
LOW-POWER PROCESSORS
AND SYSTEMS ON CHIPS

Christian Piguet

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Group, the academic division of T&F Informa plc.

Boca Raton London New York

CSEM
Neuchâtel, Switzerland

Copyright © 2006 Taylor & Francis Group, LLC

This material was previously published in Low Power Electronics Design. © CRC Press LLC 2004.

Published in 2006 by
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-6700-X (Hardcover)
International Standard Book Number-13: 978-0-8493-6700-7 (Hardcover)
Library of Congress Card Number 2005050175

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Piguet, Christian.
Low-power processors and systems on chips / Christian Piguet.

p. cm.
Includes bibliographical references and index.
ISBN 0-8493-6700-X (alk. paper)
1.Microprocessors – Power supply. 2. Systems on a chip. 3. Low voltage integrated circuits. I. Title.

TK7895.M5P54 2005
621.39’16—dc22 2005050175

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

6700_Discl.fm Page 1 Thursday, July 14, 2005 9:41 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Preface

Purpose and Background

The present book is a part of the book “Low-Power Electronics Design,” edited by Christian Piguet,
published in November 2004. It contains only the chapters that describe the design of low-power
processors and systems-on-chips from microprocessors, DSP cores, reconfigurable processors, memories,
systems-on-chip issues, applications such as ad hoc networks and finally embedded software. All the
other chapters, describing microelectronics technologies, transistor models, logic circuits and CAD tools,
are also included in another smaller book entitled “Low-Power CMOS Circuits: Technology, Logic Design
and CAD Tools.”

The goal of the present book “Low-Power Processors and Systems on Chips” is to cover all the aspects
of the design of low-power microprocessors in deep submicron technologies. Today, the power consump-
tion of microprocessors is considered as one of the most important problems for high-performance chips
as well as for portable devices. For the latter, it is due to the limited cell battery lifetime, while it is the
chip cooling for the first case. As a result, for any chip design, power consumption has to be taken into
account very seriously. Before 1993–1994, only speed and silicon area were important in the design of
integrated circuits, and power consumption was not an issue. Just after, it was recognized that power
consumption has to be taken into account as a main design parameter. Many papers and books were
written to describe all the first design methodologies to save power limited to circuit design. However,
today, we have to cope with many new problems implied by very deep submicron technologies, such as
leakage power, interconnect delays and robustness.

Today, we are close to designing one billion transistor microprocessor chips, down to 0.10

µ

m and
below, supplied at less than half a volt and working at some GHz. This is due to an unexpected evolution
of the microelectronics technologies and to very innovative microprocessor architectures. This evolution
is not yet at its end, so the next decade will also see some spectacular improvements in the design of
microprocessor circuits. However, it is sure that the microprocessor architecture evolution is not always
a revolution, but as pointed out by:

 “I was greatly amused few years ago — when companies were introducing pipelined microprocessors
— to learn that RISC technology enabled pipelining. That this could be responsible for pipelining,
which has existed for more than 30 years, illustrates the amnesia present in computer engineering”

Michael J. Flynn

Organization

The first part of the proposed book starts with a chapter about the design of low-power microprocessors
regarding the technology variations. The next three chapters present the design of Digital Signal Proces-

6700_C000.fm Page v Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

vi

sors (DSP) for embedded applications. They have to provide huge power computation as well as very
small power consumption. So many different DSP architectures have been proposed, well adapted to
some specific DSP algorithms, working in cooperation with hardware accelerators or based on reconfig-
urable hardware. Asynchronous design for microprocessors is also proposed to reduce power consump-
tion. In wireless communication, low-power baseband processors are a key issue for portable devices.
However, a significant part of the power consumption is due to program and data memories, and the
last three chapters of this first part present some techniques to reduce dynamic and static power at the
electrical level as well as at the system level while using cache memories or specific memory organization.

The second part of the book is a set of chapters describing several aspects of low-power systems on
chips (SoCs). They include hardware and embedded software aspects, such as operating systems (OS),
data storage in an efficient way and networks on chips. The next chapters present some applications
requiring very low power SoCs, such as ad hoc networks with very low-power radios as well as routing
strategies and sensing and actuation devices.

The third part of the book presents issues about embedded software, i.e., application software and
compilers. The development tools including compilers, retargetable compilers, and coverification tools
are presented in details.

The key benefits for readers will be this complete picture of what is done today for reducing power
for microprocessors, DSP cores, memories, systems on chips, and embedded software.

Locating Your Topic

Several avenues are available to access desired information. A complete table of contents is presented at
the front of the book. Each of the chapter is also preceded with an individual table of contents. Each
contributed chapter contains comprehensive references including books, journal and magazine papers,
and sometimes Web pointers.

Acknowledgments

The value of this book is completely based on the many excellent contributions of experts. I am very
grateful to them, as they spent a lot of time writing excellent texts without any compensation. Their sole
motivation was to provide readers excellent contributions. I would like to thank all these authors, as I
am sure this book will be a very good text for many readers and students interested in low-power design.
I am indebted to Prof. Vojin G. Oklobjzija for asking me to edit this book and trusting me with this
project. I would also like to thank Nora Konopka and Allison Taub of CRC Press for their excellent work
in putting all this material in the present form. It is the work of all that made this book.

6700_C000.fm Page vi Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

vii

The Editor

Christian Piguet

 was born in Nyon, Switzerland, on January 18, 1951. He
received the M. S. and Ph. D. degrees in Electrical Engineering from the
Ecole Polytechnique Fédérale de Lausanne, Switzerland in 1974 and 1981,
respectively.

He joined the Centre Electronique Horloger S.A., Neuchâtel, Switzer-
land, in 1974. He worked on CMOS digital integrated circuits for the
watch industry, on low-power embedded microprocessors as well as on
CAD tools based on a gate matrix approach. He is now Head of the Ultra-
Low-Power Sector at the CSEM Centre Suisse d’Electronique et de Micro-
technique S.A., Neuchâtel, Switzerland. He is presently involved in the
design and management of low-power and high-speed integrated circuits
in CMOS technology. His main interests include the design of very low-
power microprocessors and DSPs, low-power standard cell libraries, gated
clock and low-power techniques as well as asynchronous design.

He is Professor at the Ecole Polytechnique Fédérale Lausanne (EPFL), Switzerland, and also lectures
in VLSI and microprocessor design at the University of Neuchâtel, Switzerland and in the ALaRI master
program at the University of Lugano, Switzerland. He is also a lecturer for many postgraduates courses
in low-power design.

Christian Piguet holds about 30 patents in digital design, microprocessors and watch systems. He is
author and coauthor of more than 170 publications in technical journals and of books and book chapters
in low-power digital design. He has served as reviewer for many technical journals. He also served as
Guest Editor for the July 1996 JSSC Issue. He is a member of steering and program committees of
numerous conferences and has served as Program Chairman of PATMOS’95 in Oldenburg, Germany,
co-chairman at FTFC’99 in Paris, Chairman of the ACiD’2001 Workshop in Neuchâtel, Co-Chair of
VLSI-SOC 2001 in Montpellier and Co-Chair of ISLPED 2002 in Monterey. He was Chairman of the
PATMOS executive committee during 2002. He was Low-Power Topic Chair at DATE 2004 and 2005.

Christian Piguet, CSEM SA, Jaquet-Droz 1, 2000 Neuchâtel, Switzerland

Christian.piguet@csem.ch

6700_C000.fm Page vii Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

xiii

Contents

I

Low-Power Processors and Memories

1 Techniques for Power and Process Variation Minimization..1-1

Lawrence T. Clark and Vivek De

2 Low-Power DSPs ..2-1

Ingrid Verbauwhede

3 Energy-Efficient Reconfigurable Processors..3-1

Raphaël David, Sébastien Pillement, and Olivier Sentieys

4 Macgic, a Low-Power Reconfigurable DSP ..4-1

Flavio Rampogna, Pierre-David Pfister, Claude Arm, Patrick Volet,
Jean-Marc Masgonty, and Christian Piguet

5 Low-Power Asynchronous Processors ...5-1

Kamel Slimani, Joao Fragoso, Mohammed Es Sahliene, Laurent Fesquet,
and Marc Renaudin

6 Low-Power Baseband Processors for Communications...6-1

Dake Liu and Eric Tell

7 Stand-By Power Reduction for SRAM Memories ...7-1

Stefan Cserveny, Jean-Marc Masgonty, and Christian Piguet

8 Low-Power Cache Design..8-1

Vasily G. Moshnyaga and Koji Inoue

9 Memory Organization for Low-Energy Embedded Systems ...9-1

Alberto Macii

II

Low-Power Systems on Chips

10 Power–Performance Trade-Offs in Design of SoCs ..10-1

Victor Zyuban and Philip Strenski

11 Low-Power SoC with Power-Aware Operating Systems Generation...........................11-1

Sungjoo Yoo, Aimen Bouchhima, Wander Cesario, Ahmed A. Jerraya,
and Lovic Gauthier

12 Low-Power Data Storage and Communication for SoC...12-1

Miguel Miranda, Erik Brockmeyer, Tycho van Meeuwen, Cedric Ghez,
and Francky Catthoor

6700_bookTOC.fm Page xiii Thursday, July 14, 2005 12:05 PM

Copyright © 2006 Taylor & Francis Group, LLC

xiv

13 Networks on Chips: Energy-Efficient Design of SoC Interconnect.............................13-1

Luca Benini, Terry Tao Ye, and Giovanni de Micheli

14 Highly Integrated Ultra-Low Power RF Transceivers for Wireless
Sensor Networks ..14-1

Brian P. Otis, Yuen Hui Chee, Richard Lu, Nathan M. Pletcher,
Jan M. Rabaey, and Simone Gambini

15 Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks15-1

Morteza Maleki and Massoud Pedram

16 Modeling Computational, Sensing, and Actuation Surfaces..16-1

Phillip Stanley-Marbell, Diana Marculescu, Radu Marculescu,
and Pradeep K. Khosla

III

Embedded Software

17 Low-Power Software Techniques..17-1

Catherine H. Gebotys

18 Low-Power/Energy Compiler Optimizations..18-1

Ulrich Kremer

19 Design of Low-Power Processor Cores Using a Retargetable Tool Flow19-1

Gert Goossens, Peter Dytrych, and Dirk Lanneer

20 Recent Advances in Low-Power Design and Functional Coverification
Automation from the Earliest System-Level Design Stages ...20-1

Thierry J.-F. Omnès, Youcef Bouchebaba, Chidamber Kulkarni,
and Fabien Coelho

6700_bookTOC.fm Page xiv Thursday, July 14, 2005 12:05 PM

Copyright © 2006 Taylor & Francis Group, LLC

ix

Contributors

Claude Arm

CSEM
Neuchâtel, Switzerland

Luca Benini

University of Bologna
Bologna, Italy

Youcef Bouchebaba

University of Nantes
Nantes, France

Aimen Bouchhima

TIMA Laboratory
Grenoble, France

Erik Brockmeyer

IMEC
Leuven, Belgium

Francky Catthoor

IMEC
Leuven, Belgium
and
Katholiek University
Leuven, Belgium

Wander Cesario

TIMA Laboratory
Grenoble, France

Yuen Hui Chee

University of California–Berkeley
Berkeley, California

Lawrence T. Clark

Arizona State University
Tempe, Arizona

Fabien Coelho

Ecole des Mines
Paris, France

Stefan Cserveny

CSEM
Neuchâtel, Switzerland

Raphaël David

ENSSAT/University of Rennes
Lannion, France

Vivek De

Intel Labs
Santa Clara, California

Peter Dytrych

Philips Digital Systems Laboratories
Leuven, Belgium

Laurent Fesquet

TIMA Laboratory
Grenoble, France

Joao Fragoso

TIMA Laboratory
Grenoble, France

Simone Gambini

Universita di Pisa
Pisa, Italy

6700_C000.fm Page ix Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

x

Lovic Gauthier

FLEETS
Fukuoka, Japan

Catherine H. Gebotys

University of Waterloo
Waterloo, Ontario, Canada

Cedric Ghez

IMEC
Leuven, Belgium

Gert Goossens

Target Compilers Technologies
Leuven, Belgium

Koji Inoue

Fukuoka University
Fukuoka, Japan

Ahmed A. Jerraya

TIMA Laboratory
Grenoble, France

Pradeep K. Khosla

Carnegie Mellon University
Pittsburgh, Pennsylvania

Ulrich Kremer

Rutgers University
Piscataway, New Jersey

Chidamber Kulkarni

University of California–Berkeley
Berkeley, California

Dirk Lanneer

Philips Digital Systems Laboratories
Leuven, Belgium

Dake Liu

Department of Electrical Engineering
Linköping University
Linköping, Sweden

Richard Lu

University of California–Berkeley
Berkeley, California

Alberto Macii

Politecnico di Torino
Torino, Italy

Morteza Maleki

University of Southern California
Los Angeles, California

Diana Marculescu

Carnegi Mellon University
Pittsburgh, Pennsylvania

Radu Marculescu

Carnegie Mellon University
Pittsburgh, Pennsylvania

Jean-Marc Masgonty

CSEM
Neuchâtel, Switzerland

Tycho van Meeuwen

IMEC
Leuven, Belgium

Giovanni de Micheli

Stanford University
Stanford, California

Miguel Miranda

IMEC
Leuven, Belgium

Vasily G. Moshnyaga

Fukuoka University
Fukuoka, Japan

Thierry J.-F. Omnès

Philips Semiconductors
Eindhoven, The Netherlands

6700_C000.fm Page x Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

xi

Brian P. Otis

University of California–Berkeley
Berkeley, California

Massoud Pedram

University of Southern California
Los Angeles, California

Pierre-David Pfister

CSEM
Neuchâtel, Switzerland

Christian Piguet

CSEM & LAP-EPFL
Neuchâtel, Switzerland

Sébastien Pillement

ENSSAT/University of Rennes
Lannion, France

Nathan M. Pletcher

University of California–Berkeley
Berkeley, California

Jan M. Rabaey

University of California–Berkeley
Berkeley, California

Flavio Rampogna

CSEM
Neuchâtel, Switzerland

Marc Renaudin

TIMA Laboratory
Grenoble, France

Mohammed Es Sahliene

TIMA Laboratory
Grenoble, France

Olivier Sentieys

ENSSAT/University of Rennes
Lannion, France

Kamel Slimani

TIMA Laboratory
Grenoble, France

Phillip Stanley-Marbell

Carnegie Mellon University
Pittsburgh, Pennsylvania

Philip Strenski

IBM Watson Research Center
Yorktown Heights, New York

Eric Tell

Linköping University
Linköping, Sweden

Ingrid Verbauwhede

University of California–Los Angeles
Los Angeles, California

Patrick Volet

CSEM
Neuchâtel, Switzerland

Terry Tao Ye

Stanford University
Stanford, California

Sungjoo Yoo

TIMA Laboratory
Grenoble, France

Victor Zyuban

IBM Watson Research Center
Yorktown Heights, New York

6700_C000.fm Page xi Thursday, July 14, 2005 12:03 PM

Copyright © 2006 Taylor & Francis Group, LLC

I

-1

I

Low-Power Processors

and Memories

1 Techniques for Power and Process Variation Minimization..1-1

Lawrence T. Clark and Vivek De

2 Low-Power DSPs ..2-1

Ingrid Verbauwhede

3 Energy-Efficient Reconfigurable Processors..3-1

Raphaël David, Sébastien Pillement, and Olivier Sentieys

4 Macgic, a Low-Power Reconfigurable DSP ..4-1

Flavio Rampogna, Pierre-David Pfister, Claude Arm, Patrick Volet,
Jean-Marc Masgonty, and Christian Piguet

5 Low-Power Asynchronous Processors ...5-1

Kamel Slimani, Joao Fragoso, Mohammed Es Sahliene, Laurent Fesquet,
and Marc Renaudin

6 Low-Power Baseband Processors for Communications...6-1

Dake Liu and Eric Tell

7 Stand-By Power Reduction for SRAM Memories ...7-1

Stefan Cserveny, Jean-Marc Masgonty, and Christian Piguet

8 Low-Power Cache Design..8-1

Vasily G. Moshnyaga and Koji Inoue

9 Memory Organization for Low-Energy Embedded Systems ...9-1

Alberto Macii

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1

-1

1

Techniques for Power
and Process Variation

Minimization

1.1 Introduction ..

1-

1
1.2 Integrated Circuit Power ..

1-

2

Active Power and Delay • Leakage Power

1.3 Process Selection and Rationale...

1-

3

Effective Frequency

1.4 Leakage Control via Reverse Body Bias.............................

1-

5

RBB on a 0.18-

µ

M IC • Circuit Configuration • Layout •
Regulator Design • Limits of Operation • Measured Results

1.5 System Level Performance ..

1-

11

System Measurement Results

1.6 Process, Voltage, and Temperature Variations.................

1-

13

Process Variation • Supply Voltage Variation • Temperature
Variation

1.7 Variation Impact on Circuits and
Microarchitecture ..

1-

16

Design Choice Impact • Microarchitecture Choice Impact

1.8 Adaptive Techniques and Variation Tolerance

1-

17

Body Bias Control Techniques • Adaptive Body Bias and Supply
Bias

1.9 Dynamic Voltage Scaling ..

1-

20

Clock Generation • Experimental Results

1.10 Conclusions ...

1-

23
References ...

1-

23

1.1 Introduction

For more than a decade, integrated circuit (IC) power has been steadily increasing due to higher inte-
gration and performance enabled by process scaling. As shrinking transistor dimensions are fabricated,
and as the absolute value of the dimensions diminish, greater device variations must be addressed. Until
recently, increased power was driven primarily by active switching power. Threshold voltages must be
decreased to maintain performance at the lower supply voltages required by thinner oxides, however,
raising drain to source leakage exponentially. Steeper doping gradients and higher electric fields increase
other leakage components, giving rise in sub-0.25-

µ

m generations to DC leakage currents that may limit
overall power and performance in future chips. This comes on top of still increasing active power
dissipation, driven by architectural changes such as greater parallelism and deeper pipelining. The latter

Lawrence T. Clark

Arizona State University

Vivek De

Intel Labs

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1

-2

Low-Power Processors and Systems on Chips

implies fewer gates per stage and, in turn, requires more aggressive circuit techniques such as domino,
which can also increase active power. Having fewer logic stages increases the susceptibility to process
variations. Finally, as scaling requires lower voltages, in-die and system-level voltage variations are also
increasingly problematic.

The focus of this chapter includes the design implications of increasing device variation and leakage.
The mechanisms are a direct result of basic physics and will continue to grow in importance over time,
requiring design effort to mitigate them. Variation in microprocessor frequency has been dealt with by
“speed binning,” whereby faster dies are separated and sold at a premium. Dies with inadequate speed
or excessive standby current are discarded. These yield considerations are important for robust design.
We also discuss design techniques, notably the application of body bias and supply voltage adjustment,
which can help deal with both variation and average leakage, as well as active power. Examples from
fabricated designs demonstrating the efficacy of the techniques are discussed.

1.2 Integrated Circuit Power

Increasing leakage currents are a natural by-product of transistor scaling and comprise a significant
portion of the total power since the 0.25-

µ

m-process generation. By the 90-nm technology node, it can
contribute over a fifth of the total IC power on high-performance products [1]. The profusion of battery-
powered “hand-held” devices introduced in recent years (e.g., cell phones and personal digital assistants)
has made power management a first-order design consideration. These sections focus on circuit design
approaches to alleviate leakage power using reverse body bias (RBB) “Drowsy” mode when an IC is in
a standby mode and later, in Section 18.9, optimizing the active power by dynamic voltage management
(DVM). Although other implementations are briefly discussed, the bulk of the discussion describes the
specific implementation on the 0.18-

µ

m XScale

microprocessor cores intended for system-on-chip (SoC)
applications [2].

1.2.1 Active Power and Delay

The total power of a static CMOS integrated circuit is given by

P

tot

 = P

dyn

 + P

static

 + P

short-circuit

(1.1)

representing the dynamic power (i.e., that due to charging and discharging capacitances during switching

)

the static leakage power, and the “short-circuit” or crowbar power due to both P and N transistors being
on simultaneously during a switching event, respectively. The latter term tracks with the active power
and is generally on the order of 5% or less for well-designed circuits. It is typically ignored, as it will be
here. The dynamic power of a digital circuit follows the well-known

P

dyn

 =

a

/2 C V

dd
2

 F (1.2)

where C is the switched capacitance, V

dd

 is the power supply voltage, F is the operating frequency, and

a

 is the switching activity factor measured in transitions per clock cycle. Leveraging the V

dd
2

 dependency
is consequently the most effective method for lowering digital system power; however, the switching
speed of a digital circuit with a fixed input slope and fixed load is given by Chen and Hu [3]:

T

delay

= Κ

 V

dd

/(V

dd

 – V

t

)

α

(1.3)

where

α

* is typically 1.1 to 1.5 for modern velocity saturated devices, tending toward the former for
NMOS and the latter for PMOS [4], and K is a constant depending on the process. To first order, this

*

 α

 is typically used as in the literature.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization

1

-3

delay dependency on voltage can be treated as linear. The concept of DVM is to limit the V

dd

 and frequency
such that the application latency constraints are met, but the energy to perform the application function
is minimized by following the square law dependency of Equation (1.2) instead of linearly tracking F.
The chosen frequency F, representing the reciprocal of the worst-case path delay, is constrained by
Equation (1.3) for a given supply voltage.

1.2.2 Leakage Power

Leakage power sources are numerous [5], with the primary contributor historically being transistor off
state drain to source leakage (

I

off

). For modern processes having gate dielectric thicknesses under 3 nm,
gate leakage I

gate

 is becoming a larger contributor but is generally smaller than

I

off

, particularly at high
temperatures, given the stronger temperature dependency of 8–12

×

/100

°

C for

I

off

 vs. approximately 2

×

/
100

°

C for I

gate

.

I

off

 increases on scaled transistors because, to maintain performance,

V

t

 must be lowered
to compensate for decrease in V

dd

. This increases the leakage according to

(1.4)

where

S

 is the subthreshold swing given by

(1.5)

where

k

 is the Boltzmann constant,

T

 is the temperature in Kelvin,

q

 is the elementary charge,

C

D

 is the
depletion layer capacitance, and

C

OX

is the gate oxide capacitance. Noting that

C

D

 is nonvanishing, the
subthreshold swing parameter

S

 is essentially a fixed parameter for Si MOSFETs, typically 80–100 mV/
decade depending upon the process at room temperature. Referring to Equation (1.4), it is obvious that
lowering

V

t

 affects the

I

off

 exponentially.
For gate oxide thicknesses below 3 nm, quantum mechanical (direct band-to-band) tunneling current

becomes significant. This leakage is extremely voltage dependent, increasing approximately with V

3

 [6].
It also increases dramatically with decreasing thickness (e.g., increasing 10

×

 for a change from 2.2 nm
to 2.0 nm [7]). Gate-induced drain leakage (GIDL) at the gate-drain edge is important at low current
levels and high applied voltages. It is most prevalent in the NMOS transistors where it is about two orders
of magnitude greater than for PMOS devices. For a gate having a 0-V bias with the drain at V

dd

, significant
band bending occurs in the drain region, allowing electron-hole pair creation. Essentially, the gate voltage
attempts to invert the drain region, but because the holes are rapidly swept out, a deep depletion condition
occurs [8]. The onset of this mechanism can be lessened by limiting the drain to gate voltage. It can be
exacerbated by high source or drain to body voltages. Diode area leakage components from both the
source-drain diodes and the well diodes are generally negligible with respect to

I

off

 and GIDL components.
This is also improved by compensation implants intended to limit the junction capacitance. However,
transistor scaling requires increasingly steep (often halo) doping profiles increasing band-to-band tun-
neling (BTBT) currents at the drain to channel edge, particularly as the drain to bulk bias is increased.
This component may also limit use of RBB on sub-0.18-

µ

m processes. Controlling these leakages will
be key to effective use of body biasing and will require careful circuit design as well as appropriate
transistor architecture.

1.3 Process Selection and Rationale

Thinner oxides are required to allow transistor length scaling while maintaining channel control. These
scaled oxides require lower supply voltages to limit electric fields to a reliable value. Additionally, to
maintain performance at lower voltage by retaining gate overdrive

V

dd

 –

V

t

 it is necessary to lower

V

t

. For

I eoff
V St∝ − /(/ln)10

S
kT

q

C

C
D

OX

= +

(ln)10

1

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1

-4

Low-Power Processors and Systems on Chips

handheld battery powered devices,

V

t

 must be chosen to balance standby power with active power dissi-
pation for maximum battery life. Absent clever design to mitigate leakage, the duty cycle between standby
and active operation for the given application determines the optimal threshold voltage [9]. This leads to
considerable divergence in future processes and considerable power constraints to scaling processes used
for portable devices [10]. One of the purposes of circuit techniques to limit active and standby power is
to help widen the allowable

V

t

 and process performance range. Handheld battery lifetime requires IC
standby currents below 500

µ

A requiring total leakage under 100 pA/

µ

m of transistor width. This implies
a

V

t

 over 500 mV, independent of supply voltage, increasing active power at the same performance level.
Figure 1.1 plots the simulated power vs. performance for a microprocessor operating at different

frequencies on processes with different

V

t

, assuming complete flexibility in the supply voltage or DVM
(i.e., the voltage is chosen such that it is just sufficient to meet the processor frequency). The curves are
based on the transistor performance metric described in Thompson [11] and normalized to the micro-
processor performance with

V

t

 of 390 mV (solid line in both plots) and 500 mV (dashed line in both
plots). Figure 1.1(a) emphasizes the active power, which depicts the greater overall performance available
from the lower

V

t

 process. Note the improved power vs. the linear characteristic that would be obtained
by scaling frequency alone. Figure 1.1(b) plots the log scale power for the low frequency ranges. At low
frequencies, it is assumed that the power supply voltage cannot be scaled below a minimum value due
to circuit functionality constraints. This value is 0.6 V for the 390-mV and 0.7 V for the 500-mV processes.
Below the minimum operating voltage, the clock frequency is lowered resulting in a linear, instead of
quadratic power savings. The break between square law and linear behavior is evident in the log scale
plot of Figure 1.1(b). It is apparent that the lower

V

t

 process has a higher leakage, as indicated by the
zero frequency point, while it has a lower active power at the same frequency. It is also capable of higher
overall performance. The lower active power is the result of reaching a given performance at a lower
voltage, and its benefit was presented in Equation (1.2). The dotted line in Figure 1.1(b) demonstrates
that with the addition of RBB Drowsy mode, the higher-performance process is power competitive at
low effective frequencies with the slower process. The methods for achieving this comprise Section 1.4
and Section 1.5.

Nonstate-retentive sleep modes also incur power penalties. The present logical state must be saved
before sleep and restored upon resuming active operation, requiring a low standby power storage medium.
The data movement requires time and power that must be amortized by the leakage power savings
achieved in the time in sleep. This can preclude frequent use. If the storage is off-chip, the higher IO
voltages and off-chip capacitances increase the power penalty. A number of schemes, ranging from
“greedy” to timeout based, have been proposed for determining when to enter a low-power state. The
key considerations are achieving low energy cost to entry and exit, as well as low latency to awaken and
respond to input.

1.3.1 Effective Frequency

For compute intensive applications, the active power dominates as illustrated in Figure 1.1. The leakage
power is of interest when the compute demands are modest, for instance when a processor is waiting for
user input or in a cell phone, in the intervals between contacts with the cell. The former can be expected
to be multiple times per second, and the latter less than once per second [12]. The total computed cycles
per second is very low, although the frequency of the part might be higher as described next. Here, the
term “effective frequency” is used to mean the number of cycles of computation accomplished over a
given period. The actual frequency may vary during that time, according to whether the processor is
running or is in a low-power Drowsy mode. Effective frequency is a measure of the average actual work
performed by the processor. For example, assume that the processor receives interrupts at an average
frequency determined by the application, for instance, from keystrokes on a keypad. Each interrupt
awakens the processor where it computes for a number of cycles required to process the input (e.g., add
it to the display buffer). The computational requirements might be quite different depending on the type
of interrupt that is being serviced — it may be a command to sort mail messages. The effective frequency

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization

1

-5

is then the total long-term average number of useful clocks per unit time (i.e., the number of instructions
per interrupt times the number of interrupts). For example, with a 100-Hz interrupt rate and 100,000
instructions per interrupt, the processor will have an effective frequency of (100 Hz * 100(10)

3

) = 10
MHz, although the clock rate may be much higher (e.g., 300 MHz).

1.4 Leakage Control via Reverse Body Bias

RBB has been suggested for leakage control for some time [13,14]. Essentially, this leverages the well-
known body effect, that raises the

V

t

 of a transistor having a source voltage above the bulk, as commonly
occurs in the upper transistors of an NMOS stack during switching. Although normally a designer’s bane
that reduces circuit speed, it can be used to advantage because

(1.6)

(a)

(b)

FIGURE 1.1

(a) The effect of

V

t

 on power vs. frequency, and (b) the low frequency, leakage dominated power levels.
In the upper plot, the low

V

t

 with Drowsy is coincident with the non-Drowsy.

P
ow

er
 (

m
W

)

8006004002000

700

600

500

400

300

200

100

0.1

Frequency (MHz)

Vt = 390 mV

Vt = 500 mV

P
ow

er
 (

m
W

)

200150100500

100

10

1

0.1

Frequency (MHz)

Vt = 390 mV

Vt = 390 mV
with Drowsy

Vt = 500 mV

V V V K V Vt FB s bs s bs ds= + − − − −γ φ φ η2()

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1

-6

Low-Power Processors and Systems on Chips

where

γ

 is the body effect coefficient, which, along with

K

2

 models nonuniform doping [15]. These
coefficients represent the efficacy of a change in the source to body voltage in modulating

I

off

.

η

 is the
drain induced barrier lowering (DIBL) coefficient, which represents the ability to Control

V

t

 by applying
drain bias. Drain and body bias also affect the subthreshold slope.

RBB to modulate leakage has a number of advantages:

1. It is a circuit design approach.
2. It does not adversely affect the active performance.
3. It is state retentive.

The first point allows this approach to be utilized on any process. Longer channel lengths generally
have a stronger body effect [16], under designer control at the resolution of the drawing grid. The second
assumes that the implementation does not incur a significant IR drop or alternatively, it allows improved
active power at the same standby current level vs. a device not so equipped. The final point is the advantage
over “sleep” modes where the power supply is completely disconnected. With RBB, data is not lost when
entering and exiting the low-power state — important in that it allows the power control to be transparent
to the operating system and application software and saves significant energy. It is frequently difficult to
predict

a priori

 how long a device will be in a standby state, particularly when this depends upon user
interaction. Retaining precisely the state of the IC before the entrance, as well as minimizing any power
penalty to enter or exit the low-power mode makes the mode usable more frequently.

Body bias was used to limit leakage on a 1.8 V microprocessor implemented in a dual-well 0.25-

µ

m
process described in Mizuno et al. [17]. This device used separate supplies for both the NMOS and PMOS
bulk connections. A strong negative bias greater than 1 V was applied to the NMOS bulk via a charge
pump and the PMOS bulks (N wells) were connected to the 3.3-V power supply rail during standby.
Hundreds of local switches, distributed across the device, apply the body bias and provide a low imped-
ance bulk connection, at the expense of routing the controls and supplies throughout the layout. This
strong biasing is inappropriate for smaller geometry processes, where more abrupt doping and thinner
oxides increase second order effects. This implementation of RBB increases GIDL, which can thus be the
limiting leakage mechanism. Direct BTBT leakage in the source diodes of sub-130-nm halo doped
transistors can be increased to also limit total standby current by reverse biasing the junctions. Conse-
quently, to use RBB effectively on processes beyond 0.25

µ

m, it will need to be comprehended in the
transistor design and the RBB operation should use the lowest effective voltages.

1.4.1 RBB on a 0.18-

µ

M IC

The Intel 80200 microprocessor is an implementation of the XScale microarchitecture implemented in
a 0.18-

µ

m process. Although sold commercially as a high-performance embedded device, it was also
used as a development vehicle to develop Drowsy mode [18] circuitry and techniques. This mode utilizes
RBB as well as V

dd

 – V

ss

 collapse to limit leakage power, achieved via large supply gating transistors that
allow the source to be raised. They also allow full collapse of the core voltage, which produces the nonstate-
retentive “sleep” mode, essentially the classical multi-threshold CMOS (MTCMOS) approach to leakage
control [19]. The manner in which RBB is applied, utilizing lower source to bulk voltages while collapsing
the Vdd – Vss, alleviates second order components. Drowsy mode retains state in all storage elements on
the die and is exited on any interrupt. Sleep mode is not state-retentive, requiring a “cold-start.” Conse-
quently, asserting reset instead of an interrupt terminates it. The Drowsy implementation and results are
described in detail in the following sections.

1.4.2 Circuit Configuration

The circuit configuration is depicted in Figure 1.2. Power pads are on the Vdd, Vdd(IO), and Vss(GND) pins.
Large N channel devices M1 provide Vss to the active circuitry during active operation. Simultaneously,
large P channel devices M2 provide clamping of the N well (Vdd(SUP)) providing the PMOS bulk connection

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-7

to Vdd. These transistors must be thick oxide because they are exposed to high voltages as indicated —
here, the thick gate IO transistors are used. The PMOS clamping transistors carry no DC current and
are 15 mm in total width. The NMOS clamp transistors carry the entire power supply current during
operation and must do so with minimal IR drop. They are 85 mm in total width, which is less than 2%
of the total transistor width of the microprocessor. This high ratio between the rest of the core is indicative
of the low activity factor achieved by the design and relies on adequate on-die decoupling capacitance
to provide instantaneous current demand. To this end, total of 55 nF of decoupling capacitance was
interspersed among the active circuitry.

For sleep as well as Drowsy modes, the transistors comprising M1 are in cutoff. In the former cases,
the core Vss is allowed to float to Vdd, and power consumption is dominated by the leakage current through
the NMOS clamp devices. The clamp devices should be high Vt to minimize this current because they
do not have body bias applied. In Drowsy mode, to apply body bias to the NMOS devices, Vss is allowed
to rise toward Vdd but regulated to avoid losing state. Raising the NMOS source voltage instead of
decreasing the NMOS body voltage is advantageous because it does not require a twin-tub or triple-well
process, nor charge pump circuitry. It also lowers the Ioff by the η coefficient of Equation (1.6) as well as
limiting GIDL components because drain to bulk voltage is not increased. Because gate current is strongly
affected by the drain to gate voltage, it is substantially reduced on processes with thin oxides. Another
regulator provides a high voltage to the Vdd(SUP) node, to reverse body bias the PMOS transistors. In the
static random access memory (SRAM), the word-lines are driven to Vss(GND) as presented in Figure 1.2.
This places a negative gate-to-source bias on the SRAM pass devices as presented, lowering the SRAM
current a further 40%. This may not be desirable for thin oxides as it can increase the gate leakage
component beyond the Ioff savings.

Simulated waveforms of the Vss and Vdd(SUP) nodes are plotted in Figure 1.3, at 110°C. Minimal
overshoot can be discerned in the figure. In Drowsy mode, the Vss node rises to approximately 650 mV,
with some PVT variation. Vdd(SUP) is driven to 750 mV above Vdd. At room temperature, the Vss node
takes approximately half an msec to rise because it is pulled toward Vdd solely by leakage. The advantage
of this passive Vss rise is that movement of this highly capacitive node is limited if Drowsy is exited soon
after entrance, limiting the power cost of using this mode. No energy is explicitly expended to enter the
mode because it achieved by transferring charge from the core nodes to the Vss node, instead of supplying

FIGURE 1.2 Circuit configuration for RBB Drowsy mode.

Den#

M3

M2

M1
M5

M4

WL

BL# BL

Den#

De

Core
Logic

Vss(GND)

Vdd(SUP) Vdd

Vss

Vdd(I/O)

Vref

VPref

SRAM Cell

+
−

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-8 Low-Power Processors and Systems on Chips

it from the IC power pins. This is not possible on the PMOS bulk node. This regulator circuit is designed
with limited drive, as that node is less capacitive at 5 nF, and with low current demand, generally just
the diode contributions of the N-well and PMOS source-and-drain diodes.

1.4.3 Layout

Application of any body bias requires separate bulk and source supplies for both P and N transistors.
This design opts for minimal intrusion due to the separate body connections. The power supply clamping
transistors are provided in the pad ring only, occupying otherwise empty (or IO decoupling capacitor)
space within the supply pins. Because the core was over 4000 µm per side, circuits could be over 2000
µm from the nearest clamp. Additionally, the bulk connections are routed sparsely through the logic
circuitry, limiting the density impact. This is feasible because these provide no DC power, making
resistance less important. A two-layer routing grid with 50 µm between bulk supplies was utilized. The
substrate is highly doped, providing an effective short circuit between Vss (ground) rails and limiting noise
due to switching. N-wells are intentionally contiguous, forming a grid at the substrate level for Vdd(SUP).

1.4.4 Regulator Design

The Vss regulator comprises Figure 1.4(a) and strictly limits the regulator overhead power. The output
voltage must be essentially constant over 3 decades of current demand at all process, temperature, and
voltage (P, V, T) corners (see Section 1.6). At the high end, when entering the low-power state directly
from high frequency operation the die may be hot, where MOS drain to source leakage may be over 100×
the RBB low temperature leakage and must be provided to avoid collapsing logic state. As expected, the
amplifier compares the voltage on Vss with a reference voltage. A PMOS stack simulating a resistor string,
which allows it to vary with power supply variations, generates this reference. In this manner, higher
supplies allow larger body bias — this flexibility was desirable for a test device. The resistor stack current
is under 100 nA and is continuously biased in all modes. The regulator is a three-stage amplifier with
an NMOS output transistor M5. Three stages were required due to the bias conditions and low current
requirements to keep the regulator power consumption less than 5% of the total standby power at the
typical process corner. The output transistor is sized to provide the full IC leakage current at high
temperature and the worst-case process corner. The first stage is a differential operational transductance
amplifier (OTA), while the second buffer stage provides increased voltage output range and current drive
to the gate of M5. The first and second stages combined use less than 4 µA at typical operating conditions.

FIGURE 1.3 Simulated Vss and Vdd(SUP) waveforms at 110°C.

0.00060.0004 0.00050.0003

Time (s)

0.00020.00010

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

S
up

pl
y

vo
lta

ge
 (

V
)

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-9

At such low current levels, gain is limited, which improves stability, as discussed next. Slew rate also
suffers, which makes the step response poor. To address this, the buffer stage includes the diode connected
transistor M6, which, combined with proper sizing keeps transistor M5 from completely cutting off,
except in sleep mode. The enables are evident in the figure.

Stability must be ensured at all P, V, T conditions and overshoot on Vss must be limited. Entering the
body bias state, which is essentially a voltage step on Vss represents the worst-case stability condition. Adequate
phase margin ensures stability of the system comprised of the regulator and Vss node on the IC. Overshoot
on Vss, even momentarily, can cause state loss. The circuit poles may be approximated by the dominant
terms to simplify the analysis. The Vss node is controlled to first order by the output conductance of transistor
M5, while the amplifier pole is dominant. The former pole is at approximately 670 kHz calculated from the
small signal parameters, while the latter is at 9 kHz. The low gain of the amplifier produces a low unity gain
bandwidth and greater than 60 degrees of phase margin at the typical process. Essentially, the highly capacitive
Vss node low-pass characteristic does not require high amplifier speed for stability.

To back-bias the PMOS devices, two schemes may be used. At low IO voltages (e.g., 1.8V), the PMOS
transistor bulk node may be directly connected to this voltage via M3. For higher IO voltages diminishing
leakage reduction does not offset the greater charge switched in raising the well voltage. Therefore, in
this case, this voltage is regulated. The open loop regulator is depicted in Figure 1.4(b), which derives a
constant voltage from the IO supply Vdd(IO). It is worth noting that as long as circuit configurations that
accumulate the gates of the PMOS transistors are avoided, high voltages may be applied to the bulk
without oxide stress or damage. The regulator is a bootstrapped voltage reference driving a wide NMOS
vertical drain transistor in a source follower configuration as presented in Figure 1.4(b). This device (M4

(a)

(b)

FIGURE 1.4 Vss (a) and Vdd(SUP) (b) supply regulation circuits. All NMOS share substrate Vss(SUP), and all PMOS in
(a) have Vdd and in (b) Vdd(SUP) body connections.

M4

Vdd Vdd(SUP)

Vbias Reset#

VPref

M5

M6

Vss

Vdd

Vref

Vbias

Rego

Regon#

Vss(GND)

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-10 Low-Power Processors and Systems on Chips

in Figure 1.2) has a naturally low Vt and operates in subthreshold, providing a negligible voltage drop
from the reference voltage to Vdd(SUP) in operation. The vertical drain configuration allows the thin gate
oxide device to tolerate high drain to gate voltages as in Clark [21].

The relatively high active current of the phase-locked loop (PLL) necessitates disabling it in Drowsy
mode. Leaving standby mode requires the PLL to restart and lock, triggered by an external interrupt.
Because this takes approximately 20 µs, the mode is usable often (e.g., between keystrokes). On the
prototype, the lock time is set by a counter to enable deterministic testing. In actuality, the PLL lock time
can be as low as 2 µs depending on voltage. Faster interrupt latencies can be supported by providing the
PLL reference clock directly to the IC, while the PLL locks. Consequently, PLL lock-time need not affect
interrupt latency or limit the applicability of Drowsy usage.

1.4.5 Limits of Operation

All memory, such as latches, need to be able to hold a “0” or a “1” with RBB applied. Although it is more
difficult from a circuit aspect, holding state in all elements greatly simplifies logic design verification. As
Vdd and Vss collapse toward one another the transistors move from saturation into subthreshold, as the
reverse body bias increases Vt and the increase in Vss decreases Vgs. In subthreshold, these “on” transistors
rapidly weaken with their current following the subthreshold slope. In a memory element, the voltage level
of a node is maintained by an “on” transistor being able to supply enough current to overcome the leakage
of all the attached “off” transistors. In normal, high Vds operation, this is not a problem due to the large
Ion to Ioff ratio. As transistors reach subthreshold, the on current drops rapidly with Vds (= Vgs) due to

(1.7)

becoming Equation (1.4) as the gate overdrive (Vgs–Vt) is reduced below 0. Ideally, Vdd–Vss can be lowered
to drive all of the transistors into subthreshold operation because the Ion/Ioff ratio will scale for all
transistors. Assuming an 80-mV/decade transistor subthreshold characteristic, over three decades of
current difference between on and off transistors will be maintained with 250 mV of Vds. Lowering the
voltage too far on future ultra-small devices will reach thermodynamic constraints [22]. The relative size
and strength of the N and P transistors, including local channel length and Vt variation must be consid-
ered. In practice, state loss depends upon many factors such as the type of latch, the transistor ratios,
the logic state being held, the local transistor Vt and the temperature. Domino circuits, with the largest
N to P (keeper) width ratios, are the first to fail.

The fail point as a function of the PMOS body voltage and NMOS body voltage as measured on silicon
is presented in Figure 1.5. Because in this design the Vss is referenced to the Vss(GND) supply node, Vss is the
applied NMOS body bias. Points lower on the vertical axis have higher NMOS Vt and further right have
higher PMOS Vt. Measured parts retained state below the curve (Pass) and lost state above it after
application of that level of reverse body bias (Fail). As Vss is increased, the NMOS transistors have increasing
reverse body bias applied to them, so “on” devices are in subthreshold. The right side of the curve represents
a memory element failing as logic “0” is flipped to a “1.” As Vdd(sup) increases the PMOS transistors leakage
is reduced, so that the amount of reverse body bias that can be applied to the NMOS transistors can be
increased, continuing until a maximum value of Vdd(SUP) and Vss is reached. The left part of the curve
represents the converse case where the PMOS transistors are weakened with respect to the NMOS. With
a large Vdd(SUP) applied “on” devices are in subthreshold and are eventually unable to supply enough current
to overcome leakage from NMOS transistors. This left part of the curve represents a memory element
holding a “1” flipping to a “0.” The flat zone depicts the saturation of any body effect as voltage increases.

1.4.6 Measured Results

When the leakage current from the microprocessor is low the voltage on Vss will not rise to the reference
voltage because the regulator does not actively drive its output. At Vdd of 1.05 V, the regulator clamps at

I

C Z

L
V Vds sat

ox
gs t, = −()µ α

2

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-11

the reference voltage, about 0.73 V for high leakage. The leakage current is reduced by a factor of over
25 across most devices when the body bias is applied. Figure 1.6 plots the no body-bias (NBB) standby
vs. the RBB Drowsy mode current. Figure 1.7 gives the distribution of the current with reverse body bias
for all die on one wafer. A wide variation, due to variations in the process (e.g., threshold voltage and
channel length) as well as the regulator output, is evident.

1.5 System Level Performance

This section describes experiments using Drowsy mode to simulate low leakage by running an IC in
short bursts of operation interspersed with time in the leakage control mode, time domain multiplexing
(TDM) Drowsy mode [23]. The IC power is dominated by different components in different operating
modes described in Section 1.1. First, the active power component dominates during intervals of oper-
ation. Second, there are the two primary leakage components, the active component, potentially multi-
plied by die heating, but still small compared with the active power, and leakage during Drowsy mode.
Third, the PLL and clock-generation power, as well as that of the interrupt circuitry required to wake
up the device from Drowsy mode. The former provide an active power component that runs during
active operation and for 20 µs before each active interval. There is a small non-RBB leakage component

FIGURE 1.5 Shmoo plot of state retention with PMOS and NMOS body bias as parameters.

FIGURE 1.6 Standby current of the microprocessor with and without body bias.

3 2.8 2.6 2.4 2.2 1.8 1.6 1.4 1.2 12

V
ss

Vccsup

0.78

0.76

0.74

0.72

0.7

0.8

FAIL

PASS

Increasing PMOS
Drive Strength

Increasing NMOS
Drive Strength

N
o

R
B

B
 I d

d
(m

A
)

5.0

4.0

3.0

2.0

1.0

0.0
0.250.200.150.100.050.00

Drowsy Idd (mA)

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-12 Low-Power Processors and Systems on Chips

during PLL startup, but the time is small enough to make this component negligible. Finally, the power
cost of each power supply movement represents the “penalty” power of entering and exiting Drowsy
mode. This low frequency high capacitance switching power is mitigated by the low-voltage swing utilized.
The energy to transition the clamp transistors and their driver circuitry is small enough to be considered
negligible because the total gate capacitance of the clamp transistors is 119 pF. Entry into the standby
mode consumes no power on the Vss node due to its being driven high by passive leakage of the core
(i.e., redistribution of charge from the nodes within the core logic to Vss). Power dissipation is incurred
only when leaving the mode. The total energy cost of a single entry into the low-power mode is calculated
to be 30.6 nJ from measurements.

The experiments were performed on a microprocessor board [24] at 1 V Vdd running IO at 100 MHz
and with a core frequency of 300 MHz. Separate core and analog PLL supplies connected to external
power supply and ammeter connections allowed these currents to be distinguished. The Drowsy circuitry
allows high performance — the device under test was run on the board to 800 MHz at 1.55 V. Instan-
taneous current demand was measured, while the interrupt signal was asserted at the chosen interrupt
frequency. Each interrupt runs code comprised of a simple loop, intended to be representative of the
power that would be consumed by the typical instructions, which are generally quite similar [25]. The
number of instructions to run at each interrupt is set by a loop count parameter. At the end of the loop,
the IC returns to Drowsy mode. Subsequent interrupts wake the microprocessor and begin the loop
anew. Due to branch prediction, the processor executes one instruction per clock in the loop (i.e., there
are no stall cycles). State retention while Drowsy maintains the cached instructions, so there are no misses
after the first compulsory ones. The operating voltage was adjusted based on the reading from a locally
connected voltmeter in order to account for IR loss in the power supply leads. Figure 1.8 is a representative
power measurement.

1.5.1 System Measurement Results

Drowsy power was measured to be 0.1 mA at 1 V on the IC used in these measurements. In a DC
condition, the Isb at room temperature (i.e., the standby core supply current with no clock running) was
2.8 mA at 1 V. The PLL consumes 6.6 mW at the same voltage. The processor was run at a number of
interrupt frequencies and instruction per interrupt rates with the results plotted in Figure 1.9. As expected,
the power shows a linear dependency on the effective frequency at high rates, where the active power
dominates, while at low rates a floor due to leakage components is evident. The energy per instruction
is calculated to be 0.5 nJ. All interrupt and instruction rates fall on the same curve as presented in the
figure. Measurements made in “idle” mode, in which the PLL is kept active, no RBB is applied, but clocks
that are gated at the PLL generate a relatively high power floor due to PLL power.

FIGURE 1.7 Standby current of the microprocessor with body bias.

N
um

be
r

of
 p

ar
ts

240225210195180165150135120105907560453015

Current with back-bias (µA)

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-13

The power savings of using Drowsy mode over clock gating alone is approximately 100×. This is over
25× less than the Isb leakage power floor that would be obtained without Drowsy (e.g., by simply lowering
the clock to a very low rate). Power is saved and the response time to external stimulus is improved by
running in short bursts at high frequencies. Effective frequency allows direct comparison with devices
running at lower frequency demonstrating that the efficacy of TDM Drowsy mode, matching the theo-
retical curve of Figure 1.1. By raising the Vt with RBB to achieve low standby power, it is combined with
improved low voltage and higher maximum performance. The active power improvement can be esti-
mated by considering the Vt increase required to match the Ioff reduction and the required Vdd increase
to achieve the same performance. By simulating the circuit metric mentioned previously, calibrated to
the measured frequency vs. voltage performance of the microprocessor, a Vt increase of 110 mV (to a
typical value of 500 mV) results in the same reduction. At this Vt, the same frequency at Vdd = 0.75 V is
obtained by an increase to 0.86 V demonstrating an active power savings of 24% by using Drowsy mode
instead of a higher Vt.

1.6 Process, Voltage, and Temperature Variations

Systematic and random variations in P, V, and T are posing a major challenge to future high-performance
microprocessor design [26,27]. Technology scaling beyond 90 nm is causing higher levels of device

FIGURE 1.8 Current measurement with the time in standby and active modes evident.

FIGURE 1.9 Current measurement depicting active and leakage power dominated frequencies.

I d
d

(A
)

0.08

0.12
0.14
0.16
0.18

0.2

0.1

0.06
0.04
0.02

0.50.40.30.20.10
0

Time (s)

I (
A

)

0.00001

0.0001

0.001

0.01

0.1

1

1.E + 091.E + 081.E + 071.E + 061.E + 051.E + 041.E + 03

+ +

+
+

+

+

+

+
+

1 e7 inst/int

1 e6 inst/int
1 e5 inst/int

1 e4 inst/int

with Drowsy

PLL off (Isb)

Clock gating

Effective speed (Hz)

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-14 Low-Power Processors and Systems on Chips

parameter variations, which are changing the design problem from deterministic to probabilistic [28,29].
The demand for low power and thinner gate oxides causes supply voltage scaling. Then, voltage variations
become a significant part of the overall challenge. Finally, the quest for growth in operating frequency
is manifested in significantly high junction temperature and within die temperature variation.

1.6.1 Process Variation

Distributions of frequency and standby leakage current (Isb) of microprocessors on a wafer are presented
in Figure 1.10. The spread in frequency and leakage distributions is due to variation in transistor
parameters, causing about 20× maximum variation in chip leakage and 30% maximum spread in chip
frequency. This variation in frequency has led to the concept of “frequency binning” to maximize revenue
from each wafer. Note that the highest frequency chips have a wide distribution of leakage, and for a
given leakage, there is a wide distribution in the frequency of the chips. The highest-frequency chips with
large Isb, and low-frequency chips with too high Isb may have to be discarded, thus affecting yield. Limits
to maximum acceptable Isb are dictated by total active power as affordable by cost-effective cooling and
current delivery capabilities, as well as idle power required to achieve a target battery life in portable
applications. The spreads in standby current and frequency are due to variations in channel length and
threshold voltage, both within die and from die to die. That leakages are affected exponentially, while
delay is affected approximately linearly is evident in their relative magnitudes. Figure 1.11 illustrates the
die-to-die Vt distribution and its resulting chip Isb variation. Vt variation is normally distributed and its
3-σ variation is about 30 mV in an 180-nm CMOS logic technology. This variation causes significant
spreads in circuit performance and leakage. The most critical paths in a chip may be different from chip
to chip. Figure 1.11 also presents the 20× Isb variation distribution in detail.

FIGURE 1.10 Leakage and frequency variations.

FIGURE 1.11 Die-to-die Vt, Isb variation.

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Normalized leakage (Isb)

1.2

1.1

1.0

0.9

1.4

1.3

2015105

30
%

0

20X

120

100

80

60

40

20

0
32.49 20.11 16.29 12.47 8.64 4.82 1.0018.053.61−10.83−25.27−39.71

of Chips # of Chips

~30 mV

∆VTn(mV) Isb(Normalized)

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-15

1.6.2 Supply Voltage Variation

Uneven and variable switching activity across the die and diversity of the type of logic, result in uneven
power dissipation across the die. This variation results in uneven supply voltage distribution and tem-
perature hot spots, across a die, causing transistor subthreshold leakage variation across the die. Supply
voltage (Vdd) will continue to scale modestly by 15%, not by the historic 30% per generation, first, due
to difficulties in scaling threshold voltage and second, to meet the transistor performance goals. Maximum
Vdd is specified as a reliability limit for a process, and minimum Vdd is required for the target performance.
Vdd variation inside the max–min window is plotted in Figure 1.12. This figure depicts a droop in Vdd,
when IC current demand changes rapidly, which degrades the performance. This is the result of platform,
package, and IC inductances and resistances that do not follow the scaling trends of CMOS process.
Specifically, the time “0” point is relatively inactive, while a rapid change in power demand, by the
processor leads to the large supply droop pictured. This problem is increased by good low-power design
(e.g., clock gating). Power delivery impedance does not scale with Vdd and ∆Vdd has become a significant
percentage of Vdd.

1.6.3 Temperature Variation

Figure 1.13 illustrates the thermal image of a leading microprocessor die with hot spots as high as 120°C.
Within die temperature fluctuations have existed as a major performance and packaging challenge for

FIGURE 1.12 Supply voltage variation.

FIGURE 1.13 Within die temperature variation.

S
up

pl
y

vo
lta

ge
 (

V
)

1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40

20181614121086420

Vmax: reliability & power

Vmin: frequency

Time (µsec)

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-16 Low-Power Processors and Systems on Chips

many years. Both the device and interconnect performance have temperature dependence, with higher
temperature causing performance degradation. Additionally, temperature variation across communicat-
ing blocks on the same chip may cause performance mismatches, which may lead to logic or functional
failures. Because these thermal variations are the result of uneven local heating, they can be ignored in
standby, where lower power dissipation creates minimal heating. Additionally, it can be assumed that the
die temperature equals that of the ambient, typically room temperature.

1.7 Variation Impact on Circuits and Microarchitecture

A primary consequence of the P, V, T variation manifests itself as maximum operating frequency (Fmax)
variation. Figure 1.14 presents the distribution of microprocessor dies in 180-nm technology across a
frequency range. The data is taken at a fixed voltage and temperature, and thus this Fmax variation is
caused by the process variations discussed previously. This frequency distribution has serious cost impli-
cations associated with it — low performing parts need to be discarded, which in turn affects the yield
and hence the cost. The P, V, T variations consequently impact all levels of design. For instance, products
that have only one operating frequency of interest (e.g., networking devices that either do or do not meet
a specific standard) must be designed conservatively. Frequently this means designing all circuits to the
worst-case P, V, T corner. This section highlights some of the impact that process has on circuit and
microarchitecture design choices.

1.7.1 Design Choice Impact

Dual-Vt circuit designs [30,31] can reduce leakage power during active operation, burn-in, and standby.
Two Vt are provided by the process technology for each transistor. High-Vt transistors in performance
critical paths are either upsized or are made low-Vt to provide the target chip performance. Because
upsizing has limited benefit in gate-dominated paths, as capacitive load is added at the same rate as
current drive, lower Vt can be beneficial. Larger transistor sizes increase the relative probability of
achieving the target frequency at the expense of switching power. Increasing low-Vt usage also boosts the
probability of achieving the desired frequency, but with a penalty in leakage power. It was demonstrated
in Karnik et al. and Tschanz et al. [30,31], that by carefully employing low-Vt devices, 24% delay
improvement is possible to trade off leakage and switching power components, while maintaining the
same total power. However, a design optimized for lowest power by careful assignment of transistor sizes
and Vt values is more susceptible to frequency impact due to within-die variations because they sharpen
the path delay distributions making a larger number of paths and transistors critical.

1.7.2 Microarchitecture Choice Impact

The number of critical paths that determine the target frequency vary depending on both microarchi-
tecture and circuit design choices. Microarchitecture designs that demand increased parallelism and/or

FIGURE 1.14 Die-to-die frequency variation.

1.37 1.30 1.22 1.15 1.07 1.00

of Chips
150

100

50

0

Frequency (Normalized)

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-17

functionality require increase in the number of critical paths. Designs that require deeper pipelining, to
support higher frequency of operation, require increase in the number of critical paths and decrease in
the logic depth. The impact process variation has on these choices are described next. Test chip mea-
surements in Figure 1.15 demonstrate that as the number of critical paths on a die increases, within-die
delay variations among critical paths cause both mean (µ) and standard deviation (σ) of the die frequency
distribution to become smaller. This is consistent with statistical simulation results [26] indicating that
the impact of within-die parameter variations on die frequency distribution is significant. As the number
of critical paths exceeds 14, there is no noticeable change in the frequency distribution. So, microarchi-
tecture designs that increase the number of critical paths will result in reduced mean frequency because
the probability that at least one of the paths is slower will increase.

Historically, the logic depth of microarchitecture critical paths has been decreasing to accommodate
a 2× growth in the operating frequency every generation, faster than the 42% supported by technology
scaling. As the number of logic gates per pipeline stage that determine the frequency of operation reduces,
the impact of variation in device parameter increases. Measurement on 49-stage ring oscillators demon-
strated that σ of the within-die frequency distribution was 4× smaller than σ of the device saturation
current distribution [26]; however, measurements on a test chip containing 16-stage critical paths dem-
onstrate that σ of within die (WID) critical path delay distributions and NMOS/PMOS drive current
distributions are comparable. Specifically, NMOS Idsat σ/µ = 5.6%, PMOS Idsat σ/µ = 3.0%, while the 16-
stage delay σ/µ = 4.2%. The impact of process variation on the microarchitecture design choices can be
summarized as follows: with either smaller logic depth or with increasing number of microarchitecture
critical paths, performance improvement is possible. The probability of achieving the target frequency
that translates to performance, however, drops due to the impact of within-die process variation.

1.8 Adaptive Techniques and Variation Tolerance

This section describes some of the research and design work to enhance the variation tolerance of circuits
and microarchitecture and to reduce the variations by clever circuit and microarchitectural techniques.
These techniques expand on those discussed previously by expanding the use of body bias from only
RBB to include forward body bias (FBB) to reduce Vt and thereby improve circuit speed. Adjusting the
voltage to the optimal required as determined at test time is introduced as another method to increase
yield in the presence of variation.

1.8.1 Body Bias Control Techniques

Lowering Vt can improve device performance, with the commensurate increase in leakage and standby
current (Isb) as described earlier. One possible method to trade off performance with leakage power is
to apply a separate bias to critical devices. In addition to application of RBB to reduce leakage, Vt can
be modulated for higher performance by forward body bias (FBB). This method also reduces the impact

FIGURE 1.15 Die-to-die critical path distribution.

N
um

be
r

of
 d

ie
s

60%

40%

20%

0%
0.9 1.1 1.3 1.5

Clock frequency

critical
paths

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-18 Low-Power Processors and Systems on Chips

of short channel effects, hence reducing Vt variations. Figure 1.16 plots the percentage frequency gain as
a function of FBB. It was demonstrated empirically that 450 mV is the optimal FBB for sub-90-nm
generations at high temperature [32]. A 6.6-M transistor communications router chip [33], with on-chip
circuitry to provide FBB to PMOS transistors during active operation and zero body bias (ZBB) during
standby mode, was implemented in a 150-nm CMOS technology. Performance of the chip is compared
with the original design that has no body bias (NBB) in Figure 1.16. The maximum operating frequency
(Fmax) of the NBB and FBB router chips are compared from 0.9 V to 1.8 V Vdd at 60°C (see Figure 1.17).
The FBB chip with forward body bias achieves 1GHz operation at 1.1 V, compared with 1.25 V required
for the NBB chip, or 23% less switching power at 1 GHz. The frequency of FBB is 33% higher than NBB
at 1.1 V. Area overhead supporting ABB was approximately 2%, while the power overhead was 1%.

RBB was also applied to the same device to reduce leakage. Figure 1.18 plots the leakage current for
the worst-case channel length (Lwc dashed) and the nominal channel length (Lnom dotted) as a function
of RBB. The measured full-chip leakage current is within these upper and lower leakage current bounds
over a range of RBB values. The optimum RBB value derived from the measured chip for minimum
leakage is 500 mV [34]. Higher RBB values cause the junction leakage current to increase and overall
leakage power to go up because, as in Mizuno et al. [17], the Vdd was not collapsed; however, effectiveness
of RBB reduces as channel lengths become smaller or Vt is lowered. Essentially, the Vt-modulation
capability by RBB weakens as short-channel effects become worse or body effect diminishes due to lower
channel doping.

FIGURE 1.16 Optimal FBB for sub-90-nm generations.

FIGURE 1.17 Forward body bias results.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y
ga

in

15%

10%

5%

0%
6004002000

450mV

1.2 v

110° c

FBB (mV)

F
m

ax
 (

M
H

z)

1750

1500

1250

1000

750

500

250

2000

Body bias chip
with 450 mV FBB

NBB chip
& body bias
chip with
ZBB

Tj ~ 60°C

0.9 1.1 1.3 1.5 1.7

Vcc (V)

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-19

1.8.2 Adaptive Body Bias and Supply Bias

The previous two subsections presented the advantages of both FBB and RBB. It is possible to utilize
both of these approaches as depicted in Figure 1.19. Due to the frequency spread in fabricated parts
caused by process variations, the low frequency parts may be discarded for lower performance and the
high frequency parts may be discarded for higher leakage power. As presented on the right side, devices
can be adaptively biased to increase the performance of the slow parts by FBB and to decrease leakage
power of the fast parts by RBB.

A test chip was implemented in a 150-nm CMOS technology to evaluate effectiveness of the adaptive
body bias (ABB) technique for minimizing impacts of both die-to-die and within-die parameter varia-
tions on processor frequency and active leakage power [35]. The bias is based on a 5-bit digital code,
which provides one of 32 different body bias values with 32 mV resolution to PMOS transistors. NMOS
body is biased externally across the chip. Bidirectional ABB is used for both NMOS and PMOS devices
to increase the percentage of dies that meet both frequency requirement and leakage constraint. As a
result, die-to-die frequency variations (σ/µ) reduce by an order of magnitude, and 100% of the dies
become acceptable (see Figure 1.20). Bin 2 is the highest frequency bin, while Bin 1 is the lowest acceptable
frequency bin — any dies that are slower than Bin 1 are discarded. Almost 50% of dies with NBB fell
below Bin 1 but are recovered using ABB. In addition, 30% of the dies are now in the highest frequency
bin allowed by the power density limit. WID-ABB (applying multiple bias values per die to compensate
for within-die as well as die-to-die variation) reduces σ of the die frequency distribution by 50%,
compared with ABB. In addition, almost all the dies are accepted in the highest possible frequency bin,
compared with 30% for ABB. Another technique to increase yield in the high frequency bins, is to apply
adaptive Vdd. Figure 1.21 presents the advantage of adaptive Vdd over fixed Vdd. Bin 3 is the highest

FIGURE 1.18 Leakage reduction by reverse body bias.

FIGURE 1.19 Target frequency binning by adaptive body bias.

IC
C

 (
A

)

1E-05

1E-06

1E-07

1E-08

1E-09
0 1.510.5

Lwc

150 nm, 27°C

Chip

Lnom

Reverse VBS (V)

N
um

be
r

of
 d

ie
s

too
slow

too
leaky

ftarget ftargetFrequency

ABB

FBB RBB

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-20 Low-Power Processors and Systems on Chips

frequency bin, while Bin 1 is the lowest acceptable frequency bin. The dark bars indicate that adaptive
Vdd (Vcc in the figure) has pushed more than 20% dies from Bin 1 to Bin 2 and even Bin 3, as well as
recovered those dies that fell below Bin 1.

1.9 Dynamic Voltage Scaling

Although adapting the power supply voltage to manufacturing variation was introduced previously, it
may also be used to adjust power usage dynamically to the workload at hand. This section describes the
dynamic variation of the power supply voltage Vdd appropriate to the instantaneous workload of the
integrated circuit, commonly described as dynamic voltage scaling (DVS) or dynamic voltage manage-
ment (DVM) [36]. The results are from system level measurements performed on the 80200 micropro-
cessor. The basic premise is to adjust the frequency and voltage of the device to the lowest values that
will simultaneously meet the required application throughput and the operating envelope of the proces-
sor. If the performance voltage curve of the device is violated (i.e., a circuit critical path is provided
insufficient voltage to meet its timing constraints) then a circuit failure will occur. This implies that
changing voltage and clocks must conform to two rules:

1. Vdd must be adjusted upward before initiating a frequency increase.
2. Frequency must be lowered before adjusting Vdd downward.

The power, voltage, and frequency measured on the processor are plotted in Figure 1.22. The large
power range obtainable using DVM is evident, ranging from 6 mA with the clocks gated off to 1.4 W at
1 GHz.

1.9.1 Clock Generation

In conventional designs, the PLL must be allowed to relock to the new frequency when a new frequency
is chosen because a divided version of the core clock itself is compared with the reference, as illustrated

FIGURE 1.20 Adaptive body bias results.

FIGURE 1.21 Bin improvement by adaptive Vcc.

N
um

be
r

of
 D

ie
s

NBB

ABB

WID-ABB

100%

80%

60%

40%

20%

0%
Bin 1 Bin 2 Bin 3

N
um

be
r

of
 D

ie
s

100%

80%

37%

15%

52%

74%

6% 10%

60%

40%

20%

0%
Bin 1 Bin 2 Bin 3

Fixed Vcc

Adaptive Vcc

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-21

in Figure 1.23(a). Because the PLL may generate clocks that are shorter than the chosen frequency during
this time, clocks to the logic core must be gated off while relocking the PLL. The PLL relock time is
predictable and often fixed (by comparing with a counter representing the worst-case lock time — 20
µs previously) to simplify specification and testing. Vdd adjustment and initiation of a frequency change
may be coincident if the time to change Vdd is predictable and consistent (e.g., slew rate limited). In this
case, the time to reach the specified voltage is dependent on the starting voltage. This clock change time
introduces latency to achieving the lower power. An energy cost also occurs from moving the highly
capacitive supply voltage. The latter is unavoidable, but the former can be mitigated in two ways. First,
the processor can be supplied with the reference clock during clock changes. This can maintain some,
generally lower performance, but allows computation to continue and avoids a “dead zone” where
interrupts cannot be taken. Second, a more sophisticated PLL divider scheme allows “on the fly” changes
in clock rate.

This approach, illustrated in Figure 1.23(b) keeps the PLL running at a consistent maximum frequency
for all voltage and frequency configurations. This requires a separate power supply connection for the
PLL, which is virtually required to keep the analog PLL supply isolated from noise. Typically, this supply
is separated and is additionally filtered or regulated to improve the clock jitter component due to supply

FIGURE 1.22 Frequency, voltage, and power vs. time using DVM.

(a)

(b)

FIGURE 1.23 (a) Conventional PLL and clock generation, and (b) scheme to allow speed changes without perfor-
mance penalty. The 1/M divider in (b) is dynamically adjustable.

F
re

q.
 (

M
H

Z
),

 P
ow

er
 (

m
W

)

1600

1400

1200

1000

800

600

400

200

200150100500
0

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1

2

0

C
ore V

cc (V
)

Frequency

Power
(ave, 4 samples) Voltage

Time (arbitrary scale)

Ref Clk
PLL

Feedback clk

1/2

1/N

Core Clk

CDN

Ref Clk
PLL

Feedback clk
1/N

1/M

δ

Core
Clk

CDN

l/O Clk

Soc Clk

1/X

1/Y

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-22 Low-Power Processors and Systems on Chips

noise. Here, the PLL supply is not scaled with the logic core. The PLL power is not strongly dependent
on the VCO frequency and is a small fraction of the overall active power, so the penalty of not scaling
the PLL Vdd is acceptable. Given the clock performance benefit accrued by regulating the PLL supply, a
fixed PLL supply is the preferred approach.

In a conventional design, the core or IO clock is fed back to the phase-frequency detector (PFD) of
the PLL as depicted in Figure 1.23(a). Because the point is to lock the internal clock edges to the external
reference clock, this feedback is from the end of the clock distribution network (CDN) to include the
insertion delay. The only insertion delay to match is that of the feedback divider. To allow on-the-fly
clock changes, the clock dividers are configured as depicted in Figure 1.23(b). The feedback divider
reduces the VCO frequency to that of the reference clock independent of the core clock divisor chosen.
The core clock divisor can then be changed dynamically within certain constraints. First, no clock glitches
can be allowed. Second, the clock changes must be predictable to allow consistent behavior when
transferring data across domains, as well as for testing and validation. More dividers to other clock
domains are likely in a large SoC design, as discussed. It is important to have the same insertion delay
for all of the clocks, so that the version returning to the PLL tracks the others. In practice, some latitude
in insertion delays can be allowed, which will show up as systematic additions to the off-chip or inter-
domain clock skew. Finally, the mechanism for crossing from one domain to another must be independent
of the actual frequencies. In practice, this is provided by generating separate signals from the same clock
divider circuits, which anticipate coincident edges constituting allowed domain crossings. Ideally, the
maximum core speed is half that of the PLL voltage controlled oscillator (VCO) because a 2× divide
easily provides a 50:50 duty cycle clock.

1.9.2 Experimental Results

The important factor in implementing dynamic voltage management is the amount of work performed
(e.g., the number of instructions required) instead of the number of clocks and some indicator of whether
or not the machine is busy. Modern systems use an interrupt-driven model, whereby the processor will
enter a low-power state, pending being awakened via interrupt, when there is no useful work to perform.
Many operations are available, however, particularly memory accesses and IO, which have significant
latency. Increasing core to memory frequency ratios exacerbates this. Consequently, to effectively utilize
DVM, it is necessary to detect when the processor is constrained by such operations, which effectively
limit the number of instructions per clock (IPC) below the peak value.

As an example, two experiments were performed using an 80200 running a modified Linux operating
system (OS) kernel to monitor the work performed two different ways. The first merely determined if
the scheduled tasks had been completed early, while the second determined the actual IPC using the on-
core performance monitors. The interval between adjustments was 10 ms.

The experiments performed the following at the end of each interval:

1. OS only using time-slice utilization

If (task finished early)

Lower the voltage and frequency

Else

Raise the voltage and frequency.

2. OS using time slice utilization and core performance monitors (Sampled number of instructions
executed and number of data dependencies every 2 ms):

If (work performed increases)

Raise voltage and frequency

Else

Lower the voltage and frequency

In the first case, whether or not a task completed early provided a coarse assessment of the needed
computational power, and it was assumed that the future demands would be similar. In the second case,

6700_book.fm Page 22 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Techniques for Power and Process Variation Minimization 1-23

the actual work was determined. It can be inferred that the latter approach may also provide a more
quantitative estimate of how much the frequency should be raised and lowered. It also allows the power
to be lowered, essentially matching the processor clock to memory or system clock ratios more appro-
priately to a given workload, automatically detecting and minimizing the energy consumption in memory
bound cases.

1.10 Conclusions

Higher digital IC power and parameter variations are an inevitable consequence of scaling and promise
to increase further in the future. This chapter has described some of the presently important as well as
emerging limiting mechanisms. Various design techniques that mitigate these issues were discussed. These
techniques rely on leveraging the often-neglected bulk terminal as well as careful selection of the supply
voltage to both the specific device as manufactured as well as the computing task at hand. It has been
demonstrated that the overhead of using these techniques, although nonnegligible, is modest. As tran-
sistor scaling forces future products into increasingly difficult cost, power, and performance trade-offs,
we can expect to see greater reliance on these, as well as other design schemes to enable still further scaling.

References

[1] S. Borkar, Obeying Moore’s law beyond 0.18 micron, Proc. 13th Annu. ASIC/SOC Conf., pp. 13–16,
2000.

[2] L. Clark et al., An embedded 32b microprocessor core for low-power and high-performance
applications, IEEE J. Solid-State Circuits, 36, p. 1599, 2001.

[3] K. Chen and C. Hu, Performance and Vdd scaling in deep submicrometer CMOS, JSSC, 33, pp.
1586–1589, Oct. 1998.

[4] Y. Taur et al., Fundamentals of Modern VLSI Devices, Cambridge University Press, U.K., 1998.
[5] A. Keshavarzi, S. Narenda, S. Borkar, C. Hawkins, K. Roy, and V. Dey, Technology scaling behavior

of optimum reverse body bias for leakage power reduction in CMOS ICs, Proc. ISLPED, pp.
252–254, 1999.

[6] R. Krishnamurthy et al., High-performance and low-power challenges for sub-70-nm micropro-
cessor circuits, CICC Proc., pp. 125–128, 2002.

[7] H. Wong, D. Frank, P. Solomon, H. Wann, and J. Welser, Nanaoscale CMOS, Proc. IEEE, 87, pp.
537–570, 1999.

[8] S. Wolf, Silicon Processing for the VLSI Era: Volume 3 — The Submicron MOSFET, Lattice Press,
Sunset Beach, CA, 1995.

[9] R. Gonzalez, B. Gordon, and M. Horowitz, Supply and threshold voltage scaling for low-power
CMOS, IEEE J. Solid-State Circuits, 32, pp. 1210–1216, Aug. 1997.

[10] D. Frank, Power constrained CMOS scaling limits, IBM J. Res. Dev., 46, 2/3, p. 235, 2002.
[11] S. Thompson, Technology performance: trends and challenges, IEDM short course, IEDM ’99

Tutorial, Washington, D.C., 1999.
[12] H. Holma and A. Toskala, Eds., WDCMA for UMTS: Radio Access for Third-Generation Mobile

Communications, John Wiley & Sons, New York, 2001.
[13] S. Thompson, I. Young, J. Greason, and M. Bohr, Dual threshold voltages and substrate bias: keys

to high performance, low-power 0.1-µm logic designs, VLSI Tech. Symp. Dig., pp. 69–70, 1997.
[14] M. Horiguchi, T. Sakata, and K. Itoh, Switched-source-impedance CMOS circuit for low standby

subthreshold current giga-scale LSIs, IEEE JSSC, 28, pp. 1131–1135, Nov. 1993.
[15] B. Sheu, D. Scharfetter, P. Ko, and M. Jeng, BSIM: berkeley short-channel IGFET model for MOS

transistors, IEEE JSSC, 22, pp. 558–566, Aug. 1987.
[16] L. Clark, N. Deutscher, S. Demmons, and F. Ricci, Standby power management for a 0.18-µm

microprocessor, Proc. ISLPED, pp. 7–12, 2002.

6700_book.fm Page 23 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

1-24 Low-Power Processors and Systems on Chips

[17] H. Mizuno et al., An 18-µA standby current 1.8-V, 200-MHz microprocessor with self-substrate-
biased data-retention mode, IEEE J. Solid-State Circuits, 34, 1999, p. 1492.

[18] S. Yang et al., A high-performance 180-nm generation logic technology, Proc. IEDM, pp. 197–200,
1998.

[19] M. Morrow, Microarchitecture uses a low-power core, IEEE Computer, p. 55, April, 2001.
[20] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, 1-V power supply high-

speed digital circuit technology with multithreshold-voltage CMOS, IEEE J. Solid-State Circuits,
30, 1995, pp. 847–854, Aug. 1995.

[21] L. Clark, A high-voltage output buffer fabricated on a 2-V CMOS technology, VLSI Circuit Symp.
Dig., pp. 61–62, 1999.

[22] R. Swanson and J. Meindl, Ion-implanted complementary MOS transistors in low-voltage circuits,
IEEE JSSC, SC-7, pp. 146–153, April 1972.

[23] L. Clark, M. Morrow, and W. Brown, Reverse body bias for low effective standby power, IEEE
Trans. VLSI, Sept. 2004.

[24] BRH Reference Platform specifications are available at http://www.adiengineering.com/products-
BRH.html.

[25] M. Osqui, Evaluation of software energy consumption on microprocessors, Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, Oct. 2001.

[26] K. Bowman et al., Impact of die-to-die and within-die parameter fluctuations on the maximum
clock frequency distribution for gigascale integration, IEEE J. Solid-State Circuits, 37, pp. 183–190,
Feb. 2002.

[27] S. Borkar, Parameter variations and impact on circuits and microarchitecture, C2S2 MARCO
Review, March 2003.

[28] G. Sery et al., Life is CMOS: why chase the life after? DAC 2002, pp. 78–83.
[29] T. Karnik et al., Sub-90nm technologies — challenges and opportunities for CAD, ICCAD 2002,

pp. 203–206.
[30] T. Karnik et al., Total power optimization by simultaneous dual-Vt allocation and device sizing in

high performance microprocessors, DAC 2002, pp. 486–491.
[31] J. Tschanz et al., Design optimizations of a high-performance microprocessor using combinations

of dual-Vt allocation and transistor sizing, VLSI Circuits Symp. 2001, pp. 218–219.
[32] J. Tschanz et al., Dynamic-sleep transistor and body bias for active leakage power control of

microprocessors, ISSCC 2003, pp. 102–103.
[33] S. Narendra et al., 1.1-V 1-GHz communications router with on-chip body bias in 150-nm CMOS,

ISSCC 2002, pp. 270–271.
[34] A. Keshavarzi et al., Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS

ICs, ISLPED 2001, pp. 207–210.
[35] J. Tschanz et al., Adaptive body bias for reducing impacts of die-to-die and within-die parameter

variations on microprocessor frequency and leakage, ISSCC 2002, pp. 422–423.
[36] T. Burd, T. Pering, A. Stratakos, and R. Broderson., A dynamic voltage scaled microprocessor

system, IEEE J. Solid-State Circuits, 35, pp. 1571–1580, Nov. 2000.

6700_book.fm Page 24 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.adiengineering.com
http://www.adiengineering.com

2

-1

2

Low-Power DSPs

2.1 Introduction ..

2-

1
2.2 The Application Driver ...

2-

2
2.3 Computation-Intensive Functions and DSP

Solutions ..

2-

4

FIR Implementation • Viterbi Acceleration • Turbo Decoding

2.4 DSPs as Part of SoCs...

2-

11
2.5 Conclusion and Future Trends...

2-

13
2.6 Acknowledgments ...

2-

13
References ...

2-

14

2.1 Introduction

Mobile wireless communications show an incredible growth, as illustrated in Figure 2.1. It is estimated
that by the year 2010, wireless phones will surpass wire line phones, each having a worldwide penetration
of more than 20%. The market for digital signal processors (DSPs) has a growth rate of 40%. In 1966,
it was a $2 billion market, and by 1999 it had grown to a $4.4 billion market. After a dip in 2001–2002,
the forecast for 2004 is $7.7 billion and a predicted $17 billion by 2008 [28]. More than 60% of all DSP
shipments are used in cellular phones [28]. In the industrialized world, the numbers are even more
impressive: in a small country like Belgium with a population of 10 million, more than 2 million cell
phones are sold every year compared with approximately 600,000 PCs [6].

Power optimization can be done at several levels of abstraction: technology level, circuit level, gate
level, architectural level, algorithm level, and system level. Multiple chapters in this book are devoted at
each of these abstraction levels: at the technology level is the usage of multiple threshold voltages, a low
V

t

 for the logic circuits and a high V

t

 for the memory circuits. At the circuit level, a designer has the
choice of using complementary static CMOS instead of high-speed dynamic logic. At the logic level,
gated clocks and power down of unused modules will reduce the power consumption. At the architectural
level, an optimization of the processor components such as the datapath and the memory architecture
will reduce power. At the system level, the selection of variable voltages, idle and sleep modes, etc. will
contribute to the reduction of power.

The focus of this chapter is on the power and energy reduction because of optimizations at the
architectural and micro-architectural level. Indeed, by tuning the processor components to the application
field, a huge amount of power can be saved. This means

all

 processor components, and includes the
datapaths, the memory architecture, the bus network, and the control architectures, which includes
instruction set design.

The first successful DSP processors were introduced in the early 1980s. Many good overview papers
are available that describe the evolution of these processors and the special features to support signal
processing applications [10,16,17]. Examples in this category are the Texas Instruments TMS320C1x,
C2x, C5x, series or the Lucent DSP16A and DSP1600 series. This chapter focuses on the evolution of

Ingrid Verbauwhede

University of California–
Los Angeles

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2

-2

Low-Power Processors and Systems on Chips

DSP processors during the last couple of years, especially the special features in the processors to support
the demands from wireless communications.

Until recently, the same DSP processors are used both in the mobile terminal (i.e., the actual cell
phone) and in the base stations; however, a trend starts to emerge to place different processors in the
mobile terminal and the base stations. The main drivers for the processors in the mobile are cost and
very low energy consumption. This leads to processors that have a very compact but complex instruction
set (CISC) and work with domain-specific or application-specific coprocessors. High-performance pro-
cessors need to be included in the base stations, and they tend to become more compiler-friendly because
the software complexity requires it

.

 Thus, the success of very large instruction word (VLIW) processors
and modified VLIW processors for the base station applications.

It is insightful to first define the meaning of million instructions per second (MIPS) and million
operations per second (MOPS). Most traditional DSP processors belong to the class of CISC processors.
This means that in 1 instruction, typically 16 bits wide, several operations, sources, and destinations for
the operations are coded. For instance, in one dual-multiply-accumulate instruction of the Lode proces-
sor, six different operations are performed: two memory-read operations, two address calculations, and
two multiply-accumulate (MAC) operations [30]. Assuming the processor runs at 100 MHz, this corre-
sponds to 100 MIPS and 600 MOPS. If the multiply and adds are considered two operations, this becomes
800 MOPS. Similarly, in one dual MAC instruction on the Lucent 16210, seven different operations are
executed: one three-input addition, two multiplications, two memory reads, and two address pointer
updates. This corresponds to 700 MOPS.

CISC type processors are usually compared on the amount of MIPS. Sometimes, to make things
confusing, the two multiply-accumulate operations are counted separately (usually by marketing or sales
people). Therefore, it might be a 100-MHz processor, advertised for “200 MIPS.”

One instruction of a VLIW processor consists of a set of small (e.g., six or eight), primitive instructions,
issued in parallel. It is customary to multiply the clock frequency of these processors by the number of
parallel units and define these as MIPS or MOPS. The processor described in Weiss et al. [33] uses a
VLIW variation combined with SIMD properties, to reach 3000 MOPS with a 100 MHz clock. The
processor in Igura et al. [14] runs at 50 MHz and is described as an 800-MOPS solution.

To make a fair comparison between processors, we will use the MIPS terminology when referring to
the clock frequency and count the primitive operations for both the CISC and VLIW machines as MOPS.

A second insight is the means of measuring performance of DSP processors. Instead of comparing
processors based on GHz or MOPS

,

 DSP processors are usually compared on the number of instructions
to get the job done. Therefore, the goal is to minimize the number of instructions, also expressed in
MIPS (to make it even more confusing). For instance, the MIPS for several speech coding standards on
a SH-DSP are reported in Baji et al. [5]: the simplest full-rate GSM speech codec requires 3.1 MIPS. A
half-rate coder already requires 23 MIPS.

Section 2.2 introduces the driving application — in this case, wireless mobile communications. Section
2.3 identifies the most important computation-intensive functions, and gives the DSP approach for a
low-power solution. Section 2.4 discusses the integration of DSP processors and coprocessors in systems
on chip (SoCs). Conclusions are formulated in Section 2.5.

2.2 The Application Driver

DSP processors are made to support hard real-time signal processing applications. This translates in the
rule that 10% of the code is executed 90% of the time, and 90% of the code is executed 10% of the time.
The code that is executed all the time tends to sit in tight loops, of which every instruction or clock cycle
counts. DSP processors are compared based on the number of instructions and the number of clock
cycles it takes to execute basic DSP kernels.

The main building blocks of a wireless terminal are depicted in Figure 2.1. The computation-intensive
functions can be subdivided in two main categories. The first is associated with the communication

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs

2

-3

processing, also called baseband processing. The second is associated with the application processing,
also called source coding. The main baseband building blocks of second-generation cellular phones, such
as for GSM, GSM+, and IS-95, are illustrated in Figure 2.2 [11,12,23]. About half of the processing
functions are at the physical layer, implementing the modulation/demodulation, the equalizer, and the
channel coder and decoder. The other half of the processing occurs at the application level. For second-
generation phones, this means the speech coder.

All functions of the system in Figure 2.2 can be implemented in one state-of-the-art DSP processor
running at a clock frequency between 80 MHz to 150 MHz. The differentiation between the processors
and implementations sits in either the power consumption or the extra features that are included in the
processor, such as noise cancellation or equalizers that are more advanced.

Third-generation (3G) cellular wireless standards put higher demands on the modem functions as
well as the application functions. 3G systems support not only speech, but also data, image, and video
communication. These advanced applications require more processing power from the DSP. At the same
time, the advanced applications put higher demands on the coding algorithms, requesting improved bit-
error-rates. Thus, equalizers that are more advanced as well as coding algorithms that are more advanced,
such as turbo coding algorithms, are used. This is combined with a higher bandwidth requirement.

The blocks with the largest computational requirements are the following:

• Filters (FIR, IIR

)

, autocorrelations, and other “traditional” signal processing functions.
• Convolutional decoders based on the Viterbi algorithm.
• To support data processing requirements in 3G systems, turbo coders are introduced.
• On the application side, efficient codebook search and max–min search, etc. for speech coders

and vector search algorithms are required.
• Image and video decoding is the next highly computation-intensive function requiring efficient

implementation. Major examples are JPEG and MPEG

.

The next subsections discuss how different DSP processors have special architecture features to support
the most commonly required computational building blocks. Some of these features are tightly coupled
to the DSP processor architecture and integrated in the instruction set. We call these tightly coupled
coprocessor units. Some features run on separate building blocks through a bus or memory mapped
interface. In this case, jobs are delegated to the coprocessors. We call these loosely coupled coprocessors.

FIGURE 2.1

Application overview.

FIGURE 2.2

DSP functions of a second-generation communication system.

Video, data

SpeechRF
Receive

RF
Send

Communication
decoding

Communication
coding

Application
decoding

Application
coding

R
ad

io
S

peech

Modulation/
Demodulation

Equalizer

Cipher/
Deciphering

Interleaving
Deinterleaving

Channel
Coding/Decoding

Speech Source
Coding/Decoding

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2

-4

Low-Power Processors and Systems on Chips

2.3 Computation-Intensive Functions and DSP Solutions

Power consumption in CMOS circuits is mainly dynamic switching power (assuming that the leakage
power is well under control, which is a separate topic). Thus, the goal is to avoid unnecessary switching
in the processor and limiting the switching to actions necessary to create the outcome of the algorithm.
As an example, a multiplication and addition operation is fundamental to calculate an FIR filter, assuming
that the multiplication can be done without glitching power; however, the instruction read, decode, and
memory accesses can be considered as “overhead.” This overhead is not present in a full custom application
specific integrated circuit (ASIC) that only performs an FIR filter.

A processor has four fundamental components: datapaths to calculate the algorithm and three sup-
porting building blocks, including control (e.g., all the instruction read/decode logic), storage, and
interconnect

.

 To reduce power in a DSP processor, one should look at the supporting processor blocks
and reduce or tune them toward the application domain. This will reduce the unnecessary overhead power.

This concept is illustrated in the next section, with several computationally intensive functions running
on DSP processors.

2.3.1 FIR Implementation

The basic equation for an N tap FIR equation is the following:

When this equation is executed in software, output samples

y

(

n

) are computed in sequence. This
means that to compute one output sample, there are N multiply–accumulate operations and 2N memory
read operations to fetch the data and the coefficients. N is the number of taps in the filter. It is well-
known that DSP processors include datapaths to execute multiply accumulate operations in an efficient
way [17]. Therefore, we focus on the memory architecture, which is a much more fundamental design
issue for DSP processors.

2.3.1.1 Memory Architectures

On a traditional von Neumann architecture, 3N access cycles are needed to compute one output: for
every tap one needs to fetch one instruction, read one coefficient, and read one data sample sequentially
from the unified memory space. Already early on, DSP processors were differentiated from von Neumann
architectures because they implemented a Harvard or modified-Harvard architecture [16,17]. The main
characteristic is the use of two memory banks instead of one common memory space in the von Neumann
architecture. The Harvard architecture has a separate data memory from program memory. This reduces
the number of sequential access cycles from three to two because the instruction fetch from the program
memory can be done in parallel with one of the data fetches. The modified Harvard architecture improves
this even further. It is combined with a “repeat” instruction. In this case, one multiply–accumulate
instruction is fetched from program memory and kept in the one instruction deep instruction cache.
Then, the data access cycles are performed in parallel: the coefficient is fetched from the program memory
in parallel with the data sample being fetched from data memory. This architecture is found in all early
DSP processors and is the foundation for all following DSP architectures. It is an illustration of the
“tuning” of the processor components to the application, in this case the memory architecture and the
control logic.

The newer generation of DSP processors has even more memory banks, accompanying address gen-
eration units and control hardware, such as the repeat instruction, to support multiple parallel accesses.
The execution of a 32-tap FIR filter on the dual MAC architecture of the Lucent DSP 16210 is depicted
in Figure 2.3. The corresponding pseudo code is the following:

y n c i x n i
i

i N

() () ()= ⋅ −
=

= −

∑
0

1

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs

2

-5

do 14 {//one instruction !

a0=a0+p0+p1

p0=xh*yh p1=xl*yl

y=*r0++ x=*pt0++

}

This code can be executed in 19 clock cycles with only 38 bytes of instruction code. The inner loop
takes one cycle to execute and as can be seen from the assembly code, seven operations are executed
in parallel: one addition with three inputs, two multiplications, two memory reads, and two address
pointer updates.

The difficult part in the implementation of this tight loop is the arrangement of the data samples in
memory. To supply the parallel datapaths, two 32-bit data items are read from memory and stored in
the X and Y register, as illustrated in Figure 2.3. Then, the data items are split in an upper half and a
lower half and supplied to the two 16

×

 16 multipliers in parallel. It requires a correct alignment of the
data samples in memory, which is usually tedious work done by the programmer because compilers are
not able to handle this. A similar problem exists in single instruction multiple data (SIMD) instructions
on general-purpose microprocessors. If the complete word length of the memory locations is used, it
requires a large effort from the programmer to align the smaller subwords (e.g., at the byte level) into
larger words (e.g., 32-bit integers). A similar data alignment approach is used in Kabuo et al. [15]. Instead
of two multipliers, only one multiplier working at double the frequency is used, but the problem of
alignment of data items in memory remains. This approach will not reduce the total amount of bits read
from memory; only the number of instructions (control overhead) is reduced.

To reduce the amount of data read from memory, more local reuse of the data items is needed. This
is illustrated with the Lode architecture [30]. In this example, a delay register is introduced between the
two MAC units as illustrated in Figure 2.4. This halves the amount of memory accesses. Two output
samples are calculated in parallel as indicated in the pseudo code of Table 2.1. One data bus will read
the coefficient from memory; the other data bus will read the data sample from memory. The first MAC
will compute a multiply-accumulate for output sample

y

(

n

). The second multiply–accumulate will
compute in parallel on

y

(

n +

1)

.

 It will use a delayed value of the input sample. In this way, two output
samples are computed at the same time.

FIGURE 2.3

Lucent/Agere DSP16210 architecture.

XDB(32)

IDB(32)

Y(32) X(32)

16 × 16 mpy 16 × 16 mpy

p0 (32) p1 (32)

Shift/Sat. Shift/Sat.

ALU ADD BMU

ACC File
8 × 40

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2

-6

Low-Power Processors and Systems on Chips

This concept of inserting a delay register can be generalized. When the datapath has P MAC units, P-
1 delay registers can be inserted and only

 2N/

(

P +

1)

memory accesses are needed. These delay registers
are pipeline registers and thus if more delay registers are used, more initialization and termination cycles
need to be introduced.

The TI TMS320C55x [24] is a processor with a dual MAC architecture and three 16-bit data busses.
To supply both MACs with coefficients and data samples, the same principle of computing two output
samples at the same time is used. One data bus will carry the coefficient and supply this to both MACs,
the other two data busses will carry two different data samples and supply this to the two different MACs
[3]. Figure 2.5 illustrates this.

Table 2.2 summarizes the different implementations. Note that most energy savings are first obtained
from reducing the amount of memory accesses and, second, from reducing the number of instruction
cycles. Both are considered overhead. Indeed, the total energy associated with the MAC operations is
fixed because an N tap FIR filter requires N multiply-accumulate operations. A dual MAC computes two

FIGURE 2.4

Lode’s dual MAC architecture with delay register.

TABLE 2.1

Pseudo Code for FIR Implementation

y(0) = c(0)

×

(0) + c(1)

×

(-1) + c(2)

×

(2) + … + c(N-1)

×

(1-N):
y(1) = c(0)

×

(1) + c(1)

×

(0) + c(2)

×

(-1) + … + c(N-1)

×

2-N):
y(2) = c(0)

×

(2) + c(1)

×

(1) + c(2)

×

(0) + … + c(N-1)

×

(3-N):
…
y(n) = c(0)

×

(n) + c(1)

×

(n-1) + c(2)

×

(n-2) + … + c(N-1)

×

(n-(N-1)):

FIGURE 2.5

Dual MAC with three data buses.

DB1(16)

DB0 (16)

LREG

X X

+ +

A1 A0

c(i) c(i)x(n − i + 1) x(n − i)

MAC1 MAC 0

y(n+1) y(n)

DB (16)
BB (16)
CB (16)

MAC 1 MAC0

c(i) c(i)
x(n − i)

+ +

× ×

y(n+1) y(n)AC0 AC1

x(n–i+1)

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs

2

-7

MAC operations in parallel and thus the instantaneous power could even be higher in this case. Of
importance for battery-operated handsets is, however, the total energy drawn from the supply.

2.3.2 Viterbi Acceleration

The Viterbi decoders are used as forward error correction (FEC) devices in many digital communication
devices, not only in cellular phones but also in digital modems and many consumer appliances that
require a wireless link

.

 The Viterbi algorithm is a dynamic programming technique to find the most
likely sequence of transitions that a convolutional encoder has generated.

Most practical convolutional encoders are rate 1/n (which means that one input bit generates n coded
output bits). A convolutional encoder of “constraint length K” can be represented as a finite state
machine (FSM) with K-1 memory bits. This means that the FSM has 2

K–1

 possible states, also called trellis
states. If the input is binary, there are two possible next states starting from a current state because the
next state is computed from the current state and the input bit. This is illustrated in Figure 2.6 with a
simple example of a coder with constraint length K = 3, number of states 4. The generator function is
G(D) = [1 + D

2

 1 + D + D

2

].
The task of the Viterbi decoding algorithm is to reconstruct the most likely sequence of state transitions

based on the received bit sequence. This approach is called the “most likelihood sequence estimation.”
To compute this most likely path, a trellis diagram is constructed, as illustrated in Figure 2.7. It will
compute from every current state, the likelihood of transitioning to one out of two next states.

This leads to the kernel of the Viterbi algorithm, called the Viterbi butterfly. From two current states,
two next states are reached. The basic equations executed in this butterfly are:

2.3.2.1 Memory Architecture

For power and performance efficiency, DSP processors will include special logic for an efficient imple-
mentation of these two equations, mostly called an “add-compare-select” (ACS) operation. One needs

TABLE 2.2

Energy Evaluation for an N Tap FIR Filter

DSP Data Memory Access MAC Operations Instruction Cycles Instructions

Von Neumann 2N N 3N 2N
Harvard 2N N 2N 2N
Modified Harvard 2N N N 2 (repeat instruction)
Dual Mac 2N N N/2 2 (same)
Dual Mac with 3 data busses 1.5N N N/2 2
Dual Mac with 1 delay reg N N N/2 2 (same)
Dual Mac with P delay reg 2N/(P + 1) N N/(P+1) 2

FIGURE 2.6

Example convolutional coder.

D D

out 1

out 2

In

d i d i a d i s a

d i d i a d i s a

() min{ () , (/) }

() min{ () , (/) }

2 2

2 1 2

= + + −

+ = − + +

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2

-8

Low-Power Processors and Systems on Chips

to add or subtract the branch metric from states

i

 and

i

+ s

/2,

compare them and select the minimum.
Similarly, state 2

i

 + 1 is updated. The first main power reduction comes from the butterfly arrangement
because it reduces the amount of memory accesses by half; however, it does slightly complicate the address
arithmetic.

2.3.2.2 Datapath Architecture

DSP processors have special hardware and instructions to implement the ACS operation in the most
efficient way. The Lode architecture uses the two MAC units and the ALU to implement the ACS
operation, as dipicted in Figure 2.6. The dual MAC operates as a dual add/subtract unit. The ALU finds
the minimum. The shortest distance is saved to memory and the path indicator (i.e., the decision bit is
saved in a special shift register A2). This results in 4 cycles per butterfly [30].

The Texas Instruments TMS320C54x and the Matsushita processor described in Okamoto et al. [20]
use a different approach, which also results in four cycles per butterfly. Figure 2.8(b) illustrates this. The
ALU and the accumulator are split into two halves (much like SIMD instructions), and the two halves
operate independently. A special compare, select, and store unit (CSSU) compares the two halves, selects
the chosen one, and writes the decision bit into a special register TRN

.

 The processor described in
Okamoto et al. [20] describes two ACS units in parallel. To illustrate the importance of an efficient
implementation of the ACS butterflies, consider the IS-95 cellular standard. The IS-95 standard uses a
rate 1/2 convolutional encoder with a constraint length of 9 [23], which corresponds to 256 states or 128
butterflies. It has a window size of 192 samples. This corresponds to operations. The
most efficient implementation requires four cycles per butterfly. This still corresponds to close to 100
MIPS. One should note that without these specialized instructions and hardware, one butterfly requires
15 to 25 or more instructions, which results in a factor 5 to 10 increase in number of instructions to
calculate a complete Trellis diagram.

2.3.2.3 Datapath Support

The hardware support for the Viterbi algorithm on the 16210 also allows for the automatic storage of
decision bits from the ACS computations. This functionality can be switched on or off. When the built-
in comparison function

cmp1()

 is called, the associated decision bit is shifted into the auxiliary register

ar0

. This auxiliary register is a special shift register to move decision bits in at the LSB side. During the
trace back phase, its bits are used to reconstruct the most likely path. Each ACS takes two cycles (one

FIGURE 2.7

Example Viterbi trellis diagram.

Information Data

Convolution Codes

Error Sequence

Received Data

0

12

2

4

0 0 00

00

00

00

00

00

00

00

00

00

1 1 1

11

11 11

11

01

01 01 01

0101 01

01

10

10 10

10

10

1010
10

10 10

10 10

1010

0 1 2 3 4 5 6 7
t

S00

S10

S01

S11

00 00 00

00 00

00 00 00 00
0 1 1

11 11 11

11 11 11 11 11

11 11

00
01 01

128 192× × ()ACS

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs

2

-9

for the additions, one for the compare/select), and thus a single butterfly takes a total of four cycles. The
code segment in Table 2.3 performs the butterfly computations.

2.3.2.4 Control Architecture

The 16210 has hardware looping support, and there is only a single cycle required to initialize this looping
support before the loop executes with zero overhead. When decoding a standard GSM voice channel,
which has a constraint length of 5 or 16 states in the trellis, the

ar0

 register is filled with 16 decision
bits after the 8 butterflies are processed. Thus, with a single memory access, the decision bits can be
stored in memory and the next symbol pair can be processed. This is an efficient use of memory
bandwidth. For codes with higher constraint lengths and thus more states, the code segment can be
executed multiple times with each decision bit word written to memory as required.

2.3.3 Turbo Decoding

Although convolutional decoding remains a top priority (the decoding requirement for EDGE has been
identified as greater than 500 MIPS), the performance needed for turbo decoding is an order of magnitude
greater. We therefore describe the turbo decoders needed in 3G systems. Turbo decoding (see Figure 2.9)
is a collaborative structure of soft-input/soft-output (SISO) decoders with the inclusion of interleaver
memories between decoders to scatter burst errors [7]. Either soft-output Viterbi algorithm (SOVA) [13]
or maximum a posteriori (MAP) [4] can be used as SISO decoders. Within a turbo decoder, the two

FIGURE 2.8

Add-compare-select (a) on the Lode architecture and (b) on C54x architecture and on the architecture
of Okamoto and coworkers [20].

TABLE 2.3

Pseudo Code for the Viterbi Butterfly on the DSP 16210

do 8 {

a0=a4+y a1=a5=y *r3++=a0h

a2=a4y a3=a5+y *r5++=a2h

a0=cmpl (a1, a0) yh=*r0 r0=r1+j j=k k=* pt1++

a2=cmpl (a3, a2) a4 5h=*pt0++

}

*r2++=ar0

ALU: MIN

+ +

A1 A0

MAC1 MAC0

to memory A2
A3

decision bit

(a) Lode architecture (b) Architecture of (23)

to memory

ALU:
COMP

SELECT

TRN

+ +

ALU
Acc

TREG

DB1 (16)

DB0 (16)

DB1 (16)

DB0 (16)

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2

-10

Low-Power Processors and Systems on Chips

decoders can operate on the same or different codes. Turbo codes are included to provide coding
performance to within 0.7 dB of the Shannon limit (after a number of iterations).

The Log-MAP algorithm can be implemented in a manner very similar to the standard Viterbi
algorithm. Perhaps the most important difference between the algorithms when they are implemented
is the use of a correction factor on the new “path metric” value (the alpha, beta, and log-likelihood ratio
values in Log-MAP) from each ACS, which is dependent on the difference between the values being
compared. This is typically implemented using a lookup table, with the absolute value of the difference
used as an index into this table and the resulting value added to the selected maximum before it is stored.

2.3.3.1 Datapath Architecture

The C55x DSP processor includes explicit instructions to support the turbo decoding process. This is
illustrated in Figure 2.10. A new instruction, the

max_diff

 (ACx, ACy, ACz, ACw) is introduced [24]. It
makes use of the same ALU and CSSU unit as the Viterbi instructions. Again, the ALU is split into two
16-bit halves. This processor has four accumulator registers compared with two in the previous genera-
tion. All four accumulator registers are split in half. The two differences, between ACx(H) and ACy(H)
and between ACx(L) and ACy(L), are stored in the ACw halves. The maximum of the ACx(H) and
ACy(H) is stored in ACz(H); the maximum of the ACx(L) and ACy(L) is stored in ACz(L). Two special
registers are used to store the path indicators, TRN0 and TRN1.

The preceding modifications support the requirements for wireless baseband processing. To also
improve the performance for multimedia, a tightly coupled mechanism of instruction extension and

Figure 2.9

Turbo encoder and Turbo decoder.

FIGURE 2.10

Turbo decoding acceleration on the C55x.

Information bits

Interleaver Constituent
decoder 2

Constituent
decoder 1

Parity
bits

Parity
bits

MUX
Encoded
Output

Parity bits
1st Code

Info bits

Constituent
decoder 1

Constituent
decoder 2

Interleaver

Interleaver

De-
Interleaver

Soft-
Decision

Soft-
Decision

Soft-
Decision

Parity bits 2nd Code

De-
Interleaver

Decoded
Output

ALU

AccX AccY

+ +

AccW

ALU:
COMP

SELECT

AccZ TRN0 TRN1

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs 2-11

hardware acceleration is added to the C55x processor [9]. A special set of instructions is provided, with
sources and destinations that are shared with the regular instructions. These special instructions have
one set of opcodes: copr(). This avoids explosion of the instruction code size. Then, the application
specific integrated processor (ASIP) designer has the choice to define the functionality of the hardware
accelerator units addressed by these copr() instructions. Typical examples are video processing exten-
sions for mobile applications [22].

Table 2.4 summarizes several low-power DSP processors. Notice that all operate with dual threshold
voltages. In addition, note that although the clock frequency is not spectacularly high, the MOPS efficiency
is very high for each of these processors.

2.4 DSPs as Part of SoCs

The previous section presented several modifications to the processor architecture to optimize the
architecture toward the application domain of mobile wireless communications. It included examples of
modifications to the memory architecture, datapath architecture, control architecture, instruction set,
and bus architecture. So far, these modifications are tightly coupled (i.e., it reflects directly in the
instruction set). The optimized instruction sets result in very compact program sizes and very efficient
code. Yet, it is also very hard to produce efficient embedded software. The specialized CISC type instruc-
tions are extremely hard to be recognized by the compiler. Thus, the approach usually results in hand-
optimized assembly code libraries for the computation-intensive functions.

In addition, the demands of next generation mobile applications are not satisfied by these instruction
set modifications alone. More applications and multiple applications in parallel (and on demand) are
running on the battery-operated devices.

Because of this, we see two distinct trends: one is in the direction of more powerful, but also more
energy-hungry, processors used in the infrastructure. The other trend is in the direction of ultra-low
power DSP solutions used in the handheld, battery operated terminals. Processors used in the basestation
infrastructure are more compiler-friendly [1]. One popular type is the class of VLIW processors that
are developed for wireless communications. Some examples are the TIC6x processor [2], the Lucent/
Motorola Starcore [27], the ADI TigherSharc [21]. The main advantage of these processors is that they
are compiler-friendly: efficient compiler techniques are available. The main disadvantage is that the
program size is large and thus creates a large memory overhead [31]. This makes them mostly attractive
to base station infrastructure.

It is interesting to note that some CISC features have reappeared: specialized instructions or loosely
coupled coprocessors been added to the base VLIW architecture to improve the performance and to
reduce the power consumption. A first example is the TIC6x processor, to which loosely coupled Viterbi
and turbo coding coprocessor units are added [2]. A second example is the Starcore processor to which

TABLE 2.4 Examples of Low-Power Programmable DSP Processors

Reference MOPS Technology
Threshold
Voltages Power Standby-Power

Mutoh [19] 26 0.5 µm Two 2.2 mW/MHz (at 1 V,
13.2 MHz)

350 µW

Lee [18] 300 0.25 µm Two 0.21 mW/MHz (at 1 V,
63 MHz)

4.0 mW

Shiota [26] NA 0.25 µm Two 0.26 mW/MHz (at 1 V
max, 50 MHz)

100 µW

Igura [14] 800 0.25 µm One 2.2 mW/MHz (at 1.5 V,
50 MHz)

NA

Zhang [35] 240 0.25 µm One 0.05 mW/MHz (at 1 V,
40 MHz)

NA

 Note: NA = not available.

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2-12 Low-Power Processors and Systems on Chips

some specialized instructions are added [21]. Because the main driver is base station infrastructure (i.e.,
the baseband part of the application), there is no explicit support for the application side of the system,
such as speech or video processing.

Because one processor is not sufficient to process the multiple and widely varying applications, a
second, more energy efficient trend, is the addition of specialized coprocessors or accelerator units to the
main processor on the SoC. This can take several forms. Initially, an SoC had multiple but almost identical
processor units, as in Igura et al. [14]. This processor contains four identical DSP processors. Global
tasks (coarse-grain) are assigned to the DSP processors in a static manner. Alignment of the tasks is
provided by synchronization routines and interrupts. It is demonstrated that a video codec (H.263) and
a speech codec (G.723) can run at the same time within the 110-mW power budget. Memory accesses
(internal, shared, and external) consume half of the power budget, which indicates again that the memory
architecture and the match of the application to the memory architecture is crucial.

A second form is an SoC with heterogeneous processor units. An example of this is the OMAP
architecture [22]. It consists of a specialized DSP processor, the TMS320C55x DSP and a microcontroller,
an ARM9xx CPU. The microcontroller is used for the control flow, including running an operating
system, user interfaces, and so on. The DSP is used for the number crunching signal processing tasks.
As discussed before, it is highly optimized for the communication signal processing, and through its
extension possibilities toward multimedia applications. Thus, the OMAP is a result of several strategies:
domain specific instruction sets, tightly coupled instruction set acceleration through coprocessor instruc-
tions, loosely coupled coprocessors, and multiple processors on one SoC. The global flow of data as well
as the corresponding interconnect architecture and memory architecture are still fixed.

This leads to a third form. To combine flexibility with energy efficiency, it is our opinion that the SoC
architecture should consist of multiple heterogeneous building blocks connected together by a reconfig-
urable interconnect architecture. We call this a RINGS (reconfigurable interconnect for next generation
systems) architecture [32], illustrated in Figure 2.11. Each of the building blocks is optimized for its
specific application domain, represented by an application domain pyramid. Within an application
pyramid, the reconfiguration or reprogrammability level can be determined individually. For instance,

FIGURE 2.11 Generic RINGS architecture.

A
R

C
H

IT
E

C
T

U
R

E
A

P
P

LI
C

A
T

IO
N

Networking Multimedia Security

Application
Session

Transport
Network
DataLink
Physical

Coding
Filtering

Feature Extraction
Sensing

Key Distribution
Confidentiality

Integrity
Identification
Cryptography

MEMORY

CPU

RF/IR

Baseband
Processing

Multimedia
Processing

Encryption
Processor

Service Interface: Reconfigurable interconnect

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power DSPs 2-13

a baseband pyramid can be realized with a programmable DSP processor, augmented with a few copro-
cessors. A security pyramid can be realized with a small FSM and lowly programmable crypto acceleration
engines. A network protocol stack will need a highly programmable central processing unit (CPU)
approach. Multimedia applications are probably best served by a dataflow approach and a chain of
hardware acceleration units, and so on. Thus, the transit line between hardware and software can be
positioned at different levels in different pyramids. The top level is a general system application (in
software) that connects the different pyramids together.

At the bottom, the communication is provided by means of a flexible interconnect. Reconfiguration
of the interconnect is also crucial for the MAIA processor [35]. This processor contains an ARM micro-
controller and hardware acceleration units (e.g., MAC, ALU, and AGU). The ARM core controls and
decides the reconfiguration of the interconnect. To optimize the energy flexibility trade-off a two-level
hierarchical mesh network is chosen. A local mesh connects local tightly coupled units. A global mesh
with a larger granularity is provided at the top level. This global mesh has switchboxes that connect both
globally and downwards to the local level. Another example is the DM310 digital media processor [29].
To obtain low power, it has dedicated coprocessors for image processing, a programmable DSP processor
for audio processing, and an ARM processor to process system level tasks.

At the physical level, this is a typical example of a time and space division-based interconnect. To
improve density, combined with a larger degree of programability and energy efficiency, we propose to
use frequency and code division access to the interconnect medium [32]. This can be combined with the
space and time division. From the programmer’s viewpoint, the actual physical implementation should
be hidden and a programming model should be available, that allows to model different interconnect
paradigms and gives the uses the possibility to perform the energy flexibility trade-offs.

A RINGS architecture allows the platform to be changed as the target changes. This approach has
been proven successful for an embedded fingerprint authentication system [25]. We are currently
working on applying the same design methodology to accelerate multimedia applications for wireless
embedded systems.

2.5 Conclusion and Future Trends

Low power can only be obtained by tuning the architecture platform to the application domain. This
chapter presents multiple examples to illustrate this for the domain of signal processing and, more
specifically, to support the signal processing algorithms for wireless communicating devices. At the same
time, demand for flexibility is increasing. Thus, the designer must try to balance these conflicting
requirements by providing flexibility at the right level of granularity and to the right components. It is
extremely important to realize that this tuning involves all components of a processor: the datapaths,
the instruction set, the interconnect, and the memory strategy. Traditional DSPs are CISC machines
with an adapted modified Harvard interconnect and memory architecture (coming in many flavors).
With increasing demands, coprocessors are added to these architectures. As SoCs grow in complexity,
however, the architecture becomes one where one integrated device will contain multiple heterogeneous
processors. Each processor supports an application domain and its programmability is tuned to the
domain. The different components are connected together by a reconfigurable interconnect paradigm.
This reconfigurable interconnect poses several research challenges are different abstraction levels: physical
realization, the modeling at a higher abstraction level and the reconfigurable programming at compile
time and run time.

2.6 Acknowledgments

The author acknowledges the following DSP processor experts: Chris Nicol, Dave Garrett, Wanda Gass,
Mihran Touriguian, and Katsuhiko Ueda. The author also acknowledges the contributions of Frank M.C.
Chang and Patrick Schaumont.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

2-14 Low-Power Processors and Systems on Chips

References

[1] B. Ackland and P. D’Arcy, A new generation of DSP architectures, Proc. IEEE CICC ’99, Paper 25.1,
pp. 531–536, May 1999.

[2] S. Agarwala et al. A 600-MHz VLIW DSP, IEEE J. Solid-State Circuits, Vol. 37, No. 11, pp. 1532–1544,
Nov. 2002.

[3] D. Alter, Efficient implementation of real-valued FIR filters on the TMS320C55x DSP, Application
Report SPRA655, April 2000, available from www.ti.com.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol
error rate,” IEEE Trans. Information Theory, Vol. IT-20, pp. 284–287, Mar. 1974.

[5] T. Baji, H. Takeyama, and T. Nakagawa, Embedded-DSP superH family and its applications, Hitachi
Review, Vol. 47, No. 4, pp. 121–127, 1998.

[6] Belgen kopen opnieuw meer gsm’s/Belgians buy again more cells phones, De Tijd, Sept. 17, 2003.
[7] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and

decoding: turbo-codes (1), Proc. ICC ’93, Vol. 2, pp. 1064–1070, May 1993.
[8] M. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G. Zhou, L. Davis, G. Woodward,

C. Nicol, and R.-H. Yang, A unified turbo/Viterbi channel decoder for 3GPP mobile wireless in
0.18-mm CMOS, IEEE J. Solid-State Circuits, Vol. 37, No. 11, pp. 1555–1564, Nov. 2002.

[9] J. Chaoui, K. Cyr, S. de Gregorio, J.-P. Giacalone, J. Webb, and Y. Masse, Open multimedia
application platform: enabling multimedia applications in third-generation wireless terminals
through a combined RISC/DSP architecture, 2001. Proc. (ICASSP ’01). 2001 IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, Volume: 2, May 7–11, 2001.

[10] W. Gass and D. Bartley, Programmable DSPs, in Digital Signal Processing for Multimedia Systems,
chap. 9, Marcel Dekker Inc., 1999.

[11] A. Gatherer, T. Stelzler, M. McMahan, and E. Auslander, DSP-based architectures for mobile
communications: past, present, and future, IEEE Commun. Mag., pp. 84–90, January 2000.

[12] A. Gatherer and E. Auslander, The Application of Programmable DSPs in Mobile Communications,
John Wiley & Sons, New York, 2002.

[13] J. Hagenauer and P. Hoeher, A Viterbi algorithm with soft-decision outputs and its applications,
Proc. Globecom ’89, pp. 47.1.1–47.1.7, Nov. 1989.

[14] H. Igura, Y. Naito, K. Kazama, I. Kuroda, M. Motomura, and M. Yamashina, An 800-MOPS, 110-
mW, 1.5-V, parallel DSP for mobile multimedia processing, IEEE J. Solid-State Circuits, Vol. 33,
pp. 1820–1828, Nov. 1998.

[15] H. Kabuo, M. Okamoto, et al., An 80-MOPS peak high-speed and low-power consumption 16-bit
digital signal processor, IEEE J. Solid-State Circuits, Vol. 31, No. 4, pp. 494–503, 1996.

[16] P. Lapsley, J. Bier, A. Shoham, and E. Lee, DSP Processor Fundamentals, IEEE Press, 1997.
[17] E.A. Lee, Programmable DSP processors: part I and II, IEEE ASSP Mag., Oct. 1988 and Jan. 1989.
[18] W. Lee et al. A 1-V programmable DSP for wireless communications, IEEE J. Solid-State Circuits,

Vol. 32, No. 11, Nov. 1997.
[19] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, A 1-V multi-threshold voltage

CMOS DSP with an efficient power management technique for mobile phone application, IEEE
Int. Conf. on Solid-State Circuits, Paper FA 10.4, pp. 168–169, Feb. 1996.

[20] M. Okamoto, K. Stone, T. Sawai, H. Kabuo, S. Marui, M. Yamasaki, Y. Uto, Y. Sugisawa, Y. Sasagawa,
T. Ishikawa, H. Suzuki, N, Minamida, R. Yamanaka, and K. Ueda, A high-performance DSP
architecture for next generation mobile phone systems, 1998 IEEE DSP Workshop.

[21] A. Olofsson and F. Lange, A 4.32-GOPS 1- general-purpose DSP with an enhanced instruction set
for wireless communications, Proc. ISSCC, pp. 54–55, Feb. 2002.

[22] M. Peresse, K. Djafarian, J. Chaoui, D. Mazzocco, and Y. Masse, Enabling JPEG2000 on 3-G wireless
mobiles through OMAP architecture, Proc. Acoustics, Speech, and Signal Processing, 2002 (ICASSP
’02), Vol. 4, May 13–17, pp. IV-3796–IV-3799, 2002.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.ti.com/

Low-Power DSPs 2-15

[23] T. Rappaport, Wireless Communications, Principles & Practices, IEEE Press, New York and Prentice
Hall, New Jersey, 1996.

[24] TMS320C55x DSP Mnemonic Instruction Set Reference Guide, document SPRU374C, June 2000,
available from www.ti.com.

[25] P. Schaumont and I. Verbauwhede, Domain-specific codesign for embedded security, IEEE Comput.
Mag., pp. 68–74, April 2003.

[26] T. Shiota, I. Fukushi, R. Ohe, W. Shibamoto, M. Hamaminato, R. Sasagawa, A. Tsuchiya, T. Ishihara,
and S. Kawashima, A 1-V, 10.4-mW low-power DSP core for mobile wireless use, 1999 Symp. on
VLSI, Paper 2-2, 1999.

[27] Starcore launched first architecture, Microprocessor Report, Vol. 12, No. 14. p. 22, Oct. 1998.
[28] W. Strauss, DSP Market Bulletin, Forward Concepts, June 2, 2004, available from www.forward-

concepts.com, June 2004.
[29] D. Talla, C. Hung, R. Talluri, F. Brill, D. Smith, D. Brier, B. Xiong, and D. Huynh, Anatomy of a

portable digital mediaprocessor, IEEE Micro., Vol. 24, Issue 2, pp. 32–39, March–April 2004.
[30] I. Verbauwhede and M. Touriguian, A low-power DSP engine for wireless communications, J. VLSI

Signal Process., Vol. 18, pp. 177–186, 1998.
[31] I. Verbauwhede and C. Nicol, Low-power DSPs for wireless communications, Proc. Int. Symp. on

Low-Power Electron. Design (ISLPED 2000), pp. 303–310, July 2000.
[32] I. Verbauwhede and M.-C.F. Chang, Reconfigurable interconnect for next-generation systems, Proc.

ACM/Sigda 2002 Int. Workshop on System Level Interconnect Prediction (SLIP 2002), Del Mar, CA,
pp. 71–74, April 2002.

[33] M. Weiss, F. Engel, and G. Fettweis, A new scalable DSP architecture for system on chip (SoC)
domains, Proc. IEEE ICASSP Conf., May 1999.

[34] J. Williams, K.J. Singh, C.J. Nicol, and B. Ackland, A 3.2-GOPs multiprocessor DSP for commu-
nication applications, Proc. IEEE ISSCC 2000, Paper 4.2, San Francisco, February 2002.

[35] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. Rabaey; A 1-V heterogeneous
reconfigurable DSP IC for wireless baseband digital signal processing, IEEE J. Solid-State Circuits,
Vol. 35, pp. 1697–1704, Nov. 2000.

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.ti.com/
http://www.fwdconcepts.com/
http://www.fwdconcepts.com/

3

-1

3

Energy-Efficient
Reconfigurable

Processors

3.1 Introduction ..

3-

1
3.2 Energy Efficiency of Reconfigurable Architectures...........

3-

2

Problem Definition • Energy Efficiency Optimization

3.3 The DART Architecture ..

3-

5

Cluster Architecture • RDP Architecture • Dynamic
Reconfiguration • Development Flow

3.4 Validation Results ..

3-

9

Implementation of a WCDMA Receiver • Energy Distribution
in DART • Performance Comparisons

3.5 Conclusions ...

3-

13
3.6 Acknowledgments ...

3-

13
References ...

3-

14

3.1 Introduction

Rapid advances in silicon technology and embedded computing bring two conflicting trends to the
electronics industry. On the one hand, high-performance embedded applications dictate the use of
complex battery-powered devices. The evolution of the battery capacity being significantly lower than
that of the application complexity, energy efficiency becomes a critical issue in the design process of these
systems. On the other hand, these systems have to be flexible enough to support rapidly evolving
applications, restricting the use of domain-specific architectures. These trends have led to the reconfig-
urable computing paradigm [1,2].

Formally, configuring permits the adjustment of something or a change in the behavior of a device
so that it can be used in a particular way. This definition leads to a very large design space bounded by
bit-level reconfigurable architectures and by von Neumann-style processors. Common execution (i.e.,
reconfiguration) schemes can be extracted for different paradigms in this design-space [3,4], on the basis
of the processing primitive granularity. On one side of the design space, bit-level reconfiguration is used
in field programmable gate-array (FPGA). They provide bit-level reconfigurability and typically use mesh
topology for their interconnection network. They allow designers to fully optimize the architecture at
the bit level. The flexibility of these devices is associated with a very important configuration data volume
and with performance and energy overheads. On the opposite side, system-level reconfiguration corre-
sponds to instruction-based processors, including digital signal processors (DSP). They achieve flexibility
through a set of instructions that dynamically modify the behavior of statically connected components.
Their performance is limited by the amount of operator parallelism. Futhermore, their power-hungry
data and instruction access mechanisms lower their energy efficiency.

