesian assumptions may certainly result in over-
estimating the real information content of the data in conditioning the model space
(see Beven et al., 2007). We will return to this issue later in Chapter 7, after more detail
has been given of the Bayesian approach and of some alternatives in Chapter 4.

2.9 Explanatory depth and expecting the unexpected

The discussion in the previous section about the information content of observations
in conditioning the model space is also relevant to the explanatory power of models. I
hope the reader will, by now, be willing to accept that environmental models, in Adam
Morton’s phrase, have assumptions that are wrong and are known to be wrong. This
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then poses two interesting questions. The first is how approximate can a model be and
still retain some utility or an element of realism in explaining and predicting the
quantities and fluxes of interest for some practical purpose? The user of the model
predictions (and the modeller as instrumentalist) is not necessarily interested in the
explanatory depth of the model as in its explanatory power for the phenomena being
predicted; that is the power to predict states and fluxes of real quantities. Is it therefore
possible that a model that is useful in prediction (purely instrumentalist) need not be
based on any depth of explanatory realism?

The answer to this question is clearly yes, as there are empirical modelling tech-
niques that are based purely on deriving some useful predictive relationships directly
from the available observations without any claims to explanatory depth. There are
many examples in environmental modelling, including simple statistical regression,
regression trees, support vector machines, transfer functions, Bayesian belief networks
and artificial neural networks. These modelling methods are purely inductive in
nature, in which the inferences drawn from the observations do not necessarily imply
any theoretical or causal linkages.

What about deductive models based on a theoretical description of the relevant
processes as a formal model? Here it is not necessarily the case that adding greater
complexity implies greater explanatory depth (or indeed accuracy) in prediction. The
degree of explanation will be necessarily linked to the problems of formal model
complexity and knowability of system characteristics at different scales. It may there-
fore be possible to recognise greater explanatory depth in the perceptual model than in
the formal model that is used to run simulations. That does not imply that the per-
ceptual model will always be a correct representation of the real system, nor that the
formal model chosen is the correct approximation to the perceptual model for a
particular application. Explanatory depth, however complex, does not necessarily
imply explanatory power if there is a conflict between the formal model and the
processes or characteristics of the system of interest. In such a case, approximate
models for which the parameters may be more easily identified may be advantageous.

The second question is how far can models that are necessarily approximate be
expected to predict the unexpected, i.e. modes of response of the system that have not
yet been observed? A fully realistic model should do this; a model based purely on
inductive inference from observations made in the past may not be able to predict the
unexpected, either because some change occurs or because conditions outside the
range of past observations involve an unexpected process or nonlinearity. An argu-
ment is therefore often used in model development that additional processes and
complexity perceived as having an effect in the real system should be represented in the
model, even if only as phenomenological relationships of no great explanatory depth,
because those processes might be important in predicting future responses.

This has sometimes led to misguided addition of complexity in the name of realism.
One example is the great vertical complexity of land surface parameterisations used in
GCMs, for example, at the expense of neglecting the spatial heterogeneity that is often
important in controlling the fluxes of latent and sensible heat to the atmosphere inte-
grated to the GCM grid scale. The explanatory depth of the vertically complex
description may be greater for predictions at a point but the explanatory power at the
scale of the GCM grid (even now, tens of kilometres), the scale at which predictions
are required, was significantly compromised. Spatial heterogeneity is finally being
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introduced into the land surface representations of new versions of some GCMs but,
from a hydrological point of view, it has been a long time in coming.

Similar issues arise in a variety of other fields. There is a description of mixing in
river channels based on turbulent shear in the vertical velocity profile that leads to
an advection dispersion equation (ADE). The approach has been shown to give
accurate predictions in laboratory flume experiments and has been applied very
widely in natural channels (Rutherford, 1994). In many natural channels, however,
the ADE will give incorrect predictions. While it has depth of interpretation in terms
of fundamental mixing processes, it completely neglects the transverse mixing and
internal shear zones that are important in controlling mixing in natural channels of
irregular three-dimensional geometries and boundary conditions (Young and Wallis,
1993).

The ADE has also been applied to the problem of predicting transport of solutes in
porous media. Again it has been shown to give good predictions of solute break-
through curves in laboratory columns of well-defined media. Adding terms to the ADE
allows processes such as adsorption/desorption to be included so that a wider range of
solute behaviours can be predicted. It has been used very widely to predict transport of
contaminants in real soil and groundwater systems, after some calibration of the
parameters involved. An interesting example of its application has been in the
prediction of the movement of highly sorptive contaminants (pesticides, herbicides,
phosphorus) applied at the surface of the soil. The predictions are that such contamin-
ants will be retained in the near-surface soil. Sampled vertical concentration profiles at
study sites confirm this impression, with a rapid decline in measured concentrations
down from the soil surface. However, gradually other types of measurements revealed
that this was not the whole story. Unexpectedly, pesticides, herbicides, phosphorus
and other contaminants were being found widely in field drainage waters, stream
waters and at depth in groundwaters. The ADE does not treat adequately the possibil-
ity of flow in preferential flow pathways in the natural soil structure that allows at
least small amounts of contaminant, possibly sorbed to colloidal material, to move
rapidly to depth during rainfalls. Without highly frequent sampling in the field during
storm periods this process was not evident from the measurements.

All these examples show that when taking formal models into the environment and
applying them to unique places, theoretical rigour of the formal model should not be
confused with explanatory depth of the real phenomena, nor with explanatory power
in prediction. All that can be demanded is consistency of explanation at the scale of
application, including consistency with perceptual understanding and observations at
larger and smaller scales (Beven, 2006b). The importance of preferential flow in con-
taminant transport should not have been a surprise, for example. It had already been
recognised in experimental work by Lawes et al. (1882) at the Rothamsted Experi-
mental Station in England, and the translocation of clay particles in large pores had
been recorded from soil-thin section work for over 100 years (see the review of prefer-
ential flow soils in Beven and Germann, 1982). The unexpected may not turn out to be
so unexpected when we are forced to review a model because of a failure in prediction.
This is one situation in which we might learn more from a model failure than from a
model continuing to work (sort of) reasonably well.

The unexpected may also occur as a result of change to the system, often the result
of human interference, either inadvertent or as a result of policy and management.
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Anthropogenic effects may change either the characteristics of the system or its
boundary conditions at the scale of closure. Often these impacts are not very well
quantified even in hindcasting and history matching (the construction of records of
inputs of greenhouse gases into the atmosphere since pre-industrial times is a good
example of uncertainty in estimating such effects). Thus, it may only be possible to
treat such impacts as potential scenarios, giving potential outcomes but without any
objective quantification of the associated uncertainty. Most predictions of the impacts
of climate change are of this type.

The unexpected may be difficult to predict but might prove useful in model confirm-
ation or in discriminating between alternative model structures as hypotheses of how
the system is working. Where direct testing of models is not possible then it may be
just a question of continuing to monitor the system, waiting for the unexpected. All
the time that the chosen models remain consistent with new observations then the
predictions will appear to be acceptable. If, however, a model can be rejected on the
basis of new, perhaps unexpected, responses then perhaps the model can be refined.
When the truly unexpected occurs and all the available models must be rejected, then
the science will truly progress (even if only by considering more realistic auxiliary
conditions). Such rejections or model falsifications will be an important part of the
learning process about how to model environmental systems (see also the discussion of
Tarantola, 2006).

2.10 Uncertainty, ignorance and factors of safety

In Section 1.11, a variety of meanings of uncertainty were introduced. In particular, a
distinction was made between uncertainties that can be dealt with in terms of random
variation or probabilities (aleatory uncertainties), those that result from a lack of
knowledge (epistemic/Knightian uncertainties) and those due to the vagaries of lan-
guage (linguistic uncertainties). Both epistemic and linguistic uncertainties can be the
result of ignorance, a concept that has been the subject of significant discussion in both
philosophy and law (see, for example, Smithson, 1989; Furmston, 1992; Wynne,
1992; Ferson and Ginzburg, 1996). Clearly, one of the reasons why we might be
concerned about uncertainty is because we are often in a situation of a degree of
ignorance: ignorance about the past factors affecting a system; ignorance about how a
system works now; ignorance about future boundary conditions; ignorance of the
expertise and experience of other scientists; ignorance of factors that are not yet
recognised as important (the unknown unknowns).

Ignorance raises a number of interesting philosophical issues, particularly in rela-
tion to the unexpected, that have a long history, although the tendency in philosophy
has been to discuss knowledge (or epistemology) rather than ignorance. How far is
ignorance excusable as innocence? When does ignorance become incompetence? What
is an appropriate response to a recognition of irreducible ignorance? These are not
only questions of philosophy, however, they have real practical implications in, for
example, engineering design; the assessment of responsibility in law when failures
occur; and the assessment of future climate change. A moment’s thought will reveal
that these issues are not just matters of science. They also have a sociological context.
Ignorance can only be assessed in the context of a particular social group or
individual. It will, necessarily, change over time with the dynamics of the group, in
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interaction with other groups. Ignorance, as the complement of knowledge, is, like
knowledge, a social construct.

Smithson (1989) provides a taxonomy and useful discussion of different types of
ignorance, from ambiguities to taboos. Some can be treated by the uncertainty estima-
tion methods presented in this book (probabilistic, interval, fuzzy, Info-Gap and other
methods). Others are beyond the scope of any quantitative analysis. The interesting
aspect of ignorance in respect of environmental modelling is when we are happy about
some quantitative framework of dealing with uncertainties but are rather ignorant
when it comes to the specific assumptions about the nature of the uncertainties that
might be appropriate for a particular application in making an analysis based on that
framework.

This is not, of course, a new problem. It is as old as the history of the design of tools,
machines and structures when there might be some past experience of success and
failure in use, but when it was not known exactly what forces they might be subjected
to in future. This is not so different to the application of environmental models. We
have some past experience of success and failure in calibration, but we are not sure
exactly what boundary conditions and changes might occur in future.

In the context of engineering design a formulation of handling ignorance of future
conditions has been developed based on the factor of safety concept. For a structure,
the factor of safety is defined as the ratio of the expected working stress on the struc-
ture to the critical stress at failure for a particular design. It is then a question of
negotiated standards as to what factor of safety is acceptable for a given type of
application, given the risk to society associated with the application and past experi-
ence of failures. There may, of course, be multiple sources of stress and uncertainties
associated with the specification of the stresses and the design that can, in complex
design problems, make the assessment of appropriate factors of safety an enormous
task in what is now called reliability analysis (e.g. Blockley, 1992). These uncertainties
mean that designs need a certain degree of robustness, as implied by applying a factor
of safety. While there are cost savings to be made by optimising designs, there are also
risks of failure as a result of neglecting uncertainties (as is evidenced by the history of
box-girder bridge design where a number of failures in the 1970s led to improved
design criteria). An interesting example of the use of freeboard as a factor of safety
in the design of flood defences is discussed in Hine (2007) using the Info-Gap
methodology for uncertainty decision making of Box 6.2.

In the application of environmental models we are similarly trying to make predic-
tions in the face of uncertainty and real ignorance, but the factor of safety concept has
not been used. Any reliability analysis has generally been a matter of assessing the
probabilities of model predictions given some probabilistic assessment of the
uncertainties in model inputs. We know, however, that model uncertainties are not
only a matter of probabilistic uncertainties and that this might be important in making
robust decisions (see Chapter 6). This might be a question of the experience of failure.
In engineering design, failures occur and that experience conditions future practice. In
environmental modelling there are few examples in the literature of reported failures
(though see, for example, Konikow and Bredehoft, 1992; Parkin et al., 1996; Freer et
al., 1996; Choi and Beven, 2007). There are many more examples of the presentation
of the optimal model results after calibration against some historical data. Negotiated
standards therefore have tended more towards consensus about best practice (as in the
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various IPCC reports on predicting climate change) than taking account of ignorance
in avoiding failure in prediction. But, as noted in the previous section, we will always
learn more from model failures than from models that sort of work. Failures will result
from ignorance about model structures and parameter values, errors in the data used
to drive the model, and errors in the data used to evaluate the model. We can use the
term ignorance here, rather than uncertainty, because each of these potential sources
of failure might involve unknown unknowns as well as quantifiable uncertainties. If
this is the case, then quantitative uncertainty analysis will have its limitations, and
some methodology analogous to the factor of safety might be useful. This should be
borne in mind when reading the rest of this book.

2.11 Summary of Chapter 2

This chapter has been a summary of some of the philosophical issues that arise in
making models of environmental systems. It is, of course, perfectly possible to do
modelling without worrying about philosophy at all, and, in fact, the vast majority of
environmental modellers do just that. The following points are, however, important to
what follows in the rest of this book:

• Most environmental modellers (even if they have not thought about it) have a
form of pragmatic realism as an underlying philosophy. They generally want to
use models that are, in some sense, realistic in their descriptions of the controlling
processes and that have some predictive power for practical problems, while rec-
ognising the approximations inherent in using any form of model.

• There are some severe criticisms of this type of philosophical position since it is
difficult to provide empirical evidence to support even the most fundamental mass
and energy balance equations in open environmental systems. The best basis for
the utility of models is a form of instrumentalism in which models that might have
utility in prediction are not falsified.

• It is shown how the continuing process of model confirmation by evaluating
predictions against observations is a form of learning process that can be formal-
ised by the use of Bayes equation (although other forms of evaluation are also
possible).

• The learning process depends on the real information content of the available
observations in learning about those models that might be useful in prediction.
There is no realistic theory of information content in the face of multiple sources
of uncertainty, when the assumptions made in a formal Bayesian analysis might be
too strong.

• It is necessary to expect the unexpected in environmental systems, with more
extreme conditions than have been seen before. In this case, however, more severe
tests of model performance are possible. Learning from model failures/falsifica-
tion in such circumstances may be an important part of the learning process.

• Ignorance cannot always be assessed using quantitative uncertainty assessment. In
that case, a concept analogous to factor of safety might be useful in assessing
predictions. This, however, implies negotiated standards based on experiences of
failure. Until environmental models are subject to failure tests, learning and the
possibility of defining standards will be limited.
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Simulation with no historical data
available

One does not choose to doubt: doubt is an unavoidable attribute of the human
circumstance. That chunk of the wider world which one experiences and knows, that
projection of the greater reality which comes one’s way, is insufficient to characterise
the entirety which must remain unknown. Uncertainty, in this view of things, is the
conception of alternative possible worlds that we cannot distinguish.

Yakov Ben-Haim, 2006

3.1 Sensitivity, scenarios and forward uncertainty
analysis

As noted in Chapter 1, in many cases there is a requirement to make predictions using
environmental models without any historical data available for model calibration or
conditioning. There are also many applications when it is necessary to make predic-
tions without any information available about the boundary conditions that might
occur, in particular in considering possible futures. We do not know what the future
holds and can only speculate about future boundary conditions as scenarios of what
might happen.

In all of these types of situation, the results of any modelling study are totally
dependent on the assumptions made by the modeller, fed forward through the model
predictions. This is what is known as a forward uncertainty analysis. To obtain predic-
tions the modeller must decide on one or more feasible model structures, feasible
values for model parameters, and feasible boundary conditions for the simulation
period required. In such cases, what is considered feasible is generally a subjective
decision by the modeller, or the result of some consensus agreed between modellers
and stakeholders. It may not be possible, for example, to define probabilities for the
different model structures, parameters and boundary condition scenarios, so that any
estimation of uncertainty associated with the predictions will be itself necessarily
uncertain. It will be a preliminary estimate based on and conditional on the prior
assumptions.

In such cases it is very useful to have an idea of what the predictions are most
sensitive to. Such information would allow the modeller to concentrate effort on
making the choices that will have the most impact on the predictions. This requires a
sensitivity analysis. There are many different forms of sensitivity analysis and, for any
realistically complex modelling problem, no definitive answer as to what the model
predictions are most sensitive to. The relative sensitivity of different model structures,
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parameters and boundary conditions will generally depend on the type of analysis, the
form of sensitivity measure chosen, and the output variable for which sensitivity is
being examined. Some examples are given later in this chapter. However, there will
often be some general agreement between the different types of analysis, so that the
most important sensitivities in any modelling problem for the output variable or
variables of interest can generally be recognised.

There is a straightforward link between sensitivity analysis and forward uncertainty
analysis. In effect, both are types of exploration of the model space (see Section 1.6)
based only on the prior assumptions about the nature of that space made by the
modeller. We do not necessarily know a priori which parts of that space might be the
most important or relevant in representing the real system, we do not even know
whether we are searching the most relevant model space in terms of choice of models,
parameter ranges and boundary conditions, but the space is usually defined on the
basis of past experience and reasonable common sense or consensus prior assumptions
that would not be disputed by other modellers. So we can assume, at least, that if we
make sensible choices the results should have some relevance to the response of the
real system.

There is, however, an immediate problem in carrying out either a sensitivity analysis
or forward uncertainty analysis for any reasonably complex model application. That
is that the dimensionality of the model space is generally high. There may be more
than one potential model structure, there may be many parameters associated with
each model, there may be many alternative boundary conditions. In addition, the
computing cost of even a single model run may be high. Thus, even if a full exploration
of the model space is possible in principle, in practice it may be computationally
infeasible. This is the case, for example, for the global circulation models used in
climate change prediction. The computational time of a single run of a coupled ocean–
atmosphere model is high. The number of parameters in these models is high. The
exploration of the uncertainty of a full global model is then generally limited to simple
sensitivity analyses and small numbers of ensemble runs. If the model is simplified,
then many more runs and a more detailed search of the model space are possible (see
the results of the climateprediction.net study in Allen et al., 2000 and Piani et al.,
2005), but then there is always the doubt about how relevant the results obtained with
a simplified model are to inferences about the full model (see Section 3.6 below on
model emulation techniques). Other than for quite simple problems, there is generally
a need for efficient search algorithms for exploring the space of feasible models. Some
of the possibilities are outlined in Section 3.3.

A common feature of this type of sensitivity and forward uncertainty analysis is the
use of scenarios of boundary conditions (and sometimes of changing system character-
istics) to drive the model. For predictions about the future (and often for hindcasting
of the past) there can be no direct measurements of the variables required. We cannot
make measurements of future conditions and we cannot go back and make additional
measurements of what happened in the past. We can only construct feasible scenarios
of what might be/have been (see section 3.7). It is clear that it will be very difficult
to associate any probabilities with such scenarios, even if they are based on model
predictions, where the model has been evaluated for its performance when data are
available. Thus, the use of such scenarios will result in results (for both sensitivity
and uncertainty estimates) that are conditional on the choice of scenarios. The
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construction of the scenarios may be more subjective in some applications, less
subjective in others, but in all cases some subjectivity will be involved and the
conditionality on the assumptions made should be recognised.

Sometimes, particularly when only a small number of feasible scenarios is con-
sidered, this conditionality is made clear. This is the case, for example, in the latest
assessments of climate change by the Intergovernmental Panel on Climate Change
(IPCC) where a limited range of future scenarios for output of greenhouse gases, each
based on different assumptions in a socio-economic model of future change, are con-
sidered (IPCC, 2007). Different climate models are applied to the same scenarios, and
the conditionality of the results on the scenarios is clear (e.g. Figure 3.1). Other condi-
tionalities in applying these models, however, are much less clear (such as effects of the
choice of parameters and sub-grid representation of atmospheric and ocean processes
in each model).

There is a general rule here to bear in mind in what follows. It is very difficult
(except for the simplest possible problems) to be totally objective about any sensitivity
or uncertainty analysis. The results will always be conditional on the assumptions
made, and therefore it will always be worth examining the assumptions made for
plausibility, in so far as that is possible, since many studies do not explicitly list all the

Figure 3.1 Predictions of change in global temperature under different emissions scenarios, including
range of predictions from an ensemble of different models. Shading represents +/− 1 stand-
ard deviation around multiple model annual averages. The grey bars at right indicate the best
estimate (solid line within each bar) and the range assessed for six different emission
scenarios using a wider range of evidence

Source: Climate Change 2007: The Physical Science Basis, Summary for Policymakers, Intergovernmental Panel on
Climate Change
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assumptions on which they are based, even in the refereed scientific literature. Many
papers can be found that purport to be objective in their analysis but where the
assumptions of the analysis are not consistent with a more complete perceptual model
of the real system.

In some cases, of course, this may be just science being done badly. In other cases,
however, it is more interesting in that we may not know how to represent the
behaviour of the system properly and the best models today are still an exploration of
how to do so. Such an exploration is essential in understanding how to do better.
This is the case for global climate models. The current generation of coupled ocean–
atmosphere models is greatly improved over past models, and can now avoid the
oceanic energy flux corrections that were necessary when the atmosphere circulation
was modelled alone. Such advances are (as yet) as much to do with increasing com-
puter power as scientific understanding, and with each incremental improvement
more understanding is gained, even though the current generation of models still
leaves much to be desired in representing the global climate. As noted above, a full
sensitivity and uncertainty analysis of such global models is still computationally
infeasible, but the same principle of conditionality applies to simpler models. The
results will depend on the decisions made in setting up the analysis.

3.2 Making decisions about prior information

Thus, making decisions about prior information is critical in any sensitivity and
uncertainty analysis. Such decisions define the space of feasible models to be con-
sidered and all results of the analysis will be conditional on those decisions. It is
therefore a good idea to make the best possible choices but this might often be dif-
ficult. We may not be sure which model structure will best represent the system; we
may not be sure which values of the parameters best represent the effective parameter
values required by the model at the scale of application; we may not be sure which
boundary conditions might be appropriate for the period of simulation. In some cases,
estimation of parameters and boundary conditions may depend on the predictions of
other models produced by another set of modellers and with, often hidden, choices
and assumptions in their own domain of expertise that we may not be competent to
evaluate (as in the case of all the different inputs that feed into the IPCC global change
scenarios). Thus, the problem of making decisions about prior information is essen-
tially a question of belief. Given a variety of alternatives of models, parameters and
boundary conditions, which do we have more belief in?

3.2.1 Prior distributions of parameters

It is easiest first to consider the estimation of prior distributions of parameter values in
a particular model structure chosen for a particular application. We should know
something about how such parameters might vary with different characteristics of the
system (soil, vegetation type and structure, geology, human influences etc.). We might
have some information on values from text books, or past applications of the model,
or guidance in the user manual, but the estimation of the effective values required by
the model might still be rather uncertain. Ideally we would want to give prior
estimates for some distribution of each parameter and the co-variation of the param-
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eters in providing good simulations whether in a probabilistic, fuzzy or even qualita-
tive way. We would certainly want to avoid wasting computer time by running the
model with combinations of parameters that would not be expected to give good
results, but it might be very difficult to decide which combinations of values are
feasible and which are not. It might even be difficult to decide on what is a feasible
range for each individual parameter, let alone the full joint distribution of all the
parameters. And the more parameters that need to be specified to run the model, the
worse this problem will be.

Consider the following example. We wish to carry out a forward uncertainty analy-
sis of a model to predict the phosphorus concentrations of a river draining a rural
catchment area of mixed land use, farms and settlements. We have a model available
(we will use the example of the INCA-P model of Wade et al., 2007, but there are a
variety of other models to predict phosphorus in streams that could be used, each with
different representations of the processes involved). This model attempts to reproduce,
in a relatively simple way, the way that flow is generated on the catchment area and
the processes by which phosphorus is transported to the stream and transformed
within the stream channel. The catchment can be subdivided down into small sub-
catchment areas where it is thought that there might be significant differences in
the runoff and inputs or transport of P. Each sub-catchment area can have different
values of the parameters to allow those differences to be reflected in the predictions.
In principle, each reach of the channel network could also be allowed to have
different parameter values, although these are usually specified as values for the whole
network.

The user manual for INCA-P gives a list of the parameters required and some
expected ranges for the parameters based on the experience of the model developers.
There are 47 parameters that could be allowed to vary for each land use category (up
to six land use types are allowed in each sub-catchment), and 20 parameters that could
be allowed to vary for each reach of the channel network, and 25 other parameters.
Even a small number of reach and land use subdivisions therefore results in a very
large number of parameters that must be specified before the model can be run. There
is no information on how the parameters might show co-variation in producing a
good simulation. This is not untypical for many environmental modelling problems,
especially models that are distributed in space and that attempt to simulate complex
interacting processes. The parameter estimation problem has to be simplified to be
manageable.

Sensitivity analysis can be useful in doing so. Those parameters to which the predic-
tions are less sensitive might be able to be fixed at constant values, reducing the
number of parameters that needs to be varied. In general: the co-variation of param-
eters is also often ignored at this stage (unless evidence is available to suggest that
some parameters interact strongly) so that the parameter distributions can be esti-
mated independently. Lacking better knowledge of which values of a parameter might
be more likely to give good results, a uniform prior distribution is often assumed
between some upper and lower limits for the feasible range. This is not a truly non-
informative prior distribution in a Bayesian sense, since an assumption is then being
made that outside the specified range there is no expectation of a good simulation (this
issue will arise again in considering model calibration in Chapter 4). Assuming a
uniform prior does not, however, give undue weight to any values within the range
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when there is little evidence to support this and, in fact, the need to consider values
only within a certain range is really a computational issue, to avoid making runs where
we do not expect to find useful model predictions.

Sometimes it will be possible to define prior distributions more closely, such as by
providing location and scale parameters for each parameter (such as the mean and
standard deviation for a normal or Gaussian distribution). There are many different
possible distributions that can be used and some examples are given in Figure 3.2.
Many of the candidate distributions in such cases (e.g. normal, log normal, exponen-
tial, gamma distributions in probability) have infinite tails and, again for computa-
tional reasons, need to be truncated to limit the sampling of values once the prior
probability for a value gets very small. Having chosen to use a Gaussian distribution,
for example, we might truncate the distribution at +/− three standard deviations away
from the mean value so that we would be sampling 99% of the values for that distribu-
tion, neglecting the more extreme values. Other distributions (such as the triangular,
trapezoidal or beta distributions often used in the representation of fuzzy variables)
can be specified with upper and lower limits.

The question again, however, is how to decide on how much belief to give different
values of a parameter, especially in a complex nonlinear model with many parameters
that might co-vary in a consistent way. The basis for representing variability as a
probability distribution in this way is outlined in Box 3.1. Essential assumptions
are that all possible values are included in the distribution. The probability density
function (PDF) can then be scaled such that the integral under the curve is unity. The
integral of the pdf up to any particular value of the variable or parameter is the
cumulative density function (CDF). It will sometimes be difficult to specify such
distribution functions precisely. Box 3.1 also shows how probabilities can be
represented as intervals or imprecise probabilities.

3.2.2 Belief networks

Belief, of course, is something personal (and essentially subjective). Different model-
lers can be expected to have different beliefs. In some cases, we may be able to evaluate
those beliefs for different sets of circumstances to those for which predictions are
required, which might allow us to condition our beliefs as to how well a model (and
parameters and boundary conditions) performs and therefore its feasibility as a pre-
dictor for the circumstances we are interested in. The techniques of Chapter 4 are
relevant when such conditioning data are available.

There is no guarantee, however, that the knowledge gained for one set of circum-
stances will carry over to the circumstances we are interested in. This will be true if we
have evaluations of a model for a place of interest under current conditions for which
we have some measurements and we want to make predictions for future conditions. It
will be even more true if we need to use information from modelling one place in
predicting responses at another place, even if those places have apparently similar
characteristics. This may then cause us not to have too strong a belief in knowledge
extrapolated from elsewhere but, on the other hand, we do not want to make our
choices too wide; we only want to consider models, parameters and boundary condi-
tions that really are feasible as simulators for the application of interest (in so far as it
is possible to do so).
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Figure 3.2 Definition of Selected Probability Distributions with scaled probability density function
(pdf) and cumulative density function (cdf)



Even for experts in any domain, however, it is not easy to make such choices. So
how should you decide about your prior beliefs? One technique is by eliciting the
advice from multiple experts. There is always a possibility that experts with similar
training might be similarly biased in their opinions, and experts with different back-
grounds may conflict in their opinions; they may not actually have the relevant experi-
ence, or they might be simply wrong, but the aim is to average out some of these
uncertainties across the range of opinions offered. This is actually how science works.
Over long periods of time, a consensus of opinion arises about the best theory or
representation of a process or system. Sometimes that consensus is shown to have been
wrong as new evidence arises or a new theory is shown to give a more convincing
explanation of the available data. As discussed in Chapter 2, such changes of para-
digm are often resisted by established experts in the field but, when they occur, often
occur rapidly.

In making predictions, however, we have to work within an existing paradigm. The
predictions are needed now within some decision-making context and we cannot
necessarily wait for new evidence. Thus, we may depend on eliciting the current
expertise of the scientists in the field, even if we expect their opinions to change over
time. Expert elicitation has been the subject of much research (see, for example,
O’Hagan et al., 2006). Here we mention briefly a technique for deciding about beliefs
called Belief Networks.

Belief Networks allow that it may not be possible to achieve a complete consensus
amongst experts about choices of model structures, parameters and boundary condi-
tions. It might be possible, by means of a scoping study, to outline what the range of
feasible choices of models, parameters, or scenarios of boundary conditions will be for
an application. The choices can then be structured as one or more networks, with each
pathway through the network given an initial estimate of relative belief. This then
provides a structure for eliciting the opinions of different experts about relative
degrees of belief in the options. As each new set of opinions is added to the informa-
tion available, the set of belief measures can be updated, often using a form of Bayes
equation (see Box 4.1), giving then a Bayesian Belief Network (e.g. Varis, 1997). Since
this technique is primarily used in decision analysis we will return to it in Section 6.3.
Later in this chapter we will consider fuzzy set representations of uncertainty. There is
a fuzzy analogy to Bayesian Belief Networks in the use of systems of fuzzy rules (see
Box 3.4).

3.3 Sampling the model space

To define the model space for a given environmental modelling problem, we need
information about the prior possibilities of both model structures and model par-
ameter values. We are then interested in quantities within that space, produced when a
model (or set of models) is run with certain boundary and initial conditions. A model
here is intended to represent a particular model structure with a particular set of
parameter values. It might be deterministic, it might be stochastic, it might be a set of
fuzzy rules: the important point here is that it will produce a set of outputs when
driven by a set of inputs (which might also be deterministic, stochastic or fuzzy).

In fact, something that is often forgotten is that, at least in principle, the model
space can be filled completely with results from such runs (see Section 1.6). In practice,

56 Environmental Modelling



of course, there is a limit to how far this is possible because there are still computa-
tional limits on making such calculations in large model spaces and where run times
for a single model run are long. However, that does not change the principle. We shall
return to this issue in Chapter 4 for the case where some evaluation data are available
and the response surface of interest is a performance measure or likelihood, but for the
moment we will concentrate on ways of sampling all the possible behaviours in the
model space.

For low-dimensional model spaces it may be possible to make an exhaustive search
of all the possible model structures and parameter values, but this rapidly becomes
more difficult with larger model spaces. A sampling strategy is needed, and an exhaust-
ive search may not be the most appropriate strategy where a lot of the space may not
actually be of very great interest to the modeller. This will be the case where there are
parts of the space that are not of great interest because the outputs are all the same
(“plateau” or “insensitive” areas of the response surface), where the prior beliefs or
likelihoods of sets of parameter values are very low (whether represented in terms of
either probabilities or fuzzy measures), or where parameter sets are giving outputs that
are assessed as being unrealistic compared with the behaviour of the real system. Thus,
we want to differentiate the parts of the model space that are of interest and use the
available computer time to explore the response surface in more detail or sample more
densely in those regions.

But how do we know where the interesting regions of the model space might be?
This requires information, and there are two basic ways of acquiring this information,
often used in combination. The first is to use some prior information about what
model structures might be interesting to explore and what values of the parameters
might be interesting to explore. It is common, for example, to choose just one model
structure (because of past experience on performance, or because it has been widely
used in similar applications, or because it is freely available rather than having to pay
for it, or just because it is a model you wrote yourself and therefore, by definition, best
in some sense or another). As noted above, it usually possible to define prior
probability distributions or fuzzy membership values for the potential values of the
parameters. This provides information to structure an initial search.

The second method is to learn about the surface as the sampling proceeds. This can
be particularly useful where there are strong interactions between parameter values in
producing an output or performance measure. These methods are often called guided
search algorithms and are closely related to optimisation algorithms (since finding an
optimum model is also a matter of searching a complex response surface in the model
space for a peak in the relevant performance measure). However, because of the issues
discussed in Chapters 1 and 2 about whether the concept of the optimal model is
ultimately useful in environmental modelling we will say little about optimisation
algorithms in what follows, concentrating instead on the more general search for
regions of interest. There is more about searching and conditioning the response
surface as data are made available in Chapter 4.

3.3.1 Analytical propagation of probabilistic uncertainty

For simple linear models in which the outputs are directly proportional to the inputs
and where there are only a small number of uncertain variables it may be possible to
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propagate uncertainties analytically. This is much easier if the uncertain variables are
independent (see Box 3.1). Where co-variation of the variables is an important con-
sideration then, even for a linear model, the results will be very dependent on a proper
specification of the probability of occurrence of a value of one uncertain variable,
conditional on the values of all the other uncertain variables. This is normally specified
as an N × N covariance matrix, where N is the number of uncertain variables that must
have entries in each of the N2 elements, although other methods are possible (see
Kurowicka and Cooke, 2006 and Section 3.3.5 below). Clearly, as N gets larger, this
will become more and more difficult and assuming at least some of the variables as
independent (with the relevant off-diagonal elements of the covariance matrix set to
zero) increasingly attractive. This will not always be a good approximation to the co-
variation in reality, however, and the effect of co-variation is generally to decrease the
uncertainty in the resulting outputs. Thus neglecting co-variation might result in a
pessimistic assessment of the uncertainty in model outputs. This also applies where it
is not possible to propagate uncertainties analytically, because of nonlinearities in the
model formulation and resort must be made to some approximate numerical evalu-
ation of the shape of the response surface in the model space, e.g. using random Monte
Carlo sampling.

3.3.2 Discrete samples or random Monte Carlo search?

In exploring the model space numerically, the first choice to be made is whether to
sample by taking values at discrete intervals for each parameter, or take random values
across the range being considered (see Box 3.2), or to combine the two strategies by
sampling randomly within discrete intervals in the model space. These simple search
strategies are illustrated in Figure 3.3, for the case where the prior assumption of a
normal distribution of the parameter to be sampled has been made. Figure 3.3a shows
the probability density function (pdf) and Figure 3.3b the cumulative density function
(cdf) produced by discrete interval sampling across the range of the parameter.

Random sampling strategies can also be used. With a specified distribution, there
are two ways of representing the distribution. The first is to use uniform random
sampling and represent the prior distribution as weights associated with each sample
(Figure 3.3c); the second is to sample randomly but in a way that reflects the prior
probability density function (Figure 3.3d). In the latter form of density-dependent
sampling the samples can be treated as having equal weight in propagating the
uncertainty associated with that parameter. These sampling strategies are also shown
for the case of a skewed beta distribution in Figure 3.4.

The last two sampling strategies are also illustrated in two dimensions in Figure 3.5
for the case of two parameters varying independently, one with the normal distribu-
tion of Figure 3.3a and one with the beta distribution of Figure 3.4a. In Figure 3.5a the
use of random uniform sampling with weights is shown, with the weight associated
with each sample indicated by the size of the symbol. The weights are greater where
there is greater joint probability for the two sampled parameters. Figure 3.5b shows
the density-dependent sampling strategy. Here higher joint probabilities are repre-
sented as a higher sampling density so that each sample can be treated as having equal
weight as in the single parameter case of Figures 3.3d and 3.4d. These different sam-
pling schemes can all be extended to model spaces of higher dimensions. We will
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return to them again when we are looking at evaluating the way in which models can
represent observations in the next chapter.

First, however, we must emphasise the difficulty of sampling complex model spaces
by any of these methods. Consider doing a search of a two-dimensional model space
for only one model structure (as in Figure 1.1 in Chapter 1). Splitting the space into
discrete interval samples of 100-parameter values for the first parameter, and 100 for
the second will give a good idea of the response surface of the model in this two-
dimensional space and will usually be computationally feasible except for models with
very long runs times. Only 10,000 runs are needed. Adding a third parameter makes it
a little more difficult (1,000,000 runs). For six parameters it might be better to
increase the width of the sampling intervals for each parameter (ten values for each
parameter requires 1,000,000 runs for six parameters) but, for larger dimensional
spaces, even a coarse resolution of ten values per parameter can still require an infeas-
ible number of runs. Iorgulescu et al. (2005), for example, sampled 2,000,000,000
(two thousand million or two American billion) parameter sets of a 17-parameter
model randomly (finding 216 acceptable model runs), but the equivalent discrete

Figure 3.3 Representing a normally distributed variable by discrete interval and random sampling
strategies. A. Probability density function defined by discrete increment sampling for values
of the variable. B. Cumulative density function defined by discrete increment sampling of
the variable. C. CDF defined by uniform random sampling with weights representing
probability density associated with each sample (size of symbols proportional to weights).
D. CDF defined by density-dependent sampling. All samples of size 100
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search over all parameters with just ten values on each axis is
100,000,000,000,000,000 (100 million American billion) samples. Their two billion
runs could therefore be considered as rather a small sample in this case. Many
environmental models, of course, have many more uncertain parameters and inputs
and will be subject to the problem of making enough runs to characterise the whole
model space. Even where some Monte Carlo runs are made to assess the potential
uncertainty in the outputs of such models, it is more likely that tens of thousands of
runs have been made rather than billions. The issue then is whether there are import-
ant parts of the model space that remain unsampled in terms of representing the
dynamics of the system.

One way of making this type of search more computationally feasible is to use Latin
Hypercube sampling (LHS). In LHS, each parameter dimension of the model space is
split into a number of discrete values (xi, i=1. . . .N for the ith parameter). Where a

Figure 3.4 Representing a skewed beta-distributed variable (with parameters [4,2] in the range [0–1])
by discrete interval and random sampling strategies. A. Probability density function defined
by discrete increment sampling for values of the variable. B. Cumulative density function
defined by discrete increment sampling of the variable. C. CDF defined by uniform random
sampling with weights representing probability density associated with each sample (size
of symbols proportional to weights). D. CDF defined by density-dependent sampling. All
samples of size 100
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Figure 3.5 Representing the joint distribution of two parameters, one normally distributed
(x axis) and one beta-distributed (y axis). A. by uniform sampling with weights (with
circles proportional to weights associated with each sample). B. by density dependent
sampling. C. by Latin Hypercube sampling using 250 sampled values on each par-
ameter axis combined randomly without replacement
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prior distribution of the parameter is assumed, discrete intervals of probability are
usually used. However, unlike a pure discrete sampling strategy, not all combinations
of all the discrete values are sampled. Instead, it can be shown to be much more
efficient (at least for simple shapes of response surface) if parameter sets are chosen
based on sampling an interval randomly for each parameter without replacement.
This means that only N sets of parameter values will be generated and run, but that the
sample will be scattered through the model space. An example of Latin Hypercube
sampling is shown in Figure 3.5c. More flexibility can be added to the LHS method
by sampling the parameter values randomly within each discrete interval. Further
variations on the LHS method are presented in the next section.

However, the modeller faces a dilemma in applying a more structured sampling
strategy where there is not strong prior information about the important parts of the
model space. Ideally, we would then want to use an adaptive sampling strategy or
learning strategy so that we can refine the search of the regions of interest as they
become identified within the model space. But, we have to start with some (small)
initial sample generated either by discrete or random sampling. There is always a
possibility of not sampling a region of interest, especially if the region or regions of
interest might be small compared with the initially coarse sample. We cannot learn
about a region of interest (for example where the output variables are very sensitive to
small changes in parameter values or, as considered in Chapter 4, where a good fit to
data is found) if that region has never been sampled. The higher the dimension of the
model space, of course, the greater the possibility that an initial sample might not
identify some of the regions of interest. Thus, it is often a useful strategy, even where
the guided search strategies considered below are used to try and increase efficiency of
search, to continue a low level of background sampling in areas that have not been
previously sampled.

Whatever sampling strategy is chosen it is important to be careful about the sam-
pling properties of the random number generator used. Most generators are based on
a deterministic algorithm and it is not possible to generate entirely random numbers
from such an algorithm. They generate pseudo-random numbers that appear random
when their statistical properties are analysed. Random number generation is the sub-
ject of a considerable body of literature. Different algorithms have different repeat
patterns and sampling characteristics. This is discussed in Box 3.3, where a simple
algorithm suitable for most purposes is outlined. It is worth noting that many algo-
rithms require the user to specify a starting value or seed for the generator. For a
particular algorithm, sequences of numbers starting from the same seed should have
exactly the same sequence of numbers (at least using the same compiler on the same
type of computer), i.e. they are not actually random. It follows, however, that if you do
not change the seed between runs of the sampler you will get exactly the same set of
realisations and model results. This can be avoided by randomising the seed for differ-
ent runs, but it is also a useful characteristic in program development so that the
results of different runs can be compared.

3.3.3 Pseudo-random numbers and the realisation effect

The statistics of variables that are derived from generated pseudo-random numbers
will depend on the number of samples used. This realisation effect is demonstrated
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here for a single generated series (using the random number generators included in
Matlab).

Figure 3.6 shows a sequence of uniform random numbers in the range [0–1],
together with the mean of the values as more data are added. This is easily converted
to any other range by adding a minimum value and scaling the unit range of the
generated numbers to the difference between the maximum and minimum values of
the range required (as in Eqn. [B3.3.3] in Box 3.3).

Figure 3.7 shows a sequence of random numbers chosen from a normal probability
distribution with mean = 0.5 and standard deviation = 0.25. Note that with a coef-
ficient of variation (the ratio standard deviation/mean) of 0.5, some of the numbers
generated will be below zero. The normal distribution has infinite tails but 95% of the
values will be within the range +/− 2 standard deviations from the mean and 99% of
the values between +/−3 standard deviations from the mean. Thus, there is a 2.5%
chance of drawing a negative value with this coefficient of variation.

Figure 3.8 shows the mean and standard deviation of the sequence from Figure 3.7.
These settle to close to the parameters of the generating distribution after about 200
samples. We are often interested in the extreme values from a distribution, however, in
particular in estimating the upper and lower quantiles that might serve to define
uncertainty bounds for a predicted value. These extremes, or values in the tail of the
distribution, would be expected to converge to the true value more slowly. This is
shown in Figure 3.9 where the 5% and 95% quantiles of the data in Figure 3.7 are
shown together with the theoretical estimates for a normal distribution derived
from the calculated mean and variances as more data points are added. It can be seen
that, although the two estimates gradually converge to common values, there is an

Figure 3.6 A sequence of pseudo-random numbers (dots) and their mean (solid line) drawn from
a uniform distribution with the range [0–1]. X-axis is number of data points, Y-axis the
value of the random number
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Figure 3.7 A sequence of pseudo-random numbers drawn from a Gauss (normal) distribution
with mean of 0.5 and standard deviation of 0.25. X-axis is number of data points, Y-axis
the value of the random number

Figure 3.8 Mean (solid line) and variance (dots) of the data in Figure 3.7 calculated as more data
points are added. X-axis is number of data points, Y-axis the value of the mean or
variance
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important realisation effect in the early stages of sampling when single new values can
have a significant effect on the calculated statistic.

These example plots are only for a single variable. The realisation effect of sample
statistics will be more important as more and more sampled variables are added,
particularly in estimating the statistics of extreme values. Similar principles apply in
sampling real environmental variables by measurement. Convergence to the final
asymptotic values will also be slower if successive samples are correlated, which can be
the case if sampling real variables. The general rule to be followed is always to take as
many samples as feasible for a given problem and to check on whether convergence of
the statistics of interest has been reached by doing the type of plots shown in Figure
3.9 as more realisations are added.

3.3.4 Guided Monte Carlo search

If we have some prior information about feasible parameter sets, or if we are learning
about regions of interest from an initial discrete or random search of the model space,
then we can start to use some form of guided search strategy. The idea behind all
guided search strategies is to concentrate samples in the regions of interest once they
have been identified.

In some cases, they are identified purely on the basis of the prior definition of
distributions or fuzzy membership values for the parameters. Even where it is difficult
to define prior information for all parameters and their expected co-variation or
interactions, this immediately provides some information of what values to sample.

Figure 3.9 5% and 95% quantiles of the data in Figure 3.7 estimated using the mean and variances
(solid lines) shown in Figure 3.8 (and directly from the cumulative distributions of the
data points as new data are added (dots)). X-axis is number of data points, Y-axis the
values of the 5% and 95% quantiles.
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The efficiency gains of adopting a guided search method can be very large. Hahn
and Meeker (1991), for example, point out that if a set of parameter values is assumed
to have independent multivariate Gaussian distribution, then already when there are 6
parameter dimensions covering ± 3 standard deviations from the mean for each par-
ameter, then 95% of the model space has very low prior likelihood. Nearly all the
useful information is in the remaining 5% of the model space so that savings of 1 in 20
could be gained over a purely random search if the parameter sets are chosen based on
the prior distribution.

This type of guided sampling can be achieved in a number of ways. The most
commonly used when there is such prior information is a variation on the Latin
Hypercube sampling (LHS) method in which the intervals to be sampled are chosen to
represent equal prior probability (or fuzzy membership) intervals. This will then
automatically concentrate samples in the area of interest, while still limiting the
number of runs to the number of discrete intervals in each dimension. To give just
two quite different environmental examples of a forward uncertainty analysis using
LHS, Catelinois et al. (2005) used it in an epidemiological study to estimate the
number of excess cases of thyroid cancer in France resulting from Chernobyl fallout,
while Sykes et al. (1996) used it in a forward uncertainty assessment of aquifer
remediation.

A further extension is possible to take account of correlation or interactions
between the parameters by carrying out a principle components analysis of an initial
sample to create new orthogonal axes for sampling (see Iman and Conover, 1982).
This is, however, a linear analysis technique and might not prove to be useful in
applications of highly nonlinear models. New developments in this field include the
use of copula sampling (see Section 3.3.5 below).

The Latin Hypercube sampling methodology can also be applied as part of a learn-
ing strategy. An initial set of samples can be made to evaluate the model outputs of
interest. These can then be used to redefine the sampling increments, and a further set
of samples run to give greater detail in the regions of interest. Another way of learning
about the model space in this way has been suggested by Spear et al. (1994) based on
regression tree analysis. This is a classification methodology, here used to subdivide
the model space into discrete volumes containing different types of behaviour (see
Figure 3.10). In their application to a water quality model they were trying to define
regions of the model space that provided good fit to the available observations and
regions that did not give good fit and were therefore not worth sampling further. The
same technique can be used, however, without observed data, where the interest is just
in classifying the outputs from the model, some of which might be of more interest than
others.

The general name for this type of iterative refinement of the search is importance
sampling. The idea is to learn about the nature of the surface of interest in the model
space and concentrate samples where they will provide the greatest amount of infor-
mation. One form of importance sampling is to gradually modify the sampling
distribution until the density of sampling is directly proportional to the magnitude of
the response surface (i.e. the value of the model output of interest).

One method of guided Monte Carlo search strategies with this aim is called Markov
Chain Monte Carlo (MC2) methods. These provide a way of learning about the struc-
ture of a response surface and creating samples with a density proportional to the
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height of the surface. They can be used in forward uncertainty analysis where the
response surface is defined by an output variable of the model but are most often used
in cases where the height of the surface is a likelihood measure, and an integration of
the full likelihood surface is required. If samples can be generated with density pro-
portional to likelihood then all the samples will have equal weight in the integration.
MC2 therefore represents a learning process, but, when used for likelihoods, the learn-
ing process will require the availability of observed data with which to compare the
model predictions. More details about MC2 will therefore be left to the next chapter
(and Box 4.3) where model conditioning based on observations is considered.

3.3.5 Copula sampling

In some applications, it is well known that there are strong dependencies or correl-
ations between parameters in the model space. It is not too difficult to take account
of such dependencies in low-dimensional spaces, e.g. by using the Latin Hypercube
sampling technique, but the problem can be complex in high-dimensional spaces.
Such dependencies are often revealed by soliciting expert opinions to provide prior
information into a modelling problem and may deviate strongly from the multi-
variate Gaussian assumptions on which much of the rich statistical literature on
correlated variables is dependent.

A recent technique for addressing this problem is the use of copula sampling (see,
for example, Nelson, 1999, Kurowicka and Cooke, 2006) to generate samples of the
required structure. Kurowicka and Cooke (2006) give a good introduction to the

Figure 3.10 Result of regression tree analysis of a two-dimensional model space. Left: perspective plot
of true density. Right: regression tree subdivision of space into areas identified as having
different density with resulting samples of parameter combinations

Source: Spear et al., 1994, Copyright ©1995 American Geophysical Union, reproduced with permission
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subject that includes a number of environmental examples. They also introduce a
software package, UNICORN, specifically for high-dimensional dependence
modelling (see Software Appendix).

The starting point for the UNICORN package is an assessment of the uncertainties
and dependencies associated with all the inputs required to run a model, including the
parameter values. Normally, the information about the marginal distribution of each
input or parameter value is likely to be much stronger than information about their
interactions. This is not surprising since, given N inputs required by the model, there is
the possibility of 2N − 1 subsets of variables, each of which might interact with any
other subset. Thus, N does not have to be very large before the number of potential
interactions becomes very large, and it becomes very difficult to specify, even
approximately, the potential interactions.

This is a problem within statistical representations of uncertainty based upon the
multivariate Gaussian distribution (or the so-called meta-Gaussian methods where
more complex distributions are transformed into a multivariate Gaussian structure,
see Box 4.1). This is because, as already noted, the generation of samples from the
multivariate Gaussian distribution requires the specification of a complete covariance
matrix. This is already a demanding challenge in simple cases; when there is only
partial information about the interactions in high-dimensional cases it becomes very
difficult to use.

Copulae, coupled with Dependence Trees and Dependence Vines, were developed to
cope with such cases. The essence of the copula concept is to transform the marginal
distributions and partial information about dependencies to a unit space based on
axes with the range [0–1]. Any inconsistencies in the information about dependencies
can be resolved and random samples generated on the unit space in a way that con-
serves information about marginal distributions and any dependencies expressed as
rank correlations. Because, in sampling on the unit space, rank correlations can be
preserved regardless of the marginal distributions of the variables, they can be used as
a constraint on the dependencies between variables. The samples in this space can then
be transformed back to the actual values in the original model space in a more general
way than the meta-Gaussian transform. The major attraction of the copula approach
is that the definition of the marginal distributions can be separated from the specifica-
tion of the dependency as a rank correlation. This gives great flexibility, including the
possibility of using non-parametric marginal distributions directly from empirical
data, rather than first fitting the data to a parametric distribution, such as those
described earlier in this chapter.

Copulae can be represented as pdfs in the multivariate space. They have an appar-
ently strange form (Figure 3.11a shows an example for two variables) because they
effectively represent an inverse transform from the uniform sampling on the unit space
to the original marginal distributions of the variable. A variety of copula structures are
available to generate samples with different forms of dependency, including the Gauss
copula, χ2 (chi-squared) copula, diagonal band copula, elliptical copula, Frank’s cop-
ula, Clayton copula, and minimum information copula (see Kurowicka and Cooke,
2006). The major problem in this approach is finding the right form of copula to
represent the dependencies in a way that is consistent with the co-variation in the
original variables. In the high dimensions often found in environmental problems,
where there may be conflicting information about dependencies, this is a difficult (if
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Figure 3.11 A. The form of a Gauss copula with rank correlation of 0.7. B. Samples generated
using the Gauss copula with rank correlation 0.7. C. The same samples transformed
to variables normally distributed (x axis) and beta-distributed (y axis) with same
parameters as Figure 3.5
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not impossible) problem that generally requires invoking some strong constraints.
Figure 3.11b shows an example of samples generated using the Gauss copula with a
rank correlation of 0.7; and Figure 3.11c shows the transformation back to samples in
the space of the original variables with beta and normal marginal distributions, for
comparison with Figure 3.5. The results of sampling from other copula forms are
illustrated in Box 3.2. Some families (such as the Gauss and χ2) are more easily
extended to multivariate problems than others (Kurowicka and Cooke, 2006).

3.3.6 Case study: Copula sampling in mapping groundwater
quality

An interesting application of copulae is provided by Bardossy (2006) in an application
to groundwater modelling. The advantage of the copula approach in this case was that
the data (groundwater quality parameters in a large number of wells in Baden-
Württemberg in Germany) suggested that the variables of interest had a non-Gaussian
distribution and a complex covariance structure. The large quantity of data in this
case allowed an empirical copula to be developed, using a chi-square copula, repre-
senting the structure of the spatial variation of the data, in a way more flexible than
can be handled by the Gaussian 2nd order stationary assumptions of classical geosta-
tistics (see, for example, Clark, 1979, for a good clear introduction to geostatistics as a
way of expressing uncertainties in spatial patterns). As Bardossy notes, spatial prob-
lems of this type will have a large number of dimensions representing the variability
between pairs of points at different distances. This makes estimating the dependences
difficult. In his study, rank correlations were used as an empirical constraint on the
copula model. Testing the resulting spatial model showed that it successfully repro-
duced the spatial structure of the data more adequately than a multivariate normal
geostatistical model. Simulations of the field using the copula showed that the tech-
nique was able to reflect the way that structure was linked to the magnitude of the
variable of interest in a way that classical geostatistics cannot (e.g. Figure 3.12). Other
applications of copula sampling to environmental problems include the rainfall simu-
lations of De Michele and Salvadori (2003) and joint frequency analysis in Favre et al.
(2004) and Renard and Lang (2007). Reichert and Borsuk (2005) use copulas to
represent dependence between parameter values in assessing and deciding between
different policy scenarios in a problem of managing phosphorus inputs to a lake.

3.4 Fuzzy representations of uncertainty

It has been noted earlier how not all uncertainties can easily be represented as prob-
abilities. One attempt to provide an alternative view was the fuzzy set theory of Zadeh
(1965) where uncertainty is expressed in terms of fuzzy measures as an expression of
possibility of different potential outcomes. Klir (2006) and Zadeh (2005) show (in
their different ways) how this is one form of a more general class of non-probabilistic
ways of expressing uncertainty based on set theory. Here we are concerned with using
fuzzy sets in the propagation of uncertainties of inputs and parameter values through
an environmental model to define possibilities of outcomes rather than probabilities.

A fuzzy set is defined by the degree of membership, µ, of the members of that set,
with the range 0–1 (see Box 3.4). Any fuzzy variable may be defined with respect to the
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fuzzy set of its values, with particular values having particular degrees of membership.
An example of a fuzzy variable that is commonly used in explaining fuzzy set theory is
that of the height of people. Height can be measured on a length scale, but what does it
mean to say that someone is “short”, or “tall” or of “medium height”? The class of
tall people is a fuzzy set, and might extend over different parts of the length scale in
different circumstances (urban Europe or rural China for example).

A more relevant environmental example is that of temperature. Temperature can
also be quantified on an agreed scientific scale, but we might also think of an examin-
ation of old diary entries to obtain information about historical weather patterns. A

Figure 3.12 A. Empirical copula densities from measurements at more than 600 groundwater wells in
Baden-Württemberg, Germany for spacing of 3,000m. Left: chloride, right: pH. B. Two
realisations of a groundwater quality variable. Left: using standard multivariate Gaussian
distribution and right: using chi-square copula with normal marginals

Source: Bardossy, 2006, Copyright ©2006 American Geophysical Union, reproduced with permission
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diary entry might say that a day was “exceptionally hot”. What is “hot”? What is
“exceptionally hot”? Clearly there is no precise definition of such descriptions and
they might be better treated as fuzzy variables. In England or Sweden, a day with
temperatures of over 30°C might be described as hot by one person, exceptionally hot
by another. In the south of France or Texas, 30°C on a summer day would not be
described as exceptionally hot.

Figure 3.13 shows another example of representing the hydraulic conductivity of
different types of soil and aquifer materials as a fuzzy variable. What is the hydraulic
conductivity of a sand in an unconfined valley bottom fluvio-glacial aquifer used for
water supply purposes? In setting up a water resources assessment model of such an
aquifer it would be useful to have some prior estimate of the possible range of
hydraulic conductivity (as well as porosity, thickness, inter-bedding with other
materials, unsaturated soil characteristics etc). Here the fuzziness in hydraulic con-
ductivity ranges across orders of magnitude. If we are interested in pollutant transport
in that aquifer, perhaps because of an old industrial site on the surface or agricultural
pesticide applications, then there will be other parameters that could be considered
as fuzzy variables, such as the longitudinal and transverse dispersion coefficients,
reaction and degradation coefficients (e.g. Schulz et al., 1999; Zhang et al., 2006).

Joint possibilities of multiple variables can also be expressed in this way. Degree of
membership is then defined with respect to the joint set. The range of values for which
µ > 0 is called the support of the fuzzy set. Note that if the support of the fuzzy set has a
strictly limited range of values it constitutes a crisp set, but the membership of any
value in that set will be more or less fuzzy, depending on the degree of membership.

Different degrees of uncertainty in a particular variable (or joint possibilities of
several variables) can be expressed in terms of nested α-cuts of the fuzzy set. These are
crisp sets defined by the range of values for which µ ≥ α (0 < α < 1). Fuzzy variables
defined in this way can be manipulated by standard operators of fuzzy arithmetic
(including addition, subtraction and general linguistic operators; see, for example,
Box 3.4 and Cox, 1994; Bardossy and Duckstein, 1995; Ross, 2004; Klir, 2006).
Thus, for some simple cases of uncertainty propagation it would be possible to obtain
analytical estimates of the possibilities of a model outcome given a fuzzy definition of
the input variables and parameters.

More generally, Monte Carlo methods can again be used in uncertainty propaga-
tion of fuzzy inputs. By sampling values across the support of a fuzzy set (or the range
of a chosen α-cut of that set), that value can be used in driving the model, carrying
along a weight equivalent to its degree of membership. Sampling a full set of inputs
and parameter values in this way will result in a simulation associated with a set of
degrees of membership from each of the fuzzy inputs. It then remains to combine those
degrees of membership to provide a possibility value for the outputs for that run (see
the discussion of techniques in Box 3.4). This can be thought of as equivalent to
defining a degree of membership for the output of the model throughout the feasible
range of the model space (i.e. a possibility response surface associated with the actual
outputs from the model). Defuzzification of the output fuzzy set is possible at this
stage to provide a single crisp estimate, but in general will not be of interest here when
we are actually interested in the uncertainty of the outcomes. Given the map of degrees
of membership for a given output in the model space, α-cuts of the possibility surface
can be made to define the nested sets of model output values at successive α levels.
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3.4.1 Case study: Forward uncertainty analysis using fuzzy
variables

An interesting example of a forward uncertainty analysis using fuzzy variables is
provided by Schulz et al. (1999) in an application concerned with uncertainty in
chemical equilibrium calculations for an aqueous cadmium sulphide system in the
anaerobic sediment of the Silbersee near Nürnburg, Germany. The same authors have
also been involved in studies on unsaturated flow in soils (Schulz and Huwe, 1997).
The aim was to try to allow for the uncertainties inherent in the thermodynamic
parameters in applying chemical equilibrium theory in the field. They note that some
previous forward uncertainty analyses for chemical equilibrium calculations had used
a probabilistic framework and Monte Carlo simulation (e.g. Schecher and Driscoll,
1988) but argued that a fuzzy approach might be more appropriate when it was
difficult to define potential variability in terms of probabilities. Various forms of
information might be vague rather than random, and therefore more appropriately
represented possibilistically.

The cadmium sulphide system involves 11 different chemical species and eight dif-
ferent reaction coefficients. Information about the coefficients from the literature
showed a significant range of values in each case. These were used to define the
support for a fuzzy representation of each coefficient and the shape of the membership
functions (e.g. Figure 3.14).

Schulz et al. provide results for a number of different levels of calculations. In the
first, only the two coefficients in Figure 3.15 are varied, with calculations being made

Figure 3.13 The hydraulic conductivity of different materials treated as fuzzy variables
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Figure 3.14 Membership functions of the second dissociation constant of a) H2S (K3) and the solubility
product of b) CdS (K8)

Source: Schulz et al., 1999, reproduced with permission from Elsevier

Figure 3.15 Results of fuzzy forward propagation of uncertainty for solid and aqueous phases of
cadmium in equilibrium cadmium-sulphide aqueous geochemistry calculations treating
parameters as fuzzy variables. The vertical axis is the degree of membership. The hatched
area represents the concentrations above the WHO limit of Cd in drinking waters

Source: Schulz et al., 1999, reproduced with permission from Elsevier
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at a number of different α-cuts. Then more coefficients are introduced and the
uncertainties in the analytical data available are taken into account using membership
functions chosen to be close to the Gaussian distributions normally used when
analytical error is assumed to be random. Finally all the sources of variability are
taken into account. The results of Figure 3.15 are from this last case, showing a high
possibility that the levels of total cadmium might exceed the WHO admissible range
for drinking waters.

3.5 Sensitivity analysis

3.5.1 Point sensitivity analysis

In considering the propagation of uncertainties through a model based only on prior
information, it is useful to make an assessment of the sensitivity of the results to
individual parameters or combinations of parameters (or parameters and other inputs
to the model). We can relate the concept of sensitivity back again to the response
surface for a predicted variable in the model space. At any point in this (generally high-
dimensional space) the sensitivity to a particular factor can be thought of as related to
the gradient of that surface and a traditional single factor sensitivity measure is
obtained by evaluating the local gradient at a particular point in the model space,
normalised by the value at that point. Thus, for parameter i taking values xi in
producing a predicted variable P, a sensitivity index, SI, can be calculated as:

SIi =

dP�dxi

xi

[3.1]

The gradient term, dP/dxi, is often difficult to evaluate analytically (which would
require differentiating the equations of the model) and so is generally evaluated
numerically by using runs of the model with slightly different values of xi. A finite
difference approximation to [3.1] then becomes:

SIi =

{P(xi − ∆xi) − (P(xi + ∆xi)}�2∆xi

xi

[3.2]

where ∆xi represents a small increment in the values of the parameter xi.
Such sensitivity measures can be used to examine the relative sensitivity of different

factors in the model space. Because they are point measures, the measure for a particu-
lar parameter or input variable might vary (sometimes rapidly and discontinuously)
throughout the model space. They should also be expected to vary depending on what
model output variable (P) is considered. Thus, while they might be a good preliminary
guide to sensitivity of individual inputs and parameters, there are the same problems
of exploring the way in which sensitivity might vary through the model space as there
are in exploring the responses themselves. In fact, the problem is somewhat worse in
that there may be sensitivities to the joint occurrences of certain values of parameters
and inputs that are not revealed by the single factor measures above.
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Thus, some more sophisticated form of sensitivity analysis is needed. A full treat-
ment of this topic is beyond the scope of this book and the reader is referred to the
book of Saltelli et al. (2004) and the review of Saltelli et al. (2006) for more details on
some of the methods available. It is worth noting, however, that studies that have
compared sensitivity analysis methods in applications to environmental models have
shown that the apparent sensitivities of different factors vary with the type of sensitiv-
ity analysis used (e.g. Borgonovo, 2006; Pappenberger et al., 2006b; Tang et al.,
2007b). There is no unique answer to the sensitivity problem, but the different
methods will generally reveal the most important factors (if not always in the same
rank order). We will look at just two contrasting sensitivity methods, both of which
have been called Generalised Sensitivity Analysis (GSA). Both are global methods that
attempt to derive a measure of sensitivity from model responses sampled throughout
the model space.

3.5.2 Global sensitivity analysis: Sobol’ generalised sensitivity
analysis

The first is an extension of the simple point sensitivity methods described above to the
case of a global sensitivity analysis of both single factors and joint combinations of
factors. It is a linear variance decomposition method, originally developed by Sobol’,
that analyses the variation of a sample of points on the response surface for a variable
as a result of variation in different factors (usually parameter values or other inputs
that are uncertain). A good introduction to this form of variance-based sensitivity
analysis is provided by Sobol’ (2001) and Saltelli et al. (2004).

The Sobol’ variance decomposition is defined by

V(Y) = �
i

Vi + �
i

�
j > i

Vi,j + �
i

�
j > i

�
k > j

Vi,j,k + . . .V1,2,. . .,k [3.3]

where Y is the model outputs of interest, Xi are the factors of interest,
Vi = VXi

(EX−i
{Y | Xj}), Vij = VXiXj

(EX−ij
{Y | Xi, Xj}) − Vi − Vj, and so on. The Sobol’

sensitivity indices are then defined as :

SIi = Vi | V

SIij = Vij | V [3.4]

SIc
ij = SIi + SIj + SIij

All the sensitivity indices are scaled to be in the range [0–1]. The SIi values are known
as the main effects, the SIij are the second-order interactions, and the SIc

ij are the
second-order closed effects representing the total effect of the two factors i and j.
Higher-order interaction terms can be calculated to give an indication of the inter-
action of three or more factors, but become increasingly sensitive to the sample used
and sources of error in the modelling process. The main and total effects are the easiest
to interpret. Effectively those factors with the highest main effect sensitivities are those
that, if determined more precisely, will have the greatest effect on reducing the

76 Environmental Modelling



variance in the model output. It is often found that, even for quite high-dimensional
problems, only a small number of factors are important on the basis of the magnitude
of the main effect sensitivities.

Relative sensitivities determined in this way might be quite different to the local
gradient measures of sensitivity discussed in the previous section since the measures
are based on all the samples in the space. If it is suspected that there might be distinct
changes in sensitivity to different factors in different parts of the model space (which
may well be the case with complex environmental models), it is possible to apply this
form of global sensitivity analysis to different subsets of samples separately. For
models which produce time series or spatial patterns of outputs, it is also possible to
examine the changes in the calculated sensitivities in time or space (e.g. Ratto et al.,
2005; Hall et al., 2005).

The calculated sensitivities might often be dependent on the number of samples over
which the variances are calculated, particularly for complex models, and there have
been a number of studies that have suggested ways of making the process more effi-
cient. One way is to use a form of interpolation or filtering of the sample of responses
in the model space (see Section 3.6 below).

Hall (2006) has extended this variance decomposition method of global sensitivity
analysis to the case where the factors are known only as imprecise probabilities. Ratto
et al. (2001) have applied the Sobol’ sensitivity analysis approach to a model calibra-
tion problem within the GLUE Monte Carlo methodology described in Section 4.5,
to determine which factors might be most important in influencing changes in a
calibration measure.

3.5.3 Case study: Application of Sobol’ GSA to a hydrologic model

In an application of this form of generalised sensitivity analysis to the sensitivity of the
results of a distributed flood inundation model, Tang et al. (2007a) have used the
Sobol’ variance decomposition GSA method to calculate the first-order sensitivities of
a distributed rainfall runoff model (the US National Weather Service Hydrology
Laboratory Research Distributed Hydrological Model, Koren et al., 2004) for which
18 parameters were varied over each spatial cell in the distributed model. Predictions
for the case shown in Figure 3.16a were made using an hourly time step and the total
sensitivities for each parameter aggregated to monthly results. It is also possible, as
shown in Figure 3.16b, to aggregate the results to show the sensitivities for each
spatial element in the model and their interactions (in this case rather a coarse discreti-
sation of the catchment area is used). This study also investigated the uncertainty in
the calculated sensitivity indices by using a bootstrapping method to resample the
simulation runs. The sensitivities are then recalculated for each sub-sample of the full
set (see Efron and Tibshirani, 1993; Archer et al., 1997; or Saltelli et al., 2004).

3.5.4 Global sensitivity analysis: HSY generalised sensitivity
analysis

The second form of global sensitivity analysis is quite different. It was first used by
George Hornberger, Bob Spear and Peter Young (HSY) in the late 1970s in assessing a
model of eutrophication and algal growth in the Peel Inlet near to Perth in Western
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Australia (Hornberger and Spear, 1980) and rivers in the UK (Whitehead and Young,
1979). It also requires samples from throughout the model space, normally selected
randomly. Their interest was in the model behaviour as a whole, not point sensitiv-
ities, so that they examined the way in which different types of behaviour responded to
variations in parameters and inputs. Their analysis required that the different runs of
the model be separated into two bins or classes with different types of behaviour.
Then, in examining the sensitivity to individual factors they compared the cumulative
distributions for those factors in each of the bins. Insensitive factors would show little
difference between the distributions in the two classes; the most sensitive factors

Figure 3.16 Sensitivity analysis for the parameters of a distributed rainfall-runoff model using the
Sobol’ GSA method. A. Total sensitivity indices for monthly periods of simulation for the
year 2003. Columns represent the parameters varied; rows represent months. Triangles
represent highly sensitive parameters that contribute at least 10% of the overall model
output variance; circles represent sensitive parameters that contribute at least 1% of the
overall model output variance; shading represents relative sensitivity. B. September 2003
event on the Spruce Creek catchment: rainfall totals (left), first-order Sobol’ indices for
each cell (middle), cell level interactions (right)

Source: Tang et al., 2007a, Copyright ©2007 American Geophysical Union, reproduced with permission
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would show strong differences between the distributions in the two classes. The non-
parametric Kolmogorov–Smirnoff d statistic for the difference between distributions
was used as a relative measure of sensitivity (see Figure 3.17). The power of that test is
not great when there are many samples contributing to the test, as there often will be
in such model-generated samples, but the value of the statistic d still provides a relative
measure of global sensitivity for the individual factors.

