




Fluid Dynamics of the Midlatitude 
Atmosphere



Advancing Weather and Climate Science Series

Series Editors: 
Peter Inness, University of Reading, UK
John A. Knox, University of Georgia, USA

Other titles in the series:

Mesoscale Meteorology in Midlatitudes
Paul Markowski and Yvette Richardson, Pennsylvania State University, USA
Published: February 2010
ISBN: 978-0-470-74213-6

Thermal Physics of the Atmosphere
Maarten H.P. Ambaum, University of Reading, UK
Published: April 2010
ISBN: 978-0-470-74515-1

The Atmosphere and Ocean: A Physical Introduction, 3rd Edition
Neil C. Wells, Southampton University, UK
Published: November 2011
ISBN: 978-0-470-69469-5

Time-Series Analysis in Meteorology and Climatology: An Introduction
Claude Duchon, University of Oklahoma, USA and
Robert Hale, Colorado State University, USA
Published: January 2012
ISBN: 978-0-470-97199-4

Operational Weather Forecasting
Peter Inness, University of Reading, UK and
William Beasley, University of Oklahoma, USA
Published: January 2013
ISBN: 978-0-470-71159-0
 



Fluid Dynamics of the 
Midlatitude Atmosphere

Brian J. Hoskins
University of Reading
Imperial College London
UK

Ian N. James
Emeritus Professor
University of Reading, UK



This edition first published 2014 © 2014 by John Wiley & Sons, Ltd

Registered Office
John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices
9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how  
to apply for permission to reuse the copyright material in this book please see our website at  
www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance  
with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, 
except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission  
of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks.  
All brand names and product names used in this book are trade names, service marks, trademarks or 
registered trademarks of their respective owners. The publisher is not associated with any product  
or vendor mentioned in this book. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best  
efforts in preparing this book, they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not 
engaged in rendering professional services and neither the publisher nor the author shall be liable for 
damages arising herefrom. If professional advice or other expert assistance is required, the services of a 
competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Hoskins, Brian.
Fluid dynamics of the midlatitude atmosphere / B.J. Hoskins & I.N. James.
    pages  cm
  Includes bibliographical references and index.
  ISBN 978-0-470-83369-8 (cloth) – ISBN 978-0-470-79519-4 (pbk.)  1.  Atmospheric circulation–Study 
and teaching.  2.  Dynamic meteorology–Study and teaching.  3.  Middle atmosphere–Study and teaching.  
I.  James, Ian N.  II.  Title.  III.  Title: Fluid dynamics of the mid latitude atmosphere. 
  QC880.4.A8H67 2014
  551.51′5–dc23
	 2014012262

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may  
not be available in electronic books.

Cover image courtesy of John Methven.

Set in 10.5/12.5pt Times by SPi Publisher Services, Pondicherry, India

1  2014



Contents

Series foreword� ix

Preface	 xi

Select bibliography	 xv

The authors� xix

1	 Observed flow in the Earth’s midlatitudes� 1

1.1    Vertical structure� 1
1.2    Horizontal structure� 4
1.3    Transient activity� 11
1.4    Scales of motion� 14
1.5    The Norwegian frontal model of cyclones� 15

Theme 1  Fluid dynamics of the midlatitude atmosphere� 25

2	 Fluid dynamics in an inertial frame of reference� 27 

2.1    Definition of fluid� 27
2.2    Flow variables and the continuum hypothesis� 29
2.3    Kinematics: characterizing fluid flow� 30
2.4    Governing physical principles� 35
2.5    Lagrangian and Eulerian perspectives� 36
2.6    Mass conservation equation� 38
2.7    First Law of Thermodynamics� 40
2.8    Newton’s Second Law of Motion� 41
2.9    Bernoulli’s Theorem� 45
2.10  Heating and water vapour� 47

3	 Rotating frames of reference� 53

3.1    Vectors in a rotating frame of reference� 53
3.2    Velocity and Acceleration� 55
3.3    The momentum equation in a rotating frame� 56
3.4    The centrifugal pseudo-force� 57
3.5    The Coriolis pseudo-force� 59
3.6    The Taylor–Proudman theorem� 61

4	 The spherical Earth� 65

4.1    Spherical polar coordinates� 65
4.2    Scalar equations� 67



vi	 Contents

4.3  The momentum equations� 68
4.4  Energy and angular momentum� 70
4.5  The shallow atmosphere approximation� 73
4.6  The beta effect and the spherical Earth� 74

5	 Scale analysis and its applications� 77

5.1  Principles of scaling methods� 77
5.2  The use of a reference atmosphere� 79
5.3  The horizontal momentum equations� 81
5.4 � Natural coordinates, geostrophic and gradient wind balance� 83
5.5  Vertical motion� 87
5.6  The vertical momentum equation� 89
5.7  The mass continuity equation� 91
5.8  The thermodynamic energy equation� 92
5.9  Scalings for Rossby numbers that are not small� 95

6	 Alternative vertical coordinates� 97

6.1  A general vertical coordinate� 97
6.2  Isobaric coordinates� 100
6.3  Other pressure-based vertical coordinates� 103
6.4  Isentropic coordinates� 106

7	 Variations of density and the basic equations� 109

7.1  Boussinesq approximation� 109
7.2  Anelastic approximation� 111
7.3  Stratification and gravity waves� 113
7.4  Balance, gravity waves and Richardson number� 115
7.5  Summary of the basic equation sets� 121
7.6  The energy of atmospheric motions� 122

Theme 2  Rotation in the atmosphere� 125

8	 Rotation in the atmosphere� 127

8.1  The concept of vorticity� 127
8.2  The vorticity equation� 129
8.3 � The vorticity equation for approximate  

sets of equations� 131
8.4  The solenoidal term� 132
8.5  The expansion/contraction term� 134
8.6  The stretching and tilting terms� 135
8.7  Friction and vorticity� 138
8.8 � The vorticity equation in alternative vertical coordinates� 144
8.9  Circulation� 145

9	 Vorticity and the barotropic vorticity equation� 149

9.1  The barotropic vorticity equation� 149
9.2  Poisson’s equation and vortex interactions� 151



	 Contents	 vii

9.3    Flow over a shallow hill� 155
9.4    Ekman pumping� 159
9.5    Rossby waves and the beta plane� 160
9.6    Rossby group velocity� 166
9.7    Rossby ray tracing� 170
9.8    Inflexion point instability� 172

10	 Potential vorticity� 177

10.1  Potential vorticity� 177
10.2  Alternative derivations of Ertel’s theorem� 180
10.3  The principle of invertibility� 182
10.4  Shallow water equation potential vorticity� 186

11	 Turbulence and atmospheric flow� 189

11.1  The Reynolds number� 189
11.2  Three-dimensional flow at large Reynolds number� 194
11.3  Two-dimensional flow at large Reynolds number� 196
11.4  Vertical mixing in a stratified fluid� 201
11.5  Reynolds stresses� 203

Theme 3  Balance in atmospheric flow� 209

12	 Quasi-geostrophic flows� 211

12.1  Wind and temperature in balanced flows� 211
12.2  The quasi-geostrophic approximation� 215
12.3  Quasi-geostrophic potential vorticity� 219
12.4  Ertel and quasi-geostrophic potential vorticities� 221

13	 The omega equation� 225

13.1  Vorticity and thermal advection form� 225
13.2  Sutcliffe Form� 231
13.3  Q-vector form� 233
13.4  Ageostrophic flow and the maintenance of balance� 238
13.5  Balance and initialization� 240

14	 Linear theories of baroclinic instability� 245

14.1  Qualitative discussion� 245
14.2  Stability analysis of a zonal flow� 247
14.3  Rossby wave interpretation of the stability conditions� 256
14.4  The Eady model� 264
14.5  The Charney and other quasi-geostrophic models� 271
14.6  More realistic basic states� 275
14.7  Initial value problem� 281

15	 Frontogenesis� 291

15.1  Frontal scales� 291
15.2  Ageostrophic circulation� 294



viii	 Contents

15.3  Description of frontal collapse� 299
15.4  The semi-geostrophic Eady model� 305
15.5  The confluence model� 307
15.6  Upper-level frontogenesis� 309

16	 The nonlinear development of baroclinic waves� 311

16.1  The nonlinear domain� 311
16.2  Semi-geostrophic baroclinic waves� 312
16.3 � Nonlinear baroclinic waves on realistic jets  

on the sphere� 320
16.4  Eddy transports and zonal mean flow changes� 323
16.5  Energetics of baroclinic waves� 332

17	 The potential vorticity perspective� 337

17.1  Setting the scene� 337
17.2  Potential vorticity and vertical velocity� 340
17.3  Life cycles of some baroclinic waves� 342
17.4  Alternative perspectives� 346
17.5  Midlatitude blocking� 350
17.6  Frictional and heating effects� 352

18	 Rossby wave propagation and potential vorticity mixing� 361

18.1  Rossby wave propagation� 361
18.2  Propagation of Rossby waves into the stratosphere� 363
18.3  Propagation through a slowly varying medium� 365
18.4  The Eliassen–Palm flux and group velocity� 370
18.5  Baroclinic life cycles and Rossby waves� 372
18.6  Variations of amplitude� 373
18.7  Rossby waves and potential vorticity steps� 375
18.8  Potential vorticity steps and the Rhines scale� 381

Appendices� 389

Appendix A: Notation� 389
Appendix B: Revision of vectors and vector calculus� 393

B.1  Vectors and their algebra� 393
B.2  Products of vectors� 394
B.3  Scalar fields and the grad operator� 396
B.4  The divergence and curl operators� 397
B.5  Gauss’ and Stokes’ theorems� 398
B.6  Some useful vector identities� 401

Index� 403



Series foreword

Advancing Weather and Climate Science

Meteorology is a rapidly moving science. New developments in weather fore-
casting, climate science and observing techniques are happening all the time, as 
shown by the wealth of papers published in the various meteorological journals. 
Often these developments take many years to make it into academic textbooks, 
by which time the science itself has moved on. At the same time, the underpin-
ning principles of atmospheric science are well understood but could be brought 
up to date in the light of the ever increasing volume of new and exciting obser-
vations and the underlying patterns of climate change that may affect so many 
aspects of weather and the climate system. 

In this series, the Royal Meteorological Society, in conjunction with Wiley-
Blackwell, is aiming to bring together both the underpinning principles and new 
developments in the science into a unified set of books suitable for undergraduate 
and postgraduate study as well as being a useful resource for the professional 
meteorologist or Earth system scientist. New developments in weather and climate 
sciences will be described together with a comprehensive survey of the underpin-
ning principles, thoroughly updated for the 21st century. The series will build into a 
comprehensive teaching resource for the growing number of courses in weather and 
climate science at undergraduate and postgraduate level.
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Preface

We have developed this book from lectures given by us and others in the Department 
of Meteorology at the University of Reading. Since 1965, this department has been 
an important centre for the study of meteorology and atmospheric science. Indeed, 
for many years, it was the only independent department of meteorology in the 
United Kingdom able to offer a full range of undergraduate and postgraduate teach-
ing in meteorology. Many scientists and meteorologists have spent time at Reading 
either as students or researchers. So our book is a record of one facet of the teaching 
they met at Reading, and it aspires to encapsulate something of the spirit of the 
Reading department.