Raphaël David
Sébastien Pillement
Olivier Sentieys

ENSSAT/University of Rennes

6700_C003.fm Page 1 Thursday, August 18, 2005 9:29 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-2

Low-Power Processors and Systems on Chips

In between, to increase the optimization potential of programmable processors without the bit-level
reconfigurable architecture drawbacks, the functional-level reconfiguration has been introduced for
reconfigurable processors. In such architectures, functional units as well as their interconnection network
are reconfigurable and handle worldwide data. Most of these architectures use two-dimensional network
topologies, usually hierarchical [5], for communications between functional units. In this context, numer-
ous approaches have been proposed, such as DReAM [6], Morphosys [7], Piperench [8], FPFA [9], RaPiD
[10], or Pleiades [11]. The main concern of these architectures is to introduce flexibility while maintaining
high performance and reducing reconfiguration cost.

Reconfigurable architectures such as the Chameleon [12] have demonstrated their efficiency on imple-
menting 3G base stations. More generally, reconfigurable architectures have demonstrated their efficiency
on computation-hungry signal processing applications. Unfortunately, energy efficiency has been rarely
a topic of interest in the reconfigurable framework. In this chapter we focus on the energy/flexibility
trade-off for high-performance reconfigurable architectures.

Section 3.2 presents the energy efficiency criterion and highlights energy wastes in the reconfigurable
design space as well as the opportunities to reduce energy consumption. Section 3.3 presents the DART
architecture implementing energy aware design techniques and innovative reconfiguration schemes.
Finally, Section 3.4 discusses the implementation results of a key application of next-generation mobile
communication systems.

3.2 Energy Efficiency of Reconfigurable Architectures

3.2.1 Problem Definition

The energy efficiency (E.E.) of an architecture can be quantified by considering the number of operations
it processes per second when consuming one mW. This parameter can be defined by Equation (3.1) [13]:

(3.1)

where

NOP

 is the number of operations computed at each cycle and

Fclk

 the operating frequency [

MHz

].

AChip

 is the total area of the chip [

mm

2],

CN

 the normalized capacitance by area unit [

mF

/

mm

2], the
average activity, and

VDD

 the supply voltage [

V

]. The product

NOP

.

Fclk

 thus represents the computation
power of the architecture and is given in millions of operations per second (MOPS). The prod-
uct gives the power consumed during the execution of the

NOP

 operations.

AChip

parameter is obtained by Equation (3.2):

(3.2)

where

Aopr

 is the average area per operator,

Nopr

 the number of operator in the design.

Nopr

.

Aopr

 thus
represents the operator area in the design.

Amem

 is the memory area and

Actrl

 the area of the control
and configuration management resources.

These two equations can be used to find out which parameters could best be optimized to design an
energy efficient architecture. The

N

OP

.

F

clk

 product has to cover the needs of the implemented application
(i.e., the architecture has to be powerful enough to compute the application). Consequently,

N

OP

 and

F

clk

need to be jointly optimized. The normalized capacitance mainly depends on the technology. So, its
optimization was not studied for this work.

The definition of an energy aware architecture dictates the optimization of the remaining parameters:
average operator area, storage, and control resource area as well as activity through the circuit and of
course clock frequency and supply voltage. To define an optimal

delay

×

 power

product, parallelism
inherent to the implemented system must finally be fully exploited.

E E
N F

A C F V

MOPS

mW
OP clk

Chip N clk DD

. .
.

. . . . 2
=

α

α

A C F VChip N clk DD. . . . 2α

A N A A AChip opr opr mem ctrl= + +.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3

-3

According to the energy efficiency criterion, application-specific integrated circuits (ASIC) can be
considered as the ultimate solution. Because they are dedicated only for one specific processing, no
computational unit is larger or more complicated than it has to be. In such devices, the operator area
(

A

opr

) is thus minimized. Moreover, no architectural mechanisms have to be introduced to support
flexibility (i.e., there is no need to fetch and decode instructions). The execution is fully deterministic
and all known optimizations, such as using wires instead of shifters, can be used. The circuit is controlled
thanks to a finite state machine and the control area of the chip

A

ctrl

 is also minimized.
In such designs, processing parallelism can be fully exploited. By increasing the parallelism level, the

operating frequency along with the supply voltage can be reduced, and therefore an optimal energy delay
product can be achieved. Moreover, because there is no resource waste, design area is reduced. Finally,
clock distribution energy waste can also be minimized by defining several clock domains.

With these devices, data accesses are fully determined at the synthesis time. Thus, data can be placed
as near as possible to the functional units that will handle them. A memory hierarchy can also be defined
in order to minimize the energy consumed by data transactions within the architecture. Furthermore,
optimizations such as first-in first-out (FIFO) memory instead of static random-access memory (SRAM)
can be used. Consequently, memory area (

A

mem

) is reduced along with energy.
Beside classical high-performance and low-energy consumption constraints, flexibility becomes a

major concern to the development of multimedia and mobile communication systems. This dictates the
use of programmable or even reconfigurable devices [14]. The next section discusses energy efficiency
optimization techniques that can be applied in the case of reconfigurable processors.

3.2.2 Energy Efficiency Optimization

3.2.2.1 Energy in Computations

An architecture is considered as energy efficient only if its operators are the main source of energy
consumption. Nevertheless, the optimization effort for these components has also to be important.
Programmable processors integrate in their datapath, general-purpose functional units designed to
perform a large variety of computations. They are thus significantly more complicated than they need
to be, and are a source of energy waste. Moreover, if their bit-width is larger than the data length used
in the algorithm, additional energy is wasted.

On the contrary, in bit-level reconfigurable architectures, each operator is built to execute only one
operation. The very fine granularity of the computation primitive (e.g., look-up tables) dictates the
association of numerous cells. Consequently, the power dissipated in such an operator is mainly issued
from the interconnection network (60 to 70%) [15,16]. Even if the operators are tailored-made to execute
only one operation on fixed-size data, they are inefficient from an energy point of view.

To reduce energy waste, the amount of operations supported by functional units has to be limited. A
functional decomposition of these units leads to the isolation of its different parts by using latches. In
this case, only transistors useful to the execution consume dynamic power.

Many application domains handle several data sizes during time (e.g., 8, 11, 13, and 16 bits). To support
all these data sizes, very flexible functional units have to be designed. Consequently, latency and energy
penalties occur. Another alternative is to optimize functional units only for a subset of these data sizes
by designing subword parallelism (SWP) operators [17]. This technique consists of dividing an operator
working on

N

-bit data to allow the execution of

k

 operations in parallel on part of the input data of

N/
k

 length. Integrating such operators allows to increase computation power while keeping the consumed
energy per operator nearly constant during processings with data-level parallelism. Therefore, SWP can
increase energy efficiency of the architecture.

3.2.2.2 Exploiting the Parallelism

To minimize energy consumption, supply voltage has to be reduced aggressively. To compensate the
associated performance loss, concurrent execution must be supported. Digital signal processing algo-
rithms provide several levels of parallelism that can be exploited to achieve this objective.

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-4

Low-Power Processors and Systems on Chips

Operation- or instruction-level parallelism (ILP) is inherent to every computation algorithm.
Although it is constrained by data dependencies, its exploitation is generally quite easy. It requires the
introduction of several functional units working independently with each other. To exploit this paral-
lelism, the architecture controller has to be able to jointly specify, to several operators, the operation to
be executed.

Thread-level parallelism (TLP) represents the number of processings, which may be executed concur-
rently to implement an algorithm. The TLP is far more complicated to exploit than ILP. TLP strongly
varies from one application to another, and even more between two descriptions of the same application.
To exploit this parallelism while guaranteeing a good computation density, the architecture must be able
to adapt its organization of processing resources [18]. The trade-off between ILP and TLP must thus be
adapted to the application to be executed. This can be realized by organizing the architecture into a
hierarchy, the lowest level of which being a set of functional units (e.g., a datapath). Each datapath should
be able to be controlled independently to implement a particular thread of the application. On the
contrary, the datapaths should be interconnected as a single resource exhibiting a large amount of ILP.

Application or algorithm parallelism can be considered as an extension of thread parallelism. The goal
is here to identify the applications that may be implemented concurrently on the architecture. On the
opposite of threads, applications executed in parallel are working on distinct data sets. To exploit this
kind of parallelism, a second level of hierarchy needs to be added to the architecture. The architecture
may be divided into clusters working independently on several applications. These clusters have their
own control, storage, and processing resources.

3.2.2.3 Reducing the Control Overhead

In a reconfigurable processor, two types of information are needed to manage the architecture: the
configuration data which specify the hardware structure of the architecture (operators, logic, intercon-
nections), and the control, which manages the data transactions within the architecture. Distributing the
configuration and control information has a significant impact on performance and energy efficiency of
the system. This is mainly issued from the configuration and control data volume needed to execute an
application and to the reconfiguration frequency.

The architectural paradigms included in the reconfigurable design space have very different strategies
to distribute these information. Bit- and system-level reconfigurable architectures have the two most
extreme reconfiguration schemes. On the one hand, a very large amount of configuration data (several
thousands or millions of bits) is distributed in FPGA architecture. The reconfiguration cost is very high
but once specified, there is no control overhead. On the other hand, programmable processors eliminate
the overhead linked to the specification of the datapath because it is fixed. The control cost of the
architecture is very important, however, and corresponds to fetch and decode instructions at each cycle.

The 80/20 rule asserts that 80% of the execution time is consumed by 20% of the program code [19].
Few portions of source code are thus executed during long periods of time. These blocks of code are
described as regular and are typically loop kernels during which a same computation pattern is used for
long time. Between these blocks of regular code, instructions follow one another without particular order
and in a nonrepetitive way. These portions of code are described as irregular. Because of their lack of
parallelism, they present few optimization opportunities.

To minimize the architecture control cost, the distribution strategy can be adapted to the implemented
processing. For this purpose, regular and irregular processings have to be distinguished to define two
reconfiguration modes. The first one is used to specify the architecture configurations which will allow
optimal implementations of regular processings. The second reconfiguration mode is used to specify the
control information that will allow to execute irregular processings. By reducing the amount of recon-
figuration targets, functional-level reconfigurable architectures limit the configuration data volume asso-
ciated to the datapath structure specification.

To reduce even more the configuration data volume, redundancy in datapath can also be exploited.
It allows to distribute simultaneously the same configuration information to several targets, whenever
these targets execute the same processing.

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3

-5

3.2.2.4 Reducing the Data Access Cost

Data access cost also has a significant impact on the energy efficiency of the architecture. It depends on
the amount of memory accesses and on the cost of one memory access. In programmable processors,
each computation step dictates register file accesses. These architectures cannot completely exploit spatial
and temporal locality of data because all the data have to be stored in registers. Thanks to bit- or
functional-level reconfiguration, operators may be interconnected to efficiently exploit the locality of
data. Spatial locality is used by directly connecting operators. Producer and consumer of data can be
directly connected, no memory transfers are necessary to store intermediate results. Temporal locality
can be exploited thanks to one-to-all connections. That kind of connection allows the transfer of one
data element toward several targets in a single transaction and to skip redundant data accesses. This
temporal locality may moreover be exploited thanks to delay chains, which reduce the amount of memory
accesses when several samples of a same signal are concurrently handled in an application.

Defining a memory hierarchy reduces the data access cost while providing a high memory bandwidth
[20]. This hierarchy has to combine high capacity, high bandwidth, and energy efficiency.

Because multi-port memories are characterized by high-energy consumption, it is more efficient to
integrate several single-port memories. High-bandwidth and low-energy constraints thus require the
integration of a large amount of small memories. Moreover, to provide a quite important storage space,
a second level of hierarchy can be added. Finally, to reduce memory management costs, the address
generation task is distributed along with the memories.

 Associating flexibility with high-performance and energy efficiency, is a critical issue for embedded
applications. Beside the dynamically reconfigurable device Xc6200 from Xilinx [21], numerous research
projects have contributed to the simplification of the reconfiguration process to increase performance
and flexibility (e.g., Singh et al. [7], Goldstein et al. [8], Cronquist et al. [10], and Callahan et al. [22]).
Despite the energy optimization potential of reconfigurable architectures, few projects have integrated
this constraint. In Abnous and Rabaey [11], the authors propose a low-power reconfigurable processor.
Because it is a domain-specific platform, its flexibility is limited. Furthermore, the validation of this
platform has only been proposed for medium-complexity application domain, such as speech coding [23].

The next section discusses a reconfigurable processor associating energy efficiency, high performance
and flexibility. This architecture is based on the optimization mechanisms presented in this section.

3.3 The DART Architecture

DART is a hierarchical architecture supporting the different levels of parallelism. To exploit task paral-
lelism, DART has been broken up into clusters. Distinct tasks can be processed concurrently by clusters
because each of them has its own control and storage resources. At the system level, tasks are distributed
to clusters by a controller. This controller supports the real-time operating system which assigns tasks to
clusters according to urgency and resources availability constraints. The system level of DART also
includes shared memories (data, configuration) and an I/O block which allows its interfacing with
external components through a standard bus (e.g., AMBA and VCI).

This section first describes the architecture of DART clusters. Next, the processing primitives are
presented. Finally, dynamic reconfiguration and development tools are discussed.

3.3.1 Cluster Architecture

Each cluster of DART (Figure 3.1) integrates two types of processing primitives: some reconfigurable
datapath (RDP) used for arithmetic processing and an FPGA core processing data at the bit level. The
RDPs, detailed in the next section, are reconfigurable at the functional level to optimize the intercon-
nections between arithmetic operators according to the calculation pattern. The FPGA core is reconfig-
urable at the gate level to efficiently support bit-level parallelism of processings (e.g., generation of Gold
or Kasami codes in wideband code division multiple access (WCDMA) or channel coders [24]). Using
these two kinds of operators allows an architecture to be defined in adequacy with the algorithm for a

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-6

Low-Power Processors and Systems on Chips

large set of applications. Experiments have demonstrated that integrating one FPGA core and six RDPs
in each cluster of DART delivers enough calculation power.

 The RDPs are interconnected thanks to a segmented mesh network. Depending on the parallelism
level of the application, the RDPs can be interconnected to compute in a highly parallel fashion to support
high ILP, or can be disconnected to work independently on different threads. The segmented network
allows dynamic adaptation of the instruction- and thread-level parallelism of the architecture, depending
on the processing needs.

This hierarchical organization of DART allows not only the distribution of control but also that of
the processing resources. Thus, it is possible to efficiently connect a very large number of resources
without being too penalized by the interconnection cost. The processing resources distribution allows
the definition of a hierarchical interconnect network, which is significantly more energy efficient for
complex design than a typical global interconnection networks [5]. With this kind of network, the lowest
level of the resource hierarchy is completely connected while the higher levels communicate via the
segmented network.

Moreover, thanks to the flexibility of this topology, the resulting architecture becomes a better target
for the development tools.

All the processing primitives (i.e., the FPGA and RDPs) access the same data memory space and their
reconfigurations are managed by a controller. To minimize the associated control overhead, reconfigu-
rations of the FPGA are realized via a DMA controller. The cluster controller has only to specify an
address bound to the DMA controller, which will transfer the data from a configuration memory toward
the FPGA. Besides that, the cluster controller also manages the reconfiguration of the RDPs via instruc-
tions. Its architecture is similar to that of a typical programmable processor, but it distributes configu-
rations instead of instructions. Consequently, it does not have to access an instruction memory at each
cycle. Fetch and decode operations are only realized when a reconfiguration occurs and are hence very
infrequent. This drastic reduction of the instruction memory readings and decodings leads to very
significant energy savings (cf. Section 3.4).

3.3.2 RDP Architecture

The arithmetic processing primitives in DART are the RDPs (Figure 3.2). They are organized around
functional units and memories that are interconnected according to a very powerful communication
network. Every RDP has four functional units (two multipliers/adders and two ALUs) handling double-
precision 16-bit data, followed by a register. They support SWP (subword parallelism) processings and
have been designed with low-power concerns [25].

 The functional units are dynamically reconfigurable (see next section) and are working on data stored
in four small local memories. On the top of each memory, four local controllers (the

AGi

 on the top of

FIGURE 3.1

Architecture of a DART cluster.

Config
mem.

FPGA

DMA
ctrl

RDP1

RDP2

RDP3

RDP4

RDP5

RDP6

Data
mem

S
egm

 ented netw
ork

Controller

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3

-7

Figure 3.2) are in charge of providing the addresses of the data handled inside the RDPs. These local
controllers are like tiny reduced instruction-set computer (RISC) processors and support a large set of
addressing patterns. The four local controllers of each RDP share a zero-overhead loop support. In
addition to the memories, two registers are also available in every RDP. These registers are used to build
delay chains, and hence to realize time data sharing.

All these resources are connected through a completely connected network. The hierarchical organi-
zation of DART permits these connections to be kept relatively small and hence to limit their energy
consumption. Thanks to this network, each resource of the RDP can communicate with every other
resource and hence, the datapath can be optimized for every calculation pattern. Moreover, this flexibility
eases data sharing. Indeed, because a memory can simultaneously be accessed by several functional units,
some energy savings can also be achieved. The upper left part of Figure 3.2 depicts the connections with
global buses that allow the connection of several RDPs to implement massively parallel processing.

3.3.3 Dynamic Reconfiguration

One of the main features of DART is to support two RDP reconfiguration modes which ensues from the
80/20 rule (see Section 3.2). During regular processing, the RDPs are dynamically reconfigured to be
adapted to the calculation pattern. This reconfiguration — hardware reconfiguration

 —

 may take a few
cycles, but is used for long period of time. On the contrary, during irregular processing, the calculation
pattern is changing very often. In that case, the reconfiguration time has to be minimized, and the RDPs
structure is modified thanks to software reconfiguration. Another important feature of a DART cluster
is to exploit the redundancy in the RDPs to minimize the configuration data volume.

3.3.3.1 SCMD Concept

A portion of code is usually qualified as regular when it is used for a long period of time, and applied
to a large set of data, without being suspended by another processing. Loop kernels support this quali-
fication because their computation patterns are maintained during all the loop iterations. Instruction-
level parallelism of such regular processing is often exhibited by compilation techniques such as loop
unrolling or software pipelining [26]. With such techniques, the computation pattern of the loop kernel
is repeated several times, which leads to a highly regular architecture. If this loop kernel is implemented
on several RDPs, their configuration might be redundant. Specifying several times the same configuration
is an energy waste, we then introduce a concept called single configuration multiple data (SCMD). It
may be considered as an extension of SIMD (single instruction multiple data), in which several operators
execute the same operation on different data sets. Within the framework of SCMD, the configuration
data sharing is no longer limited to the operators but is extended to the RDPs.

FIGURE 3.2

Architecture of an RDP.

reg 1 reg 2 MUL/
ADD 1

ALU 1
MUL/
ADD 2

ALU 2

Multi-bus network

Data
mem 1

Data
mem 2

Data
mem 3

Data
mem 4

AG 1 AG 2 AG 3 AG 4

Zero overhead loop support

Global buses

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-8

Low-Power Processors and Systems on Chips

 The SCMD concept allows the simultaneous configuration of several RDPs. Practically, a field is
concatenated to the configuration instructions to specify the targets of the configuration bits. With six
RDPs, six bits have to be added to the instruction. Each RDP validates the configuration instructions
according to the value of its select bit (Figure 3.3). This allows the reduction of the configuration data
volume for regular computations, where there is a lot of redundancy between the RDP configurations.

3.3.3.2 Hardware Reconfiguration

During regular processing, a complete flexibility of the RDPs will be allowed by the full use of the
functional-level reconfiguration paradigm. By allowing the modification of the way in which functional
resources and memories are interconnected, the architecture can be optimized for the computation
pattern that has to be implemented. With six RDPs, the configuration data volume for a cluster is 826
bits. According to the regularity of the computation pattern and the redundancy of the RDP configura-
tions (which influences the SCMD performances), between three and nineteen 52-bit instructions will
be required to reconfigure all the RDPs and their interconnections. Once these configuration instructions
have been specified, no other instruction readings and decodings have to be done until the end of the
loop execution.

 This kind of configuration can for example be illustrated by Figure 3.4. The datapath is optimized at
first in order to compute a digital filter based on multiply-accumulate operations. Once this configuration
has been specified, the data-flow computation model is maintained as long as this computation pattern
is used. At the end of the computation, after a reconfiguration step that needs four cycles, a new datapath
is specified in order to be in adequacy with the calculation of the square of the difference between

x

(

n

)
and

x

(

n

-1). Once again, no control is necessary to end this computation.

3.3.3.3 Software Reconfiguration

For irregular processing, which implies frequent modifications of the RDP configuration, a software
reconfiguration has also been defined. To be able to reconfigure the RDP in one cycle with an instruction
of reasonable size, their flexibility has been limited. In that case, DART uses a read-modify-write behavior,

FIGURE 3.3

SCMD implementation for DART.

FIGURE 3.4

Hardware reconfiguration example.

RDP 1

RDP 2

RDP 6

Configuration bits

LATCH

LATCH

LATCH

RDP1 select

RDP select

RDP select

stct

stct

stct

t

t

t

4 cycles

Configuration 1

y(n) = y(n) + x(n)*c(n)

× +

Mem 2 Mem 3

− ×

y(n) = (x(n) − x(n−1))2

Mem 1reconfiguration

Configuration 2

Mem 1

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3

-9

such as that of very long instruction word (VLIW) processors. For each operator used, the data are read
in memory, computed, and then the result is stored back to the memory at each cycle.

 This software reconfiguration thus concerns only the functionality of the operators, the size of the
data and their origin. Thanks to these flexibility limitations, the RDP may be reconfigured at each cycle
with only one 52-bit instruction. This is illustrated on Figure 3.5, which represents the reconfiguration
needed to replace an addition of data stored in the memories 1 and 2 by a subtraction on data stored in
the memories 1 and 4.

Thanks to these two reconfiguration modes and to the SCMD concept, DART supports every kind of
processing while being able to be optimized for the critical (i.e., regular) ones. These two types of
reconfiguration can moreover be mixed without any constraint, and have a great influence on the
development methodology.

3.3.4 Development Flow

To exploit the computation power of DART, an efficient development flow is the key to enhance the
status of the architecture. Hence, a compilation framework, which allows the exploitation of the pre-
viously mentioned programming models, has been defined. It is based on the joint use of a front-end
allowing the transformation and the optimization of a C code [27], a retargetable compiler [28], and
an architectural synthesis tool [29]. As in most development methodologies for reconfigurable hardware,
the key of the problem has been to distinguish the different kinds of processing. This approach has
already been used with success in the program-in chip-out (PICO) project developed at HP labs in
order to distinguish regular codes, implemented in systolic array, and irregular codes, executed in a
VLIW processor [30]. Other related works such as the Pleiades project [31] or GARP [32] are also
distinguishing regular processings and irregular ones. Massively parallel processings are implemented
on circuits respectively reconfigurable at the functional and at the bit level, and irregular codes are
executed on a RISC processor.

The development flow allows the user to describe its applications in the C language. This high-level
description is translated at first into control and data flow graph (CDFG), from which some automatic
transformations (e.g., loop unrolling and loop kernel extractions) [33] are done to optimize the execution
time. After these transformations, the distinction between regular and irregular codes and data manip-
ulations permits to translate, thanks to the compilation and the architectural synthesis, a high-level
description of the application into binary executable codes for DART [34]. A cycle-accurate bit-accurate
simulator developed in SystemC finally allows to validate the implementation and to evaluate its perfor-
mance and energy consumption.

3.4 Validation Results

This section presents significant results stemming from a WCDMA receiver implementation on DART.
Energy distribution between the different components of the architecture is also discussed. Performance
and energy efficiency of DART is finally compared with typical reconfigurable architectures and pro-
grammable processors.

FIGURE 3.5

Software reconfiguration example.

1 cycle

S = C − D

−

Mem 4Mem 1

Configuration 1

S = A + B

+

Mem 1 Mem 2

Configuration 2

reconfiguration

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-10

Low-Power Processors and Systems on Chips

3.4.1 Implementation of a WCDMA Receiver

WCDMA is typically considered as one of the most critical applications of next-generation telecommu-
nication systems [35]. A synoptic of this receiver is given in Figure 3.6. Within a WCDMA receiver, real
and imaginary parts of data received on the antenna, after demodulation and digital-to-analog conver-
sion, are filtered at first thanks to two real FIR (finite impulse response) filters. These two 64-tap filters
operate at a high frequency (15.36 MHz), which lead to a tremendous complexity of 1966 millions of
MAC per second (MMACS). Next, a rake receiver has to extract the usable information in the filtered
samples and to retrieve the transmitted symbol. Because the transmitted signal reflects in obstacles like
buildings or trees, the receiver gets several replica of the same signal with different delays and phases.
By combining the different paths, the decision quality is drastically improved and consequently, a rake
receiver is constituted of several fingers, which have to despread one part of the signal, corresponding
to one path of the transmitted information. The decision is finally done on the combination of all these
despreaded paths. The complexity of this complex despreading is 184.3 MOPS for six paths. To improve
the decision quality, amplitude and delay of each path have to be estimated and removed from the signal.
The synchronization between the received signal and the codes internally generated, i.e., the delay
estimation and removing, is done in two times. The first part of this processing operates at a high-
frequency (chip rate:

F

c

 = 3.84 MHz) and has a complexity of 331 MOPS. The second one operates at
the symbol frequency (

F

s

), which depends on the required bit-rate, and has a low complexity (e.g., 1.3
MOPS for a spreading factor of 256). Finally, the channel estimation is a low-complexity process and
also operates at

F

s

.
Therefore, five configurations of the architecture may be distinguished: filtering, chip-rate synchroni-

zation, symbol-rate synchronization, channel estimation, and complex despreading. They follow one
another on the architecture as depicted in Figure 3.7.

 DART clusters have been designed under a 1.9-V, 0.18-

µ

m

 technology. The synthesis has led to an
operating frequency of 130 MHz. Running at this frequency, DART is able to provide up to 3120 MMACS
per cluster, on 8-bit data. Thanks to the cycle-accurate bit-accurate simulator, the overall energy con-
sumption of the architecture is evaluated from the activity of the different modules (e.g., functional units,
memories, interconnection networks, control and registers) and their average energy per access. The
latter has been estimated at the gate level.

Thanks to the configuration data volume minimization, reconfiguration stages are very short, and thus
represent only 0.05% of the overall execution time. The effective computation power proposed by DART
on these applications is 6.2 giga operations per second (GOPS). In such conditions, the processing of a

FIGURE 3.6

WCDMA receiver synoptic.

Complex
FIR filter
64-tap

+

y0(k)

y1(k)

y2(k)

y3(k)

y(k) b̂(k)

Finger 0

z−0 DLL late

Channel
estimation

DPDCH/DPCCH
decoding

DPD CH

DPC CH

xf(n)

 4

z−2 4

z−4 4

DLL on-time

y1(k)

Finger (path ι)

Phase
removing

sr(n)
sr(n)

Rake receiver

Finger 1

Finger 2

Finger 3

DLL

DLL early

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3

-11

WCDMA receiver on DART leads to a cluster usage rate of 72.6%. This performance level is done possible
by the flexibility of the DART interconnection network, which allows a nearly optimal use of the RDP
internal processing resources.

3.4.2 Energy Distribution in DART

The average energy efficiency of DART during the implementation of this WCDMA receiver is 38.8
MOPS/mW. Figure 3.8 represents the power consumption distribution between the different components
of the architecture. We can notice that the main part of the cluster consumption comes from the operators
(79%). Thanks to the configuration data volume minimization and to the reconfiguration frequency
reduction, the energy overhead associated to the control of the architecture is negligible. During this
processing, only 0.9 mW are consumed to fetch and decode control information, that is to say less than
0.8% of the 114.8 mW needed for the processing of a WCDMA receiver.

 The power consumption issuing from data accesses is also reduced (20% for memory accesses and
address generation). This is notably due to the minimization of the energy cost of local memory access,
obtained by the definition of an appropriate memory hierarchy. In the same time, one-to-all connections
allow to significantly reduce the amount of data memory accesses. In particular, on filtering and complex
despreading applications, which exploit a thread-level parallelism, the simultaneous use of several func-
tional units with a same data-flow allows to drastically reduce the number of accesses to the data memory.
The use of delay chains also allows to benefit from data temporal locality and to skip a lot of data
memory accesses. For this WCDMA receiver, the joint use of delay chains and of one-to-all connections
permit to save 46 mW, representing a 32% reduction of the overall consumption of a cluster.

3.4.3 Performance Comparisons

This section compares the performances of DART with bit- and system-level reconfigurable architectures.
The first considered architecture is the Virtex Xcv200E FPGA from Xilinx [36]. This choice is justified

FIGURE 3.7

DART reconfigurations during the processing of one slot.

FIGURE 3.8

Power consumption distribution in a DART cluster during the processing of the WCDMA receiver.

Filter
(54613 cy.)

Synchronization
Fchip

(4608 cy.)

Synchro.
Fsymb

(36 cy.)

Channel
estim.
(8 cy.)

Despreading
(2560 cy.)

9 cy. 9 cy. 9 cy. 3 cy.

Configuration Processing

3 cy.

1% 9%
6%

5%

79%

Instruction readings and
decodings (1%)

Data accesses in DPRs (9%)

Data accesses in clusters (6%)

Address generators (5%)

Operators (79%)

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3

-12

Low-Power Processors and Systems on Chips

by the need to study the reconfiguration cost. This component has been dimensioned to have a compu-
tation power strictly corresponding to the FIR filters implementation. Two configurations will thus follow
one another on the FPGA: the filter and the rake receiver. The configuration data volume for this circuit
is about 1.4 Mbits. As DART, it is distributed on a 0.18-

µ

m

 technology. The second considered architecture
is the TMS320C64x digital signal processor (DSP) from Texas Instruments. This DSP is a VLIW archi-
tecture able to exploit an ILP of eight as well as data-level parallelism thanks to SWP capabilities [37].
This processor is distributed on a 0.12-

µ

m

 technology. With a 720-MHz clock frequency, it may deliver
up to 5760 MOPS.

Configuration and control cost has a critical impact on the performance and the energy efficiency of
the system. Figure 3.9 represents the information volume needed for these two operations during the
filtering and the rake receiver applications, for the C64, the Xc200E, and DART. Figure 3.9 clearly
illustrates the conceptual divergences between the bit-level reconfiguration and the system-level recon-
figuration. In the case of FPGA, a very large amount of information is distributed to the component
before executing the application. The reconfiguration cost is here very important but once specified, the
reconfiguration has no influence on the execution time. On the other hand, system-level reconfigurable
architectures do not need to configure the datapath structure. On the contrary, the architecture control
cost is critical. It corresponds, for the C64, to a 256-bit instruction reading and decoding at each cycle.
DART allows the trade-off of these two operations, and thus minimizes energy waste. The hardware
configuration between the processing is limited to the distribution of few hundreds of bits, while the
architecture control is limited to the specification of reset instructions.

 These considerations, relative to the architecture management, partly explain the results appearing
in Figure 3.10, which represents the computation time associated to the three architectures according to

FIGURE 3.9

Configuration and control data volume of the Xc200E, the C64x, and DART for filter and rake receiver.

FIGURE 3.10

Xc200E, TMS320C64x, and DART performance on a WCDMA receiver.

14423016

520

13107200

53248

14423016

1716

2010624

208

1

10

100

1000

10000

100000

1000000

10000000

100000000

Data Volume
(bits)

Configuration
(filter)

Control
(filter)

Configuration
(Rake)

Control
(Rake)

C 64
Xc200E
DART

10

15

20

25

30

35

40

1 10 100 1000 10000 100000 1000000

Number of symbols proceeded between two reconfigurations

C
om

pu
ta

tio
n

T
im

e
(m

s)

C 64
DART
Virtex
Real-time constraint

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors

3-13

the number of symbols processed between two reconfigurations. The normalized real-time deadline
represented on Figure 3.10 demonstrates that the DSP performance does not allow the implementation
of the WCDMA receiver in real time, even when SWP is fully exploited. The FPGA is able to support
the real-time constraint when the number of symbols processed between two reconfigurations exceeds
150. In such conditions, the configurations have to be stable during at least 10 ms because the reconfig-
uration time of this component is 2.7 ms. This remark highlights the impact of the reconfiguration
overhead. In such conditions, it is essential to filter all the samples of a frame (153,600 samples), to store
the filtered data into the memory, then to reconfigure the component to decode these data.

 The power consumption associated with the implementations on the FPGA has been estimated at
the gate level with the Xpower tool from Xilinx. The FPGA consumes 670 mW during the filtering and
180 mW during the rake receiver. In other words, the energy efficiency of the Xcv200E is 5.8 MOPS/mW
during the filters and 2.9 MOPS/mW during the rake receiver.

An important drawback of the implementation with the WCDMA receiver on the Xc200E FPGA thus
comes from the large delay separating data receiving and data decoding. This temporal shift exceeds 10
ms and might be unacceptable in mobile applications. Another problem associated with this solution
comes from the volume of temporary data. The need to store the filtered samples before to decode them
implies the use of a large amount of memory. To store a frame, 1.2 Mbits of memory are needed, which
exceeds the storage capacity of the Xc200E. It is thus necessary to use external memory, which implies
an important energy overhead.

It has to be noticed that these drawbacks can be overcome by using larger chips. For example, the
Xcv1000E, from the same FPGA family, allows the implementation of the WCDMA receiver in one
configuration. In that case, no reconfiguration occurs and the real-time constraints can always be
achieved. Obviously, this solution leads to a drastic increase of the device cost and to an energy
efficiency reduction (about 20%).

The DSP power consumption has been estimated thanks to the results presented in Texas Instruments
[38]. We have estimated this consumption to be 1.48 watt during the filters and 1.06 watt during the
rake receiver. The energy efficiency of this architecture is therefore 2.6 MOPS/mW during the filters and
1.8 MOPS/mW during the rake receiver.

By minimizing the energy waste related to the architecture control and to the data accesses, DART is
able to execute nearly 39 MOPS for each mW consumed. Unlike high-performance DSP and FPGA,
flexibility does not come with a significant energy efficiency reduction.

3.5 Conclusions

This chapter discussed how to improve energy efficiency in flexible architectures. In such context,
reconfigurable processors offer opportunities. They allow energy waste in control, storage as well as in
computation resources to be reduced by adapting their datapath structure and by minimizing reconfig-
uration data volume. The association of key concepts, and of an energy aware design, lead to the definition
of the DART architecture. Innovative reconfiguration schemes allow to deal concurrently with high-
performance, flexibility, and low-energy constraints. We have validated this architecture by presenting
implementation results of a WCDMA receiver. A computation power of 6.2 GOPS combined with an
energy efficiency of 40 MOPS/mW demonstrate its potential in the context of multimedia mobile
computing applications.

3.6 Acknowledgments

This project was conducted in collaboration with STMicroelectronics and UBO, and received funding
from the French government. The authors would like to thank Dr. Tarek Ben Ismail and Dr. Osvaldo
Colavin from STMicroelectronics, as well as Professors Bernard Pottier and Loïc Lagadec from UBO for
their contributions.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

3-14 Low-Power Processors and Systems on Chips

References

[1] S. Hauck. The roles of FPGAs in reprogrammable systems. Proc. IEEE, 86:615–638, April 1998.
[2] E. Sanchez, M. Sipper, J.O. Haenni, J.L. Beuchat, A. Stauffer, and A. Perez-Uribe. Static and dynamic

configurable systems. IEEE Trans. on Computers, 48(6):556–564, 1999.
[3] J. M. Rabaey. Reconfigurable processing: the solution to low-power programmable DSP. In Int.

Conf. on Acoustics, Speech, and Signal Processing (ICASSP), April 1997.
[4] A. Dehon. Reconfigurable architectures for general-purpose computing. Ph.D. thesis, Massachu-

setts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA, October 1996.
[5] H. Zhang, M. Wan, V. George, and J. Rabaey. Interconnect architecture exploration for low-energy

reconfigurable single-chip DSPs. Int. Workshop on VLSI, April 1999.
[6] J. Becker, T. Pionteck, and M. Glesner. DReAM: a dynamically reconfigurable architecture for future

mobile communication applications. Int. Workshop on Field Programmable Logic and Applications
(FPL ’00), pp. 312–321, Villach, Austria, August 2000. Lecture Notes in Computer Science 1896.

[7] H. Singh, G. Lu, M. Lee, E. Filho, and R. Maestre. MorphoSys: case study of a reconfigurable
computing system targeting multimedia applications. Int. Design Automation Conf., pp. 573–578,
Los Angeles, CA, June 2000.

[8] S. Goldstein, H. Schmit, M. Moe, M. Budiu, and S. Cadambi. PipeRench: a coprocessor for stream-
ing media acceleration. Int. Symp. on Comput. Architecture (ISCA ’99), Atlanta, GA, May 1999.

[9] G. Smit, P. Havinga, P. Heysters, and M. Rosien. Dynamic reconfiguration in mobile systems. Int.
Conf. on Field Programmable Logic and Applications (FPL ’02), pp. 171–181, Montpellier, France,
September 2002. Lecture Notes in Computer Sciences 2438.

[10] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. Architecture design of recon-
figurable pipelined datapath. Advance Research in VLSI (ARVLSI ’99), pp. 23–40, Atlanta, GA,
March 1999.

[11] A. Abnous and J. Rabaey. Ultra low-power specific multimedia processors. In VLSI Signal Processing
IX. IEEE Press, November 1996.

[12] Chameleon Systems. Wireless base station design using reconfigurable communications processors.
Technical report, 2000.

[13] B. Brodersen. Wireless systems-on-a-chip design. Int. Symp. on Quality Electronic Design (ISQED
’02). Invited paper, San Jose, CA, March 2002.

[14] R. Hartenstein, M. Hertz, Th. Hoffman, and U. Nageldinger. Generation of design suggestions for
coarse-grain reconfigurable architectures. Int. Workshop on Field Programmable Logic and Applica-
tions, Villach, Austria, August 2000. Lecture notes in Computer Science 1896.

[15] K.K.W. Poon. Power estimation for field programmable gate arrays. Master’s thesis, University of
British Columbia, Vancouver, Canada, 2002.

[16] L. Shang, A.S. Kaviani, and K. Bathala. Dynamic power consumption in Virtex-II FPGA family.
Int. Symp. on Field Programmable Gate Arrays (FPGA ’02), pp. 157–164, Monterey, CA, February
2002.

[17] J. Fridman. Sub-word parallelism in digital signal processing. IEEE Signal Process. Mag.,
17(2):27–35, March 2000.

[18] J.P. Wittenburg, P. Pirsh, and G. Meyer. A multithreaded architecture approach to parallel dsps for
high-performance image processing applications. Workshop on Signal Process. Syst. (SIPS ’99),
Taipei, Taiwan, October 1999.

[19] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid. Using on-chip configurable logic to reduce system
software energy. Symp. on Field-Programmable Custom Computing Machines (FCCM ’02), Napa,
CA, September 2002.

[20] S. Wuytack, J.Ph. Diguet, F. Catthoor, and H. De Man. Formalized methodology for data reuse
exploration for low-power hierarchical memory mappings. IEEE Trans. on VLSI Syst., 6(4):529–537,
December 1998.

[21] Xilinx. Xilinx 6200 Preliminary Data Sheet. San Jose, CA, 1996.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Energy-Efficient Reconfigurable Processors 3-15

[22] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The Garp architecture and C compiler. IEEE Comput.,
33(4):62–69, April 2000.

[23] X. Zhang and K.W. Ng. A review of high-level synthesis for dynamically reconfigurable FPGAs.
Microprocessors and Microsystems, 24:199–211, 2000.

[24] E. Dinan and B. Jabbari. Spreading codes for direct sequence CDMA and wideband CDMA cellular
network. IEEE Commun. Mag., 36(9):48–54, September 1998.

[25] R. David, D. Chillet, S. Pillement, and O. Sentieys. DART: a dynamically reconfigurable architecture
dealing with next-generation telecommunications constraints. Int. Reconfigurable Architecture
Workshop (RAW ’02), Fort Lauderdale, FL, April 2002.

[26] P. Faraboshi, J.A. Fisher, and C. Young. Instruction scheduling for instruction level parallel pro-
cessors. Proc. IEEE, 89(11):1638–1659, November 2001.

[27] R. Wilson et al. SUIF: an infrastructure for research on parallelizing and optimizing compilers.
Technical report, Computer Systems Laboratory, Stanford University, Stanford, CA, May 1994.

[28] F. Charot and V. Messe. A flexible code generation framework for the design of application specific
programmable processors. Int. Symp. on Hardware/Software Codesign, Rome, Italy, May 1999.

[29] O. Sentieys, J.P. Diguet, and J.L. Philippe. A high-level synthesis tool dedicated to real time signal
processing applications. European Design Automation Conf. (EURODAC ’95), Brighton, U.K., Sep-
tember 1995.

[30] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. Ramakrishna Rau, D. Cronquist, and
M. Sivaraman. PICO-NPA: high-level synthesis of non-programmable hardware accelerators. Tech-
nical report HPL-2001-249, Hewlett-Packard Laboratories, Palo Alto, CA, 2001.

[31] M. Wan. Design methodology for low-power heterogeneous digital signal processors. Ph.D. thesis,
University of California at Berkeley, Berkeley Wireless Design Center, 2001.

[32] J. Hauser. Augmenting a microprocessor with reconfigurable hardware. Ph.D. thesis, University of
California at Berkeley, 2000.

[33] A. Fraboulet, K. Godary, and A. Mignotte. Loop fusion for memory space optimization. Int. Symp.
on Syst. Synthesis (ISSS ’01), Montreal, Canada, October 2001.

[34] R. David, D. Chillet, S. Pillement, and O. Sentieys. A compilation framework for a dynamically
reconfigurable architecture. Int. Conf. on Field Programmable Logic and Applications, pp. 1058–1067,
Montpellier, France, September 2002. Lecture Notes in Computer Science 2438.

[35] T. Ojanpera and R. Prasad. Wideband CDMA for Third-Generation Mobile Communication. Artech
House Publishers, London, 1998.

[36] Xilinx. VirtexE Series Field Programmable Gate Arrays. Xilinx, San Jose, CA, July 2001.
[37] Texas Instruments. TMS320C64x Technical Overview. Texas Instruments, Dallas, TX, February

2000.
[38] Texas Instruments. TMS320C6414/15/16 Power Consumption Summary. Application report,

spra811a, Dallas, TX, March 2002.

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-1

4

Macgic, a Low-Power

Reconfigurable DSP

4.1 Introduction ..

4-

1

DSP Architectures Evolution • Parallelism, Instruction Coding,
Scheduling, and Execution • High Performance for Low-Power
Systems • DSP Performance and Reconfigurability

4.2 Macgic DSP Architecture..

4-

5

General Architecture • Program Sequencing Unit • Data Move
Unit • Data Processing Unit • Host and Debug Unit • Clocking
Scheme • Pipeline • Instruction-Set

4.3 Macgic DSP Reconfiguration Mechanisms

4-

11

Address Generation Unit Reconfiguration • Data Processing
Unit Reconfiguration

4.4 Performance Results..

4-

14
4.5 Conclusions ...

4-

17
References ...

4-

17

4.1 Introduction

Low-power programmable digital signal processors (DSP) can be found nowadays in a broad range of
battery-operated consumer devices, such as MP3/CD/DVD players, or in the ubiquitous cellular phone.
The trend being in the software implementation of more complex signal processing algorithms, very
high-performance programmable DSP microprocessors having both a very high computational power
capability and a very low-power consumption will be required in the near future to seamlessly implement
such algorithms.

4.1.1 DSP Architectures Evolution

The first programmable DSPs were relatively simple microprocessors, specialized in the handling of very
specific data formats: either fixed-point or floating-point, depending on their architecture
[9,10,13,17,19]. These processors were very efficient in transferring data between the memory and their
data processing unit, as well as in the processing of the data itself. The data processing unit was typically
optimized for the handling of multiply-and-accumulate (MAC) operations between two data words read
from two different memories. Memory accesses were indirect, and most DSPs supported modulo indirect
addressing modes especially useful in convolutions or for implementing circular buffers. Sometimes, a
special reverse-carry addressing mode was also available, and was useful for the reordering of the data
in fast-Fourier-transform (FFT) computations. The address computation hardware was typically located
into address generation units (AGUs). An AGU usually contains a set of specialized index, offset and
modulo registers.

Flavio Rampogna
Pierre-David Pfister
Claude Arm
Patrick Volet
Jean-Marc Masgonty
Christian Piguet

CSEM SA

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-2

Low-Power Processors and Systems on Chips

Historically, programmable DSPs implemented a very limited and specialized set of registers: tempo-
rary registers, accumulators, and AGU registers. This nonorthogonality of the architecture and the limited
resources made these processors very difficult for a high-level language compiler to generate program
code. To fully exploit the processing power and available instruction-level-parallelism (ILP) of these DSPs,
they had to be programmed in assembly language, which very often was quite a tedious task.

In the last few years

,

 the tendency has been to limit the number of specialized registers by implementing
large sets of general-purpose registers that can be used as operands for most, if not all, instructions, and
to have the hardware providing support for multiple data types [6,11,12,14,15,16,18]. The latest high-
performance DSP architectures generally provide a very high data transfer bandwidth that can be
exploited by a large number of parallel processing units. There are still different kinds of processing units,
specialized for a given kind of processing. Several general-purpose ALUs are typically available, as well
as a branch/loop unit, and specialized address generation ALUs. These recent architectures provide a
relatively good hardware support for high-level language compilers. Code generation is indeed eased by
the availability of multiple relatively basic parallel processing elements (ALUs), by the sufficiently large
number of general-purpose registers, and by the support of standard data types (i.e., chars, integers, long
integers, and floating-point).

In some modern DSPs, and to reduce both the power consumption and the hardware complexity of
the circuit, the instruction-level parallelism (ILP) made available by these architectures is made explicit
[12,16] (i.e., operations to be executed are grouped together into clusters, which are typically between
128 and 256 bits wide and may contain between 4 to 8 operations). Within a cluster it is sometimes
possible to specify what are the operations that can be executed in parallel, and which ones need to be
executed sequentially. The simplest approach, however, being to have all operations in a cluster executed
in parallel and a direct and simple mapping between available hardware resources and operations coding
in a cluster. In this approach, the scheduling of operations execution has to be explicitly specified by the
programmer (or the compiler), and not chosen by the hardware, such as in superscalar architectures.

An alternative to programmable DSPs comes from configurable but nonprogrammable DSP copro-
cessors [7], optimized and specialized for the computation of a very specific signal processing task, such
as FFT, FIR, IIR, Viterbi decoding, or image motion estimation computation

.

 Such coprocessors may
use the system’s direct memory access (DMA) mechanisms to fetch the data needed to compute their
algorithm, or implement their own memory address generation mechanisms. Future high-performance
DSP systems may well include one or more of these coprocessors, together with one or more program-
mable DSPs or general-purpose microprocessors. Indeed, use of coprocessors may easily improve a
system’s performance by an order of magnitude or even more, by allowing very efficient parallel imple-
mentation of specific algorithms (e.g., Viterbi decoder or FFT computation).

4.1.2 Parallelism, Instruction Coding, Scheduling, and Execution

Today’s high-performance DSP microprocessors can often execute up to eight different operations in
parallel coded in a single instruction word (e.g., four MAC, two data address computations together with
two memory accesses, one branch, and one bit manipulation operation). The packing of a large number
of parallel operations into instruction word(s) can be performed using different approaches, leading to
different DSP architectures.

A first possible approach consists in keeping all parallel operations as separate and independent
instructions, and defining an instruction-set in which instructions are relatively small in terms of the
number of bits required for the coding of an operation. The processor would read multiple instruction
words from the memory at once and schedule their execution. Scheduling could either be automatically
performed by the processor’s hardware, as in a superscalar microprocessor, or predefined by the pro-
grammer or the compiler (Figure 4.1(a)). If the scheduling is predefined, the architecture is called static
superscalar. Explicit scheduling information has to be encoded in an instruction’s opcode (Figure 4.1(b)).
The kind of explicitly provided scheduling information could be: Execute this instruction in parallel or
in sequence with the previous instruction.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-3

A second, slightly different, approach may consist in the explicit coding of different parallel operations
into a single very large instruction word (VLIW), typically of 128 bits or more. The processor fetches
such a large instruction and executes all parallel operations contained in it. The operation execution
scheduling is explicit and the simplest possible scheduling mechanism would be that all operations coded
into the VLIW instruction are executed in parallel. Such an approach could prove to be quite memory
wasting, however, especially in situations where low parallelism is actually available in a program. To
solve this problem, a more advanced scheduling mechanism may be implemented by encoding some
additional information on the need for parallel or sequential execution to each operation coded in a
VLIW instruction (Figure 4.1(c)). By using this additional scheduling information, and by an appropriate
ordering of operations within an instruction word, it is possible to fulfill any instruction execution
scheduling needs, while still keeping an optimum code memory density because no-operations (NOPs)
are not required to fill up VLIW instructions.

A third possible approach consists in using instruction words of relatively small size, typically between
24- to 64-bit, and by packing very few parallel operations in such words (Figure 4.1(d)). This is the
approach that has originally been followed in the first programmable DSP microprocessors, but which
is still widely used today [11,14,17,19]. In this approach, an instruction word consists of up to four
different operations that are executed in parallel. It is indeed common to find DSP architectures allowing
for the encoding of an ALU operation together with the encoding of two indirect memory accesses and
address indexes updates operations in a single instruction word. The limitation of this approach, when
applied to high-performance DSPs, is that these relatively small instruction words do not allow for the
encoding of a very large number of parallel operations, therefore limiting the maximum available par-
allelism that can be programmatically exploited at the instruction level. To overcome part of this limitation
it is possible to define operations that actually perform a unique computation on multiple data. These
operations are of the single-instruction-multiple-data (SIMD) category [8]. For example, an MUL4
operation allows performing four multiplications on four pairs of data. As for VLIW instruction packing,
here too, if little parallelism can be extracted from a program, the available parallel operations of an
instruction word cannot be fully exploited and are to be replaced with NOPs, thus needlessly increasing
program code size. By using variable-length instruction words, it is possible to reduce such a program
memory occupation overhead, while unfortunately somewhat complicating the instruction fetch and
decoding hardware’s task.

4.1.3 High Performance for Low-Power Systems

Power consumption reduction in a system-on-chip (SoC) can be achieved at different levels, ranging
from the careful analysis of an application’s needs, to appropriate algorithms selection, as well as a
good knowledge of precision requirements for the data to be processed. Selection of appropriate
hardware architecture for implementing these algorithms, taking into account the DSP processor

FIGURE 4.1

Parallelism and instruction coding.

Op ext.O
p1

1
Op ext.

Op ext.OPC Op1 Op2 Op3

OPC1Op11Op12 Op13S1
OPC Op1 Op2 Op3S1

OPC3Op31 Op32S3OPC2Op21Op22Op23S2
OPC1 OPC2

O
p1

2

O
p2

1
O

p2
2

O
p2

3
O

p2
4

EXPLICIT PARALLELISM,VLIW

CLASSICAL, VARIABLE LENGTH

SUPERSCALAR,VARIABLELENGTH

EXPLICIT PARALLELISM,VARIABLE LENGTH
Opmn = Operation #m, operand #n

OPCm = Operation #m, opcode

Sm = Operation #m, scheduling info
Op ext. = Operand(s) extension word

(a)

(b)

(c)

(d)

OPC4Op41Op42Op43S4 OPC5Op51 Op52 Op53S5 OPC6Op61Op62Op63S6

Op33

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-4

Low-Power Processors and Systems on Chips

core(s), the memory subsystem (i.e., internal/external RAMs, ROMs, and DMA availability) and the
data acquisition chain (i.e., ADC/DAC, and I/Os), may allow a significant power reduction [20]. In
addition, the use of an appropriate semiconductor technology together with a good trade-off between
the hardware’s computational power, and operating voltage and frequency may allow for a large power
consumption reduction.

Modern high-performance DSPs and general-purpose microprocessor circuits and systems usually
implement multilevel memory access hierarchies: typically, two cache-memory levels followed by a high-
speed internal RAM or external (S)DRAM memory containing data and instructions. The memory is
usually seen as unified for the programmer; data and instructions can be intermixed. Internally, however,
the DSP uses multiple independent memory busses that actually implement distinct memory spaces.
Generally, a DSP implements a program memory bus and one or two data memory busses. Each memory
bus is typically connected to a specific level-1 (L1) cache memory. Unification of memory spaces may
occur after the L1 cache or after the level 2 (L2). In very low-power systems, where memory needs and
maximum operating speed is not very high, caches can be avoided and the memory spaces may remain
distinct. This, together with a simpler hierarchical memory subsystem may help reduce power consump-
tion. The power consumption of the memory subsystem can quite easily be reduced simply by placing
the most often accessed data into smaller memories, and the less often accessed data in larger ones because
smaller memories are faster and consume less energy per access than larger ones.

4.1.4 DSP Performance and Reconfigurability

With the increasingly high costs for accessing advanced semiconductor technologies, and with imple-
mentation of more computationally demanding signal processing algorithms, a modern SoC implement-
ing programmable DSP(s) should be as efficient and generic as possible to allow for the implementation
of the larger possible number of applications. Therefore, a DSP core has to be as power efficient as
specialized hardware, and be retargetable to different algorithms and applications without any significant
loss of performance. Fortunately, in some applications, performance vs. power-consumption vs. recon-
figurability goals may be met by the implementation of an appropriate programmable signal processing
architecture. For example, a system’s computational performance may be increased by allowing multiple
parallel processing units to compute an algorithm on different data, different parts of an algorithm on
pipelined data, or different algorithms on identical or different data. The maximum achievable parallelism
depends on the algorithms to be executed and available hardware resources: processors, coprocessors,
and memories.

Power consumption of a system can be reduced by appropriate selection of power supply voltage,
operating circuit frequency, and available parallelism. Indeed, by increasing the execution parallelism,
the timing constraints are relaxed and the circuit’s operating frequency can be decreased, which allows
to lower its operating voltage and therefore to reduce its dynamic power consumption.

If an SoC system has to be reconfigured to support a new application, or multiple applications,
reconfiguration can be achieved at various levels, the main being at the program code level by the
programming of a new application’s algorithms. The program has then to be stored into a reprogrammable
memory, such as an EEPROM

.

 Sometimes, an external serial EEPROM chip can be used to initialize the
content of an internal RAM at reset-time, and thereby allowing the configuration of the system. Additional
reconfiguration levels are obtained when the program actually reconfigures the SoC’s hardware: copro-
cessors, direct memory access (DMA) hardware, peripherals, or even the actual DSP processor [1,3,4,5].

The runtime reconfiguration of a programmable DSP core may be achieved in different ways. The
Macgic DSP architecture allows the programmer to reconfigure and use a small set of extended instruc-
tions, which allow a fine-grain control over specific datapaths: the address generation unit (AGU) and
the data processing unit (DPU) datapaths. This fine-grain control increases the programmatically exploit-
able hardware parallelism. Such extended instructions are typically used in algorithm’s kernels to signif-
icantly speed up their execution, while keeping the program code density performance of the DSP at a
good level.

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-5

4.2 Macgic DSP Architecture

4.2.1 General Architecture

Macgic is a low-power programmable DSP core for SoC designs. It can be used as a stand-alone DSP, or
as a coprocessor for any general-purpose microprocessor or DSP. It has been designed to be efficient for
a broad range of DSP applications. This is done by providing the designers with the possibility to tailor
some Macgic features to best fit an application class (e.g., audio, video, or baseband radio). In particular,
the various specifiable word sizes (e.g., data and address), the DSP modularity, and the instruction-set
specialization are key features allowing Macgic to be very efficient both in terms of processing speed and
energy consumption. This customization of the DSP must be performed before hardware synthesis.

Figure 4.2 presents the Macgic DSP architecture. The DSP core is made of four distinct operating
units, each playing a specific role in the architecture: The program sequencing unit (PSU) handles
branches, exceptions, and instruction fetch. The host and debug unit (HDU) handles data transfers with
a host microprocessor and the debugging of Macgic programs through a specific debugging bus. The
data move unit (DMU), containing the X and Y address generation units (AGU), handles data transfers
between registers and between registers and external data memories. The data processing unit (DPU)
handles the processing of the data.

Macgic uses relatively small (32-bit) instruction words. The data word size can be freely specified (e.g.,
dw = 12 to 32 bits) before synthesis. The DSP implements two distinct data memory spaces (X, Y).
Concurrent accesses to these two memory spaces are supported. Up to four data words per memory
space can be transferred between the DSP and the external memory per clock cycle. Macgic is a load/
store architecture [8] and implements two banks of eight wide general-purpose (GP) registers, one bank
per memory space. A wide register can store four data words. A GP register can be accessed either as a
single data word, as half-wide, or as wide data words. Data processing operations can access up to 16
data words per clock cycle, from up to four wide GP registers, two per data space. The program and data
address space sizes can be independently specified (paw, daw = 16 to 32 bits) before synthesis.

Complex addressing modes are made available by the two customizable and software reconfigurable
address generation units (AGUs). The data processing unit (DPU) can also be customized and specialized
before synthesis. Extended operations of the DPU can be software reconfigured. An HDU allows the
control of Macgic from a host microprocessor or from a remote software debugger. The HDU also allows
the exchange of data with the host microprocessor through specific data transfer FIFOs and registers.

4.2.2 Program Sequencing Unit

The program sequencing unit (PSU) is responsible for handling the instruction fetch, the global instruc-
tion decoding and the execution of branches, subroutine calls, hardware loops, and exceptions. This unit
handles external interrupt requests as well as internal software exceptions. Eight prioritized and vectorized
external interrupts requests lines are available to an external interrupt controller.

An external hardware stack stores the return address (of subroutines, exceptions) and the loop status
when needed. The number of hardware loops, subroutines and interrupts that can be nested is given by
the size of the hardware stack, which is a customization parameter.

The PSU contains eight 16-bit flag registers (IN, EX, EC, PF, HD, DM, PA, and PB

)

. Two of these
registers are actually controlled by the DPU (PA and PB), one by the DMU (DM), one by the HDU (HD)
and the remaining ones by the PSU. DPU flags are typically the Z, N, C, and V flags of each ALU.

The PSU handles the conditional execution of operations in a manner similar to the conditional
branches (i.e., operations are executed or not depending on the value of a flag taken from one of the
eight flag registers). It implements hardware loops and instruction repetition mechanisms. Hardware
loops automatically handle the iteration counting and branching to the beginning of the loop at the end
of an iteration. Only one clock cycle is necessary to initialize a loop and there are no additional clock
cycles penalties during its execution. Hardware loops can help reduce the clock cycles count of an

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-6

Low-Power Processors and Systems on Chips

FIGURE 4.2

Macgic DSP architecture.

GP-I HDU

X GP Registers

rx5w

H
D

24

123

Y GP Registers

Audio-I DMU

12 21

ax0
ax1
ax2
ax3

ox0
ox1
ox2
ox3

mx0
mx1
mx2
mx3

cx0
cx1
cx2
cx3

ix0
ix1
ix2
ix3

X AGU

Shift

Audio-I DPU

Shift Shift Shift
Move

Add

Rnd/Sat

Add

ALU ALU ALU ALU

acc0acc1acc2acc3

321

Y Memory

UU UL LU LL

X Memory

UU UL LU LL

PSU

IRQ_IN03
IRQ_VEC03

PSU Operations decode

Eval.

Global
Except.

IRQ_ACK31

scnt

sppa slba

HWS Ctrl

decode

pfdmpapb

execinhd

Flag registers

HW Stack

64-bit

Memory

lritlend lbeg

pcsbr

PC update ctrl

P Memory

32-bit

P HW break X HW break Y HW break

R FIFO

hdu0w

Configuration / Status

Debug

H
os

t/
D

eb
u

g
g

er
in

te
rf

ac
eµP

Host
RISC

A
M

B
A

I/F

On-Chip
Debug

JT
A

G

Flag

IRQ/

engine

W FIFO

hdu1w

R Registers

hdu2w

W Registers

hdu3w

ay0
ay1
ay2
ay3

oy0
oy1
oy2
oy3

my0
my1
my2
my3

cy0
cy1
cy2
cy3

iy0
iy1
iy2
iy3

Y AGU

rx0w
rx1w
rx2w
rx3w
rx4w

rx6w
rx7w

ry5w

ry0w
ry1w
ry2w
ry3w
ry4w

ry6w
ry7w

Mul Mul Mul Mul

Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat

Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat Rnd/Sat

Add Add Add Add Add Add Add Add

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-7

algorithm’s execution in a significant manner, particularly for small loops that are iterated a large number
of times. In instruction-repeat operations, the instruction to be repeated is fetched only once from the
program memory, thus saving unnecessary, power-consuming, program memory accesses.

4.2.3 Data Move Unit

The DMU implements the data transfer mechanisms of the Macgic DSP. Data can be transferred between
the DMU and the external memory, as well as between the DMU and the other units: DPU, HDU, and
PSU. All data transfers use at least one GP register, either as a source or as a destination register.

The large number of data busses between the DMU and the DPU allows a very high data transfer
bandwidth between these units: up to 16 data words can be transferred from the DMU to the DPU per
clock cycle, and up to 8 data words from the DPU to the DMU.

Two address generation units (AGUs) are available in the DSP: one per data memory space. The AGUs
are used to generate addresses for data memory accesses. Each AGU has four index register sets. In
addition to the traditional base address, offset, and modulo registers, the configuration and extended-
instruction registers allow the configuration and customization of the AGUs to best fit the targeted
algorithms memory addressing needs. The two independent AGUs allow concurrent accesses to the two
memory spaces.

4.2.4 Data Processing Unit

The data processing unit (DPU) implements the data processing capabilities of the Macgic DSP. Because
the DSP architecture is modular, new DPUs can be developed and specialized to obtain the best possible
performance for the class of algorithms to be executed. The first implementation of this unit has been a
general-purpose one but slightly specialized towards audio processing. This first Audio-I DPU imple-
ments four ALUs, four multipliers, four shifters, together with four accumulator registers and their
associated adders. The accumulator registers (width: 2 dw + 8 bits) allow storing the results of multiply-
and-accumulate operations.

The DPU can handle data either as fixed-point, signed, or unsigned integer, depending on the operation
selected. It implements round-to-nearest rounding, and a saturation mechanism can be enabled to ensure
accurate computations.

4.2.5 Host and Debug Unit

The HDU is the link between Macgic and an external host microprocessor or a software debugger. This
unit implements both data transfers and software debugging mechanisms.

The host microprocessor or debug interface access the HDU through the host/debug bus. A set of
registers is then available and allows configuring and controlling the HDU. For this bus, the HDU acts
as the slave and the host microprocessor or debug interface as the master.

The HDU allows the transfer of data between a host/debug bus master and the HDU registers. For
this, two FIFOs are available, one per data transfer direction, as well as two groups of four registers, one
per data transfer direction. The depths of the FIFOs are customizable. Flow-control mechanisms have
been implemented. Writing or reading data into or from the FIFOs or registers can, for example, trigger
the generation of an event to the bus master, or of an exception to Macgic.

In addition to data transfer mechanisms, the HDU implements a set of hardware breakpoints engines,
one per memory space. Each engine allows monitoring accessed memory addresses and is able to generate
a breakpoint if either an address range or a single address matches a given memory access kind: read,
write, read or write.

The hardware breakpoint engines use the HDU debug engine to actually implement the breakpoint.
The debug engine allows controlling the Macgic program execution. It allows to stop the DSP, execute
instructions step-by-step, insert instructions in the DSP pipeline, access the program memory (e.g., to

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-8

Low-Power Processors and Systems on Chips

place software breakpoints instructions or to download a program), or to get information on the DSP
processor state.

4.2.6 Clocking Scheme

The Macgic DSP core uses four clocks signals ck1 to ck4. These signals must be nonoverlapping by pairs
(i.e., ck1 must not overlap ck3, and ck2 must not overlap ck4). The DSP uses latches as data storage
elements instead of flip-flops. The Macgic DSP uses these two pairs of nonoverlapping signals (ck1/ck3
and ck2/ck4) to implement the various pipeline stages and clock gating. Figure 4.3(a) depicts the partial
overlapping of the four clock signals. Figure 4.3(b) illustrates how the level-sensitive storage elements
implement the pipeline stages as well as clock gating. Clock-gating signals are generated either from
signals latched during the previous clock phase or from two clock phases before the clock phase they are
supposed to enable

.

 They must be stable before the activation of the clock signal they enable.
The appropriate use of level-sensitive storage elements [2], makes the hardware less sensitive to clocks

jitter than by using edge-sensitive storage elements, therefore allowing to implement more robust circuits,
capable of working under very extreme operating conditions (e.g., voltage, temperature, and technology
corner). With this approach, any trade-off between maximum clock frequency and power consumption
related to jitter minimization in clock distribution trees can be made, without actually compromising
the good working of the circuit — only the achievable maximum operating frequency.

The large number of clock phases enables a finer control over the pipeline, the clock gating mechanism,
and simplify the generation of clean I/O data and control signals on the various DSP’s external busses.

4.2.7 Pipeline

To simplify the description of the pipeline, the following clock-phase notation

c

.

n

 is used. Where

c

represents the clock cycle number (

c

 = 1..x

)

 and

n

 the clock phase number (

n

 = 1..4

)

. When

n

 = 1, it
means that the clock signal ck1 is asserted, when

n

 = 2 that clock signal ck2 is asserted, and so on.
The Macgic DSP has been targeted to very lower-power applications. To keep both the design com-

plexity and the power consumption to acceptable levels, the DSP pipeline depth has been made relatively
short. Figure 4.4 depicts the various pipeline stages. Most instructions are typically executed in only three
clock cycles.

FIGURE 4.3

(a) Macgic DSP clock signals; (b) clock gating and pipeline.

ck3

ck4

ck1

ck2

(a)

(b) D Q

R

D Q

R

D Q

R

D Q

R

D Q

R

D Q

R

ck1

ck2

ck3

ck4

Random
logic

Random
logic

Random
logic

Random
logic

Random
logic

Random
logic

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-9

In the Macgic DSP, the PC, the flag registers, and the accumulators are updated during phase 1 of
each clock cycle, and the GP registers during clock phase 2. The program memory is accessed during
phases 2 and 3 of each clock cycle, and the data memory during phases 4 and 1, while the hardware stack
memory is accessed during the clock phase 3.

The delay between the reading and the writing-back of a register is typically of one clock cycle. This
makes the pipeline transparent to the programmer, which greatly eases assembly-language programming.
Only branches and a few instructions that are executed in four clock cycles need a special attention by
the programmer. Branches necessitate a one-cycle delay slot (i.e., the instruction immediately following
a branch is always executed). The instructions that write a result in a GP register with an additional
latency cannot be immediately followed by instructions exploiting such a result. Unrelated operations or
NOPs need to be inserted for the duration of the latency, before the result can actually be exploited.

One instruction is fetched per clock cycle, except if the pipeline has to be stalled by a program or data
memory access wait-state, which delays the fetching and execution of subsequent instructions. Custom-
ized DPU/DMU or HDU instructions may, if needed, request a stall of the pipeline or a delaying of
exception handling. The PSU handles the fetching and partial decoding of instructions. Fetched instruc-
tions are first partially decoded in the PSU, and the category of the operation(s) is determined. Then,
the operation is dispatched to the appropriate unit for further decoding and execution. The PSU is not
actually fully aware of the whole DSP instruction-set and pipeline. Completely independent and arbi-
trarily long execution pipelines can therefore be implemented in the DMU, DPU, and HDU. The pipeline
can therefore vary from one implementation of a given unit to another implementation of the same unit.
(e.g., short pipeline fixed-point hardware is implemented in one unit vs. long pipeline floating-point
DPU hardware in the other one).

4.2.8 Instruction-Set

Macgic DSP instructions are 32 bits wide. This relatively small instruction size helps keeping the program
memory power consumption to acceptable levels. A 32-bit instruction word fits one or two operations.

FIGURE 4.4

Macgic DSP pipeline (Audio-I DMU, Audio-I DPU, GP-I HDU).

CY�CL�E 1 � CY�CL�E 2 � CY�CL�E 4 �CY�CL�E 3 �
1.�1 1 �.2�1.�3 1 �.4� 2.�1 2 �.2�2.�3 2 �.4� 3.�1 3 �.2�3.�3 3 �.4�4.�1 4 �.2�4.�3 4 �.4�

FE�TC�H D �EC�GE�NE�RA�L O �PER�AT�IO�N� R� W�E�XEC�

FE�TC�H D �EC�DM�R A �CCE�SS� -� W�DM�AC�C.�

FE�TC�H D �EC�DM�W A �CC�ES�S� R� -�DM�AC�C.�

FE�TC�H D �EC�R-�R X �FE�R� R� W�MO�VE�

FE�TC�H D �EC�A�CC-�R X �FE�R� -� W�-� AR�

FE�TC�H D �EC�R-�AC�C X �FE�R� R X �FE�R� AW�XF�ER�

FE�TC�H�
MA�C/�MU�LA�

R� EXEC�1� E�XEC�2�
AR�

FE�TC�H D �EC�
CB�FY�4�

EXEC�1� AW�
AR�

FE�TC�H D �EC�A�DD/�MU�L� R� W�EXEC�

FE�TC�H� PW�
BRA�NCH�R� FR�

R�

PC�+1�PR�

DE�C�

R�

EXEC�

DE�C�

FR� FW�

AW�

FW�

FR� FW�FR�

FR� FW�

W�
EX�EC�2�

W�
R = �GP�regi�st�er(s�) r �ea�d�
W = �GP�r�egist�er�(s�) w �ri�te�
AR�= A �cc.�re�gi�st�er�(s�) r �ead�
AW�= A �cc�. r �egist�er(s�) w �ri�te�
FR�= F �la�g r �egist�er(s�) r �ea�d�
FW�= F �la�g r �egist�er�(s�) w �ri�te�
DM�AC�C = �Da�ta�me�mo�ry�acce�ss�
PR�= P �C r �egi�st�er�read�

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-10

Low-Power Processors and Systems on Chips

Macgic DSP operations are split into several categories. Operations contained in an instruction word are
executed in parallel. Figure 4.5 illustrates the available instruction-level parallelism. Additional parallelism
can further be encoded within an operation (e.g., extended, SIMD, vectorial, or specialized operations).

PSU operations are “built-in” and cannot be customized nor removed from the instruction-set of the
Macgic DSP. Hardware support is provided for nested hardware loops and instruction repeat.

Branches can be either direct or indirect. In case of indirect addressing, either GP registers or the
software branch register (SBR) can be used as index. Program memory addressing can be either absolute
or PC-relative. Branches can be conditional. The condition is the value of a flag. There are operations
for handling and processing flags. Flags can be set, cleared, inverted. A Boolean expression evaluation
can take expressions of up to three flags as operands, perform AND/OR/XOR operations on them and
save the Boolean result into a flag in the PF flags register.

The Audio-I DMU makes a comprehensive set of data move operations available. These data transfers
can move either single or wide data words. Up to two, parallel wide registers data can be moved into
two wide GP registers in a single DMU-S or P operation. Up to two, wide data words can be transferred
between the two memory spaces and two GP registers in a single DMU-P operation. In addition to single-
word or wide data moves, half-wide or word-specific data moves are available. Immediate data moves
are also available.

The Audio-I version of the AGU implements three types of indirect data memory access operations
basic, predefined, and extended. Basic operations implement a simple set of very common DSP addressing
operations. Up to three predefined operations can be configured for each index register through the
appropriate programming of a configuration register. Predefined operations allow access to more pow-
erful addressing modes than the ones made available by the basic operations. Extended operations further
extend the complexity of addressing modes and operations that the AGU can perform. Up to four
extended operations are available per AGU.

The actual operation performed by an extended operation is configured through an extended operation
register. Extended operations may help reducing the number of clock cycles necessary to compute a specific
address computation, potentially saving precious clock cycles in key parts of time-consuming algorithms.

FIGURE 4.5

Macgic instruction word operations categories coding.

First operation Second operation (executed in parallel with first operation)

PSU-L PSU Long operations (jumps, subroutine call, loop, etc.) None

PSU-M PSU flag move operations None

DMU-L DMU long operations (move immediate, direct memory) None

DPU-L DPU long operations None

HDU-L HDU long operations None

PSU-C PSU conditional execution operation PSU-S PSU short operations (register-register transfers)

PSU-M PSU flag move operations

DMU-S DMU short operations (register-register transfers)

DPU-P DPU parallel operations

DMU-P DMU parallel operations (two indirect memory accesses)

PSU-P PSU parallel operations (flag clear/set/invert) DMU-S DMU short operations

DPU-P DPU parallel operations

DMU-P DMU parallel operations

PSU-S PSU short operations (HW stack PUSH/POP, reg. move) DMU-P DMU parallel operations (registers data move, indirect
memory accesses)

DMU-S DMU short operations (registers data move)

DPU-P DPU parallel operations

HDU-P HDU parallel operations

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-11

The DPU is responsible for the processing of the data in Macgic. This unit can be customized to best
fit the targeted class of algorithms and application. Two categories of DPU operations are available: DPU-
P and DPU-L operations. DPU-P operations can be executed in parallel with PSU-P or DMU-P opera-
tions. In the Audio-I DPU, four kinds of DPU-P operations have been implemented. Standard DPU
operations, such as the classical MAC

,

 ADD, SUB, MUL, CMP, AND, OR, and XOR, are available.
Computations on complex numbers are also supported. Use of SIMD operations, such as MAC4, ADD4,
SUB4, and MUL4, may speed-up the computation performance by a factor up to four. The same is true
for vector-oriented operations such as MACV, MSUBV, ACCV, MINV, and MAXV, which usually take
multiple input values and compute a single result in a single clock cycle. Specialized or customized
operations allow for the speed-up of some targeted algorithms. In the Audio-I DPU, special instructions
for FFT computations, IIR and FIR filtering, function interpolation, bit-stream creation and decoding,
min and max searches, and data clipping have been implemented. As an example, in a baseband-oriented
DPU, specialized operations for the implementation of Viterbi or turbo decoders can easily speed up the
algorithm’s performance from a factor 2 to

>

 30 over classical software implementation of such algorithms,
depending on the additional hardware used to implement such specialized operations. Audio-I DPU-L
operations allow performing two independent DPU operations in parallel (e.g., four MUL and four
ADD). More than 170 data processing operations have been implemented in the Audio-I DPU. This
extensive number of operations can be further completed/customized, if needed, to better match appli-
cation-specific algorithms needs. As for the AGU, if a high level of parallelism is needed, and heteroge-
neous data processing operations should be executed in parallel, a limited set of reconfigurable extended
DPU operations can be made available.

A few examples of Macgic Audio-I instructions are given next.

irepeat 16
mac4 acc,rx0w,ry3w || movpx2p rx0w,(ax2, pr0) ry3w,(ay1,iy2)

cmacc acc0,acc1,rx0w.l,ry0w.l || movb2p rx0w,(ax0)+ ry0w,(ay0)+
loop ry7, end_radix4_fft_loop

cbfy4a0 acc,ry0w.l || movpxp rx2w,(ax0,pr0)
cbfy4a1 rx0w,acc,rx1w.l,ry1w.l,rx5w.l,ry4w.l || movpxp rx3w,(ax0,pr1)
cbfy4a2 rx0w,acc,rx2w.l,ry2w.l,rx5w.u,ry4w.u || movpxp (ax1,pr0),rx0w
cbfy4a3 rx0w,ry5w.l,rx4w,ry4w,acc,rx3w.l,ry3w.l,rx4w,ry5w.l || movpxp (ax1,pr0),rx0w

end_radix4_fft_loop:

The irepeat operation allows repeating the execution of the next instruction the given number of times.
The cmacc operation takes the complex conjugate of the second operand, performs a complex multipli-
cation, and accumulates the complex result into the specified accumulators. The loop operation allows
repeating a specified sequence of operations for a given number of times. The cbfy4 operations are
specialized instructions for FFT/IFFT computation. The various movpxp and movbp operations are data
move operations that usually perform data memory accesses, or just index registers updates when no
source or destination registers are specified.

4.3 Macgic DSP Reconfiguration Mechanisms

Two reconfiguration mechanisms have been developed for the audio versions of the AGU and DPU. Both
mechanisms use a similar principle. Given the relatively small instruction word of the Macgic DSP (32-
bit), the degree of ILP available to the DSP programmer may be relatively limited, unless the powerfulness
of SIMD, and of specialized operations can be exploited. To provide the programmer with additional
programming capabilities, a set of extended, software reconfigurable, DMU-P and DPU-P operations
are made available by the AGUs and the DPU.

4.3.1 Address Generation Unit Reconfiguration

Each AGU permits the reconfiguration of four extended operations. An extended operation allows to
both perform an address computation, to access the data memory using an indirect addressing, and to

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-12

Low-Power Processors and Systems on Chips

save address computation results into up to three AGU registers. In a DMU-P operation, two 3-bit fields,
one per AGU, specify the kind of operation to be performed by the AGU: either a predefined AGU
operation or an extended AGU operation. Examples of use are:

macv acc,rx0w,ry3w || movpx2p (ax2, pr0),rx0w (ay1,iy2)
clra acc
irepeat 16

macv acc,rx1w,ry2w || movpx2p rx1w,(ax2, ix0) ry2w,(ay1,iy3)

The programmer shall specify the use of an extended operation by typing the extended operation
register I

sn

 (

s

 = X,Y,

n

= 0..3

)

 after the index register. Predefined operations are specified in a similar
manner, by typing PR

m

(

m

= 0..2

)

 after the index register to be used. The mnemonic for predefined and
extended operations is movpxp or movpx2p.

As an example, a single extended AGU operation may perform the following computations in parallel:

rx2w <= XDM[ax1+ox3], ax2<=(ax0+ox3)%mx1, ox1<= ox2+mx3

or

ax1 <= ClearLSBs(ax2,ox3), ox2<=ox2>>2, mx2<= mx2>>2

Figure 4.6 illustrates the various parts of an AGU datapath and its reconfiguration capability. Direct
addressing operations, as well as basic and predefined indirect addressing operations are internally
remapped into extended operations.

Figure 4.6(a) illustrates the selection of two address registers, two offset registers, and two modulo
registers that will be read. The first address, offset and modulo register can either be selected by the
value specified in the instruction’s opcode, or by a value specified in the extended operation’ configu-
ration register. The second address offset and modulo registers can independently be selected from the
configuration register. The six values read from the AGU registers are made available to two ALUs. The
first one (Figure 4.6(b)) is responsible for computing the actual address to be accessed in the data
memory, while the second one (Figure 4.6(c)), which allows more complex operations to be performed
is rather used to compute post-modified addresses that will be used the next time a memory access will
be performed. The results coming from these two ALUs can be input to a third ALU (Figure 4.6(d)) for
further post-processing. Table 4.1 lists the various operations available for each of the three ALUs present
in an AGU. Up to three results can be saved into the AGU registers: one in an address register, one in
an offset register, and one in a modulo register (Figure 4.6(e)). Figure 4.6(f) gives the format of an
extended AGU operation configuration register. Four of such registers are available in each AGU, one
per extended operation.

4.3.2 Data Processing Unit Reconfiguration

Eight extended DPU operations are made available by the DPU. An extended DPU operation configu-
ration word is 128-bit wide. An extended operation is invoked through a specific DPU mnemonic: dpxop.

dpxop

n

,

Value1

,

Value2

The first operand of the extended operation is the operation number (0..7

)

. Two 3-bit operand values
can then be specified. The meaning of these additional operands depends on the configuration of the
extended operation. Figure 4.7 presents the configuration possibilities.

Up to four wide GP registers can be read from the DPU. Figure 4.7a illustrates how the GP registers
are selected. The values read from the registers are made available as four values XR1, XR2, YR1, and
YR2. Figure 4.7b illustrates the four virtual processing units. The operations that these virtual units can
perform are given in Table 4.2. The source operands for each operation can be freely chosen from any
of the four wide values XR1, XR2, YR1, and YR2. Each virtual operation can be conditionally executed,
using a flag value as condition. The result of each virtual operation can be saved into any of the two wide

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4

-13

output values XW, YW. The two wide output results can be saved back into GP registers. Figure 4.7c
illustrates the GP registers’ write-selection mechanism

.

 Sixteen 64-bit extended operation registers are
made available to the programmer, two per extended operation. Figure 4.7d is an extended DPU operation
configuration register. Eight of such registers are available, one per extended operation.

As an example, a single extended DPU operation can perform the following computations in parallel,
in a single clock cycle:

FIGURE 4.6

AGU datapath: (a) AGU registers read ports; (b) premodified address generation; (c) post-modified
A address computation; (d) post-modified B address computation; (e) AGU registers write ports; (f) extended AGU
operation configuration.

a�s�0�
a�s�1�
a�s�2�
a�s�3�

o�s�0�
o�s�1�
o�s�2�
o�s�3�

m�s�0�
m�s�1�
m�s�2�
m�s�3�

1�

0�

0�3 2 1 � 0�3 2 �1 0 �3 2 1 � 0�3 2 �1 0 �3 2 1 � 0�3 2 �1�

AR�1� AR2� OR�1 O �R2� MR�1 M �R2�

In�de�x N �um�be�r�
(f�ro�m i �ns�tr�uc�ti�on)�

SA�R S �OR�
SI�R�

SM�R�

SI�T�

PR�OP�

AR1�AR�2 O �R1�OR�2 M �R1�MR�2�

PRSB�
0�3 2 1 �0�3 2 1 �

PRSA�

PR�_A� PR�_B� PR�_C�

PB�

PB�OP�

OR�1 O �R2�MR�1 M �R2�

PB�SB�
0�3 2 1 �

PB�_A� PB�_B� PB�_C�

PR� PA�AR1�AR�2�

0�3 2 �1�4�7 6 5 �
PB�SA�

1 0 �

MA�C�

Im�m.�ad�dr�ess�
(f�ro�m i �ns�tr�uc�ti�on)�

s�_en�

1 0 �

s�_ad�dr�

‘1�’�

Im�m.�ad�dr�ess�
mo�de�

PR�

OF�FR�

OF�FB�

1�

0�

SA�W�

SA�T�

1�

0�

SO�W�

SO�T�

1�

0�

SM�W�

SM�T�

a�s�0�
a�s�1�
a�s�2�
a�s�3�

o�s�0�
o�s�1�
o�s�2�
o�s�3�

m�s�0�
m�s�1�
m�s�2�
m�s�3�

0�2 1 �

AW� OW� MW�

In�de�x N �um�be�r�
(f�ro�m i �ns�tr�uc�ti�on)�

RS�A�
0�2 1 �

RS�O�
0�2 1 �

RS�M�

PR� PB�PA�

W_EN� W_EN� W_EN�

RCR�

PA�

PA�OP�

AR1�AR2� OR�1�OR�2 M �R1�MR�2�

PA�SB�
0�3 2 1 �0�3 2 1 �

PA�SA�

PA�_A� PA�_B� PA�_C�

OF�FA�/�RCS�

0�3 2 �1�
PA�SC�

(e)

(d)

(c)(b)

(a)

15� 14� 13� 12� 11� 10� 9 8 �7 6 �5 4 �3 2 �1 0 �

i�sn�.u�u� MA�C S �AW� SA�T R �SA� SO�W S �OT� RS�O S �MW� SM�T R �SM�

i�sn�.u�l� PB�SA� PB�SB� OF�FB� PB�OP� PA�SA� PA�SB�

i�sn�.lu� PA�SC� RCR� OF�FA� PA�OP� PR�SA� PR�SB�

i�sn�.l�l� OF�FR� PR�OP� SI�R S �IT� SA�R S �OR� SM�R�

(f)

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4

-14

Low-Power Processors and Systems on Chips

if (pf7) {//execute if flag 7 of PSU flag register PF is set
Rx2w.uu <= rx7w.uu * rx6w.uu; Rx2w.

µ

l <= rx7w.

µ

l * rx6w.

µ

l;
Rx2w.lu <= rx7w.lu * rx6w.lu; Rx2w.ll <= rx7w.ll * rx6w.ll;

}
if (npf3) {//execute if flag 3 of PSU flag register PF is cleared

Ry5w.uu <= ry3w.uu + ry2w.uu; Ry5w.

µ

l <= ry3w.

µ

l + ry2w.

µ

l;
}
if (pa1) {//execute if flag 1 of DPU flag register PA is set

Ry5w.lu <= rx7w.lu>>2; Ry5w.ll <= rx7w.ll>>2;
}
if (npa1) {//execute if flag 1 of DPU flag register PA is cleared

Ry5w.lu <= rx7w.lu; Ry5w.ll <= rx7w.ll;
}

4.4 Performance Results

Some computation performance results of the Audio-I version of the DMU and DPU are given in Table
4.3. The results are expressed in clock cycles and are given for the algorithms’ kernels. Additional clock
cycles overhead may exist if these algorithms are to be placed into subroutines.

The complexity of the Audio-I version of the DSP in number of transistors count is about 750 k for
a dw = 24-bit implementation, and about 550 k for a dw = 16-bit implementation.

The simulated power consumption of the Macgic Audio-I DSP (dw = 24-bit) is about 1.2 mW/MHz
at 1.8 V in the TSMC 0.18-

µ

 technology, and only about 0.25 mW/MHz at 0.9 V (e.g., CSEM’s CSELIB
6 standard cells library and Synopsys’ power compiler).

TABLE 4.1

AGU Datapath, Example of Address Generation Operations

Value PROP PAOP PBOP

0 A C C
1 B -C -C
2 A+B A+C A+C
3 A-B A-C A-C
4 B-A B+C B+C
5 A+OFFR B-C B-C
6 B+OFFR A+B A+B
7 A+(B>>1) A-B A-B
8 A-(B>>1) B-A B-A
9 A+(B>>2) B<<(C AND 7) A<<(C AND 7)
A A-(B>>2) B>>(C AND 7) A>>(C AND 7)
B A+(B<<1) ClearLSBs(A,B) ClearLSBs(A,B)
C A-(B<<1) RevCarryInc(A,RCR,C AND 7) Reserved
D A+(B<<2) RevCarryInc(B,RCR,C AND 7) Reserved
E A-(B<<2) (A+B)%C Reserved
F OFFR (A-B)%C Reserved
10 - (A+C)%B -
11 - (A-C)%B -
12 - A+(B>>(C AND 7)) -
13 - A-(B>>(C AND 7)) -
14 - B+(A>>(C AND 7)) -
15 - B-(A>>(C AND 7)) -
16 - A+(B<<(C AND 7)) -
17 - A-(B<<(C AND 7)) -
18 - B+(A<<(C AND 7)) -
19 - B-(A<<(C AND 7)) -

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP

4-15

FIGURE 4.7 Extended DPU operations virtual datapath: (a) GP registers read ports; (b) extended DPU operations;
(c) GP registers write ports; (d) extended DPU operation configuration.

Field 2 Value
(from instruction)

Field 1 Value
(from instruction)

Value1 Value2

To DMU

X1RT

1
0

2
3

+X1RS

0

4

+

+

XR1

X1

X2RT

1
0

2
3

+X2RS

0

4

+

+

XR2

X2

Y1RT

1
0

2
3

+Y1RS

0

4

+

+

YR1

Y1

Y2RT

1
0

2
3

+Y2RS

0

4

+

+

YR2

Y2

XR1 XR2 YR1 YR2
Value1

Value2PF,PA,PB

S11 R11
R12S12

OP1

C1 F1

W1 O1

Condition

Result

Operands

Operation

S21 R21
R22S22

OP2

C2 F2

W2 O2

Condition

Result

Operands

Operation

S31 R31
R32S32

OP3

C3 F3

W3 O3

Condition

Result

Operands

Operation

S41 R41
R42S42

OP4

C4 F4

W4 O4

Condition

Result

Operands

Operation

XW YW

Value1

To DMU

YWT

Y

1
0

2
3

+YWS

0

4

+

+

YW

Y

XWT

Y

1
0

2
3

+XWS

0

4

+

+

XW

X

(c)

(b)

(a)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xopnw.u.uu S11 R11 S12 R12 C1 F1

xopnw.u.ul OP1 W1 O1 X1RS X1RT XWS

xopnw.u.lu S21 R21 S22 R22 C2 F2

xopnw.u.ll OP2 W2 O2 X2RS X2RT XWT

xopnw.l.uu S31 R31 S32 R32 C3 F3

xopnw.l.ul OP3 W3 O3 Y1RS Y1RT YWS

xopnw.l.lu S41 R41 S42 R42 C4 F4

xopnw.l.ll OP4 W4 O4 Y2RS Y2RT YWT

(d)

0 0 0 = LL word (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
Rnm

0 0 1 = LU word (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
0 1 0 = UL word (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
0 1 1 = UU word (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
1 0 0 = L half (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
1 0 1 = U half (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
1 1 0 = Wide word (Snm: 0=XR1, 1=XR2, 2=YR1, 3=YR2)
1 1 1 = Immediate value (Snm: 0=Valuem, 1=#1, 2=#2, 3=#3)

0 0 = Execute if PF flag set (flag number: Fn=0..15)
Cn

0 1 = Execute if PA flag cleared (flag number: Fn=0..15)
1 0 = Execute if PA flag set (flag number: Fn=0..15)
1 1 = Execute if PB flag set (flag number: Fn=0..15)

0 0 0 = LL word (Wn: 0=X, 1=Y)
On

0 0 1 = LU word (Wn: 0=X, 1=Y)
0 1 0 = UL word (Wn: 0=X, 1=Y)
0 1 1 = UU word (Wn: 0=X, 1=Y)
1 0 0 = L half (Wn: 0=X, 1=Y)
1 0 1 = U half (Wn: 0=X, 1=Y)
1 1 0 = Wide word (Wn: 0=X, 1=Y)
1 1 1 = None/Value1(Wn: 0=None, 1=Value1)

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

4-16 Low-Power Processors and Systems on Chips

TABLE 4.2 Example of Extended DPU Operations

Value OP1 OP2 OP3 OP4 Value OP1 OP2 OP3 OP4

00 NOP NOP NOP NOP 20 SHR SHR SHR SHR
01 ABS ABS ABS ABS 21 SHRU SHRU SHRU SHRU
02 ACCA ACCA ACCA ACCA 22 SUB SUB SUB SUB
03 ADD ADD ADD ADD 23 SUBA SUBA SUBA SUBA
04 ADDA ADDA ADDA ADDA 24 SUBC SUBC SUBC SUBC
05 ADDC ADDC ADDC ADDC 25 SUBN SUBN SUBN SUBN
06 ADDN ADDN ADDN ADDN 26 ADD2 ADD2 SHL2 SHL2
07 AND AND AND AND 27 MUL2 MUL2 MOV2 MOV2
08 CHKB CHKB CHKB CHKB 28 SUB2 SUB2 SHR2 SHR2
09 CLRA CLRA CLRA CLRA 29 MULS2 MULS2 SWAP2 SWAP2
0A CLRB CLRB CLRB CLRB 2A ADDC2 ADDC2 SHRU2 SHRU2
0B CMP CMP CMP CMP 2B MULU2 MULU2 SEL2 SEL2
0C CMPA CMPA CMPA CMPA 2C SUBC2 SUBC2 SHLW WCONC1
0D CMPM CMPM CMPM CMPM 2D MULF2 MULF2 SHRW WCONC2
0E CMPU CMPU CMPU CMPU 2E MAX MAX BSEX WCONC3
0F DSQA DSQA DSQA DSQA 2F MAXU MAXU BSEXF WCONCU
10 EXOR EXOR EXOR EXOR 30 MAXM MAXM BSEXU WCONCL
11 INVB INVB INVB INVB 31 MIN MIN BSINSF WCONCUS
12 MAC MAC MAC MAC 32 MINU MINU BSINSF WCONCLS
13 MOV MOV MOV MOV 33 MINM MINM BSRD WINS
14 MSUB MSUB MSUB MSUB 34 CMUL CMUL BSRDF WEXTR
15 MUL MUL MUL MUL 35 CCONJ CCONJ BSRDU TRSPL
16 MULA MULA MULA MULA 36 CNORM CNORM EXTRAR TRSPU
17 MULF MULF MULF MULF 37 ACCV MACV EXTRA CNTRMSB
18 MULS MULS MULS MULS 38 CMP2 CMP2 CNTRMSB CNT0MSB
19 MULU MULU MULU MULU 39 CMPM2 CMPM2 CNT0MSB CNT0LSB
1A NEG NEG NEG NEG 3A CMPU2 CMPU2 CNT0LSB MOV4
1B NOT NOT NOT NOT 3B ADD4 MUL4 SHL4 SWAPHL
1C OR OR OR OR 3C SUB4 MULS4 SHR4 SWAPIHL
1D SEL SEL SEL SEL 3D ADDC4 MULU4 SHRU4 SWAPE
1E SETB SETB SETB SETB 3E SUBC4 MULF4 CLR2 CLR4
1F SHL SHL SHL SHL 3F Reserved Reserved Reserved Reserved

TABLE 4.3 Macgic DSP Performance Results (Audio-I DMU, DPU, GP-I HDU)

Algorithm
Number of Clock Cycles

(kernel)

Vector SUM (vector size = N) ∼N/4
Vector addition ∼N/2
Vector multiplication ∼N/2
Dot product ∼N/2
Vector normalization ∼N/4
Minimum/maximum of a vector ∼N/4
Matrix multiplication (matrix size = N × M) ∼(N*M)*(N/4+2)
Matrix transportation ∼N*M*(5/16)
Convolution (or FIR filter) ∼1/4 per tap
Complex convolution ∼1 per tap
Complex convolution, with conjugate of second operand ∼1 per tap
IIR (biquad) 1 per stage
Complex FFT/1FFT radix 4 (size 64, optimized) ∼220
Complex mixed-radix FFT/1FFT (size 2048, not optimized) ∼14.6 k
Complex mixed-radix FFT/1FFT (size 4096, not optimized) ∼29.1 k
Complex mixed-radix FFT/1FFT (size 8192, not optimized) ∼66.2 k
MP3 decoder (not optimized) ∼340 per stereo sample

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Macgic, a Low-Power Reconfigurable DSP 4-17

4.5 Conclusions

Macgic has been developed in VHDL language and can therefore be synthesized to virtually any CMOS
technology. It can provide a huge computational power and can be tailored to best suit an application’s
needs. Power consumption has been minimized by extensive use of clock gating. Design robustness and
power consumption reduction has been obtained through use of level-sensitive storage elements (latches),
which helps reducing constraints on clock distribution trees.

A set of software development tools has been specifically developed for the Macgic DSP to fully support
its parameterization capabilities. These tools include an integrated development environment, a powerful
macro-assembler as well as a source-level software debugger. A C++ phase-accurate pipelined model of
the DSP is available and can be integrated in various cosimulations environments (e.g., Matlab/Simulink,
System C, COSSAP/CoCentrics, and ModelSim). An FPGA implementation of the DSP also permits a
quick prototyping of systems using the Macgic DSP.

A new DPU specialized for baseband data processing, as well as a simplified DMU and DPU for less
computation-intensive applications, are in development.

References

[1] Õ. Paker, J. Sparso, N. Haandbaek, M. Isager, and L.S. Nielsen, A heterogeneous multi-core platform
for low-power signal processing in systems-on-chip, ESSCIRC 2002, pp. 73–76, Firenze, Italy.

[2] C. Arm, J.-M. Masgonty, and C. Piguet, Double-latch clocking scheme for low-power IP cores,
PATMOS 2000, Goettingen, Germany, pp. 217–224, September 13–15, 2000.

[3] J.M. Rabaey Reconfigurable computing: the solution to low-power programmable DSP, ICASSP
’97, Munich, Germany, pp. 275–278, April 21–24, 1997.

[4] A. Abnous and J. Rabaey, Ultra-low-power domain-specific multimedia processors, in VLSI Signal
Processing IX, IEEE Signal Processing Society 1996, Piscataway, NJ, pp. 461–470. http://www.ieee.
org/organizations/society/sp.

[5] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey, Evaluation of a low-power reconfigurable
DSP architecture, in IPPS/SPDP ’98 Workshops, Vol. 1388 of Lecture Notes in Computer Science, pp.
55–60, Springer-Verlag, Heidelberg, 1998.

[6] P. Kievits, E. Lambers, C. Moerman, and R. Woudsma, REAL DSP technology for telecom baseband
processing, ICSPAT ’98, 1998.

[7] P. Mosch, G.V. Oerle, S. Menzl, N. Rougnon-Glasson, K.V. Nieuwenhove, and M. Wezelenburg, A
720-µW, 50-MOPs, 1V DSP for a hearing aid chip set, ISSCC 2000, pp. 238–239, February 2000.

[8] M.J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Jones & Bartlett, Boston,
1995.

[9] TMS320C1x User’s Guide (Rev. C), Texas Instruments, SPRU013C, 1991. http://focus.ti.com/lit/ug/
spru013c/spru013c.pdf

[10] TMS320C3x User’s Guide (Rev. E), Texas Instruments, SPRU031E, 1997. http://focus.ti.com/lit/ug/
spru031e/spru031e.pdf

[11] TMS320C5x User’s Guide (Rev. D), Texas Instruments, SPRU056D, 1998. http://focus.ti.com/lit/
ug/spru056d/spru056d.pdf

[12] TMS320C64x CPU and Instruction Set Reference Guide, Texas Instruments, SPRU189F, 2000. http://
focus.ti.com/lit/ug/spru189f/spru189f.pdf

[13] ADSP-2100 Family User’s Manual, Third Edition, Analog Devices, 1995. http://www.analog.com/
Processors/Processors/ADSP/technicalLibrary/manuals/16BitIndex.html

[14] Blackfin Processor Instruction Set Reference, Analog Devices, P/N 82-001991-01, 2003. http://
www.analog.com/Processors/Processors/blackfin/technicalLibrary/manuals/blackfinIndex.html#
Processor%20Manuals

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.ieee.org
http://www.ieee.org
http://www.analog.com/
http://www.ti.com/
http://www.ti.com/
http://www.analog.com/

4-18 Low-Power Processors and Systems on Chips

[15] ADSP-BF535 Blackfin Processor Hardware Reference, Analog Devices, P/N 82-000410-13, 2003.
http://www.analog.com/Processors/Processors/blackfin/technicalLibrary/manuals/blackfinIn-
dex.html#Processor%20Manuals

[16] ADSP-TS101 TigerSHARC Processor Programming Reference, Analog Devices, Part No. 82-001991-
01, 2003. http://www.analog.com/Processors/Processors/tigersharc/technicalLibrary/manuals/tig-
ersharcIndex.html#Processor%20Manuals

[17] DSP56000/DSP56001 Digital Signal Processor. User’s Manual, Motorola, DSP56000UM/AD Rev. 1.
http://e-www.motorola.com/files/dsp/doc/inactive/DSP56000UM.pdf

[18] Starcore SC140 DSP Core Reference Manual, Motorola/Agere, MNSC140CORE/D Rev. 3, 2001.
http://e-www.motorola.com/files/dsp/doc/ref_manual/MNSC140CORE.pdf

[19] DSP1611 DIGITAL SIGNAL PROCESSOR Information Manual, Agere, MN02-016AUTO, 2001.
http://www.agere.com/client/docs/MN02016.pdf

[20] I. Verbauwhede and M. Touriguian. A low-power DSP engine for wireless communications, J. VLSI
Process., 18, pp. 177–186, 1998.

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.analog.com/
http://www.freescale.com/
http://www.agere.com/

5

-1

5

Low-Power
Asynchronous

Processors

5.1 Introduction ..

5-

1
5.2 Power Reduction Techniques in Asynchronous

Circuits ...

5-

2

Datapaths • Pipelines • Control Structures

5.3 Design Methodologies for Low Power

5-

4
5.4 Asynchronous Processors: A Review..................................

5-

6

CAP • MiniMIPS • AMULET1, 2, 3 • Asynchronous 80C51 •
Lutonium • MICA • ASPRO • TITAC-2 • Conclusion

5.5 Power Reduction Techniques at the System Level

5-

12

Introduction • Principles of Power Reduction with Operating
Systems • Low-Power Sleeping States • DVS for Synchronous
Processors vs. DVS for Asynchronous Processors • DVS
Algorithms for Asynchronous Processors • Conclusion

5.6 Conclusion...

5-

19
References ...

5-

19

5.1 Introduction

This chapter gives an overview of the techniques based on the asynchronous technology to design low-
power circuits, particularly low-power processors. The asynchronous microprocessors designed and
fabricated during the last two decades are reviewed. As it is well known, reducing the power consumption
of integrated systems requires applying many different dedicated techniques, at different levels. This
chapter is focused on the micro-architecture or structural level of asynchronous circuits. It also discusses
how asynchronous processors can run dedicated power-aware operating systems, leading to a significant
reduction of the power consumed by embedded systems — reduction that cannot be achieved using
synchronous processors.

The first section covers fundamental power-reduction techniques that can be applied at the structural/
micro-architecture level of a complex asynchronous circuit. The presentation is considering the design
of low-power datapaths

,

 pipelines, and control structures. In the second section, adequate design meth-
odologies are presented, which take advantage of asynchronous circuits’ properties for low power and
target the power-reduction techniques presented in the previous section. The third section reviews
fabricated asynchronous processors and highlights their performances with respect to low power. In this
research domain, impressive prototypes were designed and fabricated, from 8-bit complex instruction
set computer (CISC) microcontrollers to 32-bit reduced instruction set computer (RISC) machines.
Finally, the last section demonstrates that asynchronous processors surpass synchronous processors when

Kamel Slimani
Joao Fragoso
Mohammed Es Sahliene
Laurent Fesquet
Marc Renaudin

TIMA Laboratory

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-2

Low-Power Processors and Systems on Chips

designing low-power embedded systems using an operating system based on dynamic voltage scheduling
algorithms. This original work illustrates how the software can exploit the key properties of asynchronous
hardware to achieve a significant reduction of the power consumption.

5.2 Power Reduction Techniques in Asynchronous Circuits

5.2.1 Datapaths

Asynchronous datapaths have potentially low-power operation due to two main reasons [1]:

1. No global clock exists. In fact, clock is a major source of power consumption.
2. Asynchronous systems do nothing when their inputs have no data, so inactive asynchronous

circuits shut themselves off.

The asynchronous circuit style (i.e., protocol and data coding) has a strong impact on the power
consumption, however. A two-cycle protocol (i.e., nonreturn-to-zero [NRZ]) allows to transmit and to
process data in each handshaking cycle. In another way, a four-cycle protocol (or return-to-zero [RZ]),
which implies a more simple circuit, inserts a bubble (invalid data) into the protocol to finish the
handshaking. This RZ phase consumes energy and no data is processed or transmitted.

The asynchronous bundled-data datapaths are similar to synchronous datapaths consequently all
synchronous techniques to reduce power-consumption can be used in the asynchronous design.

On the other hand, delay-insensitive (DI) data encoding circuits do not require a request line. Requests
are generated using a transition in all digits to be sent. Therefore, delay-insensitive circuits must be
hazard-free because transitions are interpreted as requests. In this way, delay-insensitive circuits do not
waste energy in spurious transition. Additionally, the number of transitions on the circuit input lines is
no longer data-dependent. This feature simplifies the energy estimation [2] because the switching activity
can be evaluated with no care about data being processed, provided that implemented algorithms are
not data-dependent.

Thus, reducing DI datapath energy consumption mainly means reducing the number of gate switching
to process data. The widely used dual-rail data encoding codes a binary value on two wires. An efficient
way to reduce energy consumption is to increase the radix. 1-of-M data encodings hold more information
in a single transition and more information can be processed/transmitted with less gate transitions [3].
For example, an n-bit adder power consumption can be reduced by a factor two replacing the dual-rail
encoding by the 1-of-4 data encoding [4].

In addition, busses energy is saved when using large radix together with one-hot encoding. It also protects
the busses from cross-talk effects. Indeed, when a transition occurs on a bus wire, the neighbor wires are
by definition quiet [5,6]. Finally, asynchronous circuits are delay insensitive, thus repeaters can be efficiently
replaced by asynchronous buffers. Obviously, n-of-m data encoding could be used and the designer has
to exploit the solution space to choose the appropriate power/area/speed trade-off [7].

At the architectural level, there are other techniques to save energy-complexity in datapaths structures
as presented in Manohar [8] and Park et al. [9]. Although synchronous datapaths power consumption
is generally data-dependent, DI asynchronous circuits may lose this ability. For example, in a simple
synchronous 32-bit array multiplier, the energy consumption depends on the operand wideness, but a
given asynchronous multiplier consumes almost the same power for all operations.

Table 5.1 lists the results of benchmark programs for the 32-bit multiplier of microprocessors [10,11].
It is easy to see that an asynchronous implementation would waste a lot of energy using a constant 32-
bit data width. In Manohar [8], a new class of number representation is presented. The number repre-
sentation uses a self-delimited data encoding that allows dynamically adapting the operation width while
keeping delay insensitivity.

Additionally, in specific applications such as finite impulse response (FIR) Filters, the knowledge about
the data dependency can be used to improve the architecture power efficiency [12]. Finally, when

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-3

decomposing gates to limit maximal fan-in, the input transition probability knowledge could be taken
into account to reduce the average number of transitions. Figure 5.1 is an example of OR-5 decomposition
with maximal fan-in equal to four and all input mutually exclusive. The three most probable inputs (i.e.,
60%, 20%, 10%) are connected to the output gate, resulting in a unique gate switching in 90% of the cases.

The use of all these techniques improves energy-aware asynchronous systems potential.

5.2.2 Pipelines

Several techniques have been proposed and introduced to improve the performance of circuits such as
processors. Pipelining is a common and popular way to increase the throughput of a circuit.

In synchronous designs, pipelining is achieved by inserting registers within combinational stages and
by adjusting the global clock accordingly. Whereas in asynchronous circuits, pipelining is performed only
by inserting latches/buffers between stages, no global synthesis has to be done. It looks more complicated
in synchronous than in asynchronous because all the circuit has to be resynthesized in synchronous to
fulfill the new global synchronization for a functional correctness.

The ease of performing a deeper pipeline in asynchronous must be carried out with care. Indeed,
inserting latches to improve the throughput of a circuit induces additional hardware affecting consequently
the power consumption of a circuit. It is the eternal trade-off between speed and power consumption.
Nevertheless, an upper bound of buffers can be added into a design to reach the maximum throughput.
Beyond this number of buffers, adding more buffers increases the power consumption overhead without
improving the performance of the circuit. More dramatically, adding an excessive amount of buffers leads
to a decrease of performance because the delays of buffers affect the throughput [13].

Some models have been proposed to determine the optimum number of buffers to be added in an
asynchronous pipeline to get the maximum throughput. An interesting experiment was proposed by
[13]. It has demonstrated that performances of an asynchronous ring can vary between a blocked-state
when the number of buffers is lower than the minimum to a maximum throughput at the optimum
number of buffers. Beyond this optimum number of buffers, the performance decreases implying an
increase of the energy dissipation.

TABLE 5.1

Benchmark Programs Data Pattern

Architecture
Benchmark

Program
Number of

Multiplication

Average Bit Length

Multiplicand Multiplier

SPARC v8.0 lisp 2 K 5.32 8.00
gcc 240 K 5.81 3.67
ijpeg 82 M 7.69 11.24

Simplescalar lisp 15 K 1.54 0.43
gcc 1 M 6.69 9.35
perl 42 M 0.01 4.01
go 13 M 3.70 4.41
ksim 5 M 11.43 12.88

FIGURE 5.1

An OR-5 gate decomposition example.

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-4

Low-Power Processors and Systems on Chips

Other models such as E

τ

2

 [14] energy-time metric is used to determine the upper bound of buffers
to be added in an asynchronous pipeline to get the highest throughput [15]. Fixing the optimal number
of buffers in a pipeline is also called slack matching [16]. Slack matching can be applied without affecting
the correctness of the circuit wherever no arbitration structure exists. These parts of the circuit, which
do not include arbitration, are called slack elastic.

Another source of energy waste is observed when branch instructions are executed and taken. As a
rule, the deeper the pipeline the higher the energy waste when a branch is taken. This is due to the
presence of as many instructions in the pipeline as pipeline stages, so the energy dissipation is directly
proportional to the number of instructions that must be discarded in the pipeline. To reduce this waste
of energy, solutions based on branch prediction can be used. When the prediction is close to the reality,
the energy overhead is significantly reduced. The branch prediction hardware consumes energy for every
instruction, however, so it is questionable whether the total energy consumption of the whole execution
is reduced. An elegant solution to this problem, which exploits the elasticity of asynchronous pipelines,
is to control the pipeline depth by collapsing pipeline stages together. This is performed dynamically, so
the processor can switch from a fully pipelined configuration to a low depth pipeline configuration very
quickly during an instruction execution [17]. Dynamic configuration of pipeline stages has the potential
to significantly save energy. Decreasing the pipeline depth slows down the processor but also saves energy
because fewer “speculative” instructions are fetched and decoded. It is based on selectively making some
latches transparent, which join pipeline stages together. In micropipeline asynchronous circuits, dynamic
configuration of pipeline stages is achieved by the mean of reconfigurable latch controllers [18] that can
be either “permanently transparent” (collapsed) or “normal.” These new latch controllers were used in
AMULET3 [19].

5.2.3 Control Structures

When the datapath is nonlinear (i.e., in the presence of control structures such as multiplexers), the
complexity of the circuit is higher because several inputs can be propagated to one output. These
architectures are expensive in terms of power consumption if no care is taken in their implementations.
Strategies are proposed to reduce the power consumption of these components by unbalancing the
structure of choice in favor of the cases with the highest probabilities [20]. The probabilities are established
by simulation and are application-dependent. This optimization is a step further toward the power
consumption reduction of a circuit. Indeed, the power dissipation overhead lies on the enormous forks
that connect several inputs to one output. The idea for reducing the power consumption of these
structures is to decompose these huge forks into a dissymmetric tree of small forks. This decomposition
allows the signals with the highest probabilities to cross a reduced amount of smaller gates, thus reducing
the loads switched. This decomposition is similar to the one proposed in Figure 5.1.

The same reasoning can be applied to any control structure, such as demultiplexers, for which one
input is sent to one among several possible outputs.

5.3 Design Methodologies for Low Power

Several universities develop their own design flows and use them in order to demonstrate the efficiency
of their design methodologies. Research in asynchronous logic has lead to interesting circuits that
demonstrate the effectiveness of asynchronous logic. The results obtained stimulate the research of
asynchronous logic. Among some design flows developed in some universities, we can point out Tangram
[21], which was developed at Eindhoven University in collaboration with Philips Research Lab in Eind-
hoven, the Netherlands

.

 This design flow was used to implement a low-power asynchronous 80C51 [22].
Tangram was a good inspiration source for the AMULET group at the University of Manchester, U.K.,
to develop Balsa [23]. Balsa is a tool that can generate bundled data circuits. A DMA controller [24]
integrated in AMULET3i was a good example to demonstrate the potential of the Balsa synthesis tool.

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-5

Recent works have been accomplished in Balsa to generate quasi-delay insensitive (QDI) architecture for
secure applications. An asynchronous implementation of the commercial advanced RISC machine (ARM)
microprocessor named SPA [25] was achieved to illustrate the efficiency of this synthesis tool. Finally,
we introduce TIMA asynchronous synthesis tools (TAST) [26] (Figure 5.2). It was developed at TIMA
laboratory in Grenoble, France, within the concurrent integrated systems (CIS) group. TAST is a complex
and complete tool for designing asynchronous circuits. It takes a high-level language, which is based on
VHDL

and CHP developed by Alain Martin at the California Institute of Technology (Caltech, Pasadena,
CA)

.

 TAST enables the designer to perform functional simulation in VHDL or C, and to synthesize the
communicating hardware processes (CHP) specification into an asynchronous micropipeline or QDI
circuit.

One of the interesting features of the TAST design flow is the trace estimator. It gets information on
both the circuit activity and the energy consumption during a specific simulation [27,27a]. The trace
estimator, which is an interesting option that can guide the designer to achieve a low-power asynchronous
circuit, performs it. By following a rigorous strategy of design (it is possible to add labels in the CHP
specification to monitor one or several particular instructions), the designer can get information on
power consumption and can nicely exploit them to design low-power circuits.

The activity estimation tool allows the designer to achieve a profiling of the code to get code coverage
information of a CHP description. The aim of this code profiling is to identify parts of the description
that are never used or seldom used.

The activity estimation of a circuit allows the designer to identify parts of a circuit that are the most
frequently used. For an asynchronous microprocessor for example, it is interesting to know which units
are often used: the register bank, the ALU

,

 the load/store unit

,

 and so on. It is possible to get information
at a fine grain with a higher accuracy. For instance, it is interesting to know which registers in a register
bank are the most frequently accessed and, therefore, optimize the hardware accordingly. For an ALU,
this information on activity can guide the designer to choose the best operator architecture (the operator
that is solicited most often will have a low-power architecture).

Information on channels is useful to choose the best encoding. The activity of digits in a channel is
useful to see which digits of a channel are rarely, if ever, used. According to this analysis, the channels
can be sliced into a set of subchannels that are conditionally active (channel width adaptation).

Finally, statistics on choice structures are essential to privilege cases with the highest probabilities. The
statistics obtained can guide the designer to unbalance the structure of choice in favor of the cases with
the highest probabilities [20]. For example, if the guard G0 has the highest probability, the structure of
choice could be unbalanced as follows:

FIGURE 5.2

Design flow in TAST.

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-6

Low-Power Processors and Systems on Chips

[G0 => I0 [G0 => I0

@ G1 => I1 => not G0 =>[G1 => I1

@G2 => I2 @ G2 => I2

]]

]

The mutually exclusive structure of choices (written in pseudo CHP code) on the left hand side is a
regular structure of three guards G0, G1, and G2 with their respective instructions I0, I1, and I2. On the
right-hand side, it is an unbalanced structure to privilege the case G0. The effect on the final circuit by
decomposing the structure in that way is to reduce the power consumption of the execution of the guard
G0. Indeed, every time the guard G0 is executed, it costs the energy of a two-input multiplexer instead
of a structure with three inputs. A complex circuit including complex choice structures having unequal
probabilities results in large energy savings.

The activity estimation tool is an efficient tool to guide the designer for power reduction. Moreover, TAST
goes beyond by offering to the designer the possibility to get an estimation of the energy in terms of the
number of transitions. Commercial tools exist, but the estimation of the energy is done at the gate level [28]
or at the transistor level [29], thereby occurring too late in the design flow and taking too much time to be
simulated. This is the reason why the trace estimator tool in TAST allows the designer to get power estimation
at the synthesizable CHP specification level. This estimation is done without performing the synthesis of
the circuit, but it is based on how TAST does the synthesis of asynchronous circuits. Furthermore, this is a
C-simulation, thus the simulation and the estimation are very fast, contrary to a gate simulation, which is
generally a VHDL gate simulation involving gate delays (using VITAL libraries

,

 for example).
This power consumption estimator is a good way to check whether an optimization is judicious, and

indicates the relative gain between two different implementations of the same circuit.

5.4 Asynchronous Processors: A Review

Important studies have been conducted on asynchronous logic to prove the efficiency in terms of power
reduction. Thanks to several design methodologies that have emerged from these studies, some designs
around the world have been achieved and are very encouraging for the future. Among some circuits, a short
list of asynchronous microprocessors, which have marked the last 15 years of intensive research, is presented.

5.4.1 CAP

Alain Martin’s group at Caltech

designed the first microprocessor entirely implemented in asynchronous
logic at the end of the 1980s. This microprocessor is known as the Caltech asynchronous processor (CAP)
[30]. This simple processor was designed to prove the feasibility of asynchronous circuits by using the
methods of program transformations developed at Caltech [31].

CAP is a 3-stage pipeline, 16-bit RISC processor with 16 registers of 16 bits; it is implemented in dual-
rail QDI architecture using a 4-phase communication protocol. The circuit is synthesized and mapped
on static complex gates. It contains 20,000 transistors. The circuit is physically manufactured in MOSIS
SCMOS 1.6-

µ

m technology.
Performances of the processor at different supply voltages have been recorded: 26 MIPS for a power

consumption of 1.5 W at 10 V; 18 MIPS for a power consumption of 225 mW at 5 V; and 5 MIPS for a
power consumption of 10.4 mW at 2 V.

5.4.2 MiniMIPS

More recently, the work done at the Caltech on asynchronous design methodologies has lead to the design
and fabrication of a powerful asynchronous MIPS R3000 prototype: MiniMIPS [16]. One of the goals
of this project was to apply the theory based on the E

τ

2

 metric [14,32], devoted to the estimation of time
and energy efficiency of computation.

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-7

The synchronous MIPS architecture is based on three pipeline stages: PC address computation,
instruction fetch, and instruction execution; however, the asynchronous MiniMIPS is very finely pipe-
lined inside these stages in order to increase the performances without sacrificing the power consump-
tion. A slack matching was achieved in many parts of the circuit to obtain the maximum throughput
(this slack matching was done without affecting the correctness of the circuit because it was achieved
on slack elastic parts).

In addition, improvement in completion mechanism was performed on the datapath. Indeed the
datapath was decomposed into small units (4 bits wide) that generate their own completion signals.
As a result, the completion tree is smaller, thereby reducing the delay and the power consumption of
the circuit.

MiniMIPS is very innovative for the year of its invention (1997) because it includes a bypass mechanism
and exceptions management. The processor was manufactured in 0.6-

µ

m SCMOS technology, and the
performances are 150 MIPS for a power consumption of 1 W at 2 V and 280 MIPS for a power
consumption of 7 W at 3.3 V.

5.4.3 AMULET1, 2, 3

AMULET (asynchronous microprocessor using low energy and technology) is a project born in late 1990
at the University of Manchester. The purpose of this project was to demonstrate the potential of the
asynchronous technology to reduce the energy consumption.

The advanced RISC machine microprocessor (ARM) was chosen to prove the feasibility of designing
a fully asynchronous commercial processor.

The first version was AMULET1 [33] released in early 1993. The realization of this processor required
5 men-year

.

 The processor has been implemented using Sutherland micropipeline [34], and using a 2-
phase communication protocol (nonreturn-to-zero). The result obtained for this circuit was not very
successful — the performances measured were lower than those of the original ARM6. These unexpected
results are partly due to an unsuitable deep pipeline. The power consumption of AMULET1 is 83 mW
for a performance of 9 K dhrystones

.

 For the original ARM6, the power consumption is 75 mW for a
performance of 14 K dhrystones at 10 MHz.

The experience acquired with the realization of AMULET1 lead to a second version, AMULET2
[35], in 1996, which was higher performance than the former. The architecture is still based on
Sutherland micropipeline. The 2-phase communication protocol was replaced by the 4-phase com-
munication protocol, however, which has the advantage of being faster and less consuming despite the
multiplication by two of the number of transitions. The 2-phase communication protocol consumes
more than the 4-phase because of the use of a complex double edge sensitive logic. Improvement was
also achieved by reducing the unsuited deep pipeline of AMULET1, which was partly responsible for
the extra power dissipation.

AMULET2 integrates a “branch target cache” for branch prediction, a mechanism of register blocking
in the form of a FIFO and a mechanism of forwarding. Logic blocks, such as the shifter and the multiplier,
are bypassed when they are not necessary to reduce energy waste. Furthermore, AMULET2 includes a
“halt” mechanism to stop all activity in the circuit. The circuit was implemented in a CMOS 0.5-

µ

m
technology. The performances of AMULET2 are 40 MIPS for a power consumption of 150 mW, which
is better than the ARM710 but less than the ARM810. AMULET2 was incorporated in AMULET2e with
flexible RAM memory.

A third version, AMULET3 [19], was designed in 2000. It is an asynchronous 32-bit RISC processor
that is competitive with the synchronous ARM9TDMI core.

The datapath is a full custom design, and the standard library was provided by ARM Limited. The
control part was synthesized using Petrify [36]; Petrify takes a circuit in form of a STG and transforms
it into a speed independent (SI) circuit. AMULET3 uses latch controllers [18] to reduce the pipeline
when branch instructions are executed. The technology used in AMULET3 is 0.35

µ

m and the power
supply voltage is 3.3 V. The performances recorded for AMULET3 are 120 MIPS with a power con-

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-8

Low-Power Processors and Systems on Chips

sumption of approximately 155 mW. These performances are very similar to the synchronous
ARM9TDMI core.

AMULET3 demonstrated that asynchronous technology is competitive in terms of power consump-
tion. It was integrated in AMULET3i [37] with an asynchronous bus named MARBLE [38], a DMA
controller (synthesized using Balsa [23]) and RAM and ROM memories. AMULET3i is used for com-
mercial applications; the first application is for a DRACO control system (Dect [digital enhanced cordless
telecommunications] RAdio COmmunication controller) depicted in Figure 5.3.

5.4.4 Asynchronous 80C51

The CISC asynchronous 80C51 microcontroller [22] was designed at Eindhoven University of Technology
in collaboration with Philips Research Laboratories in 1995. The circuit was implemented in a relatively
short time of 6 months.

The asynchronous version is completely compatible with the original processor. The goal of this
duplication was to demonstrate the benefits of an asynchronous implementation by comparing directly
the original synchronous processor with the asynchronous implementation.

The circuit was specified in high-level language using Tangram [21], and was compiled in a netlist
using the Tangram compiler. The compilation of a Tangram program is done in two stages in which the
handshake circuits represent the intermediate form. The handshake circuits are implemented using the
4-phase protocol and single-rail architecture.

The transparency of the Tangram compiler allowed the designers to bring optimizations at the Tangram
program specification. In addition, a suitable combination of bus-structure and point-to-point commu-
nication contributed to save extra energy dissipation.

The processor was mapped onto a standard cell library and fabricated in CMOS 0.5-

µ

m technology.
It integrates a DC-DC converter for voltage scaling (see Section 5.5).

The performances obtained at a supply voltage of 3.3 V are 4 MIPS for a power consumption of 9
mW. It is noted that the energy consumption was reduced by a factor of 4 compared with the original
synchronous version. These results prove the benefits brought by the asynchronous logic in terms of
power consumption and low electromagnetic emission. This processor has been used in a pager; the
layout of the circuit is depicted Figure 5.4.

5.4.5 Lutonium

Lutonium [38a] is a recent asynchronous 8051 microcontroller developed by the California Institute of
Technology. Although the 8051 is an irregular CISC processor, which is not really well suited for low-
power, it is very popular and is often found in applications where minimizing the energy is important.