There are two problems with this form of global sensitivity analysis. The first is how
to define the bins; the second is whether the values of an apparently insensitive par-
ameter might still be important in contributing, as part of a parameter set, to whether
a model output is classed in one bin or another, at least in locally sensitive regions of
the model space. As with the linearity assumption of the Sobol’ variance decom-
position technique, the second is a limitation of using global analysis that will always
filter local sensitivities and again, if local differences are expected, then this form of
GSA can also be applied to sub-domains of the model space.

The first question is interesting as it is under the control of the user of the model in
deciding what differences in model behaviour are important to consider. In the ori-
ginal application to the Peel Inlet model, the bins represented models that seemed to
produce the right sort of behaviour when evaluated against chemical and biological
observations (behavioural models) and models that did not (non-behavioural models).
Making such distinctions in such applications can be difficult, however, particularly
when there are no observations to compare against, or where there is a continuous
range of outputs and no clear distinction between classes can be determined. In other
applications, such as the rainfall-runoff modelling example of Hornberger et al.
(1985), the latter case has been dealt with by taking the top 25% or 30% of models

Figure 3.17 Example of HSY generalised sensitivity analysis results showing cumulative density func-
tions for behavioural (B) and non-behavioural (B′) models of phytoplankton growth in Peel
Inlet, Australia. a) a sensitive parameter (Cladophora growth coefficient); b) an insensitive
parameter (Phytoplankton shading coefficient)

Source: Spear, 1997, reproduced with permission from Elsevier
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ranked by some predicted output variable as one class and the rest as the second class,
with no implication as to whether one class or the other is “behavioural” with respect
to the real system. In other cases it might be easier to define behavioural models.
Guven and Howard (2007), for example, give an application of the method to the
prediction of cyanobacterial blooms in the St. Johns River in Florida with the
behavioural models being defined on the basis of characteristics of predicted
chlorophyll-a concentrations during the months of the cyanobacterial blooms.

The HSY generalised sensitivity analysis is not, however, limited to using only two
classes of model performance, and more detailed information can sometimes be
revealed about differences in model performances by breaking the behavioural
models down in small classes or subdividing the model space to look at different
sensitivities. Figure 3.18 (a screen dump from the Lancaster GLUE demonstration
program, see Software Appendix) shows the results of an analysis of sensitivities for
four parameters in a rainfall-runoff model, where the simulations have been classified
into ten subsets based on level of performance. The HSY sensitivity analysis was
the starting point for the development of the GLUE methodology described in
Section 4.5.

Figure 3.18 HSY generalised sensitivity analysis for four parameters of a rainfall-runoff model applied
to the Saeternbekken Minifelt catchment in Norway. The simulations have been divided
into subsets based on performance based on the Nash–Sutcliffe efficiency measure, with
Set 1 being the highest performance
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3.6 Model emulation techniques

We have already seen how computational limitations will limit the potential for a full
exploration of the response surface in high-dimensional model spaces. Clearly, if the
run time for a single model run is long then only a limited sample will be feasible (as,
for example, with global climate models where multiple ensemble runs are only just
becoming available, and then only in small numbers or with very coarse resolution).
This has resulted in a variety of attempts at emulating the responses of complex
models by simpler models so that the results of the limited number of runs of the
full model can be approximated at many more points in the model space. This is called
model emulation.

There are two types of model emulation. The first is where a simple model is used
to mimic the behaviour of a much more complex model that takes a long time to run.
The simpler emulator model is usually fit to representative sets of outputs from the
more complex model (which may include variables of interest that are not observable
directly by measurement). The emulator can then be used to run many more sets of
input conditions quickly to expand the range of available results. Model emulation is
not a replacement for making more runs of the full model (especially for highly non-
linear models) but, in some cases, some remarkable reductions of dimensionality can
be achieved. Young (1998), for example, shows how the mean global temperature
output from a 26-parameter global carbon model can be modelled by a simple second-
order linear transfer function emulator with a remarkable accuracy (see Figure 3.19).
The transfer function model could then be used as an emulator to explore the
responses to a much wider range of inputs within seconds, rather than waiting for
further runs of the full model. This illustrates the problem of model emulation quite
nicely. We could expect the results of the simple transfer function to be useful within
the range of input conditions for which it will provide a good simulation of the full
model. The issue is how wide is that range, or more generally, how far is the model
emulation valid? We cannot know, of course, without running the full model more
times to check the emulator results.

The second type of model emulation is essentially an interpolation technique. The
aim is to use an emulator to interpolate the shape of the response surface in the model
space from the limited number of runs of the full model. This is equivalent to inter-
polating the variation of an environmental variable in physical space (for which there
are well-developed methods using geostatistics or other interpolators) but in the higher
dimensions of a model space. In this case the variation in the output of the full model
(the response surface of interest) is a function of the variations in parameter values
along each dimension of the model space, not just of the inputs. Remember that the
response surface could represent any model-predicted variable of interest or some
performance or likelihood measure.

Many different model emulation techniques have been used. None, of course, will
be perfect since they are all inferring a large number of unknown values from a much
smaller number of known values on the response surface. The complexity of the
surface (governed by the nonlinearity in the model responses) will essentially control
how successful the interpolation model will be. One method is the Gaussian emulator
(see, for example, Oakley and O’Hagan, 2005, and the review of O’Hagan, 2006a),
where the nature of the interpolation can be varied throughout the space, depending
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on the information available. Other methods for model emulation that have been used
include nearest neighbour methods (Beven and Binley, 1992; Klepper and Hendrix,
1994; Osidele et al., 2006); regression analysis (e.g. Iooss et al., 2006); artificial neural
network methods (e.g. Widrow et al., 1994; Broad et al., 2005); and State-Dependent
Parameter (SDP) methods (Ratto et al. 2005).

By definition, all these methods can only learn from the sample of runs of the full
model that are available. As with any interpolation technique, there will be some
uncertainty in estimating the shape of the response surface. For simple surfaces the
uncertainty should not be large. For complex surfaces, the uncertainty might be very
large. With some techniques the uncertainty of the interpolation can be assessed at an
interpolated point as well as a best estimate of the variable being interpolated.

3.7 Uncertain scenarios

A final type of uncertainty for which there is no historical data available that needs to
be considered is uncertainty in the form of discrete future scenarios for which it may
be impossible to make any quantitative estimate of probability or possibility. The
different scenarios used to drive global climate models are of this type, each the result
of the predictions of a model based on assumptions about the future. The modellers of

Figure 3.19 Example of model emulation: representation of the results of a high-dimensional
model of the global carbon budget by a 4th-order linear transfer function model

Source: Young, 1998, reproduced with permission from Elsevier
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such scenarios have been required to make “realistic” estimates of what might happen
to greenhouse gas emissions in the future as a result of different assumptions about
global economic growth and social changes, but the uncertainties associated with
those assumptions are unknown. Politicians and decision makers would, of course, be
very interested in whether one scenario is more “likely” than another, but, in reporting
the results of the climate change model runs based on different scenarios, the IPCC
have been careful not to associate the outputs with other than a very general qualita-
tive expression of “likelihood”.

This is a particularly extreme example of assessing uncertainty in outputs by evaluat-
ing different scenarios because the computer run times of fully coupled atmosphere–
ocean models are extremely long, even on the best high performance parallel computers.
Thus, only a small number of runs is possible. It is also, of course, an extremely interest-
ing example, in that the resulting outputs are of great practical importance and are being
used to drive other simulation models to predict the impacts of climate change on
hydrology, ecology, agriculture and other applications (without, it should be said, the
possibility of coupling the future changes at the land surface back into the predictions of
the climate model, although this is just beginning to be implemented in global models).

So if the predictions of environmental systems are uncertain for current conditions,
even after calibration or conditioning against real data (see Chapter 4) what is the
significance of using the outputs of climate change scenarios to predict future
behaviour of a system of interest? Similar issues arise in other situations where only
scenario predictions of future boundary conditions are possible. We do not know the
probability or possibility of particular scenarios, so it therefore follows that any pre-
dictions dependent on those scenarios also cannot be associated with any objective
assessment of probability or possibility, even if the uncertainty of representing the
system under current conditions is used to make some estimate of the equivalent
uncertainty under future scenario conditions (as, for example, in Cameron et al.,
2000; Cameron, 2004; Wilby and Harris, 2006). The predictions remain simply scen-
arios, conditional on the assumptions about the inputs to the model running the
scenarios and on the limitations of that model in predicting future responses. We may,
or may not, wish to express some measure of belief in the different scenarios, but in
general this will be possible only by subjective expert judgement or consensus. The
way in which such scenarios might be considered in making decisions about the future
is considered later in Chapter 6.

3.8 Summary of Chapter 3 

This chapter has reviewed the issues and methods for the forward propagation of
uncertainties in inputs and parameter values through a model for cases where only
prior estimates of the relevant uncertainties are available. The following important
points can be taken from the chapter.

• The results from a forward uncertainty analysis are totally dependent on the prior
assumptions made about what is to be considered uncertain and how that
uncertainty should be represented. Choices about prior uncertainties can be
difficult, especially where there might be a large number of uncertain variables
and where interactions or co-variation between the variables might be important.
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• Ignoring co-variation between uncertain variables might give misleading results
about model uncertainty, but lack of knowledge may often mean that it is difficult
to avoid assuming that variables are independent. The assumption of independ-
ence makes sampling much simpler, but there are still choices about what ranges
and distributions to sample over.

• Monte Carlo methods are useful in sampling the model space, but in high dimen-
sional spaces very many realisations may be needed to adequately represent a
model response surface unless it is very simple or unless strong prior information
about the uncertainties in input variables is available so that guided sampling can
be used.

• Given a sample of the response surface, both local and global sensitivity analyses
can be used to decide which might be the most important variables in controlling
uncertainty in model output.

• Depending on the complexity of the response surface, model emulation can some-
times be used to interpolate between the results of a more limited number of runs
of the model in the model space.

• Some uncertainties that might be important in decision making, particularly
about potential future change, can only be represented as scenarios. Results can
then only be made conditional on the choice of scenarios considered.

Box 3.1 Simple operations with probability-distributed variables

We will consider two variables A and B that, based on some experimental data I,
can be described as having probability distributions p(A) and p(B). We need not
worry about the form of the distributions at this stage. We need only consider
that the probabilities p(A) describe the expected frequency of occurrence of
values of A across the set of all possible values of A, and that p(B) describes the
expected frequency of occurrence of values of B across the set of all possible
values of B. When dealing with probabilities, these are crisp sets, i.e. an occur-
rence of A is either contributing to the set or not (though the theory can be
extended to imprecise probabilities; see, for instance, Klir, 2006).

B3.1.1 Axioms of probability
Probabilities must obey certain rules, the axioms of probability. These are that
for any set of variables A in a set of all possible values of A:

1 p(A) ≥ 0
2 ∫p(A) = 1
3 If A and A′ are mutually exclusive then p(A + A′) = p(A) + p(A′)

All of the classical theory of statistics can be shown to follow from these three
simple rules (e.g. Papoulis, 1965).

B3.1.2. Combining probabilities
In environmental modelling we are often interested in the joint occurrence of
values of A and B, making use of our expectations about p(A) and p(B). In fact,
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when thinking about the use of uncertain variables in predicting a set of outputs
of an environmental model, M(A,B), with values of A and B as inputs or par-
ameter values, we are interested in the probability of an output given the joint
occurrence of values of A, B.

We can easily calculate the output probabilities under different types of condi-
tions based on the rules of probability. This is because, for most types of models,
there will be a simple link between the probabilities of values of the inputs and
the probability of the outputs. If the model is linear (or can be approximated
locally as linear system) the calculations are relatively simple and often can be
carried out analytically. If the model is nonlinear, calculation of the output prob-
abilities may be onerous (and perhaps better approached using the Monte Carlo
methods of Box 3.2) but it does not change the principles involved.

Thus, in this case we wish to calculate p(M(A,B)) given the joint occurrence
p(A) and p(B). A consequence of the axioms of probability is the product rule:

p(AB) = p(A)p(A | B) or, equivalently, p(AB) = p(B)p(B | A)

where p(AB) is the probability of the joint occurrence of A and B and the symbol
| indicates conditionality (or, in words, p(A | B) is the probability of an occurrence
of A conditional on the occurrence of a value of B). We need to consider the
conditional probability p(A | B) (or p(B | A)) because we will not always be able to
assume that the two variables occur quite independently, even if independence is
commonly used as a simplifying assumption in modelling studies if no other
knowledge is available. In fact the data I on which we are basing estimates of the
probabilities might well indicate that A and B cannot be considered to be
independent. If (and only if) they can be considered to occur independently then
B3.1.1 reduces to

p(AB) = p(A)p(B) [B3.1.1]

But this simplifying assumption should be made with care.
When we can assume a simple dependence of the outputs of the model on the

joint occurrence of the uncertain inputs, then the probability of the model out-
puts p(M[A,B]) conditional on the joint occurrence of the inputs A and B is most
easily expressed in terms of the cumulative density function (CDF) of the
outputs. For any variable A the CDF is defined by

F(A < a) = �
a

−∞

p(A)dA [B3.1.2]

For variables that only vary over a finite range of values the lower limit of the
integration can, of course, be replaced by the minimum value. These expressions
are general, but to apply them in practice we have to give form to the
distributions of A and B (see, for example, Figure 3.2 in the main text) and their
conditional occurrence or covariance. This expression can be extended to take
account of many different variables, but then we will have to allow for the
conditionality of one variable on joint occurrences of all the other variables, that
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is their covariance. This becomes intractable for more than even a small number
of variables except if (and only if) the variables can be considered to be
independent (but see Kurowicka and Cooke, 2006, for ways of dealing with this
in complex real cases with limited information using the copula approach
discussed in Section 3.3.5 in the main text and B3.2.2 below).

B3.1.3 The normal and multivariate normal distributions
The simplest form of distribution commonly used in statistics because of its
mathematical tractability (though not suitable for all environmental problems) is
the normal or Gaussian distribution (Figure B3.1.1) with variance σ2 which has
the mathematical form

p(A) =
1

√2πσ2 e−(A − Ā)2/2σ2

[B3.1.3]

where Ā is the mean value of variable A. This can be simplified by scaling the
variable A to a standardised normal distribution with mean 0 and variance 1
using the transform Z = (A − Ā) / σA such that

p(Z) =
1

√2π
e−Z2/2 [B3.1.4]

With CDF

F(Z < z) =
1

2�1 + erf � z

√2	� [B3.1.5]

where erf represents the mathematic function called the error function.

Figure B3.1.1 Normal probability density function for a single variable with mean 0.6 and
standard deviation 0.2

86 Environmental Modelling



For two normally distributed variables with covariance Cov(A,B) = σAB
2, the

probability for occurrence of joint values of A and B, p(AB), is a bi-normal
distribution such that:

p(AB) =
1

2πσAσB √1 − ρ 2
AB

exp� 1

2(1 − ρ 2
AB) ��

A − Ā

σA
	

2

− 2ρAB �A − Ā

σA
	�B − B̄

σB
	 + �B − B̄

σB
	

2

�� [B3.1.6]

where the correlation between occurrences of A and B is defined by

ρAB =
Cov(A,B)

σAσB

.

In terms of two scaled normal variates, ZA and ZB, both with mean zero and
unit variance and correlation ρ:

p(ZAZB) =
1

2π√1 − ρ 2
AB

 exp� 1

2(1 − ρ 2
AB)

[Z2
A − 2ρZAZB + ZB

2]� [B3.1.7]

A bivariate-normal distribution for two correlated variables is shown in Figure
3.1.2.

Figure B3.1.2 Three-dimensional plot of a bivariate-normal probability density function
(z axis) for two correlated variables (x and y axes) with a correlation
coefficient of 0.7
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And for the general multivariate case for a set of n variables A:

p(A) =
1

2πn det[Cov(A)]
exp� − 1

2 �
n

j = 1
�

n

k = 1

[Cov(Aj Ak)]
−1

(Aj − Āj)(Ak − Āk)� [B3.1.8]

B3.1.4 Means and variances for combinations for two random variables
Sometimes, we may wish to evaluate the joint occurrence of uncertain variables
before they are used as inputs to the model. They may need to be added or
subtracted. In these cases there are some simple rules for operating with vari-
ables of known means and variances. Consider again two variables A and B with
means Ā and B̄, and variances σA

2 and σB
2.

For the case where the variables are independent, adding the variables gives:

(A + B) = Ā + B̄ ; σ2
A + B = σ2

A + σ2
B [B3.1.9]

And subtraction:

(A − B) = Ā − B̄ ; σ2
A − B = σ2

A + σ2
B [B3.1.10]

For the case where the variables are co-varying with correlation ρAB then

σAB = ρAB σAσB [B3.1.11]

And the relevant expressions are

(A + B) = Ā + B̄ ; σ2
A + B = σ2

A + σ2
B + 2ρABσAσB [B3.1.12]

(A − B) = Ā − B̄ ; σ2
A − B = σ2

A + σ2
B − 2ρABσAσB [B3.1.13]

B3.1.5 Gaussian error propagation
A general form of error propagation for under-assumptions of linearity and
Gaussian distributed variables can be derived analytically. For a variable x that
is dependent on uncertainty in some vector of uncertain but independent
variables y1, y2, . . . yn, then, the variance of x can be derived as:

σ2
x = �∂x

∂y1

σy1	
2

+ �∂x

∂y2

σy2	
2

+ . . . + �∂x

∂yn

σyn	
2

= �
n

i = 1
�∂x

∂yi

σyi	
2

[B3.1.14]

The partial differential terms in [B3.1.16] (e.g. ∂x/∂y1) represent the gradient of
the functional dependence of x on the different input variables, y. For a linear
system these gradient terms will be constant, regardless of the values of y. For a
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nonlinear system they will not be constant which is why this form of error
propagation is strictly applicable only to linear systems. The gradient terms can
be directly related to the sensitivity coefficients of Section 3.5.1.

The input variables, y, cannot always be considered independent, of course.
When the input variables are known to be correlated, then the effects of the
correlation need to be taken into account. The equivalent equation is:

σ2
x = �

n

i = 1
�∂x

∂yi

σyi	
2

+ �
n

i = 1
�

j = 1, j ≠ i
�zρyj yj

∂x

∂yi

∂x

∂yj

σyi
σyj	 [B3.1.15]

Where ρyiyj
 is the correlation coefficient between variables yi and yj, and σ 2

yiyj
 is the

covariance between variables yi and yj.
For linear functions of random variables these equations are exact. Thus, we

can, for example, calculate the variance of x when x = AB and A and B are
independent with variances σ2

A and σ2
B. From [B3.1.14], therefore:

σ2
x = �∂x

∂A
σA	

z

+ �∂x

∂B
σB	

2

= (BσA)2 + (AσB)2

= B2σ2
A + A2σ2

B [B3.1.16]

The uncertainty arising from other linear functions can be derived in the same
way.

The relative contributions of each uncertain input factor (and their
interactions) can be evaluated by dividing through by σ2

x so that:

1 = �
n

i = 1
�∂x

∂yi

σyi

σx
	

2

+ �
n

i = 1
�

n

j = 1, j ≠ i
�z ∂x

∂yi

∂x

∂yj

σyiyj

σ2
x
	 [B3.1.17]

A recent application of Gaussian error propagation to a simple ecological model
may be found in Lo (2005). The Sobol’ sensitivity analysis described in Section
3.5.2 is based on a similar decomposition of the total variance in the output
variable, x. In applications to nonlinear models, however, it does not attempt to
estimate σ2

x, only to evaluate the relative sensitivities to each input factor.
There have been a number of techniques in which similar equations have been

used to estimate the uncertainty associated with nonlinear models as an
approximation, for example the First Order Reliability Method (FORM, e.g.
Benjamin and Cornell, 1970; and applications such as Freissinet et al., 1999).
The advantage of such a method is that it is simple to apply and computationally
inexpensive in comparison, for example, to Monte Carlo sampling methods of
Box 3.2. The disadvantage is that, even for mildly nonlinear models, the results
may be rather inaccurate. FORM is based on a Taylor series expansion of the
variation in a model prediction around a chosen value, retaining only the first-
order gradient terms. Higher order approximations can also be used, but then
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lose some of the advantages of the simplicity of application of the first-order
approximation.

Rosenblueth (1975) also provided a different form of easily implemented
approximation for nonlinear models based on moment matching. This has also
been used in applications with environmental models (e.g. Guymon et al., 1981;
Binley et al., 1991), but again there is a danger that the approximation might be
inaccurate. These types of approximate methods have largely been overtaken by
Monte Carlo sampling of the model space as the computer power available to
the modeller has increased.

B3.1.6 Random variables and uncertainty in model outputs
The probability operations described above (and more complex forms derived
from them) are normally used in statistics for the propagation of uncertainty
through linear functions of random variables. Here, we are much more inter-
ested in providing estimates of uncertainty in variables or combinations of vari-
ables that might be used as inputs to drive a nonlinear environmental model. It
then follows that uncertainty in the outputs from such a model, either determin-
istic or stochastic, can be assessed by weighting the output values by the joint
probability of the associated uncertain input variables.

In all these cases, the probability of the outputs of a model M(I), conditional
on the joint occurrence of a set of input variables or parameters I, will still be
given by the CDF for the output being less than some specific value X that
results from the joint occurrence of the values of the vector of input variables I.
Thus:

F(M(I) < X) = �
X

−∞

p(I | M(I) < X)dX ([B3.1.18]

In words, this equation states that to find the cumulative probability that a
model prediction is less than some value X, we must integrate over all the associ-
ated input probabilities, p(I), for which the model output is less than the chosen
value X. The lower limit of integration can, of course, be zero if the model
outputs are always greater than zero. Once the CDF has been calculated, any
choice of prediction quantiles may be defined (e.g. the 5% and 95% prediction
limits). Many studies have used this type of approach in forward uncertainty
analysis. To give just one recent example, Smemoe et al. (2007) have used it to
propagate uncertainty in upstream runoff predictions through a hydraulic model
of flood inundation to provide probabilistic representations of the risk of inun-
dation (but see also Pappenberger et al., 2006d, for a discussion of issues that
arise when model uncertainties are conditioned on maps of actual inundation
from past events).

This is a general form that can be used in the probabilistic evaluation of model
prediction uncertainties. For nonlinear models, the actual evaluation might be
carried out by Monte Carlo sampling which might require significant computa-
tion if the model is complex or if there are a large number of uncertain inputs.
The way in which these uncertainties might be modified on the basis of a
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comparison of model outputs and observed responses is dealt with in Chapters 4
and 5 (see also Box 4.1).

B3.1.7 Interval and probability bounds representations of uncertainty
There are many applications where it can be difficult to specify probability (or
fuzzy) distributions for variables but where we are pretty sure that values of the
variables will lie within a certain interval or range. Uncertainty estimation is then
a matter of propagating the intervals through a model, taking account of any
interdependencies between variables. Similar issues can arise when the prob-
ability distributions are known only with a degree of uncertainty. Uncertainty
estimation then needs to account for the propagation of the bounds on the
uncertainties, taking account of any interdependencies between variables.

Interval analysis methods have been used since George Boole (1815–1864) in
the 19th century (see Moore, 1979; Neumaier, 1990). More recently these
methods have been integrated into imprecise probability and probability bounds
analysis (Williamson and Downs, 1990; Walley, 1991; Ferson and Hajagos,
2004). Software, such as RAMAS Risk Calc (Ferson, 2002), is commercially
available for such calculations (see Software Appendix).

In a probability bounds analysis, the uncertainty about the estimate of prob-
ability associated with the value of a variable is expressed in terms of intervals on
the cumulative probability function (see Figure B3.1.3). A limiting form of this
representation is when it is known only that the values of the variable might lie
within a specified interval. The bounds form a p-box for each input variable.
Propagation of uncertainties expressed in the form of a p-box is achieved by
decomposing the intervals into a number of slices. Each slice is associated with
an interval and a probability mass within that interval. The sum of all the prob-
ability masses should be equal to 1.

The intervals can then be used to convolve bounds on probability intervals for
different variables assuming independence (Yager, 1986; Williamson and
Downs, 1990). For any function, f(A,B), of two variables A and B with n and m

p-boxes with slice probability masses pi and qi respectively such that �n

i = 1
pi = 1

and �n

i = 1
qi = 1, then convolution results in a matrix of probability masses for

each element f(Ai,Bj) in the form of the product piqj. This operation can be
applied to addition, subtraction, multiplication, division, maximisation, mini-
misation, powers or other functions of A and B. Note that the slices for both A
and B are in the form of intervals, so that the function is evaluated for the values
of A and B at the end of each slice.

The algorithm is particularly simple if the probability mass of all the slices is
kept constant. If, for example, each variable is divided into 100 slices, each with
probability mass 0.01, then all 10,000 evaluations of the interval function
f(Ai,Bj) will have probability mass 0.0001. The final probability bounds can then
be determined by sorting the left-hand bounds of each f(Ai,Bj) and forming the
CDF, then sorting the right-hand bounds and forming the equivalent CDF. This
then forms the new p-box for f(Ai,Bj) (e.g. Figure B3.1.4).

It turns out that the notion of independence for imprecise probabilities is more
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complex than for ordinary probability distributed variables. Couso et al. (2000)
distinguish six types of independence for imprecise probabilities. Choosing dif-
ferent assumptions about independence could affect the calculation of the p-box
for different functions f(Ai,Bj) The product form piqi is, in their terminology,
random set independence.

In environmental modelling, we will also often be interested in dependent
variables. Correlation or interaction will also affect the resulting p-box for func-
tions of two or more variables. The equivalent determination of the p-box for
functions of dependent variables can be carried out using the copula sampling
techniques described in Sections 3.3.5 and B3.2.2.

Figure B3.1.3 Representation of imprecise probabilities as p-boxes for two variables A and B

Figure B3.1.4 Imprecise probability for the sum of A + B by p-box method
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Box 3.2 Monte Carlo sampling of a model space

The use of Monte Carlo techniques in environmental modelling has a long his-
tory. Press (1968), for example, carried out a Monte Carlo experiment involving
five million simulations of a geophysical model of seismic wave propagation of
the earth (even with the rather primitive computers at the time). He accepted
only six of the models as providing adequate fits to the data available (although
it is instructive that none of these is close to current models of the structure of the
earth – science does progress to reduce prediction uncertainties but the lesson is
that we should be wary of putting too much belief in the current generation of
models!).

Essentially, in their simplest form, Monte Carlo model experiments involve
choosing parameter sets (and perhaps representations of the model inputs) ran-
domly and running multiple realisations of the model to determine the differing
model responses (see Section B3.2.2 below). This is a way of exploring the
response surface in a high-dimensional model space as an alternative to discrete
interval sampling. It is particularly useful when the outputs of the model depend
nonlinearly on the inputs and parameter values, so that analytical propagation
of uncertainties is not possible. Nearly all environmental models are of this type.

Computational limitations apply in the same way as for discrete sampling (see
Section 3.3.2 of main text): in a high-dimensional model space it may be difficult
to make enough samples to represent adequately the shape of the response sur-
face and, particularly, to identify the regions where good models are to be found.
Thus, various forms of guided Monte Carlo search have been suggested, espe-
cially for the problem of evaluating likelihood surfaces in a model space, of
which the most commonly used now is the class of Monte Carlo Markov Chain
techniques (see Box 4.3).

Here we will consider the simpler problem of propagating input and par-
ameter uncertainty through a nonlinear model using Monte Carlo sampling. In
principle, this is a very simple process. It involves deciding on the distributions
and co-variation of the uncertain inputs and parameter values, randomly sam-
pling from those distributions in a way that is consistent with the specified co-
variation to provide multiple realisations of the inputs and parameter values and
running the model to get the resulting outputs. A cumulative density function
(CDF) of the outputs can then be formed as the more general form of [B3.2.1]:

F(M(I) ≤ X) = �
X

−∞

W(I | M(I) ≤ X)dX [B3.2.1]

Here M(I) is the output from a model driven by a vector of inputs I that is less
than some particular value X. The output might be values of a particular vari-
able, or it could be some performance or likelihood measure. W(M(I)) is a
weighting function for a particular run of the model that should reflect the
relative occurrence of a particular vector I. The cumulative sum of W(M(I)) over
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all the Monte Carlo realisations should be scaled to sum to 1. In Box 3.1, equa-
tion [B3.1.2], the probabilistic form of [B3.2.1] was given, for which W(M(I)) is
expressed as a probability.

This is not the only way of specifying the inputs to the propagation of
uncertainty using Monte Carlo realisations, however. The uncertainty in the
inputs could equally be specified as a set of fuzzy measures or Info-Gap
uncertainties (though the outputs might then be interpreted in terms of α-cuts
over all realisations rather than the cumulative density function of [B3.2.1]).

B3.2.1 Choosing input distributions
The first stage in the process of setting up a Monte Carlo experiment is to decide
on what variables will be randomly sampled and what probabilistic or fuzzy or
other distribution will be used for each. This also needs to take account of
any co-variation in the input variables. Box 3.1 discusses how to express
probabilistic co-variation; Box 3.4 how to handle fuzzy co-variation.

There are many possibilities at this point, both in the form of distribution and
form of any co-variation, especially if the number of inputs and parameters to be
varied is large. The problem can be simplified if all the inputs and parameters can
be considered to be independent. It is then necessary only to specify the marginal
distribution for each parameter and generate samples from that. Even then there
is a multitude of possible distributions that might be used, some of which have
great flexibility in form depending on the choice of parameters (e.g. uniform,
triangular, trapezoidal, exponential, gamma, normal, log normal, beta distribu-
tions; see Figure 3.2 in main text). The assumption of independence might give a
misleading impression of the uncertainty in the model outputs, however, if
co-variation is important for a particular application.

The difficulty is in knowing what parameter co-variation or interactions might
be important a priori (we will deal with ways of assessing interactions a posteri-
ori in Chapter 4). Indeed, it is very often the case that we have little or no idea of
what form of distribution an input or parameter might take. It might be then
possible only to specify some feasible range of values for that variable and
choose to sample uniformly within that range, recognising that the wider the
feasible range considered the less dense the sampling will be for a given number
of computer runs. From a probabilistic point of view, uniform sampling within a
range gives an equal prior probability to all values within the range, then,
abruptly, that probability drops to zero at the edge of the range. Even where
there is little information on what form of distribution should be used to repre-
sent a variable, most statisticians would choose to specify a range that drops off
more gradually to the edge of the range.

B3.2.2 Generating samples
There is now a wide range of software packages for carrying out uncertainty
propagation based on Monte Carlo realisations. These range from spreadsheet
add-ons (such as @RISK and Crystal Ball for Excel) to stand-alone packages
such as the Data Uncertainty Engine (DUE) of Brown and Heuvelink (2007) (see
Software Appendix). They vary in what ranges of distributions and specification
of co-variation are supported.
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The method is also quite easy to program in any programming language. It
requires simply an initialisation segment/subroutine to specify the ranges and
distributions of the inputs to be varied, a loop to generate random values of the
inputs, a call to the model for each realisation, and a summary subroutine to
gather the results and present the uncertainty in the outputs. General program-
ming and symbolic mathematics packages such as Matlab, Maple, Mathematica,
Mathworks, and others now provide extensive routines for generating a number
from a particular form of distribution, converting a number chosen uniformly
from the range [0–1] to a sample from a particular form of distribution. Basic
random number generators usually provide outputs in the form of the uniform
distribution [0–1]. A discussion of random number generators will be found in
Box 3.3.

In the case of complex interactions, an interesting recent technique for gener-
ating samples based on copulae seems promising (for example, see Section 3.3.5
in main text). A copula is a general transformation of a multivariate interaction
on to a scaled space with each axis in the range [0–1]. A copula function then
converts uniform samples along each axis into the required dependence struc-
ture. A variety of such functions are available. Figure B3.2.1 shows a variety of
copula samples in the space of two beta-distributed variables with rank correl-
ation of 0.8. Kurowicka and Cooke (2006) describe the UNICORN software
that both supports the specification of interactions in high-dimensional prob-
lems and generates consistent samples using copulae. Similar facilities are pro-
vided in the RAMAS Risk Calc software of Ferson (2002) (See Software
Appendix).

B3.2.3 Running Monte Carlo simulations on parallel computers
The possibility of carrying out Monte Carlo experiments involving large num-
bers of runs for a wider range of models has been made much easier in recent
years by the availability of larger and cheaper parallel computers. Some parallel
high-performance computers are still very expensive and dedicated to very large-
scale modelling activities such as global circulation models, but there has also
been the possibility of linking together cheap consumer PC machines into what is

Figure B3.2.1 Copula samples for two beta-distributed variables with rank correlation 0.8 using
the Gauss (left), Clayton (middle) and Frank (right) copulae
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often called a Beowulf cluster, after the Beowulf project which was one of the
first implementations of such a machine by Donald Becker and Thomas Ster-
ling at the Goddard Space Flight Center in Greenbelt, Maryland in 1993. My
own group starting using parallel computations on INMOS “transputer”
boards (a processor that was specially designed for parallel computation in the
1980s, with its own parallel language called Occam) and have used Beowulf-
type parallel machines for many years, running a Linux operating system. Such
systems are easily set up for Monte Carlo experiments, at least when a model
can be run on a single processor and its memory without the need for
extensive memory paging that will slow the run down dramatically. Since the
generation of the random inputs is often a relatively fast process compared
with running the model itself, it is common to set up the parallel system in a
master/slave configuration. The master keeps track of the runs being made and
generates new sets of parameter values, the slaves run the model itself before
sending the required outputs back to the master with a flag to say it is ready
for a new run.

An interesting variation on the master/slave technique is when the slaves are
actually networked PCs being used for other day-to-day purposes (such as word-
processing, email, web surfing etc). There is now software available that allows a
master to send model runs out to any machine on the web set up to accept them,
where the job will run in the background until it is finished. The time it takes will
depend, of course, on how fast the machine is, and on what other tasks the
machine is being used for (how many spare clock cycles are available). The
CONDOR software, for example, allows this on both Windows and Linux
machines (see Software Appendix). The most famous projects to have used
this type of distributed processing are the SETI (search for extra-terrestrial intel-
ligence) that processes blocks of radio-astronomy data to search for signs of
structure that might be due to intelligent emissions, and the climateprediction
.net project (see Section 3.1) that has made possible tens of thousands of realisa-
tions of a global climate model. Both have used thousands of user machines
worldwide, but systems such as CONDOR can equally be used on a network of
local machines. More generally, in the future, the international GRID1 comput-
ing initiative will allow the use of both distributed computing resources and
databases of the GRID network, available to any single user as if they were
attached to their own machine.

Box 3.3 Choosing a random number generator

B3.3.1 The background to pseudo-random number generators
For most environmental modelling problems the random number generators
provided in a programming language will be adequate for Monte Carlo sam-
pling. It is worth just noting, however, that no random number generator

1 See the Open GRID Forum at www.ogf.org.
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implemented on a digital computer will be completely random – they are actu-
ally usually generated deterministically from a mathematical algorithm designed
to give a long return period between sequences of the same numbers. Some gener-
ators will, however, be more random than others in the sense of giving a longer
return period before repeats. The generation of random numbers has been the
subject of extensive research in applied mathematics. Some guidance about
methods to use is provided in Park and Miller (1988) and Press et al. (2007).

Many of the random number generators that are found as intrinsic functions
in programming languages are based on the Linear Congruential Generator
(LCG). These are very easily implemented and fast, having the form:

Ji = MOD(C + A*Ji − 1/M) [B3.3.1]

where C, A and M are constant integer parameters and i is an index. The ran-
domness of this routine depends very much on the values of these constants.

A floating point uniform random variate in the range [0–1] can then be calcu-
lated as:

RAN = FLOAT(Ji)/FLOAT(M) [B3.3.2]

An integer random variate in the range [JMIN − JMAX] can be simply calculated as:

J = JMIN + (1+ JMAX − JMIN)*Ji/M [B3.3.3]

The outputs from some LCG routines, including some used as standard routines
for some programming languages, have been queried as having poor randomness
properties, in particular exhibiting serial correlation. This suggests that they may
not be suitable for generating large Monte Carlo samples. Press et al. (2007) give
a table of suitable values for the constants, for example, M = 217728, A = 84589
and C = 45989 giving a generator that will overflow at 235 generated numbers.
They also give a routine for additional shuffling of the outputs of a basic LCG or
for using a combination of three different LCGs to improve randomness.

A modern random number generator that is widely used is the Mersenne
Twister which, with suitable parameters, can give an enormous period before
repeated numbers of 219937 − 1 (Matsumoto and Nishimura, 1998; see also
Software Appendix).

It is sometimes useful to take advantage of the fact that random numbers are
not totally random to check results for different runs in debugging programs.
Many random number generators require the specification of a “seed” number
at initialisation (for example, an initial value of Ji in the LCG outlined above).
Using the same seed number should generate exactly the same sequence of ran-
dom numbers because of the way in which they are generated deterministically.
As noted in the main text, this can be useful in comparing results from different
runs but not very useful if you forget to change the seed when making multiple
runs in parallel to increase the number of samples (and I have to admit to men-
tioning this because I have wasted some very large sets of samples and very long
computer runs in this way by forgetting to change the seed value for the random
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number generator when running the same program on parallel machines as a
way of generating more realisations – moral, be very careful about initialisation
of Monte Carlo realisations!). A common technique to ensure that each run has
a different sequence of random numbers is to take a function of the modulus of
the computer clock time at the start of a run as the seed.

More on the realisation effect of different sequences of pseudo-random
numbers will be found in Section 3.3.3 in the main text.

Box 3.4 Fuzzy representations of uncertainty

Fuzzy approaches for uncertainty estimation are based on the theory of fuzzy
sets pioneered by Lotfi Zadeh in the 1960s. Fuzzy sets can be used to describe
variables that cannot easily be precisely defined. Instead of a definitive answer as
to whether a value belongs to a certain set of values that would result from
defining that set of values as a crisp set, the value is given a membership value
(with a range from 0 to 1) to reflect the degree of membership of the set in a
given context. It is easy to think of many environmental examples where a
fuzzy definition might be useful (see, for example, the example of hydraulic
conductivity in Figure 3.9 of the main text).

These differences and imprecisions can be described by fuzzy sets (see Figure
B3.4.1) in a way that might be useful in such an analysis. It is worth noting
straightaway that these definitions do not have to be represented by triangular
membership functions; any shape appropriate to the problem can be used (see,
for example, Figure B3.4.2). It is also worth noting that membership function
values are not equivalent to probabilities. To make this distinction clear, the
outcomes from a fuzzy analysis are often called relative possibilities.

A fuzzy set can therefore be used to represent a variable (or measurement or
model parameter or model input data) subject to uncertainty in a rather flexible
way. There are now a number of good texts that describe the application of fuzzy

Figure B3.4.1 Triangular membership function for a fuzzy variable (e.g. temperature is
“hot”), with �-cut at degree of membership 0.5
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methods to scientific and engineering calculations (e.g. Bardossy and Duckstein,
1995; Ross, 2004; Siler and Buckley, 2005). Fuzzy methods can also be used in
multicriteria model evaluation (see Section B3.4.4 below).

B3.4.1 Fuzzy sets and degrees of membership
We will consider a variable x that can take on a universal set of values X. Then,
the fuzzy set of x is denoted by the degree of membership or membership
function. µ(x):X = [0,1]. Outside the range of current possible values of x the
membership value (or possibility measure) will be zero. Inside that range it will
have a positive real value up to a maximum of 1. Fuzzy sets that attain a mem-
bership value of 1 somewhere within the range of x are called normal sets. In
most cases we expect the set of membership values of x to be convex (i.e. that a
line drawn from any two points in the set is always within the set, as in all the
cases of Figures B3.4.1 and B3.4.2), but it is quite possible for the set to be
non-convex, as in Figure B.34.3. Fuzzy numbers are normal, convex, fuzzy sets
representing a variable within some range to varying degrees.

Figure B3.4.2 Trapezoidal membership function for a fuzzy variable, with �-cut at degree of
membership 0.25

Figure B3.4.3 Non-convex membership function for a fuzzy variable, with �-cut at degree
of membership 0.75
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Evaluation of the different degrees of possibility for a set can be achieved by
taking α-cuts across the range where the membership function has positive
values (as in Figure B.3.4.3). This can also be done for the joint variation of fuzzy
variables in two or more dimensions. Cuts with higher values of α are always
subsets of cuts with lower values of α. Thus consider two sets A and B in the
range of the variable x:

B will be a subset of A of higher possibility whenever

µA(x) ≤ µB(x) [B3.4.1]

The notions of the complement, union and intersection of sets from the theory of
crisp sets have their counterparts in fuzzy set theory. They are useful in combin-
ing different fuzzy sets or numbers in different ways. Thus, for a normal fuzzy
set, the complement of the set A with membership function µA(x) is denoted as Ā
(i.e. the set “not A”), defined by:

µĀ(x) = 1 − µA (x) [B3.4.2]

So that the complement of an element of A with membership µA(x) =0.63 will be
a value of 0.37.

B3.4.2 Union and intersection of fuzzy sets
The union of two overlapping fuzzy sets A and B, denoted as A ∪ B (equivalent
to a logical OR operator), is given as

µA ∪ B(x) = max[µA(x),µB(x)] [B3.4.3]

The intersection of two overlapping fuzzy sets A and B, denoted as A ∩ B
(equivalent to a logical AND operator), is given as

µA ∩ B(x) = min[µA(x),µB(x)] [B3.4.4]

Figure B3.4.4 shows the result of the union and intersection operator for com-
bining two trapezoidal degree of membership measures for a single fuzzy
variable. Note that in this case the union operator produces a non-convex
membership function.

Other intersection and union operators have been introduced, for example, by
Dubois and Prade (1980). A general weighted mean operator scheme can also be
implemented over k multiple measures with set of membership values
{µ1, µ2, µ3, . . . µk} such that:

µ-β = �w1µ
β
1 + w2µ

β
2 + w3µ

β
3 + . . . + w µβ

k

�
k

wi

	
1/β

[B3.4.5]

Figure B3.4.5 shows the results of combining fuzzy membership values for
two fuzzy variables, each of which is described by a trapezoidal membership
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function, using the union, intersection and weighted mean operators
respectively.

B3.4.3 Model outputs as functions of fuzzy input variables: the extension
principle
Another concept that is useful in the working with fuzzy sets is the idea of
mapping of one set to another using the extension principle. The extension
principle states that if the fuzzy set A is defined by the membership values of a
discrete set of points in X, {x1, x2, x3, . . . xn} with membership values {µ(x1),
µ(x2), µ(x3), . . . µ(xn)}, then for any other fuzzy set f(A) that is a function
of A, membership will be defined by the membership values
{µ(f(x1)), µ(f(x2)), µ(f(x3)), . . . µ(f(xn))}. If more than one element of X is mapped
to the same element of f(A), then the maximum of the membership grades is

Figure B3.4.4 Union (left) and intersection (right) operators applied to combine two trap-
ezoidal fuzzy measures (in short and long dashed lines) for the same variable. The
horizontal axis represents the value of the variable, the vertical axis the degree of
membership, the resulting degree of membership in each case is shown as the
solid black line

Figure B3.4.5 Union (left), intersection (centre) and weighted mean (left, with w1=1, w2=0.5 and
� = 0.5) operators applied to combine two trapezoidal fuzzy variables. The hori-
zontal axis represents the value of the two variables, the vertical axis the resulting
degree of membership
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taken to define f(A). More details of the operators used in working with fuzzy
sets can be found in an accessible form in Ross (2004).

For the purposes here, we will need to know how the possibility of an input
variable or parameters to an environmental model might propagate through into
the predictions of a model output, and how that output might be evaluated with
respect to some observations that might also be represented by a fuzzy set. The
model is here equivalent to f(A) in that it can be treated as a function that maps
the uncertain inputs and parameters, A= {A1, A2, A3 . . . AN}, to some output set,
M(A), that is the response surface for the quantity of interest in the model space.
By the extension principle, therefore, the membership of any element of M(A)
should be given the value of the joint membership of the elements of A. In
general, of course, M(A) will be a nonlinear mapping, so that there is an issue of
how to carry out this mapping across the range of all the elements of A, in much
the same way as there is an issue of how to carry out the integrations required
for a statistical estimation of model uncertainty. The computational issues of
exploring model spaces, using Monte Carlo methods, are dealt with in Box 3.2.

The result of this process will be a map of model outputs in the model space,
each associated with a fuzzy possibility measure dependent on the degree of
membership values for all the inputs used to drive the model. As noted in Section
3.3 of the main text, in principle, this model space can be filled in this way; in
practice, we may only have a sample of values. We may then be interested in
producing a summary of the model uncertainties based on the fuzzy measure
associated with the outputs in much the same way as producing probabilistic
prediction limits.

There are two ways of doing this. One is very similar to the probabilistic
bounds in that we can form a cumulative possibility function for an output of
interest by treating the possibilities as weighting functions in a way analogous to
probabilities (compare Equations B3.1.2 and B3.2.1). Thus, for a discrete
number of N samples:

F(M(A) < X) =

�
N

i = 1

µ(A | M(A) < X)

�
N

i = 1

µ(A)

[B3.4.6]

In words, this equation states that to find the cumulative possibility that a model
prediction is less than some value X, we must take the sum of all the associated
membership functions for which the model output is less than X, scaled by the
total membership for all X. F(M(A) < X), as with a cumulative probability func-
tion, will have the range [0–1] as X goes from the minimum to the maximum
value of the variable of interest.

We can also look at summarising the fuzzy outputs in terms of α-cuts of the
model space. Samples in the model space are here associated with both a value of
a model output variable and its associated fuzzy membership value or possibility
with range [0–1]. We can then look at the range of the output values in the crisp
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set defined by a threshold value of membership α. When α is large (close to 1) we
would expect the range of outputs to be constrained, but as the α-cut is made
with progressively lower values of α then more and more of the output values will
be included. When α = 0 all the support of the fuzzy set, as expressed in terms of
that output variable, will be included (see Figure B3.4.2 where α = 0.25 is shown).

B3.4.4 Sets of fuzzy rules
We can generalise the propagation of fuzzy inputs to fuzzy outputs as a represen-
tation of possibilistic uncertainties to sets of fuzzy rules (see, for example, Cox,
1994; Bardossy and Duckstein, 1995; Ross, 2004; Siler and Buckley, 2005).
Fuzzy rule systems can be specified deductively or generated by induction from
sets of observations. Such rule systems define a general formulation for fuzzy
reasoning that is now used in control systems for a wide range of applications as
a way of dealing with potential uncertainties in operation of the system. The
basic fuzzy rule has the form:

If <input> is <condition> then <output> is <result>

Here <input> can be defined quite generally as information about the system of
interest. It can be a fuzzy variable defined by a membership function (with
crisply defined values as a special case). It can be a linguistic or “string” variable
(‘hot”, “very hot”). It can even be an estimate of a probability. For the case of
any rule that has a non-zero truth value, the match to a defined <condition> will
result in a new fuzzy variable, the <result> that defines the <output> condition. A
variety of operators can be used in implementing systems of such rules, including
union and intersection operators or α-cuts. It is also possible to add “hedging”
functions to cases where additional uncertainty is expected, for example where
an <input> is an estimated probability, but where the estimate of probability
might itself have some uncertainty associated with it.

A fuzzy rule system may consist of a large number of such rules, all leading to
a fuzzy estimate of a final decision or control variable. At this point it may be
necessary to “defuzzify” the variable in order to take an action. There are also a
number of defuzzification operators, but the most commonly used is to take an
expected value (weighted average) across the range of the variable where the
degree of membership is non-zero. For example, defuzzifying the result of the
union operator shown in Figure 3.4.4 gives an expected value of the variable of
1.165. Defuzzification, of course, eliminates any uncertainty in the outcome
which, in the context of this book, seems somewhat misguided so no examples
will be given here! An example of using fuzzy rules to evaluate the uncertainty in
catchment phosphorus export to Lakes Sempach and Baldegg in Switzerland is
given by Schärer et al. (2006).

Fuzzy rules have also been used in assessing the performance of environmental
models. Blazkova and Beven (2002), for example, used a rules-based system to
assess the performance of a flood frequency model for assessing dam safety at a
site in the Czech Republic. Three different fuzzy performance indicators were
built into an 18-rule system with a final defuzzification to obtain a measure of
possibility for a single model run. Many runs of the model with different
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parameter sets were made within the GLUE framework (see Section 4.5) and a
possibility measure for each run was used to weight the prediction for each of the
models for estimating the uncertainty in flood frequency characteristics over all
models with non-zero possibility.
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Simulation with historical data
available

The only relevant thing is uncertainty: the extent of our knowledge and ignorance.
The actual fact of whether or not the events considered are in some sense determined,
or known by other people, and so on is of no consequence.

Bruno De Finetti, 1974

A model structure for which parameters cannot be estimated is useless.
Jan Spriet, 1985

4.1 Model calibration and model conditioning

In the previous chapter, we addressed the problem of looking at the sensitivity and
uncertainty of model predictions for cases where there were no historical data avail-
able. The results then are always conditional on the assumptions made prior to run-
ning the model and it was noted, particularly for complex model applications,
how difficult it can be to be sure about some of those prior assumptions of model
choice, ranges or distributions of parameter values and boundary conditions. Thus,
while we may often be required to carry out purely a sensitivity analysis or forward
uncertainty analysis, the problem of uncertainty estimation becomes much more inter-
esting when there are some data available to be able to evaluate model performance
and carry out an inverse problem of estimating model values (and in some cases,
perhaps, of input uncertainties as well). Model calibration by history matching of an
observed sequence of data has been the saving grace of most mechanistic environ-
mental modelling. It allows a demonstration of success in modelling capability and it
allows some degree of faith in model predictions. While, as we will see, there may still
be no “right” answer to the inverse problem, at least we can use the data available to
refine and hopefully constrain our estimates of the uncertainty associated with any
model predictions.

Until relatively recently, many environmental modellers did not worry about the
uncertainty associated with the inverse problem. Traditionally, the inverse problem
was treated as a problem of find the “best” or “optimal” parameter set in a given
model structure in terms of reproducing the available observations. At least for
deterministic models, the optimal parameter set would then be used for prediction
without allowing for any uncertainty. Models with stochastic components are
sometimes used to allow for a random element in model prediction, but usually only
evaluated around the single optimal model.
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This is despite the widespread experience in using environmental models that the
optimisation problem is not well posed. A huge amount of effort has been expended
trying to develop more efficient global search algorithms, and multi-criteria optimisa-
tion methods, and response surface visualisation methods to allow interactive manual
searches in finding an optimum model, but there simply may not be a clear optimum to
be found in real applications of complex environmental models with limited data. In
fact, if we think a bit more deeply about the inverse problem then the whole concept of
an optimal model must be considered to be misguided. We know that, because of the
multiple sources of uncertainty in the modelling process, any optimisation is going to
be affected by errors in the data interacting with the model structure which, as we
know only too well, can only be an approximate representation of the actual pro-
cesses. Thus, any “optimum” model can only be conditionally optimal. It will be
conditional on the particular set of calibration data (and their errors), the search
algorithm used and the criteria used to evaluate the model performance. Change any
one of these conditions and we would expect that there is a real possibility of finding a
different optimal model. The idea that we can move towards “the” representation of
an environmental system was shown in the discussion of Chapter 2 to be an aim
underlying a strong realist philosophical stance rather than a real practical possibility.

Optimisation has, however, been central to nearly all approaches to model calibra-
tion, with the exception of some Monte Carlo set theoretic approaches (e.g. Spear and
Hornberger, 1980; Hornberger and Spear, 1981; Beck and Halfon, 1990; Keesman
and van Straten, 1990; van Straten and Keesman, 1991; Spear et al., 1994) where
some set of models that are acceptable simulators of the system of interest is identified,
an approach that may also be generalised to make use of fuzzy measures of
acceptability (e.g. Franks et al., 1998; Aronica et al., 1998; Blazkova et al., 2002).
Algorithms such as genetic evolution (including the shuffled complex evolution
algorithm of Duan et al., 1992; Sorooshian et al., 1993 and Gan and Biftu, 1996);
simulated annealing (Tarantola, 2005; Sen and Stoffa, 1995); Monte Carlo Markov
Chain (see Box 4.3); or mixtures of these techniques (e.g. Vrugt et al., 2003) have
taken advantage of the greater computing power available now to make more exten-
sive searches of the parameter space and try to ensure that some global optimum
parameter set is found rather than one of perhaps many local optima.

My own experience suggests that the concept of an optimum parameter set is
severely compromised in most mechanistic models of environmental systems (Beven,
1989, 1993, 1996, 2002b, 2006a). Most such models are sufficiently complex that
there may be many different sets of parameter values within a model structure that
may be consistent with the data available for calibration (see, for example, Figure 1.3).
There may, indeed, be many different model structures that may be compatible with
the data (see also Draper, 1995, within a more traditional statistical framework).
Certainly, one of those models/parameter sets will be the “optimum” according to
some measure of goodness of fit or likelihood, but that optimum may not survive
application to a different data set or different measure of goodness of fit. Parameter
sets that give almost equally good fits may also be scattered throughout the parameter
space. This is the equifinality concept discussed earlier (Beven, 2006a). The implica-
tion is that these modelling problems, while of great practical import, are not well
posed (and may even be pathological) in terms of the available techniques for finding
an optimum model.
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We do have to remember that a primary reason why environmental modelling has
been dominated by the concept of the optimal model in the past is that the number of
runs that could be made with a model was limited by the available computing power.
It clearly still is in many modelling domains, but it is also now often possible to carry
out more complete searches of the model space to find out just how complex it is, how
it changes with different performance measures and where there may be good models,
almost as good as the apparent “optimal” model, in different parts of the space. In
high-dimensional spaces the search may still be partial, but it is still possible to look
much more widely than before to find models that might be useful in prediction.

This extended computing capability has led to the development of several different
approaches to the inverse or calibration problem that allow the uncertainties in the
modelling process to be accounted for more explicitly. Here we will look at the
strengths and weaknesses of five different methodologies; an optimisation approach
based on weighted regression (Section 4.2); formal Bayesian statistical methods (Sec-
tion 4.3); the multi-objective optimisation approach of Pareto optimisation (Section
4.4); the rejectionist approach of the Generalised Likelihood Uncertainty Estimation
method (Section 4.5); and fuzzy set methods (Section 4.6). A final section discusses the
important question of the information content of data in conditioning prediction
uncertainties (Section 4.7).

4.2 Weighted nonlinear regression approaches to model
calibration

There is a class of model parameter calibration methods that are related to statistical
inference of parameter values using regression techniques. The approach is similar to
that used in trying to find empirical relationships between two or more sets of data
using regression by fitting a parametric function such as the linear equation y = ax + b,
where y is the dependent variable, x is the independent variable and a and b are
parameters. The degree of fit provided by such an equation is normally expressed in
terms of a correlation coefficient with tables for significance of the value of the correl-
ation that depends on the number of (x,y) pairs of values used in the fitting. Linear
regression of this type is taught in most introductory statistics classes. Higher-level
courses extend to multiple regression with several independent variables and several a
parameter values, and the possibility of fitting nonlinear relationships by making
transformations of the original variables, such as the power law relationship y = cxa

which can be fitted as ln(y) = aln(x) + b with c = exp(b).
Most models used in environmental prediction are nonlinear, but where those

models have been based on process equations the nonlinearities are not always easily
transformed to a linear equation in this way. In this case the techniques of nonlinear
regression can be used. The techniques for using nonlinear regression in environ-
mental applications have been developed over many years and have resulted in exten-
sive experience of what works and what does not that is beyond the scope of this
book. However, a new book by Mary Hill and Clare Tiedeman (2007) gives an excel-
lent introduction to the application of nonlinear regression to the calibration of
groundwater models and to various software packages that can be used in other
applications (see Software Appendix at the end of this book).

The essential basis of nonlinear regression is the same as in the simple linear case, to
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minimise an objective or cost function (usually based on the squared errors between
model predictions and observations) subject to some constraints. Unlike the methods
that follow in this chapter there is still an underlying idea in the use of regression
techniques that there is an optimal model to be found. Thinking about the objective
function as a response surface in the model space, minimising the squared errors is
therefore equivalent to trying to find the point of lowest “elevation” on the whole
surface. Uncertainties in the calibration of the model parameters and of the residual
errors are then considered relative to the optimal model that minimises the objective
function. Finding the very lowest point might depend on where you (or your search
algorithm) start from and the smoothness of the surface. Some of the techniques used
in the application of nonlinear regression are designed to help to ensure that the true
optimum is found. In complex model problems this may not be easy, however, and it is
generally good practice to repeat the process a number of times using different initial
values.

The groundwater model calibration problem addressed by Hill and Tiedeman
(2007) is a good problem with which to demonstrate the weighted nonlinear regres-
sion technique. This is because, in setting up models of groundwater systems, there are
often conflicting requirements between a desire to represent the full complexity of the
system and the limited number of observation sites that are usually available to inform
the calibration process. Some of these types of problems can involve very large num-
bers of calculations in space and time and rather long computer run times even with
modern-day resources. Where transport of pollutants is an issue, transport codes may
be added to the predictions of the flow processes (some examples of conflicts between
different models’ representations of groundwater systems at the potential radionuclide
disposal sites at Yucca Mountain in the US and Sellafield in the UK have already been
mentioned in Section 1.7). In Denmark, twelve large-scale regional groundwater
models have been set up, covering most of the country, for water resource manage-
ment purposes (Henriksen et al., 2003). In this case, many hundreds of observation
and water supply wells have been used to help the model calibration, but there are not
always so many observation points available. In general, as is so often the case in
environmental models, the perceived complexity of the system is much greater than
can be identified from the data.

In a distributed groundwater model (and other distributed models in which
the parameters might vary in space), this gives rise to the problem of how to represent
the complexity in terms of the grid or element scale parameters of the model. In
principle, every element could have a different parameter value (hydraulic conductiv-
ity; storage coefficients; dispersion and degradation coefficients if pollutant transport
is being considered). There may be hundreds or thousands of elements, so there are
potentially hundreds and thousands of parameters. Where there is information from
observation wells, we might have some idea of the geological structure and the tem-
poral changes in water table or piezometric head, but the number of observations will
be very much smaller than the number of elements. We should expect, therefore, to
be able to identify only a relatively small number of parameter values to reflect the
complexity of the real system.

There are a number of ways of doing this. One way is to use a smaller number of
zones, based on a conceptualisation of the structure, within which parameter values
are considered constant (Hill and Teideman, 2007). A better method appears to be to
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use an interpolation function or regularisation function between observed values. This
approach has been used widely in geophysical inversions (though often without any
assessment of uncertainties). This is the approach taken in the PEST calibration and
uncertainty estimation software (Doherty, 2005; Moore and Doherty, 2006; see also
Box 4.1). Other types of interpolation could also be used, for example by assuming
that a parameter is related to some other more easily mapped characteristic. The aim
in each case is to reduce the dimensionality of the model space to be searched by still
representing at least some of the local characteristics of the flow domain.

4.2.1 Choosing the cost (objective) function

Having decided on a parameterisation, the first requirement of the weighted regression
approach is to define the objective function to be used. In fitting the simple linear
regression mentioned above, y = ax + b, it is normal to assume that the errors in pre-
dicting the value of each observation are independent, additive and normally distrib-
uted (Gaussian) so that the objective function is calculated as the sum of the squared
errors. Thus, the model that is actually fitted is

y = ax + b + ε [4.1]

where ε is the error term. The cost or objective function, J, is then simply calculated as:

J = �
N

i = 1

(yi − ŷi)
2 [4.2]

where ŷi is the predicted value at the ith observation and N is the number of observa-
tions. Other simple equations can be found in any basic statistics text to calculate the
correlation coefficient, the variance of the estimates of the parameters a and b and the
variance of any predicted value ŷ given any value of the independent variable x.

The simple linear regression can be thought of as a special case of the more general
problem of inferring parameter values given a nonlinear model and errors that are not
necessarily independent (though the assumption of normally distributed errors is usu-
ally retained). In fitting an environmental model to data, we have to take account that
not all the observations might be equally informative in the model calibration process.
Some of the observations may be more uncertain in the measurement than others;
some may show a high correlation to other measurements made nearby in space or
closely in time. Weighted nonlinear regression allows this generalisation in which each
residual contributing to the objective function is therefore weighted by an inverse
function of the variance–covariance matrix. For the case where independence of the
errors can be assumed, the equivalent of [4.2] will then be:

J = �
N

i = 1

Wi (yi − ŷi)
2 [4.3]

where Wi is a weighting coefficient. For cases where the prediction errors cannot be
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assumed independent the weighting coefficients are best represented as a matrix.
Equation [4.3] is then a special case in which only the diagonal elements of the matrix
are non-zero (see Box 4.1 for details of the more general case).

Once an appropriate objective function has been chosen, it is minimised by search-
ing for the lowest point on the equivalent response surface in the model space defined
by the axes of all the parameters to be calibrated. In the case of simple linear regres-
sion, this optimum can be found analytically (the equations will be found in any
statistics text that deals with linear regression). This is not the case for nonlinear
environmental models. In this case, one of the available “hill-climbing” algorithms
must be used to do this (though in the case of minimising a weighted sum of squared
errors we wish to climb down the response surface to find the lowest valley rather than
the highest peak). Hill and Tiedeman (2007) give details of using the Gauss–Newton
gradient method but many other methods are available (see, for example, Tarantola,
2005). All such algorithms will work best where the response surface is smooth with a
well-defined peak (not always the case in fitting environmental models, which is why
we also consider formal Bayesian and GLUE approaches to model conditioning later
in this chapter).

4.2.2 Evaluating parameter and prediction uncertainties

Once the optimum model has been found, then the theory of nonlinear regression
allows uncertainties to be estimated for both parameters and model predictions.
Details of how to do so will be found in Box 4.1. It is worth stressing two points here,
however. The first is that the easiest way of estimating such uncertainties is by linearis-
ing the shape of the response surface of the objective function around the optimum.
For a linear model, and assuming a Gaussian distribution of errors, such calculations
provide analytically correct confidence limits for both parameter estimates and pre-
dicted variables. For a nonlinear model this is not necessarily the case but evaluating
the true shape of the response surface in the vicinity of the optimum will take many
more model runs and will therefore be computationally much more expensive, even
using a guided search (e.g. Christiansen and Cooley, 1999). We will meet the same
problem in discussing variational methods for data assimilation in the next chapter.
Simple linear confidence limits on either parameter values or predicted variables
should consequently be treated as only approximate and used with care in any further
work.

The second point is that the user of such methods needs to recognise the difference
between confidence intervals and prediction intervals for any predicted variable. In the
theory of nonlinear regression, the estimation of confidence limits is based on assum-
ing that the model is true and estimating the error of the model predicting the true
response of the system. In considering what might be actually observed at a prediction
point, it is therefore necessary to add an error component associated with the meas-
urement error of an observation to obtain the prediction limits (again see Box 4.1 for
more details).
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4.2.3 Assessing the value of additional data

One important way of using prediction uncertainties is in assessing the value of new
observations. Prediction uncertainties can be calculated for any model-predicted vari-
able, not just the points for which there are observations available. We would expect
therefore that, as we move away from an observation point in either space or time, the
uncertainty associated with the predictions will get greater. Observation–prediction
statistics can be used to assess the effect on the prediction uncertainties of adding
or taking away certain observations (see Hill and Tiedeman, 2007, Section 8.3;
Tiedeman et al., 2004).

This process can also be reversed to pose the question as to what new observation
would have the greatest value in constraining the model parameter estimates. This is a
technique called predictive calibration (or pre-posterior prior analysis, see Freeze et
al., 1992) and essentially proceeds by assuming that an observation is known, with
measurement error, at different potential measurement sites (but before any additional
measurements are actually made) and then re-running the analysis to determine the
potential effect of each new measurement on the model parameter and prediction
uncertainties.

4.3 Formal Bayesian approaches to model conditioning

In the formal Bayesian approach to the inverse problem, prior estimates of parameter
distributions are modified on the basis of a likelihood measure reflecting how well a
model reproduces the available observations to calculate a posterior distribution of
the parameters, including any co-variation between parameters in obtaining good fits
(see Box 4.2 for full details). We can define Bayes equation in a form that, given a
set of feasible models or hypotheses, and evidence or observations O, then the
probability of any models M given O is given by

p(M|O) = p(M) p(O|M) / C [4.4]

where p(M) is some prior probability defined for all feasible models, p(O|M) is the
likelihood of simulating the evidence given the models, and C is a scaling constant to
ensure that the cumulative of the posterior probability density p(M|O) is unity. Bayes
equation is effectively a formal learning strategy. Every time a new set of data is made
available, the equation can be used to update the current distribution and determine
a new posterior distribution. It can also be used to choose between different model
structures using Bayes factors, and to combine the predictions of multiple model
structures using Bayesian model averaging (see Box 4.2).

In this approach, the initial prior estimates of the parameter distributions will be
chosen subjectively, but, as more informative data is added to the analysis and the
posterior distribution is updated, the effect of the prior distribution will be reduced
and the posterior distribution will approach the true joint distribution of the param-
eters – at least in ideal cases. The approach is therefore the most objective of those
considered here to obtain valid estimates of joint probability distributions of param-
eters and residual model errors. Only in this way can we obtain the probability of
predicting an observation conditional on the choice of a particular model and, as
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Lindley (2006) and others suggest, probability is thought by many statisticians to be
the only way to deal with uncertainty even if it might be difficult to find the correct
form of the likelihood (see O’Hagan and Oakley, 2004).

The approach has become increasingly popular in a wide range of disciplines includ-
ing ecology (Ellison, 1996; Omlin and Reichert, 1999; Wikle, 2003; Clark et al., 2005;
Clark, 2006; van Oijen et al., 2006); environmental reconstruction (Toivonen et al.,
2001); groundwater modelling (Marin et al., 1989; Sohn et al., 2000; Neuman, 2003;
Feyen et al., 2003); water quality modelling (Dilks et al., 1992; Jackson et al., 2004),
air quality modelling (Bergin and Milford, 2000); sea level rise projections (Patward-
han and Small, 1992); soil remediation (Dakins et al., 1996); flood frequency analysis
(Cunnane and Nash, 1971); flood forecasting (Krzysztofowicz, 2002a,b); ensemble
climate predictions (Tebaldi et al., 2005; Min et al., 2007); and rainfall-runoff model-
ling (Bates and Campbell, 2001; Vrugt et al., 2003; Engeland et al., 2005; Kuczera et
al., 2006; Kaheil et al., 2006; Marshall et al., 2004; Yang et al., 2007). Bayes methods
have a number of advantages: that information about parameters and other uncertain-
ties can be used to convey prior information about the system; that the formal likeli-
hood structure can be used to determine the information content of different data and
to demonstrate the relative importance of different sources of uncertainty; that differ-
ent model structures can be compared and combined; that once an appropriate likeli-
hood function has been found then the process of applying Bayes equation is objective
and coherent (coherent in this context means that, as more data is added, the solution
should converge to the true solution in a well-defined away); and that it provides a
predictive distribution of any variable of interest in terms of probability: the prob-
ability of predicting an observed value conditional on the model (e.g. Krzysztofowicz,
1999).

With all these advantages it might be puzzling to the reader as to why it is worth
considering any other methods. Certainly, where the assumptions of the analysis are
valid, and where the information content of the available data is such that the pos-
terior distributions are not unduly affected by the subjectivity of choosing the priors,
these advantages are likely to hold. Unfortunately, for many environmental models,
this is not clearly the case and the definition of a formal likelihood measure can lead
to misleading results if the assumptions on which it is based are not valid (see the
discussions of Beven and Young, 2003; Beven, 2006a; Beven et al., 2008). At the heart
of the issue is the question of whether the various sources of uncertainty can be
represented adequately by a formal error structure. This structure, if valid, will define
an appropriate likelihood function. For environmental models, subject to both input
and model structural errors, it will generally only be possible to represent the com-
plexity of the errors approximately. But this then means that the resulting likelihood
function will also only be approximate, the resulting parameter estimates may be
biased (see, for example, Beven et al., 2008) and some of the advantages might be
lost.

From a statistical point of view, Kennedy and O’Hagan (2001) argue that it may be
possible to represent model structural error by means of a model discrepancy function;
while O’Hagan and Oakley (2004) suggest that the complexity of observed error
series in some modelling problems does not mean that we should not use a formal
likelihood approach, only that finding an appropriate likelihood function might be
difficult. The problem is then that the more complex the model of the errors used,
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including in some cases for multiple sources of error, the more the number of statistical
(non-physical, -chemical or -biological) parameters that must be estimated and, the
greater the number of parameters, the greater the possibility of interaction between
the actual model parameters and the statistical parameters.

It will be seen in what follows that, in some cases of complex error structures, the
method can still be applied by using a transformation of the modelling errors such that
the assumptions of a simple formal likelihood measure are more closely approximated,
but it will also be argued that other less formal methods might still be useful in cases
where the choice of a formal likelihood would be incoherent (in this context, would be
expected to lead to biased or over-conditioned estimates of the model parameters).