During the early part of the twentieth century, meteorology made the transition 
from a largely descriptive, qualitative science to a firmly quantitative science. At the 
heart of that transition was the recognition that the structure and development of 
weather systems were essentially problems in fluid dynamics. In the 1920s, the 
scientists of the Bergen School recognized this but lacked the mathematical tools to 
link their descriptive models of cyclone development in terms of air masses and 
fronts to the basic equations of fluid dynamics. In the 1940s, modern dynamical 
meteorology was born out of the recognition by Eady, Charney and others that 
cyclone development could be viewed as a problem in fluid dynamical instability.

Even so, great simplifications proved necessary to render the problem tractable. 
Amongst these simplifications was the linearization of the governing equations. The 
highly nonlinear equations governing fluid dynamics were reduced to relatively simple 
linear forms whose solutions can be written in terms of traditional analytic functions. 
Even so, these simplified equations could only be solved for very simple idealized 
circumstances. For example, the work of both Charney and Eady was confined to flows 
which varied linearly in the vertical but had no variation in other directions. There was 
still a big gap between theory and observation. The development of the digital computer 
in the 1950s opened up the possibility of bridging this gap. While their nonlinearity and 
complexity rendered the governing equations resistant to analytical solution, the digital 
computer could generate numerous particular solutions to discretized analogues to the 
governing equations. So two separate branches of dynamical meteorology developed. 
On one hand, the drive for weather forecasts and, increasingly, for climate modelling 
led to the development of elaborate numerical models of atmospheric flow. As computer 
power increased, these models became more realistic, with higher resolution and fewer 
approximations or simplifications to the governing equations, and with more elaborate 
representation of the processes driving atmospheric motion such as radiative transfer, 
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cloud processes and friction. On the other hand, more sophisticated mathematical 
techniques drove the development of analytical theory either to better approximations 
to the governing equations or to explore more complex physical scenarios. As a 
result, there was a growing gulf between numerical modelling, theoretical meteorology 
and observation.

Our approach at Reading, both in terms of teaching and research, started with the 
intention of bridging this gulf. The word ‘model’ had become somewhat limited in 
its use in meteorology: it tended to refer to the large and elaborate numerical weather 
prediction and global circulation models that were primary tools in many applica-
tions of meteorology. But the word has far wider meaning than that. A model is any 
abstraction of the real world, any representation in which certain complexities are 
eradicated or idealized. All of meteorology, indeed, all of science, deals in models. 
They may be very basic, starting with conceptual verbal or picture models such as 
the Norwegian frontal model of cyclone development. They may be exceedingly 
complex and include a plethora of different processes. The coupled atmosphere–
ocean global circulation models now used to study climate change exemplify this 
sort of model. But between these extremes lie a hierarchy of models of differing 
degrees of complexity. These range from highly idealized analytic models, models 
with only very few degrees of freedom, through models of intermediate complexity, 
right up to fully elaborated numerical models. Good science involves the interaction 
between these different levels of model and with observations, finding out which 
elements of the observed world are captured or lost by the different levels of model 
complexity.

A very complex model may give a faithful representation of the observed atmos-
phere, but of itself it can lead to rather limited understanding. A very simple model 
is transparent in its working but generally gives but a crude imitation of a complex 
reality. Intermediate models, grounded in constant reference to observations and 
to  other models in the hierarchy, can illuminate the transition from transparent 
simplicity to elaborate complexity.

Our book focuses on the simpler and intermediate complexity models in this 
hierarchy. Although we shall refer to the results of calculations using elaborate 
numerical models, we have not set out to describe such models. That is a major 
topic, bringing together dynamical meteorology and numerical analysis, and 
deserves a textbook of its own. However, we shall make use of results from numerical 
models in a number of places.

Our textbook is based upon various lecture courses that we have given to students, 
both postgraduate and advanced undergraduate, in the Department of Meteorology, 
University of Reading, over many years. Many of our postgraduate students came to 
Reading with a first degree in other quantitative disciplines, so our teaching assumed 
no prior acquaintance with fluid dynamics and the mathematical techniques used in 
that discipline. Neither did we assume any prior knowledge of meteorology or atmos-
pheric science. We did assume basic knowledge of vector calculus and differential 
equations. However, in order to make this book self-contained, we have included an 
appendix which gives a brief introduction to the essential elements of vector calculus 
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assumed in the main body of the text. So our intended readership is primarily 
postgraduate and advanced undergraduate students of meteorology. We hope others, 
particularly quantitative scientists who wish to become better acquainted with 
dynamical meteorology, will also find our book interesting.

Our text begins with an opening chapter which gives a broad brush survey of the 
structure of the atmosphere and the character of atmospheric flow, particularly in 
the midlatitude troposphere. This opening chapter introduces in a qualitative way a 
number of concepts which will be elaborated in subsequent chapters.

Then follows our first major theme: a basic introduction to classic fluid dynamics 
as applied to the Earth’s atmosphere. After deriving the fundamental equations in 
Chapter 2, we introduce the various modifications that are needed for this application. 
Foremost among these are the roles that the rotation of the Earth and its spherical 
geometry, and the stable stratification of the atmosphere play. Perhaps the most impor-
tant chapter in our first theme is Chapter 5, which develops the technique of scale 
analysis and applies it systematically to flows in the atmosphere. Our focus of interest 
is upon the synoptic scale weather systems of the midlatitudes, but the discussion 
points to how other situations might be approached.

Our second theme recognizes that atmospheric flow on the larger scales is dominated 
by rotation. The Earth rotates on its axis and individual fluid elements spin as they 
move around. Such spin is a primary property of the atmosphere or ocean, and our 
insight into atmospheric behaviour is developed by rewriting the equations in terms of 
spin or ‘vorticity’. Equations describing the processes which generate and modify 
vorticity result, and we spend some time exploring these equations in simple contexts. 
These simple examples help to develop a language and a set of conceptual principles 
to explore more elaborate and more realistic examples. A powerful unifying concept 
is a quantity called ‘potential vorticity’, which is introduced in Chapter 10.

Our third theme makes up the remainder of our book. That theme is the dynamical 
understanding of middle latitude weather systems exploiting the near balance 
between certain terms in the governing equations. Such a balance links together 
dynamical, pressure and temperature fields and constrains their evolution. 
Maintaining a near-balanced state determines the response of the atmosphere to 
thermal and other forcing. With these concepts, we are able to discuss the evolution 
of weather systems as problems in fluid dynamical instability, and we are able to 
extend our discussion to more elaborate, nonlinear regimes. Frontal formation is 
revealed as an integral part of cyclone development, and at the same time, developing 
weather systems play a central part in determining the larger scale flow in which 
they are embedded. Through the concept of balance, potential vorticity is revealed 
as a primary concept in modern dynamical meteorology.

This book is intended as a readable textbook rather than a research monograph. 
We hope that the material is largely self-contained. Consequently, we have made no 
attempt to provide a comprehensive and exhaustive bibliography. Rather we have 
included some suggestions for further reading which will give the interested reader 
a starting point from which to explore the literature. Modern electronic databases 
and citation indices make such exploration much easier than it has been in the past.
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Both authors would like to acknowledge with thanks the influence of those 
supervising their early research. Francis Bretherton introduced one of us (BH) to 
geophysical fluid dynamics, and in particular the importance and role of potential 
vorticity. Raymond Hide..... Discussions with many  colleagues outside Reading, 
such as Michael McIntyre, have also been very important to us.

Our book aims to sum up an important component of the teaching and thinking 
of the Reading Department of Meteorology in its first 50 years. We owe a debt of 
gratitude to its staff and students over many years. In some cases, they have made 
very specific contributions. The authors have worked closely with some of them on 
research that has now become part of this book. A number of colleagues have gener-
ously allowed us access to their own lecture notes and material. In other cases, the 
influence of students and colleagues has been more diffuse and pervasive: Reading 
has provided a stimulating and energizing place to study atmospheric dynamics 
throughout our careers. We remember with gratitude the many conversations with 
colleagues and the questions from students that have helped to mould our thinking. 
It is nigh on impossible to name all these individuals and any such list would inevi-
tably have omissions. So we hope colleagues and students, past and present, will 
accept this general thanks for all they have given us. However, some specific thanks 
are in order. The comments provided by John Methven on a first draft of much of 
the book were extremely valuable to us. We have had the help of a number of mem-
bers of the department in providing us with data and generating diagrams from 
them. In particular, we wish to thank Laura Baker, Paul Berrisford, Johannes de 
Leeuw and Andrew Lomas for supplying data and pictures. We are particularly 
grateful to Ben Harvey for his work in extracting data and developing many plots 
specially designed for this book, and to Robert Lee who has done a most profes-
sional job making some of our crude sketches into publication-quality diagrams.

But above all, thanks to our research colleagues and students over many years. Their 
interest and enthusiasm has been a continuing stimulus to us both.
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recommended. Ambaum (2010) is a text on atmospheric thermodynamics.
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1.1  Vertical structure

The aim of this book is to explore how the Earth’s atmosphere is set into motion 
and to elucidate the nature of those motions. Essentially, we shall apply Newton’s 
laws of motion to a continuous fluid, taking account of all the different forces that 
can act upon the air making up the atmosphere. The principle is simple enough, 
but the application of that principle rapidly becomes very complicated. One of the 
challenges of the subject is that apart from a very few highly idealized examples, 
the equations governing real atmospheric flows have no known solutions in terms 
of simple functions: the equations are highly nonlinear, and many important 
atmospheric processes cannot be represented by simple mathematical functions. 
The challenge of this book is therefore to expose basic principles without compro-
mising or oversimplifying the underlying science.

As a preliminary, the scene will be set in this chapter with a description of the 
observed flow. This flow continually changes. Features first develop and then decay 
until they can no longer be seen. This itself makes life very difficult. We are faced 
with a three-dimensional flow which continually changes – a four-dimensional 
object. We have the problem of finding suitable ways even to describe such a flow 
adequately, perhaps using suitable averaging to reduce the number of dimensions.

As we examine flows in greater detail, we shall often find that certain terms in the 
governing equations dominate and almost cancel out. Such flows are described as 
‘balanced’, and their characteristic is that their evolution is in some sense ‘slow’. 
Examples include hydrostatic balance, in which the pressure gradient force on the 
fluid virtually balances the gravitational force, and geostrophic balance, in which 
pressure gradients forces balance Coriolis accelerations.