FIGURE 5.3

DRACO layout.

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-9

Lutonium was implemented for an optimal E

τ

2

[14] parameter. It is highly pipelined to increase the
speed. The instruction decoder is more complex than the MiniMIPS [16] and is centralized in one
component to decrease the size and the number of communication channels in the circuit. Moreover,
the lutonium performs a deep-sleep mode in which almost all switching activities are stopped. The
advantage of asynchronous implementation is that Lutonium can wake up instantly from the deep-sleep
mode. Moreover, Lutonium introduces a segmented bus-control protocol to save energy: useful digits
only are sent (especially for control structures as presented in Section 5.2.2).

The QDI logic is used for its robustness property at low voltages. Lutonium has been inplemented in
SCN018 (a 0.18-

µ

m CMOS library) by Taiwan Semiconductor Manufacturing Company (TSMC) sup-
plied by MOSIS; the nominal supply voltage is 1.8 V. Figure 5.5 depicts the architecture of Lutonium.

The performances of Lutonium are shown in Table 5.2.

5.4.6 MICA

Microcontrôleur asynchrone (MICA) is a quasi-delay insensitive asynchronous 8-bit microcontroller
CISC machine, designed by the CIS group of TIMA in collaboration with France Telecom research and
development in Grenoble, France, and STMicroelectronics in Grenoble in 2000 [39,40]. It integrates two

FIGURE 5.4

Asynchronous Philips 80C51.

FIGURE 5.5

Lutonium architecture.

TABLE 5.2

Lutonium Performances

1.8 V 200 MIPS 100.0 mW 500 pJ/inst 1800 MIPS/W
1.1 V 100 MIPS 20.7 mW 207 pJ/inst 4830 MIPS/W
0.9 V 66 MIPS 9.2 mW 139 pJ/inst 7200 MIPS/W
0.8 V 48 MIPS 4.4 mW 92 pJ/inst 10900 MIPS/W
0.5 V 4 MIPS 170.0 mW 43 pJ/inst 23000 MIPS/W

Fetch IMem

Branch Unit

Interrupts Ports SFR RegFile Accumulator

ALU

FBlock

MultDiv

YBus

ZBus
S

w
itchbox

instr
Fetch/IMem

Decode

Registers

ExecUnits

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-10

Low-Power Processors and Systems on Chips

different register-files: eight 8-bit registers devoted to data, and eight 16-bit registers devoted to pointers
(including the program counter and the stack pointer). Specific arithmetic units are associated with each
register file enabling concurrent computations of data and addresses. A peripheral unit is also included,
supporting six 8-bit parallel ports, and four serial links (using a two-phase delay insensitive protocol
compatible with the RISC asynchronous ASPRO processor

)

. Moreover, the microcontroller integrates 16
Kbytes of RAM and 2 Kbytes of ROM. The latter includes a built-in-self-test

,

 which is executed at reset
according to the boot mode selected (eight modes are available).

The MICA processor was tested functional from 3 V down to 0.6 V (2.5 V is the nominal voltage of
the 0.25

µ

m CMOS technology used). It is noticeable that the chip only consumes 800

µ

W at 1 V, still
delivering a computational power of 4.3 MIPS. At 0.8 V, the chip consumes less than 400

µ

W (Figure 5.6).
The microcontroller core was designed using the so-called quasi-delay insensitive (QDI) logic. A four-

phase protocol was used in conjunction with an n-rail encoding. This chip was a vector for developing
new skills in the design of standard-cell based QDI asynchronous circuits. The design of MICA was
focused on two correlated concerns: designing distributed asynchronous finite state machine and design-
ing for low power.

To reduce the power consumption of the microcontroller, the number and the energy-cost of com-
munication actions occurring during the execution of each instruction, as well as the number of sequential
steps to perform each instruction were minimized. In other words, instead of designing the architecture
around a big central sequencer, the sequencer implementation was distributed all over the architecture
and as much as possible. The asynchronous logic is particularly well suited to satisfy such a design
approach because, by nature, the sequencing of an asynchronous circuit is performed by multiple local
sequencers implementing handshaking communications and local treatments.

Thus, the architecture of MICA was designed as a distributed system, each part providing specific
services. For example, the two register files

,

 the status register, and the memory integrate local units,
which manage the memory resources. These modules implement functions such as “read,” “write,” “read
then write back” or even more complex functions such as: read a byte, increment/decrement the pointer/
address, and read another byte (Copy and Push & Load instructions, for example, use these features).
Adopting such an approach significantly simplifies the design of the main sequencer of a CISC micro-
processor like MICA. It then minimizes the power consumed by the main sequencer, where the con-
sumption associated with each instruction is the direct image of its complexity. In fact, complex
instruction implementation does not penalize simple instruction implementation at the main sequencer
level. Moreover, such a distributed approach minimizes the power consumed by communications because
the minimum number of transactions occurs through busses (memory accesses for example).

Because of the low-power constraint and because computational power was not a priority for the
targeted applications, a minimum number of pipeline stage was introduced. This does not avoid parallel

FIGURE 5.6

MICA microcontroller and measured performances.

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-11

execution of instruction subparts, but simply means that parallel execution of instructions is not sup-
ported. In some cases, however, successive instructions may partially overlap.

Finally, at the signal level, communication channels are using a low-power data encoding. Instead of
using dual-rail coding, N-rail coding (also called “one hot”), is used (i.e., one out of the N wires is active
during a transaction). Therefore, the different parts of the architecture are controlled by the means of
channels using 5-rail to 12-rail data encoding, which minimizes the number of transitions per commu-
nication action, and thus minimizes the dynamic power consumption. The datapaths (8-bit and 16-bit)
are entirely designed with 4-rail encoded data, requiring radix-4 logic/arithmetic processing units. The
register files are also designed with 4-rail encoded data. Instead of bit-registers, they are built of digit-
registers, each digit representing four values.

MICA was successfully used for the design of a contact-less smart-card chip

,

 called MICABI [39],
which integrates an on-chip coil connected to a power reception system and an emitter/receiver module
compatible with the ISO 14443 standard. The benefit brought by an asynchronous processor in such a
system on chip (SoC) is that design constraints are relaxed [39,41,42], especially concerning the software,
the analog, and the radio-frequency parts.

5.4.7 ASPRO

ASynchronous PROcessor (ASPRO) [43] is a 3-stage pipeline 16-bit RISC asynchronous microprocessor.
Its design started at the Ecole Nationale Supérieure de Télecommunications de Bretagne antenne de
Grenoble, in Grenoble, France, in collaboration with France Telecom R&D and STMicroelectronics in
1998. The team then joined TIMA [40] in 1999. ASPRO is a regular RISC microprocessor, which decodes
the instructions in order and completes them out of order; it contains 16 registers of 16 bits.

The design flow and the circuit style are an original application of the method of Alain Martin. The
motivations were to get experience in the design of complex asynchronous QDI circuits using standard
cells and to demonstrate that asynchronous design techniques could improve very large-scale integration
(VLSI) systems in term of speed and power consumption.

ASPRO was implemented using multi-rail encoding and a 4-phase communication protocol. The
synthesis was partially performed by hand and it targeted the standard cell library provided by the founder
STMicroelectronics.

The processor integrates two distinct on-chip memories for instructions and data. It was manufactured
in 0.25-

µ

m CMOS technology by STM. It can deliver 24 MIPS for a power consumption of 20 mW at
1 V and 140 MIPS for a power consumption of 350 mW at 2.5 V (including consumption of the
memories). The CPU integrates three independent sources of supply voltages (from 0.9 to 3.0 V) for
dynamic voltage scaling purposes (see Section 5.5). The final physical circuit is pictured in Figure 5.7.

FIGURE 5.7

ASPRO.

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-12

Low-Power Processors and Systems on Chips

5.4.8 TITAC-2

The realization of an asynchronous processor TITAC-2 [44] was invented by the Tokyo Institute of
Technology in Tokyo, Japan. It is an asynchronous version of the MIPS R2000 processor (some instruc-
tions are missing or are modified). It is a 5-stage pipeline 32-bit RISC processor.

TITAC-2 is implemented using a scalable-delay insensitive

(SDI) architecture [44]. SDI is based on
QDI architecture with an unbounded delay model (i.e., no upper bound is assumed on the gate and wire
delays). The benefits of this model are visible in terms of speed. The SDI circuits can effectively run faster
than the equivalent QDI circuits.

To get the maximum performance without affecting the consumption of the processor, pipelining in
TITAC-2 was fixed by simulation.

The data are coded into dual-rail and the communication is done using a 4-phase communication protocol.
TITAC-2 was manufactured using a 0.5-

µ

m CMOS technology and synthesized using a standard cell library.
The performances obtained are 52.3 VAX MIPS for a V2.1 test dhrystone and consumes 2.11 W at 3.3

V and 20

°

C. Figure 5.8 illustrates the layout of the circuit.

5.4.9 Conclusion

The results obtained for these microprocessors are in reward of all the work accomplished in asynchronous
logic over the last 15 years of research. The asynchronous 80C51 and the AMULET3i processors are used
in commercial applications. These two asynchronous processors, which are a reliable duplication of
synchronous commercial processors, have demonstrated the advantages of asynchronous logic in com-
parison with the synchronous logic in terms of power reduction. The MiniMIPS prototype demonstrated
that high performance is achievable using the asynchronous technology, while keeping the relative power
consumed rather low. Finally, the MICA microcontroller and the MICABI contact-less system-on-chip
demonstrated the benefits brought by the asynchronous technology to design mixed-signal circuits
requiring low voltage, low power, and low noise.

All these prototypes have demonstrated that asynchronous logic has attained a maturity level that is
commercially viable today. It is, however, clear that an ever greater reduction of asynchronous processors
power consumption is possible, by combining the different techniques introduced in Section 5.2 and by
applying design methodologies devoted to low power as suggested in Section 5.3.

5.5 Power Reduction Techniques at the System Level

5.5.1 Introduction

To go a step further in reducing the power consumption let us now jointly consider the hardware and
software parts of an integrated system. Several hardware and software techniques have been developed
over the last years to manage the electrical consumption of a system. Nevertheless, as devices become
much more powerful and sophisticated, power requirements increase continuously [45]. Therefore, new
power management techniques have been investigated at hardware and software levels [46,47]. In this
section, a new method is considered that combines asynchronous processors and an operating system

FIGURE 5.8

TITAC-2 layout.

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors

5

-13

for low-power management. Although the literature on power management expounds extensive research
on what to do at the hardware or software level, this approach investigates both levels simultaneously.
In cooperation with a power management policy adapted to an asynchronous processor, the operating
system (OS) adjusts the speed of the processor to the task requirements at runtime by controlling the
processor operating voltage. This scheme exploits the ability of asynchronous processors to self-regulate
their processing speed with respect to the supply voltage only [48].

5.5.2 Principles of Power Reduction with Operating Systems

For current CMOS integrated circuits, power dissipation is dominated for the moment by the switching
power, even if the static leakage current induces more and more power losses in deep submicron
technologies. This arises from the charging and discharging of the loading capacitance and is expressed
for a synchronous processor as:

P

 =

CV

2

f

(5.1)

where

C

 is the load capacitance,

V

 is the supply voltage, and

f

 is the clock frequency [49–51]. In the case
of an asynchronous processor, the relation reads:

P

 =

CV

2

s

(5.2)

where s is the instantaneous speed of the processor. These equations suggest that minimizing the load
capacitance, reducing supply voltage (or speed), or slowing down the clock can reduce power
consumption.

Although the load capacitance can be affected during chip design by minimizing on chip routing capac-
itance [52], voltage scalable processor and power controllable peripheral devices make it possible to reduce
power at the operating system level. In cooperation with scheduling policies, operating systems can vary
the processor’s speed and voltage (dynamic voltage scaling) and put devices in low-power sleep states
(dynamic power management) [53]. Indeed, a typical embedded system consists of processors, memories,
communication links, and other peripheral devices that are not always used. Thus, an OS can control the
power states of peripheral devices in the system according to the workload. When a device is idle, it can be
put in a low-power sleeping state after a long enough idle period to compensate time and energy overhead
of shutting down and waking up [54,55]. To determine whether a device can sleep, time-out, predictive,
and stochastic policies have been developed [56,57]. In the time-out based policy, after a device is idle for
a time-out value, it remains idle for at least a certain time. Predictive policy uses the past idle periods or
both the current and the past idle period to predict the length of future idle periods eliminating the time-
out period wasted energy. Choosing a policy for a given application depends on prediction accuracy, power
savings, and resources requirements such as memory and computation [54,56,57]. A shutdown mechanism
can be applied to put the processor into idle mode when not in use [54]; however, a more fruitful way to
save power is to run slower at reduced voltage according to computational load demands [58].

A technique called dynamic voltage scaling (DVS) allows processors to dynamically alter their voltage
and speed at runtime under the control of voltage scheduling algorithms [59,60]. These algorithms predict
future workload and set the processor voltage and speed based on this prediction. The interval based
voltage scheduler called PAST (bounded-delay limited PAST scheduling algorithm) [61] assumes that the
processor utilization of the next interval will be like the previous one and updates the processor speed
accordingly. If the last interval was busier than idle, speed is increased. Similarly, if it was mostly idle,
speed is decreased. A comparative simulation of PAST and other proposed algorithms points out that a
simple smoothing algorithm can be more effective than sophisticated prediction techniques [62]. Recent
studies take the real-time constraints [63,64] into account. The processor speed is estimated considering
workload prediction and task deadlines. The goal is to complete tasks before or on deadlines. Because the
processor is often running at a reduced speed, however, all these studies assume missed deadlines as a
trade-off between power saved and deadlines missed.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5

-14

Low-Power Processors and Systems on Chips

5.5.3 Low-Power Sleeping States

5.5.3.1 Synchronous Processors Idle Mode

Synchronous processors need a huge amount of time and energy to enter the idle mode or to wake up
from a sleeping state. This constitutes a severe drawback to swap rapidly with low energy costs between
the normal and the idle mode. Indeed, the transition time to a sleeping state currently takes several tenths
of microseconds (for the lpARM [60] or the Crusoe [65,66]) to several tenths of milliseconds for the
wake-up (with a StrongARM processor [64]). The time and energy overheads do not allow continuous
starting and stopping of the processor. For minimizing these drawbacks, the synchronous processors own
different levels of sleeping states.

5.5.3.2 Asynchronous Processors Idle Mode

Contrary to the synchronous processors, the asynchronous processors are well suited to exploit fine grain
idle mode. Indeed, they only consume energy if the processor has data to process. If no data is processed,
the processor is immediately set in idle mode until a request or interrupt wakes it up. The wake-up time
overhead is equivalent to the time overhead of an interrupt. These specific properties of the asynchronous
circuits allow the use of a fine-grain idle mode. This point is illustrated in Figure 5.9, which presents real
measurements performed with a video application running on the ASPRO processor (see Section 5.4)
[43,67]. A digital video camera sends images to ASPRO via a high throughput serial link. Between two
consecutive frames, the processor is idle because it has no data to process. More astonishing, if the frame
is zoomed, we can see that between two consecutive pixels the processor is idle too (see the balloon in
Figure 5.9). The activity duty cycle is 0.333 for the frames and 0.125 for the pixels. This leads to a 95%
energy reduction compared with a system without idle capabilities. This is not possible for a synchronous
processor.

5.5.4 DVS for Synchronous Processors vs. DVS for Asynchronous
Processors

5.5.4.1 Timing Model for Asynchronous Processor Speed Variation

The power supply voltage only drives the speed variation of asynchronous processors. The variation time

t

v

 only depends on the DC-DC converter and the load capacitance of the processor. Time

t

v

 could be
modeled as a function of

V

dd

1

 and

V

dd

2

, the supply voltages before and after the variation. A simple way
to express tv is to consider a linear expression:

(5.3)

where k is a fitting parameter depending on the DC-DC converter and the load capacitance of the
processor.

FIGURE 5.9 Fine grain idle mode with the ASPRO processor.

t k V Vv dd dd= ⋅ −1 2

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors 5-15

In the asynchronous case, we can notice that task processing is not stopped during the speed variation.
Moreover, the speed can vary continuously and can be finely adjusted during the task execution. Figure
5.9 illustrates that the execution of tasks τ2, and τ3 is not stopped during the speed variation.

5.5.4.1.1 Timing Model for Synchronous Processor Speed Variation
In the synchronous case, the speed variation is controlled by the supply voltage and by the clock frequency.
This operation needs two steps. In the case of speed reduction, the first step is used to slow down the
frequency and the second step reduces the power supply voltage. In the case of speed increase, the first
step increases the voltage and the second speeds up the frequency. The transition time, tv, depends on
the DC-DC converter and the phase-locked loop (PLL) that controls the clock frequency; tv can be
expressed as:

tv = tDC-DC + tPLL (5.4)

where tDC-DC is the transition time from the initial voltage to the final voltage, and tPLL is the transition
time to change the frequency. As modeled in Equation 5.3 tv can be expressed as:

tv = k1 |Vdd2 – Vdd1| + k2 |f2 – f1| (5.5)

where k1 and k2 are, respectively, the fitting parameter for the DC-DC converter and for the PLL.
Frequencies f1 and f2 are the initial and the final frequency of the processor.

The frequency transition time tPLL is constant in the case of the StrongARM processor [64] or variable
if a Transmeta Crusoe is considered [65,66]. The frequency of synchronous processors does not vary
continuously but by steps. For instance, the Crusoe processor frequency varies by 33 MHz steps. Moreover,
a critical point (except for the lpARM), which drastically increases the inefficiency of synchronous
processors, is that task processing is stopped during the speed variation. Figure 5.10 presents the timing
model for the synchronous processor speed variation. Because the processor stops the processing during
the transition time, the speed is set to zero for this duration.

5.5.4.1.2 DVS Additional Energy Costs for Synchronous Processors
Contrary to the asynchronous processors, the speed variation of synchronous processors has a cost in
terms of energy and time. Indeed, synchronous processors are stopped, and they continue to spend energy
during the speed variation, while asynchronous processors process their tasks and vary their speeds at
the same time. During the speed variation, the energy spent could be expressed as the sum of the energetic
cost of the power supply variation plus the energetic cost of the clock frequency variation.

FIGURE 5.10 Task execution and speed variation for asynchronous and synchronous processors.

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5-16 Low-Power Processors and Systems on Chips

E = Ev + Ef (5.6)

Referring to Equation 5.1 and Equation 5.6, the DVS energy cost (see Figure 5.11) is expressed as
follows:

(5.7)

where α is a scaling factor and the intervals [t0, t1] and [t1, t2] are, respectively, the voltage variation
time at fixed frequency and the frequency variation time at fixed voltage.

5.5.6 DVS Algorithms for Asynchronous Processors

A real-time system has often to manage periodic and sporadic tasks. Although periodic tasks are com-
monly used to process data from sensors and update the current state of the system, sporadic tasks are
required to process asynchronous events; however, most of the voltage scheduling schemes presented in
the literature consider systems with periodic tasks only. Few attentions have been dedicated to a system
with sporadic tasks [63]. The following paragraphs consider both periodic and sporadic tasks.

5.5.6.1 Task Model Definition

Each task can be characterized by a triplet <NIi, Di, Ti>, where NIi is the number of instructions of the
task, Di its deadline and Ti its period or its minimum inter-arrival time. We assume that:

• Tasks are independent and their parameters become known when arriving.
• Periodic tasks have deadlines equal to their periods and tasks periods are different.
• At the maximum supply voltage (at highest processor speed), all considered periodic and sporadic

tasks can be processed.
• The overhead due to the context switching is negligible.

Because the computation can continue during the voltage switching, we assume that the overhead
associated with the voltage scheduling is also negligible.

5.5.6.2 Sporadic Task Voltage Scheduling Algorithm

This subsection considers a case when only sporadic tasks arrive to the system. We assume that the ready
time of each task is the instant of its arrival. When a new task τi arrives, an acceptance test is performed
to determine whether the task can meet its deadline without causing any prior guaranteed tasks to miss
their deadlines:

FIGURE 5.11 Energy and power evolution during the speed variation of a synchronous processor.

E Cf V t dt CV f t dt
t

t

t

t

= +∫ ∫α α2 2

0

1

1

2

() ()

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors 5-17

(5.8)

where denotes the number of instructions still to be executed for the task τj , tdj denotes its deadline,
t denotes the current time, and SMAX denotes the highest processor speed in MIPS at the maximum supply
voltage. If τi is accepted, it is inserted into a priority task queue according to the earliest-deadline-first
(EDF) order,* and the voltage-scheduling algorithm updates the processor speed to complete all tasks in
the task queue before or at their deadlines. This speed is given by:

(5.9)

where Q denotes the stream of the sporadic tasks existing in the task queue, and Pk denotes the priority
of task τk according to EDF policy. For each task τi in the task queue, including the new task, the voltage
scheduler computes the required speed Si to finish the task τi considering all priority tasks. Then, it sets
the processor speed to the maximum value of Si. The processor speed is updated whenever a task is added
or removed from the task queue. Compared with the voltage scheduling proposed in Pering et al. [63]
our algorithm avoids an overestimation of the processing requirements and leads to a higher power
saving. This is because our approach takes only runnable and ready tasks into account to compute the
operating voltage.

To illustrate the effectiveness of the proposed voltage scheduler, we consider three tasks as presented
in Figure 5.12(a), with arrival time and deadlines assigned to each of them. Therefore, when no power
reduction technique is applied, the processor runs at SMAX and consumes PMAX. All the speed and power
figures reported are based on real measurements performed with an ASPRO motherboard supplied with
different voltages.

Using shutdown techniques, the processor can be stopped on completion of task τ2, woken up at task
τ3 arrival time, and stopped when this task completes. The consumed power is then 42% PMAX. Because
an asynchronous processor can instantly be stopped and woken up without any time overhead, all tasks
meet their deadlines. In a synchronous system, this technique is ineffective. Because sporadic tasks have
random arrival times, it is difficult to predict the future idle times. Thus, tasks can miss their deadlines.
Furthermore, shutting down and waking up synchronous processors cause a time and energy overhead.

Voltage scheduling policy is more effective to reduce power consumption in comparison with the
shutdown technique. When it is applied, the processor runs at variable voltage and speed as presented in
Figure 5.12(b). In this example, the processor runs at 50% SMAX until task τ1 completes. Then the processor

*Any scheduling policy is applicable.

FIGURE 5.12 How sporadic task voltage scheduling reduces power consumption.

NI

td t
S

j

jj i

MAX−

 ≤

≤
∑

NI j

S MAX

NI NI

td tl Q

j j

j Pl Pj

l

=
−

∈

≠ ≤
∑
1/

a. Example of sporadic tasks. b. Voltage scheduling illustration.

Speed
SMAX

τ1 τ2 τ3

S1 S2
S3 td3 td2

td1

Time

Speed
SMAX

S1 S2
S3 td3 td2

td1

Time

τ1 τ2τ3

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5-18 Low-Power Processors and Systems on Chips

speed is reevaluated and set at 35% SMAX for tasks τ2 and τ3. The consumed power is then 14% PMAX.
When no task is running, the processor enters a sleeping state in which it consumes no power.

5.5.5.3 Periodic Task Voltage Scheduling Algorithm

This subsection assumes that all tasks are periodic (i.e., no sporadic tasks arrive to the system). We also
assume that at t = 0, a set of n periodic tasks is ready and sorted into a priority task queue according to
the EDF order. The processor speed is set to:

(5.10)

When a new periodic task τi is added to the system, it is inserted into the priority task queue according
to the EDF order, and the voltage-scheduling algorithm updates the processor speed to complete all tasks
in the tasks queue on their deadlines. The new speed is given by:

(5.11)

where denotes the number of instructions still to be executed for the task τj, tdj denotes its deadline,
and t denotes the current time. Similarly, if a periodic task is removed from the system, the processor
speed is updated:

(5.12)

Consider the tasks set in Table 5.3, with ready time and deadlines assigned to each task. Speed and
power are normalized to their values at the maximum supply voltage: SMAX and PMAX.

In Figure 5.13(a), when the tasks are scheduled running at the highest processor speed, some waiting
states exist between the end of a task and the arrival time of the next task. The system then wastes power
waiting for the next task. Therefore reducing the supply voltage, such that the tasks make full use of the
CPU time, can lower the processor speed.

TABLE 5.3 Example Periodic Tasks Set

Tasks NIj Dj Tj Ready Time

τ1 0.25 × 106 2 2 0
τ2 1.0 × 106 5 5 0
τ3 0.5 × 106 3 3 4

FIGURE 5.13 How periodic tasks voltage scheduling reduces power consumption.

S
NI

D
j

jj

n

=
=

∑
1

S
NI

D

NI

td t
i

i

j

jj

n

= +
−

=
∑

1

NI j

S
NI

td t

j

jj

n

=
−

=

−

∑
1

1

a. Example of periodic tasks. b. Voltage scheduling illustration

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors 5-19

In Figure 5.13(b), the processor speed is reduced to achieve power reduction. When starting, it is set
to 33% SMAX according to Equation 5.4. At t = 4, task τ3 becomes ready and the processor speed is
updated, according to Equation 5.5, to 49% SMAX. The consumed mean power is then 14% PMAX.

5.5.7 Conclusion

This section demonstrated the ability of asynchronous systems to jointly manage power at the hardware
and software levels. Compared with their synchronous competitors, the asynchronous processors are easy
to idle and to stop without time and energy overheads. Moreover, a scheduling policy adapted to
asynchronous processors has been explained to take full advantage of their properties.

5.6 Conclusion

The goal of this chapter was to give to the reader a better and more global view of the properties and
potentials of the asynchronous technology to reduce the power consumption of integrated systems.
Starting from the power reduction techniques that can be applied at the structural level of asynchronous
circuits, we moved to the software (OS) layers of an embedded system. At the hardware level, reducing
the energy consists in reducing the number of transitions required by the computation. This assertion
relies on asynchronous circuit properties: they are hazard-free (no energy wasted in spurious transitions)
and event-driven (only operating parts consume energy). To minimize the number of transitions, hence
the energy, we reviewed a set of techniques based on data encoding, logical and micro-architecture
structures. At the system level, it was demonstrated that a relevant exploitation of the asynchronous
hardware potentials by the software enables significant power savings that cannot be achieved by a
synchronous/clocked implementation. As reported in this chapter, many asynchronous processors have
been designed and manufactured. All these prototypes, even though quite complex, have involved low
manpower. Regarding their performances, we want to point out that asynchronous processors operate
at wide voltage range. Therefore their consumption can be adjusted within a two orders of magnitude
range. Moreover, another key feature of asynchronous processors is their ability to promptly shutdown
and wake-up.

This suggests adopting a very different point of view for the design of the hardware, the software as
well as the running applications of an embedded system. In fact, instead of designing synchronous clock-
driven systems, the asynchronous technology gives us the opportunity to design information-driven or
event-driven systems. As for the power-aware OS presented in Section 5.5, it was demonstrated that the
design of asynchronous algorithms implemented with asynchronous circuits has led to the design of ultra
low-power systems, unattainable by clocked systems [68,69]. This extra power reduction originates from
the exploitation of the knowledge available on the information to be processed, jointly by the hardware
and by the software. This approach can be applied to the design of all subparts of SoCs, processors,
peripherals, analog and RF parts, communication network, etc. Removing the clock and moving to
asynchronous circuits enables to focus on information processing and design ultra low-power informa-
tion-specific hardware and software.

References

[1] G. Birtwistle and A. Davis, Eds., Asynchronous Digital Circuit Design, Springer-Verlag, New York,
1995.

[2] P. Pénzes and A. Martin, An energy estimation method for asynchronous circuits with application
to an asynchronous microprocessor, Proc. of Design, Automation, and Test in Europe Conf., Paris,
France, Mar. 2002.

[3] K. Stevens, Energy and performance models for clocked and asynchronous communication, Proc.
of 9th IEEE Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 56–66, Vancouver,
B.C., Canada, May 2003.

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

5-20 Low-Power Processors and Systems on Chips

[4] J. Fragoso, G. Sicard, and M. Renaudin, Power/area tradeoffs in 1-of-M parallel-prefix asynchro-
nous adders, Proc. of 13th Int. Workshop on Power and Timing Modelling, Optimization, and Sim-
ulation, Turin, Italy, Sep. 2003.

[5] W.J. Bainbridge and S.B. Furber, Delay-insensitive system-on-chip interconnect using 1-of-4 data
encoding, Proc. of 7th IEEE Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., Salt
Lake City, Utah, pp. 118–126, Mar. 2001.

[6] C. Piguet, M. Renaudin, and T.J.-F. Omnès, Special session on low-power systems on chip (SoC),
Proc. of Design, Automation, and Test in Europe Conf., Munich, Germany, Mar. 2001.

[7] W.J. Bainbridge, W.B. Toms, D.A. Edwards, and S.B. Furber, Delay-insensitive, point-to-point
interconnect using M-of-N codes, Proc. 9th Int. Symp. on Advanced Res. in Asynchronous Circuits
and Syst., Vancouver, B.C., Canada, pp. 132–140, May 2003.

[8] R. Manohar, Width-adaptive data word architectures, Proc. of 19th Conf. on Advanced Res. in VLSI,
Salt Lake City, Utah, pp. 112–129, March 2001.

[9] C.-H. Park, B.-S. Choi, D.-I. Lee, and H.-Y. Choi, Asynchronous array multiplier with an asym-
metrical parallel array structure, Proc. of 19th Conf. on Advanced Res. in VLSI, pp. 202–212, 2001.

[10] D. Burger, T.M. Austin, and S. Benett, Evaluating future microprocessors: the simplescalar tool set,
Tech. Rep. CS-TR-96-1308, University of Wisconsin–Madison, Jul. 1995.

[11] SUN Microsystem Laboratories, Introduction to shade, TR 415-960-1300, Revision A of 1, SUN
Microsystem Laboratories, Mountain View, CA, Apr. 1992.

[12] V. A. Bartlett and E. Grass, A low-power asynchronous VLSI FIR filter, Proc. 19th Conf. on Advanced
Res. in VLSI, pp. 29–39, 2001.

[13] T.E. Williams, Performance of iterative computation in self-timed rings, J. VLSI Signal Proc.,
7:17–31, Feb. 1994.

[14] A. Martin, M. Nyström, and P. Penzes, ET2: a metric for time and energy efficiency of computation,
in Power-Aware Computing, R. Melhem and R. Graybill, Eds., Kluwer Academic Publishers, New
York, 2002.

[15] J. Teifel, D. Fang, D. Biermann, C. Kelly, and R. Manohar, Energy-efficient pipelines, Proc. 8th IEEE
Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 23–33, Apr. 2002.

[16] A. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R. Southworth, and U. Cummings, The
design of an asynchronous MIPS R3000 microprocessor, Proc. on Advanced Res. in VLSI, pp.
164–181, Sep. 1997.

[17] A. Efthymiou and J.D. Garside, Adaptive pipeline structures for speculation control. Proc. 9th IEEE
Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., Vancouver, B.C., Canada, pp. 46–55,
May 2003.

[18] M. Lewis, J.D. Garside, and L.E.M. Brackenbury, Reconfigurable latch controllers for low-power
asynchronous circuits, Proc. ASYNC ’99, pp. 27–35, Apr. 1999.

[19] S.B. Furber, D.A. Edwards, and J.D. Garside, AMULET3: a 100-MIPS asynchronous embedded
processor, Proc. of Int. Conf. Computer Design (ICCD), Sep. 2000.

[20] J. Tierno, R. Manohar, and A. Martin, The energy and entropy of VLSI computations, Proc. 2nd
IEEE Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., Mar. 1996.

[21] K. Van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, The VLSI-programming language
tangram and its translation into handshake circuits, Proc. European Conf. on Design Automation
(EDAC), pp. 384–389, 1991.

[22] H. Van Gageldonk, D. Baumann, K. Van Berkel, D. Gloor, A. Peeters, and G. Stegmann, An
asynchronous low-power 80c51 microcontroller, 4th Proc. Int. Symp. on Advanced Res. in Asyn-
chronous Circuits and Syst., San Diego, CA, pp. 96–107, 1998.

[23] D. Edwards and A. Bardsley, Balsa: an asynchronous hardware synthesis language, The Computer
J., 45(1):12–18, 2002.

[24] A. Bardsley and D.A. Edwards, Synthesising an asynchronous DMA controller with Balsa, J. Syst.
Architecture, 46:1309–1319, 2000.

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors 5-21

[25] L.A. Plana, P.A. Riocreux, W.J. Bainbridge, A. Bardsley, J.D. Garside, and S. Temple, SPA — a
synthesizable AMULET core for SMARTCARD applications, Proc. of Int. Symp. on Advanced Res.
in Asynchronous Circuits and Syst., pp 201–210, Apr. 2002.

[26] A.V. Dinh Duc, J.B. Rigaud, A. Rezzag, A. Sirianni, J. Fragoso, L. Fesquet, and M. Renaudin, TAST
CAD tools: tutorial. Tutorial given at the 8th IEEE Int. Symp. on Advanced Res. in Asynchronous
Circuits and Syst., Apr. 2002, Manchester, UK, TIMA internal report ISRN:TIMA-RR-02/04/01-FR,
http://tima.imag.fr/cis.

[27] K. Slimani, Y. Remond, A. Sirianni, G. Sicard, and M. Renaudin, Estimation et optimisation de la
consommation d’énergie des circuits asynchrones, 4ème journées francophones d’étude Faible Ten-
sion Faible Consommation (FTFC ’2003), Paris, France, May 2003.

[27a] K. Slimani, Y. Remond, G. Sicard, and M. Renaudin, Test profiles and low energy asynchronous
design methodology, PATHOS ’04, Santorini, Greece, Sep. 2004.

[28] http://www.synopsys.com/products/etg/powermill_ds.html.
[29] http://www.cadence.com/datasheets/spectre_cir_sim.html.
[30] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus, The design of an asynchronous

microprocessor, in Decennial Caltech Conf. on VLSI, C.L. Seitz, Ed., MIT Press, pp. 351–373,
Cambridge, MA, 1989.

[31] S.M. Burns and A.J. Martin, Synthesis of self-timed circuits by program transformation, in The
Fusion of Hardware Design and Verification, G.J. Milne, Ed., North Holland, Amsterdam, pp.
99–116, 1988.

[32] A.J. Martin, An asynchronous approach to energy-efficient computing and communication, Proc.
SSGRR 2000, Int. Conf. on Advances in Infrastructure for Electronic Business, Science, and Education
on the Internet, Aug. 2000.

[33] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods, AMULET1: a micropipelined ARM,
Proc. IEEE Computer Conf. (COMPCON), pp. 476–485, Mar. 1994.

[34] I.E. Sutherland, Micropipelines, Commn. ACM, 32(6):720–738, Jun. 1989.
[35] S.B. Furber, J.D. Garside, and S. Temple, Power-saving features in AMULET2e, Power-Driven

Microarchitecture Workshop, Jun. 1998.
[36] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Petrify: a tool for

manipulating concurrent specifications and synthesis of asynchronous controllers, Technical
report, Universitat Politècnica de Catalunya, Barcelona, Spain, 1996.

[37] J. Garside, W. Bainbridge, A. Bardsley, D. Edwards, S. Furber, J. Liu, D. Lloyd, S. Mohammadi, J.
Pepper, O. Petlin, S. Temple, and J. Woods, AMULET3i: an asynchronous system-on-chip. Proc.
Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 162–175, Apr. 2000.

[38] W. Bainbridge and S. Furber, An asynchronous macrocell interconnect using MARBLE, Proc. Int.
Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 122–132, 1998.

[38a] A.J. Martin, M. Nyström, K. Papadantonakis, P.I. Penzes, P. Prakash, C.G. Wong, J. Chang, K.S.
Ko, B. Lee, E. Ou, J. Pugh, E.-V. Talvala, J.T. Tong, and A. Tura, The lutonium: A sub-nanojoule
asynchronous 8051 microcontroller, 9th IEEE International Symposium on Asynchronous Systems
& Circuits, Vancouver, Canada, May 12–16, 2003.

[39] A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P. Vivet, A new contact-less smart card IC using
on-chip antenna and asynchronous microcontroller, J. Solid-State Circuits, Vol. 36, pp. 1101–1107,
2001.

[40] TIMA laboratory, CIS group Web site: http://tima.imag.fr/cis/.
[41] M. Renaudin, Asynchronous circuits and systems: a promising design alternative, in microelec-

tronics for telecommunications: managing high complexity and mobility (MIGAS 2000), special
issue of the Microelectron.-Eng. J., P. Senn, M. Renaudin, and J. Boussey, Guest Eds., Vol. 54, No.
1–2, pp. 133–149, Dec. 2000.

[42] J. Kessels, G. den Besten, T. Kramer, and V. Timm, Applying asynchronous circuits in contactless
Smart Cards, Proc. Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., Eilat, Israel,
April 2000.

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.synopsys.com/
http://www.cadence.com/
http://tima.imag.fr

5-22 Low-Power Processors and Systems on Chips

[43] M. Renaudin, P. Vivet, and F. Robin, ASPRO-216: A standard-cell QDI 16-bit RISC asynchronous
microprocessor, Proc. Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 22–31, 1998.

[44] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, and T. Nanya, TITAC-
2: an asynchronous 32-bit microprocessor based on scalable-delay-insensitive model, Proc. Int.
Conf. on Comput. Design (ICCD), pp. 288–294, Oct. 1997.

[45] M. Gowan, L. Biro, and D. Jackson, Power considerations in the design of the alpha 21264 micro-
processor, Proc. 35th IEEE Design Automation Conf., San Francisco, CA, pp. 726–731, Jun. 1998.

[46] M. Es Salhiene, L. Fesquet, and M. Renaudin, Dynamic voltage scheduling for real-time asynchro-
nous Systems, 12th Int. Workshop on Power and Timing Modeling, Optimization, and Simulation
(PATMOS), Sevilla, Spain, Sept. 2002.

[47] Y. Li, G. Patounakis, A. Jose, K. Shepard, and S. Nowick, Asynchronous datapath with software
controlled on-chip adaptative voltage scaling for multirate signal processing application, Proc. IEEE
Int. Symp. on Advanced Res. in Asynchronous Circuits and Syst., pp. 216–225, May 2003.

[48] L. Nielsen, C. Niessen, J. Sparso, and J. Van Berkel, Low-power operation using self-timed circuits
and adaptative scaling of the supply voltage, IEEE Trans. on Very Large-Scale Integration (VLSI)
Syst., 2(4):391–397, Dec. 1994.

[49] M. Pedram, Design technologies for low-power VLSI, in Encyclopedia of Comput. Science and
Technol., Vol. 36. Marcel Dekker, New York, pp. 73–96, 1997.

[50] A. Chandrakasan, S. Sheng, and R. Brodersen, Low-power CMOS digital design, IEEE J. Solid-State
Circuits, 27(4):473–484, Apr. 1992.

[51] T. Burd and R. Brodersen, Energy-efficient CMOS microprocessor design, Proc. 28th IEEE Hawaii
Int. Conf. on System Sciences, Vol. 1, pp. 288–297, Jan. 1995.

[52] G. Smit and P. Havinga, A survey of energy saving techniques for mobile computers, Moby Dick
technical report, University of Twente, The Netherlands, 1997.

[53] T. Simunic, L. Benini, A. Acquaviva, G. Glynn, and G. De Micheli, Dynamic voltage scaling and
power managements for portable systems, Proc. 38th IEEE Design Automation Conf., Las Vegas,
NV, pp. 524–529, June 2001.

[54] L. Benini, A. Bogliolo, and G. De Micheli, A survey of design techniques for system-level dynamic
power management, IEEE Trans. on Very Large-Scale Integration (VLSI) Syst., 8(3):299–316, Jun. 2000.

[55] Y. Lu, L. Benini, and G. De Micheli, Operating-system-directed power reduction, Proc. Int. Symp.
on Low-power Electronic Design, Rapallo, Italy, pp. 37–42, July 2000.

[56] Y. Lu and G. De Micheli, Comparing system-level power management policies, IEEE Design Test
of Comput., pp. 10–19, 2001.

[57] M. Srivasta, A. Chandrakasan, and R. Brodersen, Predictive system shutdown and other architec-
tural techniques for energy efficient programmable computation, IEEE Trans. on Very Large-Scale
Integration (VLSI) Syst., 4(1):42–55, March 1996.

[58] K. Flautner, Automatic monitoring for interactive performance and power reduction, Ph.D. Dis-
sertation, University of Michigan, Ann Arbor, 2001.

[59] T. Pering, T. Burd, and R. Broderesen, Dynamic voltage scaling and the design of a low-power
microprocessor system, Power-Driven Microarchitecture Workshop, in conjunction with Int. Symp.
on Comput. Architecture, Barcelona, Spain, June 1998.

[60] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, A dynamic voltage scaled microprocessor system,
IEEE J. Solid-State Circuits, 35:1571–1580, Nov. 2000.

[61] M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for reduced CPU energy, USENIX
Symp. on Operating Syst. Design and Implementation, Monterey, CA, pp. 13–25, Nov. 1994.

[62] K. Govil, E. Chan, and H. Wassermann, Comparing algorithms for dynamic speed-setting of a
low-power CPU, ACM Int. Conf. on Mobile Computing and Networking, Berkeley, CA, pp. 13–25,
Nov. 1995.

[63] T. Pering, T. Burd, and R. Brodersen, Voltage scheduling in the lpARM microprocessor system,
Proc. Int. Symp. on Low-Power Electronic Design, Rapallo, Italy, pp. 96–101, July 2000.

6700_book.fm Page 22 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Asynchronous Processors 5-23

[64] P. Kumar and M. Srivastava, Predictive strategies for low-power RTOS scheduling, Proc. IEEE Int.
Conf. on Computer Design: VLSI in Computers and Processors, Austin, TX, pp. 343–348, Sep. 2000.

[65] M. Fleischmann, Crusoe LongRun power management, Transmeta Corporation, Santa Clara, CA,
Jan. 2001.

[66] Transmeta Corporation, Crusoe Processor System Design Guide, http://www.transmeta.com/.
[67] M. Renaudin, P. Vivet, and F. Robin, ASPRO: an asynchronous 16-bit RISC microprocessor with

DSP capabilities, ESSCIRC ’99, Duisburg, Germany, pp. 28–31, Sep. 1999.
[68] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin, A new class of asynchronous A/D converters

based on time quantization, Proc. 9th Int. Symp. on Advanced Res. in Asynchronous Circuits and
Syst., Vancouver, B.C., Canada, pp. 196–205, May 2003.

[69] B. Galilée, F. Mamalet, M. Renaudin, and P.Y. Coulon, Watershed parallel algorithm for asynchro-
nous processor array, IEEE Int. Conf. on Multimedia and Expo (ICME), Lausanne, Switzerland,
August 26–29, 2002.

6700_book.fm Page 23 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.transmeta.com/

6

-1

6

Low-Power Baseband
Processors for

Communications

6.1 Introduction ..

6-

1
6.2 Digital Baseband DSP Processors (DBBP)........................

6-

2

Function Coverage • The Transmitter • Synchronization and
Channel Equalization • Demodulation and Forward Error
Correction • Comparison with a General DSP Processor •
Classification of Baseband Processors

6.3 Design of Low-Power Radio Baseband DSP
Processors...

6-

5

Basic Principles for Low-Power Design • Trade-Off between
Programmability and Fixed Function Hardware •
Nonprogrammable Low-Power Baseband Processor
Architecture • Programmable Baseband Processor (PBP)
Architectures • PBP Design Challenges • Decreasing Supply
Voltage • Eliminating Unnecessary Switching • System-Level
Power Management

6.4 Case Study One: Variable Data Length and Computing
Precision...

6-

13
6.5 Case Study Two: Hardware Architecture for a Block

Interleaver ..

6-

14

Introduction • Traditional Interleaver Implementation • A
New Block Interleaver Implementation • Hardware
Implementation • Power Issues

6.6 Conclusion...

6-

16
References ...

6-

16

6.1 Introduction

Three processors usually exist in a communication terminal system: the digital signal processing (DSP)
baseband processor (BBP), the DSP application processor (APP), and the microcontroller (MCU).

Baseband signals are all signals in a radio system, which are not modulated onto the carrier wave. In
a cellular phone, this means all signals except those in the radio frequency (RF) part of the phone. This
chapter discusses processors for digital baseband signal processing, known as digital baseband DSP
processors (DBBP). Figure 6.1 defines the basic partitioning of a radio communication system from both
functional and hardware points of view. A DBBP plays an important role in both the transmitter and
the receiver. In a transmitter, the DBBP converts the data from application sources to a format adapted
to the radio channel. In a receiver, a DBBP recovers symbols from the distorted analog baseband signal
and translates them to a bit stream with acceptable bit error rate (BER) for applications. Figure 6.1(b)

Dake Liu
Eric Tell

Linköping University

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-2

Low-Power Processors and Systems on Chips

describes functions in a DBBP. The most power-consuming parts are in the receiver, with functions such
as synchronization, demodulation, and forward error correction. This chapter introduces the implemen-
tation of low-power DBBP. Detailed theory and knowledge of DSP for digital communications may be
found elsewhere [2].

6.2 Digital Baseband DSP Processors (DBBP)

6.2.1 Function Coverage

This section gives an overview of the functions needed in a DBBP, using wireless local area network (LAN)
as an application example. In principle, what we want to handle in the DBBP is the digital part of the
physical layer, which includes all functions between analog to digital converter (ADC)/digital to analog
converter (DAC) and the MAC (medium access control) layer interface. Figure 6.1(a) depicts the physical
partitioning of a radio transceiver, and Figure 6.1(b) depicts the main functions handled by the DBBP.

6.2.2 The Transmitter

A transmitter performs three major functions: channel coding, digital modulation, and symbol shaping

.

Channel coding covers different methods for error correction (e.g., convolutional coding) and error
detection (e.g., cyclic redundancy check (CRC)

)

. Interleaving is used to minimize the effect of burst errors.

FIGURE 6.1

A radio communication transceiver.

Transmitter

Application
processors

(APP)

Application
processors

Application
processors

Application
processors

(APP)

Baseband
processor

(part I)

Baseband
processor

(part II)

DAC

DAC

ADC

RF≠IF

RF/IF

Receiver

A baseband DSP processor (DBBP)

A baseband transmitter

A baseband receiver

Channel
coding D

ig
ita

l
m

od
ul

at
io

n

De
modulation

Symbol
shaping

FEC

S
yn

ch
ro

ni
za

-
tio

n

ADC

I

Q

I

Q

I

Q

I

Q

(A)

(B)

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-3

Digital modulation is the process of mapping a bit stream to a stream of complex samples. The first
(and sometimes the only) step in the digital modulation is to map groups of bits to a specific signal
constellation, such as binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or quadra-
ture amplitude modulation (QAM). These are different ways of mapping groups of bits to the amplitude
and phase of a radio signal). In most cases, a second step, domain translation, is applied. In an orthogonal
frequency division multiplexing (OFDM) system (i.e., a modulation method where information is sent
over a large number of adjacent frequencies simultaneously), an inverse fast fourier transform (IFFT) is
used for this step. In a direct sequence spread spectrum (DSSS) system (e.g., direct sequence-code division
multiple access [DS-CDMA], a “spread spectrum” method of allowing multiple users to share the RF
spectrum by assigning each active user an individual “code”), each symbol is multiplied with a spreading
sequence of ones and minus ones. The final step is symbol shaping, which transforms the square wave
to a band-limited signal using a finite impulse response (FIR) band-pass filter. This is necessary to make
sure no parts of the transmitted signal are outside the permitted frequency band.

Channel coding and mapping functions operate on bit level (not on word level) and are therefore not
suitable for implementation in a programmable processor. In a low-bandwidth transmitter, the symbol-
shaping filter can be implemented in firmware. In a high-bandwidth baseband processor, however, a
dedicated low-power, low-cost FIR filter circuit is needed.

6.2.3 Synchronization and Channel Equalization

Synchronization in the receiver can be divided into several steps. The first step includes detecting an
incoming signal or frame, so called energy detection. In connection with this, operations, such as antenna
selection and gain control, are also carried out. The next step is symbol synchronization, which aims to
find the exact timing of the incoming symbols. All the preceding operations are typically based on complex
auto- or cross-correlations.

In most cases, it is necessary that a receiver performs some kind of compensation for imperfections
in the radio channel. This is known as channel equalization. In OFDM systems, this involves a simple
scaling and rotation of each subcarrier after the FFT. In a CDMA system, a so-called rake receiver is often
used to combine incoming signals from multiple signal paths with different path delays. In some systems,
least mean square (LMS) adaptive filters are used. Similar to synchronization, most operations involved
in channel estimation and equalization employ convolution-based algorithms. These algorithms are not
similar enough to share the same fixed hardware, but they can be implemented efficiently on a program-
mable DSP processor. If bandwidth and mobility is relatively low, the whole synchronization and equal-
ization flow can be implemented in a programmable DSP processor. For higher bandwidth, high-speed
processors with complex multiply and accumulate (MAC) units may be needed.

6.2.4 Demodulation and Forward Error Correction

Demodulation is the opposite operation of modulation. It involves an FFT in OFDM systems and a
correlation with spreading sequence (so called despread) in DSSS systems. The last step of demodulation
is to convert the complex symbol to bits according to the signal constellation.

Similar to channel coding, deinterleaving and channel decoding are not suitable for firmware imple-
mentation. In particular, Viterbi or turbo decoding, which are used for convolutional codes, are very
demanding functions.

6.2.5 Comparison with a General DSP Processor

Different kinds of DSP processors are designed for different applications. A DBBP is designed especially
for radio baseband signal processing, focusing on synchronization, modulation–demodulation, coding,
and forward error correction. A DBBP can be implemented as an application-specific integrated circuit
(ASIC) or as an application-specific instruction-set processor (ASIP). An architecture based on a pro-
grammable processor with surrounding accelerators is sometimes called a “centralized architecture” as

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-4

Low-Power Processors and Systems on Chips

opposed to a “distributed architecture,” based on integration of custom circuits. Most current high-
bandwidth baseband processors (for third-generation [3G] or wireless local area networks [WLAN]) are
implemented as ASICs. One example of a DBBP for IEEE802.11a [4,13] is given in Figure 6.2.

To fulfill a certain level of flexibility and to cover multiple standards, modern low-power DBBPs are
approaching a mix of ASIC and centralized ASIP architectures. Recently, the interest in software defined
radio (SDR) solutions, which can cover as many standards as possible, has grown. Increased program-
mability in baseband processors has been the trend in both academia and industry; however, program-
mability in a DBBP is significantly different from the flexibility required in a general DSP processor. A
general DSP processor [3] has to be flexible enough to cater to a large variety of DSP applications on
the arithmetic level. Because of this, it has no support for acceleration of specific algorithms (except
convolutions). A DBBP, on the other hand, gives dedicated algorithm acceleration for radio baseband
DSP processing. For example, to increase performance and decrease control overhead, a baseband pro-
cessor could have one dedicated instruction to carry out a complex vector operation that would require
a subroutine of 20 instructions in a general DSP processor. Table 6.1 and Table 6.2 give the five most
often used instructions for general DSP processors and DBBPs, respectively.

6.2.6 Classification of Baseband Processors

Different radio systems require different baseband DSP processors. Some systems, for example global
system for mobile communications (GSM, which is the pan-European digital cellular radio standard)
and wideband CDMA (WCDMA, which is a 3G mobile phone system) are full duplex (i.e., sending and
receiving at the same time), and some, for example, WLAN, is half duplex (i.e., sending and receiving
at different times). In some systems (e.g., digital audio broadcasting [DAB] and digital video broadcasting
[DVB]), most devices are only receivers.

Requirements on DBBPs can be characterized by two variables, as presented in Figure 6.3. The first
variable is the bandwidth. Computing power for synchronization, demodulation, and forward error
correction (FEC) increases linearly or faster with the bandwidth. Therefore, the bandwidth has the largest
impact on the power consumption of a baseband processor. Another important variable is the mobility.
Higher mobility results in faster channel fading, which requires more processing to recover from channel

FIGURE 6.2

A baseband processor for IEEE802.11a.

Synchronization and
tracking

Gain control, AGC

A
nt

en
na

se

le
ct

io
n

Packet
sync

Symbol sync

Symbol
shaping

AFC

MAC I/F

Channel
equalization
and tracking

P
ha

se
-c

om
pe

ns
at

io
n

Modulation
and de-

modulation

D
e-

m
ap

pi
ng

D
e-

in
te

rle
av

in
g

MAC I/F
channel
coding

In
te

rle
av

in
g

FFT

Mapping

FEC

R
F,

 a
na

lo
g,

 a
nd

 A
D

C
, D

A
C

Viterbi

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-5

distortion. For a fast fading channel, the receiver may have to be updated for every received symbol;
whereas with a slow fading channel, it may be enough to update the channel equalizer for every new
packet. Because channel estimation and equalization often are among the most demanding operations
in the receiver, the mobility requirements have a large impact on power consumption. Another parameter
that should be considered is the dynamic range. This depends on the ratio of bit rate over symbol rate
and on the distance over which transmissions may take place. With larger dynamic range, higher data
precision is required in the receiver, which leads to higher power consumption.

6.3 Design of Low-Power Radio Baseband DSP Processors

6.3.1 Basic Principles for Low-Power Design

Dynamic power consumption of digital complementary metal oxide semiconductor (CMOS) circuits is

P = aCfV

2

, where

a

 is the activity,

C

 is the total load capacitance,

f

 is the toggling frequency, and

V

 is the
supply voltage and the swing of the digital signal. Based on this formula, the principle of low-power
design is to eliminate extra toggling, to decrease power supply voltage, and to minimize the overall
capacitance

.

 Elimination of extra toggling includes selecting a low-power datapath (data flow) architec-

TABLE 6.1

Five Most Often Used Instructions of a General DSP Processor

Instructions Functional Specification

Multiplication and accumulation Accumulator <= accumulator + register 1 * register 2
Multiplication and round arithmetic

in accumulator
Register 3 <= round (register 1 * register 2)
Accumulator <= arithmetic operation (accumulator)

Memory to/from register Memory [address pointer] <= (or =>) register
Register to/from accumulator Accumulator <= (register 1, register 2)

or Register <= round (accumulator)

TABLE 6.2

Most Often Used Instructions of a Baseband DSP Processor

Instructions Functional Specifications

Conjugate complex convolution
(auto correlation)

For I = 1 to N do (Complex Reg <=)
Complex REG + V1[i] * Conjugate of V1(or 2)[i]

Complex convolutions For I = 1 to N do
{Complex REG <= Complex REG + V[I] * V2[i]}

Conjugate complex vector product For I = 1 to N do (V3[i] <= V1[i] * Conjugate of V2[i])
Complex vector product For I = 1 to N do (V3[i] <= V1[i] * V2[i])
Lookup table

REG2 <= Memory [Segment + REG1]

FIGURE 6.3

Classification of baseband DSP processors.

102 m/s

102 b/s 104 b/s 106 b/s 108 b/s 1010 b/s

101 m/s

100 m/s

High mobility and
high bandwidth

High mobility and
low bandwidth

Low mobility and
high bandwidth

Low mobility and
low bandwidth

Bandwidth

Mobility

WLAN

WCDMA

DECT

Bluetooth

GSM

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-6

Low-Power Processors and Systems on Chips

ture, selecting suitable precision for data processing units, eliminating control overhead, minimizing
memory access, using operand stopping techniques, and designing for clock gating. Parallelization and
pipelining are the major ways to reach low supply voltage. If the extra latency introduced by pipelining
is not acceptable, extra hardware acceleration may be needed. If we disregard physical scaling, capacitances
on silicon can be eliminated by shrinking/optimizing data and computing precision, by hardware accel-
eration, and by smart hardware multiplexing (sharing the same hardware by multiple functions in
different time slots).

6.3.2 Trade-Off between Programmability and Fixed Function Hardware

At least three major advantages come from programmability: flexibility throughout the product lifetime,
shorter debugging time, and a certain level of design error tolerance through the possibility of modifying
firmware. It is also easier to share or multiplex a programmable device between multiple functions. On
the other hand, extra power consumption is introduced by program memory and extra control circuits
compared with an architecture where functions are direct mapped to fixed hardware. Due to the lack of
hardware multiplexing, much more silicon is required by the direct mapped architecture. A trade-off
between a programmable device and fixed function hardware is configurable devices that can be reused
for similar functions. We know from previous sections that a programmable device is suitable for jobs
related to synchronization and equalization. We also know that some other jobs, including modulation/
demodulation and coding/decoding, are not suitable for firmware implementation. Instead, dedicated
configurable circuits are a better solution for these jobs. We therefore conclude in this section that it is
suitable to use a programmable device for synchronization and equalization and for miscellaneous jobs.

6.3.3 Nonprogrammable Low-Power Baseband Processor Architecture

Different kinds of architectures are used for different baseband applications, as well as for different trade-
offs between power consumption and flexibility. FEC, for example, Viterbi decoders or turbo decoders,
are always executed by dedicated hardware. The rest of the functions could be located in either a
programmable or a nonprogrammable processor, according to product requirements. In this section, we
discuss nonprogrammable DBBP for WLAN applications. One example is the baseband processor for
HiperLAN2 and IEEE802.11a from interuniversitair micro-elektronica centrum (IMEC) Belgium [7].
Another example is the baseband and MAC processor from Atheros in Sunnyvale, California [6]. Non-
programmable DBBPs are implemented by mapping algorithms to dedicated hardware. Because WLAN
systems are a half-duplex, sending and receiving jobs are not processed simultaneously, so sharing
hardware between the transmitter and the receiver is possible. Furthermore, because of their different
execution times, sharing hardware between preamble and payload functions is also feasible. As another
example of a nonprogrammable DBBP, Figure 6.4 gives an example of a converged DBBP for IEEE802.11a
and IEEE802.11b [5].

The upper part of Figure 6.4 describes the IEEE802.11a functions divided into four data flows. The
upper flow, which is the first to be activated, takes care of the so-called short pilot signals (10 equal
symbols of 16 samples each). These are used mainly for energy detection, antenna selection, gain
control, and synchronization tasks. The next flow operates on the so-called long pilots (2 equal symbols
of 64 samples each), which are used for channel estimation and for fine-tuning the synchronization.
Next, the main receiver flow takes care of the payload data symbols. The important steps here are I-
Q-phase compensation (carried out by a rotor), FFT, channel equalization, demapping, deinterleaving,
and forward error correction. After theses steps the resulting bit stream is handed over to the MAC
layer. The final flow is the transmitter flow, which consists of forward error coding, interleaving,
constellation mapping, IFFT, and the symbol-shaping filter. By multiplexing hardware of the four
flows, the receiver filter is used by all receiver flows, and the FFT engine is used by the long pilot,
payload reception, and transmitter flows

.

 The same hardware is also used for both interleaving and
deinterleaving.

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-7

The lower part of Figure 6.4 depicts the IEEE802.11b functions, which are divided into three flows.
The first flow operates on the preamble and takes care of energy detection, gain control, and synchro-
nization. The second flow handles the payload data and has functions such as I-Q-compensation, channel
equalization, despreading (which is either a correlation or a Walsh transform depending on the trans-
mission mode), demapping, and descrambling. The third is the transmitter flow, which does scrambling,
mapping, spreading, and symbol shaping. Possible candidates for hardware multiplexing are the receive
filter and the scrambler/descrambler. The MAC layer protocol is identical for the two standards, so all
MAC functions are also multiplexed.

The high degree of parallelization in this architecture enables low clock frequency (~50 MHz) and
thereby makes it possible to lower the supply voltage. This architecture will give minimum power
consumption at the price of no flexibility and high silicon cost. Architectures, such as the one in Figure
6.4, need approximately 17 complex multipliers, 15 lookup tables, and many other complex hardware
blocks. Obviously, the total silicon cost will be high.

6.3.4 Programmable Baseband Processor (PBP) Architectures

In a converged baseband processor (e.g., a converged solution for GSM/GPRS/3G [1] or IEEE802.11a/
b/g [8]), a custom circuit implementation will require more silicon area than a centralized ASIP solution
because the hardware (HW) multiplexing does not cross between standards. To implement different
standards with multiple modes of operation (i.e., preamble reception, payload reception, and transmis-
sion) and different data rates, a high degree of dynamic reconfigurability is required. The control will be

FIGURE 6.4

Mapping functions to nonprogrammable BBP architecture.

To
p

F
S

M
 fo

r
co

nv
er

ge
d

11
A

 a
nd

 1
1B

 p
ro

ce
ss

or

11
A

 B
B

P
 T

op
 F

S
M

A
na

llo
g

I/F
 a

nd
 R

ec
ei

ve
r

F
IR

Antenna
diversity

c*

c*

c*

* *

c*

c*

c*
c*
c*

c*

c*c*

c*

Packet
sync

Gain and
DC ctrl

Short preambles

Long preambles

Freq offs. and ch. Est

Payload frames

C
he

q

de
m

ap

C
ha

nn
el

co
di

ng
V

ite
rb

i

Transmitter

Transmitter

MapP/S
Symbol
shaping

PLCP preambles

P
ac

ke
t

sy
nc

Channel estimate
Gain and DC ctrl,

Symbol sync

PLCP
CRC

11
B

 B
as

eb
an

d
D

S
P

 T
op

 F
S

M

R
ot

or

P/S

DWT

PSDU frames

D
em

ap

de
sc

ra
-

m
bl

e
scrambleMap

is a MAC; c is a CMAC, and is a LUT

 * *

Tr
an

sc
ei

ve
r

F
IR

*

*

c*
RAKE
barker

correlate

M
A

C
 I/

F
M

C
A

 I/
F

(D
e)

 in
te

r le
a v

e

c*

F
F

T

c*

c*

R
ot

or

P
LL

 S
et

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-8

Low-Power Processors and Systems on Chips

very complex. To reduce the complexity of the control path and reach the required flexibility, a program-
mable solution will be necessary.

Programmable solutions were investigated in Sengupta et al. [1] and Tell and Liu [8]. To support high
millions of instructions per second (MIPS) capacity and low computing induced latency, centralized and
scalable architectures are proposed by both academia and industry. By “centralized,” we mean that a
central programmable processor manages the DSP flow and some of the DSP functions. By “scalable,”
we mean that multiple accelerators and memories can be added. Figure 6.5(a) gives an example of such
a solution. CBC in Figure 6.5(a) stands for “central baseband core.” The CBC functions as the master of
the system controlling the slave accelerator blocks. Accelerator and memory blocks are connected by a
connection network, which is also configured by the CBC.

By analyzing the essential baseband algorithms listed in Figure 6.2 and the most often used instructions
in Table 6.2, we have found that tasks suitable for CBC are the top DSP job flow management, complex
vector computing, and lookup table functions. Therefore, a suitable CBC architecture will be a combination
of a compact complex MAC and an arithmetic and logic unit (ALU) datapath. The complex MAC, which
computes a complex multiplication, (A

R

+ jA

I

)*(B

R

+ jB

I

) in one clock cycle and complex accumulation
in one clock cycle, supports complex vector computing (i.e., complex convolution, conjugate complex
convolution, and complex vector dot product) [9]. The ALU will be used to support DSP job flow control.
In the programmable baseband processor (PBP) of Figure 6.5, the CBC manages the following functions:

1. Running the top- and sublevel program flows, configuring the connection bus and the memory
partitioning, initializing the accelerators, and implementing other miscellaneous controls.

2. Data quality control including scaling, antenna control, frequency offset estimation, and AGC/
AFC to analog baseband.

FIGURE 6.5

A centralized PBP.

CBC: Central Baseband Core (with CMAC)

M1 M2 M3 …

…

Mn

S
yn

ch
ro

ni
za

tio
n

A
cc

el
er

at
or

 1

A
cc

el
er

at
or

 2

A
cc

el
er

at
or

 n

FFT

(A) The PBP architecture

(B) The pipeline scheduling example of 11A payload process

Receiving
symbol 1

Receiving
symbol 2

Receiving
symbol 3

Receiving
symbol 4

De-mod
symbol 1

De-mod
symbol 2

De-mod
symbol 3

FEC
symbol 1

FEC
symbol 2

MAC I/F
symbol 1

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-9

3. Packet and symbol synchronization, channel estimation, and equalization — This requires com-
plex vector computations including complex (conjugate) convolution, dot products, vector square-
sum, and lookup tables (LUTs) for sine

,

 arctangent, and 1/x.

The CBC runs two threads in parallel:

1. Program flow and miscellaneous jobs
2. Complex vector computations

The programmability gives several advanced features. The first feature is the excellent opportunity for
convergence. For example, by adding an FFT accelerator and a rake receiver accelerator, both OFDM and
CDMA standards are supported. This freedom of convergence decreases the time required for adapting
to new market requirements. The second important feature is the hardware multiplexing. Most baseband
algorithms can be implemented by the instructions in Table 6.2 on a complex multiply and accumulate
(CMAC) in the CBC. The CBC can support most baseband functions with low silicon area cost if the
firmware in the program memory can be synthesized into logic gates during the silicon backend design.
For example, in a converged IEEE 802.11a/b/g receiver, approximately 2 complex MAC units will be
sufficient, while the nonprogrammable solution may need approximately 17. The third advanced feature,
and possibly the most important feature when it comes to implementation, is the relatively short time
needed for system verification. Firmware verification is much easier than HW verification. Changing
firmware can solve most small problems. The firmware design iteration time can be measured in minutes,
compared with the long hardware iteration time, which could be about a day or more.

The instruction set of the CBC is given in Table 6.3. Because it is an ASIP, the instruction set of the
CBC should be as simple as possible. Most complex mode arithmetic instructions are vector instructions.
Real arithmetic instructions are used for table-based arithmetic acceleration and miscellaneous functions.

Figure 6.6 demonstrates how the functionality of an IEEE802.11a/b transceiver is allocated to a PBP.
The fill patterns illustrate the functions allocated to different accelerators. For example, functions marked
with the white fill pattern are allocated to the CBC and functions marked with horizontal lines are
allocated to the FFT accelerator. To relax the load in the CBC, an extra CMAC is added as a configurable
accelerator for vector processing. Also for example, part of the channel equalization could be allocated
to this extra CMAC. The system clock frequency is relaxed by using a radix-4 FFT accelerator [12] and
by off-loading CBC jobs to the extra CMAC. In the OFDM flow, accelerators could be used for FIR and
analog/MAC interface, FFT, interleaver/deinterleaver, and FEC including Viterbi decoder, CRC, and

TABLE 6.3

Kernel Instructions of the CBC

Operation Functions Operand A Operand B Results

Complex Arithmetic

Normal MAC Vector MEM A Vector MEM B Accumulator
Conjugate MAC Vector MEM A Vector MEM B Accumulator
Vector energy Vector MEM A Vector MEM A Accumulator
Vector product Vector MEM A Vector B V-MEM C (A)

Real Arithmetic

LUT Register file

±

, compare Register file Register file Register file
++, -- Register file Register file Register file
Shift/logic Register file Register file Register file

Flow and Control

Configuration Register/constant Control register
Move
Call/return
Conditional jump

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-10

Low-Power Processors and Systems on Chips

scrambling. The DSSS transmission of IEEE std. 802.11b shares the FIR/interface and CRC/scrambling
accelerators with the OFDM flow and uses an extra accelerator for spread/despread.

6.3.5 PBP Design Challenges

The main problem during the HW partitioning and integration is the memory access cost while delivering
computing buffers from one processor/accelerator to another processor/accelerator. These extra memory
accesses consume both extra power and execution time. Latency is especially a problem when jobs are
divided and run in parallel at a lower clock frequency. Memory size and memory usage optimizations
are important [8,17]. The most important memory size optimization in a baseband processor is the
minimization of variable lifetime. General variable reuse techniques are very important when using cache
as the computing buffer. When using only scratch pad memory for data stream processing in a baseband
processor, most variable lifetimes are explicit and fixed according to the baseband data flow. What we
need here is to minimize the memory access operations to minimize both the memory cost and run
time. This optimization should be done during task level scheduling. In Abnous [15] and Tell and Liu
[8], memory operations for delivering a computing buffer can be eliminated by reconfiguration of the
memory connection network. When an algorithm is assigned to a computing unit (a processor or an

FIGURE 6.6

Mapping functions to PBP architecture.

A
na

lo
g

I/F

S
yn

ch
ro

ni
za

tio
n

RAKE
Barker

RAKE Barker

C
M

A
C

In
te

rle
av

e

F
E

C
 c

od
ec

CBC:Programmable baseband DSP processor with CMAC

11
A

 B
as

eb
an

d
D

S
P

 T
op

 F
lo

w
11

B
 B

as
eb

an
d

D
S

P
 T

op
 F

lo
w

Short preambles

Long preambles

PLCP preambles

F
IR

FIR

F
IR

F
IR

F
IR

FIR

FIR

Antenna
diversity

Packet
sync

Gain and
DC ctrl

PLL
setting

PLLRotor

R
ot

or
R

ot
or

FFT

FFT

FFT

FFT

Payload frames

PSDU frames

de
m

ap

de
m

ap

F
E

C

Ch CodeMap

Map

Transmitter

Tansmitter

P/S

P/S

P
ac

ke
t

sy
nc

G
ai

n
an

d
D

C
 c

tr
l

S
ym

bo
l

sy
nc PLCP

 DEC
FEC

P
LL

CCK
FEC

Ch Code

M
A

C
 IF

M
A

C
 IF

(a)

(c)

(b)

FFT

Tracking

C
hE

Q

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-11

accelerator) and a group of memories, one memory must be assigned as the result buffer. In the next
stage, the memory connection network is reconfigured so that the result buffer of the previous unit
becomes the input buffer for the new unit. In this way, the memory cost and the memory access time
are minimized. This procedure, which we call “computing buffer delivery technique” [8], decreases both
power consumption and latency. To implement this technique, a comprehensive methodology for system
reconfiguration and integration is necessary. The research project Pleiades at the Department of Electrical
Engineering and Computer Science (EECS) in the University of California-Berkeley, gives an architecture
and methodology for reconfiguring and reconnecting computing devices and memories according to the
dataflow at hand. In the Pleiades architecture, system reconfiguration and reconnection is performed via
a system on chip connection network that includes a data network and a control network. The control
network is used to configure the data network. In our architecture [8], the CBC controls the connections
by writing a configuration vector to bus connection registers, which are addressable control and config-
uration registers.

Another major challenge is the design of the CBC-accelerator interface. The CBC is made for relatively
general baseband jobs and is designed before the accelerators are specified. The interface must allow easy
plug-in of accelerators of varying type without modification of the hardware. We need to send control
and data from CBC to accelerators and results from accelerators to the CBC.

A bus architecture gives the required scalability and device address space. When we plug in an
accelerator to the bus extension, the added hardware is seen as an ordinary execution unit of the
processor. The design idea is to define a simple and robust protocol for accelerator integration. Giacalone
[16] gives a good acceleration methodology. In the TIC55, scalability is given by instruction set archi-
tecture extension. This is also known as tightly coupled HW acceleration. In TIC55 and in our CBC,
the extension is defined by a protocol accepted by both the processor and the accelerators. A set of special
accelerator instructions is needed. Each accelerator instruction is divided into a common part and a
custom part. The common part gives address and bus control, and must be decoded by both the processor
and the accelerator. The custom part carries control codes that are only decoded by the accelerator.
Because the CBC does not decode the custom control code, the processor can easily be upgraded by
adding a new accelerator. In addition, no restrictions are made regarding the kind of accelerators that
can be added.

6.3.6 Decreasing Supply Voltage

Lowering the supply voltage is the most effective way to decrease power because the reduction of power
consumption follows the square rule; however, three constraints (i.e., the throughput required by the
baseband specification, the limitations on the computing latency, and the limited choices of supply voltage
on system level) have to be met while reducing the supply voltage. In this section, we aim for lowering
the supply voltage thus satisfying throughput and computing latency requirements.

To decrease supply voltage, we should start by analyzing the system scheduling and finding the timing
critical path. By accelerating the timing critical path, we get a chance of lowering the supply voltage.
The following paragraph gives an example based on the system in Figure 6.6. We first allocate jobs to
execution time slots following the constraints from the MAC layer specification. After job allocation
according to the task pipeline definition in Figure 6.5(b), we find that the timing critical path is the
demodulation step, which includes rotor, FFT, channel equalization, and demapping. We modify the
schedule by moving the rotor to the receiving time slot (the receiving time slot now includes sampling,
buffering, receiver FIR filter, and rotor). Next, we speed up the remaining operations in the demodu-
lation step. By replacing the radix-2 FFT by a radix-4 FFT, the computing time is decreased from about
200 cycles to 52 cycles [12]. The channel equalization takes about 200 cycles to run in the CBC. Adding
one more CMAC and allocating half of the channel equalization job to it decreases the cost for channel
equalization to about 100 cycles. The demapping for 64-QAM takes about 1000 cycles if there is no
instruction level acceleration. By specifying a special demapping instruction for 16-QAM and 64-QAM,
the cycle cost for 64-QAM becomes about 144 cycles. Including about 200 cycles for miscellaneous jobs,

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-12

Low-Power Processors and Systems on Chips

the cycle cost of the payload processing has decreased from about 1644 cycles to about 498 cycles. This
means that the system clock can be decreased from 416 MHz to 125 MHz. If the critical path at circuit
level is given by the 10-bit CMAC, about 250 MHz can be reached using a 0.15-

µ

m digital CMOS
technology running on the nominal supply voltage. The fact that we only need 125 MHz means that
we have a chance to lower the supply voltage by about 40%. The corresponding power reduction factor
is 2.7. The actual power reduction factor is approximately two because of the extra power cost from
the added hardware.

6.3.7 Eliminating Unnecessary Switching

Three possibilities are available for reducing logic switching: minimizing the memory access, minimizing
the computing power, and minimizing the control power. Minimizing memory accesses has already been
discussed in this chapter. About 10% power and execution time can be saved by eliminating the passing
of computing buffers [8]. Operand stopping is a technique where operands are stopped from propagating
through a bus to nonactive logic blocks. Two basic operand-stopping techniques are given in Figure 6.7.
The method, given in Figure 6.7(a), stops the operand by keeping it in a register. It is used for stopping
the logic toggling involved in single step instructions. The method given by Figure 6.7(b) stops the
operand by masking it with AND or OR gates. It is used for stopping the logic toggling involved in vector
mode instructions. By using operand-stopping technique, a datapath can be divided into several active
regions. The operand stopping control signal could come from the decoded instruction.

Clock gating is another technique for achieving low-power consumption. During architecture and
function level design, the hardware should be partitioned into blocks suitable for clock gating. The
instruction decoding can then generate clock gating control signals to different blocks. Although a part
of the circuit is not active, the clock to flip-flops in this part will be gated or shut down. It should be
noted that the reset signal should be valid to every flip-flop even when the clock is gated. Therefore,
asynchronous reset is preferred.

6.3.8 System-Level Power Management

If it is possible to use a controllable power switch or DC-DC converter for the WLAN subsystem, three
levels of power management will be possible: power supply on-off control, system clock on-off control,
and circuit clock on-off control. The supply on-off control and the system clock on-off control are
managed on system level beyond the the programmable core of the baseband processor

.

 Clock on-off
control for circuits in a DBBP can be managed inside the DBBP or inside the accelerators. The control
could be handled implicitly or explicitly. Explicit control is managed by running instructions such as no-
operation (NOP) and sleep and wait for external interrupt (SLEEP). The instruction decoder manages
implicit control. Because every instruction activates only certain parts of the processor, the instruction
decoder can control clock gating and operand stopping inside the CBC. Power management is a general
issue in low-power design, and detailed implementation techniques can be found in other chapters in
the book.

FIGURE 6.7

Operand-stopping technique.

Operand�
stopping�
control

Operand�
stopping�
control

Operand
Operand

0 1

(A) (B)

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-13

6.4 Case Study One: Variable Data Length and Computing

Precision

The power consumption increases with the data precision. In a nonprogrammable architecture, each step
in an algorithm is assigned to a specific computing or storage unit. To save power, each unit is designed
with the minimum acceptable data width. In a programmable BBP, however, the computing unit must
be designed for the largest required precision.

To decrease the power consumption in the datapath of a programmable processor, dynamic precision
firmware is introduced in the CBC [10]. In the algorithm design phase for the WLAN baseband firmware,
we need to optimize precision for every step of all algorithms. When reduced precision can be used for
a step of an algorithm, we will mask operands to a limited precision. Figure 6.8 demonstrates how different
precision can be assigned for different algorithms in a receiver. (Data and computing precision is not
specified after demapping because the remaining operations are bit level operations.) This chapter focuses
on symbol processing because the precision of symbol processing algorithms has significant impact on
the receiver quality.

We have estimated the switching power in a MAC unit with different masks applied and with different
datapath precision. The results are given in Table 6.4. The right part of the table gives power consumption
from 6 MAC units with different data width. The left part of the table gives the difference of the power
consumption by masking the same MAC units, which is a 16-bit MAC with 32-bit accumulator. Note,
for example, that replacing a 16-bit MAC operation with a 12-bit operation saves more than 50% power,
although the same hardware is used. Furthermore, no major additional power saving can be made by
replacing the 16-bit MAC unit by 12-bit hardware. We conclude that reducing the precision of compu-
tations can save a significant amount of power, even if a high-precision processor is used.

FIGURE 6.8

Variable precision in an IEEE 802.11a baseband processor.

TABLE 6.4

Relative Power Consumption Measured from Masked MAC

Masked Operands on a 16-bit MAC

MAC Units with Different Precisions

Mask Precision Relative Power Datapath Precision Relative Power

16-bit (no mask) 1.00 16-bit (32-bit accumulator) 1.00
12-bit (mask 4-LSB) 0.47 12-bit (24-bit accumulator) 0.41
10-bit (mask 6-LSB) 0.31 10-bit (20-bit accumulator) 0.26
8-bit (mask 8-LSB) 0.18 8-bit (16-bit accumulator) 0.12
6-bit (mask 10-LSB) 0.09 6-bit (12-bit accumulator) 0.06
4-bit (mask 12-LSB) 0.04 4-bit (8-bit accumulator) 0.02

Precision

12b

10b

08b

06b

04b

02b

G-ctrl
antenna
diversity S

yn
c

I/Q
 p

ha
se

 c
om

pe
ns

a-
tio

n
F

irs
t

ha
lf

of
 F

F
T

 b
ut

te
rf

ly

S
ec

on
d

ha
lf

of
F

F
T

 b
ut

te
rf

ly

S
ub

-c
ar

r ie
r

C
om

pe
ns

at
io

n

D
e-

m
ap

pi
ng

Data flow

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-14

Low-Power Processors and Systems on Chips

6.5 Case Study Two: Hardware Architecture for a Block

Interleaver

6.5.1 Introduction

This case study introduces a low-power interleaver/deinterleaver architecture and compares it to the
conventional hardware implementation. Excellent power saving was reached through significantly
reduced toggling and power supply voltage reduction.

Interleaving is an operation often carried out as part of the channel coding in a radio system. The purpose
of interleaving is to distribute transmitted bits in time, frequency, or both. Consecutive bits on the input
stream should not be transmitted consecutively in time (or on the same frequency in an OFDM system).
Interleaving reduces the effect of burst errors caused by fast fading. The requirements for interleaving depend
both on the modulation and error correction schemes used, and on the channel characteristics.

One common method for interleaving is to use a block interleaver. A block interleaver operates on
one block of data at a time, and no interleaving occurs between blocks. A block interleaver is typically
implemented by writing the bits into a matrix row by row and then reading them column by column.
Deinterleaving is simply the reversed operation — writing column by column and reading row by row.
However, a real interleaver implementation could be more complicated. The following steps can define
a more general block-interleaving algorithm:

1. Write bits to matrix row by row
2. Perform intra-row permutations
3. Perform intra-column permutations
4. Read bits columns by column

6.5.2 Traditional Interleaver Implementation

Figure 6.9(a) is a traditional interleaver implementation based on LUTs. This implementation can support
any interleaving scheme. A sequential memory is used and a ROM LUT stores the specified interleaving
sequence. For interleaving operation, the input bits are first written sequentially to the memory and then
read in the order defined by the LUT. For deinterleaving, the bits are written according to the LUT and
then read sequentially. The number of bits in the data memory is equal to the largest block size, and the
number of words in the LUT is at least equal to the sum of all block sizes the interleaver should handle.

The main advantages of the traditional implementation are that it is simple, straightforward, and
general. The main disadvantage of this implementation is that the bits have to be written and read one
at a time, resulting in a high cycle cost. Another disadvantage is that the complete interleaving sequence
of every interleaving scheme has to be stored explicitly in the LUT, making it relatively large if many
standards have to be supported.

6.5.3 A New Block Interleaver Implementation

This section introduces a new implementation of a multi-standard block interleaver [14]. The purpose
of the new implementation is to avoid the need for addressing individual bits in the memory and enable
read and write of several bits in parallel. Generally, this scheme executes an interleaving of R rows and
C columns in R + C clock cycles, while the old scheme needs two RC clock cycles. Figure 6.9(b) presents
the main idea of the new architecture. It is based on a special matrix memory block where words are
written to rows but read from columns.

A complete row can be written and a complete column can be read in one clock cycle. Intra-row
permutations are carried out before the bits are stored to memory by simply reordering the bits on the
input data bus. In the same way, inter-column permutations are carried out by reordering the bits on
the output data bus after the data has been read.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications

6

-15

If a small number of different permutation schemes are needed, the permutation blocks are a simple
set of multiplexers. A more general interleaver may require a more intricate permutator.

A control block may be needed to set up the permutation block according to the current mode (and
address). This could be implemented as a small LUT.

6.5.4 Hardware Implementation

An interleaver for the WLAN standard IEEE 802.11a has been implemented using the two previously
discussed schemes. The IEEE 802.11a standard uses four different interleaving schemes with block sizes
up to 16

×

 18 bits and uses three different intra-column permutation schemes. The two implementations
of the interleaver were both implemented in VHDL and synthesized to a 130-nm process. The result in
terms of area and speed can be found in Table 6.5.

6.5.5 Power Issues

The new implementation is superior to the traditional one not only in performance, but also in power
consumption for several reasons:

1. Most of the energy will be consumed in the data memory. Because we need to handle both 16

×

18 and 18

×

 16 matrices (for interleaving and deinterleaving respectively), the number of physical
memory cells is larger in the new scheme (324 vs. 288 in the old scheme). However, the number
of active cells is the same in both schemes

.

 Furthermore, because the new scheme uses much

FIGURE 6.9

Two interleaver implementations.

Memory
N × 1 bits bits

xor

ROM
N*m

words
mode

address

Control
and

address
counter

Intra- row
permutations

Intra-column
permutations

Control
LUTmode

r w

interleave deinterleave

(A)

(B)

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

6

-16

Low-Power Processors and Systems on Chips

smaller address decoders (18 addresses instead of 288) the power needed for addressing each bit
is smaller in the new scheme.

2. The sequence ROM in the traditional scheme consumes significant power. For the 802.11a inter-
leaver, the ROM size is 624

×

 9 bits. (If the LUT in the new scheme was implemented in a ROM
in the most naive way, it would need 128

×

 4 bits, but it is possible to make it much smaller
because the permutation does not depend on the address in three of the four modes.)

3. Because the new scheme needs fewer clock cycles, it can run at a much lower frequency, thereby
the supply voltage can also be lower.

4. More power is also consumed in, for example, control logic in the traditional scheme, simply
because it has to run for many more clock cycles.

6.6 Conclusion

A baseband DSP processor is an application specific processor dedicated for baseband signal processing.
Requirements on a baseband processor vary a lot according to differences in dynamic range, channel
fading, bandwidth, and applications (voice or data). Low-power design is essential in baseband processors
for radio terminals. In addition to conventional low-power design rules, low-power design for baseband
processors especially focuses on optimizing task level partitioning, scheduling, and parallelization. Min-
imizing memory size and memory accesses is essential. Functional acceleration is the key factor to achieve
the balance between low-power consumption and flexibility. Variable precision, operand-stopping, and
clock-gating techniques are also important ways of achieving low power.

References

[1] Sengupta, C. et al., The role of programmable DSPs in dual mode (2G and 3G) handset, in

The
Application of Programmable DSPs in Mobile Communications,

 Gatherer, A. and Luslander, E., Eds.,
John Wiley & Sons, New York, chap. 3, pp. 23–40, 2002.

[2] Gibson, J.D.,

The Mobile Communication Handbook, 2nd ed.,

 CRC Press, Boca Raton, FL, and IEEE
Press

,

 1999.
[3] Lapsley, P., Bier, J., Shoham, A., and Lee, E.A.,

DSP Processor Fundamentals, Architectures, and
Features,

 IEEE Press

,

 1997.
[4

]

IEEE Std. 802.11a-1999, High-speed physical layer in the 5-GHz band.
[5] IEEE Std. 802.11b-1999, High-speed physical layer extension in the 2.4-GHz band.
[6] Thomson, J. et al., An integrated 802.11a baseband and MAC processor, Proc. ISSCC 2002, San

Francisco, CA, pp. 451–453.
[7] Eberle, W. et al., 80-Mb/s QPSK and 72-Mb/s 64-QAM flexible and scalable digital OFDM trans-

ceiver ASICs for wireless local area network in the 5-Ghz band, IEEE J. Solid-State Circuits, Vol.
36, pp. 1829–1838, 2001.

[8] Tell, E., Nilsson, A. (J), and Liu, D., A vector processor for converged baseband DSP, to be submitted
to WASP 2004, Stockholm, Sweden.

TABLE 6.5 Interleaving implementation results

Feature Old Architecture New Architecture

Interleaving for 6–9 Mb/s transmission
(BPSK, block size 3 × 16)

96 cycles 19 cycles

Interleaving for 36-54 Mb/s transmission
(64-QAM, block size 18 × 16)

576 cycles 34 cycles

Approximated max frequency 250 MHz 500 MHz
Data memory area 0.0197 mm2 0.0189 mm2

Other area 0.0053 mm2 0.0018 mm2

Total area 0.0250 mm2 0.0207 mm2

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Baseband Processors for Communications 6-17

[9] Huang, Y. and Chiueh, T., A sub-word parallel digital signal processor for wireless communication
systems, Proc. Asian-Pacific Conf. on ASIC 2002,Taipei, pp. 287–290.

[10] Tell, E., Seger, O., and Liu, D., Operand masking for low-power baseband DSP firmware, submitted
to IEEE NORCHIP, 2004.

[11] Gunn, J.E., Barron, K.S., and Ruczczyk, W., A low-power DSP core-based software radio architec-
ture, IEEE, J. Selected Areas in Communications, Vol. 17, pp. 574–590, April 1999.

[12] Tell, E. and Liu, D., A converged hardware solution for FFT, DCT, and Walsh transform, Proc.
ISSPA 2003, Paris, France, July 2003.

[13] Heiskala, H. and Terry, J.T., OFDM Wireless LANs: A Theoretical and Practical Guide, Sams Pub-
lishing, Indianapolis, Indiana, 2002.

[14] Tell, E. and Liu, D., A hardware architecture for a multi-standard block interleaver, Proc. ICCSC
2004, Moscow, Russia, July 2004.

[15] Abnous, A., Low-power domain specific processor for digital signal processing, Ph.D. dissertation,
University of California-Berkeley, 2001.

[16] Giacalone, J., Application-specific instruction-set architecture extensions for DSPs, in The Appli-
cation of Programmable DSPs in Mobile Communications, Gatherer, A. and Luslander, E., Eds., John
Wiley & Sons, New York, chap. 18, pp. 361–377.

[17] Catthoor, F. et al., Custom Memory Management Methodology, Kluwer Academic Publishers, Dor-
drecht, 1998.

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

7

-1

7

Stand-By Power
Reduction for SRAM

Memories

7.1 Introduction ..

7-

1
7.2 Leakage Reduction ..

7-

2
7.3 Noise Margin and Speed Requirements

7-

4
7.4 Locally Switched Source-Body Bias

7-

5
7.5 Results ..

7-

7
7.6 Conclusion...

7-

8
References ...

7-

8

7.1 Introduction

In processor-based systems on chip (SoCs), the memories limit most of the time the speed and are the
main part of the power consumption. Much work has been done to improve their performances [1],
however, new approaches are required to take into account the trend in scaled down deep submicron
technologies toward an increased contribution of the static consumption in the total power consumption
[2]. The main reason for this increase is the reduction of the transistor threshold voltages [3–7].

In a previous article [8], proposals were made for low-power SRAM and ROM memories working in
a large range of supply voltages. With all bit-lines kept precharged at the supply value, however, the
proposed techniques are not favorable for the static leakage. Simple solutions are available for a ROM:
it can be switched off in the standby mode, or only the selected bit-lines are precharged before a read
(with the corresponding speed penalty). For the six-transistor SRAM cell, however, enough supply voltage
has to be present all the time to keep the stored information

.

Negative body biasing increases the NMOS transistor threshold voltage and, therefore, reduces the
main leakage component — the cutoff transistor subthreshold current. A positive source-body bias has
the same effect and can be applied to the devices that are processed without a separate well, however, it
reduces the available voltage swing and degrades the noise margin of the SRAM cell. Another important
feature to be considered is the speed reduction resulting from the increased threshold voltage, which can
be very severe when a lower than nominal supply voltage is considered.

This chapter presents an approach based on the source-body biasing method for the reduction of the
subthreshold leakage, with the aim of limiting the normally associated speed and noise margin degra-
dation by switching it locally. At the same time, this bias is limited at a value guaranteeing enough noise
margins for the stored data.

Only the case of a SRAM is considered here, however, the same approach can be applied to any blocks
containing storage circuits (e.g., flip-flops and registers

)

.

Stefan Cserveny
Jean-Marc Masgonty
Christian Piguet

CSEM

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

7

-2

Low-Power Processors and Systems on Chips

7.2 Leakage Reduction

In the deep submicron processes, as they scale down, there is a tendency toward a static leakage strongly
dominated by the subthreshold current of the turned-off metal-oxide semiconductor (MOS) transistors.
In even deeper nanometric technologies, an important tunneling gate leakage current exists [9]; however,
it can be neglected in the preceding 100-nm technologies. Because this subthreshold leakage is much
higher for the NMOS than that of the PMOS

,

 only the NMOS transistors will be considered here for the
leakage reduction (if necessary, however, the proposed methods can be applied as well for both). Notice
also that the leaky NMOSs usually have no separate well in a standard digital process.

To allow source-body biasing in the six-transistor SRAM cell, the common source of the cross-coupled
inverter NMOS (SN in Figure 7.1) is not connected to the body. Body pick-ups can be provided in each
cell or for a group of cells, and they are connected to the V

SS

 ground.
In Figure 7.1, the possibility for separate select gate signals SW and SW1 has been illustrated, as for

the asymmetrical cell described in Masgonty et al. [8] and Cserveny et al. [10], in which read is performed
only on the bit-line B0 when only SW goes high while both are activated for write. Even if a symmetrical
cell, which is selected for read and write with the same select word signal SW

≡

 SW1, can also be considered
for the leakage reduction techniques to be proposed, the asymmetrical six-transistor SRAM cell [10],
presents several advantages.

With the asymmetrical cell, the dynamic power consumption at read is reduced because only one
of the two bit-lines has a voltage swing. This consumption can be reduced even more by physically
splitting these single bit-lines into subbit-lines as illustrated in the Figure 7.2. Because the subbit-lines
are connected to a fraction of the cells in the column, the capacitive load to be discharged is significantly
reduced.

With the asymmetrical cell, the functional voltage supply range is large, particularly for voltages well
below the nominal process values because read on only one bit-line is performed without sense amplifiers,
while both bit-lines are used for write. Not only are the problems related to sense amplifiers eliminated,
even the power consumption compares favorably despite the full swing discharge of the subbit-lines
where a “1” is read. Because only one select transistor is activated at read, the width (W) and length (L)

FIGURE 7.1

SRAM cell with separate NMOS source connection SN.

mp0 mp1

SW1SW

N0 N1

SN

mn1mn0

ms0 ms1

B1B0

VDD

VSS

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Stand-By Power Reduction for SRAM Memories

7

-3

of the transistors can be optimized differently on the two sides of the asymmetrical cell by taking advantage
of the relaxed read noise margin constraint and the asymmetrical need for high driving capability.

A positive bias between the SN node and the V

SS

 ground (V

SN

) will reduce the subthreshold leakage
of a nonselected cell (SW and SW1 at V

SS

) as plotted in Figure 7.3.
The result in Figure 7.3 is for a minimum size symmetrical cell in a 0.18-

µ

m process (mn0, mn1, mp0,
and mp1 have W = 0.22

µ

m and L = 0.18

µ

m only ms0 and ms1 are longer) for the state in which the

FIGURE 7.2

Physically split bit-lines principle: The subbit-lines are connected directly to a NAND gate, contrary
to the speed reducing series transistor used when subbit-lines are connected to a main bit-line by a switch. In this
example, three subbit-lines are considered.

FIGURE 7.3

The simulated cell current (logarithmic scale in A) and its decomposition into the contributions of its
transistors as a function of the source-body bias (linear scale in V).

Divided bit column

Sub-bit lines Result

Vdd

Vdd

Vdd

20–10

10–10

10–11

10–12

10–13

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

CELLmn1

mn0ms0

mp0

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

7

-4

Low-Power Processors and Systems on Chips

node N0 is low (at V

SN

) and the node N1 is high (at V

DD

). In this case the cell leakage is dominated by
the transistor mn1, the NMOS which is cut off with V

GS

 = 0; its leakage is controlled by the body effect,
the source-body voltage V

BS

 effect on its threshold voltage. The other branch contribution due to mp0,
a less leaky PMOS, and to ms0, a longer NMOS with a gate-source voltage V

GS

 that becomes negative,
is much less.

Furthermore, the ratio between the on (at VD = VG) and off (at V

GS

 = 0) currents in these deep sub-
micron processes is worst at the minimum channel length, normally used in the digital designs; therefore,
a somewhat longer transistor will be considered whenever possible and effective, without too much area
penalty. According to the preceding analysis, such longer transistors are interesting mainly for the two
inverter NMOS (mn0 and mn1), which, in the asymmetrical cell can be optimized differently also for
low leakage.

The proposed method becomes less effective in the much deeper nanometric technologies; however,
because there is less body bias effect to control the threshold voltage and the leakage due to the tunnelling
gate, current and the gate induced drain leakage become increasingly important.

7.3 Noise Margin and Speed Requirements

A fixed bias V

SN

 on the source SN can reduce the subthreshold leakage of a nonselected cell as far as the
remaining supply is enough to keep the flip-flop state, including the necessary noise margin.

For the selected cell in the active read/write mode with such a fixed V

SN

 bias, a speed loss is associated
with the reduced available driving current and the noise margin at read is modified. This speed loss can
be partially compensated adapting the V

SN

 value to the process corner because the corner that is worst
for leakage is best for speed and vice versa. Nevertheless, this approach is hard to control over a large
range of supply voltages because the speed/leakage relationship is a strong function of the supply voltage
and temperature. Moreover, as depicted in the simulations of Figure 7.4, the noise margin at read is
reduced at low supply voltages, which is a common situation for applications that need a supply value
that is low or in a large range, such as low-power portable systems.

The noise margin, represented by the maximum size square that can be nested into the cross-coupled
voltage transfer characteristics [11,12], is visibly reduced by the source-body bias V

DD

 = 0.9 V, a supply
value well below the nominal 1.8 V for this process. Notice also that the crossing of the transfer charac-
teristics changes from 3 to 5 points.

For the nonselected cell, important for the standby leakage, only the inverter transfer characteristics
(without select MOS loading) come into account, and even if the V

SN

 increase reduces the noise margin,

FIGURE 7.4

Worst-case (Nfast Pslow 125

°

C) read access static noise margin analysis for the minimum size sym-
metrical cell at V

SN

 = 0 and V

SN

 = 0.3 V for V

DD

 = 0.9 V.

0.8

0.7

0.6

0.5

0.4

0.3

0.1

0.2

0.0

1.0

0.9

0.80.70.60.50.40.30.1 0.20.0 1.00.9

VSN = 0.3 V

VSN = 0

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Stand-By Power Reduction for SRAM Memories

7

-5

it remains reasonably high if the V

SN

 does not increase too much, as plotted in Figure 7.5 for the same
voltages discussed previously.

7.4 Locally Switched Source-Body Bias

The V

SN

 bias, useful for static leakage reduction, is acceptable in standby if its value does not exceed the
limit at which the noise margin of the stored information becomes too small, but it degrades the speed
and the noise margin at read. Therefore, it will be interesting to switch it off in the active read mode;
however, the relatively high capacitance associated to this SN node, about six to eight times larger than
the bit-line charge of the same cell, is a challenge for such a switching.

It is proposed here to partition the cell array into a number of groups, with the inverter NMOS sources
of all cells inside a group being connected to a common terminal SN belonging to that group, and to
locally assign a switch between these SN terminals and the ground, as illustrated in the Figure 7.6. When
an active read or write operation takes place, the switch assigned to the group containing the selected
word, connects the SN terminal of this group to ground. Therefore, in the active mode the performance
of the cell is that of a cell without source bias. In standby, however, or if the group does not contain the
selected word, the switch is open. With the switch open, the SN node potential increases reducing the
leakage of the cells in that group, as described before, until the leakage of all cells in the group equals
that of the open switch, which is slowly increasing with the SN potential (V

DS

 effect). Nevertheless, to
guarantee enough noise margins for the stored state, the SN node potential should not become too high;
this is avoided with a limiter associated to this node.

The group size and the switch design are optimized, compromising the equilibrium between the
leakages of the cells in the group and the switch with the voltage drop in the activated switch and the
selected group SN node switching power loss. The switch is an NMOS that has to be strong enough
compared with the read current of one word, the selected word (i.e., strong compared with the driving
capability of the cells defined by the select and inverter NMOS in series). At the same time, the NMOS
switch has to be weak enough to leak without source-body bias as little as the desired leakage for all
words in the group with source-body bias at the acceptable V

SN

 potential. On the other hand, to limit

FIGURE 7.5

Worst-case (Nfast Pslow 125

°

C) standby static noise margin analysis for the minimum size symmetrical
cell at V

SN

 = 0 and V

SN

 = 0.3 V for V

DD

 = 0.9 V.

0.8

0.7

0.6

0.5

0.4

0.3

0.1

0.2

0.0

1.0

0.9

0.80.70.60.50.40.30.1 0.20.0 1.00.9

VSN = 0.3 v

VSN = 0

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

7

-6

Low-Power Processors and Systems on Chips

the total capacitive load on the SN node at a value keeping the power loss for switching this node much
less than the functional dynamic power consumption, the number of words in the group cannot be
increased too much. In particular, this last requirement demonstrates why the local switching is needed
contrary to a global SN switching for the whole memory.

Figure 7.7 illustrates the most flexible approach to implement the described principle. Groups are built
with a specific number of rows in a one-word column, the selected group of rows SRG containing the
selected row SR. The switch size, built with one transistor for each bit, is adapted to the number of bits
in a word. As proposed in Masgonty et al. [8], the divided word line blocks have the size of one word
and the select column signal SC is activated at read and write for the column containing the selected
word SW in the selected row SR.

In this implementation, with the number of rows in a group an integer power of 2 (e.g., 16 or 32),
the selection of the group of rows (i.e., the SRG signal) is made by a simple partial row decoding. By
combining this SRG signal with the one-word column selection signal SC, the group activation signal
SG is generated. This SG signal closes the switch for that group (i.e., the NMOS transistors with the gate
at SG). The limitation is obtained by connecting the SN node of the group to a VSN source with a NMOS

FIGURE 7.6

The limited and locally switched source-body biasing principle applied to a SRAM.

FIGURE 7.7

Example of a SRAM organization implementing the locally switched and limited source-body biasing.

Group of cells
with a common

SN source

Group of cells
with a common

SN source

Group
containing the
selected word

Group of cells
with a common

SN source

Limiter LimiterLimiter
SN SN SN

Following rows

Previous rows

R
ow

 a
dd

re
ss

 d
ec

od
er

P
re

vi
ou

s
co

lu
m

ns

F
ol

lo
w

in
g

co
lu

m
ns

S
el

ec
te

d
gr

ou
p

of
 r

ow
s

VSN
Source

SR

SRG

SG

NSG

SW

SN

Cell

Cell Cell

Cell Cell Cell

Cell

CellCell

VSS

S
C

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Stand-By Power Reduction for SRAM Memories

7

-7

pass transistor activated by the complement of the SG signal, thus connecting all groups except the
activated one. Contrary to the fixed bias approach in which the whole active current goes through the
biasing source, here the VSN source has to deliver or absorb only a very small current (i.e., the difference
between the small leakages of the cells and the switches that are essentially equilibrated by design).

Other implementations were considered depending on the size and specific design constraints of the
memory. It is quite interesting to activate the group only by address decoding, reducing the number of
groups switching at the expense of a larger leakage in the group that remains selected; in particular, a
group containing only all the words in a row can be activated directly by the select row signal SR. It is
important to notice that the SN switching power loss depends on the group size and its relevance to the
total power dissipation depends on the number of groups in the memory. Even more important is to
notice that the limiter should only limit the SN potential increase. Figure 7.7 presents only one of the
different implementations that have been considered to fulfill this function, however the VSN source can
be replaced by an active or passive limiter circuit. Diode limiters, as considered in Enomoto et al. [13]
for the typical case, are very interesting; however, they should be carefully designed and checked over all
parameter corners.

7.5 Results

A cell implementing the described leakage reduction techniques together with all the characteristics of
the asymmetrical cell described in Section 7.2 has been made in a 0.18-

µ

m process. The SN node can
be connected vertically or horizontally, and body pickups are provided in each cell for best source bias
noise control. The inverter NMOS mn0 and mn1 use a 0.28-

µ

m transistor length. Despite larger W/L of
ms0 and mn0 on the read side used to take advantage of the asymmetrical cell for higher speed and
relaxed noise margin constraint on their ratio, a further two to three times leakage reduction has been
obtained besides the source-body bias effect plotted in Figure 7.3

.

 The largest reduction is obtained where
it is most desired — in the fast-fast process corner, the worst case for the leakage. The cell is a square
with 2.8-

µ

m sides — five times the upper level metal pitch allowing easier access blocks layout. It is 68%
larger than the minimum size cell designed at the foundry with the special layout rules not accessible
for other designs; however, the new cell is only 25% larger than a cell using the minimum size cell
transistors if both layouts use the same standard rules. Put in another way, this further two to three times
leakage reduction is equivalent with a reduction of 0.1 V to 0.15 V of the source-body bias needed for
same leakage values. Overall, with V

SN

 near 0.3 V, the leakage of the cell has been reduced at least 25
times, however, more than 40 times for the important fast-fast worst case.

Figure 7.8 compares the read bit-line discharge delay for the group switched source-body bias with
the fixed bias approach.

As expected, the equivalent V

SN

 bias for the same delay, depicted by the crossings in Figure 7.8,
corresponds to the voltage drop in the switch. For the worst case considered here (all bits in the read
word at one, that is, maximum current in the switch), the voltages at these crossings vary between 19
mV for SS (worst case for delay) and 28 mV for FF (best delay).

When the local group V

SN

 switching is compared with a SRAM using the same cell without source-
body bias (V

SN

 = 0), the approximate 10% maximum speed loss, as well as the meaningless noise margin
reduction due to these few mV, are not important.

On the other hand, the Figure 7.8 results illustrate the important speed improvement obtained with
the local group switching as compared to the fixed V

SN

 bias; for example, at 0.3 V, the delays are 68 times
shorter for the SS corner, the worst case for speed, and still 7.4 times shorter for the FF corner, the worst
case for leakage, illustrating a very important speed increase

.

 At the same time, the important reduction
of the noise margin at read at low V

DD

 due to such a fixed V

SN

 bias (see Figure 7.3) is avoided.
The only area increase, compared with the previous design [8], is due to the group switches. If the

switches are implemented as in Figure 7.7, the switches for two groups need an area about that of one
row. Therefore, the area penalty for 16-word groups is about 3%. If the groups are organized in the rows,
the area increase is even less.

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

7

-8

Low-Power Processors and Systems on Chips

Following the strong leakage reduction in the cell array, it was important to design the remaining
blocks of the memory to keep the total standby current of the memory still dominated by the cells. The
standby leakage of the other blocks has been limited at well under 10% of the total standby total current
of the memory by adapting some control signals for better low leakage of the blocks. For the most leaky
elements, identified according to their functions, similar approaches have been used, such as source
biasing, but without state retention requirements or longer than minimum length transistors. This did
not require any extra area. The switches added for the bit-line pull-down transistors could be placed in
the very large input signal buffers area already defined by the length of the select row and the height of
the read/write blocks.

With the proposed locally switched source-body biasing applied to a SRAM, when compared with a
SRAM without source-body bias, an important reduction of the standby leakage is obtained without any
significant degradation of its speed or noise margin. Compared with the recently available SRAM with
fixed source-body bias, for the same leakage reduction, the proposed SRAM improves significantly the
speed and the noise margin at read.

7.6 Conclusion

Standby power reduction for storage circuits, which have to retain data, is obtained through limited
locally switched source-body biasing. The standby leakage current is reduced by using a source-body bias
not exceeding the value that guarantees safe data retention and less leaking nonminimum length tran-
sistors. This bias is short-circuited in active mode to improve the speed and the noise margin, especially
for low supply voltages; however, this is made for a fraction of the circuit containing the activated part,
allowing a trade-off between switching power and leakage. For a SRAM in a 0.18-

µ

m process, the leakage
is reduced more than 25 times without speed or noise margin loss.

References

[1] K. Itoh, Low-voltage memories for power-aware systems, Keynote Speech at

ISLPED ’02,

 Monterey,
CA, August 12–14, 2002.

[2] H. Morimura et al., A shared-bitline SRAM cell architecture for 1-V ultra low-power word-bit
configurable macrocells,

Proc. ISLPED 1999,

 San Diego, CA.
[3] S. Kosonocky et al., Enhanced multithreshold (MTCMOS) circuits using variable well bias,

Proc.
ISLPED ’01,

 pp. 165–169.

FIGURE 7.8

Simulated bit-line dicharge delay (in s) as a function of the V

SN

 source-body bias (in V) for the new
cell and group switch design compared with the fixed V

SN

 bias result for the same cell at the slow-slow (SS), typical
(TT), and fast-fast (FF) process corners, considering 256 rows, 25

°

C and all bits in the word at 1.

SS

SS

TT

TT

FF

FF

7e−07

1e−07

1e−08

2e−09
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Fixed VSN

Switched SN

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Stand-By Power Reduction for SRAM Memories

7

-9

[4] S. Narendra et al., Scaling of stack effect and its applications for leakage reduction,

Proc. ISLPED
’01,

 pp. 195–200.
[5] C. Kim and K. Roy, Dynamic VT SRAM: a leakage tolerant cache memory for low-voltage micro-

processors,

Proc. ISLPED ’02,

 pp. 251–254.
[6] N. Azizi et al., Low-leakage asymmetric-cell SRAM,

Proc. ISLPED ’02,

 pp. 48–51.
[7] C. Piguet et al., Techniques de circuits et méthodes de conception pour réduire la consommation

statique dans les technologies profondément submicroniques. Invited paper,

Proc. FTFC ’03,

 pp.
21–29, Paris, May 15–16, 2003.

[8] J.-M. Masgonty, S. Cserveny, and C. Piguet, Low-power SRAM and ROM memories,

Proc. PATMOS
2001,

 paper 7.4.
[9] F. Hamzaoglu and M. Stan, Circuit-level techniques to control gate leakage for sub-100-nm CMOS,

Proc. ISLPED ’02,

 pp. 60–63.
[10] S. Cserveny, J.-M. Masgonty, C. Piguet, and F. Robin, Random access memory, U.S. Patent 6,366,504

B1, April 2, 2002.
[11] E. Seevinck, F.J. List, and J. Lohstroh, Static-noise margin analysis of MOS SRAM cells,

IEEE J.
Solid-State Circuits,

 vol. 22, pp. 748–754, Oct. 1987.
[12] A.J. Bhavnagarwala, X. Tang, and J.D. Meindl, The impact of intrinsic device fluctuations on CMOS

SRAM cell stability, vol. 36, pp. 658–665, April 2001.
[13] T. Enomoto, Y. Oka, H. Shikano, and T. Harada, A self-controllable-voltage-level (SVL) circuit for

low-power high-speed CMOS circuits,

Proc. ESSCIRC 2002,

 pp. 411–414.

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-1

8

Low-Power Cache

Design

8.1 Introduction ..

8-

1
8.2 Cache Organization...

8-

3
8.3 Factors Influencing Energy Consumption in Caches.......

8-

4

Miss Rate • Write Policy • Cache Accesses Rate • Switching
Capacitance Per Access • Voltage • Leakage

8.4 Energy Reduction Techniques ..

8-

6

Reducing Cache Access Rate • Reducing Switching Capacitance
Per Access • Voltage Reduction • Leakage Energy Reduction

8.5 Conclusion...

8-

18
8.6 Acknowledgments ...

8-

18
References ...

8-

18

8.1 Introduction

Cache memories are the most area- and energy-consuming units in today’s microprocessors. As the speed
disparity between processor and external memory increases, designers try to put large multilevel caches
on a chip to reduce the number of external memory accesses and thus boost the system performance.
(See Table 8.1 for a survey of the on-die caches for several recent high-end microprocessors.) On-chip
data and instruction caches are implemented using arrays of densely packed static RAM cells. The device
count for the caches often exceeds the number of transistors devoted to the processor’s datapath

and
controller. For example, the Alpha21364 [3] and PA-RISC Maco [5] microprocessors have over 90% of
their transistors in RAM, with most of them dedicated for caches; the Itanium2 [1] has 80% in caches,
the IBM G5 [7] has 72%, the PowerPC [8] has 71%, and Strong-ARM110 [9] has 70%. Due to the large
load capacitance and high access rate, these caches account for significant portion of the overall power
dissipation (e.g., 35% in Itanium2 [1]; 43% in Strong-ARM [9]). Therefore optimizing caches for power
is increasingly important. Although much work on energy reduction has taken place in the circuit and
technology domains [10,11], interest in cache design for power efficiency at the architectural level
continues to increase. Architecture is the entry point in cache design hierarchy, and decisions taken at
this level can drastically affect the efficiency of design.

This chapter describes architectural techniques appropriate for reducing power and energy in caches.
Because power does not incorporate any notion of completing a given task, we could minimize the power
by simply turning cache off or running it slowly. Our focus here is on techniques appropriate for reducing
energy. Cache energy reduction is more difficult because it must be achieved under very strict timing
requirements (i.e., without affecting performance). The chapter is organized as follows. First, we describe
conventional cache design, and define sources of energy dissipation and degrees of freedom in the low-
power design space. Then, we present an in-depth survey (and in many cases analyses) of cache energy-
reduction techniques. We conclude by summarizing the major low-power design challenges that lie ahead.

Vasily G. Moshnyaga
Koji Inoue

Fukuoka University

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-2

L
ow

-P
ow

er P
rocessors an

d
 System

s on
 C

h
ips

TABLE 8.1

Survey of Recent High-Performance Microprocessors

Micro-Processor
[reference]

Freq.
(GHz)

Tech.
(

µ

m)
Die size
(mm

1

)

Trans.
Count
(

×

10

6

)
Power
(W)

Cache Organization

Cache
type

Size
(KB)

Assoc.
(ways)

Line Size
(byte)

Latency
(cycles)

Write
Update

Bandwidth
(GBs)

Transistor
Count (%
of Total)

Itanium-2 McKinley [1] 1.0 0.18 421 221 130 L1-D 8 4 64 1 WT 16
L1-I 12op 4 n/a 1 n/a 32
L2 256 8 128 5i/6f WB 32 80
L3 3000 8 1024 12 WB 32

Pentium 4 1.5 0.18 55 217 54 L1-D 12* 4 64 2i/6f WT 44.8
L1-I 256 8 n/a n/a n/a n/a n/a
L2 3000 8 128 7i/7f WB 44.8

Alpha 21364 [3] 1.0 0.18 397 100 150 L1-D 64 2 64 1 WT 19.2
L1-I 64 2 64 5i/6f WT 19.2 93 (in fRAM)
L2 1750 6 n/a 12 WB 16

Ultra Sparc III [4] 1.0 0.18 244 23 80 L1-D 32 4 64 2i/6f WT 16
L1-I 64 4 n/a n/a WT16 52
L1-pw 4 4 n/a n/a n/a n/a n/a
L2-tags 88 n/a n/a n/a n/a n/a

PA-RIS C Maco [5] 1.0 0.18 366 325 n/a L1-D 1500 4 64 1 WT n/a
L1-I 1500 4 64 1 WT n/a 92 (in fRAM)
L2-tags 1000 n/a n/a n/a n/a n/a

Power4 (2 cores) [6] 13.0 0.18 400 n/a 125 L1-D 2*32 1 128 1 WT 416
L1-I 2*64 2 128 1 WT 416 n/a
L2 1500 8 512 n/a WB n/a
L3-tags 176est. 8 n/a n/a WB n/a

Note:

 L1-D and L1-I denote level-1 data cache and level-1 instruction cache, respectively; L2 and L3 are level-2 and level-3 caches; pw is the prefetch cache; victim is the victim
cache; WT is write-through; WB is write-back; 5i/6f defines latency of integer access and floating point access, respectively; n/a means not available.

6700_book.fm
 Page 2 Friday, July 1, 2005 10:02 A

M

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design

8

-3

8.2 Cache Organization

The dominant cache organization employed in modern microprocessors is

m

-way set-associative cache.
Figure 8.1 exemplifies the organization for

m

= 2. A cache line stores a set of

m

 memory blocks (several
words each). Unlike traditional static RAM (SRAM)

,

 each data block in the cache is tagged with extra
bits that indicate which address of main memory is actually being stored in the line, as well as other bits
that indicate the validity and status of cached copy. A pair of tag array and data array is called way each
consisting of S rows, or sets. If cache has only one way (i.e.,

m

=

 1

), it is called direct-mapped; if the
number of ways equals the number of blocks in the cache, the cache is called fully associative.

An

m

-way set-associative cache works as follows. Whenever processor initiates a memory access, it
sends the physical address of the target word to the cache. The index bits of the address indicate cache
line, while the least significant bits (or block offset) indicate position within the block. To read a datum,
the cache activates in parallel all bits in the selected line, simultaneously comparing the upper portion
of the address with

m

 tags in the set. If a match occurs and data is valid, the data word from the way
that hits is supplied to the processor. Otherwise, a cache-miss occurs, and the cache passes the address
to a low-level memory to read the datum and replace it with a block within the cache. When the datum
arrives, both the processor and the cache receive a copy. The cache then stores its copy with the appropriate
address tag. On a write access, if the address being written to the memory has its copy in the cache, the
cache updates value of the copy. Otherwise, the copy may be brought into the cache and then updated
(write-allocate), or it may be updated in memory and not brought into the cache (write-no allocate).

The cache may employ two policies in handling a write to a block that is present in the cache: write-
through, which updates both the cache and memory upon each write, and write-back, which writes the
cache only. With write-through, read misses never produce copy-back writes to memory. With write-back,
data are written to memory only when the data is removed from the cache (on cache miss), and an update
has occurred. The cache checks the status bit and writes-back on miss only dirty (i.e., modified) blocks.

An

m

-way set-associative cache has as many as

m

 alternative locations to write a new block on miss
and, therefore, requires a specific policy (e.g., least recently used) for block replacement. A direct-mapped
cache does not need such a policy because it has only one location from which to choose. If a program
happens to repeatedly access words from two different blocks that map to the same line, however, the
direct-mapped cache will continually swap the blocks, spending power and time. In comparison to the
other alternatives (of the same cache size), direct-mapped cache is the fastest and the smallest, but has
the highest miss rate. Set-associativity elevates the hit rate on expense of both the access time and hardware
cost. For a fixed cache size, an

m

-way set-associative cache has as

m

-times as long word-lines and

m

times

FIGURE 8.1

Organization of a two-way, set-associative cache.

Precharge logic

Sense amplifiers

RAM
cell

Bit
lines

Word
lines

Cell array

Precharge
clock

Address (from CPU)

Tag Index Offset

Way 1Way 0

Enable

…

…

…

word

3-state
buffer

selectorselector

D
ec

od
er

hit

Tag
array

Tag
array

Data
array

Data
array

==

block

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-4

Low-Power Processors and Systems on Chips

as more circuits for tag comparison and data selection. Therefore, caches with associativity

m

>

 32 usually
employ content-addressable memory (CAM) to store the tags and search them in parallel.

8.3 Factors Influencing Energy Consumption in Caches

There are two major components of energy dissipation in cache: dynamic energy, which is attributed to
signal transitions in activated bit- and word-lines, sense-amplifiers, comparators, and selectors

during
reads/writes, and static energy, which is due to the total amount of leakage (or subthreshold) current,
I

L

, through inactive or OFF-transistors. The dynamic energy consumed per access is a sum of the energy
spent on searching within the cache, an extra energy required for handling the writes and energy
consumed by block replacement on cache miss. In CMOS circuits, energy consumption is proportional
to the switching capacitance and the square of supply voltage, V. Thus, if we make N accesses to a CMOS
cache that has miss rate of

α

, we will dissipate the following amount of energy:

Energy

= N*(C*V

2

 +

β

*k*E

m

+

α

*2*E

m

)+ V*I

L

 (8.1)

Here, C is the cache capacitance switched per access;

β

 is the ratio of cache-writes to the total number
of cache accesses, k is the write-policy dependent coefficient, and E

m

 is the energy required by one low-
level memory access. Because

β

 and E

m

 are independent to cache organization, optimizing cache for energy
entails an attempt to minimize N, C, V, I

L

, k, and

α

. This section briefly discusses these factors describing
their relative importance, as well as the interactions that complicate the energy optimization process.

8.3.1 Miss Rate

Each external access requires many clock cycles and at least by two orders of magnitude more power
than an on-chip access. Miss rate multiplies the number of external accesses by a factor of two and,
therefore, has the highest optimization priority. Three parameters have an impact upon the cache miss
rate: cache size, block size, and associativity:

1. Cache size. As cache size increases, the cache miss rate drops. A 64-KB cache, for example, has 6
times less misses than 1-KB cache for the 32-B block size and 10 times less misses for the 64-B
block size [12]. Large on-chip caches reduce the overall energy consumption but cause a linear
extension of bit-lines and more energy loss in the lines. This energy loss eventually may dominate
other sources and result in energy increase, not savings. The cache energy, which is first lowered
as cache size increases, starts to grow up as cache exceeds 32-KB in size [12]. In addition, caches
larger than a few tens of KB are difficult to access in one cycle. If latency is not so important, the
multi-cycle access provides a good opportunity to save energy by selectively enabling only relevant
ways and sets in array.

2. Block size. With increase of block size, miss rate decreases due to enhanced spatial locality. As
block grows in size, however, the width of data read to and from the cache also grows, leading to
more energy dissipation in bit-lines, sense-amplifiers, and most important, in inter-memory
traffic. Eventually, this energy cost may outweigh the energy savings of a smaller miss ratio because
some instructions or data brought in on a miss will not be used. Usually, processors use smaller
block sizes for low-latency and low-bandwidth L1 caches, and large blocks for high-latency and
high-bandwidth L2 and L3 caches.

3. Set associativity. Miss rate decreases with more degrees of associativity though this effect dimin-
ishes with increasing cache size [13]. A four-way 64-KB set-associative cache (32-B block size) has
a 14 and 44% miss rate advantage over a two-way set-associative cache and direct-mapped cache,
respectively [14]; however, high associativity increases the cache access time. Although the energy
consumption of each bit-line in an m-set associative cache is usually decreasing as associativity
increases, the number of bit-transitions in cache usually grows with associativity. In addition, an

m

-way set-associative cache increases sense-amps power by

m

 times. Meanwhile, sense-amps

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design

8

-5

consume less energy than the bit-lines in conventional caches. Therefore, associativity affects
energy less than the cache size.

8.3.2 Write Policy

The write-through policy is simpler to implement than the write-back but requires more external accesses

.

With write-through, we access external memory the same number of times as we write to cache. With
write-back, external memory is accessed only when block is replaced. Thus, we can simplify Equation
8.1 by using k = 1 for write-through and k =

α

 for write-back. Because

α

<<

1,

 the write-back policy
generally leads to better performance and energy-efficiency; however, it may cause temporal data incon-
sistency (i.e., when external memory and the cache associate different data with the same physical
address). Problems may also arise when several processors with independent caches are sharing the same
low-level memory. Regarding to write policy, there is also a choice whether to use write-allocate or write-
no allocate on a cache-miss. Write-allocate appears to be a better choice for power because subsequent
writes (or reads) to the allocated block may be done directly in the cache.

8.3.3 Cache Accesses Rate

High access rate (N) directly increases the number of tag checks and data reads, magnifying the cache
energy consumption proportionally. If cache is not large enough to capture the majority of code and
data used in relatively long execution period, the average amount of memory transfers will also grow up
elevating both the fetching time and total energy dissipation. A common policy to reduce cache accesses
is to use separate L1 data and instruction caches and increase memory hierarchy. An extra level in cache
hierarchy introduces an extra delay and, therefore, is used only when latency increase is acceptable.

8.3.4 Switching Capacitance Per Access

In conventional caches, bit-lines, word-lines, and sense-amplifiers are the major contributors to the
switching capacitance per access. In an

m

-set associative SRAM cache of size S, block size of L bytes, and
tag size of T bits, the number of bit-lines is proportional to 2*(m*8*L + T) and the number of word-
lines to S/(m*L). Thus, we have: C

∝

 2*(m*8*L + T)*S/(m*L). This provides us with four options to
lower switching capacitance: decreasing the set-associativity, m, reducing the block size, L, reducing the
cache size, S, and shrinking the tag bit-width, T. Note that all these options, except T, inversely affect the
miss rate and, therefore, are viable only when cache switching activity dominates energy consumption.