4.3.1 Formal likelihood measures

The attraction of the Bayes method is in the objective definition of a likelihood func-
tion, and all the advantages of the method follow from this. The likelihood function
follows from assumptions made about the sources of uncertainty, as evaluated either
from strong prior information or from the differences between observed and predicted
variables. The very simplest formulation is the additive error model (as seen earlier in
formulating weighted nonlinear regression):

O(x,t) = M(Θ, I, x, t)+ε(x,t) [4.5]

where O(x,t) is some observation, M(Θ, I, x, t) is a model prediction dependent on the
vector of model parameters, Θ, and vector of input variables, I (both generally
assumed known perfectly), and ε(x,t) is the residual error, often assumed to take a
normal distribution and to be independent for each measurement. Box 4.2 shows how
more complex forms of error structure can be developed into likelihood functions. The
likelihood function can be used to calculate the probability of predicting O(x,t) condi-
tional on the model M(Θ, I x, t), if the assumptions about the error model are correct.

As already noted in the last section, the “if” is critical in that statement. There are
two issues that arise in defining a formal likelihood measure in this way. The first is
whether the effects of all the sources of error in the modelling process can be subsumed
into a simple model of the errors (even if very often the lack of information about
different sources of error forces us to make such an approximation). The second is
what effect such an assumption will have on the estimation of parameter values and
prediction uncertainties if it is not a good approximation. More complex assumptions
can be included in this formulation, for example error in variables and model
discrepancy functions (eg. Kennedy and O’Hagan, 2001).

The Bayesian formal likelihood approach has been shown to be useful in many
situations. It can also be shown, for hypothetical “environmental” examples, that it
can converge rapidly on the true parameter values and prediction uncertainties (since
these are known in hypothetical cases – see, for example, Mantovan and Todini,
2006). The advantages are perhaps not quite so clear in applications to real systems
where we do not know the answer, and where input and boundary condition errors
and model structural errors might be an important source of uncertainty in the model
predictions (Beven, 2006a). Or, more correctly, if we use a formal likelihood without
specific knowledge of the nature of such errors, any effects of input and model
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structural error will have to be assumed to be implicitly included in the additive (or
multiplicative) residual ε(x,t).

As a simple thought experiment in this respect, consider a plant growth model that
is intended to predict the observed responses of the plants to different concentrations
of CO2 in a greenhouse. Control of the gas concentrations is good, but imperfect
mixing in the greenhouse means that the measured concentration (here an input to the
model) is subject to error. Careful measurements show that this error has zero mean
and a normal distribution (with some autocorrelation that dies away after a few
minutes). In this situation, this information could be used to provide an uncertain
input to the model (using the techniques of Chapter 3) but the growth model is non-
linear in its responses to the CO2 concentration, with complex interactions between
carbon sequestration, stomatal controls, soil water content, ABA concentrations,
temperature and other factors. Thus, even if there was no model structural error
(unlikely with a plant growth model, see Landau et al., 1998, or the outcomes of the
Project for the Intercomparison of Land Surface Schemes reported by Lohmann et al.,
1998 and Nijssen et al., 2003), the output uncertainty arising from the input
uncertainty would no longer be Gaussian, and the diffusive effects of the plant
response to change would increase the autocorrelation length of the error series sig-
nificantly. Since the nonlinear dynamics of the model would affect the processing of
the input error in different ways under different conditions it might be difficult to find
a suitable consistent transformation of the error into a form suitable for a formal
likelihood (see Boxes 4.1 and 4.2 for more information about transforming errors).

Real modelling situations might be still more complex. There is then significant
possibility for calibrated parameter values to compensate for different types of error,
perhaps in complex ways. An obvious example is where it is attempted to adjust an
input series in calibration, such as rainfall inputs to a rainfall-runoff model (e.g.
Kavetski et al., 2005; Kuczera et al., 2006). At the end of a long dry period it is
common for rainfall-runoff models to under-predict stream discharges during the
wetting up period. An increase in the rainfalls for the storms during this period will
result in smaller model errors (in a nonlinear way), but might also increase soil water
storage too much, but this could be compensated by reducing rainfalls in later storms
to reduce model errors. The estimated input errors may then be only partially related
to real errors in the estimate of rainfall over the catchment area. To make the problem
even more intractable, the compensatory effect may be dependent on the particular
sequence of events or realisation of the different types of errors, such that asymptotic
assumptions are not justified. Certainly, we generally find in optimisation studies that
optimal parameter sets are dependent on the period of calibration data used. This has
been demonstrated for the case of a hydrogeochemical model (MAGIC) to the long-
term Birkenes catchment in Norway by Larssen et al. (2007). Different calibration
periods resulted in reasonably well-defined parameter distributions using an MC2

search see Box 4.3 but in some cases the posterior parameter distributions for different
calibration periods were non-overlapping.

There does not appear to be a way around this problem without making some
strong (and often difficult to justify) assumptions about the nature of the different
sources of error. What it does imply, however, is that many different representations
(model inputs, model structures, model parameter sets, model errors) might be con-
sistent with the measurements with which the predictions are compared in calibration
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(allowing for the errors associated with those measurements). Equifinality is endemic
to this type of environmental modelling. This would be the case even if we could be
sure that we had a set of equations that were a good representation of the processes
involved (the hypothetical “perfect model” of Beven, 2002a, noting that such perfec-
tion will never be achievable) but, as is normally the case, only limited information on
which to estimate the effective parameter values of those equations in any particular
application. The effect of all the complications that arise from different interacting
sources of error will generally be that, if they are treated implicitly in an oversimplified
likelihood function, the information content of the residuals will be overestimated.
This is quite easily shown in hypothetical examples, where even slight modifications to
the assumptions can be shown to lead to inaccurate parameter estimates (e.g. Beven et
al., 2008).

In fact, there is an additional interesting issue that arises when we consider not only
the suitability of an error model for a particular model run but whether that error
model might be applicable generally in the model space. The structure of an error
series is often only checked after the model with the highest likelihood has been found.
It is definitely a good idea to make such a check but the fact that that model has the
highest likelihood was dependent upon the choice of likelihood model in the first
place. The assumptions of the likelihood model might prove to be a good description
of the actual residuals but we can never be sure that a different likelihood function
might not be more appropriate in another part of the model space. We might also find
that the assumptions are not valid. A recent case can be found in Feyen et al. (2006),
where a post-analysis check showed that the wrong likelihood function (ignoring
residual autocorrelation, see Figure B4.2.2) had been used so that the parameter esti-
mates were almost certainly biased. There are many other similar cases to be found in
the literature. Lesson: always check that the actual residuals conform to the model
assumed to define the likelihood function (for hydrological examples of good practice
in this respect see Engeland et al., 2005, Case Study in Section 4.3.3 below, and Yang
et al., 2007).

4.3.2 Markov Chain Monte Carlo search (MC2)

The Bayes approach, when properly formulated with a valid likelihood function, does
have some nice features of a learning strategy as new data become available to refine
the posterior distribution. It does still require that the posterior distribution can be
integrated in the model space each time the likelihoods are updated. This is effectively
a matter of searching the model space to characterise the likelihood response surface,
and in particular those areas of high likelihood which dominate the posterior distribu-
tion. We have already seen how such searches can be difficult in complex high-
dimensional model spaces. However, using formal Bayes likelihoods has the advantage
that there are certain expectations about the shape of the surface (at least if the
assumptions that underlie the error model are valid).

This has led to the development of strategies for the efficient identification of the
likelihood surface. One class of widely used algorithms is called Markov Chain Monte
Carlo search (MC2). There is now a wide range of MC2 methods but all aim to choose
samples with a density that varies through the model space, dependent on the likeli-
hood. Regions of high likelihood are therefore sampled more frequently, areas of low
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likelihood much less frequently. In this way, the number of (sometimes expensive)
runs of the model to characterise the surface is hopefully minimised (see the density-
dependent sampling illustrated in Figure 3.5B). The aim of MC2 methods is to set up a
Markov chain of random samples whose marginal is that of the required distribution,
which is here the likelihood response surface in the model space. Details of this type of
sampling algorithm are given in Box 4.3.

4.3.3 Case study: Assessing uncertainties in a conceptual water
balance model (Engeland et al., 2005)

In this study, Engeland et al. (2005) apply a simple water balance model, WASMOD,
to the catchment area of Lake Mälaren in Sweden. The catchment area has 30 moni-
tored sub-catchment areas from six to 4,000 km2 of which 25 were simulated in the
study. WASMOD has six parameters, two of which control snow accumulation and
melt, one controls actual evapotranspiration, one the drainage of a fast-flow compon-
ent and the last the drainage of a slow-flow component. The model is applied with a
monthly time step with the aim of providing monthly discharge predictions.

The main reason for choosing to present this as a Case Study is the care with which
the authors have assessed the nature of the simulation residuals. From past experience
they know that the residual errors in hydrological models tend to be heteroscedastic
(changing variance with changing magnitude of the prediction). They therefore start
by transforming the residuals in order to stabilise the variance. The results of using a
square root transform are shown in Figure 4.1 which shows the scaled residuals plot-
ted for all 25 catchments and all simulated months. Some apparent tendency for
variance to change with predicted flow remains (and possible bias at low flows) but
there is no strong heteroscedasticity. The authors then develop a likelihood function
based on assuming a Gaussian residual distribution, similar to Equation [B4.2.5] in
Box 4.2 but truncated at zero, with zero autocorrelation. The last assumption was
satisfactory for most of the catchments, but in about half the sample of basins the lag 1
autocorrelation was significant, even if not large (Figure 4.2). The autocorrelation

Figure 4.1 Plot of residuals (monthly time steps) against predicted streamflow in all time steps in
all 25 basins after transformation using a square root transform

Source: Engeland et al., 2005, Copyright ©2005 IAHS Press
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would normally be much stronger for hydrological models with shorter than monthly
time steps in which case a likelihood function that accounts for autocorrelation should
be used (see, for example, Yang et al., 2007). Under these assumptions, the parameter
distributions are estimated using the Metropolis–Hastings MC2 algorithm, tuned to
have acceptance rates for new samples of about 40–50% for each parameter. The
resulting prediction uncertainties can then be assessed for each basin (e.g. Figure 4.3).

The results show that, in common with very many hydrological modelling studies,
there are some non-stationarities in the modelling process that may be due to either
model structural input error or input error (e.g. around months 32–37 in Figure 4.3).
From the results presented, the periods of model failure are not consistent across the
basins. This results in a general widening of the residual variance to compensate,
which means that the prediction uncertainties are generally high. Again, this is not
unusual in this type of study.

In this study, the authors make no attempt to try to take separate account of input
error or model structural error in their study. For hydrological examples of trying to
do so in a Bayesian framework see Kavetski et al. (2005), Kuczera et al. (2006) and
Marshall et al. (2004). The latter also provides an example of Bayesian model averaging
over several model structures.

4.4 Pareto optimal sets

Compromise in model parameter calibration will be an issue in many environmental
modelling applications. There are often different requirements, goodness of fit or
likelihood measures for a model to satisfy and, almost certainly, different measures
will suggest different optimal parameter values. Thus, trying to improve the fit on
one measure might compromise the fit on another. This is the classical problem of
multi-objective evaluation or decision making.

One interesting approach to multi-objective calibration, that allows that it may not

Figure 4.2 Autocorrelation for different lags (monthly time steps) with approximate significance
bounds for all 25 basins

Source: Engeland et al., 2005, Copyright ©2005 IAHS Press, reproduced with permission
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be necessary to decide on a single “optimal” model in the case of conflicting perform-
ance measures, is the Pareto optimal set approach. The Pareto optimal set is a set of
models with different parameter sets that all have values of the various performance
measures that are not inferior to any models outside the Pareto set. The models in the
set are said to dominate those outside the set. This is most easily illustrated by a simple
example involving two performance measures, both of which are required to be min-
imised in calibration. The models in the Pareto set will be found along a line, called the
Pareto front, that reflects the trade-off between one measure and another (as shown
earlier in Figure 1.2). In higher dimensions with more than two performance measures
the Pareto front will be a complex surface but the principle will hold. In the case of
only a single measure, then the Pareto set necessarily reduces to a single optimal
parameter set. Thus, this is an approach that allows for some of the uncertainty
in finding parameter values that are consistent with the available observations and
performance measures used, but is still aimed at optimality.

The approach has been used in hydrological applications by, for example, Yapo et
al. (1998); Gupta et al. (1998, 1999); Madsen (2003); Khu and Madsen (2005) and
Madsen and Khu (2006). Khu and Madsen (2005) introduced a preference-ordering
scheme that has a stronger concept of dominance than Pareto dominance. This gives
preference to solutions that are Pareto optimal in sub-space combinations of the mul-
tiple objective functions. Madsen and Khu (2006) provide a demonstration of this
approach in comparing two distributed hydrological models in an application to a

Figure 4.3 Observed and simulated monthly streamflows for the Stabbybäcken basin. Estimated par-
ameter uncertainty a) and total uncertainty b) based on an additive (square root
transformed) Gaussian error likelihood function

Source: Engeland et al., 2005, Copyright ©2005 IAHS Press, reproduced with permission
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Danish catchment: one considering only the groundwater; the other a joint soil-
groundwater model with more parameters. The models show quite different
behaviour in the Pareto space (Figure 4.4). In particular, the joint model was able to
provide better solutions (lower RMSE) for runoff predictions, while the groundwater
model did better on predicting well levels despite the more complex recharge
calculations considered in the joint model.

Finding the Pareto front in a high-dimensional model space, however, is a compu-
tationally challenging problem (though not as challenging as trying to completely
characterise a multidimensional response surface throughout the model space).
McIntyre et al. (2005) give a demonstration of the complexity of the trade-offs
between objective functions in a semi-distributed water quality model (INCA-N).
There have been a number of attempts to develop efficient search methods for identify-
ing the Pareto front developed, but it seems that none has shown consistent advan-
tages over all others over a wide range of test problems. A recent approach that
combines a number of methods into a single search strategy seems to hold some
promise for this type of optimisation (see Vrugt and Robinson, 2007a). But it is still a
form of optimisation since it recognises only the models identified as being on the
Pareto front as potential models of the system. In doing so, it is rejecting all the models
that are close to the Pareto front, and which might have been at the Pareto front with a
different period of calibration data or different realisation of the errors in the model
inputs. In the next section we consider a methodology, based on the equifinality thesis,
that takes a wider view of models that might be useful in prediction.

Figure 4.4 Pareto fronts for two distributed models of the Karup catchment, Denmark, using two
criteria based on the root mean square errors in estimating observed stream runoff
and well levels

Source: Madsen and Khu, 2006, Copyright ©2006 IAHS Press, reproduced with permission
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4.5 Generalised Likelihood Uncertainty Estimation

With statistical methods of model calibration, and the Pareto optimal set approach,
there is an underlying presumption that the data are adequate to identify an optimal
model or Pareto optimal set of models (strictly this need not be the case for Bayesian
methods that aim to identify the complete multi-parameter posterior distribution, but
the oversimplification of likelihood functions often leads to this result (see, for
example, discussions by Beven and Young, 2003; Beven, 2006a, Beven et al., 2008)). A
fundamental problem with all optimisation techniques in applications to environ-
mental models is that the optimal (or Pareto optimal) parameter sets are not always
optimal when new performance measures or prediction periods are used. Indeed, there
may be many parameterisations, differing in parameter values and/or structure that
might produce simulations that are acceptably consistent with the available observa-
tions, especially if we make proper allowance for error in both model inputs and
observations. In Section 1.5 this was referred to as the concept of equifinality to
suggest that this is a generic problem, not just a problem of the difficulty of finding the
true optimum. It is a result of accepting that, unlike traditional statistical inference, we
cannot reliably assume that we have the correct model structure and therefore only
need to find the true model parameters.

An acceptance of model equifinality is, in part, a recognition of possible model
structural and input data errors. It allows for the fact that the formal model of equa-
tions that we are using to represent the system of interest may be, at times, a poor
approximation to the perceptual model of the relevant processes (which itself may
have limitations in its understanding and expression of how the system works). It also
allows for the possibility that, even if we had a correct formal model, it may be
difficult to specify accurately all the boundary conditions required to run the model.
There is, however, not that much that can be done about model structural error since,
if there were obvious improvements to be made, then there would be no reason why
this should not be done (at least within the bounds of computational feasibility).
There are many studies in the environmental literature that report on the difficulties
of finding a single “true” model to represent a process. One recent ecological
example that looked at multiple model structures as well as parameter sets is a study of
simulating pollen dispersion in Kuparinen et al. (2007).

It seems that model structural error is something that will be endemic to most
environmental models. We must live with it. This then suggests that an alternative
approach to model calibration is required to allow for the effects of structural and
data errors, even if these errors cannot necessarily be represented explicitly (as would
be required in the formal Bayesian approach of Section 4.3). One alternative is to
search for the set of models that are, in some sense, acceptable as simulators of the
available data. This is the basis of various set theoretic approaches to model calibra-
tion. In fact model conditioning is a better phrase to describe a process that tries to
find only those models that are acceptable or behavioural from the set of all possible
models. The set of acceptable models will generally be much larger than the Pareto
optimal set of the last section since we might expect that there will be many different
models that are not on the Pareto front but which still give behavioural simulations.
This larger set should hopefully be more robust to changes in calibration period or
input data error, if, at least, the model is a reasonable representation of the system and
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not missing essential processes that might be important in prediction. Such approaches
have generally been based on some form of Monte Carlo sampling from the popula-
tion of feasible models, and, after making a run with each sample model, a qualitative
or quantitative evaluation as to whether that model is accepted as behavioural or
rejected as inconsistent with the data available in a way similar to the HSY generalised
sensitivity analysis of Section 3.5.4.

This is the basis for the GLUE methodology. This was used for the first time by
Beven and Binley (1992) in an application to a hydrological model, taking the possibil-
ity of multiple behavioural models into account. Predictions in this method are based
on the set of behavioural models, weighted according to a likelihood measure that
reflects how each model in the set has performed in calibration (see Box 4.4). Unlike
the formal Bayesian likelihood methodology, the likelihood measure, which expresses
a degree of belief in the predictions for each behavioural model, need not be based on a
formal model of the errors, though the use of an informal or subjective likelihood
measure will not then produce a probability of predicting an observation conditional
on the model. It is, however, possible to use the formal likelihoods of Box 4.2 in GLUE
in the special case that the formal assumptions can be shown to be valid (see
Romanowicz et al., 1994, 1996, for example applications). As the name suggests,
GLUE is generalised in that respect. The GLUE methodology, used with a formal
error model and likelihood, should then give essentially identical results to the formal
Bayesian likelihood approach (see Beven et al., 2008).

The GLUE approach has both advantages and disadvantages relative to the formal
Bayesian likelihood method. An advantage is that the implicit handling of the model-
ling errors (which are effectively weighted along with the model predictions) does not
force assumptions about the error structure that might be wrong and lead to over-
conditioning. A further advantage is that model deficiencies are not allowed to be
compensated by an error model. Thus, where a model cannot reproduce the behaviour
of the real system as a result, for example, of a non-stationary bias, the failure will be
evident in the prediction limits not being able to bracket the available observations in
any consistent way. A disadvantage is that there is no theory to say what type of
likelihood measure might be appropriate in different modelling applications or for
different types of data, or how to decide between a model that is behavioural and one
that will be considered non-behavioural (but see Section 4.5.3 for further discussion of
this point). A second disadvantage is that, unless a formal representation of error
structures is included as a model component (with its own parameters to be identified
within GLUE), there is no real possibility of disaggregating the total error into
different components or consequently of estimating the probability of predicting an
observation. However, equally with formal methods, such a disaggregation might not
be very secure when some sources of error are not included in the analysis or the
strong formal assumptions are not valid. Formal does not always equate to correct.

4.5.1 The basis of the GLUE methodology

Conceptually, the basis of GLUE is very simple and can be summarised in terms of a
number of decisions as follows:

1 Decide on an informal (or formal) likelihood measure or measures for use in
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evaluating each model run, including the rejection criteria for a non-behavioural
model which will given a likelihood of zero. Ideally this should be done before
running the model, taking account of possible input and observation errors
(Beven, 2006a).

2 Decide which model parameters and input variables are to be considered
uncertain.

3 Decide on prior distributions from which those uncertain parameters and
variables can be sampled.

4 Decide on a method of generating random realisations of models consistent with
the assumptions in steps 1 and 2.

These decisions are, of course, similar to any of the other methods considered in this
chapter. It is in decisions on generating realisations and the choice of likelihood meas-
ure and rejection criteria that the user has more flexibility in the GLUE methodology.
In choosing a method of generating realisations, for example, since each model run
will be associated with a likelihood weight, the response surface in the model space
can be represented by structured or uniform random sampling (as shown earlier in
Figure 3.5A) rather than attempting to generate density-dependent samples as is done
in the MC2 or other importance sampling techniques. For simple response surfaces,
density-dependent samples can be much more efficient, but for complex surfaces that
efficiency gain becomes less significant. If it is possible to make sufficient runs of a
model, a uniform random sampling strategy plus likelihood weight approach might be
better at identifying scattered regions of behavioural simulations on the response sur-
face of a complex model space. The search might still be refined as the sampling
progresses, such as using the regression tree method of subdividing the model space on
the basis of the density of behavioural models suggested by Spear et al. (1994) (see
Figure 3.10).

Even though the GLUE methodology will provide equivalent results to the Bayesian
approach when used with a formal likelihood function, the approach remains contro-
versial when used with informal measures and implicit error handling (see, for
example, the critical views of Montanari, 2005, and Mantovan and Todini, 2006).
This is because of the lack of a theory for deciding which models should be considered
behavioural and which should be rejected (see Section 4.5.2 below) when an explor-
ation of a model space will reveal those models that are “best” in some sense of
performance in comparison with the available observations and those that provide
obviously unacceptable predictions but no clear demarcation between these sets. If a
formal error model can be defined, then the likelihood associated with a given par-
ameter set will provide a direct estimate of the probability of predicting an observation
using that parameter set (see Box 4.2). Thus, the likelihood provides a direct measure
of the expected model performance and all models that are not useful in prediction
should have a very low or near-zero likelihood (though never actually zero), and a
threshold decision is not required.

If input error or model structural error is significant, however, a formal likelihood
will tend to over-condition the difference in likelihood between the very best models
and those that have a rather similar time series of errors or error variances (Beven et
al., 2008). The crucial factor here is whether the real information content of the data
for real applications rather than ideal problems can be properly reflected in a formal
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likelihood, or at least in the simple assumptions often made in applying Bayes
methods. The question of information content is discussed in more detail in Section
4.5.5, where the reader will find a case for using common-sense model evaluations and
informal likelihood methods within the GLUE methodology.

4.5.2 Deciding on whether a model is behavioural or not

Monte Carlo-based set-theoretic methods for model calibration and sensitivity analy-
sis have been used in a variety of disciplines for some 50 years. The first use in
geophysics was perhaps that of Press (1968) where a model of the structure of the
earth was evaluated in the light of knowledge about 97 eigenperiods, travel times of
compressional and shear waves, and the mass and moment of inertia of the earth.
Parameters were selected randomly from within specified ranges for 23 different
depths which were then interpolated to 88 layers within a spherical earth. Ranges of
acceptabilty were set for the predictions to match these observational data. These were
applied successively within a hierarchical sampling scheme for the compressional,
stress and density parameters. Five million models were evaluated of which six passed
all the tests (although of those three were then eliminated as implausible because of
having a negligible density gradient in the deep mantle). The “standard model” of the
time was also rejected on these tests. Subjective choices were made both of the sam-
pling ranges for the parameters and for the multiple limits of acceptability. Those
choices are made explicit, and are therefore open to discussion (indeed, Press discusses
an additional constraint that might be evoked to refine the results to a single model
but notes that “while reasonable, it is not founded in either theory or experiment”,
p. 5233).

It was only in the late 1970s that the Hornberger, Spear and Young generalised
sensitivity analysis (see Section 3.5.3) started to recognise explicitly that there might
not be a unique behavioural model. However, in some of the applications of this
technique they found that it was difficult to have any clear objective ways of defining
the threshold between behavioural and non-behavioural models. It will then often be
the case that multiple runs of the model with different parameter sets reveal a range of
performances from good to bad but with no clear differentiation of behavioural
models from non-behavioural models.

This is easily illustrated by taking a large sample of all feasible models in the model
space and evaluating the predictions of each model in terms of some likelihood meas-
ure that should reflect some relative degree of belief in each model. We can plot
likelihood against individual parameter values to get an idea of how performance
varies through the model space (see Figures 4.5 and 4.6). These plots have often been
referred to as dotty plots, in which each dot represents one run of the model. The dotty
plot represents a projection of points on the likelihood response surface, one point for
each model run, projected onto each parameter axis. While such plots do not give a
good impression of the complex interactions between parameters that control whether
a model gives good or bad results, they do show quite clearly where there are values of
each parameter associated with the highest likelihood runs. Very often, this is across
the range sampled while, for any particular value of a parameter there will usually be a
complete range of performance from the best models to those that would be con-
sidered as non-behavioural by any criterion. Empirically the best models must be
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considered behavioural (they are the best we have as yet and if we had other reasons to
reject them we should have done so). The worst models will also usually be poor
enough to reject as not useful in prediction. But where should the line be drawn so as
to retain only those models that will be useful in prediction? How can an objective
criterion for model rejection be defined? This is analogous to the problem of deciding
on falsification criteria for models as hypotheses (a rather Popperian view; see
Tarantola, 2006).

It is not, however, a simple question. It requires consideration of all the possible
causes of model error. In the end, however, the answer must be related to the phrase
“useful in model prediction”. One interpretation of useful is that the range of model
predictions should bracket the observations. Beven (2006a) has suggested an
approach, not based directly on the choice of an informal likelihood but rather on the
specification of limits of acceptability for all the observations of interest prior to
making any model runs. The limits of acceptability should take account of measure-
ment errors, incommensurability errors and the likely effects of input errors on the
model runs, since, as noted earlier, even the perfect model might not be behavioural if
driven by poor input data.

Thus, a model prediction M(Θ,X,t) will be classified as acceptable if:

Qmin(X,t) < M(Θ,X,t) < Qmax(X,t) for all observed values Q(X,t) [4.6]

Figure 4.5 Dotty plots of informal likelihood measure against different parameter values for the
van Genuchten soil moisture characteristic parameters in a study of predicting recharge to
a chalk aquifer. The best models of the realisations simulated by uniform sampling in the
model space are at the top

Source: Binley and Beven, 2003, reproduced with permission of Soil Science Society of America
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Within the range, for all observations Q(X,t), a positive weight could be assigned to
the model predictions, M(Θ,X,t), according to its level of apparent performance. The
simplest possible weighting scheme that need not be symmetric around the observed
value, given an observation Q(X,t) and the acceptable range [Qmin(X,t), Qmax(X,t)], is
the triangular relative weighting scheme (Figure 4.7A).

This is equivalent to a simple fuzzy membership function or relative likelihood
measure for the set of all models providing predictions within the acceptable range. A
core range of observational ambiguity could be added if required (Figure 4.7B). Other
types of functions could also be used, including the beta function that is defined by
Qmin, Qmax and two shape parameters (Figure 4.7C). These weights for individual data
points can be combined in different ways to provide a single weight associated with a
particular model. These weights can be used within the GLUE framework in forming
prediction limits, reflecting the performance of each behavioural model resulting from
this type of evaluation. Models that predict consistently close to the observational
data will have a high weight in prediction; those that predict outside the acceptable

Figure 4.6 Dotty plots of a coefficient of determination in a pesticide transport model fitted to
observed atrazine concentrations in a large undisturbed soil column. The four parameters
are (top) an effective pore water velocity, a dispersion coefficient (the ranges for which
were previously determined by fitting bromide concentration data assumed to be a near-
conservative tracer on the same column), (bottom) a retardation coefficient and a degrad-
ation coefficient. The best models of the realisations simulated by uniform sampling in the
model space are at the top of each plot. The error bars shown on the bottom plots are
+/− 2 standard errors on the parameters estimated by nonlinear regression

Source: Zhang et al., 2006, reproduced with permission of Elsevier
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effective observational error will be given zero weight. In forming prediction limits in
this way, there is an implicit assumption (as in previous applications of GLUE) that the
errors in prediction will be “similar” (in all their complexity) to those in the evaluation
period.

Functions with infinite tails, such as the Gaussian distribution, would need to be
truncated at the acceptable limits, otherwise the weighting function will also have
infinite tails and a poor model would not be rejected, just given a very small likelihood
or membership value. This might not be important in statistical inference when seek-
ing an optimal model, but it is important in this context when trying to set limits for
acceptable models. For those models that meet the criteria of [4.6] and are then
retained as behavioural, all the methods for combining such measures available from
fuzzy set theory are available (e.g. Klir and Folger, 1988; Ross, 1995; Box 3.4). Other

Figure 4.7 Use of a triangular (A), trapezoidal (B) and beta (C) weighting function within the limits
of acceptability around a particular observation (here the observation is at 1.64 and
the limits of acceptability have been set at 1.2 and 2.2)

Source: Beven, 2006a, reproduced with permission of Elsevier
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possibilities of taking account of the local deviations between observed and predicted
quantities for the behavioural models might also be used.

This methodology gives rise to some interesting possibilities. If a model does not
provide predictions within the specified range, for any Q(X,t), then it should be
rejected as non-behavioural. Within this framework there is no possibility of a repre-
sentation of model error being allowed to compensate for poor model performance,
even for the “optimal” model. If there is no model that proves to be behavioural then
it is an indication that there are formal, structural or data errors (though it may still be
difficult to decide which is the most important). There is, perhaps, more possibility of
learning from the modelling process on occasions when it proves necessary to reject all
the models tried (see Section 4.5.9).

This then implies that consideration also has to be given to input and boundary
condition errors, since, as noted before, even the “perfect” model might not provide
behavioural predictions if it is driven with poor input data error. Thus, it should be the
combination of input/boundary data realisation (within reasonable bounds) and
model parameter set that should be evaluated against the observational error. The
result will (hopefully) still be a set of behavioural models, each associated with some
likelihood weight (Figure 4.8). Any compensation effect between an input realisation
(and initial and boundary conditions) and model parameter set in achieving success in
the calibration period will then be implicitly included in the set of behavioural models.

There is also the possibility that the behavioural models defined in this way do not
provide predictions that span the range of the acceptable error around an observation
(Figure 4.9). The behavioural models might, for example, provide simulations of an
observed variable Q(X,t) that all lie in the range Q(X,t) to Qmax(X,t), or even just a
small part of it. They are all still acceptable but are apparently biased. This provides
real information about the performance of the model (and/or other sources of error)
that can be investigated and allowed for specifically at that site in prediction (the
information on the quantile deviations of the behavioural models, as shown in Figure
4.9, can be preserved, for example). Time series of these quantile deviations might
provide useful information on how the model is performing across a range of
predictions.

This seems to provide a very natural approach to model conditioning and evalu-
ation that avoids making difficult assumptions about the nature of the modelling
errors other than specifying the acceptable effective observational error (and possible
input realisations). It also focuses attention on the difference between a model pre-
dicted variable (as subject to input and boundary condition uncertainty) and what can
actually be observed in the assessment of the effective observational error where this is
appropriate; potential compensation between input and structural error; and the pos-
sibility of real model failure. It also allows model evaluations across multiple criteria
to be handled naturally. It is also hoped, of course, that a set of models consistent with
all the limits of acceptability across all the different types of observations would be
found. Experience suggest that this will not always be the case.

There are certainly cases of the application of GLUE in the past where the prediction
distributions fail to encompass the observational data (perhaps for good reasons) and
model failure should have been considered (see, for example, the discussion of consist-
ent model error following a wrong prediction of the onset of snowmelt in rainfall-
runoff modelling of a small catchment in France in Freer et al., 1996, Figure 4.10).
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Figure 4.8 Histogram of predictions from a set of behavioural model runs in comparison with the
original limits of acceptability. Dotted lines indicate the likelihood function used in
weighting the model predictions for this observation. In this case the model predic-
tions include the observation

Source: Beven, 2006a, reproduced with permission of Elsevier

Figure 4.9 Histogram of predictions from a set of behavioural model runs in comparison with the
original limits of acceptability. Dotted lines indicate the likelihood function used in
weighting the model predictions for this observation. In this case the model predic-
tions do not include the observation, although all the model predictions are consistent
with the limits of predictability. In this case it appears that the model is always biased
with respect to the observations

Source: Beven, 2006a, reproduced with permission of Elsevier

128 Environmental Modelling



There have also been cases where all the models considered have been rejected. This
was the case for a distributed physically-based hydrological model in Parkin et al.
(1996), where all parameter sets failed 10 out of 13 limits of acceptability, and for the
applications of the TOPMODEL rainfall-runoff reported in Freer et al. (2003) and
Choi and Beven (2007). It was also the case for a model of critical loads of atmos-
pheric deposition in Zak and Beven (1999) and of a model of algal dynamics in Lake
Veluwe reported in van Straten and Keesman (1991). They had to increase their limits
of acceptability by 50% to obtain any behavioural realisations of the simplest model
tried, “to accommodate the apparent structural error” (p.175) (their application may
also have suffered from incommensurability and input realisation errors). An
approach based on rejection rather than optimisation also tends to focus attention on
particular parts of the record that are not well simulated or particular “outlier” errors.
In this way we might learn more about model performance (and, hopefully,
hypotheses about processes).

4.5.3 Equifinality, confidence limits, tolerance limits and
prediction limits

In statistical inference, a number of different types of uncertainty limits are usually
recognised. Hahn and Meeker (1991) for example suggest that confidence limits

Figure 4.10 GLUE prediction limits for discharge prediction for 1991 in the small Ringelbach experi-
mental catchment, Vosges, France. Likelihood weights based on global Nash–Sutcliffe effi-
ciency values for each behavioural model (>0.5). The effects of a mismatch in predicting
the start of snowmelt are obvious, together with wide uncertainty bounds during the
wetting period at the end of summer

Source: Freer et al., 1996, Copyright ©1996 American Geophysical Union, reproduced with permission
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should contain a specified proportion of some unknown characteristic of a population
or process (e.g. a parameter value); tolerance limits should contain some specified
proportion of the sampled population or process (e.g. the population of an observed
variable); prediction limits should contain a specified proportion of some future
observations from a population or process. These simple definitions, underlain by
probability theory, do not carry over easily to a situation that recognises multiple
behavioural models and the possibility of model structural error.

Whenever predictions of future observations are required, the set of behavioural
models can be used to give a prediction range of model variables as conditioned on the
process of model evaluation. The fuzzy (possibilistic) or probabilistic weights associ-
ated with each model can be used to weight the predictions to reflect how well that
particular model has performed in the past. The weights then control the form of a
cumulative density (possibility) function for any predicted variable over the complete
set of behavioural models, from which any desired prediction limits can be obtained
(see [B3.2.1] and Box 4.4 for details of how to construct prediction limits in this way).
The weights can be updated as new observations are used to refine the model evalu-
ation. This is the essence of the GLUE methodology (e.g. Beven and Freer, 2001) and
of other set theoretic approaches to model prediction. Figure 4.11 shows the results of
applying this technique in comparison with a formal Bayesian calibration for a hypo-
thetical rainfall-runoff example (Beven et al., 2007); Figure 4.12 for the real case of
estimating the breakthrough curve of atrazine pesticide in a large undisturbed soil
column in comparison with confidence limits based on nonlinear regression (Zhang et
al., 2006). Beven et al. (2006) go on to show how these uncertain estimates at the
column scale might be used to estimate pesticide transport at the field scale.

Note, however, that while it is necessary to assume that the behavioural models in
calibration will also be behavioural in prediction, this procedure only (at best) gives
the tolerance limits (in the calibration period) or the prediction limits over the
weighted simulations of any variable. These prediction limits will be conditional on
the choice of limits of acceptability; the choice of weighting function; the range of
models considered; any prior weights used in sampling parameter sets; the treatment
of input data error etc. All these components of estimating the uncertainty in the
predictions must, at least, be made explicit. However, given the potential for input and
model structural errors, they will not guarantee that a specified proportion of observa-
tions, either in calibration or future predictions, will lie within the tolerance or predic-
tion limits (the aim, at least, of a statistical approach to uncertainty). Nor is this
necessarily an aim in the proposed framework. In fact, it would be quite possible for
the tolerance limits over all the behavioural models to contain not a single observed
value in the calibration period (as in Figure 4.9), and yet for all of those models still to
remain behavioural in the sense of being within some specified acceptable error limits
for all observed quantities. The same could clearly be true in prediction of future
observations, even if the assumption that the models remain behavioural in prediction
is valid.

Similar considerations apply in respect of the confidence limits for a parameter of
the model. Again, it is simple to calculate likelihood-weighted marginal distributions
of any single parameter over all the behavioural models. The marginal distributions
can have a useful role in assessing the sensitivity of model outputs to individual
parameters (e.g. Hornberger and Spear, 1981; Young, 1983; Beven and Binley, 1992;
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Beven and Freer, 2001). For each of those models, however, it is the parameter set that
results in acceptable behaviour. It is quite possible to envisage a situation in which a
parameter set based on the modal value of each of the parameter marginal distribu-
tions is not itself behavioural (even if this might be unlikely). Any confidence limits
for individual parameters derived from these marginal distributions therefore cannot
have the same meaning as in traditional inference (in the same way that the use of
likelihood has been generalised within this framework). Marginal parameter quantiles
can, however, be specified explicitly.

4.5.4 Equifinality and model validation

Model validation is a subject fraught with both practical and philosophical under-
tones (see Chapter 2). The GLUE limits of acceptability approach provides a natural

Figure 4.11 GLUE prediction limits for the case of the Mantovan and Todini (2006) hypothetical
rainfall-runoff model where it is known that the model structure is correct. Observations
(o), dashed lines are 5% and 95% likelihood-weighted prediction limits over set of all
behavioural models, dotted lines are from a formal likelihood based on an additive Gaus-
sian error model with Bayesian updating

Source: Beven et al., 2007, reproduced with permission of Elsevier
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approach to model validation or confirmation, even when faced with a large set of
behavioural models. All the time that those models continue to provide predictions
within the range of a consistent definition of the limits of acceptability (allowing for
input data errors) they will continue to be validated in the sense of being behavioural.
When they do not, they should be rejected as non-behavioural.

There are clearly, however, a number of degrees of freedom in this process.
Stephenson and Freeze (1974) were perhaps the first in an environmental modelling
context to point out that the dependence of model predictions on input and boundary
conditions made strict model validation impossible for models used deterministically,
since data for initial and boundary conditions could never be known precisely. The
same holds within the methodology proposed here since whether a model is retained
as behavioural depends on a realisation of input and boundary condition data.

There is also the question of defining the effective observational error. The more
error that is considered allowable, the less likely it is that models will be rejected.
Clearly, the error limits that are used in any particular study should be chosen on the
basis of some reasoning about both the observed and predicted variables, rather than
simply making the error limits wide enough to ensure that some models are retained
(even if this might be considered an attractive possibility if otherwise all models are
rejected). Strict falsification is not, however, so very useful when, in virtually all
environmental modelling, there are good reasons to reject models when they are

Figure 4.12 A comparison of prediction bounds from GLUE and CXTFIT (which uses a nonlinear
regression method) after fitting parameters to atrazine pesticide breakthrough curves
from four large undisturbed soil columns. The model is the same in both cases. Dots are
observed data

Source: Zhang et al., 2006, reproduced with permission of Elsevier
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examined in detail (Beven, 2002a; see Freer et al., 2003; Choi and Beven, 2007, for
examples). What we can say is that those models that survive successive evaluations
suitable for the application are associated with increasing confirmation (even if not
true validation).

4.5.5 Equifinality and model spaces: sampling efficiency issues

We have noted that acceptance of the equifinality thesis implies that there will be the
possibility of different models from different parts of (a generally high-dimensional)
model space that will provide acceptable simulations, but that the success of a model
may depend on the input data sequence used. In one sense, therefore, the degrees of
freedom in specifying input data sequences will give rise to additional dimensions in
the model space.

There is, therefore, a real practical issue in working with the equifinality thesis of
sampling the model space to find behavioural models (if they exist at all). Success in
this endeavour will be dependent on the structure of where behavioural models are
found in the space. There is an analogy here with the problem of finding an optimum
model on a complex response surface in the model space. The problems of finding a
global optimum, rather than local optima, have long been recognised and a variety of
techniques have been developed to do so successfully. The equifinality thesis extends
the problem: ideally we require a methodology that both robustly and efficiently
identifies those (possibly arbitrarily distributed) regions of the parameter space con-
taining behavioural models, but with the additional dimension that success on finding
a behavioural model will depend on a particular realisation of the input variables
required to drive the model.

As in any identification problem, including modern MC2 methods (see Box 4.3) and
importance sampling methods (see, for example, Cappé et al., 2004), the search can be
made much more efficient by making strong assumptions about prior likelihoods for
individual parameters and about the shape of the response surface. This seems a little
problematic, however, in many environmental modelling problems when it may be
very difficult to specify prior distributions for effective values of parameters and their
co-variation. In the GLUE methodology, the usual (but not necessary) prior assump-
tion has been to specify a feasible range for each parameter, to sample parameter
values independently and uniformly within that range in forming parameter sets, and
to allow the evaluation of the likelihood measure(s) to condition a posterior distribu-
tion of behavioural parameter sets that reflects any interaction between parameters in
producing behavioural simulations. This is a simple, minimal assumption approach,
but one that will be very inefficient if the distribution of behavioural models within the
model space is highly structured or highly localised. It has the advantage that all the
samples from the model space can be considered as independent, although this
assumption is not invariant with respect to scale transforms of individual parameter
dimensions (e.g. from an arithmetic to a log scale). It is also worth noting that, where a
model is driven with different realisations of stochastically varying inputs or par-
ameter values, then each point in the model space may be associated with a whole
distribution of model outcomes.

There may be some possibilities of refining this type of search. The CART approach
of Spear et al. (1994), for example, uses an initial set of sample model runs to eliminate
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regions of the model space where no behavioural models have been found from further
sampling. This could, of course, be dangerous where the regions of behavioural
models are small with respect to the initial sampling density, though by analogy with
some simulating annealing, MC2 and other forms of importance sampling methods,
some safeguards against missing some behavioural regions could be ensured by
reducing sampling density, rather than totally eliminating sampling in the apparently
non-behavioural areas.

This problem will become less important as computer power increases, particularly
since it is often easy to implement this type of model space sampling on cheap parallel
processor machines. It certainly seems clear that, for the foreseeable future, computer
power will increase much more quickly than any changes in modelling concepts in
most domains of environmental science. Thus, we should expect that an increasing
range of models will be able to be subjected to this type of analysis. Preliminary studies
are already being carried out, for example, with distributed hydrological models such
as SHE (Christiaens and Feyen, 2002) and distributed groundwater models (Feyen et
al., 2001), albeit with reduced parameter dimensions.

4.5.6 Fuzzy measures in model evaluation

For the moment, let us assume that a mapping to the model outputs can be computed
everywhere in the model space. This is always true in principle, though in practice we
may be restricted by the number of runs that can be made to sample the space. On the
basis of past experience, or prior assumption, we can associate each sample output in
the model space with a measure of belief. This might be a formal likelihood measure, it
might be a fuzzy membership value. We then effectively have, for any output variable
from the model, a fuzzy set of possible model outputs. In model evaluation we will
want to compare these values with a measurement, O(x,t), which may also be repre-
sented as a fuzzy set. If these sets are non-overlapping, and all relevant sources of
uncertainty have been taken into account, then the model could be considered to have
failed as a hypothesis of how the system is working. If the sets are overlapping (as, for
example, in Figure 4.13), then one of several fuzzy operators (such as the union or
intersection operators of Box 3.4) can be used to determine the degree of membership
for those models that provide predictions within the range of the observation. Where
more than one observation is available for model evaluation, then there is a further
choice as to how to combine the evaluations that result in membership values greater
than zero. Intersection or union operators can be used to combine different rules (see
Figure B3.4.5 in Box 3.4), or a generalised mean operator can be used. The uncertainty
in the outputs can be assessed by taking nested a-cuts of the fuzzy set (see Box 3.4) or
by using the membership value resulting from combining the different model evalu-
ations as a possibilistic weighting function in GLUE. A recent application of fuzzy
measures within the GLUE framework is provided by Jacquin and Shamseldin (2007)
(albeit that they base their membership measures on a relative error variance of the
time series of residuals and a relative absolute error in runoff volume). Past uses of
fuzzy model evaluations within GLUE have included rainfall-runoff modelling
(Franks et al., 1998; Freer et al., 2003, 2004); flood frequency modelling (Blazkova
and Beven, 2002, Figure 4.13); soil nitrogen modelling (Schulz et al., 1999); water
quality modelling (Page et al., 2003, 2007); air quality modelling (Page et al., 2004);

134 Environmental Modelling



flood inundation modelling (Romanowicz and Beven, 2003; Pappenberger et al.,
2006c); and modelling latent heat fluxes (Franks et al., 1999).

4.5.7 Case study: Hypothesis testing models of stream runoff
generation using GLUE

Iorgulescu et al. (2007) provide an interesting example of the use of the GLUE meth-
odology in testing different hypotheses about the nature of runoff generation in the
Haute Menthue catchment in Switzerland. Their study follows on from that of Iorgu-
lescu et al. (2005) where a three-component mixing model had been used to estimate
different components of the stream hydrograph due to rainwater, soil water and
groundwater based on observations of silica and calcium concentrations. Piñol et al.
(1997) provide another example of hypothesis testing of this type in catchments of the
Prades mountains, Cataluña, but based only on trying to reproduce the stream dis-
charges. In the Haute Menthue catchment, a three-component hydrograph separation
was possible because of the quite different silica and calcium concentration character-
istics of the different water sources. The mixing model had more than the usual num-
ber of parameters because a characteristic time distribution for each component was

Figure 4.13 Fuzzy rule system for evaluating model performance across three different fuzzy evalu-
ation measures for a single model run. A combination of all the relative likelihood values in
the last column is used as a weight for the model predictions

Source: Blazkova and Beven, 2002, Copyright ©2002 American Geophysical Union, reproduced with permission
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also estimated. In this study only 216 out of two billion simulations were considered
behavioural on the basis of stringent limits of acceptability on the discharge and
predicted silica and calcium concentrations in the stream. The discharge predictions
from the model were very good (at least for a relatively short period of time for which
the most detailed concentration observations were available; see Figure 4.14A).

The hydrograph separations allowed inferences to be drawn about the sources of
runoff and in particular how the contribution of the soil water component increases in
a highly nonlinear way as the soil wets up over a sequence of rainfall events. The
results are, however, dependent on assumptions that the soil and groundwater

Figure 4.14 A) Rainfalls and predicted stream discharges on the Bois-Vuacoz sub-catchment,
Haute-Menthue, Switzerland, using the 216 behavioural models from Iorgulescu et al.
(2005). B) Measured oxygen isotope ratios in rainfall and streamflow. C) Predicted
fractional contribution of the soil water component also based on the 216
behavioural models

Source: Iorgulescu et al., 2007, Copyright ©2007 American Geophysical Union, reproduced with permission
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concentrations are changing only slowly. This means that the model cannot reproduce
the behaviour of a conservative tracer, here oxygen isotope ratios, without some add-
itional assumptions. Oxygen forms part of the water molecule so that the isotope
concentrations can be assumed to be conservative in the absence of strong fraction-
ation processes. Different sets of assumptions about the behaviour of the soil water
component and its interactions with the rainfall made up the different hypotheses to
be tested. Again, stringent limits of acceptability were set at three times the standard
laboratory analytical error for the isotope measurements. This was used as the effect-
ive observation error in applying the extended GLUE approach described above.
Multiple realisations for the additional model parameters were run using each of the
216 behavioural discharge simulations. The most successful hypothesis was that
which parameterises the additional mixing volumes for rainfall and soil water and the
conversion of rainwater into soil water but without allowing for solute uptake to
change the apparent characteristics of the rainfall in contributing to the stream
discharge (Figure 4.15).

Interestingly, the outputs from the analysis regarding the effective mixing volumes
associated with the direct precipitation and soil water components were rather
uncertain (Figure 4.16), despite this strong constraint on the predicted isotope concen-
trations in the streamflow. Valuable inferences, however, could still be made, despite
the uncertainty, since the effective mixing volumes for predicting the flow and the
isotope concentrations were quite different. The much larger volumes involved in
predicting the isotopes for both sources suggest that the prediction of the silica and
calcium concentrations is dominated by displacement of soil water already stored in
the system, while the rainfall component is subject to significant subsurface flow
pathways.

Figure 4.15 Measured and predicted oxygen isotope ratios in streamflow in the Bois-Vuacoz sub-
catchment using the most acceptable hypothesis (H3)

Source: Iorgulescu et al., 2007, Copyright ©2007 American Geophysical Union, reproduced with permission
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4.5.8 Variants on the GLUE methodology

There have now been more than 100 applications of the GLUE methodology reported
for a wide range of environmental modelling applications.1 Examples range from
studies of the parameters of hydrologic and hydraulic models (e.g. Lamb et al., 1998;
Blazkova et al., 2002; Pappenberger et al., 2006c,d), modelling land surface to atmos-
phere fluxes (Schulz and Beven, 2003); modelling flood frequencies (Blazkova and
Beven, 2002; Cameron et al., 2000; Cameron, 2006); to predicting the distributions of
forest fires (e.g. Piñol et al., 2004, 2007; Figure 4.17).

The methodology has instigated a number of interesting variations. One of the most
interesting is the dynamic identifiability analysis (DYNIA) of Wagener et al. (2003).
DYNIA allows that different parameters in a model might be more or less identifiable

Figure 4.16 Estimated mixing volumes (in mm) for A) soil water and B) direct precipitation
component for hypothesis H3

Source: Iorgulescu et al., 2007, Copyright ©2007 American Geophysical Union, reproduced with permission

1 A list of published papers may be found at http://www.glue-uncertainty.org.
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under different conditions during a model run. It can be set up as a recursive analysis
such that the marginal likelihood distribution for each parameter is updated after a
certain number of time steps, taking account only of the model likelihood evaluations
over a certain window of time. For those parameters that reflect short time-scale
processes in the system this might be chosen to be a short window. For those parameters
that reflect long time-scale processes this might be chosen to be a long window.

Figure 4.18 shows the results from such an analysis for three parameters of a simple
rainfall-runoff model, taken from Wagener et al. (2003). The “rc” parameter is evalu-
ated with a window of 101 daily time steps, the “bypass” parameter with a window of
41 days and the “rt(q)” parameter with a window of 11 days. The marginal distribu-
tions are updated after each time step in this case. The figures show quite clearly how
information on the values and feasible ranges of the different parameters varies over
time, and can be analysed to infer which combinations of parameters are important in
producing good fits for different parts of the time series.

Other studies using GLUE that have looked at how well different sets of model
parameters fit the observations under different conditions have been carried out by
Freer et al. (2002) and Choi and Beven (2007). These were also applications to
rainfall-runoff models. The first analysed different parts of the hydrograph separately
(rising limb, recession periods), using a variety of likelihood measures. The second
classified overlapping windows of the data set into wet, dry, wetting, and drying
conditions (15 classes in all), and looked at the behavioural parameter sets for the
different classes of periods. In both of these cases, no model parameter sets were found
that were behavioural for all the periods and all of the performance measures. All the
models could be rejected for one reason or another.

Figure 4.17 Box plots of the predicted proportion of large fires (>1000 ha) from 50 behavioural
simulations for six different study areas in California, France and Spain. Observed
mean values shown as horizontal lines to the right of each plot

Source: Piñol et al., 2007, reproduced with permission of Elsevier
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4.5.9 What to do if you find that all your models can be rejected?

This is a very interesting question from a number of points of view. Our experience
from a wide variety of GLUE applications is that it is often the case that, even with
quite relaxed rejection criteria, all the models tried can be rejected as non-behavioural.
More severe rejection criteria will, of course, increase the possibility of total rejection.
Sometimes we find that a model can do well on one criterion but not on another (for

Figure 4.18 Results of a DYNIA analysis applied to three parameters of a rainfall-runoff model
over a two-year period. (a) rainfall input over time; (b) changing likelihood distribution
for “rc” parameter; (c) and (d) same for “bypass” and “rt(q)” parameters. Grey scales
represent gradients of cumulative-likelihood distribution for increments of the par-
ameter value. Darker values are steeper gradients. Grey lines are 90% quantiles taken
from cumulative-likelihood distribution. Note how the effective behavioural range for
each parameter can vary over time

Source: Wagener et al., 2003, Copyright ©2003 John Wiley and Sons Limited, reproduced with permission
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an example where a model could not predict both runoff and sediment concentrations,
see Brazier et al., 2000). The Pareto set multi-criteria optimisation approach of Section
4.4 is one response to this, but we really would prefer to have models that are not
rejected on one or more criteria, even if we do not expect them to be consistently the
best on each criterion tried, i.e. we should worry if our “best” models are not adequate
in meeting reasonable expectations of acceptability in evaluation.

There are a number of responses to finding that all models are rejected:

1 Make sure that the model space has been searched adequately and that regions of
potential behavioural models have not been missed. This is an obvious first
response.

2 Make sure that the model is not failing because of deficiencies in the input data or
the observations with which the model is being compared. We would wish to
avoid making Type II (false negative) errors (rejecting a model that would be
useful in prediction because of input or observation errors). This requires a more
detailed analysis of the available data, and can be a rather ambiguous exercise,
since very often the evidence that the data might be in error comes from error in
the model predictions. The magnitude of the model residuals will also reflect the
model structural error. However, what we can say is that the potential for errors in
the data driving the model should be considered carefully.

3 Add a statistical error model or model discrepancy function to compensate for the
model deficiencies. In the formal Bayesian approach that uses such statistical
components, total model rejection will not normally occur since the statistical
error variance will expand to reflect the larger residuals associated with a failing
model. This will, of course, retain at least a semblance of predictability. It will also
allow an assessment of the ability of the model to explain the variance in the data,
relative to the remaining residual variance. This might still result in a conclusion
that the model is inadequate.

4 Find a better model. This, of course, is easier said than done, but such a conclusion
does suggest that there is some advantage in complete model rejection (rather than
simply compensating for model deficiencies with a statistical error). All the time
that a model is not rejected we do not really learn very much about whether it is
getting the right results for the right (or wrong) reasons. We may be making a Type
I (false positive) error (accepting an incorrect model as acceptable because of
uncertainties in the input or output data). As soon as a model is rejected, however,
we have to look more closely (at the data as well as the model structure) which
will generally lead to some improvement in the representation of the system. This
is a part of the learning process in modelling particular systems (Beven 2000;
2007). Additional data can be helpful in suggesting how model improvements
might be found. The need for local calibration of a transmissivity parameter to
match water table levels in the studies of Lamb et al. (1998) and Blazkova et al.
(2002) suggested that the rainfall-runoff model used could, in fact, be simplified in
their applications.

5 Use different models or parameter sets to predict different variables for which they
do give behavioural simulations. This is the fall-back strategy when all the par-
ameter sets tried with a given model structure do not satisfy the acceptability
criteria across all the observables with which they are compared. Ideally of course
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(as realists) we would like our models to simulate all the variables satisfactorily in
space and time but (as pragmatic realists) we realise that this might not always be
possible. Choi and Beven (2007) for example found that different parameter sets
were necessary to get behavioural models in wet and dry periods in predicting
stream discharge. They therefore provided a method for classifying a time step
into one or more classes of hydrological conditions and weighting the consequent
predictions using different parameter sets for each class. Pappenberger et al.
(2006d) found a similar problem in applying a flood inundation model to the
Alzette river in Luxembourg. It proved to be impossible to find parameter sets that
fit the historical flood inundation maps everywhere. They therefore suggested
using different parameter sets according to which type of prediction was required,
where the type of prediction was expressed in terms of the vulnerability of differ-
ent communities, or the road system. The result is a form of purpose-specific
uncertainty estimation using models that are behavioural for that purpose.

4.6 Fuzzy systems: conditioning fuzzy rules using data

Fuzzy rules are a non-statistical way of representing uncertainty. In Box 3.4, the
concept of using systems of fuzzy rules to represent the propagation of uncertainty in
complex systems was introduced. In the previous section, the concept of using fuzzy
measures in model evaluation with the extended GLUE framework of Beven (2006a)
was demonstrated. Fuzzy rules can also be used as an inductive model of data that can
be used for making predictions directly. They are used in much the same way as
artificial neural networks, or other inductive modelling methods, without any
requirement to make any process interpretation of the resulting rules. In the latter
case, the fuzzy rules must be calibrated (or trained) in much the same way as any other
model, by comparing the model predictions with historical data. The advantage over
artificial neural networks is that the uncertainty inherent in the representation of data
can be included explicitly within the fuzzy rules (although some attempts are being
made to combine neural networks with uncertainty estimation in environmental
applications: see Guan et al., 1997; Salas et al., 2000; Markus et al., 2003). This is not,
however, always the case. There are many fuzzy prediction systems that are used with
a final defuzzification step to provide a crisp value of a predicted variable without
uncertainty. This seems to throw away some of the advantages of using fuzzy
methods.

More interesting are the methods based on fuzzy sets and rules that predict an
associated possibilistic uncertainty. Environmental examples that include condition-
ing on observations are the fuzzy regression methods of Bardossy et al. (1993) and
Hojati et al. (2005). Once the degree of membership for a predicted variable has been
established throughout the model space, the uncertainty in the outputs can be assessed
by taking nested α-cuts of the fuzzy set. A recent study by Shrestha et al. (2007) is of
this type, using fuzzy nonlinear regression to evaluate uncertainty in the stage-
discharge relationship for a reach of the River Neckar in Germany. These uncertain-
ties are then used to determine uncertainty in flood risk along the river by running
α-cuts for the predicted discharges through a hydraulic model.
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4.7 Comparing methods for model conditioning:
coherence and the information content of data

In all real applications, whether using a nonlinear regression, formal Bayes, Pareto
optimisation, GLUE or fuzzy approach, given some historical observations with which
to compare model predictions, the modeller has to choose what likelihood functions or
performance measures he/she will implement without strong prior information about
the correctness of the model structure and the nature of the errors. We suspect that all
models will have some limitations as a description of the true response; we have to
estimate multiple parameters; we expect errors in the input and outputs; and we know
that any errors in the input data will be processed through the model in a nonlinear
way. Therefore, we would expect that it would be very difficult to find an adequate
formal error model for use, for example, in the Bayes likelihood methodology. Some-
times, of course, we might be lucky and find an error model or models that give a good
approximation to the error series for all models in the model space and for all the
different types of observations that we wish to use in evaluation, and in such cases the
Bayes methodology would probably be the method of choice.

It would be even better if we could also find a way of characterising the input data
error and the model structural error in a formal way (e.g. Krzysztofowicz, 1999;
Kennedy and O’Hagan, 2001; Oakley and O’Hagan, 2004). If this were the case then
again the Bayesian methodology would probably be the method of choice. But in most
real cases, it does not seem that there is real hope of being able to justify all the
assumptions required for this succession of formal error models, nor estimate the
parameters required (since the different error sources will certainly interact). Where
such real difficulties exist, therefore, there may be scope for using one of the other
approaches in model conditioning, especially a GLUE or fuzzy approach.

These, however, appear to many people to lack the objectivity of formal Bayesian
methods. In fact, Mantovan and Todini (2006) accuse the GLUE methodology of
being incoherent in a formal statistical sense, since it does not take account of all the
information content of the residuals as new observations become available. However,
they argue the case on the basis of a hypothetical example in which the model struc-
ture in known to be correct. Beven et al. (2008) respond by showing that even small
deviations away from this ideal case, introducing input data error, model structural
error and “unknown” residual error structure, results in the formal Bayes approach
producing biased parameter estimates (this is already a well-known result in statistics
for linear models). This is a result of over-conditioning resulting from making too
strong (or wrong) assumptions about the information content of the observations. In
more realistic applications, Beven et al. (2008) argue that it may be incoherent to
choose a formal likelihood measure when we expect that there is error in the input
data and model structure. In such cases it might be more robust to under-condition in
the model calibration process.

Coherence in this context has a technical meaning. A very general definition of
coherence states that the modeller should not knowingly choose a measure of the
information of an experiment that is less informative than some other measure. In the
Mantovan and Todini (2006) study, cited above, a much stronger form is used. They
require that for some measure of discrepancy between some prior, go, and a posterior
given n+m observations, d[gn+m, go]
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d[gn+m, go]> max{d[gn, go], d[gm, go]}

for any n and m (including the case of m = 1, i.e. a single observation is being added).
Implicit in this principle is that new observations should always be informative in the
conditioning process (that dn = d[gn, go] should be monotone for any n), and that the
results of any analysis should not depend on the order in which the observations are
used.

Any real application, however, cannot possibly meet this criterion when faced with
the possibility of input error and model structural error. Disinformation (in terms of
identifying acceptable models or likelihood distributions) might be produced when
significant input errors are processed nonlinearly through the model and, because of
the time (and space) scales of the system response, this might affect the effective
information associated with many observations. What is then needed (that is in real
applications of environmental models) is a likelihood measure that properly reflects
the information content of the observations in constraining the uncertainty in the
predictions of an imperfect model run with imperfect input data and with imperfect
knowledge of the nature of the different sources of error, which will often be complex.

Whatever that likelihood measure might be! Stating the principle is much more
difficult than deciding on an appropriate measure that properly reflects the informa-
tion content in the data in conditioning a model of the system. But when there are
multiple sources of error, disaggregation of the effects of different sources within a
nonlinear modelling problem is known to be a very poorly posed problem. There is, at
least as yet, no general theory of the information content of data for these realistic
cases, particularly for cases where model structure error is likely to be significant.
There is therefore no right or unambiguous answer, although, if the residual errors do
have a simple structure, probabilistic estimates of predicting an observation con-
ditional on the model as assumed correct might still be possible and useful. Even then,
the use of measures based on squared errors is not the only, or necessarily best, choice
(Tarantola, 2005, 2006). This seems to be the next major advance required in our
understanding of the uncertainty issue in environmental modelling.

The argument that simple formal measures might be incoherent in real cases, how-
ever, does provide some suggestions as to what informal measures might need to look
like in order to reflect the information content of additional observations more real-
istically. It seems quite possible that single observations might introduce disinforma-
tion (in terms of constraining the uncertainty in model prediction) in the face of input
and model structural errors. In that case we will clearly need to average or filter the
performance of the model over some blocks of information, where the length of a
block should be great enough to integrate over the response time of the system, and
any longer time sampling over potential distributions of input error. Clearly, for
environmental models, the potential time scales involved could vary widely depending
on the residence times in the system and the nature of the input errors. However, the
type of block evaluations that have been used previously in GLUE are clearly of this
type, even if any formal assessment of the real information content of additional
observations of different types is, as yet, lacking.

Ultimately, we all want to do good environmental science and make good predic-
tions in real applications. What is then needed is either a deeper understanding of
the real information content of data sets (with all their shortcomings), or new

144 Environmental Modelling



measurement techniques that will increase the real information about inputs and
improvements to model structure available to the modeller (Beven, 2006c). Until such
an understanding is forthcoming there will be little basis upon which to decide what is
a coherent and what is an incoherent choice of uncertainty estimation methodology.
The problem is evidently deeper and more complex than the search for the “right”
formal likelihood measure, and needs further research.

4.8 Summary of Chapter 4

This chapter has looked at the use of observations about the response of
environmental systems in calibrating and conditioning environmental models. The
conditioning process was presented as a form of mapping of the real system into a
hyperdimensional model space of model structures and parameter sets. A number of
different approaches to the conditioning problem and searching the parameter space
were considered, including weighted nonlinear regression, formal Bayes methods,
multi-criteria Pareto set methods, the GLUE methodology and fuzzy set methods.

The most important points of the chapter may be summarised as follows:

• Optimisation of environmental models cannot be considered a good strategy
when the optimum model found may depend on input and model structural
errors. An acceptance of the possibility of multiple behavioural models (the
equifinality thesis) is recommended.

• Statistical methods (weighted regression and formal Bayes methods) require the
specification of a formal model of the errors. Very often, especially if all sources of
error are lumped into an additive error term representing the total model resid-
uals, it may be difficult to verify the assumptions made. Where an incorrect model
of the errors is used, or where the uncertainty in the observations with which the
model is being compared is neglected, it will generally lead to over-conditioning of
the parameter values.

• In such cases, more flexible, but less formal, model conditioning approaches might
still be useful, such as GLUE or fuzzy set methods. While these require more
subjective (if common sense) choices about model evaluation, they allow the
possibility of learning from model rejection.

• There is a lack of a theory of information content of new observations for real
applications with multiple sources of error. Until the problem of assessing the real
information content in such cases is addressed it will be difficult to draw conclu-
sions about the coherence of the different methods for model conditioning and
uncertainty estimation.

Box 4.1 Weighted nonlinear regression

Weighted nonlinear regression is a methodology for calibrating the parameters
of a nonlinear model. It is a methodology that lies firmly within the optimisation
paradigm, but can be used to provide uncertainties in both parameter estimates
and model predicted variables. It is a methodology that has been used widely in
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environmental modelling and has been incorporated into both parameter esti-
mation routines for particular model codes (e.g. MODFLOW groundwater code
of Hill et al., 2000; the CXTFIT steady state transport code of Toride et al.,
1995) as well as into stand-alone parameter estimation codes such as
UCODE_2005 (Poeter et al., 2005) and PEST (Doherty, 2005) (See Software
Appendix at the end of this book). The recent book by Hill and Teideman (2007)
gives a full exposition of the techniques of nonlinear weighted regression as
applied to groundwater modelling problems based on many years of experience.

In the weighted nonlinear regression approach, the optimisation problem is
always set up in the form

O(x,t) = M(Θ, I, x,t) + ε(x,t) [B4.1.1]

with the O(x,t) as a vector of observations in space, x, and time, t; M(Θ, I, x,t)
as the equivalent vector of model predictions that depend on a set of model
parameters Θ and inputs I; and the aim of minimising the vector of residual
errors ε(x,t), that are expected to vary in space and time. The optimisation is
carried out conditional on the assumption that the model is a true representation
of the system response, and that the residual errors can be made to conform
(perhaps after a mathematical transformation) to certain statistical assumptions.

B4.1.1 Choosing the cost (objective) function
In the main text, the cost or objective function for the case of weighted
independent prediction errors was presented as a summation (Equation [4.3]).
Here we generalise the cost function to the case where co-variation of the error
terms must be considered. It is then most compact to represent the errors and
objective function in matrix notation such that:

J = {y − ŷ}T W{y − ŷ} = εT Wε [B4.1.2]

where y is an observation, ŷ is the model prediction, { } indicates a vector, W is a
square matrix of weighting coefficients and ε is a prediction error. For cases
where the prediction errors can be assumed independent the weighting matrix
will have non-zero values only along the diagonal. Other forms of objective
function are possible, including maximising a likelihood function rather than
minimising the sum of squares in [B4.1.2] (see Draper and Smith, 1998; Hill and
Tiedeman, 2007). The log likelihood objective function then has the form:

ln(J′) = No ln(2π) − ln|W| + εT W ε [B4.1.3]

where No is the number of observations, and ln|W| is the log of the determinant
of the weight matrix. The use of a weighted least squares objective function has a
number of implicit assumptions that need to be met if the results of the par-
ameter inference are to be accurate. These are that the true errors are random
and unbiased (have zero mean), and that the weighted true errors are independ-
ent so that the weighting matrix can be taken as inversely proportional to the
estimated constant variance–covariance matrix of the true errors. As noted
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above, there is a problem here in that we do not know what the true errors are;
we can only assess the actual total error between the model predictions and
observations, treating the model as if it were a true representation of the system.
Thus, it is probable that the ideal assumptions will not be met, and that the user
should take care to evaluate the validity of those assumptions in using this
approach.

Additional information can be added to the objective function. For example,
there may be some prior information about the value of some parameter at a
particular location (in a groundwater modelling example, perhaps as the result
of a pumping test to determine local hydraulic conductivity or transmissivity
values at a particular observation well). In this case we may wish to impose some
constraints on such values by using a weighted addition to the objective function
for the difference between an observed and predicted transmissivity or some
other constraint. This is easily done.

Simple functions of the errors can also be incorporated. In many environ-
mental modelling problems, for example, it is found that the errors are hetero-
scedastic, which means that their variance changes with the magnitude of the
prediction. This is in conflict with the assumption of having a constant
variance–covariance matrix. Thus, it is necessary to transform the error in some
way. A number of general transforms have been suggested as a way of trans-
forming a set of residuals to a simpler Gaussian structure with constant variance
so that a standard form of objective function can be used. For the simplest
possible case it is assumed that the observed value y is equal to the true value of
the variable + some error that is a simple function of the magnitude of the
variable so that:

y = ytrue + ytrueε = ytrue(1+ ε) [B4.1.4]

This is equivalent to using a logarithmic transform of the observed values to
return to the form of a simple additive error, i.e.

ln(y) = 1 + ln(ytrue) + ε [B4.1.5]

Other transformations are based on square root transforms and Box–Cox trans-
form for controlling for heteroscedasticity and the meta-Gaussian transform for
controlling for non-Gaussian distributions of residuals.