We shall show in Section 5.5 that vertical accelerations are generally very small 
compared to the pressure gradient and gravitational accelerations. This means that the 
atmosphere is generally very close to a state of hydrostatic balance (Equation 5.5). 
This equation indicates that pressure drops monotonically with height. For the 
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special case of an isothermal atmosphere (temperature T constant), Equation 5.5 can 
be integrated to give

p p H
RT

g
z H= =−

0e where/

where p is the pressure, and p
0
 its value at z = 0. However, the temperature is not 

usually constant with height. So this relationship is only rather a rough guide to the 
variation of pressure with height. Traditionally, the various layers of the Earth’s atmos-
phere have been classified by the way in which their temperature varies with height.

The variation of temperature with height gives important information about the 
stratification of the atmosphere. Suppose an air parcel is displaced so rapidly in the 
vertical that it is unable to exchange significant heat with its surroundings. Its 
motion is then described as adiabatic, and for such an air parcel,

	

∂
∂

= − = −
T

z

g

cp

Γa 	 (1.1)

where Γ
a
 is the ‘adiabatic lapse rate’ and is around 10 K km−1 for air.

Now suppose that the general rate of change of temperature with height is differ-
ent from Γ

a
. Again, suppose that an air parcel is subject to an adiabatic vertical dis-

placement. Then, the displaced parcel will oscillate about its home level with a 
frequency N, the Brunt–Väisälä frequency. A formula for N is

	
N

g

T
2 = −( )Γ Γa 	 (1.2)

where Γ = − ∂T/∂z is the observed lapse rate. If Γ < Γ
a
, the atmosphere is said to be 

‘stably stratified’. A vertically displaced parcel of air will simply oscillate about its 
home level. If Γ

a
 < Γ, then N2 is negative, N is imaginary, and instead of oscillating, 

a displaced parcel will continue moving away from its home level. Such an atmos-
phere is said to be ‘unstably stratified’. In fact, unstable stratification is rather rarely 
observed save in a thin layer immediately adjacent to a strongly heated surface. 
Usually, rapid mixing across any unstable layer quickly leads to a state where Γ ≈ Γ

a
.

If an air parcel contains water vapour, then it will become saturated if it cools 
sufficiently, for example, through ascending. In this case, condensation of water 
vapour will generally occur, and latent heat will be released into the air parcel. 
Consequently, the parcel will not cool as rapidly as it rises. In particular, the lapse 
rate for a saturated atmosphere will be less than the dry adiabatic lapse rate. Table 1.1 
gives examples of the saturated adiabatic lapse rate for typical polar and tropical 
surface temperatures and at two levels in the atmosphere. Since the amount of water 
required to saturate the warm tropical atmosphere is much greater than for the polar 
atmosphere, the warming by latent heat release and the consequent reduction in 
lapse rate below the dry adiabatic value of about 10 K km−1 are much larger. At 
higher levels where the atmosphere is colder, the water content is smaller, and so the 
reduction in the lapse rate is less at 50 kPa.



	O BSERVED FLOW IN THE EARTH’S MIDLATITUDES	 3

The midlatitude atmosphere comprises a number of layers, each characterized 
by particular lapse rate or Brunt–Väisälä frequency. The lowest kilometre or so is 
called the atmospheric boundary layer. Its structure can change markedly through 
the day. During the daytime over land, strong heating at the surface and turbulent 
mixing through the boundary layer result in a lapse rate close to adiabatic. In that 
case, N is near 0, and the boundary layer is said to be neutrally stratified. At night, 
rapid surface cooling creates a stable layer near the ground. The lower part of the 
boundary layer can have a rather small lapse rate; indeed, in some conditions, the 
temperature actually increases with height, a situation called an inversion. In these 
conditions, N can become very large, and we talk of a ‘stable boundary layer’. 
Perhaps the most extreme example occurs over Antarctica. During the long winter 
night, intense cooling at the surface of the ice cap results in a continent-wide inver-
sion of as much as 35—40 K in the lowest few hundred metres of the atmosphere.

Above the boundary layer, diurnal variations are much smaller. Temperature falls 
off with height, but not as rapidly as the dry adiabatic lapse rate. A typical observed 
lapse rate is around 6 K km−1, and this persists to heights of around 10 km at high 
latitudes and 18 km in the tropics. Over most of the tropics and indeed over consid-
erable parts of the higher latitudes, the observed lapse rate is in fact intermediate 
between the dry adiabatic lapse rate and the saturated adiabatic lapse rate, a situa-
tion described as ‘conditional instability’. This layer of conditionally unstable air is 
called the ‘troposphere’ and is the main focus of interest in this book. The actual 
stratification, measured by N, is a crucial parameter determining the character of 
motions in the troposphere. A typical value of N is around 10−2 s−1, intermediate 
between the dry neutral value of zero and the values associated with the saturated 
adiabatic lapse rate given in Table 1.1. This corresponds to buoyancy oscillations 
with a period of about 10 min, a very short time compared to the rotation period of 
the Earth or to the typical advection-based timescales characterizing atmospheric 
motion.

Despite its central importance for the dynamics of atmospheric flow, the atmos-
pheric stratification is generally taken simply as an imposed parameter. There is 
not much explicit discussion in the literature about why it has its observed value. 
Purely radiative considerations would recognize that the atmosphere is heated 
primarily at its base, where sunlight is absorbed by the ground, and cooled in the 
upper troposphere, where the atmosphere becomes optically thin to thermal infrared 
radiation. In the absence of any other processes, such a distribution of heating and 

Table 1.1  Saturated adiabatic lapse rate between 100 and 70 kPa and between 70 and 50 kPa for 
typical low- and high-latitude surface temperatures, together with the corresponding values of N2

Surface 
Temperature (°C)

SALR (K km−1) N2 (10−4 s−2) SALR (K km−1) N2 (10−4 s−2)

100–70 kPa 100–70 kPa 70–50 kPa 70–50 kPa

0 7.36 0.90 8.39 0.56
25 4.15 1.89 4.51 1.85
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cooling would lead to a strongly unstable lapse rate. Rapid vertical mixing would 
erode super-adiabatic lapse rates and lead to a ‘radiative-convective equilibrium’. 
In the case of the Earth, such convective mixing is dominated by moist convection 
and so would lead to a lapse rate close to the saturated adiabatic lapse rate in the 
lower troposphere. In fact, the observed stratification is not far different from 
the  saturated adiabatic lapse rate in the tropical lower troposphere, as shown in 
Table  1.1. It is rather more stable than the saturated adiabatic lapse rate in the 
middle and upper troposphere. A further complication is that atmospheric motions 
in the midlatitudes tend to transport heat upwards, cooling the lower layers and 
heating the upper layers, thereby increasing the stratification. The actual stratifica-
tion will be a result of all these different processes. Hence we must conclude that 
the stratification is as much a product of the dynamics as a constraint upon the 
dynamics.

At heights above 16 km or more in the tropics or around 8 km at high latitudes, 
the lapse rate changes abruptly. Temperature is roughly constant with height above 
these levels and actually increases with height above 30 km or so. This region of 
very stably stratified air is called the stratosphere. Aircraft measurements show that 
the transition, called the tropopause, really is very abrupt, perhaps only a few metres 
deep. Across it, the Brunt–Väisälä frequency increases by a factor of two or more. 
The existence of the tropopause has important consequences for the dynamics of the 
troposphere. In many ways, the sudden large change of stratification is analogous to 
a rigid boundary at the tropopause level. Vertical velocities drop by a significant 
factor across the tropopause. At the same time, many smaller-scale tropospheric 
flow features are confined by the tropopause, giving stratospheric flow a very 
different character from that in the troposphere.

The basic reason for the change in lapse rate is the absorption of ultraviolet com-
ponents of the solar beam at high levels in the atmosphere, particularly absorption 
by ozone. Although the amount of solar radiation at these wavelengths is a very 
small fraction of the total, it is absorbed at levels where the atmospheric density is 
very low, hence producing a substantial effect on the temperature.

Further changes of lapse rate characterize the mesosphere, above about 50 km, 
and the thermosphere, above 80 km. Rather little solar radiation is absorbed in 
the mesosphere, making it relatively unstably stratified. In the thermosphere, 
very energetic, short-wavelength photons in the far ultraviolet are absorbed, 
giving a strong temperature response. However, these levels have very little direct 
impact on the dynamics of the troposphere and will not be discussed further in 
this book.

1.2  Horizontal structure

In much of this book, rather than temperature, it will prove convenient to use instead 
a variable called the ‘potential temperature’. This is the temperature a sample of 
air  would have if it were compressed without adding or extracting heat, that is, 
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adiabatically, to some arbitrary standard pressure p
s
. The potential temperature is 

related to the temperature by

	

θ =










−

T
p

p

R

cp

s

	 (1.3)

A great advantage of potential temperature is that it is conserved by air parcels 
which move without gaining or losing heat. The standard pressure is often taken to 
be 100 kPa. In terms of the potential temperature, Equation 1.1 can be written as:

N
g

z
2 =

∂
∂θ
θ

and for a dry adiabatic neutral atmosphere, ∂θ/∂z = 0. Figure  1.1 shows a cross 
section of the time mean potential temperature, averaged around latitude circles, for 
the northern hemisphere winter, that is, for the months of December, January and 
February. The potential temperature increases with height everywhere, that is, the 
atmosphere is stably stratified, and it generally decreases from the equator towards 
the pole. The potential temperature difference between the equator and pole is 
around 50 K near the surface and somewhat less in the upper troposphere. The 
surfaces of constant potential temperature, called isentropes, are nearly horizontal 
in the tropics but slope downwards from the poles with a typical inclination of 
10 kPa in 10° of latitude, that is, of about 1 in 1000, in the midlatitudes. The change 
in stratification at the tropopause is clear, with the vertical gradient of potential 
temperature increasing sharply above 30 kPa at high latitudes and 15 kPa in the 
tropics. Above the tropopause, the slopes of the isentropes reverse sign as well as 
becoming smaller. The 350 K isentrope is nearly flat. The region of strong poleward 
temperature gradient in the troposphere extends from around 30° of latitude to 
around 70° of latitude in both hemispheres, and so is around 4000 km wide.
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Figure 1.1  Pressure–latitude cross section of the time mean, zonal mean and zonal potential 
temperature for the December–January–February season. Contour interval 10 K up to 350 K and 
50 K thereafter. Shading indicates values above 350 K
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With potential temperature, and hence temperature, decreasing towards the pole 
within the troposphere, the separation between pressure surfaces will reduce with 
latitude, according to the hydrostatic relationship:

∆ ∆z
RT

g
p=

where Δz is the depth of a layer of air across which the pressure drop is Δp. 
Consequently, closer to the pole, where temperatures are lower throughout the trop-
osphere than in the tropics, the upper-level pressure surfaces are lowered.