8.3.5 Voltage

Because supply voltage (V) has a square impact on energy, voltage scaling offers the most effective means
to minimize energy dissipation. Unfortunately, we pay a performance penalty for voltage reduction with
delays drastically increasing as V approaches the threshold voltage Vt

of the devices. Recent advances in
technology have scaled both V and Vt aggressively, while maintaining a single clock access latency to L1
caches; however, reducing Vt increases leakage current, I

L

, and makes the leakage term in Equation (8.1)
appreciable. Another important concern for low V-low Vt regime is the fluctuation in Vt. As V approaches
1 V, a Vt variation of

±

0.15 V causes delay changes by a factor of three. Such a large variation in nominal
delay values cannot be tolerated. This sets a major limitation on how V can be reduced unless the Vt
fluctuation is diminished to the level of

±

0.05 V [15]. Thus, lowering the threshold has a limited option
for countering the effect of reducing V.

8.3.6 Leakage

Reducing energy consumption in CMOS circuits by lowering the supply voltage increases leakage energy
dissipation. Leakage current I

L

 is independent of the circuit activity but dependent on the device area
and temperature. Therefore, it occurs as long as power is supplied to the CMOS device. The on-chip L1

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-6

Low-Power Processors and Systems on Chips

and L2 caches are one of the main candidates for leakage reduction because they utilize a significant
fraction of chip transistors, most of which are inactive during long periods. At 0.13-

µ

m technology,
leakage energy already accounts for 30% of L1 cache energy and as much as 80% of L2 energy [16]. As
technology moves below 0.1

µ

m, leakage energy increases exponentially, dominating the total energy
used by the CPU [17]. Therefore, issues to reduce leakage without affecting performance become very
important for the future low-energy cache design.

8.4 Energy Reduction Techniques

8.4.1 Reducing Cache Access Rate

When accessing a cache it is very likely that a requested word is confined to the block or one of the blocks
in the set, that was last accessed. Thus, we can avoid some references to the cache by placing the most
recently fetched block into a buffer and then reading-out the block data directly from the buffer without
activating cache [18,19]. Figure 8.2 illustrates a structure of block-buffered cache. The cache checks first
whether the line address of the current access is currently resident in the buffer. If there is a block hit,
then the cache data is read from the block buffer without accessing the cache arrays. The normal access,
including bit-line precharging and row-access decoding is performed only when a block-buffer miss
occurs. Although effectiveness of this method strongly depends on the spatial locality of the access pattern
and the block size, it can save 40 to 50% of energy over nonbuffered cache [19].

The main disadvantage of the block buffering is cache-access latency increase. To overcome this
problem, Kamble and Ghose [20] proposed performing cache precharging and block-buffer access in
parallel. Compared with the original block buffering [19], it spends some energy in precharging bit-lines
on a block-buffer hit but does not affect cache latency.

A further extension to the block buffering is to use multiple (e.g., four) line buffers [21] or even a
small direct-mapped level-0 (L0) cache, placed between processor and L1 cache [22,23]. This “filter”
cache helps to omit many of the data accesses, so the L1 cache is not referenced as frequently. If data is
found in the filter cache, energy is saved. If data is not found, however, an extra cycle is needed to access
larger L1 cache. A 256-byte filter cache backed by a 32-KB L1 cache saves energy by 65% on average but
causes a 29% performance degradation in comparison to a conventional cache due to access time increase
on a filter cache miss.

Efficiency of using the L0 cache can be improved in two ways: by increasing data locality or by dynamic
access management. The first approach puts in L0 cache only the most frequently executed instruction

FIGURE 8.2

Block-buffered cache.

Tag�
array

Data�
array

=

Block�
buffer

Tri-state�
buffers

word

Block�
hit?

hit?

Last�
access�
index

hit?

way 1

Address (from CPU)

Tag Index

Tag�
array

Data�
array

=

=

selector selector

way 0

D
ec

od
er

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design

8

-7

blocks or loops, identifying them based on branch prediction unit [24], loop instructions [26], or specific
instructions inserted in the application code [25]. The second approach dynamically predicts the L0-
cache miss and, if the prediction is correct, it accesses the L1-cache directly to reduce the miss penalty
[27]. In small loops, consecutive addresses differ by a few least significant bits. Consequently, if current
access hits (misses) in the L0 cache, the remaining accesses to the same block are likely to hit (miss) in
the L0 cache. As illustrated in Figure 8.3, the approach adds to the caches a next address prediction table
(NAPT), a register (RL) to store the index of the most recently accessed line in L0, and a comparator.
The NAPT has the same number of entries as L0-cache, but stores only four lowest bits of the next
address tag. Both L0-cache and the NAPT are read in parallel. If current access hits L0-cache and the
NAPT entry matches the current address tag, then the next access is directed to L0 cache, and RL is
updated. Otherwise, L1 cache is accessed, and the L0-cache is refilled.

8.4.2 Reducing Switching Capacitance Per Access

As discussed in Section 8.3, several degrees of freedom are inherent in cache organization: cache size,
associativity, block size, and tag size. Reducing switching capacitance in cache can be achieved along
different directions that exploit one or more of these freedoms. Most techniques utilize the same basic
idea: divide the cache arrays into pieces, and then selectively activate on cache access only one that can
hold the data. The partitioning can be determined structurally or behaviorally. The structural partitioning
affects cache structure, while keeping the cache-access operation unchanged. In opposite, the behavioral
partitioning modifies the cache-access sequence but leaves the cache structure unchanged.

8.4.2.1 Structural Partitioning

8.4.2.1.1 Word-Line Segmentation

Word-line segmentation is similar to column multiplexing used in SRAM memories [28]. Cells in each
row are grouped into blocks, and a local word line, as depicted in Figure 8.4, accesses memory cells in
each block. The local word-lines

LWLj

 are connected to a global word

WLs

 line through a transfer gate.
Therefore, only cells in the activated block have their bit-line pair driven. With

k

local lines, the word
line capacitance is reduced by

1/k

.
In caches, this method is usually applied by splitting the data array into subbanks and using the low-

order bits (block offset) of the address to disable subbanks that are not accessed. Figure 8.4 illustrates a
two-way set-associative cache divided in subbanks. Because only one subbank is active per access, the

FIGURE 8.3

L0-cache bypassing hardware.

Data�
array

Tag�
array

D
ec

od
er

selectorselector

word

Hit in�
L0?

Hit in�
L1?

RL

L0-cache NAPT

Address (from CPU)

Tag Index

L1-cache

D
ecoder

Next fetch�
in L0?

==
=

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-8

Low-Power Processors and Systems on Chips

more subbanks in the cache, the better. For example, a 32-KB cache with a block size of 2, 4, 8, and 16
words per block saves energy by 46%, 63%, 80%, and 89%, respectively [19].

8.4.2.1.2 Bit-Line Segmentation

The idea of this method [28] is to split every column of bit-cells into independent segments, as depicted
in Figure 8.5. An additional pair of local bit-lines (LBL) runs across the segments. The lines are connected
to the global bit-lines (BL) through three-state buffers, which are activated/deactivated by the bit-line
control lines (BLC). Before a read access, all segments are connected to the common lines, which are
precharged as usual. The cache address decoder identifies the segment targeted by the row address issued
to the array and isolates all but the targeted segment from the common bit-line. This reduces the effective
capacitive loading on the common line and eventually lowers the energy.

8.4.2.1.3 Bit-Line Isolation

Along with the cache division into subarrays, holding each bit-line and output driver of each subarray
in a constant state of precharge when the array is not being accessed can reduce the switching activity.
The lines remain in a precharge state unless a subarray access is required. In the architecture, column

FIGURE 8.4

An illustration of word-line partitioning and cache subbanking.

FIGURE 8.5

An illustration of bit-line segmentation.

= selector

Tag�
array

Data�
array

…�

= selector

Tag�
array

Data�
array

…�
1 2 b

D
ec

od
er

Tag Index

Address (from CPU)

Sub-�
bank

Tri-state�
buffers

hit?

hit?

hit

Cache sub-bankingWord line partitioning

word

…�

…�

…�

…�

sub-bankj
WLs

WLs +1

RAM�
cell

BLi −1 BLi +1
BLL BLi

LWLj+1
BL1BSLj−1

BLi+2 BSLj
LWLj

Word�
line

sub-bankj+1

Block select lines

Tri-state�
buffers

RAM�
cell

Segment�
of bits

BLi Bit�
lines

Bit-line segmentation A cache with segmented bit-lines

BLi+1

LBLi

LBLi

BLCp+1

WLt+2

WLt+1

BLCp

WLj+1

WLj

WLt

Control�
lines

Word�
lines

WLs

LBLi+1

LBLi+1

D
ec

od
er

Tag�
array

Data�
array

way 0

selector
hit?

=

Tag�
array

Data�
array

way 1

selector

hit?

hit

Tri-state�
buffers

word

=

Tag Index

Address (from CPU)
Segment�
of bit-lines

…
…

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design

8

-9

switches are placed on bit-lines between memory cells and the sense amplifiers to isolate parasitic
capacitor from of bit-lines from the active sense amplifiers [29]. The latch-type sense amplifiers engage
after the column switches turn off. Thus, the sense amplifier load is reduced, and the switching capac-
itance decreases.

8.4.2.1.4 Multiple Cache Decomposition

The key feature of this technique [30] is to split the entire cache into independently addressable, small
modules, each of which is an actual cache with its own cell array and peripheral circuits. A cache generally
can be divided into

M

identical independently selectable modules, with each module further divided into
K subbanks. The subarrays may be created on any appropriate access boundary: byte, word, double-
word, and so forth

.

 The latency of this multi-divided cache architecture is equivalent to that of the single
module and energy consumption is only 1/(M*K) of the regular, nondivided cache. The smaller the cache
size, the bigger savings. A typical example is the SA-110 [9], which divides its 32-way associative 16-KB
L1-I and L1-D-caches into 16 fully associative sub-arrays, so that only one eighth of the cache is enabled
per access. With a 160-MHz target clock frequency, the SA-110 designers were able to maintain single
cycle cache latency with this degree of associativity.

8.4.2.1.5 Cache Decomposition by Data Types

Locality of cache accesses increases when subcaches are organized by data types. For example, a cache
might have three modules: one for stack data only, another for global data, and the third for other data
types [31]. The modules may be different in size (e.g., 4 KB, 4 KB, and 32 KB, respectively) and activated
separately. When only the stack-module is referenced, the overall energy dissipated in cache can be
reduced by 70% in comparison with a conventional cache.

8.4.2.2 Behavioral Partitioning

Current L1 set-associative caches are designed to operate in a single clock cycle. To ensure single-cycle
operation, the caches probe all the data ways in parallel with the tag lookup, although the output only
of a single matching way is used. The energy spent accessing the other ways is wasted. To save energy,
designers make the way select in tag array to precede search in the data array [29]. Although this ordering
can be efficiently used in multi-cycled L2 caches, it slows the access time of L1 caches by almost 60%
[32]. Next, we present techniques that try to balance the speed-energy characteristics of L1 cache by
dynamically optimizing the cache-access.

8.4.2.2.1 Phased Array Activation

The key idea of this method [33] is to drive the tag array and the data array by two different clocks:

C1

and

C2

 (see Figure 8.6). If clock frequency is high, the difference between C1 and C2 is small. In this
case, both ways in the data array start the access before the tag array dispatches the way select signal.
Once the way select signals are produced in the tag array, unselected ways of the data array stop their
access. If the clock frequency goes lower, the difference between C1 and C2 becomes long enough to
allow generation of the way select signals to complete before the rising edge of C2. Thus, the only one
way of data array is activated, resulting in low-energy operation. Although this so called “

automatic-
power save architecture

” reduces the fastest access speed by a quarter, a low area overhead and large energy
savings (almost 60%) make it very promising to adjust energy consumption to workload variation. The
approach has been adopted in Hitachi’s SH3 and Super-H microprocessors.

8.4.2.2.2 Way Prediction

Way prediction was originally proposed to reduce cache access time [34]. The idea is to predict the way
in which data can be found prior to the cache access and probe the way instead of waiting on the tag
array to provide the way number. Because only the predicted way is accessed, the method also offers
immediate benefits for energy savings. A way-predicting scheme [35] speculatively chooses the most-
recently used way to access, while disabling the nonaccessed ways. When prediction is correct, the cache
completes operation in one cycle (see Figure 8.7), consuming single-way energy only. Otherwise, it
searches the other ways in parallel and spends two clock cycles without any energy reduction. The way-

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8

-10

Low-Power Processors and Systems on Chips

prediction improves the energy-delay product of cache by 60 to 70%; however, it incurs large performance
loss on each misprediction.

Enforcing way prediction with other techniques can save cache energy without compromising per-
formance. One approach is to unite way prediction with selective direct mapping [36]. Because 70 to
80% of blocks accessed in L1 D-cache are nonconflicting, allocating these blocks to direct-mapped
positions can avoid both way prediction and tag checks. To identify conflicting blocks, the reactive cache
[37] uses a list of recently replaced blocks, or victims. On a replacement, if the evicted block is present

FIGURE 8.6

Automatic power-save cache architecture.

FIGURE 8.7

An illustration of a way-predicting scheme.

C1

C1

C2

C2

Tag�
array�

0

Tag�
array�

1

way 0

Tag

Tri-state�
buffers

way�
select�
signal

Index

way 1

D
ec

od
er

= =

selectorselector

Tri-state�
buffers

way 0

hit

way 1

D
ec

od
er

90º�

word

Data�
array�

0

Data�
array�

1

Predicted way

way 0 way 1 way 2 way 3

Predicted way

way 0 way 1 way 2 way 3

Tag Data

way 0 way 1 way 2 way 3

Hit

cy
cl

e
2

cy
cl

e
2

cy
cl

e
1

cy
cl

e
1

Accessed�
line

Miss

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design

8

-11

in the victim list, its entry’s counter in the list is incremented; otherwise, a new victim list entry is
created. Those blocks whose counter exceeds two are conflicting and placed in the set-associated position
to avoid future conflicts. On access, the cache predicts whether the access is direct or set-associative. If
prediction is correct, the cache probes only the matching data way, while a misprediction initiates a
second probe of the correct data way. If a hit occurs in the direct-mapped way, the counter associated
with the block is decremented. If a set-associative way hits, the counter is incremented. In comparison
with original way prediction, the approach achieves the same energy-delay reduction but at less than
3% performance overhead.

Another approach [38] combines way prediction with phased-cache access based on a pseudo-asso-
ciative cache. The cache utilizes a steering table and two schemes of phased-cache access to predict which
way to probe first. The first scheme probes only a predicted way and, if the probe fails, it activates all the
ways at the second attempt. The second scheme activates all the tag arrays and data array of the predicted
way. If the prediction fails, the data array of correct way is subsequently accessed. A similar idea is
advocated in [39]. In this proposal, prediction logic operates in parallel with the translation look-aside
buffer (TLB) lookup. Based on the prediction, the cache controller activates appropriate subcache by
sending the physical address. If the selected subcache hits, the access ends. Otherwise, the controller looks
for the next subcache to probe. The reprobing continues until the data is found or it is determined not
to be on-chip subcaches. The architecture reduces the number of external memory accesses, improving
both the system energy and delay by 42 and 23%, respectively.

8.4.2.2.3 Selective Cache Ways
This method [40] is one of the first attempts to adapt cache associativity to workload variation as between
applications as well as during execution of an individual application. The idea is to disable some cache
ways for applications that do not require full cache associativity, while enabling them for applications in
which high performance is necessary. Figure 8.8 is a two-way set-associative cache with selective ways.
In addition to the standard cache modules, the structure includes a cache controller, gating hardware for
disabling operation of particular ways, and a software visible cache way select register (CWSR). The
CWSR is modified by the operating system (OS) and contains k bits, each of which signals the cache
controller to enable/disable a particular way. A zero value of the CWSR bit nulls the corresponding set-

FIGURE 8.8 A two-way, set-associative cache using selective ways.

Address (from CPU)

Tag Index

Tag�
array

D
ec

od
er way 0�

Data�
array

=
selector

Select�
way 1word

hit

Select�
way 0

CWSR

precharge

Cache control

Tag�
array

D
ec

od
er

=
selector

en. way 0 en. way 1

Sense�
amps

way 1�
Data�
array

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8-12 Low-Power Processors and Systems on Chips

way signal thereby preventing a data way from precharging, bit selection, and firing the sense-amps. The
OS monitors the performance degradation threshold and changes the number of ways enabled in the
cache. Due to adaptive associativity, the cache energy can be reduced by 25 to 40% on average for a 64-
KB, four-way set-associative cache with less than 2% loss in performance, and 10 to 25% for a 32-KB
four-way cache. What it needs is specific software support for analyzing application requirements and
modifying the CWSR. In addition, it requires an extra support for sharing data in disabled ways and
maintaining its proper coherency state.

In conventional caches, some sets experience a higher access load and many more misses than others.
Although most of the accesses tolerate quite a low associativity, frequently referenced addresses in
programs require high associativity. Intuitively, we can reduce miss penalty by assigning more ways to
the frequently used sets than others do (i.e., by making the cache asymmetric) [41]. Figure 8.9 gives an
example. Extra associativity is shared by having two cache blocks from the large ways align with individual
cache blocks of the smaller ways. In the asymmetric cache, the smaller ways are faster and consume less
energy. A hit in a smaller way disables the sense amplifiers in all larger (or slower) ways. Because about
half of the energy per access in dissipated on the data sense-amps, early hits on faster ways increase energy
efficiency. Compared with the conventional cache, an asymmetric cache can save up to 17% with random
replacement policy and 13% with least recently used (LRU) replacement policy. The hit latency is
determined by the slowest way that produces a hit, plus overhead to route the data after the hit is detected.

8.4.2.2.4 Selective Cache Sets
Alternatively to the preceding approach, which alters set-associativity, this method [16,42] explores the
second dimension in cache design, namely the number of cache sets, changing it in response to varying
application demand for the cache size. Figure 8.10 is a two-way set-associative cache with dynamically
resizable sets. The controller monitors cache operation in fixed-length intervals counting the number of
misses. At the end of each interval, it increments/decrements the number of sets, depending on whether
the miss count is lower/higher than a predefined threshold. The minimum number of sets achievable is
a single sub-array per cache way. Because changing the number of sets alters both the required index
and the tag bits, the cache includes a set-mask to indicate the number of index bits used in cache. Every
time the cache is downsized, the mask shifts to the right, to enable fewer index bits (but more tag bits)
and vice versa. The downsizing disables the high-order sets in the cache in groups of power of two.
Because the cache maintains as many tag bits as required by the smallest number of sets, the tag array
is larger than in the normal cache.

The method is orthogonal to selective cache ways and, therefore, can be combined into hybrid cache
architecture to reduce energy dissipation. According to Yang [16], the method has better energy-delay

FIGURE 8.9 An asymmetric cache.

way 3
way 2

D
ec

od
er

way 0 way 1

Address (from CPU)

Tag Index

Tags

Selector

Miss

Hit Word

Sense�
amps

Disable

====

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design 8-13

than the selective-ways when set-associativity is no more than four. At the same time, selective cache-
ways is more beneficial for applications with small variation in cache size requirement. The hybrid cache
has the best energy-efficiency but larger area.

8.4.2.2.5 Selective Line Sizing
Line (or block) length is the third dimension of cache optimization. The optimal line size, which results
in minimal miss rate, varies with applications as well as within the application [43,44]. Most processors
use only one cache line size and, therefore, often consume redundant energy. MIPS R3000 [45] supports
multiple cache line sizes, but line size is configurable at boot time. It will be ideal if a cache line size can
vary with application.

The line size can be controlled by software. If the compiler knows that the application only needs
one word, only one word is fetched, and only that word and tag is activated in the cache. A cache can
employ two fixed line sizes, changing them at runtime based on locality of data, as is done in Tang et
al. [46]. The long “fetch size” is used for applications with good spatial locality and short fetch size for
applications with good temporal locality. The line size is predicted for an interval of time by profiling
the miss rate over a number of fetch sizes and selecting one with minimal miss rate. The dynamic
profiling requires additional hardware and may affect performance on misprediction. If the prediction
interval is much longer than the profiling time, however, the approach can benefit caches, especially
those with large miss latencies.

Another example is the span cache [47]. In the RAM-based span cache line, each word can store both
data and tag. To indicate whether the word is a tag or a datum an extra bit (t-bit) is attached to each
word. The tags divide the set into spans of potentially different length. The length of line is determined
by finding the next (t-bit) or the end of the set. A large overhead incurred by range-check and word-
selection makes this cache quite challenging to build.

8.4.2.2.6 Reducing Switching Activity of Tag Checks
Conventional caches perform tag comparison on every access to detect whether the requested datum is
within the cache. The tag operations associated with tag check are typically designed for a worst-case
scenario and, therefore, utilize the entire effective address. In high associativity caches, the tag length
approaches the length of the entire effective address, which results in energy expensive tag reads and
comparisons. A k-way set-associative cache does k tag-checks in parallel even if only one way contains
the requested data. If the same block is sequentially accessed, all the tag checks, except the first one,
become unnecessary because all words within the same block have a common tag.

To avoid these redundant tag-checks, Panwar and Rennels [25] proposed testing whether the target
instruction resides in the same cache block as the previous instruction. Although program counter can
control this condition, it requires tagging each branch instruction to indicate whether the branch control

FIGURE 8.10 An organization of a two-way, set-associative cache with selective sets.

selector

D
ec

od
er

selector==

Tags Data

word

Tags Data
Enabled�

sets

Disabled�
sets

Set-mask

Address (from CPU)

Tag Index

0…0 1…1

upsize

upsize

downsize

downsize

mask-pointer

Controller

Threshold

miss

masked tag

masked�
index

0 1 1

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8-14 Low-Power Processors and Systems on Chips

is transferred outside the current line. A variant of this technique is to store the address index of the last
line accessed within each bank and enable cache tags only if a different line is being accessed. In addition,
a possible alternative is to memorize the tag of the last cache line that was accessed and compare it against
the tag of the next memory access before enabling the tag search [48]. The main disadvantage of these
solutions is that they introduce a wide compare operation into the critical path of every cache access,
enlarging the delay of this latency-sensitive path.

Several techniques have been proposed to reduce tag-checks in I-cache without sacrificing perfor-
mance. One is way-memorization [49]. Similar to way-prediction, the technique stores way information
(links) within the cache but in addition maintains one “valid bit” per link to indicate that the link is
correct. If the valid bit is set, the cache follows the link to locate the next instruction, thereby avoiding
a tag check. Otherwise, it falls back to a regular tag comparison to find the target instruction and update
the link. The following instruction fetches reuse the valid link. The approach is orthogonal to other
methods and can be applied regardless of cache associativity. Compared with way-prediction, the way
memorization can save an extra 13% of energy but requires a large area due to keeping the links inside
the cache.

Another technique is a history-based tag-comparison [50]. The idea is to omit tag check if the target
instruction has been already referenced in the past and no cache misses have occurred since that reference.
To validate the condition, the cache records the history of accesses through execution footprints placed
in an extended branch target buffer (BTB). An execution footprint indicates whether the target instruction
block associated with the branch currently resides in the I-cache. A footprint is recorded when the
corresponding block is referenced and erased whenever a cache miss occurs. On access, the cache checks
a particular footprint and, if it is valid, avoids the tag check. Otherwise, it invalidates all the previously
stored footprints, while setting a corresponding footprint associated with the newly referenced block.
The technique reduces the cache energy by 17% with almost no impact on performance.

A compiler-driven tag check reduction for I-caches is reported in Witchel et al. [51]. Because the
compiler often knows when the program is accessing the same piece of memory, the number of tag
comparisons can be significantly reduced if the software guides hardware. The proposed directly addressed
(DA) cache is augmented with a number of DA-registers to indicate exact locations of cache lines in the
data array as well as status bits. The DA-registers are amenable by software, using extended versions of
load, store, and jump operations. A load instruction, for example, causes a proper DA-register to record
the location of the referenced line, as depicted in Figure 8.11. A tag-unchecked load or store instruction
analyzes the DA-register and if it is valid, the cache line pointed to by the DA-register is accessed without
any tag-check, and the word specified by the line offset is transferred to processor. Otherwise, hardware

FIGURE 8.11 A direct-addressed cache.

DA-�
register

Tag�
array

Data�
array

way 1

Tag�
array

Data�
array

way 0

D
ec

od
er

selector selector

da2Index

Address (from CPU)

Tag

= =
hit

hit word

tag-checked access tag-unchecked access

miss

DA-�
register

Tag�
array

Data�
array

way 1

Tag�
array

Data�
array

way 0

D
ec

od
er

selector selector

da2Index

Address (from CPU)

Tag

= =
hit

hit word

miss

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design 8-15

performs the tag search and sets the DA-register. The technique saves energy by up to 40%; however, it
might affect code compatibility due to the specific compilation scheme.

Another option in lowering the tag activity is to reduce the number of tag bits, which are read from the
cache and used in the comparison. If referred locations are close in the address space, a small number of
least significant bits can be enough to distinguish all the possible conflicting addresses in the line. The number
of required tag bits can be determined for each loop by compiler, which inserts instructions to disable
appropriate tag bits at the beginning of the loop and to enable the bits at the end of the loop, respectively
[52]. During operation, this number is loaded to a control register which directly enables/disables particular
bit-lines of the cache tag and gates the tag comparator cells. The method also can be applied for data caches
if the compiler places the data sets within a region covered by one tag, or spanning more than one tag region
by overlapping some of the data arrays [53]. The only problem is code compatibility.

8.4.2.2.7 Data Compression
Bit-line switching is the main source of energy consumption in cache memories. Subbanking, segmented
bit-lines, and hierarchical bit-lines decrease bit-line capacitance switched on each access by exploiting
the address locality. Interestingly, data values in caches also exhibit high locality, being asymmetrically
distributed across the bit-lines. Leveraging this uneven data distribution can increase energy savings.

Dynamic zero compression [54] is based on observation that over 70% of the cache values are zeros;
so compressing these zeros can avoid redundant bit-line charging/discharging. The scheme adds an extra
bit to each cache byte to indicate whether the byte contains all zeros. On a read access, the scheme
prevents bit-line discharge by disabling the local word-line for each byte when the zero-indicator bit
(ZIB) is set. If the ZIB is not set, the eight bits are read normally. On a write access, only the ZIB is
written if byte is zero. Otherwise, both the data bits and the ZIB are written. The approach reduces the
data cache energy by 26% and instruction cache energy by 10% under 9% area overhead and 7% clock
penalty. It, however, is applicable to zero patterns only.

Besides zeros, just a few distinct values occupy the majority of cache locations [55]. These values are
scattered somewhat uniformly across cache and remain almost the same during program run. We can
exploit this phenomenon by dividing the data array into two parts, as depicted in Figure 8.12 [55]. The
frequent values are stored in encoded form (2 to 7 bits) in the low-bit data array, while nonfrequent
values are stored in unencoded form (32 bits) in both data arrays. A flag bit is attached to each word in
the low-bit data array to indicate whether the word is encoded or not. On read access, the cache reads

FIGURE 8.12 The frequent-value cache.

Frequent�
value

Tag�
array

Low-bit�
array

High-bit�
array

D
ec

od
er

selector

decoder

encoder

Non-�
frequent�

valueFrequent�
value

Word

selector

Address (from CPU)

Tag Index

flagsEncoded data Block�
offset

Sense�
amps

1 0

1 0

=
hit

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8-16 Low-Power Processors and Systems on Chips

out the low-bit data array; if the flag points to an encoded word, then it decodes the word and completes
the access without activating the high-bit array. Otherwise, it does not perform decoding but takes another
clock cycle to read the remainder of the word from the second data array. The full value in this case is
obtained by concatenating the two parts of the word. On write access, the incoming value is checked
within the CAM-based encoder; if it is frequent, it is stored in cache in the encoded form jointly with
the flag. Otherwise, the flag is stored with unencoded, original word. Although up to 32% energy saving
has been reported for the eight-way 64-KB cache, the main challenge exists in implementation of the
CAM-based data coding-decoding (codec) capable of detecting frequent values with low impact on
performance and area.

Obviously, the compression in caches is neither limited to these two schemes nor to data arrays.
According to Mahapatra et al. [56], existing compression techniques can reduce access times for L1 cache
by 1/3, area by 2/3, and power consumption by 1/2.

8.4.3 Voltage Reduction

A widely used technique to limit the voltage swing in RAM is the word-line pulsing [57]. Pulses, short
enough to read or write the cell arrays, activate the word-lines. The pulse level does not swing fully
between Vdd and ground level: it is restricted to narrow range, and it is wide enough for correct sense-
amplifier operation. This technique is effective in caches regardless of operating frequency.

Due to critical dependence of processor performance on cache operation, reducing voltage in caches
without increasing the delay is very difficult. If cache is block-buffered, however, the supply voltage to
buffer can be reduced. In block-buffered cache (Figure 8.2), the buffer and the arrays are operated by a
single voltage that must be high enough to charge (discharge) the cache circuits in the clock-time interval.
Because the circuit capacitance operated on the block-hit is less than that accessed on the block-miss,
the block-buffered cache has an idle time on each block-hit. This idle time can be traded with voltage if
the block buffer is operated by a dual voltage supply [58]. At the first phase of clock cycle 1, the cache
precharges the memory arrays for read, decodes the address, and compares the address tag with the
block-buffer tag. At the next phase, if there is a block-hit, the cache disables the arrays from the read
port and enforces the low voltage. This voltage slows down the word selection from the block, filling the
idle time with action. In opposition, when the block-miss is detected, the high voltage is selected to
accelerate the operation. In this case, the cache reads out the selected block into the array output latches.
In the next clock cycle, it performs tag comparison I (phase 1) and, if there is a hit, drives the matched
block from the data array, copying it concurrently to the buffer and outputting the requested data word
from the block (phase 2). The method maintains the performance of a single-voltage block-buffered
scheme, while saving its energy consumption by up to 36% for programs with high data correlation.

8.4.4 Leakage Energy Reduction

Many techniques are used to reduce leakage energy dissipation at the circuit/technology level (see Chapter
3). Most of these techniques, however, affect circuit performance and, therefore, are not suitable to
performance-critical circuits, such as caches [59]. Efforts have been put to devise micro-architectural
techniques capable of reducing leakage energy dynamically (i.e., during program run) with less cost and
area overhead. Usually, powering off unused SRAM devices reduces leakage energy. To shrink it dynam-
ically we need a policy: when and what to switch off. Current microprocessors use a simple OS-driven
policy: deactivate the entire processor when it enters a sleep mode.

A more intelligent solution is to disable cache sets that eventually become inactive during program
execution [60]. The proposal combines selective cache sets [16] with a circuit technique, called gated-
Vdd, which inserts an extra transistor in the supply voltage (Vdd) or the ground path (Vss) of the cache’s
SRAM cells; the extra transistor is “turned on” in the active sets and “turn off” (or gated) in inactive
sets. In comparison to conventional cache, the proposed dynamically resizable I-cache (or DRI cache)
[42] reduces energy-delay by 62% with 4% latency increase.

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design 8-17

Cache-line decay [61] exploits a similar idea but at a granularity of cache-line and without resizing.
Motivated by the fact that almost half of cache lines remain unused for a long period of time, the technique
turns-off the least recently used cache lines assuming that these lines will be not referenced in the future.
In design, a counter is attached to each cache line, as depicted in Figure 8.13. The counter is incremented
periodically at fixed time intervals (set by the global counter) and cleared on each access to the line. Once
a line counter reaches its maximum count, the corresponding cache-line is invalidated, and its voltage
supply is turned off via a gated-Vdd transistor. The scheme results in roughly 70% reduction in L1 data
cache leakage energy.

The main drawback of these approaches is that the state of the cache line is lost when it is turned off.
Reloading the line from L2 cache not only hurts performance, but could also diminish energy savings.
To avoid these pitfalls, it is necessary to use adaptive algorithms and be conservative about which line is
turned off. Another drawback of these schemes is dependence of arbitrary parameters that must be tuned
per application to minimize the performance penalty. In the case of DRI cache, the number of active
cache sets is increased or decreased based on the miss bound which must not exceed the application’s
typical miss rate. In case of cache line decay, the control parameter is line decay interval. Tuning such
parameters by application profiling may be difficult because the results differ as within as well as across
application. To overcome this limitation, Zhou et al. [62] suggests keeping the tag arrays active to
dynamically monitor the cache miss rate and adjust the miss rate based on relative factor instead of an
arbitrary, absolute value. The proposed adaptive mode control (AMC) examines the ratio of sleep misses
to ideal misses, and if it is “too small,” reduces the line decay interval to deactivate more lines. If the ratio
is “too large,” the line decay interval is increased. Otherwise, the interval remains constant. The hardware
implementation of the AMC is relatively compact and requires two counters and a small logic to modify
the new line-decay interval based on the miss ratio. On average, the method can turn off up to 73% of
I-cache lines and 54% of D-cache lines with less than 2% performance loss.

Leakage reduction in caches can also be achieved by putting a cache line into a low-energy “drowsy”
mode, as proposed in [63]. To implement drowsy caches, authors add a “drowsy bit” to each cache line
and supply two voltages (Vdd-low and Vdd-high) to the cell array. The lines are put into drowsy mode
either periodically (simple policy) or based on access statistics (i.e., only those lines which have not
been accessed in a fixed time interval). Whenever cache is accessed, it reads the drowsy bit of corre-
sponding line; if it indicates normal mode, the line is read without losing performance. If it indicates
that the line is in drowsy mode, however, the line is woken up in the next cycle and then read. Compared
to caches that use gated-Vdd technique, drowsy caches preserve line information and switch faster
between the power modes. The penalty they pay for being wrong is a single clock cycle to wake up
drowsy lines; however, drowsy caches depend on process variation and do not reduce leakage energy
of L1-cache as much as the others. Even in drowsy mode, a cache consumes a quarter of the normal
mode energy.

FIGURE 8.13 An illustration of cache-decay scheme.

Global counter

Local�
counter

v

v

v

v

D
ec

od
er

Valid bits�
(always powered)

v…
�

Cache line

Cache line

Memory�
cellPower-offReset

Word-line

Vg

B B

Cascaded control

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

8-18 Low-Power Processors and Systems on Chips

Several works exploit the fact that leakage of a block depends on input pattern and internal state
[64,65]. To minimize leakage they apply, a combination of input patterns and internal state (so called
sleep-vector) is applied to set internal latches into the correct state and turn inputs to the correct polarity.
As Heo et al. [66] demonstrates, the leakage current from a bit-line into the memory cell depends on
the stored value on that side of the cell. That is, there is no leakage if the bit line is at the same value as
that stored in the cell. Therefore, if we assume that there are more zeros than ones in cache, we could
reduce the bit-line leakage of inactive subbank by setting the true line to zero, while keeping the
complement line precharged. If this assumption is incorrect, however, the “sleep vector” approach leads
to additional energy dissipation. Another solution is to use leakage-biased bit-lines [66]. Instead of
setting bit-lines of inactive subbanks to a sleep-value, this scheme turns-off both the precharging
transistors and sense-amplifiers, letting the bit-lines float to midrail. Because the precharge transistor
switches exactly the same number of times as in conventional SRAM, the energy-performance overhead
of the scheme is small; the precharge is only delayed until the subbank is accessed, and the wake-up
latency is just that of the precharge phase. Using the scheme to deactivate SRAM read paths within I-
caches saves over 24% of leakage energy and 22% of total I-cache energy at 0.07-µm processes. The
cache, however, must be designed to deactivate blocks for multiple cycles and preferably to give them
an early notice when to be reawakened.

8.5 Conclusion

We surveyed techniques that have been proposed to reduce energy consumption in caches. The presented
survey is not comprehensive; instead, we have focused on the architectural optimizations for reducing
the cache accesses, switching activity, voltage, and leakage. Even though a broad range of techniques have
been proposed, many possible research directions remain.

First, most of the techniques presented here, except structural partitioning, have not been imple-
mented. The challenge remains to integrate them into the design in which power plays as large a role as
performance. Second, the cache design space is large and involves complicated tradeoffs. Exploring
alternative hardware/software schemes to determine the less energy-consuming cache configuration for
given performance constraint and voltage level is another big challenge. Third, static cache design cannot
respond to variable applications and thus is inefficient from the energy reduction perspective. If we want
to keep energy dissipation within the bounds of the future microprocessor generations, we need to move
forward self-adjusting and adaptive cache architecture that can quickly and efficiently respond to the
application change as well as varying data statistics. Another challenge is to develop architecture-driven
techniques capable of performing cache reconfiguration based on application requirements on cache size
or IPC. This is promising not only for applications where throughput can be traded for low energy, but
also for reducing leakage. Fourth, leakage energy reduction by powering off unneeded portions of the
cache induces additional off-chip accesses and increased latency. A definite challenge exists for exploring
cache resizing trade-offs to carefully balance leakage energy with other energy components.

8.6 Acknowledgments

The research was supported in part by The Ministry of Education, Technology, Science, Sports, and
Culture of Japan, Grant-in-Aid for Creative Basic Research (A) No.14GS0218, Grant-in-Aid for Scientific
Research C (2) No.14580399, and Grant-in-Aid for Encouragement of Young Scientists (A) No.14702064.

References

[1] Naffziger, S.D., et al. The implementation of the Itanium2 microprocessor, IEEE J. Solid-State
Circuits, Vol. 37, 11, 1448, 2002.

[2] Intel, A detailed look inside the Intel NetBurstTM micro-architecture of the Intel Pentium4
processor, Nov. 2000, http://developer.intel.com/design/pentium4/manuals/248966.htm.

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://developer.intel.com/

Low-Power Cache Design 8-19

[3] Jain, A., et al. A 1.2-GHz alpha microprocessor with 44,8GB/s chip pin bandwidth, IEEE Int. Solid-
State Circuits Conf., Dig. of Tech. Papers, 2001, 240.

[4] Heald, R., et al. A third-generation SPARC V9 64-b microprocessor, IEEE J. Solid-State Circuits,
37, 11, 1526, 2000.

[5] Johnson, D.J.C., HP’s Maco processor, Microprocessor Forum, Oct. 2001.
[6] Behling, et al. The Power4 processor introduction and tuning guide, IBM Redbooks, Nov. 2001,

available from http://www.redbooks.ibm.com.
[7] Northrop, G., et al. 600-MHz G5 S3/390 microprocessor, 1999 IEEE Int. Solid-State Circuits Conf.,

Dig. of Technical Papers, 88, 1999.
[8] Alvarez, J., et al. 450-MHz Power PC microprocessor with enhanced instruction set and copper

interconnect, IEEE Int. Solid-State Circuits Conf., Dig. of Tech. Papers, 96, 1999.
[9] Montanario, J., et al. A 160-MHz 32-b 0.5-W CMOS RISC microprocessor, IEEE Int. Solid-State

Circuits Conf., Dig. of Tech. Papers, 1996.
[10] Chandrakasan, A. and Brodersen, R., Low-Power Digital CMOS Design, Kluwer Academic Publish-

ers, Dordrecht, 1996.
[11] Power-Aware Design Methodologies, Rabaey, J. and Pedram, M., Eds., Kluwer Academic Publishers,

Dordrecht, 2002.
[12] Shiue, W.-T. and Chakrabarti, C., Memory design and exploration for low-power, embedded

systems, J. VLSI Signal Processing, 29, 167, 2001.
[13] Gary, S., Low-power microprocessor design, in Low-Power Design Methodologies, Rabaey I. and

Pedram M., Eds., Kluwer Academic Publishers, Dordrecht, 1996, 255.
[14] Hu, Z., Martonosi, M., and Kaxiras, S., Improving cache power efficiency with asymmetric set-

associative cache, Proc. Workshop on Memory Performance Issues, held jointly with ISCA-2001,
Goteborg, Sweden, June 30–July 1, 2001.

[15] Kobayashi, T. and Sakurai, T., Self-adjusting threshold voltage scheme for low-voltage high-speed
operation, Proc. IEEE Custom Int. Circuits Conf., 1994, 271.

[16] Yang, S.-H., An integrated circuit/architecture approach to reducing leakage in deep-submicron
high-performance I-caches, Proc. 8th Int. Symp. on High-Performance Comput. Architecture, 2001.

[17] Borkar, S., Design challenges of technology scaling, IEEE Micro., 19(4):23, 1999.
[18] Bunda, J., Athas, W., and Fussel, D., Evaluating power implications of CMOS microprocessor design

decisions, Proc. Int. Workshop on Low-Power Design, 1994, 147.
[19] Su, C.L. and Despain, A.M., Cache design trade-offs for power and performance optimization: a

case study, Proc. Int. Symp. on Low-Power Design, 1995, 69.
[20] Kamble, M.B. and Ghose, K., Analytical energy dissipation models for low-power caches, Proc. Int.

Symp. on Low-Power Electron. and Design, 1997, 143.
[21] Ghose, K. and Kamble, M.B., Reducing power in superscalar processor caches using sub-banking,

multiple line buffers and bit-segmentation, Proc. Int. Symp. on Low-Power Design, 1999, 70.
[22] Kin, J., Gupta, M., and Mangione-Smith, W., The filter cache: an energy-efficient memory structure,

Proc. 30th Annu. IEEE/ACM Int. Symp. on Microarchitecture, 1997, 184.
[23] Bajwa, R.S., et al. Instruction buffering to reduce power in processors for signal processing, IEEE

Trans. on Very Large-Scale Integration Syst., 5(4):417, 1997.
[24] Bellas, N., Hajj, I., and Polychronopoulos, C., Using dynamic cache management techniques to

reduce energy in a high-performance processor, Proc. 1999 Int. Symp. on Low-Power Electron. and
Design, 1999, 64.

[25] Panwar R. and Rennels, D., Reducing the frequency of tag compares for low-power I-cache design,
Proc. 1995 Int. Symp. on Low-Power Electron. and Design, 1995, 57–62.

[26] Lee, L.-H., Moyer, B., and Arends, J., Instruction fetch energy reduction using loop caches for
embedded applications with small tight loops, Proc. Int. Symp. on Low-Power Electron. Design, San
Diego, CA, 1999, 267.

[27] Tang, W., Gupta, R., and Nicolau, A., Design of a predictive filter cache for energy savings in high
performance processor architectures, Proc. Int. Conf. on Comput. Design, 2001, 68–73.

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.redbooks.ibm.com/

8-20 Low-Power Processors and Systems on Chips

[28] Itoh, K., Low-Power Memory Design, in Low-Power Design Methodologies, Rabaey, J. and Pedram,
M., Eds., Kluwer Academic Publishers, Dordrecht, 1996, 201.

[29] Hasegawa, A., et al. SH3: high code density, low power, IEEE Micro., 1995, 11.
[30] Ko, U., Balsara, P.T., and Nanda, A.K., Energy optimization of multilevel cache architectures for

RISC and CISC processors, Trans. IEEE Very Large-Scale Integration (VLSI) Syst., 6(2):1998, 299.
[31] Lee, H.S., and Tyson, G.S., Region-based caching: an energy-delay efficient memory architecture

for embedded processors, Proc. Int. Conf. on Compilers, Architecture, and Synthesis for Embedded
Syst., 2000, 120.

[32] Wilson, S.J.E. and Jouppi, N.P., An enhanced access and cycle time model for on-chip caches.
Technical report 93/5, Digital Equipment Corporation, Western Research Laboratory, Palo Alto,
CA, 1994.

[33] Shimazaki, Y., An 8-mW, 8-KB cache memory using an automatic power-save architecture for low-
power RISC microprocessors, IEICE Trans. Electron., E79-C(12):1693, 1996.

[34] Calder, B. and Grunwald, D., Next cache line and set prediction, Proc. Int. Symp. on Computer
Architecture, 1995, 287.

[35] Inoue, K., et al. Way predicting set-associative cache for high performance and low energy con-
sumption, Proc. 1999 Int. Workshop on Low-Power Design, 1999, 273.

[36] Powell, M., et al. Reducing set-associative cache energy via way prediction and selective direct-
mapping, Proc. 34th Annu. IEEE/ACM Int. Symp. on Microarchitecture, 2001, 54–65.

[37] Batson, B. and Vijaykumar, T.N., Reactive associative caches, Proc. 2001 Int. Conf. on Parallel
Architectures and Compilation Techniques, 2001, 49–60.

[38] Huang, M., et al. L1 data cache decomposition for energy efficiency, Proc. Int. Symp. on Low-Power
Electron. Design, Huntington Beach, CA, 2001, 10.

[39] Kim, S., et al. Power-aware partitioned cache architecture, Proc. Int. Symp. on Low-Power Electron.
Design, Huntington Beach, CA, 2001, 64.

[40] Albonesi, D.H., Selective cache ways: on-demand cache resource allocation, Proc. 32th Int. Symp.
on Microarchitecture, 1999, 248.

[41] Hu, Z., Kaxiras, S., and Martonosi, M., Improving cache power efficiency with an asymmetric set-
associative cache, Proc. Workshop on Memory Performance Issues, Goteborg, Sweden, June 30–July
1, 2001.

[42] Yang, S.-H., et al. Exploiting choice in resizable cache design to optimize deep-submicron processor
energy-delay, Proc. 8th Int. Symp. on High-Performance Comput. Architecture, 2003, 151–161.

[43] Gonzales, A., Aliagas, C., and Valero, M., A data cache with multiple caching strategies tuned to
different types of locality, Proc. Int. Conf. on Supercomputing, 1995, 338.

[44] Inoue, K., Kai, K., and Murakami, K., High-bandwidth, variable line-size cache architecture for
merged DRAM/logic LSIs, IEICE Trans. on Electron., E81C(9):1438, 1999.

[45] MIPS Corporation. MIPS R3000 Hardware Manual, MIPS Corporation, Mountain View, CA.
[46] Tang, W., Veidenbaum, A.V., and Gupta, R., Architectural adaptation for power and performance,

Proc. 14th Annu. IEEE Int. ASIC/SOC Conf., Oct. 2001, 127–130.
[47] Witchel, E. and Asanovic, K., The span cache: software controlled tag checks and cache line size,

in Proc. Workshop on Complexity-Effective Design, ISCA-28, Goteborg, 2001.
[48] Burd, T., Energy-efficient processor system design, Ph.D. thesis, University of California–Berkeley,

May 2001.
[49] Ma, A., Zhang, M., and Arsanovic, K., Way memorization to reduce fetch energy in instruction

caches, Proc. Workshop on Complexity-Effective Design, ISCA-28, Goteborg, Sweden, June 30–July
1, 2001.

[50] Inoue, K., Moshnyaga, V. G., and Murakami, K., A history-based I-cache for low-energy multimedia
applications, Proc. Int. Symp. on Low-Power Electron. and Design, 2002, 148.

[51] Witchel, E., et al. Direct addressed caches for reduced power consumption, Proc. 34th Annu. IEEE/
ACM Int. Symp. on Microarchitecture, Austin, TX, Dec. 1–5, 2001.

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Cache Design 8-21

[52] Petrov, P. and Orailoglu, A., Energy-frugal tags in reprogrammable I-caches for application-specific
embedded processors, Proc. ACM CODES, May 6–8, 2002, 181–186.

[53] Petrov, P. and Orailoglu, A., Data cache energy minimization through programmable tag size
matching to applications, Proc. IEEE Int. Symp. on System Synthesis, Sept. 30–Oct. 3, 2001.

[54] Villa, L., Zhang, M., and Asanovic, K., Dynamic zero compression for cache energy reduction,
Proc. 33rd Annu. IEEE/ACM Int. Symp. on Microarchitecture, Monterey, CA, Dec. 10–13, 2000,
214–222.

[55] Yang, J. and Gupta, R., Frequent value locality and its applications, ACM Trans. on Embedded Comp.
Syst., 2(3):1, 2002.

[56] Mahapatra, N., et al. The potential of compression to improve memory system performance, power
consumption and cost, Proc. 22nd IEEE Int. Performance, Computing, and Communication Conf.,
Phoenix, AZ, Apr. 9–11, 2003.

[57] Mai, K., et al. Low-power SRAM design using half-swing pulse-mode techniques. IEEE J. Solid-
State Circuits, 33, 1659, 1998.

[58] Moshnyaga, V.G. and Tsuji, H., Reducing cache energy dissipation by using dual voltage supply,
IEICE Trans. on Fundamentals, E84-A(11):2762, 2001.

[59] Hamzaoglu, F., et al. Dual-Vt SRAM cells with full-swing single ended bit-line sensing for high-
performance on-chip cache in 0.13-um technology generation, Proc. 2000 Int. Symp. on Low-Power
Electron. and Design, July 2000, 15–20.

[60] Powell, M.D., et al. Gated-Vdd: a circuit technique to reduce leakage in cache memories, Proc. 2000
ACM/IEEE Int. Symp. on Low-Power Electron. and Design, 2000, 90.

[61] Kaxiras, S., Hu, Z., and Martonosi, M., Cache decay: exploiting generational behavior to reduce
cache leakage power, in Proc. 28th Int. Symp. on Comput. Architecture, June 30–July 4, 2001,
240–251.

[62] Zhou, H., et al. Adaptive mode control: a static-power-efficient cache design, Proc. Int. Conf. on
Parallel Architectures and Compilation Techniques, Sept. 8–12, 2001, 61–70.

[63] Flautner, K., et al. Drowsy caches: simple techniques for reducing leakage power, Proc. of the 29th
Annu. Int. Symp. on Comput. Architecture, Anchorage, AK, May 25–29, 2002, 148–150.

[64] Halter J.P. and Najm, F., A gate-level leakage power reduction method for ultra-low-power CMOS
circuits, Proc. IEEE Custom Integrated Circuits, 1997, 457.

[65] Ye, Y., Borkar, S., and De, V., A technique for standby leakage reduction in high-performance
circuits, Proc. IEEE Symp. VLSI Circuits, 1998, 40.

[66] Heo S., et al. Dynamic fine-grain leakage reduction using leakage-biased bitlines, Proc. 29th Int.
Symp. on Computer Architecture, Anchorage, AK, May 25–29, 2002.

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-1

9

Memory Organization
for Low-Energy

Embedded Systems

9.1 Introduction ..

9-

1
9.2 Memory Partitioning ..

9-

2

Memory Partitioning for Low Energy

9.3 Memory Transfer Optimization...

9-

5

Code Compression • Data Compression

9.4 Conclusions ...

9-

10
References ...

9-

11

9.1 Introduction

Memory design for multi-processor and embedded systems has always been a crucial problem, because
system-level performance depends strongly on memory organization.

The proliferation of embedded systems, and the corresponding new chip and chip-set designs, have
brought additional attention to storage units. Indeed, the heterogeneity of components and structures
within embedded systems and the possibility of using application-specific storage systems have added a
new dimension to memory design. Moreover, new degrees of freedom have been opened since the
introduction of embedded memory arrays in different technologies, such as SRAMs, DRAMs, EEPROMs,
and FLASH, and their realization on the same silicon substrate hosting the processing units.

Embedded systems are often designed under stringent energy consumption budgets, to limit heat
generation and battery size. Because memory systems consume a significant amount of energy to store
and to forward data, it is then imperative to balance energy consumption and performance in memory
design. Contemporary system design focuses on the trade-off between performance and energy con-
sumption in processing and storage units, as well as in their interconnections. Although memory design
is as important as processor design in achieving the desired design objectives, the former topic has received
less attention than the latter in the literature.

There are two key issues in low energy memory design for embedded systems:

1. Reduce the energy consumed in accessing memories [12,14,28,29], which takes a dominant frac-
tion of the energy budget of an embedded system for data-dominated applications [12].

2. Minimize the amount of energy consumed when information is exchanged between the processor
and the memory by reducing the amount of required processor-to-memory communication
bandwidth.

Regarding memory access optimization, the possibility of integrating one or more memories on the
same die as the processor offers new opportunities for energy-efficient design. In fact, from one side,

Alberto Macii

Politecnico di Torino

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-2

Low-Power Processors and Systems on Chips

accessing on-chip memory is much faster and energy-efficient than relying exclusively on off-chip mem-
ories [20,34]. On the other side, memory size and organization can be tailored to application requirements,
and application-specific memory architectures can be developed to minimize memory energy for a given
embedded application. Among the available solutions for memory hierarchy customization, memory
partitioning has demonstrated very good potential for energy savings, as well as excellent suitability for
usage in automated design environments. The principle of such a method is to subdivide the address space
in several clusters and to map them to different memory banks that can be independently enabled/disabled.

Concerning communication bandwidth optimization, Burger [11] discussed that memory bandwidth
is becoming more important as a metric for modern systems because of the increased instruction-level
parallelism generated by superscalar or very long instruction word (VLIW) processors, and because of the
density of integration, which allows shorter latencies. Unlike latency, but similar to energy, bandwidth is
an average-case quantity, and is related to memory traffic. Therefore, not all solutions that reduce latency
necessarily translate into bandwidth improvements, as for energy. A good way for decreasing the memory
traffic, and memory energy as well, is to compress the information that is transmitted between two levels
of the memory hierarchy.

This chapter focuses both on methods that aim at reducing the energy consumption by optimizing the
memory hierarchy and on techniques that target the reduction of the energy consumed in memory transfers.

In particular, Section 9.2 surveys several effective memory partitioning approaches, especially focusing
on methods that are suitable to be used in an automatic fashion, whereas Section 9.3 discusses solutions
for information compression including both code and data.

9.2 Memory Partitioning

Within a given memory hierarchy level, energy consumption can be reduced by memory partitioning.
The principle of memory partitioning is to subdivide the address space into several smaller and less
energy consuming blocks, and to map such blocks to different physical memory banks that can be
independently enabled and disabled. Memory partitioning by itself is a typical performance-oriented
solution (because of the reduced latency due to accessing smaller blocks), and energy may be reduced
only for some specific access patterns. What actually makes this class of techniques low-energy is the
opportunity of selectively shutting down memory blocks that are not accessed, which has little or no
effect on performance.

Arbitrary fine partitioning is prevented from the fact that an excessively large number of small banks
is highly area inefficient, and imposes a severe wiring overhead, which tends to increase communication
energy and performance. Partitioning-based techniques proposed in the literature differ in several aspects.
First, the hierarchy level targeted for partitioning (from caches to off-chip memories). Second, the scope
of partitioning: physical partitioning strictly maps the address space onto different, nonoverlapping
memory blocks; logical partitioning allows some redundancy in the various blocks of the partition, with
the possibility of storing addresses several times in the same level of hierarchy. Farrahi et al. [15] first
studied memory partitioning to exploit sleep mode operation. This work is in the context of board-level
memory optimization where memory blocks are large off-chip DRAMs that can be powered down when
they are not storing live program variables, thereby eliminating memory refresh energy. Furthermore, it
is assumed that activating an inactive memory incurs a significant energy cost. The technique presented
by Farrahi et al. tries to cluster data into memories so that memory chips are transitioned in and out of
the shutdown mode as little as possible. Several authors have analyzed partitioning of on-chip memories.
In most cases, the various partitioning options at a given hierarchy level have been used as an additional
dimension of the memory design space. For example, Su and Despain [33], Ko and Balsara [20], and
Shiue and Chakrabarti

[32] studied energy-efficient partitioned cache organizations, identifying cache
sub-banking as an effective technique for reducing cache energy consumption.

Other solutions rely on hardware-based selective activation of individual ways for set-associative
caches. Region-based caching proposes separate cache memories for stack data and global data, and a
main cache for all other accesses. Clearly, non-accessed cache modules can be disabled for energy saving.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Memory Organization for Low-Energy Embedded Systems

9

-3

Coumeri and Thomas [13] studied embedded SRAMs, and described a partitioned SRAM model (called
segmented configuration), providing energy models for partitioned memories as well. These techniques
rely on a physical partitioning of the on-chip memory. Gonzàlez et al. [16] proposed logical partitioning,
where the on-chip cache is split into a spatial and into a temporal cache to store data with high spatial
and temporal correlation, respectively. This approach resorts to a dynamic prediction mechanism that
can be realized without modification of the application code by means of a prediction buffer. Grun et
al. [17] have extended the ideas behind this approach in the context of embedded systems for energy
optimization. In their approach, data are statically mapped onto either cache, thanks to the high pre-
dictability of the access profiles in embedded programs. Depending on the application, data might be
duplicated and thus be mapped to both caches.

Another class of logical partitioning techniques exploits buffer insertion along the I-cache or the D-
cache or both to realize some form of cache parallelization. Such schemes can be regarded as a partitioning
solution because the buffers and the caches are actually part of the same level of hierarchy. In this kind
of architecture, data and instructions are explicitly replicated, and redundancy is an intrinsic feature of
these approaches. Reducing the average cost of a memory access by increasing the cache-hit ratio saves
energy. Another solution proposes the use of the buffer as a victim cache that is accessed on a main cache
miss. In case of a buffer hit, the line is moved to the cache and returned to the CPU, while the replaced
line in the cache is moved to the victim cache. In case of a buffer miss, the lower level of hierarchy is
accessed and the fetched datum is copied into the main cache as well, while the replaced line in the cache
is moved to the victim cache. In practice, the victim cache serves as an over-full buffer for the main
cache. A similar approach has been introduced by Bahar et al. [2], where buffers are used for speculation:
every cache access is marked with a confidence level, obtained by the processor state; the main cache
contains misses with a high confidence level, while the buffers contains those with a low confidence level.
Other techniques adopt a small associative buffer (e.g., 32 entries) in parallel to the L1-cache (called the
noncritical buffer), used to “protect” the cache from being filled with noncritical (i.e., potentially pol-
luting) data. Noncritical data are identified at run-time by monitoring the issue rate of the core. An
alternative solution consists of filtering the data to be stored in the main cache through a small, highly
associative cache close to the L1-cache. Unlike the victim cache (where data are kept before disposing
them), the annex cache stores the data read from memory, which are copied into the main cache only
on subsequent references to those data.

This idea of filtering cache accesses to reduce writes that are very likely to cause misses can be refined
by selectively disabling the side buffers to save additional energy. Way-predicting caches attempt to
minimize unnecessary way activation in set-associative caches, by predicting which way contains the data.
Prediction is carried out based on memory access history.

9.2.1 Memory Partitioning for Low Energy

Moving from the observation drawn in Section 9.2 and finding inspirations from the existing memory
partitioning techniques proposed in the literature, an automatic optimization methodology for on-chip
memories to be used in embedded systems on chip (SoCs) is presented in Benini et al. [7]. Starting from
the dynamic execution profile of an embedded application running on a given processor core, a multi-
banked memory architecture optimally fitted to such a profile is synthesized. The rationale behind the
approach we will describe in the following is to partition memory into multiple banks that can be
independently accessed. Power-per-access is reduced as the size of a memory bank is decreased. On the
other hand, as the number of banks increases, there is an unavoidable hardware overhead caused by:

1. Duplication of addressing and control logic
2. Increased communication resources required to transfer information

Such an overhead manifests itself in increased energy, access time, and area that prevent arbitrarily
fine partitioning. Thus, finding an optimal partition with a tight constraint on the maximum number
of memory banks is extremely important.

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-4

Low-Power Processors and Systems on Chips

Moving from the fact that in many nontrivial embedded applications the most frequently accessed
addresses can fit into a relatively small memory space, the information that comes from the dynamic
access profile, obtained through the simulation of the target application, is used to specify a range (

a

lo

,

a

hi

) of memory addresses that should be mapped onto the on-chip memory. For each address

a

lo

,
the profile gives the number of reads

r

(

i

) and writes

w

(

i

) to the address during the execution of a sample
run of the target embedded application. Standard instruction-level simulators available for most processor
cores can capture the profile.

In a traditional approach, all addresses in the range are mapped to a single memory array, the smallest
array in the library, which is large enough to contain the specified range, as illustrated in Figure 9.1(a).

This solution is not optimal from the energy dissipation viewpoint. Assume, for the sake of illustration,
that the dynamic access profile is that presented in Figure 9.1(b). A small subset of the addresses in the
range has large

r

(

i

) values for all its addresses (i.e., it is very “hot”; see the right horizontal-shaded slice
of the profile). An energy-optimal partitioned memory organization is presented in Figure 9.1(c). It
consists of three memories and a memory selection block (the decoder). The hot addresses are stored
into a small memory (block B1), while two larger cuts (blocks B2 and B3) contain the other parts of the
range. The average energy in accessing the memory hierarchy is decreased, because a large fraction of
accesses is concentrated to a small, energy-efficient memory. Obviously, it is mandatory to account for
the energy consumed in the entire partitioned memory system (i.e., the address and data buses), the
decoder, and the control signals. In fact, these components introduce a nonnegligible overhead on energy
consumption that may offset the advantages given by bank partitioning. Nevertheless, the obtained
savings are significant especially when the access profile is highly nonuniform and high-access addresses
are clustered into small banks (on average, for several embedded applications, energy savings are around
60% with respect to the traditional monolithic memory architecture).

The memory partitioning approach belongs to the class of memory optimization techniques that,
moving from a given memory access trace and obtained by profiling an application, produce a customized
memory hierarchy. The effectiveness of memory partitioning can be improved by adopting the concurrent
optimization of memory access patterns and memory architecture. Techniques relying on such a con-
current optimization are the most powerful, yet also the most difficult to actuate. This fact is witnessed

FIGURE 9.1

Example of memory partitioning.

CORE

Original architecture

DBUS

ABUS

8 K 18 K 6 K

Dynamic access profile

(B)

(A)

Partitioned architecture

(C)

Addresses

AccessesProfiling

Partiti
oning

R/W

Memory
(32 KB)

≤ ≤i ahi

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Memory Organization for Low-Energy Embedded Systems

9

-5

by the few solutions proposed in the literature, the most popular being the DTSE hardware/software
(HW/SW) exploration framework [12]. One of the biggest difficulties in concurrent optimization lies in
the fact that the two dimensions of the problem are regarded as orthogonal: architectural optimization
is viewed as a purely hardware task, while the optimization of the access patterns is viewed as a purely
software task. Recently, in Macii et al. [27], the access pattern optimization problem was revisited from
an architectural perspective: the design of an application-specific memory architecture is concurrently
carried out with the optimization of the access patterns, yet done through the introduction of proper
hardware. In practice, the access patterns are modified on the fly, without any intervention on the software
application running on the processor.

Thus, the idea is to combine the memory partitioning methodology with a technique, called address
clustering, which consists of reorganizing (through extra hardware) the address trace fed to a memory
block, in such a way that the potential for the memory partitioning engine is maximized. This is equivalent
to modifying the memory access profile, yet in a very transparent fashion to the programmer.

The address clustering problem consists of finding a relocation of a proper subset of the address space
that maximizes the locality of the dynamic trace, with the ultimate objective of minimizing the energy
consumption of the memory architecture for the given trace, possibly under area and cycle time constraints.

The actual energy consumption of a partitioned memory architecture is determined by the outcome
of the memory-partitioning algorithm of Benini et al. [7]; however, running the partitioning engine for
each candidate clustering solution may become quite computationally expensive. It is thus necessary to
devise a high-level cost function that can be used into an exploration framework to evaluate the suitability
of a clustering solution.

The potential of memory partitioning is related to the locality of the trace. In Macii et al. [27], it was
thus defined the density of a profile, C, as the maximum value of the cumulative number of accesses for
a sliding window of size W over the trace. This metric is suitable for use in an exploration engine because
it provides, through a low-effort analysis of an address trace, a quantification of which percentage of the
total number of addresses can be covered by clustering W words. There is then a strict correlation between
the number M of addresses to be clustered and the size W of the sliding window.

Figure 9.2 reports an example of address clustering. Figure 9.2(a) depicts the original profile (i.e., as
obtained by profiling the application); here, two addresses (

i

 and

j

) are illustrated with bold lines, together
with the sliding window W. Figure 9.2(b) depicts one instance of the swap between

i

 and

j.

 This trans-
formation increases the spatial locality by aggregating highly accessed memory locations. The information
about the swap is recorded in a table, as the one of Figure 9.2(c).

Results obtained by applying address clustering before partitioning demonstrate advantages ranging
from 5 to 55% with respect to energy consumption of the memory architecture generated by plain
application of memory partitioning.

9.3 Memory Transfer Optimization

Although memory energy consumption is relevant, additional improvements can be achieved by com-
bining the minimization of memory and bus energy, that is, of the whole memory-processor interface.
Optimizing the processor-to-memory bandwidth is one possibility to simultaneously reduce memory
and bus energy.

Bandwidth can be increased either by directly reducing the processor-to-memory traffic or by indirectly
compressing the information transmitted through the interface

.

In most cases, the main objective of the information compression is to provide a high compression

ratio; instead, parameters like compression (and decompression) time and complexity are not seen as
critical ones because software compression routines or dedicated hardware units perform their functions
in environments where timing, resource, and energy constraints are relaxed. Think, for example, of data
compression for hard-drives or transmission over communication links, where transfer rates are signif-
icantly slower than the time required by the HW or SW compressor/decompressor to transform data in

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-6

Low-Power Processors and Systems on Chips

the appropriate format. A different scenario must be faced when compression is applied to information
being stored in memories or caches. Here, compression and decompression are subject to tight perfor-
mance constraints because they should comply with data read and write speeds of modern, high-
performance processors. As such, compression speed becomes the primary cost measure to be used for
assessing the quality of a compression scheme. HW-assisted solutions are the only viable options in this
context, where high compression ratios are traded for faster compression units. Besides speed, also size
and complexity of HW compressors need to be controlled because modern SoCs call for implementations
of such units near-by the core processors (for cache-compressed architectures) or between cache and
memory (for memory-compressed systems). The problem of designing fast and compact HW compres-
sion units for usage in the memory path of a processor-based system has been studied extensively in the
past (see, for example, Bunton and Borriello [10] and Lee et al. [22] for a survey of existing literature).
Recently, HW memory compression has found its way in a number of commercial designs (see, for
example, the MXT Pentium-based server by IBM [1]). Although reduction of memory and bus bandwidth
has been, historically, the main motivation for resorting to HW-assisted memory compression, recent
studies have demonstrated that this approach can also be exploited when the ultimate target is energy
(or power) minimization of a processor-based system. In particular, successful attempts were made to
limit energy consumption in systems containing embedded processors by reducing energy requirements
of I-caches [5,26], program memory [6,36], and data memory [8].

In the next two subsections, we present a number of approaches that target the reduction of the
memory-processor traffic and, as a consequence, the number of accesses to memory locations, exploiting
memory compression. In particular, Subsection 9.3.1 (“Code Compression”) discusses code compression
techniques, whereas Subsection 9.3.2 (“Data Compression”) focuses on data compression methodologies.

9.3.1 Code Compression

Currently, many embedded processors are based on high-performance RISC architectures, with on-chip
cache [20] and full support for complex memory systems and peripheral controllers [30]. System inte-
grators usually purchase these processors, as well as their software development environments, from
third-party companies that specialize in embedded core design

.

One of the key challenges in designing a complex system around a high-performance embedded RISC

processor is to ensure sufficient instruction fetch bandwidth to keep the execution pipeline busy. The

FIGURE 9.2

Example of address clustering.

AddressesAddresses

Swap Table

New

i

j

j

i

old

Address count Address count

(C)

(A) (B)
w w

j ji i

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Memory Organization for Low-Energy Embedded Systems

9

-7

regularity of RISC instruction sets eases application and compiler development, but hinders code com-
paction. For this reason, designers and researchers have put significant effort in devising techniques for
improving code density and reducing instruction-related costs, in terms of speed, area, and energy [3].

Numerous code compression techniques have been proposed for reducing instruction memory size
in low-cost embedded applications (refer to Lefurgy [24] for an extensive set of references). The basic
idea is to store programs in compressed form and decompress them on the fly at execution time. Later,
researchers have realized that code compression can be beneficial for energy as well, because it reduces
the energy consumed in reading instructions from memory and communicating them to the processor
core [6,26,36].

Code compression leverages well-known lossless data compression techniques [4], but it is character-
ized by two distinctive constraints. First, it must be possible to decompress a program in relatively small
blocks, as instructions are fetched, and starting from several points inside the program (i.e., branch
destinations). Thus, traditional lossless techniques that decompress a stream starting from a single initial
point are not applicable without changes. Second, the decompressor should be small, fast, and energy-
efficient because the corresponding savings in memory size and energy must amortize its hardware,
without compromising the performance.

For simple processors with no instruction cache, the hardware decompression block is either merged
with the processor core itself or placed between program memory and processor. The first solution has
been implemented in several commercial core processors, in the form of a “dense” instruction set, with
short instructions (e.g., ARM Thumb [31] and MIPS16 [19] instruction sets). The second solution has
been investigated in several articles [6,25,36]. Supporting restricted instruction sets requires changes to
the core architecture, while an external decompressor does not. Furthermore, with an external decom-
pressor it is possible to aggressively tailor code compression to a specific embedded application. Thus,
external decompression is well suited for embedded designs employing third-party cores.

The basic assumption of the method presented in Yoshida et al. [36] is that the firmware running on
a given embedded processor normally uses only a small subset of the instructions supported by the
processor. By replacing such instructions with binary patterns of limited width (i.e., , where

N

is the number of distinct instructions appearing in the code), memory bandwidth usage can be reduced,
thus decreasing the total energy. Notice that two

k

-bit instructions are said to be distinct if they differ
by at least one bit.

The solution proposed in Yoshida et al. [36] does not require ad-hoc compilers; in fact, the original
machine instructions can be automatically replaced by -bit instructions by means of a script
after the subset of instructions actually used by the program is identified through execution profiling or
instruction-level simulation, and the number is determined. The original machine code can
thus be compressed to reduce the memory bandwidth that is needed to execute the program. The so-
called instruction decompression table and the related control circuitry can be designed and placed
between the processor and the memory. Thus, the architecture of the core processor is left unchanged.
This is a big plus for system designers employing third-party, off-the-shelf cores and microcontrollers
that are either not disclosed (IP hard or soft macros) or not easy to modify.

The work in Benini et al. [6] describes a new technique that builds upon the method of Yoshida et al.
[36] by overcoming its major limitation: if the number of instructions used by the embedded code gets
large, so does the number of bits of the compressed instructions. Besides increasing the size of the
instruction decompression table, this may excessively complicate the implementation of the controller
that handles instruction fetching and decoding, especially when the bit-width of the compressed instruc-
tions is not compatible with the available memory-addressing scheme (e.g., bit-width different from a
multiple of 8 on a byte-addressable memory).

Moving from the observation that the number of instructions used by most programs, although limited
with respect to the total number of instructions supported by the processor, has a highly nonuniform
statistical distribution. In other words, some instructions are usually much more used than others, it is
convenient considering for compression only the instructions used by the embedded code with the highest
execution probability. This solution allows fixing

a priori

 the bit-width of the compressed instructions;

log 2 N

log 2 N

log 2 N

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-8

Low-Power Processors and Systems on Chips

in this way the size of the instruction decompression table is fixed and limited, the instruction fetching/
decompression logic has reduced complexity, and the energy required to fetch the program from memory
is minimized. Instruction decompression is performed on-the-fly by a hardware block located between
processor and memory. No changes to the processor architecture are required because it always executes
full-size instructions. Thus, this technique is well suited for systems employing IP cores whose internal
architecture cannot be modified.

Figure 9.3(a) depicts a typical conceptual architecture of a processor-memory system, while
Figure 9.3(b) and Figure 9.3(c) report the modified architectures proposed in Yoshida et al. [36]
and Benini et al. [6], respectively.

In more advanced architectures that contain instruction caches, the decompressor can be placed either
between the I-cache and the main memory (decompress on cache refill, or DCR architecture) or between
the processor and the I-cache (decompress on fetch, or DF architecture). Both alternatives have been
investigated in the recent literature [21,26].

The approach described in Larin and Conte [21] targets VLIW processors and compresses instructions
using the Huffman algorithm. Basic blocks of compressed instructions are transferred and stored into
the I-cache atomically. Compressed instructions are not aligned to cache line boundaries. On a cache
access, two consecutive cache lines are decompressed and stored in a level-zero buffer. The following
instructions are fetched in sequence from the buffer, until it is emptied, or a branch is executed. The
hardware decompressor may have a very high cost; in fact, fetching and decoding two cache lines at a
time imposes parallel Huffman decoding of multiple instructions in one clock cycle (even single-instruc-
tion Huffman decoding requires a quite large hardware block). Furthermore, branch targets addresses
in compressed code are stored in a dedicated address remapping memory that must be accessed on every
taken branch.

In Lekatsas et al. [26], it was demonstrated that from an energy and performance viewpoint, the DF
architecture is superior to the DCR architecture, when decompressor overhead is small. The main reason
for this effect is that instructions are stored in cache in a compressed fashion, effectively increasing cache
capacity. Current silicon implementations of code compression are based on the DCR architecture

FIGURE 9.3

(a) Original architecture, (b) modifications proposed in Yoshida et al. [36], and (c) in Benini et al. [6].

Memory CORE

N
 d

is
tin

ct
 in

st
r u

ct
io

ns

w bits

w

DBUS

ABUS

[logN bits]

[logM bits]

Memory

Memory

R/W

M
 m

os
t f

re
qu

en
t

in
st

r u
ct

io
ns

CORE
IDT

[logN]

[logM]

[logM]

w

w

0

1 w

DBUS

ABUS

CORE

ABUS

DBUS

w

(A) (B)

(C)

Buffer

IDT

CTRL

R/WR/W

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Memory Organization for Low-Energy Embedded Systems

9

-9

[18,23]; however, indicating that reducing decoding overhead is a nontrivial task that still entails signif-
icant challenges.

The main issue with the DF approach is that decompression is performed on every instruction fetch.
In other words, the decompressor is on the critical path for the execution of every instruction, not only
for cache refills. If its delay is not small, it may significantly slow down execution. Furthermore, it consumes
energy on every instruction fetch, while in the DCR architecture it can be activated only on cache refills.
Careful implementation of the decompression unit is thus key for making DF applicable in practice.

In Benini et al. [5], a novel DF architecture that focuses on reducing decoding overhead on energy
and performance is proposed. This technique guarantees that storage requirements for the compressed
program always decrease. Furthermore, the compression algorithm has been designed specifically for fast
and low-energy decompression during cache lookup. Compressed instructions are always aligned to cache
line boundaries, branch destinations are word-aligned, and instruction decompression is based on a
single lookup into a small (and fast) memory buffer. The analysis is not limited to the architecture level,
but present a complete implementation of the cache-decompressor block, including detailed analysis of
its energy and delay. The achieved code size reductions are on average around 28%, while from the energy
point of view the improvements vary a lot depending on cache size, original and compressed code size,
dynamic memory access profile, and kind of adopted program memory (i.e., on-chip vs. off-chip). For
example, for a 4 KB cache and an on-chip program memory, average energy savings are around 30%.
This value grows to 50% for a system with a cache of the same size but an off-chip program memory.

9.3.2 Data Compression

The principle exploited in code compression (namely, reduction of memory traffic), can be extended to
the case of data, with some additional difficulties.

Data compression techniques, together with hardware architectures, have been introduced recently
in Benini et al. [8,9].

The approach of Benini et al. [8] relies on a fixed-dictionary scheme. It resorts to data profiling
information to selectively compress cache lines before they are written back to the main memory, and
to quickly decompress them when a cache refill operation is started. This solution is particularly suited
to embedded systems, where the collection of data statistics to be used by compressor and decompressor
is much more predictable than in general-purpose systems. The obtained reductions of memory traffic
were around 42% for a significant number of benchmark programs. In this work, the authors consider
systems with compressed main memory (i.e., information is stored in caches in uncompressed format),
in which the compression HW is placed between caches and main memory.

A possible generalization of the approach of Benini et al. [8] to the case of general-purpose systems
was sketched in Benini et al. [9]. The idea was that of avoiding the profiling step by doing online prediction
of data statistics. Here, the architecture is able to adaptively update the compression dictionary according
to the current data statistics. This improvement allows removal of the main limitation constituted by the
need of off-line data profiling. In other words, the adaptive algorithm is applicable to systems where
several programs need to be executed, and thus ad hoc data profiling information cannot be collected
before the system is started.

In these approaches, the fundamental difference between code and data compression is that, for the
latter, both compression and decompression are needed during the execution of a program, while for
the former only decompression is required. This fact has far-reaching implications on the applicable
compression algorithms and architectures; for instance, it rules out highly asymmetric schemes, where
compression is much more involved than decompression.

Clearly, the energy cost of the compressor also needs to be accounted when evaluating the feasibility
of an HW-based memory compression scheme. It was observed in Benini et al. [5] that the overhead
introduced by the extra hardware is roughly proportional to the amount of storage space the compressor
requires. As such, if care is given to the choice of the compression algorithm and to its implementation,
the achieved bus and memory energy savings will offset the energy cost of the compressor.

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-10

Low-Power Processors and Systems on Chips

Just to give to the reader the flavor of how the compressor can be implemented, Figure 9.4 reports a
conceptual block diagram of the compression-decompression unit (CDU) adopted in Benini et al. [8,9]
with the basic interface signals, together with a real hardware implementation of a compression–decom-
pression table.

The CDU contains three major functional blocks, namely, the line compressor (LC), the line decom-
pressor (LD), and the compressed line address table (CLAT). The compression–decompression table
highlighted in Figure 9.4 is the basis of the LC and LD blocks.

The hardware implementation of the CDU is based on content-addressable memories and random-
access memories (CAMs and RAMs, respectively), and it is mainly targeted toward energy minimization
in the cache-bus-memory subsystem with a strict constraint on performance. As a result, average memory
reductions evaluated on several benchmarks are around 23%, at no performance penalty (actually, on
average, performance improved by 4%). Comparison to the memory traffic reductions achieved with
the profile-driven method of Benini et al. [8] demonstrates clearly that the adaptive approach performs
reasonably well in this respect (31% reductions, against 42% for the profile-driven solution).

A similar compression technique is the compressed cache presented in Yang et al. [35]. It is based on
the frequent value locality, that is, the fact that very few values (typically small integers) account for
usually around half of the total memory accesses, for most benchmarks. This allows storing the selected
values in a compressed form. Compression/decompression is performed on the fly on accesses from/to
the next hierarchy level.

9.4 Conclusions

Embedded systems are now becoming ubiquitous; in particular, they have large applicability in mobile,
battery-operated personal communication systems, for which energy consumption is a major constraint.

FIGURE 9.4

CDU architecture and implementation of a comp–decomp table.

Dcache

Refill req
Line in

addr

Write-back req

Line out

CDU

LD

AddressMatch

Data
Read

Data
Write

Memory

Main Memory

Compressed
Memory

Match

LC

CLAT

Mincnt

LFSR

U
pdate

S
elector

64 6 bit
com

par ators

64 6 bit sat
counters

64 1 bit used flag

64 lines 32b CAM/RAM

4 32b word
output ports

4 32b CAM
ports

4 6b index
and 4 1b match

output ports

Update
Interface

6b replace
address

32b write
port

4 6b RAM
ports

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Memory Organization for Low-Energy Embedded Systems

9

-11

Among the various contributors to the system’s energy budget, memory plays a preeminent role; in
fact, reading and writing data to the memory hierarchy is an operation that takes place very often,
especially in data-dominated applications (e.g., video and audio playing). As such, memory energy
optimization is one of the most promising and successful approaches to system power minimization.

References

[1] S. Arramreddy, et al. IBM X-Press memory compression technology debuts in a ServerWoks
NorthBridge,

HOT Chips 12 Symp.,

 Stanford University, Stanford, CA, August 2000.
[2] R.I. Bahar, G. Albera, and S. Manne, Power and performance trade-offs using various caching

strategies,

ISLPED-98: ACM/IEEE Int. Symp. on Low-Power Electron. and Design,

 pp. 64–69,
Monterey, CA, August 1998.

[3] R. Bajwa, et al. Instruction buffering to reduce power in processors for signal processing,

IEEE
Trans. on Very Large Scale Integration (VLSI) Syst.,

 Vol. 5, No. 4, pp. 417–424, December 1997.
[4] T. Bell, J. Cleary, and I. Witten,

Text Compression,

 Prentice Hall, New York, 1990

.

[5] L. Benini, A. Macii, and A. Nannarelli, A code compression architecture for cache energy minimi-

zation in embedded systems,

IEEE Proc. — Comput. and Digital Techniques,

Vol. 149, No. 4,
pp. 157–163, July 2002.

[6] L. Benini, A. Macii, E. Macii, and M. Poncino, Minimizing memory access energy in embedded
systems by selective instruction compression,

IEEE Trans. on Very Large-Scale Integration (VLSI)
Syst.,

 Vol. 10, No. 5, pp. 521–531, October 2002.
[7] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino, Layout-driven memory synthesis for embed-

ded systems-on-chip,

IEEE Trans. on Very Large-Scale Integration (VLSI) Syst.,

 Vol. 10, No. 2,
pp. 96–105, April 2002.

[8] L. Benini, D. Bruni, A. Macii, and E. Macii, Hardware-assisted data compression for energy
minimization in systems with embedded processors,

DATE-02: IEEE Design Automation and Test
in Europe,

 Paris, France, pp. 449–453, March 2002.
[9] L. Benini, D. Bruni, A. Macii, E. Macii, and B. Riccò, An adaptive data compression scheme for

memory traffic minimization in processor-based systems,

ISCAS-02: IEEE Int. Symp. on Circuits
and Syst.,

 pp. IV-866–IV-869, Scottsdale, AZ, May 2002.
[10] S. Bunton and G. Borriello, Practical dictionary management for hardware data compression,

Commn. ACM,

 Vol. 35, No. 1, pp. 95–104, January 1992.
[11] D.C. Burger, Hardware techniques to improve the performance of the processor/memory interface.

Ph.D. dissertation, University of Wisconsin–Madison, 1998.
[12] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle,

Custom
Memory Management Methodology Exploration for Memory Optimization for Embedded Multimedia
System Design,

Kluwer, Dordrecht, 1998

.

[13] S.L. Coumeri and D.E. Thomas, Memory modeling for system synthesis,

ISLPED-98: ACM/IEEE
Int. Symp. on Low-Power Electron. and Design,

 pp. 179–184, Monterey, CA, August 1998.
[14] S. Coumeri and D.E. Thomas, Memory modeling for system synthesis,

IEEE Trans. on Very Large-
Scale Integration (VLSI) Syst.,

 Vol. 8, No. 3, pp. 327–334, June 2000.
[15] A. Farrahi, G. Tellez, and M. Sarrafzadeh, Memory segmentation to exploit sleep mode operation,

DAC-32: ACM/IEEE Design Automation Conf.,

 pp. 36–41, San Francisco, CA, June 1995.
[16] A. Gonzàlez, C. Aliagas, and M. Valero, A data-cache with multiple caching strategies tuned to

different types of locality,

ICS-95: ACM Int. Conf. on Supercomputing,

 pp. 338–347, Barcelona,
Spain, July 1995.

[17] P. Grun, N. Dutt, and A. Nicolau, Access pattern based local memory customization for low-power
embedded systems,

DATE-01: IEEE Design Automation and Test in Europe,

 pp. 778–784, Munich,
Germany, March 2001.

[18] IBM Corporation,

CodePack PowerPC Code Compression Utility, User’s Manual Version 3.0,

 IBM
Corporation, Austin, Texas, 1998

.

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

9

-12

Low-Power Processors and Systems on Chips

[19] K. Kissel, MIPS16: high-density MIPS for the embedded market. Technical report, Silicon Graphics
MIPS Group, Mountain View, CA, 1997

.

[20] U. Ko and P. Balsara, Energy optimization of multilevel cache architectures for RISC and CISC

processors,

IEEE Trans. on Very Large Scale Integration (VLSI) Syst.,

 Vol. 6, No. 2, pp. 299–308,
June 1998.

[21] S. Larin and T. Conte, Compiler-driven cached code compression schemes for embedded ILP
processors,

MICRO-32: 32nd Annual Int. Symp. on Microarchitecture,

 pp. 82–92, Haifa, Israel,
November 1999.

[22] J.-S. Lee, W.-K. Hong, and S.-D. Kim, Design and evaluation of a selective compressed memory
system,

ICCD-99: IEEE Int. Conf. on Comput. Design,

 pp. 184–191, Austin, TX, March 1999.
[23] C. Lefurgy, E. Piccinini, and T. Mudge, Evaluation of a high performance code compression

method,

MICRO-32: 32nd Annu. Int. Symp. on Microarchitecture,

 pp. 93–102, Haifa, Israel,
November 1999.

[24] C. Lefurgy, Efficient execution of compressed programs. Doctoral dissertation, University of Mich-
igan, Ann Arbor, MI, 2000

.

[25] H. Lekatsas and W. Wolf, Code compression for embedded systems,

DAC-35: ACM/IEEE Design
Automation Conf.,

 pp. 516–521, San Francisco, CA, June 1998.
[26] H. Lekatsas, J. Henkel, and W. Wolf, Code compression for low-power embedded systems,

DAC-
37: ACM/IEEE Design Automation Conf.,

 pp. 294–299, Anaheim, CA, June 2000.
[27] A. Macii, E. Macii, and M. Poncino, Improving the efficiency of memory partitioning by address

clustering,

DATE-03: IEEE Design Automation and Test in Europe,

 pp. 18–23, Munich, Germany,
March 2003.

[28] P. Panda and N. Dutt,

Memory Issues in Embedded Systems-on-Chip Optimization and Exploration,

Kluwer, Dordrecht

,

 1999.
[29] J. Rabaey and M. Pedram,

Low-Power Design Methodologies,

 Kluwer, Dordrecht

,

 1996.
[30] S. Santhanam et al. A low-cost, 300-MHz, RISC CPU with attached media processor,

IEEE J. Solid-
State Circuits,

 Vol. 33, No. 11, pp. 1829–1839, November 1998.
[31] S. Segars, K. Clarke, and L. Goudge, Embedded control problems, thumb and the ARM7TDMI,

IEEE Micro

,

 Vol. 15, No. 5, pp. 22–30, October 1995.
[32] W. Shiue and C. Chakrabarti, Memory exploration for low-power, embedded systems,

DAC-36:
ACM/IEEE Design Automation Conf.,

 pp. 140–145, New Orleans, LA, June 1999.
[33] C.L. Su and A.M. Despain, Cache design trade-offs for power and performance optimization: a

case study,

ISLPD-95: ACM/IEEE Int. Symp. on Low-Power Design,

 pp. 63–68, Dana Point, CA,
April 1995.

[34] T. Watanabe, R. Fujita, and K. Yanagisawa, Low-power and high-speed advantages of DRAM-logic
integration for multimedia systems,

IEICE Trans. on Electron.,

 Vol. E80-C, No. 12, pp. 1523–1531,
December 1997.

[35] J. Yang, Y. Zhang, and R. Gupta, Frequent value compression in data caches,

MICRO-33: IEEE/
ACM 33rd Int. Symp. on Microarchitecture,

 pp. 258–265, Monterey, CA, December 2000.
[36] Y. Yoshida, B.-Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa, An object code compression

approach to embedded processors,

ISLPED-97: ACM/IEEE Int. Symp. on Low-Power Electron. and
Design,

 pp. 265–268, Monterey, CA, August 1997.

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

II

-1

II

Low-Power Systems

on Chips

10 Power–Performance Trade-Offs in Design of SoCs ..10-1

Victor Zyuban and Philip Strenski

11 Low-Power SoC with Power-Aware Operating Systems Generation...........................11-1

Sungjoo Yoo, Aimen Bouchhima, Wander Cesario, Ahmed A. Jerraya,
and Lovic Gauthier

12 Low-Power Data Storage and Communication for SoC...12-1

Miguel Miranda, Erik Brockmeyer, Tycho van Meeuwen, Cedric Ghez,
and Francky Catthoor

13 Networks on Chips: Energy-Efficient Design of SoC Interconnect.............................13-1

Luca Benini, Terry Tao Ye, and Giovanni de Micheli

14 Highly Integrated Ultra-Low Power RF Transceivers for Wireless
Sensor Networks ..14-1

Brian P. Otis, Yuen Hui Chee, Richard Lu, Nathan M. Pletcher, Jan M. Rabaey,
and Simone Gambini

15 Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks15-1

Morteza Maleki and Massoud Pedram

16 Modeling Computational, Sensing, and Actuation Surfaces..16-1

Phillip Stanley-Marbell, Diana Marculescu, Radu Marculescu, and Pradeep K. Khosla

6700_SN02.fm Page 1 Thursday, July 14, 2005 12:29 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-1

10

Power–Performance
Trade-Offs in Design

of SoCs

10.1 Introduction ..

10-

1
10.2 Hardware Intensity..

10-

2
10.3 Architectural Complexity ...

10-

5
10.4 Energy-Efficiency Criterion..

10-

7

Frequency-Invariant Formulation

10.5 Other Power–Performance Metrics

10-

11
10.6 Example: Adding an Execution Bypass..........................

10-

12
10.7 Conclusions ...

10-

13
10.8 Acknowledgment...

10-

14
References ...

10-

14

10.1 Introduction

The design and implementation of processor cores is characterized by conflicting requirements of the
ever increasing demand for higher performance and, usually, stringent power budget. Thus, compro-
mises between performance and power need to be made early in the design cycle. In the design of a
processor core, a very specific power budget typically exists, but power can be traded for performance
in several ways.

At the system level, varying power supply is the most straightforward and well-understood method
for controlling power. One advantage of this method is that power supply can typically be adjusted within
a certain range even after the chip has been manufactured. In addition, scaling V

dd

 around the nominal
value in application specific integrated circuits (ASIC) foundry technologies has a known cost which is
“typically” 2% in energy per 1% in performance, although it can be anywhere from 0.5% to more than
30% in energy per 1% in performance. A notion of voltage intensity has recently been introduced [21]
to quantify power–performance trade-offs through varying the power supply. Although a very powerful
technique, scaling V

dd

 may have a relatively high performance cost for saving power in a processor core
that does not meet its power budget, as discussed in Section 10.3 of this chapter.

Another method for making power–performance trade-offs is technology scaling, such as shrinking
the oxide thickness and effective channel length. Although, such trade-offs are not generally available to
average ASIC customers, some foundry technologies provide libraries and transistors with multiple
threshold voltages, and some high-end microprocessor designs work with foundries (typically their own)
to engineer these parameters effectively.

At the circuit level, power and performance can be traded by changing transistor sizes and power levels
of ASIC cells, controlled by changing transistor tuning targets, or by restructuring logic to increase or

Victor Zyuban
Philip Strenski

IBM Watson Research Center

6700_C010.fm Page 1 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-2

Low-Power Processors and Systems on Chips

decrease the parallelism in circuits, for example, perform more computations in parallel in order to
reduce the critical path. These trade-offs are controlled by either custom or logic designers or by running
synthesis tools with different directives. Although more difficult to quantify, this method for power–per-
formance trade-offs is at least as powerful as scaling the power supply. By scaling circuits, in “typical”
designs that we analyzed, one percent in performance could be traded for from 0.5 to 5% in energy, or
even higher, if the frequency target is too aggressive. The concept of

hardware intensity

 was introduced
in Zyuban and Strenski [21] to quantify power–performance trade-offs through scaling circuits.

Finally, scaling the processor core microarchitecture and, possibly instruction set architecture (ISA),
is one more way for trading power and performance. This method involves changing machine organi-
zation, such as pipeline depth, issue width, the set of functional units, bypasses, number of ports and
entries in queues and register files, the sizes of branch predictors, and other structures of the microar-
chitecture

.

 Scaling microarchitecture is even a more powerful method for power–performance trade-offs
than voltage and circuit scaling, but it is more difficult to quantify and optimize, and can only be used
at early stages of the design. A concept of architectural complexity was introduced in Zyuban [19] to
analyze power–performance trade-offs at the ISA and microarchitectural levels. It has been demonstrated
that architectural complexity cannot only be measured but also set as a design target [10].

It was demonstrated in Zyuban and Strenski [21] that to develop an energy-efficient processor core,
design decisions at all levels must be balanced in such a way that all forms of spending power, described
above, have a similar marginal cost. The following sections summarize some of the most important
formulas for balancing hardware intensity and power supply voltage derived in Zyuban and Strenski [21],
and give a graphical interpretation of the major result. Then, the formula for balancing architectural
complexity with voltage and hardware intensity, and the iterative process of refining the processor core
architecture in the power–performance space are discussed in detail. Then, because making power-
balanced decisions at the architectural level plays such an important role in the development of the
energy-efficient processor cores, we give a derivation in Section 10.4 of a new form of the architectural
energy-efficiency criterion that does not require evaluation of the relative changes in processor frequency.
Section 10.5 discusses other power–performance metrics that are commonly used in the architectural
community and some common mistakes made by architects when applying these metrics. Section 10.6
gives some examples of using the architectural energy-efficiency criterion, and Section 10.7 concludes
the chapter.

10.2 Hardware Intensity

The concept of hardware intensity was introduced in Zyuban and Strenski [21] as a quantitative
measure of how aggressively the circuits in a processor are tuned to meet a target clock frequency (see
related work in Brodersen et al. [1], Hofstee [9], and Oklobdzija et al. [14]). Hardware intensity shows
the energy cost (in) required to improve the delay

D

 of a hardware macro by through restructuring
the logic and retuning the circuits, at a fixed power supply

v

,

or (10.1)

Alternatively, we can define the hardware intensity as a parameter in the cost function for optimizing
hardware:

(10.2)

where

D

 is the critical path delay through the circuit,

E

 is the average energy dissipated per cycle,

D

0

 and

E

0

 are the corresponding lower bounds that can be achieved through tuning and logic restructuring for

η

 % 1%

η = − ∂
∂

D E

E D fixed
v

η = − %

%

E

D through
retuning

η

 F E D E E D Dcost(,) (/)(/) 0,0 0= ≥η η

6700_C010.fm Page 2 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-3

a fixed supply voltage. Under a very general assumption that the curvature of the energy-delay curve is
larger than the curvature of the contour of the cost function (Equation (10.2)) at any point in the two

tangent, , we can show that for any power supply voltage

v

, every point on the energy-

delay curve corresponds to a certain value of hardware intensity , . Then, the energy-delay

curve in the energy-vs.-delay coordinates can viewed as a parameterized curve: , .

Figure 10.1 gives a graphical interpretation of the hardware intensity. The solid line plots a typical
energy-delay curve for some hardware function. Dotted lines show several contours of the cost func-
tion (Equation (10.2)), for two values of hardware intensity . Point (

D,E

) at which the energy-delay
curve tangents the lowest of the contours (with the smallest value of

A

) corresponds to
the implementation for this value of hardware intensity . Taking advantage of the equivalence of the
tangents to the energy-delay curve and the counter of the cost function, we get:

(10.3)

This establishes the equivalence of the two definitions of the hardware intensity in Equation (10.1)
and Equation (10.2).

Then, by formally solving the problem of minimizing the delay as a function of and

v

, subject to a
constant energy constraint, the following relations were derived in Zyuban and Strenski [21] for the
optimal balance between hardware intensity and power supply voltage:

(10.4)

(10.5)

(10.6)

FIGURE 10.1

Typical energy-efficient curve and constant cost function contours for

η

 = 0.5 and

η

 = 2.0.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Normalized delay D/D0

N
or

m
al

iz
ed

 e
ne

rg
y

E
/E

0

energy–efficient curve
cost function contours, η = 2.0
cost function contours, η = 0.5

D = D(η = 3.0)
E = E(η = 3.0)

D = D(η = 2.0)
E = E(η = 2.0)

E = E(η = 0.5)
D = D(η = 0.5)

D

E

E

D

2 2

2
> (1)

∂
∂

+η η

η 0 <≤ +∞η

 D D v= (,)η E E v= (,)η

η

 F E D Acost(,) =
η

∂
∂

= ∂
∂

∂
∂

= − ∂
∂

∂
∂

= −E

D

E v D v F

D

F

E

E

D
cost cost

fixed
n

(,)
/

(,)
/

η
η

η
η

η

η

isolated macro η θ= ()v

composite macro η θ= ≤ ≤() 1
w

u
v j M

j

j
j

multi- stage pipeline η θ=∑ ()w v
i

i i

6700_C010.fm Page 3 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-4

Low-Power Processors and Systems on Chips

where

w

i

 are energy weights of pipeline stages

i

 in Equation (10.6),

w

j

 and

u

j

 are energy and delay weights
of sub-blocks

j

 in Equation (10.5), are the hardware intensities in the corresponding sub-blocks, and
is the voltage intensity defined as

(10.7)

Equation (10.4) has a simple interpretation, shown in Figure 10.2. The solid curve shows an energy-
delay trade-off curve for variable hardware intensity at a fixed power supply,

v

= 1.5

V

, in this
example (hardware intensity energy-delay curve). The curve was fitted to simulation data [21] for an
integer adder, obtained using the EinsTuner [6]. The dotted curves show the energy-delay curves for a
fixed tuning point (fixed hardware intensity) of the circuit, but varying power supply, plotted for an
ideal and dependence, as commonly assumed in many studies. The dashed curves show
simulated data (for a set of functional units (FUs)

,

 running PathMill and PowerMill), with 50 mV steps
in the power supply marked with circles. The point at which the power supply energy-delay curve (dashed
curve) tangents the hardware intensity energy-delay curve (solid curve) corresponds to the optimal
balance between and

v

.
To show this, suppose that the circuit is over-tuned, for example, . Then, retuning the circuit for

a lower value of will move the design point down the hardware intensity energy-delay curve. Increasing
the power supply to recover the performance will move the design up the power supply energy-delay
curve (dashed curve). Because the hardware intensity energy-delay curve (solid curve) is steeper than
the power supply energy-delay curve, the same performance will be achieved at a lower energy. Similarly,
if the circuit is under-tuned for, say, , then tuning the circuit for a higher and then reducing
V

dd

 to achieve the same critical path delay (if the faster operation is not needed) will result in a circuit
operating at the same speed, but lower energy. Notice that this reasoning does not require that the
curvature of the hardware intensity energy-delay curve be higher than that of the power supply energy-
delay curve. Although this property was experimentally verified for a 0.13

µ

 and older CMOS technologies
it may or may not hold true in future technologies, depending on the dependence of the gate and
subthreshold leakage currents on the power supply. If the curvature of the V

dd

 energy-delay curve becomes
higher, the range in which energy and performance can be traded through adjusting V

dd

 will be more
limited, but the optimality relation (Equation (10.4)) will still hold.

FIGURE 10.2

Graphical interpretation of the optimum hardware intensity balance for an isolated macro.

η j θ

θ = = ∂
∂

= − ∂
∂

E

D
E

v

E

E

v
D

v

D

D

v
v

v
v v .

 θ = 2

η
 E v~ 2

 f v~

η
η = 4

η

η = 0.5 η

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.2

1.4

1.6

1.8

2

2.2

2.4

Normalized delay

N
or

m
al

iz
ed

 e
ne

rg
y

varying η for fixed Vdd
varying Vdd for fixed η (ideal E=CV2, f ∼ V)
varying Vdd for fixed η (simulation)
varying Vdd for fixed η (50 mV steps)

η = 3.0

η = 0.5

η = 1.0

η = 2.0

η = 4.0

η = 5.0

6700_C010.fm Page 4 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-5

Although the optimal values of hardware intensities in different pipeline stages, are different, it is

useful to abstract for the higher-level microarchitectural analysis of energy-performance trade-offs a
single aggregate quantity for hardware intensity that represents the whole processor, such that

, where

D

 is the clock period, and

E

 is the total average energy dissipated per cycle in the

processor, . To derive an expression for , notice that increasing the clock cycle time by

dD

through retuning the circuits in all stages of the pipeline, increases the total energy of the pipeline

by , where the summation is performed over all stages of the pipeline. Since

D

i

 =

D

 (all stages are tuned for the same delay), , which means that the aggregate

hardware intensity for a multi-stage pipeline is expressed through the hardware intensities of individual

stages as

(10.8)

10.3 Architectural Complexity

Changing the processor architecture is another way to make trade-offs between performance and energy.
Architectures that are more complex deliver higher architectural performance or instructions per cycle
(IPC)

,

 but inevitably dissipate more energy per every executed instruction. Similar to building the optimal
energy-delay curve in the circuit domain, an optimal energy-delay curve can be constructed in the
architectural domain, as an envelope in the power-performance space of all feasible architectural alter-
natives [20]. Similar to Equation (10.1), the architectural complexity can be defined as*

or (10.9)

Similar to the optimal balance between and

v

 in the circuit domain, there exists an optimal balance
between architectural complexity and and

v

 in the unified architectural-circuit domain. By formally
solving the problem of minimizing energy as a function of three variables , subject to a
constant delay constraint , we arrive at**

(10.10)

Using Equation (10.1) and Equation (10.9), Equation (10.10) can be rewritten as

(10.11)

*It is assumed that the curvature of the architectural energy-delay curve is such that is satisfied
at every point.

**The converse problem of minimizing

D

 subject to constant

E

 leads to the same equations.

 ηi

ηag

ηag
v

D E

E D
= − ∂

∂

E Ei= ∑

ηag

dE dE
E

D
dDi

i

i
i= = −∑ ∑ η

dE

E

dD

D
wi i= − ∑ η

ηi

η ηag

i

i iw= ∑

ξ

D

E

E

D

2 2

2
1

∂
> +

∂
ξ ξ()

ξ
η ν

= − ∂
∂

D E

E D fixed ,

ξ = − %

%

E

D through architecture

η
ξ η

 E E v= (, ,)ξ η

 D v D(, ,) 0ξ η =

∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

D E

v

D

v

E D E

v

D

v

E

η η ξ ξ

ξ η θ= =

6700_C010.fm Page 5 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-6

Low-Power Processors and Systems on Chips

Figure 10.3 gives a graphical interpretation of this relation. The solid curve shows the architectural
energy-delay curve, plotted by curve-fitting the power-performance data reported in the optimal pipeline
depth study [17]. Every data point, plotted as stars in Figure 10.3, represents a different pipeline depth,
and we assume here that the processor microarchitecture was optimally tuned at every pipeline depth.
The dotted curves in the figure show the circuit energy-delay curves for fixed , with the power supply
and hardware intensity varied simultaneously, so that the optimum balance (Equation (10.4)) is observed
at each point. Circles mark 50-mV steps in V

dd

, with the corresponding adjustment in

η

 (Equation (10.6)).
This data was obtained by simulating a set of representative circuits in a microprocessor [21]. For a
reference, triangles show 50-mV steps in V

dd

 without adjusting

η

. Although the quality of the energy-
delay trade-off of the fixed-

η

 scaling is almost the same as that of the optimal

v

-

η

 scaling, the span of
the former is much smaller (larger change in V

dd

 is needed to achieve the same speed up or slow down).
The point at which the architectural energy-delay curve (solid curve) tangents the circuit energy-delay

curve (dotted curve) is the point of the optimal balance between , , and

v

 in Equation (10.11). To
see this, suppose the architecture is over-designed (for instance,). Then, by reducing the architec-
tural complexity, we can move the design point down the architectural energy-delay curve. Then the
performance can be recovered by increasing V

dd

 (by 100 mV in this example) and tuning up circuits for
higher , according to Equation (10.11), which will move the design point up the circuit energy-delay
curve. Because the circuit energy-delay curve is less steep than the architectural energy-delay curve, the
same performance will be achieved at a lower power. Similarly, if , for instance, , then increasing
the architectural complexity to improve the architectural performance (moving up the architectural
energy-delay curve) and reducing V

dd

 and to save energy (moving down the circuit energy-delay curve)
will result in the same performance at a lower power. As with hardware intensity, this relation is not
dependent on assumptions about the relative curvatures of the various energy-delay trade-offs.

Although the nature of the energy-delay trade-offs at the architectural level is similar to that at the
circuit level, one significant difference between them is that with recent advances in the circuit tuning
techniques [6] all circuit-level implementations (provided an appropriate circuit topology is chosen) in
a properly tuned processor can be assumed to be on the optimal energy-delay curve (Figure 10.2) (designs
above the optimal energy-delay curve should be simply discarded), whereas getting the processor archi-
tecture that is on the architectural energy-delay curve (Figure 10.3) presents a significant challenge. The
initial architectural proposal for a new processor is likely to be way off the optimal energy-delay curve.
Multiple iterations of optimizing the architecture are required to transfer the design point to the optimal
architectural energy-delay curve, and then, to the point of the optimum balance (Equation (10.11)), an

FIGURE 10.3

Graphical interpretation of the optimum architectural complexity balance.

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Normalized delay (inverse of performance)

N
or

m
al

iz
ed

 a
ve

ra
ge

 p
ow

er

A0

A1

A2

experimental points
varying ξ (fixed Vdd and η)
varying Vdd and η (fixed ξ)
50 mV steps in Vdd (η adjusted)
50 mV steps in Vdd (η fixed)

ξ = 20.0

ξ = 1.0

ξ = 2.0

ξ = 9.0

ξ

ξ η

 ξ = 9

η

 ξ η< ξ = 1

η

6700_C010.fm Page 6 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-7

iterative process illustrated by sequence in Figure 10.3. To make the methodology useful
for comparing architectural configurations that are not necessarily on the optimal energy-delay curve,
the definition of was extended to designs above the optimal energy-delay curve and a more general
form of the energy-efficiency criterion was derived in Zyuban [19], and generalized to include hardware
intensity in Zyuban and Strenski [21]:

(10.12)

If the inequality holds, then the architectural feature under evaluation is energy-efficient, that is, after
adopting it, the processor will deliver higher net performance at the same power budget, after appropriate
retuning and, possibly, adjustment in the power supply voltage are done to meet the power budget. In

this formula , , , and are relative increments in the processor frequency, architec-

tural performance IPC, average energy per instruction, and the dynamic instruction count arising from
a modification at the architectural or microarchitectural level, evaluated for a fixed hardware intensity

η

ag

 and power supply

v

. Thus, all deltas in Equation (10.12) have the meaning of partial derivatives with

respect to the architectural complexity.

The terms and in Equation (10.12) can be measured by running the benchmark suite on

an architectural simulator. Next we present a methodology for estimating the two remaining terms,

and , and derive a new form of the energy-efficiency criterion that does not require estimating the

term .

10.4 Energy-Efficiency Criterion

10.4.1 Frequency-Invariant Formulation

The key assumption in deriving the energy-efficiency criterion (Equation (10.12)) was that of the optimal
tuning of circuits in every pipeline stage (Equation (10.4), Equation (10.5), and Equation (10.6)) for
every architectural alternative, so that the aggregate hardware intensity of the processor

η

ag

 (Equation

(10.8)) is unchanged between designs implementing the architectural alternatives. This assumption

imposes special rules on calculating , and , in particular, these relative increments must be

calculated assuming that the processor pipeline is reoptimized after every modification to the microar-
chitecture to satisfy Equation (10.4), Equation (10.5), and Equation (10.6).

Suppose, an architectural feature under evaluation introduces an additional complexity in several (or
all) stages of the pipeline, which leads to increments in critical path delays in the corresponding
pipeline stages, assuming that no retuning is done to recover the clock frequency. Suppose that the
corresponding increments in average energies are . The increments and
should be evaluated consistently with the initial hardware intensities of the corresponding stages. For
example, logic added to stage

i

 should be tuned (or assumed to be tuned) according to Equation (10.5).
Then after adding the logic, the aggregate hardware intensity in pipeline stage

i

 will not change. The
delay and energy increments may be either positive or negative, and in those pipeline stages that are

 A A An0 1→ → L

ξ

η
ξ

η
ξ

η
ξ ξη η

ag ag ag

v v
I

I

N

N

f

f

E

E∆
∆

∆
∆

∆
∆

∆
∆

−
+

− +
1

>
1

fixed fixed , ,

∆
∆
f

f ξ

∆
∆

I

I ξ

∆
∆
E

E ξ

∆
∆
N

N ξ

∆
∆

I

I ξ
∆

∆
N

N ξ

∆
∆
f

f ξ

∆
∆
E

E ξ

∆f

∆f

f

∆E

E

∆Di noretune

∆Ei noretune
∆Di noretune

∆Ei noretune

6700_C010.fm Page 7 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-8

Low-Power Processors and Systems on Chips

unaffected by the architectural modification, the delay and energy increments are zero, ,
, as shown in Figure 10.4.

Circuit designers usually have no difficulties estimating the “nonretuned” increments in delay and
energy. For example, adding an execution bypass in 10FO4 pipeline results in increments in the critical
path delay and average energy of the execution stage of the pipeline which are approximately

, and , whereas adding an extra read port to a multiported register

file may result in , and , with no impact in other stages of the pipeline.

To recover the clock frequency, circuits in those stages of the pipeline that are negatively affected by
the architectural modification need to be tuned up for a higher hardware intensity. To restore the energy-
optimal balance in the pipeline , circuits in all remaining stages need to be tuned down for a
lower , so that

(10.13)

where is the increment in the aggregate hardware intensity in stage

i

 as a result of retuning,

, as illustrated in Figure 10.4, whereas is the net increment in the corresponding

energy weight, as a result of both adding hardware and subsequent retuning, .

We designate by and the increments in delay and energy in the pipeline stage

i

 as a
result of retuning the processor, whereas by and we designate the net increment in delay
and energy in pipeline stage

i

 as a result of both modifying the function and subsequent retuning:

(10.14)

FIGURE 10.4

Retuning pipeline after architectural modification.

w2
final

w2
initη1

initw1
init

w1
no ret

η1
finalw1

final

η2
init

η2
initw2

no retη1
init

η2
final

∆D1 no retune

∆D1 retuned

∆D final

∆D2 retuned

∆D final

∆Di noretune
= 0

∆Ei noretune
= 0

∆D

D
EX

noretune

= 0.2

∆E

E
EX

EX noretune

= 0.02

∆D

D
RF

noretune

= 0.1
∆E

E
RF

RF noretune

= 0.2

η θag =

η

∆ ∆ ∆η η ηag

i

i i

i

i iw w= + =∑ ∑ 0

 ∆ηi

∆η η ηi i
final

i
initial= − ∆wi

∆

∆ ∆
w

E

E
w

E

Ei
i

i= −

∆Di retune

∆Ei retune
∆ ∆D Di = ∆Ei

∆ ∆ ∆D D Di noretune i retune
= +

6700_C010.fm Page 8 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-9

(10.15)

Thus, the net delay and energy increments in every pipeline stage consist of increments due to a change
in the functionality resulting from a microarchitectural modification, and additional increments as a
result of retuning the circuits. The net delay increment does not need any index because all pipeline
stages are assumed to have the same delay before and after the retuning,

D

i

 =

D

. The relative increment
in the maximum clock frequency is related to as

(10.16)

Assuming small changes in hardware intensities in all pipeline stages, and neglecting second order
terms, the increments in energies because of the retuning can be expressed through the corre-
sponding increments in delays as follows:

(10.17)

Using Equation (10.14) and Equation (10.15), the final increments in energies can be expressed as

(10.18)

The total increment in energy of the whole pipeline, , is calculated by summing Equa-
tion (10.18) over all pipeline stages and taking advantage of Equation (10.8) and Equation (10.16):

(10.19)

Substituting this expression into the earlier derived energy-efficiency criterion (Equation (10.12)), we
notice that the term cancels out, since in both expressions it has the same meaning of a partial
derivative with respect to architectural complexity . Then, dropping in the denominators of all
terms we arrive at the form of the energy-efficiency criterion that does not require estimating the
increment in frequency:

(10.20)

where is the total increase in average energy dissipated per instruction, assuming no retuning,

, summation being done over all stages in the pipeline, affected by the archi-

tectural modification.
Equation (10.20) is a more convenient form of the energy-efficiency criterion than Equation (10.12).

According to Equation (10.20), to evaluate the energy-efficiency of an architectural feature, the architects

must supply the relative gain (or loss) in the architectural performance and relative change in the

∆ ∆ ∆E E Ei i noretune i retune
= +

 ∆D

 ∆D

∆ ∆f

f

D

D
vfixed η,

= −

∆Ei retune
∆Di retune

∆ ∆E

E

D
Di retune i

i
i retune

= −η

∆ ∆ ∆ ∆E E

E

D
D Di i noretune i

i
i noretune

= − −()η

∆ ∆E Ei= ∑

∆ ∆ ∆ ∆E

E

E

E
w

D

D

f

fv noretune i

i i
i

noretune
ag

vfixed fixed η η

η η
, ,

= + +∑

 ∆f f/
ξ ∆ξ

η η ηag ag
noretune i

i i
i

noretune

I

I

N

N

E

E
w

D

D

∆ ∆ ∆ ∆− + + ∑(1) >

∆E

E noretune

∆ ∆E

E

E

Enoretune

i

noretune

= ∑

∆I

I

6700_C010.fm Page 9 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10

-10

Low-Power Processors and Systems on Chips

dynamic instruction count that result from this feature. These estimates can be obtained by running

an architectural simulator, or timer, like Turandot [11,12]. The second term, is nonzero if changes
to the instruction set architecture (ISA) are considered, or compiler optimizations are analyzed for energy
efficiency. It may also be nonzero if microarchitectural changes are considered in a speculative issue
processor that impact the average number of instructions executed from mispredicted paths.

The architect needs to consult circuit designers to estimate the impact of the architectural feature
under consideration on the average energy dissipated per instruction and the critical path delay through
every stage of the pipeline affected by this architectural feature. A significant advantage of the derived
formula is that in estimating the relative changes in energy and critical path delays the circuit designer
does not need to worry about retuning the circuits to recover the frequency, or reducing the positive
timing slack to save power in logic on paths that are no longer critical. Then, the relative increments in
critical path delays are summed, multiplied by the appropriate energy weights and hardware intensities.
The higher the energy weight

w

i

 and the hardware intensity of a part of the pipeline

i

 affected by the
architectural feature the higher the weight of the increase in the critical path delay through this part of
the pipeline.

The energy weights

w

i

 in Equation (10.20) are typically available as part of power budgeting at the
early stages of the definition of the processor pipeline. The only additional data that is needed to use
the energy-efficiency criterion are hardware intensities in all blocks of the processor. Those quantities
can be measured by static tuning tools, like the EinsTuner [6], based on the simulations of previous
designs, or set as targets at early planning of the microarchitecture, similar to the way the power targets
are budgeted.

Then Equation (10.20) is evaluated. If the inequality holds, then the architectural feature under
evaluation is energy-efficient, that is, after adopting it, the processor will deliver higher net performance
at the same power budget, after appropriate retuning and, possibly, adjustment in the power supply
voltage are done to meet the power budget.

Figure 10.5 gives a graphical interpretation of the architectural energy-efficiency criterion (Equation
(10.20)). Modifying the architecture from an alternative

A

 to

B

 is evaluated for energy efficiency

FIGURE 10.5

Graphical interpretation of the energy-efficient criterion.

∆N

N

 ∆N

 ηi

 ηi

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.2

1.4

1.6

1.8

2

2.2

2.4

Normalized delay (SPEC)

N
or

m
al

iz
ed

 p
ow

er

architecture A
architecture B
power budget 1
power budget 2

A, η = 4.0

A, η = 3.0

A, η = 2.0

B, η = 3.0

B, η = 2.0

B, η = 1.0

A, η = 1.0 B, η = 0.5

6700_C010.fm Page 10 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-11

using Equation (10.20). The points corresponding to the implementations of both architectural alterna-
tives with the same hardware intensity are marked with circles, and the curves passing through
these circles show implementations of architectural alternatives

A

 and

B

 with different hardware inten-
sities, assuming that the power supply is adjusted accordingly, to keep the optimum balance between the
hardware intensity and power supply (Equation (10.6)). In other words, these curves show where the
corresponding design points will move in the energy-delay space if the same architectures are imple-
mented with more or less aggressive circuits.

If the inequality in Equation (10.20) evaluates as true for the architectural change from alternative

A

to

B

, then in the neighborhood of these points, the circuit energy-delay curve passing through point

B

 is
below (or left of) the circuit energy-delay curve passing through point

A

, as shown in Figure 10.5. This
means that for any power budget, within a certain range of the initial points, implementations of archi-
tecture

B

, deliver higher performance than implementations of architecture

A

, for the same power budget.
Notice that the curves may intersect, as shown in Figure 10.5, which means that architectural alternative

B is more energy efficient than A only within some range of the initial design points. This demonstrates
the fact that an architecture optimized for a certain range in the power-performance space may not
perform well outside of this range. For example, a high-performance core, scaled down to operate in the
lower performance space may not be competitive with a core specifically optimized for the low-power,
low-performance applications. Another conclusion from this analysis is that an accurate estimate of the
available power budget for a core is essential for developing an energy-efficient architecture because only
by knowing the power budget can we estimate the maximum value for architectural complexity, hardware
intensity, and power supply that can be used in the core.

Figure 10.3 plots a possible outcome of overestimating the power budget available for a processor core
at the microarchitecture definition stage, and choosing an overly high value for the architectural com-
plexity. Suppose, at early design stages, the power budget is estimated to be at 2.2 and the microarchi-
tecture of the processor core is optimized for the architectural complexity of . Suppose that at a
circuit phase of the design it is discovered that the actual power budget is only 1.2. Since changing the
architecture at this point would result in missing the product release schedule, the only way to bring the
processor power under the budget is to redesign all circuits for a lower hardware intensity and reduce
the power supply, or just reduce the power supply, if it is too late for redesigning the circuits. This will
send the design point down the dashed curve passing through the point in Figure 10.3, and leading
to an almost loss in performance compared to the design originally optimized for the power budget
of 1.2 with the architectural complexity of . Thus, such late changes in the design may lead to a
significant performance degradation, and scaling down the power supply to bring an overpowered
processor core to the power budget may have a very high performance cost. This demonstrates the
importance of accurately estimating the available power budget at early design stages, and disproves the
notion, common in architectural community, that relative power estimates are always sufficient when
proposing new architectural features.

10.5 Other Power–Performance Metrics

Until energy efficiency criterion (Equation (10.20)) was introduced, the most popular power-perfor-
mance metric used in the architectural community has been [2–5,7,8,13,15,18]

(10.21)

with the value of parameter ranging from to , depending on the class of the microprocessor.
As discussed in Zyuban [19], the prior art metric (Equation (10.21)) is a special case of the integral form
of the derived metric (Equation (10.12)), with set to .

Another recent work proposed the following metric for evaluating architectural features [16]:

 η = 2

 ξ = 20

ξ = 20

 15%
ξ = 2.0

MIPS

Watt

γ

γ γ = 0 γ = 3

γ γ η= +ag 1

6700_C010.fm Page 11 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

10-12 Low-Power Processors and Systems on Chips

(10.22)

Notice that Equation (10.22) is also a special case of Equation (10.12), with , and

, because in clock-gated designs , and .

The main advantage of the derived criterion (Equation (10.20)) is that, in addition to being formally
derived and being more general than the preceding metrics (Equation (10.21) and Equation (10.22)), all
its terms have a clear meaning and an unambiguous method for estimating them as “naive” increments
in energies and delays. On the other hand, the metrics in Equation (10.21) and Equation (10.22), though
correct, may be confusing to use by an architect, because they hide important assumptions about the
method for estimating increments in million instructions per second (MIPS) and Watts. In particular,

estimating the term may be ambiguous because it requires knowing both and , which

are interrelated and depend on the assumptions about the allowed change in the clock frequency and
retuning the pipeline after modifying the architecture. When using these metrics, some architects assume
that circuit designers will do whatever is needed to recover the extra delay due to an introduced archi-
tectural feature, and set ∆f = 0, neglecting the increase in energy due to redesigning and retuning the
circuits. Others calculate the extra delay introduced due to an added architectural feature and

set , assuming that nothing can be done at the circuit level to recover the frequency, and

neglecting that circuits in stages not affected by the change will have a timing slack and could be tuned
down to save power. In both cases, the conclusion of applying the metrics in Equation (10.21) and
Equation (10.22) may be incorrect. The next section presents a typical example of incorrectly using the
metrics in Equation (10.21) and Equation (10.22).

10.6 Example: Adding an Execution Bypass

As an example, we evaluate the energy-efficiency of implementing an execution bypass in the integer
unit (IU) of a microprocessor with a target cycle time of 10FO4, and an aggregate hardware intensity

target of (shown in Figure 10.6). This microarchitectural feature affects only the register file (RF)

FIGURE 10.6

3 >

∆ ∆IPC

IPC

Power

Power

ηag = 2 ∆f = 0

 ∆N = 0 Power E IPC~ ×

∆ ∆ ∆Power

Power

E

E

IPC

IPC
= +

∆Power ∆f ∆E

∆ ∆f

f

D

D
= −

ηag = 2

1FO4

FU

RF

1FO4 MUX

1FO4

FU

RF

10
FO
4

10
FO
4

6700_C010.fm Page 12 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

Power–Performance Trade-Offs in Design of SoCs

10

-13

and execution (EX) stages of the processor. The delay insertion penalty of the bypass multiplexer in front
of the latch is approximately 1FO4, and the delay of the bypass wire, including the rebuffering is
approximately 1FO4. Then the relative “nonretuned” increments in the critical path delays through the

register file and execution stages are and .

Adding the bypass multiplexer and the bypass wires also introduces an energy overhead, dissipated
whenever the IU is accessed. Based on simulation results, we estimate the relative energy overhead of the
bypass wires and multiplexers as 5% of the average energy dissipated in the IU. Suppose the energy

budget of the IU is 10% of the total energy dissipated by the microprocessor. Then, = 0.05 ·

0.1 = 0.005.

Suppose, the aggregate hardware intensity of the microprocessor is , but since pipelining the

register file access and integer functional units has a high cost in IPC degradation, a higher value of

hardware intensity is budgeted to them, . Also, suppose, and . Then,

using the criterion in Equation (10.20), we determine the relative increment in IPC that needs to be

demonstrated to justify adding the execution bypass in the IU as .

Notice that if we used the metric then, depending on the assumption about the change in

frequency, the architect could arrive at different conclusions. If the view is taken that the circuit designers
can do nothing to recover the frequency, then the metric in Equation (10.21) leads to the answer

. On the other hand, if the view is taken that circuit designer will do whatever is needed to

recover the frequency, and the architect does not need to worry about it, then the metric in Equation

(10.21) leads to the answer . Similarly, the metric in Equation (10.22) leads to ,

assuming the frequency is unchanged. In both cases, the conclusions about the energy-efficiency of the
IU execution bypass produced by straightforwardly applying the metrics in Equation (10.21) and Equa-
tion (10.22) are incorrect.

10.7 Conclusions

This chapter analyzed common approaches to trading power and performance in the design of processor
cores for systems on chip, such as varying the power supply, hardware intensity, and architectural
complexity. It was demonstrated that in order to develop an energy-efficient processor core, that is a
core that delivers maximum performance at a strictly limited power budget, design decisions at all
levels must be balanced in such a way that all forms of spending power have a similar marginal cost.
A criterion for optimizing the core architecture was described which is useful for guiding the iterative
architectural optimization process that leads to the optimal balance between the architectural com-
plexity, hardware intensity and power supply. It was demonstrated that a single core may not be
competitive in both high and low performance domains, and accurate estimates of the available power
budget for a core are essential for developing an energy-efficient architecture, as opposed to making
decisions based on relative power estimates only. It was also demonstrated that scaling down the power
supply to bring an overpowered processor core to under the power budget might have a very high
performance cost.