The simplest square root transform, for a model residual ε, is:

y = ytrue + z with z = ε0.5 [B4.1.6]

where z is a variable that (it is hoped) will be Gaussian. Freeman and Tukey
(1950) proposed a variant on this such that

y = ytrue + z with z = {1000 ε /n}0.5 + {1000(ε + 1)/n}0.5 [B4.1.7]

Box and Cox (1964) introduced a transform that has the log transform as a
special case. It has the form:
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z (λ,α) = {(ε − α)λ − 1}/λ ; λ ≠ 0

= ln(ε − α) ; λ = 0 [B4.1.8]

with parameters α and λ.

B4.1.2 Iterative optimisation
In the weighted nonlinear regression methodology, once an objective function
has been decided upon (complete with any transformations and constraints),
calibration of the model parameters becomes an optimisation problem. In
essence, we wish to search the response surface in the model space to find the set
of parameter values that minimises the objective function. In linear regression
this can be done analytically (as in the simple case of y = ax + b given a set of
(x,y) paired values). In the nonlinear case the optimisation must be done numer-
ically using a so-called “hill-climbing” method. In the weighted nonlinear case
the weight matrix in [B4.1.2] will vary depending on the parameter values since
the parameter values will determine the error variance–covariance each time the
model is run. An iterative approach is then required in which local linearization
is used to decide on which direction to search. Hill and Tiedeman (2007) explain
both the methods available and the issues involved in their use. They recommend
an iterative Gauss–Newton gradient search algorithm and this has been
incorporated into the parameter identification routines of the groundwater
modelling code MODFLOW and the general parameter identification code
UCODE_2005. The PEST software (e.g. Moore and Doherty, 2006; Gallagher
and Doherty, 2007) uses an efficient variant of the Gauss–Marquardt–Levenberg
hill-climbing method.

B4.1.3 Checking the assumptions
The weighted nonlinear regression approach involves a significant number of
assumptions and these should be checked for validity before the results of a
parameter identification exercise are accepted. In particular, diagnostic tests
should be used to check for the randomness (lack of bias) of the residuals and the
form of the distribution of the (transformed) residuals. Both graphical (compar-
ing plots of the actual residual errors for normality) and statistical checks (check-
ing distribution statistics for bias, skew and correlations) can be made (see Hill
and Tiedeman (2007, pp100–112)). Checks can also be made for over-
parameterisation of the fitted model using statistics developed in maximum like-
lihood parameter estimation in the time series analysis literature but applied
successfully to other situations (e.g. Carrera and Neuman, 1986, in groundwater
modelling). Burnham and Anderson (2004) suggest use of the corrected Akaike
information criterion (AIC) which has the form:

AIC = ln(J′) + 2NP + (2NP(NP + 1))/(NO + NP − 1) [B4.1.9]

where ln(J′) is the log likelihood function from [B4.1.3], NO is the number of
observations, and NP is the number of parameters. This gets rapidly larger (less
negative in log) as the number of parameters increases relative to the information
content in the observations.
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B4.1.4 Parameter uncertainty
Once an optimum set of parameter values has been found, together with the
associated weighting matrix W, then the uncertainty in the identified parameter
values and model predictions can be assessed. In the case of nonlinear regression,
estimates of parameter uncertainty are made based purely on the local shape of
the response surface at the optimum as reflected in the covariance matrix (if
there are other, almost as good, models elsewhere in the model space they might
have quite different covariance, but this is neglected in this methodology – but
see Section 4.5).

The form of the parameter variance–covariance matrix (analogous to
[B3.1.14] in Gaussian error propagation) is as follows:

[Cov<θiθj>] = σ2 (LTWL)−1 [B4.1.10]

where σ2 is the common error variance, the θ are the parameter values, W is the
weight matrix, and L is a square (NP by NP) sensitivity or Jacobian matrix that
here defines the gradient of the objective function with joint changes in
parameter values i and j (i.e. ∂J/∂θi∂θj). The diagonal elements of [Cov<θiθj>]
represent the variance of each individual parameter so that:

σ2
i = Cov<θiθi> [B4.1.11]

The off-diagonal elements represent the co-variation between parameters from
which a correlation coefficient, ρij , for parameter interaction in affecting the
objective function J, can be calculated as:

ρij = Cov<θiθj> / (σi σj) [B4.1.12]

For some simple models the Jacobian gradient matrix, ∂J/∂θi∂θj, or its transpose
LT, which is known as the adjoint model, can be calculated analytically. For
larger codes, the numerical implementation of the equations can also be differen-
tiated to provide local gradients analytically but this can double the size of the
model code (as in recent versions of the MODFLOW groundwater code, for
example). It can also be calculated numerically after the optimum has been
identified by linearising around the optimum parameter set (this form of lineari-
sation is also repeatedly used in the Gauss–Newton algorithm mentioned
earlier to determine the local gradient of the cost function response surface as the
optimisation proceeds).

The standard deviations of [B4.1.11] can be used to estimate confidence limits
on the parameters using standard t statistics. Thus, for any chosen level of con-
fidence, α, e.g. α=0.05 for 90% confidence limits, the confidence interval can be
calculated as:

θi − t(n, 1-α) σi < θi < θi + t(n, 1-α) σi [B4.1.13]

where n is the number of degrees of freedom and the value of t is tabulated in
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many statistics texts. For n > 30, the normal distribution confidence limits can be
used such that for 90% and 95% confidence limits t(n, 1-α) can be replaced by
values of 1.68 and 1.96 respectively.

However, [B4.1.13] and the large sample normal distribution multipliers are
both linear estimates of the confidence in the parameter values and the actual
shape of the response surface may not conform well to the assumption of a
constant linear gradient (i.e. ∂J/∂θi∂θj may change rapidly as we move away from
the optimum point on the response surface). More accurate nonlinear methods
for finding confidence in the parameter values are available (e.g. Hahn and
Meeker, 1991; Christensen and Cooley, 1999) but are computationally much
more expensive. Linearisation is therefore a common assumption, but it should
be remembered that [B4.1.10] to [B4.1.13] are only an approximation and might
be misleading in certain nonlinear cases.

B4.1.5 Prediction uncertainty
The uncertainty in the model predictions after parameter calibration is of as
much interest as the parameter uncertainty in real applications. The equivalent
of [B4.1.10] and [B4.1.11] for the case of a single prediction, ŷ, is given by

σŷ = �σ2 �{x}(LT WL)−1 {x}T	�
1/2

[B4.1.14]

where the vector {x} is a further gradient term representing the rate of change of
the prediction with respect to each of the θi parameters, i = 1, . . ., Np. This also
therefore requires a linearisation around the point of interest (here the optimum
parameter set) meaning that again the resulting estimates of σŷ should only be
used with care in calculating confidence limits for the predictions.

We also need to differentiate between the confidence limits for a model
prediction and the prediction limits for an observation. The confidence limits
will be based on the weighted sum of squared errors between observation and
prediction but in the theory of nonlinear regression this is used to get an estimate
of the error of the model predicting the true response of the system. In consider-
ing what might be observed at a prediction point, it is therefore necessary to add
an error component associated with the measurement error of an observation.
This difference is also often overlooked. In some cases this measurement error
component might be expected to be small but in other cases it might be signifi-
cant and should not be forgotten. Linear confidence limit estimates will then be
given by:

y − t(n, 1-α) (σŷ
2 + σẏ

2)1/2 < y < y + t(n, 1-α) (σŷ
2 + σẏ

2)1/2 [B4.1.15]

where σẏ is an estimate of the measurement error variance associated with any
predicted value ŷ.

Since confidence limits of the form of [B4.1.13] and [B4.1.15] are so quick and
easy to calculate they are very often provided by the standard nonlinear regres-
sion codes and the potential inaccuracy of making such a linear approximation is
often overlooked by users.
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B4.1.6 Regularisation of distributed parameter problems
As already noted, the weighted least squares approach has been widely used in
the identification of parameters for distributed models, particularly groundwater
models. These types of models often have many more distributed elements than
there are observations to constrain the parameter values. Parameter identifica-
tion in such a situation is a poorly posed, underdetermined problem and obtain-
ing a solution will only be possible by imposing additional constraints. One
rather general approach is to impose regularisation conditions, an approach
widely used in the inversion of geophysical data. Moore and Doherty (2006) give
a clear outline of the use of Tikhonov regularisation in the PEST software.
Tikhonov regularisation uses a constrained cost function minimisation with
[B4.1.2] reformulated in the form

Jz = (ZΘ − z)T Wz (ZΘ − z) [B4.1.16]

where Θ is the vector of NP parameter values, Z is a matrix of regularisation
conditions, Wz is a weighting matrix and z is a vector of regularisation observa-
tions indicating preferred parameter states at particular points in the system.
[B4.1.16] is minimised subject to the constraint that

Jy = (LΘ − y)T Wy (LΘ − y) ≤ JL
y [B4.1.17]

where Wy is the observation weight matrix as before, y is the vector of observa-
tions, and L is the Jacobian gradient matrix, and JL

y is some limiting value of the
observation objective function, defined as a parameter of the optimisation.

This formulation is general but does not say anything yet about the regularisa-
tion conditions, the regularisation observations or the regularisation weighting
matrix. It is also clear that, while regularisation might allow a unique solution
for the field of parameters for this type of otherwise underdetermined problem,
the solution will depend on the choices made for these conditions. In the type of
groundwater application described by Moore and Doherty (2006), there will
normally be quite a lot of information available at certain points of the flow
domain where observation wells have been drilled. In this case local values of the
parameters will normally be available, either estimated on the basis of the aqui-
fer materials or directly measured by pumping tests. These can then be used as
“pilot points” in the regularisation, known only subject to measurement errors.
The regularisation conditions then define how parameters for the whole domain
should be determined from these regularisation observations. A common strat-
egy is to determine or assume some interpolation algorithm between the regular-
isation observations. A Kriging estimator, given a known variogram, for
example, can be used to determine both the regularisation conditions and the
weight matrix (which will be the inverse of the Kriging covariance estimates at
every element in the domain). Effectively the regularisation conditions are pro-
viding a low-dimensional means of interpolating from the pilot points, where
good parameter estimates can be assumed a priori to the complete field required
in the distributed model. Kriging is a linear interpolation methodology. In prin-
ciple, the regularisation conditions could also be nonlinear, but then it might be

Simulation with historical data 151



necessary to re-estimate the Z and Wz matrices at every iteration in the
calibration.

Moore and Doherty (2006) show how this methodology can be used to
provide information on how well the resulting parameter estimates provide
estimates of the true parameters.

Box 4.2 Formal Bayes methods

As noted in Chapter 2, the origins of Bayesian statistics lie in a paper found
amongst the papers of the Rev. Thomas Bayes (?1701–1761) after his death.
Presented at the Royal Society of London by his friend Richard Price in 1763, the
Essay towards solving a problem in the doctrine of chances contained the
first expression of what is now called Bayes theorem. A more general discrete
form was developed, apparently independently, by Pierre-Simon Laplace
(1749–1827) and published in France in 1774.

We can define Bayes theorem in a form that, given a set of feasible models as
hypotheses H and evidence E, then the probability of any H given E is given by

P(H|E) = P(H) P(E|H) / C [B4.2.1]

where P(H) is some prior probability of H in the range of feasible hypotheses
(or models), P(E|H) is the likelihood of simulating the evidence given the hypoth-
eses, and C is a scaling constant to ensure that the cumulative of the posterior
probability density P(H|E) is unity.

Bayes theorem represents a form of statistical learning process. When applied
to models it provides a rigorous basis for the expression of degrees of confirm-
ation of different model predictions, expressed as probabilities, as long as the
different components of [B4.2.1] can be defined adequately.

This learning process starts with the definition of prior distributions for the
factors that will be considered uncertain. There is a common perception of Bayes
statistics that the choice of prior distributions introduces subjectivity into the
analysis, but both Bayes and Laplace originally applied their methods using
priors that were non-informative, given equal chances to all possible outcomes
until some evidence became available. Berger (2006) points out that Bayes equa-
tion underlay the practice of statistics for some 200 years, without it being
considered necessary to be too specific about the prior distributions, and that the
development of frequentist statistical theory in the 20th century from R. A.
Fisher onwards was, in part, a response to dissatisfaction with the constant prior
assumption.

The choice of subjective prior distributions is a relatively recent innovation,
but is now argued strongly for by many Bayesian statisticians (see Goldstein,
2006, and the additional comments on the Berger and Goldstein papers by
Draper, 2006, and O’Hagan, 2006b). In principle, such priors can be defined by
the modeller, independently of the evidence E, on the basis of expert elicitation,
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past experience or subjective judgement. This subjectivity remains difficult to
accept for some people and the so-called “objective Bayes” methods have been
used to try and reduce the subjectivity of the prior by selecting an appropriate
distribution or by modifying it on the basis of the model error (the evidence in
[B4.2.1] in the environmental modelling case) once some observations are avail-
able. Berger (2006) cites a number of different “objective” Bayes methods and
there are examples of the use of such techniques in environmental modelling (see
ver Hoef, 1996; Fortin et al., 1997). O’Hagan (2006b), in particular, feels
strongly that the choice of an “objective” method for the determination of priors
is itself a subjective choice. This argument is likely to continue amongst aca-
demic statisticians for the foreseeable future!

The prior should, however, only be really important if there is only a very
limited amount of data or, at least, of good data. This is because, as more obser-
vations become available, and more evidence about the likelihood of a model is
gained by repeated application of [B4.2.1], then the prior will come to be dom-
inated by P(E|M) and the relative degree of belief in different models should
become more secure (Box and Tiao, 1973; Bernado and Smith, 1994; Howson
and Urbach, 1994). For this reason, when there is no strong evidence to express
greater belief in the outputs of one model over another, a non-informative prior
is often used. How to define a non-informative prior is the subject of extensive
discussion in the statistics literature; in environmental modelling it often means
sampling a parameter uniformly across some chosen feasible range. This is not
totally non-informative of course. The modeller is still imposing a range for the
effective values of the parameters required by the model, which may not be
commensurate with, for example, measured values, and the sampling will
depend on the chosen scale (e.g. arithmetic or log scale) though this can be
avoided by using, for example, the Jeffreys’ prior (Bernardo and Smith, 1994).

A more critical issue in the application of Bayes equation is, however, the
definition of the likelihood P(E|H). Bayesian statistics is predicated on the
assumption that a likelihood function can be defined that formally represents
the probability of predicting the evidence E given a model as hypothesis H. Here
we concentrate on formal methods for defining a likelihood function (but see
Section 4.5 and Box 4.3 for arguments for using informal likelihood measures in
Bayes equation within the GLUE methodology).

B4.2.1 Simple additive error models
The formal definition of the likelihood function follows from assumptions made
about the structure of the errors. For example, consider the very simplest model
of the errors that is useful, that is that the model errors are normally (Gauss)
distributed, with zero mean, and independent one from the other. Thus, the
prediction of an observation can be presented in the linear additive form as:

O = M(Θ, I) + ε ; ε = N[0, σε] [B4.2.2]

where O is a measurement, M(Θ, I) is the model prediction of that measure-
ment, given parameters, Θ, and set of input data, I, and ε is the model residual.
Measurement errors over a number of independent samples are often assumed to
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be of this form. This error model has only one parameter which is the variance of
the residuals, σε.

As soon as a new observation becomes available then a new residual error can
be assessed by putting [B4.2.2] into the form

ε = O − M(Θ, I)

Assuming (for the moment) the model to be unbiased and that an estimate of σε
2

is available, the contribution to likelihood function from a single residual is
assumed to be given by

L(ε | M(Θ, I)) ∝ exp �− ε2

σε
2� [B4.2.3]

Over n such residuals, assuming independence, the contributions can be
multiplied so that:

L(ε | M(Θ, I)) ∝ 

n

exp �− ε2

σε
2� [B4.2.4]

For the assumption of the Gaussian-distributed errors, the final form of the
likelihood function is given by

L(ε | M(Θ, I)) = (2πσε
2)−n / 2 exp �− 1

2σε
2 ��

n

t = 1

[εt]
2�� [B4.2.5]

Note that as n gets very large (as it often will if we are dealing with models of
time series of observations or predictions in many different spatial locations),
then the inverse of the error variance (usually the dominant term in [B4.2.5]) is
being raised to a very large power (n/2). This means that models that have
very similar error variance might have very different likelihoods because, under
this model, each additional residual is presumed to carry significant weight in
differentiating between models. It also provides computational difficulties
because of the potential for rounding errors in raising what might be very small
numbers to very large powers. Fortunately, this problem can be avoided in
practice by taking the log of [B4.2.5], so that the power becomes a simple
multiplication of ln(σε) and will result in the correct relative likelihoods after
back-transformation.

It is perhaps worth noting here that the tradition of weighting residuals
according to their squared value is a tradition that has developed partly because
of the mathematical advantages of the normal distribution. There is another
longer tradition, derived from Laplace, to use the absolute error (Tarantola,
2006). This is the same as assuming that the errors have a probability that
are distributed as p(ε) = exp(−|ε |), rather than as exp(−ε2) for the Gauss
distribution. While this was much less mathematically convenient in the past
since analytical solutions were less tractable, such an approach could perhaps be
advantageous in environmental modelling problems because the resulting distri-
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bution is not so greatly affected by (is more robust to) extreme residuals or
“outliers” (see also Box 4.3). Tarantola (2005) presents a general exposition of
different L-norms in model identification, where the L1 norm is the Laplace
absolute error measure, the L2 norm is the Gauss squared error measure, and the
L∞ norm is a max-min criterion (other choices are clearly possible).

B4.2.2 Multiplicative error models
Sometimes we observe that the residuals get larger as the magnitude of the
prediction gets larger. This means that the variance of the residuals is changing
with the prediction. As previously noted in Box 4.1 this is called heteroscedastic-
ity of the residuals. If it can be assumed that the heteroscedasticity can be treated
as a simple increasing function of the model outputs, then it is simply allowed for
by using a multiplicative error that is a function of the model outputs, f(M(Θ, I)),
rather than an additive error. This is easily done by using the logarithms of the
predictions since:

O = M(Θ, I)f(M(Θ, I))

can be represented as

ln(O) = ln(M(Θ, I)) + ε ; ε = ln(f(M(Θ, I)) [B4.2.6]

The simplest case is again that when ε = N[0, σε]. When the model is applied,
Equation [B4.2.6] can be inverted after the calculation of prediction bounds
based on the magnitude of σε to give prediction bounds in the original arithmetic
scales (which will then not be symmetrical around the best estimate). There is
also another advantage of using the multiplicative form of [B4.2.6]. In cases of
large σε the log transformation means that the resulting prediction bounds
cannot be negative (whereas this is quite possible for the additive error in
[B4.2.6], and there are many papers in hydrology, for example, that show error
bounds on predicted discharges that are less than or cut off at zero, even though
it is not quite clear what such negative flow predictions might mean physically).

Some other simple forms of error transform have been discussed in Box 4.1.

B4.2.3 Meta-Gaussian distribution transformation
The meta-Gaussian transform is a more recent, rather neat, idea based on using a
quantile–quantile plot of the cumulative distribution of observed residuals to
transform what might be a highly non-Gaussian distribution to the equivalent
cumulative density value of a Gaussian distribution (e.g. Figure B4.2.1). Then
simple Gaussian-based likelihood functions can be applied. Again, once the
Gaussian prediction bounds have been determined they can be transformed back
to the original distribution before plotting the results. The meta-Gaussian distri-
bution, first used in a hydrological context by Kelly and Krzysztofowicz (1997),
has been used with formal likelihood functions in flood forecasting by Krzyszto-
fowicz (2002a,b) and in rainfall-runoff modelling by Montanari and Brath
(2004). The disadvantage of this is that the data on which the transformation is
based may not cover the full range required in prediction so that care should be
taken in predicting and transforming extreme values to the original distribution.
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Where more than one variable is involved, and they cannot be assumed
independent, then the type of copula transformations into a multi-Gaussian
space described in Section 3.3.5 might be useful.

B4.2.4 Autocorrelation in the errors
None of the transforms above deals with correlation in the residuals, either in
time or space (or for models making distributed time series predictions in space
and time). In environmental models, particularly models predicting time series
of outputs, correlation in residuals is often found (e.g Figure B4.2.2 from Feyen
et al., 2007). Ignoring the correlation by using an error model similar to [B4.2.3]
or [B4.2.6] will overestimate the information content of each new observation
included in the analysis and lead to over-conditioning of the parameter
estimates.

Effectively if there is a strong correlation between successive residuals, some of
the information content at one time step (or spatial location) has already
been taken into account in evaluating the model at the previous time step (or
location). We might also want to introduce the possibility that a model has a
constant mean bias in its residuals, µ. That means that we should use a more
complicated error model of the form (here assuming a first-order autocorrelation
correlation in time with coefficient, ρ):

O = M(Θ, I)+ µ + εt+ ρ(εt − 1 − µ); ε = N[µ, σε] [B4.2.7]

Figure B4.2.1 Meta-Gaussian transform from the CDF of a set of model residuals, e′t to a
normalised Gaussian variate, Ne′t (z-score scale in standard deviation units).
In this case, the model residuals had already been subjected to a nonlinear
transformation to try and stabilise the error variance

Source: Montanari and Brath, 2004, copyright © 2004, American Geophysical Union, reproduced by
permission
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This model yields a likelihood function of the form:

L(ε | M (Θ, I)) = (2πσ2)−T/2 (1 − ρ2)1/2

exp� − 1

2σ2 �(1 − ρ2)(ε1 − µ)2 + �
T

t = 2

[εt − µ − ρ(εt − 1 − µ)]2�� [B4.2.8]

Now there are three statistical parameters to be estimated, µ, ρ and σε. If there is
evidence of longer time-scale correlations (as shown in Figure B4.2.2) then the
model can be extended further, but there will then be additional ρ coefficients to
be estimated.

It is possible to add additional terms to allow for structured model error (e.g.
the model inadequacy function of Kennedy and O’Hagan, 2001). As noted in the
main text, such error can arise from both model deficiencies and errors in the
input data and it may be questionable as to whether such errors can be easily be
represented by a simple additive function. It is also debatable in environmental
problems as to whether it is better to compensate for model and input deficien-
cies in this way, or better to improve one or the other. The most complex form of
model deficiency function used by Kennedy and O’Hagan (2001) was a constant
mean bias in the residuals (which is already included in [B4.2.8]). More complex
forms could clearly be used but will add additional statistical parameters to be
estimated.

Figure B4.2.2 Autocorrelation in the residuals of a rainfall-runoff model run with a daily
time step for the 21,000 km2 Meuse catchment in Belgium, France and the
Netherlands using the LISFLOOD model with a 5-km spatial grid. Dotted
lines represent approximate significance limits

Source: Feyen et al., 2007. Reproduced by permission of Elsevier
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B4.2.5 Model selection using Bayes factors
In some modelling problems there may be a choice of model structures. This is
true for even simple modelling problems such as the choice of a particular regres-
sion function (e.g. Draper, 1995; Smith et al., 2006) or of a frequency distribu-
tion to represent the extreme magnitudes of a particular environmental process
with only limited data (e.g. flood frequency, avalanche frequency, or earthquake
frequency). Within the Bayes methodology, each model structure can be given a
prior probability, and differentiating between model structures can be achieved
using Bayes factors.

Consider the set of competing model structures {M1(Θ1), M2(Θ2), . . . . .
MN(ΘN)} with parameters for which we can assign a set of prior probabilities
{po(Θ1), po(Θ2), . . . . . po(ΘN)}. The model structures may have different numbers
of parameters or incommensurate effective parameters with the same name.
Given a set of data, I, that is used to evaluate the predictions for each model, we
can determine the likelihood of predicting the observations given each model
and parameter set as discussed above. The marginal distribution for the predic-
tions for each model, averaged over the prior distributions of all the parameters
for that model, is then given by

P(O | Mi(θi,I)) = ∫ L(O |Mi (θi,I)) po (θi)dθi [B4.2.9]

Models can then be compared in terms of these marginal distributions. The
Bayes factor for comparing two models i and j is given by

BFij =
P(O | Mi(θi,I))

P(O | Mj(θj,I))
[B4.2.10]

If we can also define some prior probability or belief in each model as the true
model, po(Mi), we can also use Bayes equation to define a posterior probability
of each model given the observations as:

P(Mi | O) =
P(O | Mi)po (Mi)

�
j

P(O | Mj)po (Mj)
[B4.2.11]

The denominator ensures that the cumulative posterior probability over all
models is unity. The Bayes factor can then be shown to be equal to the ratios of
the posterior to the prior odds for each model so that:

BFij =
P(Mi | O) / P(Mj | O)

po (Mi) / po (Mj)
[B4.2.12]

A clear presentation of the use of Bayes factors in model choice in the ecological
context of simple models of brown trout returns after tagging in South Island,
New Zealand, is given by Link and Barker (2006). An example from the use of
ensemble climate predictions is provided by Min et al. (2007).
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B4.2.6 Combining models using Bayesian model averaging
There is another possibility when there are several competing model structures
under consideration. That is to combine the predictions of all the models (or at
least all that are thought to be useful in making predictions) to try and achieve
better predictions using the combined model. The idea is to combine the best
aspects of all the models in the useful set. This is called Bayesian model averaging
(BMA) or Bayesian melding (Draper, 1995; Poole and Raftery, 2000). It has been
quite widely used in econometric modelling, and is increasingly being used in
environmental modelling.

In the Bayesian model averaging approach, each of the competing model
structures is given a weight directly related to the Bayes factors defined above.
Thus, to produce a prediction, y, averaged over all model structures:

P(y | O) = �
i

P(y | O,Mi)P(Mi | O) [B4.2.13]

An example is provided by Raftery et al. (2005) who applied BMA to ensembles
of meteorological forecasts and, more recently, the application by Min et al.
(2007) to climate change ensembles. Ye et al. (2004) also applied the method in
the spatial problem of predicting the variability of parameters in a groundwater
model (where the alternative weighted regression techniques of Box 4.1 are often
used in model calibration). In such problems, information might be available at
only a limited number of points in space since boreholes are expensive to drill. It
is then necessary to try and infer the nature of the spatial variability in a way
consistent with the available data while allowing for the uncertainty in the
regions between data points. Geostatistics provides a useful set of mathematical
tools for this type of problem but requires the specification of a variogram to
describe the spatial correlation structure of the parameters. There are a number
of different models for the variogram, and it may be difficult to distinguish
between them with only limited data. Thus, what Ye et al. (2004) suggested was
to combine the variogram models in a Bayesian optimal way.

The method has also been applied to rainfall-runoff modelling by Ajami et al.
(2007) and Duan et al. (2007) who show how a nine-member ensemble of three
models, each evaluated using three different performance measures, when com-
bined using Bayesian model averaging, produced more skilful and reliable model
predictions than any single model.

Box 4.3 Markov Chain and Population Monte Carlo methods

One of the most important issues in any form of uncertainty analysis is how to
sample the model space to find those models and predictions that are of most
interest. In problems of estimating the uncertainty in model predictions, of most
interest generally means of greatest likelihood, since we are not really interested
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in sampling locations in the model space that contribute little to the posterior
distribution of any variable we are interested in. Determining the posterior dis-
tribution of a variable is equivalent to a multidimensional integration of the
likelihood associated with different values of that variable. In terms we have
used before in describing the model space, we are effectively wishing to integrate
under the likelihood response surface in the model space.

As noted in the main text, this is not a simple problem, especially in high-
dimensional spaces, since we know that environmental models often show quite
complex response surfaces in the model space. That is why strategies of simple
random Monte Carlo sampling or discrete structured sampling are still used. It
would clearly be advantageous in minimising the number of model runs required
for an uncertainty analysis to sample only the regions of the model space that are
of interest. In particular, rather than representing the response surface by means
of weights (the “height” of the response surface for each point in the model
space) associated with each sample, a much more efficient strategy would be to
have samples that were distributed such that the density of sampling was
proportional to the height of the response surface. Each sample could then be
given equal weight. The simpler the nature of the response surface, the more
efficient such a strategy will be.

The most commonly used method of density-dependent sampling strategy is
a class of methods that go under the general name of Markov Chain Monte
Carlo (MC2) methods (e.g. Gamerman, 1997; Robert and Casella, 2004).
These are methods for learning about the nature of the response surface, espe-
cially likelihood surfaces, and gradually refining the sampling until convergence
to a density-dependent sampling. They do so within a random sampling
framework that continues to allow some sampling in areas of apparently low
likelihood to avoid missing local areas of interest by refining the search
too quickly. The development of MC2 methods has been closely linked with
the development of Bayesian likelihood methods (see Box 4.1) as an effective
way of integrating under the likelihood surface in forming the posterior
distribution of model predictions. The best known MC2 algorithms are the
Metropolis–Hastings sampler (Section B4.3.1) and the Gibbs sampler (Section
B4.3.2)

The concept behind MC2 methods is quite simple. The method starts with a
proposal distribution or transitional kernel for the Markov Chain. Random
samples of model parameters are generated in the model space consistent with
the proposal distribution. At each sample point, the model is run to determine
the value of likelihood at that point. The initial sample of points is then used as
the basis for selection of new samples, using the proposal distribution to choose
new points around each current sample. After a further sampling sequence, the
method is checked to see if it is converging on a consistent posterior distribution.
If not, another iteration is carried out. The approach is analogous to a collection
of random walks over the likelihood surface, with shorter steps where the like-
lihood on the surface is higher, so that the sampling density is then greater.
The final result should be an accurate representation of the likelihood response
surface and, consequently, the posterior distribution of the predictions
associated with those likelihoods.
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An alternative to MC2 methods is provided by the Population Monte Carlo
(PMC) approach. This does not require any specification of prior distributional
forms for the parameters or proposal distributions for sampling, but is a form of
iterated importance sampling. An initial set of samples is used to suggest the
shape of the response surface. A new set of samples is then generated based on
the form suggested by the previous iteration. In this way, more samples will be
generated in areas of high likelihood and the form of the surface should become
better defined at each successive iteration. PMC is described in more detail in
Section B4.3.4 below. It is also closely related to the Particle Filtering methods of
data assimilation described in Chapter 5.

B4.3.1 The Metropolis–Hastings algorithm
The earliest form of MC2 search was suggested by Metropolis et al. (1953) and
generalised by Hastings (1970). The method generates a Markov Chain in which
the set of samples at step t is dependent on the samples at step t − 1. At each step
the samples are randomly generated from a proposal distribution that depends
on the results found at step t.

The critical step is then the choice of whether a new point should be accepted
or rejected, i.e. whether the model should be run to evaluate the likelihood at the
new point or not. Essentially this decision is made on the basis of the likelihood
evaluated at the new point, while allowing for some random chance that a new
point should be selected even if its likelihood is not so high, just in case it
provides a pathway to a new high likelihood region in the random walk. The
new point is selected if a random number, u, chosen from a uniform distribution
in the range [0–1] satisfies the condition:

u <
L(x′)Q(xt,x′)
L(xt)Q(x′,xt)

[B4.3.1]

where L(x′) is the likelihood determined by running the model at the new point,
L(xt) is the likelihood at the previous step in the chain, Q(xt,x′) is the probability
in the proposal distribution of moving from xt to x′ and Q(x′,xt) is the prob-
ability of moving from x′ to xt. If this condition is not met then the current value
is retained such that xt + 1 = xt. [B4.3.1] is the product of two ratios: the likelihood
ratio of the proposed new point x′ relative to the current point xt, and the
proposal density ratio in moving from xt to x′ to that in moving from x′ to xt. For
symmetric proposal distributions this ratio Q(xt,x′)/Q(x′,xt) is equal to 1, but if
the proposal distribution is non-symmetric then the ratio might be greater than
or less than 1.

The efficiency of the method will depend on the complexity of the response
surface. If the form of the expected posterior distribution is known (for example
from the assumptions made in setting up a formal likelihood function such as
those in Box 4.1) then the proposal distribution can be given the same form. In
applying the method, the first batch of samples is generated using the proposal
distribution. The chain is then run until the effects of this starting sample are
negligible (known as the burn-in period) before the chain starts to be checked for
convergence.
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Most proposal distributions have some free parameters that need to be tuned
during the process because, in general, the exact form of the posterior distribu-
tion will not be known a priori. For example, if a multivariate normal distribu-
tion is used as the proposal distribution, the variance can be tuned to try to
optimise the convergence rate. If this variance is too low, the step sizes will be
small and the chain will sample the space only slowly. If the variance is too high,
the step size will be too large, and there will be too many samples generated that
produce low likelihoods and which therefore result in a very low acceptance
rate. As the chain progresses, we would expect step sizes to decrease as the
samples converge on the high likelihood region in the model space. Roberts and
Rosenthal (2001), for example, suggest a scheme for modifying the variance of
the proposal distribution as the chain progresses. Vrugt et al. (2003) have com-
bined Metropolis–Hastings sampling with a shuffled complex evolution algo-
rithm in a way that allows the proposal distributions for multiple complexes of
models to evolve over successive iterations. They demonstrate the method on a
hydrological modelling example. Testing for convergence of the chain is con-
sidered, for example, by Roberts and Smith (1994) and Brooks and Gelman
(1998).

The Metropolis–Hastings algorithm has also been used in rainfall-runoff
modelling by Kuczera and Parent (1998), Bates and Campbell (2001), Marshall
et al. (2004), Engeland et al. (2005) and Gallagher and Doherty (2007). Other
environmental modelling applications include forest growth models (van Oijen
et al., 2005) and a catchment nitrogen model (Jackson et al., 2004).

B4.3.2 Other MC2 algorithms
A variant on the Metropolis–Hastings algorithm is called the Gibbs sampler, first
introduced by Geman and Geman (1984) and named after the physicist J. W.
Gibbs because the process is analogous to random walks in statistical physics. In
the Gibbs sampler it is assumed that the form of the distribution of each par-
ameter can be assumed known a priori. The algorithm then chooses a random
parameter (or cycles through the parameters in turn), picks a new value for that
parameter from the current estimate of the marginal distribution and continues
to the next parameter. The process can also be shown to be a form of Markov
Chain that converges to a posterior distribution consistent with the assumptions
about the distributions of the individual parameters (Casella, 1992). It is useful
if, for example, all the distributions can be assumed to be normally distributed,
but the marginal distributions and covariance structure are unknown. The Gibbs
sampler has been used in water quality modelling by Qian et al. (2003) and
tracer test analysis by Fienen et al. (2006).

B4.3.3 Reversible jump methods
Green (1995) introduced an MC2 algorithm that could cope with more than one
model with arbitrary numbers of parameters. This is equivalent to finding the
posterior likelihood response surface in a model space that has model structure
as well as parameter dimensions. In particular, it can be used to assess whether
the data provide sufficient information to allow preference for one model over
another.

162 Environmental Modelling



Consider the case where m = 1, 2, 3, . . . .M models out of the set of all
possible models are to be evaluated. The variable m is then used as an index
variable in the chain. The models have parameter dimensions dm where the
number of dimensions in each model need not be the same.

The algorithm proceeds in a similar way to the MC2 search strategies
described above. A step is proposed based on some proposal distribution and
evaluated for acceptance or rejection. In this case, however, the step can also
include a jump from one model index to another.

B4.3.4 Population Monte Carlo methods
Population Monte Carlo (PMC) are an alternative to MC2 sampling strategies
that can avoid assumptions about proposal or parameter distributional forms.
Effectively, it is an iterative importance sampling strategy that uses the empirical
information gained from a set of samples at one iteration, to guide the sampling
at the next iteration. At each iteration, importance weights associated with each
sample are modified to reflect the additional information gained about the
nature of the target distribution (which is here the shape of the likelihood
response surface in the model space). In this way, the estimate of any summary
integral statistics required from the distribution can be determined by a discrete
weighted summation over all the samples such that

Ẑk = �
n

i = 1

wk
i G(xk

i); �
n

i = 1

wk
i = 1 [B4.3.2]

where Ẑk is the integrand of interest at iteration k, n is the current number of
samples, the wk

i are the weights associated with each sample in the model space
xk

i  and G( ) is some function of interest. In the case of a model-predicted variable
the simplest case would be that G( ) is the predicted variable, and Ẑk is the current
estimate of the mean of that variable.

At each iteration, the weights associated with each sample are corrected for
not using the correct target distribution by

wk
i =

L(xk
i)

Q(xk − 1
i )C

[B4.3.3]

where Q(xk − 1
i ) is the distribution used to generate the samples xi at the kth iter-

ation, on the basis of the information available at the k − 1th iteration, L(xk
i) is the

value of the likelihood evaluated at xi at the kth iteration, and C is a scaling
constant chosen such that the sum of the weights is unity. As the iterations
progress, the generating distribution should become closer to the target distribu-
tion and the weights should become closer to being equal, meaning that the
samples are being generated with a density proportional to the target
distribution.

The estimates of Ẑk can be shown to be asymptotically unbiased while the
evolving sampling distributions Q(xt

i) are naturally centred on the parameter
distributions (although other choices are possible, for example, if there is
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particular interest in getting good estimates of the extreme values of the function
G( ) of interest).

B4.3.5 More information and applications of MC2 and PMC methods
There are a number of texts on MC2 methods. Gamerman (1997) and Congdon
(2006) provide a good introduction. Robert and Casella (2004) also explain
importance sampling and MC2 methods in detail. A good introduction to PMC
is given in Cappé et al. (2004).

Some sources of software for MC2 methods are suggested in the Software
Appendix at the back of this book.

Box 4.4 Generalised Likelihood Uncertainty Estimation (GLUE)

GLUE is a form of model conditioning methodology that can be used without
the need to define a formal structure for the errors. It was developed by Beven
and Binley (1992) to deal with multiple acceptable models (the equifinality thesis
of Beven, 1993, 2006a) and the complex and non-stationary error series that are
commonly found in applications of environmental models to real data sets. In
GLUE, the errors associated with a particular model run are handled implicitly
by assuming the characteristics of the errors associated with that model in cali-
bration will be “similar” in prediction. Both model predictions, and implicitly
the error series, are weighted by a likelihood measure that expresses a degree of
belief in that model (and its implied residuals) as a useful simulator of the system
being studied. GLUE can use formal likelihood methods in which case the degree
of belief can be expressed as a probability and the assumed error model included
in the analysis (see Romanowicz, 1994, 1996).

In the main text, the decisions required in applying the GLUE methodology
are outlined, and their subjectivity discussed. Once those decisions about the
parameters to be varied, the prior distributions of those parameters, the method
of sampling the model space and the likelihood measure to be used have been
made, a large sample of model realisations is generated by Monte Carlo simula-
tion. This is normally a sample of randomly chosen independent parameter sets,
consistent with any prior information about parameter distributions, within a
single model structure, but the concept is easily extended to the evaluation of
multiple model structures.

Each simulation is run and evaluated with respect to any observed variables or
other information that may be available using the chosen likelihood measure or
measures to reflect the performance of individual models in reproducing the
behaviour of the system under study. The only formal requirements on the like-
lihood measure are that it be zero for models considered unacceptable or non-
behavioural, should increase with increasing levels of performance, and should
scale to sum to unity over all the models retained as behavioural (Beven et al.,
2000; Beven and Freer, 2001). Application of Bayes equation (or some other way
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of combining different likelihoods, see below) then allows a posterior likelihood
to be calculated for each model realisation.

Combining likelihood weights in this way provides a formal way of learning
from more observations. Within GLUE it may be applied to multiple model
structures as well as multiple parameter sets provided that the likelihood meas-
ures used in the evaluation of each model can be directly compared. In all cases,
the model (structure and parameter set) is treated as an entity. While it may be
desired to extract sensitivity information on individual models or parameters by
calculating appropriate marginal distributions of the likelihood measure (see
below), it is not necessary to do so. It is the model as a whole that gives a good or
bad performance in simulating the observations, and marginal distributions on
individual components may not always be very informative in applications
where there is a variety of models that give a good fit to the available data.

Given the posterior likelihood values, the predictions from each realisation
can then be weighted by the associated likelihood value to calculate prediction
quantiles over NB behavioural models as:

P(Ẑt < zt) = �
i = NB

i = 1

{L[M(Θi, I)]| Ẑt < zt} [B4.4.1]

where Ẑt is the value of variable Z at time t simulated by model i. Within this
framework, accuracy in estimating such prediction quantiles will depend on
having an adequate sample of models to represent the behavioural part of the
model space.

B4.4.1 Choosing a likelihood measure
It is worth re-emphasising that GLUE can use the type of formal likelihood
measures described in Box 4.2 in formulating the posterior likelihoods required
for the application of [4.4.1]. In this case, by treating the error model as an
extension of the model space, GLUE will be formally equivalent to the formal
Bayesian methods of Section 4.2. However, other informal likelihood measures
can also be used within this framework, including fuzzy possibilistic measures,
or binary (yes/no, behavioural/non-behavioural) evaluations based on “soft” or
qualitative data.

This remains controversial, since the choice of such measures appears to be so
subjective. Formal statistical likelihood measures, on the other hand, are object-
ive and allow an objective probability of predicting an observation to be
assessed, but only if the assumptions on which they are based are valid (see
discussion in Section 4.7). In applying Bayes equation it is quite acceptable that
the prior distribution of parameter distributions is subjective. Thus, the pos-
terior must also be subjective until the likelihood arising from model evaluation
against the observations dominates the prior likelihood (Bayesian statistics has
itself been criticised for such subjectivity). There is absolutely nothing in Bayes,
however, that suggests that the likelihood arising from model evaluation should
not also be subjective; it is just that the posterior will then be a belief measure
rather than a probability, conditional on all the assumptions (the decisions of
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Section 4.5.1) that underlie it. Clearly it is possible to choose common-sense
measures of belief for use as likelihood weights within this framework. Since we
are still lacking a theory of the information content of observations in condition-
ing models subject to different sources of error in real applications (see Section
4.7), whether such measures of belief are judged to provide an adequate
approach must be a matter of personal preference.

In what follows, we describe some of the error series-based measures that have
been used in past applications in GLUE. In the main text a different approach
based on limits of acceptability is described. The origins of GLUE lie in the
observation that optimisation and formal likelihood methods have the effect of
separating models that have very similar error variances. If performance was to
be considered purely as a matter of the variance of the residuals, then it seemed
to be a common-sense idea that we should not have greatly differing degrees of
belief or likelihood in models with similar residual variance (pure optimisation is
the most extreme case, here; the best or lowest error variance model is effectively
given a likelihood of one and all others a likelihood of zero).

The first set of measures therefore are based on functions of the residual
variance, σi

2. One possibility that has been used in a number of studies is to use
a power function of the error variance with shaping parameter N, where N is
ideally chosen to reflect the effective information content of the observations
(Box and Tiao, 1973). Thus, the likelihood measure for the vector of predictions
for the ith model defined over a vector of observations, O, is defined as:

L (O| M(Θi,I)) = (1 / σi
2)N / C [B4.4.2]

where C is a scaling constant. In practice the value of N may be chosen empiric-
ally to control the peakiness of the response surface in the model space and how
far the model prediction uncertainty brackets the observations. Note, however,
that use of [B4.4.2] implies an expectation that no perfect simulation will be
found since in that case this measure would go to infinity (it is also possible that a
near perfect model would dominate the sample of behavioural models in
the cumulative likelihood). Studies using this type of likelihood measure in
rainfall-runoff modelling applications have shown that, even with time series
with large number of time steps, the appropriate value of N is not high, reflecting
the lack of constraint provided by measurements in the calibration of many
environmental models.

Another form of performance measure based on the error variance, commonly
used in environmental modelling studies, is the proportion of the observed vari-
ance explained by the model (sometimes called the Nash–Sutcliffe efficiency
measure after Nash and Sutcliffe, 1970)

L (O| M(Θi,I)) = (1 − σi
2/σo

2)N / C [B4.4.3]

where σo
2 is the variance of the observed data and C is again a scaling constant.

Again a shaping parameter has been added in the form of a power N. For N
equal to 1, [B4.4.3] is analogous to a coefficient of determination. Clearly equa-
tion [B4.4.3] gives a different likelihood scaling for any given σi

2 than [B4.4.2].
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A further function of the error variance with some advantages in combining
different likelihood measures for different periods or different types of observa-
tion is:

L (O| M(Θi,I)) = exp (− Nσi
2/σo

2)/ C [B4.4.4]

where N is again a shaping parameter and C a scaling constant.
Variance based measures of this type tend to give greater weight to errors

associated with the highest magnitude predictions, where the errors are poten-
tially greater, due to the way in which each residual is squared. This effect can be
reduced in a number of ways. One is to take the sum of the absolute values of the
errors such that:

L (O| M(Θi,I)) = Σ|M(Θi,I,x,t) – O(x,t)|/ C [B4.4.5]

Clearly many other functional forms are possible, depending on what seems a
sensible measure of degree of belief in a particular application. A particularly
interesting type of evaluation is the binary measure (yes/no) evaluation based on
“soft” data. This can be applied, for example, on the basis of information about
the processes in the model and in the real system, including the type of perceptual
understanding outlined in Chapter 1. Thus, if a process that is thought to be
important in the real system is not predicted by the model, then that model might
be rejected even if it might be given a high likelihood on the basis of a residual
measure like those above. Other residual-based measures, and a summary of
applications of the GLUE methodology may be found in Beven and Freer (2001).

B4.4.2 Deciding which models should be considered behavioural
One of the decisions that must be made in applying the GLUE methodology is
how to decide whether a model is behavioural or non-behavioural. As noted in
Section 4.5.2, this might not be an easy decision because of the smooth range of
model performances from best to bad that is found in most applications.
However, again, a common-sense approach can be taken to this question, allow-
ing models that can be considered fit for purpose to be retained in prediction,
and the rest rejected as non-behavioural and given a likelihood of zero. The
definition of fit for purpose will clearly be problem-specific.

It is also possible to evaluate the prediction limits for a range of different
decisions about the performance threshold or limits of acceptability for a model
to be considered behavioural, as discussed in the main text. In this way, the limits
or threshold can be set to bracket a chosen proportion of the observations, or to
explore whether even the best models can be considered to be acceptable simu-
lators (in terms of thinking of them as hypotheses about how the system is
functioning). In GLUE, it is quite possible to reject all the models considered.
This can be a useful tool in a learning process (See section 4.5.9) in that it can
lead to a re-evaluation of the data used to drive the model, the model structure or
the way of evaluating the predictions. The formal likelihood measures of Box 4.2
can compensate for such failings by treating the residual deviations as a purely
statistical distribution (if an appropriate structural model of the errors can be
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found), but this might not necessarily be the best strategy in considering whether
a model is an adequate hypothesis.

B4.4.3 Combining multiple model evaluations
There will often be more than one possibility of model evaluation, in terms of
both quantitative and qualitative performance. These may range from the calcu-
lation of different likelihood measures based on different simulated variables to
rejection criteria based on whether the way in which the model is simulating a
certain process properly reflects some qualitative understanding of the system
responses. Each criterion or additional information should allow some refine-
ment of the likelihood distribution associated with each model, and in particular
the rejection of some models that had previously been considered as behavioural.

The addition of different types of information in this context may be handled
in several ways. One is by repeated use of Bayes equation in the form:

L(M(Θi,I)|O) = L(M(Θi,I)) L (O| M(Θi,I))/ C [B4.4.6]

where L(M(Θi,I)) is some prior probability defined for the range of feasible
models with parameter set Θi and set of inputs I; L(O| M(Θi,I)) is the likelihood
of simulating the vector of observations, O, conditional on the set of behavioural
models; and C is a scaling constant to ensure that the cumulative of the posterior
probability density L(M(Θi,I)|O) over all the i = 1, 2, . . . .K behavioural models
is unity.

The application of Bayes equation in this form requires a certain orthogonality
of the samples which is why the parameter sets should be chosen to be independ-
ent samples from the parameter space. To get a good definition in a parameter
space of high dimensions will therefore require a large number of samples (and
consequently a large amount of computer time). Simple random sampling may
not be the most efficient way of defining the response surface where that surface
has a simple form (see Section 4.3.2 and Box 4.3). However, where it has a
complex form, the simplicity inherent in this methodology may be considered an
advantage.

At each stage, a posterior likelihood is calculated conditioned on the add-
itional data. The multiplicative nature of [B4.4.6] will mean that if at any stage a
model is given a likelihood of zero, it will be rejected from further consideration
as non-behavioural. In cases where a model cannot predict adequately all avail-
able observables, this will lead to the rejection of all the model realisations (see
the discussion of Section 4.5.9).

The multiplicative nature of [B4.4.6] also means that the order of application
of different likelihood measures might be important. This can be seen when the
additional information is derived from conditioning based on observations of
the same variable but for different time periods. If a likelihood measure is calcu-
lated as a function of the inverse error variance for each period then the repeated
application of [B4.4.6] will produce different posterior likelihood values than
using the inverse error variance of the whole period treated as a single series (this
is used as a criticism of GLUE in Mantovan and Todini, 2006, but in fact simply
reflects different choices about how to evaluate the models and, by implication,
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different assumptions about the real information content of the available obser-
vations; see the discussion of Section 4.7). This difference may, of course, be a
desirable property in cases where there is an expectation that the system (and
therefore the parameter values) may be changing over time. It may be avoided by
using an alternative likelihood measure, such as the negative exponential func-
tion of the error variance [B4.4.4], such that repeated applications of [B4.4.6]
will be equivalent for multiple (equally shaped) subdivisions of the whole period,
i.e.

L (O| M(Θi,I) = [exp (− Nσ1
2/σo

2) exp (− Nσ2
2/σo

2) exp (− Nσ3
2/σo

2) . . .] / C

= [exp (− Nσ1
2/σo

2 − Nσ2
2/σo

2 − Nσ3
2/σo

2 − . . . .)]/C

= [exp (− N(σ1
2+ σ2

2 + σ3
2 + . . . .)/ σo

2)]/C [B4.4.7]

In the most general case, defining the error itself may be difficult where the
observations are imprecise or fuzzy in nature. In this case, it may be more
appropriate to use a limits of acceptability approach or fuzzy measure in the
model evaluation or conditioning. The values of the fuzzy measure can still be
used to weight the predictions of a sample models to create prediction quantiles,
as in Equation [B4.4.1]. They essentially therefore serve in the same way as the
likelihood measures within the GLUE methodology. The use of fuzzy measures,
however, also expands the ways in which measures might be combined by
utilising operators from fuzzy set theory. Given m different fuzzy measures of
performance, La, Lb, . . . Lm, the two simplest ways of combining two fuzzy
measures are by fuzzy union and fuzzy intersection, and general fuzzy weighted
mean [see Box 3.4].

B4.4.4 The meaning of GLUE prediction limits
There are thus a wide variety of ways in which to approach the evaluation and
conditioning of models within the GLUE framework. The choice of a measure
will be generally a subjective choice, but argued and reasonable for the model
purpose. The resulting prediction quantiles will therefore also be dependent on
this choice. Thus, any prediction bounds produced using the GLUE method-
ology are conditional on the choices made about the range and distribution of
parameter values considered, the model structure or structures considered, the
likelihood measure or measures used in defining belief in the behavioural models
and the way of combining the different measures. These are all subjective choices
but must be made explicit (and can be debated or justified if necessary).

The prediction bounds are then taken from the quantiles of the cumulative
likelihood weight distribution of predictions over all the behavioural models as
in [B4.4.1]. They may be considered as empirical probabilities (or possibilities)
of the set of behavioural model predictions. They have the disadvantage that
unless a formal error model is used (e.g. using [B4.2.5] or [B4.2.8] where the
assumptions are justified) they will not provide formal estimates of the prob-
ability of estimating any particular observation conditional on the set of models;
they have the advantage that the equifinality of models as hypotheses, non-
stationarities in the residual errors, and model failures are more clearly revealed.
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They reflect what the model can say about the response of the system,
after conditioning on past data. It is then up to the user to decide whether the
representation is adequate or not.

Experience suggests that for ideal cases, where we can be sure that the model is
a good representation of the system (unfortunately in the case of environmental
systems this is normally only the case in hypothetical computer experiments), the
GLUE methodology with its implicit treatment of residuals can provide good
bracketing of observations (e.g. Figure 4.11 in the main text). The effects of
strong input error and model structural error, however, may mean that it is
simply not possible for the range of responses in the model space to span the
observations consistently. This is, however, valuable information. Since the
residual errors in such cases are not necessarily random or stationary, it may not
be appropriate to represent them as a random error model.

Some sources of software for applying the GLUE methodology are suggested
in the Software Appendix at the back of this book.
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Forecasting the near future

The only thing that makes life possible is permanent, intolerable uncertainty; not
knowing what comes next.

Ursula LeGuin

Life is uncertain. Eat dessert first.
Ernestine Ulmer

5.1 Real-time data assimilation

It was noted in Chapter 1 that the problem of forecasting the near future is different
from the calibration of a simulation model of the system. In the forecasting case it is
not necessary to simulate all aspects of the system. The requirement is to provide
predictions at the lead time of interest with minimum uncertainty. The forecasts need
to be available with sufficient lead time to be useful in making decisions, and data
assimilation can be used to improve the predictions and reduce the forecast
uncertainty as a particular situation or event evolves.

There are a number of issues that arise in trying to make forecasts with sufficient
lead time. The first is whether there are data available to be able to make a prediction
at all. A forecast is always dependent both on having an adequate model of the system
and on the availability of input data to drive that model. The initiation of the tsunami
of 26th December 2004, for example, was caused by an earthquake of 9.1 on the
Richter Scale just north of Simeulue Island off Sumatra in the Indian Ocean. The
earthquake was the second largest ever recorded on a seismograph and caused waves
up to 30m high. There were, however, no tsunami sensor systems and no forecast
models implemented for the Indian Ocean. No forecasts were made and no warnings
were issued. A total of over 220,000 people were lost across the countries affected,
including Sri Lanka, Thailand, India and Indonesia, but damage and deaths were
recorded as far away as South Africa, 8,000 km away. It is probable that if the
equivalent event had happened in the Pacific Ocean, where there is a tsunami
forecasting system in place, the death toll would have been very much less because
warnings would have reached many places in time. A forecasting system is now being
implemented by the Indian Ocean states.

There are a number of issues that arise in trying to make forecasts with sufficient
lead time. The first is whether the natural time delay in the system is sufficient. The
Boscastle flood, on the north coast of Devon, England, on 16th August 2004, occurred
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after some 200 mm of rain on a small steep catchment and caused 58 properties to be
flooded and over £2 m of damage. The flood was caused by a succession of small
intense convective cells along a squall line moving from the Irish Sea over the catch-
ment upstream of the village. The time delay between the heavy rainfall being meas-
ured at rainfall gauging sites and the peak discharge was too short for an adequate
warning to be issued. During the event a flood wave 3 m high moved down the valley,
probably as a result of a sudden release of water following failure of a dam of debris.
The speed of rise of the river took many people by surprise. Fortunately, the flood took
place during daytime and seven helicopters were mobilised that picked up over 100
people stranded on rooftops or cars. Nobody was killed. Fifty years before, on the
night of the 15th August 1952, in a similar flood in the same area in the village of
Lynmouth, a flood wave caused by up to 300 mm of rain in the catchments of the East
and West Lyn rivers, swept through the village, killed 34 people and deposited
200,000 tons of debris. These events are not unprecedented; previous damaging
summer floods of this type have been recorded at Boscastle in 1824, 1847, 1950,
1957, 1958 and 1963.

In systems with short response times, therefore, the only way of increasing the lead
time of a forecast to be able to give a warning would be to forecast the input to the
system. There are systems for forecasting rainfall inputs, using numerical weather
prediction (NWP) models or extrapolations of rainfall radar data, but both, as yet,
give only very uncertain predictions for any particular location (see Collier, 2007, for a
recent review of rainfall forecasting). There is a danger, therefore, that given the
uncertainties either a warning will be ordered, but without the expected danger actu-
ally occurring, or a warning will not be ordered and a flood or other extreme event
will occur. This was the case in the Vaison-la-Romaine flood, in the south of France in
1992. In this case, on the basis of the atmospheric model forecasts, two warnings that
flood-producing rainfalls might occur in the Department of Vaucluse, which contains
Vaison-la-Romaine were issued by Météo France ahead of the event. However,
nobody was sure which of the catchment areas within the Department might be
affected, so no local warnings were given (there are some flood-producing rainfalls in
this area in late August or September nearly every year, but they are often localised).
Some 35 people lost their lives, many of whom had been staying in riverside camp-
sites. The river overtopped the Roman bridge in Vaison-la-Romaine, and reached some
18 m above its normal level. Estimates of peak discharge varied between 600 and
1,200 m3s−1.

A third issue is that the speed with which model predictions can actually be made is
important. This is currently an issue with numerical weather prediction models. The
forecasters would like to do two things to improve their predictions. They would like
to refine the grid scale of the models, and they would like to increase the number of
ensemble runs of the model for each forecast. An ensemble is made up of a number of
different runs of the model (see Section 5.2 below), each with different patterns
of initial conditions, reflecting the uncertainty in the knowledge of the atmosphere at
the start of the run. At the European Centre for Medium-Range Weather Forecasts
(ECMWF) 50 forecast ensembles are run, twice every day, for comparison with the
control run, but these have coarser resolution in both the horizontal and vertical than
the deterministic forecast (Figure 5.1). Both decreasing the grid scale and increasing
the number of runs would increase the computer run time. Undoubtedly both will be
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Figure 5.1 ECMWF Control and Ensemble Predictions as Box Plots for cloud cover, precipitation, 10 m
wind speed and 2 m temperature for the period starting 15th July 2007 for Lancaster, UK
(reproduced by authorisation of ECMWF)
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improved in the future as the models are implemented on the next generation of
computers (and, as a hydrologist, it is to be hoped that the representation of rainfall
formation and runoff generation processes will also improve), but limitations will
remain so as to not have total computational times that reduce the necessary lead
times for decision making.

Even where future inputs are extremely uncertain, however, model forecasts of the
near future can generally be improved by the use of data assimilation or model updat-
ing. All data assimilation techniques try to correct, in some way, for departures
between the forecast and what actually happens, in making a new forecast. Thus, at
each forecasting step, a comparison is made between the previous forecast and the
available data on the current state of the system (for example, temperatures, pressures
and wind fields in weather forecasting and river levels in flood forecasting). This
requires that such data be available to the forecaster in “real time” so that they can be
used in this way. With modern telemetry and communications technology this is
becoming both easier and cheaper and the range of data available to the forecaster is
increasing all the time.

As such data arrive at a forecasting centre it can be seen whether the past model
forecast was under-predicting or over-predicting the observed changes. The magni-
tude of the under-prediction or over-prediction can then be used to adjust the next
forecast, hopefully to make it more accurate, although there is no guarantee that,
given uncertain inputs, an under-prediction at this forecasting step will continue at the
next forecasting step. Thus, data assimilation is inherently uncertain and should
ideally be carried out in a way that allows the forecast uncertainty to be assessed.
Indeed, the aim of any data assimilation methodology should be to minimize the
forecast bias and prediction variance at the required “N step ahead” lead time for
which a decision might be required. This is an important consideration in assessing
forecasting and updating techniques, since there are many, many papers in the litera-
ture that present only one step ahead forecasts. Where the length of such a time step is
short relative to the decision time frame or required lead time, then one step ahead
forecasts might not actually be very useful, however accurate they are.

A simple real-time forecasting problem, in this case the prediction of flood water
levels in a river, is illustrated in Figure 5.2. Given information about what has hap-
pened up to time now, to, how can we best predict what will happen in the future?
Figure 5.2 shows the predictions (with uncertainty estimates) originating from differ-
ent initiation points on the flood wave over the natural lead time of the system. It can
be seen how the estimate of the forecast variance changes over time and, in particular,
for every individual forecast the forecast variance gets larger as the forecast time gets
longer. At each initiation time, the state of the system (here water level at some down-
stream site) is known and has been used to update the forecast model. Operationally
these types of calculations would be updated every time a new observation is received
(typically every 15 to 60 minutes for flood forecasting).

Such predictions involve two important sources of uncertainty; the first is how to
correct for the recent deviations between our model prediction and the available
observations, the second is how to take account of the potential future inputs into the
forecasting system (for example, future rainfall predictions in the case of flood fore-
casting). Many forecasting problems in different domains are analogous to this. Even
where a model has been calibrated on the past behaviour of a system, we know that it
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will not predict perfectly (for all the reasons discussed in Chapters 1 and 2), and we are
often quite ignorant about the probability of future inputs. Indeed, it may not be
possible to specify future inputs in terms of probabilities at all, in which case forecast-
ing lead times may be limited to the natural time scale of response of the system. Flood
forecasting is usually like this. There are techniques for forecasting rainfalls, but none
of them are very accurate, and in Norway, for example, an operational forecasting
system has been based on analogues from past events as a way of trying to assess
possible (but uncertain) future rainfalls (see Skaugen et al., 2005). This might improve
in future as the rainfall forecasts of atmospheric forecasting models improve but, as
yet, they have some way to go.

The problem of future inputs is not such a problem where the forecast lead time
required for a useful decision to be made is no greater than the natural time scale of the
dynamics of the system. In flood forecasting, for example, as the scale of an upstream
catchment area increases, so does the time delay between an input of rainfall and the
peak of a flood at a point at risk of inundation. Thus, for catchment areas of the order
of 500–1000 km2, depending on the flashiness of the system, it may be possible to get
forecasts with a lead time of six hours or more without needing to predict future
rainfalls. For small catchments, this will not be possible, which is why it is still very
difficult to provide flood warnings for flash floods on small catchments even though,
in some parts of the world, they are one of the most important causes of death by

Figure 5.2 Flood forecasting on the River Severn, UK. 14 hour ahead forecasts of water level at
Bridgnorth, with estimates of uncertainty (90% prediction limits) illustrated for differ-
ent initial forecast times

Source: Peter Young, reproduced with permission
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natural hazards. Similar considerations of forecast lead time relative to the system
response time will apply for other forms of natural hazard.

Here, we will consider situations where the natural time delays are sufficient to
allow adequate lead times in making decisions, and where, as in Figure 5.2, inputs to
the system and observations on the state of the system are available to the forecaster in
real time, if only up to time “now” (the to of the forecast). Thus, past inputs to the
system can be used to drive the forecast model and a comparison can be made between
the predicted state of the system (here water level at a certain location) and the obser-
vation of that state. For this simple one variable example, it is immediately obvious as
to whether the forecast model has been under-predicting or over-predicting and we
would have an expectation that our future predictions at the required lead time might
be improved if we can learn from this past behaviour. At the next forecast time step,
we will be able to reassess any adjustments we have made in again forecasting to the
required lead time. Predictions further into the future will be increasingly uncertain,
particularly once predictions start to be made for longer lead times than the natural
delay in the system, but might not be required for making decisions. Thus, any data
assimilation or updating system should concentrate on trying to minimise the bias and
the error variance of the forecasts at the required lead time. Given the sequence of
residuals between the forecasts and the observations up to time now, there are two
simple strategies that might be used in updating. The first is to let the forecast model
run deterministically and try to model the residual error directly. The second is to
update the parameters of the forecast model itself, in particular those that affect the
gain of the model.

The problem of data assimilation becomes more difficult as more complex and
nonlinear models start to be used and where it might be necessary to consider updat-
ing the internal states as well as the parameters of the model. In such cases, a real
question arises as to whether the information content of the data being assimilated is
sufficient to support the modification of both states and parameters, since there may
be complex interactions between states and parameters in nonlinear and spatially
distributed models. For many environmental applications this might be a very poorly
posed problem mathematically and data assimilation algorithms have to be imple-
mented with great care. After an introduction to the principles of least squares error
correction, two types of techniques in operational forecasting use will be considered
here, the updating techniques based on the Kalman filter (EnKF), and the three- and
four-dimensional variational techniques that have been used widely in weather fore-
casting. For simplicity, the techniques are developed in the main text for a single
scalar variable, with extension to the multivariate case in Box 5.1 and Box 5.2
respectively.

5.2 Least squares error correction models

In any data assimilation problem, as new observations are made available, we can
compare the value of each observation with the corresponding prediction of a model.
For the moment, we will assume that the observed and predicted values are directly
comparable (commensurate), though, as we have noted before, this is not always the
case. Consider first a single scalar comparison between an observed state and its model
prediction (Figure 5.3).
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They will almost certainly be different, suggesting that for real-time forecasting we
might get better future predictions if we “correct” the model in some way depending
on whether it is over-predicting or under-predicting. We will refer to this corrected set
of states as the target for the correction procedure, S*. A new estimate of a target state
in the model can be obtained from a weighted correction based on the difference
between the predicted or background state, Sb, and the observation, O, such that for
the simple scalar case:

S* = Sb + W(O − Sb) [5.1]

where S* is the updated target value of state S, Sb is the background value, O is the
observed value and W is a weighting coefficient. Equation [5.1] is a form of innovation
equation and the difference (O − Sb) is the observation innovation. Clearly the import-
ant question that then arises is how to determine the appropriate weight. Very often,
the solution to this problem is based on minimising a squared error cost function. If
the least squares function is minimised (or likelihood is maximised) the optimal
weights will be given by

W = σb
2 / (σb

2 + σO
2) [5.2]

It can also be shown that the variance of S* given by

σ*2 = (1 − W)σb
2 [5.3]

Since W and σ*2 depend on both the background variance and the observation vari-
ance, the ratio of these two variances acts as an important control on the damping of
how much account is taken of the observations relative to the background values. The
greater the observation variance relative to the background variance, the less effect the

Figure 5.3 Updating of a forecast (with adaptive step at each time increment) as new observed
data about the predicted variable (smooth curve) become available at times T1 to T7
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observation innovation will have on the new estimate of the state S*. These equations
provide a simple form of recursive estimation that are easily extended to the multivari-
ate case (see Box 5.1). It is also worth noting that there is a direct analogy between
this approach to data assimilation and the weighted least squares approach to model
calibration outlined in Section 4.1 of the previous chapter.

These least squares equations can be applied directly to obtain optimal weights in
cases where σb

2 and σO
2 can be assumed known. Unfortunately, this is rarely the case.

We might have some idea of what the observation error might be on the basis of past
studies in cases where the observed and predicted states really are commensurate, but
the background variance of the predicted states is not so easily assessed and will
certainly change as the forecast progresses. The Kalman filter and variational data
assimilation techniques of the sections that follow provide ways of estimating the
appropriate variances, including allowing for observations that might not be directly
comparable with the predicted states of the model.

5.3 The Kalman filter

The Kalman filter (KF) derives from work by Kalman (1960) on the optimal control of
linear systems. It is a way of recursively (step by step) updating a model as new data
about the behaviour of the system are received. In the original control problem formu-
lation it was the states of the system that were of most interest, under the assumption
that the input data and the model were correct. The Kalman filter has also been used in
updating the states of environmental models as a way of improving forecasts. It does
so in a way that aims to maximise the correlation between observed and predicted
residuals and minimise the forecast error variance. A generalised formulation of the
Kalman filter method of data assimilation is based on writing the model in a discrete
state space form:

St + 1 = M[St,Ut,Θ] + ε t [5.4]

where the states at the next time step St + 1 are predicted by the model M[ ] as a
function of the states at time t, a vector of inputs Ut at time t and past time steps, and a
parameter vector Θ, assumed constant. To apply the Kalman filter the model M[ ]
must be assumed to be linear (i.e. doubling the inputs to the model will produce
exactly double the outputs). The term ε t represents a dynamic model error term. In this
case, the outputs of the model will be a linear function of the model states and the
input forcing, conditional on the assumed values of the model parameters. It is then
further assumed that the true value of an observable state, S*

t, can be represented as
a function of the model output and a random error such that, for any single state:

S*
t = M[St] + ηt [5.5]

where St is the system state at time t and ηt is a random error, normally assumed to
have zero mean and to be normally distributed (although it is worth noting that
Kalman’s original formulation was developed in terms of orthogonal projections
and did not require an assumption of Gaussian errors, only an expectation of a
symmetrical distribution of forecasting errors, see Young, 1984).
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Then, as a new actual observation of a state, S̃to
 becomes available at time to, the

forecast error from the true state can be represented in two ways, noting that the
prediction at time to is a function only of the past states.

S̃to
− S*

to
= M[Sto

] − S*
to

+ ηto
[5.6a]

or

S̃to
− M[Sto

] = ηto
[5.6b]

The Kalman filter then directly updates the forecasts to correct for this error using a
two-step process, a predictor step followed by a correction step. In the predictor step,
an updated estimate of the states is obtained using the innovation equation:

Ŝto + 1|t = Sto
+ Kto

(S̃to
− M[Sto

]) [5.7]

where Ŝto + 1|t are new conditional estimates of the states and Kt, called the Kalman gain,
is the equivalent to the simple weight of [5.2]. In the Kalman filter, however, it is no
longer necessary to assume that the background variance is known since this can be
estimated and updated as the forecasts proceed (see Box 5.1). The size of the Kalman
gain will depend on the magnitude of the prediction error. It is also updated each time
a new observation is available. The prediction is then updated in the correction step as

Ŝto + 1 = M[Ŝto + 1|t] [5.8]

If a forecast is required more than one time step ahead then the prediction equations
can be applied at successive time steps until the required lead time is attained (noting
that this requires making some assumptions about the inputs during the lead time,
since these have not yet been measured). The correction step can only be applied,
however, as a new observation becomes available to improve the estimation of the
states (and thereby correct for over- or under-prediction as in Figure 5.3). Extension of
the Kalman filter equations to the case of multiple states will be found in Box 5.1.