The westerly or zonal wind is related to the slope in height of a pressure surface:

u
g

f

z

y
= −

∂
∂

where the gradient is calculated on a pressure surface and f is twice the local vertical 
component of the Earth’s rotation. Therefore, the difference in height of a pressure 
surface between the polar and tropical regions means that there must be a westerly 
(eastward) wind in middle latitudes.

The change with height of the zonal wind is related to the potential temperature by
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∂

=
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u

z

g

f yθ
θ

	 (1.4)

This equation is one form of the ‘thermal wind relationship’ and will be discussed 
in more detail in Chapter 12; a flow which satisfies Equation 1.4 is said to be in 
‘thermal wind balance’. Comparison of Figure 1.2 and Figure 1.1 suggests that the 
zonal wind is indeed close to thermal wind balance with the potential temperature 
field. In the midlatitudes, where θ  decreases most rapidly towards the pole, the 
zonal wind is generally westerly and increases with height, reaching its largest 
values around the subtropical tropopause. This tropospheric jet reaches speeds of 
around 50 m s−1 in the zonal mean but can be substantially larger locally. The global 
average zonal wind is around 14 m s−1. In the tropics, the zonal mean winds are 
smaller and are easterly in the lower troposphere. At the surface, roughly equal 
areas of the Earth’s surface are occupied by easterlies and westerlies: clearly, in the 
long-term mean, the total torque between the solid Earth and the atmosphere must 
integrate to 0. However, the long-term existence of mean easterlies in the tropics 
and westerlies in the midlatitudes means that the atmosphere itself must support 
horizontal stresses, transferring westerly momentum polewards and easterly 
momentum equatorwards.

Above the midlatitude tropopause, the vertical wind shear reverses, consistent with 
the reversal in poleward temperature gradients. The cross sections in this chapter all 
use pressure as a vertical coordinate, so that equal increments in the vertical corre-
spond to equal increments of mass. Over 80% of the atmosphere lies beneath the 
tropopause and the stratosphere, and mesosphere is squashed into the topmost part of 
the plot. However, it can still be seen that the summer and tropical stratosphere are 
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filled with easterlies. The winter hemisphere has a region of increasingly strong west-
erlies centred on around 60°N. This so-called ‘polar night jet’ runs close to the arctic 
circle, the latitude where the incoming solar radiation drops to zero at the winter 
solstice. The polar night jet runs around a core of sharply cooling polar air (the ‘polar 
vortex’) with the relatively warmer air of the midlatitudes to equatorward. This polar 
vortex is centred near to, but not exactly over, the North Pole.

Figure  1.1 and Figure  1.2 present time and zonal means. The time and spatial 
averaging implies that much of the dynamical detail has been smoothed away, 
whether those details be transient fluctuations in time or zonal variations around 
latitude circles. By way of contrast, Figure  1.3 shows the flow at 25 kPa for an 
arbitrary time. The general lowering of the 25 kPa pressure surface towards the colder 
pole is clear, as is the predominance of westerly winds throughout the midlatitudes. 
This large-scale structure, some 5000 km across, is sometimes called the ‘polar 
vortex’. It is present throughout the year but is stronger during the winter season.

Around the periphery of the polar vortex, the pattern of the height field is very 
wavy, with a belt of strong winds, called the ‘jet stream’, meandering from low to 
high latitudes and back. Some five or six major troughs and ridges can be counted 
around a midlatitude latitude circle in this particular example. Such a spacing of the 
troughs and ridges corresponds to a typical wavelength of about 4000 km, which 
implies that the distance between a trough or ridge and a maximum of meridional 
wind is about a quarter of this, that is, about 1000 km. The diagram shows that 
although the time and zonal mean wind has a single maximum between equator and 
pole, the situation is more complicated locally. For example, in Figure 1.4, there are 
clearly two roughly parallel jet streams over the Middle East and Central Asia, but 
only one over the Pacific and North America.

Some of the features seen in Figure 1.3 are short lived or transient. Others have a 
much longer lifetime, and some persist throughout the season and recur from season 
to season. Figure 1.4 again shows the 25 kPa height field, but this time averaged 
over a 3-month period of December–February, corresponding to the Northern 
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Figure 1.2  The time and zonal mean zonal wind for the December–January–February season. 
Contour interval 5 m s−1, negative values dashed. Shading indicates winds in excess of 20 m s−1
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Hemisphere winter and then averaged over 40 such winter seasons. The field is 
much smoother than that shown in Figure 1.3, indicating that the short-term tran-
sients generally have a smaller length scale than the more permanent features of the 
flow. The most prominent features of Figure 1.4 are regions of tightly packed con-
tours, that is, of high winds, over the western Pacific and Western Atlantic oceans, 
and the pair of troughs associated with them near the continental coasts. Downstream 
of these tight jets, there is a tendency to ridging of the contours and lighter westerly 
winds; these characterize the Eastern Pacific and Eastern Atlantic regions. The pat-
tern is dominated by waves with two or three crests and troughs around a latitude 
circle, that is, with wavelengths of 9,000–13,000 km.

50 m s–1

Figure 1.3  Contours of the geopotential height of the 25 kPa surface on 10 February 2004, 00Z. 
Contour interval 250 m, values below 10 km shaded. The arrows represent the horizontal compo-
nent of the wind
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A question which immediately arises concerns the origin of these semi-permanent 
features of the flow. Their very large scale, filling the entire hemisphere, suggests we 
might be looking at some sort of wave phenomenon. Their geographical location 
appears to be related to the distribution of oceans and continents. It turns out that the 
important influences are the forcing of the flow by major mountain ranges, particu-
larly the Rockies and the Tibetan plateau and the remote impact of the heating of the 
atmosphere by deep convection in the tropics. A crucial ingredient in the large-scale 
response of the atmosphere is the way in which disturbances of some wavelengths 
can propagate away from the regions in which they are excited while others are con-
fined and damped. These ideas will be developed in Chapters 9 and 18.

Apart from the main polar vortex itself, the flow shown in Figure 1.3 is character-
ized by a series of open troughs and ridges, that is, by a sinuous band of fluid snaking 

Figure 1.4  A 40 year mean of the DJF 20 kPa geopotential height field. Contour interval 200 m, 
and shading indicates values less than 10 km
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from high to low latitudes and back. Note that this pattern is an extremely simple and 
effective way of transferring heat from the tropics to the pole. It also transports other 
tracers such as water vapour rather effectively in the meridional direction. However, 
this pattern does depend upon the frame of reference within which it is viewed. 
Figure 1.5 is the same as Figure 1.3 except that the zonal mean has been removed. 
For a small range of latitudes around any particular flow feature, removing the zonal 
mean in this way is roughly equivalent to viewing the flow in a frame of reference 
moving with the mean flow rather than one fixed relative to the solid Earth. With this 
change, the troughs and ridges have been transformed into closed cyclonic and anti-
cyclonic eddies. The typical radius of the eddies is around 1000 km, and their typical 

50 m s–1

Figure 1.5  Vectors of the horizontal component of wind, as in Figure 1.3, except that the zonal 
mean has been removed. Shading indicates regions where the 25 kPa geopotential height anomaly 
from its zonal mean is negative
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circulation velocity is around 10 m s−1. This implies that fluid would circulate com-
pletely around the eddy every 0.7 days or so.

1.3  Transient activity

Compare Figure 1.3 and Figure 1.4. The flow at a random instant is very different 
from the time mean flow. Clearly, a good deal of the observed atmospheric flow is 
highly variable. Features develop, move and collapse in time. This transient part of the 
flow is extremely important. Indeed, the whole business of weather forecasting is 
concerned with predicting the evolution of the transient part of the flow. Fluctuations 
on a wide variety of timescales dominate the flow and make prediction of its future 
state extremely difficult. Much of this book will be devoted to exploring aspects of 
this transient behaviour, to understanding the mechanisms which mean that the flow 
is unstable and therefore unsteady. A first picture of the midlatitude transients is sum-
marized by Figure 1.6a. This is a time series of the surface pressure, at 1 min intervals, 
observed at Reading, UK, a typical midlatitude location. Fluctuations on a wide range 
of timescales are present, but the time series is dominated by the large swings of pres-
sure, as large as 1 kPa, as individual weather systems pass over the observing site. 
Smaller fluctuations are revealed with other periods. For example, during quieter peri-
ods of weather, a ripple with a period of 0.5 days and an amplitude of around 50 Pa is 
often observed. This is an atmospheric tide, raised in the atmosphere by gravitational 
and thermal effects. Generally, though, this semi-diurnal tide is swamped by the much 
larger fluctuations arising from the passage of major weather systems.

These different timescales are made clearer by a spectral analysis of the time series, 
shown in Figure  1.6b. The largest amplitudes are associated with low-frequency 
transients, with periods greater than a day. The spectrum at these periods is roughly 
white, with similar amplitude for all periods. As the period becomes shorter than 
about 1 day, the power drops off rapidly.

Figure 1.6  (a) A time series of the surface pressure averaged at 5 min intervals from a vibrating 
cylinder barometer at the University of Reading’s Atmospheric Observatory, during 2008. (b) A 
spectrum of the time series shown in part (a) with vertical lines added to mark weekly, diurnal, 
semi-diurnal and hourly timescales. Courtesy of R.G. Harrison 
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A clearer picture of the transients is given in Figure 1.7, which is a longitude-time 
(Hovmöller) plot of the flow at a particular level and latitude. Here, the poleward 
component of wind is plotted at the 25 kPa level, near the level of maximum mean 
winds, as shown in Figure 1.2. The data were extracted from routine meteorological 
analyses made every 6 hour as initial fields for numerical weather forecasts. The 
series therefore includes the white low-frequency part of the spectrum shown in 
Figure 1.6b, but little of the power law high frequency section. Changes of sign of v 
correspond to troughs and ridges in the flow. The plot is based on latitude 50°N, but 
in fact data for that latitude and those 5° either side of it have been averaged together 
in order to reduce the jerky effect produced when a particular feature migrates from 
one latitude circle to another.

Three features of Figure  1.7 are particularly striking. First, there is a general 
tendency of features to move from west to east. This is especially true of the smaller-
scale features. The rate of progression is not constant but fluctuates. Nevertheless, 
typically features are moving so that they pass right around the latitude circle every 
20 days or so, corresponding to a speed relative to the ground of around 15 m s−1. 
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Figure 1.7  Longitude–time (Hovmöller) plot of poleward wind v averaged between 45°N and 
55°N at 25 kPa for the December 1983 to February 1984 winter season. Shading indicates equa-
torward motion (v < 0); contour interval 20 m s−1
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Secondly, some features are relatively stationary and permanent. The transition 
from negative v to positive v, that is, from shaded to unshaded, represents a trough 
feature. One such feature, around longitude 120°E, is quasi-permanent and corre-
sponds to the marked trough in the time mean flow near the eastern cost of Asia, 
shown in Figure 1.4. Thirdly, the most vigorous transient activity is not distributed 
uniformly around the latitude circle, but tends to be concentrated in certain pre-
ferred regions. One of these is for longitudes 80°W to 20°E. Another is from 120°W 
to 80°W. These regions are preferred locations for the cyclonic weather systems of 
the midlatitudes and are sometimes called storm tracks. They tend to occur at the 
western side of the Pacific and Atlantic Ocean basins.