ΔD

D
RF

noretune

= 0.1
ΔD

D
EX

noretune

= 0.2

ΔE

E noretune

ηag = 2.0

η ηRF EX= = 3 w RF = 0.04 w EX = 0.06

ΔI

I
> 2.7%

MIPS

Watt

3

ΔI

I
> 20%

ΔI

I
> 0.25%

ΔI

I
> 0.25%

6700_C010.fm Page 13 Thursday, August 18, 2005 9:30 AM

Copyright © 2006 Taylor & Francis Group, LLC

10-14 Low-Power Processors and Systems on Chips

10.8 Acknowledgment

The authors thank Dr. Jaime Moreno and Dr. Kevin Warren for their management support.

References

[1] R. Brodersen, M. Horowitz, D. Markovic, B. Nikolic, and V. Stojanovic. Methods for true power
minimization. In Proc. ICCAD, 35–42, November 2002.

[2] D. Brooks and P. Bose et al. Power-aware microarchecture: design and modeling challenges for
next-generation microprocessors. IEEE MICRO, 20(6):26–44, November 2000.

[3] T. Burn and R. Broderson. Energy-efficient CMOS microprocessor design. Proc. 28th Annu. Hawaii
Int. Conf. on System Sciences, 288–297, 1995.

[4] J. Burr and A. Peterson. Energy considerations in multchip module-based multiprocessors. Proc.
ICCD, 593–600, 1991.

[5] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power CMOS digital design. IEEE J. Solid-State
Circuits, 27(4):473–484.

[6] A. Conn et al. Gradient-based optimization of custom circuits using a static-timing formulation.
Proc. Design Automation Conf., 452–459, June 1999.

[7] R. Gonzales, B. Gordon, and M. Horowitz. Supply and threshold voltage scaling for low-power
CMOS. IEEE J. Solid-State Circuits, 32(8):1210–1216, August 1997.

[8] R. Gonzales and M. Horowitz. Energy dissipation in general-purpose microprocessors. IEEE J.
Solid-State Circuits, 31(9):1277–1283, September 1996.

[9] H.P. Hofstee. Power-constrained microprocessor design. In Proc. IEEE on Computer Design, 14–16,
September 2002.

[10] J. Moreno et al. An innovative low-power, high-performance programmable signal processor for
digital communications. IBM J. Res. Dev., 47(2/3):299–327, 2003.

[11] M. Moudgill, P. Bose, and J.H. Moreno. Validation of Turnadot, a fast processor model for microar-
chitecture exploration. Proc. IEEE Int. Performance, Computing, and Communications Conf.
(IPCCC), 451–457, February 1999.

[12] M. Moudgill, J.D. Wellman, and J.H. Moreno. Environment of PowerPC microarchitecture explo-
ration. IEEE Micro, 19(3):9–14, May/June 1999.

[13] K. Nowka, P. Hofstee, and G. Carpenter. Accurate power efficiency metrics and their application
to voltage scalable CMOS VLSI design, IEEE Trans. on VLSI Syst., 2003.

[14] V.G. Oklobdija, B.R. Zeydel, D. Hoang, S. Mathew, and R. Krishnamurthy. Energy-delay estimation
technique for high-performance microprocessor VLS1 adders. In Proc. 16th IEEE Symp. on Com-
puter Arithmetic, 2003.

[15] P. Penzes and A. Martin. Energy-delay efficiency of VLSI computations. Proc. Great Lakes Symp.
on VLSI, 104–107, April 2002.

[16] J. Rattner. Making the right-hand turn to power-efficient computing. Keynote speech, 35th Annu.
Int. Symp. on Microarchitecture, November 2002.

[17] V. Srinivasan et al. Optimizing pipelines for power and performance. Proc. 35th Annu. Int. Symp.
on Microarchitecture, November 2002.

[18] M. Stan. Low-power CMOS with subvolt supply voltages. IEEE Trans. on VLSI Syst., 9(2):394–400,
April 2001.

[19] V. Zyuban. Unified architecture level energy-efficiency metric. Proc. Great Lakes Symp. on VLSI,
24–29, April 2002.

[20] V. Zyuban and P. Kogge. Optimization of high-performance superscaler architectures for energy
efficiency. IEEE Symp. on Low-Power Electron. and Design, 84–89, August 2000.

[21] V. Zyuban and P. Strenski. Unified methodology for resolving power-performance trade-offs at the
microarchitectural and circuit levels. Proc. Int. Symp. on Low-Power Electron. and Design, 166–171,
August 2002.

6700_C010.fm Page 14 Thursday, July 14, 2005 12:30 PM

Copyright © 2006 Taylor & Francis Group, LLC

11

-1

11

Low-Power SoC with
Power-Aware Operating

Systems Generation

11.1 Introduction ..

11-

1
11.2 Related Work ...

11-

2
11.3 Preliminary: SoC Architecture Generation

11-

3

SoC Architecture • SoC Architecture Generation

11.4 Automatic Generation of Application-Specific Operating
Systems...

11-

5

System Description Input • OS Library • OS Code Generation •
Application to Existing OSs

11.5 Experiments ...

11-

8

Token-Ring Example • VDSL Example • Gain Compared with
Conventional OSs

11.6 Conclusion...

11-

12
References ...

11-

13

11.1 Introduction

Recently, embedded software (SW) is becoming increasingly important in system-on-chip (SoC) design
[1]. Two important characteristics of embedded SW in SoC are:

1. Interaction with physical components in hardware (via I/O and interrupt)
2. Concurrency required to handle the interaction with physical components as well as to better

exploit the processor computing power

To satisfy the characteristics, embedded SW needs the operating system (OS) both for the hardware
(HW) interaction and for multi-tasking.

Embedded SoCs have strict constraints in energy consumption. The main drains of energy in SoC are
processor, memory, on-chip bus, to name a few

.

 From the viewpoint of embedded SW, the energy
consumption is decomposed into two parts: energy consumption by the application SW and by the
operating system.

For the reduction in energy consumption by the application SW, there have been presented many
techniques categorized into dynamic voltage scaling [2] and dynamic power management [3,4]. Recent
analyses and experiments have demonstrated that the actual OS can consume a significant portion of
energy [5,6].

To reduce the energy consumption of SoC, we need methods to reduce the energy consumption of
the OS as well as methods to reduce that of the application SW. To reduce the energy consumption of
the OS, we can consider two approaches. One is to change the usage style of OS (e.g., replacing polling

Sungjoo Yoo
Aimen Bouchhima
Wander Cesario
Ahmed A. Jerraya

TIMA Laboratory

Lovic Gauthier

FLEETS

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

11

-2

Low-Power Processors and Systems on Chips

operations into interrupts). The other is to reduce the energy overhead of OS itself (e.g., minimizing the
OS size).

In this chapter, we handle the problem of minimizing the energy overhead of OS itself. The sources
of energy consumption of the OS are twofold. One is the energy consumption of memory portion that
contains the OS code. The other is the energy consumption of processor where the OS executes. To reduce
the energy consumption of both sources, a possible method will be to design a small OS specific to the
given application SW. The small OS implements only the functionality necessary to the application SW.
We call such an OS application-specific OS.

The application-specific OS reduces the energy consumption of the memory by reducing the OS code
size. To understand the effects of small OS code, for instance, assume a network-on-chip processor that
contains 100 processors [7] and that each processor needs an OS with a code size of 100 KB. In that case,
only for the OS code, we need 10 MB of memory and the energy consumption in the memory occupied
by the OS code can be significant. Because a small OS usually enables fast OS execution, it can also reduce
the energy consumption of processor by reducing the number of processor clock cycles necessary to
perform the same OS functions.

The main difficulty in designing application-specific OSs is the design time. For the design, we need
to tailor the functionality of OS to that of application SW. For instance, if the application SW does not
use semaphore, the OS needs to remove the semaphore functionality from its implementation. Because
many different OS functionalities (e.g., scheduling, inter-process communication, I/O, and interrupt
management) and different implementations of the same OS functionality exist (e.g., different imple-
mentations of interrupt management), if the tailoring process is performed manually, application-specific
OS design can be prohibitively time-consuming. Such a long design time of application-specific OS is
not acceptable in ever tightening time-to-market pressure. Thus, we need new methods to accelerate the
design of application-specific OS. In this chapter, we present a novel method to automatically generate
application-specific OSs. The presented method generates very small OSs comparable to the smallest
hand-written commercial OSs.

This chapter is organized as follows. Section 11.2 presents a short review of energy consumption issues
related to the OS. Section 11.3 introduces SoC architecture. Section 11.4 explains the presented method.
Section 11.5 discusses the effectiveness of the presented method with experiments. Section 11.6 concludes
this chapter.

11.2 Related Work

Although most of SoC applications require low-power OSs, applications requiring ultra low-power OS
are sensor network [8] and network on chip [7,9]. In Hill [8], an OS called TinyOS is presented for the
sensor network where each sensor node has significant OS usage for data acquisition and transmission.
In network on chip where each of (up to) hundreds of processors may need its OS, the energy overhead
of OS can become significant.

In Dick et al. [5], an analysis of energy consumption by the OS (uC/OS-II in this case) is presented.
The analysis demonstrates that we can obtain a 27.5 to 42.8% reduction in total energy by changing
RTOS usage (e.g., replacing application code using polling by interrupt code). In Tan et al. [6], a technique
of transforming SW architecture is presented to reduce the energy consumption of OS (ARM Linux in
this case). The transformation gives a 10.7 to 66.1% reduction in total energy consumption. In this
method, for the reduction in energy consumption, the OS code does not change, but the application
code changes; however, our method changes (i.e., minimize) the actual OS code to reduce the OS
overhead. Thus, the method in Tan et al. [6] and ours complement each other.

The size of the smallest versions of full-featured commercial OS (e.g., micro-kernel + file system and
memory management

)

 ranges between 80 KB (VxWorks [10]) and 100 KB (QNX Realtime [11]). Several
very small OSs (i.e., micro-kernel designs including TinyOS [8] [~3.7 KB], pOSEK [12] [~2 KB], Chorus
OS [13] [~10 KB], Ariel [14] [~19 KB], etc

.

) have been presented. In terms of OS size, the presented
method yields OS sizes, 1.6 to 7.7 KB, comparable to the handwritten micro-kernels for our examples.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power SoC with Power-Aware Operating Systems Generation

11

-3

Compared with the existing micro-kernels, our contribution is to automatically generate small OSs
without manual design.

11.3 Preliminary: SoC Architecture Generation

11.3.1 SoC Architecture

Figure 11.1 depicts a typical SoC architecture with heterogeneous processors (i.e., CPUs, DSPs, IPs, etc

.

)
and the on-chip communication network (e.g., AMBA and packet/circuit switch network).

Embedded SW is generally organized as a stack of layers on top of the processor as depicted in Figure
11.1. The lowest SW layer called HW abstraction layer (HAL) provides the upper SW layer with an
abstraction of underlying HW architecture. The OS provides the application SW with services such as
task scheduling and synchronization, interrupt management, I/O, memory management, etc

.

The processor is connected with on-chip communication network via an interface called HW wrapper.
This chapter focuses on the OS generation in the SoC architecture. For further details of HW wrapper
generation, refer to Lyonnard et al. [15] and Cesario et al. [16].

11.3.2 SoC Architecture Generation

The application-specific OS is generated as a part of SoC architecture generation. Figure 11.2 illustrates
the SoC architecture generation flow called ROSES

.

 From a high-level SoC specification called VADEL

,

the flow generates application-specific OS and HW wrappers.

FIGURE 11.1

SoC architecture.

FIGURE 11.2

The flow of SoC architecture generation: ROSES.

OS

HAL

MA

 CA CA

Application
SW

CPU

On-chip communication network

HW wrapper HW wrapper HW wrapper

IP DSP

HW wrapper library

PA (ARM7)

 HWS
(timer)

 CA
(hsk)

HW wrapper

OS

OS OS Proc. Adapter

CA CA
HW

RTL Architecture

HW wr.

Comm. network

Comm./Sys. Services

BSP

fifo

wr rd

Processor
Application

API,s

API,s
Comm./Sys.
Services

HAL

send recv ...

...

...

HW wr.

generation
OS

generation

A

A

B

B

C

C

wrapper

TS

µP2µP1

OS libraryVADEL

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

11

-4

Low-Power Processors and Systems on Chips

In VADEL, the system is described with a network of hierarchical modules. Modules are connected
with each other through its ports via communication channels. A module consists of behavioral parts
and ports. Each module can be a leaf module or a hierarchical one composed of a network of module
instances. We call a leaf module a

task.

 For communication, ports provide module behavior with com-
munication application programming interface (API) encapsulating communication details (i.e., com-
munication protocol). In the real SoC implementation, the OS implements the API (illustrated in the
OS library in Figure 11.2) in the form of service

.

 Note that the module behavior (i.e., application SW
code) communicates with the OS via the APIs. In fact, the API is a programming model used by the
designer to write the application SW code. In our case, the API is extendable.

Architecture generation from the VADEL representation to SoC architecture consists of:

1. OS generation
2. HW wrapper generation

As illustrated in Figure 11.3, an OS consists of two types of services: communication/system services and
HAL services. To generate application-specific OSs, only the services required by the application SW are
selected from the OS library. Assembling HW components from the HW library, as illustrated in Figure
11.2, also generates the HW wrapper. In this paper, we focus on the OS generation flow. For the details
of HW wrapper generation, refer to Lyonnard et al. [15] and Cesario et al. [16].

FIGURE 11.3

OS generation flow.

VADEL
description

OS library

send recv

Comm./Sys. Services

fifo TS

BSP

wr rd

...

...

...

Application
SW

OS services

HAL
OS

Architecture
 Analyzer

Code
Selector

Code
Expander

Makefile
Generator

// Generated OS
FIFO fifo_port_3=0x9000
void*shm_B=0xA000
...
/* FIFO behavior */
FIFO behavior*/
FIFO_PORT, fifo_read() {...
if (available()) return read(); ...
}

// Generated Makefile
CC =m68k-coff-gcc
CFLAGS=-03
...
OBJS=boot,o FIFO,o task3,o ...
all : $ (OBJS)
 $(CC) ...

Target processor info

Required services

OS code file names

Macro files

Module & 68000 processor Module B: ARM processor

Module X:
 Task 1

Module Y:
 Task 2

Module Z:
 Task 3

channels

void task3() { ...
3 = P3,fifo_read();
...
 P3.fifo_write(b);...
}

port_name: P3
service_name:fifo
fifo_size: 20
data_addr: 0x24000
...

API’s

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power SoC with Power-Aware Operating Systems Generation

11

-5

11.4 Automatic Generation of Application-Specific Operating

Systems

Figure 11.3 depicts the flow of automatic OS generation. The input to the OS generation is the VADEL
description that contains a network of hierarchical modules, communication between modules and
parameters for OS generation.

As presented in the figure, the architecture analyzer takes the structural information and the parameters
in the VADEL description. The code selector receives a list of services specific to the application and the
architecture from the architecture analyzer and finds the full list of (original and deduced) services. The
code expander generates the source code of OS. Then, the makefile generator gives makefiles. Thus, the
outputs of the design flow are the source code of the generated OS and a makefile for each processor. To
obtain the binary code to be downloaded onto the target processor memory, the designer runs a com-
pilation of both generated OS and the application SW code using the generated makefile.

11.4.1 System Description Input

As the system description input, the flow takes a structural representation of communication in a
hierarchical network of modules. Figure 11.4 is an example of hierarchical network of modules.

In the figure, two modules (tasks) X and Y are mapped on a 68,000 processor and the other module
Z on an ARM7 processor. Each module (task or processor) has a set of ports (depicted as small rectangles
in the figure). The port has parameters. Figure 11.4 is an example of port parameters (e.g.,

port_name
(P3), service_name (fifo),

 and so forth). Each task has also parameters such as task priority.
Note that the OS is generated on a processor basis. Between modules, inter/intraprocessor communi-

cations are represented. For instance, there is an intraprocessor communication between modules X and
Y (a line in the shaded region of the figure). In the figure, the three channels between module A and B
exemplify interprocessor communication.

Figure 11.4 is an example of communication via the port in task 3. In the figure, the behavioral part
of task 3 just calls a high-level communication function provided by port P3 (i.e., a port function), for
example,

P3.fifo_read()

 for communication via the port. In the VADEL description, we do not describe
the behavior part of task, but list task source code files and the parameters of OS API that the task calls for.

11.4.2 OS Library

The OS library is the core of the OS generation tool. It provides small and flexible pieces of code that
can be adapted and used to build the OS. The library contains two parts:

1. A code part containing the code
2. A description part

FIGURE 11.4

An example of VADEL description.

Module A: 68000 processor Module B: ARM processor

Module X:
 Task 1

Module Y:
 Task 2

Module Z:
 Task 3

channels

void task3() { ...
 a = P3.fifo_read();
...
 P3.fifo_write(b); ...
}

port_name:P3
service_name:fifo
fifo_size: 20
data_addr: 0x24000

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

11

-6

Low-Power Processors and Systems on Chips

The code part is written in a macro language. The description part enables assembly of OS code pieces.
Its main components are the OS element, the service, and implementations.

11.4.2.1 OS Element

An OS element represents a SW code piece of the generated OS. It provides services and may require
other services. Depending on different target processors, an OS element can have several code pieces
each of which is specific to a processor. We call such a processor-specific code piece an implementation

.

Note that each implementation code of an element can be described in a different language (for instance,
C or assembly).

11.4.2.2 Service

A service can represent any kind of OS functionality. In our OS library, three types of services are used:
communication, system, and HAL services. Communication services implement the API functions of
communication between modules. For instance, the communication protocol FIFO is implemented as a
communication service. Examples of system service are task scheduling service (e.g., function to schedule
tasks in preemptive/nonpreemptive priority-based/round-robin schedulers) and timing service. Com-
munication/system services use device driver services to implement their functionality.

HAL

 services are
specific to the processors where the application SW is running.

11.4.2.3 Implementations

Implementations of an OS element are organized in a tree relationship. An implementation can also be
compliant with specific peripherals (mainly for driver descriptions).

Figure 11.5 is an example of such a tree relationship. In the figure, each oval represents a part of
implementation of an OS element. For instance, an OS element, boot for ARM7 processor, can consist of:

1. A processor-independent code piece in C (the top oval in the figure)
2. ARM processor family-specific code piece in assembly (the oval denoted with ARM)
3. ARM7 processor-specific code piece in assembly

11.4.3 OS Code Generation

11.4.3.1 Architecture Analyzer

The architecture analyzer finds the following information from the system description input:

1. Application-specific services and their detailed parameters
2. Module-specific parameters
3. Modules interconnection topology

Application-specific OS services are extracted from the parameters of modules, channels, and ports
in the system description input. For instance, if a port has a parameter for FIFO implementation, FIFO
service is selected to be included into the generated OS. Further detailed parameters of required services

FIGURE 11.5

Processor dependency of OS code.

All

ARM 68xxx x86

ARM6 ARM7 ARM8 8086 80286 80386

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power SoC with Power-Aware Operating Systems Generation

11

-7

are also found in the VADEL description

.

 For instance, the address range of FIFO communication and
the interrupt level of interrupt-driven port can be found. A list of required service names is sent to the
code selector.

Module-specific parameters (e.g., task priority, processor speed, and processor type) are also found
from module parameters. The type of processor is sent to the makefile generator to choose the right
compiler and to the code expander to produce the OS code to the processor. The interconnection topology
(e.g., point to point and multipoint) is used to deduce internal data structure used for communication
and synchronization.

11.4.3.2 Code Selector

The code selector takes as input the list of required service names from the architecture analyzer. It uses
the OS library to check service dependencies and finds all the OS elements that have dependency relation
with the required services and that are compliant with the target architecture. The dependency relation-
ship can be transitive. For instance, if a FIFO communication service used in the application code requires
an interrupt handling service, an OS element providing the interrupt handling service should be also
chosen for inclusion in the OS to be generated.

An OS element is compliant with an architecture if one of its implementations is compliant with the
architecture and if all the services it requires can be provided by other compliant OS element. Because
an OS element may require some services, the previous algorithm is repeated recursively to perform a
kind of transitive closure. Sometimes, several OS elements compliant with the architecture may provide
the same required service. In such a case, it is up to the user to choose the good one. After the OS element
selection is done, the code selector sends the list of the code file names to the makefile generator and the
macro file names to the code expander.

11.4.3.3 Code Expander

The code expander takes as input a list of macro file names from the code selector and parameters from
the architecture analyzer. It generates the final OS code by:

1. Associating the right parameters to each OS element
2. Expanding the macro codes of OS elements to source codes by calling an external macro processing

program

Figure 11.6 is an example of code expansion. In Figure 11.6(a), a macro-code section is listed for a
part of the semaphore synchronization mechanism. First, the code expander fixes the input parameters:

SYNC

,

 which is an array of identifiers for the synchronization units and

Sem_P,

 which indicates that the
service function is required. Then, it performs the macro expansion. For instance, in Figure 11.6(b), the
data structure for the semaphores is generated with its size (

SIZE

 = 2) (i.e., the number of semaphores,
its queues, and its states [zero]). Note that the synchronization queue uses another service (in fact, also
to be expanded)

Soft_Wait

 that provides wait and signal mechanism.

11.4.3.4 Makefile Generator

The makefile generator takes as input:

1. Processor type information from the architecture analyzer
2. A list of source codes of the OS (in C and assembly) from the code selector
3. A list of the application SW codes described in the VADEL description

It determines the right compiler and linker and generates a makefile (for each processor) that includes
the two code lists of OS and application SW.

11.4.4 Application to Existing OSs

An existing OS can be integrated into the proposed flow of automatic generation (to be specific, in this
case, automatic configuration) of application-specific OS. To explain the integration, we assume that the

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

11

-8

Low-Power Processors and Systems on Chips

existing OS supports OS configuration by “#” statements (i.e., configuration by defining required macros)
without modifying the OS source code because most commercial OSs allow such a configuration. The
integration can be done as follows:

1. Information of available OS services (e.g., API, macros defined for services) and dependency
relationship between services in the existing OS are taken into the OS library.

2. To the OS generation flow in Figure 11.3, the designer gives the same system description input in
VADEL.

3. The architecture analyzer performs the same operation (i.e., extracting required information such
as services and target processor information) as described in this section.

4. The code selector finds all the required (derived) services from the OS library as explained in this
section. Then, it selects, from the OS library, macro definitions corresponding to the required
services instead of selecting macro code files as explained in this section. Note that in the case of
automatic configuration of existing OS, the code expander does not generate the OS source code
because the existing OS source code is not modified.

5. The makefile generator outputs a makefile with the selected macro definitions received from the
code selector.

Note that compared with the original flow of automatic OS generation proposed in this chapter, in
the case of integrating the existing OS into the flow, no change occurs in automatic execution of service
extraction (by the architecture analyzer) and makefile generation. The code quality (i.e., size and execution
time) of the automatically configured OS depends on the configuration granularity of OS services in the
existing OS.

11.5 Experiments

We applied the proposed method to two system examples: a token-ring system and a very high data-rate
digital subscriber line (VDSL) framer system.

FIGURE 11.6

Code generation example.

@DEFINE SIZE=
@ SIZEOF SYNC
@ENDDEFINE
@
@DEFINE decl_sem_var=”
@static Sem Type Sems[“SIZE”]=
@{
@ FOR i FROM 0 TO SIZE-2 DO
@ “{“SYNC[i]”,0},”
@ ENDFOR
@“{“SYNC[SIZE-1]”,0}};”
@ENDDEFINE
@decl_sem_var@

@DEFINE decl.P=
@IF ISDEFINED Sem_P DO”
@void P (int id)
@{
@ Sem Type sem=Sems[id];
@ sem.count-;
@ if (sem.counti0)
@ {
@ “Wait{“sem.sync”}”;
@ }
@“ ENDIF
@ENDDEFINE
@decl_P@

static Sem Type Sems[2]=
{{1,0},{5,0}};

void P (int id)
{
 Sem Type sem=Sems[id];
 sem.count-;
 if (sem.count;0)
 {
 Soft_Wait(sem.sync);
 }
}

(A) Macro code

(B) Expanded code

 Code
 expansion

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power SoC with Power-Aware Operating Systems Generation

11

-9

11.5.1 Token-Ring Example

Token-ring system (1245 lines in SystemC) consists of four tasks (called

token

) that exchange tokens with
each other and one counter task (called

Cnt

) that counts the number of tokens exchanged.
Figure 11.7(a) depicts the interconnection of tasks in the example. As presented in the figure, four

token

 tasks make a bidirectional ring connection with each other.

Cnt

 task is connected to all

token

 tasks.
In our experiment, we implement the system example on a multi-processor target architecture with

three 68 K processors depicted in Figure 11.7(b). In the figure, four

token

 tasks are mapped to two
processors (two tasks on each processor) and

Cnt

 task is mapped to the other processor. In the system
description input, we assigned equal priority to all the tasks.

For the communication channel between modules, we specified one word communication with non-
blocking write/blocking read. In the example, the size of transferred data (i.e., counter value and token)
is one word.

First, the system description input in VADEL is read into the architecture analyzer. Then, the code
selector selects the following OS services for the two OSs (OS1 and OS3 in the figure) of the two processors
each of which runs two

token

 tasks:

1. Round-robin scheduler service with preemption service because tasks have the same priority
2. A timer service because the round-robin scheduler with preemption is used
3. Nonblocking write (called

exoutd

) and blocking read services (called

exinb

)

The code expander generates the OS source code that handles two tasks of equal priority and two
communication service functions (

exoutd

 and

exinb

). For the processor where only

Cnt

 task is mapped,
the same communication services are selected for OS2; however, no scheduler and timer services are
selected because only one task exists on the processor.

We obtained three binary executables for three processors after running compilation with the generated
OS codes and makefiles. We validated the system implementation in cosimulation with three instruction
set simulators of 68,000 processor and a VHDL simulator. As the result, in this experiment, the generated
OSs give very small code sizes: 797 lines (90% in C and 10% in assembly), compiled and linked to 1.86
KB for each of two processors with two Token tasks and 1.62 KB for the processor with one

Cnt

 task. In
terms of performance, it gives 83 instruction cycle latency in the channel read operation from interrupt
trigger to the end of single-word data access.

11.5.2 VDSL Example

The design presented in this section was taken from the implementation of a VDSL modem using discrete
components [17]. The block diagram for this prototype implementation is illustrated in Figure 11.8. The
subset we will use in the rest of this paper is shaded in the figure. It is composed of two ARM7 processors
and a part of the datapath

,

TX_Framer,

 described at the RT-level.
On the two processors, parallel tasks are running. The control over the three modules (two processors

and

Tx_Framer

) is fully distributed. All three modules act as masters when interacting with their envi-

FIGURE 11.7

A token ring example.

Token
1

Token
2

Token
3

Token
4

Token
1

Token
2

Token
3

Token
4

OS1 OS2 OS3

68K

Cnt

68K 68K

Cnt

(A) Token ring system (B) Three generated OSs

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

11

-10

Low-Power Processors and Systems on Chips

ronment. Additionally, the application includes some multipoint communication channels (shared mem-
ory services) requiring sophisticated OS services.

Figure 11.9 illustrates the VADEL description of VDSL example. Modules

VM1

and

VM2

 correspond
to the ARM7s on Figure 11.8 and module

VM3

 represents

TX_Framer

 block.
Given the VADEL description, our flow in Figure 11.2 generates two OSs for two ARM7 processors

and three HW wrappers (i.e., two for two ARM7 processors and one for the Tx Framer). The architecture
generation takes only a few minutes on a Linux PC 500 MHz. Figure 11.10 depicts the RTL architecture
obtained after OS and HW wrapper generation. For further details of HW wrapper generation, refer to
Cesario et al. [16].

Each generated OS is customized to the set of tasks executed on each of the processors. For example,
SW tasks running on

VM1

 access the OS using an API composed of two functions: pipe for communi-
cation with

VM2

, and signal to modify the task scheduling on runtime. The OS contains a round-robin

FIGURE 11.8

Entire VDSL system.

FIGURE 11.9

VADEL description of VDSL example.

Host PC

DSP RAM
ARM7

ARM7

: Part redesigned as an SoC

A
nalog

Front-end

ASIC FPGA

FPGA

ATM

Layer

MCU1

MCU2

Digital
Front-End

Tw
isted-P

air
(copper line)

VDSL Modem
Processor

BL-M V-M

Constellation
Processor

VDSL Protocol
Processor

BL-M: BL-Handling Memory
V-M: Variance Memory

I-M DI-M

I-M: Interleave Memory
DI-M: De-Interleave Memory

VM1 VM2 VM3

M1 M2 M3

T1

T2

T3

T4

T5

T6

T7

T8

T9

VC1

VC2

VC3

SAP

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

L
ow

-P
ow

er SoC
 w

ith
 P

ow
er-A

w
are O

peratin
g System

s G
en

eration

11

-11

FIGURE 11.10

Generated SoC architecture.

VM1

Signal
internal

Signal
LReg

Pipe
LReg

ITSync.Sched .

SignalPipe

VM2

ARM7
processor

core

Memory
(RAM/ROM)

Address
decoder

ARM7
processor

core

Memory
(RAM/ROM)

Address
decoder

IP
(Tx_Framer)

SHM

internal

Pipe

internal

Pipe

LReg

ITSync.Sched .

Direct

Timer

LReg

Signal

internal

Semaph

internal

Pipe

buffer

Direct

register

Pipe SHM GSHM Signal Timer

clock

reset

CSRS CK CS CKCK

data

address

HW
wrapper

data

add.

ctrl

data

add.

ctrl

test vector

data

add.

ctrl

HNDSHK 3
comm. adapter

data

add.

ctrl

CKPolling
comm. adapter

CKCK HNDSHK 1
comm. adapter

CK

ARM7 processor adapter

CK

CSRS CK CS

data

address

control
CK

data

address

control

CK

data

address

HW
wrapper

data

add.

ctrl

data

add.

ctrl

data

add.

ctrl
HNDSHK

1 CA
HNDSHK
3 CA

CK

data

add.

ctrl

Polling
CA

data

add.

ctrl

Polling
CA

data

add.

ctrl

data

add.

ctrl

FIFO
CA

CK

data

add.

ctrl

Polling
16 CA

CK

RS CK

CKCK

ARM7 processor adapter

CK

Wrapper bus

CSCS

Wrapper bus

CS

control

control

...

...

Polling
1 CA

CK

RS

ARM7 local bus

RS

ARM7 local bus

TIMER CKCK

......

VM3

Custom OS

Custom OS

address

control

address

control

data

address

control

data

address

control

data

data

6700_book.fm
 Page 11 Friday, July 1, 2005 10:02 A

M

Copyright © 2006 Taylor & Francis Group, LLC

11

-12

Low-Power Processors and Systems on Chips

scheduler (

Sched

) and resource management services (

Sync,

IT

). The HAL contains low-level code to
access the HW (e.g.,

Pipe LReg

 to access

HNDSHK

CA in the HW wrapper as presented in Figure 11.10)
and some low-level kernel routines.

The HW wrapper for processor

VM2 includes a TIMER block because task T5 (see Figure 11.9)
must wait 10 ms before starting its execution. When the timer expires, the TIMER block generates an
HW interrupt. The task can configure this block using Timer API provided by the OS. The OS for
VM2 provides a more complex API. Direct API is used to write/read to/from the configuration/status
registers inside TX_Framer block; SHM and GSHM are used to manage shared-memory communication
between tasks.

Application code and generated OS (in C and assembly) are compiled and linked together to execute
on each ARM7 processor. The HW wrapper can be synthesized using RTL synthesis. Table 11.1 presents
the results regarding the generated OSs.

The OS sizes (4.3KB for VM1 and 7.7KB for VM2) presented in Table 11.1 are comparable to the sizes
of commercial micro-kernels (2 to 10 KB). In terms of OS runtime, as listed in the table, context-switch
takes 36 cycles, latency for the HW interrupt is 59 cycles (plus 4 to 28 cycles needed by the ARM7 to
react), latency for system calls is 50 cycles, and task reactivation takes 26 cycles.

11.5.3 Gain Compared with Conventional OSs

In terms of OS size, our results (1.6 to 7.7 KB) presented in this section are comparable to the smallest
micro-kernels (2 to 10 KB as explained in Section 11.2). Compared with the conventional small OSs,
our contribution is to automatically generate small OSs thereby enabling to explore the OS design space,
especially to obtain low-power OS implementations.

11.6 Conclusion

This chapter presented the problem of reducing the energy consumption by the OS. To minimize the
energy overhead causes by the OS, we presented a method to design application-specific OSs with sizes
that are minimal enough to provide the OS services required by the application SW. Because the appli-
cation-specific OS reduces the overhead of memory usage and processor runtime, it can reduce the energy
consumption caused by the OS itself. To resolve the important problem of application-specific OS design
(i.e., slow design cycle) our method generates automatically application-specific OSs. The experiments
demonstrate that the automatically generated OSs yield OS sizes (1.6 to 7.7 KB) comparable to those of
commercial handwritten micro-kernels (2 to 10 KB). Fast design of small-size OSs will enable the
exploration of the low-power implementations of OSs.

TABLE 11.1 Results for OS Generation

OS Results
No. of

Lines C
No. of Lines

Assembly
Code Size

(bytes) Data Size (bytes)

VM1 968 281 3,829 500
VM2 1,872 281 6,684 1,020
Context switch (cycles) 36
Latency for interrupt treatment (cycles) 59 (OS) +

28 (ARM7)
System call latency (cycles) 50
Resume of task execution (cycles) 26

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power SoC with Power-Aware Operating Systems Generation 11-13

References

[1] Semiconductor Industry Association, ITRS 2001 Edition, available at http://public.itrs.net/Files/
2001ITRS/Home.htm.

[2] P. Pillai and K. Shin, Real-time dynamic voltage scaling for low-power embedded operating systems,
Symp. on Operating Syst. Principles, Oct. 2001.

[3] C. Pereira, V. Raghunathan, S. Gupta, R. Gupta, and M. Srivastava. An SW architecture for building
power-aware real-time operating systems, Technical Report No. 02-07, University of California–Irv-
ine, March 2002.

[4] Y.H. Lu, et al. Operating system directed power reduction, Int. Symp. on Low-Power Electron. and
Design, 2000.

[5] R.P. Dick, G. Lakshiminarayana, A. Raghunathan, and N.K. Jha, Power analysis of embedded
operating systems, Design Automation Conf., June 2000.

[6] T.K. Tan, A. Raghunathan, and N.K. Jha, SW architectural transformations: a new approach to
low-power embedded SW, Design, Automation, and Test in Europe (DATE), March 2003.

[7] L. Benini and G. De Micheli, Networks on chips: a new SoC paradigm, IEEE Comput., 35(1), pp.
70–80, 2002.

[8] J. Hill. An SW architecture supporting networked sensors. Master’s thesis, EECS, University of
California–Berkeley, Dec. 2000.

[9] E. Rijpkema, K.G.W. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P. Wielage, and E.
Waterlander, Trade-offs in the design of a router with both guaranteed and best-effort services for
networks on chip, Design Automation and Test Conf. in Europe, March 2003.

[10] VxWorks, available at http://www.windriver.com/products/vxworks5/index.html.
[11] D. Hildebrand, An architectural overview of QNX, available at http://www.qnx.com/literature/

whitepapers/archoverview.html.
[12] pOSEK, A super-small, scalable real-time operating system for high-volume, deeply embedded

applications, available at http://www.isi.com/products/posek/index.htm.
[13] Chorus operating system open source, available at http://www.experimentalstuff.com/Technolo-

gies/ChorusOS/index.html.
[14] Microware ariel technical overview, http://www.microware.com/ProductsServices/Technologies/

ariel_technology_brief.html.
[15] D. Lyonnard, S. Yoo, A. Baghdadi, and A.A. Jerraya, Automatic generation of application-specific

architectures for heterogeneous multiprocessor system-on-chip, Design Automation Conf., 2001.
[16] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M. Diaz-Nava, and A.A.

Jerraya, Multiprocessor SoC platforms: a component-based design approach, IEEE Design and Test
of Comput., Vol. 19, No. 6, Nov.–Dec., 2002.

[17] M. Diaz-Nava and G.S. Okvist, The zipper prototype: a complete and flexible VDSL multi-carrier
solution, J. ST Microelectronics, Sept. 2001.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.windriver.com
http://www.qnx.com/
http://www.qnx.com/
http://www.windriver.com
http://www.experimentalstuff.com/
http://www.experimentalstuff.com/
http://www.microware.com
http://www.microware.com
http://www.itrs.net/
http://www.itrs.net/

12

-1

12

Low-Power Data Storage
and Communication

for SoC

12.1 Introduction ..

12-

1
12.2 Related Work ...

12-

2
12.3 SW-Controlled Memory Hierarchy Optimization

12-

3

Memory Hierarchy Layer Assignment Techniques • Illustration
of the MHLA Techniques • Lifetime Analysis for Memory
Partition Size Estimation • Relation to Other Steps of the DTSE
Design Methodology

12.4 Case Studies for MHLA Exploration...............................

12-

8

The QSDPCM Driver • Global Loop Transformations for
Improved Memory Hierarchy Utilization in QSDPCM • The
DAB Driver

12.5 SW-Controlled Cache Miss Optimizations

12-

11

Compiler-Centric Cache Miss Classification • Data-Layout
Transformations for Conflict Miss Reduction • Case Study for
Data-Layout Transformations

12.6 Conclusions ...

12-

17
References ...

12-

17

12.1 Introduction

Despite the recent architectural advances for multimedia aiming at improving computational efficiency
(e.g., subword parallel data level processing, reconfigurable computing, and networks on chip), the
dominance in data storage and transfer of these systems still remains as one of the main bottlenecks for
power and speed efficient implementations. The reason is the ever-increasing gap in speed and energy
between the memory and the data processing subsystems.

To cope with such a gap, the addition of more layers to the memory hierarchy, from where data can
be efficiently accessed from smaller, faster, and more energy efficient memories becomes mandatory. This
is true both for systems on chip (SoC) platforms based on random access memories as well as for cache
memories; however, the potential efficiency offered by these multi-layer memory organizations becomes
attainable on condition that the storage and transfer of data between the different layers is done in an
optimal manner.

Memory hierarchy layers can contain software controlled scratch-pad memories or caches. To guar-
antee an efficient transfer of data along the memory hierarchy, often requires that smaller copies of the
data be made from the larger data arrays, which can be stored in the smaller layers [1,2]. Those copies
must be selected such that they minimize the overall transfer cost. In this context, any transfer of data
from a higher layer to the current one is considered an overhead for the current layer.

Miguel Miranda
Erik Brockmeyer
Tycho van Meeuwen
Cedric Ghez

IMEC

Francky Catthoor

IMEC and Katholiek University

6700_C012.fm Page 1 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-2

Low-Power Processors and Systems on Chips

This happens most efficiently under full software control (e.g., a number of static random access
memories (SRAM) used as a scratch-pad memories) because a global view on the transfer can be obtained
at design time. In this case, copy operations should be explicitly present in the application code. This is
mostly possible for design time analyzable applications that are characterized via Pareto curves collecting
all optimal energy trade-offs for the different execution times (see Section 12.3). The decision of the
selected Pareto point can also be made at design time for purely static applications.

Many real-life applications are dynamic in nature, however, and they cannot be completely character-
ized at design time. Traditionally, to cope with this dynamism, HW-controlled caches are used instead of
SW-controlled scratch-pad memories. In this case, the hardware cache controller will make the copies of
signals at the moment they are accessed (and the copy is not present yet in the cache); however, this is
inefficient because data present in the cache and required in the near future can be (wrongly) evicted to
accommodate new fetched data. This evicted data, when needed again by the processor, will have to be
brought to the cache for a second time, thus leading to transfer and power overhead. To minimize such
overhead, architects tend to use bigger caches with hardware controllers implementing complex mapping
policies; however, this is not efficient for power given the extra overhead in every single access even when
these are cache hits. According to Wilton and Jouppi [3], a 1-KByte (KB), four-way associative cache is
4 to 5 times more inefficient in terms of energy per access than a scratch-pad memory of the same size
and 2 to 3 times more than a (one-way associative) direct mapped cache (DM-cache); the latter is only
60% less efficient than a scratch-pad memory of the same size. This overhead is due to accessing the tag
array of the cache which size (thus energy overhead) considerably increases with the associativity factor.

For dynamic applications, a much better approach is to characterize the different run-time conditions
of the application at design time and to generate for each a Pareto curve as demonstrated in Marchal et
al. [4]. This is quite design time-consuming, but it can be sped up by appropriate tools (see, e.g.,
Section 12.3 and Marchal et al. [4]). In this case, the selection of the Pareto operation point will be made
at run-time, which can be done very efficiently in the middleware layer and not at design-time, as is the
fully static case, although this still allows employing SRAMs. When the application becomes even more
data-dependent, however, the number of Pareto curves to be stored would become too high. In that case,
the HW controller of a cache can still help to obtain better run-time results, starting from the code with
copy candidates which are “locked” in the cache whenever appropriate (Pareto) design time analysis is
available. The cache will then implement the right copy of data according to the selected Pareto point,
but the HW controller takes over whenever no appropriate locking choice is available.

In this approach, it is crucial that we use energy-efficient cache memories with simple controller
mechanisms and low tag overhead that are still SW-controlled (such as the use of address-lock mecha-
nisms, by-passable transfers and SW-controlled write-backs). An example of such cache memories is a
lockable DM-cache. DM-caches are very attractive for low energy operation but if not well steered from
the SW, they can lead to an excess in misses, thus in power. Fortunately, an effective way to reduce this
overhead in misses can be achieved by a careful placement of the data in the main memory. Nevertheless,
this is only useful on condition that the additional overhead involved in this placement is kept limited.
Therefore, if good design time analysis and decisions are available, the code can be written such that the
controller is forced to make the right decision [5]. For this purpose, we have developed an array inter-
leaving data-layout approach that involves a relatively small amount of overhead in required storage size.
This approach is very efficient in reducing data-layout related conflict misses, which are known to be the
major contribution in DM-caches. This scheme interleaves signals in the main memory to assign different
signals to own locations in the cache. This method can be complemented with an array padding technique
for fine-tuning the placement of signals in the cache.

12.2 Related Work

Optimizing the memory hierarchy for performance using software controlled memory layers has been a
well explored topic [6–9]; however, several recent articles also address the energy-related issues [10–13],
and Benini and Micheli [10] and Panda et al. [12] have published good surveys.

6700_C012.fm Page 2 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-3

In Grun et al. [14], a clustering of the data sets into different memory types is proposed. These different
clusters have certain memory type preferences and are assigned accordingly; however, the mapping is
suboptimal, especially for the regular accesses, because it is based on average characteristics and does not
allow accurate predictions. Only then, performance is measured by simulation. In addition, Panda et al.
[15] make a distinction between caches and scratch-pad memories; however, no real layer assignment is
made. For that purpose, the technique presented in Steinke et al. [16] assigns data (and instructions) to
the scratch-pad memory; however, no consideration is made to benefit from data reuse [1,2] and memory
inplace optimizations [19].

The closest work to our approach is presented in Kandemir and Choudhary [13]. It analyzes and exploits
the temporal locality by inserting local copies. Their layer assignment builds a separate hierarchy per loop
nests and then combines them into a single hierarchy; however, a global view of the assignment and lifetime
of the arrays and copies is required for real life applications having imperfect nested loops. Moreover, no
overhead estimation is made, which makes it impossible to trade-off copy sizes (see Section 12.3) vs. array
sizes in a certain layer. Similarly, the work published Masselos et al. [17] lacks a global application view.

On the other hand, access trace based analysis techniques [18] have limited optimization capabilities.
The quality of the analysis depends on the preceding compilation step. For instance, from an access
profile point of view, all elements of an array are accessed equally while a small data reuse copy could
be present. As a result, the search space cannot be explored properly.

To the best of our knowledge, no previous work has combined data reuse and inplace opportunities
in a systematic way, leading to a technique for real life applications that is not based on simulation. Our
approach allows finding the optimal assignment in a predictable way for both memories and hardware
caches. Moreover, it decides the trade-offs in a controlled manner instead of evaluating them afterward
by adding the relevant estimations.

For HW-controlled cache memories, source-level program transformations have been proposed to
modify the execution order. This can greatly improve the cache performance of these applications [19–21],
but still a significant number of cache misses are present in the experimental results. To remedy this, loop
blocking has been first proposed primarily for improving the cache performance [22], but we observe that
for multimedia applications, a significant amount of cache misses remain due to conflict misses. Similarly,
storage order optimizations [19,23] are very helpful in reducing the capacity misses. Thus, mostly conflict
cache misses related to the suboptimal data-layout remain. Array padding had been proposed earlier to
reduce conflict misses [24–26]. These approaches are useful for reducing the inter-array conflict misses to
some extent; however, existing approaches do not eliminate the majority of the conflict misses yet. Besides
the studies conducted by Kandemir et al. [20], Panda and Dutt [25], and Burger et al. [27], very little has
been done to measure the impact of data-layout transformations on the cache performance. Thus, there
is a need to investigate additional data-layout organization techniques to reduce these cache misses [5].

12.3 SW-Controlled Memory Hierarchy Optimization

By exploiting data reuse information [1], a part of an array can be copied from a higher to a lower layer
from where it is read multiple times. As a result, energy can be saved by ensuring that most accesses take
place on the smaller copy signal and not on the larger (potentially also bigger, thus more energy con-
suming) original array.

Many different opportunities exist for deciding a data reuse copy. These are called copy candidates
(CCs). Only when it has been decided to instantiate a CC do we call it a copy (although the copy candidates
will be instantiated as arrays in the application, we reserve the name array for the “original array”). A
relation exists between the size of a CC and the number of transfers from the higher layer to the local
(potentially smaller) layer needed to update that one with new data. These transfers, hereafter called copy
writes

(CWs) are for cache memories the equivalent to minimal capacity misses according to our compiler
centric cache miss classification (see Section 12.4). Read operations from the CCs are called copy read
operations (CRs). Write operations needed to initialize the original arrays (e.g., with data coming from
the application’s test-bench) will be called compulsory writes.

6700_C012.fm Page 3 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-4

Low-Power Processors and Systems on Chips

Figure 12.1 presents an illustrative example of a loop nest with one reference to an array A with size
250. Originally, that array is accessed 10,000 times and several CCs are possible as depicted in
Figure 12.1(B). For instance, we could select a CC A

′′

 of size 10 by transforming the source code as
illustrated in Figure 12.1(D) code. This is done by adding an explicit CC and corresponding copy
statement in front of the k-loop. This copy statement will be executed 100 times, resulting in 1000 CWs
to the array A. This CC selection corresponds to the second leftmost point plotted in Figure 12.1(B).
Note that the good temporal locality of array A does not influence the amount of CWs from the next
level. In theory, any CC size ranging from one element to the full array size is a potential candidate. In
practice, however, only a limited set of CCs lead to efficient solutions. All possible CCs are plotted in
Figure 12.1(B). The most promising CC sizes and CWs are kept and added to a data reuse chain as
depicted in Figure 12.1(C). In this case, these are exactly those that have a relation to the loop bounds.
That data reuse chain is completed with all 250 compulsory writes to array A.

The preceding example considers only a one array with a single read operation. In practice, however,
several arrays exist in the code, each with one or more read operations, thus a data reuse chain will be
associated to each read operation. To globally incorporate these issues, all data reuse chains of a given array
must be combined in a data reuse tree. This concept is illustrated in the upper left part of Figure 12.2, where
both data reuse trees for array A and array B are given. Array B is assumed to have only one read and it has
no tree but a single chain associated. On the other hand, array A is assumed to have two references where
one of them has no promising CC (indicated by the leftmost branch of the tree). More details on identifi-
cation of data reuse chains and trees can be found in Achteren et al. [1] and Kandemir and Choudhary [13].

Obviously, larger CCs could retain the data longer and could therefore avoid more CWs. On the other
hand, the larger the CC the bigger would be the memory required to hold the data and thus the bigger
the overhead in energy per access will also be for each CR operation. Thus, a careful balance is required
here between the number of CR and CW operations, and the layer implementation and associated energy

FIGURE 12.1

Analysis of the temporal locality of data: data reuse behavior.

(A)

Initial program

int A[250];

for (i=0; i<10; i++)

for (j=0; j<10; j++)

for (k=0; k<10; k++)

for (l=0; l<10; l++)

Read(A[j*10+l]);

int A[250];

for (i=0; i<10; i++)

for (j=0; j<10; j++)

for (z=0; z<10; z++)

A"[z] = A[j*10+z];

for (k=0; k<10; k++)

for (l=0; l<10; l++)

Read(A"[j*10+l]);

(D)

Transformed program
for selected CC

(C)

Copy chain and selected CC

1000

250

10000

A

A′′

100

A′

Size = 10

Size = 100

Size = 250

(B)

Data reuse possibilities

10000

1000

100

10 100 250

CC size (elements)

CWs

6700_C012.fm Page 4 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-5

per access. This exploration is actually considered in the next step, when CCs and arrays must be mapped
to the data memory hierarchy.

12.3.1 Memory Hierarchy Layer Assignment Techniques

We consider a generic SoC memory hierarchy template. It may contain multiple memory layers

Li

, each
layer with multiple memory partitions (e.g., software controlled SRAMs, cache memories or a mixture
of both) and off-chip (synchronous) dynamic random access memories ((S)DRAMs). Still, each partition
can be organized on multiple memory modules, all of the same type but potentially having different sizes
and number of ports.

In general, the energy consumed by the data memory hierarchy can be optimized for a target template
by a careful selection of the set of CCs and arrays of the application, and by assigning these to the different
layers of the memory hierarchy. This memory hierarchy layer assignment (MHLA) step results on an
energy-efficient mapping of the different signals of the application to the memory hierarchy, and it is
dependent on the different platform memory parameters. The goal is to select the mapping selection
with the lowest energy possible where the total energy is the sum of the energy of all memory partitions.

The energy associated to each memory partition can be estimated by the number of accesses to this,
multiplied by the energy per access of the partition (which can be potentially different depending on
whether this is a read or write operation). On the one hand, the energy per access is a function of the
memory size, partition type, and other memory parameters; thus it can be easily modeled in a memory
library [23]. On the other hand, the number of accesses is the sum of compulsory writes, CRs, and CWs
operations. This cost function is accurate in case of scratch-pad memories. For cache memories, the
overhead in miss count should in principle be incorporated as well. As we will discuss in Section 12.4,
however, that cost function is still valid for DM-caches on condition that additional optimizing memory
data-layout transformations are applied to the application, a posteriori in a subsequent step. This is
because the most important miss contributions are already being incorporated in the actual access count,
namely the compulsory and minimal capacity misses that are by definition equivalent to compulsory
writes and copy writes operations, respectively. For DM-caches, the major miss type contribution would

FIGURE 12.2

MHLA problem definition.

6700_C012.fm Page 5 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-6

Low-Power Processors and Systems on Chips

be coming from data-layout conflict misses where the overhead of these in the overall access count can
be kept relatively low by the use of optimizing data-layout transformations [5] (see Section 12.4).

12.3.2 Illustration of the MHLA Techniques

The MHLA process and its mapping results are depicted in Figure 12.2. We assume CC A

′′

 and array B
are selected to be stored in L1 and array A in L2. This is a valid selection because we assume it fulfills
the memory layer size constraints. Assuming this, on one hand we have for layer L2, 250 compulsory
writes needed for the first initialization of array A. On the other hand, 500 reads are needed for reading
A via the read operation having no promising CC associated (see upper left of Figure 12.2) and 1000
CRs needed for the update of A

′′

 in layer L1.
Similarly in layer L1, 150 compulsory writes are needed for the initialization of array B, and 1000 CWs

for updating CC A

′′

. On the other hand, 10,000 CRs from CC A

′′

 and 5000 CRs from array B will take
place from the same layer. Note that the 500 reads from array A not having promising CC will not affect
the activity of layer L1 for this architecture because a bypass from layer L2 is foreseen. This may not be
the case for hardware controlled caches because all accesses have to pass through the cache when no
bypass is foreseen. Also note that for caches no explicit copies are introduced in the code; however, the
cache controller can be enforced to make the desired copy by a proper memory layout (see Section 12.4).

The assignment of arrays and CCs to the layers of the memory hierarchy must be performed globally
to effectively minimize the energy consumption. The size of one copy must be traded for the size of
another copy because the assignment must fulfill the maximum layer size constraints or because activity
in that layer must be kept low for energy reduction.

A simple illustrative example of the MHLA balance having multiple references is given in Figure 12.3
for an example assuming only two read operations. The two curves at the left of the figure illustrate the
amount of CWs for different CC of increasing sizes, thus it depicts the Pareto trade-off between CWs
and CC-size. Only the evolution of CWs with CC-size is given because, in all cases, the number of CRs
from the layer will not change. Array B has a maximum of 6000 CWs when no CC is selected and this
can be reduced to 500 CWs when the largest CC is selected for layer assignment. Similarly, array A has
more than 2000 CWs when the smallest CC is selected and less than 1000 when the largest CC is selected.
The number of write operations to the layer is minimal when selecting the largest CC for both arrays;
however, this assignment is not valid because the total required size for accommodating both CCs does
not meet the maximum layer size constraint pictured at the right-hand side of Figure 12.3. There, all

FIGURE 12.3

MHLA trade-offs for the selection of copy candidates.

6700_C012.fm Page 6 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-7

feasible combinations of CC selection to this layer are presented, together with the total number of CWs
operations associated to the choice. The upper solution combines the largest CC of array B and the largest
feasible CC of array A. The total number of 3000 CWs is the sum of the individual CCs. While constructing
the other solutions, some space of the CC of array B is traded for the CC of array A. As a result, the
number of CWs for A reduces and the number of CWs for B increases. In this simple example, it is easy
to see that the optimal choice is the second in the row with 2550 CWs.

In general, however, realistic applications will have too many possibilities to still find the best solutions
manually. Moreover, that explodes the search space when considering more the one layer for the mapping
because unnecessary copies from one layer to the next one must be avoided. Additionally, the problem
must be considered over the memory hierarchy globally because CWs of one layer can be traded for CWs
on another layer. Thus at IMEC, formalized techniques have been developed [28], and these have been
implemented on a research prototype tool to support this step.

12.3.3 Lifetime Analysis for Memory Partition Size Estimation

The exploitation of limited lifetime allows having smaller layers or storing more data in an equal sized
layer. Both can have a huge impact on energy and performance. Especially, the short lifetime of the CCs
should be considered carefully. In addition, it can be expected that a technique without inplace estimation
could lead to suboptimal decisions for larger applications because most arrays will have a relatively smaller
lifetime as the application complexity increases.

Figure 12.4 illustrates how to exploit the limited lifetimes of the signals to reuse memory locations.
At the left of the figure, the plot illustrates how elements of arrays A and B are used in time. The shaded
areas indicate which elements are used and for how long. Clearly, the declared size of array A could be
reduced by a factor of three by reusing the same locations due to the fact the shaded areas are not
overlapping on time. This type of memory location reuse is called intra-inplace [19]. Similarly, the
elements of array B do not overlap in lifetime with any of the elements of array A. Thus, the complete
array B could also reuse the locations of array A. This type of memory location reuse is called inter-
inplace [19]. The results of both inplace opportunities are depicted at the right-hand side of Figure 12.4.

We have implemented a low complexity inter-inplace estimation technique in our prototype tool for
a realistic estimation of the required storage in the partitions of the memory layers. That is based on
tracking what signals are simultaneously alive in the innermost loops of the application. As a result, we
only have to update the storage size of those inner loops that span the lifetime of the CC. This is accurate
enough because, typically, most CCs have a very short lifetime and its size is already known from the
data reuse analysis phase.

12.3.4 Relation to Other Steps of the DTSE Design Methodology

MHLA is usually applied as part of IMEC’s data transfer and storage exploration (DTSE) script [29]
developed to optimize the data transfer and storage issues in data-dominated applications. Two phases
can be distinguished in this script.

FIGURE 12.4

Illustration of inter/intra-inplace optimization for memory size estimation.

Time

Address
Required size

 before inplace
optimization

Time

Address

{
{&B[]

&A[]

Intra inplace of array A[]

Inter inplace of array A[] and B[]

lifetime
of A

Required size
 before inplace

optimization

lifetime
 of B

6700_C012.fm Page 7 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-8

Low-Power Processors and Systems on Chips

First, a platform independent phase performs program transformations to improve locality of the
reference and the required storage size [30]. If this phase is skipped, the approach still works, but the
results will typically be far less optimal if the original temporal locality of the code is poor [29]. This will
have a clear impact in quality of the search space due to less opportunities for CCs.

The second phase maps the application to the target platform. This is performed in four decoupled
steps. MHLA is the first of the platform dependent steps, and it starts by determining for each data set
a layer and a memory partition type, thus allowing detailed timing information about the array references
be obtained.

This information is required for the next step that optimizes the required memory access parallelism
for meeting the timing constrains. Techniques, such as Wuytack et al. [31] and Grun et al. [32], could
be used here because certain accesses must still happen in parallel to meet the target timing budget. The
conflicting memory accesses must be either stored in different memories or in a dual port memory. In
the third memory allocation and assignment step, arrays and CCs assigned to the memory partitions are
assigned to the various memory modules within each partition obeying the required parallelism [18,33].

A final data-layout step decides on the storage layout of the data inside the memory. This would further
minimize the required size of the memory partition and also avoid the overhead in conflict misses in
case of HW-controlled caches (see Section 12.4).

12.4 Case Studies for MHLA Exploration

Two real-life application drivers having different characteristics are selected to illustrate the impact of
MHLA decisions on the energy consumed in the memory hierarchy.

The first driver, a quad-tree structured difference pulse code modulation (QSDPCM) algorithm, is an
application from the video compression application domain consisting of a few large arrays exposing
high temporal locality in the memory references, thus it is largely dominated by data reuse opportunities.
It involves an inter-frame compression technique for video images based on a hierarchical motion
estimation step, and a quad-tree based encoding of the motion compensated frame-to-frame difference
signal [34].

The second driver is a wireless receiver for digital audio broadcast (DAB) containing many smaller
arrays, with almost no data reuse opportunities present. The transmission system is based on an orthog-
onal frequency division multiplex (OFDM) transportation scheme using up to 1536 carriers [35].

For the target platform, we assume two layers of memory hierarchy, the local being implemented using
a scratch-pad memory. Although as we will discuss in Section 12.4, our approach is not limited to these
memory types, and it is also valid for HW- and SW-controlled caches using a varying number of layers.
The used energy model is based on a real memory library. Because relative energy figures are sufficient
for the exploration, these are presented relative to an off-chip memory of 1MByte (MB) of fix size. The
largest on-chip memory considered is 16 KByte, which is a factor 3 less energy consuming than the off-
chip memory. This is because the energy model used is slightly super logarithmic, so a memory that is
256

×

 larger consumes 8.6

×

 more energy per access. This energy model is also used for L0 and L1 in both
drivers. This relation demonstrates a very conservative factor in energy per access between off- and on-
chip memories.

12.4.1 The QSDPCM Driver

A global view of the QSDPCM’s main signals and their data reuse chains is given in Figure 12.5. Many
data reuse opportunities exist for the QSDPCM application as can be seen from the many data reuse
chains. Figure 12.6(A) shows the energy contribution of the L1 memory (bottom bar) and the main
memory (top bar). When increasing the layer size, the energy decreases because fewer accesses occur on
main memory (due to the introduction of more CR operations). On the other hand, the reduction in
CWs in L1 does not decrease much for a L1 size larger than 640 Bytes (B). Therefore, the L1 energy per

6700_C012.fm Page 8 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-9

access penalty due to the larger L1 size is not compensated by the potentially less amount of CWs. Thus,
the overall energy consumption increases from that point. Thus, an L1 of 640B is the optimal layer size
for this application. The optimal assignment of arrays and CCs corresponding to this point is given in
Figure 12.5. Arrays and CCs selected as the optimal ones to be stored in L1 are indicated by circles. The
rest of arrays are stored in main memory. Nonselected CCs are not stored because copy operations are
not needed for these.

To consider the effect of the number of hierarchy layers in energy, we have also reexplored the options
by inserting an extra L0 layer. However, this has not resulted in a significant reduction in overall energy
because the optimal L1 size for a two-layer platform is already small enough to exploit the data-reuse
opportunities present in this application. This is also exposed by comparing our approach with an array-
level assignment technique, thus without the introduction of CCs (indicated by crosses in Figure 12.5).
In this case, a factor 2 in energy is gained.

FIGURE 12.5

Assignment of arrays and CCs to the memory hierarchy for QSDPCM. Arrays and CCs marked inside
circles have been selected for storage in the local memory.

FIGURE 12.6

Memory layer size exploration for energy for both QSDPCM and DAB drivers: (A) varying L1 layer
size for QSDPCM (solid line plots); (B) varying L0 (RF) and L1 layer sizes for DAB.

pre
v_

fra
m

e

pre
v_

fra
m

e_
su

b2

pre
v_

fra
m

e_
su

b4

Register Files/Functional Units

A
rr

ay
s

C
o

p
y

C
an

d
id

at
es

 (
C

C
s)

fra
m

e

fra
m

e_
su

b2

fra
m

e_
su

b4

m
4,

n4
,t4

,Q
C_

t2
,Q

C_
m

2
m

ea
n

2

m
2,

n
2,

t2
,Q

C
_t

4

assignment only
data reuse exploited

0 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
of

f-
ch

ip

Size L1

T
ot

al
 e

ne
rg

y
(a

cc
es

se
s

+
 o

ve
rh

ea
d)

E in main mem
E in L1

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

E
/acc

E/acc in L1

(A)

0 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
83

4
32

76
8

65
53

6

Size L1

0
2000
4000
6000
8000

10000

E
ne

rg
y L0 = 0

L0 = 64
L0 = 128

(B)

6700_C012.fm Page 9 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-10

Low-Power Processors and Systems on Chips

12.4.2 Global Loop Transformations for Improved Memory Hierarchy
Utilization in QSDPCM

For the QSDPCM, we have also evaluated the gains in overall energy by disabling the inplace mapping
heuristics mentioned in the earlier section for an accurate estimation of the storage size in L1. This case
is indicated in Figure 12.5 by triangles. The use of the heuristic allows a L1 size of 640B instead of the
1KB required otherwise; however, the overall energy gain in this case is rather limited (only another 3.2%).

The limited effect of the inplace mapping optimization techniques is due to the overall loop structure
of the code (with several loop nests each traversing an image frame), thus requiring intermediate buffers
to store data between loop nests. However, it is possible to largely change the lifetime of the data, and
thus the size of these buffers, by globally transforming the loop structure of the application source code
as illustrated by Catthoor et al. [29].

To overcome this limitation and to study the effect that an optimized storage size would have in the
memory hierarchy, we have implemented loop-merging transformations in the initial code because they
eliminate the need for intermediate buffers and, potentially, reduce the lifetime of the data. All these
optimizing transformations are part of the global storage cycle budget distribution (SCBD) step in the
DTSE script [29,36].

Three loop-transformed versions of the QSDPCM have been implemented: the original version with
all loops (hereafter called nonmerged), a version with most loops merged into a global one (fully merged);
and an intermediate version of the last one where only selected loops have been merged together (partially
merged). Table 12.1 gives an overview of the results obtained on each code version.

Clearly, the best solution for energy is for the partially-merged version. In all cases, the energy
contributions from the L1 are very similar. This is somehow coincidental because the arrays and copies
assigned to L1 are very different in all three cases and the amount of L1 accesses could have been more
different; however, the L2 energy contribution is much smaller in the fully and partially merged code
versions. This is due to the big reduction of the number of accesses to this layer. In this case, the total
energy gain is rather small with the partially merged version, but exploring other solutions may provide
better results. An important conclusion appears contrary to what intuitively one would expect, the most
local code (fully merged) is not always the best one for energy, and an exploration of the possible
transformation options is therefore needed.

For the fully-merged and the partially-merged codes, an exploration on the L1 size has been also
performed during the MHLA step. It appears that for both versions the best hierarchy for energy is with
an L1 memory of 1 KB. This appears to be a good trade-off between the amount of CW operations
(important for small L1 memories) and the energy per accesses (that increases with the layer size). The
same size of 1 KB for the nonmerged code has been kept to fairly compare all three versions.

12.4.3 The DAB Driver

Similar to the previous driver, an L1 size exploration is performed and presented in the top curve of
Figure 12.6(B). For this driver, the minimum energy consumed is found for an L1 size of 8 KB; however,

TABLE 12.1

Energy Values, Optimal Layer Size, and Numbers of Accesses for

the Three-Loop Transformed Versions of QSDPCM

Nonmerged Fully Merged Partially Merged

Total Energy 71.97 47.17 46.47
L1 Energy 13.79 14.32 14.29
L2 Energy 58.18 32.85 32.17
Layer size for L1 (Bytes) 742 748 802
Layer size for L2 (Bytes) 114048 66352 63360
Number of L1 accesses (

×

10

6

) 1.14 1.19 1.19
Number of L2 accesses (

×

10

3

) 542 306 300

6700_C012.fm Page 10 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-11

the introduction of an extra L0 layer has brought additional gains in energy in this case. By implementing
this L0 layer as a register file (RF) with varying size from 64 to 128 B and reexploring the assignment,
an extra 15% in energy is gained, while the optimal size for layer L1 remains unchanged. The reason is
an additional reduction in 25% of the memory accesses in the OFDM block now becoming RF operations.

The most energy efficient assignment decision has been used to map the DAB application to the
TriMedia processor. This processor is selected because it has a data memory hierarchy that matches the
optimal architecture. The processor has an L0 layer of 128 registers, 16 KB cache and 8 MB of SDRAM;
however, the exploitation of the L0 register file has to be carefully evaluated. On one hand, the number
of data load stores will decrease as the size of L0 increases because more data remains in the L1. On the
other hand, the higher register pressure might counteract this gain as register spilling is required to
schedule all instructions given the actual RF size available in the processor. In addition, the unrolling
transformations, required to keep the data in the RF, needs more instruction cache space.

The trade-off between the load stores, spilling, and instruction cache is given in Table 12.2. The native
TriMedia simulator is used for the evaluation of three differently transformed implementations having a
relatively more aggressive L0 register usage (second row). The large reduction of 34% in memory accesses
has of course a large impact on data memory energy and performance (as presented in Table 12.2). In
addition, the prediction of the MHLA technique has been very close to the actual number of accesses.
After an examination of the analysis report provided by the compiler, the small difference between MHLA’s
estimated activity and the simulation results can be explained by the few register spilling operations.

Of course, the same result could be obtained manually by an experienced designer using a combined
trial and error and simulation process; however, MHLA can significantly save design time by predicting
beforehand the good solution. Moreover, this prediction gives the designer a target minimum for which
to optimize. No time is wasted in finding more opportunities that actually will not pay off.

12.5 SW-Controlled Cache Miss Optimizations

Before introducing SW optimizations for HW and SW controlled caches, in this section we revise the
traditional classification [37] of cache misses from a compiler viewpoint. This is the first step needed
before developing design-time optimization techniques for cache memories. The definition of a cache
miss does not change though. In the most general case a cache miss is any transfer of data from main
memory to the main memory taking place whenever a load/store operation issues for the data that is
not present in the cache. Transfers from the cache to main memory are write-backs and these are not
focus of this work.

12.5.1 Compiler-Centric Cache Miss Classification

In computer architecture literature [37], cache misses have been traditionally divided in three categories:
compulsory, capacity, and conflict miss types; however, that classification is purely architecture oriented
and is clearly insufficient for compiler optimizations because they do not properly expose the nature of
the miss type. For that purpose, we have defined a new taxonomy for data cache misses, which spans
seven categories. These are compulsory, minimal capacity, block prefetch, block allocate, associativity
conflict, replacement, and data-layout conflict misses. This new taxonomy, while isolating the different
sources of overhead for cache misses, is much better suited for modern SW-controlled caches than
previously proposed ones [37].

TABLE 12.2

MHLA Results for DAB for the TriMedia TM1300 Processor

Estimated
Load/Stores

Actual
Load/Stores

Required
Registers

Data Cache
Misses

CPU
Cycles

Mild register usage 17,152 18,408 22 2895 91,552
Aggressive register usage 11,232 11,837 70 763 47,341

6700_C012.fm Page 11 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-12

Low-Power Processors and Systems on Chips

To study the nature of the miss contribution, we start by assuming two caches for comparison purposes:
a real cache (our target cache) and an ideal cache. The ideal cache is a memory of infinite size with a
single data element per line, implementing a fully associative mapping organization, with an optimal
replacement policy and following an optimal block allocate policy. Unlike the write-around or fetch-on-
write block allocate policies, we consider an optimal block allocate policy in which a write miss ensures
that no block of data is unnecessarily allocated in a cache line when all data elements of that line are to
be updated before the line is to be replaced. As for the optimal block replacement policy [37], the optimal
block allocation policy cannot be implemented via a hardware mechanism because that would imply
predicting the behavior of the algorithm in the future with respect to the actual state of the cache.

12.5.1.1 Compulsory Misses

Assuming our definition of ideal cache, a compulsory miss happens whenever a new data element of the
application’s test bench is needed by the application’s algorithm and this data needs to via the cache or
local memory for the first time. Any data written from the algorithm back to memory (back to the test
bench) can be considered a compulsory write-back. All miss types not yet dealing with prefetching issues
must be accounted at the data level. This applies both to compulsory and minimal capacity misses.

Compulsory misses are independent of the physical memory organization parameters (such as the
cache memory size) and controller policy issues (such as the replacement policy). Thus, these are truly
platform independent and their contribution depends solely on the application characteristics. This is
the only miss type requiring a change in the execution order of the application to be avoided. This can
be done by means of global data-flow [23] or global loop transformations [29]. All the rest of the cache
misses are data-layout related for a given execution order, thus the way to avoid these is by transforming
the placement of data in main memory. This miss type is valid for HW-controlled caches, SW-controlled
scratch-pad memories and mixes, and it is one of the major (but largely unavoidable) contributors to
overall miss count for DM-caches.

12.5.1.2 Minimal Capacity Misses

After assuming an ideal cache, platform constraints can start to be gradually introduced in our target
cache, while still assuming optimal controlling policies. In this context, the first platform dependent,
controller policy independent miss type is the minimal capacity miss and expressed as the additional
contribution in misses in an ideal cache, which is constrained in size (by same capacity in bytes) as the
real cache. Due to this size limitation, some data values are discarded and have to be retrieved later. If
the cache is full, the data value to discard is the furthest to be used in the future (optimal replacement
policy). Minimal capacity misses are significant contributors to the overall miss count, especially for
small cache sizes; however, the MHLA techniques discussed in Section 12.3 are effective in minimizing
the overhead of these, thus enabling the efficient utilization of small cache spaces.

12.5.1.3 Block Prefetch Misses

This miss type is related to the line size of the cache. By definition, a block is the group of data fetched
from main memory and that is allocated altogether in the same cache line. A block prefetch miss is the
next miss contribution for an ideal cache with the same number of lines and same line size as the real
one. It characterizes the miss occurring from a data that is required in the very near future (such as data
being subsequently fetched in the innermost loop of an application) and that is not present in the block
that has been most recently loaded in cache. This miss contribution gives an indication on how ineffi-
ciently the memory layout adapts to the ideal situation where all data prefetched in a cache line is actually
read before this line is to be flushed due to cache capacity limitations or other reasons.

Together with block prefetch misses, minimal capacity misses depend on the actual physical memory
organization parameters (such as number of lines and line size), thus these are platform dependent miss
types although still independent on the controller-policy of the cache (such as replacement policy and
mapping organization). These miss types are valid for purely HW and SW controlled caches and mixes
when prefetching is exploited in the purely SW controlled case.

6700_C012.fm Page 12 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-13

12.5.1.4 Block Allocate Misses

At this point, the geometry of the cache is now fully fixed and the effect in miss rate due to a nonoptimal
controlling policy is considered. These are platform and controller-policy dependent misses, and they
are valid miss types for purely HW controlled caches but less relevant for mixes and irrelevant for purely
SW controlled caches (pure compiler controlled policies).

In this context, the first platform and controller policy dependent miss type is the block allocate miss.
This is the next miss contribution resulting from the (nonoptimal) allocation policy of the real cache.
Some caches (especially the HW controlled types) fetch the block from main memory on a block write
miss (e.g., following a fetch-on-write block allocate policy). This is done to ensure the consistency between
the copy of the data in the cache and the value stored in memory. This extra read operation (block
allocate miss) should only be needed in case the block is replaced before all its data elements have been
updated; in any other case this transfer is considered redundant, thus a miss.

Block prefetch and block allocate miss types can be clustered in a common category (block miss) to
collect all miss effects related to the organization of data in the cache in lines and the transfer of data in
blocks. The impact of block misses can also be high when the effect of SDRAM page misses (in main
memory) is incorporated; however, this is not the focus of this chapter but a topic for future research work.

12.5.1.5 Associativity Conflict Misses

This is the next miss contribution (measured at the block level) due to nonideal policies, and it results
from the limited associativity of the real cache. A cache that is not fully associative will limit the
replacement freedom, even when the mapping organization is exploited by using an optimal memory
data-layout. For instance, if the same block has to be loaded in the cache several times (due to any of
the previous miss effects), the block may be allocated in different places against what the optimal
replacement policy will actually select. Indeed, a particular data-layout could eventually avoid the first
allocations of the target block that will conflict with an existing one in the cache, but not for the
subsequent allocations of the same block. The contribution of this miss type in the overall miss count
for DM-caches is limited due to the fixed mapping organization.

12.5.1.6 Replacement Misses

This is the next miss contribution resulting from the (nonoptimal) replacement policy (typically least
recently used or LRU [37]) of the real cache. An optimal replacement strategy uses the capacity of the
cache and misses can be avoided because this policy exploits knowledge of the future accesses. For
instance, data required in the near future will not be replaced. With a nonoptimal replacement policy,
however, it can happen that data are flushed just before being required, which is the source of extra
misses. Therefore, a suboptimal replacement strategy increases the replacement misses. In advanced
multimedia caches, the replacement policy is software controlled and in DM-caches there is no replace-
ment policy due to its fixed mapping organization. Therefore, these misses can be clearly ignored in
our context.

12.5.1.7 Data-Layout Conflict Misses

Misses in this last category are purely devoted to isolate the effects due to a nonoptimal utilization of
the cache mapping organization. At this point, both the geometry and controller policy of the cache are
fully fixed and the only misses left are related to a nonoptimal utilization of the cache mapping organi-
zation. Therefore, data-layout conflict misses are the last miss contribution, thus by definition these are
any misses that could be avoided by choosing an optimal (conflict oriented) memory data-layout (e.g.,
using array interleaving, array padding, selective gap placement, array merging, or any mix of these).
Two types of data-layout conflict misses exist: inter-array when elements of different arrays conflict in
the same cache line and, intra-array when the situation happens for elements of the same array.

These misses are typically the largest contributors to miss rate in DM-caches, once a good memory
layer assignment has been selected (as we have achieved with the techniques of Section 12.3). Data-layout
techniques for the elimination of these misses are the topics addressed in rest of this chapter.

6700_C012.fm Page 13 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-14

Low-Power Processors and Systems on Chips

12.5.2 Data-Layout Transformations for Conflict Miss Reduction

To maintain the decisions taken during the MHLA step, we must ensure that the overall miss contribution
follows the estimated number of CWs at that level. Therefore, it is needed to ensure that the data-layout
conflict miss contribution can be minimized to a large extent. This means that for each array a certain
amount of space should be reserved in the cache to hold all data of the the selected CC without this
being flushed because of conflicts in the cache lines.

The necessary spaces can be reserved in the (lockable) cache by using the array-interleaved data-layout
approach for data-layout conflict misses presented in Kulkarni [38]. In this chapter the original approach
is improved further by considering not only the inter-array data-layout conflict misses but also the intra-
array component and the influence of the MHLA decisions in minimal capacity misses.

Our data-layout approach aims at an interleaved placement of arrays in main memory such that every
array is distributed in memory as data “tiles.” It assumes a cache with fixed mapping organization as the
one found in DM-caches. For explanation purposes, we will also consider (without loss of generality)
cache lines of the same size as each memory location containing at most one array element. The concept
is illustrated in Figure 12.7. In this case, due to the fixed mapping organization of the DM-cache, every
element of arrays A[], B[], or C[] gets a fixed cache location, which is defined by the fixed mapping
organization of the DM-cache (e.g.,

C

addr

 =

M

addr

%

C

size

, where

C

addr

 and

M

addr

 are the cache and memory
locations, and

C

size

 is the size of the cache). The interleaved nature of our data-layout approach ensures
that the tiles of the same array are evenly distributed in memory at equal address distances. This is
achieved by an index transformation (e.g.,

index%TS

 +

index

÷

TS

 ×

C

size

 +

O

ffset

,

 with

index

 being the
index expression of the array reference,

TS

 the tile size, and

O

ffset

 the offset of the original array placement).
For this data layout, the cache controller will always assign the same cache space to elements of the same
array (see Figure 12.7). As a consequence, each array will always get disjoint address spaces in the cache,
thus elements of different arrays will never conflict in the same cache line, thus eliminating any possible
inter-array data-layout conflict miss effect.

In addition, this data organization allows for an address range of the cache that is always reserved to
the elements of a particular array. We can use this property to ensure that a fixed amount of the cache
size is always devoted to hold data of that array. Therefore we can ensure that the optimal MHLA decisions,
relating the amount of memory space reserved for a particular CC, are also guaranteed even when the
control is done in HW and not only in SW. This is done by choosing the tile size of each array to be
equal to the size of the selected CC (see Section 12.3).

We must also consider the intra-array effect, however, because elements from the same array may still
conflict in the same cache line. This situation happens because different elements of a working set (e.g.,
the elements of an array belonging to the copy selected by the cache controller) could be located within

FIGURE 12.7

Illustration of how memory tiles reserve spaces in cache.

Reserved cache space
where only elements
of array A are mapped

A

B

C

A

B

C

Memory
-

”tile” where
only elements of array

A are stored0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
…

A

B

C

0
1
2
3
4
5
6
7

A

B

C

A

B

C

-

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
…

A

B

C

0
1
2
3
4
5
6
7

6700_C012.fm Page 14 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-15

the array at distances larger than the actual tile size, thus leading to cache mapping situations with
potentially conflicting cache lines. On the other hand, there are also situations when the mapping
organization of the cache causes no conflict misses. This is typically the case when the different elements
of the working set are accessed at consecutive locations within the array, thus they will never overlap in
cache. Figures 12.8(A) and 12.8(B) illustrate both concepts.

These data-layout conflict situations due to intra-array effects can be avoided by ensuring that the
elements of the working sets within a memory tile are evenly distributed over the available cache locations.
In fact, when studying the miss contributions for both minimal capacity and data-layout conflict misses
for different tile-sizes, a seemingly random behavior is observed: very high and very low miss counts are
possible for small variations of the tile size. Indeed, changes in the tile size can modify the cache mapping
decisions for the affected array, thus some sizes could lead to more conflict situations that others and
vice versa. In general, the larger the tile size, the less the probability to have conflicts in the cache lines.
Still, it is possible to find small enough tiles for which the amount of conflicts is still minimized. Moreover,
these variations can be made small enough such as it is possible to trade few minimal capacity misses
for a large amount of data-layout conflict misses. This is done by adjusting the tile size, thus avoiding a
“peak” and selecting one of the neighborhood “valleys.” Figure 12.9(A) illustrates the effect that the tile

FIGURE 12.8

Illustration of how intra-array, data-layout conflict misses occur in an array-interleaved data-layout:
(A) situation without intra-array conflict misses for a Working Set (WS) over continuous array locations; (B) situation
with (potential) intra-array conflict misses for a WS with locations scattered all over the array; (C) adaptation of the
tile size to avoid intra-array conflict misses for situation (B).

FIGURE 12.9

Cache miss simulations for QSDPCM: (A) miss count contributions due to minimal capacity and
data-layout conflict misses in a DM-cache associated to one of the arrays in the QSDPCM when changing the tile
size; (B) simulation results for the complete application with breakdown on different miss type contributions.

TSA

TSA

TSA

Memory

Cache

(A)

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
…

No intra-array
conflicts!

Working set continuous
over array locations

TSA

(B)

TSA

TSA

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
…

Intra-array
conflicts!

Cache

Working set scattered over
array locations

TS′A

(C)

TS′A

TS′A

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
…

No intra-array
conflicts!

Memory

Cache

Working set scattered over array
locations with adapted tile size

(A) (B)

0

50

100

150

200

250

300

350

400

Direct
mapped

2-way
associative

4-way
associativeTile-size (TS) = reserved space in cache (Bytes)

Minimal Capacity misses
Data-layout Conflict misses140

120

100

80

60

40

20

0
0 ∆TS 200 400

∆min-cap

∆DL-conflict

M
is

se
s

(1
03

)

M
is

se
s

(1
03

)

Assoc+replacement
Data-layout conflict

Minimal capacity
Compulsory

6700_C012.fm Page 15 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12

-16

Low-Power Processors and Systems on Chips

size has in miss rate for one of the arrays of the QSDPCM driver. The locations of these “valleys” can be
avoided by ensuring that cache-lines are evenly used by the elements of the working set. This situation
happens when the combination between tile size and the distances between elements of the working sets
are co-prime numbers (e.g., numbers not having a greatest common divisor other than 1) as illustrated
in Figure 12.8(C).

Finally, the mapping between elements of the working set and the cache lines can be influenced not
only by adjusting the tile sizes but also by changing the size of the dimensions of the arrays (e.g., by
using array padding techniques [39]). Globally considered, changing the tile size affects the mapping
organization by modifying the space reserved in cache, while changing the padding decision also affects
the mapping organization by modifying the memory address. However, a bigger tile size for one array
decreases the amount of cache lines available for other arrays in the cache. Thus, these decisions must
be globally considered during the MHLA step. A drawback to the use of array padding techniques is
that they would definitely introduce holes in the array and those holes will become unused locations
in main memory, thus the memory occupation would be far less efficient than adjusting the tile size.
In fact, a trade-off exists in sacrificing cache or memory space for reducing the conflict misses. It is
desirable that both memory and cache costs are globally minimized though. A global exploration is
needed because the choice for a tile size for one array influences the choice for other arrays. Such
exploration can be performed for the complete application in which the additional space in either
cache or main memory is expressed; however, the details for that extension fall outside the scope of
this chapter.

12.5.3 Case Study for Data-Layout Transformations

To evaluate the impact of data-layout transformations in cache miss rate, we have used the QSDPCM
driver introduced in Section 12.3.

During the memory-hierarchy layer assignment step (see Section 12.3) an optimal L1 layer of 1KB has
been selected based on the estimated amount of accesses to the different layers and the energy-consumption
per memory access. During that exploration, the sizes of the arrays and CCs are used as initial tile sizes
within the cache, and these are passed to the data-layout phase as first estimation. In the fine-tune phase,
the tile sizes are slightly changed and some array dimensions padded marginally (e.g., by extending their
declaration size). This is done to optimize the data-layout for intra-array conflict-misses.

Note there is no need to optimize those signals whose complete top-level array is selected to be stored
in the cache. In this case, each element has its own location in the cache, elements of this signal will never
compete for the same location. In this case, there are four signals (prev_frame, frame, prev_sub2_frame,
and prev_sub4_frame) with a selected copy-candidate smaller than the top-level array (see Figure 12.5).
This potentially results in conflict misses that should be avoided. The refinement of the initial tile size as
indicated by MHLA allows avoidance of the data-layout conflict miss contributions and retention of the
miss contribution due to minimal capacity misses decided by the precedent MHLA step.

Simulations have been performed to measure the impact of the data-layout optimizations for the
complete QSDPCM application. The main results are given in Figure 12.9(B). The two bottom bars of
the graph represent the (unavoidable) miss contribution due to compulsory and minimal capacity misses.
To have a reference of how good the performance is when an optimal data-layout is applied, the miss
rates of the DM-cache are compared to a two-way and a four-way associative cache with the least recently
used replacement policy. Those caches have a more “intelligent” controller, and they should be able to
resolve (part of) the conflict misses; however, the DM-cache with an optimized data-layout can still
outperform the two-way associative cache (without data-layout optimizations) and become as efficient
as a four-way associative cache. Note that a four way associative cache is about two to three times less
energy efficient than the DM-cache of the same size (see Section 12.1). Thus, the combination of MHLA
techniques (for an optimal sizing of the local memory layer) together with the use of data-layout
optimization techniques (for the efficient use of DM-caches) provides a low-power alternative for plat-
form architects and application designers of application domain specific solutions.

6700_C012.fm Page 16 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC

12

-17

12.6 Conclusions

In this chapter, we have presented design time optimization techniques for an optimal dimensioning of
the memory hierarchy for low-power operation. This is based on data-to-memory hierarchy layer assign-
ment decisions that consider information resulting from the temporal locality and lifetime characteristics
of the application data. This is true both for HW and SW controlled memories (e.g., scratch-pad and
cache memories). For HW-controlled caches, however, because of the mapping organization of the
hardware controller, additional data-layout organization techniques are needed to avoid the overhead in
additional data transfer resulting from conflicts in the cache lines.

References

[1] T. Achteren, R. Lauwereins, and F. Catthoor. Systematic data reuse exploration techniques for non-
homogeneous access patterns.

Proc. 5th ACM/IEEE Design and Test in Europe Conf. (DATE),

 pp.
428–435, Paris, France, Apr. 2002.

[2] I. Issenin, E. Brockmeyer, M. Miranda, N. Dutt, Data reuse analysis technique for software-
controlled memory hierarchies,

Proc. 7th ACM/IEEE Design and Test in Europe Conf. (DATE),

 pp.
202–207, Paris, France, Feb. 2004.

[3] S.J.E. Wilton and N.P. Jouppi, CACTI: an enhanced cache access and cycle time model,

IEEE J. of
Solid-State Circuits, Vol. 31, No. 5, pp. 677–688, May 1996.

[4] P. Marchal, J.I. Gomez, D. Bruni, F. Catthoor, M. Prieto, L. Benini, and H. Corporaal, SDRAM-
energy-aware memory allocation for dynamic multi-media applications on multi-processor plat-
forms. Proc. 6th ACM/IEEE Design and Test in Europe Conf. (DATE), pp. 516–521, Munich, Ger-
many, March 2003.

[5] C. Kulkarni, M. Miranda, C. Ghez, F. Catthoor, and H. De Man, Cache-conscious data layout
organization for embedded multimedia applications, Proc. 4th ACM/IEEE Design and Test in Europe
Conf. (DATE), Munich, Germany, pp. 686–691, March 2001.

[6] C. Ancourt et al. Automatic data mapping of signal processing applications. Proc. Int. Conf. on
Application-Specific Array Processors, Zurich, Switzerland, pp. 350–362, July 1997.

[7] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformations for multipro-
cessors. 5th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, pp. 39–50,
Aug. 1995.

[8] M. Kampe and F. Dahlgren. Exploration of spatial locality on emerging applications and the
consequences for cache performance. Proc. Int. Parallel and Distributed Processing Symp. (IPDPS),
pp. 163–170, Cancun, Mexico, May 2000.

[9] H.-B. Lim and P.-C. Yew. Efficient integration of compiler-directed cache coherence and data
prefetching. Proc. Int. Parallel and Distributed Processing Symp. (IPDPS), pp. 331–339, Cancun,
Mexico, May 2000.

[10] L. Benini and G. De Micheli, System-level power optimization techniques and tools, ACM Trans.
on Design Automation for Embedded Syst. (TODAES), Vol. 5, No. 2, pp. 115–192, Apr. 2000.

[11] L. Benini, A. Bogliolo, and G. Micheli. A survey of design techniques for system-level dynamic
power management, IEEE Trans. on VLSI Syst., pp. 299–316, 2000.

[12] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. Vandecappelle, and
P.G. Kjeldsberg, Data and memory optimizations for embedded systems, ACM Trans. on Design
Automation for Embedded Syst. (TODAES), Vol. 6, No. 2, pp. 142–206, Apr. 2001.

[13] M. Kandemir and A. Choudhary. Compiler-directed scratch-pad memory hierarchy design and
management. 39th ACM/IEEE Design Automation Conf., pp. 690–695, Las Vegas, NV, June 2002.

[14] P. Grun, N. Dutt, and A. Nicolau. Apex: access pattern based memory architecture exploration.
14th Int. Symp. on Syst. Synthesis, pp. 25–32, Montreal, Canada, Oct. 2001.

[15] P.R. Panda, N.D. Dutt, and A. Nicolau. Data cache sizing for embedded processor applications.
Proc. 1st ACM/IEEE Design and Test in Europe Conf. (DATE), pp. 925–926, Paris, France, Feb. 1998.

6700_C012.fm Page 17 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

12-18 Low-Power Processors and Systems on Chips

[16] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and data objects to scratch-
pad for energy reduction. Proc. 5th ACM/IEEE Design and Test in Europe Conf. (DATE), pp. 409–415,
Paris, France, Apr. 2002.

[17] K. Masselos et al. Memory hierarchy layer assignment for data re-use exploitation in multimedia
algorithms realized on predefined processor architectures. 8th IEEE Int. Conf. on Electron., Circuits
and Syst. (ICECS), pp. 285–288, Oct. 2001.

[18] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino. Layout-driven memory synthesis for embed-
ded system-on-chip. IEEE Trans. on VLSI, pp. 96–105, Sep. 2002.

[19] E. de Greef, Storage size reduction for multimedia applications. Doctoral dissertation, ESAT/KUL,
Belgium, Jan. 1998.

[20] M. Kandemir, J. Ramanujam, and A. Choudhary, Improving cache locality by a combination of
loop and data transformations, IEEE Trans. on Comput., Vol. 48, No. 2, pp. 159–167, Feb. 1999.

[21] C. Kulkarni, F. Catthoor, and H. De Man, Cache transformations for low power caching in
embedded multimedia processors, Proc. Int. Parallel Processing Symp. (IPPS), pp. 292–297, Orlando,
FL, Apr. 1998.

[22] M. Lam, E. Rothberg, and M. Wolf, The cache performance and optimizations of blocked algo-
rithms, Proc. 4th Int. Conf. on Architectural Support for Prog. Lang. and Operating Syst. (ASPLOS),
pp. 63–74, Santa Clara, CA, Apr. 1991.

[23] F. Catthoor, S. Wuytack, E. de Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle, Custom
Memory Management Methodology — Exploration of Memory Organisation for Embedded Multi-
media System Design, Kluwer Academic Publishers, Boston, 1998.

[24] N. Manjiakian and T. Abdelrahman, Fusion of loops for parallelism and locality. Technical report
CSRI-315, Computer Systems Research Institute, University of Toronto, Ontario, Canada, Feb.
1995.

[25] P. Panda and N. Dutt, Low-power mapping of behavioral arrays to multiple memories, Proc. IEEE
Int. Symp. on Low Power Design, pp. 289–292, Monterey, CA, Aug. 1996.

[26] P.R. Panda, N.D. Dutt, and A. Nicolau, Efficient utilization of scratch-pad memory in embedded
processor applications, Proc. 5th ACM/IEEE Design and Test in Europe Conf. (DATE), Paris, France,
Mar. 1997.

[27] D.C. Burger, J.R. Goodman, and A. Kagi, The declining effectiveness of dynamic caching for general
purpose multiprocessor. University of Wisconsin Computer Sciences Tech. Report CS-TR-95-
1261—Madison, WI, 1995.

[28] E. Brockmeyer, M. Miranda, F. Catthoor, and H. Corporaal, Layer assignment techniques for low-
power in multi-layered memory organisations, Proc. 6th ACM/IEEE Design and Test in Europe Conf.
(DATE), pp. 1070–1075, Munich, Germany, March 2003.

[29] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.G. Kjeldsberg, T. Van Achteren, and T.
Omnes, Data Access and Storage Management for Embedded Programmable Processors, Kluwer
Academic Publishers, Boston, 2002.

[30] F. Catthoor, K. Danckaert, S. Wuytack, and N. Dutt, Code transformations for data transfer and
storage exploration preprocessing in multimedia processors, IEEE Design and Test of Comput., Vol.
18, No. 2, pp. 70–82, June 2001.

[31] S. Wuytack, F. Catthoor, G. Jong, B. Lin, and H. Man. Flow graph balancing for minimizing the
required memory bandwidth. Proc. 9th ACM/IEEE Int. Symp. on System-Level Synthesis (ISSS), pp.
127–132, La Jolla, CA, Nov. 1996.

[32] P. Grun, N. Dutt, and A. Nicolau. Mist: an algorithm for memory miss traffic management. Proc.
IEEE Int. Conf. on CAD, pp. 431–437, Santa Clara, CA, Nov. 2000.

[33] P. Slock, S. Wuytack, F. Catthoor, and G. Jong. Fast and extensive system-level memory exploration
for ATM applications. Proc. 10th ACM/IEEE Int. Symp. on System-Level Synthesis (ISSS), pp. 74–81,
Antwerp, Belgium, Sep. 1997.

[34] P. Strobach. QSDPCM — a new technique in scene adaptive coding. Proc. 4th Eur. Signal Processing
Conf. (EUSIPCO), pp. 1141–1144, Grenoble, France, Sep. 1988.

6700_C012.fm Page 18 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Data Storage and Communication for SoC 12-19

[35] Radio broadcasting systems; digital audio broadcasting to mobile, portable and fixed receivers.
Standard RE/JTC-00DAB-4, ETSI, ETS 300401, May 1997.

[36] K.C. Shashidar, A. Vandecappelle, and F. Catthoor, Low-power design of turbo decoder module
with exploration of energy-performance trade-offs, Workshop on Compilers and Operating Systems
for Low Power (COLP ’01) in conjunction with Int. Conf. on Parallel Architecture and Compilation
Techniques (PACT), pp. 10.1–10.6, Barcelona, Spain, Sep. 2001.

[37] D. Patterson and J. Hennessey, Computer Architecture: A Quantitative Approach, Morgan Kaufmann,
San Francisco, CA, 1996.

[38] C. Kulkarni. Cache optimization for multimedia applications. Doctoral dissertation, ESAT/KUL,
Belgium, 2001.

[39] P.R. Panda, H. Nakamura, N.D. Dutt, and A. Nicolau, A data alignment technique for improving
cache performance, Proc. IEEE Int. Conf. on Comput. Design, pp. 587–592, Santa Clara, CA, Oct.
1997.

6700_C012.fm Page 19 Thursday, July 14, 2005 12:31 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-1

13

Networks on Chips:
Energy-Efficient Design

of SoC Interconnect

13.1 Introduction ..

13-

1
13.2 Micro-Networks: Architectures and Protocols................

13-

2

Physical Layer • Data Link, Network, and Transport Layers •
Software Layers

13.3 Energy-Efficient Micro-Network Design.........................

13-

6

Physical Layer • Data-Link Layer • Network Layer

13.4 Conclusions ...

13-

14
References ...

13-

14

13.1 Introduction

The challenge of designing systems on chip (SoCs) is related to both the large scale of integration and
the small transistor features in the upcoming silicon technologies. Moreover, SoCs will be applied in
many embedded systems, where reliability of operation and low-energy consumptions are key figures
of merit.

It is a common belief that SoCs are designed using preexisting components, such as processors,
controllers, and memory arrays. Design methodologies have to support component reuse in a plug-and-
play fashion to be effective.

We think that the most critical factor in system integration will be related to the communication
scheme among components. The implementation of on-chip communication largely affects the system
correctness, reliability, and energy consumption. Indeed, technology trends foresee an increase in device
density and frequency of operation, which both correlate to higher power consumption. Voltage down-
scaling will mitigate the energy cost at the expenses of reduced signal integrity. Thus, future system
designs will be based on a balancing act between performance, reliability, and energy consumption. This
chapter will analyze this trade-off in the domain of on-chip component interconnection.

The challenges for on-chip interconnect stem from the physical properties of the interconnection wires.
Propagation delays on global wires — spanning a significant fraction of the chip size — will carry signals
whose propagation delay will exceed the clock period. Thus, signals on global wires will be pipelined. At
the same time, the switched capacitance on global wires will constitute a significant fraction of the
dynamic power dissipation. Moreover, estimating delays accurately will become increasingly harder, as
wire geometries may be determined late in the design flow. Thus, the need for latency insensitive design
is critical. The most likely synchronization paradigm for future chips is globally asynchronous locally
synchronous (GALS), with many different clocks.

Luca Benini

University of Bologna

Terry Tao Ye
Giovanni de Micheli

Stanford University

6700_C013.fm Page 1 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-2

Low-Power Processors and Systems on Chips

SoC design will be guided by the principle of consuming the least possible power. This requirement
matches the need of using SoCs in portable battery-powered electronic devices and of curtailing thermal
dissipation, which can make chip operation infeasible or impractical. Energy considerations will impose
small logic swings and power supplies, most likely below 1 V. Electrical noise due to crosstalk, electro-
magnetic interference (EMI), and radiation-induced charge injection (soft errors) will be likely to produce
data upsets. Thus, the mere transmission of digital values on wires will be inherently unreliable.

To cope with these problems, we use network design technology to analyze and design SoCs modeled
as micro-networks of components. The SoC interconnect design analysis and synthesis is based upon
the micro-network stack paradigm, which is an adaptation of the protocol stack [30] (Figure 13.1) used
in networking. This abstraction is useful for layering micro-network protocols and separating design
issues belonging to different domains.

SoCs differ from wide-area networks because of local proximity and because they exhibit much less
nondeterminism. In particular, micronetworks have a few distinctive characteristics, namely, energy
constraints, design-time specialization, and low communication latency. This chapter addresses specifi-
cally the first problem.

Whereas computation and storage energy greatly benefits from device scaling (smaller gates, smaller
memory cells), the energy for global communication does not scale down. On the contrary, projections
based on current delay optimization techniques for global wires [15,28,29] demonstrate that global
communication on chip will require increasingly higher energy consumption. Thus, communication-
energy minimization will be a growing concern in future technologies. Furthermore, network traffic
control and monitoring can help in better managing the power consumed by networked computational
resources. For instance, clock speed and voltage of end nodes can be varied according to available network
bandwidth. The emphasis on energy minimization creates a sleuth of novel challenges that have not been
addressed by traditional high-performance network designers.

Design-time specialization is another facet of the SoC network design. Whereas macroscopic networks
emphasize general-purpose communication and modularity, in SoCs networks, these constraints are less
restrictive, because most on-chip solutions are proprietary. This degree of freedom can be used effectively
to design low-energy communication schemes.

13.2 Micro-Networks: Architectures and Protocols

Much literature is available about architectures for macroscopic networks and, more specifically, for
single-chip multi-processors [6,12,17]. These architectures can be classified by their topology, structure,
and parameters. The most common on-chip communication architecture is the shared medium archi-
tecture, as exemplified by the shared bus. Unfortunately, bus performance and energy consumption are
deeply penalized by the scaling up of the number of end nodes. Point-to-point architectures, such as

FIGURE 13.1

Micro-network stack.

Software

Physical

Architecture
and Control

Application

System

Transport

Network

Data Link

Wining

6700_C013.fm Page 2 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-3

mesh, torus, and hypercube, have been demonstrated to scale up despite a higher complexity in their
design. Examples of recent micro-network architectures include Octagon [17], which is a direct network
(i.e., with routers attached to the end node) consisting of eight nodes arranged as the vertices of an
octagon and connected via the octagon sides and diameters. Octagon has the properties that any two
nodes can be reached in two hops, and that more octagons can be connected by sharing an end node.
The Nostrum network is a two-dimensional indirect mesh network (i.e., with routers separate from end
nodes) [19]. The network performs the routing function and acts as the network interface for each node
processor as well. Another example of a recent micro-network is SPIN [12], which is also an indirect
network, and is built with a 4-ary fat-tree topology.

Communication in any given architecture is regulated by protocols, which are designed in layers. We
analyze next specific issues related to the different layers of abstraction outlined in the micro-network
stack in a bottom-up way.

13.2.1 Physical Layer

Global wires are the physical implementation of the communication channels. Physical layer signaling
techniques for lossy transmission lines have been studied for a long time by high-speed board designers
and microwave engineers [2,10].

Traditional rail-to-rail voltage signaling with capacitive termination, as used today for on-chip com-
munication, is definitely not well suited for high-speed, low-energy communication on future global
interconnects [10]. Reduced swing, current-mode transmission, as used in some processor-memory
systems, can significantly reduce communication power dissipation while preserving speed of data
communication.

Nevertheless, as the technology trends lead us to use smaller voltage swings and capacitances, the upset
probabilities will rise. Thus, the trend toward faster and lower-power communication may decrease
reliability as an unfortunate side effect. Reliability bounds as voltages scale can be derived from theoretical
(entropic) considerations [14] and can be measured by experiments on real circuits.

We conjecture that a paradigm shift is needed to address the aforementioned challenges. Current
design styles consider wiring-related effects as undesirable parasitics, and try to reduce or cancel them
by specific and detailed physical design techniques. It is important to realize that a well-balanced design
should not over-design wires so that their behavior approaches an ideal one, because the corresponding
cost in performance, energy-efficiency, and modularity may be too high. Physical layer design should
find a compromise between competing quality metrics and provide a clean and complete abstraction of
channel characteristics to micro-network layers above.

13.2.2 Data Link, Network, and Transport Layers

The data-link layer abstracts the physical layer as an unreliable digital link, where the probability of bit
upsets is nonnull (and increasing as technology scales down). Furthermore, reliability can be traded off
for energy [14]. The main purpose of data-link protocols is to increase the reliability of the link up to a
minimum required level, under the assumption that the physical layer by itself is not sufficiently reliable.

An additional source of errors is contention in shared-medium networks. Contention resolution is
fundamentally a nondeterministic process, because it requires synchronization of a distributed system,
and for this reason it can be considered as an additional noise source. Generally, nondeterminism can
be virtually eliminated at the price of some performance penalty. For instance, centralized bus arbitration
in a synchronous bus eliminates contention-induced errors, at the price of a substantial performance
penalty caused by the slow bus clock and by bus request/release cycles.

Future high-performance, shared-medium on-chip micro-networks may evolve in the same direction
as high-speed local area networks, where contention for a shared communication channel can cause
errors, because two or more transmitters are allowed to concurrently send data on a shared medium. In
this case, provisions must be made for dealing with contention-induced errors.

6700_C013.fm Page 3 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-4

Low-Power Processors and Systems on Chips

An effective way to deal with errors in communication is to packetize data. If data is sent on an
unreliable channel in packets, error containment and recovery is easier, because the effect of errors is
contained by packet boundaries, and error recovery can be carried out on a packet-by-packet basis. At
the data link layer, error correction can be achieved by using standard error correcting codes (ECC) that
add redundancy to the transferred information. Error correction can be complemented by several packet-
based error detection and recovery protocols. Several parameters in these protocols (e.g., packet size and
number of outstanding packets) can be adjusted depending on the goal to achieve maximum performance
at a specified residual error probability and/or within given energy consumption bounds.

At the network layer, packetized data transmission can be customized by the choice of switching and
routing algorithms. The former establishes the type of connection while the latter determines the path
followed by a message through the network to its final destination. Popular packet switching techniques
include store-and-forward, virtual cut-through, and wormhole. When these switching techniques are
implemented in on-chip networks, they will have different performance metrics along with different
requirements on hardware resources.

• Store-and-forward (SAF) routing inspects each packet’s content before forwarding it to the next
stage. While SAF enables more elaborated routing algorithms, (e.g., content-aware packet routing),
it introduces extra packet delay at every router stage. Furthermore, SAF also requires a substantial
amount of buffer spaces because the switches need to store multiple complete packets at the same
time. Because on-chip storage resources (i.e., static random access memory (SRAMs) and dynamic
random access memory (DRAMs)

)

 are very expensive in terms of area and energy consumption,
SAF approaches are not appropriate for on-chip communications.

• Virtual cut-through (VCT) routing can forward a packet to the next stage before its entirety is
received by the current switch. Therefore, VCT switching reduces the store-and-forward delays.
When the next stage switch is not available, however, the entire packet still needs to be stored in
the buffers of the current switch.

• Wormhole routing was originally designed for parallel computer clusters [11] because it achieves
the minimal network delay and requires fewer buffers. In wormhole routing, each packet is further
segmented into flits (flow control unit). The header flit reserves the routing channel of each switch,
the body flits will then follow the reserved channel, and the tail flit will later release the channel
reservation.

One major advantage of wormhole routing is that it does not require the complete packet to be stored
in the switch while waiting for the header flit to route to the next stages. Wormhole routing not only
reduces the store-and-forward delay at each switch, but it also requires much less buffer space. Because
of these advantages, wormhole routing is an ideal candidate switching technique for on-chip interconnect
networks [7].

In wormhole routing, one packet may occupy several intermediate switches at the same time. Thus,
it may block the transmission of other packets. Deadlock and livelock are the potential problems in
wormhole routing schemes [9,11].

At the transport layer, algorithms deal with the decomposition of messages into packets at the source
and their assembly at destination. Packetization granularity is a critical design decision, because the
behavior of most network control algorithms is very sensitive to packet size. Packet size can be
application-specific in SoCs, as opposed to general networks. In general, flow control and negotiation
can be based on either deterministic or statistical procedures. Deterministic approaches ensure that
traffic meets specifications, and provide hard bounds on delays or message losses. The main disadvan-
tage of deterministic techniques is that they are based on worst cases, and they generally lead to
significant under-utilization of network resources. Statistical techniques are more efficient in terms of
utilization, but they cannot provide worst-case guarantees. Similarly, from an energy viewpoint, we
expect deterministic schemes to be more inefficient than statistical schemes, because of their implicit
worst-case assumptions.

6700_C013.fm Page 4 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-5

13.2.3 Software Layers

Current and future systems on chip will be highly programmable, and therefore their power consumption
will critically depend on software aspects. Software layers comprise system and application software. The
system software provides us with an abstraction of the underlying hardware platform, which can be
leveraged by the application developer to exploit the hardware’s capabilities safely and effectively.

Current SoC software development platforms are mostly geared toward single microcontroller with
multiple coprocessor architectures. Most of the system software runs on the control processor, which
orchestrates the system activity and farms off computationally intensive tasks to domain-specific copro-
cessors. Micro-controller–coprocessor communication is usually not data-intensive (e.g., synchronization
and reconfiguration information), and most high-bandwidth data communication (e.g., coproces-
sor–coprocessor and coprocessor–IO) is performed via shared memories and direct memory access
(DMA) transfers. The orchestration activities in the micro-controller are performed via runtime services
provided by single-processor real time operating systems (RTOSs) (e.g., VxWorks, Micro-OS, and Embed-
ded Linuxes), which differentiate from standard operating systems in their enhanced modularity, reduced
memory footprint, and support for real-time-scheduling and bounded time-interrupt service times.

Application programming is mostly based on manual partitioning and distribution of the most
computationally intensive kernels to data coprocessors (e.g., very long instruction word (VLIW) multi-
media engines, digital signal processors, etc.). After partitioning, different code generation and optimi-
zation toolchains are used for each target coprocessor and the control processor. Hand-optimization at
the assembly level is still quite common for highly irregular signal processors, while advanced optimizing
compilers are often used for VLIW engines and fine-grained reconfigurable fabrics. Explicit communi-
cation via shared memory is usually supported via storage classes declarations (e.g., noncacheable mem-
ory pages) and DMA transfers from and to shared memories are usually set up via specialized system
calls which access the memory-mapped control registers of the DMA engines.

Even from this cursory analysis, the poor scalability in a network on chip (NoC) setting of current
software abstractions and runtime environments is evident. In our view, the most critical issues are
the following:

• Confining the OS onto a single centralized micro-controller is a sensible choice for small-to-
medium scale and asymmetric multi-processing architectures, but this choice is bound to create
a performance bottleneck and significant power overhead as architectures become more symmetric
and scale up in complexity and parallelism, resulting in a significant energy inefficiency. This is
because all centralized control functions and policies will require communication (often under
tight real-time constrains) to all peripheral processors. Even worse, a centralized OS would need
to continuously collect information on all system components to maintain an updated system
state snapshot. The cost in performance and power of system control and monitoring is significant
and could either lead to an over budgeting of NoC resources (e.g., dedicated control channels) if
quality-of-service guarantees (e.g., bounded control message delivery delay) must be provided, or
to uncertain and unreliable operation in case of a best-effort network service.

• The manual and ad hoc partitioning and workload distribution procedure is too slow and error-
prone in parallel

,

 large-scale applications and target architectures. Furthermore, the lack of com-
munication analysis tools may lead to highly inefficient task mappings. From a performance
viewpoint, a communication suboptimal task mapping leads to reduced throughput and/or high
latency. The energy implications can be even more serious, because in many cases reduced per-
formance is caused by local congestion, which is a high-occupancy condition for network resources
and implies high power consumption. Thus, energy efficiency decreases quadratically (high power
and low performance).

• Current programming styles are based on a shared memory paradigm, which is quite natural and
well suited for tightly coupled, small-scale clusters. Unfortunately, shared memory abstraction
tends to hide the cost and unpredictability of communication, which are destined to grow in an

6700_C013.fm Page 5 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-6

Low-Power Processors and Systems on Chips

NoC setting. Furthermore, DMA burst transfers, often advocated as a mean to increase throughput
in memory transfers, do increase the risk of starvation and the variance in delivery time of short,
sporadic messages. From an energy viewpoint, we need to raise the level of awareness of program-
mers on the energy cost in accessing shared memories, especially when a single memory is shared
among many multiple processors. Such a cost is only in part due to pure memory array access.
Significant overheads are associated with communication and contention resolution.

In our view, software issues are among the most critical and less understood in NoC. We believe that
the full potential of on-chip networks can be effectively exploited only if adequate software abstractions
and programming aids are developed to support them.

13.3 Energy-Efficient Micro-Network Design

This section delves into a few specific instances of energy-efficient, micro-network design problems. In
most cases, we also outline specific solutions that have been proposed in the literature, even though it
should be clear that many design issues are open and significant progress in this area is expected in the
near future.

13.3.1 Physical Layer

At the physical layer, low-swing signaling is actively investigated to reduce communication energy on
global interconnects [36]. In the case of a simple CMOS driver, low-swing signaling is achieved by
lowering the driver’s supply voltage

V

dd

. This implies a quadratic dynamic power reduction (because

P

dyn

=

KV

dd

2

). Unfortunately, swing reduction at the transmitter complicates the receiver’s design. Increased
sensitivity and noise immunity are required to guarantee reliable data reception. Differential receivers
have superior sensitivity and robustness, but they require doubling the bus width. To reduce the overhead,
pseudo-differential schemes have been proposed, where a reference signal is shared among several bus
lines and receivers, and incoming data is compared against the reference in each receiver. Pseudo-
differential signaling reduces the number of signal transitions, but it has reduced noise margins with
respect to fully differential signaling. Thus, reduced switching activity is counterbalanced by higher swings
and determining the minimum-energy solution requires careful circuit-level analysis.

Dynamic voltage scaling has been recently applied to busses [26,33]. In Worm et al. [33], the voltage
swing on communication busses is reduced, even though signal integrity is partially compromised.
Encoding techniques are used to detect corrupted data that is retransmitted. The retransimission rate is
an input to a closed-loop DVS control scheme, which sets the voltage swing at a trade-off point between
energy saving and latency penalty (due to data retransmission).

Another key physical-layer issue is synchronization. Traditional on-chip communication has been
based on the synchronous assumption, which implies the presence of global synchronization signals (i.e.,
clocks) that define data sampling instants throughout the chip. Unfortunately, clocks are extremely
energy-inefficient, and it is a well-known fact that they are responsible for a significant fraction of the
power budget in digital integrated systems. Thus, postulating global synchronization when designing on-
chip micronetworks is not an optimal choice from the energy viewpoint. Alternative on-chip synchro-
nization protocols that do not require the presence of a global clock have been proposed in the past [3,37],
but their effectiveness has not been studied in detail from the energy viewpoint.

13.3.2 Data-Link Layer

At the data-link layer, a key challenge is to achieve the specified communication reliability level with
minimum energy expense. Several error recovery mechanisms developed for macroscopic networks can
be deployed in on-chip micronetworks, but their energy efficiency should be carefully assessed in this
context. As a practical example, consider two alternative reliability-enhancement techniques: error-cor-

6700_C013.fm Page 6 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-7

recting codes and error-detecting codes with retransmission. A set of experiments involved applying error
correcting and detecting codes to an AMBA bus and comparing the energy consumption in four cases [4]:

1. Original unencoded data
2. Single-error correction
3. Single-error correction and double-error detection
4. Multiple-error detection

Hamming codes were used. Note that in case 3, a detected double error requires retransmission. In
case 4, using (

n,k

) linear codes, there are (2

n

−

 2

k

) error patterns

of length

n

 that can be detected. In all
cases, some errors may go undetected and be catastrophic. Using the property of the codes, it is possible
to map the mean time to failure (MTTF) requirement into bit upset probabilities, and thus comparing
the effectiveness of the encoding scheme in a given noisy channel (characterized by the upset probability)
in meeting the MTTF target.

The energy efficiency of various encoding schemes varies: we summarize here one interesting case,
where three assumptions apply. First, wires are long enough so that the corresponding energy dissipation
dominates encoding/decoding energy. Second, voltage swing can be lowered until the MTTF target is
met. Third, upset probabilities are computed using a white Gaussian noise model [13]. Figure 13.2 gives
the average energy per useful bit as a function of the MTTF (which is the inverse of the residual word
error probability). In particular, for reliable SoCs (i.e., for MTTF = 1 year), multiple-error detection with
retransmission is demonstrated as more efficient than error-correcting schemes. We refer the reader to
Bertozzi et al. [4] for results under different assumptions.

Another important aspect affecting the energy consumption is the media access control (MAC)
function. Currently, centralized time-division multiplexing schemes (also called centralized arbitration)
are widely adopted [1,8,32]. In these schemes, a single arbiter circuit decides which transmitter accesses
to the bus for every time slot. Unfortunately, the poor scalability of centralized arbitration indicates that
this approach is likely to be energy-inefficient as micronetwork complexity scales up. In fact, the energy
cost of communicating with the arbiter, and the hardware complexity of the arbiter itself scales up more
than linearly with the number of bus masters

.

Distributed arbitration schemes as well as alternative multiplexing approaches, such as code division

multiplexing, have been extensively adopted in shared-medium macroscopic network, and are actively
investigated for on-chip communication [34]. Research in this area is just burgeoning, however, and
significant work is needed to develop energy-aware media-access-control for future micronetworks.

FIGURE 13.2

Energy efficiency for various encoding schemes.

A
vg

. e
ne

rg
y

pe
r

us
ef

ul
 b

it
(j/

ub
it)

9

8

7

6

5

4

3

2

1
4.6e-94.6e-74.6e-50.00460.46464600

× 10–12

Original leon
Sec leon
Secded leon
Ed leon
Parity

MTTF (days)

6700_C013.fm Page 7 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-8

Low-Power Processors and Systems on Chips

13.3.3 Network Layer

Switching and routing for on-chip micro-networks affect heavily performance and energy consumption,
whereas contention plays an important role. On one hand, contention delays packet transmission. On
the other hand, resolving contention requires packets to be stored temporarily on the storage elements
(on-chip SRAMs or DRAMs), which will increase power consumption significantly.

13.3.3.1 Contention-Look-Ahead Routing

A contention-look-ahead routing scheme is the one where the current routing decision is helped by
monitoring the adjacent switches, thus possibly avoiding or reducing blockages and contention in the
coming stages.

A contention-aware routing scheme is described in Nilsson [23]. The routing decision at every node
is based on the “stress values” (the traffic loads of the neighbors) that are propagated between neighboring
nodes. This scheme is effective in avoiding “hot spots” in the network. The routing decision steers the
packets to less congested nodes.

To solve the contention problems in the wormhole routing schemes, we propose a contention-look-
ahead routing algorithm that can “foresee” the contention and delays in the coming stages using a direct
connection from the neighboring nodes. We use a two-dimensional mesh on-chip multiprocessor network
to further explain and implement this routing algorithm. The processors are connected directly to each
other in a tile-array formation, similar to that proposed by Dally and Toles [7]. Each processor tile performs
packet routing and arbitration independently. The major difference from Nilsson [23] is that information
is handled in flits, and thus packets with large or variable sizes can be handled with limited input buffers.
Furthermore, because it avoids contention between packets and requires much less buffer usage, the
proposed contention-look-ahead routing scheme can greatly reduce the network power consumption.

13.3.3.2 Wormhole Contention-Look-Ahead Algorithm

At every intermediate stage, there may be many alternate routes to go to the next stage. We call the route
that always leads the packet closer to the destination a profitable route. Conversely, a route that leads the
packet away from the destination is called misroute [11] (Figure 13.3). In mesh networks, profitable routes
and misroutes can be distinguished by comparing the current node ID with the destination node ID.

Profitable routes will guarantee a shortest path from source to destination. Nevertheless, misroutes do
not necessarily need to be avoided. Occasionally, the buffer queues in all available profitable routes are
full, or the queues are too long. Thus, detouring to a misroute may lead to a shorter delay time. Under
these circumstances, a misroute may be more desirable.

Any packet entering an intermediate switch along a path finds a set

C

 of output channels to exit. As
an example, for a two-dimensional mesh,

C

 = {North, South, East, West}. We further partition

C

 into
profitable routes

P

 and misroutes

M

. We define the buffer queue length of every profitable route
as

Q

p

. Similarly, we define the buffer queue length of every misroute as

Q

m

.

FIGURE 13.3

Profitable route and misroute.

p P∈
 m M∈

Contention

Destination

Source

6700_C013.fm Page 8 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-9

Assume the flit delay of one buffer stage is

D

B

, and the flit delay of one switch stage is

DS

. The delay
penalty to take a profitable and a misroute is defined as

D

profit

 and

D

misroute

, respectively, in the following
equation (Equation 13.1).

(13.1)

(13.2)

In a mesh network, when a switch routes a packet to a misroute, the packet moves away from its
destination by one switch stage. In the subsequent routing steps, this packet needs to get back on track
and route one more stage back toward its destination. Therefore, the delay penalty for a misroute is .
The delay

D

S

 can be estimated beforehand, and, without loss of generality, we assume the same

D

S

 value
for all switches in the network.

If all profitable routes are available and waiting queues are free, the packet will use profitable routing
decision. If the buffer queues on all of the profitable routes are full or the minimum delay penalty of all
the profitable routes is larger than the minimum penalty of the misroutes, it is more desirable to take
the misroute (Equation 13.3):

(13.3)

where

Q

pmax

 is the maximum buffer queue length (buffer limit). This routing algorithm is heuristic,
because it can only “foresee” one step ahead of the network. It provides a local best solution but does
not guarantee the global optimum.

13.3.3.3 Network Power Consumption

This routing scheme was simulated with RSIM

,

 a multiprocessor instruction level simulator, using 16 reduced
instruction set computer (RISC) processors connected in a (4-ary 2-cube

)

 mesh network. Control
wires that deliver the input queue information to the adjacent switches also connect adjacent processors.

The contention-look-ahead routing algorithm is compared with dimension-ordered routing — a
routing scheme that always routes the packets on one dimension first, upon reaching the destination row
or column, then switch to the other dimension until reaching the destination. Dimension-ordered routing
is deterministic and guarantees shortest path, but it cannot avoid contention. The comparison is per-
formed on four benchmarks: quicksort, fft, lu, and sor. These benchmarks are ported from Stanford
SPLASH suite [27] and running on the RSIM simulation platform.

On-chip network power consumption comes from three contributors:

1. The interconnect wires
2. The buffers
3. The switch logic circuits

A network power consumption estimation technique is proposed by Ye et al. [35], and we will use it in
the experiments.

The contention-look-ahead routing will reduce the power consumption on the buffers because it can
“foresee” the contention in the forthcoming stages and shorten the buffer queue length. Figure 13.4(a)
presents the averaged buffer power reduction of different benchmarks. The reduction is more significant
under larger buffer sizes. This is because larger buffers will consume more power, and the power con-
sumption is more sensitive with contention occurrence.

The power consumption on the interconnect can be estimated by counting the average number of
hops a packet travels from source to destination. Dimension-ordered routing always steers the packets
along the shortest path. In comparison, our proposed routing scheme may choose the misroute when
contention occurs. Therefore, the contention-look-ahead routing has larger average hop count per

D min D Q p Pprofit B p= × ∀ ∈()

D min D Q D m Mmisroute B m S= × + ∀ ∈(2)

 2 × DS

()()? :D D Q Q p P ProRoute Misrouteprofit misroute p pmax
≤ ≤ ∀ ∈

4 4×

6700_C013.fm Page 9 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-10

Low-Power Processors and Systems on Chips

packet than the dimension-ordered routing, and consequently consumes more power on the intercon-
nects. Figure 13.4(A) depicts the proposed routing scheme consumes more power (presented as negative
values) with smaller buffer size, this is because smaller buffer sizes will cause more contention and
induce more misroutes.

The contention-look-ahead routing switch needs more logic gates than dimension-ordered routing.
From synopsys power compiler simulation, the proposed switch circuit consumes about 4.8% more
power than dimension-ordered switch. Combining the power consumption on the interconnects and
buffers, the total network power consumption is depicted in Figure 13.4(B). It presents the total network
power reduction compared with dimension-ordered routing. The reduction is more significant with
larger buffer sizes (15.2% with 16-flit buffers).

13.3.3.3.1 Transport Layer

Above the network layer, the communication abstraction is an end-to-end connection. The transport
layer is concerned with optimizing the usage of network resources and providing a requested quality of
service. Clearly, energy can be considered as a network resource or a component in a quality-of-service
metric. An example of transport-layer design issue is the choice of information decomposition into
packets or flits, as well as the choice of packet size. Energy efficiency can be heavily impacted by this
decision. Next, we will use the shared-memory multi-processor system on chip (MPSoC) as a case study
to analysis the packet size trade-offs both qualitatively and quantitatively.