5.3.1 Updating a model of the residual errors

When a complex model is being used for forecasting involving many parameters and
many states, a way of applying the Kalman filter is to allow a forecasting model to run
deterministically but then to use a simple stochastic model of the residual errors to
update the forecast in real time. The Kalman filter can then be used to update the
model of the errors as each new observation becomes available. This is the simplest
case, because very often there will only be a single state variable at each forecast site
(effectively the deviation from the prediction of the deterministic forecast model).
There have been a number of operational hydrological forecasting systems that have
used this approach in the past.

The approach demands, however, an appropriate model of the errors. This is often
taken as the form of an autoregressive model (AR) described by Box and Jenkins
(1976). AR models are linear models. Mathematically, an AR model can be written in
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terms of a weighted sum of the past residual errors. Thus, in this case, the model
forecast at the lead time tL will be the sum of an output from the forecast model and an
estimate of the error at lead time to + L which will be a function of the known past
residuals up to time to:

ε̂to + L = ao + a1εto
+ a2εto − 1 + . . . aNεto − N + 1 + ηto

[5.9]

where ηto
 represents a purely random component. This has the form of [5.5] above and

can easily be implemented in the Kalman filter. Note that the prediction of the residual
error at tL can only be a function of the residuals at to and earlier, since for time steps
between to and tL no information about the magnitude of the residual is available since
no observations have yet been received. This equation has a set of parameters that
must be estimated prior to making a forecast. Normally a study of the forecast
behaviour in past events allows such a calibration. Such a study could also show that
the residual errors might be a function of some other input variables and, in this case,
the model of the residuals might be extended to an ARMA (autoregressive moving
average) model or transfer function (see Young, 1984). This is also a linear model if
the model coefficients are assumed constant. The states that are modified in the
Kalman filter in these cases are the past residuals, ε, between the observations and
values predicted by the deterministic model.

5.3.2 Updating the gain on a forecasting model

In most forecasting problems it will not always be a good assumption that the model is
correct and that the forecast residuals are only a result of not knowing the true values
of the system state. Very often we suspect that both the input data and the parameters
of the model might also be in error and there is no reason why the parameters of the
model should be constant from event to event (unless we could demonstrate that this is
a good assumption by analysis of a large number of past events). Thus, in many
forecasting problems, simply updating the model of the deviations between a
deterministic forecast and the observations may not be sufficient if the model itself is
not that accurate a predictor (for all the different reasons considered in previous
chapters).

Fortunately, given that the number of observations available for data assimilation is
often limited (though see the weather forecasting application in Section 5.4 below), it
does not appear necessary to correct all sources of model error (inputs, parameters and
states) in the updating. We can take advantage of the fact that many of these sources of
error interact in producing a particular forecast error. For example, an observed input
quantity that underestimates the true input to the system could be compensated by an
increase in a model parameter that controls the gain in the system such that, if St is the
forecast output state from a model, it is assumed that this can be corrected to the true
output by a gain multiplier, Gt, together with some additive error. Thus:

S*
t = Gt (St) + ηt [5.10]

This again has the form of [5.5] and can be easily implemented in a simple scalar
Kalman filter. The approach was used for some years in the Dumfries flood warning
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system on the River Nith catchment in Scotland (Lees et al. 1994; see also Beven,
2001a) with transfer function models in predicting rainfall-flow, upstream to down-
stream flow routing, and tidal influences (with both upstream and seaward inputs to
predict water levels downstream of the tidal limit). They applied [5.10] to the outputs
from the transfer function model. They also implemented another forecasting “trick”
that might be useful in other circumstances. The authority that commissioned the
flood warning system required a six hour lead time, but the data suggested that the
natural lead time of the system was only five hours. By fitting transfer function models
with an “artificial” time lag of six hours, simulation of the system was not so good,
but the six hour ahead forecasts, with the KF updating, could be improved.

In [5.10] the variable that is updated in the KF is the gain coefficient, Gt, which is
treated as a single state in the filter algorithm This will have an initial value of unity,
but after that is allowed to evolve as a random variable, with values that will reflect
whether the model is over- or under-predicting the observed variable. Thus, given an
estimated value of G at time to, [5.7] can be written to update G as

Ĝto + 1 = Gto
+ Kto

(S̃to
− Gto

(Sto
)) [5.11]

In updating the Kalman gain (equations [5.9] to [5.11]), no estimate of the variance σ2
η

is readily available, but this can be treated as a tuning parameter of the updating
algorithm. It is effectively a noise-variance ratio (NVR) and the larger the value, the
slower the algorithm will change the gain in response to the observation innovation.
Small values on the other hand will result in a very rapid response. The NVR can
therefore be tuned for the system of interest to give a suitably damped response to
prediction errors given the time step and response time of the system. A good summary
of the application of the gain updating approach to the flood forecasting problem is
given by Young (2002).

5.3.3 Case study: Flood forecasting on the River Severn

The approach has been extended by Romanowicz et al. (2006) in an application to a
flood forecasting system for the River Severn, UK (Figure 5.4), to allow for the fact
that the relationship between rainfalls and flood water levels might be highly nonlin-
ear. The approach is an extension of the Dumfries forecasting system (Lees et al.,
1994) and uses a cascade of linear stochastic transfer function models for modelling
rainfall to river level in the upstream parts of the catchment and for routing the flood
wave in the downstream river reaches. The stochastic transfer functions take the form
(Young, 1984, 2002; Taylor et al., 2007):

yt =
B(z−1)

A(z−1)
ut − δ + εt

where yt is the forecast water level at time t, ut−δ is an input at the time t − δ, δ is a time
delay, εt is a stochastic error term, and A(z−1) and B(z−1) are polynomials in the
backward shift operator, z−1, where ytz

−1 = yt − 1, of the following form:

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . . + anz
−n
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B(z−1) = bo + b1z
−1 + b2z

−2 + . . . + bmz−m

Past experience suggests that normally only second-order models are required for
flood forecasting (with 2 a parameters and 1 to 3 b parameters) for these types of
forecasting problems. A model with 2 a parameters can often be decomposed into two
flow pathways, one representing a fast component, the other a slow component
(Young, 1984, 2002; Beven, 2001a). The linear transfer function models are imple-
mented using the Kalman filter with updating of the fast and slow model states as each
new water level observation becomes available in real time.

There are a number of features of the River Severn flood forecasting system that
make it interesting. The first is that it forecasts water levels directly, not river dis-
charges (there is generally a nonlinear relationship between water level and discharge
because of the shape of the river cross-section and the way in which river velocities
change with water level, particularly when the river starts to flood). In hydrological
terms this means that there is no requirement to maintain any mass balance, either in
the rainfall–river level components or the flood wave routing components. The trans-
fer function models are not therefore attempting to simulate the flow processes in any
way, only to mimic the response of the system. In physical terms, this ought to be a
disadvantage; there is no reason why a rainfall to water level model should work well
when it ignores the basic hydrological principle of mass balance.

In practice, however, this approach can actually produce good forecasts for a num-
ber of reasons. One is that the mass balance principle is difficult to apply since there
are known to be errors in estimating the rainfall inputs over a catchment area from
either rain gauge or radar rainfall data. There are also known to be errors in estimat-
ing river discharges from measurements of water levels, particularly at flood flows.

Figure 5.4 River-flow gauging sites and raingauge sites used in the flood forecasting model for
part of the River Severn catchment, UK. The Welsh Bridge site is in the middle of the
town of Shrewsbury which has been subject to a number of floods in recent years

Source: Romanowicz et al., 2006, Copyright ©2006 American Geophysical Union, reproduced with
permission
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Water level is, however, a direct observation with relatively small error and is also the
variable of interest in flood forecasting since it is water level that determines whether a
flood embankment will be overtopped or whether houses will be flooded.

A second feature of interest is that the system recognises that the relationship
between rainfall and water level and also in routing the flood wave in the downstream
reaches is nonlinear. It handles this by defining an optimal transformation of the
inputs to the stochastic transfer functions during calibration and by adjusting a model
gain at each time step. The gain adjustment is implemented using a form of the recur-
sive least squares algorithm discussed in Section 5.1.1 (see also Young, 2002). It is
controlled by a noise-variance ratio (NVR) parameter that is also optimised during
calibration.

Finally the model also takes account of the fact that the forecast errors tend to
increase with the magnitude of the forecast (i.e. the errors are heteroscedastic).
Heteroscedastic errors might be expected for good physical reasons. The prediction of
water levels in a flood for example would be expected to be more uncertain as
flood waters go overbank in high-magnitude events. A simple function form for the
heteroscedasticity is used, such that

σ2
t = λo + λ1y

2
t

where σ2
t is the variance of the stochastic error term, εt, which now varies with the

magnitude of the predicted output, y, and λo and λ1 are hyper-parameters optimised
during calibration. Some typical results of the forecasting system for a test event are
shown in Figures 5.5 and 5.6. In Figure 5.5, five hour ahead forecasts are shown for an
upstream site that involves only a rainfall to river level forecast. In Figure 5.6, 35 hour
ahead forecasts are shown for the downstream site at Buildwas that is the result of the
cascade of rainfall-river level and flood wave routing models. Romanowicz and Beven
(1998) showed how this form of transfer function forecasting methodology could also
be used to constrain the predictions of a hydraulic model of inundation on the River
Severn within the GLUE methodology of Chapter 4. In principle, this approach could
be used to provide inundation predictions in real time.

5.3.4 The Extended Kalman filter

The Kalman filter can be extended to deal also with parameter and state updating in
(at least mildly) nonlinear models. To do so requires a linearisation of the forecast
variance (and covariance in the multivariate case), around the nonlinear model predic-
tions between the times t and t − 1. In this case we can write (to first order) that the
desired target set of states at time t, S*, in the model M(S) will be a perturbation of the
current estimated states of the form:

Mt(S*) = Mt − 1(S + δS) = Mt − 1(S) + Lt − 1δS [5.12]

where Lt − 1 is a Jacobian gradient matrix, evaluated at time t − 1, which has elements

Lt − 1 = ∂Mt − 1(S)/∂Si I = 1,2,. . .NS [5.13]
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where NS is the number of states. The matrix L extrapolates any perturbation of a state
in the model to the target state. The transpose, LT, can be used to extrapolate a target
state at time t − 1 back to its equivalent in the model at time t. LT is also known as the
adjoint matrix. It is assumed that the same operator can be applied in both forward
and backward extrapolation. The Extended Kalman filter (EKF) is then developed by
again assuming that the observations have random errors with zero mean and known
covariance.

The data assimilation process is then set up as an optimisation problem to minimise
a cost function of the squared perturbations (see Box 5.1 for more details). The solu-
tion is a set of states, as far as possible consistent with the model dynamics, with the
advantage that this should minimise any non-physical instabilities in the solution as a
result purely of the data assimilation when it is propagated forward over the
next forecasting period. In practice, additional constraints are often added to the
optimisation problem to satisfy global balance equations in the model target solution.

This also, however, gives rise to a problem in that all the different potential sources
of error might interact in nonlinear ways. Thus, the Extended Kalman filter has some
limitations for practical applications. Because it depends on linear extrapolations in
any particular forecast step, it is limited to models of mild nonlinearity. If the nonlin-
earity is too strong there will be a tendency to generate numerical instabilities in the
EKF algorithm. It is also limited to cases where the number of states and parameters

Figure 5.5 Observed (dotted line) and predicted water levels from rainfall-water level modelling
at Abermule on the River Severn. This is a test event not used in calibration. The
forecasts are five hour ahead forecasts, with state updating using the Kalman filter and
gain updating using a recursive least squares algorithm. The shaded area represents
95% prediction limits around the model predictions

Source: Romanowicz et al., 2006, Copyright ©2006 American Geophysical Union, reproduced with
permission

184 Environmental Modelling



that are allowed to vary is not too great. Otherwise the Jacobian and adjoint matrices
become expensive to compute and updating the covariance matrix also becomes com-
putationally demanding. Stability problems will also increase. That is why it has been
more popular in hydraulic, atmospheric and oceanographic models, which may have
very large numbers of states, to use either variational methods (see Section 5.3) or,
more recently, Ensemble Kalman filter methods.

More details of the technical background to the Extended Kalman filter can be
found in Box 5.1, including how the error variances of the forecast are calculated in
the updating. Applications include updating of soil moisture data (Walker et al., 2001)
and parameter estimation in complex aquifer systems (Yeh and Huang, 2005).

5.4 The Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) has been developed to cope with more highly
nonlinear models by allowing different sources of error to propagate through the
model by using a Monte Carlo sampling strategy. In this way, any effect of the nonlin-
earities on the way in which the errors affect the forecasts is treated directly in the
outputs from the sample of models. At each updating step a form of the Kalman filter

Figure 5.6 Observed (black line) and predicted water levels at Buildwas, downstream of
Shrewsbury on the River Severn. This is a test event not used in calibration. The
forecasts are 35 hour ahead forecasts, resulting from a cascade of rainfall-water level
and water level to water level models in the reaches of the River Severn, with state
updating using the Kalman filter and gain updating using a recursive least squares
algorithm. The shaded area represents 95% prediction limits around the model
predictions

Source: Romanowicz et al., 2006, Copyright ©2006 American Geophysical Union, reproduced with
permission
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prediction correction equations is used to update the distribution estimates for states
and/or parameters that are being allowed to vary. This provides the basis for a new
Monte Carlo sample for the next forecasting step. In most applications of the EnKF
the distributions are assumed to be multivariate Gaussian, requiring the estimation
and updating of a full variance–covariance matrix. The concept was first outlined for a
weather forecasting example by Evensen (1994), and has since been used in weather
forecasting by Burgers et al. (1998), Houtekamer and Mitchell (2001) and
Houtekamer et al. (2005); in hydrological modelling applications by Moradkhani et
al. (2005a), Vrugt et al. (2006) and Vrugt and Robinson (2007b); in hydraulic models
by Madsen and Cañizares (1999), Sørensen et al. (2004) and Weerts and El Serafy
(2006); and in land surface to atmosphere flux estimation by Margulis et al. (2002),
Reichle et al. (2002) and Crow and Wood (2003). Vrugt and Robinson (2007b) com-
pare the EnKF approach (using updating of an ensemble of a single model structure)
with Bayesian model averaging (BMA, which uses several different model structures
but does not update the likelihood distributions for each model over time) and con-
clude that for the rainfall-runoff example they considered, the EnKF performs better
than the BMA method.

Details of the extension of the Kalman filter to the ensemble case are also given in
Box 5.1. The success of the EnKF methodology depends on the success of the sampling
methodology and the number of samples in the ensemble. Recent work has suggested
that significant improvements in the data assimilation can be achieved by changes to
the sampling strategy (Evensen, 2004, 2006), at least where model errors are small.
Clearly there are computational advantages in using as small an ensemble as possible,
particularly where computational constraints may be important in actual real-time
forecasting. A small ensemble, however, may not adequately represent the range of
variability that should be explored in a nonlinear modelling problem.

The results of the ensemble propagation are also analysed under multivariate
Gaussian assumptions. This will not always be a good set of assumptions and the more
general technique of Particle Filtering (see Section 5.5.1 below) has been developed to
allow the Gaussian assumptions to be relaxed. Although this allows greater flexibility,
it will normally require a much greater number of ensemble members and it appears as
if it is not always advantageous in making operational forecasts for environmental
problems (see the Case Study of Section 5.5.1).

5.4.1 Case study: Application of the Ensemble Kalman filter to
the Leaf River Basin

An application of the Ensemble Kalman filter to rainfall-runoff modelling in the Leaf
River catchment, Mississippi, was reported by Moradkhani et al. (2005) using the
hydrological model HYMOD. Figure 5.7 shows a schematic of the model structure
used, together with the parameters and storages. They propose the EnKF as a consist-
ent framework for dealing with the limitations of both model structures and input
data in hydrological forecasting, and the possibility that the parameters representative
of a catchment area might change over time. They implement the EnKF as a dual filter,
one to update the five model parameter values followed by one to update the state
variables of the model which are here five storage variables. The model is implemented
on a daily time step and it is assumed that the current flow in the river is known at each

186 Environmental Modelling



day in predicting the flow at the next day. They are consequently proposing a one time
step ahead prediction system rather than a simulation model of the catchment water-
shed (when the uncertainties in prediction would be expected to be much larger).

Figure 5.8 shows the evolution of the parameter values over three years of daily
updating. The confidence bands in this figure are not directly from a single ensemble
prediction run but are the distributions of the mean parameter values for ensembles of
50, taken over 500 different realisations.

Figure 5.9 shows the predicted uncertainty for the storage, S, in the nonlinear runoff
component of the model. Figure 5.10 shows the one day ahead predictions, with
uncertainty bounds.

5.4.2 The Ensemble Kalman smoother

A further extension of the EnKF is the Ensemble Kalman smoother (EnKS) introduced
by Evensen and van Leeuwen [2000] as an improvement over an earlier ensemble
smoother due to van Leeuwen and Evensen (1998). The EnKS aims to update not only
the current states in the model but also states at past time steps. It uses the EnKF as a
first step and should never provide results that are worse (in terms of accuracy and
error variance of the forecasts) than the EnKF. In practice, the EnKS is not generally
used to update all past states in a modelling problem but only states over some fixed
lag into the past associated with the decorrelation time of the system of interest, since
smoothers will only be of benefit if there is correlation in the effect of perturbations to
the system model in making the forecasts.

The EnKS has been used in a variety of environmental applications, including ecol-
ogy (Gronnevik and Evenson, 2001); oceanography (Brusdal et al., 2003) and the use
of radar remote sensing to update soil moisture estimates in improving predictions of
land surface to atmosphere fluxes (Dunne and Entekhabi, 2005, 2006).

Figure 5.7 Schematic of the HYMOD catchment model

Source: Moradkhani et al. (2005), reproduced with permission of Elsevier
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5.5 The Particle filter

Over the same period an alternative Monte Carlo methodology called Particle filter-
ing (PF) was being developed. Particle filtering is a form of Bayesian learning process
in which the propagation of all uncertainties is carried out by a suitable selection of
randomly generated ensemble members, but the statistics of the resulting distributions
of errors are based purely on the sample statistics without any assumptions about the
nature of the distributions. This method does not therefore require any assumptions
about the prior distributions of the states and/or parameters; the specified prior is
simply sampled and the resulting model realisations (particles) used to create a distri-
bution of forecasts. With a very large sample of realisations the resulting distribution
of forecasts should approximate the posterior distribution well. Each sample is associ-
ated with a weight. At the first time step the sampling can be carried out so that the
weights of all the realisations are equal. As new observations are made available at the
next forecasting realisation, the weights can be updated, essentially using Bayes equa-
tion (see Box 4.1), to reflect how well each sample was modelling each observation.
The models are then propagated to the next forecast step and the weights re-evaluated
again.

Figure 5.8 Time evolution of the values of the HYMOD parameters as applied to the Leaf River
catchment after three years of daily EnKF updating. Shaded areas correspond to 95%, 75%,
68% and 10% distribution limits calculated over 500 realisations of 50 member ensembles

Source: Moradkhani et al. 2005, reproduced with permission of Elsevier
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In principle, this is a very flexible technique. In practice, it suffers from the difficulty
that, given the computing constraints of the number of particles that can be used in a
sample of the prior, very often the weights of most of the particles becomes very low
and the posterior distribution is dominated by one or a very small number of the
original large sample of particles. This will happen especially where the specified
uncertainty on the observations is small relative to the uncertainty on the prior distri-
bution of particles at any step so that the constraints imposed are very strong. Thus,
the PF method has been modified to allow a re-sampling step at each forecast updat-
ing. Sequential importance re-sampling was introduced by Gordon et al. (1993);
Residual re-sampling by Liu and Chen (1998); and re-sampling using Monte Carlo
Markov Chain methods (see Box 4.2) by Doucet et al. (2001). The aim in each case is
to improve the representation of the posterior distribution of model states and/or
parameters at each time step, when propagating forward to the next forecast. A review
of different Particle filter methods is provided by Arulampalam et al. (2002).

Environmental applications of the Particle filter include Moradkhani et al. (2005b),
Weertz and El Sarafy (2006) and Smith et al. (2008) in applications to rainfall-runoff
modelling problems.

Figure 5.9 Daily rainfalls (upper plot) and evolution of storage variable S after daily EnKF updating in
the HYMOD application to the Leaf River catchment after daily updating (lower plot).
Shaded area represents 95% prediction limits, dotted line the mean of the ensemble

Source: Moradkhani et al. 2005, reproduced with permission of Elsevier
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5.5.1 Case study: Comparison of EnKF and PF methods on the
River Rhine

An application of the two variants on the PF method to flow forecasting in different
sub-catchments of the River Rhine basin has been presented by Weerts and El Serafy
(2006) in a comparison with the EnKF. The two PF methods were Sequential Import-
ance re-sampling (SIR) and Residual re-sampling (RR). The hydrological model used
was the HBV-96 model using an hourly time step, including a snowmelt component so
that precipitation, evaporation and temperature data are all required as inputs. The
model had previously been calibrated on this catchment for flood forecasting
purposes.

The three methods were applied to both a synthetic data set that was generated
using the same model structure, with random perturbations to the precipitation
inputs, evapotranspiration estimates, temperature and model generated discharges,
and a real data set for the Nahe 1 sub-catchment down to the gauging station at
Martinstein. In the HBV-96 model the snowmelt routine uses different calculations for
different elevation zones. Two vegetation types were also used in setting up the model.

Figure 5.10 Daily rainfalls (upper plot), hydrograph prediction with 95% prediction limits (middle plot)
and model error (ensemble mean – observed) (lower plot) after daily EnKF updating in the
HYMOD application to the Leaf River catchment after daily updating (lower plot)

Source: Moradkhani et al. 2005, reproduced with permission of Elsevier
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This gives a total of 58 state variables to be updated in running the model. The
calibrated parameter values were assumed fixed. The synthetic experiment allows the
performance of the various updating techniques to be assessed, in particular to see
how far the ‘true’ values of the inputs and discharge vary for different numbers of
ensemble members.

Most of the results described in the paper refer to the synthetic experiment where
model structural error is not an issue. Even so, it was found that both the PF methods
would often collapse to a single particle, particularly for a small number of initial
ensemble members and small variances of the random perturbations. This does not
happen with the multi-Gaussian assumptions of the EnKF. Identification of the true
discharge is relatively successful with all the methods; identification of the true precipi-
tation less successful until the catchment is wet and there is a direct response to new
inputs. Identification of the true evapotranspiration input was less successful, while
identification of the true temperature was only possible when the accumulation and
melt of snow was sensitive to temperature at around zero degrees. Even then the
ability to estimate the true temperature was lost when the error variance on the dis-
charge ‘observations’ was high. The potential to identify the true states in the model
also varied with the hydrological state of the catchment.

Figure 5.11 shows the results of using the three different updating techniques in
applying the HBV-96 model to the real data set. Only the ensemble mean predictions
for updating after each hourly time step are shown (the article does not show the
uncertainties associated with the predictions for this real case). In this case, using 32
particles in each case, the root mean square error is lower in the case of the EnKF, but
the article points out that to get a better forecast the EnKF allows the updated input
variables to drift beyond the range of the variances specified in the application of the
other methods.

The conclusion of this study was that for a small number of model samples the EnKF
generally outperformed the PF techniques which were less robust to the choice of prior
assumptions about the forms of the distributions of errors in model states and inputs.

5.6 Variational methods

It is well known that the earliest experiments in numerical weather forecasting were
carried out by Lewis Fry Richardson (1881–1953) early in the 20th century (e.g.
Richardson, 1922). Richardson used a large hall full of computers (who, at that time,
were real people doing computations by hand) to carry out the calculations necessary
at each point of a gridded discretisation of the atmosphere. Initial conditions for every
calculation node were estimated from a limited amount of observations. It is also well
known that, although Richardson’s computers were using discrete forms of the
dynamic equations that were not so different to those used now, the calculations
rapidly became unstable. The equations were then, as they are now, highly sensitive to
having dynamically correct initial conditions and any small errors in the calculations.

The same applies to similar dynamic predictions of the atmosphere and oceans
today. The computers are now digital, the calculations are much more accurate, there
are many more observations on which to base the initial conditions for each forecast
so that the times scales over which forecasts can be useful have been greatly extended
. . . but still only to a few days. And it is still valuable to use a data assimilation process
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to reinitialise the states of the atmosphere every time a new set of observations
becomes available. In the ECMWF, for example, the weather forecasting ensembles
are reinitialised every 12 hours before a new forecast is made.

The problem that then arises is that there are many more nodal calculation points
(of the order of 107 points in space in current numerical weather prediction models)
than there are observations (still large but an order of magnitude or so less). Yet the
initial conditions must be consistent with the dynamic equations so as not to introduce
numerical instabilities as a result of misspecification of the initial state of the atmos-
phere. This is again, therefore, a process of learning from the discrepancies between
the prior observations and the observations (at the large, but limited, number of sites
where they are available), but this time in a very high-dimensional state space indeed.
The challenge therefore is to produce a data assimilation algorithm that is consistent
(as far as possible) with the dynamic equations.

A number of techniques have been developed to address this data assimilation prob-
lem, including the use of the Ensemble Kalman filter discussed earlier. Reviews of
different types of data assimilation techniques for such large scale problems may be
found in Ghil and Manalotte-Rizzoli (1991), Courtier et al. (1993) and Talnay (2003).

Figure 5.11 Results of applying the HBV-96 model to the Nahe sub-catchment of the Rhine basin for
the period 1 Sep 1994 to 31 Jan 1995. Observed discharge (crosses) is compared with
ensemble mean prediction using SIR updating (dot-dash line), RR updating (dotted line),
EnKF updating (solid line). Updating applied at each hourly time step for 13 hour ahead
predictions

Source: Weerts and El Safary, 2006, Copyright ©2006 American Geophysical Union, reproduced with permission
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The technique used in most operational weather forecasting centres is that of vari-
ational data assimilation. To understand variational data assimilation methods it is
necessary to go back to the concept of a cost function used in the Kalman filter
techniques in Box 5.1. Given an estimate of the state of the atmosphere, together with
a set of observations, we want to minimise some function of the differences between
predicted state and observations. One of the difficulties that arises at this point is that,
as well as having more model states than observations, the available observations may
be only indirect estimates of variables that occur in the model (for example, there may
be commensurability errors as described in Section 1.3.3, often called representational
errors in atmospheric modelling). This may be because they represent different scales,
or because they have been taken at different times, or because, like many observations
based on satellite remote sensing, they need some additional interpretative model to be
useful in conditioning the states to be updated.

The approach taken is similar to the Extended Kalman filter but in the variational
approach a different cost function is minimised. This recognises that there is a differ-
ence between what is observed and the state variables of the model. A linear operator
is defined that will transform a model variable into an observed variable. This is
normally defined in terms of the gradient of the dynamic equations, linearising around
the background (generally model-predicted) values of the variables of interest. This is
implicitly assuming that the model is close to the true state of the atmosphere so that
only minor (linear) perturbations will be necessary in the data assimilation.

Three-dimensional variational data assimilation (3DVar) treats the assimilation as if
all the observations were available at the same time as model predictions so that it is a
problem only of interpolating the innovations in the state variables in space (e.g.
Lorenc, 1986). A modification of the approach (4DVar) allows for the fact that the
observations may not always be taken at the same time as a model state is estimated.
The cost function then includes a component allowing for the time distribution of
observations. To do this most simply requires that the model be assumed true (see Box
5.2).

4DVar assimilation is now used in many numerical weather prediction (NWP)
schemes, with an ever-increasing number of ground and rawinsonde data. The
incorporation of the observation error component in 3DVar and 4DVar schemes also
allows the use of data that do not directly estimate model state variables, and, most
importantly, the use of satellite remote sensing data and ground based radar. These
images generally require pre-processing before the digital numbers are useful and may
require an interpretative model before an estimate of the difference from a model state
variable can be given. The introduction of remotely sensed data has, however, been
extremely important in improving the accuracy of NWP forecasts. More detail on
variational data assimilation will be found in Box 5.2. A comparison of 4DVar with
the EnKF is demonstrated by Caya et al. (2005) in an application to a cloud resolving
atmospheric model over short time scales during the development of a storm. Data for
assimilation came from Doppler radar imaging of the storm, available every 10 s. They
showed that over short modelled times up to 10 minutes 4DVar gave the best analysis
results but for longer times, the way in which the EnKF allowed the error covariance
matrices to evolve made it advantageous.

3D and 4DVar have also been used in other areas of environmental modelling. Boni
et al. (2001) and Reichle et al. (2001), for example, have used it in assimilating
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remotely sensed brightness temperatures in updating land surface soil moisture to
improve predictions of latent and sensible heat fluxes to the atmosphere; Seo et al.
(2003) in flood forecasting, and Yang and Hamrick (2002) for a distributed tidal
transport model of salinity variations in an estuary.

5.7 Ensemble methods in weather forecasting

A recent innovation to NWP has been the introduction of ensemble forecasts. In
ensemble NWP a number of models are run in parallel (Figure 5.12; see also Figure 5.1
above). Each member of the ensemble is reinitialised following the data assimilation
step, but they differ in the initial conditions in a way that is consistent with the
estimated covariance of the model states following data assimilation. The runs will
therefore all make different predictions into the future. For some states of the atmos-
phere, the different ensemble members might give quite similar results, but under
many conditions they will evolve quite different forecasts after one, two or more days
into the future (as in Figure 5.1). In particular, different ensemble members might give
quite different predictions of extreme winds, rainfalls or other variables of interest.
This gives the forecasters some idea of how confident they should be in the forecasts,
even if it is not possible to associate the individual ensemble members with any
estimate of probability once they evolve away from the initial states.

In actual forecasting practice, somewhat more sophisticated perturbations to the
initial conditions are used, since early studies showed that simple random perturba-
tions did not diverge away from a control simulation as quickly as the real atmos-
phere (e.g. Toth and Kalnay, 1993). Two methods are currently used operationally
to improve the spread of the ensemble within a relatively small number of runs.
These are ‘breeding’ the fastest-growing deviations from the control, and singular
vector methods that identify the maximum energy growth in regions of interest over
some control period prior to the forecast lead time (see Kalnay, 2003, for more
details).

A recent extension to the ensemble forecasting concepts has been the use of per-
turbations of the parameterisations in an atmospheric model as well as the perturba-
tions of the initial conditions assuming the prediction model is true. This was pion-
eered by Houtekamer et al. (1996). At the ECMWF such model uncertainty has been
implemented as a ‘stochastic physics’ ensemble technique by Buizza et al. (1999). This
increases the spread of the ensemble but, by taking at least some account of model
error, seems to lead to somewhat greater forecasting skill particularly for variables
such as precipitation. Initial implementation was somewhat crude, with multipliers on
parameterised components uniformly chosen between 50% and 150% of the control
prediction.

5.8 Summary of Chapter 5

This chapter has looked specifically at the issues that arise in making forecasts in real
time where it possible to learn about and correct for forecast errors using observations
available in real time. Important examples include weather forecasting and flood fore-
casting. This has very specific requirements of trying to minimise the uncertainty in the
forecasts at the lead time required by decision makers who will use the forecasts.
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• Classical techniques of the Kalman filter and Extended Kalman filter can be used
to update the states and/or parameters for relatively simple forecasting systems,
such as modifying the gain on transfer function models.

• Modern computing power has allowed the development of the Ensemble Kalman
filter and Particle filters that can be applied to quite nonlinear models.

• Forecasting with highly distributed models, such as atmosphere and ocean
models, have generally made use of the local linearisations of 3D and 4D
variational data assimilation.

• This is an area of current interesting developments, including the routine assimila-
tion of satellite remote sensing images into global modelling systems. Such images
do not always provide the data required by a model directly, however, and may
require an (uncertain) interpretative model to be useful.

Box 5.1 Kalman filter methods for data assimilation 1

B5.1.1 Recursive least squares
In understanding the background to the Kalman filter it is helpful to look first at
the simpler recursive least squares algorithm as a way of implementing the least
squares error correction of Section 5.2 for a simple scalar case. Here we will
show how least squares estimation can be generalised to the multivariate case for
a model expressed in the discrete state space form2:

S*
t = M[St − 1,It − 1,Θ] + ε t [B5.1.1]

where the vector of true states at the lead time of interest S*
t is predicted by the

model M[ ] on the basis of the states S at time t − 1, a vector of inputs I up to time
t − 1 and a parameter vector Θ, assumed constant. The vector εt represents a
dynamic model error term that represents the difference between the model
estimated forecast and the true state at time t.

In the general case, of course, the model in [B5.1.1] could be nonlinear, but
initially we will consider only the case of a linear model, analogous to a linear
regression equation, such that the prediction of some observable, yt, is the sum of
a number of perfectly known, linear independent variables, h, multiplied by
coefficients (the vector of coefficients, x) and corrupted by some random noise,
et. Thus,

yt = x1h + x2ht − 1 + . . . xnht − n − 1 + et

and in vector form we can write

1 The material of Box 5.1 depends heavily on the writings of Peter Young (1984, 2002) who is also
thanked for checking the presentation here.

2 In the equations of Box 5.1 and Box 5.2 an underlined variable or the use of curly braces, { },
represents a single-dimensional vector, and a bold capital letter a two-dimensional matrix (see
Matrix Algebra Appendix). The notation E< > represents an expected value over variables
within the angled brackets.
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yt = hT
t x + et [B5.1.2]

where T indicates a vector/matrix transpose and

hT
t = [ht,ht − 1, . . . ht − n − 1]t; x =

x1
[B5.1.3]

x2
� 
xnt

We wish to solve this stochastic problem to obtain values of the (stationary)
parameter vector, x. We will assume that the parameters are linearly independent
and uncorrelated with the error term. This can then be achieved by minimising
a cost function, J, equal to the sum over k = 1,2,. . .,t samples of the squared
deviations of the prediction, hT

tx from the observed value St

Thus

J = �
t

k = 1
�yk − hT

kx�
2

= �
t

k = 1

e2
k [B5.1.4]

J will be minimised when its partial derivatives with respect to each of the x
parameters are equal to zero or when

−2 �
t

k = 1

hkykt + �2 �
t

kt = 1

hkth
T
k�x = 0

or

x = �
t

k = 1

hkyk ��
t

k = 1

hkh
T
k�

−1

[B5.1.5]

This solution can be implemented recursively (i.e. updating the solution as each
new observation becomes available at a new time t) in the following form. Let x̂t

be the estimate of the “true” parameters, x, at time t. Then [B5.1.5] can be
written in the form

x̂ t = Ptbt [B5.1.6]

where Pt = ��
t

k = 1

hkh
T
k�

−1

 and bt = �
t

k = 1

hkyk.

If the further assumption is made that the noise, et, has a Gaussian distribu-
tion, then because of the assumed linearity of the system, the estimates of the
parameters, x̂t, will also have a Gaussian distribution and Pt is then a covariance
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matrix, defined as the expected value of the squared estimation errors for the
elements of x̂t, Pt = E〈(xi − x̂i)(xj − x̂j)〉 i.e. the expected value taken over all
possible values of the joint errors between the true and estimated values of
parameters i and j at time t. Values along the diagonal of the matrix for i = j
represent the variance of the ith parameter.

The covariance matrix P is always symmetric and positive definite. It can be
expressed in terms of the variances of the individual parameters and the
cross-correlations between the errors in the states as:

P = D0.5CD0.5 [B5.1.7]

where:

D =

σ2
1 0 0 . . . 0

[B5.1.8]
0 σ2

2 0 . . . 0 
� � � 
0 0 0 . . . σ 2

NS


and:

C =

1 ρ12 ρ13 . . . ρ1NS


[B5.1.9]
ρ12 1 ρ23 . . . ρ2NS


� � � 
ρ1NS

ρ2NS
ρ3NS

. . . 1 

As a new observation, ỹt + 1, is made available at time t + 1, Pt and bt can be
recursively updated in the form:

P −1
t + 1 = P−1

t + ht + 1h
T
t + 1; bt + 1 = bt + ht+1ỹt + 1 [B5.1.10]

The parameter vector can then be updated as:

x̂t + 1 = x̂t + Pt ht + 1[1 + hT
t + 1Ptht + 1]

−1 {ỹt + 1 − hT
t + 1x̂t } [B5.1.11]

Note that this is of the discrete step error correction form

x̂t + 1 = x̂t + Wt{St − hT
t + 1x̂t} [B5.1.12]

where here the innovation weight is given by

Wt = Pt ht + 1[1 + hT
t + 1Ptht + 1]

−1 [B5.1.13]

Young (1984, Appendix 2) notes that this form of recursive least squares error
correction was originally presented in algebraic form by Carl Friedrich Gauss
(1777–1855) and compares the matrix formulation with Gauss’s original
derivation.
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B5.1.2 The Kalman filter (KF)
The Kalman filter was first introduced by Rudolf Kalman in 1960. It provides a
method for the updating of system states as new data become available at succes-
sive forecasting time steps. It differs from the recursive least squares algorithm
outlined above in that it does not assume that the vector of parameters is time-
invariant (so that given sufficient data the parameter values should converge to
constant values) but rather that the structure linking parameters and states to the
prediction of a measured variable is fixed. The Kalman filter extends the simple
least squares algorithm to allow that the states in the model might themselves be
stochastic variables that could also be linear functions of a set of independently
specified input variables, I, up to time t such that:

St + 1 = FSt + GIt + η t [B5.1.14]

where F is a state transition matrix that may be dependent on model parameters
(assumed known) and defines the dynamic change in the states and the vector η t

is a zero mean white noise random variable with covariance matrix Q.
The observation equation can also now be generalised to the case of a variable

state vector. In doing so we can assume that the “true” value of the predicted
variable, estimated by the model as St, is given by

S*
t = HT St + et [B5.1.15]

where H is a matrix representing a fixed linear relationship between all states of
the model and the predicted variables. The Kalman filter can then be written in a
predictor-corrector form (see, for example, Young, 1984). Given values for the
states and inputs at time t the prediction step is given by

St + 1|t = FSt + GIt [B5.1.16]

with covariance matrix

Pt + 1|t = FPtF
T + Q [B5.1.17]

The correction or updating step, given a new vector of observations, S̃t, is then

Ŝt + 1 = St + 1|t + Pt + 1|tH[Q + HTPt + 1|tH]−1 {S̃t − HT St + 1|t} [B5.1.18]

St + 1 = HT Ŝt + 1 [B5.1.19]

Note that [B5.1.18] again has a discrete error correction or innovation form

Ŝt + 1 = St + 1|t + Kt {St − HT St + 1|t} [B5.1.20]

where Kt is called the Kalman gain matrix, equal to Pt + 1|tH[Q + HTPt + 1|tH]−1.
The covariance matrix of the estimation, P, is then updated as:

Pt + 1 = [I − KtH
T]Pt + 1|t [B5.1.21]
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where I is the identity matrix with 1 along the diagonals and zeros elsewhere.
The values of the elements in the Kalman gain matrix will depend on the magni-
tude of the prediction error in [B5.1.20].

Where multi-time step ahead predictions are required up to a lead time L, the
prediction step equations [B5.1.16] and [B5.1.17] are used for St + 1|t and Pt + 1|t at
successive time steps but without correction since no new observations are avail-
able over that time. Note, however, that [B5.1.16] requires some assumptions
about the inputs at each successive time step. Since this is also in the future,
measurements of the inputs may also not be available, but assuming that the
inputs are zero may not be the best strategy (see discussion in main text).

B5.1.3 The Extended Kalman filter (EKF)
The Kalman filter can be extended to deal also with parameter and state updat-
ing in (at least mildly) nonlinear models. To do so requires an extension of the
state vector to include any varying parameters together with a linearisation of
the forecast variance (and covariance in the multivariate case) around the non-
linear model predictions between the times t and t − 1. Now, in the state
updating and observations equations, the F, G, and H matrices may not now be
constant, but may be functions of the variable parameters and states themselves
because of the nonlinearities in the model. By linearising at each time step we can
then write to first order that

HT
t + 1St + 1 ≈ HT

t {St + δSt} ≈ HT
tSt + LT

t δSt + O(δSt
2) [B5.1.22]

where terms in δSt of second order and above, O(δSt
2), will be assumed negligible

and Lt is a Jacobian gradient matrix, evaluated at time t which has elements

Lt = dHt�dSi
; i = 1,2,. . .,N [B5.1.23]

where N is the number of parameters and states that are allowed to vary. The
matrix L extrapolates any perturbation of a parameter or state in the model to
the target state. The transpose, LT, can be used to extrapolate a target state at
time t − 1 back to its equivalent in the model at time t. LT is also known as the
adjoint matrix.

The extended Kalman filter (EKF) is then developed by again assuming that
the observations have random errors with zero mean and known covariance as
in [B5.1.15]. The equivalent prediction and corrector equations to those of the
classic Kalman filter [B5.1.16] to [B5.1.21] are now

St + 1|t = FtSt + GtIt [B5.1.24]

Ft and Gt will now vary in time because of the need to linearise at each time step.
Updating of the covariance matrix Pt now makes use of the Jacobian and adjoint
gradient matrices in extrapolating the error perturbations from time t to time
t + 1

Pt + 1|t = LtPtLt
T + Qt [B5.1.25]

200 Environmental Modelling



The correction or updating step, given a new vector of observations, St + 1, is then

Ŝt + 1 = St + 1|t + Kt {S̃t − HT
tSt + 1|t} [B5.1.26]

with

Kt = Pt + 1|tHt[Qt + HT
tPt + 1|tHt]

−1 [B5.1.27]

and

St + 1 = HT
t Ŝt + 1 [B5.1.28]

The covariance matrix of the estimation, P, is then updated as:

Pt + 1 = [I − KtH
T
t ]Pt + 1|t [B5.1.29]

Again, when multi-time step ahead predictions are required the prediction step is
calculated for successive time steps without correction. Every time a new set of
observations is available, however, the correction step can be calculated and the
predictions reinitialised.

Both the Kalman filter and Extended Kalman filter can also be derived on the
basis of an updating of posterior distributions for the states using Bayes equation
[see Box 4.2]. This formulation, however, requires that distributional assump-
tions be made about the nature of the errors (normally that they can be repre-
sented by a Gaussian white noise process). The updating step at each time
interval can then be interpreted as moving from some prior estimate of the state
vector at time t to the posterior at time t + 1. Given the Gaussian assumption
about the errors, the posterior distribution of the states will also then be multi-
variate Gaussian. The application of the KF and EKF in the form given above,
however, is robust to deviations from Gaussian assumptions, because the vector
St + 1 will still be the minimum covariance unbiased estimator of the true state
vector S*

t + 1 (see, for example, Norton, 1986).

B5.1.4 The Ensemble Kalman filter (EnKF)
Further developments of the Kalman filter have been introduced in the last dec-
ade to allow data assimilation with highly nonlinear models involving a large
number of variables. The concept is similar to the “classical” KF and EKF forms,
but rather than using linearisation using a gradient of the model outputs with
respect to each state variable included in the filter, the model itself is used to
propagate the distribution of uncertainties. To do so requires using an ensemble
of model runs over the forecast period, sampled so as to reflect the current error
covariance matrix at the start of the period. This gives a new estimate of the
covariance matrix at the end of the forecast period based on the ensemble sam-
ple. The advantages of this approach are that it can be used with complex
nonlinear models for which it is not simple to calculate the Jacobian matrix or
the adjoint as required in the EKF.

It was noted earlier that the Kalman filter was developed using orthogonal
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projections and did not make any particular distributional assumptions about
the errors, other than that the distribution should be symmetric. Because the
Ensemble Kalman filter requires random sampling of models (the ensemble
members), however, it is now necessary to make additional distributional
assumptions. In general it is assumed that the error terms are multi-Gaussian in
structure (see Section 5.4 in the main text for a discussion of Particle filtering
methods that do not require such strong assumptions). The ensemble of models
is then run for the required forecast period.

The mean of the states (equivalent to [B5.1.24]) is then calculated for the jth

state simply as

Sj,t =
1

N �
N

i = 1

Si,j,t [B5.1.30]

where N is the number of ensemble members. The covariance matrix for the
state estimates (equivalent to [B5.1.25]) is calculated from the deviations from
the true state over all ensemble members as

Pt + 1|t =
1

N − 1
EtE

T
t [B5.1.31]

with Et = [S1,t − S *
1,t,S2,t − S *

2,t,. . .,SN,t − S *
N,t] and, as above, S*

i,t is the true value of
the state I at time t. The true values S*

i,t are, however, not known and are replaced
by the mean values over the ensemble so that the approximation Et = [S1,t − S1,t,
S2,t − S2,t,. . .,SN,t − SN,t] is used in [B5.1.31].

Given the observations at the new time step, t, the states are then updated
individually for each ensemble member (equivalent to [B5.1.26]) as

Ŝi,t + 1 = Si,t + 1|t + Kt {S̃t − HT
tSi,t + 1|t} [B5.1.32]

and the Kalman gain (equivalent to [B5.1.27]) is calculated as

Kt = Pt + 1|tHt[Qt + HT
tPt + 1|tHt]

−1 [B5.1.33]

where Q is the covariance of the measurement noise as before. Finally, P is then
updated as before (equivalent to [B5.1.29]) as:

Pt + 1 = [I − KtH
T
t ]Pt + 1|t [B5.1.34]

A new forecast is then made by generating a new set of ensembles from the
covariance matrix and propagating the ensemble of models over the new fore-
casting period for whatever lead time is required. As soon as new observations
are available the correction step can be implemented, and the Kalman gain and
covariance matrices updated.

In assuming that the true states can be estimated by the mean over the
ensemble, there is an implicit assumption that the model is unbiased. This is not
necessarily the case in environmental models and there have been a number of
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techniques proposed for bias correction in applying the EnKF (see, for example,
Dee and Da Silva, 1998; Dee, 2005; DeLannoy et al., 2006; Sørensen et al.,
2004). A recent review of Kalman filtering and Ensemble Kalman smoothing
techniques is provided by Evensen (2006).

Box 5.2 Variational methods for data assimilation 3

Variational methods for data assimilation are mostly used in Numerical Weather
Prediction (NWP) and ocean modelling, although as noted in the main text there
have also been applications in the assimilation of satellite imagery for different
purposes. More detail on the different types of variational data assimilation may
be found in Kalnay (2003, p.184). Rabier (2005) gives a review of the use of data
assimilation schemes in different weather prediction centres, while Rawlins et al.
(2007) summarise the 4DVar scheme currently in use at the UK Met Office.

B5.2.1 Three-dimensional variational data assimilation (3DVar)
In data assimilation for large-scale models such as numerical weather prediction
models we can distinguish between a number of different time increments. There
are the increments at which forecasts are issued, there are the time steps at which
the model is run, there are the times at which observations are made, and there
are the times at which a model analysis is carried out, updating the states and
variables of the models on the basis of assimilating the available observations.
In particular, the times at which different observations are available might be
different from the model analysis times and, for computational reasons, the
analysis increments will be much longer than the model time step.

Variational data assimilation aims to find a model analysis that minimises a
cost function with terms for both the deviations from the background model
predictions (in numerical weather prediction this is usually a short-term forecast
from the previous analysis) and the deviations of the model analysis estimates of
observed quantities from the observations themselves. The deviations are
weighted by estimates of the inverse of the background model forecast error
covariance and by the inverse observation error covariance respectively. In
3DVar, the observations are assumed to be available instantaneously at the same
time as the model analysis, so that the corrections or innovations to the states in
the model are a function only of the three space dimensions and not of time.
Thus, using similar notation to Box 5.1,4 the cost function, J, is defined as:

J =
1

2 �{S − Sb}
T B−1 {S − Sb} + {S̃ − HT Sb}

T Q−1 {S̃ − HT Sb}� [B5.2.1]

3 Thanks are due to Sue Ballard of the UK Met Office for checking the presentation of Box 5.2.
4 There is a “standard” notation for variational data assimilation that has been presented in Ide et

al. (1997), though this is not followed by Talnay (2003), and has been simplified for 4DVar by
Lorenc (2003b) and others. Here, the presentation mostly follows Talnay (2003) with modifica-
tions to make the links to the various Kalman filters of Box 5.1 clearer.
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where B is the covariance matrix of the errors in representing the true system
states by the vector of model background states, Sb; Q is the covariance matrix of
the observations, which is sometimes split into two components as Q = (E + R)
where E is a measurement variance and R is a commensurability or represen-
tational error to allow for the fact that measured and modelled variables may
not be represented at the same scale (see Section 1.4.5); S̃ is a vector of observa-
tions of system states, and H is a matrix that transforms vectors in model space
to vectors in observation space (see [B5.1.15]).

This cost function can be derived from either maximum likelihood or Bayesian
approaches assuming that the errors in representing the true states with a model
analysis and the errors in the observations relative to the true states are normally
distributed. An analytical solution to [B5.2.1] can be found by taking the differ-
ential of the cost function with respect to S and setting the differential to zero at
the minimum.

The solution for the new vector of analysis states, Sa, is then given by:

Sa = Sb + (B−1 + HTQ−1h)−1 HTQ−1 {S̃ − HT S} [B5.2.2]

This has the same form as the innovation equations in Box 5.1 in correcting the
background states Sb to the states Sa with an innovation weight of:

W = (B−1 + HTQ−1H)−1 HTQ−1 [B5.2.3]

For models with a very large number of states or variables (as is the case with the
atmospheric models that use variational data assimilation) the evaluation of all
the matrices in [B5.2.3] is computationally expensive and [B5.2.1] is usually
minimised by an iterative optimisation technique to find the optimal model
states after assimilation of the observations. In this way, it is ensured that the
data assimilation is consistent with the model dynamics.

Note that in 3DVar, the error covariance matrices must be assumed known.
The data assimilation does not update these matrices, although they can be
modified externally to the assimilation process according to the state of the
system. A modification was introduced by Da Silva et al. (1995) which works on
observation space rather than model space that is much more efficient if the
number of observations is very much less than the number of model states.

Most current operational NWP systems use an incremental formulation that is
computationally cheaper by using reduced resolution analysis increments rather
than full analysis fields (Lorenc et al., 2000). There has been an extension to
3DVar called First Guess at Time of observation (FGAT) which allows for obser-
vations to occur within some time window surrounding the analysis time. This is
based on using the forecast innovation at the time of each observation but
applying it at the time of the analysis (see Lorenc et al., 2000). For a more
complete treatment of the actual time of observations it is necessary to use the
computationally more expensive 4DVar.

B5.2.2 Four-dimensional variational data assimilation (4DVar)
The 3D analysis presented above will be most accurate when all the observations
to be assimilated coincide with a time step of the model. This is rather unlikely to
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be the case in practice. Thus, the analysis has been extended to allow for the
observations to be distributed within a time interval that may extend over mul-
tiple model time steps. The cost function is then extended to incorporate a meas-
ure of deviation from the background solution integrated from the beginning of
the time interval being considered to the time at which an observation is actually
available. Thus, it is effectively being assumed that the model dynamics are a
true representation of the real dynamics.

The cost function to correct the background states to some new states reflecting
the information in the observations can then be expressed as

J(Sto
) =

1

2�{Sto
− Sb,to

}T B−1 {Sto
− Sb,to

} + �
N

k = 0

{S̃k − HT
kSk}

T Qk
−1

{S̃k − HT
k Sk}� [B5.2.4]

where k = 0,1,. . .N is an index of the time increments at which observations are
available within the observation window around the analysis time to. The opti-
misation then seeks to find the solution at time to, Sto

, that best satisfies the cost
function, including the effect of the model integrations to the time of an observa-
tion. The optimisation makes use of the gradient of the cost function with
respect to the states required. This makes use of a linearisation similar to that
used in the Extended Kalman filter (Equation [B5.1.22] in Box 5.1) as:

HT
k − 1 Sk−1 ≈ HT

k {Sk + δSk} ≈ HT
k Sk + LT

k δSk + O(δSk
2)

where LT
k = [dHk/dSk]

T; k = 1,2,. . .,N is the adjoint gradient matrix which here is
being used to transform any (small) perturbation backwards in time from obser-
vation interval k to interval k − 1 and then successfully to time to when the model
states will be updated to initialise a new simulation. Lorenc (2003a) shows how
4DVar is related to the EKF in much greater detail.

Making use of this linearisation, the gradient of the cost function with
extrapolation back from time tk to time to using the adjoint matrix LT may be
written as

�∂J(Sto)

∂Sto
� = ��

N

k = 0

[L(tk,to)]
T HT

kQk
−1 {S̃k − HT

k Sk}� [B5.2.5]

It is evident in [B5.2.5] that for multiple observation increments, the extrapola-
tion of the effects of errors from increment k to time to involves k applications of
the adjoint matrix LT which, because of the system dynamics, will change over
time. The gradients of both the Jacobian and adjoint matrices might vary in both
sign and magnitude at different points in space and time. The approach is
therefore most appropriate where analytical expressions for Lt and Lt

T can be
developed from the original equations, at the expense of increasing the size of the
model code by a factor of the order of two.
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Optimisation of the 4DVar cost function remains computationally challenging
and attempts have been made both to implement [B5.2.5] in a form that is incre-
mented at each observation interval during the solution and to speed the process
by “pre-conditioning” the response surface by transformation of the control
variables (Lorenc, 1997).

In fact, Lorenc (1986, 2003) has shown that if the model can be assumed
perfect and the initial estimate of the covariance matrix B at the start of the
period is also correct, then the updating of the model states to the end of the time
interval is exactly equivalent to the EKF of Box 5.1. However, 4DVar provides
only an approximate update of the error covariance matrix and the analysis
covariance matrix. These must, therefore, as in 3DVar, continue to be assumed
known at the start of each data assimilation period.

A further variant on 4DVar is called the Method of Representers. This takes
some account of the model error in integrating from the start of the time period
to the time of an observation (Bennett and Thorburn, 1992; Egbert et al., 1994).
The model forecast errors are assumed to be random, which results in an
extended cost function.

Recent work in NWP aims to deal more directly with the question of model
errors (e.g. Dee, 2005; Trémolet, 2006); different distributional forms for the
errors (Fletcher and Zupanski, 2006) and the implementation of full Ensemble
Kalman filter methods (Lorenc, 2003b; Houtekamer et al., 2005). As computer
power increases, the use of the EnKF is likely to become more popular, at least
for limited-area problems because of the way it allows the co-variance matrix to
evolve over time. However, the problem of dealing with model structural error
or bias remains a problem in both methods.
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Decision making when faced with
uncertainty

The import of Info-Gap decision theory is that we need neither accept Arrow’s
pessimistic suggestion that Knight’s “true uncertainty” cannot be quantified, nor rely
exclusively on Bayesian methods and subjective probabilities. Rather our response to
Knight’s concerns about the diversity of uncertain phenomena must be to diversify
our quantifications of uncertainty and the consequent decision theories which they
engender. Each theory will reflect different features of the boundless dimensions of
human doubt and ignorance.

Yakov Ben-Haim, 2006

Or sympathies are on the side of the normative camp. There seems to be little point in
spending time and effort to make a mathematical model that imitates the “imperfec-
tions” in human decision making when the humans are perfectly capable of making
imperfect decisions in the first place.

Tim Bedford and Roger Cooke, 2001

6.1 Uncertainty and risk in decision making

Way back in Chapter 1, it was noted that the use of models to predict the response of
an environmental system was normally done for a purpose, and in many cases it was
done to inform a decision in managing the environment, whether at local, national or
global scale. That is why assessing uncertainty in such predictions is important.
Uncertainty in prediction implies a risk of being wrong in assessing the response to
some change or management strategy. In situations where a decision must be made, a
risk of being wrong may imply important serious economic consequences. At the time
of writing, the United States and some other nations had not ratified the Kyoto agree-
ment on reducing greenhouse gas emissions. This decision was widely reported as
being based on an argument that, since the scientific predictions of the effects of
greenhouse gas emissions on future climate are still so uncertain, there is no justifica-
tion for taking a decision to reduce emissions when it will have such a serious impact
on the economy of these countries. At the time of Kyoto their politicians concluded,
perhaps dangerously, that the risk of short-term economic recession is greater than the
risk of possible long-term climate impacts.

The Intergovernmental Panel on Climate Change does not agree with this assess-
ment (IPCC, 2007). Their considered opinion, despite the uncertainties associated
with climate model predictions, is that greenhouse warming is already having an
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impact on climate, that it is now “very likely”1 that this is the result of anthropogenic
factors, and that the impact will continue if no action is taken to reduce emissions.
Over 160 governments have been prepared to accept this advice and ratify the Kyoto
Protocol, but the United States is (as yet) by far the greatest producer of greenhouse
gases and could potentially have the greatest impact on global emissions.

This is an example of a case where it is, in fact, impossible to make a full quantita-
tive assessment of the risks involved (see discussions, for example by Young, 2001;
Pielke, 2002, Pahl-Wostl, 2002, and Hall, 2007). Both sets of opinions are, therefore,
political in nature. We cannot properly quantify the uncertainties of climate predic-
tions, nor of the resulting impacts on the global economic system (though some ana-
lysts have argued that the need to deal with a significant reduction in greenhouse gas
emissions could act as an important stimulus to the world economy, in an analogous
way to past wars; see Stern, 2007). There are many situations, however, where a more
restricted problem allows a quantitative assessment of the risks and costs in making a
decision. In these cases methodologies for risk-based decision making have been
developed and will be described in the later sections of this chapter.

6.2 Uncertainty in framing the decision context

The most important question at this point is whether taking account of uncertainties
will change the nature of the decision that is made. The answer is undoubtedly yes.
This has been shown to be important in decisions regarding the uncertainties in the
nuclear industry, where decision support that takes account of uncertainty has been
normal practice for three decades because of the long time scales of some of the
regulatory requirements and the need to evaluate risk in complex systems (e.g. US
Nuclear Regulatory Commission, 2004; Reinert and Apostolakis, 2006). The way in
which uncertainty might affect a decision, however, will depend on the context of a
decision. In risk assessment in the nuclear industry the context has been primarily
within the context of the science and engineering of the industry itself, and attempts
have been made to quantify the different sources of uncertainty in purely probabilistic
terms. In other environmental modelling problems, including global climate change,
the context of a decision must be drawn more widely to include more qualitative and
epistemic uncertainties and a wider range of stakeholders.

This issue of context has been at the heart of critiques of science-based environ-
mental decision making from a cultural and social perspective (e.g. Funtowicz and
Ravetz, 1990, 1999; van Asselt and Rotmans, 2002; Pahl-Wostl, 2002). The argument
is that the normal scientific context cannot take account of all the uncertainties
involved in environmental decision making, particularly when decisions will have
impacts on stakeholders, including the general public, beyond the set of scientists who
are attempting to evaluate the risks. Following Funtowitz and Ravetz (1990) these
have been called post-normal science problems (see also, for example, Haag and
Kaupenjohann, 2001; van der Sluijs, 2002). A particular point that is relevant here is
that different groups of stakeholders in a decision might have quite different objectives
and quite different responses to the types of uncertainty estimations that have been

1 “Very likely” is defined by the IPCC as having a >90% probability of being correct.
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outlined earlier in this book. Decision making is then about conflict resolution as
much as about trying to maximise the benefits of a decision in some way under
uncertainty.

This does not mean to say that the process need be totally political in nature. A
formal approach to decision making can very much help to structure the process of
making a decision (as implied by the quotation from Bedford and Cooke, 2001, at the
head of this chapter).2 A starting point in this process is the formulation of a decision
tree or influence diagram, setting out the structure of the options to be considered and
their hierarchical dependencies.

6.3 Decision trees, influence diagrams and belief
networks

Decision trees and influence diagrams are basic tools in decision-making theory. They
provide a simple way of structuring the different stages and options in a decision
problem. They can also be a way of formalising the context of a problem by providing
a way of expressing the views of groups of different stakeholders about the different
potential options. Thus, they can be used at an early stage of problem formulation
without any requirement for expressing preferences or quantifying risks and
uncertainties, benefits and disbenefits of particular options.

A decision tree is a structured graph that expresses the hierarchical dependencies
involved in different potential outcomes. This may involve one or more decision
points; it may involve deterministic or probabilistic dependencies; it may involve one
of more value attributes for expressing the preferences between different outcomes
(e.g. Figure 6.1). The net benefits for each branch of the decision tree are quantified as
a way of deciding on the preferences between different options.

A particular form of decision tree is that of a Cost-Benefit Analysis (CBA), a tech-
nique that is widely used in environmental management (including for example decid-
ing on priorities for flood defence expenditure in the UK) where the value of different
options on each branch of the tree is evaluated as the simple net balance of costs and
benefits. The CBA approach depends heavily on a common agreement about the pri-
cing of costs and benefits that is usually only possible within a limited stakeholder
community (and is not always so simple when some of the costs and benefits are
difficult to evaluate in pure monetary terms).

Influence diagrams are a different way of structuring the same problem. A simple
example, analogous to Figure 6.1, is shown in Figure 6.2. An influence diagram can
have a number of different types of nodes including:

• Decision nodes (indicating different alternatives)
• Chance nodes (indicating probabilistic relationships)
• Deterministic nodes (indicating deterministic relationships)
• A final value node (indicating the relative utility of an outcome).

2 A normative decision-making theory is based on what an individual would do if he/she followed certain
rational rules of consistency in their beliefs. Normative decision theory is, however, not easily applied to
groups of individuals who might individually hold different sets of equally rational beliefs.
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The nodes are connected by arrows indicating dependencies. Decision trees and
influence diagrams are forms of acyclic directed graph, meaning that in following the
dependency structure the graph should not return to its own starting point. In the
general case, of course, it may be necessary to take account of feedbacks in the system
in assessing potential outcomes (e.g. Pielke, 2002, in the context of climate change).

Figure 6.1 Decision tree for evaluation of flood defence schemes before choice of schemes for
detailed study. Different schemes under the options for study might include different sites
or different heights/areas with consequent different costs and benefits. Each branch might
be associated with prior probabilities, or probabilities (such as the failure/non-failure) to be
evaluated as part of the study

Figure 6.2 Influence diagram for screening of flood defence scheme options. Chance nodes as
ovals, decision nodes as rectangles, deterministic nodes as rounded rectangles. The
decision tree of Figure 6.1 could be embedded in the node for screening of potential
schemes
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An important concept in the use of influence diagrams is that of conditional
independence. A node is conditionally independent of all other nodes that are not its
descendent nodes, and dependent only on its parents. Given conditional independ-
ence, then all nodes in the diagram can be assigned a probability (see Bedford and
Cooke, 2001, Chapter 14 for more details of assigning and verifying such prob-
abilities). A special form of influence diagram is the Bayesian Belief Network, which
can be used to express purely qualitative preferences in decision making and will be
discussed in Section 6.7.

Influence diagrams can easily be converted to decision trees by ordering the graph
such that parent nodes always appear higher in the tree than dependent nodes. Some
decision support software systems (such as DPL, see Software Appendix at the end of
this book) can switch between these different representations.

6.4 Methods of risk assessment in decision making

The assessment of risk for different decision options requires an estimation of two
components: an estimate of how likely it is that an event will occur and an estimate of
the consequences of that event (e.g. Kaplan and Garrick, 1981). Quantitative risk
analysis requires that both components be given numerical values. In probabilistic risk
analysis, how likely it is that an event will occur is expressed in terms of a probability,
such that the sum of the probabilities over all possible events envisaged is unity (see
Bedford and Cooke, 2001). The consequences of an event will often be expressed as a
cost (e.g. expected damages), but might also be assessed in terms of expected number
of cancers, loss of life expectancy, or some other severity measure.

Risk assessment methods have been primarily applied in areas where there might be
important consequences for human life (e.g. the aircraft industry, chemical industry,
nuclear power generation, radioactive waste disposal). In these cases, the systems
under consideration are highly complex, include many failure pathways with com-
ponents of potential human error and uncertain natural hazards as well as techno-
logical components that it might be possible to test for failure (though, as the failure of
the O-ring seals on the Challenger Space Shuttle launch vehicle showed, this does not
necessarily prevent disaster outside the range of available data; see Kirwan, 1994;
Draper, 1995). In such complex systems it is generally impossible to quantify properly
the probabilities and potential consequences of all possible event scenarios and resort
is often made to expert opinion in assessing risk. Such assessments must, therefore, be
subjective in nature and therefore associated with some level of uncertainty. Since, if
we tried to assess the uncertainties in either probabilities or consequences in such a
risk assessment, any estimates would be necessarily uncertain, there is a danger of an
infinite regress of uncertainties in assessing uncertainties.

Bedford and Cooke (2001) address this problem by reference to De Finetti’s repre-
sentation theorem. They suggest that we can only assess the probabilities of quantities
(variables, events) that are, in principle, observable even if our initial assessments are
only subjectively determined. De Finetti’s theorem then shows that for any quantity
for which the probability does not depend on the ordering of occurrences, then this is
equivalent to a belief that the occurrences are independent and identically distributed.
Thus, as an increasing number of occurrences are observed, then the estimated
probabilities should converge on the true frequencies of occurrence that are not then
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uncertain. The argument applies to both Bayesian and frequentist approaches to
probability. Thus, even if probability is interpreted as a subjective degree of belief,
they argue that it is not necessary to invoke any concept of uncertainty about prob-
abilities, as the belief will converge on the true probability as more information about
occurrences is obtained.

This is, however, an asymptotic argument, i.e. it depends on the possibility of
observing long sequences of occurrences. This is rarely the case in practice, particu-
larly for rare events such as floods, landslides and earthquakes, and the responses of
environmental systems will often depend on the ordering of events (see, for example,
Beven, 1981, and Newson, 1980, for hydrological/geomorphological examples).
Thus, even for quantities that are, in principle, observable, it may be desirable to
associate estimates of probabilities with a degree of uncertainty, rather than relying on
the degree of belief resulting from observations of only a few events (or even no events
in the case of beliefs based purely on expert opinion). There will clearly also often be
uncertainty associated with the consequences of an event. This then implies an associ-
ated uncertainty in the estimation of the risk associated with any particular event.
Thus, the application of risk assessments in practice may be difficult, but there are
theories of imprecise probabilities and probability bounds analysis that are being
developed and that might be useful in these types of situations (see Box 3.1 and
Walley, 1991, 2000; Ferson and Ginzburg, 1996; Hall, 2003; Hall et al., 2006; Sander
et al., 2006; Zadeh, 2004, 2005; Klir, 2006). That does not mean to say, however, that
the exercise of assessing risk is not worthwhile.

6.5 Risk-based decision-making methodologies

Risk is clearly an issue in decision making (e.g. Morgan and Henrion,1990; Keeny
and Raiffa, 1993; Bedford and Cooke, 2001; Young, 2001; Aven, 2003). It would
be desirable to deal with risk in decision making in a rational way, even if the
levels of risk might themselves be uncertain. This is not a simple problem because it
is one for which there may be no “correct” answer since it will depend on the aims
of the individual making the decision, and different individuals may have different
aims in mind. Decision makers can be risk-averse, risk-neutral, risk-accepting or
merely have specific vested interests to consider. The case of greenhouse gas emis-
sions and ratifying the Kyoto agreement is an obvious example of different gov-
ernments and different non-governmental organisations having quite different aims
in mind.

In this section we will follow the normative approach to rational risk-based decision
making. In actual decisions, of course, individuals do not always act rationally and
there is another set of decision methodologies based on trying to assess the actual
aims, beliefs and preferences of individuals (see also the InfoGap concept of robust
satisficing decisions in Section 6.9 below). If, however, we limit the scope of our study
here to the role of scientific prediction and uncertainty in the decision-making process,
the normative approach can serve as a methodology for bringing science into the
decision process that might also ultimately include political, sociological and personal
elements. As such, it can act as an aid to the decision maker in taking rational account
of the environmental science in so far as that is helpful. This is not to say that the
science itself is always free of such political, sociological and personal elements (see
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Chapter 2), but we can perhaps expect such elements to have less effect as the science
progresses.

Normative decision-making theory stems from the work by von Neumann and
Morgenstern (1944), Savage (1972), and others who attempted to formalise a theory
of the rational individual through concepts of utility. In effect, the preferences of the
decision maker are represented as a set of probabilities of expected outcomes and a
utility function on the set of possible decisions (actions). The utility function must
have real values and is often represented in monetary terms as a cost function (such as
the damages likely to be incurred by different actions to control flood levels in the
Lake Como Case Study in Section 6.5.4 later in this chapter). The utility function
should be chosen so as to reflect the preferences of a decision maker. One definition of
making a rational decision is then to maximise the utility functional over all possible
actions given the probabilities of potential outcomes.