A numerical filter can be applied to the data shown in Figure 1.7 to separate the 
low-frequency transients from the very-low-frequency transients. Figure 1.8 shows 
the effect of a ‘high-pass’ filter on the Hovmöller plot of Figure 1.7. At each time, 
the very low frequencies have been removed by subtracting a 3-day running mean 
of the data from the time series. This procedure acts as a ‘poor man’s filter’, isolat-
ing the transients with periods of 6 days or less. More sophisticated filters can be 
devised, but the essential results are not much changed. The principal results are 
twofold. First, the quasi-stationary waves visible in Figure 1.7 have more or less 
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Figure 1.8  As Figure 1.7, except that the winds have been high-pass-filtered to include only 
those high-frequency transients with periods less than 6 days



14	 Fluid Dynamics of the MidLatitude Atmosphere

disappeared. Secondly, great emphasis is placed on the two northern hemisphere 
storm tracks. These appear as distinct and separate under the action of such a filter. 
In fact, the two storm tracks have somewhat different seasonal cycles. The Atlantic 
storm track tends to be most pronounced in the midwinter, while the Pacific storm 
track is rather weaker in midwinter but more pronounced in the spring and autumn 
transition seasons. A ‘high-pass’ filter such as this is widely used in the analysis of 
atmospheric data. It tends to separate the midlatitude depressions, generated by 
baroclinic instability, from other types of circulation system.

1.4  Scales of motion

In the discussion so far, certain characteristic magnitudes for various quantities have 
begun to emerge. One of the objectives of dynamical theory is to account for such 
characteristic scales and to show how they relate to one another. In this section, we 
merely note some of the quantities which can be derived from various basic diag-
nostics. Later chapters will establish some of the principles behind these scalings 
and show how they can lead to insights into the approximations and simplifications 
which can be made to the governing equations.

Some scales are dictated by the size of the domain in which motions take place. 
The depth of the troposphere varies from around 8 km near the poles to 18 km in the 
deep tropics. Many atmospheric motions are largely confined between the surface 
and the tropopause, and so a maximum vertical scale of order 10 km emerges from 
such considerations. Similarly, in the horizontal, the Earth is a sphere of radius 
6400 km. The distance from the pole to the equator is 10,000 km,1 and this is effec-
tively a maximum horizontal extent of atmospheric motion.

A comparison of these scales reveals the huge disparity between the vertical and 
horizontal scales. The atmosphere really is an extremely thin skin sitting upon the 
solid earth. Its thickness is in a similar proportion to the radius of the Earth as the 
skin of an apple is to its radius. In most depictions of the atmosphere, the vertical 
scale is orders of magnitude different from the horizontal scale.

The dimensions of many characteristic features of atmospheric flow are a good 
deal smaller than the maximum that the dimensions of the system would permit. For 
example, Figure 1.3 shows a band of air meandering between high and low latitudes. 
Something like six to eight such meanders can be counted around a latitude circle, 
corresponding to a wavelength of order 4000 km. A typical horizontal distance in a 
weather system might be one quarter of a wavelength, which is the distance between, 
for example, a 0 and a maximum or minimum of one of the horizontal components 
of the wind. Conveniently, this distance is about 1000 km in the troposphere.

Since they combine information about the time and space domains, the Hovmöller 
plots of Figure 1.7 and Figure 1.8 give some interesting information about timescales 
and speeds of flow features in the atmosphere. The diagrams shown apply to 50°N 
and 25 kPa. Reference to Figure 1.3 shows that the time and zonal mean wind at this 
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level is around 20 m s−1, comparable to the speed at which disturbances move from 
west to east. However, if lines with a slope corresponding to an eastward speed of 
20 m s−1 are drawn on the Hovmöller plots, it is clear that the speed at which features 
move around latitude circles is generally smaller than this. This is an important 
result. The synoptic features seen in the midlatitude flow are not simply swept 
around the globe by the mean winds blowing at the level. Air flows through the 
systems which should not therefore be thought of as material objects, but rather as 
organized features within the flow.

A number of timescales are associated with the observed transients. The simplest is 
the period of disturbances relative to the solid Earth, obtained from their speed and 
length scale. A length scale of 1000 km and a speed of 16 m s−1 imply a timescale of 
around 0.7 days, perhaps better rounded to 1 day. Other relevant timescales include the 
‘circulation timescale’, the time taken for disturbances to pass right around the globe 
and return to their initial location, if they live that long. For 16 m s−1 at 50°N, this time-
scale is around 20 days. Another relevant timescale is the lifetime of individual flow 
features, as observed for example, in a frame of reference moving with the disturbance. 
This is highly variable, and certain features, particularly in the high-pass-filtered data 
can be surprisingly long lived. But generally, most strong features can be traced unam-
biguously only for 5–10 days. Therefore, they do not usually circumnavigate the globe.

A final comment on the material of these last two sections is that it suggests two 
rather different ways of viewing atmospheric flows. In Section 1.2, we showed how 
the flow was made up of a large number of circulating eddies, with discrete masses 
of fluid orbiting around the eddy centre. There were small eddies with circulation 
times as short as a day or so, right up to the polar vortex itself, with its circulation 
time of 20 days or so. In this section, in contrast, we have emphasized the wave-like 
nature of atmospheric circulation systems. The Hovmöller plots revealed patterns in 
the flow with the actual fluid flow passing through them, or, equivalently, with the 
patterns propagating through the atmosphere. We shall refer to these two aspects of 
atmospheric flow as ‘vortex-wave duality’. The two points of view are equally valid, 
and one may be preferred to another depending upon the circumstances. We shall 
return to this distinction throughout the book.

1.5  The Norwegian frontal model of cyclones

This chapter would not be complete without a brief description of a conceptual 
model of weather systems which originated in the 1920s but which is still widely, 
even universally, used in communicating information about weather analyses and 
forecasts. It is called the ‘Norwegian frontal model’, and most people will be 
familiar with it even if they do not know its name. The model was developed by 
Wilhelm and Jacob Bjerknes and colleagues at the University of Bergen in Norway 
after the First World War; it represents a summary of the large volume of meteoro-
logical analyses which had been accumulated at that time in Norway. Despites its 
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near-universal use today, it is important to recognize that the Norwegian model 
remains a conceptual model and no more; it proves useful for interpreting many 
observations, but equally, it can prove unhelpful in understanding others.

The basic hypothesis of the Bergen School was that the atmosphere consists of a 
number of distinctive air masses, each relatively uniform in the horizontal and each 
having properties which reflect their origins. Air masses are better distinguished in 
the lower and middle troposphere, above the atmospheric boundary layer where 
exchanges of heat, moisture and momentum with the underlying surface can modify 
the properties of the air mass rather readily. The model supposes that the interface 
between air masses is more or less sharp and discontinuous. Such an interface is 
termed a ‘front’.

In particular, the Bergen school distinguished relatively cold, dry air of polar 
origin from warmer, moister air originating in low latitudes. They imagined an 
interface between the two air masses which girdles the entire Earth in the mid-
latitudes and which they called the ‘polar front’. If the polar front retreats, so that 
cold air is being replaced by warmer air at the surface, the front is called a ‘warm 
front’. If on the other hand, the cold air is advancing, we use the term ‘cold front’. 
The polar frontal surface slopes, so that the cold air forms a wedge obtruding 
beneath the warm air, as shown in Figure 1.9. The slope of the front depends upon 
the wind shear and temperature change ΔT (or density change Δρ) across the front 
and is given by the ‘Margules formula’:
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standard reference density and temperature respectively. This formula is in fact an 
application of the thermal wind equation, discussed in Section 11.2. The implication 
of the Margules formula is that, since the cold air must undercut the warm, that is, 
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Figure 1.9  The polar front, according to the Norwegian frontal model
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∂y/∂z > 0, then there must be a positive or cyclonic shear across the front. Putting in 
reasonable values for ΔU (20 m s−1) and ΔT (5 K) gives a value for the slope of 
around 10−2. So the polar front reaches from the surface to the tropopause over a 
horizontal distance of about 1000 km.

Even when fronts can be analysed with confidence on a synoptic chart, a 
straight, zonally orientated front is a rarity. Such a front appears to be unstable. 
It develops kinks and ripples which amplify rapidly to give a series of cyclones 
and anticyclones. Figure  1.10 is a schematic illustration of the development 
observed. At the surface, the distorted polar front demarcates a triangular region 
of warm air, designated the ‘warm sector’, with a minimum of surface pressure 
at the apex of the triangle. To the east, the polar front becomes a warm front, 
as warm air advances. To the west, a cold front advances behind the system. 
Generally, the cold front moves to the east more rapidly than the warm front. 
So  the warm sector is undercut by cold air and lifted away from the ground. 
This process is called ‘occlusion’, and it marks the end of the developing phase 
of the depression. Eventually, factors such as friction, latent heat release and so 
on cause the system to decay, returning the atmosphere to something like its 
initial state.

Like all models, the Norwegian frontal model is limited and provisional, 
despite its widespread use as a convention for reporting data. Figure 1.11 shows 

Figure 1.10  Schematic maps showing surface pressure and fronts during the development of 
a  midlatitude depression, according to the Norwegian frontal model. (a) Developing phase, 
(b) mature phase and (c) occluding (decaying) phase

(a) (b)

(c)
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Figure 1.11  An example of an active developing cyclone, analysed according to the conven-
tions of the Norwegian frontal model. The sequence shows maps of the surface pressure over the 
North-east Atlantic and Western Europe at 12 hourly intervals, beginning at 00Z on 18 February 
1997. This case was part of the FASTEX experiment, intensive observing period 17
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a conventional surface pressure analysis for a developing depression which has 
been studied extensively and which will provide a useful example of cyclone 
development. Fronts have been analysed, using the convention that they repre-
sent a near discontinuity of temperature and wind on this synoptic scale. However, 
the fronts are fragmentary. They do not form a complete unbroken line around 
the midlatitudes. In some places, no front could be identified. In other places, 
multiple fronts have been analysed. We shall see later in the book that, in fact, the 
development of a midlatitude cyclone does not depend upon the presence of a 
pre-existing polar front. It can occur in a region of uniform and gentle tempera-
ture gradients. In most circumstances, the formation of fronts is a product of the 
cyclogenesis rather than its cause. A deepening depression develops flow patterns 
which sharpen temperature gradients in some places and can actually lead to frontal 
formation.