A typical shared-memory MPSoC architecture is illustrated in Figure 13.5. The MPSoC power con-
sumption originates from three sources:

FIGURE 13.4

Power consumption comparison on interconnect wires and buffers.

FIGURE 13.5

MPSoC architecture.

−20%

0%

20%

40%

60%

80% 20%

15%

10%

5%

0%

Interconnect and Buffer Power Consumption Total Power Consumption

16 flit8 flit4 flit2 flit
16 flit8 flit4 flit2 flit

(A) (B)

Interconnect Buffer

On-Chip Interconnect Network

Mem
µPC

L1 $

L2 $ Directory

Network
Interface

6700_C013.fm Page 10 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-11

1. The node processor power consumption
2. The cache and shared memory power consumption
3. The interconnect network power consumption

We will start first from the cache and memory analysis.

13.3.3.4 Cache and Memory Power Consumption

Whenever there is a cache miss, the cache block content needs to be encapsulated inside the packet
payload and sent across the network. In shared-memory MPSoC, the cache block size correlates with the
packet payload size. Larger packet sizes will decrease the cache miss rate, because more cache content
can be updated in one memory access. Consequently, both cache energy consumption and memory
energy consumption will be reduced. This relationship can be observed in Figure 13.6. It depicts the
energy consumption by cache and memory under different packet sizes. The energy in the figure is
normalized to the value of 256 Bytes

,

 which achieves the minimum energy consumption.

13.3.3.5 Interconnect Network Power Consumption

The power consumption of packetized dataflow on MPSoC network is determined by three factors. The
effects of these factors are summarized and listed next:

1. The number of packets on network. Packets with larger payload size will decrease the cache miss
rate and consequently decrease the number of packets on the network. This effect can be observed
in Figure 13.7(A). It gives the average number of packets on the network (traffic density) at one
clock cycle. As the packet size increases, the number of packets decreases accordingly.

FIGURE 13.6

Cache and memory energy decrease as packet payload size increases.

FIGURE 13.7

Packet count and hop count per packet under different payload sizes.

150%

100%

50%

400%

300%

200%

100%

0%
256 Byte128 Byte64 Byte32 Byte16 Byte256 Byte128 Byte64 Byte32 Byte16 Byte

Cache Energy Consumption under
Different Payload Sizes

Memory Energy Consumption under
Different Payload Sizes

sor water quicksort lu mp3d(A) (B)

2

1

0.3

0.2

0.1

0

1.5

Average Packet Count per Cycle on Network Average Hop Count per Packet

256 Byte128 Byte64 Byte32 Byte16 Byte256 Byte128 Byte64 Byte32 Byte16 Byte

sor water quicksort lu mp3d(A) (B)

6700_C013.fm Page 11 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-12

Low-Power Processors and Systems on Chips

2. The energy consumed by each packet on one hop. Larger packet size will increase the energy
consumed per packet, because there are more bits in the payload.

3. The number of hops each packet travels. Larger packets will occupy the intermediate node switches
for a longer time, and cause other packets to be rerouted to longer paths. This leads to more
contention that will increase the total number of hops needed for packets traveling from source
to destination. Figure 13.7(B) illustrates the effect. As packet size (payload size) increases, average
hop count per packet increases as well.

Actually, increasing the cache block size will not decrease the cache miss rate proportionally. Therefore,
the decrease of packet count cannot compensate for the increase of energy consumed per packet caused
by the increase of packet length. Larger packet size also increases the hop counts on the datapath. Figure
13.8(A) presents the combined effects of these factors. The values are normalized to the measurement
of 16 Bytes

.

 As packet size increases, energy consumption on the interconnect network will increase.
The total energy dissipated on MPSoC comes from noncache instructions (instructions that do not

involve cache access) of each node processors, the caches and the shared memories as well as the
interconnect network. The overall results are given in Figure 13.8(B). From this figure, we can see that
the total MPSoC energy will decrease as packet size increases. When the packets are too large, however,
as in the case of 256 Bytes in the figure, the total MPSoC energy will increase. This is because when the
packet is too large, the increase of interconnect network energy will outgrow the decrease of energy on
cache and memories. In our simulation, the noncache instruction energy consumption does not change
significantly under different packet sizes.

13.3.3.5.1 Application and System Layer

As hinted in Section 13.2, software layers are critical for the NoC paradigm shift, especially when energy
efficiency is a requirement. As outlined in the previous sections, NoCs have the potential for overcoming
many of the energy bottlenecks of current integrated architectures (i.e., globally shared communication
and storage blocks), but only if programming abstractions, development tools, and system software help
programmers understand communication-related costs and how to cope with them.

From a high-level application viewpoint, multi-processor SoC platforms can be viewed as networks of
computing nodes equipped with local storage. Computation and storage are highly energy efficient if confined
to the local resources within a node. Communication cost should be made explicit throughout all steps of
the code development flow. Software analysis tools should help designers in identifying communication
bottlenecks and code optimizers should heavily emphasize communication cost reduction. Many effective
techniques have been devised in the area of parallel programming for large-scale supercomputers, and there
is good potential for leveraging these experiences. It is important, however, to point out three key differences:

1. Target MPSoC architectures are much more heterogeneous than general-purpose parallel
computers.

FIGURE 13.8

Network and total MPSoC energy consumption under different packet payload sizes.

250%

200%

150%

100%

50%

0%

400%

300%

200%

100%

0%
256 Byte128 Byte64 Byte32 Byte16 Byte

256 Byte128 Byte64 Byte32 Byte16 Byte

Network Energy Consumption Under
Different Packet Payload Sizes

Total MPSoC Energy Consumption Under
Different Packet Payload Sizes

(A) (B)

sor water quicksort lu mp3d sor water quicksort lu mp3d

6700_C013.fm Page 12 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-13

2. Physical link latency, albeit significant, is not nearly as dominant in on-chip networks as it is in
macroscopic parallel computers (see Figure 13.9).

3. Energy constraints are extremely tight, while they have never been significant in traditional parallel
machines.

The following paragraphs outline four critical areas for the evolution of energy efficient software layers
in current and future NoCs. We survey seminal contributions and identify critical needs.

1. Programming abstractions. Developing adequate abstractions for NoC programming is a critical
objective. Dataflow programming abstractions, such as streams [18] and Kahn networks [22], are
based on a model of computation that matches very well NoC architectures. With these abstrac-
tions, communication is made explicit starting from the early steps of application development,
because data flow is explicitly represented. At these levels, energy efficiency can be pursued by
minimizing redundant communication, and by carefully balancing local computation and com-
munication costs. A critical need in this area is the definition of hardware platform dependent
high-level metrics, such as energy per local operation and energy per transmitted bit, which can
help in first-cut exploration of the communication vs. computation trade-off during algorithm
development. Unfortunately, even though many digital signal processing and multimedia appli-
cations are developed starting from dataflow models, numerous legacy applications use more
traditional programming styles, where tasks are not clearly decoupled and communication is
implicitly performed through memory. Leveraging the existing code basis, without compromising
performance and energy efficiency, is today an open challenge.

2. Task-level analysis and optimization. A number of interesting opportunities are open for high-
level optimization tools, which can help designers mapping data-flow specifications onto target
hardware platforms. Consider, for instance, task splitting and merging (i.e., distributing the
computation performed by a task among two or more computational nodes and collapsing two
or more tasks onto the same node), task allocation, as well as communication splitting and
merging over available physical NoC links. Even though a few of these problems have been
explored in preliminary works [16,25], we critically need high-level energy models and analysis
tools to explore techniques for increasing energy efficiency. It is important to acknowledge that
energy-optimal solutions can differ significantly from performance-optimal ones in this context.
Consider, for instance, a situation where available computational resources are used to achieve
marginal performance benefits (e.g., a task is speculatively executed), at a price of significantly
increased power consumption.

FIGURE 13.9

Interconnect latency for different parallel machines.

120

100

80

60

40

20

0

M
ic

ro
se

co
nd

s

Round-trip Latency

Fast Ethernet

Myrinet

MPP

NOC

6700_C013.fm Page 13 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13

-14

Low-Power Processors and Systems on Chips

3. Code optimization. Classical code optimization, at the single task level, will still hold an important
place in future NoC software development. In this area we view as critical further developments
of two types of code optimizers: tools for parallelism extraction from a single task or a legacy
applications [31]; tools that reduce the memory footprint and improve access locality for both
code and data [24]. The first class of tools represents enabling technology that enables the reuse
of legacy software as well as task splitting. The second class has a critical role in reducing “implicit”
communication (as opposed to “explicit” data flow communication) from/to large background
memories, which ensues because of large working sets that do not fit into local node memory.
Another critical area in code optimization is the development of highly efficient communication
primitives, possibly with significant dedicated hardware support. The latency and energy consump-
tion associated with software handling of communication primitives (e.g., message send or receive)
in traditional parallel programming libraries are simply unacceptable in an NoC setting [5].

4. Distributed operating systems. Intuitively, the operating system support NoC operation cannot
be centralized. Truly distributed embedded OSes are required [5,6] to create a scalable runtime
system. In addition to traditional functions (i.e., scheduling, interrupt handling), the NoC OS
should natively support power management. End-nodes (processing elements) in SoC micronet-
works will most likely be power-manageable “voltage islands” [20], with individually controllable
clock speeds and supply voltages. One of the key tasks of the system software will be to control
the voltage islands power states. We can envision a network-centric approach, where components
send messages to neighbors to request state changes [21]. Such requests are originated and serviced
at the system software levels. For example, an image processor can be required to raise its service
levels before receiving a stream of data. In this case, the system software supports policies that
accept requests from other components and perform transitions according to such requests.

13.4 Conclusions

The challenges of designing SoCs in 50- to 100-nm technologies available in the second part of this
decade include coping with design complexity and providing reliable, high-performance operation and
minimizing energy consumption. Starting from the observation that interconnect technology will be the
limiting factor for achieving the operational goals, we envisioned a communication-centric view of design.
We focused on energy efficiency issues in designing the communication infrastructure for future SoCs.
We described several open problems at various layers of the communication stack, and we outlined basic
strategies to effectively tackle the energy efficiency challenge for on-chip communication networks.

References

[1] P. Aldworth, System-on-a-chip bus architecture for embedded applications,

IEEE Int. Conference
on Comput. Design,

 pp. 297–298, 1999.
[2] H. Bakoglu,

Circuits, Interconnections, and Packaging for VLSI,

 Addison-Wesley, Reading, MA, 1990.
[3] W.J. Bainbridge and S.B. Furber, Delay insensitive system-on-chip interconnect using 1-of-4 data

encoding,

IEEE Int. Symp. on Asynchronous Circuits and Syst.,

 pp. 118–126, March 2001.
[4] D. Bertozzi, L. Benini, and G. De Micheli, Low power error resilient encoding for on-chip data

busses,

Proc. Int. Conf. on Design and Test Europe,

 Paris, France, pp. 102–109, March 2000.
[5] D. Bertozzi, F. Poletti, L. Benini, and A. Bogliolo, Performance analysis of arbitration policies for

SoC communication architectures,

J. Design Automation for Embedded Sys.,

Vol. 8, pp. 189–210,
June–Sept. 2003.

[6] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M. Diaz-Nava, and A.A.
Jerraya, Multiprocessor SoC platforms: a component-based design approach

IEEE Design andTest
of Comput.,

 Vol. 19, No. 6, Nov.–Dec., 2002
[7] W. Dally and B. Towles, Route packets, not wires: on-chip interconnection networks,

Proc. 38th
Design Automation Conf.,

pp. 684–689, June 2001.

6700_C013.fm Page 14 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

Networks on Chips: Energy-Efficient Design of SoC Interconnect

13

-15

[8] B. Cordan, An efficient bus architecture for system on chip design,

IEEE Custom Integrated Circuits
Conf.,

 pp. 623–626, May 1999.
[9] W.J. Dally

 and H. Aoki, Deadlock-free adaptive routing in multicomputer networks using virtual
channels IEEE Trans. on Parallel and Distributed Syst., pp. 466–475, April 1993.

[10] W. Dally and J. Poulton, Digital System Engineering, Cambridge University Press, New York, 1998.
[11] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach, IEEE

Computer Society Press, Washington, D.C., 1997.
[12] P. Guerrier and A. Greiner, A generic architecture for on-chip packet-switched interconnections,

Proc. Int. Conf. on Design Automation and Test in Europe, pp. 250–256, March 2000.
[13] R. Hegde and N. Shanbhag, Toward Achieving Energy Efficiency in Presence of Deep Submicron

Noise, IEEE Trans. on VLSI Syst., Vol. 8, No. 4, pp. 379–391, August 2000.
[14] R. Hegde and N. Shanbhag, Toward achieving energy efficiency in presence of deep submicron

noise, IEEE Trans. on VLSI Syst., Vol. 8, No. 4, pp. 379–391, August 2000.
[15] R. Ho, K. Mai, and M. Horowitz, The future of wires, Proc. IEEE, April 2001, pp. 490–504.
[16] J. Hu and R. Marculescu, Energy-aware mapping for tile-based NOC architectures under perfor-

mance constraints, Proc. ASP Design Automation Conf., pp. 233–239, Jan. 2003.
[17] F. Karim, A. Nguyen, and S. Dey, On-chip communication architecture for OC-768 network

processors, Proc. 38th Design Automation Conf., pp. 678–683, June 2001.
[18] B. Khailany et al. Imagine: Media Processing with Streams, IEEE Micro, pp. 35–46, Vol. 21, No. 2,

2001.
[19] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrij, and A. Hemani,

A network on chip architecture and design methodology, Proc. IEEE Computer Society Annual
Symp. on VLSI, pp. 105–112, April 2002.

[20] D. Lackey, P. Zuchowski, T. Bednar, D. Stout, S. Gould and J. Cohn, Managing power and perfor-
mance for systems on chip design using voltage islands, ICCAD – Int. Conf. on Computer-Aided
Design, pp. 195–202, Nov. 2002.

[21] A. Laffely, J. Liang, P. Jain, N. Weng, W. Burleson, and R. Tessier, Adaptive systems on a chip (aSoC)
for low-power signal processing, 35th Asilomar Conf. on Signals, Syst., and Comput., pp. 1217–1221,
Nov. 2001.

[22] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere, A methodology for architecture explo-
ration of heterogeneous signal processing systems J. VLSI Signal Process. for Signal, Image and Video
Technol., Vol. 29, No. 3, pp. 197–207, 2001.

[23] E. Nilsson Design and implementation of a hot-potato switch in a network on chip, M.S. thesis,
Department of Microelectronics and Information Technology, Royal Institute of Technology, Stock-
holm, Sweden, June 2002.

[24] P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle, E. Brockmeyer, C. Kulkarni,
and E. de Greef, Data memory organization and optimizations in application-specific systems,
IEEE Design and Test of Comput., Vol. 18, No. 3, May–June 2001.

[25] A. Pinto, L Carloni, and A. Sangiovanni-Vincentelli, Constraint-driven communication synthesis,’
Design Automation Conf., pp. 783–788, June 2002.

[26] L. Shang, L.-S. Peh, and N.K. Jha, Dynamic voltage scaling with links for power optimization of
interconnection networks, HPCA — Proc. Int. Symp. on High-Performance Computer Architecture,
Anaheim, CA, pp. 91–102, February 2003.

[27] J.P. Singh, W. Weber, and A. Gupta, SPLASH: Stanford parallel applications for shared-memory
Computer Architecture News, Vol. 20, No. 1, pp. 5–44, March 1992.

[28] D. Sylvester and K. Keutzer, A global wiring paradigm for deep submicron design, IEEE Trans. on
CAD/ICAS, Vol. 19, No. 2, pp. 242–252, February 2000.

[29] T. Theis, The future of Interconnection Technology, IBM J. Res. and Dev., Vol. 44, No. 3, pp.
379–390, May 2000.

[30] J. Walrand and P. Varaiya, High-Performance Communication Networks, Morgan Kaufman, San
Francisco, 2000.

6700_C013.fm Page 15 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

13-16 Low-Power Processors and Systems on Chips

[31] M. Wolfe, High-Performance Compilers for Parallel Computing, Addison-Wesley, Reading, MA, 1995.
[32] S. Winegarden, A bus architecture centric configurable processor system, IEEE Custom Integrated

Circuits Conf., pp. 627–630, May 1999.
[33] F. Worm, P. Ienne, P. Thiran, and G. De Micheli, An Adaptive low-power transmission scheme for

on-chip networks, ISSS, Proc. Int. Symp. on System Synthesis, Kyoto, Japan, pp. 92–100, October
2002.

[34] R. Yoshimura, T. Koat, S. Hatanaka, T. Matsuoka, and K. Taniguchi, DS-CDMA wired bus with
simple interconnection topology for parallel processing system LSIs, IEEE Solid-State Circuits Conf.,
p. 371, January 2000.

[35] T.T. Ye, L. Benini, and G. De Micheli, Packetized on-chip interconnect communication analysis
for MPSoC, Proc. on Design Automation and Test in Europe, pp. 344–349, March 2003.

[36] H. Zhang, V. George, and J. Rabaey, Low-swing on-chip signaling techniques: effectiveness and
robustness, IEEE Trans. on VLSI Syst., Vol. 8, No. 3, pp. 264–272, June 2000.

[37] H. Zhang, M. Wan, V. George, and J. Rabaey, Interconnect architecture exploration for low-energy
configurable single-chip DSPs, IEEE Computer Society Workshop on VLSI, pp. 2–8, April 1999.

6700_C013.fm Page 16 Thursday, July 14, 2005 12:33 PM

Copyright © 2006 Taylor & Francis Group, LLC

14

-1

14

Highly Integrated
Ultra-Low Power RF

Transceivers for
Wireless Sensor

Networks

14.1 Introduction ..

14-

1

Motivation • Characteristics of Wireless Sensor Networks •
Performance Metrics for Sensor Node RF Transceivers

14.2 RF MEMS in Low-Power Radios

14-

5

Introduction to RF MEMS • Opportunities Offered by
RF-MEMS

14.3 Receivers for Ad Hoc Wireless Sensor Networks

14-

7

Heterodyne • Tuned Radio Frequency • Super-Regenerative

14.4 Transmitters for Ad Hoc Wireless Sensor Networks

14-

9

Direct-Conversion Transmitter • Two-Step Transmitter •
Direct-Modulation Transmitter

14.5 Low-Power Circuit Design Techniques..........................

14-

12

Low-Current RF Amplification • Envelope Detector • RF
Oscillator • Nonlinear Power Amplifiers • On-Chip References
and Bias Circuits

14.6 System Integration ..

14-

19
14.7 Conclusion...

14-

21
14.8 Acknowledgments ...

14-

21
References ...

14-

22

14.1 Introduction

14.1.1 Motivation

Technological advances have made it conceivable to build and deploy dense wireless networks of heter-
ogeneous nodes collecting and disseminating wide ranges of environmental data [1]. An inspired reader
can easily imagine a multiplicity of scenarios in which these sensor and actuator networks might excel.
To mention just a few: environmental control in office buildings, robot control and guidance in automatic
manufacturing environments, warehouse inventory, integrated patient monitoring, diagnostics and drug
administration in hospitals, interactive toys, the smart home providing security, identification and per-
sonalization, and interactive museums. The overwhelming opportunities emerging from this technology

Brian P. Otis
Yuen Hui Chee
Richard Lu
Nathan M. Pletcher
Jan M. Rabaey

University of California—Berkeley

Simone Gambini

Universita di Pisa

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-2

Low-Power Processors and Systems on Chips

indeed give rise to new definitions of distributed computing and user interface. Regardless of the specific
application, however, they all rely on a network of ubiquitously distributed sensor, compute, and actuation
nodes, which are integrated and embedded into the fabrics of our daily living environment. This explains
why the name “ambient intelligence” is often attributed to such environments [2].

Widespread deployment of wireless sensor networks requires that some economic and physical realities
be met. More precisely, the physical implementation of an individual network node is constrained by
three important metrics: power, cost, and size. Of these three, power (or energy, depending on how the
node is powered) turns out to be the most fundamental metric. To keep cost down and to allow for a
flexible deployment, most nodes must be untethered. Cost considerations also dictate that frequent
replacement of the energy source of the node (especially in a ubiquitous deployment scenario) is out of
the question. This leads to the general guideline that a network node must be self-sufficient from an
energy perspective for the lifetime of the product. This could be multiple years for applications such as
smart homes. The energy storage capability of a node is limited by the storage medium (battery or
capacitor) and the size constraints [3]. Although a single-time charge could work for applications with
life cycles below one year, replenishment of the energy supply using energy scavenging is often a necessity.
As a result, the average power dissipation of a node is firmly capped at 1 mW. More realistically, average
power dissipation levels around 100

µ

W are necessary given today’s energy generation technologies. Table
14.1 illustrates the finite power density of state-of-the-art energy sources [3].

As listed in the table, the average power consumption of the sensor node must be very low if the energy
scavenging volume is limited. From a volume of 1 cm

3

, one or a combination of these power sources
could supply an average continuous power output of 100

µ

W. Although this severely restricts the amount
of processing that can be done within a node, it also determines the type of wireless connectivity that
can be obtained between the nodes.

Ubiquitous deployment of these nodes is only economically feasible if the cost of the individual
elements is ignorable, or, in other words, the electronics have become disposable. This translates to price
points per node of less than $1. Achieving a node cost this low requires a minimal number of components,
a high level of integration, simple and cheap packaging and assembly, and avoidance of any expensive
components and/or technologies.

Finally, embedding the components into the daily environment (walls, furniture, clothing, etc.) further
requires that the form factor of the entire sensor node must be very small. Typically, sizes smaller than
1cm

3

are necessary. Again, a very high level of integration is mandatory if such small dimensions are to
be achieved.

In the design of these sensor nodes, we have experienced that the wireless interface takes up the largest
fraction of the power and size budget of the node. Although the demands of the sensing and digital
processing components cannot be ignored, their duty cycle is typically very low. Exploitation of advanced
sleep and power-down techniques makes it possible to make their average power dissipation virtually
ignorable. Thus, in the remainder of this chapter we will focus our discussion on the design of ultra-low
power wireless interfaces for wireless sensor networks. Although optical communication approaches offer
the potential for very low power and small size, line-of-sight and directivity considerations make them
less attractive [4]. Thus, we will limit our discussion to radio-frequency (RF) interfaces.

The previous observations demonstrate that wireless sensor nodes occupy a unique corner of the
semiconductor and embedded system design space, and, in a way, push against many traditional design
boundaries.

TABLE 14.1

Power Density of Energy Scavenging Sources

Power Source
Power Density

(

µ

W/cm

2

) Lifetime

Lithium battery 100 1 year
Solar cell 10–15,000 (in

µ

W/cm

2

)

∞

Vibrational converter

300

∞

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks

14

-3

14.1.2 Characteristics of Wireless Sensor Networks

One may wonder if and why an RF interface for a sensor network should be substantially different than
the one used, for instance, in a wireless data network (local area network [LAN]). In fact, it turns out
that the operation mode of the sensor node is so fundamentally dissimilar that completely different
optimization criteria apply. This results mostly from the traffic patterns that affect the power dissipation
profile of a node. Data packets in sensor networks tend to be relatively rare and unpredictable events. In
most application scenarios, each node in the network sees at most a couple of packets/sec. In addition,
the packets are relatively short (typically less than 200 bits/packet), as the payloads normally represent
data measurements, which typically require a resolution of less than 24 bit/measurement. Combined, this
means that the average data rate of a single node rarely exceeds 1 kbit/sec. These observations are of
foremost importance when designing the wireless transceiver, as we will highlight in the following sections.

In the rest of the discussion, we will assume that the sensor networks of interest are dense, which
means that the nodes in the network are placed relatively closely (i.e., the average distance between nodes
is less than or equal to 10 m).*

14.1.3 Performance Metrics for Sensor Node RF Transceivers

14.1.3.1 Average Power Dissipation

Traditional quality metrics for radios used in wireless LANs are the data throughput (bit/sec), spectral
efficiency (bit/sec/Hz), and energy-efficiency (nJ/bit). None of these is truly important for a wireless
sensor node because the required average data rates are very low. Because the bits are few and the nodes
are closely spaced, the energy/bit is not an important metric either. In fact, the power used for the actual
data transmission and reception is only a fraction of the total power dissipated in the front-end. This is
best illustrated with a statistical power model of the transceiver [5]. At any point in time, the transceiver
is in one of the following states:

• Transmitting state (TX) during transmission of data.
• Receiving state (RX) during reception of data.
• Acquiring state (AQ) while acquiring synchronization at the start of the packet.
• Monitoring state (MN) when the transceiver is monitoring the channel (carrier sense).
• The idle state (IL) when the majority of the transceiver is turned off, and it is considered to be

sleeping; it may be assumed that the power dissipation in this state is zero.

The average power dissipation of the transceiver is then expressed as

where

P

x

 is the average power dissipation in state

x

 and

p

x

 the probability the transceiver is in that
particular state. The power dissipation in the TX state is determined mostly by the dissipation in the
power amplifier. The average power dissipation of the RF front end in the three other modes (RX, AQ,
and MN) is approximately equal, although P

AQ

may dominate slightly.
Given the low data rates and duty cycles, the transceiver should be in the idle state for most of the

time, given proper sleep disciplines. Among the four other states, the monitoring state (MN) is the most
probable, as became apparent from simulations based on this model. Assuming a dense network and
sparse traffic, the average power of the transceiver is well approximated as

*In networks with a lower density, TX power rapidly becomes the dominant power factor.

P p P p P p P p P p Pav TX TX RX RX AQ AQ MN MN IL IL= + + + +

P p P p p p P p Pav TX TX RX AQ MN RXon MN RXon= + + + ≅()

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-4

Low-Power Processors and Systems on Chips

where

P

RXon

 is the dissipation when the receiver is on. It is thus fair to state that the average power is
dominated by the power of having just the RF receiver turned on (e.g., low-noise amplifier [LNA], down-
converter, and synthesizer

)

, independent of the data activity. Minimizing the average power then translates
into minimizing the active current draw of the RF front end, and, obviously, the time that the transceiver
is turned on. This leads to the important conclusion that simple RF transceivers with a minimal number
of active components are the preferred option for use in wireless sensor networks.

If we assume a power budget of 100

µ

W and the RF module is allotted 20% of this power budget,
at a 1% radio duty cycle, this provides the on-state power consumption goal of 2 mW for the entire
RF transceiver.

14.1.3.2 Turn-On and Acquisition Time

In an environment where the radio is in idle or off mode most of the time, and where data communi-
cations are rare and packets short, it is essential that the radio can start up very quickly. For instance, a
1-Mbps radio with a 500-

µ

s turn-on time would be poorly suited for the transmission of short packets.
The on-time to send a 200-bit packet would be only 200

µ

s. Start-up and acquisition thus represent an
overhead that is larger than the actual payload cost, and may very well dominate the power budget (given
that channel acquisition is typically the most power-hungry operation).

Thus, fast start-up and acquisition is essential. An agile radio architecture that allows for quick and
efficient channel acquisition and synchronization is therefore desirable. Complex wireless transceivers
tend to use sophisticated algorithms such as interference cancellation and complex modulation schemes
to improve bandwidth efficiency. These techniques translate into complex and lengthy synchronization
procedures and may require accurate channel estimations. Packets are spaced almost seconds apart, which
is beyond the coherence time of the channel. This means that these procedures have to be repeated for
every packet, resulting into major overhead. Simple modulation and communication schemes are thus
the desirable solution if agility is a prime requirement.

14.1.3.3 Integration and Cost

In RF circuit design, the term “fully integrated” typically refers to a transceiver that still requires an off-
chip quartz crystal and a few assorted passive components. To meet the cost and form-factor requirements
of this application, a true fully integrated transceiver is mandatory. In addition to increasing the size,
off-chip passives add to the complexity and cost of the board manufacturing and package design.

One method that can be used to achieve a high level of integration is the use of a relatively high carrier
frequency. Currently available simple low-power radios, as used in control applications, typically operate
at low carrier frequencies between 100 and 800 MHz. A high carrier frequency has the distinct advantage
of reducing the required values of the passive components, making integration easier. For example, a
2.53-

µ

H inductance is needed to tune out a 1-pF capacitor in a narrow-band system at 100 MHz, requiring
a surface-mount inductor. For a 2-GHz carrier frequency, the inductance needed is only 6.33 nH, which
can easily be integrated on-chip using interconnect metallization layers. In addition, the antenna form-
factor is very dependent upon carrier frequency. For a given antenna gain, a higher carrier frequency
allows for a much smaller antenna. A quarter-wavelength monopole antenna at 100 MHz would be 0.75-
m long. At 2 GHz, the size shrinks to 37.5 mm, making board-level integration or use of small chip-
antennas possible. The drive to higher carrier frequencies to achieve high integration is in direct conflict
with the need for low-power consumption. As the carrier frequency increases, the active devices in the
RF signal path must be biased at higher cutoff frequencies, increasing the bias current and decreasing
the transconductance-to-current (g

m

/I

d

) ratio. This results in increased power dissipation at higher carrier
frequencies. Thus, an inherent integration/power consumption trade-off must be dealt with through
architectural decisions and the use of new technologies.

In conclusion, RF transceivers for wireless sensor networks should be simple, consume a minimum
amount of on-current, and operate at higher carrier frequencies. In the rest of the chapter, we explore
how these goals can be simultaneously accomplished. The emerging technology of RF microelectro-
mechanical systems (MEMS), which promises the availability of small highly tuned high-frequency

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks

14

-5

passive components, offers an excellent opportunity of doing so. We commence our discussion with a
description of this exciting technology. The rest of the chapter then describes how these components can
be used to build power-efficient receivers and transmitters. Next, a number of low-power circuit tech-
niques used in the implementation of these modules are described, followed by a discussion of some
system integration techniques and some realized prototypes.

14.2 RF MEMS in Low-Power Radios

The relatively new field of RF MEMS provides unique opportunities to RF transceiver designers. This
section provides background on RF MEMS and provides insight into the opportunities presented by
these new technologies.

14.2.1 Introduction to RF MEMS

The field of RF MEMS includes the design and utilization of RF filters, resonators, switches, and other
passive mechanical structures constructed using integrated circuit fabrication techniques. To date, these
devices have been used as discrete board-mounted components, primarily used to enhance the minia-
turization of mobile phones [6]; however, RF MEMS components have the potential to be batch fabricated
using existing integrated circuit fabrication techniques. New capacitively driven and sensed structures
offer the potential of integration on the same substrate as the CMOS circuitry. In addition, because the
resonant frequency is set lithographically and not by a deposition layer thickness, it is possible to fabricate
devices with many unique resonant frequencies on the same wafer [7]. See Figure 14.1 for an example
of this technology.

The structure in Figure 14.1 was constructed of micromachined polysilicon on top of a silicon wafer.
The continued improvement in the performance, reliability, and manufacturability of these structures
will greatly change the performance and form-factor of RF transceivers. As discussed in this chapter,
however, even in their current state, these devices hold the potential to enable new circuit blocks and
architectures.

FIGURE 14.1

50-MHz capacitively driven/sensed resonator. (B. Bircumshaw, G. Liu, H. Takeuchi, T.-J. King, R.
Howe, O. O’Reilly, and A. Pisano,

Tech. Dig., 12th Int. Conf. on Solid-State Sensors, Actuators, and Microsystems,

Boston, MA, pp. 875–878, June 8–12, 2003. With permission.)

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-6

Low-Power Processors and Systems on Chips

14.2.2 Opportunities Offered by RF-MEMS

14.2.2.1 Passives with High-Quality Factor

One often-cited benefit of RF MEMS structures is the ability to design resonators with very high-quality
factors. As compared with integrated LC tank structures, which typically achieve Q factors of 5 to 10,
RF MEMS resonators can achieve Q factors two orders of magnitude higher [8]. See Figure 14.2 for a
simplified circuit equivalent model of a MEMS resonator.

In the equivalent schematic, R

x

, C

x

, and L

x

 correspond to the motional impedances of the resonator. R

o

and C

o

 represent the finite quality factor of the feed-through capacitance, which affects the Q of the parallel
resonance. Finally, Z

s

 and Z

p

 represent the impedance load on the resonator due to the CMOS circuitry.
It is important to note that these additional impedances have a strong influence on the resonator charac-
teristics, as they affect the loaded resonator quality factor, resonant frequencies, and frequency tolerance.

When used in the design of bandpass filters and duplexers, high Q resonators help to realize the steep
skirts necessary to meet cell phone specifications [8]. High Q resonators are further useful in a variety
of other transceiver blocks. For example, high Q resonators provide the potential for radio frequency
channel select filtering, as their bandwidth is much narrower than what can be obtained from integrated
LC filters. This passive channel select filtering can be exploited to simplify the receiver architecture and
to reduce the number of active components [9]. In addition, when used in an RF oscillator, RF MEMS
resonators provide a vastly improved phase-noise compared with a standard, low Q LC resonator [10].
A design example based on these principles is explored in Section 14.5.

14.2.2.2 Passive Frequency Reference

For all narrowband communication systems, an RF carrier frequency generator is necessary. The absolute
frequency reference used is typically a low-frequency quartz crystal oscillator. A frequency synthesizer
then multiplies the low-frequency sinusoid up to radio frequencies. This technique has a few disadvantages
for low-power radio design. First, even for a fully integrated frequency synthesizer, an off-chip quartz
crystal is always necessary, making true full integration impossible. In addition, frequency synthesizers
are a huge source of power dissipation in low-power radios [11]. The VCO and frequency dividers tend
to dominate the power consumption of frequency synthesizers. Radio frequency MEMS components
provide an inherent high-frequency reference without the need for a power hungry frequency synthesizer.

14.2.2.3 MEMS/CMOS Codesign

One of the most exciting aspects of RF micromachined components is the potential for codesigning the
MEMS devices with the CMOS circuitry. Until now, passive components included low-quality, on-chip
devices (e.g., inductors, capacitors) or high-quality, off-chip components (e.g., inductors, surface acoustic
wave (SAW) filters, quartz crystals, duplexers). The on-chip components allow customization to meet
the requirements of the circuitry, but their performance is normally poor. High-quality, off-chip passives
offer few design degrees of freedom. For example, most filters and duplexers are designed for 50-

Ω

 input
and output impedances. This rigid impedance level is very detrimental from a low-power point of view,
and has been very troublesome in past receiver implementations [12]. The potential of integrating RF
MEMS components and circuitry on the same die or on the same substrate using, for instance, fluidic

FIGURE 14.2

Simplified circuit equivalent model of MEMS resonator.

RX

RO

ZS

ZP

LXCX

CO

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks

14

-7

self-assembly (FSA) could allow the circuit designer to size the MEMS components and the circuitry
simultaneously [13]. The ability to design these devices alongside the circuitry provides increased system
performance and additional designer degrees of freedom.

Overall, the availability of high-quality passive RF components makes it possible to realize transceiver
architectures with a minimal number of active components and with a minimum on-current. The
following sections evaluate a number of receiver and transmitter architectures that exploit this concept.

14.3 Receivers for Ad Hoc Wireless Sensor Networks

As mentioned earlier, two main considerations in the design of the receiver are ultra-low power con-
sumption and ultra-high integration. The choice of receiver topology has huge implications on the ability
to meet these two goals. For example, although aggressive and carefully optimized circuit design can
provide low-power consumption, some radio architectures inherently require more active devices biased
at higher cutoff frequencies and more off-chip components than other architectures. This section dis-
cusses various architectures that can be considered for the implementation of such a radio.

14.3.1 Heterodyne

The omnipresent heterodyne architecture is often the first one to be considered. The process of down-
converting the signal allows high gain to be placed at the intermediate frequency, overcoming the noise
of the detector and reducing the risk of instabilities. In addition, heterodyning allows channel select
filtering to take place at low frequencies, easing the implementation complexity and increasing the
potential to integrate these filters. Various flavors of this architecture include high-IF, low-IF, and direct
conversion, where the signal is down-converted directly to DC

.

 Regardless of the choice of intermediate
frequency, however, an accurate RF frequency reference is needed to drive the mixer in this architecture.
Most of the time, this local oscillator (LO) signal is generated from a reference crystal oscillator through
a frequency synthesizer. Thus, architectures that eliminate this frequency synthesizer and reduce the
number of active devices biased at a high

f

t

 are more appropriate for ultra-low power design.

14.3.2 Tuned Radio Frequency

The tuned radio frequency (TRF) architecture, one of the simplest receiver architectures, eliminates the
RF frequency synthesizer and mixers by filtering in the RF domain and directly detecting the RF signal
[14]. This architecture relies on sharp RF filters with high-frequency stability — two requirements that
are met by RF MEMS components described earlier. The filtered signal can be detected and down-
converted in a variety of ways, including envelope detection and subsampling.

14.3.2.1 TRF Envelope Detection

This method of detection, also referred to as diode detection, performs a self-mixing operation on the
signal. The RF signal drives a nonlinear element such as a diode or envelope detector, providing a DC
component containing the signal spectrum of interest, as depicted in Figure 14.3.

After down-conversion via envelope detection, the signal is simply low-pass filtered to remove the
fundamental and higher harmonics, leaving only the baseband signal. One main disadvantage of this
approach is that a large RF input signal must be present to induce this self-mixing, as there is no separate

FIGURE 14.3

TRF architecture with envelope detector.

Matching
Envelope
Detector

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-8

Low-Power Processors and Systems on Chips

local oscillator driving the system into nonlinearity. Thus, the sensitivity of the detector is poor, and a
large RF signal is necessary to achieve detection. The inherently poor noise figure of this detector thus
necessitates high RF gain to overcome the noise of the detector.

14.3.2.2 TRF Subsampling Detection

The concept of subsampling overcomes the need for the self-mixing operation needed for envelope detec-
tion. As depicted in Figure 14.4, a subsampling architecture samples the signal directly at RF frequencies.

As the name implies, the sampling rate of this detector does not satisfy the Nyquist criterion for
sampling the RF signal, and aliasing of the signal occurs. This aliasing effect down-converts the signal
to DC, where it is converted to the digital domain by an A/D converter. The sampling rate must only
satisfy the Nyquist sampling criterion of the baseband signal. Unfortunately, all noise and sources of
interference are also aliased into the baseband bandwidth. Even with very sharp RF filters, the noise of
the sampler is problematic. Although the signal is sampled at a low rate, the sampler must track the RF
signal, so its bandwidth must be high. This high-bandwidth requirement translates into a relatively small
sampling capacitor, which means that the sampler itself is a source of high KT/C noise. Similar to the
envelope-detector approach, overcoming the poor noise figure of the subsampler requires high RF gain.

In conclusion, the TRF architecture is promising in its simplicity and reduction of active circuit blocks.
They have the advantage that all mixers and synthesizers have been eliminated. The challenge of inte-
grating the steep RF filters is also well suited for RF MEMS technologies. The detection is noisy, however,
requiring high gain in the RF amplification stages. This necessitates multiple gain stages biased at high
cutoff frequencies (f

t

), resulting in high power dissipation in the RF amplifiers.

14.3.3 Super-Regenerative

As discussed in the previous section, the TRF architecture takes advantage of RF MEMS technologies to
perform channel selection without a need for mixers or frequency synthesizers. The RF gain needed,
however, is very high due to the noisy detection circuitry. A super-regenerative front-end provides
extremely high RF amplification and narrowband filtering at low bias-current levels. As depicted in Figure
14.5, the heart of a super-regenerative detector is an RF oscillator with a time-variant loop gain. The
isolation amplifier between the antenna and the oscillator performs the following functions: it prevents
radiation of the oscillation to the antenna, it provides an input match to the antenna, and it injects the
RF input signal current into the oscillator tank without adding significant loading to the oscillator.

FIGURE 14.4

TRF architecture with subsampling detector.

FIGURE 14.5

Super-regenerative detection.

Matching

Matching

Isolation
amplifier

Oscillator

A(t)

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks

14

-9

The time-varying nature of the loop-gain is designed such that the oscillator transconductance peri-
odically exceeds the critical g

m

 necessary to induce instability. Consequently, the oscillator periodically
starts up and shuts off. The start-up time of an oscillator is:

where

τ

ris

e

 is the time constant of the exponentially increasing oscillation envelope,

V

osc

 is the zero-peak
RF voltage of the saturated oscillator, and

V

initial

 is the zero-peak RF signal when the oscillator loop gain
is unity (at the onset of oscillation). As this equation demonstrates, the start-up time of the oscillator is
exponentially dependent upon the initial voltage in the oscillator tank. This dependency translates into
the huge gain attainable by the super-regenerative receiver.

There exists two basic modes of operation that can be utilized: the logarithmic mode or the linear
mode [15], as is illustrated in Figure 14.6.

Waveforms (a), (b), and (c) illustrate the detector output in the linear mode, the output in the
logarithmic mode, and the RF input signal, respectively. In the linear mode, the level of oscillation is
measured before the oscillator reaches saturation, providing a high signal independent gain. As illustrated
in waveform (a), the sampled envelope is much larger in the presence of an RF input signal. In the
logarithmic mode, detection circuitry senses the area under the oscillation envelope, providing signal
dependent gain. Waveform (b) depicts the increased area under the saturated oscillation envelope in the
presence of an RF input, resulting from the decreased oscillator start-up time in this condition. Due to
the severe fading anticipated in dense indoor sensor networks, a very wide dynamic range is required
from the receiver. The logarithmic mode provides an inherent automatic gain control, making its use
preferable for this application.

The potential of the super-regenerative receiver to generate large signal gain at very low bias currents
makes it the preferred architecture for integrated ultra-low power wireless receivers.

14.4 Transmitters for Ad Hoc Wireless Sensor Networks

As mentioned in Section 14.1, the environment of an ad hoc wireless sensor network differs significantly
from those in a conventional wireless network (e.g., GSM, CDMA, Wireless LAN, and Bluetooth). In a
typical sensor network, the transmitter sends out sporadic bursts of short data packets to neighboring
sensor nodes (

<

10 m) [9]. This implies the need for:

FIGURE 14.6

Super-regenerative detector waveforms.

(A)

(B)

(C)

t

t
V

Vrise rise
osc

initial

=

τ ln

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-10

Low-Power Processors and Systems on Chips

1. Power shutdown of the transmitter when idle
2. Short turn-on time of the transmitter to minimize overhead power
3. A low transmit power of about 0 dBm (1 mW) for typical receiver sensitivity and indoor multi-

path fading conditions

In addition, all the energy dissipated by the transmitter is scavenged from the environment. As
scavenged energy is the most precious resource in a sensor node, the efficiency of the transmitter when
switched on must be maximized. To put this in into perspective, consider an RF transceiver with an on-
state power consumption goal of 2 mW (see Section 14.1.3). An on–off keyed (50% duty cycled)
transmitter with 25% efficiency will require 2 mW of power, consuming the entire power budget allocated
for the transceiver. A more reasonable division of the power budget between transmitter and receiver is
70% and 30%, respectively. This translates to a required transmitter on-state efficiency of around 36%.
Note that this is the required global efficiency of the transmitter, not just the power amplifier.

These requirements have a profound impact on the architecture and implementation of the transmitter
for wireless sensor network. In this section, we compare various transmitter architectures and propose
a transmitter amenable to low-power ad hoc sensor networks. The low-power design techniques employed
in the implementation are discussed in Section 14.5.

14.4.1 Direct-Conversion Transmitter

The direct conversion and the two-step transmitter architectures are most commonly used in conventional
radios (e.g., GSM, CDMA, Bluetooth, Wireless LAN) [16]. In the direct conversion transmitter, illustrated
in Figure 14.7, the baseband signal is up-converted directly to RF in the modulator, and then efficiently
boosted to the required power level by the power amplifier and matching network. The direct conversion
transmitter suffers from local oscillator (LO) pulling, in which the output power from the power amplifier
leaks into the local oscillator, corrupting the clean LO signal.

14.4.2 Two-Step Transmitter

The effect of LO pulling is alleviated if a two-step conversion as illustrated in Figure 14.8 is employed.
The baseband signal is first up-converted to an IF signal, and then converted to the required RF signal
in a second mixing step. In this case, the frequency of the oscillator and the RF carrier are different, and
LO pulling is reduced.

A careful analysis of the preceding transmitters reveals that they are not ideally suited for sensor
applications for two main reasons:

FIGURE 14.7

Direct conversion transmitter architecture.

Mixer

Mixer

VCO Matching
Network

Q

I

PA

LO pulling

+

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks

14

-11

1. High data rate/bandwidth/spectral efficiency. Conventional radios employ complex modulation
schemes (using both AM and PM

)

 to maximize spectral efficiency. Given that the accumulated
traffic is approximately 1 kbit/sec/node, maximizing spectral efficiency is not a primary goal.
Advanced modulation schemes require the use of a linear power amplifier, which generally have
low efficiency. The relaxed requirement on spectral efficiency and linearity means that constant
envelope modulation schemes can be employed, which allow for the use of high-efficiency, non-
linear power amplifiers.

2. High transmit power. Conventional radios transmit hundreds of mW to 1W, and LO pulling is an
important concern; however, the transmitted power from a sensor node is about 1 mW. With an
isolation of 20 dB to 30 dB between the power amplifier (PA) and the local oscillator, the leakage
power ranges between 10

µ

W to 1

µ

W, which is insignificant compared with the LO’s output power.
Thus, LO pulling is not a significant issue, and the two-step approach is definitely overkill.

14.4.3 Direct-Modulation Transmitter

Taking advantage of the unique characteristics of a wireless sensor network, the direct modulation
transmitter in Figure 14.9 is very attractive.

In this architecture, the oscillator is directly modulated by the baseband data (on–off keying) and the
nonlinear PA and matching network efficiently boosts the power of the RF signal. The direct-modulation
transmitter architecture lends itself to an ultra-low power transmitter for the following reasons:

• Direct modulation of the oscillator eliminates power-hungry mixers. This is enabled by the use
of a simple on–off keying modulation scheme. This is deemed acceptable due to the relaxed spectral
efficiency requirements of the sensor network.

• On–off keying allows the use of nonlinear high efficiency power amplifiers.
• On–off keying eliminates the use of quadrature channels, thus reducing the number of active

components.
• In on–off keying, the transmitter is only turned on when transmitting a one, resulting in a 50%

energy savings if the long-term probability of sending a one and a zero is the same.

FIGURE 14.8

Two-step transmitter.

FIGURE 14.9

Direct modulation transmitter.

Mixer

Mixer

VCO 1 Matching
Network

Q

I

PA

+

Band Pass
Filter

Band Pass
Filter

Mixer

VCO 2

Baseband
Data

Osc PA Matching
Network

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14

-12

Low-Power Processors and Systems on Chips

14.5 Low-Power Circuit Design Techniques

So far, we have introduced new technologies and promising transmit/receive (Tx/Rx) architectures, which
may facilitate the implementation of ultra-low power, high-integration transceivers for sensor networks.
Enabling the potential of these approaches requires the availability of the appropriate RF modules, which
is the topic of this section. First, we explore the design of low-current front-end amplifiers. Then, an
envelope detector implementation is explored, as it is another important component in the receiver. Next,
we discuss the modules that compose the transmitter: the RF oscillator and the PA. Finally, we analyze
the requirements of low-current proportional to absolute temperature (PTAT) bias circuits.

14.5.1 Low-Current RF Amplification

Whether used to overcome the noise of a subsequent stage, to provide isolation to the antenna, or to
provide an input match, an input amplifier is a crucial part of virtually every RF receiver. The consid-
erations for an input amplifier to be used in a sensor-network receiver are quite different from a
traditional CMOS LNA. In traditional LNA design, the main goal is to minimize the noise figure while
satisfying gain, linearity, and input matching constraints. As became clear in the receiver architecture
section, the most important metric for the first stage in the receiver of an ultra-low power, gain-limited
receiver is to obtain a large gain at a low current level. In such architectures, the noise figure of the front-
end stage is typically swamped by the high noise figure of the detection circuitry. Thus, the goal is to
maximize gain for a given power budget, while still maintaining reasonable noise figure, linearity and
input matching performances.

An input impedance match is one of the primary architectural considerations for the input amplifier.
Many circuit topologies can be used to achieve an input impedance match, including a simple resistive
termination circuit. In terms of gain and noise performance, however, one promising topology is the
inductively degenerated common source (IDCS) amplifier in Figure 14.10. The advantage of this topology
is that it is able to provide high gain and a noiseless real impedance at the resonant frequency.

To explore the difficulty of obtaining sufficient gain at low bias currents in an IDCS amplifier, it is
helpful to write down the equation for its overall transconductance

G

m

:

FIGURE 14.10 Inductively degenerated common source amplifier.

RF IN

RF OUT

Lg

Ls

Lout

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-13

where Rs is the source impedance, ft is the transistor cutoff frequency, and fo is the operating frequency. It
can be observed that Gm is not dependent on the gm of the input device. Instead, it depends on the ratio
of the operating frequency to the cutoff frequency and the value of the source resistance. Because the
operating frequency and source resistance are set by system constraints, they are not available to the LNA
designer as design variables. Consequently, to increase Gm, it is necessary to increase the ft of the device.

Although it appears attractive that improved process technology (increased ft) will result in higher
gain, system-level integration considerations complicate the design. The problem results from the fact
that increases in ft will result in large values of Lg and very small values of Ls, both of which can pose
problems. The small value of Ls is problematic because it is sensitive to parasitic inductances, reducing
the accuracy of the input match impedance. The large value of Lg, where the size is determined by the
operating frequency, makes it difficult to implement on-chip in modern CMOS processes while still
maintaining a high-quality factor. Using an off-chip inductor also introduces a parasitic capacitance at
the input, which alters the resonant frequency and decreases the Gm. When biasing low-current RF
amplifiers to operate with a maximum ft, it is essential to include the effect of this capacitance since it
may be on the same order of magnitude as Cgs. Increasing the bias current allows for larger device
widths for the same ft, which makes the design less sensitive to parasitics and facilitate integration.

To achieve higher gains for a given bias current, it is necessary to deviate from traditional architectures.
One example of a current-reuse (stacked) topology is depected in Figure 14.11. The idea is to recycle the

FIGURE 14.11 Current-reuse topology.

G
f

f Rm
t

o S

≈

1

2

RF IN

RF OUT

BIAS

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14-14 Low-Power Processors and Systems on Chips

bias current so that it can be used by more than one stage. The circuit combines the inductive source
degeneration architecture analyzed previously with a common-source amplification stage [17,18]. The
gain is increased because the signal is coupled through a capacitor from the drain of the first stage to
the gate of the second, providing two stages of amplification. The capacitor at the source of the second
stage is made large so that it serves as an AC ground. A potential problem with this topology is the limited
headroom and output swing because two stages are stacked on top of each other. In addition, the parasitic
bottom plate capacitance of the coupling capacitor could reduce the achievable gain [19]. This topology
also consumes more area due to the addition of large passives. Nevertheless, this topology is better suited
for this design, and simulation has demonstrated that it is possible to achieve approximately 40 dB of
voltage gain at <1mW of power consumption.

An important function of the receiver input stage is to provide an input impedance match. The input
impedance of the IDCS amplifier is:

In this equation, the nonquasi static gate resistance is ignored [20]. This assumption is acceptable in
conventional LNA design, where the gm of the device is high enough such that rg,NQS is approximately a few
ohms, and input matching is not a problem. In low-power designs, however, gm values are small, and the
rg, NQS cannot be ignored making input matching a lot more complicated. The nonquasi static gate resistance
term adds directly to the preceding input impedance equation. Input matching is further complicated by
the parasitic capacitance of the bonding pad at the input, which alters the frequency at which an input
match is achieved, as well as the value of the real impedance. Due to the small device sizes used in low-
power design, this capacitance cannot be ignored; thus, accurate modeling of this parasitic is a necessity.

The noise figure of the IDCS amplifier is dominated by the drain noise and the induced gate noise of
the input transistor. Because the drain noise is proportional to gm, and the induced date noise is inversely
proportional to gm, an input transistor size would minimize the noise figure. In modern CMOS processes,
the ft is high enough that acceptable noise figures for low-power sensor networks can be obtained.

14.5.2 Envelope Detector

As discussed in Section 14.3, an envelope detector is a crucial component in a TRF architecture, and is
useful to detect the oscillation envelope in amplitude control loops and/or a super-regenerative detector.
The following CMOS envelope detector (see Figure 14.12) was found to be quite effective for its use in
these applications.

FIGURE 14.12 Simplified envelope detector schematic.

Z j L L
j C

g L

Cin s g
gs

m s

gs

()ω ω
ω

= +() + +1

Vbias

Vrf

Vout

M1

Vreplica

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-15

This circuit, which was previously used in bipolar applications, is well suited to CMOS implementa-
tions as well [21]. As depicted in the schematic, the single-ended circuit includes a replica half to produce
a reference output voltage. The output is pseudo-differential, and the transconductance of M1 and the
capacitive loading of the output determine the time constant. Translation of the RF-to-DC spectrum is
accomplished though the nonlinearity of M1. The fundamental and higher harmonics produced by this
nonlinearity are filtered, leaving only the DC term. Because the conversion gain of the RF-to-DC spectrum
is determined by the nonlinearity of the active devices, the CMOS transistors should be operated in the
subthreshold regime, resulting in very low bias currents (<1 µA). Additionally, the efficiency of the circuit
can be increased if transistor M1 and its replica are designed in a DTMOS configuration (gate connected
to body contact). This decreases the subthreshold slope to a value approaching 60 mV/decade, increasing
the conversion gain of the detector [22].

14.5.3 RF Oscillator

As mentioned in Section 14.2, recent advancements in RF MEMS offer the potential increase the per-
formance and decrease the power consumption of circuit blocks. The RF frequency synthesizer is an
example of a transceiver block that can be greatly influenced by the availability of these new technologies.
For example, the use of high-Q RF MEMS resonators can potentially create a very low-power, low-phase-
noise VCO for use in a traditional frequency synthesizer. Additionally, although current RF MEMS
resonators have poor fabrication tolerance compared with crystal resonators, they can be used to create
a RF frequency reference in open-loop mode, without the need for a frequency synthesizer. Although
the frequency stability would be worse than a traditional synthesizer, the power consumption and phase
noise potentials are very promising. The following is a design example of a 1.9-GHz RF reference using
the MEMS/CMOS codesign philosophies discussed in Section 14.2 [10].

The goals of the oscillator design were the following:

• Demonstrate the benefits of RF MEMS/CMOS codesign.
• Provide an ultra-low power, open-loop RF frequency reference without the need for a frequency

synthesizer.
• Implement the solution in a very small, reproducible form factor.

The MEMS components used in the design were Agilent thin film bulk acoustic wave (FBAR) reso-
nators [23]. Though typically used in the design of complex filter ladder networks for RF duplexers and
transmit filters, they were found to be very well suited for use in RF oscillators. Because it is possible to
customize the dimensions and properties of the MEMS resonator, accurate models are necessary to jointly
optimize the CMOS and MEMS components. (See Figure 14.2 for a simplified model of the RF MEMS
resonator.) A Pierce oscillator topology was used to provide low-phase-noise and low power consumption.
Figure 14.13 is a simplified schematic of the oscillator core.

A complete model was developed, including the CMOS transistor models and the MEMS resonator models.
The design was optimized for minimum power consumption and a 100-mV output voltage swing. A custom
RF MEMS resonator chip and a 0.18-µm CMOS chip were fabricated. The system integration was accom-
plished using chip-on-board (CoB) technology. See Figure 14.14 for the completed oscillator subsystem.

As discussed in the preceding photograph, the system is easily bonded together with standard CoB
technology, resulting in a very small form factor. The oscillator consumes 300 µA from a 1-V supply,
and the 100-mV output swing exhibits a phase noise of −120 dBc/Hz at a 100-kHz offset. The phase
noise and frequency stability is much better than an integrated LC oscillator, making the oscillator suitable
as an RF frequency reference in low-power, low-datarate transceivers. In addition, the start-up time of
this frequency reference is approximately 1 µs, providing a very fast turn-on time for the transceiver.

14.5.4 Nonlinear Power Amplifiers

One of the key factors determining the efficiency of the transmitter during transmission is the efficiency
of the power amplifier (PA). Power amplifiers can be classified as linear PAs (Class A or AB) or nonlinear

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14-16 Low-Power Processors and Systems on Chips

PAs (Class C, D, E, or F) [24]. Fully integrated CMOS linear PAs generally suffer from lower efficiency
(30 to 40%) as compared with their nonlinear counterparts (40 to 50%) [25]. Thus, linear PAs are
generally not suitable for wireless sensor networks. This is evident by considering, as an example, the
goal of achieving a global 36% transmitter efficiency (see Section 14.4). If all the transmitter circuits
excluding the PA consume 20% of the transmitter power, the efficiency of the PA must be 45%. This
exceeds the typical achievable efficiency of fully integrated CMOS linear PAs and is only achievable by
nonlinear PAs.

One possible implementation is the Class C PA depicted in Figure 14.15, in which the transistor
operates as a current source modulated by the input signal. The high-Q tank filters out the harmonics
and ensures that the transmitted signal is sinusoidal. High efficiency is obtained by reducing the con-
duction angle (< 180°) to minimize the product of the drain current and drain voltage; however,
decreasing the conduction angle also reduces the output power for a given input drive amplitude.

FIGURE 14.13 Simplified oscillator schematic.

FIGURE 14.14 RF MEMS/CMOS chip-on-board implementation.

Vout

FBAR

()

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-17

Using a switching PA, in which the transistor operates as a switch, can alleviate the strong dependence
of efficiency on output power. Ideally, the voltage across the switch is zero when the switch is on and the
current is zero when the switch is off. This results in zero power dissipation in the switch and thus higher
efficiency. An example is the Class E PA depicted in Figure 14.16. The values of the components L1, Ls,
and Cs are chosen such that

and

where ton represents the time at which the switch closes, and Vx is the voltage across the switch. C0 and
L0 operate as a high Q filter to ensure that the output is sinusoidal.

In addition to the choice of the amplifier topology, some other factors can help to improve the power
efficiency of the power amplifier and the transmitter as a whole:

1. Oscillator/PA Driver/PA codesign. The transistor in a nonlinear PA is usually much larger than
the one in its linear counterparts. This means that the driver power is significant, especially if the

FIGURE 14.15 Class C amplifier. Inset depicts the drain voltage and drain current waveforms.

FIGURE 14.16 An example of a Class E power amplifier. Inset depicts the drain voltage waveform.

C0

C1
L1

L0 RL

Vo

Vdd

Vds

lds

Vds

Vin
M1

L1

Vdd

Vx

ton

Vx

C0 L0 Ls
Vo

Vin
M1

RLCS

0 T
t

 v tx on() = 0

dv
x

dt
t t on=

= 0

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14-18 Low-Power Processors and Systems on Chips

overall transmitted power is low. For example, if the oscillator output voltage is 160 mV zero to
peak and a drive voltage of 800 mV is desired, the driver stage has to provide a gain of 5. For a
gm/Id of 20 V–1 and an output resistance of 800 Ω, the driver stage will need 313 µW of power with
a 1-V supply. To reduce this overhead, it is necessary to design the oscillator, the PA and the PA
driver together for overall optimal efficiency. By increasing the drive power of the oscillator, for
instance, it is possible to eliminate the driver stage altogether, resulting in lower overall transmitter
power consumption.

2. Use of RF MEMS devices. The lack of on-chip high Q passive inductors is detrimental to the
efficiency of the transmitter. To reduce losses, high-Q MEMS devices can be employed, for instance,
to replace the LC tank in the Class C PA.

3. Power control. The transmitted power of the power amplifier can be reduced when transmitting
to nearer sensor nodes. This not only preserves the scavenged energy but also reduces interference
with other sensor nodes. The transmitter has to be designed to operate at optimal efficiency at
various levels of radiated power.

4. Minimize the overhead turn-on time. The turn-on time of the entire transmitter is limited by the
turn-on time of the high-Q local oscillator. During the turn-on time, no data can be transmitted
and all energy expended is considered as overhead. To reduce this overhead, the PA can be switched
on after a delay to minimize its idle time.

With the incorporation of these low-power design techniques, a nonlinear power amplifier with an
efficiency of 50% is achievable. With a 20% overhead power for the oscillator and driver, the entire
transmitter can operate with an on-state efficiency of 42%, meeting all the requirements discussed earlier.

14.5.5 On-Chip References and Bias Circuits

This section describes bias generation considerations for low-power transceivers for sensor node appli-
cations. This application presents interesting issues, partly due to the sub-threshold operation of most
of the transistors present in the transceiver, which is primarily dictated by gm/Id efficiency considerations.
First, it should be noted that, due to indoor operation and extremely low-power consumption (which
eliminates the possibility of circuitry self-heating), the dynamic temperature behavior of the system does
not impose aggressive specifications on the design. This allows the circuit design to be carried out at a
nominal temperature of approximately 27°C, and successive translation of performance metrics at this
temperature into lower bounds for performance metrics over the whole temperature range. The high
sensitivity of the aforementioned transceiver architectures to both gain and oscillator startup time result
in the need to stabilize device transconductance (gm) over temperature.

In this scenario, a PTAT current source can be proven to be the optimal solution both for stability
and from a power consumption perspective, as it draws from the supply only the amount of current
needed to ensure gm(t) = gm,initial over the entire temperature range. With a nonadaptive biasing technique,
the required constant bias current would be determined by the gm necessary at the worst-case temperature,
thus increasing the average power consumption.

From an implementation perspective, a PTAT current source leaves little freedom to the designer: a
current mirror, a low thermal coefficient resistor, and a translinear loop, usually implemented with
subthreshold devices, are needed. Cascode implementation of the PMOS current mirror (see Figure
14.17) enhances the power supply rejection ratio and suppresses channel length modulation effects, but
may be prohibitive if very low supply voltages are used.

Current levels in the mirror should be made as low as possible in order to minimize bias chain current
consumption overhead; however, matching considerations limit the practical efficiency for a cascade
mirror. For example, assuming an output current of 1 mA and an allowed 3-σ variation of 5% for gm,
matching analysis demonstrates that a mirror current (Io) of 100 µA is reasonable (~85% efficiency), and
requires an area of 1000 µm2 for the bias circuitry. Mirror offset is temperature-dependent, and thus
does not simply result in a constant offset for performance metrics, but instead in a distortion of

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-19

performance metrics over temperature. If a mirror current (Io) of 10 µA was used to increase the efficiency
(~98% efficiency), and the same matching criteria were used, the required die area would increase to
10,000 µm2, which is not acceptable. An implementation of the mirror based on a simple PMOS pair
(see Figure 14.17) would achieve poorer power supply rejection ratio (PSRR) and output impedance,
but better performance with respect to matching for given area budget thanks to strong inversion mirror
operation. Thus, multiple trade-offs exist in the design of ultra-low power biasing circuits, including area
budget, parameter stabilization performance, supply insensitivity, and power efficiency.

14.6 System Integration

The packaging and physical integration strategy of the transceiver is crucial as it dramatically affects the
performance, cost, and form-factor of the completed system. The number and size of the components
and the assembly technology determine the size of the node. As mentioned previously, careful architec-
tural decisions can help to minimize the part-count. Some components that deserve special attention
are the antenna and the energy-supply chain.

As previously stated, using a relatively high carrier frequency can minimize the antenna size. Three
main parameters that determine the type of antenna suitable for wireless sensor network are the radiation
pattern, size, and bandwidth. As the deployment pattern of the sensor nodes is random, an omni-
directional radiation pattern is desired. The form factor of the antenna should be small and allow for
easy integration onto a PCB. The bandwidth of the antenna should be large enough to accommodate all
channels. Given those considerations, commercially available chip-antennas (using ceramic dielectrics)
are good candidates. These antennas have radiation patterns similar to a dipole and measure only about
30 mm by 5 mm. This allows for easy integration with the radio on a printed circuit board (PCB).

The energy-scavenging and the energy-storage (battery or capacitance) devices are the most volume-
consuming components of the completed node. As listed in Table 14.1, their respective volumes are

FIGURE 14.17 PTAT current reference schematic.

R

M1

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14-20 Low-Power Processors and Systems on Chips

directly proportional to the average and peak power dissipation levels of the node. Thus, decreasing the
power dissipation of the transceiver — the most power-hungry component of the sensor node ultimately
results in a linear decrease in the node size.

These guidelines are best illustrated with the aid of an implementation example, which also serves to
demonstrate how the techniques introduced in this chapter effectively lead to ultra-low power and small
size. Figure 14.18 is a photograph of a completed 1.9-GHz transmit beacon [26].

This system contains an ultra-low power 1.9-GHz transmitter, a 1.9-GHz chip antenna, a solar panel,
an energy storage capacitor, and voltage regulation circuitry. Due to the high carrier frequency used, the
chip antenna is very small and takes up little board space. It is mounted on the back of the board. Also
on the back of the board is a small solar cell, which is able to provide all the energy necessary for
transmitter operation. Figure 14.19 is a conceptual diagram of the transmit beacon power train.

The power train consists of a solar cell, an energy storage capacitor, shutdown control logic, and a
linear voltage regulator, which supplies the RF circuitry with a stable 1.2-V supply. The transmitter is
fully integrated, requiring only one MEMS resonator. It delivers 0 dBm (1 mW) to the 50-Ω chip antenna.
The transmitter is mounted using a chip-on-board technology, and consumes minimal board space. See
Figure 14.20 for a photograph of the transmitter circuitry.

As pictured in Figure 14.20, the transmitter requires no crystals or external inductors, and takes up
approximately 2 mm × 3 mm of board space. The transmitter can operate from an approximately 1%
duty cycle in low light conditions to 100% duty cycle in sunlight. Figure 14.21 depicts pertinent waveforms
during the operation of the transmit beacon.

The top waveform is the voltage on the storage capacitor. Once the voltage regulator is enabled (bottom
waveform), the RF transmitter turns on (middle waveform). During transmission, the energy in the
storage capacitor is dissipated, and the voltage on the storage capacitor decreases. Once the energy on
the storage capacitor is depleted, the transmitter is disabled and the charge process starts again. The
board will operate indefinitely with no batteries or power supplies.

FIGURE 14.18 Photograph of the completed transmit beacon.

FIGURE 14.19 Transmit beacon powertrain.

Solar Cell Voltage
regulator

EnableShutdown
control V

ou
tCst

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-21

14.7 Conclusion

Functional and cost-effective ad hoc sensor networks will only reach ubiquity once the problem of ultra-
low-power RF communication is solved. This chapter has discussed the design considerations for achiev-
ing ultra-low power and ultra-high integration in transceivers for wireless sensor networks. The concept
of CMOS/RF MEMS codesign was introduced as a powerful tool in the successful implementation of
these systems. Various transmitter and receiver architectures were analyzed for their applicability to this
problem. Low-power design techniques were provided for the implementation of the essential RF mod-
ules. Finally, system-level considerations were discussed, including packaging and antennas.

It is the authors’ conviction that the field of ultra-low power RF design is only in its infancy, and that
exciting new approaches will continue to emerge in the coming years. With this chapter, we hope to have
at least provided a glimpse into the myriad of potential solutions and to have projected some of the
limiting bounds and constraints.

14.8 Acknowledgments

The authors thank Agilent Technologies for the resonator fabrication and ST Microelectronics for the
CMOS fabrication. The generous support of DARPA (under the PACC and the IMT programs) is
gratefully acknowledged.

FIGURE 14.20 Transmitter CMOS/MEMS circuitry and antenna feed.

FIGURE 14.21 Transmit beacon ouput waveforms.

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

14-22 Low-Power Processors and Systems on Chips

References

[1] J. Rabaey et al., PicoRadio supports ad hoc ultra-low power wireless networking, IEEE Comput.,
Vol. 33, No. 7, pp. 42–48, July 2000.

[2] F. Boekhorst, Ambient intelligence: the next paradigm for consumer electronics, Proc. IEEE ISSCC
2002, San Francisco, CA, February 2002.

[3] S. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity
conversion, Ph.D. thesis, University of California–Berkeley, May 2003.

[4] L. Zhou, J.M. Kahn, and K.S.J. Pister, Corner-cube retroreflectors based on structure-assisted
assembly for free-space optical communication, IEEE J. Microelectromechanical Syst., Vol. 12, pp.
233–242, June 2003.

[5] E.A. Lin, A. Wolitz, and J. Rabaey, Power efficiency analysis of two rendezvous schemes for dense
wireless sensor networks, IEEE Int. Conf. on Commn., June 2004.

[6] R. Ruby, P. Bradley, J. Larson III, Y. Oshmyansky, and D. Figueredo, Ultra-miniature high-Q filters
and duplexers using FBAR technology, IEEE ISSCC Dig. Tech. Papers, pp. 120–121, February 2001.

[7] B. Bircumshaw, G. Liu, H. Takeuchi, T.-J. King, R. Howe, O. O’Reilly, and A. Pisano, The radial
bulk annular resonator: towards a 50-Ohm RF MEMS filter, Tech. Dig., 12th Int. Conf. on Solid-
State Sensors, Actuators, and Microsystems, Boston, MA, pp. 875–878, June 8–12, 2003.

[8] K.M. Lakin, Thin-film resonators and high-frequency filters, http://www.tfrtech.com, retrieved
June 2001.

[9] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan, PicoRadios for wireless
sensor networks: the next challenge in ultra-low power design, IEEE ISSCC Dig. Tech. Papers, pp.
200–201, February 2002.

[10] B. Otis and J. Rabaey. A 300-µW 1.9-GHz CMOS oscillator utilizing micromachined resonators,
IEEE J. Solid-State Circuits, Vol. 38, pp. 1271–1274, July 2003.

[11] A.-S. Porret, T. Melly, D. Python, C.C. Enz, and E.A. Vittoz, An ultralow-power UHF transceiver
integrated in a standard digital CMOS process: architecture and receiver, IEEE J. Solid-State Circuits,
Vol. 36, pp. 452–466, March 2001.

[12] S. Sheng and R. Brodersen, Low-power CMOS wireless communications, Kluwer, Dordrecht, 1998.
[13] J.S. Smith, High-density, low-parasitic direct integration by fluidic self-assembly (FSA), Dig. IEEE

Int. Electron. Devices Meeting, pp. 201–204, Piscataway, NJ, 2000.
[14] C. van den Bos and C. Verhoeven, Architecture of a reconfigurable radio receiver front-end using

overall feedback, Proc. ProRISC, The Netherlands, November 2001.
[15] J.R. Whitehead, Super-Regenerative Receivers, Cambridge University Press, U.K., 1950.
[16] B. Razavi, RF transmitter architectures and circuits, custom integrated circuits, 1999. Proc. IEEE

1999, May 16–19, 1999, pp. 197–204, San Diego, CA.
[17] A.R. Shahani, D.K. Shaeffer, and T.H. Lee, A 12-mW wide dynamic range CMOS front end for

portable GPS receivers, ISSCC Dig. Tech. Papers, pp. 368–369, San Francisco, CA, February 1997.
[18] Triquint Semiconductor, TQ9203, low-current RF IC downconverter, Wireless Communication

Products, 1995.
[19] B. Razavi, RF Microelectronics, Prentice Hall, Upper Saddle River, NJ, p. 180, 1998.
[20] Y. Tsividis, The Operation and Modeling of the MOS Transistor, McGraw-Hill, New York, 1999.
[21] R.G. Meyer, Low-power monolithic RF peak detector analysis, IEEE J. Solid-State Circuits, Vol. 30,

No. 1, January 1995.
[22] F. Assaderaghi, D. Sinitsky, S. Parke, J. Bokor, P. Ko, and C. Hu, Dynamic threshold-voltage

MOSFET (DTMOS) for ultra-low voltage VLSI, IEEE Trans. on Elec. Devices, Vol. 44, No. 3, March
1997.

[23] R. Ruby, Micromachined cellular filters, IEEE MTT-S Int. Microwave Symp. Dig., pp. 1149–1152,
June 1996.

6700_book.fm Page 22 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.tfrtech.com

Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks 14-23

[24] F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O.
Sokal, Power amplifiers and transmitters for RF and microwave, IEEE Trans. Microwave Theory
and Techniques, Vol. 50, No. 3, pp. 814–826, March 2002.

[25] R. Gupta and D.J. Allstot, Fully monolithic CMOS RF power amplifiers: recent advances, IEEE
Commn. Mag., Vol. 37, No. 4, pp. 94–98, April 1999.

[26] S. Roundy, B. Otis, Y.H. Chee, J. Rabaey, and P. Wright, A 1.9-GHz RF transmit beacon using
environmentally scavenged energy, Dig. IEEE Int. Symp. on Low-Power Elec. and Devices, Seoul,
Korea, 2003.

6700_book.fm Page 23 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-1

15

Power-Aware
On-Demand Routing

Protocols for Mobile Ad

Hoc Networks

15.1 Introduction ..

15-

1
15.2 MANET Routing Protocols ..

15-

2

Proactive (Table-Driven) Routing Protocols • Reactive
(On-Demand) Protocols • Hybrid Routing Protocols

15.3 Low-Power Routing Protocols..

15-

5

Minimum Power Routing • Battery-Cost Lifetime-Aware
Routing • Energy-Conserving Techniques for Multi-Hop Ad
Hoc Networks • Energy-Aware Multicast Routing Algorithms

15.4 Power-Aware Source Routing...

15-

15

Cost Function • Route Discovery • Route Maintenance

15.5 Lifetime Prediction Routing...

15-

17

Basic Mechanism • Route Discovery • Route Expiration

15.6 Quantitative Evaluation of Source Routing
Algorithms ...

15-

21

Simulation Setup • Simulation Results

15.7 Conclusion...

15-

26
References ...

15-

26

15.1 Introduction

Wireless mobile networks may be classified into two general categories:

1. Infrastructure-Based Networks. Wireless networks often extend, instead of replace, wired net-
works, and are referred to as infrastructure networks. A hierarchy of wide area and local area wired
networks (WANs and LANs, respectively

)

 is used as the backbone network. The wired backbone
connects to special switching nodes called base stations. They are responsible for coordinating
access to one or more transmission channel(s) for mobiles located within their coverage area. The
end user nodes communicate via the base station using their respective wireless interfaces. Wireless
LANs and WANs are a good example of this type.

2. Mobile Ad Hoc Networks (MANETs).

A MANET is composed of a group of mobile wireless nodes
that form a network independently of any centralized administration, while forwarding packets
to each other in a multi-hop manner. Because the mobile devices are battery-powered, extending
the network lifetime has become an important objective. Researchers and practitioners have
focused on power-aware design of network protocols for the ad hoc networking environment.

Morteza Maleki
Massoud Pedram

University of Southern
California—Los Angeles

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-2

Low-Power Processors and Systems on Chips

Because each mobile node in a MANET performs the routing functions for establishing commu-
nication among different nodes, the “death” of even a few nodes, due to energy exhaustion, might
cause the disruption of service in the entire network. The focus of this chapter is survey and design
of power-aware unicast and multicast routing protocols and algorithms for wireless ad hoc net-
works with special attention to MANETs.

Metrics used by conventional routing protocols for the wired Internet, which is oblivious to an energy
budget, typically do not need to consider any energy-related parameters. Thus, routing information
protocol (RIP) [1] uses hop count as the sole route quality metric, thereby, selecting minimum-hop paths
between the source and destinations. Open shortest path first (OSPF) [2], on the other hand, supports
additional link metrics such as available bandwidth and link propagation delay

.

 These algorithms, how-
ever, may result in a rapid depletion of the battery energy in the nodes along the most heavily used paths
in the network. Routing protocols for wireless ad hoc environments contain special features to reduce
the signaling overheads and convergence problems caused by node mobility and potential link failures.
While these protocols do not necessarily compute the absolute minimum-cost path, they aim at selecting
paths that have lower cost (in terms of metrics, such as hop count or delay). Such protocols must be
modified to yield energy-efficient routing solutions.

A large number of researchers have addressed the problem of energy-efficient data transfer in the context
of multi-hop wireless networks. Existing protocols may be classified into two distinct categories. One
category of protocols is based on minimum-power routing algorithms, which focus on minimizing the
power requirements over end-to-end paths. A typical protocol in this category selects a routing path from
a source to some destination to minimize the total energy consumption for transmitting a fixed number
of packets over that path. Each link cost is set to the energy required for transmitting one packet of data
across that link and Dijkstra’s shortest path algorithm is used to find the path with the minimum total
energy consumption. These protocols traditionally ignore the power dissipated on the receiver side in a
node, and therefore, tend to result in routing paths with a large number of short hops. A key disadvantage
of these protocols is that they repeatedly select the least-power cost routes between source-destination
pairs. As a result, nodes along these least-power cost routes tend to “die” soon by rapidly exhausting their
battery energy. This is doubly harmful because the nodes that die early are precisely the ones that are most
needed to maintain the network connectivity (and thus increase the useful service life of the network.)

A second category of protocols is based on routing algorithms that attempt to increase the network
lifetime

by attempting to distribute the forwarding load over multiple different paths. This distribution
is performed by either intelligently reducing the set of nodes needed to perform the forwarding duties,
thereby, allowing a subset of nodes to sleep over different periods of time, or by using heuristics that
consider the residual battery power at different nodes and route around nodes that have a low level of
remaining battery energy. In this way, they balance the traffic load inside the MANET to increase the
battery lifetime of the nodes and the overall useful life of an ad hoc network. These protocols indeed
constitute state-of-the-art power-aware network routing protocols and are the focus of this chapter.

This chapter is organized as follows. Section 15.2 gives a brief classification of the broad domain of
ad hoc routing protocols. Section 15.3 gives a brief literature review of research in power-aware ad hoc
routing protocols. Section 15.4 describes the rationale and details of the power-aware source routing
(PSR) algorithm, and likewise, Section 15.5 describes the rationale and details of the proposed lifetime
prediction routing (LPR) algorithm. Section 15.6 contains the experimental results comparing PSR and
LPR with other popular ad hoc routing techniques.

15.2 MANET Routing Protocols

Routing protocols in ad hoc networks may be classified into three groups:

1. Proactive (table-driven)
2. Reactive (on-demand)
3. Hybrid

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks

15

-3

15.2.1 Proactive (Table-Driven) Routing Protocols

These routing protocols are similar to and come as a natural extension of those for the wired networks.
In proactive routing, each node has one or more tables that contain the latest information of the routes
to any node in the network. Each row has the next hop for reaching to a node/subnet and the cost of
this route. Various table-driven protocols differ in the way the information about change in topology is
propagated through all nodes in the network.

The two kinds of table updating in proactive protocols are the periodic update and the triggered update
[3]. In periodic update, each node periodically broadcasts its table in the network. Each node just arriving
in the network receives that table. In triggered update, as soon as a node detects a change in its neigh-
borhood, it broadcasts entries in its routing table that have changed as a result. Examples of this class of
ad hoc routing protocols are the destination-sequenced distance-vector (DSDV) [4] and the wireless
routing protocol (WRP) [5]. Proactive routing tends to waste bandwidth and power in the network
because of the need to broadcast the routing tables/updates. Furthermore, as the number of nodes in the
MANET increases, the size of the table will increase; this can become a problem in and of itself.

DSDV, which is known not to be suitable for large dense networks, was described in Perkins [3]. A
route table at each node enumerates all available destinations and the corresponding hop-count from
the node. Each route table entry is tagged with a sequence number, which is created by a destination
node. To maintain consistency of the route tables in a dynamically changing network topology, each node
transmits table updates either periodically (periodic update) or when new, significant information is
available (triggered update). Routing information is advertised by broadcasting or multicasting. The
packets are transmitted periodically and incrementally as topological changes are detected. Topological
changes include movement of a node from place to place or the disappearance of the node from the
network. Information about the time interval between arrival of the very first routing solution and the
arrival of the best routing solution for each particular destination is also maintained. Based on this
information, a decision may be made to delay advertising routes that are about to change, thus, reducing
fluctuations in the route tables. The advertisement of possible unstable routes is delayed to reduce the
number of rebroadcasts of possible route entries that normally arrive with the same sequence number.

15.2.2 Reactive (On-Demand) Protocols

Reactive routing protocols take a lazy approach to routing. They do not maintain or constantly update
their route tables with the latest route topology. Instead, when a source node wants to transmit a message,
it floods a query into the network to discover the route to the destination. This discovery packet is called
the route request

(

RREQ

)

packet and the mechanism is called route discovery. The destination replies
with a route reply

(

RREP

) packet. As a result, the source dynamically finds the route to the destination.
The discovered route is maintained until the destination node becomes inaccessible or until the route is
no longer desired.

The protocols in this class differ in handling cache routes and in the way route discoveries and route
replies are handled. Reactive protocols are generally considered efficient when the route discovery is
employed rather infrequently in comparison to the data transfer. Although the network topology changes
dynamically, the network traffic caused by the route discovery step is low compared to the total com-
munication bandwidth. Examples of reactive routing protocols are the dynamic source routing (DSR)
[3,6], the ad hoc on-demand distance vector routing (AODV) [7] and the temporally ordered routing
algorithm (TORA) [35]. The proposed power-aware routing algorithms belong to this category of routing
algorithms. Because our approach is an enhancement over DSR, a brief description of DSR is warranted.

DSR, which is one of the widely accepted reactive routing protocols, is entirely on demand with no
periodic activity of any kind at any level within the network. This pure on-demand behavior allows the
number of routing discovery packets for a set of communication patterns to scale to zero when all nodes
are approximately stationary. This is because if nodes are not moving about, all the routes employed by
the current set of communication patterns will be discovered and will remain unchanged until the
communications are completed. As nodes begin to travel or as communication patterns change, the

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-4

Low-Power Processors and Systems on Chips

routing packet overhead of the DSR automatically scales only to that which is needed to track the routes
currently in use.

In DSR when a node wishes to establish a route, it issues a RREQ to all of its neighbors. Each neighbor
broadcasts this RREQ, adding its own address in the header of the packet. When the RREQ is received
by the destination or by a node with a route to the destination, a RREP is generated and sent back to
the sender along with the addresses accumulated in the RREQ header. The responsibility to assess the
status of a route falls to each node in the route. Each node must ensure that packets successfully cross
the link to the next node. If the start node does not receive an acknowledgement from the end node of
a link on the path, it reports the error back to the source node and leaves it to the source to find and
establish a new route. Because this process may consume a lot of bandwidth, DSR provides each node
with a route cache to be used aggressively to reduce the number of control messages that must be sent.
If a node has a cache entry for the destination when a route request for that destination is received at
the node, it will use the cached copy instead of forwarding the request in the network. In addition, it
promiscuously listens to other control messages (RREQs and RREPs) for additional routing data to add
to its cache. DSR has the advantage in that no routing tables need to be maintained to route a given
packet because the entire route is contained in the packet header; however, tables are used to cache routes
and enhance performance. The caching of any initiated or overheard routing data can significantly reduce
the number of control messages being sent, thus drastically reducing the overhead.

The disadvantages of DSR are twofold. DSR is not scalable to large networks. The

Internet Draft

acknowledges that the protocol assumes the diameter of the network is no greater than 10 hops. Addi-
tionally, DSR requires significantly more process resources than most other protocols. To obtain routing
information, each node must spend much more time processing any control data it receives, even if that
node is not the intended recipient. This is the ability of many network interfaces, to operate the network
interface in “promiscuous” receive mode, including most current LAN hardware for broadcast media such
as wireless. This mode causes the hardware to deliver every received packet to the network driver software
without filtering, based on link-layer destination address. The promiscuous mode increases bandwidth
utilization of DSR by reducing the number of control messages being sent out, though the use of
promiscuous modes may increase the power consumption of the network interface hardware. Depending
on the design of the receiver hardware, and in such cases, DSR can easily be used without the optimizations
that depend on the promiscuous receive mode, or can be programmed to only, periodically switch the
interface into promiscuous mode. Use of promiscuous receive modes is optional in DSR.

15.2.3 Hybrid Routing Protocols

Both the proactive and reactive protocols work well for networks with a small number of nodes. As the
number of nodes increases, hybrid reactive/proactive protocols are used to achieve higher performance.
Hybrid protocols attempt to assimilate the advantages of purely proactive and reactive protocols. The
key idea is to use a reactive routing procedure at the global network level while employing a proactive
routing procedure in a node’s local neighborhood.

Zone routing protocol (ZRP) [3] is an example of the hybrid routing protocols. In ZRP, every node
has a zone around itself, which includes nodes that are

R

hops away from that node.

R

is called the zone
radius

.

 ZRP limits the scope of proactive procedure to each node’s zone. In this way, ZRP reduces the
cost of frequent updates in response to continuously changing network topology by limiting the scope
of the updates to the neighborhood of the change. The ZRP route discovery operates as follows. When
a source node wants to find a route, it first checks whether the destination is within its zone. If so, the
path to the destination is fetched from its table and no further route discovery is required. If the
destination is not within the source routing zone, the source broadcasts a route request to its peripheral
nodes, which are nodes in the border of the node’s zone. The peripheral nodes execute the same algorithm
— checking whether the destination is within their zone. If so, a route reply is sent back to the source
indicating the route to the destination. If not, peripheral nodes forward the route request to their
peripheral nodes, which execute the same procedure.

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks

15

-5

15.3 Low-Power Routing Protocols

The focus of research on routing protocols in MANETs has been the network performance. A handful
of studies on power-aware routing protocols for MANETs have been conducted. Presented next is a review
of some of them.

15.3.1 Minimum Power Routing

Singh et al. [8] proposed a routing algorithm based on minimizing the amount of power (or energy per
bit) required to get a packet from source to destination. More precisely, the problem is stated as:

(15.1)

where

T

ij

 denotes the power expended for transmitting and receiving between two consecutive nodes

i

and

j

 (aka cost of link (

i,j

)) in route

π

.
This link cost can be defined for two cases:

1. When the transmit power is fixed.
2. When the transmit power is varied dynamically as a function of the distance between the trans-

mitter and intended receiver. Each node chooses the transmission power level for a link so that
the signal reaches the receiver node with the same constant received power. To achieve this, clearly,
links with larger distances require a higher transmission power than links with smaller distances.

For the first case, all the nodes in the network use a fixed power for all transmissions, which is
independent of the link distance. Because the power cost of transmitting and receiving is fixed, then the
link cost is fixed and consequently Equation (15.1) results in selecting a path with a minimum number
of hops. In fact, assuming lossless links, a path with the minimum number of hops has a minimum
number of transmissions and when the transmit power is fixed, then that path will also result in the least
total power dissipation [9].

Generally, for a network with 802.11b as media access control (MAC) layer, energy consumption of
each operation (i.e., receive, unicast transmit, broadcast, and discard) on a packet is given by Freeney
and Nilsson [10]:

(15.2)

where

b

 and

c

 are the appropriate coefficients for each operation. Coefficient b denotes the packet size-
dependent energy consumption that depends on distance, wireless channel conditions and so on, whereas

c

 is a fixed cost that accounts for acquiring the channel and for MAC layer control negotiation.
The link cost is the sum of all the costs incurred by the source and destination nodes. Traffic is classified

as broadcast and unicast (i.e., point-to-point).
For unicast traffic, when receivers are in nonpromiscuous mode operation, the energy cost of the link

between sender and receiver may be calculated as follows:

(15.3)

where

S

 and

D

 denote the sender and destination of the unicast packet.
In 802.11b, before sending a unicast packet, the source broadcasts a request-to-send (RTS) control

message, specifying a destination and data packet size (duration of transmission). The destination
responds with a clear-to-send (CTS) message. If the source does not receive the CTS, it may retransmit
the RTS message. Upon receiving the CTS, the source sends the DATA and awaits an acknowledge (ACK)

Min Tij

i j
π

π(,)∈
∑

 E packet b packet size c() _= × +

T E unicast packet E unicast packetSD S send D recv= +_ _(_) (_)

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-6

Low-Power Processors and Systems on Chips

from the receiver. For unicast traffic with nonpromiscuous mode operations, the energy cost for all
nondestination nodes that can hear the packets is nearly zero because nondestination nodes only consume
energy to receive the RTS packet. After this step, they will be discarding packets or even turning off their
receivers during the ongoing transaction.

For unicast traffic when receivers are in promiscuous mode operation, the link cost between the sender
and destination pair may be calculated as follows:

(15.4)

where

R

s

 denotes the set of all nodes that can hear source

S

, which obviously includes destination

D.

Notice that

T

S,D

 represents an extended link cost. It accounts for the receiver energy cost of the neighboring
nodes of the source that can hear the packets sent from the source to the intended destination

.

 According
to this link cost function, assuming that all candidate paths have same hop-count, the “best” paths are
those that traverse sparse areas of the network where the node density is low.

For broadcast traffic, the sender listens briefly to the channel and sends data if the channel is free. If
the channel is busy, the sender waits and retries later. The broadcast cost may be calculated as follows:

(15.5)

This is not a link cost. Instead, it is a node cost which is assigned to sender(s) of broadcast packets.
Broadcast and multicast routing algorithms may make use of this node cost to construct power-aware
broadcast or multicast routing trees. These categories of routing algorithms will be explained later in
this chapter.

The question of how to make use of the variable transmission power level is more involved. Stojmenovic
and Lin [11] propose a local routing algorithm for this case. The authors assume that the power needed
for transmission and reception is a linear function of

d

αααα

 where

d

 is the distance between the two
neighboring nodes and

α

 is a parameter that depends on the physical environment. The authors make
use of the global positioning system (GPS)

information to transmit packets with the minimum required
transmit energy. The key requirement of this technique is that nodes in the MANET know the relative
positions of themselves as well as all other nodes; however, this information may not be readily available.
In addition, the GPS-based routing algorithm has two drawbacks. One is that the GPS cannot provide
useful information about the physical environment (blockages and dynamics of wireless channels) to the
nodes. The second weakness is that the power dissipation of the GPS is an additional power draw on the
battery source of the mobile node.

Heinzelman et al. [12] proposed a minimum transmission energy (MTE) multi-hop routing algorithm
for wireless sensor networks. Assuming a first-order radio model for a wireless sensor node and assuming

d

n

energy loss due to channel transmission where

n

 is between 2 and 4, the article uses the following
equations for calculating energy, sending and receiving

k

 bit data over a distance

 d

:

 (15.6)

where

E

tx_elezc

and

E

rx_elezc

are energy dissipated in the transmitter and receiver electronics, and

E

amp

 is energy
dissipated in the transmit amplifier. If nodes A and B are separated by distance

D

 (as depicted in Figure
15.1), then MTE calculates the optimum number of relaying nodes,

K

opt

,

 that is required to send data
from A to B with minimum transmission energy as follows:

T E unicast packet E unicast packetSD S send r recv

r Rs

= +
∈

∑_ _(_) (_)

T E broadcast packet E broadcast packetS S send r recv

r RS

= +
∈

∑_ _(_) (_)

E k d E k E k d

E k E

Tx tx elec amp
n

Rx rx ele

(,) * * *

()

_

_

= +

= cc k*

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks

15

-7

 or (15.7)

where distance

d

char

, called the characteristic distance, is independent of

D

 and is calculated as:

(15.8)

15.3.2 Battery-Cost Lifetime-Aware Routing

The main disadvantage of the problem formulation of Equation (15.1) is that it always selects the least-
power cost routes. As a result, nodes along these least-power cost routes tend to “die” soon by rapidly
exhausting their battery energy. This is doubly harmful because the nodes that die early are precisely the
ones that are most needed to maintain the network connectivity (and thus increase the useful service
life of the network.) Therefore, it may be more advantageous to use a higher power cost route if this
routing solution avoids using nodes that have low remaining battery energy. This observation has given
rise to a number of “battery-cost lifetime-aware routing” algorithms as described next.

The min-sum battery cost routing algorithm [13] minimizes the total cost of the route. More precisely,
this algorithm minimizes a summation of the inverse of remaining battery capacities for all nodes on
the routing path. One drawback of this algorithm is that it may select a rather short path containing
mostly nodes with high remaining battery capacity but also a few nodes with low remaining battery
capacity. The cost of such a routing solution may be lower than that of a path with a large number of
nodes all having medium level of remaining battery capacity. The former routing solution, however, is
generally less desirable from the network longevity point of view because such a path will become
disconnected as soon as the very first node on that path dies.

The min-max battery cost routing algorithm is a modification of the minimum battery cost routing
to address the previously mentioned weakness. This algorithm attempts to select a route such that has
the cost of the most “expensive” link (i.e., one with the minimum remaining battery capacity) on that
path is minimum. Thereby, this algorithm results in a more balanced use of the battery capacity of the
nodes in the network. One drawback of this algorithm is that because there is no guarantee that paths
with the minimum hop-count or with the minimum total power are selected, it can select paths that
result in much higher power dissipation to send traffic from a source to destination nodes. This feature
does actually lead in shorter network lifetime because in essence the average energy consumption per
delivered packet of user data has been increased.

A conditional min-max battery cost routing algorithm was also proposed in Toh [13]. This algorithm,
which is a hybrid of the min-sum and the min-max battery cost routing algorithms, chooses the route
with minimal total transmission power if there exists at least one feasible routing solution where all nodes
in that route have remaining battery capacities higher than some prespecified threshold value. If there is
no such routing solution, however, then the min-max routing algorithm is employed to select a route.

Several experiments were reported in Toh [13] to evaluate the effect of different battery cost-aware
routing algorithms on the network lifetime. According to the reported results, the min-sum battery cost
routing exhibits superior results compared to the min-max battery cost routing in terms of the expiration

FIGURE 15.1

Relaying nodes are inserted between nodes A and B to reduce the energy of sending a packet from
A to B.

BA dchar

D

K
D

dopt
char

=

D

dchar

d
E E

n Echar

tx elec rx elec

amp

n=
+

−
()

()
_ _

1

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-8

Low-Power Processors and Systems on Chips

times of the nodes in the network. Conditional min-max routing demonstrated better or worse results
compared with the first two algorithms, depending on how the threshold value was chosen.

Maximum residual packet capacity (MRPC) was proposed in Misra and Banerjee [14]. MRPC is
conceptually similar to the conditional min-max battery cost routing; however, MRPC identifies the
capacity of a node not only by the residual battery capacity, but also by the expected energy spent in
reliably forwarding a packet over a specific link. In fact, the objective function of Equation (15.1) is for
a path with lossless links, however, for lossy links, the number of retransmissions in each link increases
in proportion to the packet error rate of that link. Misra and Banerjee [14] proposed to rewrite the
objective function of Equation (15.1) for reliable minimum total transmission power routing on lossy
links and ignoring power expended for receiving packets as follows:

(15.9)

where

e

ij

is the packet error rate of

link

(

i,j

) (assuming constant packet size) when the transmit power
level of the link is

ρ

ij

. Notice that Equation (15.9) is for the case of hop-by-hop retransmission where
sender of each individual link provides reliable forwarding to the next hop by using localized packet
retransmissions. Hop-by-hop retransmission may be contrasted to end-to-end retransmission where
individual links do not provide link-layer retransmissions, and error recovery is achieved only via
retransmissions initiated by the source node. For end-to-end retransmission, Equation (15.9) is modified
as follows [15]:

(15.10)

Several experiments are reported in Misra and Banerjee [14] to compare the routing method with
different battery cost routings and minimum total transmission power routings. According to these
results, although the first node dies sooner in the minimum total transmission power routings compared
to the battery-cost routing algorithms, the last node dies later in the first case compared to the second
case. MRPC, similar to other battery-cost routing algorithms, increases the expiration time of the first
node while the death rate of the nodes is as smooth as the minimum total transmission power routing.
Performance of MRPC, however, like that of the conditional min-max battery cost routing, depends on
a threshold value. This threshold value determines exactly when either the min-max battery cost routing
or the reliable minimum total transmission power is applied for route selection.

Chang and Tassiulas [16] describe a multi-path battery-cost routing algorithm to balance the energy
consumption of nodes in a static wireless ad hoc sensor network. The routing has been designed for a
network of stationary nodes whose task is to detect events inside a monitoring region. Nodes that detect
an event (so-called source nodes) send their measurement data to specific destination(s) (so-called
gateway) by using multi-hop routing. The article proposes a maximal residual energy path (MREP)
routing algorithm, which has a min-max or min-sum objective function for selecting paths where the
cost function for each link is as follows:

 (15.11)

where

C

ij

is the cost of link (

i,j

),

F

i

is the full-charge battery capacity of node

i

,

ρ

ij

 is transmit energy for
sending a bit from node

i

 to node

j

, and

λ

 is an augmentation step size. Chang and Tassiulas [16] also
propose a flow reduction (FR) algorithm. First, FR finds all possible paths from each source to a single
gateway node (single commodity flow) or to several gateway nodes (multi-commodity flow). We define

Min
e
ij

iji j
π

π

ρ
1 −

∈
∑

(,)

Min
eij

i j iji j
π

π π

ρ
(,) (,)∈ ∈
∑ ∏

⋅
−

1

1

C Fi j i i j, (.)= − −λ ρ 1

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks

15

-9

a commodity as data exchanged between a specific source-destination pair. FR defines longevity of a path

π

,

L

, as follows:

(15.12)

where

C

 is set of all commodities (i.e., data communications between various source-destination pairs),

q

c
ij

 is the rate at which data is sent from node

i

 to node

j

 in commodity

c

 with transmit power

ρ

i,j

,

N

i

is
the set of all nodes that can be reached by node

i

 with power level

ρ

i,j

 (cf. Figure 15.2),

τ

i

(

q

) is the lifetime
of node

i

, and

L

(

q

) is the longevity of path under a given flow

q =

{

q

ij

}. The goal of FR is to divide the
traffic flow of a source node to a sink (gateway) node on all paths between that pair of source and sink
nodes such that all paths have the same lifetimes. FR tries to achieve this goal by redirecting some flow
of each commodity from the shortest path (which has minimum longevity) toward longest path (which
has maximum longevity) and this is repeated separately for each commodity in several steps until all
paths between a source and sink have the same longevity. By defining network lifetime, as the time when
the first node dies, Chang and Tassiulas [16] have demonstrated that the problem of finding maximum
lifetime of a sensor network may be formulated as a linear programming problem as follows:

(15.13)

where Qi
(c) denotes the information generation rate at source nodes to be sent to destination nodes (or

sink nodes) S(c) for each commodity c. V is set of all nodes, and Ni was defined previously. This linear
programming can be solved in polynomial time. The solution to this linear programming problem
provides the optimal network lifetime.

FIGURE 15.2 Node i sends out incoming traffic plus locally generated traffic toward nodes that can be reached
from i (nodes in set Ni).

j
i

k

Ni
qji

c Qi
c

qik
c

…
…

L q Min q

q
F

q

i i

i
i

ij
c

ij

c Cj Ni

π π
τ

τ
ρ

() ()

()
.

=

=

∈

∈∈
∑∑

Maximize

q i V j N c C

q
F

i V

q Q q i V S c C

ij
c

i

ij

j N

ij
c

c C

i

ji
c

j i N

i
c

ik
c c

k N

i

j i

 τ

ρ
τ

()

()

()

:

() () ()

, , ,

,

, ,

≥ ∀ ∈ ∀ ∈ ∀ ∈

≤ ∀ ∈

+ = ∀ ∈ − ∀ ∈

∈ ∈

∈ ∈

∑ ∑

∑ ∑

0

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-10 Low-Power Processors and Systems on Chips

15.3.3 Energy-Conserving Techniques for Multi-Hop Ad Hoc Networks

It is known that an idle receiver listening for packets can consume almost as much as power as one doing
active reception. More precisely, idle, receive, and transmit energy cost ratios for the transceiver part of
a mobile node are 1, 2, 2.5 as per Kasten [17] and 1, 1.2, 1.7 as per Chen et al. [18]. Clearly, energy
consumed in idle state of the transceiver cannot be ignored. In addition, Freeney and Nilsson [10] have
demonstrated that a major source of extraneous energy consumption is from overhearing (or eavesdrop-
ping). Radios have a relatively large broadcast range. All nodes in that range must receive each packet to
determine if it is to be received locally or forwarded to some other node in the network. Although most
of these packets are immediately discarded, they cause superfluous energy consumption in the mobile
node. Because the network interface may often be idle or simply overhearing data, the energy dissipated
at these states can be saved by turning the radio off when it is not in use. In practice, however, this
approach is not straightforward: a node must arrange to turn its radio on not only to receive packets
addressed to it, but also to participate in any higher level routing and control protocols. The need for
power-aware routing protocols is particularly acute for multi-hop ad hoc networks.

15.3.3.1 Power-Aware Multiple Access Protocol with Signaling (PAMAS)

PAMAS [19] is a MAC-level protocol that avoids overhearing problem by powering off radios in any of
the following cases:

• A node powers off if it is overhearing a transmission and does not have a packet to send.
• If at least one neighbor is transmitting and at least one neighbor is receiving a transmission, a

node may power off. This is because, even if the node has a packet to transmit, it cannot do so
because of fear of interfering with its neighbor reception.

• If all neighbors of a node are transmitting and the node is not a receiver, it powers itself off.

In PAMAS, nodes attempt to capture the communication channel by exchanging RTS/CTS packets.
These packets contain duration of data packet transmission. A node can learn about the times that it can
be sleeping (or turn off its radio transceiver) by listening to the RTS/CTS exchange. In PAMAS, this
exchange takes place over a separate signaling channel. Thus, this exchange does not interfere with
ongoing data transmission. It is possible that a new transmission starts when a node is asleep. In such a
case, the node does not know about the duration of data transmission. To solve this problem, nodes
probe the signaling channel to find out the length of remaining transmission. Although PAMAS avoids
the overhearing problem, it does not address the problem of energy consumption when nodes are idle.
Solutions to this latter problem are proposed in GAF and span described next.

15.3.3.2 Geography-Informed Energy Conservation for Ad Hoc Routing

Geographical adaptive fidelity (GAF) [20] employs intelligent node scheduling techniques to conserve
the energy. In MANETs, GAF is driven by this observation that when there is significant node redundancy
in a MANET, multiple paths will exist between nodes, thus some intermediate nodes can be powered off
to conserve energy while still maintaining the network connectivity.

GAF divides the whole area where the nodes are distributed to small virtual grid cells such that every
node in each virtual grid cell can communicate with other nodes in that same cell. At any instant of time,
exactly one node in each grid is active while all other nodes are in the power saving mode (sleep or
discovery). As illustrated in Figure 15.3, nodes make transitions between discovery, sleep, and active
states. In the discovery state, which is the initial state, a node identifies all other nodes that are located
in the same grid cell by exchanging discovery messages. A node goes to the active state, Td seconds after
it enters the discovery state. A node stays in the active state for Ta seconds after which it goes to the
discovery state. A node that is in the discovery or active states enters the sleep state when it finds out
that some other node in the same grid is active and will thus handle routing. When transitioning to the
sleep state, a node cancels all pending timers and powers down its radio. A node in the sleep state wakes
up after an application-dependent sleep time Ts.

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-11

In GAF, nodes are ranked by several rules. An active node has a higher ranking than a node in the
discovery state. For nodes that are in the same state, GAF gives higher ranking to nodes with a higher
remaining battery capacity. Thus, a node with higher energy resource has a greater chance to become
active. In this way, GAF achieves its load balancing strategy. When nodes have high mobility, it is possible
that an active node moves out of its grid cell and leaves the grid cell with no active node in it. This
problem significantly increases the packet drop rate. To avoid this problem, each node uses the GPS
information to determine its bearing and velocity, thereby estimating the time that it expects to stay in
the current grid, and adds this expected time to the discovery message. Any node that enters the sleep
state wakes up after a time equal to the minimum of Ts and the expected time for the active node to stay
in the grid cell.

Assuming a static network and without accounting for the protocol overhead, the maximum increase
in the network lifetime that is achieved by GAF is equal to where R is radio range of each
node, and n is the total number of nodes distributed in an area A. In order for nodes in each grid cell
to be able to communicate with nodes in the neighboring grid cells, the grid side length cannot be greater
than . Thus, area A is divided to virtual grid cells.

15.3.3.3 Topology Maintenance for Energy Efficiency in Ad Hoc Networks (Span)

Span [18] builds on the observation that when there is a region of dense nodes, only a small number of
these nodes need to be on at any given time to forward traffic. Span thereby adaptively elects some nodes
as coordinators in the network. Coordinators stay awake to maintain connectivity of the network and to
route packets in the network. All other nodes go to sleep to save power. These nodes periodically check
if they should wake up and become a coordinator. One possible way for some node x to become a
coordinator is that two neighbors of x cannot communicate with one another directly or through one
or at most two coordinators. In addition, if node x has data to send out, it becomes a coordinator during
its data transfer. When a node decides to be a coordinator, it uses a slotting and damping technique to
delay its announcement of the fact. The node picks a random slot and delays its announcement until
that slot. The random delay helps keep away from contention when several nodes decide to become
coordinator at the same time. The delay function is as follows:

 (15.14)

FIGURE 15.3 The state transition graph in GAF.

sleeping

after Ts

after Td

after Ta

discovery

active

receive discovery msg
from high rank node

(/)n R A⋅ ⋅2 5

 R / 5 A R/(/)5

delay
R

F

P

N
Ni

i

i

i

i
i= − + −

+

() () . .1 1

2

ζ µ

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-12 Low-Power Processors and Systems on Chips

where Ri is the remaining energy of the node, Fi is the full-charge battery capacity, Pi denotes the number

of pairs of neighbors of i that cannot talk to one another unless through i itself, Ni denotes the number

of neighbors of i (i.e., those nodes that can directly be reached from i). Recall that gives the number

of pairs of neighbors of i. According to this equation, a node is more likely to pick an earlier time slot
to become a coordinator if its ratio of remaining energy to full-charge battery capacity is high (close to
1). The node is also more likely to pick an earlier time slot if it can help connect a large number of pairs
of its neighbors that would be disconnected without its assistance. µ is a random number that is picked
uniformly in the (0,1) range, whereas ζ is the link propagation delay. A node switches from the coordinator
to a noncoordinator role if every pair of its neighbors can reach each other directly or through one or
two other coordinators. To balance the rate of energy consumption over all nodes, however, a node
switches from a coordinator to a noncoordinator after some fixed period. In this way, it allows other
nodes to become coordinators.

In span, nodes make all their decisions based on their local information and, unlike GAF, no knowledge
of geographical information is required. Nodes find out about their neighbors proactively by broadcasting
HELLO messages. These HELLO messages contain the status of the sender (i.e., coordinator or nonco-
ordinator role), a list of its current coordinators, and its current neighbors. The list of the coordinators
and neighbors are used by each of the node’s neighbors in coordinator election and withdrawal rules
that were described previously.

15.3.4 Energy-Aware Multicast Routing Algorithms

The primary goal of the conventional multicast routing protocols and algorithms has been to reduce the
route latency because most multicast applications tend to be delay-sensitive audio/video broadcasting.
Therefore, most of the multicast routing protocols are designed to construct a multicast tree that mini-
mizes the communication latency. Because the number of hops is a good heuristic metric for capturing
this latency, a multicast tree with the minimum number of hops has been favored by most routing
protocols [21–23]. We call this tree the minimum hop-count tree (MHT). As has been described, in
MANETs, two other criteria that make routing design an even more complex task (i.e., mobility and
power efficiency) are used. The issue of mobility has been addressed extensively in the literature. In fact,
the performance of multicast routing protocols has been evaluated in regard to their robustness to link
failure due to the mobility [21,22,24,25]; however, little work has been accomplished on the development
of a wireless multicast routing protocol in which power is key objective or constraint. More precisely,
although some studies on the construction of energy-efficient broadcast and multicast tree in ad hoc
networks [26,27] have been conducted, most of these works require a global view of the network and
cannot be applied in a distributed way where the nodes have only local knowledge.

15.3.4.1 Minimum Energy Broadcasting

The objective of the minimum energy broadcasting is to reach from a specific source to all other nodes
in the network by using multi-hop transmission while consuming the minimum total transmission energy
and assuming that nodes have variable transmission power. In MANETs, broadcasting takes place by
flooding the network from a specific source. Because the main use of flooding is in route discovery, it is
important that flooding is done with the minimum total energy. Minimum energy broadcasting has been
demonstrated as an NP-hard problem. Several heuristic algorithms for solving this problem have been
proposed [26].

15.3.4.2 Energy-Aware Multicast Routing

The goal of energy-efficient multicast routing is to reach a subset of nodes (one-to-many cast) that we
will refer to as multicast receivers, from a multicast source, such that we have maximum longevity of the
paths between the source and the receivers. The problem of the energy-aware multicast tree is mathe-
matically defined as follows. Consider a network graph G(V,E), when V is set of nodes (or vertices) and

N i

2

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-13

E is set of edges in graph G. Let RS denote the set of muticast receivers, s the multicast source, and c(u,v)
the cost of edge (u,v). The objective function may be stated as follows:

(15.15)

where C(M) is the cost of multicast tree, M, connecting s to RS.
The edge cost function c(u,v) may represent the transmit power level needed for sending data from u

to v. In this case, the previously mentioned objective function results in a minimum total transmit power
multicast tree. In addition, c(u,v) may be a battery-related cost of node u if the objective is to extend the
lifetime of the network graph G. Figure 15.4 is an example of multicast tree. In general, finding a minimum
energy multicast tree is equal to finding a minimum Steiner tree that is known to be an NP-hard problem
[28]. Two related works on developing heuristic energy-aware multicast (or broadcast) trees are as follows:

• Least-Cost Shortest Path Tree (LPT). This is a tree obtained by superimposing all the least cost
paths (or shortest paths) between the source and each multicast receiver.

• Broadcast Link-Based MST (BLMST). This is a minimum spanning tree where the link cost is set
to the transmission energy needed to sustain communication over that link.

• Multicast Incremental Power Tree (MIPT). This tree is obtained from the Broadcast Incremental
Power (BIP) tree proposed in Wieselthier et al. [27]. The BIP algorithm consists of the following steps:
• For all nodes i in the tree and all nodes j not in the tree, evaluate ρ′ij = ρij – ρi, where ρij was

defined earlier, ρi denotes the power level of node i. (Note that ρ′ij provides the incremental
cost associated with adding node j to the tree.) Initially, the tree includes only the source node
(i.e., the broadcast initiator node).

• A pair (i,j) that results in the minimum value of ρ′ij is chosen, and node j is added to the tree.
• This procedure is continued until all intended destination nodes are included. The MIPT is

generated by pruning the broadcast tree (i.e., by eliminating all subpaths that are not required to
reach the multicast receivers).

15.3.4.3 The Neighbor Cost Effect in Multicast Routing

Assume that a multicast tree from the source to several receivers has been constructed. The packet flow
is coming out from the source, and is terminated at the leaves of the tree where the receivers are located.
We will refer to those intermediate nodes of the tree that have more than one child in the tree as multi-

FIGURE 15.4 Neighbor cost effect in wireless networks.

Broadcast with power
Max (p1, p2)

Affected
area

Multicast traffic
flow

p2p1
A RR

R

R

Min C M c u v
u v M

 () (,)
(,)

=
∈

∑

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-14 Low-Power Processors and Systems on Chips

fanout nodes (e.g., node A in Figure 15.4). In MANETs because the MAC layer does not have the ability
of multicasting [10], two distinct methods are used to send out the packets from a multi-fanout node:

• Multiple unicast. The parent node sends unicast packets to every child node in the multicast tree
separately.

• Single broadcast. The parent broadcasts the packets to all nodes in its immediate neighborhood
(which may include nodes that are not in the multicast tree).

Freeney and Nilsson [10] experimentally studied the power-optimal choice between these two methods.
According to its results, the multiple unicast method results in much higher power consumption for the
sender (parent node in the multicast tree). The following is empirical energy-cost measurement by
Freeney and Nilsson [10] for broadcast and unicast send/receive packets:

These measurements have been completed on Lucent IEEE 802.11 2 MBPS WAVELAN PC card with
2.4-GHZ direct sequence spread spectrum (DSSS).

Based on these results, a single broadcast method in multi-fanout nodes is more energy efficient. When
using the single broadcast method, however, all the nodes that are in the radio range of the sender listen
to the channel and receive the packet, thereby, unnecessarily consuming power in receiving the packet.
As a result, these nodes will find the multiple unicast method to be more beneficial to them from a power
dissipation viewpoint. Consequently, one must consider the power consumption cost of all neighbors of
nodes that broadcast packets when calculating the cost of a multicast tree, in which multi-fanout nodes
use a single broadcast method. This phenomenon, which we will refer to as the neighbor cost effect,
makes the problem of finding a multicast tree with optimal cost quite complex. Regarding neighbor cost
effect, the general objective function of the multicast tree problem is changed as follows:

(15.16)

where deg(u) denotes degree of node u in multicast tree M (including incoming and outgoing edges),
and Nu refers to the set of nodes that are in the radio range of node u.

Another issue concerning the single broadcast method of multi-fanout nodes is that the farthest child
from the parent determines the broadcast transmission power of that transmitting node. For example,
in Figure 15.4, the transmission power of node A is Max(ρ1,ρ2). Considering the neighbor cost effect
in multi-fanout nodes makes the multicast routing problem even more challenging. Recall that finding
a minimum energy-cost multicast tree without considering the neighbor cost effect is equivalent to that
of finding a minimum Steiner tree, which is NP-hard. As a result, the problem of finding an energy-
aware multicast tree with consideration of the neighbor cost effect is also an NP-hard problem.

Many algorithms for finding a tree with near optimal cost are available [29,30]. Although it is possible
to modify some of these algorithms to account for the neighbor cost effect at multi-fanout nodes, this
approach is ill advised in our context because these algorithms are too complex and require global
information about the network connectivity graph to be applied. However, we are interested in finding
solutions that can be deployed in an ad hoc network where nodes only have local knowledge about
themselves and perhaps their neighboring nodes and must do the route discovery in a distributed, ad
hoc manner (no global depository of information exists.) Furthermore, in ad hoc networks, the under-
lying network topology (connectivity graph) changes dynamically due to the mobility and link failure.
Thus, ad hoc routing algorithms should be able to update their routes periodically. The routing update
cost should be rather low.

Unicast Broadcast

Send (µW.sec/byte + µW.sec) 1.9 · packet_size + 454 1.9 · packet_size + 256
Receive (µW.sec/byte + µW.sec) 0.5 · packet_size + 356 0.5 · packet_size +56

 if deg elseC M t c u v u then c u v
u v M v N j Mu

(,) (,) (() (,))
(,)

= + ≥
∈ ∈ ∧ ∉

∑ ∑2 0

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-15

15.4 Power-Aware Source Routing

15.4.1 Cost Function

The objective of power-aware source routing (PSR) [31] is to extend the useful service life of a MANET.
This is highly desirable in the network because node death leads to a possibility of network disconnect-
edness, rendering other live nodes unreachable. PSR solves the problem of finding a route π at route
discovery time t such that the following cost function is minimized:

(15.17)

where ρi is transmit power level of node i, Fi, and Ri are full-charge and remaining battery capacities of
node i at time t, and α is a positive weighting factor.

PSR uses a graded cost function as explained next. The exponent α is a discrete function of the ratio
of the remaining battery capacity over the full-charge battery capacity. As this ratio decreases and
successively becomes less than a specified set of threshold values, α increases according to a fixed schedule.
In this way, nodes with very low battery capacity contribute a much higher value to the total path cost.
In other words, if a path from source to destination has some nodes with a very low residual battery, the
cost of the path will be very high, and therefore, PSR will behave similar to the min-max battery cost
routing. Figure 15.5 illustrates how PSR avoids routes that include node(s) with low remaining energy.
Routing path N1-N2-N5-N8 has the minimum hop-count from N1 to N8, and, therefore, it is selected
by DSR; however, this route includes node N2, which has a very low remaining energy capacity. Thus,
PSR selects another route: N1-N3-N4-N7-N8.

In DSR, because the route selection is done based on a shortest path finding algorithm (i.e., it selects
paths with the minimum number of hops), a selected path may become invalid only due to node
movements. In contrast, in PSR, both the node mobility and the node energy depletion may cause a
path to become invalid. Because the route discovery and route maintenance processes in PSR are slightly
more complicated compared to their counterparts in DSR, these two steps will need to be described in

FIGURE 15.5 PSR avoids routes consisting of nodes with low remaining battery capacity.

DSR flow path
PSR flow path

N1

N3

N6

N4

N5

N2

N8

N7

Energy
Level

C t C t

C t
F

R t

i

i

i i
i

i

(,) ()

() .
()

π

ρ

π

α

=

=

∈
∑

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15

-16

Low-Power Processors and Systems on Chips

detail. In addition, because PSR is derived from DSR, the PSR description will often be contrasted with
that of DSR.

15.4.2 Route Discovery

In DSR, activity begins with the source node flooding the network with RREQ packets when it has data
to send. An intermediate node broadcasts the RREQ unless it gets a path to the destination from its
cache or it has already broadcast the same RREQ packet. This fact is known from the sequence number
of the RREQ and the sender ID. Consequently, intermediate nodes forward only the first received RREQ
packet. The destination node only replies to the first arrived RREQ because that packet usually takes the
shortest path.

In PSR, all nodes except the destination calculate their link cost (cf. Equation 15.17) and add it to the
path cost in the header of the RREQ packet (cf. Equation 15.17). When an intermediate node receives a
RREQ packet, it starts a timer (

T

r

) and keeps the cost in the header of that packet as mincost. If additional
RREQs arrive with same destination and sequence number, the cost of the newly arrived RREQ packet is
compared with the mincost. If the new packet has a lower cost, mincost is changed to this new value and
the new RREQ packet is forwarded. Otherwise, the new RREQ packet is dropped. The destination waits
for a threshold (

T

r

) number of seconds after the first RREQ packet arrives. In that time, the destination
examines the cost of the route of every arrived RREQ packet. When the timer

T

r

 expires, the destination
node selects the route with minimum cost and replies. Subsequently, it will drop any received RREQ. The
reply also contains the cost of the selected path appended to it. Every node that hears this route reply adds
this route along with its cost to its route cache table. Although this scheme may somewhat increase the
latency of the data transfer, it results in a significant improvement of network lifetime, as discussed later.

15.4.3 Route Maintenance

Route maintenance is needed for two reasons:

1. Mobility. Connections between some nodes on the path are lost due to their movement.
2. Energy Depletion. The energy resources of some nodes on the path may be depleting too quickly.

In the first case, a new RREQ is sent out and the entry in the route cache corresponding to the node
that has moved out of range is purged. In the second case, two possible approaches are used:

1. Semi-Global Approach. The source node periodically polls the remaining energy levels of all nodes
in the path and purges the corresponding entry in its route cache when the path cost increases by
a fixed percentage. Notice that this results in very high overhead because it generates extra traffic.

2. Local Approach. Each intermediate node in the path monitors the decrease in its remaining energy
level (thus the increase in its link cost) from the time of route discovery because of forwarding
packets along this route. When this link cost increase goes beyond a threshold level, the node
sends a route error back to the source as if the route was rendered invalid. This route error message
forces the source to initiate route discovery again. This decision is only dependent on the remaining
battery capacity of the current node, and thus, is a local decision.

PSR adopts the local approach that minimizes the control traffic. Furthermore, it assumes that all
transmit power levels (

ρ

i,j

) are constant. This enables PSR to separate the effect of mobility from that of
energy depletion during route maintenance. More precisely, for each node

i

 along a path

π

, we define a
“delta cost” function as follows:

(15.18)ΔC t C t C t
F

R t
i a i a i d i

i

i a

() () () .
()

= − =
⎛
⎝⎜

⎞
⎠⎟

−ρ ρ
α

ii
i

i d

F

R t
.

()

⎛
⎝⎜

⎞
⎠⎟

α

6700_C015.fm Page 16 Thursday, August 18, 2005 9:31 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-17

where ta denotes the time instance when this route entry is fetched from the cache table of node I; td

denotes the time instance at which π was added to the cache table of node i; and Ci(ta) is the fractional
cost contributed by node i to total cost of the path π at time ta, whereas Ci(td) is the fractional cost
contributed by node i to total cost of the path π at time td.

Assuming that α remains unchanged from time ta to time td, then the condition for invalidating route
π from the cache table of node i is:

(15.19)

where δ is a user-specified threshold value.
This condition invalidates a path π in the cache table of node i if the change in the normalized cost

of node i exceeds a threshold δ. This metric appears to be a good way of capturing the dynamics of the
node usage in MANETs. As the remaining energy of a node decreases, the cost of the node increases.
The node will force new routing decisions in the network by invalidating its own cache entries to various
destinations. If a path was recently added to the cache table, however, the node will not force a new
decision (route finding step) unless the node’s remaining energy is depleted by a certain normalized
amount, due to messages passing through that path. The effect of δ on the performance of PSR is studied
in detail in Section 15.6.

It should be noted that we provision for the reuse of invalidated paths if node i was the source of the
message and wanted to continue to send data via this path as follows. When node i has data to send to
the destination, it looks up its route cache and chooses a route, if such a route can be found in the cache,
irrespective of whether the route was invalidated or not. In this way, we avoid redundant route discoveries
in the presence of an existing route. The invalidated cache is purged after a fixed time. The invalid entries
are analogous to the victim buffer in the cache structure of general-purpose processors; however, the
same does not hold good for relaying data. If a cache entry is invalidated in a node and that node is
asked to relay data/reply to the destination of that cache entry, then the node will send a route error back
to the source. This reply will invalidate routing entries for all nodes on the trace path back to the source.
The PSR function of intermediate nodes is given in Figure 15.6 in pseudo code. The function of the
destination node is similar to the intermediate node with the exception that it does not need to check
for validation of the path when it refers to its cache because it is the end point for each possible path
between that itself and the source.

15.5 Lifetime Prediction Routing

15.5.1 Basic Mechanism

Lifetime prediction routing (LPR) [32] is an on-demand source routing protocol that uses battery lifetime
prediction. The objective of this routing protocol is to extend the service life of MANET with dynamic
topology. This protocol favors the path with the maximum remaining lifetime. We represent our objective
function as follows:

 (15.20)

where Lπ(t) is lifetime of path π and τi (t) is the predicted lifetime of node i at time t.

15.5.1.1 Lifetime Prediction

Each node tries to estimate its battery lifetime based on its past activity. This is achieved using a simple
moving average (SMA) predictor by keeping track of the last N values of residual energy and the

∆C t

C t
i a

d

()

(,)π
δ>

 π π
π τMax

i
MinL t

i
t () (())=

∈

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-18 Low-Power Processors and Systems on Chips

corresponding time instances for the last W packets received/relayed by each mobile node. This infor-
mation is recorded and stored in each node. We have carefully compared the predicted lifetimes based
on the SMA approach to the actual lifetimes for different values of W and found W = 10 to be a good value.