How does this process relate to the risk assessment issues raised in the previous
section? Risk assessment involves the estimation of both the probability of an event
and the consequences of that event. It will be expected that the probabilities will be
directly related to the probabilities of outcomes in decision making while the assess-
ment of the consequences might also be directly related to the utility function. Where
the risk assessment takes account of the potential decisions, through, for example, the
use of a decision tree or influence diagram, then the probabilities and consequences, as
conditioned on a decision being made, will be very closely related to the probabilities
of outcomes and the utility function for different actions. Hence the phrase risk-based
decision making (see Box 6.1 for more detail).

6.5.1 Assessing the preferences of the decision maker

The actual decisions, however, will depend on the preferences of the decision maker. A
decision maker can choose to be risk-accepting or risk-averse. One advantage of the
normative decision-making framework, however, is that the two components of
the process, probabilities of outcomes and utility function, can be separated. Thus, the
preferences of the decision maker, as expressed in the utility function, can therefore be
changed (in a form of sensitivity analysis) without changing the probabilities.

This starts, however, to get a little circular. The decision maker could decide to
define the utility function so that it reflects his beliefs in what the correct decision
should be, regardless of the real rationality of that decision. This can certainly happen
where the utility function is difficult to represent in purely monetary terms, for
example in the aesthetic costs and ecological cost of building a flood defence system.
Evaluations of apparent utility can also be affected by prioritisation issues, for
example where two different flood defence schemes are competing to have higher
priority in the national flood defence plans. In practice, however, the ordering of the
process is generally reversed. Having estimated the probabilities for the set of out-
comes, a rational utility value for each outcome is assessed prior to any decision being
considered. The utility function then serves to define the preferences for the decision
maker. Maximisation over the utility function then provides a basis for a rational
decision. There is still some potential for circular reasoning, but the need to have an
explicit common basis in assessing utility across outcomes in deciding on preferences
can provide a check on the rationality of the choices made.
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6.5.2 Indifference between actions

It is worth noting at this point that the risk (as probability * utility) serves to rank the
potential outcomes in some order of priority. Given the uncertainty in evaluating both
probabilities and utility, the process will not necessarily lead to a clear decision. Quite
often we will find that there are sets of actions for which the assessed risk, as defined
by the decision maker, is essentially equal. There is an analogy here with the equifinal-
ity issue discussed earlier in model calibration; in decision theory this is a matter of the
decision maker being indifferent to different sets of actions. There may, of course, be
several sets of indifferent actions at different levels of utility. The decision maker may
then choose to seek additional information if maximising the utility results in a set of
actions of similar utility value.

One solution to indifference is to add one or more additional utility functions. This
can also result, however, in a lack of dominance of one set of actions over another in
that different decisions might be optimal for different utility functions. This is analo-
gous to the concept of the Pareto optimal sets of parameter values in model calibration
discussed in Section 4.4. More detail on the use of multiple utility functions is given in
Box 6.1.

6.5.3 Adding uncertainty and more information

Both components of the decision making process, probabilities of outcomes and the
utility of actions, can be subject to uncertainty. In principle, there is no difficulty in
extending the analysis to uncertainties in either component by integrating over the
utility function for each (uncertain) outcome to obtain marginal utilities for any
action. While this may be difficult to calculate analytically, depending on the nature of
the appropriate distributions and functions, such marginal utility values can be deter-
mined numerically, for example by Monte Carlo or Latin Hypercube sampling (see
Box 3.2).

One of the interesting aspects of decision theory is then the possibility of evaluation
of the costs and value of collecting more information in constraining the uncertainty
and making a decision. This can be done by a form of analysis in which the availability
of certain types of information is evaluated before it is collected and the sensitivity of
the resulting decision tested as if that information were known perfectly (see Box 6.1).
If the costs of obtaining the additional information can be assessed, then a decision can
be made as to whether it is worth the investment to go ahead with getting the informa-
tion with a view to making a better decision. In many cases the costs will be small
relative to the expected benefits, but not in all.

An example of this approach in a groundwater contamination problem is provided
by Freeze et al. (1992). Their approach is firmly within a Bayesian framework. In
setting up a groundwater model there will be prior estimates of model parameters and
boundary conditions. Taking account of how well the model fits the available
observations will lead to posterior distributions of parameters (and perhaps boundary
conditions) and estimates of uncertainty in the model predictions. It is then possible,
however, to ask the question as to which of a number of different types of measure-
ments, or measurement sites, might be most useful in constraining the prediction
uncertainties. They call this a pre-posterior prior analysis since by taking prior
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estimates at the potential observation sites from the existing model and allowing for
measurement error, it is possible to check the potential effect of a new observation on
the posterior distributions and, indeed, whether the cost of taking new measurements
is less than the benefit that might accrue to the decision being made. The real observa-
tion might turn out to be different, of course, but this can be a useful way of assigning
priorities in designing a measurement program within an assigned budget. In their
groundwater case, each new observation site requires drilling an expensive new bore-
hole and carrying out experimental tests to determine values of transmissivity and
storage parameters.

6.5.4 Case studies: Decisions for flood warning and control in
Lake Como, Italy and the Red River, N. Dakota

In Chapter 5 we considered some examples of flood forecasting as an application of
data assimilation methods. This is clearly not just an exercise in getting better models;
flood forecasts are made operationally in many countries of the world to inform
decisions about whether to issue flood warnings or use flood control reservoirs or
controllable flood defences with a view to saving life and mitigating the costs of flood
damages. This is a classical environmental decision-making problem that can be used
to illustrate the principles involved in trying to quantify the relevant probabilities and
risks.

The example is taken from Todini (1999, 2004) and involves flood control and
warning for the towns on the edge of Lake Como in Italy. The lake outlet is controlled
by a dam at Olginate for multipurpose use. The lake is storing water for agricultural
use; it is storing water for electricity generation, and gates on the dam can also be used
to release water to reduce the effects of flooding. The risk of flooding seems to be
increasing over time, partly due to subsidence in the centre of the town of Como. The
decision problem is made more difficult by the fact that controllable storage in the lake
is only about 5% of the annual inputs and that the control gates, when fully open, can
release only half the peak inflows into the lake. This means that in large flood events
the lake will fill and overflow in three to five days.

The components of the decision in this case are the current storage in the lake
(which is known rather well), the potential future inputs to the lake in the next one to
ten days, and the expected damages that might occur if the lake overflows. There is
also a requirement, however, to maximise the benefits of the water stored for both
irrigation and electricity generation purposes over the year. We therefore have two
conflicting cost functions, both of which involve uncertainties. The first is used to
minimise the loss of water, conditional on future input scenarios developed from the
historical record, relative to the optimal release. This is implemented on a ten-day time
step. Then, in times when a flood is possible, a second cost function is considered that
is used to minimise the deviations from increasing the optimal ten-day release strategy
and preventing the lake reaching the permitted minimum level and minimum river
flows while also minimising the expected damages due to flooding.

The Lake Como decision support system has been a success. Flooding of intermedi-
ate events has been significantly reduced (though it remains difficult to have an impact
on the largest events), and water deficits have also been significantly reduced. Todini
(2004), however, stresses how taking account of uncertainty in making the forecasts of
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predicted behaviour is important. Without it, the results may lead to poor decisions
(see also the discussion of the Red River example later in this section).

This can be illustrated in Figure 6.3 (from Todini, 2004). This shows how, in a flood
control problem, the uncertainty in the predicted future water levels starts to impact
on the cost function well before the predicted level actually starts to exceed the level of
protection afforded by the flood defences. If the uncertainty is neglected, there is no
apparent cost and no reason to issue a flood warning.

A particular example of this is provided by the Red River floods in 1997 (Pielke,
1999). The US National Weather Service (NWS), which has responsibility for flood
forecasting in the US, issued a warning for Grand Forks, North Dakota, that the flood
would peak at about 15.1 m. On 22nd April, the actual peak was 16.6 m and resulted
in extensive flooding and an estimated $2 bn in damages. After the flood, inaccurate
flood warnings were cited as a cause of the disaster. While it is clear that the flood peak
was underestimated, the forecast performance was in line with the accuracy of past
forecasts but (back in 1997) there had been no attempt by either the NWS or the
authorities dependent on the forecast to take responsibility for the associated
uncertainty in the forecasts and act accordingly. This was, in fact, another case of a
flood caused by too much rain and for such extreme events there is usually limited
scope for damage mitigation (though adequate warnings and evacuation procedures
can save lives). Pielke and Conant (2003) point out that we cannot now say how the
local authorities might have reacted differently if the forecast had been higher. The
lesson, however, is that in making decisions it is well advised to be aware of
uncertainty in the information provided.

6.6 The use of expert opinion in decision making

There are many situations where, even though it may be possible to assess the
uncertainty in model predictions under different potential scenarios (for example

Figure 6.3 Taking account of uncertainty in assessing potential costs of flooding

Source: Todini, 2004, Copyright ©2003 John Wiley and Sons Limited, reproduced with permission
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using the techniques discussed in Chapters 3 and 4), there may be no rigorous scien-
tific way of assessing the probability of the different scenarios. I once had a paper on
the impacts of climate change on flood frequency rejected because a referee suggested
that we had not done an adequate uncertainty analysis because we had not taken
account of the probability of the different climatic scenarios, but this is an example of
a case where even expert climate modellers would be reluctant to provide estimates of
such probabilities. Thus, any estimate of a probability for different scenarios in such
cases will be necessarily subjective, based on the reasoned opinions of one or more
experts.

There is an extensive literature on the use of expert opinion in decision making (e.g.
Morgan and Henrion, 1990; Cooke, 1991; O’Hagan et al., 2006). Expert opinion is
useful whenever it is impossible to collect the data or make the model runs necessary
to estimate the expected probability of an outcome. Expert opinion has also been
widely used to estimate prior probabilities of model parameter values that may be
difficult or impossible to measure directly in a particular application. In both cases, the
need is for the expert or panel of experts to define some form of distribution function
that can then be used in the decision-making process.

The first problem is then to choose the experts. The choice will influence the out-
come. Should the panel of experts include the complete range of scientific opinions
available on a particular topic; or should some scientists with widely divergent views
be excluded from the analysis? Can each expert be considered independent in their
assessments (when often they will have similar training and working experience)? Can
each expert be considered to be unbiased? Should stakeholders from outside the scien-
tific domain but who might have important insights into a problem be included (see
the identification of threats to ecosystems by stakeholders in Carey et al., 2007)? These
questions are major issues in the use of expert opinion.

6.7 Combining the opinions of experts: Bayesian Belief
Networks

In a Bayesian Belief Network or Decision Tree, the initial estimates of the likelihoods
associated with each branch will normally be prior likelihoods elicited from experts.
These might be likelihoods of a particular future event, or estimated success or failure
of a particular outcome as on the branches of Figure 6.1. A general introduction to the
use of Bayesian Belief Networks to decision making is provided by Jensen (2001). We
will consider here only the very simplest case of combining the opinions of experts,
assumed to be independent, within a Bayesian context.

A general formulation of Belief Networks for application to environmental systems
has been provided by Varis (1995, 1997), extending earlier work by Pearl (1988) in
the area of artificial intelligence. A recent review of some of the issues involved, and
software available, is provided by Uusitalo (2007). Other methods for combining
expert assessments are given in Cooke (1991), O’Hagan et al. (2006) and Wang et al.
(2005) (see also Section 6.8 below). The decision maker starts with a prior distribution
for the quantity of interest and asks the panel of experts to make their own assessment
of that quantity. Formally, Bayes equation can then be used to create a posterior
distribution of belief for the decision maker, conditional on the opinions of the
experts. Bayes equation, in this context, calculates a posterior on the basis of
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multiplying a prior belief in a choice (usually expressed as a probability) by a likeli-
hood expressing the belief in that choice conditional on the expert opinion, scaled by a
constant such that the sum of the probabilities in each choice is unity. The critical term
therefore is the likelihood, p(E|C) where E is the evidence provided by the experts, for
each of the choices, C. O’Hagan et al. (2006) point out that the construction of such a
likelihood function is not a simple matter because what is really strictly required is for
the decision maker to make a rather sophisticated evaluation of his prior expectations
of the information that the experts will provide. With multiple experts and multiple
choices, the complexity of doing so mounts rapidly. This will perhaps only be a real
problem if the decision maker has information on how the available experts have
performed in past studies; otherwise he or she might choose to use a non-informative
prior.

Two approaches are commonly used to formulate a likelihood in this context,
assuming either additive or multiplicative errors. For additive errors, the value given
by the expert is assumed to be the sum of the true value and a normally distributed
error. The mean and variance of the error term can be chosen by the decision maker on
the basis of some subjective evaluation of the expected bias and accuracy of each
expert (zero bias and constant variance assumptions will often be made for simplicity).
A multiplicative error is easily treated in exactly the same way by taking logarithms of
the estimated values such that the error again becomes additive and normality is again
assumed with respect to the log values. Cooke (1991) recommends carrying out a
preliminary evaluation exercise so that the accuracy of the experts can be judged and
weighted accordingly – this requires constructing an example that is both realistic but
for which the answers are known to the decision maker but not to the experts. This
can also raise a question about the correlation between expert opinions – if two
experts provide identical results should their joint evidence reinforce their opinions, or
is one of them just redundant? This is a value of information issue similar to that
discussed in model conditioning in Chapter 4.

The independence assumption can be relaxed, but at the expense of the decision
maker being required to estimate a covariance matrix for the expected errors across all
experts. Since there may be no strong basis for estimating the dependence in opinions
between the different experts, this is often neglected.

6.7.1 Adding empirical evidence to a belief network

An important feature of Bayesian Belief Networks is the possibility of refining those
initial estimates as new empirical information becomes available from more quantita-
tive data sources that might support one or more of the expert opinions. In this case we
can again apply Bayes equation to combine the different sources of evidence. The
evidence might be of quite different types, e.g linguistic, class interval or fully quanti-
fied (if uncertain) model predictions or observations (see the Case Study below). Treat-
ing the evidence in terms of likelihoods in Bayes equation, however, gives a common
metric (likelihood) in refining the uncertainty associated with each option (as used in
Chapter 4).

However, in applying Bayes equation to update a posterior likelihood for different
potential options it has to be remembered that there is an implicit assumption that all
the potential outcomes have been enumerated so that the sum of the posterior
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likelihoods will always be unity (this assumption can be relaxed using imprecise
probability theory at the expense of making the analysis much more difficult).

There have been a number of interesting applications of Belief Networks in
environmental applications. Reckhow (1999) and Borsuk et al. (2004) have applied
the method to water quality predictions; Varis and Kuikka (1997) and Borsuk et al.
(2006) have looked at the problem of estimating and managing fish stocks; while
Wooldridge and Done (2004) have implemented a prediction system for coral reef
bleaching conditioned on a variety of data sources. Crome et al. (1996) showed how
expert opinion could provide useful prior information in assessing the effects of rain
forest logging on bird and animal populations. Wolfson et al. (1996) report some
practical experience of eliciting expert opinion in two case studies, one concerned with
the possibility that radioactive waste was leaking from a landfill site, the other with the
remediation of soil lead contamination associated with the operation of battery
recycling factories (a site designated as a “Superfund” site in the US). They demon-
strate how a Bayesian approach to decision making can be an iterative process, involv-
ing negotiation between stakeholders to agree on prior estimates and utility measures.
It can also involve agreement on the collection of additional data to inform the
decision.

6.7.2 A case study

The use of Bayesian Belief Networks involving both expert opinions and quantitative
data will be illustrated by a study of the impact of grazing management on bird
populations in sub-tropical Australia, reported by Martin et al. (2005). In this applica-
tion, the aim was to combine surveys of bird populations with expert opinion to
estimate the persistence of different species under different grazing conditions. Thirty-
two experts were asked about the impacts of grazing on 31 different bird species. Each
expert gave an opinion as to whether each species would increase, decrease or remain
constant under low, moderate or high grazing conditions. They were asked only to
give opinions for those species for which they felt confident in their opinion.

Field surveys for the different species were also available. However, the field data
contained a much higher number of zero sightings than would be expected assuming
either Poisson or Negative Binomial distributions to describe frequencies of occur-
rence. Some of these zeros may be a true ecological effect; others may be spurious due
to the difficulties of observing low numbers of a particular species. The study used a
two-component model to represent this, one for the occurrence of the species at a
particular site, the other for abundance conditional on occurrence. Model parameters
for both components included variance components for species, grazing level and
within grazing level for each species. These random effects were assumed to be
unbiased with gamma-distributed variances.

This two-component model was then extended by combining with the information
from the experts. The unweighted mean expert scores were also assumed to be subject
to random effects for species, grazing level and within grazing level variability with
normally distributed means and gamma-distributed variances. There are thus a large
number of mean and variance parameters to be estimated. This was done using
the type of Metropolis–Hastings Monte Carlo Markov Chain algorithm described in
Box 4.3.
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It was found that the precision of the expert opinions was smallest under low and
moderate grazing levels but only slightly higher for the highest grazing level. Figure
6.4A shows the unweighted average scores for a selection of the bird species. Figure
6.4b shows the equivalent field data with varying degrees of tolerance to grazing. Over
all the species, there was agreement between the experts and field data for ten of the
species, and for another eight the experts predicted a greater impact on a species than
was observed in the field. Agreement was less good when either the expert precision
(agreement) was low or where the field data were poor (showed few sightings). When
expert precision is low then the effect on the posterior is minimal; but when the
field data were poor but the agreement among the experts was good, then the prior
judgements were useful in constraining the posterior predictions of impact.

Figure 6.4 Comparison of pooled expert opinion (top) and field survey (bottom) of the impact of
grazing intensity (no/low, moderate, high) on selected bird species in sub-tropical woodland
in Australia. Values of ε represent precision (inverse of variance) of the expert opinions

Source: Martin et al., 2005, reproduced by permission of the Ecological Society of America
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In this case, the study did not go as far as to base any management decisions on the
results of the modelling results, but clearly this would be possible. Only one of the 31
species studied (the Noisy Miner, code NOMI) was predicted as benefiting from high
grazing levels (a conclusion supported by data from elsewhere that many of the
experts would have been aware of). Several species appeared to benefit from moderate
grazing levels within the low-density woodland of the study area. These were species
in decline elsewhere as a result of woodland clearance.

6.8 Evidential Reasoning methods

Not all expert opinions can be expressed in the quantitative terms required for a risk-
based utility function decision theory. Much useful information from experts may be
expressed in the form of multi-dimensional “soft” data, for example, on interval scales
(e.g a value or even a measure of belief in a particular value might be high, medium,
low or negligible). These types of data are not easily expressed in terms of continuous
probability scales or utility functions.

One approach to making use of such data is in the Evidential Reasoning methods of
Wang et al. (2005, 2006). Evidential reasoning is based on the Dempster–Shafer (D–S)
theory of evidence, one of a number of different forms of taking a non-probabilistic
approach to uncertainty (see Klir, 2006). Dempster–Shafer theory was originally
designed for deterministic evidence but there have been more recent attempts to
extend the theory to uncertain evidence, represented by fuzzy variables or vague vari-
ables defined only over intervals in a way that can be used for aggregating multiple
attributes within a decision tree or belief network.

Shafer (1976) suggests that Bayesian probabilities are a special case of the theory of
evidence that can be used when all beliefs can be expressed in the form of probabilities,
and when all outcomes are known a priori (there is no ignorance of potential out-
comes). The D–S theory of evidence is more general in that it can allow for ignorance
in using two measures associated with any probability assignment: a belief measure
and a plausibility measure.

For any mutually exclusive set of propositions H = {H1,. . ., HN} we can define
a belief structure in terms of a basic probability assignment (bpa), m(A) = [0,1] where
A is any subset of H and

�
A ⊆ H

m(A) = 1.

Given the set of m(A) assignments defined in this way, a belief measure (Bel) and a
plausibility measure (Pl) are defined as

Bel(A) = �
B ⊆ A

m(B)

Pl(A) = �
A ∩ B ≠ Φ

m(B)
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where ⊆ indicates that B must be included in A, ∩ indicates the union of two sets, and
Φ is the null set, i.e. A ∩ B ≠ Φ means that A and B must have some elements in common.
These measures are connected by the relationship

Pl(A) = 1 − Bel(Ā)

where Ā represents the complement of A. In this framework ignorance is defined as the
difference between the belief and plausibility measures. As plausibility and belief con-
verge, the decision should become clearer. The heart of the Dempster–Shafer theory is
then a method for combining the bpa assignments from different sources of error in a
way that means that evidence can be combined in any order.

6.8.1 Case study: Use of Evidential Reasoning in assessing
management options for Rupa Tal Lake, Nepal

Wang et al. (2006) have applied the ER approach to environmental impact assess-
ment. They identify four elements in this approach: the identification of the relevant
factors expected to have an impact on the environmental system; the ER framework
for the identified factors; the ER aggregation of the evidence regarding these factors;
and a utility interval based ER ranking method. They show how the approach can be
applied even when the impact associated with each factor can only be assessed in
categorical terms resulting from elicited expert opinion (e.g. major positive impact,
significant positive impact, . . ., no impact, . . ., major negative impact). They apply
the methodology to an assessment of alternative methods to conserve Rupa Tal Lake,
Nepal, which was subject to both eutrophication and rapid sedimentation. The
assessment considered physical factors (such as change in volume, change in sedimen-
tation, change in crop and grazing areas); biological ecological factors (change in
lake fisheries, biodiversity, primary productivity, macrophytes and disease vector
populations); sociological and economic factors (e.g. housing impacts, tourism
impacts, disease impacts . . .); and economic/operational factors (e.g. crop incomes,
fishery incomes, costs of maintenance, . . .). These factors were assessed using 11
impact grades, from major positive impact (E) to major negative impact (−E) for each
of four different management options. For each option belief measures can be calcu-
lated for each of the interval assessment grades. These can then be combined with an
expression of relative utility that can be modified to account for whether a decision
maker, is risk-accepting, risk-neutral or risk-averse (e.g. Figure 6.5). This gives
minimum, maximum and average utilities for each alternative, taking account of the
uncertain nature of the assessment criteria. The result is a relative ranking of the
different options, where overlap of the ranges of utility expresses more or less indif-
ference between the options. This is a relatively simple way of applying such a multi-
attribute decision framework in real-world problems where much of the information
or evidence about impacts and utility might be highly uncertain or the result of
subjective expert opinion (see also the Info-Gap approach outlined in Section 6.10
and Box 6.2).
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6.9 Decision support systems

The types of utility function-based decision frameworks outlined above have been
incorporated into a wide range of computer-based decision support systems (DSS) for
environmental decision making. Such systems can be designed to provide decision
guidance or to allow the user to explore many different “what-if” situations rapidly,
with user-specified changes in implementation strategy, utility function etc. Environ-
mental DSS often include spatial databases and output their results in the form of
maps. They do not always take account of uncertainty in the inputs on which the
decisions depend. Some indeed purport to find an optimal (maximum utility) solution
without any consideration of uncertainty at all.

The degree to which uncertainty is incorporated into an environmental DSS does
vary, but there are some in which at least some prior uncertainty estimates can be
incorporated. An important example of an environmental DSS in the USA is the
FRAMES-3MRA system that is supported by the US Environmental Protection
Agency (EPA). FRAMES-3MRA is the Framework for Risk Analysis in Multimedia
Environmental Systems, Multimedia, Multi-pathway and Multi-receptor Risk
Assessment, for the evaluation of hazardous waste management facilities (Marin et al.,
2003). The FRAMES-3MRA has 17 different scientific modules to model the release,

Figure 6.5 A. Utility functions used in the application of Evidential Reasoning by Wang et al. (2006) with
curves representing risk-averse (I), risk-neutral (II) and risk-accepting (III) decision-making
strategies. B. Table of expected utilities for the four options considered in the Rupa Tal Lake
example (reproduced with permission of Elsevier)
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transport and risk associated with different hazardous pollutants. It requires 966
multi-dimensional input variables and parameters, of which 185 are specified as sto-
chastic distributions. Databases for 28 different organic contaminants and 15 metal
contaminants are specified within the DSS, together with a wide range of other data on
receptors (including different ages of people) and fate processes (chemical reactions,
linear and nonlinear partitioning, volatilisation etc). The system is characteristically
run with 1,000 Monte Carlo realisations of variables specified as distributions in order
to test for compliance with regulations on a receptor by receptor basis.

The potential for such a large number of possible combinations of waste site con-
figurations, parameters and input variables, and the need for Monte Carlo simulations
creates an important computational problem. Babendreier and Castleton (2005) show
how this can be solved practically for FRAMES-3MRA using a network of standard
PCs running in parallel, even if it is still only possible to make a limited search of such
a large dimensional space. The results can be output as distributions for various recep-
tors in space and time showing the potential for exceedences of critical levels for
individual contaminants and hazardous degradation products.

This is, however, only a forward uncertainty or sensitivity analysis, similar to those
discussed in Chapter 3, without conditioning on site data (which would make the
problem even more computationally demanding). It is, like very many DSS of this type
that are designed to estimate “risks”, a very deterministic form of stochastic risk
analysis wherein the results depend directly on the prior assumptions used. Its value in
terms of decision support is then more in providing a complete and coherent frame-
work with which to structure each new application while making access to common
forms of data required easy to the user. The disadvantage is that some assumptions
(such as reaction and partition coefficients) may be fixed as constants in the system
and its databases, without the user having easy access to them and without any
exploration of uncertainty in those values in real applications. Other DSS of this type
include those included in the UK Risk Assessment for Strategic Planning (RASP) for
fluvial and coastal flooding (Sayers et al., 2002). Such systems represent at least a start
in taking account of uncertainty in decision making but are still based on assumptions
that the underlying model structure is correct and that the many input and parameter
values can be adequately quantified in any application.

A rather important point is assessing the uncertainties for different alternatives in
decision making is the question of dependence between parameter values in making
predictions for each scenario. This is often ignored by assuming that parameter values
used in different scenarios are either independent or have identical marginal distribu-
tions (are fully dependent). Reichart and Borsak (2005) point out that this can lead to
misleading results where some parameters might be partially dependent. They demon-
strate a technique for dealing with partial dependence by the use of copulae (see
Section 3.3.5) in an application looking at policy alternatives to control inputs of
phosphorus into a lake. They recognise, however, that providing a technique to allow
the effects of partial dependence to be accounted for is actually a lot easier than
specifying the nature of that dependence in any particular application when there
might only be very limited data about effective parameter values available.
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6.10 Info-Gap decision theory

There is another form of theory of decision making under uncertainty. This is the Info-
Gap analysis of Yakov Ben-Haim (2006). It is based on quite different principles to the
type of probability/utility function-based decision theory outlined in the previous sec-
tions. Ben-Haim (2005, 2006) notes that not all uncertainties can be represented in the
form of probabilities, but may be subject to quite different forms of unquantifiable
uncertainties. As mentioned previously, Ben-Haim refers to Frank Knight’s (1921)
distinction between risk – which can be assessed in terms of probabilities and therefore
insured against – and “true uncertainty” which cannot. Probability/utility function
theory deals very effectively with risk. It is subject to being wrong because of the
unquantifiable “true uncertainties” of future change, innovation, non-stationarity and
the unexpected. Info-Gap theory aims to provide assessments of the relative value of
different decisions in the face of such uncertainties. The assessment of risk already
assumes that there is a considerable stock of knowledge or information available to
the decision maker. Info-Gap theory is for use in situations where there is a lack of
knowledge or information.

To allow this, Ben-Haim assumes that some “best estimate” description (or, given
the problems of identifying best representations of a system discussed earlier, at least a
nominal description) of the system of interest is available (as for any form of decision).
That might be a quantitative model of the types that have been discussed earlier in this
book; it might be a probabilistic representation; it might be a purely qualitative
description. The essential idea that underlies the theory is that as we move away from
this nominal description (perhaps because of uncertainty in future input data, or
model parameter values, or model structures), then the utility of the outcome of any
decision will become more and more uncertain in some consistent way. This process
can be defined generally in the following way:

U(α,M̃(Θ)) = {M(Θ) : |M(Θ) − M̃(Θ)| ≤ α} α ≥ 0

U(α,M̃(Θ)) is the set of all possible descriptions (or model predictions of a variable of
interest in cases of interest here) whose deviation from the nominal model is nowhere
greater than α, noting that the model output M(Θ) may be varying in space and time.
The sources of uncertainty might also be quite general in this approach. They might
come from different model structures, different parameter sets or different input con-
ditions but unlike Bayesian theory or the GLUE methodology, it is not necessary to try
to put any form of likelihood weight on the predictions. In particular, they might
include Knightian or epistemic uncertainties. Ben-Haim (2006) suggests that this is a
major advantage of the Info-Gap methodology relative to the utility function-based
approaches of Box 6.1. Here, we wish to assess only the relative deviation of the
outcome away from some nominal case for any value of α.

Given that deviation, however, two functions may be specified, representing
robustness and opportuneness (using the nomenclature of Ben-Haim, 2006). The
robustness function expresses the greatest level of uncertainty (in terms of the values of
α) for which failure should not occur. The definition of what constitutes a failure, of
course, will depend on the particular characteristics of a project. Ben-Haim gives
examples involving the extinction of a species, the failure of an engineering structure,
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epidemiology and drug testing, and portfolio investment and monetary policy. In all
these cases there may be future uncertainties that are not easily handled in a probabil-
istic framework, although he also shows how the method can be used to evaluate the
impact of uncertainty in probability distributions when these are required for certain
decision frameworks.

The opportuneness function, on the other hand, is the least level of uncertainty at
which success is assured. For any decision we would ideally like to maximise the value
of α for which the decision is robust, while minimising the value of α at which success
is assured. Clearly these requirements are generally in opposition to each other. In
particular, an “optimal” deterministic solution that would ensure success (which
effectively has α = 0) would be very unlikely to be robust in the face of significant
uncertainties. What Ben-Haim shows is that robustness and opportuneness functions
can provide, in cases of real uncertainty, a rational and consistent framework for
assessing the relative merits of different decisions. More details of the Info-Gap
methodology will be found in Box 6.2.

A particular environmental example, currently pertinent but not discussed in
Ben-Haim’s book, is (again) the issue of predicting climate change. To date there have
been a number of different predictions of climate change in the 21st century, taking
account of different emissions scenarios and using different model structures in differ-
ent research institutes around the world. These models differ in their parameterisa-
tions of different processes and solution methodologies for the governing equations.
The finer the grid scale of the model, the better the scales of movement of the atmos-
phere and boundary conditions can be resolved, but the longer the run times of the
models. Thus, the finest global model resolutions take months on the largest super-
computers to produce a single deterministic simulation covering historical and future
time (generally from about 1850 to 2100). The outcomes from the different simula-
tions have been summarised in a number of reports from the Inter-Governmental
Panel on Climate Change (most recently IPCC, 2007).

The differences in the predictions of the different models provide a certain range of
uncertainty in future climate that has not changed very much over the four IPCC
reports issued between 1990 and 2007. There has also been an experiment3 to make
tens of thousands of runs of a global climate model in the background clock cycles of
the personal computers of registered participants around the world. This has pro-
duced a wider range of predictions of future temperature change. The model used was,
however, simplified and much coarser resolution to allow it to run (albeit slowly) on a
PC. Thus, both sets of results, from the few deterministic fine-scale models to the
thousands of coarse-scale models, produce predictions of the future that are uncertain
in different ways. They are uncertain because the inputs to the models (different
emission scenarios) have unknown uncertainty. They are also uncertain in the param-
eterisations used which are often simplified and difficult to identify with any security
for every grid element in the model (see, for example, the study of land surface hydrol-
ogy by Franks et al., 1999). They are also uncertain in their predictions of historical
climate variability when compared against estimates of grid-averaged observational
data, particularly in some regions of the world, although there is a commensurability

3 See www.climateprediction.net.
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issue in making such assessments as to how best to process the limited observations
that are available to match the grid-scale predictions of the model. These uncertainties
are difficult to quantify in any probabilistic sense, even though some efforts are being
made in this direction (e.g. Rougier, 2007; Rougier and Sexton, 2007). The model
predictions have therefore generally been treated simply as potential “scenarios” of
future change that might or might not happen.

In fact, this situation will become even more interesting in 2008 when the first large-
scale set of regional ensemble climate predictions will be released by the UK Hadley
Centre. This ensemble is intended to consist of a few hundred runs for which different
inputs and parameter values have been varied based on expert judgements of the type
of uncertainty that might be expected. Will this prior judgement be sufficient to span
the range of possibilities of what might happen in the future? Almost certainly it will
not (see Stainforth et al., 2007a). Will the prior judgement be sufficient to be able to
interpret the outcomes from the ensemble modelling process in probabilistic terms?
Well, yes in terms of the relative probability of an outcome within the ensemble, but
certainly not in terms of the probability of actual outcomes in the future when all sorts
of unexpected things might happen. For example, both the United States and China
might suddenly adopt a policy of drastically reduced emissions as a spur to new
technological developments in power generation and transport (I said unexpected, but
that is not to say impossible – the start of such a policy is being seen in Australia as a
response to extended drought, and the State of California already plans more severe
controls on car gas emissions than anywhere else in the world to try to mitigate the
occurrence of smog in the major conurbations).

Thus, the prediction of future climate change is subject to the type of Knightian
uncertainties that the Info-Gap approach is intended to address. It is interesting to
speculate whether, if the ensemble forecast experiment currently being run at the
Hadley Centre had been designed using an Info-Gap methodology, the sets of simula-
tions being run would have been chosen quite differently. It will be interesting, once
the ensemble simulation results are released, to see how they might be used in different
ways in different decision-making frameworks.

While the Info-Gap has a quite different philosophical approach to decision making
under uncertainty, essentially avoiding modelling the nature of the uncertainty, we can
usefully here clarify the issues it raises within a similar set framework to those used by
GLUE or fuzzy set approaches. In these methods, the performance of a potential
model is evaluated in terms of one or more fuzzy membership or generalised likelihood
measures (see, for example, Figures 4.5.2, 4.5.3). In these approaches, in general,
models that do not give acceptable predictions are given a membership or likelihood
value of zero. This already, however, assumes that adequate information is available
to be able to decide on the limits of acceptability. The InfoGap approach is aimed at
situations when this might not be possible, but for which it is possible to evaluate the
implications of a nested set of predictions (from one of more models) on a potential
decision. We can visualise this in a similar way. Figure 6.6 shows schematically the
ranges of predictions for different levels of the uncertainty measure, α, around some
baseline case at α = 0. It can be seen therefore, that in assessing model predictions, the
Info-Gap approach does not require an a priori decision about model acceptability,
but rather allows the range of possibilities to expand as nested sets for different levels
of α. There are parallels here with the issue of deciding acceptability in the face of
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unknown input errors which were discussed in the context of the GLUE methodology
in Section 4.5.3. There, it was suggested that limits of acceptability might need to be
expanded to allow for the fact that whether a model was deemed to be acceptable or
not might depend on the particular realisation of (non-error free) input data.

Both robustness and opportuneness models depend upon the Info-Gap model
U(α,M̃(Θ)) which has a centrepoint M̃(Θ) that is some nominal estimate of the
uncertain model of the system of interest. It has been shown above how uncertainty,
and consequently robustness and opportuneness, can be expressed in terms of the
uncertainty measure α. It is worth stressing that α does not refer at all to model
parameters, boundary conditions or structures. It refers directly and only to
uncertainty in the variables of interest in the decision, regardless of how those
variables have been predicted. The uncertainty could be the result of Monte Carlo
experiments given prior distributions of parameters; it could simply be the result of
speculation around some nominal estimate based on prior experience, especially
where it may be very difficult to quantify future behaviour in any way. Info-Gap
decision theory can be used across this range of available information and its concepts
of robust-satisficing decision behaviour seem to provide a useful framework for dif-
ficult decision-making contexts.

6.10.1 Case study: Info-Gap decision making in designing
flood defences

Ben-Haim (2006) discusses in detail the possible forms of robustness and opportune-
ness functions that might be used in making decisions in different contexts, with a
variety of practical examples. To illustrate the approach we will take an example
based on that in Hine and Hall (2005) and Hine (2007) that deals with the failure of
flood defence embankments. The reader may remember seeing pictures in the news of
the embankment breaches at New Orleans that resulted in such widespread flooding,

Figure 6.6 Schematic sketch of �-uncertainties associated with some prediction M(�, x) as a
function of a control variable x. Solid line is baseline relationship for � = 0
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damage and loss of life, following the impact of Hurricane Katrina in 2004. Over
1,000 breaches occurred elsewhere along the Mississippi in the major flood event of
1993 that resulted in $15–20 bn damages and the towns of Valmeyer, IL, and Rhine-
land, MO, being moved to higher ground. Crudely summarising the Natural Disaster
Survey Report on the 1993 floods, it was reported to the President that there had been
too much rain; and that the event was more extreme than the defences could have been
expected to cope with (Josephson, 1994). Post-Hurricane Katrina, however, issues of
maintenance of the defences were raised, particularly when the Mississippi delta is
sinking (see Horne, 2006; Van Heerden and Bryan, 2006). This is a natural result of
the consolidation of the delta sediments but is being exacerbated by reduced sediment
supply from upstream and rising sea levels.

Flood defence design is always a matter of compromise between the costs of con-
struction (the higher an embankment the greater the cost of build and maintenance),
the degree of protection against floods of different magnitude but poorly known fre-
quency, and the impacts of building defences to protect one site on other sites
upstream and downstream. Design standards vary in different countries and for dif-
ferent purposes. Local defences for a river running through a town in the UK are
normally designed to protect against a flood of a 100-year return period (that is to say
the flood that, on average, has a 0.01 probability of occurring in any particular year).
Nuclear power stations close to rivers, on the other hand, might be protected to avoid
flooding by a flood with a 10,000-year return period (0.0001 probability). The num-
ber of floods for which we have observations, however, is quite small so that estimat-
ing the magnitude of the 100-year return period event is quite uncertain. Estimating
the magnitude of the 0.00001 probability event will be grossly uncertain.

An interesting example of the problems involved in flood defence design is provided
by a recent local flood event in Carlisle, Cumbria, UK (Mayes et al., 2006). Carlisle is a
town of 70,000 people, situated where the rivers Eden, Irthing, Caldew and Petteril
meet, with a total upstream catchment area of the order of 1,000 km2. In January
2005, with the ground already near saturated by winter rain, some 200 mm of rain fell
over the catchment area, causing the worst floods since 1822. Parts of Carlisle were
flooded, including the police station and emergency centre, apparently by a combin-
ation of fluvial flooding and the local failure of drainage systems. It just so happened
that, at the time, plans for an improved flood defence system were being displayed in
the foyer of the regional Environment Agency building for public consultation.
These had been designed to cope with the 0.01 probability event, but the improve-
ments had not yet been built. If they had been built, however, parts of Carlisle would
still have been flooded because the river discharge in the actual event was greater than
that estimated for the 0.01 probability event. The defences are now being redesigned
to cope with the 0.005 probability (200-year return period) event, at greater cost but
with the purpose of reassuring the local population. The estimate of the 0.005 prob-
ability event will be a little less uncertain than previously because the January 2005
event has allowed the flood frequency estimates to be re-evaluated.

Whether reassuring the local population by building flood defences is a good idea,
of course, is another matter. In the past, the implementation of flood defence schemes
has tended to result in greater investment in infrastructure on the flood plain that has
been protected. This is one reason why, even if there is no strong evidence that the
frequency of floods is increasing over time (e.g Kundzewicz and Robson, 2000;
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Robson, 2002), the economic impact of flooding in the UK (and elsewhere) has been
rising dramatically. Because of the compromise between cost and degree of protection,
there remains a finite (albeit small) probability that a larger event will come along, as
illustrated at Carlisle. Even when the new defences are built at Carlisle there is still a
finite (albeit smaller) probability that a still larger event will come along. It is still the
case that to avoid increasing the long-term economic impacts of flooding, the best
policy is to avoid building on flood prone areas. In countries such as Bangladesh, of
course, this is very difficult indeed and it is often the case that the poorest people who
live in the most vulnerable locations are the least prepared to cope with flood risk
(Brouwer et al., 2007).

The uncertainties in flood defence evaluation arise because we cannot know the
sequence of flood events that will occur in the future. We might, on the basis of
historical data, be able to make a rough estimate of the expected frequency of events of
different magnitude. In making such an analysis we always assume that there is a finite
probability that a larger event than those in the historical record will occur but that
larger extreme events will be rarer (have lower probability). Since we do not have
enough data to evaluate the probabilities by enumeration (we may be trying to esti-
mate the peak river discharge for the 100-year return period event with only 50 years
of data or less), we usually resort to fitting a parametric probability distribution to the
available data and extrapolating to more extreme conditions. Thus, there is
uncertainty in the form of that distribution (the distribution of extreme values is
known to be skewed but there is no general consensus on which distribution should be
fitted to the data and many different types of skewed distribution have been used
including log normal, log Pearson Type III, generalised extreme value, generalised
Pareto, and Wakeby distributions), in the parameters of the distribution, in predicting
the frequency of more extreme events than the range of the available data, and in the
potential for changing in the frequencies during the design lifetime relative to the
historical period as a result of climate change or variability. In addition, there are
uncertainties in the potential for failure of the flood defences, in the economic data
with which to assess damages should a flood occur, and in the interpretation of a peak
discharge in terms of actual water levels, especially where it is expected that in mobile
bed rivers sediment erosion and deposition during the flood hydrograph might change
the cross-section of the channel.

Clearly, however, engineers design and implement flood defences despite these
uncertainties. The traditional engineering approach to this has been to design con-
servatively, by allowing for additional “freeboard” in design to increase the factor of
safety. This is a strategy tending to the robust, but increases cost and reduces potential
for opportunistic reward if the defence is not overtopped during the design lifetime.
Info-Gap decision making allows a more sophisticated assessment of the real
uncertainties involved in the design process.

Essentially, each uncertain relationship is represented as an expanding envelope
around the nominal relationship, scaled by a value of α. The decision maker must then
balance robustness and opportuneness which Hine and Hall (2005) represent for this
problem in terms of benefit–cost ratios. In particular, the critical value of benefit–cost
ratio for the design to be robust should be no less than 1 (i.e. the project savings in
damages over the design lifetime should not be less than the discounted costs of
implementation and maintenance). The opportuneness is represented in terms of the
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possibility that a much higher benefit–cost ratio will be achieved if the sequence of
floods is such that a less costly defence will not be overtopped.

Hine and Hall (2005) make the point that over a whole portfolio of schemes, the
potential for such opportunistic rewards could be useful for cases where funding is
limited (as in the UK, where even schemes with high benefit–cost ratios are not always
approved because of budget limitations, even though the spend on the build and
maintenance of flood defence schemes currently amounts to £700 m per annum). For a
number of schemes the high returns from some might offset a reduction in robustness
for each individual scheme. Having said that, a reduction in robustness means that
there is a possibility that more homes will be flooded. Thus, a risk-averse decision
maker might choose to prefer robustness over opportuneness. An Info-Gap analysis
allows this type of investigation. Figure 6.7 shows how a flood defence design process
can be formulated within an Info-Gap framework, taking account of the uncertainty
in the stage (water level) – discharge relationship, the probabilities of occurrence for
different discharges, and specified damage curves. Since both the latter relationships
are also uncertain, the analysis could be extended to allow for these additional
uncertainties (see Hine, 2007).

Figure 6.8 shows the resulting robustness and opportuneness curves for different
flood defence strategies, expressed in terms of benefit–cost ratios and values of α and β.
These results are based on assuming uncertainty in the stage–discharge alone, using an
energy-loss Info-Gap model. On both plots, when α and β equal 0, the results are those
which would be obtained by a purely deterministic calculation or optimisation. Figure
6.8A shows that the benefits for all three strategies decrease within increasing
uncertainty, and that the levee+widening strategy, in particular, has minimal robust-
ness to uncertainty (benefit–cost ratio falls below 1 very quickly). Figure 6.8B shows

Figure 6.7 Info-Gap �-uncertainties applied to the stage–discharge relationship in assessing
uncertainty in potential flood damage

Source: Hine, 2007, reproduced with permission of Daniel Hine
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Figure 6.8 Robustness functions (A) and opportuneness functions (B) for different flood defence
strategies expressed in terms of cost–benefit ratios

Source: Hine, 2007, reproduced with permission of Daniel Hine
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that the levee alone strategy gives the greatest potential for opportune gains as
uncertainty increases. Clearly other designs can be rapidly compared in this way, but
the comparison becomes more complex as additional sources of uncertainty are
included. Hine (2007) also gives examples where uncertainty in flood frequencies is
also added to the analysis.

6.11 The issue of ownership of uncertainty in decision
making

Decision making in the face of uncertainty involves a variety of stakeholders. There
are scientists and consultants who are doing their best to evaluate and quantify the
risks associated with a particular decision. There are policy makers who are formulat-
ing the framework for the decision-making process. There are the people who will
actually make the decision based on all the available information. There are the stake-
holders who will be affected, in some cases adversely, in some cases beneficially, by a
particular decision. Not all of these groups will be used to methods of assessing and
dealing with uncertainty. Indeed, as we have seen in the previous chapters in this book,
despite the manifest uncertainties (both epistemic and aleatory) in making decisions
about environmental systems, it has largely been neglected. Or rather, none of these
groups has been prepared to take ownership of the obvious uncertainties in the
decision-making process.

If, in future, decisions are to be made that are robust to uncertainty, then there
needs to be an appreciation of the sources and methods of assessment of uncertainty
by the different groups, even if not complete understanding. But it is clear that
uncertainty means different things to different people. Not all stakeholders and deci-
sion makers will have had training in probability statistics or Bayesian methods. They
may have had only limited training in soliciting the opinions of experts and other
stakeholders in formulating the context of decisions. Even within the scientific com-
munity, different scientists have quite different views about the best way to represent
and condition uncertainties based on data (see Chapter 4 and Beven, 2006a). In the
wider context, there are a wide variety of perceptions and interpretations of risk and
uncertainty.

This is an interesting issue of semiotics. Semiotics is the study and interpretation of
signs. Here the signs we are interested in are the words risk and uncertainty. If differ-
ent stakeholders have different conceptions of what is meant by these signs, and if they
are to properly communicate about concepts of risk and uncertainty and the way they
might be used in decision making, then the different stakeholders will need some
common basis to do so.

Considering again the problem of flood risk, this has been the subject of a paper by
Faulkner et al. (2007) who suggest that there is a need for a translatory discourse
between the different groups. Typical sets of signs in this area are maps of flood-prone
areas at a certain flood return period (in the UK typically for the 100-year return
period event, Figure 6.9). Stakeholders in this case range from the Environment
Agency who have responsibility for mapping flood risk and issuing of flood warnings
in England and Wales, consultants who carry out the modelling work on which to base
the flood inundation maps, local authorities and emergency services who have to
respond to flood events, and members of the public in the flood risk zone (or outside it)
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who might have to react to flood warnings and the values of whose houses might be
affected by the mapped flood extent.

However, what do these signs mean? The flood inundation map is produced by a
hydraulic model driven by an estimate of the 100-year flood discharge. The hydraulic
model is uncertain, and may not have been checked against inundation data from past
flood events since such data sets are relatively rare. The estimate of the 100-year
discharge is also uncertain. It will usually have been made on the basis of much shorter
periods with an extrapolation of the tail of some fitted distribution of the extreme
events in the record to an annual probability of exceedence of 0.01. There is
uncertainty in choice of distribution (and therefore tail behaviour) that could be
chosen; there is uncertainty in the extrapolation. Combining these uncertainties, it is
clear that the maps of the potential flood extent of the 100-year return period event
should also be uncertainty (or fuzzy) in the representations of its outlines (see also

Figure 6.9 UK Environment Agency Indicative Flood Plain Map for part of the town of Carlisle showing
different levels of risk. The Carlisle flood of January 2005 was estimated as having an annual
probability of exceedence less than that for the 0.01 (1 in 100-year) event map shown

Source: ©2007 Environment Agency, all rights reserved
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Romanowicz and Beven, 1998, 2003; Pappenberger et al., 2006c,d; Smemoe et al.,
2007). But what would a local land use planning committee, or somebody thinking of
buying a house in the area make of this as a sign of the risk of flooding?

Indeed, what would either make of the concept of the 100-year event? It is actually
already an attempt to translate the technical estimate of the event with an annual
probability of exceedence of 0.01 into a more readily understandable form. It does not
mean that it is the flood that will happen every 100 years. Only that, given a very long
period of record with stationary statistics, it is the best estimate of the flood that would
occur on average every 100 years. Numerical experiments suggest that about 1,000
years of annual floods would be required to get an estimate of the 100-year event with
small uncertainty. But, as already suggested, we have to make that estimate on the
basis of much shorter periods of data (even the very longest records of river discharge
are rarely over 100 years, and most records are of the order of 10 to 50 years). In fact
we have to make that estimate knowing that the distribution of flood magnitudes may
not be stationary because of climate and land use changes (see Clarke, 2007 for an
example of significant change and Robson, 2002, for an example of the difficulty of
identifying change in the face of uncertainty). We may also have to make that estimate
not knowing what the correct form of extreme value distribution might be (in the UK
opinion about the form of distribution that should be used changed between the Flood
Studies Report of 1975, and the Flood Estimation Handbook of 1999; in the US yet
another form of distribution is required by law in some states).

Similar issues arise in flood warning. The signs of Figure 6.10 were developed by the
UK Environment Agency as a readily understandable way of communicating
uncertainty to the public based on forecast flood levels. A number of different levels
are used because of the difficulty of predicting flood levels precisely. This is an area
where uncertainty in interaction with the public is an important issue in that a defini-
tive statement that there will be a flood will undermine confidence if that flood does
not actually happen, leading to a lack of public response to the next warning. This
would consequently increase damages and risk of mortalities if there was a lack of
public response and a flood did then occur (the “crying wolf” effect of the old fable
Roulston and Smith, 2004). In the same way, houses becoming flooded (even if only

Figure 6.10 Signs used by the UK Environmental Agency Flood Warning System and their explanation
in words (see http://environment-agency.gov.uk/subjects/flood/826674/830330/882451/
111627/?version=1&lang=_e)

Source: ©2007 Environment Agency, all rights reserved
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very locally) when no warning is given also means that the responsible Agency will be
criticised. It leaves open, however, what the correct public response should be to the
different flood levels given the uncertainty with which flood levels can be predicted.

Faulkner et al. (2007) suggest that one way of developing an appropriate transla-
tionary discourse in flood risk management is in the form of the process of formulating
Codes of Practice for different types of application (see also Pappenberger and Beven,
2006). The final Codes of Practice might define specific methods for eliciting opinions
in framing the context of a decision, specific methods that should be used for model
predictions in informing the decision-making process, specific methods for assessing
the uncertainty in those model predictions, and a specific decision-making framework,
but in the process of developing the Code of Practice it would be necessary to involve a
wide range of relevant stakeholders and ensure that there was understanding of the
issues by all. There would then be a common basis for discussion of the concepts and
methods to be used in different application areas. They identify a number of stages in
the process to include enhancing understanding by agreeing contested terms, agreeing
communication needs and goals, agreeing on relevant tools and methods and agreeing
a plan for interaction. This type of interdisciplinary exchange might need new
methods of exchange (Mansilla et al., 2005), such as the uncertainty estimation
decision tree Wiki pages experiment of Figure 1.4. New ethical standards focused
on uncertainty analysis and a sense of shared ownership of uncertainties will need
debating within professional bodies that already have professional codes (see, for
example, Ersdal and Aven, 2007).

Any Code of Practice that results from this process might well involve suggestions
about how to involve different stakeholders, especially professionals at local level, in
setting the context and shared ownership of the analysis. This all implies, of course,
the application of time and resources and therefore an initial decision about how
important an issue it is to take account of uncertainty in different application areas.
One result of the practitioners’ workshop on Risk and Uncertainty in Flood Risk
Management held at Lancaster University in January 2006 was the professionals’
suggestion that they would be happy to make some estimates of uncertainty in flood
hazard and flood risk if they were provided with some recipes to use (and preferably
recipes that would not be much more expensive to apply than existing procedures).
They also doubted, however, that unless more professional leadership was evident,
they would be unlikely to be able to provide estimates of uncertainty to clients, unless
clients demanded them. This suggested an initial unwillingness to embrace ownership
of uncertainty, or at least a reluctance to be criticised for going out on a limb and
deciding which methods to use. It is indicative of the current context for moving
uncertainty analysis concepts into practical application. An interesting attempt to
overcome some of these barriers and create such a translational discourse in the
Netherlands is reviewed in the next section.

The problem has also been addressed in the context of a European Union project
called HarmoniRiB. This is one of a number of projects aimed at harmonising practice
in the area of water resources management in the EU. The scope and outcomes of
HarmoniRiB are outlined in Refsgaard et al. (2005). These included the provision of a
set of tools for assessing and describing uncertainty (see Brown and Heuvelink, 2007);
a conceptual model for data management; and establishing test data sets for different
types of application in river basin management for representative basins across the EU.
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6.12 The NUSAP methodology

Some of these issues have, however, already been grasped in the Netherlands where an
approach to developing a Code of Practice has been developed using the NUSAP
methodology.4 The NUSAP methodology has developed out the concepts of post-
normal science expressed by Funtowicz and Ravetz (1990, 1999). Funtowicz and
Ravetz have been instrumental in formulating a response to these issues in a context
where even some basic scientific issues may be contested but where decisions must be
made in a world increasingly connected, where decisions are treated as pressing, where
the implications of decisions may have real impact, where uncertainty abounds and
the values expressed by different groups of stakeholders are disputed. Examples
abound, from global climate change to local resource management. They suggest
that in such a context there is a real need for involving all stakeholder groups in a way
that is transparent, open and subject to agreed quality control procedures (see also
Nowotny et al., 2001; Harremöes et al., 2001; Krayer von Krauss et al., 2005;
Janssen et al., 2005).

One of the first major applications of these concepts in the environmental field has
an interesting history. In 1999, the Netherlands National Institute for Public Health
and the Environment (RIVM) was criticised in the national public press by one of their
own employees for grossly underestimating the uncertainties associated with the
model predictions on which many reports and decisions were based. The criticism was
the start of a major media debate in the Netherlands about the credibility of environ-
mental statistics and models, and the wider issues of the role of science in policy and
decision making.

This very public airing of the issues involved in post-normal science resulted in a
major review of RIVM’s activities and the initiation of a project to develop a set of
operational uncertainty assessment tools. This immediately raised issues of the quan-
tification of uncertainty and, in particular, how to treat epistemic uncertainties within
a framework that could be common to the wide range of RIVM activities. A project
started in 2001 with a wide range of stakeholder consultations. The uncertainty
assessment methodology, essentially a Code of Practice in the terminology of the last
section, was developed within the NUSAP framework, going “live” in 2005 within the
Netherlands Environmental Assessment Agency part of RIVM (RIVM/MNP).

NUSAP is an acronym, an abbreviation of five different ways of assessing
uncertainty (Numeral, Unit, Spread, Assessment and Pedigree). It is framed so as to
complement quantification of uncertainty assessments (Numeral, Unit, Spread) with
expert judgements of reliability (Assessment) and the multi-criteria evaluation of the
historical background to the methods and data used (Pedigree). The implementation
at RIVM/MNP has developed the Assessment and Pedigree stages into a process of
Guidance for Uncertainty Assessment and Communication. The Guidance is intended
for use in framing the uncertainty context of a new project, in structuring methods of
uncertainty estimation and choosing quantification methods during a project, and in
reviewing and communicating results after a project (see for example, van der Sluijs et
al., 2003, 2005a,b; Janssen et al., 2005).

4 See www.nusap.net.
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The Guidance, in practice, takes the form of a mini-check list and short booklets
containing more detailed questionnaires (the Quickscan) backed up by detailed guid-
ance documents. These cover the areas to be addressed in a more qualitative evalu-
ation of the Assessment and Pedigree for particular projects’ group into problem
framing, involvement of stakeholders, selection of indicators, appraisal of the know-
ledge base, mapping and assessment of relevant uncertainties, and reporting of
uncertainty information. It is recognised that different levels of effort will be justified
depending on the importance and resources available to a project, but the minimal
effort required would be a simple choice of the wholly, partly, or insufficient categor-
ies of the mini-check list so that, in carrying out a project, a framework exists for an
individual scientist or decision maker to structure thinking about uncertainty in the
wider context of the project.

Experience with this system is still limited (van der Sluijs et al., 2005a,b). Almost
certainly it will require some modifications over time as more experience is gained
both within RIVM and in the response to RIVM reports by external stakeholders. It is,
however, a start on addressing the issues posed by different types of uncertainty within
an operational interdisciplinary institutional context.

6.13 Robust adaptive management in the face of
uncertainty

Decision makers in all realms of life have always made decisions in the face of
uncertainty. The history of the world is a history of decisions made in the face of
an uncertain future. Perhaps, as this chapter has attempted to show, we can
appreciate the role of uncertainty in the decision-making process and frame it in
more rigorous ways in the 21st century, but that does not mean that we can predict
all possible outcomes. We should therefore be prepared to expect the unexpected.
Studies of actual decision-making histories, as well as experimental studies, show
that people are affected in their decision-making behaviour by experiencing the
unexpected. Regret becomes a component of decision making (Bell, 1982). They
become more risk-averse over time, with a tendency to avoid apparently optimal
decisions. This has led to a number of paradoxes in utility-based decision theory
that, Ben-Heim (2006) suggests, can be resolved if, in the language of the Info-Gap
methodology, decision makers are considered as more robust-satisficing than
optimisers.

In making decisions about environmental systems we should certainly expect the
unexpected. That does not just mean more extreme events than have been experienced
before, because we should always be anticipating that in any distribution of events
something more extreme may come along. But there are many epistemic uncertainties
in environmental systems, and many different examples show that we might experi-
ence responses of a different type than we have seen before, responses that were not
envisaged beforehand and would therefore not have been taken into account in any
formal decision analysis whether by Info-Gap or utility function methodologies.
Environmental systems are complex and the element of surprise seems to be wide-
spread in the management of environmental systems and the response of decision and
policy makers to surprise becomes part of the dynamics of a managed system. Peterson
et al. (2003) give an interesting example, albeit based on simple hypothetical models,
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about how a lake system subject to eutrophication can be managed in a rational way
to collapse.

So we should be generally wary, and this suggests taking an adaptive management
strategy in the face of uncertainty (Holling, 1978; Walters, 1986). Adaptive manage-
ment means being prepared to change strategy as the future unfolds with the results of
decisions being monitored and regularly reviewed. It also means trying to be robust in
decision making in the sense of ensuring that a decision made now does not preclude a
future change in strategy.

There are many examples of adaptive strategies in environmental management.
Some of the most important examples are also highly political in nature. The history of
setting quotas for fish catches to try to achieve sustainable populations and yields in
the face of uncertainty about the population numbers and dynamics is a history of
scientific advice being mitigated by political expediency. The Kyoto Protocol on reduc-
tion of greenhouse gas emissions was an attempt at adaptive management that seems
to have failed as a result of national political considerations, particularly in the United
States.

A current interesting example is the Water Framework Directive (WFD) in the
European Union. There have been a number of past directives on water issued by
the EU, including the bathing waters directive (1978), drinking water directive (1980),
the groundwater directive (1980), and urban waste water treatment directive (1991).
The WFD of 2000 was the most extensive piece of legislation enacted by the European
Commission and now applies to all 25 countries of the EU. The formulation of the
WFD was based on scientific advice but was couched in political terms. Thus, it is
specified that all designated water bodies in the EU must reach “good ecological and
chemical status” for “sustainable use” by the year 2015 (unless a water body could be
deemed heavily modified by man in which case it could be derogated until 2027) (EU,
2000).

The definition of “good ecological and chemical status” was not specified in the
WFD. The definition of “sustainable use” was not specified in the WFD. They were
left for the national water authorities in the countries of the EU to agree on. The
science on which to base such definitions is still highly uncertain but the WFD does not
refer to uncertainty but rather to a complementary phraseology of “adequate level of
confidence and precision” (see the discussions of Newig et al., 2005, and Mysiak and
Sigel, 2005). What is clear from the science is that in many cases the time scales for
improvement of many water bodies would be much longer than the few years to 2015.
In the case of nutrients (especially phosphorus) in rivers and major lakes, for example,
the storage in the catchment system and the release times from storage could certainly
mean that, even given a drastic reduction in anthropogenic inputs to the system, the
rate of decline in concentrations would often be slower than the time frame of 2015.
Other factors may be far less subject to control, such as the suggestion that the avail-
ability of phosphorous in the Baltic Sea from existing sediment sources totally domin-
ates any current point or diffuse anthropogenic sources. Similar considerations of
uncertainty arise in the implementation of the total maximum daily loads approach to
water quality management in the US (Chen et al., 2007).

It seems therefore that the full import of the WFD legislation is unlikely to be
satisfied by 2015. But, if the requirements of the legislation are approached sensibly,
the quality of waters throughout the EU will generally improve, even if, as van der
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Brugge and Rotmans (2007) suggest, the legislation is not sufficient to stimulate real
change. Improvements in water quality have already been seen as a result of the
previous water directives. This is a case where moving the water quality of designated
water bodies towards improvement may have a cost but is achievable, whatever good
ecological and chemical status and sustainable use might mean in practice. Adaptive
management is here a matter of having a monitoring system in place (as required by
the WFD) and a learning approach to management (what Pahl-Wostl, 2007, calls
“learning to manage by managing to learn”) so as to put in place a system that might
be robust to change and unexpected events. This strategy can be pro-active, in what
van der Brugge and Rotmans (2007) call transition management.

The use of adaptive management in the face of uncertain knowledge about complex
environmental systems is an attractive concept. However, it is also fraught with pit-
falls, a good discussion of which is provided by Gregory et al. (2006). They point out
that the approach might appeal to both environmental managers who see it as a way
of putting off a difficult decision into the future; and by scientists who see it as a way of
justifying the funding experiments to learn more about the complexities of particular
systems, often without thought to the impacts of such experiments to the system or
other environmental or societal considerations. The result is that many applications of
adaptive management are poorly thought through and unsuccessful. The most suc-
cessful applications seem to be on small-scale and relatively simple systems, but
Gregory et al. suggest that it may be on the large and complex and messy systems that
it may actually be needed most. In this context, structured decision-making frame-
works such as the Bayesian Decision Networks or Info-Gap analysis discussed above
may be helpful in providing a formal structure within which different stakeholders can
interact in deciding on adaptive management strategies (e.g. Failing et al., 2004;
Andersson, 2004; Olsson and Andersson, 2007; Croke et al., 2007). For readers who
are interested in pursuing this topic further, a good starting point is the discussion of
criteria for deciding whether adaptive management is an appropriate strategy in
Gregory et al. (2006).

6.14 Uncertainty and the precautionary principle in
decision making

There is one aspect of uncertainty in relation to environmental policy formulation and
decision making that has generated an enormous amount of discussion and literature.
This is the question of when, in the face of scientific and other uncertainties about
what might happen in the future, the precautionary principle should be invoked.
Krayer von Krauss et al. (2005) discuss this issue and point out that proponents of
activities that might potentially have detrimental effects often use scientific uncertainty
as an argument for postponing or relaxing regulation. Environmental activists, on the
other hand, often use scientific uncertainty as a reason for invoking the precautionary
principle that no change should be allowed if there might be unforeseen environmental
impacts. At this rather superficial level, the issues are quite clear. The practical applica-
tion of a precautionary principle, however, appears to be much more difficult
(Harremoës et al., 2001). This is, in part, because there is a linguistic uncertainty
about what is meant by a precautionary principle, and also, in part, because there is no
general agreement about how uncertainty in impacts might be assessed in relation to
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its implementation when there might be potential benefits of allowing a particular
development (Weiss, 2006) and where the impact might involve extreme, low-
frequency events (Basili, 2006). A full discussion of this issue is beyond the scope of
this book but the interested reader might find that looking at the special issue of Water
Science and Technology that contains the Krayer von Krauss et al. (2005) paper will be
a good starting point, since there are a variety of different viewpoints on the issue and
a number of case studies presented.

6.15 Summary of Chapter 6

Many decisions about environmental systems are still made without adequate account
being taken of the uncertainties inherent in assessing the response of those systems.
The following points summarise the issues addressed in this chapter.

• Decisions require assessments of relative risk, and formal risk-based decision-
making methodologies are available to provide a framework for structuring
the decision-making process including the use of decision trees and utility func-
tions. These methods can be extended to include non-probabilistic uncertain
information that might be important to a particular decision.

• But not all uncertainties are easily quantified in a formal decision-making frame-
work. In particular, there may be Knightian or epistemic uncertainties that cannot
be easily formulated in terms of utility functions. The Info-Gap methodology
provides a method for decision making in this context, in a way that leads to
robust-satisficing decisions, that seems to explain “sub-optimal” (in terms of
utility) decisions made in a variety of different real applications.

• Framing the context of a decision is important in revealing the range of stake-
holders that should be involved. Explaining uncertainty in decision making to
different groups of stakeholders might require a form of translationary discourse
to facilitate communication. A first attempt at implementing such a system has
been based on the NUSAP concepts in the Netherlands.

• Uncertainty, and particularly epistemic uncertainty about environmental systems
and the future inputs to which they might be subjected, implies taking robust
decisions that allow adaptive management, while being aware of the limitations of
applying the concepts of adaptive management to complex environmental
systems. Monitoring and review of decisions should be an essential part of
environmental management.

Box 6.1 Basic risk-based decision theory

This necessarily brief exposition of risk-based decision theory follows largely the
normative approach to decision making set out in Bedford and Cooke (2001)
where much more detail will be found (see also French, 1986; Keeny and Raiffa,
1993). It will be assumed that the decision maker, in discussion with relevant
stakeholders, has formalised the context of the problem in terms of a decision
tree (Figure 6.1 in the main text) that represents different sets of actions and their
consequences.
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B6.1.1 Evaluating preferences for different sets of actions
The fundamental action in rational decision making is to rank different sets of
actions (or pathways through a decision tree). Thus, given N sets of actions A1,
A2, A3 . . . .AN, we wish to obtain a ranking such that the value of A1 ≥ A2 ≥ A3 ≥
. . . .AN, where the subscripts now represent the order of preference rather
than any original numbering of options. This requires that the value of all the
sets of actions be commensurate, and a commonly used scale is that of net
monetary value. Sets of different options for which the utilities are not com-
parable (are incommensurate) cannot be ranked in any rational way. There
may, of course, be more than one type of utility measure that could be
assigned to the sets of actions, to some of which the decision maker might wish
to assign different weights. Multiple utility measures are considered further in
B6.1.2 below.

Given the uncertainties in the potential outcomes of a set of actions, the deci-
sion maker must formulate preferences in an uncertain decision space represent-
ing all possible sets of actions. A theory for doing this was provided by Savage
(1972) who showed that a rational decision can be represented in terms of
probability for any point (set of actions) in the decision space, and expected
utility for that point, such that the product of probability and utility orders the
actions in the same order as a rational decision about preferences. The estimates
of probability and uncertainty might themselves be uncertain, of course, in
which case an integral product over some form of representation of that
uncertainty would be required.

Application of this theory therefore requires the definition of the probabilities
associated with different pathways in the decision tree and a utility value for
every end point on the tree, taking account of uncertainties as necessary. The
theory is then employed to define the set of preferences. This will not always lead
to a clear preference for one set of actions over another (there may be indiffer-
ence to different sets of actions), particularly when there is more than one meas-
ure of utility applied to the different sets of actions. Indifference might be
resolved by the decision maker weighting the different measures of utility
(Section B6.1.2), or by investing in obtaining more information to clarify the
decision (Section B6.1.3).

There are some other ways of formulating preferences. The maximin criterion
ranks alternatives on the basis of their worst possible potential outcomes. The
decision maker would then choose the action for which the worst potential
outcome is better than any other worst potential outcome. An equivalent mini-
max criterion can be used with measures of disutility, so that the decision maker
would choose the action which minimises the maximum potential loss.

Savage (1951) also suggested the minimax regret criterion which aims to min-
imise the difference between the best that could happen and what might actually
happen (there is a certain similarity here with the robustness and opportuneness
functions of the Info-Gap theory described in Box 6.2). The concept therefore is
to take an action that is associated with the least regret in the future. Another
way of expressing this is that it minimises the future loss if what actually
happens turns out to be as bad as it could be. This would be one way of trying to
minimise the risk of making a real mistake.
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B6.1.2 Multiple utility measures
It will often be the case that a decision must take account of multiple benefits and
disbenefits of a decision, i.e. multiple utility functions. Different utility functions
may then be competing in the sense that any solution must present a trade-off
between different types of benefits. We are then effectively faced with a multi-
criteria utility optimisation problem, for which there may be no single solution
(see Chapter 4 where the same problem arises in the context of model parameter
calibration). Such trade-offs can lead to indifference that results from balancing
different criteria (in the same way as the Pareto optimal set in the calibration
problem). What is then needed is a means of assessing the indifference sets over
all the criteria, and of ranking those indifference sets in order of preference to
maximise the utility of the decision made.