The case of a developing depression shown in Figure 1.11 was observed dur-
ing the FASTEX experiment and constitutes intensive observing period (IOP) 
17. As well as the operational network of observing stations and satellite data, 
special additional observing systems operated during the IOPs, giving a very 
detailed view of the evolution of synoptic features. The developing depression 
shown here moved around the periphery of a large feature centred near Iceland. 
In Figure 1.11a, the developing depression is just crossing the edge of the plot 
and moving across the Atlantic. The depression is fairly shallow, and its cold 
and warm fronts form a wide, obtuse angle. Twelve hour later, Figure 1.11b, the 
depression has deepened, and although the fronts still make a wide angle with 
each other, a distinct warm sector has formed. The last analysis shown in 
Figure  1.11d, made 48 hour after the initial analysis, shows an intense, deep 
depression, which is beginning to occlude as the cold front overtakes the warm 
front. The tight isobars indicate that very strong winds were associated with the 
depression by this time.

The Norwegian frontal model was based largely on surface-based observa-
tions. Few routine upper-air observations were available. Indeed, even today, 
the typical separation of upper-air observing stations is several hundred kilome-
tres. Such a spacing is far too large to resolve details of frontal structure. The 
picture which emerged from the Norwegian studies was of a frontal surface 
which extended from the ground through the depth of the troposphere, across 
which there was an abrupt change of temperature, humidity, wind and so on. As 
a full upper-air observing network became established, this picture was found to 
be an over-simplification. Figure 1.12 is taken from a classic study of a frontal 
zone published in 1955. The routine upper-air observations were supplemented 
by additional observations, so that a high-resolution cross section of the frontal 
zone could be made.

Figure 1.12 reveals that the tightest temperature gradients in the frontal zone occur 
near the ground. The frontal surface indeed slopes so that a wedge of colder air 
undercuts the warm air, as the Margules formula suggests, but the frontal temperature 
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contrast becomes more diffuse with height. At heights of 300 m above the ground, 
the width of the frontal zone was no more than 25 km; at heights of 1200 m, it was 
200–300 km. At the same time, the component of wind parallel to the front changes 
sharply across the front. Such a shear is implicit in the classic Norwegian school 
analyses, in which the isobars kink across the front. It is corroborated by a time series 
of the wind at an observing station as a front passes over; the wind strength and 
direction change abruptly and markedly as the front passes over the station.

Somewhat similar structures are observed in the upper troposphere, at the interface 
between the low static stability troposphere and the much more stable stratosphere. 
They have been called ‘upper-level fronts’ or ‘troposphere folds’. Figure 1.13 shows 
a cross section through one such structure based on in situ aircraft observations. As 
in a surface front, the potential temperature contours are packed close together in the 
frontal region. An intrusion of stratospheric air descends along the frontal surface, 
suggesting that the front is associated with strong circulations in the plane perpen-
dicular to the front. In this particular example, stratospheric air has descended four or 
more kilometres into the troposphere. Such upper-level fronts in the midlatitudes are 
thought to be an important mechanism for mixing stratospheric air into the tropo-
sphere and for the meridional circulation of the stratosphere.

We shall see in Chapter 15 that both surface and upper-level frontal structures 
can be reproduced using basic dynamical theory. The key to their formation is the 
circulation of the air required to maintain balanced flow, together with a basic 
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mechanism called vortex stretching. Both these factors will be major themes through-
out the succeeding chapters.

The Norwegian frontal model is limited in some respects. Nevertheless, the 
sort of analyses shown in Figure 1.11 are so extensively used that they do indeed 
provide a helpful starting point for the study of cyclonic weather systems in the 
midlatitudes. But the reader should always bear in mind that these, or any other 
analyses, are models, simplified idealizations of reality; they are at best a short-
hand for more complex structures. They can in some circumstances be positively 
misleading.

This introductory chapter has surveyed some aspects of the observed tempera-
tures and winds in the atmosphere and has introduced some indications of the 
variations of these quantities, both in space and time. We are now in a position to 
begin a systematic account of how basic physical principles determine these fea-
tures. We shall start by formulating Newton’s laws of motion and the laws of 
thermodynamics for a fluid such as air and then specifically recognize that the 
Earth’s atmosphere is an extremely thin layer of fluid sitting on a spherical rotat-
ing planet. Motion in the atmosphere is strongly constrained by the rapid rotation 
of the Earth, and so much of the latter part of the book explores the consequences 
of these constraints.

Figure 1.13  Cross section through an upper-level front, based on aircraft observations on 
12 March 1978. From Shapiro (1980), reproduced by permission of the American Meteorological 
Society 
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Note

1.  This round figure is no coincidence. The original definition of the metre was that it 
should be one ten-millionth of the distance from the pole to the equator along the 
Paris meridian. Later this was revised to be the length of a standard metal bar kept 
under standard conditions. Subsequently, it has been redefined as the distance 
travelled by light in a vacuum in 1/299,792,458th of a second.
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Fluid dynamics in an inertial 
frame of reference

2

2.1  Definition of fluid

Most of the observable universe consists of fluid, yet many of us have much greater 
familiarity with the mechanics of rigid bodies or point masses. The reasons are not hard 
to find: in developing the theory of fluid dynamics, we rapidly encounter very intracta-
ble nonlinear differential equations, we discover that some basic assumptions can turn out 
to be significantly limited, and from a physical perspective, we need to envisage systems 
in three dimensions, a task which our paper- and screen-based two-dimensional culture 
finds difficult. This chapter introduces some basic concepts in a rather general context, 
as a preliminary to the more specialized atmospheric applications discussed in later 
chapters. Here, the basic principles will be set out for an inertial or non-rotating frame of 
reference. Later chapters will address the problem of describing fluid flow when referred 
to rotating frames of reference, such as those embedded in the solid rotating Earth.

Our discussion begins by listing the forces acting upon a notional parcel of fluid, 
a ‘parcel’ being a coherent blob of fluid bounded by a surface, which may well be 
imaginary. These forces divide into three categories: forces which act tangentially 
to the surface of the parcel, forces which act in a direction normal to the surface of 
the parcel and forces which act throughout the volume of the parcel. The forces that 
act upon the surface of the parcel are measured by the force per unit area, designated 
as the ‘stress’. Stress has units of N m−2, a unit called the Pascal (Pa). We differenti-
ate between ‘tangential stresses’ acting parallel to the surface, and ‘normal stresses’ 
which act perpendicularly to the surface. Forces which act throughout the volume 
of the fluid are called ‘body forces’ and are conveniently expressed in terms of force 
per unit mass, which of course has the units of acceleration, m s−2.

Figure 2.1 shows a block of matter subject to tangential stresses at its opposite 
faces. A solid deforms when subject to such a stress; many common materials 
undergo a reversible deformation in which the strain, a dimensionless measure of 
the deformation, is proportional to the applied stress. This relationship is called 
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Hooke’s law, and it applies accurately to many common solids whose microscopic 
structure is crystalline. In such cases, the deformation is reversible: the sample 
springs back to its original shape when the stress is removed.

A fluid too deforms under the influence of tangential stresses, but it carries on 
deforming as long as the stress is applied. If the stress is removed, the fluid has no 
memory of its original shape and simply remains in its new configuration. Hooke’s 
law is irrelevant, since the strain is indefinite. However, a corresponding law is 
‘Newton’s law of viscosity’, which states that the rate of strain is proportional to the 
stress. The constant of proportionality is called the viscosity of the fluid. Newton’s 
law of viscosity may be written as:

	
F

u
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µ 	 (2.1)

for the simple case illustrated in Figure 2.1. The constant of proportionality, μ, is 
called the ‘dynamic coefficient of viscosity’. Fluids which obey Newton’s law of 
viscosity are called ‘Newtonian fluids’. Air and water are both examples of Newtonian 
fluids, provided the stress is not too large. Other fluids behave in more complex ways 
and are called ‘non-Newtonian’. Examples include a water/cornflower mixture, 
whose viscosity increases sharply when the stress increases and which will frac
ture  like a solid if the stresses are large enough. Other natural examples of non-
Newtonian fluids include ice and the rocks making up the Earth’s mantle.

Fluids come in two varieties, depending upon their reaction to normal stresses. 
Fluids such as air change their volume when subject to a normal stress, as shown in 
Figure 2.2, and are said to be compressible or gaseous. The relationship between the 
normal stress and the volume, which is linear for air, is called the ‘equation of state’ 
and will be discussed later on. Other fluids, such as water, scarcely change their 
volume at all when subject even to large normal stresses. Such fluids are called 
‘incompressible’ or liquid. It turns out that at flow speeds which are small compared 
to the sound speed, compressible and incompressible fluids behave in virtually the 
same way, and the difference between liquids and gases can be unimportant.

Figure 2.1  Matter subject to a tangential stress
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The differences between solids, liquids and gases are related to their molecular 
structure. In a crystalline solid, the molecules are locked into fixed relative positions 
by intermolecular forces. In liquids, the molecules are so closely packed that they 
touch one another, so that normal stresses cannot force them any closer to each 
other, but they can easily slide past one another when subject to tangential shearing 
stresses. In the gaseous state, molecules are widely separated. Hence, the gas can 
both be compressed and sheared readily. It is the task of fluid physics to account 
quantitatively for the properties of fluids in terms of their molecular structures. In 
this book, we shall take such properties of fluids as their viscosity simply as given 
or as directly measured quantities.

2.2  Flow variables and the continuum hypothesis

The properties of fluids are described by a series of variables which in general vary 
with position and time. Such variables are called ‘fields’. Two groups of fields are 
distinguished: those which describe the local properties of the fluid and those which 
describe its state of motion. The former are called ‘state variables’ and the latter 
‘dynamical variables’. Variables may either be scalar or vector quantities. Table 2.1 
sets out some principal variables and establishes the notation that will be used in 
this book.

The crucial assumption made by fluid dynamics is that these fields can be differ-
entiated, that is, the fluid can be subdivided indefinitely, and each sub-volume will 
retain well-defined values of the state and dynamical variables. This is the case as the 
size of the volume is reduced over many orders of magnitude. However, when the 
volume becomes so small that it holds only a relatively small number of molecules, 
it begins to break down. For example, temperature, which is a measure of the average 

Figure 2.2  Fluid subject to normal stresses
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kinetic, rotational and vibrational energy of individual molecules, begins to fluctuate 
randomly and eventually becomes meaningless as the volume shrinks to contain 
only a few molecules. However, under the ‘continuum hypothesis’, the assumption 
is that the large-scale behaviour is the same as if, as the volume of a fluid element 
tends to 0, the mean value of any fluid variable would tend towards a constant value.