Our motivation in using lifetime prediction is that mobility introduces different dynamics into the
network. In Chang and Tassiulas [16] the lifetime of a node is a function of residual energy in the node
and energy to transmit a bit from the node to its neighbors (cf. Equation (15.12)). This metric works
well for static networks for which it was proposed; however, it is very difficult to efficiently and reliably
compute this metric when we have mobility because the location of the nodes and their neighbors
constantly change.

PSR does not use prediction and only uses the remaining battery capacity. LPR is superior to PSR
because LPR not only captures the remaining (residual) battery capacity but also accounts for the rate
of energy discharge. This makes the cost function of LPR more accurate. This is true in MANETs because
mobility can change the traffic patterns through the node, which thereby affects the rate of depletion of
its battery. In addition, recent history is a good indicator of the traffic through the node, and thus we
chose to employ lifetime prediction.

Our approach is a dynamic distributed load balancing approach that avoids power-congested nodes
and chooses paths that are lightly loaded. This helps LPR achieve minimum variance in energy levels of
different nodes in the network. As an example, consider the scenario in Figure 15.7. Here, node F has
three flows going through it (D → F →, B → F →, and C → F →). Now, if A wants to transmit data to
E, the shortest path routing will use A → F → E. LPR will use A → B → C → D → E, however, because
E is very power-congested (as a result of relaying multiple flows) and the path passing through F will
not be selected by LPR.

Figure 15.8 is an example that depicts how different policies of DSR, PSR, and LPR give different
answers with the same scenario. Although PSR avoids choosing a path that goes through node N6, because
of low remaining energy, the path selected by LPR (N1-N3-N6-N7-N8) includes N6. The reason is that
N6 has a low depletion rate, and its estimated lifetime is high.

FIGURE 15.6 Pseudo code for the key operations performed in the intermediate nodes of a path in the PSR.

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-19

15.5.2 Route Discovery

Route discovery in LPR is similar to PSR. In LPR, all nodes except the destination calculate their predicted
lifetime, τi (see Equation (15.21)) and replace the minlifetime in the header with τi if τi is lower than the
existing minlifetime value in the header.

 (15.21)

where Rr,i(t) denotes remaining energy at the ith packet is being sent or relayed through the current node,
rk(t) is rate of energy depletion of the current node when the kth packet was sent and is calculated by the
ratio of the difference between residual energies of the nodes for packets k – 1 and k and the difference
between arrival times of these two packets, and W is length of the history used for calculating the SMA.

When an intermediate node receives a RREQ packet, it starts a timer (Tr) and keeps the min. lifetime
in the header of that packet as minlifetime. If additional RREQs arrive with the same destination and
sequence number, the cost of the newly arrived RREQ packet is compared with the mincost. If the new
packet has a lower cost, mincost is changed to this new value, and the new RREQ packet is forwarded.
Otherwise, the new RREQ packet is dropped (see Figure 15.9).

In LPR, the destination waits for a threshold number (Tr) of seconds after the first RREQ packet
arrives. During that time, the destination examines the cost of the route of every RREQ packet that

FIGURE 15.7 LPR avoids power-congested paths.

FIGURE 15.8 LPR avoids paths consisting of nodes with high-energy depletion rates.

A

B C D

E
F

Flow path
Link

DSR flow path
PSR flow path

LPR flow path

N1

N3

N6

N4

N5

N2

N8

N7

Energy
Level

Deplation
Rate

τ i
r i

k

k i W

i
t

R t

r tW

()
()

()

,=

−
= − +
∑1

1
1

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-20 Low-Power Processors and Systems on Chips

arrived. When the timer (Tr) expires, the destination node selects the route with the minimum cost and
replies. Subsequently, it will drop any received RREQs. The reply also contains the cost of the selected
path appended to it. Every node that hears this route reply adds this route along with its cost to its route
cache table. Although this scheme can somewhat increase the latency of the data transfer, it results in a
significant power savings, as discussed later. A simple example of this process is illustrated in Figure
15.10. Here, the route A-B-C-D is chosen by LPR over the route A-E-D because the path lifetime of the
former is in the 500s, which is greater than the latter.

LPR has a route invalidation timer that invalidates old routes. This helps in removing old routes. This
also avoids over usage of particular routes in cases of low mobility.

15.5.3 Route Expiration

Route maintenance is needed for two reasons:

1. Connections between some nodes on the path are lost due to their movement
2. Change in the predicted lifetime

In the first case, a new RREQ is sent out and the entry in the route cache corresponding to the node
that moved out of range is purged. The following policy is adopted to tackle the second situation.

Once the route is established, the weakest node in the path (the node with minimum predicted lifetime
at path discover time) monitors the decrease in its battery lifetime. When this remaining lifetime decrease
goes beyond a threshold level, the node sends a route error back to the destination as if the route was
rendered invalid. The destination sends this route error message to the source. This route error message
forces the source to initiate route discovery again. This decision is only dependent on the remaining
battery capacity of the current node and its discharge rate in the short history, and thus is a local decision.
LPR adopts this local approach because this approach minimizes control traffic. Figure 15.11 is an example
of the route expiration process.

More precisely, node i generates a route error at time t when the following condition is met:

FIGURE 15.9 Pseudo code of functions performed in an intermediate node as it is executing the LPR algorithm.

FIGURE 15.10 The route setup process in LPR.

500 S 800 S

300 S

A

B C

DE

RREQ

RREP
Node lifetime

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-21

(15.22)

where t denotes the current time, t0 is time of the route discovery, and δ is threshold value.

15.6 Quantitative Evaluation of Source Routing Algorithms

15.6.1 Simulation Setup

We used the event driven simulator ns-2 [33] along with the wireless extensions provided by CMU [34].
The simulation consists of a network of 20 nodes confined in a 1000 × 1000 m2 area. Random connections
were established using CBR traffic (at 4 packets/second) such that each node has chance to connect to
every other node. Packet size was 512 bytes and each simulation was executed for 20,000 sec. The initial
battery capacity of each node is 100 units. Nodes followed a random waypoint mobility model with a
specific max velocity and no pause time. Each packet relayed or transmitted consumes a fixed amount
of energy from the battery as given by Equation (15.2); a and b are constants.

The key parameters of study are the network lifetime, node lifetime, and root mean square (RMS)
of energy consumption (ERMS) in the network. We vary the speed and radio transmission range and
study their effects on these metrics.

15.6.2 Simulation Results

The network lifetime is defined as the time taken for a fixed percentage of the nodes to die due to energy
resource exhaustion. Network lifetime of DSR, PSR, and LPR are compared for a given scenario. Here,
the speed of each node is 10 m/s and radio transmission range is 125 m. Figure 15.12 plots the time
instances at which a certain number of nodes have died when simulating LPR, PSR, and DSR. Note that
in Figure 15.12, node death of all 20 nodes is not plotted because some nodes are still alive at the end
of the simulation. Some of these nodes, however, are rendered unreachable because many of the nodes
have exhausted their energy and thus cannot reach other nodes consistently.

As can be seen, the first node in DSR and PSR dies about 20% earlier than in the case of LPR. Similarly,
in DSR 5 nodes die approximately 32% earlier than LPR and 27% earlier than LPR in the case of PSR.

Due to the dynamic nature of the path cost function of PSR (and LPR), a discovered path cannot
remain valid for a long time. This is because these connections, if maintained for a long period, may

FIGURE 15.11 (a) Node C sends route error to destination node D; (b) Node D sends route error to source A to
invalidate the whole path.

(A)

A B

C

D

C

D
A B

(B)

Flow path

Route error

τ τ δi 0 i(t) (t)− ≥

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-22 Low-Power Processors and Systems on Chips

exhaust the energy of some nodes on that path. Discovered paths are in the cache, however, and can be
accessed whenever they are required in DSR, and (as implemented in ns-2) only mobility can invalidate
these cache entries. In addition, cache invalidation is very expensive for the network because the route
is reconstructed by flooding the network. This is handled in PSR as described in the next paragraph.

When the path is discovered, every node puts its remaining energy and path cost in the cache entry.
Intermediate nodes check for validity of this path by computing the cost difference as in Equation (15.19).
Here, δ (the threshold) is a metric that decides how often we invalidate the cache. This threshold affects
the performance of PSR. If the threshold is very high, we do cache invalidation very rarely, and might
end up overexercising some nodes in the path. If it is very low, the cache invalidation rate is very high
and may lead to unnecessary flooding in the network. The effect of varying this threshold is plotted in
Figure 15.13.

Because LPR outperforms PSR in terms of results in a longer network lifetime, we have selected LPR
to compare it with DSR for the rest of simulation.

To increase the lifetime of the network, the variance of the residual energy of the nodes should be
minimized. Figure 15.12 is not informative in this regard. A histogram of the snapshots of the energy

FIGURE 15.12 Number of dead nodes in DSR, PSR, and LPR as a function of the elapsed time.

FIGURE 15.13 Effect of the threshold value, δ (for the PSR path invalidation step) on the network lifetime.

T
im

e

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
1 2 3 4 5 6 7 8 9 10 11

Number of dead nodes (velocity is 5 m/s)

LPR
DSR
PSR

T
im

e
(s

ec
)

10000

10500

9000

9500

8500

8000

7500

7000
1 2 3 4 5 6 7 8 9 10

Number of dead nodes

δ = 10

δ = 1

δ = 0.1

No
Invalidation

6700_book.fm Page 22 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-23

consumption in each of the nodes at different time instances would be more informative. Figure 15.14
depicts this histogram at three time instances. Initially, all nodes have zero energy consumption. As time
increases, variance of energy consumption or remaining energy of nodes increases, but the rate of
increasing for LPR is more than DSR. One of the ways to compare such histograms would be to look
at the RMS of the remaining energy (ERMS) at different time instances. It provides information about
the total energy consumed and spread of consumed (residual) energy. Figure 15.15 plots the evaluation
of ERMS as a function of time for DSR and LPR before any node dies out. The effect of mobility on ERMS

can also be observed in this figure. A linear estimation of ERMS is depicted for ease of comparison. As
can be observed, LPR is always better than DSR in terms of ERMS value. This graph is in agreement with
our expectations. As the velocity of node movement increases, however, the rate of energy consumption
in the network goes up. This is expected because higher velocity of movement implies more route
discoveries being performed and consequently higher energy consumption in the network. In addition,

FIGURE 15.14 Distribution of energy consumed at three different time instances for LPR and DSR.

FIGURE 15.15 Evaluation of ERMS for different velocities of node movement.

%
 N

od
e

10009008007006005004003002001000

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Energy consumed

t0

t1

t2

LPR
DSR

t0 < t1 < t2
E

rm
s

100

90

80

70

60

50

40

30

20

10

0
3500 4000 4500 5000 5500 6000 6500 7000

Time (s)

DSR (1 m/s)
LPR (1 m/s)
DSR (20 m/s)
LPR (20 m/s)

6700_book.fm Page 23 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-24 Low-Power Processors and Systems on Chips

as the node mobility increases, the difference between DSR and LPR decreases. This could be attributed
to two reasons:

1. LPR makes use of the fact that DSR overloads certain nodes and has a big variance between
remaining energies of the nodes. As mobility increases, the amount of overhead (control packets
for route discovery) increases for both DSR and LPR. Consequently, less room is available for LPR
to balance the energy consumption among the nodes in the network and extend its network lifetime.

2. Because more route discoveries occur, no paths are overused even by DSR. Consequently, DSR
also achieves load balancing to an extent, decreasing the gain seen by LPR.

Packet delivery ratio is defined as the number of delivered data packets to the number of generated
data packets in all nodes. Note that the number of generated packets is the “expected” number of generated
packets. We generate as many as 200,000 data packets during the simulation. They are generated between
random sources and destination pairs at random times. Many of these might not have reached their
intended destination because of the lack of existence of a route between the source and destination for
various reasons. In addition, the network lifetime clearly affects this ratio. If the network was alive for
longer time, it implies that more data traffic goes through because we establish random connections
throughout the time of simulation.

As plotted in Figure 15.16, for lower velocities of node movement, LPR has a greater ratio of delivered
packets. As the mobility increases, however, this ratio goes down. The intuition for why LPR does not
perform as well in higher velocities was presented earlier.

The transmission range is another parameter that can affect the performance of routing protocols
because it changes the connectivity of the network. We changed the transmission range to see the effect
of the degree of connectivity on our metric (see Figure 15.17). We assume the same transmission power
for all nodes in a simulation. The node transmit range was assigned two different values (125 and 200 m)
for the simulations. We make the following observations based on this figure:

• When the transmission range increases, each node covers more nodes. In other words, when a
node sends a unicast or broadcast packet, more nodes will receive packets and they consume power
in their receiver. Thus, each transmission has a lot of power overhead for the network. As a result,
when the range increases, nodes discharge faster.

• The number of hops per route decreases by increasing the transmission range. Thus, nodes have
less participation in relaying packets resulting in lower activity for each node and slower discharge
of its battery capacity.

FIGURE 15.16 Packet delivery ratio vs. velocity of node movement.

R
at

io
 o

f d
el

iv
er

ed
 p

ac
ke

ts
 to

ge
ne

ra
te

d
pa

ck
et

s

0.85

0.75

0.65

0.55
1

Velocity of node movement (m/s)

5 10 20

0.9

0.8

0.7

0.6

DSR

LPR

6700_book.fm Page 24 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-25

When range increases from 125 to 200 m, the dominant effect is the first and the charge rate of the
nodes increases drastically. Both of those effects reduce the effect of the LPR scheme and as can be seen,
the difference between LPR and DSR decreases, such that when the range is 200 m, the difference is not
clear. To reduce the cost of the power due to the second effect, one way is to shut down the nondestined
nodes in the range of a transmitting node.

In LPR, route discovery process needs more control packets to be propagated in the network because
it needs to compare all possible paths between a source and a sink and selects a path with maximum
lifetime. To illustrate the overhead of LPR on the network, we have measured the ratio of the number
of control packets to the number of delivered packets in the network. This normalizes the overhead of
the routing protocol to the goodput (i.e., number of received packets) in the network. Figure 15.18 plots
this ratio for LPR and DSR for different velocities of node movement and for 380 user datagram protocol
(UDP) connections. As the velocity of movement increases, routes are valid for a shorter time and more
route discoveries are done in the network resulting in more control packets and more difference between

FIGURE 15.17 Effect of transmission range on the ERMS (node velocity is 5 m/s).

FIGURE 15.18 The ratio of control packets to delivered packets as a function of velocity of node movement for
LPR and DSR for 380 UDP connections.

E
rm

s

100

90

80

70

60

50

40

30

20
3500 4000 4500 5000 5500 6000 6500 7000 7500

Time (s)

Erms vs. Time

DSR(125 m)
LPP(125 m)

LPR(200 m)

DSR(200 m)

C
on

tr
ol

 p
ac

ke
ts

/d
el

iv
er

d

0.5

0.6

0.55

0.45

DSR
LPR

1 5 10 20

Velocity (m/s)

6700_book.fm Page 25 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

15-26 Low-Power Processors and Systems on Chips

LPR and DSR. LPR increases the ratio of the control packet to transmit a packet less than 4%. The
increase in the size of a control packet in DSR to that of the LPR is approximately 1/10, and the overhead
in energy for sending such a packet increases by approximately 0.4%. Thus, the additional energy overhead
of LPR for route discovery is small.

15.7 Conclusion

One of the main design constraints in MANETs is that they are energy constrained. Thus, network
routing algorithms must be developed to consider energy consumption of the nodes in the network as
a primary objective. In MANETs, every node has to perform the functions of a router. Therefore, if some
nodes die early due to lack of energy so that the network becomes fragmented, then it may not be possible
for other nodes in the network to communicate with each other. This chapter presented PSR and LPR
protocols for MANETs where the aim is to maximize the network lifetime (which is typically defined as
the duration time after which a fixed percentage of the nodes in the network “die” as a result of energy
exhaustion). This goal of extending the network lifetime was accomplished by finding routing solutions
that tend to minimize the variance of the remaining energies of the nodes in the network. Although
these power-aware network routing protocols and algorithms tend to create additional control traffic,
simulations reported in this chapter demonstrate that they improve the network lifetime by more than
20% on average.

References

[1] C. Hedrick, Routing information protocol, RFC 1058, http://www.faqs.org/rfcs/rfc1058.html, Aug.
2001.

[2] J. Moy, OSPF version 2.0, RFC 2328, http://www.faqs.org/rfcs/rfc2328.html, Aug. 2001.
[3] C.E. Perkins, Ad Hoc Networking, Addison-Wesley, Reading, MA, 2001.
[4] C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV)

for mobile computers, Proc. of ACM SIGCOMM Conf. on Communications Architectures, Protocols,
and Applications, pp. 234–244, Oct. 1994.

[5] S. Murthy and J.J. Garcia-Luna-Aceves, An efficient routing protocol for wireless networks, ACM
Mobile Networks and Applications J., Special Issue on Routing in Mobile Communication Networks,
vol. 1, no. 2, pp. 183–197, 1996.

[6] D.B. Johnson, D.A. Maltz, Y.-C. Hu, and J.G. Jetcheva, The dynamic source routing for mobile ad
hoc wireless networks, IETF Internet Draft, http://www.ietf.org/internet-drafts/draft-ietf-manet-
dsr-09.txt, Nov. 2001.

[7] C.E. Perkins, E.M. Belding-Royer, and S. Das, Ad hoc on-demand distance vector (AODV) routing,
IETF Internet Draft, draft-ietf-manet-aodv-12.txt, Nov. 2002.

[8] S. Singh, M. Woo, and C.S. Raghavendra, Power-aware routing in mobile ad hoc networks, Proc.
of Mobile Computing and Networking (Mobicom), pp. 181–190, 1998.

[9] IEEE Standards Board 802 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(Phy) Specifications, Mar. 1999.

[10] L.M. Freeney and M. Nilsson, Investigating the energy consumption of a wireless network interface
in an ad hoc networking environment, Proc. IEEE Infocom, pp. 1548–1557, Apr. 2001.

[11] Stojmenovic and X. Lin, Power-aware localized routing in wireless networks, Proc. IEEE Trans. on
Parallel and Disrtibuted Systems, vol. 12, no. 11, pp. 1122–1133, May 2001.

[12] W. Rabiner, W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communi-
cation protocol for wireless microsensor networks, Proc. 33rd Annu. Hawaii Int. Conf. on System
Sciences, pp. 3005–3014, Jan. 2000.

[13] C.K. Toh, Maximum battery life routing to support ubiquitous mobile computing in wireless ad
hoc networks, IEEE Communication Mag., pp. 138–147, June 2001.

6700_book.fm Page 26 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.faqs.org
http://www.ietf.org
http://www.ietf.org

Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks 15-27

[14] A. Misra and S. Banerjee, MRPC: maximizing network lifetime for reliable routing in wireless
environments, Proc. IEEE Wireless Commn. and Networking Conf., pp. 800–806, Aug. 2002.

[15] S. Banerjee and A. Misra, Minimum energy paths for reliable communication in multi-hop wireless
networks, Proc. MobiHoc, pp. 146–156, June 2002.

[16] J.-H. Chang and L. Tassiulas, Energy-conserving routing in wireless ad hoc networks, Proc. Infocom,
pp. 22–31, Mar. 2001.

[17] O. Kasten, Energy consumption. ETH-Zurich, Swiss, Federal Institute of Technology. Available at
http://www.inf.ethz.ch/~kasten/research/bathtub/energy_consumption.html, Apr. 2001.

[18] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, Span: an energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless networks, Proc. Mobile Computing and
Networking (Mobicom), pp. 85–96, July 2001.

[19] S. Singh and C. Raghavendra, PAMAS: power-aware multiple access protocol with signaling for ad
hoc networks, ACM Computer Communication Review, 28(3):5–26, July 1998.

[20] Y. Xu, J. Heidemann, and D. Estrin, Geography-informed energy conservation for ad hoc routing,
Proc. Mobile Computing and Networking (Mobicom), pp. 70–84, July 2001.

[21] S.-J. Lee, W. Su, and M. Gerla, On-demand multicast routing protocol (ODMRP) for ad hoc
networks, IETF Internet Draft, http://www.cs.ucla.edu/NRL/wireless/PAPER/draft-ietf-manet-
odmrp-02.txt, Oct. 2002.

[22] J.J. Aceves and E. Madruga, The core-assisted mesh protocol, IEEE JSAC, vol. 17, no. 8, pp.
1380–1394, Aug. 1999.

[23] E. Royer and C. Perkins, Multicast ad hoc on-demand distance vector (MAODV) routing, IETF
Internet Draft, draft-ietf-manet-maodv-00.txt.

[24] S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, A performance comparison study of ad hoc
wireless multicast protocols, Proc. IEEE Infocom, pp. 565–574, Mar. 2000.

[25] M. Gerla, C.-C. Chiang, and L. Zhang, Tree multicast strategies in mobile, multi-hop wireless
networks, ACM/Kluwer Mobile Networks and Applications, vol. 4, no. 3, http://www.ietf.org/pro-
ceedings/00dec/I-D/draft-ietf-manet-maodv-00.txt, Oct. 2002.

[26] M. Cagalj, J. Phubaux, and C. Enz, Minimum-energy broadcast in all-wireless networks: NP-
completeness and distribution issues, Proc. Mobile Computing and Networking (Mobicom), Sep.
2002.

[27] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, On the construction of energy-efficient broad-
cast and multicast trees in wireless networks, Proc. Infocom, pp. 585–594, Mar. 2000.

[28] A. Goel and K. Munagala, Extending greedy multicast routing to delay sensitive applications, J.
Algorithmica, vol. 33, no. 3, pp. 335–352, 2002.

[29] M. Parsa, Q. Zhu, and J.J. Garsia-Luna-Aceves, An iterative algorithm for delay-constrained min-
imum-cost multicasting, IEEE/ACM Trans. on Networking, vol. 6, no. 4, pp. 461–474, Aug. 1998.

[30] J. Cong, A.B. Kahng, G. Robins, M. Sarrafzadeh, and C.K. Wong, Provably good performance-
driven global routing, IEEE Trans. on Computer-Aided Design, vol. 11, no. 6, pp. 739–752, 1992.

[31] M. Maleki, K. Dantu, and M. Pedram, Power-aware source routing in mobile ad hoc networks,
Proc. Int. Symp. on Low-Power Electronics and Design (ISLPED), pp. 72–75, Aug. 2002.

[32] M. Maleki, K. Dantu, and M. Pedram, Lifetime prediction routing in mobile ad hoc networks,
Proc. IEEE Wireless Commn. and Networking Conf., Mar. 2003.

[33] NS -2 Manual, http://www.isi.edu/nsnam/ns/doc/index.html, Feb. 2002.
[34] CMU Monarch Extensions to ns, http://www.monarch.cs.rice.edu/, Feb. 2002.
[35] V.D. Park and S. Corson, Temporally ordered routing algorithm (TORA) version 1 functional

specification, IETF Internet Draft, draft-ietf-manet-tora-spec-01.txt, Aug. 1998. Network simulator,
Feb. 2002.

6700_book.fm Page 27 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.inf.ethz.ch
http://www.cs.ucla.edu
http://www.cs.ucla.edu
http://www.ietf.org
http://www.ietf.org
http://www.monarch.cs.rice.edu
http://www.isi.edu

16

-1

16

Modeling
Computational,

Sensing, and

Actuation Surfaces

16.1 Introduction ..

16-

1

Computational Surfaces

16.2 Colloidal Computing ..

16-

4
16.3 Application Partitioning ...

16-

5

Driver Application: Beamforming

16.4 Communication Architecture and Fault
Management ..

16-

6
16.5 Simulation Infrastructure ...

16-

6

Processing Devices • Communication • Battery Subsystem •
Modeling Failures

16.6 Conclusion...

16-

13
16.7 Acknowledgments ...

16-

13
References ...

16-

14

16.1 Introduction

Recent years have seen the emergence of many efforts to embed computing resources in everyday
environments. These efforts have ranged from the use of wireless sensor networks, to wired ubiquitous
computing environments in homes and commercial installations. A promising culmination of these
directions is that of general purpose flexible surfaces, with large numbers of computational, sensing, and
actuation elements embedded in them. Thin and flexible sheets of general purpose active materials could
find use in a variety of commercial and household applications. These materials with embedded com-
putation, sensing, and actuation capabilities, may be deployed cheaply over large surfaces, for both the
interiors and exteriors of buildings, automobiles, marine vessels (e.g., as a hull lining), and aerospace
applications. Such active or computational surfaces will take advantage of their large contiguous spatial
extents, and the ability to actuate these surfaces. Such an active material with embedded actuators might
be used in building structures that self-repair, or adapt to weather conditions.

16.1.1 Computational Surfaces

Technologies being developed for wireless sensor networks are targeted at enabling the use of cheap,
miniscule, discrete sensing devices for monitoring. Such devices, when either dispersed over large areas

Phillip Stanley-Marbell
Diana Marculescu
Radu Marculescu
Pradeep K. Khosla

Carnegie Mellon University

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-2

Low-Power Processors and Systems on Chips

or embedded into commodity items, enable the gathering of data and monitoring of phenomena. Wireless
networked sensors will enable more efficient tracking (e.g., of items in a warehouse) continuous moni-
toring of inhospitable or remote environments, and will generally enable a significant increase in our
abilities to extract useful information from our environments.

Beyond simple sensing tasks which can be encapsulated in discrete networked sensors, many oppor-
tunities exist for “intelligent” materials with embedded sensing, computation and more importantly,
actuation capabilities. Such a platform is the macro-scale analog of micro-electro-mechanical systems
(MEMS): it integrates computational, sensing, and mechanical actuation devices into a general purpose
material surface. Surfaces form an integral part of the design of structures. The ability to control and
sense phenomena over large surfaces is, however, not easily achieved by straightforward extension of the
capabilities of discrete sensors. Although it is possible to employ large numbers of wireless networked
sensors over surfaces, the use of individual, discrete sensors does not enable the use of actuation, or take
advantage of the possibility of using less power- and cost-intensive wired networking between devices.

The technologies to enable the inclusion of computation, sensing, and actuation arrays in such surfaces,
are not a simple extension of any existing technologies. The manner in which the devices will be
interconnected will most likely be through the embedding of conductors in the surface, however, it is
premature to tell whether this will indeed be the norm. Despite these uncertainties, a common set of
issues need to be addressed to make such computational surfaces a reality.

The physical construction of such substrates will vary based on their applications. For example, for
the purposes of commercial applications such as “smart” lining materials for applications such as auto-
mobiles, aircraft, or marine vessels, a flexible polymer- or carbon-fiber–based substrate might be desir-
able. On the other hand, for other applications, a woven substrate might be desirable. Regardless of the
actual method of fabrication, these substrates will share the following common properties:

• General purpose. It will be desirable to obtain such platforms as a general purpose programmable
substrate. Instead of constructing custom systems, they will be obtained in units of area and
programmed for application specific purposes. Differentiation between products will be achieved
by the area density and types of computational, sensing, and actuation devices, as well as the type
of the substrate material (e.g., polymer substrate, carbon fiber, or woven materials).

• Large surface area

.

The spatial extents of the substrate can be harnessed by applications which
benefit from the combination of computational resources, sensing, and actuation over a large area.

• Computation

.

Large numbers of computational devices embedded into surfaces at low cost. The
use of large numbers of devices will be driven not by a requirement for increased performance,
but instead for fault-tolerance, as well as the desire to spatially distribute computational resources
over the surface. If the platform will be obtained in units of area, a swath of material cut from a
larger piece should still be programmable and usable.

• Sensing

.

A major benefit of the large area systems will be their spatial extent, which makes them
particularly useful for sensing applications such as active antenna arrays. Such arrays for many
types of signals (e.g., acoustic or RF) can take advantage of such large intelligent surfaces, to
augment applications such as speaker location or ultra-wideband radios. For example, a surface
being employed as an antenna array might adapt its shape to achieve better signal reception.

• Actuation

.

It is possible to embed many types of actuation devices in these large area surfaces.
Actuating strands such as shape-memory-alloys, can be embedded to enable the surfaces to change
shape in response to data obtained from the sensors and driven by the computational elements.
Other possible actuators include materials such as those which change color or reflectivity in
response to signals, as well as heating and Peltier cooling elements.

 Many challenges must be addressed to make such a platform a reality. The materials aspects of these
substrates may indeed be the easiest to address. Although significant benefits in integration could be
derived from customizing device-packaging technologies for these flexible large area computation and
sensing arrays, it will nonetheless be possible to employ off-the-shelf components, which have been

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-3

packaged and optimized for traditional computing platforms in the first generations of systems. The
greater challenges, we believe, lie in ensuring reliability in applications, particularly in the computer-
aided design (CAD) methodologies, systems software, and programming language technologies needed
to enable the harnessing of the unique capabilities of these systems. To address these issues, modeling
frameworks and prototype systems are required to evaluate the use of the platform. To assess the efficacy
of proposed designs, appropriate metrics that take into consideration the unique properties (e.g.,
restricted energy resources, performance constraints, reliability, and battery subsystem nonlinearities)
must be employed.

Techniques to program such networks are required, permitting useful applications to be constructed
over the defect and fault-prone substrate. In the classical design cycle (Figure 16.1), the application is
mapped onto a given platform architecture, under specified constraints (e.g., performance, area, and
power consumption). When these constraints are met, the prototype is tested, manufactured, and used
for running the application. In the platforms of interest (Figure 16.2), the substrate is comprised of large
numbers of interconnected computing elements, with no prescribed functionality. To achieve high yields,
as well as high fault-tolerance later in the lifetime cycle, regularity is important. An application must be
partitioned to expose concurrency. At system startup, the partitions of the application are mapped to
hardware, so as to optimize different metrics of interest (e.g., quality of results, power consumption,
operational longevity, and fault-tolerance) and later remapped whenever operating conditions change.

FIGURE 16.1

Classical static design cycle: no remapping occurs after the initial design is built.

FIGURE 16.2

Dynamic continuously adapting living designs: through continuous online monitoring, the mapping
of applications to the hardware substrate may evolve over time.

Application Architecture

Results OK?

Build

Run

Mapping &
Analysis

Results OK?

Application Architecture

Run

Mapping &
Analysis

Monitor/Measure

YesNo

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-4

Low-Power Processors and Systems on Chips

This chapter presents a conceptual framework and a simulation infrastructure for modeling several
aspects of large surface arrays of computational, sensing, and actuation devices. Together, these provide
a foundation for possible research directions. The next three sections present the conceptual framework,
and Section 16.5 follows with a description of computation, communication, failure, and battery mod-
eling in the simulation framework. The chapter ends with a summary of the presented ideas and possible
directions for research in this new field.

16.2 Colloidal Computing

The model of colloidal computing (MC

2

) [1] proposes local computation and inexpensive communica-
tion among computational elements: simple computation particles are “dispersed” in a communication
medium which is inexpensive, possibly unreliable, yet sufficiently fast (Figure 16.3). The concept of
colloids is borrowed from physical chemistry [2].* In the case of unstable colloidal suspensions, colloidal
particles tend to coalesce or aggregate together due to the Van der Waals and electrostatic forces among
them. Coalescing reduces surface area, whereas aggregation keeps all particles together, without merging.
Similarly, the resources of a classic system are coalesced together in a compact form, as opposed to the
case of colloidal computation where useful work can be spread among many, small, possibly unreliable
computational elements that are dynamically aggregated depending on prevailing needs (Figure 16.4).
Dynamic or adaptive aggregation is explicitly performed whenever operating conditions change (e.g.,
failure rate of a device is too high or battery level is too low) — a “stable” configuration is one that
achieves the required functionality, within prescribed performance, power consumption, and probability
of failure limits. The mapping and reconfiguration process of the application onto the underlying
architecture is achieved via explicit mechanisms, as opposed to classic computing systems where mapping
and resource management is done via implicit mechanisms.

 The MC

2

 model [1] was previously proposed to model both the application software and architecture
platform. Most of the applications under consideration consist of a number of computational kernels
with high spatial locality, but a low degree of communication among them. Such kernels (typically
associated with media or signal processing applications) can thus be mapped on separate computational
“particles” that communicate infrequently for exchanging results.

Reorganization and remapping requires thin middleware or firmware clients, sufficiently simple to
achieve the required goals without prohibitive overhead. In addition, fault and battery modeling and

*

Colloid

 [käl’oid] = a substance consisting of very tiny particles (between 1 nm and 1000 nm), suspended in a
continuous medium, such as liquid, a solid, or a gaseous substance.

FIGURE 16.3

Colloidal computing model: analogy to colloidal chemistry [1].

Liquid/Gaseous Medium

Computation Particles

Communication Medium

Solid/Gaseous Particles

Colloidal Fluid Colloidal Computing

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-5

management become intrinsic components for achieving requisite levels of quality of results or opera-
tional longevity. We describe in the following sections, some of the issues that are critical to application
lifetime, namely, application partitioning, followed by communication and fault management.

16.3 Application Partitioning

An issue of concern in mapping applications to hardware is that of concurrency. Given that the hardware
substrate will contain many computational particles distributed on large surfaces, it is of crucial impor-
tance to expose the concurrency available in applications. The methods by which such concurrency may
be extracted are a very interesting research avenue in their own right.

16.3.1 Driver Application: Beamforming

Beamforming consists of two primary components — source location and signal extraction. It is desired
to detect the location of a signal source, and “focus” on this source. In a classic implementation, signals
from spatially distributed sensors are sent to a central processor, which processes them to determine the
location of the signal source and reconstruct a desired signal. Each received sample is filtered, and this
filtering could indeed be performed at the sensor. Figure 16.5 illustrates the organization for a wired
network of sensors used to perform beamforming.

FIGURE 16.4

Coalesced vs. aggregated resources: partitioning applications to expose concurrency [1].

FIGURE 16.5

Beamforming in a wired sensor network.

Resource
aggregation

Nano-application

Implicit Exiplicit

Communication +
synchronization

Application mapping +
resource management

Coalesced
resource

Nano-system

nApp

nApp

nApp

nAppnApp

nP
nM nP

nM

nP
nM

nP
nM

nP
nM

nP
nM

Sequential Application

OS

µP

Cache

Memory

Signal Extraction Node (master)

Redundantly Deployed Nodes (idle)

Shared Network

Active Sensor Nodes (slaves)

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-6

Low-Power Processors and Systems on Chips

In contrast to a classic implementation, the beamforming application as depicted in the figure is
partitioned for execution over a network of processing devices. The filtering operation on each collected
sample can be considered to be independent of other samples, thus it could be performed individually
at each sensor node (slave node). The final signal extraction need only be performed at one node (master
node). This division of tasks scales well with increasing number of sensors because the complexity of
processing at each sensor node remains the same, and the only increase in complexity is in the number
of filtered samples collected at the master.

Our example system operates in periods. During each period, all the slaves collect samples, filter them,
and send the filtered samples to the master. The duration of the sampling period will vary for different
applications of beamforming. In the case of beamforming for speech applications, an overall sampling
rate of 8 KHz is sufficient. For geophysical phenomenon, a sampling rate of 1 KHz is enough, whereas
for tracking the motions of animals, a sampling rate of 10 Hz is sufficient. In the analysis used throughout
the rest of the chapter, a sampling rate of 10 Hz corresponding to a 100 msec sampling period is used.

The communication messages between the master and slave nodes consist of 4-byte data packets
containing the digitized sample reading. When the battery level on any of the slave nodes falls below a
specified threshold, the slave application attempts to use its remaining energy resources to migrate to
one of the redundant nodes. If migration is successful, the slave application resumes execution on the
redundant node, and adjusts its behavior for the fact that it is now executing on a different sensor, which
is detected when it restarts. The migrated application code and data for the slave application is small
(only 14 KB). The application on the processing elements with attached sensors implements a 32-tap
FIR filter, and consists of 14 KB of application code and 648 bytes of application state. The application
mapped on the sample aggregation (master) node performs a summation over the samples. The sequence
of messages that are exchanged between the master and slaves during normal operation, and between
the slaves and redundant nodes during migration is illustrated in Figure 16.7.

16.4 Communication Architecture and Fault Management

Achieving reliable computation in the presence of failures has been an active area of research dating back
to the early years of computing [3,4]. Unlike large networked systems, in which failure usually occurs
only in communication links or in computational nodes and communication links with low correlation,
in the platform of interest, nodes and links coexist in close physical proximity and thus witness high
correlation of failures.

It is assumed that the application is initially mapped at system startup for given quality of results
(QoR), power and fault-tolerance constraints. As operating conditions change (e.g., permanent failures
due to wear and tear, or intermittent failures due to battery depletion), the entire application (or portions
of it) will have to be remapped, or communication links rerouted (Figure 16.6). Such reconfiguration
mechanisms assume that redundancy exists for both nodes and links. In a fixed infrastructure, the logical
implementation of redundancy is to replicate resources, with one resource taking over on the failure of
the other. Upon such failures, applications must be remapped, for example, by code migration or remote
execution. Code migration is generally a difficult problem, as it could, in the worst case, require the
movement of the entire state of an executing application; however, migration of running applications
can be greatly simplified by restricting the amount of application state that must be preserved.

16.5 Simulation Infrastructure

To investigate system architectures and programming models for the platform, it is necessary to be able
to model it at the level of detail of its computation and inter-device communication. Using high-level
behavioral models will be insufficient, as such an approach will fail to capture the interplay between
computation and communication performance, as well as computation and communication failures, and
their effects on performance, power consumption, and system reliability.

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-7

FIGURE 16.6

Dynamic reconfiguration in the presence of failures: in the event of a defective link (top), the network
topology mapping is adapted to circumvent the faulty link. Likewise, in the case of a defective node, mapping and
topology change to use a redundant node and a different link (bottom) [1].

FIGURE 16.7

Messages exchanged in a beamforming application.

Topology changed due
to defective link

nAppnAppnApp

nApp nApp

nP
nM

nP
nM

nP
nM

nP
nM

Defective link

nP
nM

nP
nM

nP
nM

New link added
to topology

nAppnAppnApp

nApp nApp

nP
nM

nP
nM

nP
nM

Defective device

Mapping
changed due to
defective device

nP
nM

nP
nM

nP
nM

Master
get_sample

FIN
get_sample

filtered_sample

RedundantSlave

filtered_sample

req_migrate

grant
code

code

!Low Battery!

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-8

Low-Power Processors and Systems on Chips

Any given platform will consist of multiple processing elements, distributed over a spatial extent in
the surface. Such processing elements may either be general purpose programmable devices such as
microcontrollers, or might be programmable logic devices. The processing devices will communicate
over some communication infrastructure, whose topology might take advantage of the two-dimensional
nature of surfaces. Failures in both the devices and in their interconnection networks will be common.
These failures might be predictable, as in the case of depletion of energy resources, or they might be
unpredictable, such as a defect in a communication or power conductor leading to intermittent com-
munication or device failure.

It is therefore desirable for a simulation infrastructure to support the cycle-accurate simulation of
multiple processing elements, for both general purpose processing and programmable logic devices. It
must likewise enable the modeling of bit-level communication, in user-defined communication topolo-
gies. Failures in both processing devices as well as the communication links that interconnect them should
be modeled, along with the relevant power dissipation for both computation and communication, and
the effects of the current discharge profiles on power sources such as battery subsystems.

To support the investigation of CAD methodologies, system architectures and programming models
for the hardware platforms of interest, we have developed a simulation framework [5] that aims to address
the aforementioned modeling issues. The simulator models:

• Processing devices. The simulator permits the instantiation of multiple processing elements. Each
instantiated element is modeled at the level of instruction execution. Two different processor
architectures are modeled: the Hitachi SH3 architecture and the TI MSP430. Each processing node
may have instantiated with it, one or more network interfaces, and each of these can be connected
to an interconnection link.

• Interconnection links connecting the processing nodes. Interconnection links may be instantiated
as necessary to create networks, and the network interfaces of processing nodes are attached to
links. The links may be configured for variable transmission delay (link speed), link frame size,
link failure probability, and link failure modes.

• Batteries and DC-DC converters. Each processing node is associated with a source of energy. The
first-order effects of discharge rate on the battery cell and DC-DC converter efficiency are modeled
by the simulation framework.

• Failures. The failure rate, average failure duration, and failure probability distribution of both
processing nodes and interconnection links may be specified. Correlated failures between nodes
and links may also be enabled, by specifying appropriate correlation coefficients.

The following describe each of the components of the simulation framework in more detail, motivating
the need to perform modeling at the level of abstraction employed.

16.5.1 Processing Devices

At the core of the simulation framework is the modeling of instruction execution. Modeling applications
at the level of detail of the simulation of the execution of their compiled code, make it possible to employ
the simulation framework as a debugging platform for actual prototypes. It also makes it possible to
determine important interactions between the requirements of computation, communication, and reli-
ability, and the effects of these constraints on power consumption.

For example, Figure 16.8 plots the variation in two indicators of performance for the beamforming
application implemented over the simulation framework. The beamforming application, as previously
described, consists of two phases, which require differing amounts of network bandwidth. For both of
these phases, however, increasing network speed does not indefinitely lead to increased performance,
and may actually lead to reduced system performance. The “migration” phase of the said application,
where the performance is depicted by the “average migration cost” curve in Figure 16.8, can actually not
keep up with increasing network performance beyond a link speed of 1.6 Mb/s. This is because the

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-9

application attempts to transmit data at the fastest rate possible on the network, however, at this com-
munication rate and for the modeled processing speeds, the receiving node does not have sufficient time
(i.e., its computation is not fast enough) between arriving data frames to copy data it has received, before
it is overwritten. Such delicate interplay between computational resources and networking resources is
easily missed in high-level simulation (e.g., when employing a simple behavioral model of the entire
system implemented in a high-level language).

The simulation framework includes two different architectural models, one for the Hitachi SH archi-
tecture, based on the Hitachi SH3 SH7708 (Figure 16.9), and the other of the Texas Instruments (TI)
MSP430 architecture (Figure 16.10). Support for new architectures is easily added, and requires primarily
the addition of code for implementing instruction decode and execution. The modeling of on-chip
structures, such as interrupt generation, caches, and memory interfaces, as well as some standard periph-
erals, such as a network interface, is shared across the different architectures

.

The Hitachi SH3 model includes detailed modeling of the CPU core, on-chip cache, and on-chip

peripherals such as an RS-232 Universal Asynchronous Receiver/Transmitter (UART)

.

 It incorporates
two complementary means of estimating the energy cost of application software — an empirical instruc-
tion level power model and circuit activity estimation. The instruction level power model functions by
assigning to each instruction executed, an energy dissipation based on empirically measured values, scaled
if necessary for a given operating voltage and frequency, as the model supports dynamic scaling of both
operating voltage and frequency. Employing this simple energy estimation scheme enables fast simulation,
which is critical because the framework is often used to simulate such platforms consisting of tens of
processing devices. Although simple, the employed instruction level power estimation has been demon-
strated to be within 6.5% of measured values for the hardware it models [6]. The instruction level power
model can be augmented with a circuit transition activity estimation, which reports, for each simulation
cycle, the signal transition activity on the address and data buses, in the register file, the program counter,
and pipeline registers. The SH3 core model provides six levels of detailed simulation, enabling a trade-
off between power estimation accuracy and simulation speed [6].

The Texas Instruments MSP430 architecture model provides functional simulation of the processor
and its peripherals for the MSP430F11 series of microcontrollers. Unlike the SH3 model, it currently
provides only functional modeling of the modeled microcontroller to enable applications compiled for
a prototype system to be modeled and debugged in the simulation framework.

FIGURE 16.8

Variation in performance (average sample inter-arrival time and average migration cost) with com-
munication link speed for an example application.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
2.00E-01 4.00E-01 8.00E-01 1.

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-10

Low-Power Processors and Systems on Chips

FIGURE 16.9

Hitachi SH3 architecture.

FIGURE 16.10

Texas Instruments MSP430 architecture.

Oscillator

Communication

Operation
Mode
Controller

Timer

RealTime
Clock

Interface

Serial

User Break
Controller

Bus State
Controller

PLL Clock

CPU

Hardware
Multiplier

Interrupt
Controller

Unified

MMU

Cache

Pe
rip

he
ra

l A
dd

re
ss

 B
us

Memory
16

bi
t P

er
ip

he
ra

l D
at

a
Bu

s

Cache

32
bi

t P
hy

si
ca

l A
dd

re
ss

 B
us

32
bi

t V
irt

ua
l A

dd
re

ss
 B

us

Controller

32
bi

t D
at

a
Bu

s

TLB

Unified

Instruction/data

MCLK

system clock
Oscillator

ACLK

SMCLK

Bus 8bit data bus

MAB, 16bit address bus

JTAG

16 16bit registers

CPU

Peripherals Peripherals

Flash RAM

converterMDB, 16bit data busRisclike arch.,

timer
Watchdog

MDB

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-11

16.5.2 Communication

The communication modeling architecture in the simulation framework enables the construction of a
variety of communication topologies, such as that illustrated in Figure 16.11. Processing elements com-
municate with each other through their network interfaces, which are connected to communication links.
The behavior of the network interface modeling is independent of the processing core model chosen for
a given device. The properties of a modeled communication links and interfaces are flexible and param-
etrizable, enabling them to be configured to model the properties of media ranging from one with
properties like RS-232, to one that behaves like Ethernet.

Each communication interface on a device must be associated with a communication link. Each
communication link or network segment may be configured for the following specific properties:

• Frame size. Data is transmitted on a communication link in groups of bytes referred to as a “frame.”
• Propagation speed. The propagation delay specifies the speed at which a signal travels in the

communication medium, over the communication link. When modeling wired communication,
this is taken to be the speed of light. Nodes in the simulation can have associated with them a
location in three-dimensional space, which will then be used in conjunction with the propagation
speed to determine the propagation delay. For most simulation scenarios, however, this parameter
can be ignored.

• Transmission speed. The transmission speed specifies the number of bits that are modulated per
second, or the bit-rate of the communication medium.

• Maximum simultaneous accesses. Specifying a maximum number of simultaneous accesses per-
mits a medium to be configured to behave, for example, either as a carrier sense multiple access
with collision detection (CSMA/CD) medium, or as one that employs frequency division multi-
plexing (FDM).

• Failure probability and maximum failure duration. These are discussed further in the description
of the failure in Section 16.5.4

.

To ensure network interfaces are always compatible with the networks to which they are attached,
network interfaces inherit the aforementioned properties from a network segment to which they attached.
The transmission and receive power consumption of a network interface may, however, be configured
independently of the properties of the link with which it is associated. The simulation of data transmission
and receipt is kept cycle-accurate with respect to computation. The granularity at which data is transferred
from one device to another is determined by the smallest cycle time of all the modeled processing devices.

16.5.3 Battery Subsystem

The simulator includes a detailed discrete-time battery modeling engine based on [7]. In brief, the model
takes into account properties of battery cells, such as dependence of battery terminal voltage on the state

FIGURE 16.11

An example of communication topology.

Point-to-point Communication Links

Processing Device

Network interface

Shared Communication Link

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-12

Low-Power Processors and Systems on Chips

of charge (SOC) of a battery, dependence of usable capacity on discharge rate, and dependence on the
rate of change of current over time. To provide a constant voltage to the powered electronics in the face
of variation in battery terminal voltage over time, a DC-DC converter provides voltage stabilization, at
the cost of a loss due to inherent inefficiencies in the conversion. A simple organization of a battery-
powered system (Figure 16.12) illustrates this further.

 To model different types and sizes of batteries and DC-DC converters, the model (and its implemen-
tation in the simulator employed in this work) uses lookup tables (LUTs) and additional fixed parameters
to store the characteristics of specific batteries. The default battery characteristics employed in our
implementation are those for a lithium ion cell from the Panasonic CGR18 family. The DC-DC converter
characteristics employed are those for a Dallas semiconductor/Maxim MAX1653 device. User LUTs may
be loaded into the simulator to mimic other device’s characteristics, for both the battery cell and DC-
DC converter. Figure 16.13 plots the dependence of battery terminal voltage with time for a nominal
discharge rate of 150 mA. The data in Figure 16.13, although plotting the voltage at the terminals of the
battery cell, also includes the effect of DC-DC conversion, and depicts the lumped behavior of the battery
cell if the battery subsystem were attached to electronics that had a constant current draw of 150 mA.

The components of the battery properties are illustrated in Figure 16.14. The parameters of interest
in this work are

V

r

, a measure of the rate of discharge,

V

rate

, a time-sluggish (i.e., low-pass filtered) version
of

V

r

,

V

lost

, which models the dependence of battery terminal voltage on the magnitude of

V

rate

 for a

FIGURE 16.12

Organization of battery subsystem: the DC-DC converter is required to obtain a constant voltage
to power electronics, due to the dependence of battery cell terminal voltage on battery state of charge.

FIGURE 16.13

Variation of battery cell terminal voltage over time for a nominal current draw of 150 mA from
outside the battery subsystem.

Battery Cell

Battery Subsystem

D
C

 D
C

 C
on

ve
rte

r

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Modeling Computational, Sensing, and Actuation Surfaces

16

-13

particular battery type (from an LUT). Last,

V

C

 models the instantaneous state of charge, taking into
consideration V

lost

.

16.5.4 Modeling Failures

The simulation framework models failures in both processing devices and communication links. Failures
in processing devices manifest as intermittent stalls of the entire processing device for the duration of
the failure. Failures in communication links manifest as intermittent loss of carrier for the duration of
the failure. Failures, such as bit errors introduced into the communication stream and into device
computation, are not currently supported, but are planned. For both failures in devices and communi-
cation links, the failure rate and maximum failure duration are configurable. Correlated failures between
processing devices and communication links can be modeled by specifying appropriate correlation
coefficients for a given node-link pair.

16.6 Conclusion

New technologies often pose new challenges in terms of system architectures, device architectures, and
sometimes, models of computation. The technology of interest in this chapter is that of computational,
sensing, and actuation surfaces, which are flexible meshes of material containing large number of unre-
liable, networked computing elements, sensors, and actuators. The challenges addressed herein were those
of design methodologies, system architectures, modeling, and fault-tolerance.

Computational, sensing, and actuation surfaces inherently have high defect rates, as well as high fault
rates, and thus must by necessity provide mechanisms for extracting useful work out of the unreliable
substrate. By employing a detailed simulation infrastructure designed to enable the simulation of the
computation, communication, power consumption, and battery discharge characteristics, the dynamic
adaptation of applications in the presence of faults can be investigated.

16.7 Acknowledgments

This research was supported in part by the Defense Advanced Research Projects Agency (DARPA)
Information Processing Technology Office, under contract F33615-02-1-4004, and the Semiconductor
Research Corporation, under grant 2002-RJ-1052G.

FIGURE 16.14

Variation of components of a battery model with time for a nominal current draw of 150 mA from
outside the battery subsystem.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

16

-14

Low-Power Processors and Systems on Chips

References

[1] R. Marculescu and D. Marculescu. Does Q = MC

2

? (On the relationship between quality in elec-
tronic design and model of colloidal computing).

Proc. IEEE/ACM Intl. Symp. on Quality in
Electronic Design (ISQED),

 March 2002

.

[2] R. Rajagopalan and P.C. Hiemenz.

Principles of Colloid and Surface Chemistry.

 Marcel Dekker, New
York, 1992.

[3] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents.

Automata Studies,

 pp. 43–98, 1956.
[4] M.D. Beaudry. Performance-related reliability measures for computing systems.

IEEE Trans. on
Comput.,

c-27(6):540–547, June 1978.
[5] P. Stanley-Marbell.

Myrmigki Simulator Reference Manual.

 Technical report, Center for Silicon
System Implementation (CSSI), Department of Electrical and Computer Engineering (ECE)

,

 Car-
negie Mellon University, Pittsburgh, PA, 2003.

[6] P. Stanley-Marbell and M. Hsiao. Fast, flexible, cycle-accurate energy estimation.

Proc. Int. Symp.
on Low-Power Electron. and Design (ISLPED),

 pp. 141–146, August 2001.
[7] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi. A discrete-time battery model

for high-level power estimation.

Proc. Conf. on Design, Automation, and Test in Europe (DATE

)

,

pp. 35–39, January 2000.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

III

-1

III

Embedded Software

17 Low-Power Software Techniques..17-1

Catherine H. Gebotys

18 Low-Power/Energy Compiler Optimizations..18-1

Ulrich Kremer

19 Design of Low-Power Processor Cores Using a Retargetable Tool Flow19-1

Gert Goossens, Peter Dytrych, and Dirk Lanneer

20 Recent Advances in Low-Power Design and Functional Coverification
Automation from the Earliest System-Level Design Stages ...20-1

Thierry J.-F. Omnès, Youcef Bouchebaba, Chidamber Kulkarni, and Fabien Coelho

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-1

17

Low-Power Software

Techniques

17.1 Introduction ..

17-

1
17.2 Software Models for Predicting Average Power

17-

2

Experimental Setups for Average and Instantaneous Current •
Previous Instruction-Level Average-Power Models • Example
of Statistically Generated Model for Average Power

17.3 Instruction-Level Models for Predicting
Instantaneous Power ...

17-

8
17.4 Emerging Applications of Instantaneous Power

Prediction: Security ...

17-

9

Simple Power Analysis • Differential Power Analysis

17.5 Acknowledgment...

17-

13
References ...

17-

13

17.1 Introduction

Software can have a large impact on the average power, peak power, energy dissipation, and instantaneous
power of the embedded processor core. In turn, average power is directly related to battery lifetimes. Peak
power constrains the thermal design of the embedded system. In addition, the peak power affects the
power supply design and instantaneous power can affect reliability and security. Today, low-power dissi-
pation is critical for wireless communication devices, which demand long battery lifetimes, high reliability,
low thermal dissipation, and high security. This chapter discusses the relationship between software and
power. First, instruction-level models for predicting the average power and predicting the average energy
of applications executing on an embedded processor are reviewed. An example of an instruction-level
model combined with statistics is presented for a digital signal processing (DSP) processor. Next, recent
research in instruction-level models for predicting instantaneous power of a processor core is discussed.
Finally, new emerging applications of instantaneous power design utilizing software, specifically in secu-
rity, are addressed.

The need for low-power dissipation in many general-purpose processor cores and DSP processor cores
has created a need for further understanding of power in system on chip (SoC) devices. Architectural
design for low-power and high-level transformations for low-power applications are becoming a well
understood area of research [1]. Previous methods of estimating power at a high level using gate-level
or architecture-level simulations were either inaccurate or too time consuming. For embedded systems
designers, power measurement and optimization for code is very important, however, gate-level processor
representations are not always available for estimating power. Instruction-level accurate power prediction
tools for embedded processor cores are important. The equations for power measurement and prediction
are discussed next.

Catherine H. Gebotys

University of Waterloo

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-2

Low-Power Processors and Systems on Chips

The energy dissipation of a processor running a program [2],

E,

 can be approximated by the product
of the time required to execute the program (

T

), the average current (

I

), and the supply voltage (

V

dd

) as
in Equation (17.1).

E = PT = IV

dd

 T = INV

dd

(17.1)

This equation ignores the additional power dissipation arising from leakage current and short circuit
current [3]. The term

T

 is equal to

N

τ

, where

N

 is the number of clock cycles and

τ

 is the clock period.
From Equation (17.1), a reduction in

N

 (equivalently a performance increase) will always provide
equivalent or higher reduction in energy as long as the new value of current,

I,

 is equivalent or lower in
value. In cases where

I

 increases as

N

 is decreased (i.e., performance improvement could be derived from
the use of more parallel instructions which help create higher average current per cycle), the reduction
in energy will be less than the reduction in

N

. In some cases (possibly rare) it may even result in increased
energy dissipation if p

i

>

 p

n

/(1

−

 p

i

), where p

i

 is the fraction of

I

 that is increased, and p

n

 is the fraction
of

N

 that is reduced.
For many embedded processor core applications,

N

 is fixed (by the throughput requirements), making
energy reduction techniques rely solely on reducing

I

 or reducing power. Thus,

I

 is an important
parameter for embedded systems design that needs to be studied and predicted for software energy
prediction. The problem becomes how to modify or generate processor code that is energy efficient or
meets power constraints. An excellent review of system-level power optimization techniques and tools
can be found in Benini and DeMicheli [1]. This chapter provides an in-depth review of experimental
setups for measuring current of processors. Additionally, instruction-level average power modeling of
embedded processors is reviewed. An example of modeling instantaneous power of a very long instruction
word (VLIW) DSP processor at the instruction-level is outlined. Throughout the chapter, current, power,
and energy models are discussed. This chapter concludes with emerging areas for instantaneous power
prediction in security. The next section discusses predictive models of average power.

17.2 Software Models for Predicting Average Power

Instruction-level models for predicting the power dissipation of processors was investigated in Lee et al.
[2], Tiwari et al. [4], Qu et al. [5], and Russell and Jacome [6]. These models were verified by real
measurements of average power for both instructions and programs on the target processor board. The
first section briefly describes the different experimental setups used in power research, followed by a
description of the verified power-prediction models and their accuracy in the next section. A general
review of other instruction-level power models is also presented, followed by a detailed example of
utilizing a statistical approach to model building. Section 17.3 and Section 17.4 present recent research
in building instruction-level instantaneous power models of embedded processors and applications of
instantaneous power modeling to security, respectively.

17.2.1 Experimental Setups for Average and Instantaneous Current

Measuring the current drawn by the processor while executing an application has been used by many
researchers to verify power models. The equipment setups vary from ammeters to oscilloscopes. The
objective of measuring the current drawn by the processor while it is executing an application varies as
well. In some cases, current measurements are used to obtain average power readings per instruction or
per program, and in other cases the measurement is used to obtain the real execution times of a processor
(i.e., including cache misses and memory stalls), which are too difficult to simulate.

For current measurements of a general-purpose processor and a DSP processor in Lee et al. [2] and
Tiwari et al. [4], a current meter was used. This setup allowed power measurements for small programs
(whose execution times were much less than 100 ms). These programs were repeated several times in
a loop until a stable current reading could be obtained. These current readings were taken visually so

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques

17

-3

stability was important. Other researchers [7–9] have used this same type of experimental setup except
the current meter (e.g., a Fluke 867B GMM) was more sophisticated, allowing sampled readings of
current to be transferred to a workstation. This allowed variations in current readings to be averaged.
In addition, the current measurements of longer programs could be supported. The user can set the
period over which samples can be averaged and these averaged samples are then transferred to the
workstation for further analysis. Thus, the requirement for stability of the readings and limitations of
short programs as in Lee et al. [2] and Tiwari et al. [4] was not necessary. This type of setup (using
HP34401A digital multimeter) has also interestingly been used to validate a runtime power estimator
in Joseph and Martonosi [10]; however, here a shunt resistor was placed between the power supply and
the processor’s board power terminal. The voltage across the shunt resistor was measured and then
divided to obtain current measurements. In Joseph and Martonosi [10], the chipset power was sub-
tracted from the total board power to obtain the CPU power. Sinha and Chandraksan [11] also used a
source meter to measure the current drawn by subroutines. This setup was used to analyze leakage
current as

V

dd

 changed.
An interesting experimental setup described in Chang et al. [12] used capacitors in between the

power supply and the processor. This setup allowed the researchers to analyze specific cycle-by-cycle
energy [12]. The minimum and maximum voltages on the capacitors were acquired in real time. Each
cycle the capacitors were charged up by the current drawn by the processor and in the next cycle the
capacitors were fully discharged. This technique allowed measurement of current effects from single
cycle activity alone (without the influence of previous cycles). The capacitors were completely dis-
charged before the next clock cycle; thus, only activity in the clock cycle of interest was measured. This
setup allowed researchers to isolate cycle-by-cycle influences of instructions in the pipeline on the
current draw.

Other researchers have measured power [6,13–16] using an oscilloscope. Oscilloscopes offer higher
sampling rates and more accuracy than the digital multimeters. The oscilloscope in Wolf et al. [16] was
used to accurately measure the execution time of applications. In Russell and Jacome [6], an oscilloscope
was used to obtain the instantaneous power measurement of a single instruction (for an instruction-
level power model). The instruction was repeated several times in a loop [6]. In the later case, a resistor
was placed in between the power supply and power pin of the processor. Decoupling capacitors were
introduced to reduce the voltage noise during current surges. Although instantaneous power was mea-
sured in Russell and Jacome [6] using an oscilloscope, the average power was calculated from this
waveform over the loop body (which consisted of 100 instances of an instruction). In Wolf et al. [16], a
resistor was again used, however, a custom experimental setup using differential amplifiers, an integrator,
and an ADC was used to transfer and process the power readings into a logic analyzer. Power measure-
ments per clock cycle were recorded using this setup. Nickolaidis et al. [28] utilized current mirror
circuitry to obtain current measurements. This technique avoided the use of a resistor between the supply
and the power pin (which typically may cause supply noise problems).

Instantaneous power was also captured in Muresan and Gebotys [13,14] and Muresan [15] by using
an inductive probe (instead of a resistor in between the supply and power pin). An oscilloscope and
pattern generator were both used to synchronize the program and oscilloscope. Additionally the pattern
generator produced the clock signal as well as the trigger signal. This allowed accurate measurements of
the instantaneous current over various sections of a program executing on the processor. The purpose
of this setup was not to measure average current per instruction, but to measure and model the instan-
taneous power. Section 17.3 outlines the research resulting from this experimental setup for instantaneous
power modeling. Other researchers [17] used a National Instruments data acquisition card to simulta-
neously read 16 power sources (at rates up to 1 million samples per second) in a portable laptop PC
environment. This setup was used to evaluate power management algorithms. Researchers in the emerg-
ing area of security have also used oscilloscopes to measure instantaneous power [21,22,26]. Here,
instantaneous power is analyzed to ensure no confidential information is leaked from the security
application, to be further discussed in Section 17.4. The next section gives a brief overview of instruction-
level power models, which have been researched.

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-4

Low-Power Processors and Systems on Chips

17.2.2 Previous Instruction-Level Average-Power Models

Previously researched instruction-level power models for processors are briefly reviewed in this section.
Some of these models have been verified with real power measurements or with lower-level power
estimation tools. These models are discussed, followed by an illustration of building a power model using
statistics and instruction-level power measurements. The power model is then verified with real power
measurements of applications executing on the processor.

One of the earlier instruction-level models of power [2,4] was derived from a base power cost per
instruction along with an overhead cost related to the next or nearby instruction. They achieved an
accuracy of 10% but required characterization not only on a per instruction basis, but also for pairs of
instructions and beyond. Some tools were developed that provided performance improvement in code
in addition to power improvements. In several cases and where data was available, their results demon-
strated that fewer instructions lead to faster code and lower energy. This approach has been utilized by
several researchers to build instruction-level power models of various processors.

Russell and Jacome [6] measured instantaneous power of individual instructions across one loop
iteration and used this in an instruction-level average-power model. Using statistics, their model con-
cluded that for the two reduced instruction set computer (RISC) 32-bit processors considered, a model
utilizing only the average power of all assembly instructions multiplied by the execution time (also
determined from the oscilloscope) provided an 8% accurate model for energy with a 99% confidence
level. Other researchers have also captured instantaneous power for purposes of building an average
energy instruction-level model. In Nikolaidis et al. [28], the oscilloscope captured the instantaneous
power of a single instruction embedded by NOPs. The power was integrated over one clock cycle to
obtain the average energy measurement for the single instruction. Simunic et al. [18] extended an
instruction-level simulator of an ARM processor for power along with energy models for board inter-
connect and memory. The total energy of this embedded system was modeled overall with a verified
accuracy of 5%. Chang et al. [12] studied specific cycle-by-cycle energy, however, a power prediction
model was not created. Instead, the research studied what factors influence the power dissipation of each
instruction. For example, the analysis indicated that hamming distance between address values, and other
switching had a significant influence on the power. Step-power analysis [19] uses power simulators to
study effects of clock gating on maximum power consumption. Step power is defined as dp/dt, and it
causes reliability concerns. It is studied to identify the causes of high step-power.

17.2.3 Example of Statistically Generated Model for Average Power

This section briefly describes a statistically generated model for power dissipation of a TMS320C5x DSP
processor. The DSP processor’s datapath has an accumulator register, product register (of the multiplier),
and the input register to the multiplier, respectively. The memory addressing can support direct or indirect
memory addressing modes. Offset addressing is also supported, but only one offset address register is
available. Eight address registers are available, and a three-bit register points to the current one

.

 The
processor has address characteristics similar to many popular DSP processors. Similar to the DSP processor
used in Lee et al. [2], parallel instructions are used, and some instructions have design features similar
to other DSP processors (specifically that of two nonsequential instructions changing the same state).
The TMS320C5x DSP processor along with the Fluke 867B digital multimeter was used. All experiments
were repeatable. After the board was powered up, a warm-up period was allowed before any experiments
were run. Figure 17.1 illustrates the current measurements over time when the board is initially warmed
up. A series of NOP (no-operation) instructions were executed before and after each series of programs
were run to calibrate any variation in power measurements due to temperature variation

.

 In all cases,
standard deviations were lower than 0.03 mA.

The average current for each type of instruction is recorded and used to generate a variable, x

p

, which
is detailed later in this section. Several DSP benchmark programs are also run with four different types
of input data (e.g., voice and pseudorandom

)

, and current measurements are recorded. The power

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques

17

-5

predictor model generation is based upon linear regression performed on a number of variables from the
benchmark DSP code and x

p

. The output is a model (or equation y = f(x

p

, variables)), which predicts
current from only the DSP code itself (or variables extracted from it). The embedded systems designer
then generates code for their application and uses it with the power-prediction model to predict current.
Code is regenerated (using some technique such as rescheduling or rewriting the application) in an attempt
to obtain code that meets the performance constraint and minimizes the predicted power dissipation.

DSP code for embedded types of applications, such as the fast Fourier transform, least means squares,
high pass filter, and discrete cosine transform, were generated. The programs ranged from 60 to 150
instructions. Different schedules, addressing arrangements, and coding were used to study power effects.
In many cases, different codes for the same filter were created with equivalent performance (e.g., using
different schedules and address generation). One set of programs was used to generate the

power predic-
tion model, and a different (independent) set of programs were used to verify the model.

For each DSP benchmark program, a straight-line basic block code sequence was repeated several
times and then placed within a loop. Each repeat of the program used a different part of the input data.
For example if a DSP program used 40 words of speech data as input. The DSP program was repeated
100 times in a loop, performing computations on 4000 words of a continuous speech sample. This study
would be repeated with pseudo-random generated data and other types of data. The different types of
input data used were:

1. Random data generated from a pseudorandom number generator
2. A second set of pseudorandom numbers
3. Raw voice data from a voice sample
4. A second sample of voice data

Variables obtained directly from analysis of the DSP benchmark code are listed in Table 17.1. For
example, IR in Table 17.1 refers to the average switching of data stored in the instruction register (available
from the DSP code), whereas DABUS refers to the average switching of the data address bus.

A new variable, x

p

, was added to the statistical methodology. The value of this variable, x

p

, was created
for each DSP program by summing the number of each instruction multiplied by the average current
per cycle (measured with this instruction repeated several times in a loop) divided by the total number
of instructions in the program. This approach is similar to that used in Lee et al. [2] and Tiwari et al.
[4], however we use details of

addressing and include this variable, which can be obtained directly from
the code, among all other data independent variables to form a model. Furthermore, we do not have to
use pairs of instructions and record their currents. We instead model the overhead or state with data-
independent variables.

FIGURE 17.1

Warm-up current measurements approaching stability.

101.0

100.5

100.0

99.5

99.0

98.5

98.0

97.5

97.0
1 G 11 1G 2G21 01 0G 11 1G 61 6G 61 6G 71 7G 01 0G 01 0G

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-6

Low-Power Processors and Systems on Chips

A number of linear models were fit using the measured current as the dependent or y variable. Several
independent or predictor variables (x) were considered, see Table 17.1, along with x

p

. The models were
fit using a least squares algorithm to minimize the distance between the observed data and the predicted
data under the model. We assume that the y data is some linear function of the x, y = f(x). The least
squares equation predicting average power from x is given by the following linear equation E(y|x) = b

0

+
b

1

 x

1

 + b

2

 x

2

 + … + b

k

 x

k

, where the b

i

 represents the least squares estimates of the population parameters,
and E(y|x) is the average or expected value of y given x. A stepwise selection method was used to
automatically find the best model for predicting current. The model reported is an excellent model
statistically; model adequacy tests have p-values < 0.001, where p-value is the observed level of significance.

The R

2

 value is reported indicating the percent of variation in current accounted for by the model.
The least squares equation is given predicting average current for the model (all coefficients are highly
statistically significant, p-values

<

 0.001) and standard error of prediction are given for the maximum
residual as another measure of accuracy of the model. The normality assumption for statistical tests and
confidence intervals was verified using normal probability plots and histograms. The statistical package
SPSS [20] was used for all statistical calculations.

Specifically 168 benchmark DSP programs (each repeated several times in a loop) run with different
types of input data were executed on the DSP processor and average current was read from the meter.
Using the average current measurements (obtained from the single instruction tests) and the variables
extracted directly from the DSP programs, the variable x

p

 was obtained. The variable x

p

 together with
the variables (also obtained directly from the DSP code) from Table 17.1 were then used by the linear
regression algorithm (see details of statistical procedure outlined in the experimental section of the

SPSS
User’s Guide

 [20]) to automatically form the equation for predicting current. The automatic power
prediction model generation results are presented here.

For 168 cases (DSP benchmark programs), the stepwise selection procedure automatically produced
the following model. The x variables automatically chosen due to their significance by the statistical
procedure are listed in order of their importance in predicting energy: x

p

, IR, DABUS. The value of R

2

for this model is 0.78 or 78% of the variation in current is accounted for by these three variables. The
equation for predicting current from these x variables (where x

p

, x

4

 = IR, x

5

 = DABUS) is y = 27.41 +
(0.38) x

p

 + (2.65) x

4

 + (0.08) x

5.

The standard error of prediction for the largest residual is 0.17. In other words we would be 95%
confident that

±

0.34 mA of the predicted value of current would contain the average current. The
confidence interpretation and tests of significance depend on the assumption of a normal distribution
of residuals. A histogram of the residuals was analyzed to verify this assumption. In Figure 17.3, this
histogram clearly indicates a normal curve. The worst case residual was –1.7 mA, providing a maximum

TABLE 17.1

Variables Used to Build

Power Prediction Model

Variable Average Switching in the

IR Instruction register
PC Program counter
ACC Accumulator
PREG P register
TREG T register
ARi Address register

i

ARP Pointer to address registers
DMEM Data memory
DBUS Data bus
DABUS Data address bus
PMEM Program memory
PBUS Program bus
PABUS Program address bus

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques

17

-7

worst-case error of 2.7%. The overall fit of the model can be seen in Figure 17.2 where the predicted
current, y is plotted against the actual current, I, both measured in mAs.

Table 17.2 compares this statistically derived model to other statistically derived models that have
access to higher level algorithmic variables or to more detailed switching details. The prediction ability
of a higher-level model (algo for algorithmic) where only the number of each type of operation is used
to predict power is very poor (see row 1 of Table 17.2 with R

2

 value of only 0.63). For example, the
number of additions (and/or subtractions), and the number of multiplications in the application are
recorded as variables. A more detailed model (switching level in row 3 of Table 17.2) that records the
actual average switching in registers and busses of the DSP processor provides a better R

2

value [7],

FIGURE 17.2

Measured current (x) vs. predicted current (y) in mA.

FIGURE 17.3

Histogram of the residuals indicating a normal curve.

TABLE 17.2

Average Power Model Levels, Variables, Maximum Error, and R

2

Model Example Maximum Error, R

2

Algorithm level No. of additions, multiplications 3.7%, 0.63
Instruction level x

p

, IR, DABUS 2.7%, 0.78
Switching level No. of loads, PABUS, No. of subtracts,

IR, DABUS
2.1%, 0.89

y 68

67

66

65

64

63

62

61
6867666564636261

x

6700_C017.fm Page 7 Thursday, August 18, 2005 9:33 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-8

Low-Power Processors and Systems on Chips

however, this requires an instruction-level simulator with switching activity to which embedded systems
designers typically do not have access. The instruction-level power model (see row 2 of Table 17.2)
compares very well in R

2

value to the more detailed switching level model (of row 3). More important,
it is very suitable for embedded systems design because all inputs to the model can be obtained from the
generated code itself along a one time only model generation phase using single instruction and DSP
benchmark tests together with statistical optimization.

To further independently test out the validity or accuracy of the model, variables from other DSP
programs (that were not used to derive the statistical model) were used in the previously presented
equation for predicting current, y, and this predicted current was compared with actual current mea-
surements. The predicted power or current value had an error less than 2.7% of the actual measured
current for the different types of voice and pseudorandom data input. This approach has been used for
various processors including a highly parallel DSP processor [7].

17.3 Instruction-Level Models for Predicting Instantaneous

Power

Models of dynamic power at the software level have been researched in Muresan and Gebotys [13,14]
and Muresan [15]. The current model is based upon summing instruction-level current models (gamma
functions) together and using multiplicative factors to correct for block-to-block current variation at the
higher application software level.

A simpler formulation than in Muresan [15], based upon processor clock cycles, is given next. The
variable

i

processor

(

c

) represents the current of the processor at clock cycle c.

The variable

x

instr,c-n

 is a binary variable, which is one of the instructions, and

instr,

 is executed at clock
cycle

c-n,

 otherwise it is zero

.

 The

i

base

 is the base current similar to base current in Lee et al. [2] and
Tiwari et al. [4]. The parameter represents the amplitude of the current for instruction

instr

. The
variable

gamma

n

 represents the current modeled (at 100 MHz and targeted for SC140 processor [15]
with the parameter 0.0038) as a gamma function

where is the clock period, and

gamma

n

 uses the gamma value at the center of the clock period

n

(because this gamma function is actually a function of time but simplified here in clock cycles). For
example,

gamma

0

 is the gamma value for a general instruction in clock cycle 0 when it starts executing.
Whereas

gamma

4

is the gamma value for an instruction which started executing four clock cycles ago.
Note that more than one instruction can be executed in one clock cycle (thus supporting parallelism)
and again the gamma values are summed. Figure 17.4 illustrates the measured power traces and super-
imposed gamma models for three separate types of instructions:

MOVE.2L (EA), Da:Db, MOVE.L
#s32,C4,

 and

 EOR Da,Dn

 in order of highest to lowest amplitudes. The first instruction loads two 32-bit
words into two data registers. The second instruction loads an absolute 32-bit value into a control register.
The lowest current draw was obtained from the exclusive or on two registers. For plotting purposes, the
amplitudes for the exclusive or instruction (

EOR

) were multiplied by an additional factor of two. It is
interesting to note that unlike previous research [28] which integrated the single instruction waveform
over one clock period, the waveforms of this highly parallel processor extended over many clock cycles
[15]. This is most likely due to the larger capacitance of the processor because it contains many more
ALU units.

i c i gamma xprocessor base

instr

instr n

n

w

instr c n() () ,= + ∑∑
=

−β
0

β instr

gamma n en

n
= +

− +
(.) ()

(.)()
0 0038

2
2 0 0038

2τ τ τ τ

τ

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques

17

-9

The application, where power is being modeled, is divided into blocks where the average instruction
parallelism per block and variation of parallelism is used to create multiplicative factors. These factors
correct for block-to-block current variation at the higher application software level. The multiplicative
factors are derived statistically utilizing a benchmark set of applications. The final multiplicative factors
are used for all subsequent current models representing instantaneous current of new application soft-
ware. Results in Muresan and Gebotys [13,14] and Muresan [15] found that these current models captured
over 94% of the real measured current variation. An example of the instantaneous current model is given
in Figure 17.5 where the top waveform is the real current measured, and the lower waveform is the
instantaneous current model based on gamma functions. The bottom arrow indicates the software
execution time. In general, the gamma function could be retargeted to other processors by fitting it to
their single instruction instantaneous power waveforms (through modifying 0.0038).

17.4 Emerging Applications of Instantaneous Power

Prediction: Security

Security is crucial for today’s portable devices including PDAs, cell phones, and other wireless devices

.
For example, some PDAs or cell phones are Internet-enabled and contain credit card information, others
used in the healthcare industry contain confidential health information, and still other portable devices
provide access to private corporate networks. In all these cases if the portable device is lost, it must be
secure: specifically it must prevent unauthorized users from breaking into the portable device or obtaining
any valuable information from the device. Even if the device is not lost, it may still be possible to obtain
valuable information from the EM waves being radiated from the device while it is in use. One of the
greatest feared attacks on SmartCards arose in the late 1990s [21,22] when it was demonstrated that the
secret key could be determined by measuring the power (highly correlated with EM waves) drawn by the
SmartCard processor. This is known as a power analysis attack. Since then, much research has concentrated
on enhancing SmartCard security. However, portable devices also demand high security, yet are typically
more complex than SmartCards. For example, they often have debug modes which can be used by attackers
to access data without even knowing the users password or even download hostile code and thus are

FIGURE 17.4 Gamma functions superimposed with current of MOVE.2L (EA),Da:Db, MOVE.L #s32,C4, and EOR
Da,Dn (illustrated as double the amplitude) from highest to lowest amplitudes, respectively.

cu
rr

en
t (

A
)

16

14

12

10

8

6

4

2

0

−2
2500

×10−6

2000150010005000

time (ns)

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-10

Low-Power Processors and Systems on Chips

vulnerable to attack. This section introduces the power analysis attacks and gives examples of instanta-
neous power measurements in this security field.

The measurement of instantaneous power while a processor is executing an application (or a power
trace) has been used in power-attacks of cryptographic devices, such as smart cards (typically 8- or 16-
bit embedded processors). The equipment setup consists in general of an oscilloscope measuring the
voltage over a small resistor placed in series between the processor supply pin (contact point on the smart
card) and the supply (external to the smart card). In particular, the analysis of the variation of instan-
taneous power and statistical computations on a number of power traces can be used to detect data and
algorithmic dependencies. This research studied the correlation of power variation with data values being
manipulated and instruction sequencing. In the former case, known as differential power analysis attacks
(DPA), encryption applications were analyzed [22]. In the latter case, known as a simple power analysis
attack (SPA) [21], it was concluded that the correlation was significant and techniques such as random
sequencing of instructions have since been researched. Typically, SmartCard applications are not time
critical and energy dissipation is not a major concern because power is attained from the card reader (or
ATM machine

)

. Power attacks of more sophisticated processors with parallel instruction execution have
more recently reported in Gebotys and Gebotys [23].

17.4.1 Simple Power Analysis

As an example of a simple power attack, consider a security algorithm running on a VLIW processor.
The security algorithm implements elliptic curve point multiplication for NIST approved elliptic curve
y

2

+ xy = x

3

+ ax

2

+ b over 163 bit binary fields (F

2
163

) using prime polynomial x

163

+ x

7

+ x

6

+ x

3

+ 1
[24,25] (using affine coordinates). Two power traces are plotted in Figure 17.6. The top power trace is a
sum routine, and the bottom is a double routine from an elliptic curve point multiplication, widely used
in public key cryptography. If an attacker can determine when a sum is being performed and when a
double is being performed, the secret key can be easily determined. The detailed differences in the
algorithm’s power traces can be seen (i.e., sum routine does not have a loop in between the

μ

l and square)
from this figure. Thus, it can be seen that instantaneous power models are important for designing
security applications. Figure 17.7 illustrates a more secure design where it is now more difficult to identify

FIGURE 17.5

Real measured current (top) vs. simulated current of a program.

cu
rr

en
t (

A
)

0

−0.05

0.05

0.1

0.15

0.2

25002000150010005000

time (ns)

Execution time

6700_C017.fm Page 10 Thursday, August 18, 2005 9:34 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques 17-11

the differences between the sum and double routine from the power traces. Further results can also be
found in Gebotys and Gebotys [23] for prime fields.

17.4.2 Differential Power Analysis

Instantaneous power measurement is also crucial for verifying power–analysis security, particularly if
an attack is able to acquire a large number of power traces from a SmartCard or some device, it may be
possible to again obtain the key or reduce the search space size for enumerating through possible keys.
Differential power analysis is an attack based upon the data-dependent switching activity component
of power, particularly when data is placed on a processor bus the power reveals information about the
data’s hamming weight. With a sufficient number of power traces generated with different text inputs,
it may again be possible to confirm key bits (and entire key values). Some hamming weights have been
measured in Messerges et al. [26] for an 8-bit, 5-V, 4-MHz processor, however, hamming weights for a
32-bit, 2-V, 100-MHz VLIW processor, SC140, as plotted in Figure 17.8 for hamming weights 0, 4, and
6, are more difficult to determine. Nevertheless differential power analysis is still a threat as indicated
by the differential signal plotted in Figure 17.9 (second plot from the top), whose differential peaks are
greater than two standard deviations [27] (and therefore significant), acquired with 3000 power traces

FIGURE 17.6 Current for eliptic sum (top) and double (bottom) routines.

FIGURE 17.7 Secure current/power trace for sum and double eliptic curve routines.

SUM ROUTINE

loop
square

DOUBLE ROUTINE

DOUBLE ROUTINE

SUM ROUTINE

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17

-12

Low-Power Processors and Systems on Chips

of a parallel program. In this DPA experiment, one group of power traces (group 0) is averaged and
subtracted from another group of averaged power traces (group 1). Each power trace is the instantaneous
power dissipated by the processor while it runs a specific application. The application involves several
memory loads (of 6-bit data) as well as ALU and logical instructions executing in parallel. Group 0
represents the power traces obtained from this program when the memory loads different 6-bit data

FIGURE 17.8

High, average, and low hamming weights (mA).

FIGURE 17.9

Incorrect (top) and correct differential traces for bits 0,1,2 for parallel program.

0.0398

0.0396

0.0394

0.0392

0.039

0.0388

0.0386

0.0384

0.0382

0.038
2320231023002290228022702260

High ILP : Power Traces of HWs 0,4,6

Incorrect and Bit 0,1,2, Correct Differentials

2 3 4 5
us

6 7 8

2 3 4 5 6 7 8

2 3 4 5 6 7 8

0.02

0.05

0

0

0.05

0

0

0.1

1

2 3 4 5 6 7 81

1

1 9

9

9

9

6700_C017.fm Page 12 Thursday, August 18, 2005 9:35 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power Software Techniques 17-13

words, where the LSB (least significant bit) of the data word is always zero. The group 1 traces are
acquired with the same application code; however, the six-bit data word has a LSB of one. In theory,
the difference of means removes the variation of the power due to the algorithm (or program). The
averaging also removes the variation in power due to the higher 5 bits of the data word (assuming
sufficient power traces have been obtained to average out the noise and all combinations of 25 data words
are exercised to average out the power variation due to the upper 5 bits). The difference of means then
theoretically represents the power variation solely due to the LSB, which differs from group 0 to group
1. The theory assumes that the hamming weight of the data being placed on the bus has an influence
on the instantaneous power. The top differential power signal in Figure 17.9 illustrates an incorrect guess
of the bits (where half of the bit i’s of the data word are 0 and the other half of bit i’s are 1 in each
group). The lower 3 differential traces lie off of the zero axis indicating that the power was influenced
by bit 0, bit 1, and bit 2 of the data word respectively. The bottom two traces are less clear and indicate
it may be more difficult to obtain a DPA on all bits of the bus. This approach has been used in security
applications (e.g., to guess the key bit when the data being loaded is the result of the exclusive or operation
on the key and the plain text). Here, the user can input a larger number of plain texts and record the
power traces for each. The approach has also been used to correctly guess a double or sum in SPA-
resistant elliptic curve cryptography (thus also providing key bit information).

The emerging application of high level software models of power, that of security, briefly discussed in
this chapter, is crucial for design of many portable devices, such as PDAs and cell phones, that are internet-
enabled or support wireless communications. Unlike SmartCard security research, these portable embed-
ded systems must be energy efficient [29] to maintain long battery lifetimes. Thus, the emerging area of
low-energy security will be important, and will be built upon the equipment setups for measuring current,
power, and energy as well as instruction-level power models developed for many embedded processors.

17.5 Acknowledgment

The author acknowledges the financial support provided by NSERC, CITO, RIM, and Motorola.

References

[1] L. Benini and G. DeMicheli, System-level power optimization: techniques and tools, International
Symposium on Low Power Electronic Design (ISLPED), pp. 288–293, 1999.

[2] M. Lee, V. Tiwari, S. Malik, and M.Fujita, Power analysis and minimization techniques for embed-
ded DSP software, IEEE Trans. on VLSI Design, pp. 123–135, March 1997.

[3] A. Chandrakasan and R.Brodersen, Low-Power Digital CMOS Design, Kluwer Academic Publishers,
Dordrecht, 1995.

[4] V. Tiwari, S. Malik, and A. Wolfe, Power analysis of embedded software, IEEE Trans. on VLSI, pp.
437–445, Dec. 1994.

[5] G. Qu, N. Kawabe, K. Usami, and M. Potkjonak, Function-level power estimation methodology
for microprocessors, Design Automation Conference (DAC), 2000.

[6] J. Russell and M. Jacome, Software power estimation and optimization for high-performance 32-
bit embedded processors, International Conference on Computer Design (ICCD), 1998.

[7] C. Gebotys and R. Gebotys, Statistically based prediction of power dissipation for complex embed-
ded DSP processors, Microprocessors and Microsystems, 23, pp. 135–144, 1999.

[8] C. Gebotys, R. Gebotys, and S. Wiratunga, Power minimization derived from architectural-usage
of VLIW processors, Proc. Design Automation Conf., ACM, pp. 308–311, June 2000.

[9] C.H. Gebotys and R.J. Gebotys, An empirical comparison of algorithmic, instruction, and archi-
tectural power prediction models for high-performance embedded DSP processors, Proc. IEEE Int.
Symp. on Low-Power Electron. Design, pp. 121–123, August 1998.

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

17-14 Low-Power Processors and Systems on Chips

[10] R. Joseph and M. Martonosi, Run-time power estimation in high-performance microprocessors,
ISLPED, pp. 135–140, 2001.

[11] A. Sinha and A. Chandraksan, Energy aware software, 13th Int. Conf. on VLSI Design, pp. 50–55,
2000.

[12] N. Chang, K. Kim, and H. Lee, Cycle-accurate energy consumption measurement and analysis:
case study of ARM7TDMI, ISLPED, pp. 185–190, 2000.

[13] R. Muresan and C. Gebotys, Dynamic power simulation model for VLIW DSP processor VLSI
cores with secure applications, Proc. 11th IFIP VLSI-SOC, pp. 67–72, December 2001.

[14] R. Muresan and C. Gebotys, Current consumption dynamics at instruction and program level for
a VLIW DSP processor, Proc. ACM/IEEE 14th Int. Symp. on Syst. Synthesis (ISSS), pp. 130–135,
October 2001.

[15] R. Muresan, Measurements, macro-modeling, and applications of current dynamics in complex
core processors. Ph.D. thesis, Department of Electrical and Computer Engineering, University of
Waterloo, 2003.

[16] F. Wolf, J. Kruse, and R. Ernst, Compact trace generation and power measurement in software
emulation, Proc. SPIE, Vol. 42, 28, 2000.

[17] Y.H. Lu, L. Benini, and G. DeMicheli, Requester-aware power reduction, Int. Symp. on System-
Level Synthesis, pp. 18–23, 2000.

[18] T. Simunic, L. Benini, and G. DeMicheli, Source code optimization and profiling of energy con-
sumption in embedded systems, Int. Symp. on System-Level Synthesis, pp. 193–198, 2000.

[19] W. El-Essawy, D. Albonesi, and B. Sinharoy, A microarchitectural-level step-power analysis tool,
ISLPED, pp. 263–266, 2002.

[20] SPSS User’s Guide, Base 8.0 for Windows, SPSS Inc., 1998.
[21] P. Kocher, Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems,

Lecture Notes in Computer Science (LNCS), 1998.
[22] P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, CRYPTO ’99, pp. 388–397, 1999.
[23] C. Gebotys and R. Gebotys, Designing VLSI cores with secure applications, Proc. Cryptographic

Hardware and Embedded Syst., Redwood City, CA, LNCS 2523, pp. 114–128, August 2002.
[24] IEEE Std. 1363-2000, IEEE Standard Specifications for Public-Key Cryptography, IEEE Computer

Society Press, Washington, DC, 2000.
[25] C. Gebotys and R. Gebotys, A framework for security on NoC technologies, IEEE Int. Symp. on

VLSI, February 2003.
[26] T. Messerges, E. Dabbish, and R. Sloan, Investigations of power analysis attacks on SmartCards,

USENIX Workshop on SmartCard Technol., 1999.
[27] C. Gebotys, Design of secure cryptography against the threat of power-attacks in DSP embedded

processors, ACM Trans. on Embedded Comput. Syst., pp. 92–113, February 2004.
[28] S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos, T. Laopoulos, and L. Bisdounis,

Instrumentation set-up for instruction level power modeling, PATMOS 2002, LNCS 2451, pp.
71–80, 2002.

[29] C. Gebotys and Y. Zhang, Security wrappers and power analysis for SoC technologies, Int. Symp.
on Syst.-Level Synth.-CODES, 2003.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

18

-1

18

Low-Power/Energy
Compiler

Optimizations

18.1 Introduction ..

18-

1
18.2 Why Compilers? ..

18-

1
18.3 Power vs. Energy vs. Performance

18-

3

Power vs. Energy • Power/Energy vs. Performance • Summary

18.4 List of Optimizations ..

18-

5

Dynamic Voltage and Frequency Scaling • Resource
Hibernation • Remote Task Mapping

18.5 Future Compiler Research for Power/Energy

18-

7
18.6 Acknowledgment...

18-

7
References ...

18-

7

18.1 Introduction

Embedded processors and systems on chip (SoCs) are used in many devices, ranging from pace makers,
sensors, phones, and personal digital assistants (PDAs), to general-purpose, handheld computers and
laptops. Each of these devices has their own requirements for performance, power dissipation, and energy
usage, and typically implements a particular trade-off among these entities. Allowing components of
these devices to be controlled by software has opened up opportunities for compilation and operating
strategies to reduce power dissipation and energy usage, at the potential cost of performance degradation.
Such control includes:

1. Hibernation (i.e., initiating transitions of a component between high-power active states and
lower-power hibernating states)

2. Dynamic frequency and voltage scaling, which allows the clock speed and supply voltage to be set
explicitly within a range of feasible voltage and frequency combinations

3. Remote task mapping, where power and energy is saved on a mobile device by executing a task
remotely on a server

This chapter discusses general issues and challenges related to compilers for power and energy man-
agement. A set of compilation strategies are further examined, together with initial results that describe
their potential benefits.

18.2 Why Compilers?

Compilers translate a program in a high-level language into a program that can be executed on a target
architecture. In other words, compilers support high-level programming models that allow programmers

Ulrich Kremer

Rutgers University

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

18

-2

Low-Power Processors and Systems on Chips

to describe the solution to their problem at an abstraction level closer to the particular problem domain.
As a result, programs are easier to understand and maintain. Porting a program to another target system
requires recompilation on the new system instead of reimplementing the program in the new assembly/
machine language; however, these benefits may come at the price of a reduction in overall program
performance. Typically, the effectiveness of a compiler and its generated code is measured by comparing
it against a code that an “expert” assembly/machine code programmer would have written, or even the
best machine code possible. For an optimizing compiler, this difference should not be too large, where
the acceptable performance gap depends on the particular application domain. What such a comparison
does not capture is the effort needed by an “expert” programmer to come up with such a high-quality
code. Modern embedded processors have many features previously found only in high-performance
processors, including SIMD instructions, VLIW design, and multiple independent memory banks.

The effort to write efficient or even correct programs may be prohibitively high, particularly for
embedded systems with short time-to-market cycles. As a result, high-level languages and their optimizing
compilers are becoming a necessary alternative to programming advanced embedded processors in
machine and assembly code. Instead of rewriting a set of applications for a new target system, a new
compiler has to be provided for that new architecture. Researchers in the embedded systems compiler
community have developed and are further investigating new compilation infrastructures that allow the
effective retargeting of compilers [9]. Although the issue of retargetability is very important, it is not
covered in this chapter.

Optimizing compilers perform program analyses and transformations at different levels of program
abstraction, ranging from source code and intermediate code, such as three-address code, to assembly
and machine code

.

 Analyses and transformations can have different scopes. They can be performed
within a single basic block (local), across basic blocks but within a procedure (global), or across procedure
boundaries (interprocedural). Traditionally, optimizing compilers try to reduce overall program execu-
tion time or resource usage such as memory. The actual compilation process can be done before program
execution (static compilation) or during program execution (dynamic compilation). This large design
space is the main challenge for compiler writers. Many trade-offs have to be considered to justify the
development and implementation of a particular optimization pass or strategy; however, every compiler
optimization needs to address the following three issues:

1. Opportunity. When can the optimization be applied?

2. Safety. Does the optimization preserve program semantics?

3. Profitability. When applied, how much performance improvement can be expected?

Clearly, every program transformation should be safe. Compiler writers would be out of their jobs if
safety is ignored. Profitability has to consider any overheads introduced by an optimization, particularly
runtime overheads. The combination of opportunity and profitability allows the assessment of the
expected overall effectiveness of an optimization.

In principle, hardware- and operating system (OS)-based program improvement strategies face the
same challenges as compiler optimizations; however, the trade-off decisions are different based on the
acceptable cost of an optimization and the availability of information about dynamic program behavior.
Hardware and OS techniques are performed at runtime where more accurate knowledge about control
flow and program values may be available. Opportunity, safety, and profitability checks result in execution
time overheads, and therefore need to be rather inexpensive. Profitability analyses typically use a limited
window of past program behavior to predict future behavior. In contrast, in a static compiler, most of
the opportunity, safety, and profitability checks are done at compiler time (i.e., not at program execution
time), allowing more aggressive program transformations in terms of affected scope and required anal-
yses. Because the entire program is available to the compiler, future program behavior may be predicted
more accurately in the cases where static analysis techniques are effective. Purely static compilers do not
perform well in cases where program behavior depends on dynamic values that cannot be determined
or approximated at compile time. In many cases, however, the necessary dynamic information can be
derived at compile time or code optimization alternatives are limited, allowing the appropriate alternative

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power/Energy Compiler Optimizations

18

-3

to be selected at runtime based on compiler-generated tests. The ability of the compiler to reshape
program behavior through aggressive whole-program analyses and transformations, which is a key
advantage over hardware and OS techniques, exposes optimization opportunities that were not available
before

.

 In addition, aggressive whole-program analyses allow optimizations with high runtime overheads
that typically require a larger scope to assess their profitability.

The following sections discuss several promising compiler optimization techniques, together with an
assessment of their potential benefits. These optimizations include remote task mapping, resource hiber-
nation, and dynamic voltage and frequency scaling.

18.3 Power vs. Energy vs. Performance

Optimizing compilers need underlying performance models and metrics to be able to transform the
program code for a specific optimization goal. These models and metrics guide the compiler to make
selections among program transformation alternatives. If one optimization goal subsumes another, there
is no need to develop separate models and metrics for the subsumed models. This section addresses the
question of whether or not power, energy, and performance should be considered separate compiler
optimization goals.

18.3.1 Power vs. Energy

Optimizing for minimal power dissipation or minimal energy usage may have different metrics, and
therefore result in different optimization strategies. One possible metric for power and energy is that of
activity level at any given point during program execution and total amount of activities for a program
region, respectively. The more “work” is done at a program point, the more power is dissipated. Given
these metrics, is optimizing for power the same as optimizing for energy? The answer depends on the
particular definition of “work.”

An optimizing compiler may define work as the number of instructions executed at a given point in
time. This model assumes that:

1. A fixed amount of power is associated with each executed instruction.
2. The power dissipation of an instruction is independent of its particular operand values or other

executing instructions. Figure 18.1 illustrates this case. By reordering or rescheduling instructions,
for instance, in a VLIW or superscalar architecture, the initial power profile of a program region
as presented on the left of Figure 18.1 may ideally be transformed into the one presented on the
right. Although the peak power dissipation is different for both profiles, the energy usage is the
same. In other words, activity or work rescheduling can be an effective way to reduce peak power
dissipation while having no impact on energy usage. Therefore, peak power reduction may be an
optimization objective different from energy reduction.

FIGURE 18.1

Optimizing for power vs. energy: two possible power profiles of an example program region.

timetime

po
w
er

po
w
er

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

18

-4

Low-Power Processors and Systems on Chips

For power models based on bit-level switching activities as its work notion, rescheduling instructions
may also target overall energy usage by grouping instructions based on their particular bit patterns. In
addition to instruction scheduling, a careful selection of register names in the code generation phase of
a compiler can result in code sequences that have bit patterns with less switching activities, for instance,
due to the reuse of “similar” register names [7].

Due to the particular chemical characteristics of some batteries, highly varying discharge rates (i.e.,
varying power dissipations) may reduce the lifetime of a battery significantly. By “smoothing” the power
dissipation profile of an application through instruction scheduling and reordering, the usable energy of
a battery can be significantly increased [11].

 From now on, we will not distinguish between the optimization objectives of reducing peak power
dissipation and overall energy usage unless explicitly stated.

18.3.2 Power/Energy vs. Performance

Early work on optimizing compilers for power and energy management suggested that optimization
transformations for performance subsume those for power and energy management. Therefore, power/
energy is not an optimization objective in its own right [13]. Traditional optimizations, such as common
subexpression elimination, partial redundancy elimination, strength reduction, or dead code elimination
increase the performance of a program by reducing the work to be done during program execution
[2,12]. Clearly, reducing the workload may also result in power/energy savings. Memory hierarchy
optimizations, such as loop tiling and register allocation, try to keep data closer to the processor because
such data can be accessed more quickly

.

 Keeping a value in an on-chip cache instead of an off-chip
memory, or in a register instead of the cache, also saves power/energy due to reduced switching activities
and switching capacitance.

However, a fundamental difference exists between the models and metrics used for performance and
those used for power/energy optimizations. Many performance models have the notion of a critical path
(i.e., a sequence of instructions or activities that will dominate the overall program execution time). If
an optimization introduces activities on the noncritical path, performance is not affected. Therefore, as
long as these noncritical activities lead to an overall decrease of the critical path (at least in most cases),
the optimization is beneficial. In the context of power/energy optimizations, this is not true. Any activity,
whether on or off the critical path, will contribute to the overall power dissipation and energy usage.

Figure 18.2 is an example that illustrates the differences in optimizing for power/energy versus opti-
mizing for performance for a source-level transformation, in this case loop invariant code motion [2,12].
In the example program, the assignment a = b * 2 is assumed to be loop invariant. For a traditional
scalar architecture, loop invariant code motion will move the assignment out of the loop, resulting in
the code on the right side of Figure 18.2. In a VLIW architecture, the code on the left may be best if
empty VLIW instruction slots are available to execute the loop invariant assignment for each iteration
of the loop. Although the assignment is done 10 times, it may reduce the overall critical path. Depending
on the particular overall compilation strategy used, moving the assignment out of the loop may actually
increase the critical path. In the context of power/energy optimization, performing redundant compu-
tations should be avoided, and, therefore, moving the invariant assignment out of the loop typically leads
to power and energy savings.

 Another example where optimizations for power/energy may be different from that for performance
is speculative execution. Speculation performs activities “ahead of time” based on some assumptions

FIGURE 18.2

Example code fragment to illustrate power vs. performance optimization strategies.

for (i= 0; i< 10; i++) { a = b 2;
a = b 2; for (i= 0; i< 10; i++) {
c[i] = d[i] + 2.0; c[i] = d[i] + 2.0;

} }

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power/Energy Compiler Optimizations

18

-5

about the future behavior of the program. If these assumptions turn out to be false, additional work may
be necessary to undo the impact of the speculative performed activities. Software prefetching is an
example of such a transformation. The compiler may insert prefetch instructions for memory accesses
across control branches. Assuming that the target machine allows multiple outstanding loads, this opti-
mization can be very effective. Again, as long as the speculative activity can be hidden on the noncritical
execution path, no negative impact on performance will occur. In the context of power/energy optimi-
zations every additional, speculative activity has to be compensated for by the overall power/energy
benefit of the optimization to make things not worse. In other words, the window of profitability has to
be larger for power/energy optimizations than performance optimizations. This does not mean that
speculation cannot be applied for power/energy optimizations, but suggests a less aggressive application
of such a transformation by restricting it to the cases where the benefit is likely.

18.3.3 Summary

In recent years, reducing the power dissipation and energy consumption of a program have actually
become optimization goals, no longer considered byproducts of traditional performance optimizations
that mainly try to reduce program execution times

.

 Power and energy optimizations can be implemented
in hardware through circuit design, by the operating system through scheduling techniques that consider
the power and energy requirements of active processes, and by the compiler through compile-time
analyses, code reshaping, and hints to the operating system. The following issues should be considered
during the design of an optimizing compiler for power/energy management:

1. You can run but you cannot hide. All instructions, including instructions on the noncritical path
contribute to the overall power dissipation and energy consumption. As a result, power/energy
optimizations have a higher threshold for profitability than performance optimization if they
require additional instructions to be executed.

2. Keep the overall picture in mind. A power/energy optimization with a slight performance penalty
may be profitable for a single system component (e.g., cache, CPU, and memory), it may not be
profitable for the overall system due to its impact on the power/energy requirements of other
system components. In addition, the power/energy characteristics of other active processes have
to be considered in a multi-programming environment.

3. You cannot beat hardware. If an operation is implemented in hardware, and an application can
take advantage of this hardware (e.g., floating point unit), a compiler should try to generate code
for it. If the hardware dissipates power while idle, the compiler needs to be able to disable it during
such idle periods.

18.4 List of Optimizations

The following section discusses three compiler optimizations. These optimizations are just examples, and
are presented to illustrate the potential benefits of compile time power/energy management. This list is
by no means complete.

18.4.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage scaling (DVS) is recognized as one of the most effective power reduction techniques.
It exploits the fact that a major portion of power of CMOS circuitry scales quadratically with the supply
voltage [3]. As a result, lowering the supply voltage can significantly reduce power dissipation. For
noninteractive applications, such as movie playing, decompression, and encryption, fast processors
reduce device idle times, which, in turn, reduce the opportunities for power savings through hibernation
strategies. In contrast, DVS techniques are still beneficial in such cases (i.e., DVS reduces power even
when these devices are active); however, DVS comes at the cost of performance degradation. An effective
DVS algorithm is one that intelligently determines when to adjust the current frequency-voltage setting

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

18

-6

Low-Power Processors and Systems on Chips

(scaling points) and to which frequency-voltage setting (scaling factors), so that considerable savings in
energy can be achieved while the required performance is still delivered.

One possible compiler-directed algorithm identifies program regions where the CPU can be slowed
down with negligible performance loss [6]. It is implemented as a source-to-source level transformation
using the SUIF2 [1] compiler infrastructure. Physical measurements on a laptop with a 600–1200-MHz
AMD Athlon 4 processor demonstrate that total system energy savings of up to 23% can be achieved
with performance degradation of less than 5% for the SPECfp95 benchmarks. On average, the energy
and energy-delay products are reduced by 11% and 9%, respectively, at the cost of the performance
slowdown of 2%. It was also discovered that the energy usage of the programs using this DVS algorithm
is within 6% from the theoretical lower bound.

18.4.2 Resource Hibernation

A common approach to increase energy efficiency puts idle resources or entire devices in low-power
(hibernation) states until they have to be accessed again. The transition to a lower power state usually
occurs after a period of inactivity (an inactivity threshold), and the transition back to active state usually
occurs on demand. Unfortunately, the transitions to and from the low-power state can consume signif-
icant time and energy. Nevertheless, this strategy works well when there is enough idle time to justify
incurring such costs.

Source-level transformations can be used to reshape the program behavior such that inactivity thresh-
olds of a device or component are extended, allow hibernation to be more effective. By allowing the
compiler to give hints to the operating system about expected idle times of these components and devices,
the OS is able to issue deactivation directives earlier and activation directives just in time before the
device or component is used again. In addition, the operating system can use these hints to implement
the most efficient policy for the set of active processes. The results reported in Heath et al. [5] demonstrate
that on a set of streamed and nonstreamed application, the reshaped programs can achieve disk energy
reductions ranging from 55% to 89% (70% on average) under a sophisticated energy management policy
with only a small performance degradation.

18.4.3 Remote Task Mapping

Mobile devices come in many flavors, including laptop computers, Webphones, pocket computers, PDAs,
and intelligent sensors. Many such devices already have wireless communication capabilities, and we
expect most future systems to have such capabilities. Two main differences exists between mobile and
desk-top computing systems, namely the source of the power supply and the amount of available
resources. Mobile systems operate entirely on battery power most or all the time. The resources available
on a mobile system can be expected to be at least one order of magnitude less than those of a “wall-
powered” desk-top system with similar technology. This fact is mostly due to space, weight, and power
limitations placed on mobile platforms. Such resources include the amount and speed of the processor,
memory, secondary storage, and I/O

.

 With the development of new and even more power-hungry
technology, we expect this gap to widen even more. Remote task mapping is a technique that tries to
off-load computation to a remote server, thereby saving power and energy on the mobile devices [8,10].

A possible compilation strategy that generates two versions of the initial application, one to be executed
on the mobile device (client), and the other on a machine connected to the mobile device via a wireless
network (server) [8]. The client and server codes have to be able to deal with disconnection events. The
proposed compilation strategy uses checkpointing techniques to allow the client to monitor program
progress on the server, and to request checkpoint data to reduce the performance penalty in case of a
possible server and/or network failure.

The reported results have been obtained by actual power measurements of an image processing
application (face detection and face recognition) on three client systems:

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Low-Power/Energy Compiler Optimizations

18

-7

1. The StrongARM-based, low-power SKIFF system developed at Compaq’s Cambridge Research
Laboratory.

2. Compaq’s commercially available StrongARM-based iPAQ H3600.
3. A Pentium-II-based laptop. Initial experiments demonstrate that energy consumption can be

reduced significantly, in some cases, up to one order of magnitude, depending on the selected
characteristics of the mobile device, remote host, and wireless network.

18.5 Future Compiler Research for Power/Energy

Compiler research for power and energy management is still in its infancy. Such research requires
platforms that expose power and energy management features to higher software levels such as the
compiler through standardized interfaces (APIs). Although efforts have been made in some areas (e.g.,
ACPI [4]), more work needs to be done.

In addition, the lack of a reliable and effective evaluation infrastructures for power and energy
optimizations has significantly hampered compiler research. The compiler community relies mostly on
physical measurements on existing target systems for a set of representative benchmarks to evaluate the
benefits of a given optimization or set of optimizations. Simulation results are accepted as an indication
of a potential benefit of an optimization, but are typically not considered sufficient proof that the
optimization is worthwhile in practice. What is needed is an evaluation infrastructure for power and
energy optimizations that consists of a combination of physical measurements and performance mod-
eling. Physical measurements need to include current and voltage measurements, as well as temperature
measurements. Performance models are needed for the CPU, memory subsystems, controllers, commu-
nication modules, and I/O devices such as the disk and screen. This technology is crucial to be able to
understand and assess the benefits of a proposed optimization for the entire target system, subsets of
system components, or single system components.

18.6 Acknowledgment

This work has been partially supported by National Science Foundation (NSF) CAREER Award No.
9985050. Any opinions and conclusions expressed in this chapter are those of the author, and do not
necessarily reflect the view of the NSF.

References

[1] National Compiler Infrastructure (NCI) project. Overview available online at http://www-
suif.stanford.edu/suif/NCI, Co-funded by NSF/DARPA, 1998.

[2] A.V. Aho, R. Sethi, and J. Ullman.

Compilers: Principles, Techniques, and Tools, 2nd ed.

 Addison-
Wesley, Reading, MA, 1986.

[3] T. Burd and R. Brodersen. Energy-efficient CMOS microprocessor design.

28th Hawaii Int. Conf.
on System Sciences (HICSS-95),

 pp. 288–297, January 1995.
[4] Advanced Configuration and Power Interface Specification. Compaq, Intel, Microsoft, Phoenix

Technologies, Toshiba, Revision 2.06, October 11, 2002. http://www.ocpi.info.
[5] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Application transformations for energy

and performance-aware device management.

Int. Conf. on Parallel Architectures and Compilation
Tech. (PACT ’02),

 Charlottesville, VA, pp. 121–130, September 2002.
[6] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a compiler algorithm

for CPU energy reduction.

ACM SIGPLAN Conf. on Programming Languages, Design, and Imple-
mentation (PLDI ’03),

 San Diego, CA, pp. 38–48, June 2003.

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www-suif.stanford.edu
http://www-suif.stanford.edu

18

-8

Low-Power Processors and Systems on Chips

[7] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, W. Ye, and I. Demirkiran. Register relabeling: a post-
compilation technique for energy reduction.

Workshop on Compilers and Operating Syst. for Low
Power (COLP ’00),

 Philadelphia, PA, October 2000.
[8] U. Kremer, J. Hicks, and J. Rehg. A compilation framework for power and energy management on

mobile computers.

Int. Workshop on Languages and Compilers for Parallel Computing (LCPC ’01),

Cumberland, KY, pp. 115–131, August 2001.
[9] R. Leupers. Compiler design issues for embedded processors.

IEEE Design Test of Comput.,

19(4):51–58, July/August 2002.
[10] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices: a partition

scheme.

Int. Conf. on Compilers, Architectures, and Synthesis for Embedded Systems (CASES 2001)

,
Atlanta, GA, pp. 238–246, November 2001

.

[11] T. Martin and D. Siewiorek. The impact of battery capacity and memory bandwidth on CPU speed-

setting: a case study.

Int. Symp. on Low-Power Electron. and Design (ISLPED),

 San Diego, CA, pp.
200–205, August 1999.

[12] S.S. Muchnick.

Advanced Compiler Design Implementation.

 Morgan Kaufmann Publishers, San
Franscisco, CA, 1997.

[13] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction-level power analysis and optimization of
software.

J. VLSI Signal Process.,

 13(2/3):1–18, 1996.

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-1

19

Design of Low-Power
Processor Cores Using a

Retargetable Tool Flow

19.1 Introduction ..

19-

1

Processor Cores in SoC Design • SoC Integration and
Low-Power Design • Architectural Tool Support for Low-Power
Processor Design

19.2 A Retargetable Tool-Flow for Designing Power-Efficient,
Application-Specific Processors..

19-

4

The Chess/Checkers Retargetable Tool-Suite • Architectural
Scope • Architectural Exploration • Power-Conscious
Architectural Design

19.3 Low-Power Processor Architecture Design

19-

10

General Characteristics • Instruction-Set Architecture •
Micro-Architecture • Methodology

19.4 An Ultra-Low Power DSP for Audio Coding
Applications ...

19-

14

Background and Goals • Architecture • Low-Power Techniques •
Results

19.5 Conclusions ...

19-

19
19.6 Acknowledgment...

19-

19
References ...

19-

19

19.1 Introduction

With process geometries shrinking to nanometers, unprecedented levels of silicon integration are now
available. This has fuelled the design of complete electronic systems on a single multimillion-transistor
chip. To master the design complexity of such systems on chip (SoC), the reuse of processor cores has
become an important design paradigm. Different types of predesigned and preverified processor cores
can be instantiated and connected as building blocks in a heterogeneous chip architecture; however,
power consumption is becoming a major hurdle in the successful design of future SoCs.

This chapter describes a methodology for designing low-power processor cores in SoCs. Its key com-
ponent is the ability to quickly and adequately customize the instruction-set architecture of the processor
core, to match the characteristics of the application. It is demonstrated that this allows for a drastic
reduction of the power consumption of the processor, while retaining sufficient design flexibility as offered
by a programmable processor. The methodology is supported by a retargetable tool-suite, offering archi-
tectural exploration, software development, and verification capabilities. The practical applicability of the
methodology and tool-suite is demonstrated by the design of an industrial ultra-low power digital signal
processor (DSP) core

for audio coding applications, named CoolFlux DSP.

Gert Goossens

Target Compilers Technologies

Peter Dytrych
Dirk Lanneer

Philips Digital Systems Laboratories

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-2

Low-Power Processors and Systems on Chips

19.1.1 Processor Cores in SoC Design

Figure 19.1 depicts a classification of processor cores used in SoCs. On the one hand, general-purpose
microprocessor and DSP cores, as available from intellectual property (IP) vendors, offer most flexibility.
On the other hand, application-specific cores are being designed to implement system functions that are
critical in terms of computational throughput and power dissipation. Due to their application-specific
nature, specialized semiconductor or system companies often design these cores in-house. Traditionally,
these application-specific cores take the form of a fixed-function application-specific integrated circuit
(ASIC) block, designed in a hardware description language such as Verilog or VHDL

.

 Such an ASIC core
consists of a data-path with special-purpose functional units and interconnections. Control flow is typ-
ically restricted, and can be implemented in a small finite-state machine (FSM)

.

In competitive markets such as telecom and consumer electronics, the flexibility to take into account

rapidly changing functional requirements, and the efficiency to cope with high computational throughput
and low-power dissipation requirements, are both important. New processor cores must combine the
best of both worlds. DSP cores are becoming more application-specific, by extending a general-purpose
instruction-set architecture (ISA) with specialized functional units and instructions. This is referred to
as application-specific instruction-set processor (ASIP) cores

[10]. At the same time, new-generation
ASIC cores offer a small layer of software programmability on top of a specialized data-path, to allow
for limited functional changes that are crucial to extend the lifetime of these cores. This is referred to as
programmable ASIC cores.

Usually, the design of an embedded processor core is significantly influenced by the overall SoC
architecture. SoC design addresses the system partitioning, which determines the balance of low power
and parallelism, including task parallelism, data parallelism, and instruction-level parallelism (ILP). This
defines the broad specification points of the different embedded processor cores in the SoC, which each
typically only provide a solution for part of the computational load of the complete system. In this
chapter, we assume that the system partitioning and analysis have been performed upfront, although in
practice the procedure is rarely this cleanly decoupled and the optimization of a processor core architec-
ture is likely to be done in a complete system context.

As an example, two rather different application scenarios could be a digital hearing instrument and
an SoC platform for portable consumer audio. The hearing instrument will have very exacting power
and area constraints, but can usually be rather application-specific and have a small application code
base (hundreds of assembly lines), for which an ASIP or programmable ASIC (Figure 19.1) is most
adequate. The audio platform will tolerate less demanding power constraints and have a very broad code

FIGURE 19.1

Classification of processor cores in SoC design.

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow

19

-3

base (hundreds of thousands of assembly lines), requiring a more general-purpose, 24-bit DSP. The audio
platform may also be configured as a multiprocessor to allow scalability.

19.1.2 SoC Integration and Low-Power Design

The requirement of low-power dissipation is becoming an important, if not

the

most important, moti-
vation for making application-specific processors. Whereas from an area and gate-count perspective,
putting together tens or even hundreds of processor cores on a single chip is not a problem anymore,
controlling the heat dissipation and the energy consumption of such a chip becomes a major issue.

To control the power characteristics of the SoC, the overall system architecture, the architectures of
the composing processor cores, and the circuit-level implementation are all important [11]. This chapter
primarily focuses on the processor core architectural level. The main idea that is explored is that by
making the processor architecture application-specific (i.e., by designing an ASIP or a programmable
ASIC instead of a general-purpose processor) [Figure 19.1], its power consumption can be reduced
drastically.

In the authors’ opinion, the following observations are cornerstones of low-power architecture design:

1. Optimizing for minimum cycle count is beneficial for power consumption. The main part of the
dynamic power consumption of a circuit is due to the capacitance effect, and is proportional to
the average switching frequency (i.e., clock frequency times an activity factor), and to the square
of the supply voltage [5,9]:

P

 =

C

×

 (

f

Clock

×

Act

)

×

V

dd

2

Processor architectures that can implement a given software program in a small number of
instruction cycles, will generally exhibit better power characteristics. Indeed, a lower cycle count
will allow for scaling down

f

Clock

, and especially

V

dd

 (known as voltage scaling).
A low cycle count can be achieved by introducing specialized functional units to accelerate the

critical functions of the algorithm, and by providing instruction-level parallelism. These are key
features of application-specific processor architectures.

2. Optimizing for reduced memory access is beneficial for power consumption. A substantial portion
of the power consumption in a processor is due to memory accesses. This is both related to the
switching activity on data and address busses, and to the loading of word lines in the memories
[16]. Processor architectures that can implement a given software program using a small number
of data and program memory accesses, will generally exhibit better power characteristics.

Important power savings can be achieved by providing a storage hierarchy. For example, by
providing a loop cache, one can avoid excessive program memory fetches for programs containing
loop structures. To reduce the required number of data memory accesses, the architecture should
be allowed to maintain variables as much as possible in registers local to functional units. Program
memory accesses can be reduced among others by designing an application-specific instruction-
set with only a small number of instruction bits, as well as by using techniques such as variable-
length encoding and instruction compaction. Again, these are key features of application-specific
processor architectures.

3. Minimalistic architectures are beneficial for power consumption. An effective architectural design
strategy for low power must be minimalistic [6]. By including only those hardware resources that
are really needed by the target applications, power consumption can be reduced significantly. Once
again, this leads to application-specific processor architectures.

4. Low-power architectural design is holistic. An effective architectural design strategy for low power
must be holistic [6]. To effectively reduce the switching activity and capacitance, all aspects of a
processor architecture are important, and only the combination of all elements will result in an
overall power-efficient architecture.

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-4

Low-Power Processors and Systems on Chips

19.1.3 Architectural Tool Support for Low-Power Processor Design

Instead of attempting to develop an automatic optimization tool for low-power architecture design, an
interactive and iterative methodology is proposed that allows architecture designers to explore different
architectural trade-offs and obtain rapid feedback about the quality of architectural decisions.

This methodology, which takes into account the holistic nature of low-power architecture design (see
Section 19.1.2

)

, is based on a retargetable tool-suite for processor design available from Target Compiler
Technologies called C

HESS

/C

HECKERS

 [2]. Key features of this technology are the following:

• Whereas other architectural design environments are based on a predefined but parameterizable
template of a processor architecture [1,3,4,13], one of the key objectives when developing the
C

HESS

/C

HECKERS

 tool-suite was to provide maximum architectural freedom to the designer. In this
way, the designer can find an optimal balance between architectural flexibility and specialization,
to obtain the best power dissipation characteristics for his or her application.

• T

HE

 C

HESS

/C

HECKERS

 architectural exploration capabilities effectively allow for the discovery of the
architectural sweet spots that result in low-power dissipation.

The retargetable tool-suite must be coupled to a complete power-aware very large scale integration
(VLSI) design flow. This allows us to simulate instead of to speculate about power consumption. Good
architectural candidates can be determined in the retargetable tool flow by using Chess/Checkers retar-
getable C compiler and getting profiling data from the retargetable instruction-set simulator (ISS). These
can then be pushed through the VLSI design flow to ensure that a good, low-power implementation can
actually be achieved. Our experience has been that this process is very revealing and really helps to build
efficient processor architectures, taking into account that low-power architecture design is holistic.

The Chess/Checkers tool-suite has been applied successfully to design power-efficient, application-
specific processor cores for critical applications in wireless and wireline telecommunications, consumer
electronics, and medical devices such as hearing aids. The Chess/Checkers tool-suite, and its abilities for
low-power architectural exploration, is described in Section 19.2.

Section 19.3 of this chapter surveys a number of important architectural optimizations that make part
of a holistic strategy for low-power architectural design. These optimizations are typically explored in
the architectural design phase, using Chess/Checkers.

As an illustration of the methodology, the industrial design of an ultra-low power DSP core for audio
coding applications is described in Section 19.4. This processor, called CoolFlux DSP, has been designed
by Philips Digital Systems Laboratories [6], with the help of the Chess/Checkers tool-suite.

19.2 A Retargetable Tool-Flow for Designing Power-Efficient,

Application-Specific Processors

19.2.1 The Chess/Checkers Retargetable Tool-Suite

Chess/Checkers is a retargetable tool-suite that supports the different phases of designing application-
specific processor cores, developing application software for these cores, and verifying the correctness of
the design. An outline of the Chess/Checkers tool-suite is listed in Figure 19.2. Chess/Checkers consists
of the following tools:

• Chess. A retargetable C compiler that translates C source code into machine code for the target
processor. Different from conventional compilers such as GCC [12], the Chess compiler uses
graph-based modeling and optimization techniques [15], to deliver highly optimized code for
specialized architectures exhibiting peculiarities such as complex instruction pipelines, heteroge-
neous register structures, specialized functional units, and instruction-level parallelism. Chess
produces machine code in the Elf object file format, with source-level debug information in the
Dwarf 2.0 format

.

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow

19

-5

• Bridge. A retargetable linker that builds executable programs from separately compiled Elf/Dwarf
object files and libraries.

• Darts. A retargetable assembler and disassembler that translates assembly code into binary Elf/
Dwarf object files and back. The assembly language syntax is user-defined.

• Checkers. A retargetable ISS generator

that produces a cycle and bit accurate ISS for the target
processor. The ISS can be run in a stand-alone mode or be embedded in a co-simulation envi-
ronment through an application programming interface (API). Checkers comes with a graphical
debugger that can connect both to the ISS, as well as to the available processor hardware via a
JTAG or debug port for on-chip debugging. Source-level debugging is supported.

• Go. A hardware description language (HDL) generator that produces a synthesizable register-
transfer level HDL model of the target processor core. Through APIs, users can plug in their own
HDL implementations of functional units and of the memory architecture.

• Risk. A retargetable test-program generator that allows for the quick generation of a large number
of assembly-level test-programs for the target processor. These test programs can then be executed
both in the ISS and in the HDL model of the processor to check for consistency of both models.

A unique feature of the Chess/Checkers tool-suite is its architectural retargetability

,

 based on the

nML

processor description language. nML is a high-level language that captures a programmer’s model of the
target processor [7]. This is the abstraction level commonly found in a programmer’s manual of a
processor. Using nML, an architecture designer can quickly define the ISA of a processor. After reading
the nML description, the different Chess/Checkers tools are automatically targeted to the specified
architecture.