This can be difficult, since the different criteria may have different scales (they
may not all be expressed as monetary benefits) and the decision maker may wish
to give them different weights. There may also be dependencies between utility
measures that may need to be taken into account. The problem therefore needs
to be simplified. One set of possible assumptions is that of Multi-attribute Utility
Theory (see Keeny and Raiffa, 1993).

Multi-attribute Utility Theory is a means of assessing multiple utility measures
given uncertain outcomes. A basic assumption is that of independence of differ-
ent measures of utility. This assumption greatly simplifies the mathematics to the
extent that non-independent measures are often transformed to try to ensure
independence. A multi-attribute utility function is then a linear function of the
individual marginal utility functions contributing to the decision process. Differ-
ent types of independence assumptions are possible. Additive independence
means that the multi-attribute function can be written as a simple weighted sum
of the marginal utility functions. An interesting application to a watershed rec-
lamation problem is provided by Elshorbagy (2006). On the basis of multi-year
simulations a multi-criteria decision analysis is used to estimate the dominance
of one strategy over others in terms of a “probability of making the right deci-
sion (PRMD)”. A confidence index is also estimated to assess the robustness of
the PRMD.

B6.1.3 Informing the decision: pre-posterior prior analysis and the value of
additional data in Bayesian decision making
In many situations there is the potential to gain additional information to help
guide a decision but at additional cost. This might be particularly valuable, for
example, where there is indifference to a set of actions that maximise the utility
function. Not all additional information will be cost-effective, however. In some
cases the cost of obtaining the information may be greater than the expected
benefits. In other cases, there may be a chance that, having commissioned an
additional study, the information gained may not prove to be sufficient to decide
between competing alternatives. Thus, it would be useful to be able to evaluate
the potential value of obtaining additional information.

Additional research can inform both components of the decision analysis: the
probability of potential outcomes and the utility function. Refining the estimates
of probabilities is easily done by the application of Bayes equation (see Section
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4.3). Thus, given some prior probability distribution of outcomes p(Ω), and a
further assessment of the likelihood of Ω given the additional evidence E as
p(E|Ω), then the posterior distribution is calculated using [4.1] as

p(Ω |E) = p(Ω) p(E| Ω) / C [B6.1.1]

The additional costs of obtaining the new information should be accounted for
in assessing the utility function. This is evidently most easily done if the utility
function is expressed directly in monetary terms.

Refining the utility function associated with the potential outcomes will also
generally incur a cost in obtaining additional information. Here, it may be dif-
ficult to assess a priori what impact on utility the additional information will
have. It is readily apparent, however, that any additional study will not be
justified if the costs will be greater than any potential benefits to be gained in
maximising the utility function.

In both these cases the concept of the value of perfect information is useful.
This is defined as:

VPI = �
Ω

i = 1

p(i)Umax (i) [B6.1.2]

where the summation is over all possible outcomes i = 1,2, . . . Ω, p(i) is the prior
probability of i and Umax(i) is the utility of the optimal decision given an out-
come. VPI therefore represents a mean optimal utility assessed as if we had per-
fect additional information. We can then assess the cost of gaining additional
information relative to the utility of assuming perfect information to decide
whether to go ahead with refining our estimates and the associated costs, and
whether it will actually make any difference to the decision. Clearly if the add-
itional information makes no difference to the preferences of the decision maker,
then it might not be worth collecting the additional information even if the
estimates of Umax(i) might be refined by doing so.

In adaptive management strategies it is normal to continue to monitor the
system of interest in deciding about future management actions. In this case the
monitoring programme might be set beforehand to observe a particular state of
the system or to meet the demands of legislation rather than being optimal in
informing a decision. The information collected can be used to refine/update a
model over time as well as determining the utility of different management
strategies. An ecological example of the use of Bayesian decision making in the
management of grasslands is given by Dorazio and Johnson (2003).

B6.1.4 The expected value of including uncertainty in making decisions
It has been argued in Chapter 6 that it is important to allow for uncertainty in
decision making in that it might actually improve the decision that is chosen. It
would be advantageous to be able to quantify this improvement to make a
convincing case for all the extra work involved. Morgan and Henrion (1990)
suggest a measure for the expected value of including uncertainty within a
Bayesian decision framework.
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The value of including uncertainty can be calculated as:

VIU = �
Ω

i = 1

p(i)[Ld (i) − LB (i)] [B6.1.3]

where Ld is the loss associated with the deterministic optimum decision that
minimises loss ignoring uncertainty and LB is the decision that expected loss over
the prior probability density p(i) of the i = 1,2, . . . Ω options.

Box 6.2 Info-Gap decision theory

The Info-Gap methodology of Yakov Ben-Haim (2006) assumes that some “best
estimate” description of the system of interest is available (as for any form of
decision). As noted in the main text, that description might be a quantitative
model of the types that have been discussed earlier in this book; it might be a
probabilistic representation; it might be a purely qualitative description. This is
the nominal description of the system. The assessment of uncertainty in the Info-
Gap methodology is based on the very general idea that, as we move away from
this nominal description, then the utility of the outcome of any decision will
become more and more uncertain in some consistent way.

As before, let M(Θ) be the set of predicted variables for a model run with set of
parameters Θ. Let M̃(Θ) be the outputs from nominal run of the model. Then,
over a large number of models (different parameter sets, different boundary
conditions, different model structures), we can evaluate for every set of outputs
the InfoGap function (using similar symbolism to Ben-Haim, 2006)

U�α,M̃(Θ)	 = �M(Θ) : |M(Θ) − M̃(Θ)| ≤ α� α ≥ 0 [B6.2.1]

U(α,M̃(Θ)) is the set of all possible models whose deviation from the nominal
model is nowhere greater than α, noting that the model output M(Θ) may be
varying in space and time. The greater the value of α, the greater the range of
model outputs that will be included in the set. Thus, the sets for different values
of α will be nested and, generally, will be convex (a convex set is one in which the
line segment joining any two members of the set is always within the set). Note
that this refers to functions of the model outputs; it does not imply that the
associated sets of individual model parameters will be nested or convex because
of the complex nonlinear interactions that might be involved in a particular
model structure. Note also that there is no explicit representation of model error
in this representation, only of deviation of a predicted variable away from some
nominal value (which might itself differ significantly from the actual response of
the system in cases of real uncertainty and lack of information about the nature
of the system responses).

Given the deviation, α, Ben-Haim frames the decision-making process in terms
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of two functions representing robustness and opportuneness. The robustness
function expresses the greatest level of uncertainty (in terms of the values of α)
for which failure should not occur. The opportuneness function is the least level
of uncertainty at which success is assured. The decision maker will then wish to
maximise the value of α for which the decision is robust, in the sense of satisfying
the basic requirements of success, while minimising the value of α at which
success is assured. Ben-Haim (2006) discusses in detail the possible forms of
robustness and opportuneness functions that might be used in making decisions
in different contexts, with a variety of practical examples.

Equation [B6.2.1] is only one possible relationship that might be used to
describe the deviations from the nominal model run. Ben-Haim (2006) provides
a number of alternatives, including an energy-bound model for a vector of model
outputs M(Θ,t) (such as a time series of model output variables):

U�α,M̃(Θ,t)	 = �M(Θ,t): �
∞

0 �M(Θ,t) − M̃(Θ,t)	
2

≤ α2� α ≥ 0 [B6.2.2]

A further representation is a form envelope-bound model that is useful when the
deviation of different variables might best be evaluated on a fractional scale,
relative to the nominal value. Thus:

U�α,M̃(Θ,t)	 = �M(Θ,t) : � M(Θ,t) − M̃(Θ,t)

M̃(Θ,t) � ≤ α� α ≥ 0 [B6.2.3]

More generally, envelope-bound models can have a general functional form:

U(α,M̃(Θ,t)) = {M(Θ,t) : |M(Θ,t) − M̃(Θ,t)| ≤ αφ(t)} α ≥ 0 [B6.2.4]

where φ(t) is a function defining the envelope (such as that shown in Figure 6.6 in
the main text).

This general envelope-bound model can also be extended to multiple vectors
of different outputs. For the case of N output variables, for example, a possible
representation of the deviations is:

U(α,M̃(Θ,t)) = {M(Θ,t) : |Mn(Θ,t) − M̃n(Θ,t)| ≤ αφn (t) : n = 1,. . .,N}

α ≥ 0 [B6.2.5]

Thus, with an appropriate choice of envelope function φn(t) for each of N output
variables, the deviations may be compared directly in terms of a consistent value
of uncertainty measure α.

When evaluating models as simulators of the real system, the nominal model
output can be replaced by observed values, in which case the deviation becomes
the total model error. Thus, if εn = (Mn(Θ,t) − On(t)) : n = 1,. . .,N, we can rewrite
[B6.2.5] in the form:

U(α,M(Θ,t)) = {M(Θ,t) : −αφn(t) ≤ εn ≤ αφn(t) : n = 1,. . .,N} α ≥ 0 [B6.2.6]
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There is an analogy here between both fuzzy measure and generalised likelihood
approaches to uncertainty. Note, however, that unlike both fuzzy and GLUE
approaches, the value of α does not have to be fixed in evaluating which models
will have more weight in prediction. The value of α simply expands to include a
wider and wider range of predictions.

Ben-Haim (2006) also gives details of Fourier-bound models, Info-Gap repre-
sentations of uncertain probabilities, discrete option (rather than continuous α)
models, and non-convex Info-Gap models (including linear systems with
uncertain coefficients). The general envelope model [B6.2.6] will serve our pur-
pose to explain the step to decision making here. The discrete model is often of
interest in environmental applications since it represents a situation in which
only discrete scenarios of the future can be evaluated. In the discrete model, there
may be J possible scenarios and we are interested in the deviation of each scen-
ario from some base case. We can represent this in terms of some preference
vector π within which the elements represent the integer rank of each scenario in
terms of deviation from the base case π(o). It is possible that two scenarios j1 and
j2 might have equal rank π(j1) = π(j2). Then, if Πk is the set of preference ranks
that are no more k single preference changes away from the base case, then an
Info-Gap uncertainty model can be defined in the form:

U(α,π(o)) = �
�α

k = 0
Πk� α = 0,1,2,. . . [B6.2.7]

such that U(α, π(o)) is the set of all scenarios that differ from the base case by no
more than α changes in rank. As α increases, this structure provides nested sets of
scenarios of increasing deviation from the base case.

Every model run will be associated with some consequence relative to the
decision that is being considered. Since, for any given value of α, we would
normally expect to be encapsulating a range of potential models, all with scaled
deviations less than α, then as α increases, this implies a wider range of con-
sequences. However, it would be expected that, since models with similar values
of α by definition have similar outputs, the consequences associated with models
with similar values of α will be similar (if we make proper allowance for the fact
that the uncertainty scale does not differentiate between positive and negative
deviations but that in some problems the consequences of positive deviations
might be quite different from the consequences associated with negative devi-
ations). However, we expect the range of possible consequences to change
broadly with the uncertainty measure. In particular, as α gets larger, the potential
for a decision based on the model predictions to be wrong will also get larger.

This is where the concept of robustness becomes important. In particular, we
are interested in the maximum value of α at which all the minimum requirements
for the outcome of a decision are satisfied. If we are happy that we can estimate
the potential outcomes to within this level of uncertainty α then we will have a
decision that is robust to uncertainty and unlikely to fail. Ben-Haim expresses
robustness in the form that given a decision vector (q) then

â(q) = max {α : minimal requirements always satisfied} [B6.2.8a]
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Opportuneness, on the other hand, is defined in a complementary way as the
minimum value of α for which the decisions (q) will lead to total success:

b̂(q) = min {α : sweeping success is possible} [B6.2.8b]

Small uncertainty would generally give a high possibility of success but with a
high possibility of making the wrong decision in the face of uncertainty.
Together, Ben-Haim calls robustness and opportuneness, the immunity functions
in the decision-making process.

Interpreted in environmental modelling terms, we could say that, if we based a
decision on a single deterministic model outcome (perhaps the “optimal”
model), then if the model was correct we would have a high chance of total
success in our decision. Given the uncertainties in environmental models,
however, this would be very unlikely to be a robust decision. We will often be in
this type of situation of trying to balance the potential for total success and
robustness to uncertainty.

It is therefore quite important how these immunity functions are defined in
relation to the consequences of a decision. Consequences are usually defined in
terms of some form of reward (monetary or otherwise). In the context of
environmental modelling let this be defined as R(q,u) where u is an outcome
within the set U(α,M̃(Θ)) (see Figure B6.2.1). Robustness can then be defined as
the minimal satisfactory value of R(q,u), rc. Opportuneness can be defined in
terms of some significant outcome level of R(q,u), rw, where we would expect
rw >> rc. Equations B6.2.8 can then be expressed, for any level of uncertainty α,
as:

â(q,rc) = max {α : (min R(q,u)) ≥ rc} [B6.2.9a]

b̂(q,rw) = min {α : (max R(q,u)) ≥ rw} [B6.2.9b]

These definitions can easily be extended to the cases of multi-variate measures of
reward. Satisfying these conditions of both robustness and opportuneness
implies that the sets of outcomes consistent with the specified levels of rc and rw

are not empty. If there are no outcomes consistent with rc then any decision will
be vulnerable to uncertainty and there is no possibility of a robust set of
decisions. If there are no outcomes consistent with rw then there is no opportun-
ity for a highly beneficial outcome. In either case it may be necessary to revisit
the problem formulation to see if some of the uncertainties can be reduced, or
consider changing the values of rc or rw.

Ben-Haim makes the point that the decision maker need not just accept the
uncertainties associated with a particular problem, particularly when faced with
a situation where it appears that realistic levels of uncertainty do not allow a
robust solution. By collecting more data or clarifying certain contentious issues it
might be possible to reduce the uncertainties in representing the system to allow
the preferences between different sets of decisions to be made clearer.

Preference is an important word within the Info-Gap framework. Essentially,
we are aiming to establish preference of one set of decisions over another, given
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the uncertainties in representing the system. Given the uncertainty, these prefer-
ences cannot necessarily be uniquely established (in the same way that we cannot
easily differentiate models as hypotheses of how the system is working). Nor can
we necessarily quantify the degree of reward by which one set of decisions
should be preferred over another (the basis of decisions in utility function theory
in Box 6.1), but the robustness and opportuneness functions provide a
framework within which to try and express the relative preference of different
potential decisions. We can illustrate this as follows.

In the flood defence example of Info-Gap decision analysis in the main text,
the reward for protecting a certain place can be expressed in (approximate)
monetary terms in terms of the damages expected to be saved over the design
lifetime of the defences given the uncertain occurrences of future floods. The
higher the defences, the greater the damages that will be saved, but the greater
the costs (and, often, the more intrusive the defences are for the local com-
munity). The windfall reward in this case is the saving in construction and main-
tenance costs by minimising the height and extent of the defences. We can then
(for a simple case) represent the robustness in terms of savings in damages, and
the opportuneness in terms of savings in costs. Since these are both on the same
(monetary) scale, they can be represented graphically by plotting the uncertainty
measure α against the critical values rc and rw. The robustness curve â(q,rc) and
opportuneness curve b̂(q,rw) are then trajectories in this space (Figure B6.2.1).

This figure may be interpretated as follows: as the minimal required gain in
protection rc is increased, robustness to uncertainty necessarily decreases. As the
critical required saving in costs (the windfall reward, rw) is increased, the oppor-
tuneness increases. When α is high then the opportunities for savings in costs will

Figure B6.2.1 Robustness and Opportuneness Curves for different levels of Reward
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be high (rw is high), but the risks of failure will be high (rc is low). As uncertainty
decreases, then the possibility for windfall reward will get smaller since the costs
of the necessary design will be more certain (rw is low), but the risks of failure
will decrease (rc is high). The trade-offs evident in the decision are apparent. In
stating a difference in preference between different decisions, a decision maker
must weigh the balance of robustness and opportuneness (or try to reduce the
uncertainty).

Given two sets of decisions q and q′, a decision maker would normally prefer
an option for which â(q,rc) > â(q′,rc), or more generally for a set of all feasible
decisions:

q̂c(rc) = arg max â(q,rc) q ∈ Q [B6.2.10]

This choice q̂c(rc) is called the robust-satisficing decision, given a choice of rc. It
might depend on the choice of rc, depending on the shape of different â(q,rc)
curves for different q in the type of plot shown in Figure B6.2.1 (since different
â(q,rc) curves might intersect).

This is clearly not the only way of preferring one decision over another, how-
ever. Where cost savings are important, a decision maker might be prepared to
take a greater risk and state preferences on the basis of opportuneness. In this
case the preference, for a chosen reward of rw, would be of the form:

q̂w(rw) = arg min b̂(q,rw) q ∈ Q [B6.2.11]

It is very likely that these two preferences q̂c(rc) and q̂w(rw) will be different
(and might vary with the choice of rc and rw). In most cases, however, a
robust-satisficing decision will be preferred.

It is worth noting that the robustness curve can also be looked at in another
way. The trajectory of â(q,rc) shows that robustness decreases as we reduce the
uncertainty level allowed for. In particular, it goes to zero when we are prepared
to rely on a single representation of the future behaviour of the system. This
might be an optimal model, or “best estimate”. The critical level of reward in
this case will be maximised, but the protection against failure of that decision
will be minimal. For more details of the flood defence example, see the main text
in Section 6.10.1. Another example from the ecological literature is a study of
the management of the Sumatran rhino in Regan et al. (2005). They show that a
previous risk-based analysis that assumed that probabilities and utilities were
known should have been expected to fail in the face of uncertainties.
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An uncertain future?

It is quite conceivable that our society will tire of devoting its wealth to science,
especially if the implied promises held out when big projects are launched do not
materialise . . . It is as much out of a concern for their own survival that scientists
must acquire the habit of scrutinizing what they do from a broader point of view
than has been their custom.

Alvin Weinberg, 1967

7.1 So what should the practitioner do in the face of so
many uncertainty estimation methods?

In what has gone before, this book has attempted to clarify the different notions of
uncertainty associated with environmental modelling. In particular, we have looked at
forward uncertainty analysis in Chapter 3, the learning process associated with having
historical observations in Chapter 4, the case of real-time forecasting in Chapter 5,
and how uncertainty enters into decision making in Chapter 6. In all of these cases, the
predictions made will be uncertain, but will often have been made for a purpose, and
some of the different ways in which uncertainties can be taken into account in the
decision-making process have been outlined in Chapter 6. Throughout, there has been
a recognition that achieving “the” model of an environmental system may be fraught
with difficulty. Instead, there may be many different model structures, and parameter
sets within model structures, that are consistent in some sense with the uncertainties in
the available data, and many different ways of estimating uncertainty in the
predictions.

From a practitioner’s point of view this would appear to give rise to a certain
difficulty. Just how should a practitioner decide on what models and uncertainty
estimation methods to use? The choice is not always that clear but I hope that this
book has at least provided a guide to such decisions for different purposes and in
different circumstances, starting with the decision tree for choosing different
uncertainty methods in Chapter 1 and expanding on the various available techniques
in the later chapters.

This problem of deciding which technique to use may be, to some extent, a tran-
sitional problem. There may be a future consensus about which techniques to use as
we learn more about how to estimate the uncertainties associated with environmental
systems. There is, after all, a certain commonality amongst all the available techniques.
Most uncertainty analyses involve the following steps:
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1 The choice of model(s) to be considered.
2 The choice of prior assumptions about uncertainties in the driving variables and

model parameters.
3 The choice of how to evaluate model predictions based on the prior assumptions

against observations, with either implicit or explicit assumptions about the nature
of different types of errors, to derive posterior uncertainty estimates of inputs and/
or model outputs.

4 The choice of how to use the posterior uncertainties to make decisions based on
the predicted future behaviour of the system under study.

These steps are common whether the assessment is being made within a formal stat-
istical framework with prior and posterior probability distributions, or within a fuzzy
framework, or within a scenario framework (including dealing with epistemic or
“true” uncertainty), or for simulation or real-time forecasting purposes.

Step 3 above depends, of course, on the availability of observations that can be used
to evaluate model predictions (either historical data in evaluating simulation models,
or real-time data in forecasting). In the absence of such observations, only a forward
uncertainty or scenario analysis is possible, based on the expert judgement of the
modeller. This is the crucial step, however, and even where observations are not yet
available in a particular study, then the practitioner should consider whether there
might be cost-effective ways of making either observations or “soft” information
available that can be use to condition the prior model predictions and constrain the
prediction uncertainties.

The effect to which this is possible depends critically on the information content of
the observations or other conditioning data. In effect, the different methods that have
been presented in earlier chapters differ primarily in the assumptions that they make
about the information content of observations (including model inputs) and how that
information interacts with the predictions of (generally) nonlinear models. In particu-
lar, the choice of a suitable likelihood measure in making use of different types of
observations in conditioning, remains an open question despite the belief of some that
a suitable likelihood for the formal Bayes statistical methodology of Chapter 4 can
always be found!

Thus, while it would be wonderful to be able to close this book by making some
recommendations or providing sets of guidelines about which methods are best to use
for different types of cases, we are not yet at that stage (see discussion of this issue in
Section 4.7). We simply do not know enough about the content and limitations of
observations to be able to provide such guidelines. This applies to guidance on the
choice of likelihoods and to guidance on the value of different types of observation in
constraining the prediction uncertainties.

Why is this all so difficult? Because of the fact that, when we evaluate a model
prediction relative to an observation, we can quantify the residual error, but we cannot
disaggregate all the different sources of uncertainty (model structure error, input data
error, parameter estimation error, commensurability error and observation error) that
contribute to that residual. This is simply not a well-posed problem. There will always
be multiple solutions that will not be easily differentiated to allow consensus. But
perhaps, as we learn more about the real value of different types of data, such a
consensus will begin to develop (as is beginning to happen, for example, in methods
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for using data assimilation in generating ensemble weather predictions, even if these
do not fully evaluate all the uncertainties involved).

This leads on directly to the issue of using uncertainty estimates in informed deci-
sion making. That there are well established techniques for decision making under
uncertainty, as outlined in Chapter 6, does not seem to have been widely accepted in
practical environmental management (see Beven, 2006b). Decision makers are not
often interested in uncertain predictions of the impacts of different strategies. They
want to know what will happen, despite the fact that this may be beyond the current
capabilities of the science. Here we enter the realm of modelling in relation to research
ethics (e.g. Aven, 2007; Ersdal and Aven, 2007; Weiss, 2006). It seems that this wide-
spread reluctance to deal with uncertainty is partly a matter of accepting responsibil-
ity. If there is no model uncertainty, then responsibility for the prediction (and by
implication the outcome) is partly transferred to the modeller. The modeller, having
chosen a model that is “fit for purpose” and implemented it according to accepted
criteria, will, in turn, pass the responsibility to the model. If the predictions turn out to
be wrong, the decision maker can blame the modeller and the modeller can blame the
model. Everyone has done their best within the limitations of the science, but there
remains an issue about the ethics of the use of models beyond the range for which
predictions can be considered as reliable (see also Beven, 2002a; Frame et al., 2007).

Incorporation of uncertainty into this process brings out some interesting additional
issues in this context. In one sense, for the modeller (and model) it is a protection
against being wrong, since a wider range of outcomes is predicted. The responsibility
is therefore diminished. For the decision maker, however, there is now a real decision
to be made about the acceptable level of risk of an outcome. The responsibility is
consequently increased. Is this why it has taken so long for risk-based decision making
to permeate more widely, or is it just a lack of training in risk concepts in the various
stages of the education process? Everyone makes risk-based decisions in everyday life
(driving a car, crossing the road, taking a flight in a plane, personal investments,
choosing a partner), even though the uncertainties are often great and the perceptions
of risk may be purely qualitative and poorly defined (Adams, 1995). Why not,
therefore, in more formal quantitative management contexts?

Morgan (1994) stated that, while considerable progress has been made in
uncertainty analysis for environmental modelling, it cannot be denied that civilisation
has advanced by simply muddling along and not explicitly acknowledging
uncertainty. However, he makes some good practical arguments for making
uncertainty analysis a component of any project:

• it makes one think about the processes involved and the decisions based on our
model results;

• it makes predictions of different experts more comparable and leads to a transpar-
ent science;

• it allows a more fundamental retrospective analysis and allows new or revised
decisions to be based on the full understanding of the problem and not on only a
partial snapshot;

• decision-makers and the public have the right to know all limitations in order to
make up their own minds and lobby for their individual causes.
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7.2 The problem of future histories – unknowability and
uncertainty

Some things will, of course, remain unknowable, particularly about the boundary
conditions for predicting system responses into the future. There is no doubt that there
is an increasing market for environmental models across the range of scales from local
management and remediation tools to global change. The initial conditions for such
predictions will be known in broad scope, although the detailed characteristics of even
local systems may be difficult to define precisely. Future boundary conditions, how-
ever, are clearly the stuff of speculation even in the relatively short term. Longer-term
climate predictions using GCM models might be adequate with which to draw “very
likely” inferences about the effects of man on the global climate (IPCC, 2007) but
cannot be considered reliable, providing highly uncertain predictions of current cli-
mate at regional scales even for mean monthly predictions. Despite widespread recent
speculation about the impact of climate change on extreme events (floods, droughts),
there will be even more uncertainty about the changing probabilities of extremes
under changing climatic conditions.

Perhaps, as recognised more than 40 years ago by Alvin Weinberg in the quotation
at the head of this chapter, as scientists we need to be circumspect about overselling
our predictive capabilities. “To prophesy is extremely difficult – especially with respect
to the future” is an old proverb that expresses the problem well. Beven (1993) refers to
potentially false prophecies rather than predictions about environmental responses
to change. He notes that if false prophets were still put to the sword or stoned to death
(or even if they lost a salary increment), we might be much more careful about some of
the predictions that we make. One way of being more circumspect is to take the
question of predictive uncertainty, and unknowability of some characteristics of
environmental systems (what we have referred to earlier as epistemic or Knightian
uncertainty), seriously.

As we have seen, there will be uncertainty arising from different possible models and
parameter sets and uncertainty arising from different scenarios of possible boundary
conditions. The possibilities are numerous and it may be difficult to assess or assign
any probability of occurrence or likelihood to each possibility except in some subject-
ive way. As discussed in Chapter 4, we should be wary of the strong conditioning of
models that is the result of the application of “objective” formal likelihood methods in
real applications when input errors and model structural errors are important. This
is a particular problem for application-critical predictions and it might be necessary
to take more explicit account of the subjectivities and epistemic uncertainties inherent
in the modelling process in decision analysis (such as in the Info-Gap methods of
Chapter 6).

Early in this book we saw how any environmental modelling problem could be
formulated as a learning process, and how this learning process was analogous to a
mapping of the system of interest into a model space. Limitations in knowledge, data,
and lack of experimental techniques for discriminating between model scenarios
should be expected to lead to a degree of irreducibility of the set of feasible models and
consequently to uncertainty in inference and prediction, but we can still pose the
learning processes as a scientific methodology.
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7.3 But is the uncertainty problem simply a result of
using poor models?

If we are honest, then it has to be said that in many types of environmental system the
answer must be yes. However, we can qualify that answer in a number of ways. The
fact that the necessary scientific understanding or easily applied measurement systems
do not exist at the current time does not take away the demand for predictions. That
demand will be met by scientists extending the range of predictability of their models.
This may be done in good faith, and using the best available models at the time, but
may sometimes be beyond the limits of the science. To cite Alvin Weinberg again, he
has suggested that many problems of this type may indeed be trans-scientific (Wein-
berg, 1972; see also the discussion of Philip, 1980, with reference to soil science).
Examples of this abound, and include most assessments of the impacts of the effects of
possible climate change. There is certainly a demand for such predictions and funding
available for the necessary research, despite the fact that it may be impossible to assess
the inherent uncertainties involved (and therefore we have no idea if the results
produced within the current modelling limitations are really meaningful). Given the
funding, however, there is then the benefit of scientists extending their science by
attempting to meet that demand and, as a consequence, improving the available
models. The current generation of coupled global ocean–atmosphere models are con-
sidered to be a major advance on previous global atmosphere models in which the
oceans appeared primarily as a “flux correction” to the global energy balance. The
questions may currently be trans-scientific, but the benefits to improving the modelling
capabilities in different areas of environmental science may be tangible. But we make
such improvements primarily by a conditioning process, and in particular by rejecting
current models as hypotheses where it can be shown that they are failing with respect
to the available observations.

There is an issue, however, as to whether there are environmental modelling prob-
lems that are truly trans-scientific. Are there indeed limits to predictability for
environmental systems? These are, for the most part, systems that exhibit nonlinear
responses to input variables and that often have complex positive and negative feed-
backs. The theory of nonlinear dynamics suggests that such systems might show cha-
otic behaviour and therefore be very difficult to predict, if not inherently unpredictable
(see for example Lorenz, 1993; Prigogine, 1997; Smith, 2007). Chaotic systems are
highly sensitive to the specification of initial conditions. One simple definition of chaos
is that predictions originating from initial conditions that are very close will diverge
exponentially. Certainly, it is known that many models of environmental systems are
sensitive to the specification of initial conditions. This is why current weather forecast-
ing models are generally run in an ensemble forecasting mode, with multiple runs
using different initial conditions and why the divergence of the resulting predictions
after a few days means that the predictions have utility only for relatively short term
forecasts (Kalnay, 2003).

One way of exploring some of these issues is using modelling as a deductive tool to
explore the performance of a system of interest as if it had the features corresponding
to a certain set of assumptions. That is essentially what is being done in global change
simulations, since it is known that there are limitations in how far the models
reflect even current conditions. The results of such model runs are sometimes called
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projections, rather than predictions of what might actually happen to the system in the
future. Although such deductive models are often used, with specified assumptions,
boundary conditions and parameter sets, to represent real places (or even the global
circulation system) there is no guarantee that the behaviour of the real system will
actually correspond to the model. We should still expect some element of surprise in
the real system (Smith, 2007).

This then implies that it is important to continue to monitor the system response,
and continue to test models as hypotheses of how the system works (at least where the
model predictions are important enough to justify the expense). In this way, models
can continue to be checked for fitness-for-purpose and, where limitations are found,
model structures or parameters can be improved. As we have seen in this book, the
many different sources of uncertainty mean that it is very difficult to differentiate
model structural error and data limitations in making such assessments. Hypothesis
testing and assessing whether a model is fit-for-purpose are consequently also difficult,
but it is likely that future developments in modelling technology will concentrate
attention on these aspects of the modelling process that, in the past, have been treated
in an ad hoc way in most areas of environmental modelling.

7.4 Accepting an uncertain future

New computer technologies seem likely to change the way that environmental models
are constructed and used. There will be new hardware and software solutions based
on distributed high-performance parallel computers, linked by fast network connec-
tions that, to the user, should appear as a single machine (the concept of the GRID).
The user should not have to worry about where the data necessary for a project are
stored, nor where any computational tasks are run. The possibility of using high-speed
computer networking to link together distributed database and computational engines
means that it will become possible to couple together models of many more environ-
mental systems across disciplinary boundaries and across national administrative
boundaries. This is, in fact, already possible and is already happening on a limited
basis as demonstrated, for example, in the regional water resources models under
construction in Denmark (Henriksen et al., 2003), in the national environmental
management models being used in the Netherlands (van der Giessen, 2005) and in the
Europe-wide Flood Alert System at the European Union Joint Research Centre in
Ispra, Italy.1

These new possibilities raise some really interesting questions about how this type
of interdisciplinary prediction, such as that required for implementing the EU Water
Framework Directive, or the US Total Maximum Daily Loads framework (TMDL),
might be best achieved. In the past, comprehensive modelling systems have been con-
structed as large complex computer programs. These programs were intended to be
general, but have proven to be expensive to develop, difficult to maintain and difficult
to apply because of their data demands and needs for parameter estimation or calibra-
tion. With new computing technology it will be possible to continue in the same vein,
but with more coupled processes and finer spatial and temporal resolutions for the

1 http://efas.jrc.it/.
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predictions. It is not clear, however, whether this will result in a real improvement in
model accuracy and utility because the problems inherent in the current generation of
distributed environmental model do not necessarily easily go away with improvements
in space and time resolutions of the component models.

Those problems include the possibility of Type III modelling errors, i.e. the neglect
of processes because of lack of understanding of how the system works, that is an
ultimate constraint on how well that system can be predicted. We will not, however,
learn much about such model structural limitations when we are prepared to accept
existing “calibrated” models in making predictions rather than treating models as
hypotheses about how the system works that might be rejected (see discussion in
Beven, 2002a,b, 2006a).

In the future, one of the features of having the possibility of large catchment,
regional or national scale models is that everywhere is represented. This is actually
already true of course in global climate models and the Earth Simulator in Japan,2 but
the current level of local detail is inadequate to be able to relate predictions to local
scales of interest. In the future, however, we will have, de facto, environmental models
of everywhere at scales that local decision makers can relate to directly. This will be an
important issue in relation to the uncertainties associated with predictions. Once all
places are represented, data may assume a greater importance than model structures
as a means to refine the representation of each place within a learning framework. The
result may be a new way of looking at environmental modelling that transcends the
traditional goal of incorporating all our understanding of the complexity of coupled
environmental systems into a single mathematical framework with a multitude of
parameters that cannot easily be identified for any particular place (Beven, 2000,
2002b; Young, 2003; Young et al., 2004). This approach does not imply defining a
single model of everywhere. That is too inflexible to allow for multiple representations
across scales for a given application or for future innovations. Rather it implies an
open architecture framework within which the place, rather than any particular
model, is the focus of attention.

Consider, for example, the possibility of modelling the subtle (and interdisciplinary)
coupling between atmospheric forcing, catchment response, river runoff and coastal
interaction with tidally-dominated sea level for flood prediction purposes. Model
codes for all these different components are available from different institutes and on
different computing systems. Data for the model components might reside in different
types of databases on other distributed computing systems. Predictions made with the
full system will require the dynamical coupling of many processes and components to
capture these subtleties. Built on the fluxes within those models, air and water pollu-
tant transport models and biogeochemical models could additionally be implemented
locally within the regional scale domain. Each component should be able to assimilate
data transmitted from field sites and assess the uncertainty in the predictions. Such an
integrated system should operate both in real time, assimilating data and boundary
conditions from larger scale models, and displaying the “current state of the environ-
ment”, as well as providing the potential to update model predictions into the future
under different scenarios.

2 http://www.es.jamstec.go.jp/esc/eng/.
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The components could share 4-D/5-D visualisation tools with appropriate inter-
active user interfaces. Users will be able to access the current data, visualise predictions
for particular locations and play what-if scenario games over different time scales. The
structure of the system would be such as to facilitate and even stimulate improvements
to the representation of different components and the constraint of predictive
uncertainty by field data collection. The potential capabilities of the new computing
technology being developed for grid-scale computing underlie all these components,
though much could already be achieved using the Web technology of today. Examples
of steps towards this type of integrated system (albeit essentially raster-based) include
the US Inter-Agency Object Modelling System (OMS, Leavesley et al., 2002) and the
UK Coastal Observatory System.3

7.4.1 Modelling as a learning process about places

Even if the very best graphical user interface was available, however, all environmental
modellers recognise (or, at least, should recognise) that their predictive capability is
limited, and that something is learned about the limitations of the modelling process in
every application to a new site (though they virtually never say so in published papers
or reports to clients – there are clearly strong incentives to be positive, even if this
results in making predictions with models that have not actually provided very good
simulations of calibration data). In the past, the learning process has tended to be
treated as learning about the parameter values required in the landscape to model
space-mapping, or, more rarely, about the adequacy of particular model structures
(see, for example, the discussion in Beven, 2002a,b). Once everywhere is represented
this emphasis will change to a process of learning about the idiosyncrasies of particu-
lar places, albeit that initially this will most probably be treated as a problem of
learning about parameter values appropriate to a place (Beven, 2007). Treating model-
ling more explicitly as a learning process will allow a new approach to be taken to this
problem based on a methodology that will match scale-dependent model objects,
databases and spatial objects in applications within the areas of interest. One of the
most exciting benefits of the possibilities provided by the possibility of representing
everywhere in environmental modelling is the potential to implement models available
from different institutions as a process of learning about specific places. As suggested
earlier, it will be possible, in fact, to have models of all places of interest. However, as
argued by Beven (2000, 2001, 2002a,b), as a result of scale, nonlinearity and incom-
mensurability issues, the representation of place will be inherently uncertain so that
this learning process should be implemented within the types of uncertainty estimation
framework discussed in this book.

7.4.2 Learning about model structures

That is not to say that models of places will not require process representations, nor
that current process representations are always acceptably accurate. The approach
does not resolve the problem of making errors in the choice of models (whether Type I,

3 http://coastobs.pol.ac.uk.
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Type II or Type III errors) but, by setting the modelling problem in the context of a
learning framework for specific places, it does allow a gradual refinement of how
places are represented, including (at least in principle) allowing the rejection of models
as they are shown to be incompatible with new data. There will always be a real
research question about how detailed a process representation is necessary to be useful
in predicting the dominant modes of response of a system, given the uncertainties
inherent in representing the processes in places that are all unique and the process of
learning about that place. This appropriate complexity issue has become obscured by
the desire to build more and more scientific understanding into models, including
physical, chemical and biological components (but see Young, 2001, 2003; Young et
al., 2004). This desire is perfectly understandable; it is a way of demonstrating that we
do understand the science of the environment, but, as discussed earlier, it results in
models that have lots of parameter values that cannot be easily measured or estimated
in applications to real places.

There is always a certain underlying principle in science that, as we add more
understanding and eliminate empiricisms, then the application of scientific principles
should become simpler and more robust. This does not seem to have been the case in
many environmental models where the observations can often be seen to be inconsis-
tent with model predictions, suggesting that the model could be (and perhaps ought to
be) rejected as a hypothesis of how the system is working. In some cases this might
arise as a result of checking model performance on more than one performance meas-
ure (e.g. Gupta et al., 1999; Freer et al., 2003, 2004; Parkin et al., 1996; Choi and
Beven, 2007); in other cases it might be the collection of new types of data that reveal
inconsistencies (e.g. the geochemical modelling of the Birkenes catchment discussed by
Hooper et al., 1986; the modelling of the Plynlimon chloride data set by Kirchner et
al., 2001 and Page et al., 2007).

There are two important points to be made about model inconsistencies. The first is
that we might learn more from model rejection than acceptance. Rejection of a model
hypothesis, where properly justified, is an important stage in model development and
improvement. The second is that model rejection might be purely a result of
inadequate boundary-condition data (or observations with which the model is being
compared). We would wish to avoid the rejection of a good model in such cases, and
should therefore take account of the potential for input and observation error in
model evaluation (Beven, 2006a).

This view of assessing uncertainty in environmental models suggests two
requirements for work in the future. The first is for creative experiment: collecting
measurements that will allow for different hypotheses and assumptions to be tested
in a way that eliminates some of the set of feasible or behavioural models. This is
not a simple task, in that failure in a test can be often be avoided by the simple
addition or refinement of auxiliary assumptions (such as heterogeneity of parameter
values) that allow underlying model structures to be protected and that many of the
possible measurements may not have great power in discriminating between differ-
ent models and parameter sets (Morton, 1993). The second is for continuing moni-
toring of sites both to inform robust adaptive decision-making processes and so
that the likelihoods associated with particular models can be refined as time pro-
gresses within a learning process. It probably remains an open question as to
whether this strategy, as it evolves in symbiosis with model development and
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improvement, will increase or decrease the uncertainty in predictions of future
change.

7.5 Future-proofing modelling systems: adaptive
modelling, adaptive management

An essential element of this strategy will be the need, as far as possible, to “future-
proof” the model and database systems used; avoiding, for example, a strict raster-
based approach or a commitment to one particular modelling framework. The key
will need to be flexibility and adaptive modelling so that improved model structures
can be easily made available, or simpler model structures can be used when adequate
for particular purposes. Raster databases will continue to be driven by remote-sensing
imaging inputs to the modelling process, and, in some cases, by convenient numerical
solution schemes for partial differential equations. However, it is often inappropriate
to force an environmental problem into a raster straightjacket. Treating places as
flexible active objects might be one way around this future-proofing problem. Defining
the spatial domain of a prediction problem, i.e. the place with its particular scale and
characteristics, would then allow that place, as an active object within a modelling
system, to search for appropriate methods and data for resolving that problem, and
also for appropriate methods and data for providing the boundary conditions for the
problem (which might then involve other modelling or data extrapolation techniques).

There are some interesting implications of such an approach. One is that the variety
of modelling methods available to solve a prediction problem might be able to be
compared more readily, leading to better understanding of issues of appropriate
model complexity for different applications. This will especially be the case if, as part
of the learning process, simulations are saved to be compared with later observations
of the real outcome (as is routine in atmospheric modelling in the evaluation of
forecast skill).

The learning framework that underlies this approach is best suited to systems that
are not changing or, at least, not changing rapidly. New data should then allow a
refinement of the acceptable model representations and reduction in the predictive
uncertainty in modelling particular places. However, most prediction problems
involve learning about a system as it is changing (even though such non-stationarities
are often neglected in traditional model calibration exercises). Predictions of the
effects of current or future change under different scenarios will be even more
uncertain than the simulation of current conditions, but there has been very limited
work on estimating the uncertainties of potential outcomes in future scenario simula-
tions, and still less on the conditioning of those predictions as the changing conditions
are monitored. Data assimilation, in this context of changing conditions, then becomes
a tool for following drift in system response (within the limitations of data uncertain-
ties and variability) with the possibility of changing management strategies as the
prediction of future responses also changes over time.

There is one very important corollary to modelling as a process of learning about
places in this way. If such a learning process cannot proceed without data assimila-
tion, and data assimilation requires the continued collection of data, learning about
places will imply both the continued monitoring of the systems of interest (particularly
in detecting non-stationarities in the future that might indicate model inadequacies)
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and more directed, cost-effective, local measurement campaigns to learn more about
places of particular significance (flood-risk sites, lake and river sites of particular
ecological significance; storm water overflow sites etc). This is, however, likely to
happen quite naturally as local stakeholders start to relate much more directly to the
local predictions about the future of the system that they have to manage or live in by
means of networking and visualisations (e.g. Failing et al., 2004; Olsson and Berg,
2005; Olsson and Andersson, 2007).

It is appropriate to end here by stressing that the estimation of prediction
uncertainty should not be considered as the end point of a modelling process (though
often presented in this way). It is better thought of as only the start of a longer-term
process of constraining the uncertainty by improving our knowledge and observations
of the environmental system of interest. During that process, it is well to remember
that when models are used for a purpose, then it will be necessary to involve the
relevant stakeholders in the modelling process, especially once they can start to relate
directly to what is being predicted about their local system.

7.6 Summary of Chapter 7

This chapter has looked at some of the implications of uncertainty estimation in
environmental models in looking to the future:

• The future is uncertain, both in terms of what will be the boundary conditions in
different applications, and in terms of the more widespread evaluation of the
prediction uncertainties involved in making predictions.

• This does not mean that we need to abandon a pragmatic realistic approach to
environmental modelling. Learning about modelling environmental systems can
be formulated as a process of continued evaluation of models as hypotheses of
how the system responds to forcing.

• One of the implications of new data sources and computational power in the
future will be that models of everywhere will become a reality at scales to which
local decision makers can relate. Some of the issues in implementing models of
everywhere in a way that will be robust to future innovation are discussed.

• Models of everywhere will change the nature of how prediction problems are
approached. It will become much more an adaptive process of learning about
places than the application of particular model structures. This should include the
use of data assimilation to improve the representation of process and facilities for
learning from the successes or failures of past predictions.

• Uncertainty estimation will need to be an intrinsic part of such systems and any
decision support systems that the predictions are intended to inform, in a way
that recognises the potential for multiple model structures to be evaluated in
representing places.

• Uncertainty estimation is not an end point; it is the start of a process of improving
knowledge and data with a view to constraining the uncertainty in future.
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Appendix I: A (brief) guide to matrix algebra

Several sections of this book, and particular Boxes 4.1, 5.1 and 5.2 have equations
expressed in the form of vectors and matrices. Here a brief revision guide to matrix
algebra is given for those readers who may have not used it for a long, long time.

One-dimensional vectors

A one-dimensional column vector has the form:

a =

a1
a2
� 
an

The transpose of a one-dimensional column vector produces a row vector such that:

aT = {a1, a2, . . ., an}

The product of a vector and a scalar variable has the form:

ka =

ka1
ka2
� 
kan

kb = {kb1, kb2, . . ., kbn}

The dot product of a column vector and a row vector produces a single value as
follows:

x = ab =

a1
a2
� 
an

{b1, b2, . . ., bn} = {a1b1 + a2b2 + . . .+ anbn}

The addition of two-column vectors is a vector with elements that are the sums of each
row:



x = a + b =

a1
+

b1
=
a1 + b1

a2 b2 a2 + b2
�  �  � 
an bn an + bn

Two-dimensional matrices

A two-dimensional n by m matrix has the form:

A =

a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m
� � � 
an,1 an,2 . . . an,m

The transpose of a two-dimensional matrix has the form:

AT =

a1,1 a2,1 . . . an,1 
a1,2 a2,2 . . . an,2 
� � � 
a1,m a2,m . . . an,m

A matrix is symmetric if AT = A.
A special case of a symmetric matrix is the Identity Matrix, I, where

I =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
� � � � 
0 0 0 . . . 1

The inverse of a two-dimensional matrix is denoted A−1. It occurs frequently in the
solution of sets of n linear simultaneous equations that can be written in algebraic
form as

a1,1x1 + a1,2x2 + . . . + anxn = c1

a2,1x1 + a2,2x2 + . . . + a2,nxn = c2

�

an,1x1 + an,2x2 + . . . + an,nxn = cn

And in matrix form as

Ax = c

where A is an (n by n) matrix of equation coefficients and x and c are column vectors.
We can then solve the equations for values of the elements of x in the form
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x = A−1 c

The inverse can only be formed when the matrix has a non-zero determinant. When
this is not the case, the simultaneous equations will not have a solution for real values
of x. The determinant of a matrix (denoted as |A| or det(A)) is a scalar that represents a
scale factor for volume when A is interpreted as a linear transformation.

The product of a matrix and a scalar variable has the form:

kA =

ka1,1 ka1,2 . . . ka1,m
ka2,1 ka2,2 . . . ka2,m
� � � 
kan,1 kan,2 . . . kan,m

The addition of two matrices of the same dimensions has the form:

A + B =

a1,1 a1,2 . . . a1,m
+

b1,1 b1,2 . . . b1,m
a2,1 a2,2 . . . a2,m b2,1 b2,2 . . . b2,m
� � �  � � � 
an,1 an,2 . . . an,m bn,1 bn,2 . . . bn,m

=

a1,1 + b1,1 a1,2 + b1,2 . . . a1,m + b1,m
a2,1 + b2,1 a2,2 + b2,2 . . . a2,m + b2,m
 � � � 
an,1 + bn,1 an,2 + bn,2 . . . an,m + bn,m

The product of an n by m matrix and a column vector (m by 1) has the form:

Ab =

a1,1 a1,2 . . . a1,m b1 
=

b1a1,1 + b2a1,2 + . . . + bma1,m 
a2,1 a2,2 . . . a2,m b2  b1a2,1 + b2a2,2 + . . . + bma2,m
� � �  �   � 
an,1 an,2 . . . an,m bm b1an,1 + b2an,2 + . . . + bman,m

To form the product of two matrices they must be of size (n by m) and (m by p) so that
they have the same inner dot product dimension m. The result then has the form:

AB =

a1,1 a1,2 . . . a1,m b1,1 b1,2 . . . b1,p 
a2,1 a2,2 . . . a2,m b2,1 b2,2 . . . b2,p 
� � �  � � � 
an,1 an,2 . . . an,m bm,1 bm,2 . . . bm,p

=

b1,1a1,1 + b2,1a1,2 + . . . + bm,1a1,m b1,2a1,1 + b2,2a1,2 + . . . + bm,2a1,m . . .
b1,1a2,1 + b2,1a2,2 + . . . + bm,1a2,m b1,2a2,1 + b2,2a2,2 + . . . + bm,2a2,m . . .
 � � 
b1,1an,1 + b2,1an,2 + . . . + bm,1an,m b1,2an,1 + b2,2an,2 + . . . + bm,2an,m . . .

It can be seen that the form of matrix multiplication is such that AB ≠ BA.
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Example of matrix multiplication

A typical example of the use of matrix multiplication in this book involves the forma-
tion of a cost function that involves the product of a column vector of error terms, its
transpose and a square weighting matrix (sometimes the inverse of an error covariance
matrix). An example is equation [B4.1.2] in Box 4.1 where:

J = {ε}T W {ε}

If we can evaluate m errors, then this will involve the multiplication of a row vector (1
by m), a square matrix (m by m) and a column vector (m by m). The result therefore
will be a scalar variable since the outer dimensions of the multiplication are (1 by 1).
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Appendix II: A (brief) guide to software

This appendix gives a brief guide to software packages that might be useful for the
different techniques described in the book. All the URL addresses have been checked
in July 2007 at the time of submitting the manuscript but there is always the possibility
that they will become out of date. A website for use with this book will be found at
http://www.uncertain-future.org.uk where the links will be kept up to date and any
new links will be added. If any links do not work, please check the site and leave
a message if necessary. If you would like to recommend any software that is not
mentioned here and that you have found useful, please also leave a message.

General mathematics and statistics packages

There are a number of general mathematical and statistics packages that have exten-
sive facilities for random number generation and other forms of analysis. The
best-known are Matlab (which also has Statistics and Fuzzy Toolboxes) from The
Mathworks (http://www.mathworks.com/); Mathematica from Wolfram Research
(http://www.wolfram.com/); and Mathcad from ptc Inc. (http://www.ptc.com/app
server/mkt/products/home.jsp?k=3901). Octave is a freeware program that is broadly
compatible with Matlab code (http://www.gnu.org/software/octave/).

Packages that are more specialised for statistical programming, including
Bayesian methods, are S-PLUS from Insightful (http://www.insightful.com/). R is a
freeware version that mimics much of the functionality of S-PLUS (http://www.
r-project.org/).

A number of useful routines will also be found in the Numerical Recipes collection
(see Press et al., 2007 and http://www.nr.com/ where some past versions of Numerical
Recipes can be downloaded).

Methods for forward uncertainty analysis

There are two well-known add-ins for Microsoft Excel that provide facilities for for-
ward uncertainty analysis. These are @RISK (http://www.palisade.com/risk/default
.asp) and Crystal Ball (http://www.crystalball.com/).

The Data Uncertainty Engine (DUE) is a stand-alone package that is of interest
because it supports a wide variety of distributional forms for different variables as well
as routines for uncertainty in spatial rasters in 2D, spatial vectors in 2D and 3D
(including positional uncertainty) and time series (Brown and Heuvelink, 2007).



Uncertainty propagation is through Monte Carlo simulation. The DUE program is
available as freeware at http://www.iamg.org/CGEditor/index.htm.

UNICORN (uncertainty analysis with correlations) is a stand-alone package sup-
porting various dependencies between different univariate distributions, generated
using copulae. A light version can be downloaded from http://ssor.twi.tudelft.nl/~risk/.
The tutorial describes more advanced facilities available in a Professional version.
UNICORN supports the exercises in Kurowicka and Cooke (2006).

The EU Joint Research Centre (JRC) Simlab package includes a wide variety of
distribution generation functions (https://simlab.jrc.it/docs/html/main.html) with a
“cook book” for new users.

Random number generators

Pseudo-code for different random number generators can be found in the Numerical
Recipes books (http://www.nr.com/).

Pseudo-code for the Mersene Twister and links to various implementations can be
found via the entry in Wikipedia (http://en.wikipedia.org/wiki/Mersenne_twister)

Methods for global sensitivity analysis

The Simlab package noted above includes the Sobol’ method of generalised sensitivity
analysis. JRC also maintains a sensitivity analysis forum with details of some other
software packages (http://sensitivity-analysis.jrc.it/forum/default.asp).

Support for the HSY generalised sensitivity analysis is included in the GLUE pack-
ages (see below).

Methods for model calibration/conditioning

John Doherty’s PEST (http://www.sspa.com/PEST/index.html) is a general nonlinear
regression model calibration package that can be used with any model outputs. It
includes facilities for regularisation of high-dimensional problems (see Moore and
Doherty, 2006).

The methods described in Hill and Tiedeman (2007) are based on the
UCODE_2005 package developed by the USGS and therefore available freely (http://
water.usgs.gov/software/ucode.html).

Both PEST and UCODE_2005 routines are being included in the new Jupiter pro-
ject, details of which can be found at http://www.mines.edu/igwmc/freeware/ucode/.

There are many packages for specific applications that include model calibration
facilities. Those mentioned in the text include the USGS MODFLOW groundwater
modelling package (http://water.usgs.gov/nrp/gwsoftware/modflow.html) and the
USDA CXTFIT package for conservative/reactive solute transport problems with
mobile/immobile storage (http://www.ars.usda.gov/Services/docs.htm?docid=8910).

Software to implement the GLUE methodology can be found at the Lancaster
GLUE site (http://www.glue-uncertainty.org). A Matlab implementation is also
available from the EU Joint Research Laboratory (http://eemc.jrc.ec.europa.eu/
softwareGLUEWIN.htm). These packages also include routines for HSY generalised
sensitivity analysis.
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Software for MC2 methods

There are a number of software packages for MC2 sampling, including the S-based
WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs) and the open source R-based
equivalent OpenBUGS (http://mathstat.helsinki.fi/openbugs/). Congdon (2006) uses
WinBUGS routines as well as some Matlab routines. The Numerical Recipes books
provide example algorithms for an MC2 sampling (http://www.nr.com/).

John Doherty’s MICA is a stand-alone package that can take output from any
model and use it within an MC2 algorithm. It is used in Gallagher and Doherty (2007)
and is available at http://www.sspa.com/pest.

George Kuczera’s NLFIT, originally a model calibration package based on nonlin-
ear regression techniques, now includes MC2 methods within a Bayesian framework
(http://www.eng.newcastle.edu.au/~cegak/).

Software for fuzzy methods

A Fuzzy Logic Toolbox is available for Matlab. Mathematica also includes functions
for fuzzy methods. There is a wide variety of other packages available, many of which
are reviewed at http://www.fuzzysoftware.org/software.htm where there are links to
sources of freeware code. C++ code with some useful functions comes with the book
by Cox (1994).

Software for real-time forecasting

Matlab includes a Time Series Analysis and Forecasting Toolbox. Another Matlab
toolbox that incorporates most of the methods developed by Peter Young is CAPTAIN
(http://www.es.lancs.ac.uk/cres/captain/).

WinBUGS also includes support for time series analysis and forecasting using Baye-
sian methods.

Software for decision analysis

Reviews of software for decision analysis may be found in Uusitalo (2007) and at
http://faculty.fuqua.duke.edu/daweb/dasw.htm.

Some particular examples are DPL from Syncopations (http://www.
syncopationsoftware.com/), the Excel add-in Decision tools from Palisade
(http://www.palisade-europe.com/decisiontools_suite/) and an Excel add-in for Baye-
sian Belief Networks FCBeNe (Varis, 1997).

Software for parallel computation

CONDOR is a useful piece of software for running Monte Carlo simulations on
networks of PCs. More information may be found at http://www.cs.wisc.edu/condor/
manual/v6.1/1_Overview.html.
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Glossary

Actualism A philosophical position that holds that everything that there is must be
actual; contrasts with possibilism that allows that some things in reality that have
not been experienced might be possible.

Aleatory Uncertainty The way in which a quantity varies in some random
stochastic way in a system. Often used in contrast to epistemic uncertainty.

Alpha(α)-cut Used in fuzzy set theory to define a level of uncertainty with respect to
the range of a degree of membership function (normally [0–1]).

Attractor A concept from nonlinear system dynamics to denote a trajectory of the
system to which all other trajectories will tend given sufficient time. Attractors can
be both simple (e.g. a single stable point in state space) or very complex (e.g. the
butterfly attractor of Lorenz, 1963).

Autocorrelated Errors A time series of model residuals that exhibit correlation at
successive time steps. In distributed models, errors might be correlated in both
space and time.

Auxiliary Conditions The set of variables (and sometimes hypotheses) that need to
be specified to run a model for a particular case. Includes initial conditions,
boundary conditions and parameters representing system characteristics.

Axiom A proposition accepted as being fundamentally true on the basis of
principle, past research or purely hypothetical speculation. Axioms usually
specify that something is or is not true and are the foundation for deductive
reasoning.

Bayes Equation Equation for calculating a posterior probability given a prior prob-
ability and a likelihood function. Used in the GLUE methodology to calculate
posterior model likelihood weights from subjective prior weights and a likelihood
measure chosen for model evaluation.

Bayesianism/Bayes Explanation Approach in which subjective, empirical (induct-
ive) and theoretical (deductive) information can be combined. Fits in well with
current ideas about the sociological context of science and the way it is done in
practice.

Behavioural Simulation A simulation that gives an acceptable reproduction of any
observations available for model evaluation. Simulations that are not acceptable
are non-behavioural.

Black Box Model A model that relates only an input to a predicted output by a
mathematical function or functions without any attempt to describe the processes
controlling the response of the system.



Blind Validation Evaluation of a model using parameter values estimated before the
modeller has seen any output data.

Boundary Conditions Constraints and values of variables required to run a model
for a particular flow domain and time period. May include input variables such
as rainfalls and temperatures; or constraints such as specifying a fixed potential
(Dirichlet boundary condition) or impermeable boundary (Neumann boundary
condition) or specified flux rate (Cauchy boundary condition).

Calibration The process of adjusting parameter values of a model to obtain a better
fit between observed and predicted variables. May be done manually or using an
automatic calibration algorithm.

Chaos The behaviour of a system in which infinitesimally small differences in initial
conditions lead to exponentially divergent system trajectories at later times. Both
deterministic and stochastic systems can exhibit chaos. A particularly interesting
case is where small stochastic perturbations might lead to quite different modes of
behaviour (stochastic resonance). It has been suggested that the history of the
global climate system exhibits features of stochastic resonance.

Coherence A principle of probability theory that expresses that observations
should be used in the best possible way to condition probabilities of a possible
outcome. Can be applied most rigorously in ideal cases where input errors and
model structural errors are negligible. Where such uncertainties are known to be
significant it is not always obvious what is the best possible way. A less formal, but
more generally useful, definition is that observations should not be used to condi-
tion probabilities of an outcome in a way that is clearly worse than some other
conditioning process.

Conceptual Model A hydrological model defined in the form of mathematical
equations. A simplification of a perceptual model.

Conditioning The process of refining a model structure, or a distribution of par-
ameter values of a model structure as more data become available (see also data
assimilation and real-time forecasting).

Confirmation A process of evaluating model outputs to check that a model is still
providing acceptable simulations. Now preferred to the terms validation or
verification.

Copula A method of transformation from a space of scaled unit axes to a complex
multivariate distribution with dependencies.

Covariance Matrix A way of expressing the statistical uncertainty for a set of mul-
tiple parameters or variables as a square matrix of coefficients. The diagonal
elements in the matrix represent the variance of each individual member of the set;
the off-diagonal elements the co-variation between pairs of members. The higher
the degree of co-variance, the greater the interaction between pairs of parameters
or variables. The covariance can be scaled to represent correlation between the
members.

Crisp Set A set for which the boundaries of the set are defined such that any
potential member of the set will either be in the set or excluded.

Critical Rationalism see Rationalism.
Data Assimilation The process of using observational data to update model

predictions (see Chapter 5, also real-time forecasting and updating).
Deduction Inference from specific premises to some prediction. Theories based on
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physical assumptions without resort to empirical generalisations are examples of
deductive reasoning. Examples common in mathematics and logic but rare in
environmental science.

Deductive Reasoning The process of inference based on deduction.
Degree of Membership An expression of the strength with which a member of a

fuzzy set is associated with that set. Normally takes the range [0–1], with non-zero
values defining the range of support for the fuzzy set.

Deterministic Model A model that with a set of initial and boundary conditions
has only one possible outcome or set of predictions.

Disaggregation/Downscaling The process of distributing variables calculated at
large scales to estimate appropriate values at smaller scales. Required, for
example, in modelling impacts of climate change available at the grid scale of a
GCM at scales of local interest.

Distributed Model A model that predicts values of state variables varying in space
(and normally time).

Effective Rainfall A part of the storm rainfall inputs to a catchment that is equiva-
lent in volume to the “storm runoff” part of the hydrograph (but note that the
storm runoff may not be all rainstorm water).

Empiricism Idea that knowledge must come from experience of the senses (classical
form of empiricism from 17th century due to John Locke, 1632–1704). Recent
version of constructive empiricism due to Bas van Fraasen in which empirical
adequacy does not need to imply truth, especially for variables or entities that are
not directly observable (some overlap with instrumentalism)

Entropy Used here as a measure of information due to Claude Shannon in 1948
using an analogy with thermodynamic entropy.

Epistemic Uncertainty The way in which the response of a system varies in ways
that cannot be simply described by random stochastic variation. Often used in
contrast to aleatory uncertainty. Also known as Knightian uncertainties (after
Frank Knight (1885–1972) who himself referred to “true uncertainties” that
could not be insured against, as opposed to risk that could be assessed probabilis-
tically, see Knight, 1921).

Epistemology Study of the possibility and theory of knowledge. Evolutionary epis-
temology embodies the idea that knowledge will be revised and improved over
time.

Equifinality 1 The concept that there may be many models of a system that are
acceptably consistent with the observations available, derived from the General
Systems theory of Ludvig von Bertalanffy (1968) and adopted in environmental
modelling by Beven (1993, 2006).

Equifinality 2 The adaption of the von Bertalanffy concept to geomorphology by
Culling (1957) that similar landforms might arise from different processes and
histories.

Equifinality 3 The nonlinear dynamical systems version later expressed by Culling
(1987, rejecting his earlier view). Culling distinguished between strict equifinality
where a perturbed system will return to its original form after some transition
time and weaker forms in which equifinality implies only persistence or stability of
some property of the system in its trajectory in state space (as might be observed,
for example, if there is some attractor in state space).
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Extension Principle The extension principle is used in fuzzy theory and allows the
extrapolation of degrees of membership from members of a fuzzy set to functions
of the values of those members. Thus, if the fuzzy set A is defined by the member-
ship values of a discrete set of points in X, {x1, x2, x3, . . . xn} with membership
values {µ(x1), µ(x2), µ(x3), . . . µ(xn)}, then for any other fuzzy set f(A) that is a
function of A, membership will be defined by the membership values
{µ(f(x1)), µ(f(x2)), µ(f(x3)), . . . µ(f(xn))}.

Falsification Answer to the problem of induction, primarily due to Karl Popper. The
idea that science proceeds by setting up theories and then seeking evidence to
falsify them. In a strong version, whereas no amount of evidence can completely
confirm a theory, one false prediction might be sufficient to falsify it. This is the
standard model of the “scientific method”, which is now recognised to be largely
an ideal that is rarely followed. To avoid falsification, it is more usual to neglect
some evidence as “outliers” or modify a theory to take account of the new
evidence, perhaps by changing auxiliary hypotheses or calibration parameters.

Formal likelihood A quantitative measure of the acceptability of a particular model
or parameter set in reproducing the system response being modelled based on a
formal parametric function to represent the structure of the errors.

Foundationalism A philosophical tradition based on the idea that there must be a
set of basic beliefs from which all other beliefs can be derived. Both rationalism
and empiricism are sometimes presented as forms of foundationalism: rationalism
because it makes the claim that we must have some innate rational beliefs that
cannot necessarily be tested by sense data; and empiricism because basic sense
data provide justification for the most basic forms of belief.

Fuzzy Logic A system of logical rules involving variables associated with a continu-
ous fuzzy measure (normally in the range 0 to 1) rather than the binary measure
(right/wrong, 0 or 1) of traditional logic. Rules are available for operations such
as addition and multiplication of fuzzy measures and for variables grouped in
fuzzy sets. Such rules can be used to reflect imperfect knowledge of how a variable
will respond in different circumstances in terms of the possibilities of potential
outcomes.

Fuzzy Measure A degree of membership of a quantity to a fuzzy set (see degree of
membership, fuzzy logic).

Fuzzy Set A set of quantities, thought to have something in common, but for which
membership of the set cannot be described precisely but only through a degree or
grade of membership or fuzzy measure.

Gain A multiplier applied to a transfer function to scale inputs to outputs in a linear
systems analysis; may be made adaptive in real-time forecasting.

GCM A global circulation model (or global climate model). Earlier GCMs modelled
the atmosphere only but then had to impose “flux corrections” to take account of
transfers of heat in the oceans. Recent models used coupled ocean–atmosphere
components and do not require such flux corrections.

Genetic Algorithm A method of optimisation based on treating parameter sets as
“genes” that then “evolve” by melding, mutation and off-spring processes.

Global Optimum A set of parameter values that gives the best fit possible to a set of
observations

Hermeneutics In its modern form (following Martin Heidegger, 1889–1976)
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concerned with the interpretation of the being who interprets texts, theories and
evidence. Such interpretations are considered to be always historically and socio-
logically conditioned. Science is then no more (and no less) than an interpretation
of the signs provided by the available texts and evidence. In this there is much in
common with the “pragmaticism” of Charles Peirce (1839–1914). Main pro-
ponents in science have been Richard Bernstein and Richard Rorty, who suggest
that neither purely realist nor purely relativist approaches are appropriate but that
it is possible to have a rational approach to scientific ideas within a developing
historical framework within which choices and judgements of the participants are
crucial.

Heteroscedastic Errors A time series of model residuals that exhibit a changing
variance over a simulation period (see also autocorrelated errors).

Hypothesis A set of propositions about how a system works. Can be expressed
either qualitatively or as a theory or model.

History Matching The calibration of a model by adjusting parameter values to
reduce the differences between observations and predicted variables.

Idealism A philosophical position that holds that all experiences and understanding
are to do with the mind. It is therefore not possible to have direct experience of an
external reality, only a mental construct of what that reality might be.

Identifiability The ease with which particular parameter values in a model might be
calibrated or conditioned by comparing model outputs to observed variables (see
also calibration and conditioning).

Incoherence The use of observations to condition probabilities in a way that does
not properly reflect the information content of the data (see coherence).

Incommensurate/Incommensurability Used here to refer to variables or param-
eters with the same name that refer to different quantities because of a change in
scale.

Independence Two variables are independent if a change in the value of one
variable has no effect on the effect of the other.

Induction The inference from experimental evidence to general theory. The “prob-
lem of induction” was originally identified by David Hume (1711–1776). This is
that past evidence may not necessarily be a good guide to future experience (all
swans are white . . .; groundwater flow is Darcian . . .) so that no theory can ever
be verified by induction.

Informal Likelihood A quantitative, but subjectively chosen, measure of the accept-
ability of a particular model or parameter set in reproducing the system response
being modelled.

Initial Conditions The auxiliary conditions required at the start of a run of a model
to define all initial model states.

Instrumentalism The idea that scientific theories are not true descriptions of reality
but only useful constructs that allow experiences to be ordered. Allows that theor-
ies do not have to be believed and that there may be different competing theories
compatible with the evidence (although realists will counter that even if different
theories are compatible with a body of evidence they may not all be equally well
supported by that evidence).

Inverse Problem see history matching.
Kriging A method of spatial interpolation and variance estimation used in
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geostatistics. Originally developed for assessing yields in the mining industry by
Danie G. Krige in South Africa. Assumes linearity and second-order stationarity
and a constant spatial correlation structure as expressed in a variogram.

Lead Time The time required for a forecast to be available so that it can be useful in
making decisions about warnings etc.

Learning Set A set of observed data used in the calibration of a Neural Net
model.

Likelihood Measure A quantitative measure of the acceptability of a particular
model or parameter set in reproducing the system response being modelled.

Linearity A model (or model component) is linear if the outputs are in direct
proportion to the inputs.

Linear Store A model component in which the output is directly proportional to the
current storage value (equivalent to a bucket with a hole in the bottom!). The
basic building block of the general linear transfer function model and the Nash
cascade.

Linguistic Uncertainties result from the fact that language, including the scientific
vocabulary, is often underspecific, ambiguous, vague, context-dependent or
exhibits theoretical indeterminacies. Linguistic uncertainties often overlap with
epistemic uncertainties.

Local Optimum A local peak in the parameter response surface where a set of
parameter values gives a better fit to the observations than all parameter sets
around it, but not as good a fit as the global optimum.

Logical Positivism A representation of the progress of science as an increasingly
good description of reality, including the reductionist argument that all science
can be reduced to physics and that theories are verifiable. A major influence on
modernist science in the 20th century, largely discredited due to Karl Popper.

Lumped Model A model that treats the whole of a catchment as a single accounting
unit and predicts only values of variables averaged over the catchment area.

Marginal Distribution In a multivariate distribution, the marginal distribution
obtained by integrating over all but the dimension associated with the particular
variable for which the marginal distribution is required. It is the distribution of
that variable conditioned on the distributions of all the other variables in the
multivariate distribution function.

Mechanistic Model A model based on physical principles or with a physical
interpretation.

Model A set of constructs, derived from explicit assumptions, about how a system
responds to specified inputs. Quantitative models are normally expressed as sets
of assumptions and mathematical equations and implemented as computer codes.