2.3  Kinematics: characterizing fluid flow

‘Kinematics’ is concerned with the description of the flow field. How a flow comes 
to take its observed form and how it evolves is the topic of ‘dynamics’, the topic of 
most of this book. The two most basic properties of a flow are its direction and its 
speed. A compact way of illustrating its direction is by means of streamlines. A 
streamline is an imaginary line drawn through a flow at any instant which is every-
where tangential to the local velocity vector. Streamlines can be constructed for 
the flow at some instant t

0
 from the differential equations:
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u t
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v t
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w tr r r0 0 0( )
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=
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	 (2.2)

Streamlines cannot cross, for if they did, it would imply that the velocity field was 
multi-valued at the point of intersection. Streamlines must either extend to infinity or 
be closed loops. They cannot stop or start in the fluid interior, except in one special 
circumstance. That circumstance is a point where the velocity vector becomes 0, so the 
flow direction is indeterminate. Such a point is called a ‘stagnation point’. Stagnation 
points can sometimes be identified on the grounds of symmetry and can be of some 
practical value. For example, consider a flow which approaches a bluff obstacle, whose 
surface is, at some point, perpendicular to the distant flow. Either side of this point, the 

Table 2.1  State and dynamical variables for a fluid

Variable Symbol Units

State variables
Density ρ kg m−3

Pressure p Pa (N m−2)
Temperature T K
Potential temperature θ K

Dynamical variables
Position vector r = x i + y j + z k m
Time t s
Velocity u = u i + v j + w k m s−1

Relative vorticity ξ s−1

Potential vorticity (Ertel’s version) P K m2 kg−1 s−1

Other variables will be defined throughout the text as needed.
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streamlines are deflected, and fluid passes to one side or other of the obstacle. But the 
streamline which intersects the point in the body which is perpendicular to the flow 
finds itself approaching a stagnation point. The flow becomes slower and slower, and 
the streamline ends in the stagnation point. At the same time, other streamlines leave 
the stagnation point in various directions. Figure 2.3 illustrates such a flow. The exist-
ence of a stagnation point on the upstream face of the body is exploited in a device 
such as the pitot tube, which can be used to infer flow speed from the pressure there.

Streamlines should not be confused with trajectories, which are the tracks fol-
lowed by individual fluid elements. A trajectory may in principle be calculated by 
solving the following differential equations:
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At some initial time t
0
, a trajectory lies on some specific streamline. Initially, the tra-

jectory will develop parallel to that streamline. But generally, as time advances, 
the trajectory will diverge from the streamline since u(r, t) becomes different from 
u(r, t

0
). Indeed, streamlines and trajectories may quickly become totally different. 

Only if the flow is steady, that is, u depends only upon r and not on t will trajectories 
and streamlines coincide. Many experimental techniques for visualizing laboratory 
flow, such as tracking neutrally buoyant beads or dye streaks, are in fact marking 
trajectories, and so the degree to which these differ from streamlines should be 
appreciated.

In the remainder of this section, we shall, for simplicity, mainly confine our atten-
tion to two-dimensional flows. The results can be generalized to three dimensions. 
The velocity vector in the x–y plane is denoted by v:

	 v i j= +u v 	 (2.4)

Consider an initially rectangular very small patch of fluid which is ‘advected’ by 
the flow, that is, it moves with the flow. Its evolution will be viewed in a frame of 

Stagnation point

Figure 2.3  Streamlines of flow around a bluff body, illustrating the formation of a stagnation 
point
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reference which moves with the mean velocity of the rectangle. Variations of velocity 
across the patch will lead to changes in the orientation, size or shape of the rectan-
gle. Figure 2.4 shows the possibilities.

The first case, Figure 2.4a, in which the area of the rectangle changes but its 
shape and orientation do not, is called pure divergent flow. In this case, the ‘horizon-
tal divergence’ D is non-zero, where

	
D

u

x

v

y
=
∂
∂

+
∂
∂

	 (2.5)

The orientation and shape of the fluid rectangle remain fixed, but its area A changes 
according to

	
D

A

A

t
=

1 d

d
	 (2.6)

If D is positive, the flow is said to be divergent, and the area of the patch increases 
with time. If D is negative, the flow is said to be convergent, and the area of the 

Figure 2.4  Two-dimensional flow kinematics: (a) divergent flow, (b) rotational flow, (c) first 
kind of deformation flow, and (d) second kind of deformation flow

(a) (b)

(c)

(d)
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patch decreases. Pure divergent flow is unusual in the atmosphere. A pure divergent 
flow can be written in terms of a single scalar variable called the ‘velocity potential’ 
χ, defined by

	
u

x
v

y
=
∂
∂

=
∂
∂

χ χ
, 	 (2.7)

The flow is parallel to the gradient of χ, and the velocity potential and the diver-
gence are related by

	 ∇ =2χ D 	 (2.8)

which is an elliptic Poisson equation.
Case two, Figure 2.4b, is called ‘pure rotational flow’. It is defined by ξ, a quan-

tity called the vorticity, being non-zero as follows:
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−
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v

x

u

y
	 (2.9)

In such a case, the square simply rotates, with angular velocity ξ/2, with no change 
of size or shape. Note that a pure divergent flow, defined by Equation 2.7, has zero 
vorticity. As in the case of pure divergent flow, a rotational flow can be written in 
terms of a single scalar ψ called in this case the ‘streamfunction’:
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v

x
= −

∂
∂

=
∂
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ψ ψ
, 	 (2.10)

so that the divergence is 0 and

	 ∇ =2ψ ξ 	 (2.11)

Substituting for the flow velocity components given by Equation 2.10 in the stream-
line equation, Equation 2.2, gives δψ = 0 along a streamline. Therefore, for pure 
rotational flow, lines of constant streamfunction ψ are indeed streamlines of the 
flow. The velocity vectors are parallel to the lines of constant ψ, and the speed of the 
flow is inversely proportional to the streamline spacing. Large-scale flows observed 
in the atmosphere or ocean are often close to pure rotational flow. They are charac-
terized by circulating eddies or sinuous curving flows.

In fact, any arbitrary two-dimensional flow can be represented as the sum of a 
pure rotational flow and a pure divergent flow:

	 v v v k= + = ×∇ +∇R D ψ χ 	 (2.12)

so that the flow can be specified fully by the two scalars ψ and χ in place of the 
two velocity components u and v. The scalar fields ψ and χ can be obtained by 
determining D and ξ from Equations 2.5 and 2.9 and then solving the two Poisson 
Equations 2.8 and 2.11. This partitioning of the flow is called ‘Helmholtz decom-
position’. In the atmosphere, |v

D
| is typically around 10% of |v

R
|.
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One further generic type of flow can be identified. It can be visualized by consid-
ering the flow u = Ax,  v = − Ay, corresponding to a streamfunction ψ = − Axy. It is 
illustrated in Figure 2.5. It has zero divergence and vorticity so that the area and 
orientation of the fluid parcel do not change, but its shape does. Such a flow leads 
to the sort of deformation shown in Figure 2.4c, and it is measured by
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∂

−
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∂

	 (2.13)

For the flow in Figure 2.5, F
1
 = 2A. In this case, fluid elements are stretched parallel 

to the x-axis (the ‘axis of dilation’) and compressed parallel to the y-axis (the ‘axis 
of contraction’). A second deformation flow, shown in Figure  2.4d, is like that 
shown in Figure 2.5, but with the axes of dilation and contraction inclined at an 
angle of 45° to the x- and y-axes. This is measured by
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, 	 (2.14)

If both F
1
 and F

2
 are non-zero, then the axis of deformation makes an arbitrary angle 

with the coordinate axes. In that case, the total deformation is

	
F F F= +1

2
2
2 	 (2.15)

and the axis of dilation makes an angle α with the x-axis, where
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Many geophysical flows exhibit strong and persistent deformation. As a result, 
initially compact blobs of fluid become drawn out into long streamers. An extreme 
development of this process, in which a secondary flow leads to infinite deformation 

Axis of dilation

A
xis of contraction

Figure 2.5  A deformation flow
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in an infinitesimally small region in a finite time, is the process of frontogenesis. 
This is the subject of Chapter 15.

2.4  Governing physical principles

The study of atmospheric dynamics is based on a small number of fundamental 
physical principles which are straightforward to state but more complicated to write 
down in terms of precise mathematics. In the remainder of this chapter, we shall 
discuss these principles and their mathematical formulation.

The first fundamental principle which we will use is conservation of matter. We 
will assume that the fluid contains no sources or sinks of mass. Matter may be 
moved around, but it cannot be created or destroyed. In fact, there are circumstances 
when this is not exactly true. For example, if significant amounts of water vapour 
condense and fall out of the atmosphere as rain, the parcel of atmosphere involved 
loses some mass. The actual fractional mass change is rather small. For example, a 
wet day in the midlatitudes may deposit 10 mm of rain on the Earth’s surface, which 
is 10 kg m−2 day−1. This compares with a column mass of tropospheric air of 
8.2 × 103 kg m−2. The timescale to change the atmospheric mass significantly as a 
result of heavy rain is therefore around 800 days. For most practical purposes, the 
mass loss (and the corresponding mass gain when water evaporates back into the 
atmosphere) can be ignored. In sophisticated models, it is accounted for explicitly.

The next fundamental principle is called the first law of thermodynamics, and it 
expresses a principle of energy conservation. Before discussing the first law of 
thermodynamics, we should note that the various state variables which describe 
the thermodynamic state of the atmosphere can be reduced in number by using the 
equation of state. Dry air behaves very closely to an ideal gas, and so its state vari-
ables are related by the ideal gas equation:

	 p R T= ρ 	 (2.17)

Here R is the gas constant for dry air. It is related to the universal gas constant R* by 
R = R*/m, m being the mean molecular weight of dry air. Other state variables can 
be defined, and alternative equations of state derived. For example, the ‘potential 
temperature’ of air, defined as the temperature the air would have if it were com-
pressed or expanded adiabatically to some specified reference pressure, is often 
useful as a thermodynamic state variable. It will be derived in Section 2.7, but for 
now, we anticipate that its definition is
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where κ = R/c
p
, c

p
 being the specific heat at constant pressure, a quantity to be 

discussed further in Section 2.7. In fact, this definition is an alternative equation of 
state; given pressure p and temperature T, it enables θ to be calculated. In general, 
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for dry air, given any two state variables, all the rest can be calculated using the vari-
ous forms of the ideal gas equation.

Having established the equation of state, the principle which defines the variation 
of the state variables is the first law of thermodynamics. This is essentially a state-
ment of energy conservation. If heat is added to or removed from a parcel of air, the 
result must either be a change of internal energy or work being done by the parcel 
on its surroundings, or both. That is,

	 d d dq U W= + 	 (2.19)

dq denoting an infinitesimal increment of heat added to the air parcel. The internal 
energy U of the air is measured by its temperature. We write

	 d dU c T= v 	 (2.20)

where c
v
 is the specific heat of air at constant volume. The work done by an air par-

cel on its surroundings involves the change of volume of the air parcel and the pres-
sure acting upon it:
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for an ideal gas. The variable 1/ρ, sometimes denoted α, is the specific volume, that 
is, the volume occupied by a unit mass of air. Thus in terms of more practical vari-
ables, the first law of thermodynamics can be written as follows:
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There are several useful alternative formulations of the first law of thermodynamics. 
These will be explored in Section 2.7.