Figure 19.3 depicts a part of an nML description of a processor. Structural information about the
processor is introduced by declaring its storage elements (i.e., memories, registers, and pipeline registers)
and its interconnections. The instruction-set is defined using an attributed grammar. The grammar breaks
down the instruction set into instruction classes (e.g.,

alu_inst

,

mac_inst

, and

shift_inst

 in
Figure 19.3). The behavior of instructions is specified in action attributes of the grammar rules, using a
register-transfer model. In these register-transfer actions, user-defined primitive functions can be called
(e.g.,

add()

,

sub()

,

and()

, and

or()

 in Figure 19.3). To enable instruction-set simulation, the user
adds bit-true simulation models for each primitive function. Likewise, to enable hardware generation,

FIGURE 19.2

Outline of the C

HESS

/C

HECKERS

 tool-suite.

RETARGETABLE
INSTRUCTION-SET

SIMULATOR
CHECKERS

 Machine

RETARGETABLE
COMPILER

CHESS

Application

C

Machine

RETARGETABLE
ASSEMBLER &

DISASSEMBLER
DARTS

RETARGETABLE
LINKER

BRIDGE

Machine code
Elf / Dwarf

Processor model nML

Data path

Instruction
set

FMT ALU OPD

FMT MPY OPD

FMT OPD SH

Synthesizable
model

RETARGETABLE
TEST-PROGRAM

GENERATOR
RISK

HDL
GENERATOR

GO

VHDL/Verilog

6700_book.fm Page 5 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-6

Low-Power Processors and Systems on Chips

the user adds HDL models for each primitive function. Grammar rules also have

syntax

 and

image

attributes, defining the assembly language syntax and the binary encoding of the instructions.

19.2.2 Architectural Scope

C

HESS

/C

HECKERS

 supports a wide range of processor architectures. Retargetability is supported within this
range. The following parameters indicate the current architectural scope of the Chess/Checkers tools:

• Data types. Chess/Checkers can support the built-in data-types of the ANSI C language. In
addition, users can also introduce any custom data-type. This is useful for application-specific
processors, which often contain a variety of specialized data-types. Chess/Checkers allows for the
definition of application-specific data types as

C++

classes. The defined classes can then be used
in the nML processor description, to specify the data types of the processor’s memories, registers,
and interconnections. The same class definitions can also be used in the source program for the
Chess compiler.

• Arithmetic functions. Chess/Checkers can cope with standard arithmetic instructions found in
general-purpose processors, as required for compiling ANSI C code. Users can, however, also
define specialized arithmetic instructions in nML, and specify a mapping from the C source code
to these instructions using the concept of intrinsic function calls.

• Memories

.

Chess/Checkers supports von Neumann and Harvard architectures. The processor may
have any number of data memories. Each memory may have one or multiple ports. In case of
multiple memories, the user can assign static variables in the C source program to specific
memories using a memory qualifier. Several addressing modes are supported for data memories.
This includes indexed (or offset), direct, and indirect addressing — optionally with postmodifi-
cation of address pointers. Special addressing operations, such as modulo and bit-reversed address-
ing, are supported through intrinsic function calls.

FIGURE 19.3

Excerpt of an nML processor description.

// Declaration of storage elements and interconnections:
mem DM[1024]<num,addr>;
reg R[4]<num>;
pipe C<num>;
trn A<num>; trn B<num>;
...

// Definition of instruction set (using attributed grammar):
opn my_core (alu_inst | mac_inst | shift_inst);
...

opn alu_inst (op:opcod, x:c2u, val:c16s, y:c2u) {
 action {
 stage EX1:
 A = R[x];
 B = val;
 switch (op) {
 case add : C = add(A, B) @alu;
 case sub : C = sub(A, B) @alu;
 case and : C = and(A, B) @alu;
 case or : C = or(A, B) @alu;
 }
 stage EX2:
 R[y] = C @alu;
 }
 syntax : op " R" y ", R" x ", " val;
 image : "0"::op::x::y::val;
}

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow

19

-7

• Instruction format. Chess/Checkers supports a wide range of instruction formats, from orthog-
onal to highly encoded formats. An orthogonal format consists of fixed control fields that can
be set independently from each other. In an encoded format, the interpretation of the instruction
bits as control fields is dependent on the instruction. Very long instruction word (VLIW)
processors have an orthogonal instruction format. The tools support variable-length instruc-
tions, as well as instruction compaction to encode small sequences of instructions in a single
instruction word.

• Registers. Chess/Checkers supports a wide variety of register structures, ranging from a homoge-
neous structure with a single, general-purpose register-file to a heterogeneous structure with
special-purpose registers that are dedicated to store operands and results of specific instructions.
Chess/Checkers also supports various constraints on the utilization of registers. For example, one
may specify that the selection of multiple operand or result registers of an instruction be controlled
by a single selection-field in the instruction word. Such register coupling constraints often occur
in application-specific processors to save opcode space.

• Instruction pipeline: Chess/Checkers supports instruction pipelines of any depth. Different
instructions do not need to have the same number of pipeline stages. Chess/Checkers also supports
multi-cycle instructions, multi-word instructions, and instructions with delay slots. The Chess
compiler can ensure that pipeline hazards, which are specified in nML, are resolved in the generated
code.

• Control flow. Chess/Checkers provides support for subroutines and interrupt service routines.
Several mechanisms are available to support the concept of a software stack for storage of automatic
variables. Chess/Checkers also supports the concepts of hardware do-loop instructions and of
mode bits that determine the behavior of instructions.

19.2.3 Architectural Exploration

As explained in the previous section, Chess/Checkers supports a wide architectural design space.
Through architectural exploration, a designer can quickly determine a power-efficient architecture
for a specific application domain. As a starting point for exploration, the designer will collect the
following inputs:

• Application code for the critical functions that need to run on the processor. A large range of
possibilities are available, depending on the nature of the design. At one extreme, only a small
number of quite similar algorithms may need to run on an application-specific processor. At the
other “general-purpose” extreme, one has to consider a large number of potentially highly diverse
applications and attempt to optimize from this “sea of C” to ultimately some fully laid out VLSI
design and the corresponding object code for an application. For complete DSP applications, such
as an MP3 decoder, the code is usually characterized with a 20/80 rule where 80% of the cycles
are spent in 20% of the code. This gives a good spread between unstructured control code and
DSP loop kernels.

• Architectural design constraints

in terms of area, timing, and power budgets, as well as time scales
and other project-related factors. Other more difficult constraints may be present as well, such as
backward compatibility to an existing processor architecture with a large legacy code base, scal-
ability to allow coverage of multiple price/performance points, and how application-specific or
general-purpose to make the processor architecture. These overall specifications will limit the
scope of some architectural choices, such as the number of functional units and the choice of
initial ISA.

Based on the preceding inputs, the designer typically makes an initial proposal of an ISA, which is
described in nML. Once this starting point is chosen, a more refined architectural exploration can be
performed, which will lead to the final design. Note that the initial architecture can be a subset or super-
set of the finished design, although it is probably more common to start with a subset and add features

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-8

Low-Power Processors and Systems on Chips

as required. Section 19.3 discusses a number of important architectural choices for a low-power pro-
cessor design.

When using Chess/Checkers, a designer can afford to make many iterations. Of each intermediate
architecture, the performance can be evaluated by compiling critical C functions with the Chess compiler,
and simulating and profiling the resulting machine code with the Checkers ISS. In the first place, the
ISS’s profiling capabilities allow to evaluate the cycle and instruction count for the application; however;
it is also possible to introduce high-level power models in the ISS and to make a comparative power
analysis of different architectures (see Section 19.2.4). Using this feedback from the tools, the designer
can compare different ISAs and optimize the architecture in nML to obtain a good match between
flexibility, throughput, and power characteristics. At some intermediate points, the designer may want
to generate synthesizable HDL using the G

O

 HDL generator and enter the VLSI design flow for more
accurate measurements.

Figure 19.4 illustrates the architectural exploration capabilities of the Chess/Checkers tool-suite, during
the design of an application-specific processor core for Reed-Solomon encoding, for use in an asymmetric
digital subscriber line (ADSL) modem SoC. The Reed–Solomon encoding algorithm was described in C
source code. As a starting point, a simple microprocessor architecture was used, with a single 32-bit
arithmetic and logic unit (ALU)

.

 The C code was compiled on the architecture and profiled using the
Chess/Checkers tool-suite. The different diagrams depict the computational performance, the power
consumption, and the energy that is needed to process one data sample. After profiling the machine code
for the single-ALU architecture, it was clear that too many cycles and program memory accesses were
spent in the calculation of critical functions such as Galois-field multiplications and the bit-manipulation
operations in the Reed-Solomon algorithm. These functions were initially implemented in software on
the ALU. In a second design iteration, the designer extended the architecture with a dedicated functional
unit capable of computing Galois-field multiplications in a single cycle. This resulted in a moderate
increase of the computational performance and an important reduction of the power consumption. In a
third iteration, the designer additionally allocated a dedicated functional unit for bit manipulation. This
allowed the offloading of the ALU significantly, resulting in a major performance improvement and,
likewise, a reduction of the energy needed per data sample.

For comparison, Figure 19.4 also illustrates the characteristics of a hardwired ASIC core for Reed-
Solomon encoding, developed in the same process technology. As can be observed, the ASIC core’s
characteristics are close to the third alternative designed with the Chess/Checkers tools. This comparison
illustrates that the Chess/Checkers tool-suite can span a wide range of processor architectures, from
general-purpose microprocessors to programmable ASICs. The designer can perform a true architectural
exploration and get rapid feedback about the quality of the intermediate results.

19.2.4 Power-Conscious Architectural Design

As explained previously, Chess/Checkers supports an interactive methodology for architecture design.
This approach is based on the assumption that automatically generated architectures can never approach

FIGURE 19.4

Performance, power, and energy per sample measurements for different processor architectures for
a Reed–Solomon encoding function in an ADSL modem chip.

ALU ALU + 28-field Galois mpy ALU + 28-field Galois mpy + bit-manipulation unit ASIC

Performance (106 samples/s)

8

6

4

0

2

Power (mW)

20

15

5

0

10

Energy per Sample (nW×s)

60

40

0

20

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow

19

-9

the specialization of a human designer. Instead of automating the architecture generation phase within
a restricted architectural scope, Chess/Checkers relies on the designer’s creativity while supporting a wide
scope of processor architectures. This section elaborates on how the Chess/Checkers tool-suite can be
used to design power-efficient processor architectures.

When defining an architecture, the designer makes the basic decisions that influence the power
efficiency of the architecture. Optimization for power is supported by the tools in the following ways:

• The Chess compiler primarily aims at optimizing the cycle count of the program, with instruction
count or code size as the secondary optimization goal. As explained in the introduction, this
generally contributes to low-power consumption. With a low cycle count, it is easier to fit a low

V

dd

 and

f

Clock

, while a low instruction count reduces the power dissipated in program memory
accesses.

• Note that the length of a clock cycle is not known

a priori,

 when modeling an architecture in nML.
Typically, the designer can make an estimate, but this needs to be verified by running the HDL
generator G

O

 and performing logic synthesis on the generated description.
• The architectural scope of the Chess/Checkers tools and of the nML language is wide enough so

that the designer can experiment with different architectural techniques for low power. These
techniques are described in Section 19.3. In particular, the cycle and instruction count can be
reduced by exploiting instruction-level parallelism, by bundling multiple functions in a single
instruction, by exploiting special-purpose registers, and by designing highly encoded instruction
sets. The Chess compiler contains various optimization phases to make efficient use of these features.

• The tools can give early feedback about cycle count and instruction count. This is mainly obtained
through the profiling capability of the ISS. In addition, the designer can check the effective
utilization of functional units and registers, and strip those that are not frequently used.

• It is possible to have the ISS automatically calculate an approximate power consumption figure
when executing a program. Based on the nML processor model, the Checkers tool generates an
ISS in the form of a C++ source program. The generated model is open enough so that the user
can integrate instruction-level power models in the ISS.

• Obviously, such power models are library and technology dependent. To construct and tune these
models, a basic architecture can be specified in nML and small programs can be run that repeatedly
execute specific instructions or instruction sequences, both in the ISS and in the derived HDL
model using a tool such as the Synopsys Power Analyzer. The following experimental observations
may serve as guidelines when constructing power models for application-specific DSPs and pro-
grammable ASICs:
• In case of an orthogonal instruction format (see Section 19.2.2 on the architectural scope of

Chess/Checkers), power models may be constructed per orthogonal subclass of the instruction
word. By adding the power consumption of the orthogonal subclasses, a sufficiently accurate
figure for the overall power consumption is obtained.

• Within an instruction class (e.g.,

alu_inst

 in Figure 19.3), the specific choice of opcodes
(e.g.,

add

,

sub

,

and

, and

or

 in Figure 19.3) has a dominant effect on the relative power
consumed by the instruction. In contrast, the choice of operands or results (e.g.,

R[0]

 vs.

R[1]

as the source or destination register, and the exact bit-pattern of the immediate constant

val

in Figure 19.3) is much less relevant. Therefore, the choice of opcodes is an important parameter
in a power model, while the choice of operands or results may be neglected more easily.

• Power models are best defined for small sequences of instructions, instead of for individual
instructions

[8]. Experiments have demonstrated that power calculations in the ISS based on
power models for pairs of instructions can be within 30% of the actual power of the circuit
(as obtained in a gate-level simulations). In case only power models for individual instructions
are used, however, the results can differ as much as 80%. To reduce the complexity of the
model, the order of the sequence may be neglected (i.e., one may assume that the power
consumed by the sequence A|B is the same as for B

|

A).

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19

-10

Low-Power Processors and Systems on Chips

• The HDL generator G

O

 contains a number of optimizations that contribute to a power-efficient
hardware implementation of the processor core. For example, G

O

 can generate write-enable signals
for selected registers, which allows commercially available logic synthesis tools to introduce clock
gating to reduce power dissipation. In addition, G

O

 is able to latch the inputs of unused functional
units, to prevent toggling of unused logic and thus save power.

19.3 Low-Power Processor Architecture Design

This section addresses some common issues covering the design of low-power processors and introduces
how such a design may proceed in practice. The general area of low-power processor architecture design
is potentially a very broad subject, and we will limit the discussion to that of embedded, low-power, DSP
design and specifically focus on the processor core itself. It should be pointed out that the retargetable
tool-suite presented in Section 19.2 is not limited to this domain, and this choice is driven by our actual
design experience with a relatively general-purpose audio processor called CoolFlux DSP, which is
described in Section 19.4.

19.3.1 General Characteristics

When considering different low-power processor core architectures, it is worth having some sort of
power-aware metric with which to compare them. We have used simple metrics that consider some key
aspects of a processor core. An example of such a figure of merit for a specific application could be:

cost = (mapp/mmax) × P × A

where mapp is the minimum clock frequency required for the application to achieve real-time operation,
mmax is the maximum clock frequency of which the processor core is capable, P is the power per MHz,
and A is the complete area, including memory. For this particular metric minimizing the cost would be
a goal. It is worth noting that this formula contains conflicting factors, so that, for example, increasing
parallelism and thus A is likely to decrease mapp due to the ability to exploit ILP. Thus, in many respects,
an optimized processor core architecture has to find some good compromises among conflicting require-
ments. This section covers some key aspects regarding the broad architectural choices that have to be
made at an early stage.

• Parallelism. Here, we have to consider the type and amount of parallelism a single processor core
node will support. A low-power processor core design should try to approach the ideal power/
parallelism characteristic as illustrated in Figure 19.5. This is based on minimizing control over-
head. The two main types of parallelism exploited here are ILP and data parallelism. ILP is related
to the number of operations an instruction can issue to functional units and the pipeline depth
of the various functional units. These two factors will define the number of operations in flight
at any one time. Given the need for efficient compiler support and the ILP potential of the
applications, parallelism needs to also be well balanced in the architectural exploration. We have
obtained efficient compilation results for a machine that issued up to eight basic operations per
instruction and had four pipeline stages. For many DSP applications data parallelism, as supported
in a single-instruction multiple-data (SIMD) machine, is a particularly efficient approach to use
as the processor core control overhead is further amortized over several operations on sub-words.
Thus, a 32-bit base architecture could also define instructions that perform four 8-bit operations
in parallel. This is easily supported by the retargetable tool-suite by the definition of vector data
types and operations.

• Pipeline structure. This is a key aspect of low-power processor core design, and many factors
need to balance well here. We spent a lot of architectural exploration time in this area when
designing our audio DSP (see Section 19.4). We have found that relatively short, simple pipelines
(i.e., three to five stages) with limited interlocks and bypassing have given us good results, with

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow 19-11

minimal design and verification effort. Instruction issue policy is strictly in order. Generally,
pipeline depth has a quickly diminishing improvement on performance. At the same time, cost
factors, such as design and verification effort, tend to increase rapidly, as is illustrated in Figure
19.6. As an example of many of the factors concerned, a search for the best pipeline depth
would have to consider the following elements: the speedup possible for the system clock (this
gives a power advantage from the larger potential voltage scaling with its quadratic power
reduction), reduced cycle efficiency due to extra delay slots (or the need for extra bypasses),
the potential deglitching effects of pipeline registers, the extra power cost of the clock tree, and
the pipeline schedule and length of control transfers. A final comment on pipeline structure is
that the CHESS compiler is good at resolving static pipeline scheduling issues. Thus, the onus
is on providing a rather exposed pipeline and allowing a minimal hardware solution that is
good for low power.

FIGURE 19.5 General relationships between power and ILP used in a processor core (assuming Vdd and fClock are
kept constant).

FIGURE 19.6 Speedup and cost as a function of pipeline depth.

Pipeline depth

ideal

actual

C
os

t f
un

ct
io

n,
 e

.g
.,

fo
r

fu
lly

in
te

rlo
ck

ed
 p

ar
al

le
l D

S
P

S
pe

ed
up

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19-12 Low-Power Processors and Systems on Chips

• Register file structure. The register file of a processor core can be homogeneous (a central
structure) or may be fully heterogeneous (distributed) at the two extremes. For low-power DSP
applications, a distributed register file is desirable because this reduces the number of register
ports and the sizes of the various files, as well as leveraging locality of storage. The costs associated
with a single central register file serving many functional units over many (probably bypassed)
pipeline stages are usually prohibitive for a low-power machine. With distributed register files,
particularly within the main datapath, however, comes the problem of efficient register allocation
and scheduling. Our experience here is that Chess is particularly well positioned to solve this
problem and has allowed us to use this low-power distributed register file feature in our designs.

• Memory architecture. Memory access can now be over 50% of the power budget of an
embedded DSP, and is likely to rise as geometry shrinks and applications grow. Several issues
must be addressed here including aspects of memory hierarchy and separate memory data
spaces. The second issue is a standard feature of most DSP designs and will not be elaborated
here. Most low-power machines should exploit a data memory hierarchy of some sort, which
may span main storage, local tight coupling between memory and register files [16]. Here,
intelligent prefetch techniques can have significant advantages over traditional caches, partic-
ularly for applications such as video that combine statically known addressing patterns and
large data objects.

• For program memory, a small cache, or at least a loop buffer, will reduce overall program memory
power consumption for the 20/80 code encountered in DSP applications, as will any techniques
used to reduce program memory size. Compact instruction encoding should be sought to reduce
the program memory’s size. In addition, we have used compression of the program memory
contents coupled with the good code density already produced by the Chess compiler to aggres-
sively reduce the program memory footprints.

• Memory addressing. For DSP applications, a well-established set of extended addressing modes
are used, usually operating as a post modify on the relevant pointer register. These greatly con-
tribute to reducing the cycle count required for the application, and thus indirectly to low power.
Several trade-offs that balance the number of addressing modes against the complexity of the
addressing units are possible here. The likely address modes include facilities for cyclic addressing
as well as bit reversed addressing for fast Fourier transforms (FFTs) and other butterfly-based
computations. To support a C compiler and to maintain efficient data structures that minimize
use of data memory, good support of a software stack is also desirable. Thanks to the software
stack concept, both the data memory size and the cycle count can be reduced, which contributes
to low power. Stack support can be provided in a number of ways. We have typically used a fully
indexed stack with a dedicated stack pointer.

• ISA. DSP designs encompass a wide variety of ISA design styles, from orthogonal to highly
encoded. For low-power applications, we have favored highly encoded ISA design styles. This
approach minimizes program memory size while providing enough parallel instruction classes for
the ILP extracting Chess compiler to operate efficiently. Although we provided symmetry across
the various parallel views of the machine, parallel operations were only introduced for the common
forms of parallelism in DSP applications, such as multiply-accumulate (MAC)-based inner loop
kernels. This has also allowed us to have a rather asymmetric datapath where most of the func-
tionality is in the primary ALU, thus allowing a relatively compact design. Some of these issues
are further expanded in the Section 19.3.2.

19.3.2 Instruction-Set Architecture

A low-power processor has a carefully optimized ISA, which attempts to strike a fine balance among
code size, encoding, instruction decoder complexity, and compiler efficiency in scheduling ILP. This is
quite a difficult balance to achieve due to the requirement to maintain enough parallelism in much of

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow 19-13

the ISA to keep compilation efficient, while maintaining a short instruction word and thus small program
memory footprint.

Because DSP code is characterized by the 20/80 rule, there is a need to support rather diverse require-
ments. The ISA of the processor core can be thought of as having several distinct facets, in the form of
instruction classes that implement various styles of computation. For example, in our audio DSP design,
there is a relatively nonparallel microcontroller like facet as well as one that codes for maximum paral-
lelism in DSP kernels.

Considering the design of the ISA has repercussions throughout the processor core design, and as far
as producing a low-power instruction decoder is concerned, it is important to use regular formats where
possible to minimize the amount of field extraction multiplexing that is needed. In addition, to maintain
a good pipeline timing balance, certain encoding styles can be used that allow the fast production of
time critical control signals and a spread of distributed decoding functions across pipeline stages.

Another issue we addressed aggressively is the potential inefficiencies due to flow control instructions,
such as branches. As control flow instructions can occur up to about once every five instructions in
general compiled C code, it is very important to maintain high cycle efficiency here. A number of
techniques can be used that minimize the power consumption of the processor core. We typically provide
a good mixture of flow control instructions with and without exposed delay slots. This allows the Chess
compiler to make good code selection choices based on whether delay slots can be scheduled efficiently.
We also provide zero overhead hardware looping to maintain high efficiency within inner loop constructs.
Again, the compiler handles this automatically and forms software-based loops when the hardware loop
stack is fully utilized. Another feature we use is conditional execution of instructions, which eliminates
the use of a branch construct and have no exposed delay slots.

Generally, it is best to try to avoid the explicit coding of no-operation (NOP) instructions. This is
partly aided by the options that have been provided on flow control instructions, but we have also added
a form of NOP compression to some of our designs, which reduces our program memory size by up to
25% for typical compiled applications in our audio DSP. These savings have a significant impact on
power and area: we measure an average 25.3 bits/instruction for typical compiled code for our COOLFLUX

DSP, while the instruction width is 32 bits.

19.3.3 Micro-Architecture

A low-power micro-architecture should attempt to minimize control overhead while keeping the main
datapath as efficient as possible, within the bounds of the technology used. This means that pipeline
interlocks and bypass networks should be used only when necessary. It will also be useful to run candidate
designs right through placement and routing to ensure that cell row utilization during chip layout can
be maintained as this will reduce area and thus the capacitance and power associated with many nets
while improving timing.

From a clocking perspective, a single edge clocked synchronous design can achieve a better timing
balance and clock tree efficiency than designs using both clock edges. We have always tended to carefully
limit the number of overall registers in a design in order to keep control of the clock tree size and its
significant power consumption (up to 40% of processor core power for semi-custom VLSI design flows).
A low-power design will use the standard techniques of micro-clock gating and operand isolation that
are now available with many synthesis tools. The GO HDL generator in the Chess/Checkers tool-suite is
capable of selectively enabling these techniques in the generated HDL design. These are standard tech-
niques and will not be further discussed here.

The pipeline should already be designed so that good timing balance is achievable and when imple-
menting the micro-architecture this goal must be furthered through the VLSI design flow. Usually, for
critical sections, this will mean attention at RTL source, synthesis, and back end of the flow. For the
memory subsystems, this is particularly important because many critical timing paths are likely to be
present here. A common solution to this problem is to use a write-back buffer, which schedules writes

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19-14 Low-Power Processors and Systems on Chips

to memory only when free access slots are available. This technique allows a full clock cycle to be allowed
for memory access.

The control signals from the instruction pipeline should be held until they are actually needed by a
functional unit. From a power perspective it is detrimental to toggle, for example, multiplier input
selection lines unless an instruction specifies a valid multiplier operation [14]. If possible, the instruction
decoder itself should be designed to minimize internal toggling; this may be achieved by using a distrib-
uted design, for example, by instruction class.

Many of the final micro-architectural optimizations are made when the VLSI flow is exercised. This
is particularly true for issues such as unnecessarily toggling control logic and optimization of critical
timing paths.

19.3.4 Methodology

We have used a design methodology that attempts to provide as much information as possible to the
processor core system architect, so that fine design trade-offs can be made using real simulation data.
Therefore, we have established a full VLSI design flow as well as having the retargetable compiler tool-
suite in place at a very early stage in the project. Thus, RTL design has proceeded in parallel with processor
core architectural exploration, and this has allowed very useful insights to be had. These activities have
also tended to bond the team together through having access to a common design database.

Most architectural exploration is done within the retargetable tool-flow environment by compiling a
suite of applications with Chess and performing profiling with the Checkers ISS. This loop will include
changes to the nML processor description, typically things such as ISA, pipeline schedules, and internal
computational resources as well as optimization of the application source code are explored here. Good
architectural candidates are pushed through synthesis, test insertion, and occasionally full layout to ensure
that no problems occur with the realization of the complete processor core. We are particularly interested
in maintaining high efficiency through physical design.

This VLSI design flow is power aware, and we use the accurate gate-level power simulator DIESEL,
which was developed by Philips. This simulator is driven by actual simulation vectors, and typically
reaches accuracy within 10% of final silicon for the technologies in use. We had experimented with RTL
power estimators before, but have kept with the gate level simulator because we typically needed early
area and timing figures anyway. Once the flow is scripted, it is easy to get some accurate figures in an
overnight run. This design flow is also complete in that full layouts are produced, and we use fully
extracted (Hyperextract 3D) parasitic data when producing final area, timing, and power figures.

The specification of a design has to be carefully managed. We have tended to take a minimalist
approach, where additional features are only added if they demonstrate a significant performance/cost
benefit. Another factor in this process has been to lock the specification once confidence has been
established; any changes beyond this are handled by a strict change request procedure. A factor we have
particularly avoided has been “creeping” specifications.

We have been fortunate in being able to build a small effective team of like-minded engineers run by
a single system architect who makes any final design related decisions. Of particular significance has been
the synergy between engineers at Philips and Target Compiler Technologies and the close cooperation
that was achieved. Perhaps a small, tightly knit team is reflected in a compact power optimal processor
core design.

19.4 An Ultra-Low Power DSP for Audio Coding
Applications

This section illustrates some of the principles outlined before, by considering a few aspects of the
actual design of a low-power C programmable audio DSP, the CoolFlux DSP, developed within Philips
PDSL.

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow 19-15

19.4.1 Background and Goals

The CoolFlux DSP audio core was designed with two main objectives in mind:

1. The need for very low-power consumption
2. The need to be efficiently programmable with the C high-level language

The extra productivity advantages of programming in C outweighed the minor power increase for
efficiently providing C language support in the processor core.

The project was actually also a first introduction into the codesign of the ISA and compiler using
a retargetable compiler. In many ways, the question of how low-power a general-purpose high-level
language programmable DSP could be made was being addressed (e.g., did we have to include
application-specific features (in this case for MP3 coding) or programming restrictions to meet our
power goals?).

The motivation behind this is that power consumption continues to be a very important issue in
applications. This is due to the increase in portable products on the one hand and their higher processor
core needs on the other hand. The portable MP3 players that are appearing in the market are a good
example. The processor core throughput requirements for these devices increase rapidly. The application
algorithms become increasingly computationally demanding and a larger number of functions need to
be executed. At the same time, product lifetimes are decreasing, and this puts increasing pressure on
product development cycle times, particularly the software component of these projects.

These factors and a large code base of 24/56-bit fixed-point applications were the starting specification
points for the CoolFlux DSP. An MP3 decoder program was used as the main driver application because
this gave a good mix of unstructured “control-like” code as well as some tight DSP kernels with high
ILP potential.

19.4.2 Architecture

The CoolFlux DSP architecture is depicted in Figure 19.7. It is a dual MAC, dual Harvard machine
capable of sustaining two MACs, two memory operations, and two pointer updates per instruction
making it highly cycle efficient for computationally intensive DSP applications when scheduled by Chess.
Due to the unique ISA design, the CoolFlux DSP is also highly efficient at supporting unstructured
“control-type” code as well making it very well balanced for complete embedded applications in which
20/80 code mix is typical.

Finally, much attention has been paid to efficiently supporting the operations needed by ANSI C
making the CoolFlux DSP an excellent compiler target while maintaining very low-power consumption
through the careful realization of the underlying micro-architecture and the entire design flow.

The datapath consists of an X and a Y data processing side (Figure 19.7). The two sides are highly
asymmetric. The main arithmetic components that are available are two multipliers, two full ALUs, and
two rounding and saturation units.

The X multiplier is coupled to a preadder, thus the third small ALU. This ALU (ALU0) can perform
a nonsaturating addition or a subtraction of two datapath registers. The result of this operation is then
multiplied by another datapath register. The X multiplier performs all useful combinations of signed and
unsigned multiplication. This allows efficient C type support as well as enabling higher precision arith-
metic if needed. The Y multiplier is a lot simpler than the one on the X side. There is no preadder
function available and only a signed/signed multiplication is possible.

The X ALU is the main ALU in the processor core. It has full 56-bit precision as well as efficient support
for C long and int types. The operations supported are quite extensive and include DSP specific
functions such as absolute and maximum. Division support and full four-quadrant division is also
efficiently supported from C. The X ALU also primarily generates the condition code flags. The Y ALU
is much simpler and has 56-bit precision. It only supports a subset of the X ALU operations. The main
datapath has four distributed register banks: the X, Y registers and the A and B accumulators.

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19-16 Low-Power Processors and Systems on Chips

FIGURE 19.7 Block diagram of CoolFlux DSP audio core.

interupt
handler

halt run
logic

instruction
fetch unit

loop control unit

flow control unit

program memory

register files

Addr
0

1

m

Data
0

1

n
ALU0

ALU1

ALU2

Data processing unit

Data
address

generator
X

Data
address

generator
Y

source and
result busses

bus control unit

interlock
logic

instruction pipeline
and

instruction decoders

bus arbiters

X Y

X Y

write back buffers

data memory

M0

M1

external I/O space external DMA
access P, X, Y

control
busses

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow 19-17

The bus control unit supports moves within the machine. This unit has been designed as a central
bus switch used to exchange the contents within and between the X and Y busses as well as supporting
move operations on each side. Considerable design effort was spent on this unit to ensure it was power
efficient as well as meeting the stringent timing requirements needed.

Besides the main datapath unit, an address generation unit is also used. Two separate units are available
for the X and Y memories, respectively. These units contain the address registers, the modulo-protected,
and indexing ALUs, as well as the bit reverse addressing logic.

The flow control unit controls the processor core. This fetches the instruction stream, decodes it, and
schedules the pipelines by issuing control signals to the entire machine. Interrupts are also processed
here, and we have implemented a low latency, vectored interrupt system. This system guarantees interrupt
response within a limited number of cycles thus easing the buffering needs of external devices. We support
fully interruptible hardware loops, even if they only contain one instruction.

A very important unit is the loop control unit, which provides zero-overhead hardware looping. A
maximum of four nested loops is supported, although this can be set as a parameter. This loop control
unit is very efficient, both in software overhead and in real hardware parameters such as area and power.

19.4.3 Low-Power Techniques

The processor core uses all of the standard techniques for low-power design, mainly based around micro-
clock gating, operand isolation, and general unnecessary toggle reduction techniques. These will not be
elaborated here. We also use a technology library, including SRAM, which allows use of aggressive voltage
scaling to below 1V.

A pipeline structure was developed that allowed use of a single edge clock while giving memory access
a full clock cycle. This will tend to maximize the execution clock rate, thus allowing the most scope for
voltage scaling, which gives approximately quadratic power reduction. The pipeline structure is also finely
balanced with the rest of the micro-architecture design resulting in minimal and simple interlocks,
minimal bypassing, and minimal length control transfers among pipeline segments.

The pipeline also leverages the ISA structure by utilizing a small number of distributed instruction
decoders as opposed to one large one, thus reducing unnecessary logic toggling. In addition, some
instruction encoding techniques were used to attempt to minimize unneeded logic toggling [17]. Finally,
instructions are included that can put the core into various sleep modes, including a deep sleep where
the clock can be deactivated.

The processor core uses distributed register files, local to their respective computational resources,
to reduce power consumption. The ISA also includes some coupling mechanisms that attempt to
reduce the need for copies among register files. Another factor is that the pipeline structure of the
processor core was designed so as to minimize the need for bypassing mechanisms. The advantages
all add up when compared with using a single multi-ported central register file. For a machine with
the parallelism that is available within our processor core, this is a large advantage in both power and
maximum clock frequency.

Significant area (cost) and power consumption is now evident in the memory subsystems of processor
cores. Several techniques have been used to reduce both the size and power consumption of these
memories. Globally, all memory spaces are made up of smaller physical segments such that only one is
active in any space at any cycle.

Data memory utilization is optimized by allowing use of efficient data structures that are supported
by powerful addressing modes within the processor core. Both cyclic and bit reversed addressing are
supported as well as other common DSP addressing modes. Particularly efficient stack support is provided
allowing efficient linkage and local storage for functions. These techniques ensure that data memory
requirements are minimized as well as execution cycles. On the architectural front, a good balance has
been sought between memory subsystem costs and the ability to provide sufficient memory bandwidth
for the parallel computational units.

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

19-18 Low-Power Processors and Systems on Chips

To increase the efficiency of the program memory, innovative techniques for the code size reduction
have been included, on top of the very efficient code that is generated by the Chess C compiler anyway
(i.e., an efficient method for code compression has been included). A major trade-off in designing the
ISA was the width of the instruction word against the amount of encoding used while still leaving enough
degrees of freedom for the compiler to perform code selection well. An ISA with key areas that were
orthogonal was developed. This ISA was enhanced with a form of NOP compression, which used very
little control logic. This has been leveraged by the use of scheduling techniques within the compiler,
which favor the generation of instruction sequences, which allow maximal compression to be used. We
have measured savings between 20 and 25% in code size for typical applications.

The processor core supports extensive I/O facilities allowing easy, efficient interfacing to other systems.
Particularly, interrupts are implemented in a complete and robust way. The interrupt system is charac-
terized by very low latency so that even single instruction hardware loops are fully interruptible. This
allows a minimal amount of specific buffering to be implemented, thus keeping system costs low. This
flexible I/O system and the ability of the retargetable environment to support intrinsic functions also
mean that more application-specific accelerators can be easily added to increase the system power
efficiency if needed.

The processor core is implemented in VHDL at RTL level and a power aware semi-custom ASIC VLSI
design flow is used. The requirements for low power are carefully considered in all stages of the VLSI
design flow as well, including the coding, synthesis, and layout areas.

19.4.4 Results

The CoolFlux DSP design has been initially realized in Philips’ 0.18-µ CMOS technology. All the figures
given are for simulation data; the timing, area, and power results are using fully extracted parasitic three-
dimensional data from the layout database and not wire load estimates.

The power breakdown of the processor core is depicted in Figure 19.8. It demonstrates a low control
overhead of approximately 14% in the processor control unit (PCU) logic and power that is dominated
by the datapath components (DCU). The overall control overhead with program memory fetches

FIGURE 19.8 CoolFlux DSP power breakdown.

0

5

10

15

20

25

30

35

40

DCU PCU AGU PM DM

pe
rc

en
t

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Design of Low-Power Processor Cores Using a Retargetable Tool Flow 19-19

included is some 37% of the total power consumption. The memories are represented by the program
memories and data memories (PM, DM) and the address calculation units are in the AGU module.

Table 19.1 presents some figures obtained for the CoolFlux DSP for an MP3 decoder application and
some general core area and timing parameters.

19.5 Conclusions

This chapter described a methodology for the design of low-power programmable processor cores in
SoCs. The main idea that is explored is to customize the instruction-set architecture of the core. By
making the core application-specific, efficient architectures with minimal overhead, running at lower
clock frequencies and exploiting lower supply voltages, can be obtained while retaining much of the
flexibility and programmability of a general-purpose processor.

The key infrastructure for making this methodology work in an industrial environment is a retargetable
tool-flow that allows for quick and thorough exploration of the architectural design space as well as for
efficient software development starting from C source code. In this chapter, the Chess/Checkers tool-
suite from Target Compiler Technologies has been introduced for this purpose. In addition, a survey has
been given of various architectural techniques that are beneficial for designing low-power processor cores.
Most of the presented architectural optimizations are within the architectural solution space of the CHESS/
CHECKERS tool-suite.

The effectiveness of the methodology has been demonstrated through the design, by Philips, of an
ultra-low power processor core for audio coding applications called COOLFLUX DSP. As an example, this
core can run MP3 decoding from compiled C code in less than 15 MIPS, which results in a processor
core power consumption of about 1 mW in 0.18-µ standard cell technology.

19.6 Acknowledgment

The authors thank their colleagues at Easics N.V. for sharing some of the data on low-power design
experiments.

References

[1] ARCtangent-A4 Core — A Technical Summary, ARC International Inc., http://www.arc.com, 2003.
[2] CHESS/CHECKERS: a retargetable tool-suite for embedded processors, Technical white paper, Target

Compiler Technologies, http://www.retarget.com, June 2003.
[3] Xtensa Architecture and Performance, Tensilica Inc., http://www.tensilica.com, Sept. 2002.
[4] R. Camposano and J. Wilberg, Embedded system design, Design Automation for Embedded Syst.,

Vol. 1, No. 1–2, pp. 5–50, Jan. 1996.
[5] A. Chandrakasan and R. Brodersen, Low-Power Digital CMOS Design, Kluwer Academic Publishers,

Boston, 1995.
[6] P. Dytrych, M. Adé, J. Coninx, J. David, and P. Vandebroek, The design of a very low-power MP3

decoder accelerator, DSP Valley Annu. Res. and Technol. Symp., Leuven, Belgium, Oct. 2002.

TABLE 19.1 CoolFlux DSP Performance Figures for MP3 Decoder

MP3 decode computation load needed 14.9 MIPS (128-Kbps, 44.1-KHz stereo material)
Program memory size 4.6 Kwords × 32 bits
Data memory size 10 Kwords × 24 bits (total)
MP3 core power consumption 1 mW (Philips 0.18 µ standard cell low-leakage CMOS, Vdd = 0.9 V,

fClock = 15 MHz)
Maximum clock frequency 135 MHz (worst-case commercial)
Core size Approximately 45 kGate (NAND2 equivalents)

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.arc.com
http://www.retarget.com
http://www.tensilica.com

19-20 Low-Power Processors and Systems on Chips

[7] A. Fauth, J. Van Praet, and M. Freericks, Describing instructions set processors using nML, Proc.
European Design and Test Conf., pp. 503–507, March 1995.

[8] M.T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, Power analysis and minimization techniques for
embedded DSP software, IEEE Trans. on VLSI Syst., Vol. 5, No. 1, pp. 123–133, March 1997.

[9] J.M. Rabaey and M. Pedram, Low-Power Design Methodologies, Kluwer Academic Publishers, Bos-
ton, 1995.

[10] J. Sato, M. Imai, T. Hakata, A. Alomary, and N. Hikichi, An integrated design environment for
application specific integrated processor, Proc. Int. Conf. Comput. Design, pp. 414–417, Oct. 1991.

[11] D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S. Raigopal, N. Seghal, and T. Mozdzen, Power
conscious CAD tools and methodologies: a perspective, Proc. IEEE, Special Issue on Low-Power
Electron., Vol. 83, No. 4, 1995.

[12] R.M. Stallman, Gnu compiler collection internals, http://gcc.gnu.org, Dec. 2002.
[13] J. Sato, A. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi, and M. Imai, PEAS-I: a hardware/

software codesign system for ASIP development, IEICE Trans. on Fundamentals, Vol. E77-A, No.
3, March 1994.

[14] C. Su, C. Tsui, and A. Despain, Low-power architecture design and compilation techniques for
high-performance processors, Proc. IEEE COMPCON, Feb. 1994.

[15] J. Van Praet, D. Lanneer, W. Geurts, and G. Goossens, Processor modelling and code selection for
retargetable compilation, ACM Trans. on Design Automation of Electron. Syst., Vol. 6, No. 3, pp.
277–307, July 2001.

[16] F. Catthoor, Custom Memory Management Methodology: Exploration of Memory Organisation for
Embedded Multimedia System Design, Kluwer Academic Publishers, Boston, 1998.

[17] S. Woo, J. Yoon, and J. Kim, Low-power instruction encoding techniques, School of Computer
Science and Engineering, Seoul National University, undated.

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://gcc.gnu.org

20

-1

20

Recent Advances in
Low-Power Design

and Functional
Coverification

Automation from the
Earliest System-Level

Design Stages

20.1 Introduction ..

20-

1
20.2 Advanced Loop Transformations for Low Power

20-

2

Input Code • Loop Fusion • Fusion with Buffer Allocation •
Live Data • Code Generation • Tiling • Matrix

A

(

n

, 2

n

) • Matrix

P

(2

n

, 2

n

) • Tiling as a Loop Transformation • Buffer
Allocation • Implementation and Tests • Cache Misses •
Execution Time • Conclusion

20.3 Exploiting Task-Level and Data-Level Parallelism on the
Intel IXP1200...

20-

8

Introduction • Performance Modeling and Evaluation •
Modeling IPv4 Forwarding Application • Modeling IXP1200
Architecture • Experimental Setup • Results and Analysis

20.4 Advanced Functional Coverification Using SSDE

20-

14

Coverification Using Our System and Software Design
Environment (SSDE) • Should I Consider Using SSDE? • Our
Generic SSDE Setup • Overview of Seamless • Overview of
Specman Elite • Functional Verification Plan • Random Test
Generation • Manual Tests Development • Automatic Test
Pattern Generation

References ...

20-

22

20.1 Introduction

To meet the cost, power, performance, and programmability constraints of next-generation multimedia
devices and platforms in a reasonable design and verification time, introducing a system specification
cleaning engine so-called the software washing machine by IMEC’s Hugo de Man is key [23]. At this
highest level (and first step) in the overall system-level design and verification flow, automation is a very

Thierry J.-F. Omnès

Philips Semiconductors

Youcef Bouchebaba

University of Nantes

Chidamber Kulkarni

University of California-Berkeley

Fabien Coelho

Ecole des Mines

6700_book.fm Page 1 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-2

Low-Power Processors and Systems on Chips

difficult problem because system architects typically prefer the expressiveness of C/C++ to the powerful
semantics of synchronous languages [6] such as Esterel [16], Lustre [32], and Signal [49], using tools
such as Esterel Studio [26], Polychrony [42], and Simulink. They also prefer the expressiveness of C/C++
to the powerful mathematics of geometric data-flow modeling available from languages such as Fortran,
Alpha [21], and tools such as paralléliseur interprocedural de programmes scientifiques (PIPS) [37] and
MMAlpha [47]. Because data access and transfer have the biggest impact on the cost, power, and
performance of embedded systems, bridging the gap between geometric data-flow modeling and C/C++
requires special attention. Section 20.2 tours basic geometric transformations to motivate the introduc-
tion of a novel and advanced low-power optimization engine, based on PIPS, with the ability to take
restricted but still C code as input. Beyond the productivity gain achieved by automation, we observe
superior power savings than typically obtained using the systematic but manual code rewriting techniques
that stand for best practice in this field today

.

Another well-known source of cost, power, and performance optimization is parallelism. Having per-
formed our novel and advanced transformations from the earliest system-level design stage, we move to
task- and data-level parallelism exploitation. On an Intel IXP1200 network processing platform, we parti-
tion an IPv4 forwarding application written in C into 4 tasks (so-called micro-engines) and 16 threads for
exploiting data parallelism using a YAPI (Y-chart) approach. As illustrated in Section 20.3, this results again
in important productivity gains while maintaining near-optimal performance on large packet lengths.

Because our advances rely on sophisticated C/C++ source code transformations and manual parti-
tioning, it is essential to verify their functional correctness. Section 20.4 describes the co-verification
methodology currently used within Philips’ System and Software Design Environment (SSDE). It is the
last but essential step to bridge the gap between advanced low-power techniques and production-quality
embedded system design and verification.

20.2 Advanced Loop Transformations for Low Power

Research in the program transformation field has drawn much attention for several years. It consists in
finding new techniques that allow the compiler to transform source code to optimize some criteria, such
as parallelism, execution time, or data locality, which have a direct effect on the reduction of energy
consumption [13,38]. The transformations described here aim at improving data locality to switch costly
transfers from the main memory to cheaper cache or register memory. During program optimization,
the greatest profit comes from the loop nest optimizations because they use the most time in computation
of scientific programs. For many years, several techniques have been proposed to transform these nests.
Among these techniques, tiling [36], fusion [39,65], and memory reallocation [24,28] can be cited. Tiling
is a good technique for increasing the data locality, but most work of this technique is only dedicated to
code with single loop nest. This chapter demonstrates how we combine all these techniques to apply
them to sequences of nested loops [7–9]. The codes considered here are signal processing applications,
which are sequences of loop nests of equal but arbitrary depth. Each of these nests uses a stencil of data
produced in the previous nest, and the references to the same array are equal, up to a shift.

20.2.1 Input Code

As mentioned previously, the input code includes signal-processing applications, which are a sequence
of loop nests as depicted in Figure 20.1. Note that the dependencies of this code form a directed acyclic
graph, and each of these nests uses a stencil of data produced in the previous nest and represented by a

set: .
Domain

D

0

 associated with array

A

0

 is defined by the user. To avoid illegal accesses to the various

arrays, the domains are derived in the following way: .

We suppose that the vectors of the various stencils are lexicographically ordered, so that
(

≤

 is a lexicographic operator).

V v vk k
mk
k= …{ , }1

 D k pk ()1 ≤ ≤ D i v V i v Dk
k

k= ∀ ∈ + ∈ −{ / : }
r r r r

1

∀ ≤ ≤k v vk
mk
k: 1 L

6700_book.fm Page 2 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation

20

-3

20.2.2 Loop Fusion

Loop fusion is a transformation technique that combines several loops into one loop. It has several
advantages including:

1. Lower cost of loop bound testing [19]
2. Synchronization reduction when loops are distributed among different computation units [12]
3. Data locality increasing [44]

This chapter focuses on this last point, which consists of reducing data transfers among various levels
of memory hierarchy, which has a direct effect on energy consumption [13,38].

Generally, the fusion of two loops is valid if and only if they have the same iteration domains and in
the merged nest we do not create dependencies from instruction of the second nest to instruction of first
nest such as: flow dependence, output dependence or anti-dependence [63]. To merge all nests of code

in Figure 20.1, we should make sure that all elements of array that are necessary for the computation

of an element at iteration in the merged nest have already been computed by previous iterations.

To satisfy this condition, we shift [34] the iteration domain of every nest by a delay . Our fusion will

be valid if and only if these various delays satisfy the following condition [7–9]: .

The merged code after shifting the various iteration domains is given in Figure 20.2. is the instruc-

tion label and , where is domain shifted by vector . As instruction might not

be executed at each iteration of domain , we guard it by condition: .

FIGURE 20.1

General form of input code.

FIGURE 20.2

Merged nest.

do i D

A (i) F(A)

enddo

do i D

A (i) F(A)

enddo

0

1 1 0

k

k k k 1

r

r

M

M
r

r

∈

=

∈

= −

 Ak−1

 A ik()
r

r
i

 hk

h h MAX vk k i i
k≥ −+

+
1

1()

 Sk

D Diter k
k

p

= ′
=

()
1U ′Dk Dk hk Sk

 Diter C i if i Dk k() ()
r r

= ∈ ′

do i D

S : C (i) A (i h) F(A)

S :C (i) A (i h) F(A)

S : C (i) A (i h) F(A)

enddo

iter

1 1 1 1 1 0

1 1 1 1 1 k 1

0 0 0 0 0 0 1

r

r r r

M

r r r

M

r r r

∈

− =

− =

− =

−

−

6700_book.fm Page 3 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-4

Low-Power Processors and Systems on Chips

20.2.3 Fusion with Buffer Allocation

In practice, we only need the first and last arrays (and) because all others arrays only hold
temporary data. Thus, we replace arrays …. by circular buffers …. . Buffer is a one-
dimensional array that will contain array live data. This transformation saves memory space and avoids
loading the same element several times

.

20.2.4 Live Data

An element of array is said to be live at iteration if and only if:

1. It is produced in the domain at iteration .
2. It exists in the domain at iteration , which will consume it.

The memory volume corresponding to an iteration is then given by the number of
elements of array that are live at iteration . We can verify easily that is bounded by a constant,
which will be noted .

20.2.5 Code Generation

As mentioned it earlier, each array will be replaced by a buffer , which will be managed in a circular
and sequential way. The size of buffer is given by defined previously. To store and load the
elements of array in the buffer we associate with it an access function: such that:

The merged code after the replacement of different arrays by buffers will have the form of the code
in Figure 20.3.

20.2.6 Tiling

Tiling is one of the most important techniques in the program transformation domain. Generally, it
transforms a nest of depth into another nest of depth . Much work has been done on tiling [36,62],
but most of it is only dedicated to a single loop nest. This chapter presents a simple and effective method
that simultaneously applies tiling with fusion to a sequence of loop nest. We are interested only in data
that live in the cache memory, thus our tiling is at one level. Our tiling is used as loop transformation
and is represented by two matrices: a matrix that gives the various coefficients of tiles and a

FIGURE 20.3

Merged nest with buffer allocation.

do i D

S : C (i) B (F(i)) F(A)

S : C (i) B (F(i)) F(B)

S : C (i) A (i h) F(B)

enddo

iter

1 1 1 1 1 0

2 2 2 2 2 2 1

k k k k k k 1

r

r r

M

r r

M

r r r

∈

=

=

− =

−

−

 Ao Ap

A1 Ap−1 B1 Bp−1 Bi

Ai

Ak−1

r
i Dk∈ ′

 ′−Dk 1
r r
i i1 ≤

 ′Dk
r r
i i2 ≥

 M ik()
r

r
i Dk∈ ′

 Ak−1
r
i M ik()

r

 Supk

 Ak Bk

 Bk Supk+1

 Ak Bk F D Nk k: ′ →

F Ok k()
r

= 0

 F SUCC i F i Supk k k k k(()) (()mod
r r

= +1

 n 2n

 A n n(,)2

6700_book.fm Page 4 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation

20

-5

permutation matrix that allows for the specification of the organization of tiles and the itera-
tions inside these tiles. As with fusion, the first step before applying tiling with fusion is to shift the
iteration domain of every nest by a delay . We note by the shift of domain by vector .

20.2.7 Matrix

A

(

n

, 2

n

)

Matrix defines the tile size and allows us to transform every point into a point .
In the vector, we have two types of loops:

1. Loops that iterate over tiles
2. Loops that iterate over iterations inside tiles

All the elements of the line of this matrix are equal to zero except:

1. , which represents the size of tiles on the axis
2. , which is equal to 1

The relationship between and is given by .

20.2.8 Matrix

P

(2

n

, 2

n

)

Matrix has no impact on the execution order of the initial code. Permutation matrix
allows for:

1. The placement of all the loops that iterate over tiles before the loops that iterate over iterations
inside tiles

2. The specification of the order in which the iterations will be executed

This matrix transforms every point into a point such as . After the application of
matrices and , we obtain the code in Figure 20.4.

20.2.9 Tiling as a Loop Transformation

Contrary to fusion without tiling, the computation of the various delays in the case of fusion with
tiling requires more effort. Our fusion with tiling will be represented as transformation:

As mentioned in our previous work [7–9], the simultaneous application of tiling with fusion to the
input code is valid if and only if:

.

FIGURE 20.4

Tiled code.

do i

S : C (Ap l) A (Ap l h) F(A)

S : C (Ap l) A (Ap l h) F(A)

S : C (Ap l) A (Ap l h) F(A)

enddo

1 1
1

1
1

1 1 0

2 2
1

2
1

2 2 2 1

k k
1

k
1

k k k 1

r

r r r

M

r r r

M

r r r

− −

− −
−

− −
−

− =

− =

− =

 P n n(,)2 2

 hk ′Dk Dk hk

A n n(,)2
r
i Z n∈

r
′ ∈i Z n2

r
′i

 i
th

ai i,2 1− i
th

ai i,2

r
i

r
′i

r r
i Ai= ′

 A n n(,)2 P n n(,)2 2

r
′i

r
l Z n∈ 2

r r
l Pi= ′

 A n n(,)2 P n n(,)2 2

 hk

ω : Z Zn

i

n

l
r r→

→

2

∀ ∀ ∈ ∀ ∈ + − + ≤+
+

+k i D v V i v h h ik
k

k k, , : () ()
r r r r r

1
1

1ω ω

6700_C020.fm Page 5 Thursday, August 18, 2005 9:35 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-6

Low-Power Processors and Systems on Chips

This condition means that each data-producing iteration must be computed before the iteration that
consumes it

.

20.2.10 Buffer Allocation

In the case of fusion, we suggest replacing arrays …. by circular buffers …. . A buffer
is a one-dimensional array that contains the live data of array . In the case of fusion with tiling, this
technique has two drawbacks:

1. Dead data are stored in these buffers to simplify access functions
2. The size of these buffers increases when the tile becomes large

To eliminate these two problems, we replace every array by buffers. As mentioned earlier,
tiling allows transforming a nest of depth

n

 into another of depth 2

n

. The external loops iterate over
tiles, while the

n

internal loops iterate over iterations inside these tiles. For every external loop

m

, we
associate two buffers and (corresponds to array); for all internal loops, we define single
buffer , which contains the live data inside the same tile. For example, if the depth of the nests is
two, every array will be replaced by five buffers:

• Buffer contains the data produced by a column of tiles, which will be consumed by the
following column

.

• Buffer contains the data produced in a tile, which will be consumed by the following tile

.

• Buffer contains the live elements in the same tile, and it is managed as the circular buffer for
the fusion.

In a given tile, we use data that are produced in the previous tile, and we produce other data that will
be consumed in the following tile. To avoid destroying data in the buffer , we duplicate it by another
buffer . For this same reason, we duplicate the buffer by another buffer .

20.2.11 Implementation and Tests

As mentioned in the introduction (Section 20.1), our goal is to reduce the energy consumption in signal
processing applications, which strongly depends on data transfers between the various levels of the
memory hierarchy. The tests presented here are the numbers of cache misses and execution times of
various transformations. We have considered only the external cache because it is the only one that
generates data transfers between the processor chip and its environment. The two measurements are
carried out for Sun Blade 1000

,

 based on a microprocessor UltraSPARCIII with and 8-MB external cache

FIGURE 20.5

Multiple buffer allocation.

Bk.3

Bk.1

Bk.2

j

i

A1 Ap−1 B1 Bp−1 Bi

Ai

Ak 2 1n +
n

Bk m, ′B kk m, Ak

Bk n, +1

 Ak

Bk ,1

Bk ,2

Bk ,3

Bk ,2

Bk ,2 Bk ,1 Bk ,1

6700_book.fm Page 6 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation

20

-7

and 750 MHZ of clock frequency. The code on which we made our experiments is real application; cavity
detection code provided by IMEC, which is a sequence of five nested loops.

20.2.12 Cache Misses

The Figure 20.6 plots cache misses according to array size on Sun Blade 1000. The lines of rate 40/

L,

24/

L,

and 8/

L

 (L is the size of external cache lines) represent theoretical values for cache misses respectively
of the initial code, the merged code (tiled and merged code), and the merged code with buffer allocation
(merged and tiled code with buffer allocation). As one can observe from Figure 20.6:

• Buffer allocation in fusion and in fusion with tiling decreases considerably the number of external
cache misses by almost a factor of 5 when compared with the initial code.

• All tests follow asymptotically well-defined lines that correspond to expected theoretical results.

20.2.13 Execution Time

The objective of our research was to increase data locality

.

 We nevertheless measured the execution times
of different transformations of our application. Figure 20.7 gives the execution times according to the
array size on Sun-Blade-1000. Notice that the merged code with buffer allocation increases considerably
the execution time. This increase is foreseeable because the modulo used in access functions is time-
consuming. To improve the execution time of this code we can either use powers of 2 as buffer sizes or
eliminate the modulo by unrolling the loops. Figure 20.8 contains the execution times of the various
transformations when the buffer sizes are a power of 2.

20.2.14 Conclusion

Section 20.2 discussed the reduction of the energy consumption of signal processing applications executed
in embedded systems. The reduction of the energy consumption requires a reduction of memory accesses
as demonstrated by IMEC’s work [14,30,64]. We have studied several program transformations improving
the data locality, and we have extended them.

Much work on loop transformation has been done, but most of it is only dedicated to codes with
single loop nests. This section combined loop fusion, tiling, loop shifting, and memory reallocation to
apply them to sequence of nested loops. Our method consists in shifting each iteration domain by a delay

FIGURE 20.6

External cache misses.

0

N1*N2

Initial
Fusion

Fusion + Tilling + Buffers
Fusion + Tilling

Fusion + Buffers

+

+

+

+

+

+
+

+

24/L
40/L

8/L

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

C
ac

he
 M

is
se

s
on

 S
un

 B
la

de
 1

00
0

6700_book.fm Page 7 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-8

Low-Power Processors and Systems on Chips

to ensure the legality of the simultaneous application of fusion with tiling. We then used the concept of
live data to replace each array by:

1. Sequential and circular buffers in case of fusion
2. A set of buffers in case of fusion with tiling

All transformations described in this section have been implemented in our source-to-source prototype
compiler PIPS

,

 and we have carried out two measurements (cache misses and execution time) on target
Sun Blade 1000 machines

.

 These measurements demonstrate that the number of cache misses can be
reduced by a factor of up to 5.

20.3 Exploiting Task-Level and Data-Level Parallelism on the

Intel IXP1200

Network processors exploit task and packet level parallelism to achieve high throughput. To date, this
has resulted in a huge diversity of architectures for similar applications. Driven by practical implemen-
tations. This section explores the different trade-offs in network processor design and implementation.

FIGURE 20.7

Execution time of various transformations on Sun-Blade1000.

FIGURE 20.8

Reduction of time execution by changing the buffer size (size = power 2).

35

30

25

20

15

10

5

0

N1*N2

Initial
Fusion

Fusion + Buffers
Tilling + Fusion

Tilling + Fusion + Buffers

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

E
xe

cu
tio

n
 T

im
e
 o

n
 S

u
n
 B

la
d
e
 1

0
0
0

22

20

18

16

14

12

10

8

6

4

2

0

N1*N2

+

+
+ +

+

+

+

+

Initial
Fusion

Fusion + Buffers
Tilling + Fusion

Tilling + Fusion + Buffers

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

E
xe

cu
tio

n
T

im
e

on
 S

un
 B

la
de

 1
00

0

6700_book.fm Page 8 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation

20

-9

20.3.1 Introduction

Contemporary network processors (NPUs) exhibit a wide range of architectures for performing similar
tasks: from simple reduced instruction set computer (RISC) cores with dedicated peripherals, in pipelined
or parallel organization, to heterogeneous multiprocessors, based on complex multi-threaded cores with
customized instruction sets. Although so diverse, all NPUs exploit task-level concurrency in applications
by means of parallel programmable processing elements (PEs) to meet line speed requirements. Thus,
the inter-PE communication and the topology of PEs are performance critical aspects of any NPU
architecture.

Programming such concurrent systems remains an art. The programmer is not only required to
partition and balance the load of the application manually among multiple PEs, it is also necessary to
implement each task, often in assembly, before a reliable performance estimation can be obtained. Thus,
a robust application mapping strategy for such architectures requires a balance between thread parti-
tioning, scheduling, memory accesses, and input/output (I/O)

.

 With current tools, this task becomes
time-consuming and error prone, due to trial-and-error methods employed by system implementers
based on simulation runs. Therefore, topology, inter-PE communication, and the ease of mapping are
likely to be key aspects of the quest for a natural programming model.

For the next generation of network processor based system implementations, we strongly believe that
considerable emphasis will be put on performance per cost (e.g., power consumption) aspects and on
support of appropriate programming models. Therefore, it is essential to identify and investigate limi-
tations and bottlenecks in system implementation without going all the way down to complete imple-
mentations, as is the current practice. Thus, the use of high-level design space exploration and verification
tools is required that support a wide range of heterogeneous architectures and enable precise reasoning
about different implementation styles and their performance. The main goal of this section is to clearly
understand the performance/cost trade-offs for network processor based implementations. In this pro-
cess, we have implemented two differently mapped versions of our IPv4 benchmark [26] on IXP1200 to
gain detailed insight into programmability of existing NPU architectures.

20.3.2 Performance Modeling and Evaluation

Our approach to design space exploration is based on the Y-chart approach. Separate descriptions of the
application (workload) and the micro-architecture are bound to each other in an explicit mapping step,
describing bindings of tasks and communication onto micro-architecture building blocks. The following
evaluation of the system may manually or automatically trigger adaptations of the workload, the alloca-
tion of architecture building blocks, or the mapping of the application onto the architecture.

FIGURE 20.9

Design exploration using a Y-chart.

Application

Mapping

Task graph and
arrival curvesService curves

Evaluation

Architecture

Worst case packet delay
Resource utilization
Memory requirements

Binding of tasks and
communication

6700_book.fm Page 9 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-10

Low-Power Processors and Systems on Chips

20.3.3 Modeling IPv4 Forwarding Application

A 16 fast Ethernet port IPv4 forwarding switch application is used in this work. Our functional specifi-
cation of the application is based on RFC 1812 [59]. Figure 20.10 illustrates the main components in the
functionality of our benchmark annotated with cycle counts for 64-byte packet size. It is important to
note that in addition to the core functionality a number of steps are required to receive the packets from
the external media access control (MAC) unit into the IXP1200 and extract the packet header, on which
the previously stated operations are performed. Last, the modified packet header and the packet payload
need to be written back into the external MAC unit via the IX bus unit. These additional operations, in
fact, result in most of the programming effort for our application. For example, 14 detailed tasks are
required to perform the core functionality of our benchmark, whereas we need 42 detailed tasks to
perform the ingress and egress operations on each packet.

20.3.4 Modeling IXP1200 Architecture

The Intel IXP1200 network processor [48] is targeted for applications performing packet forwarding and
classification at layer three and below of the open system interconnection (OSI) model. This section
introduces only the main components of the IXP1200 utilized by our application as needed for modeling.
The IXP1200 comprises six micro-engines, with four threads on every micro-engine, for computation.
There are four unidirectional on-chip buses connecting both the off-chip memories (SRAM and SDRAM)
to the micro-engines. External MAC units are connected to the IXP1200 via the IX Bus

.

 The IX bus
interface unit has the required logic and memories to receive and transmit packets from/to the external
MAC unit. The IX bus unit has a scratchpad memory (SRAM) and two FIFO memories, with each having
16 entries of size 64 bytes. In addition, the SDRAM unit is connected to the IX bus unit via a separate
on-chip bus, used to transfer packet payloads directly based on micro-engine commands, and last, an
on-chip command bus carries events and signals between micro-engine and the IX bus unit.

This section focuses only on the data plane of the IXP1200 network processor. Thus, aspects related
to the StrongARM processor are not modeled. In addition, we have not modeled the PCI bus interface

FIGURE 20.10

Instance of annotated IPv4 task graph derived from the application for analysis.

Incoming
Ethernet IP packets

IXP specific, 800 Cycles

Outgoing
Ethernet IP packets

IXP specific, 700 Cycles
Decrement TTL

Check IP Header
150 Cycles

120

45

45

45

45

240

120

100

Get IP Address
Lookup IP Route

Dec IP TTL
350 Cycles

Detail Lookup IP Route, 117 Cycles
Memory Accesses: 4 byte in, 1 byte out

Move Packet
from MAC to FIFO

Extract IP Header and
move to µEngine

Move payload
from FIFO to SDRAM

Move Header from
µEngine to SDRAM

Move Packet
from SDRAM to MAC

Check header length

Trie walk 2

Trie walk 3...

Verify if the right path
else perform a diff walk

Verify if the right path
else perform a diff walk

Verify if match
and extract dest port

Get dest port

Check IP version field

16 bit checksum
on header

Drop packet if illegal
source address

Drop packet if illegal
destination address

Check for TTL >1

Extract Destination IP

Lookup IP Route

Extract IP dest addr,
Launch Table lookup

Trie walk 1

6700_book.fm Page 10 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation

20

-11

as well as the hash engine because we do not utilize these peripherals. A typical packet flow through the
IXP1200 follows the steps given in Figure 20.10. Comparing results from analysis and simulation, Section
20.3.5 describes the experimental setup that we used for our implementation

.

20.3.5 Experimental Setup

In our case study, we first developed the application in micro-engine C, following the preceding speci-
fication based on the Intel reference code. We made a few modifications to the transmit threads to improve
the performance and to make the code stable and usable across different packet streams

.

 In addition, we
have used the assembly implementation from Intel reference code because it is hand tuned and most
performing. The application was partitioned so that 16 threads on 4 micro-engines were assigned 1 port
each on the receive (and forwarding) part. The transmit part of the application was assigned eight threads
on two micro-engines. This partitioning holds because the end-to-end delay for a packet on the receive
part is more than twice that on the transmit part. This implementation was used to derive the per-packet
profiling information used to build the task graph for the network calculus-based approach.

Performance on the IXP1200 was measured using version 2.01 of the developer workbench assuming
a clock frequency of 200 MHz; the IX bus is 64-bit wide and has a clock frequency of 80 MHz. Two
IXF440 external MAC units (with eight duplex fast Ethernet ports each) are connected to the IX bus and
Ethernet IP packets are streamed from this unit to the IXP1200 and back. The packets for the application
contain destination addresses evenly distributed across the IPv4 32-bit address space. We employ different
packet sizes, namely from 40 bytes to 256 bytes. A single packet source for each input port generates an
evenly distributed load. In addition, the range of destination addresses and associated next-hop destina-
tions provide an evenly distributed load on every output port.

20.3.6 Results and Analysis

We now present some of our results from the analysis of this implementation.

20.3.6.1 Distribution of Code

Figure 20.11 depicts the total distribution of the IXP1200 assembly and uEngineC code in terms of lines
of code devoted to either communication (between different memories and interface units), computation
related (includes code for register transfers in micro-engine) and initialization code (related to initial-
ization of ports, etc.). The main observation being the percentage distribution of code is not drastically
different compared with the assembly, however, the number of lines of code in uEngineC is more
compared with the assembly (620 lines compared with 500 lines).

20.3.6.2 Per-Packet Time Distribution

Figure 20.12 depicts the percentage time distribution based on the previous classification for each packet.
Observe that the micro-engine spends a significant amount of time in the idle state

.

 In addition, the

FIGURE 20.11

Assembly and u Engine C code distribution.

Communication

Microengine

Initializatiion

A

Communication

Microengine

Initializatiion

B

6700_book.fm Page 11 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20

-12

Low-Power Processors and Systems on Chips

amount of time spent in communication is almost equal to that of computation (Note: Computation
here does not indicate arithmetic and logical computations only, but any micro-engine activity including
register loads and stores.)

20.3.6.3 Implementation Results

To have a reference set of design points we determined the maximum possible throughput for IPv4
forwarding without packet loss by simulation. We varied the packet length to account for payload storage
versus header processing trade-offs. The results are presented in Figure 20.13

.

Observe that we approach

FIGURE 20.12

Per-packet time distribution.

FIGURE 20.13

Throughput for IPv4 forwarding on IXP.

Communication

Computation

Idle
T

hr
ou

gh
pu

t (
%

 o
f l

in
es

pe
ed

)

90

80

70

60

50

40

30

20

10

0

simulation

40 64 65 128 129 192 193 256

Packet length (byte)

 T
hr

ou
gh

pu
t (

M
b/

s)

1600

1400

1200

1000

800

600

400

200

0
64

Byte
65

Byte
128
Byte

129
Byte

512
Byte

Packet Size

u Engine C

Assembly

6700_book.fm Page 12 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation 20-13

line speed only for larger packet sizes where the micro-engines can keep up with the processing demand
of the reduced number of packet arrivals (compared with small packet lengths). We can also recognize
the influence of the 64-byte receive and transmit FIFOs in the IX bus unit. As soon as an additional 64-
byte segment is needed, the throughput drops, due to the basic unit of data transfer between synchronous
dynamic random access memory (SDRAM) and FIFOs being 64 bytes. Thus, for a given delay of two
64-byte transfers we are transferring only 65 bytes (instead of 128 bytes).

Figure 20.13 also presents the comparison between the throughputs obtained by the assembly and
uEngineC versions of IXP1200 code. We observe a decrease in performance between uEngineC code and
that of assembly code by an average of 25 to 30%. For packets with larger sizes (in our experiments 512
bytes), however, this difference reduces to 5 to 6%. This is because larger packets result in higher
throughput for both the cases; however, for the uEngineC code this increase is significant and offsets the
difference in performance between the assembly and uEngineC code.

20.3.6.4 Exploring the Implementation Space

Figure 20.14 depicts the variation in throughput with increasing buffer sizes in the external MAC unit
(IXF440). We observe that increasing buffer sizes does not contribute to a large increase in the throughput
and thus buffer sizes are not the main bottleneck in our set up. Figure 20.14 also presents the variation
in the throughput for different IX bus clock frequencies for 64-byte packets. We observe that for both
the 80-MHz and 133-MHz, not much change occurs in the throughput; however, by increasing the clock
frequency to 200 MHz (the same as the IXP1200 clock frequency), we obtain line rate performance.

FIGURE 20.14 Throughput for IPv4 forwarding on IXP.

 T
hr

ou
gh

pu
t (

M
b/

s)

1200

1000

800

600

400

200

0
256
Byte

512
Byte

2048
Byte

8192
Byte

1024
Byte

Buffer Size Entries

A

 T
hr

ou
gh

pu
t (

M
b/

s)

1600
1400
1200
1000
800
600
400
200

0
80 MHz 200 MHz133 MHz

IXF440 Clock

B

 T
hr

ou
gh

pu
t (

M
b/

s)

1600

1400

1200

1000

800

600

400

200

0
200MHz 300MHz 400MHz 500MHz

C

IXP1200 Clock Frequency

6700_book.fm Page 13 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20-14 Low-Power Processors and Systems on Chips

Thus, the IX bus is the bottleneck to attaining line rate performance. Finally, Figure 20.14 depicts the
variation in throughput with increasing clock frequency of IXP1200 for IX bus frequency of 80 MHz.
We observe that for clock frequencies of 300 MHz and above, we achieve almost a line rate performance.
Thus, based on these experiments, we conclude that the two main reasons for performance degradation
in IXP1200 are:

1. The speed of IX bus
2. The latency of the IXP1200 itself

Improving either of the two aspects above results in a line rate performance for the given set up.

20.4 Advanced Functional Coverification Using SSDE

Traditionally, software and hardware design activities are clearly separated, as represented by a wall in
Figure 20.15. Because of this separation, handing off the hardware IP to the software activity is postponed
to the availability of a sufficiently stable and detailed hardware implementation datasheet for the software
implementation phase to start. From that point, software IP is developed independent of hardware and
hardware engineers can work on finalizing their hardware IP and preparing a rapid prototyping platform
like (e.g., an FPGA board). Only after the rapid prototyping platform and the software IP are both
available can software and hardware coverification start, usually performed by a separate design integra-
tion team.

This traditional approach has two major disadvantages:

1. The software activity remains idle for half of the process, which significantly increases time-to-
market.

2. The coverification happens only as a last step in the flow, which does not offer enough room for
verifying the system properly.

Moreover, traditional rapid prototyping platforms (e.g., simulation accelerators, FPGA boards, emu-
lators, and early silicon) operate at the Gate-Level (GL), which does not offer the necessary level of
visibility for debugging back to the Register-Transfer Level (RTL) and the software programming language
level efficiently. As a result, systems are poorly verified; the few bugs found take weeks to fix; several

FIGURE 20.15 Traditional wall between the hardware and software communities.

HW
community

SW
community

System Specification

FPGA
Prototyping system

RTL descr. of
HW

HW Implementation

FPGA synthesis

Only Limited HW/SW testing. Poor visibility and testability

Poorly tested RTL & SW delivered to client

HW datasheet

SW Implementation

Software

Gate level,
visibility gone

6700_book.fm Page 14 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation 20-15

expensive silicon respins are needed before final tape-out; and frustration propagates among the hard-
ware, the software, and the IP integrator communities, not to mention the frustration of the users.

20.4.1 Coverification Using Our System and Software Design Environment
(SSDE)

Our proposed SSDE environment alleviates the disadvantages of separating the software and hardware
design activities, which was proven on a real USB 2.0 high speed (HS) [29,43], IP9021, business case in
cooperation with the Re-Use Technology Group (RTG) Interconnectivity Software Design (ISD) section
of the Philips International Technology Center Leuven (ITCL). We illustrate this pilot project in Figure
20.16. Because Seamless from Mentor Graphics, Inc. enables embedded code execution on a simulation
model of the hardware, we can use the early RTL-level description of the hardware to start embedded
software development at a much earlier stage in the design cycle. From that point, cross-compiling the
embedded software into Seamless enables the cycle-accurate software and hardware co-debug with
excellent visibility both of the embedded software aspects (i.e., the Seamless XRay* interface provides a
conventional software debug interface) and of the hardware signals (i.e., Seamless links to your preferred
RTL simulator and waveform viewer). As a result, bugs are found at a much earlier stage and are fixed
within a few hours, if not minutes. Because Specman Elite from Verisity, Inc. enables advanced coverage-
driven functional verification while offering an e-verification component (eVC) for the USB protocol
and protocol checkers for the AHB bus protocol from ARM Ltd., we can verify our full implementation
of a USB 2.0 HS device in a realistic working environment — including an AHB bus connecting the
ARM processor to the USB device and a USB host generating traffic into the USB device — from the
early stages of software development. As a result, the system is verified with a much higher confidence.

*Note that XRay is only one of the software debuggers that may be supported by a processor support protocol
(PSP). Others include the ARM debugger and gdb (mainly used for MIPS PSPs). However, only Xray currently
supports the interface with Specman via Seamless CVE.

FIGURE 20.16 Breaking the wall between the software and hardware communities by using Seamless from Mentor
Graphics, Inc. Boosting the functional verification productivity by using Specman Elite from Verisity, Inc.

USB 2.0 HS Specification

RTL descr. of
USB 2.0HS HW

USB2.0
software

FPGA
Prototyping system

HW
communityUSW 2.0 HW Implementation

USW 2.0 SW Implementation

Cross Compilation

FPGA synthesis

thoroughly tested RTL and SW device driver delivered to BL s

HW/SW
co-verification

Advanced
testability

Specman

HW datasheet

SW
community

Excellent
Visibility!Early Development

and debug

6700_book.fm Page 15 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20-16 Low-Power Processors and Systems on Chips

Because this Seamless/Specman rapid system-level prototyping environment cannot reach very high-
speed or even real-time execution, it is still useful to rely on traditional prototyping platforms such as
FPGA boards, simulation accelerators, and emulators after the functional specification is verified.

20.4.2 Should I Consider Using SSDE?

Because functional coverification is a broad and weakly defined topic, we need to separate concerns before
proceeding further with the presentation of our SSDE methodology. As illustrated in Figure 20.17, we
are addressing four steps in the coverification flow:

1. SSDE Test Environment (or Database): the delivery of a proven software and hardware test
environment, currently based on Seamless from Mentor Graphics, Inc. and Specman Elite from
Verisity, Inc.

2. Functional Test Plan: the tools and methodology support for capturing a functional coverification
plan

3. Tests: the tools and methodology support for generating appropriate system tests
4. Coverage Analysis: the tools and methodology support for measuring the coverage quality of the

generated tests

20.4.3 Our Generic SSDE Setup

Using our generic SSDE setup in full, Seamless from Mentor Graphics, Inc. reads in the software and
fires the cosimulation session. Specman Elite from Verisity, Inc. reads in the e-language test-bench;
automatically generates random signal-level tests; performs “on the fly” data and temporal checks; and
measures functional coverage.

20.4.4 Overview of Seamless

Starting from a programmable platform design under test (DUT), which may, for example, consist of a
CPU, a memory, a direct memory access (DMA) controller, and an I/O block, we use Seamless from

FIGURE 20.17 SSDE Verification Flow: four steps into advanced coverage-driven functional verification.

Design Spec
Environment

2-Functional
Verification Plan

1-Test
Environment

3 -Tests

Simulation

4-Coverage Analysis

ri

DUT

6700_book.fm Page 16 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation 20-17

Mentor Graphics, Inc. to abstract away the CPU and the memory from the DUT. In practice, this requires
purchase of a so-called Processor Support Package (PSP) for the processor being used (e.g., ARM or MIPS)
along with the basic Seamless license. Please note that Seamless does not support multi-core debugging,
which will be addressed by future SSDE releases only. From that point, software can be directly cross-
compiled into Seamless that will automatically take care of applying tests to the DUT while allowing cycle-
accurate co-debug with excellent visibility of the software and the hardware altogether. As a result, tests
can be abstracted away from the detailed signal-level implementation of the test-bench, enabling an easier
test-suite portability across, for example, various RTL simulators, various FPGA prototyping boards,
emulators, and final silicon [10] while leveraging engineering productivity in the tedious process of test-
bench creation. Currently, no standard Transaction Simulation Language (TSL) has been defined to capture
the abstracted test-suite, but discussions are under way within the Philips Semiconductors Advanced
Functional Verification Workgroup (AFV-Wg) and the SystemC Verification Working Group [54]. Within
Philips Semiconductors, many business lines (BLs) already have experience in developing their own
standard language and test-suite reuse infrastructure, which should offer an ideal transition path to SSDE.

Figure 20.18 illustrates a typical waveform produced by a Seamless-based cosimulation. Within such
a Seamless run, we distinguish three types of events:

1. Access to optimizable memory: These are accesses to memories that support high-level modeling
within the Seamless environment.

2. Access to unoptimizable memory: These are accesses to memories that do not support high-level
modeling within the Seamless environment, which is often the case for memories embedded inside
the hardware part.

3. Standard event: This is any other type of event.

As illustrated in Figure 20.18, when switching Seamless to the high-level modeling mode, accesses to
optimizable memories are removed from the cycle-accurate cosimulation. As an effect, optimized Seamless
cosimulations can easily be 10× faster than a conventional cosimulation, in the range of 100 kcycles/sec.

20.4.5 Overview of Specman Elite

Starting either from a Seamless setup or from the RTL description of a hardware block alone, Specman
Elite from Verisity, Inc. offers all the necessary support for introducing an advanced coverage-driven

FIGURE 20.18 Optimized software and hardware co-verification using Seamless from Mentor Graphics, Inc.

6700_book.fm Page 17 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20-18 Low-Power Processors and Systems on Chips

verification methodology [60]. The idea is to iteratively constrain the test-suite to match the needs
captured in the functional test plan with 100% accuracy, so-called coverage. This process is in detail.
Using the fully integrated Seamless/Specman environment, Specman has visibility over the full software
and hardware design. It thus becomes possible to verify any piece of functionality that was intentionally
implemented partly in software and partly in hardware.

20.4.6 Functional Verification Plan

20.4.6.1 Specification-Based Verification

Because bugs are typically hidden in design corner cases that humans and sophisticated design tools do
not capture effectively, extensive functional verification is about checking (or proving) that a system
behaves correctly for all possible corner cases. To achieve this task effectively, best practice recommends
starting with a definition of a functional test plan from the actual system functional specification [57]
instead of a detailed paper or RTL implementation, which makes the task of extracting corner cases even
harder. In the case of a standardized protocol, such as USB, this information is publicly and freely
accessible in documents such as Ganssle [29] and Greef et al. [43]. For more specific developments, it is
very important that this information is clearly defined in the system specification document presented
in the SSDE1.0 flow from Figure 20.17. Compared with a design-centric flow, an advanced functional
verification strategy requires that much more attention is spent on defining (or just collecting) a clean
and Golden System Specification from the early stages of the design cycle, which Verisity, Inc. calls
“specification-based verification” [57]. An important task (and second step in our SSDE1.0 flow presented
in Figure 20.17) is to derive the functional test plan from this system specification.

20.4.6.2 e-Based Executable Test Plan

Many approaches are used for capturing a functional test plan. The traditional approach consists in
making an explicit list of items to be tested. This approach clearly does not scale as the number of items
grows exponentially for complex systems. Therefore, engineers need to compromise either for an incom-
plete list (i.e., a low coverage list) or for an ambiguous list (i.e., a list that does not really say what should
be done). Both compromises are of course not recommendable. The research approach consists of
automatically generating tests from a formal and, therefore, unambiguous specification [3,5]. This
approach scales much better than the latter, but it still cannot address the complexity of today’s SOC
designs. It can be used for specific needs only. Between these two approaches is the e-language from
Verisity, Inc., which allows for the capture of a higher-level (and therefore incomplete) list of items to
be tested from a verification language, which is nicely complemented by automatic random test generation
[61]. Provided the system under consideration is well suited for random test generation [1], scalability
and coverage can be very high, which cannot be achieved by any other approach. Examples of a good fit
are core datapath verification, where computed data can take any random value, and telecommunication
application verification, where transmitted packets can carry any random information. Examples of a
bad fit are complex protocols requiring high order coverage [2], which cannot be reached by chance.

As illustrated in Figure 20.19, engineers typically think about electronic and software design in two
orthogonal dimensions. The first dimension relates to pieces of information, such as a packet, a channel,
an Ethernet frame, and a memory buffer, that are ideally modeled using object-programming techniques
[27,45]. The second dimension relates to pieces of functionality such as basic definitions, interfaces to
the DUT, assertion checkers, coverage computations, and specific corner case tests. Such design aspects
typically span over several objects and are therefore not captured effectively by standard object program-
ming. By offering a clean separation of objects and aspects [33], the e-language enables mixed object-
aspect programming. To extend an aspect definition, you do not need to edit several base objects and
vice versa. This is extremely useful for capturing many corner cases in the least amount of development
effort and time.

More precisely, let us study some mixed object-aspect programming examples. Imagine that you want
to functionally verify a communication agent that sends transactions over a network. These transactions

6700_book.fm Page 18 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation 20-19

consist of a command, a destination address, and some data, which can be easily captured from an object
description, as illustrated in Figure 20.20. As a first incomplete approximation of your functional test
plan, you wish to generate a large number of such transactions and drive them through the bus on the
rising edge of a clock. You also want to wait a number of cycles between two transactions. A first refinement
of this functional test plan is to constrain the number of transactions, the address space, and the delay.
This is ideally captured by an aspect extension using the extend construct in the e-language.

Imagine that you now want to add a debug feature by capturing the time and content of each
transaction sent. As presented in Figure 20.21, this is made possible by extending the transaction object
with a start time — the agent object with a list of transactions and the send method from the agent
object with a time stamp and history addition.

Finally, imagine that a new derivative of the DUT supports burst mode accesses for transactions of
size 4, 8, 16, 32, and 64. As presented in Figure 20.22, this new feature can be tested by constraining the
command type to include a BURST mode and the data instance variable from the transaction object to
match the required size for burst execution. In conclusion, using mixed object-aspect programming for

FIGURE 20.19 Objects and aspects are orthogonal programming paradigms.

FIGURE 20.20 Using object-aspect programming, file editing is minimized for refining the functional test plan with
corner conditions.

Aspects

Objects

Packet Channel
Ethernet
Frames

Memory
buffers

Basic definitions

Driving into DUT

Checking, coverage,...

Specific Test/Corner case

Base Objects

Test1 (Extend objects)
“Send 20 transactions with an address
in the range of 0xF0 to 0xFF. When
the address is 0xF0,wait 5 cycles
before the next transaction”

extend transaction {
 keep address in [0xF0..0xFF];
};

extend agent {
 keep num_of_trans == 20;
 keep cur_trans.address == 0xF0=>
 trans_delay < 5;
};

 type command_t: [READ, WRITE];
 struct transaction {
 command: command_t;
 address: uint;
 data: list of uint(bits: 64);
 };

unit agent {
 !cur_trans: transaction;
 num_of_trans: uint;
 trans_delay: uint;
 drive_dus() @clk is {
 for i from 1 to num_of _trans {
 gen cur_trans;
 send(cur_trans);
 wait [trans_delay];
 };
 }:
 };

6700_book.fm Page 19 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20-20 Low-Power Processors and Systems on Chips

capturing the functional test plan is superior not only to conventional verification techniques for pro-
ductivity, but is also superior for maintainability and debugability purposes.

20.4.7 Random Test Generation

As soon as the functional test plan is available, random test generation can start [61]. When captured
using the object-aspect programming capabilities of the e-language from Verisity, Inc., this process is
completely automatic. Section 20.4.8 describes the advantages and disadvantages of this technology.

20.4.8 Manual Tests Development

As already mentioned, the traditional approach of making an explicit list of items to be tested and
implementing them does not scale. This verification effort is proportional to the square of capacity in
the best case, and, therefore, at least doubles every 6 to 9 months according to Moore’s Law. Moreover,

FIGURE 20.21 Using object-aspect programming, debugging features are easier to introduce and manipulate.

FIGURE 20.22 Using object-aspect programming, file editing is minimized for testing a derivative design.

extend transaction {
 start_time: time;
};

extend agent {
 !history_list: of transation;
 send() is first {
 cur_trans. start_time = sys.time;
 history_list.add(cur_trans);
 };
};

New Debug Feature
“Create a transaction history list with

transaction timestamps for each test.”

Base Objects

 type command_t: [READ, WRITE]
 struct transaction {
 command: command_t;
 address: uint;
 data: list of uint(bits: 64);
 };

unit agent {
 !cur_trans: transaction;
 num_of_trans: uint;
 trans_delay: uint;
 drive_dus() @clk is {
 for i from 1 to num_of _trans {
 gen cur_trans;
 send(cur_trans);
 wait [trans_delay];
 };
 }:
 };

extend command_t: [BURST];

extend transaction {

 when BURST transaction {

 burst_size: uint;

 keep burst_size in [4,8,16,32,64];

 keep data,size() == burst_size;

 };

};

Version 2 DUT
“The new version of the DUT supports
burst types of commands.”

Base Objects

 type command_t: [READ, WRITE];
 struct transaction {
 command: command_t;
 address: uint;
 data: list of uint(bits: 64);
 };

unit agent {
 !cur_trans: transaction;
 num_of_trans: uint;
 trans_delay: uint;
 drive_dus() @clk is {
 for i from 1 to num_of _trans {
 gen cur_trans;
 send(cur_trans);
 wait [trans_delay];
 };
 }:
 };

6700_book.fm Page 20 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

Recent Advances in Low-Power Design and Functional Coverification Automation 20-21

when performing this task manually in an ad-hoc way, verification reuse across similar verification
needs and portability across verification platforms and environments is hard, if not impossible, further
extending the waste in nonreusable engineering (NRE) cost. Figure 20.23 illustrates the process of
developing tests manually to achieve a goal specified in the functional test plan. Whenever this goal
falls beyond the human perception, the only possible behavior for the designer is to write several small
tests hoping that the global verification objective will be solved. In the best case, this process is tedious
and slow. In the worst case, the designer quickly gets confused and introduces highly redundant tests
that may never converge to the wanted goal. This redundancy typically accounts for a large part of the
NRE overhead for complex systems. Moreover, by artificially growing the verification complexity, it
may also account for the need to rely on very expensive high-capacity verification infrastructure such
as emulators.

20.4.9 Automatic Test Pattern Generation

Instead of writing tests by hand, it is possible to rely on automatic test pattern generation (ATPG). Several
kinds of ATPG exist, but we focus here on the random type [1,61], using a simplified three-step version
of the methodology evolution concept from Verisity, Inc. [59]. The first step consists in relying on fully
automatic random test generation from the functional test plan captured in the e-language. Because tests
are generated from an intelligent engine, their statistical repartition is homogeneous, which tends to
achieve less redundancy than conventional tests written by hand. Because design corner cases are by
definition unfit for human perception, randomly generated tests tend to reach them more easily. As a
result, automatic random test generation is likely to converge to verification objectives in less time and
effort than the manual approach. This productivity gain is illustrated in Figure 20.23.

The second step consists of introducing coverage metrics to drive the quality of tests [60]. Because
tests are steered by a measured objective, most of the redundancy can be removed and productivity is
largely improved especially toward the end of the verification project, as illustrated in Figure 20.23.

The third step consists in structuring the verification IP in a reusable form. Whenever this IP is reused,
a significant portion of the verification effort is saved. This results in an earlier time-to-first-test and a
higher productivity win-win situation, as illustrated in Figure 20.23.

In conclusion, by properly exploiting the capabilities of random test generation, it is possible to improve
both the availability of first results and the overall project productivity. Whenever coverage-driven reuse
applies, the initial tool support and training investment can be recovered from the first day compared

FIGURE 20.23 Coverage-driven verification reuse process.

%
T

es
t c

as
es

Goal

Time

Coverage-driven
approach

Productivity
gain

6700_book.fm Page 21 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

20-22 Low-Power Processors and Systems on Chips

with traditional manual and RTL-level practice. In this situation, there should be no hesitation in adopting
our SSDE methodology.

References

[1] V. Agrawal and R. Mercer. Deterministic versus random testing. Int. Test Conf., Los Angeles, CA,
pp. 718–718, September 1986.

[2] G. Apostol (Brecis Communications, Inc.). Network processor designer tackles verification night-
mare. EE Design, November 5, 2001.

[3] L. Arditi, H. Boufaied, A. Cavanie, and V. Stehle. Coverage directed generation of system-level test
cases for the validation of a DSP system. Int. Symp. on FME 2001: Formal Methods for Increasing
Software Productivity, LNCS, Vol. 1, 2001.

[4] F. Baker. Requirements for IP Version 4 Routers. RFC1812, Internet Engineering Task Force (IETF),
June 1995.

[5] M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and Y. Wolfsthal. A feasibility study in
formal coverage driven test generation. Technical Report, IBM Haifa Laboratories, Haifa, Israel,
June 1999. http://www.haifa.il.ibm.com/projects/verification/gtcb/.

[6] G. Berry. The Foundations of Esterel. G. Plotkin, C. Stirling, and M. Tofte, Eds., MIT Press, 2000.
[7] Y. Bouchebaba. Optimisation des transferts de données pour le traitement du signal. Ph.D. thesis,

Ecole Nationale Supérieure des Mines de Paris, 2002.
[8] Y. Bouchebaba and F. Coelho. Pavage pour une séquence de nids de boucles. J. Technique et science

informatiques. Parallélisme et systèmes distribués 21, numéro 5, pp. 579–603, 2002.
[9] Y. Bouchebaba and F. Coelho. Tiling and memory reuse for sequences of nested loops. Euro-Par

2002, Parallel Process., 8th Int. Euro-Par Conf. Proc. Lecture Notes in Computer Science 2400, pp.
255–264, 2002.

[10] R. Brackebusch, S. Muller, G.S.-Y. Sokomak, F. Grassert, and D. Timmermann. A new synthesizable
architecture approach for verification environments applying transaction-based methodology.
Proc. 40th Design Automation Conf. (DAC ’03), Anaheim, CA, June 2003.

[11] A. Bruce and J. Goodenough (ARM, Ltd.). Re-usable hard-ware /software co-verification of IP
blocks. Verisity Design, Inc. Club Verification, June 2002.

[12] D. Callahan. A global approach to detection of parallelism. Ph.D. thesis, Rice University, Houston,
TX, 1987.

[13] F. Catthoor et al. Custom Memory Management Methodology — Exploration of Memory Organization
for Embedded Multimedia System Design, Kluwer Academic Publishers, Dordrecht, 1988.

[14] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. DeMan. Global communication and
memory optimizing transformations for low power signal processing systems. IEEE Workshop on
VLSI Signal Process., pp. 178–187, 1994.

[15] H. Chang, L. Cooke, M. Hunt, G. Martin (Cadence Design Systems, Inc.), A. McNelly and L. Todd
(Simutech, Inc.). Surviving the SOC Revolution: A Guide to Platform-Based Design. Kluwer Aca-
demic Publishers, Dordrecht, 1999.

[16] A. Chatelain, Y. Mathys, G. Placido (Motorola, Inc.), A. La Rosa and Luciano Lavagno (Politecnico
di Torino). High-level architectural co-simulation using Esterel and C. CODES ’01, pp. 189–194.

[17] Intel Corporation, Intel IXP1200 Network Processor Family: Hardware Reference Manual, Revision
8, Intel Corporation, Santa Clara, CA, pp. 225–228, 2001.

[18] P. Crowley, M. Fiuczynski, J. Baer, and B. Bershad. Characterizing processor architectures for pro-
grammable network interfaces, Proc. 2000 Int. Conf. on Supercomputing, Santa Fe, NM, May 2000.

[19] A. Darte. On the complexity of loop fusion, Parallel Computing, Vol. 26, No. 9, 2000, pp. 1175–1193.
[20] D. Dempster and M. Stuart (TransEDA, Ltd.). Verification Methodology Manual: Techniques for

Verifying HDL Designs. Kluwer Academic Publishers, Dordrecht, 2002.
[21] F. de Dinechin, P. Quinton, and T. Risset. Structuration of the Alpha language, in Massively Parallel

Programming Models, IEEE Computer Society Press, Berlin, Germany, pp. 18–24, 1995.

6700_book.fm Page 22 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.haifa.il.ibm.com

Recent Advances in Low-Power Design and Functional Coverification Automation 20-23

[22] E.A. de Kock, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, K.A. Vissers,
and G. Essink. YAPI: application modeling for signal processing systems. Proc. 37th Conf. on Design
Automation (DAC-00), NY, pp. 402–405, June 5–9, 2000.

[23] H. de Man. Washing machine: the key to low-power. EE Times, March 6, 2002, http://www.elec-
tronicstimes.com/.

[24] C. Eisenbeis, W. Jalby, D. Windheiser, and F. Bodin. A strategy for array management in local
memory, J. Mathematical Programming: Series A, Vol. 63, No. 3, pp. 331–370, 1994.

[25] C. Eisner and D. Fisman. Sugar 2.0: an introduction. Technical Report, IBM Haifa Research
Laboratory, Haifa, Israel, 2002.

[26] Esterel Technologies, S.A. Esterel technologies develops top-level validation methodology for STMi-
croelectronics: Speeds functional verification of chips with multiple design blocks. Available at
http://www.esterel-technologies.com, June 2002.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Elements of Reusable Object-Oriented Software,
Professional Computing Series, Addison-Wesley, Reading, MA, 1994.

[28] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by global
program transformation. J. Parallel and Distributed Computing, Vol. 5, No. 10, pp. 587–616, 1988.

[29] J.G. Ganssle. An introduction to USB development. Embedded Systems Programming, 2002.
Available at http://www.embedded.com.

[30] E. de Greef, F. Catthoor, and H. de Man. Reducing storage size for static control programs mapped
onto parallel architectures, presented at Dagstuhl Seminar on Loop Parallelisation, Schloss Dagstuhl,
Germany, April 1996.

[31] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Comparing analytical modeling with simulation
for network processors: a case study, Design Automation and Test in Europe (DATE), Munich,
Germany, March 2003.

[32] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow programming
language LUSTRE. Proc. IEEE, Vol. 79, No. 9, pp. 1305–1320, September 1991.

[33] Y. Hollander, M. Morley, and A. Noy. The e-language: a fresh separation of concerns. Proc. Technology
of Object-Oriented Languages and Syst. (TOOLS) Europe, Zurich, Switzerland, March 1999, pp. 41–50.

[34] G. Huard. Algorithmique du décalage d'instructions. Ph.D. thesis, École Normale Supérieure de
Lyon, 2001.

[35] International Technology Roadmap for Semiconductors (ITRS). Design chapter of the 2001 edition.
Technical Report, EECA, JEITA, KSIA, TSIA, SIA, and International SEMATECH, 2001. Available
at http://public.itrs.net.

[36] F. Irigoin and R. Triolet. Supernode partitioning. Proc. 15th Annu. ACM Symp. on Principles of
Programming Languages, San Diego, CA, pp. 319–329, 1988.

[37] F. Irigoin, P. Jouvelot, and R. Triolet. Overview of the PIPS project. Proc. Int. Workshop on Compilers
for Parallel Computers, Paris, France, November 1990.

[38] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and H.S Kim. Experimental evaluation of energy
behavior of iteration space tiling, LCPC 2000, Yorktown Heights, NY, pp. 142–157, 2000.

[39] K. Kennedy. Fast greedy weighted fusion. Int. J. Parallel Programming, Vol. 29, No. 5, pp. 463–491,
2001.

[40] B. Kienhuis, E. Deprettere, K.A. Vissers and P. Van Der Wolf. An approach for quantitative analysis
of application-specific dataflow architectures. Proc. Int. Conf. on Application-Specific Syst., Archi-
tectures and Processors (ASAP ’97), pp. 338–349, 1997.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click Modular Router. ACM
Trans. on Computer Syst., Vol. 18, No. 3, pp. 263–297, August 2000.

[42] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Technical Report RR-
4715, IRISA, Environnement de spécification de programmes réactifs synchrones (ESPRESSO),
June 2003.

[43] C.-W. Leong. Understanding the universal serial bus (USB). USB developer, 2002. Available at
http://www.USBDeveloper.com.

6700_book.fm Page 23 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://eetimes.eu
http://eetimes.eu
http://www.esterel-technologies.com
http://www.embedded.com
http://www.usbdeveloper.com
http://www.itrs.net

20-24 Low-Power Processors and Systems on Chips

[44] K. McKinley and K. Kennedy. Maximizing loop parallelism and improving data locality via loop
fusion and distribution, languages and compilers for parallel computing, 6th Int. Workshop, Port-
land, Oregon, pp. 301–320, 1993.

[45] Bertrand Meyer. Object oriented software construction. In C.A.R. Hoare, Ed., Series in Computer
Science. Prentice Hall International, Inc., Englewood Cliffs, NJ, 1988.

[46] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin, K. Keutzer, C. Sauer, K.
Vissers, and S. Malik. Developing architectural platforms: a disciplined approach, IEEE Design and
Test of Computers, Vol. 19, No. 6, pp. 6–16, November/December 2002.

[47] A. Mozipo, D. Massicote, P. Quinton, and T. Risset. Automatic synthesis of a parallel architecture
for Kalman filtering using MMAlpha. IEEE Canadian Conf. on Electrical and Comput. Eng.,
Edmonton, Canada, May 1999.

[48] J. Nickolls, L.J. Madar III, S. Johnson, V. Rustagi, K. Unger, and M. Choudhury, Broadcom Calisto:
a multi-channel multi-service communication platform, Hot-Chips Symp., 2002.

[49] T. Pascalin Amagbegnon, P. Le Guernic, H. Marchand, and E. Rutten. Signal. Lecture Notes in
Computer Science, Vol. 891, pp. 113–, 1995.

[50] Philips Semiconductors, B.V. Nexperia pnx8500: Home entertainment engine. Functional Over-
view, 2000. Available at http://www.semiconductors.philips.com/nexperia.

[51] S.K. Roy (Synplicity, Inc.), S. Ramesh, S. Chakraborty (IITBombay), T. Nakata, and S.P. Rajan
(Futjitsu Laboratories). Functional verification of systems on chip (SOCs) — practices, issues and
challenges. ASP-DAC/VLSI Design 2002, Bangalore, India, pp. 11–, January 7–11, 2002.

[52] M. Scott, J. Dickerson, and B. Payne. Panel probes SOC problems, solutions. EE Design, February
2002. http://www.eedesign.com/news/OEG20000202S0044.

[53] N. Shah, Understanding network processors. Master’s thesis, Department of Electrical Engineering
and Computer Sciences, University of California–Berkeley, September 2001.

[54] SystemC Verification Working Group. SystemC verification standard specification. Technical
Report, Open SystemC Initiative (OSCI), November 2002. Available at http://www.systemc.org.

[55] Teja Technologies, IPv4 forwarding application performance, White Paper, July 2002. Available at
http://www.teja.com/library/ip4_whitepaper.html.

[56] M. Tsai, C. Kulkarni, C. Sauer, N. Shah, and K. Keutzer, A benchmarking methodology for network
processors, First Workshop on Network Processors at the 8th Int. Symp. on High Performance Com-
puter Architecture (HPCA8), Cambridge, MA, February 2002.

[57] Verisity Design, Inc. Spec-based verification. White Paper, 1999. Available at http://
www.verisity.com/resources/whitepaper/.

[58] Verisity Design, Inc. e-reuse methodology (eRM) developer manual: maximizing verification pro-
ductivity. Technical Report, Verisity Design, Inc., 2001.

[59] Verisity Design, Inc. The evolution of verification methodology. Technical Report, Verisity Design,
Inc., 2001.

[60] Verisity Design, Inc. Coverage-driven functional verification: using coverage to speed verification
and ensure completeness. White Paper, September 2001. Available at www.verisity.com/resources/
whitepaper/.

[61] J.A. Waicukauski, E. Lindbloom, E.B. Eichelberger, and O.P. Forlenza. A method for generating
weighted random test patterns. IBM J. Res. and Dev., Vol. 33, No. 2, pp. 149–161, March 1989.

[62] M.E. Wolf. Improving locality and parallelism in nested loops. Ph.D. thesis, Stanford University,
Stanford, CA, 1992.

[63] M. Wolfe. High-Performance Compilers for Parallel Computing, Addison-Wesley, Reading, MA,
1996.

[64] S. Wuytack, J.P. Diguet, F. Catthoor, and H. De Man. Formalized methodology for data reuse
exploration for low-power hierarchical memory mappings, IEEE Trans. on VLSI Syst., Special Issue
ISLPED ’97, Vol. 4, No. 6, pp. 529–537, December 1998.

[65] H.P. Zima and B.M. Chapman. Supercompilers for Parallel and Vector Computers, Addison-Wesley,
Reading, MA, 1990.

6700_book.fm Page 24 Friday, July 1, 2005 10:02 AM

Copyright © 2006 Taylor & Francis Group, LLC

http://www.semiconductors.philips.com
http://www.eetimes.com
http://www.systemc.org
http://www.teja.com
http://www.cadence.com
http://www.cadence.com

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Preface
	The Editor
	Table of Contents
	The Contributors

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Part I: Low-Power Processors and Memories
	Chapter 1: Techniques for Power and Process Variation Minimization
	1.1 Introduction
	1.2 Integrated Circuit Power
	1.2.1 Active Power and Delay
	1.2.2 Leakage Power

	1.3 Process Selection and Rationale
	1.3.1 Effective Frequency

	1.4 Leakage Control via Reverse Body Bias
	1.4.1 RBB on a 0.18- µ M IC
	1.4.2 Circuit Configuration
	1.4.3 Layout
	1.4.4 Regulator Design
	1.4.5 Limits of Operation
	1.4.6 Measured Results

	1.5 System Level Performance
	1.5.1 System Measurement Results

	1.6 Process, Voltage, and Temperature Variations
	1.6.1 Process Variation
	1.6.2 Supply Voltage Variation
	1.6.3 Temperature Variation

	1.7 Variation Impact on Circuits and Microarchitecture
	1.7.1 Design Choice Impact
	1.7.2 Microarchitecture Choice Impact

	1.8 Adaptive Techniques and Variation Tolerance
	1.8.1 Body Bias Control Techniques
	1.8.2 Adaptive Body Bias and Supply Bias

	1.9 Dynamic Voltage Scaling
	1.9.1 Clock Generation
	1.9.2 Experimental Results

	1.10 Conclusions
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 2: Low-Power DSPs
	2.1 Introduction
	2.2 The Application Driver
	2.3 Computation-Intensive Functions and DSP Solutions
	2.3.1 FIR Implementation
	2.3.1.1 Memory Architectures

	2.3.2 Viterbi Acceleration
	2.3.2.1 Memory Architecture
	2.3.2.2 Datapath Architecture
	2.3.2.3 Datapath Support
	2.3.2.4 Control Architecture

	2.3.3 Turbo Decoding
	2.3.3.1 Datapath Architecture

	2.4 DSPs as Part of SoCs
	2.5 Conclusion and Future Trends
	2.6 Acknowledgments
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 3: Energy-Efficient Reconfigurable Processors
	3.1 Introduction
	3.2 Energy Efficiency of Reconfigurable Architectures
	3.2.1 Problem Definition
	3.2.2 Energy Efficiency Optimization
	3.2.2.1 Energy in Computations
	3.2.2.2 Exploiting the Parallelism
	3.2.2.3 Reducing the Control Overhead
	3.2.2.4 Reducing the Data Access Cost

	3.3 The DART Architecture
	3.3.1 Cluster Architecture
	3.3.2 RDP Architecture
	3.3.3 Dynamic Reconfiguration
	3.3.3.1 SCMD Concept
	3.3.3.2 Hardware Reconfiguration
	3.3.3.3 Software Reconfiguration

	3.3.4 Development Flow

	3.4 Validation Results
	3.4.1 Implementation of a WCDMA Receiver
	3.4.2 Energy Distribution in DART
	3.4.3 Performance Comparisons

	3.5 Conclusions
	3.6 Acknowledgments
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 4: Macgic, a Low-Power Reconfigurable DSP
	4.1 Introduction
	4.1.1 DSP Architectures Evolution
	4.1.2 Parallelism, Instruction Coding, Scheduling, and Execution
	4.1.3 High Performance for Low-Power Systems
	4.1.4 DSP Performance and Reconfigurability

	4.2 Macgic DSP Architecture
	4.2.1 General Architecture
	4.2.2 Program Sequencing Unit
	4.2.3 Data Move Unit
	4.2.4 Data Processing Unit
	4.2.5 Host and Debug Unit
	4.2.6 Clocking Scheme
	4.2.7 Pipeline
	4.2.8 Instruction-Set

	4.3 Macgic DSP Reconfiguration Mechanisms
	4.3.1 Address Generation Unit Reconfiguration
	4.3.2 Data Processing Unit Reconfiguration

	4.4 Performance Results
	4.5 Conclusions
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 5: Low-Power Asynchronous Processors
	5.1 Introduction
	5.2 Power Reduction Techniques in Asynchronous Circuits
	5.2.1 Datapaths
	5.2.2 Pipelines
	5.2.3 Control Structures

	5.3 Design Methodologies for Low Power
	5.4 Asynchronous Processors: A Review
	5.4.1 CAP
	5.4.2 MiniMIPS
	5.4.3 AMULET1, 2, 3
	5.4.4 Asynchronous 80C51
	5.4.5 Lutonium
	5.4.6 MICA
	5.4.7 ASPRO
	5.4.8 TITAC-2
	5.4.9 Conclusion

	5.5 Power Reduction Techniques at the System Level
	5.5.1 Introduction
	5.5.2 Principles of Power Reduction with Operating Systems
	5.5.3 Low-Power Sleeping States
	5.5.3.1 Synchronous Processors Idle Mode
	5.5.3.2 Asynchronous Processors Idle Mode

	5.5.4 DVS for Synchronous Processors vs. DVS for Asynchronous Processors
	5.5.4.1 Timing Model for Asynchronous Processor Speed Variation
	5.5.4.1.1 Timing Model for Synchronous Processor Speed Variation
	5.5.4.1.2 DVS Additional Energy Costs for Synchronous Processors

	5.5.6 DVS Algorithms for Asynchronous Processors
	5.5.6.1 Task Model Definition
	5.5.6.2 Sporadic Task Voltage Scheduling Algorithm
	5.5.5.3 Periodic Task Voltage Scheduling Algorithm

	5.5.7 Conclusion

	5.6 Conclusion
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 6: Low-Power Baseband Processors for Communications
	6.1 Introduction
	6.2 Digital Baseband DSP Processors (DBBP)
	6.2.1 Function Coverage
	6.2.2 The Transmitter
	6.2.3 Synchronization and Channel Equalization
	6.2.4 Demodulation and Forward Error Correction
	6.2.5 Comparison with a General DSP Processor
	6.2.6 Classification of Baseband Processors

	6.3 Design of Low-Power Radio Baseband DSP Processors
	6.3.1 Basic Principles for Low-Power Design
	6.3.2 Trade-Off between Programmability and Fixed Function Hardware
	6.3.3 Nonprogrammable Low-Power Baseband Processor Architecture
	6.3.4 Programmable Baseband Processor (PBP) Architectures
	6.3.5 PBP Design Challenges
	6.3.6 Decreasing Supply Voltage
	6.3.7 Eliminating Unnecessary Switching
	6.3.8 System-Level Power Management

	6.4 Case Study One: Variable Data Length and Computing Precision
	6.5 Case Study Two: Hardware Architecture for a Block Interleaver
	6.5.1 Introduction
	6.5.2 Traditional Interleaver Implementation
	6.5.3 A New Block Interleaver Implementation
	6.5.4 Hardware Implementation
	6.5.5 Power Issues

	6.6 Conclusion
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 7: Stand-By Power Reduction for SRAM Memories
	7.1 Introduction
	7.2 Leakage Reduction
	7.3 Noise Margin and Speed Requirements
	7.4 Locally Switched Source-Body Bias
	7.5 Results
	7.6 Conclusion
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 8: Low-Power Cache Design
	8.1 Introduction
	8.2 Cache Organization
	8.3 Factors Influencing Energy Consumption in Caches
	8.3.1 Miss Rate
	8.3.2 Write Policy
	8.3.3 Cache Accesses Rate
	8.3.4 Switching Capacitance Per Access
	8.3.5 Voltage
	8.3.6 Leakage

	8.4 Energy Reduction Techniques
	8.4.1 Reducing Cache Access Rate
	8.4.2 Reducing Switching Capacitance Per Access
	8.4.2.1 Structural Partitioning
	8.4.2.1.1 Word-Line Segmentation
	8.4.2.1.2 Bit-Line Segmentation
	8.4.2.1.3 Bit-Line Isolation
	8.4.2.1.4 Multiple Cache Decomposition
	8.4.2.1.5 Cache Decomposition by Data Types

	8.4.2.2 Behavioral Partitioning
	8.4.2.2.1 Phased Array Activation
	8.4.2.2.2 Way Prediction
	8.4.2.2.3 Selective Cache Ways
	8.4.2.2.4 Selective Cache Sets
	8.4.2.2.5 Selective Line Sizing
	8.4.2.2.6 Reducing Switching Activity of Tag Checks
	8.4.2.2.7 Data Compression

	8.4.3 Voltage Reduction
	8.4.4 Leakage Energy Reduction

	8.5 Conclusion
	8.6 Acknowledgments
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 9: Memory Organization for Low-Energy Embedded Systems
	9.1 Introduction
	9.2 Memory Partitioning
	9.2.1 Memory Partitioning for Low Energy

	9.3 Memory Transfer Optimization
	9.3.1 Code Compression
	9.3.2 Data Compression

	9.4 Conclusions
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Part II: Low-Power Systems on Chips
	Chapter 10: Power–Performance Trade-Offs in Design of SoCs
	10.1 Introduction
	10.2 Hardware Intensity
	10.3 Architectural Complexity
	10.4 Energy-Efficiency Criterion
	10.4.1 Frequency-Invariant Formulation

	10.5 Other Power–Performance Metrics
	10.6 Example: Adding an Execution Bypass
	10.7 Conclusions
	10.8 Acknowledgment
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 11: Low-Power SoC with Power-Aware Operating Systems Generation
	11.1 Introduction
	11.2 Related Work
	11.3 Preliminary: SoC Architecture Generation
	11.3.1 SoC Architecture
	11.3.2 SoC Architecture Generation

	11.4 Automatic Generation of Application-Specific Operating Systems
	11.4.1 System Description Input
	11.4.2 OS Library
	11.4.2.1 OS Element
	11.4.2.2 Service
	11.4.2.3 Implementations

	11.4.3 OS Code Generation
	11.4.3.1 Architecture Analyzer
	11.4.3.2 Code Selector
	11.4.3.3 Code Expander
	11.4.3.4 Makefile Generator

	11.4.4 Application to Existing OSs

	11.5 Experiments
	11.5.1 Token-Ring Example
	11.5.2 VDSL Example
	11.5.3 Gain Compared with Conventional OSs

	11.6 Conclusion
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 12: Low-Power Data Storage and Communication for SoC
	12.1 Introduction
	12.2 Related Work
	12.3 SW-Controlled Memory Hierarchy Optimization
	12.3.1 Memory Hierarchy Layer Assignment Techniques
	12.3.2 Illustration of the MHLA Techniques
	12.3.3 Lifetime Analysis for Memory Partition Size Estimation
	12.3.4 Relation to Other Steps of the DTSE Design Methodology

	12.4 Case Studies for MHLA Exploration
	12.4.1 The QSDPCM Driver
	12.4.2 Global Loop Transformations for Improved Memory Hierarchy Utilization in QSDPCM
	12.4.3 The DAB Driver

	12.5 SW-Controlled Cache Miss Optimizations
	12.5.1 Compiler-Centric Cache Miss Classification
	12.5.1.1 Compulsory Misses
	12.5.1.2 Minimal Capacity Misses
	12.5.1.3 Block Prefetch Misses
	12.5.1.4 Block Allocate Misses
	12.5.1.5 Associativity Conflict Misses
	12.5.1.6 Replacement Misses
	12.5.1.7 Data-Layout Conflict Misses

	12.5.2 Data-Layout Transformations for Conflict Miss Reduction
	12.5.3 Case Study for Data-Layout Transformations

	12.6 Conclusions
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table Contents
	Chapter 13: Networks on Chips: Energy-Efficient Design of SoC Interconnect
	13.1 Introduction
	13.2 Micro-Networks: Architectures and Protocols
	13.2.1 Physical Layer
	13.2.2 Data Link, Network, and Transport Layers
	13.2.3 Software Layers

	13.3 Energy-Efficient Micro-Network Design
	13.3.1 Physical Layer
	13.3.2 Data-Link Layer
	13.3.3 Network Layer
	13.3.3.1 Contention-Look-Ahead Routing
	13.3.3.2 Wormhole Contention-Look-Ahead Algorithm
	13.3.3.3 Network Power Consumption
	13.3.3.3.1 Transport Layer

	13.3.3.4 Cache and Memory Power Consumption
	13.3.3.5 Interconnect Network Power Consumption
	13.3.3.5.1 Application and System Layer

	13.4 Conclusions
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 14: Highly Integrated Ultra-Low Power RF Transceivers for Wireless Sensor Networks
	14.1 Introduction
	14.1.1 Motivation
	14.1.2 Characteristics of Wireless Sensor Networks
	14.1.3 Performance Metrics for Sensor Node RF Transceivers
	14.1.3.1 Average Power Dissipation
	14.1.3.2 Turn-On and Acquisition Time
	14.1.3.3 Integration and Cost

	14.2 RF MEMS in Low-Power Radios
	14.2.1 Introduction to RF MEMS
	14.2.2 Opportunities Offered by RF-MEMS
	14.2.2.1 Passives with High-Quality Factor
	14.2.2.2 Passive Frequency Reference
	14.2.2.3 MEMS/CMOS Codesign

	14.3 Receivers for Ad Hoc Wireless Sensor Networks
	14.3.1 Heterodyne
	14.3.2 Tuned Radio Frequency
	14.3.2.1 TRF Envelope Detection
	14.3.2.2 TRF Subsampling Detection

	14.3.3 Super-Regenerative

	14.4 Transmitters for Ad Hoc Wireless Sensor Networks
	14.4.1 Direct-Conversion Transmitter
	14.4.2 Two-Step Transmitter
	14.4.3 Direct-Modulation Transmitter

	14.5 Low-Power Circuit Design Techniques
	14.5.1 Low-Current RF Amplification
	14.5.2 Envelope Detector
	14.5.3 RF Oscillator
	14.5.4 Nonlinear Power Amplifiers
	14.5.5 On-Chip References and Bias Circuits

	14.6 System Integration
	14.7 Conclusion
	14.8 Acknowledgments
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 15: Power-Aware On-Demand Routing Protocols for Mobile Ad Hoc Networks
	15.1 Introduction
	15.2 MANET Routing Protocols
	15.2.1 Proactive (Table-Driven) Routing Protocols
	15.2.2 Reactive (On-Demand) Protocols
	15.2.3 Hybrid Routing Protocols

	15.3 Low-Power Routing Protocols
	15.3.1 Minimum Power Routing
	15.3.2 Battery -Cost Lifetime-Aware Routing
	15.3.3 Energy-Conserving Techniques for Multi-Hop Ad Hoc Networks
	15.3.3.1 Power-Aware Multiple Access Protocol with Signaling (PAMAS)
	15.3.3.2 Geography-Informed Energy Conservation for Ad Hoc Routing
	15.3.3.3 Topology Maintenance for Energy Efficiency in Ad Hoc Networks (Span)

	15.3.4 Energy-Aware Multicast Routing Algorithms
	15.3.4.1 Minimum Energy Broadcasting
	15.3.4.2 Energy-Aware Multicast Routing
	15.3.4.3 The Neighbor Cost Effect in Multicast Routing

	15.4 Power- Aware Source Routin
	15.4.1 Cost Function
	15.4.2 Route Discovery
	15.4.3 Route Maintenance

	15.5 Lifetime Prediction Routing
	15.5.1 Basic Mechanism
	15.5.1.1 Lifetime Prediction

	15.5.2 Route Discovery
	15.5.3 Route Expiration

	15.6 Quantitative Evaluation of Source Routing Algorithms
	15.6.1 Simulation Setup
	15.6.2 Simulation Results

	15.7 Conclusion
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 16: Modeling Computational, Sensing, and Acuation Surfaces
	16.1 Introduction
	16.1.1 Computational Surfaces

	16.2 Colloidal Computing
	16.3 Application Partitioning
	16.3.1 Driver Application: Beamforming

	16.4 Communication Architecture and Fault Management
	16.5 Simulation Infrastructure
	16.5.1 Processing Devices
	16.5.2 Communication
	16.5.3 Battery Subsystem
	16.5.4 Modeling Failures

	16.6 Conclusion
	16.7 Acknowledgments
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Part III: Embedded Software
	Chapter 17: Low-Power Software Techniques
	17.1 Introduction
	17.2 Software Models for Predicting Average Power
	17.2.1 Experimental Setups for Average and Instantaneous Current
	17.2.2 Previous Instruction-Level Average-Power Models
	17.2.3 Example of Statistically Generated Model for Average Power

	17.3 Instruction-Level Models for Predicting Instantaneous Power
	17.4 Emerging Applications of Instantaneous Power Prediction: Security
	17.4.1 Simple Power Analysis
	17.4.2 Differential Power Analysis

	17.5 Acknowledgment
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 18: Low-Power/Energy Compiler Optimizations
	18.1 Introduction
	18.2 Why Compilers?
	18.3 Power vs. Energy vs. Performance
	18.3.1 Power vs. Energy
	18.3.2 Power/Energy vs. Performance
	18.3.3 Summary

	18.4 List of Optimizations
	18.4.1 Dynamic Voltage and Frequency Scaling
	18.4.2 Resource Hibernation
	18.4.3 Remote Task Mapping

	18.5 Future Compiler Research for Power/Energy
	18.6 Acknowledgment
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 19: Design of Low-Power Processor Cores Using a Retargetable Tool Flow
	19.1 Introduction
	19.1.1 Processor Cores in SoC Design
	19.1.2 SoC Integration and Low-Power Design
	19.1.3 Architectural Tool Support for Low-Power Processor Design

	19.2 A Retargetable Tool-Flow for Designing Power-Efficient, Application-Specific Processors
	19.2.1 The Chess/Checkers Retargetable Tool-Suite
	19.2.2 Architectural Scope
	19.2.3 Architectural Exploration
	19.2.4 Power-Conscious Architectural Design

	19.3 Low-Power Processor Architecture Design
	19.3.1 General Characteristics
	19.3.2 Instruction-Set Architecture
	19.3.3 Micro-Architecture
	19.3.4 Methodology

	19.4 An Ultra-Low Power DSP for Audio Coding Applications
	19.4.1 Background and Goals
	19.4.2 Architecture
	19.4.3 Low-Power Techniques
	19.4.4 Results

	19.5 Conclusions
	19.6 Acknowledgment
	References

	LOW-POWER PROCESSORS AND SYSTEMS ON CHIPS
	Table of Contents
	Chapter 20: Recent Advances in Low-Power Design and Functional Coverification Automation from the Earliest System-Level Design Stages
	20.1 Introduction
	20.2 Advanced Loop Transformations for Low Power
	20.2.1 Input Code
	20.2.2 Loop Fusion
	20.2.3 Fusion with Buffer Allocation
	20.2.4 Live Data
	20.2.5 Code Generation
	20.2.6 Tiling
	20.2.7 Matrix A (n,2 n)
	20.2.8 Matrix P (2 n,2n)
	20.2.9 Tiling as a Loop Transformation
	20.2.10 Buffer Allocation
	20.2.11 Implementation and Tests
	20.2.12 Cache Misses
	20.2.13 Execution Time
	20.2.14 Conclusion

	20.3 Exploiting Task-Level and Data-Level Parallelism on the Intel IXP1200
	20.3.1 Introduction
	20.3.2 Performance Modeling and Evaluation
	20.3.3 Modeling IPv4 Forwarding Application
	20.3.4 Modeling IXP1200 Architecture
	20.3.5 Experimental Setup
	20.3.6 Results and Analysis
	20.3.6.1 Distribution of Code
	20.3.6.2 Per-Packet Time Distribution
	20.3.6.3 Implementation Results
	20.3.6.4 Exploring the Implementation Space

	20.4 Advanced Functional Coverification Using SSDE
	20.4.1 Coverification Using Our System and Software Design Environment (SSDE)
	20.4.2 Should I Consider Using SSDE?
	20.4.3 Our Generic SSDE Setup
	20.4.4 Overview of Seamless
	20.4.5 Overview of Specman Elite
	20.4.6 Functional Verification Plan
	20.4.6.1 Specification-Based Verification
	20.4.6.2 e-Based Executable Test Plan

	20.4.7 Random Test Generation
	20.4.8 Manual Tests Development
	20.4.9 Automatic Test Pattern Generation

	References