Model Space A hyperspace defined by the ranges of feasible models and parameter
values, with dimensions for each parameter within each model.

Monte Carlo Simulation Simulation involving multiple runs of a model using
different randomly chosen sets of parameter values.

Multiple Working Hypotheses A scientific method, in the earth sciences commonly
assigned to Chamberlin (1896) and Gilbert (1896), that is based on considering all
possible explanations of a phenomenon and then subjecting each hypothesis to
test. Given the limitations of data and measurement techniques it may not always
be possible to reduce the multiple hypotheses to a single explanation.
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Nomological System A formally defined system of theories and concepts in
science (as used, for example, by Cartright, 1999).

Non-identifiability An expression of the problem of identifying parameter values in
a model, given limited observational data (see also equifinality).

Nonlinear A model is nonlinear if the outputs are not in direct proportion to the
inputs but may vary with intensity or volume of the inputs or with antecedent
conditions.

Nonparametric Method A method of estimating distributions without making any
assumptions about the mathematical form of the distribution.

Non-stationarity A system in which the characteristics are expected to change over
time; a model in which the parameters are expected to change over time.

Non-uniqueness An expression of the problem of identifying parameter values in a
model, given limited observational data (see also equifinality).

Normally Distributed A variable is normally distributed if its distribution can be
adequately fitted by the Normal or Gaussian distribution function that is
symmetrical about the mean, bell-shaped and with infinite tails.

Objective Function (Performance measure, goodness-of-fit) A measure of how well
a simulation fits the available observations.

Ontology The philosophical study of “being”, of “what is there”. There is a long
history and extensive philosophical literature on ontology!

Open System A system defined by uncontrolled boundary conditions that involve
the exchanges of fluxes (of mass, energy, momentum etc.) with the rest of the
world. The boundaries of open systems are often defined for convenience (for
example, where a measurement is being made), rather because they can be
physically well defined (e.g. a lake).

Optimisation The process of finding a parameter set that gives the best fit of a
model to the observations available. May be done manually or using an automatic
calibration algorithm.

Optimisation of Expected Utility Used in cost–benefit forms of decision making as
the process of finding the best option amongst many in terms of utility.

Over-parameterisation Problem induced by trying to calibrate the parameter
values of a model that has too many parameters than can be supported by the
information content of the calibration data.

Paradigm A particular way of doing things. Introduced by the philosopher of sci-
ence Thomas Kuhn in his explanation of how scientists work within a framework
of unquestioned beliefs, concepts and theories that act to constrain the set of
possible explanations. Development of science within a paradigm is “normal sci-
ence”. A change from one paradigm to a new set of theories is called a “paradigm
shift”. Quantities in competing paradigms may be incommensurate. Such changes
may reflect sociological influences as well as purely scientific evidence (a classic
example being the Copernican revolution).

Parameter A constant that must be defined before running a model simulation.
Parameter Space A space defined by the ranges of feasible model parameters, with

one dimension for each parameter.
Pareto Front The surface or manifold in the model space that joins all models in the

Pareto optimal set.
Pareto Optimal Set The set of models in a multi-objective evaluation that are not
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dominated by any other model on at least one evaluation measure, i.e. there is no
model that performs better on that evaluation measure and on another evaluation
measure (named after Vilfredo Pareto, 1848–1923, who originated the concept of
Pareto efficiency in economics).

Parsimony The concept, sometimes known as Occam’s razor, that a model should
be no more complex than necessary to predict the observations sufficiently
accurately to be useful.

Perceptual Model A qualitative description of the processes thought to be control-
ling the system response.

Performance Measure (Objective function, goodness-of-fit) A measure of how well
a simulation fits the available observations (see also objectvie function).

Positivism The idea that ideas evolve over time to come closer to a true description of
nature (originally due to Auguste Comte, 1798–1857) (see also logical positivism).

Possibility A non-statistical measure of the potential for an outcome or occurrence
of an event as an alternative to probability theory. Used in fuzzy set theory, but
also has a more general usage (see George Klir, 2006).

Posterior Distribution The statistical distribution of a model parameter or output
variable after conditioning on the basis of observed data, for example, using a
calculated likelihood in Bayes equation. In a Bayesian learning process, the pos-
terior distribution after one conditioning step may become the prior distribution
when new observational data are made available.

Prior Distribution The statistical distribution of a model parameter or output vari-
able assumed or calculated on the basis of only knowledge about the character-
istics of the system before data are collected.

Probability A statistical measure of the potential for an outcome or occurrence of an
event. Many statisticians, most notably Dennis Lindley (2006), believe that prob-
ability is the only way of expressing uncertainty in a potential outcome. There are
a variety of foundations for the estimation and interpretation of probabilities of
which the main examples are the Frequentist and the Bayesian views. Frequentists
hold that probabilities represent the likelihood of outcomes that would be found if
it was possible to take a large number of samples over all potential outcomes.
Bayesians recognise that this can only ever be an ideal and that prior (often subject-
ive) estimates of probabilities might be useful as an input to estimating prob-
abilities based on limited amounts of evidence.

Procedural Model A model represented as a computer program. May be an exact
approximate solution of the equations defining the conceptual model of a system.

Random Sample A set of realisations of a model or variable generated by making
choices from a feasible range of possibilities drawn by selecting pseudo-random
numbers from specified distributions (see also Monte Carlo Simulation).

Rationalism The idea that things can be true without being directly experienced by
the senses. Extended to suggest that certain truths can be known a priori. In its
extreme form, Bertrand Russell (1872–1970) and Ludwig Wittgenstein (1889–
1951) attempted to prove all of mathematics from simple logical axioms. The
attempt was destroyed by Kurt Gödel’s (1906–1978) incompleteness theorem of
1931.

Realisation One random sample taken from the set of all possible random samples
in a Monte Carlo simulation.
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Realism The concept that things exist independently of our perceptions of those
things, with extension to the idea that theories can be true representations of
nature. Empirical realism, as proposed by Immanuel Kant (1724–1804), suggests
that we can have knowledge of the nature of the world through empirical experi-
ence and perceptions. Since then there have been many variations on realism
including: transcedental realism (that the existence and nature of things is
independent of perception); critical realism (that scientific enquiry is theory-laden
but that knowledge of a theory-independent world is possible); and entity realism
(that non-observables should be interpreted as if they really exist). Underlying all
these concepts is the idea that theories may be only approximately true but that
over time they will become closer to meaningful descriptions of reality.

Real-time Forecasting The use of a model to make predictions into the near
future (over some lead time), taking account of data becoming available as the
forecasting period progresses (see also data assimilation and updating).
Includes numerical weather prediction and models used for flood forecasting (see
Chapter 5).

Recursive Estimation A form of model calibration and uncertainty estimation
based on updating time step by time step as new observations become available.
Commonly used in data assimilation and real-time forecasting.

Relativism The idea that only man himself can judge the value of different beliefs, so
that it is quite acceptable for different people to hold different beliefs. In science,
relativist ideas have been entertainingly discussed by Paul Feyerabend (1924–
1994), who was once part of the Vienna school of philosophy (with Karl Popper)
but who later suggested that “anything goes”.

Response Surface The surface defined by the values of an objective function as it
changes with changes in parameter values. May be thought of conceptually as a
surface with “peaks” and “troughs” in the multidimensional space defined by the
parameter dimensions, where the “peaks” represent good fits to the observations
and the “troughs” represent poor fits to the observations (see also parameter
space)

Risk Uncertainty about responses of a real-world system that can be characterised in
terms of probabilities. There is an ISO Standard on Risk Management Termin-
ology (ISO, 2002) that uses the definition that risk is the combination of the
probability of an event and its consequence, but the term is often used more
generally.

Risk Analysis The process of identifying sources of risk and assigning values of risk.
Risk Communication The process of exchanging and translating information

about risk between different stakeholder groups and decision makers.
Robustness A decision is robust to future uncertainty if it leaves open the possibility

of alternative strategies as the future unfolds.
Roughness Coefficient A parameter of channel and overland flow models (most

often in Manning’s equation, but also Chezy equation or Darcy–Weisbach equa-
tion). Physically intended to represent the loss of energy due to friction at the
boundaries of the flow. Effective values compensate for effects of irregular depths
and cross-sections etc.

Semiotics The study and interpretation of signs of all types (including words,
graphics etc).
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Sensitivity The response of a model to a change in a parameter or input variable.
Can either be assessed locally in the model space (when it is normally quantified as
a gradient as a normalised rate of change of a model output to the rate of change
of the parameter or input variable) or over a global sample of points in the model
space (see Section 3.5).

Simulate Annealing A method of optimisation based on an analogy with the organ-
isation of molecules in cooling liquid metal. Initially, there is a random scatter of
parameter sets but as the “temperature” cools, the optimisation becomes more
and more structured. Useful when searching for a global optimum when there
may be many local optima.

Stakeholder An individual, group or community who might be affected by the
outcome of a decision-making process.

State Space The space of potential trajectories of a model (or, in a more limited
sense, of a particular variable in a model).

Stochastic Model A model that contains random elements as a way of expressing
uncertainty in inputs, system characteristics or model response. Often constructed
by proposing a certain (simple) structure for perturbations around some mean or
control simulation. Introduces additional parameters within the stochastic struc-
ture to define the magnitude of the likely perturbations. Additive perturbations
are often assumed for simplicity (but multiplicative perturbations can be
transformed to an additive form by taking logs). If it is expected that the nature of
the perturbations will change (e.g. with heteroscedastic variance) then more
parameters will be required to represent such changes.

Support of a Fuzzy Set The range of possible values that will have degree of mem-
bership greater than zero in a fuzzy set.

System A part of the world that has been identified for study or for a decision.
Occupies some physical space, some time period, and is separated from the rest of
the world by the specification of certain boundary conditions. Environmental
systems are usually open systems.

Theory A set of constructs, derived from explicit assumptions, about the nature of
the world. Formal theories are normally expressed as mathematical axioms and
equations.

Transcendental Realism see realism.
Transfer Function A representation of the output from a system due to a unit input.
Trans-science The idea, proposed by Alvin Weinberg in 1972, that some subjects,

generally held to be within the realm of science, may not be open to rigorous
scientific study. Arguably, this applies to very many environmental systems where
boundary conditions cannot be controlled, experiments are necessarily place- and
time-specific (see uniqueness of place), and details of processes are not fully
known.

Type I Error Accepting a false positive or, in the case of models, accepting a poor
model that with better data might be rejected.

Type II Error A false negative, i.e. rejecting a good model because poor data suggest
that it does not give good simulations.

Type III Error Using a model structure that does not properly account for important
processes, perhaps because they are not yet recognised as being important.

Underdetermination Thesis A theory (or model) is underdetermined if there is at
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least one other theory (or model) that is equally compatible with the available
empirical evidence (observations with which a model can be compared).

Uniqueness of Place The concept that in applying environmental models to some
particular location will involve the determination of particular boundary condi-
tions and parameter values that are not easily estimated from past applications of
the model elsewhere (see also unknowability).

Unknowabilty The concept that because of limitations of current measurement
techniques there is much about environmental systems that cannot feasibly be
known.

Updating The process of using data available now to condition forecasts of a vari-
able into the future but changing values of parameters or state variables in the
model. A form of data assimilation, commonly used in real-time forecasting.
Includes different types of Kalman filter, and variational data assimilation (see
Chapter 5).

Utility Function An expression of the benefits arising from implementing different
levels of investment (costs) in formal decision making.

Validation 1 A process of evaluation of models to confirm that they are acceptable
representations of a system. Philosophers of science have some problems with the
concept of validation and verification (e.g. Oreskes et al., 1994) and it may be
better to use “evaluation” or “confirmation” rather than validation or verification
(which imply a degree of truth in the model).

Validation 2 Validation is sometimes used in the much more restrictive sense of
validation of a computer code (model) to show that it does produce accurate
solutions of the equations on which it is based. For complex models this can also
be difficult to show in practice.

Variogram A spatial correlation function used in geostatistics, normally plotted as
the variance at different distances between points in a random field. Normally
increases with distance, up to the “range” where variance becomes constant. If
variance continues to increase with distance, the field may be non-stationary (or
fractal). Sometimes fitted by a functional form that includes a random effect at
zero distance, the “nugget variance”. Underlies the Kriging method of spatial
interpolation in geostatistics. To estimate a variogram without a significant
degree of uncertainty requires a large number of measured values, more if the
measurements suggest that the correlation might vary with direction.

Verification see validation.
Verisimilitude A term used to express the concept of relative truthfulness of

false theories. The term was used by Karl Popper (1963), but his notion of
verisimilitude has since been criticised (e.g. by Tichy, 1974).

Glossary 279



Bibliography

Adams, J. (1995), Risk: The Policy Implications of Risk Compensation and Plural Rationalities,
Routledge: London.

Ajami, N. K., Duan, Q. & Sorooshian, S. (2007), An integrated hydrologic Bayesian multi-
model combination framework: Confronting input, parameter, and model structural
uncertainty in hydrologic prediction, Water Resources Research, 43, W01403, doi:10.1029/
2005WR004745.

Allen, M., Stott, P., Mitchell, J., Schnur, R. & Delworth, T. (2000), Quantifying the uncertainty
in forecasts of anthropogenic climate change, Nature, 407: 617–620.

Anderson, M. G. & Bates, P. D. (Eds.) (2001), Model Validation: Perspectives in Hydrological
Science, Wiley: Chichester.

Anderson, M. P. & Woessner, W. W. (1992), The role of the post-audit in model validation, Adv.
In Water Resour., 15, 167–174.

Andersson, L. (2004), Riverine nutrient models in stakeholder dialogues. Int. J. Water Resour.
Dev., 20: 399–425.

Archer, G. E. B., Saltelli, A. & Sobol’, I. M. (1997), Sensitivity measures, ANOVA-like
techniques and the use of bootstrap, J. Stat. Comput. Simul., 58: 99–120.

Aronica, G., Hankin, B. G., Beven, K. J. (1998), Uncertainty and equifinality in calibrating
distributed roughness coefficients in a flood propagation model with limited data, Adv.
Water Resour., 22(4): 349–365.

Arulampalam, M. S., Maskell, S., Gordon, N. & Clapp, T. (2002), A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal. Process., 50(2):
174–188.

Aven, T. (2003), Foundations of Risk Analysis, Wiley: Chichester.
Aven, T. (2007), On the ethical justification for the use of risk acceptance criteria, Risk Analysis,

27: 303–312.
Bair, E. S. (1994), Model (In)Validation: A view from the courtroom, Ground Water, 32(4):

530–531.
Babendreier, J. E. & Castleton, K. J. (2005), Investigating uncertainty and sensitivity in inte-

grated, multimedia environmental models: tools for FRAMES-3MRA, Environ. Modell. &
Softw., 20: 1043–1055.

Bardossy, A. (2006), Copula-based geostatistical models for groundwater quality parameters,
Water Resources Research, 42: W11416, doi:10.1029/2005WR004754.

Bardossy, A., Bogardi, I. & Duckstein, L. (1993), Fuzzy nonlinear regression analysis of
dose-response curve, Europ. J. Oper. Res., 66: 36–51.

Bardossy, A. & Duckstein, L. (1995), Fuzzy-rule-based Modelling with Applications to
Geophysical, Biological and Engineering Systems, CRC Press: Boca Raton, FL.

Basili, M. (2006), A rational decision rule with extreme events, Risk Analysis, 26: 1721–1728.
Bates, B. C. & Campbell, E. P. (2001), A Markov chain Monte Carlo scheme for parameter



estimation and inference in conceptual rainfall-runoff modelling, Water Resources Research,
37: 937–947.

Bayes, T. (1763), An essay towards solving a problem in the doctrine of chances. Phil. Trans. R.
Soc. Lond., 53: 370–418.

Beck, M. B. (1987), Water quality modelling: a review of the analysis of uncertainty, Water
Resources Research, 23(8), 1393–1442.

Beck, M. B. & Halfon, E. (1991), Uncertainty, identifiability and the propagation of prediction
errors: a case study of Lake Ontario, J. Forecasting, 10: 135–162.

Bedford, T. & Cooke, R. (2001), Probabilistic Risk Analysis: Foundations and Methods,
Cambridge University Press: Cambridge.

Bell, D. E. (1982), Regret in decision making under uncertainty, Operations Research, 30:
961–981.

Ben-Haim, Y. (2005), Uncertainty, probability and information-gaps, Reliability Engineering &
System Safety, 85: 249–266.

Ben-Haim, Y. (2006), Info-Gap Decision Theory, 2nd Edition, Academic Press: Amsterdam.
Benjamin, J. R. & Cornell, C. A. (1970), Probability, Statistics and Decision for Civil Engineers,

McGraw-Hill: NY.
Bennet, A. F. & Thorburn, M. A. (1992), The generalized inverse of a nonlinear quasi-

geostrophic ocean circulation model, J. Phys. Oceanog., 22: 213–230.
Berger, J. (2006), The case for objective Bayesian analysis, Bayesian Analysis, 1: 385–402.
Bergin, M. S. & Milford, J. B. (2000), Application of Bayesian Monte Carlo analysis to a

Lagrangian photochemical air quality model, Atmos. Environ., 34: 781–792.
Bernado, J. M. & Smith, A. F. M. (1994), Bayesian Theory, Wiley: Chichester.
Beven, K. J. (1981), The effect of ordering on the geomorphic effectiveness of hydrologic events.

Proceedings of the International Conference on Erosion and Sediment Transport in Pacific
Rim Steeplands, Christchurch, New Zealand. Int. Assoc. Scientific Hydrology Pub., No.
132: 510–526, IAHS Press: Wallingford, UK.

Beven, K. J. (1989), Changing ideas in hydrology: the case of physically based models. J.
Hydrol., 105: 157–172.

Beven, K. J. (1993), Prophecy, reality and uncertainty in distributed hydrological modelling,
Adv. Water Resour.: 16, 41–51.

Beven, K. J. (1996), Equifinality and Uncertainty in Geomorphological Modelling, in B. L.
Rhoads & C. E. Thorn (Eds.), The Scientific Nature of Geomorphology, Wiley: Chichester,
289–313.

Beven, K. J. (2000), Uniqueness of place and process representations in hydrological modelling,
Hydrology & Earth System Sciences, 4: 203–213.

Beven, K. J. (2001a), Rainfall-Runoff Modelling: the Primer, Wiley, Chichester.
Beven, K. J. (2001b), How far can we go in distributed hydrological modelling? Hydrology &

Earth System Sciences, 5: 1–12.
Beven, K. J. (2001c), On hypothesis testing in hydrology, Hydrol. Process., 15: 1655–1657.
Beven, K. J. (2001d), On explanatory depth and predictive power, Hydrol. Process., 15:

3069–3072.
Beven, K. J. (2002a), Towards a coherent philosophy for environmental modelling, Proc. Roy.

Soc. Lond., A458: 2465–2484.
Beven, K. J. (2002b), Towards an alternative blueprint for a physically-based digitally simulated

hydrologic response modelling system, Hydrol. Process., 16: 189–206.
Beven, K. J. (2005), On the concept of model structural error, Water Science & Technology, 52:

165–175.
Beven, K. J. (2006a), A manifesto for the equifinality thesis, J. Hydrol., 320: 18–36
Beven, K. J. (2006b), The holy grail of scientific hydrology: Qt = H(SR)A as closure, Hydrol. &

Earth Syst. Sci., 10: 609–618.

Bibliography 281



Beven, K. J. (2006c), On undermining the science?, Hydrol. Process. (HPToday), 20:
3141–3146.

Beven, K. J. (2007), Working towards integrated environmental models of everywhere:
uncertainty, data, and modelling as a learning process. Hydrology & Earth System Science,
11: 460–467.

Beven, K. J. & Binley, A. M. (1992), The future of distributed models: model calibration and
uncertainty prediction, Hydrol. Process., 6: 279–298.

Beven, K. J., Freer, J., Hankin, B. & Schulz, K. (2000), The use of generalised likelihood meas-
ures for uncertainty estimation in high order models of environmental systems, in Nonlinear
and Nonstationary Signal Processing, W. J. Fitzgerald, R. L. Smith, A. T. Walden & P. C.
Young (Eds). Cambridge University Press, 115–151.

Beven, K. J. & Freer, J. (2001), Equifinality, data assimilation, and uncertainty estimation in
mechanistic modelling of complex environmental systems, J. Hydrol., 249: 11–29.

Beven, K. J. & Germann, P. F. (1982), Macropores and water flow in soils, Water Resources
Research, 18: 1311–1325.

Beven, K. J., Smith, P. J. & Freer, J. E. (2008), So just why would a modeller choose to be
incoherent?, J. Hydrol., 354: 15–32.

Beven, K. J. & Young, P. C. (2003), Comment on “Bayesian Recursive Parameter Estimation for
Hydrologic Models” by M. Thiemann, M. Trosset, H. Gupta & S. Sorooshian, Water
Resources Research, 39(5): doi: 10.1029/2001WR001183.

Beven, K. J., Zhang, D. & Mermoud, A. (2006), On the value of local measurements
on prediction of pesticide transport at the field scale. Vadoze Zone Journal, 5:
222–233.

Binley, A. M., Beven, K. J., Calver, A. & Watts, L. G. (1991), Changing responses in hydrology:
assessing the uncertainty in physically-based model predictions, Water Resources Research,
27: 1253–1261.

Binley, A. M. & Beven, K. J. (2003), Vadose zone model uncertainty as conditioned on
geophysical data, Ground Water, 41: 119–127.

Bhaskar, R., A Realist Theory of Science. Brighton: Harvester, 1980.
Bhaskar, R., Reclaiming Reality. London: Verso, 1989.
Blazkova, S., Beven, K. J. & Kulasova, A. (2002), On constraining TOPMODEL

hydrograph simulations using partial saturated area information, Hydrol. Process., 16:
441–458.

Blazkova, S. & Beven, K. J. (2002), Flood frequency estimation by continuous simulation for a
catchment treated as ungauged (with uncertainty), Water Resources Research, 38: doi:
10.1029/2001/WR000500.

Boni, G., Entekhabi, D. & Castelli, F. (2001), Land data assimilation with satellite measure-
ments for the estimation of surface energy balance components and surface control on
evaporation, Water Resources Research, 37: 1713–1722.

Borgonovo, E. (2006), Measuring uncertainty importance: investigation and comparison of
alternative approaches, Risk Analysis, 26: 1349–1361.

Borsuk, M. E., Stow, C. A. & Reckhow, K. H. (2003), Integrated approach to total maximum
daily load development for the Neuse River estuary using a Bayesian probability network
model (Neu-Bern), J. Water Resour. Plann. Manag., 129: 271–282.

Borsuk, M. E., Stow, C. A. & Reckhow, K. H. (2004), A Bayesian network of eutrophication
models for synthesis, prediction, and uncertainty analysis, Ecol. Modell., 173: 219–239.

Borsuk, M. E., Reichert, P., Peter, A., Schager, E. & Burkhardt-Holm, P. (2006), Assessing the
decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network,
Ecol. Modell., 192: 224–244.

Box, G. E. P. & Cox, D. R. (1964), An analysis of transformations (with discussion), J. Roy.
Stat. Soc., B26: 211–252.

282 Bibliography



Box, G. E. P. & Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, revised
edition, Holden-Day: San Francisco.

Box, G. E. P. & Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley:
Reading, MA.

Brashers, D. E. (2001), Communication and uncertainty management. J. Communication,
51(3): 477–497.

Brazier, R. E., Beven, K. J., Freer, J. E. & Rowan, J. S. (2000), Equifinality and uncertainty in
physically-based soil erosion models: application of the GLUE methodology to WEPP, the
Water Erosion Prediction Project – for sites in the UK and USA, Earth Surf. Process. Landf.,
25: 825–845.

Broad, D. R., Dandy, G. C. & Maier, H. R. (2005), Water distribution distribution system
optimization using metamodels, J. Water Resour. Planning Manag. ASCE, 131: 172–180.

Bromley, J., Jackson, N. A., Clymer, O. J., Giacomello, A. M. & Jensen, F. V. (2005), The use of
Hugin® to develop Bayesian networks as an aid to integrated water resource planning,
Environ. Modell. & Softw., 20: 231–242.

Brooks, S. P. & Gelman, A. (1998), General methods for monitoring convergence of iterative
simulations, J. Comp. Graph. Stat., 7: 434–455.

Brouwer, R., Akter, S., Brander, L. & Haque, E. (2007), Socioeconomic vulnerability and adap-
tation to environmental risk: a case study of climate change and flooding in Bangladesh, Risk
Analysis, 27: 313–326.

Brown, J. D. & Heuvelink, G. (2007), The Data Uncertainty Engine (DUE): a software tool for
assessing and simulating uncertain environmental variables, Computer & Geosciences, 33:
172–190.

Brusdal, K., Brankart, J., Halberstadt, G., Evenson, G., Brasseur, P., van Leeuwen, P. J., Dom-
borwsky, E. & Verron, J. (2003), A demonstration of ensemble-based assimilation methods
with a layered OGCM from the perspective of operational ocean forecasting systems, J. Mar.
Syst., 40–41: 253–289, doi:10.1016/S0924–7963(03)00021–6.

Buckley, D. (Ed.) (1992), Engineering Safety, McGraw-Hill: London.
Buizza, R., Miller, M. & Palmer, T. (1999), Stochastic representations of model uncertainties in

the ECMWF Ensemble Prediction System, Q. J. R. Meteorol. Soc., 125: 2887–2908.
Burgers, G., van Leeuwen, P. & Evensen, G. (1998), Analysis scheme in the ensemble Kalman

filter, Mon. Weath. Rev., 126: 1719–1724.
Burnham, K. P. & Anderson, D. R. (2002), Model Selection and Multimodel Inference: a Prac-

tical Information-Theoretic Approach, Springer-Verlag: NY.
Cameron, D. (2006), An application of the UKCIP02 climate change scenarios to flood estima-

tion by continuous simulation for a gauged catchment in the northeast of Scotland, UK (with
uncertainty). J. Hydrol., 328: 212–226.

Cameron, D., Beven, K. & Naden, P. (2000), Flood frequency estimation under climate change
(with uncertainty). Hydrology & Earth System Sciences, 4: 393–405.

Cappé, O., Guillin, A., Marin, J. M. & Robert, C. P. (2004), Population Monte Carlo, J. Comp.
Graph. Stats., 13: 907–929.

Carey, J. M., Beilin, R., Boxshall, A., Burgman, M. A. & Flander, L. (2007), Risk-based
approaches to deal with uncertainty in a data-poor system: stakeholder involvement in haz-
ard identification for marine national parks and marine sanctuaries in Victoria, Australia,
Risk Analysis, 27: 271–281.

Carrera, J. & Neumann, S. P. (1986), Estimation of aquifer parameters under transient and
steady-state conditions, Water Resources Research, 22: 199–242.

Cartwright, N. (1983), How the Laws of Physics Lie, Oxford University Press: Oxford.
Cartwright, N. (1999) The Dappled World: a Study of the Boundaries of Science. Cambridge

University Press: Cambridge, UK.
Casella, B. (1992), Explaining the Gibbs sampler, The American Statistician, 46: 167–174.

Bibliography 283



Catelinois, O., Laurier, D., Verger, P., Rogel, A., Colonna, M., Ignasiak, M., Hémon, D. &
Timarche, M. (2005), Uncertainty and sensitivity analysis in assessment of the thyroid cancer
risk related to Chernobyl fallout in Eastern France, Risk Analysis, 25: 243–252.

Caya, A., Sun, J., Snyder, C. (2005), A comparison between the 4DVAR and the ensemble
Kalman filter techniques for radar data assimilation, Month. Weath. Rev., 133: 3081–3094.

Chamberlin, T. C. (1897), Studies for students, J. Geol. 5: 837–848, reprinted as: The method of
multiple working hypotheses, J. Geol., 39: 155–165, 1931.

Chalmers, A. (1989), Is Bhaskar’s realism realistic? Radical Phil., 49: 18–23.
Chen, C.-F., Ma, H.-W. & Reckhow, K. H. (2007), Assessment of water quality management

with a systematic qualitative uncertainty analysis, Science of the Total Environment, 374:
13–25.

Choi, H. T. & Beven, K. J. (2007), Multi-period and multi-criteria model conditioning to reduce
prediction uncertainty in distributed rainfall-runoff modelling within GLUE framework, J.
Hydrol., 332: 316–336

Christiaens, K., & Feyen, J. (2002), Constraining soil hydraulic parameter and output
uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework,
Hydrol. Process., 16: 373–391.

Christensen, S. & Cooley, R. L. (1999), Evaluation of prediction intervals for expressing
uncertainties in groundwater flow model predictions, Water Resources Research, 35: 2627–
2639

Clark, I. (1979), Practical Geostatistics, Elsevier: London.
Clark, J. S. (2006), Why environmental scientists are becoming Bayesians, Ecol. Lett., 8: 2–14.
Clark, J. S., Ferraz, G., Oguge, N., Hays, H. & DiCostanzo, J. (2005), Hierarchical Bayes for

structured, variable populations: from recapture data to life-history prediction, Ecology, 86:
2232–2244.

Clarke, R. T. (1994), Statistical Modelling in Hydrology, Wiley: Chichester.
Clarke, R. T. (2007), Hydrological prediction in a non-stationary world, Hydro. Earth. Syst.

Sci., 11(1): 408–414.
Collier, A. (1994), Critical Realism, Verso: London.
Collier, C. G. (2007), Flash flood forecasting: what are the limits of predictability? Quart. J. R.

Meteorol. Soc., 133: 3–23.
Congdon, P. (2007), Bayesian Statistical Modelling, Wiley: Chichester.
Cooke, R. M. (1991), Experts in Uncertainty: Opinion and Subjective Probability in Science.

Oxford University Press: Oxford.
Courtier, P., Derber, J., Errico, R., Louis, J.-F. & Vukicevic, T. (1993), Important literature on

the use of adjoint, variational methods and the Kalman filter in meteorology, Tellus, A45:
342–257.

Couso, I., Moral, S. & Walley, P. (2000), A survey of concepts of independence for imprecise
probabilities, Risk Decis. & Policy, 5: 165–181.

Cox, E. (1994), The Fuzzy Systems Handbook, AP Professional: Boston, MA.
Cressie, N. A. (1993), Statistics for Spatial Data (revised edn.), Wiley: NY.
Croke, B. F. W., Ticehurst, J. L., Letcher, R. A., Norton, J. P., Newham, L. T. H. & Jakeman,

A. J. (2007), Integrated assessment of water resources: Australian experiences, Water Resour.
Manag., 21: 351–373.

Crome, F. H. J., Thomas, M. R. & Moore, L. A. (1996), A novel Bayesian approach to assessing
impacts of rain forest logging, Ecol. Applic., 6: 1104–1123.

Crow, W. T. & Wood, E. F. (2003), The assimilation of remotely-sensed soil brightness tempera-
ture imagery into a land surface model using an Ensemble Kalman Filtering: a case study
based on ESTAR measurements during SGP97, Adv. Water Resour., 26(2): 137–149.

Cunnane, C. & Nash, J. E. (1971), Bayesian estimation of frequency of hydrological events,
IAHS Pubn No., 100: 47–55, IAHS Press: Wallingford.

284 Bibliography



Cushman, J. H. (1986), On measurement, scale and scaling, Water Resources Research, 22:
129–134.

Dagan, G. (1986), Statistical-theory of groundwater-flow and transport – pore to laboratory,
laboratory to formation and formation to regional scale, Water Resources Research, 22
(suppl.): S120–S134.

Dakins, M. E., Toll, J. E., Small, M. J. & Brand, K. P. (1996), Risk-based environmental
remediation: Bayesian Monte Carlo analysis and the expected value of sample information,
Risk Analysis, 16: 67–79

Davies, P. A., Olague, N. E. & Goodrich, M. T. (1992), Application of a validation strategy to
Darcy’s experiment, Adv. In Water Resour., 15: 175–180.

Dee, D. P. (2005), Bias and data assimilation Q. J. R. Meterol. Soc., 131: 3323–3343.
Dee, D. P. & da Silva, D. M. (1998), Data assimilation in the presence of forecast bias, Quart. J.

R. Meteorol. Soc., 124: 269–296.
De Lannoy, G. J. M., Houser, P. R., Pauwels, V. R. N. & Verhoest, N. E. C. (2006), Assessment

of model uncertainty for soil moisture through ensemble verification, JGR-Atmos.,
111(D10): D10101

De Michele, C. & Salvadori, G. (2003), A generalized Pareto intensity-duration model of storm
rainfall exploiting 2-Copulas, JGR-Atmos., 108(D2): D4067.

Demeritt, D. (2001), The construction of global warming and the politics of science. Annals
Assoc. Am. Geog., 91: 307–337.

Dilks, D. W., Canale, R. P. & Meier, P. G. (1992), Development of Bayesian Monte Carlo
techniques for water quality model uncertainty, Ecol. Modell., 62: 149–162.

Doherty, J. (2005), PEST: software for model-independent parameter estimation. Water Mark
Numerical Computing, Australia. Available at http://www.sspa.com/pest.

Dorazio, R. M. & Johnson, F. A. (2003), Bayesian inference and decision theory – a framework
for decision making in natural resource management, Ecological Applications, 13:
556–563.

Doucet, A., de Freitas, N. & Gordon, N. (2001), Sequential Monte Carlo methods in practice,
in M. Jordan (Ed.), Statistics for Engineering and Information Science, Springer: NY.

Draper, D. (1995), Assessment and propagation of model uncertainty, J. Roy. Stat. Soc., B37:
45–98.

Draper, D. (2006), Coherence and calibration: comments on subjectivity and objectivity in
Bayesian analysis (Comment on articles by Berger & Goldstein), Bayesian Analysis, 1:
423–428.

Draper, N. R. & Smith, M. (1998), Applied Regression Analysis, Wiley: Chichester.
Duan, Q. S., Soorooshian, S. & Gupta, H. J. (1992), Effective and efficient global optimisation

for conceptual rainfall-runoff models, Water Resources Research, 28: 1015–1031.
Duan, Q., Gupta, V. K. & Sorooshian, S. (1993), A shuffled complex evolution approach for

effective and efficient global minimization, J. Optim. Theory & Applic., 76: 501–521.
Duan, Q., Sorooshian, S. & Gupta, V. K. (1994), Optimal use of the SCE-UA global optimiza-

tion method for calibrating watershed models, J. Hydrol., 158: 265–284.
Duan, Q., Ajami, N. K., Gao, X. & Sorooshian, S. (2007), Multi-model ensemble hydrologic

prediction using Bayesian model averaging, Adv. Water Resour., 30: 1371–1386.
Dubois, D. (1990), Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst., 17: 191–209.
Dubois, D. & Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications, Academic

Press: San Diego, CA.
Dunne, S. & Entekhabi, D. (2005), An ensemble-based reanalysis approach to land data assimi-

lation, Water Resources Research, 41: W02013, doi: 10.1029/2004WR003449.
Dunne, S. & Entekhabi, D. (2006), Land surface state and flux estimation using the ensemble

Kalman smoother during the Southern Great Plains 1997 field experiment, Water Resources
Research, 42: W01407, doi: 10.1029/2005WR004334.

Bibliography 285



Ely, A. (2004). Handling Uncertainty in Scientific Advice. Parliamentary Office of Science and
Technology: London, 4 pp.

Earman, J. (1992), Bayes or Bust: a Critical Examination of Bayesian Confirmation Theory,
MIT Press: Cambridge, MA.

Efron, B. & Tibshiriani, R. (1993), An introduction to the bootstrap, Chapman-Hall: New
York.

Egbert, G. D., Bennett, A. F. & Foreman, M. G. G. (1994), TOPEX/POSEIDON tides estimated
using a global inverse model, JGR-Oceans, 99(C12): 24821–24852.

Ellison, A. (1996), An introduction to Bayesian inference for ecological research and environ-
mental decision-making, Ecol. Applic., 6: 1036–1046.

Elshorbagy, A. (2006), Multicriterion decision analysis approach to assess the utility of water-
shed modelling for management decisions, Water Resources Research, 42, W09407,
doi:10.1029/2005WR004264.

Engeland, K., Xu, C.-Y. & Gottschalk, L. (2005), Assessing uncertainties in a conceptual water
balance model using Bayesian methodology, Hydrol. Sci. J., 50(1): 45–63.

Ersdal, G. & Aven, T. (2007), Risk-informed decision-making and its ethical basis, Reliability
Engineering & System Safety, 93: 197–205 RESS515.

EU. (2000), Water Framework Directive No. 2000/60/EC, European Community: Brussels.
Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99(C5):
10243–10162.

Evensen, G. (2004), Sampling strategies and square root analysis schemes for the EnKF, Ocean
Dynamics, 54, 539–560, doi: 10.1007/s10236–004–0099–2.

Evensen, G. (2006), Data Assimilation: The Ensemble Kalman Filter, Springer: Berlin.
Evensen, G. & van Leeuwen, P. V. (2000), An ensemble Kalman smoother for nonlinear

dynamics, Mon. Weath. Rev., 128(6): 1852–1867, doi: 10.1175/1520–0493(2000)128
<1852:AEKSFN>2.0.CO;2.

Failing, L., Horn, G. & Higgins, P. (2004), Using expert judgement and stakeholder values to
evaluate management options, Ecology & Society, 9:art 13 (www.ecologyandsociety.org/
vol9/iss1/art13).

Faulkner, H., Parker, D., Green, C., & Beven, K. J. (2007), Developing a translational discourse
to communicate uncertainty in flood risk between science and the practitioner, Ambio: 36(8):
692–703.

Favre, E. M., El Adlouni, S., Perrault, N., Thiémonge, N. & Bobée, B. (2004), Multivariate
hydrological frequency analysis using copulas, Water Resources Research, 40: W01101, doi.
10.1029/2003WR00256.

Ferson, S. (2002), RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers,
Lewis Publishers: Boca Raton, FL.

Ferson, S. & Ginzburg, L. R. (1996), Different methods are needed to propagate ignorance and
variability, Reliab. Engin. & System Safety, 54: 133–144.

Ferson, S. & Hajagos, J. G. (2004), Arithmetic with uncertain numbers: rigorous and (often)
best possible answers, Reliab. Engin. & System Safety, 85: 135–152.

Feyen, L., Beven, K. J., De Smedt, F. & Freer, J. E. (2001), Stochastic capture zones delineated
within the Generalised Likelihood Uncertainty Estimation methodology: conditioning on
head observations, Water Resources Research, 37: 625–638.

Feyen, L., Ribeiro, P. J., Gomez-Hernandez, J. J., Beven, K. J. & De Smedt, F. (2003), Bayesian
methodology for stochastic capture zone delineation incorporating transmissivity measure-
ments and hydraulic head observations, J. Hydrol., 271: 156–170.

Feyen, L., Vrugt, J. A., O., Nuallain, B., van der Knijff, J. & De Roo, A. (2007), Parameter
optimisation and uncertainty assessment for large-scale streamflow simulation with the
LISFLOOD model, J. Hydrol., 332: 276–289.

286 Bibliography



Feyerabend, P. (1978), Against Method, Verso: London
Fienen, M. N., Luo, J. & Kitanidis, P. K. (2006), A Bayesian geostatistical transfer function

approach to tracer test analysis, Water Resources Research, 42, W07426, doi:10.1029/
2005WR004576.

Fletcher, S. J. & Zupanski, M. (2006), A data assimilation method for log-normally distributed
observation errors, Q. J. R. Meteorol. Soc., 132: 2505–2519.

Fortin, V., Bernier, J., & Bobe, B. (1997), Simulation, Bayes, and bootstrap in statistical hydrol-
ogy, Water Resources Research, 33: 439–448.

Fox, C. R. & Irwin, J. R. (1998), The role of context in the communication of uncertain beliefs.
Basic & Applied Social Psychology, 20(1): 57–70.

Frame, D. J., Faull, N. E., Joshi, M. M. & Allen, M. R. (2007), Probabilistic climate forecasts
and inductive problems, Phil. Trans. R. Soc., A365: 1971–1992.

Franks, S. W., Gineste, P., Beven, K. J. & Merot, P. (1998), On constraining the predictions of
a distributed model: the incorporation of fuzzy estimates of saturated areas into the
calibration process, Water Resources Research, 34, 787–797.

Franks, S. W. & Beven, K. J. (1999), Conditioning a multiple patch SVAT model using uncertain
time-space estimates of latent heat fluxes as inferred from remotely-sensed data, Water
Resources Research, 35(9): 2751–2761.

Freer, J. E., Beven, K. J. & Ambroise, B. (1996), Bayesian estimation of uncertainty in runoff
prediction and the value of data: an application of the GLUE approach, Water Resources
Research, 32(7): 2161–2173.

Freer, J. E., Beven, K. J., & Peters, N. E. (2003), Multivariate seasonal period model rejection
within the generalised likelihood uncertainty estimation procedure, in Calibration of Water-
shed Models, edited by Q. Duan, H. Gupta, S. Sorooshian, A. N. Rousseau & R. Turcotte,
AGU Books: Washington, 69–87.

Freer, J. E., McMillan, H., McDonnell, J. J. & Beven, K. J. (2004), Constraining Dynamic
TOPMODEL responses for imprecise water table information using fuzzy rule-based
performance measures, J. Hydrol., 291: 254–277

Freeze, R. A., James, B., Massmann, J., Sperling, T. & Smith, L. (1992), Hydrogeological
decision analysis: 4. The concept of data worth and its use in the development of site
investigation strategies, Ground Water, 30: 574–588.

Freeman, M. F. & Tukey, J. W. (1950), Transformations related to the angular and the square
root, Ann. Math. Statist., 21: 607–611.

Freissinet, C., Vauclin, M. & Erlich, M. (1999), Comparison of first-order analysis and fuzzy set
approach for the evaluation of imprecision in a pesticide groundwater pollution screening
model, J. Contam. Hydrol., 37: 21–43.

French. (1986), Decision Theory: an Introduction to the Mathematics of Rationality, Ellis
Horwood: Chichester.

Funtowicz, S. O. & Ravetz, J. R. (1990), Uncertainty and Quality in Science for Policy, Kluwer
Academic: Dordrecht.

Funtowicz, S. O. & Ravetz, J. R. (1999), Post-normal science: an insight now maturing,
Futures, 25: 735–755.

Furmston, M. P. (1992), Reliability and the Law, in Buckley, D. (Ed.) (1992), Engineering
Safety, McGraw-Hill: London, 385–401.

Gallagher, M. & Doherty, J. (2007), Parameter estimation and uncertainty analysis for a
watershed model, Environ. Modell. & Software, 22: 1000–1020.

Gamerman, D. (1997), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference, Chapman & Hall/CRC: Boca Raton, FL.

Gan, T. Y. & Biftu, G. F. (1996), Automatic calibration of conceptual rainfall-runoff models:
Optimization algorithms, catchment conditions, and model structure, Water Resources
Research, 32: 3513–3524.

Bibliography 287



Gardner, R. H. & O’Neill, R. V. (1983), Parameter uncertainty and model predictions: a review
of Monte Carlo results, in M. B. Beck & G. van Straten (Eds.), Uncertainty and Forecasting
of Water Quality, Springer: Berlin, 245–257.

Geman, S. & Geman, D. (1984), Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6: 721–741.

Ghil, M., & Manalotte-Rizzoli, P. (1991), Data assimilation in meteorology and oceanography,
Adv. Geophys., 33: 141–266.

Gilbert, G. K. (1886), The inculcation of scientific method by example, Am. J. Sci., 31: 284–299.
Gilbert, G. K. (1896), The origin of hypotheses, Science, N.S. 3: 1–13.
Goldstein, M. (2006), Subjective Bayesian analysis: principles and practice, Bayesian Analysis,

1: 403–420.
Gordon, N. J., Salmond, D. J. & Smith, A. F. M. (1993), Novel approach to nonlinear/

non-Gaussian Bayesian state estimation, Proc. Inst. Electr. Eng., 140: 107–113.
Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination, Biometrika, 82: 711–732.
Gregory, R., Ohlson, D. & Arval, J. (2006), Deconstructing adaptive management: criteria for

applications to environmental management, Ecol. Applic., 16: 2411–2425
Gronnevik, R. & Evensen, G. (2001), Application of ensemble-based techniques in fish stock

assessment, Sarsia, 86: 517–526.
Groves, D. G. & Lempert, R. J. (2007), A new analytic method for finding policy-relevant

scenarios, Global Environ. Change, 17: 73–85.
Guan, B. T., Gertner, G. Z. & Parysov, P. (1997), A framework for uncertainty assessment of

mechanistic forest growth models: A neural network example. Ecol. Modell., 98: 47–58.
Gupta, V. K. & Sorooshian, S. (1985), The relationship between data and the precision of

parameter estimates of hydrological models, J. Hydrol., 81: 57–77.
Gupta, V. K. & Sorooshian, S. (1986), The influence of data length, information content, and

noise characteristics on model calibration, invited chapter in Multivariate Analysis of Hydro-
logic Processes, edited by H. W. Shen et al., Colorado State University Press: Fort Collins,
Colorado, 434–449.

Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1998), Towards improved calibration of hydrologic
models: multiple and incommensurable measures of information, Water Resources
Research, 34: 751–763.

Gupta, H. V., Bastidas, L., Sorooshian, S., Shuttleworth, W. J. & Yang, Z. L. (1999), Parameter
estimation of a land surface scheme using multicriteria methods, JGR Atmospheres,
104(D16): 19491–19503.

Guven, B. & Howard, A. (2007), Identifying the critical parameters of a cyanobacterial growth
and movement model by using generalised sensitivity analysis, Ecol. Modell., doi:10.1016/
j.ecolmodel.2007.03.024.

Guymon, G. L., Harr, M. E., Berg, R. L. & Hromadka, T. V. (1981), A probabilistic-
deterministic analysis of one-dimensional ice segregation in a freezing soil column, Cold Reg.
Sci. Technol., 5: 127–140.

Haack, S. (2003), Defending Science—Within Reason: Between Scientism and Cynicism.
Prometheus Books: Amherst, MA.

Haag, D. & Kaupenjohann, M. (2001), Parameters, prediction, post-normal science and the
precautionary principle – a road map for modelling for decision-making, Ecol. Modell., 144:
45–60.

Hahn, G. J. & Meeker, W. Q. (1991), Statistical Intervals, Wiley: New York.
Hall, J. W. (2003), Handling uncertainty in the hydroinformatic process, J. Hydroinformatics,

5: 215–232.
Hall, J. W. (2006), Uncertainty-based sensitivity indices for imprecise probabilities, Reliability

Engineering & Systems Safety, 91: 1443–1451.

288 Bibliography



Hall, J. W. (2007), Probabilistic climate scenarios may misrepresent uncertainty and lead to bad
adaptation decisions, Hydrol. Process., 21: 1127–1129.

Hall, J. W., Tarantola, S., Bates, P. D. & Horritt, M. S. (2005), Distributed sensitivity analysis of
flood inundation model calibration, J. Hydraul. Eng. ASCE, 131: 117–126, doi:10.1061/
(ASCE)0733–9429(2005)131:2(117).

Hall, J., Fu, G. & Lawry, J. (2006), Imprecise probabilities of climate change: aggregation of
fuzzy scenarios and model uncertainties, Climate Change, 81: 265–281 doi: 10.10007/
s10584–006–9175–6.

Harremöes, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B. & Guedes Vaz, S.
(Eds.) (2001), Late Lessons from Early Warnings: the Precautionary Principle 1896–2000.
Office for Official Publications of the European Communities: Luxembourg.

Hartley, R. V. L. (1928), Transmission of information, Bell System Technical J., 7: 535–563.
Hastings, W. (1970), Monte Carlo sampling methods using Markov Chains and their

applications, Biometrika, 57: 97–106.
Haszeldine, R. S. & McKeown, C. (1995), A model approach to radioactive waste disposal at

Sellafield, Terra Nova, 7: 87–95.
Haynes-Young, R. & Petch, G. (1986), Physical Geography: Its Nature and Methods, Harper

and Row: London.
Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C. & Madsen,

B. (2003), Methodology for construction, calibration and validation of a national
hydrological model for Denmark, J. Hydrol., 280: 52–71.

Herskowitz, P. J. (1991), A theoretical framework for simulation validation: Popper’s
falsificationism. Int. J. Modell. & Simul., 11: 56–58.

Hill, M. C., Banta, E. R., Harbaugh, A. W. & Anderan, E. R. (2000), MODFLOW-2000, the US
Geological Survey modular groundwater model – User guide to the observations, sensitivity,
and parameter estimation processes, US Geological Survey Open-File Report 00–184.

Hill, M. C. & Tiedeman, C. R. (2007), Effective Groundwater Model Calibration, Wiley:
Hoboken, NJ.

Hills, R. C. and Reynolds, S. G. (1969), Illustrations of soil moisture variability in selected areas
and plots of different sizes. J. Hydrol., 8: 27–47.

Hine, D. J. (2007), Robust Flood-Risk Management Decisions, unpublished PhD thesis, New-
castle University, UK.

Hine, D. J. and Hall, J. W. (2005), Convex analysis of flood inundation model uncertainties and
info-gap flood management decisions, Proceedings ISSSH Stochastic Hydraulics 2005,
Nijmegen, The Netherlands.

Hipel, K. W. (1995), Stochastic and Statistical Methods in Hydrology, Springer: Berlin.
Hofmann, J. R. & Hofmann, P. A. (1992), Darcy’s law and structural explanation in hydrology,

PSA 1992, 1: 23–35, Philosophy of Science Association.
Hojati, M., Bector, C. R. & Smimou, K. (2005), A simple method for computation of fuzzy

linear regression, Europ. J. Oper. Res., 166: 172–184.
Holling, C. S. (Ed.) (1978), Adaptive Environmental Assessment and Management, Wiley: NY.
Hooper, R. P., Stone, A., Christophersen, N., de Grosbois, E. & Seip, H. (1986), Assessing the

Birkenes model of stream acidification using a multi-signal calibration methodology, Water
Resources Research, 22: 1444–145.

Hornberger, G. M. & Spear, R. C. (1981), An approach to the preliminary analysis of
environmental systems, J. Environmental Management, 12: 7–18.

Hornberger, G. M., Beven, K. J., Cosby, B. J. & Sappington, D. E. (1985), Shenandoah water-
shed study: calibration of a topography-based, variable contributing area hydrological
model to a small forested catchment, Water Resources Research, 21: 1841–1850.

Horne, J. (2006), Unnatural Disaster: Hurricane Katrina and the Drowning of New Orleans,
Random House: NY.

Bibliography 289



Horritt, M. S. & Bates, P. D. (2001), Predicting flood plain inundation: raster-based modelling
versus the finite element approach, Hydrol. Process., 15: 825–842.

Houtekamer, P. L. & Mitchell, H. L. (2001), A sequential ensemble Kalman filter for atmos-
pheric data assimilation, Month. Weath. Rev., 129: 123–137.

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L. &
Hansen, M. (2005), Atmospheric data assimilation with an ensemble Kalman filter: results
with real observations, Month. Weath. Rev., 133: 604–620

Houtekamer, P. L., Lefabre, L., Derome, J., Ritchie, H. & Mitchell, H. (1996), A system
simulation approach to ensemble prediction, Month. Weath. Rev., 124: 1225–1242.

Howson, C. & Urbach, P. (1993), Scientific Reasoning: the Bayesian Approach, 2nd edition,
Open Court: Chicago.

Ide, K., Courtier, P., Ghil, M. & Lorenc, A. C. (1997), Unified notation for data assimilation:
operational, sequential and variational, J. Meteorol. Soc. Japan, 75 (1B): 181–189.

Iman, R. L. & Conover, W. J. (1982), A distribution-free approach to inducing rank correlation
among input variables, Communications in Statistics, Ser. B, 311–334.

Inter-governmental Panel on Climate Change (IPCC). (2007), Climate Change 2007: The Phys-
ical Science Basis. Summary for policy makers, WMO: Geneva.

Iooss, B., van Dorpe, F. & Devictor, N. (2006), Response surfaces and sensitivity analyses for an
environmental model of dose calculations, Reliability Surfaces & System Safety, 91:
1241–1251.

Iorgulescu, I., Beven, K. J. & Musy, A. (2005), Data-based modelling of runoff and chemical
tracer concentrations in the Haute-Mentue (Switzerland) Research Catchment, Hydrol.
Process., 19: 2257–2574.

Iorgulescu, I., K. J. Beven, & A. Musy. (2007), Flow, mixing, and displacement in using a data-
based hydrochemical model to predict conservative tracer data, Water Resources Research,
43: W03401, doi:10.1029/2005WR004019.

ISO. (2002), Risk Management Vocabulary, International Organisation for Standardization,
ISO/IEC Guide 73.

Jackson, B. M., Wheater, H. S., McIntyre, N. & Whitehead, P. (2004), Application of Markov
Chain Monte Carlo calibration and uncertainty framework to a process-based integrated
nitrogen model (INCA). Proc. Sensitivity Analysis of Model Outputs, SAMO-04–37.

Jacquin, A. P. & Shamseldin, A. Y. (2007), Development of a possibilistic method for the
evaluation of predictive uncertainty in rainfall-runoff modelling, Water Resources Research,
43: W04425, doi:10.1029/2006WR005072.

Janssen., P. H. M., Petersen, A. C., van der Sluijs, J. P., Risbey, J. S. & Ravetz, J. R. (2005),
A guidance for assessing and communicating uncertainties, Water Sci. & Tech., 52:
125–131.

Jensen, F. V. (2001), Bayesian Networks and Decision Graphs. Springer-Verlag: NY.
Josephson, D. H. (1994), The Great Midwest Flood of 1993, Natural Disaster Survey Report,

Department of Commerce, NOAA, National Weather Service, Silver Spring, Maryland.
Kaheil, Y. H., Gill, M. K., McKee, M. & Bastidas, L. (2006), A new Bayesian recursive

technique for parameter estimation, Water Resources Research, 42: W08423.
Kalman, R. (1960), New approach to linear filtering and prediction problems, J. Basic Eng.,

82D: 35–45.
Kalnay, E. (2003), Atmospheric Modelling, Data Assimilation and Predictability, Cambridge

University Press: Cambridge.
Kaplan, S. & Garrick, B. J. (1981), On the quantitative definition of risk, Risk Analysis, 1:

11–27.
Kavetski, D., Kuczera, G. & Franks, S. W. (2005), Bayesian analysis of input uncertainty in

hydrological modeling: 2. Application, Water Resources Research, 42: W03408, doi:
10.1029/2005WR004376.

290 Bibliography



Keeny, R. L. & Raiffa, H. (1993), Decisions with Multiple Objectives: Preferences and Value
Tradeoffs (2nd edition), John Wiley: NY.

Keesman, K. & van Straten, G. (1990), Set membership approach to identification and
prediction of lake eutrophication, Water Resources Research, 26: 2643–2652.

Kelly, K. S. & Krzysztofowicz, R. (1997), A bivariate meta-Gaussian density for use in
hydrology, Stochastic Hydrology and Hydraulics, 11: 17–31.

Kennedy, M. C. & O’Hagan, A. (2001), Bayesian calibration of mathematical models, J. Roy.
Statist. Soc., D63(3): 425–450.

Khu, S.-T. & Madsen, H. (2005), Multi-objective calibration with Pareto preference ordering.
An application to rainfall-runoff model calibration, Water Resources Research, 41, doi:
10.1029/2004WR003041.

Kirchner, J. W. (2006), Getting the right answers for the right reasons: linking measurements,
analyses and models to advance the science of hydrology, Water Resources Research, 42,
W03S04, doi. 10.1029/2005WR004362.

Kirchner, J. W., Feng, X. & Neal, C. (2001), Catchment-scale advection and dispersion as a
mechanism for fractal scaling in stream tracer concentrations, J. Hydrol., 254: 82–101.

Kirwan, B. (1994), A Guide to Practical Human Reliability Assessment, Taylor & Francis:
London.

Kitanidis, P. K. (1997), Introduction to Geostatistics: Applications in Hydrogeology,
Cambridge University Press: Cambridge.

Kleindorfer, G. B., O’Neill, L. & Ganeshan, R. (1998), Validation in simulation: various
positions in the philosophy of science, Management Science, 44: 1087–1099.
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Indexed terms in bold font will also be found in the glossary

@Risk  94, 267
adaptive forecasting  22
adaptive management  238, 244, 260
adjoint matrix  184, 200, 205
advection dispersion equation  45
aleatory uncertainties  24, 46
alpha(a)-cuts  72, 75, 94, 100, 102
ambiguity  23, 125
atmospheric models  9, 21, 33, 51, 172, 185,

193, 194, 204, 260
autocorrelation  41, 114, 116, 156, 174
auxiliary conditions  3, 7, 32, 36, 38, 46
auxiliary hypotheses  6
axiom  84

Bayes equation  56, 111, 152, 158, 164, 168,
188, 201, 217, 243

Bayes theorem  39, 152
Bayes theory: air quality models  112; Bayes’

factors  158; climate predictions  112,
158; ecological applications  112;
environmental reconstruction  112;
flood forecasting  112; flood frequency
112; groundwater models  112; input
calibration  114; likelihood measures
113, 153; rainfall-runoff models  112;
sea level rise  112; soil remediation  112;
water quality models  112

Bayes, Rev Thomas  39, 152
Bayes’ factors  158
Bayesian belief network  44, 56, 211, 217
Bayesian melding  159
Bayesian model averaging  159
Bayesian statistics  39, 152, 165
behavioural models  79, 121, 123, 127, 130,

133, 141, 166, 169, 259
belief measures  25, 56, 222
belief networks  44, 54, 56, 209, 217, 219
Ben-Haim, Yakov  24, 25, 41, 49, 207, 225,

245

Beowulf machines  96
Bertalanffy, Ludwig von  15, 271
beta distribution  54, 58, 94
Bhaskar, Roy  32, 35
bias  41, 56, 112, 116, 121, 127, 143, 146,

148, 154, 156, 163, 174, 203, 218
bias correction  203
bird populations and grazing  219
Birkenes, Norway  114, 259
Boscastle flood  21, 171
boundary conditions  37, 38, 42, 46, 49, 54,

83, 105, 120, 127, 132, 214, 226, 245,
254, 257, 261

Box-Cox transform  147

calibration  3, 8, 21, 49, 77, 104ff, 143, 159,
178, 214, 260, 267

Carlisle flood  229, 234
Cartwright, Nancy  19, 32, 36
chaotic systems  12, 16, 255
chemical equilibrium models  73
Chernobyl  66
climate change  5, 15, 17, 25, 29, 33, 46, 50,

83, 159, 207, 217, 226, 230, 254
climateprediction.net  50, 226
closed system  8
codes of practice  22, 236
coefficient of variation  63
coherence  143
commensurability  11, 17, 42, 193, 204, 226,

252
commensurability error  42, 124, 193, 252
communication of uncertainty; code of

practice  22, 236; flood risk  233;
NUSAP  237; translatory discourse  233

conceptual model  10, 26, 236
conditional independence  211
conditioning  40, 43, 49, 105, 111, 120, 127,

143ff, 164ff, 254
CONDOR  96, 268



confirmation  19, 32, 36, 39, 40, 46, 132,
152

copula  67, 86, 92, 95, 156, 267
correlation  97, 107, 109, 148, 156, 159,

178, 187, 198, 218
cost function  108, 146, 149, 151, 177, 184,

193, 197, 203, 213, 215, 265
cost-benefit analysis  209
covariance  194, 198, 202, 203
covariance matrix  185, 193, 198, 204, 218,

265
crisp set  24, 72, 84, 98, 100, 102, 142
critical rationalism  32
Crystal Ball  96, 267
cumulative density function  54, 58, 85, 9384
CXTFIT software  132, 146, 267
cyanobacterial blooms  80

Darcy’s law  10
data assimilation  16, 22, 110, 171, 196, 203;

Ensemble Kalman filter  185, 201;
Ensemble Kalman smoother  187, 203;
Extended Kalman filter  183, 200; gain
updating  180; Kalman filter  178, 199;
particle filter  188; recursive least
squares  176, 196; residual error model
179; variational methods  191, 203

De Finetti’s representation theorem  211
decision context  208
decision making; adaptive management  238,

244, 260; indifference  214, 222, 242,
243; maximin criterion  242; minimax
criterion  242; minimax regret criterion
242; multi-criteria  237, 243; normative
209, 212, 241; ownership  233;
precautionary principle  240;
preferences  209, 212, 213, 242, 248;
risk-based  212, 241; robust-satisficing
228, 238, 250; utility function  213,
221, 223, 243

decision support systems  223
decision tree  209, 213, 217, 221, 241, 251;

uncertainty methods  27; Wiki pages  27
deductive reasoning  18
defuzzification  72, 103, 142
degree of membership  24, 70, 72, 98, 102,

134, 142
Dempster-Shafer theory  221
density dependent sampling  58, 60, 122, 160
dispersion  7, 45, 72, 108, 120, 125
DYNIA  138

Earth Simulator  257
ECMWF  16, 172, 192, 194
effective parameter values  8, 10, 34, 42, 51,

115, 158, 224

engineering design  46
ensemble forecasts  16, 194, 227, 255
Ensemble Kalman filter  185, 201
Ensemble Kalman smoother  187, 203
ensembles of models  15, 159, 172, 187, 192,

202
environmental reconstruction  112
epistemic uncertainty  24, 208, 225, 237,

254; Knightian  25, 29, 46, 207, 225,
254

equifinality  15, 17, 106, 115, 119, 120, 129,
131, 133, 163, 214

error function  86
ethical standards  236
European Flood Alert System  256
eutrophication  77, 222, 239; Rupa Tal Lake,

Nepal  222
Evensen, Geir  186, 187, 203
evidential reasoning  221
expert opinion  216; combining information

217
explanatory depth  43
explanatory power  43
exponential distribution  54, 94
Extended Kalman filter  183, 200
extension principle  101

factor of safety  32, 46, 230
falsification  32, 38ff, 46, 124, 132
Feyerabend, Paul  32
First Guess at Time of observation  204
First Order Reliability Method  89
flood defence  23, 47, 209, 213, 215, 228

design  209
Info-gap theory  228, 230

flood forecasting  21, 112, 155, 174, 181,
190, 194, 215

flood frequency  103, 112, 134, 158, 229;
communication  233

flood risk management  23, 27, 236
flood warning  21, 175, 180, 215, 233;

communication  216, 233, 235
formal model  6, 11, 27, 32, 44, 120
forward uncertainty analysis  49, 53, 66, 73,

90, 105, 224, 252, 266
FRAMES-3MRA  223
freeboard  47, 230
fuzzy arithmetic  72
fuzzy measure  24, 70, 72, 98, 102, 134, 142
fuzzy rules  56, 103, 142
fuzzy set  24, 70ff, 100, 126; alpha(α)-cuts

72, 75, 94, 100, 102; arithmetic  72;
complement  100; defuzzification  72,
103, 142; degree of membership  24, 70,
72, 98, 102, 134, 142; extension
principle  101; possibility  25, 72, 99,
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102; support  72, 103; union  100, 103;
weighted mean  100

fuzzy variables  54, 72, 73, 100, 221

gain updating  181
gamma distribution  54
Gauss, Carl  198
Gauss Copula  95
Gauss distribution  40, 54, 66, 68, 86, 88,

110, 116, 126, 147, 178, 186, 197, 201
Gaussian error propagation  88
generalized extreme value distribution  230
generalized Pareto distribution  230
genetic algorithm  15
geostatistics  27, 70, 81, 159
Gibbs sampler  162
global carbon model  81
global circulation models (GCM)  44, 254
GLUE methodology  77, 80, 120ff, 164ff,

227, 247, 267; behavioural models  79,
121, 123, 127, 130, 133, 141, 166, 169,
259; combining likelihoods  168;
DYNIA  138; equifinality  15, 17, 106,
115, 119, 120, 129, 131, 133, 164, 214;
fuzzy measures  134, 142; informal
likelihood  165; likelihood measures
123, 166; limits of acceptability  124;
model rejection  123; prediction limits
165, 169

Global optimum  13, 106, 133
GRID-scale computing  96, 256
groundwater models  70, 107, 112, 134, 146,

214; Denmark  108, 119

HarmoniRiB  236
Hartley, Ralph  24
HBV catchment model  190
hedging  103
hermeneutics  32
heterogeneity  7, 10, 44, 259
heteroscedastic errors  116, 147, 155, 183
hindcasting  46, 50
history matching  3, 46, 105
Hurricane Katrina  229
hydraulic conductivity  7, 10, 72, 98, 108,

147
hydrograph separations  135
HYMOD catchment model  186
hyper-parameters  183
hypothesis testing  18, 22, 135, 256
hysteresis  10

identifiability problems  8, 14, 22, 138
ignorance  46, 105, 207, 221
importance sampling  66, 122, 133, 161, 164
imprecise probability  84, 91, 212, 219

imprecision  23, 98
incoherence  113, 143
incommensurability  9ff, 30, 124, 129, 258
independence  40, 85, 91, 94, 109, 154, 211,

243
indeterminacy  18, 23, 26
induction  20, 38, 103
influence diagrams  209
Info-Gap decision theory  24, 29, 47, 94,

207, 225, 238, 245; flood defence
design  228, 230; immunity functions
248; opportuneness function  225, 232,
246, 248; robustness function  225, 232,
246, 248; robust-satisficing  228, 238,
250

information content  8, 40, 112, 115, 122,
143, 148, 156, 166, 176, 252

initial conditions  2, 7, 16, 21, 32, 56, 172,
191, 194, 25428

innovation equation  177, 179, 204
input calibration  114
insensitive parameters  57, 78
instrumentalism  32, 35
interval data  221
interval uncertainty  91
inverse problem  105, 111
IPCC  15, 29, 48, 51, 83, 207, 226, 254

Jacobian matrix  149, 151, 183, 200, 205

Kalman filter  178, 199
Kalman gain  179, 181
Klir, George  24, 41, 70, 221
Knightian uncertainty  25, 29, 46, 227;

climate change  25, 227
knowability  44, 254
Kolmogorov-Smirnoff d statistic  79
Kriging  151
Kyoto Protocol  207, 212, 239

Lake Como  215; flood control  215;
multi-objective decision analysis  215

Laplace, Pierre-Simon  152, 155
Latin Hypercube sampling  60, 66, 214
lead time  171, 174, 176, 179, 194, 196, 200
Leaf River  186
least squares error correction  176, 183, 196
likelihood measure  12, 113, 117, 153, 165,

168, 227
Lindley, Dennis  41, 43, 112, 276
linear congruential generator  97
linguistic uncertainties  26
linguistic variables  24
local optimum  14
log normal distribution  54, 94, 230
log Pearson Type III distribution  230
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Lorenz model  16, 255, 269
Lynmouth flood  172

mapping: Flood Risk  233; Fuzzy Mapping
101, 134; Groundwater Quality  70;
Landscape to model space  11, 254

marginal distribution  68, 94, 130, 139, 158,
162, 165, 224

Markov Chain Monte Carlo (MC2)  66, 93,
115, 159, 189, 219; reversible jump
methods  3162

maximin criterion  242
measurement error  42, 110, 124, 150, 153,

215
mediating models  6, 38
Mersenne Twister  97, 267
meta-Gaussian transform  68, 147, 155
method of representers  206
Metropolis-Hastings algorithm  117, 160,

161, 219
minimax criterion  242
minimax regret criterion  242
Mississippi flood  229
model: ensembles  15, 159, 172, 187, 192,

202; optimal  114, 118, 120, 148, 248
model calibration  3, 8, 21, 49, 77, 104ff,

143, 159, 178, 214, 260, 267
model discrepancy function  41, 112, 141
model emulation  81; interpolation  81;

transfer functions  81
model falsification  38, 46
model rejection  38, 123, 141, 259
model space  11ff, 16, 42, 50, 56ff, 72, 76,

81, 90, 93ff, 102, 110, 115, 119, 122,
133ff, 141; sampling  50, 56ff, 93ff,
115, 119, 133ff, 159ff

model structural error  31, 41, 112, 120, 130,
141, 143, 191, 254

modeller uncertainty  25
modelling: as a learning process  3, 19, 46,

48, 141, 152, 167, 251, 254, 258ff
models of everywhere  257, 261
MODFLOW software  146, 148, 267
Monte Carlo simulation  58ff, 65, 72, 90,

92ff, 121, 186, 214, 224; distributions
94; Markov Chain  66, 93, 115, 159,
189, 219; parallel computers  95;
random number generators  96;
realisations  94, 98, 224; software  94,
267186

Morton, Adam  6, 38, 43, 259
multi-criteria decision analysis  237, 243
multiple working hypotheses  17, 18, 32

Nahe catchment, Rhine Basin  190
nomological system  19, 32, 33

non-additive errors  41
non-identifiability  14
non-informative prior  39, 152, 218
nonlinear regression  107ff, 145ff;

assumptions  109, 148; confidence
limits  149; cost function  109, 146;
prediction uncertainty  150;
regularisation  283; software  148, 267

nonlinearity  10, 44, 81, 184, 258
non-specificity  24
nonstationarity  7, 225, 275
non-uniqueness  14
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