The third principle is simply Newton’s second law of motion, namely, that a par-
cel of fluid accelerates in response to the vector sum of the forces acting upon it. 
Newton’s law may be written as:

	

d

d

u
F

t i
i=∑ 	 (2.23)

Here, the various forces acting are expressed as forces per unit mass. The forces 
per unit volume are simply ρF

i
.

2.5  Lagrangian and Eulerian perspectives

Typically, a meteorological observing site monitors the values of various atmos-
pheric properties by repeating measurements at more or less regular time intervals. 
The observing site is generally fixed relative to the solid Earth. When changes in 
some atmospheric property are observed, there are two possibilities:
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1.	 The intrinsic properties of the air may have changed. For example, by adding 
heat to the air, its temperature may have increased.

2.	 Generally, the air is moving relative to the observing instrument. An observed 
change may simply reflect the replacement of the air originally located at the 
observing site by air with different properties from elsewhere. Such a process is 
called ‘advection’.

In fact, for timescales of not more than a day or two, and for air away from the 
Earth’s surface, advective changes generally tend to dominate over intrinsic 
changes.

This consideration suggests two complementary perspectives on atmospheric 
dynamics. From the point of view of most observers, the natural perspective is to 
view the atmosphere by means of observing sites at fixed points in space. Such a 
perspective is called the ‘Eulerian’ view. However, from the perspective of basic 
physics, it is more appropriate to focus on individual fluid elements and consider 
how various physical processes will modify the properties of the element. Such a 
perspective is called a ‘Lagrangian’ view. All the relevant physical laws, discussed 
in Section 2.4, are expressed in Lagrangian terms. Generally, the rate of change of 
any flow variable measured in an Eulerian frame of reference, that is, at a fixed 
point in space, will be different from that measured in a Lagrangian frame, that is, 
following the evolution of a fixed mass of fluid.

Consider any fluid quantity Q(r,t). We denote the Eulerian rate of change using 
the standard notation of partial differential calculus:

∂
∂
Q

t

which indicates that Q is differentiated with respect to time while holding position 
r fixed. The Lagrangian rate of change of Q is denoted as:

D

D

Q

t

This notation indicates that Q is differentiated with respect to time while allowing r 
to vary so as to follow the same fluid parcel. That is, the differentiation is carried out 
by comparing values of Q at different points along the parcel trajectory, as illustrated 
in Figure 2.6. The Lagrangian rate of change is therefore
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Expand Q(r + δr,t + δt) by a Taylor series to first order:
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Hence, taking the limit as δt tends to 0 gives

D
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D

Q

t

Q

t t
Q=

∂
∂

+ ⋅∇
r

But the rate of change of r along the trajectory with respect to time is simply the 
velocity of the fluid parcel (see Equation 2.3). Hence the final result is
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The second term on the right-hand side of this relationship is called the ‘advection 
term’. It is the source of much of the complication in fluid dynamics, for it is a non-
linear term, involving the product of the flow velocity with the gradient of other fluid 
properties. Except in certain special and idealized circumstances, the advection term 
is highly intractable, permitting no general solutions to the equations of fluid flow.

2.6  Mass conservation equation

This section leads to an Eulerian derivation for an equation expressing mass conser-
vation. Figure 2.7 illustrates a fixed volume V in space, bounded by the surface A. 
The orientation of the bounding surface A is given by the outward-pointing normal 
unit vector n. The total mass of fluid contained within the volume is

m V
V

= ∫ρd

and the rate of change of mass within the volume is therefore
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Note that the volume V is fixed in space, so it is appropriate to refer to the Eulerian 
time derivative of m. Conservation of matter means that any change of mass within 

Trajectory

r, t

r+ δr, t + δt

Figure 2.6  A parcel trajectory
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the volume V can only arise if there is a net exchange of matter between the volume 
and its surroundings. The total mass flux out of the volume is

( ) d
A

F A= ⋅∫ u n� ρ

The principle of mass continuity requires
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and so, using the Gauss theorem on the expression for F,
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Now since V is an arbitrary volume, and this relationship must hold for any possible 
such volume, the integrand in this equation must itself be zero. Consequently, the 
mass conservation equation becomes
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An alternative form is obtained by noting ∇ ⋅ (ρu) = ρ∇ ⋅ u + u ⋅ ∇ρ so that
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Figure 2.7  An imaginary surface, fixed in space
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or more compactly

	

D

D

ρ
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t
+ ∇ ⋅ =u 0 	 (2.28)

Equation 2.27 is an Eulerian form of the mass conservation equation, while 
Equation 2.28 is an equivalent Lagrangian form. It says that following the fluid 
motion, the density can only change when the fluid expands or contracts. In 
Section 4.5, we will show that these equations can be simplified further in many 
atmospheric circumstances. The equation of mass conservation is often called the 
‘continuity equation’.

2.7  First Law of Thermodynamics

There are several alternative ways of rewriting the basic form of the first law of 
thermodynamics, Equation 2.22, using the logarithmically differentiated equation 
of state to eliminate different state variables:
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For example, a useful form involves the change of pressure to which a parcel of air 
is subject:
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where c
p
 = c

v
 + R is the specific heat of the air at constant pressure. If the process is 

adiabatic, that is, if no heat enters or leaves the air parcel, then from Equation 2.30, 
it follows that
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for an ideal gas. This equation can be integrated to give
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Here, p
0
 is some arbitrary reference pressure, and θ is called the ‘potential temperature’. 

The reference pressure is usually taken to be 100 kPa. This is the result, Equation 1.3, 
quoted in Section 1.2, and also given in Equation 2.18.

An even more compact form of the first law of thermodynamics results if the defi-
nition of potential temperature is used to eliminate pressure:

	
d d where pq T s s c= = ( )ln θ 	 (2.33)
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Indeed, s is yet another state variable and is called the specific entropy. Written in 
terms of potential temperature, Equation 2.33 is

	
d dpq c

T
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All these forms are Lagrangian; they are based on considerations of heat entering or 
leaving an isolated parcel of fluid. If the heat δq is added over a time δt, then taking 
the limit as δt tends to 0 gives a Lagrangian differential equation for the rate of change 
of potential temperature:
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The heating, q, represents the net contribution of many different physical processes. 
These include convergence of radiative fluxes, turbulent transfer of heat from a 
bounding surface and latent heating when water substance changes phase. The 
‘source function’ S is a convenient summary of these processes with the units of 
degrees of potential temperature per unit time. Typical values for S in clear air, when 
longwave cooling to space is generally the dominant process, are around 1 K day−1. 
In many situations, the advective term is considerably larger than this, and so for 
these situations, the first law of thermodynamics amounts to a conservation law for 
potential temperature, at least for timescales of 2–3 days or less:
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2.8  Newton’s Second Law of Motion

Two categories of force act upon fluid elements in the atmosphere. First are long-
range ‘body forces’. These act throughout the volume of the fluid on every element 
of mass present. The most important body force, and the only one we shall consider 
in this book, is the gravitational force. The force per unit mass is simply the gravi-
tational acceleration:
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Strictly, g varies with position. It falls off with distance from the centre of the Earth 
and also varies somewhat from place to place on the Earth’s surface because of 
irregularities in the way in which the mass of the Earth is distributed. However, for 
our purposes, these variations are generally rather small. The gravitational force can 
be written in terms of the gradient of a scalar called the ‘gravitational potential’:

	 g = −∇Φ 	 (2.38)
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Φ has units of energy per unit mass. It can be thought of as the work done lifting a 
unit mass to a given level in the atmosphere. The actual potential always contains an 
arbitrary constant, depending upon where the zero level of potential is taken to be 
located. This arbitrariness does not matter, since the gravitational potential only 
operates in the equations through its gradient.

The second category of forces acting are short-range forces, generally acting over 
molecular scales between the molecules making up the fluid. Assuming the con-
tinuum hypothesis, they act upon the imaginary surfaces bounding a fluid element, 
and they constitute the tangential and normal stresses introduced in Section 2.1.

In circumstances where the tangential stresses are either small or confined to very 
limited volumes of the fluid, the normal stresses are isotropic, that is, they act equally 
in all directions. In this case, the pressure is defined to be minus the normal stress. To 
calculate the effect of normal stresses on the operation of Newton’s second law of 
motion, consider a small cuboid of fluid, with sides of length δx, δy and δz. Its mass will 
be ρδxδyδz. To begin, simply consider the pressure force acting on faces perpendicular 
to the x-axis, that is, to the component acting in the x-direction. The net force will be

F i= − +( )( )p y z p p y zδ δ δ δ δ

Divide by the mass of the parcel to obtain the force per unit mass, or acceleration, 
due to pressure:

F
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ρδ δ δ
δ
ρδx y z
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x
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In the limit of δx → 0, the force in the x-direction is

F
p

xx = −
∂
∂

1

ρ

Similar arguments hold for the effect of pressure on the faces perpendicular to the 
y- and z-axes. Finally, in vector form, the effect of normal stresses on the accelera-
tion of fluid parcels can be written as:
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The actual pressure is irrelevant, since it is the gradient of pressure which acceler-
ates the flow. This term is called the pressure gradient force. Note that it also is a 
nonlinear term, for both (1/ρ) and p are flow variables. However, it is not so strong 
a nonlinearity as that of the advection term. For incompressible fluids, when ρ is a 
constant, the term becomes linear.

Putting the body force and the normal stresses together yields a form of the 
Newton’s second law, also called the momentum equation, which is very widely used:
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This equation is called Euler’s equation. It presumes that tangential stresses are 
negligible. In reality, the situation is rather complex. Tangential stresses are indeed 
small over most of the volume of a geophysical fluid such as the atmosphere. 
However, there are tiny localized regions where they become large and can domi-
nate the flow. For this reason, we will add the effect of tangential stresses to 
Equation 2.40, even if we can ignore them in many circumstances.

Consider a cuboid of fluid, as shown in Figure 2.8, and for the moment, simply 
consider the x-component of velocity varying in the z-direction. As in the case of the 
normal stress, what is important is the change of stress across the parcel rather than 
its actual value. By Newton’s law of viscosity, the force acting in the x-direction on 
the top surface of the cuboid is
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while the force acting on the bottom surface is
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The minus sign must be introduced because here we are considering the stress 
exerted by fluid below the cuboid on the surface of the cuboid. By Newton’s third 
law, it must be equal in magnitude but opposite in direction from the stress exerted 
by the fluid in the cuboid on that below. The net force acting on the cuboid is the 
difference between these, and since the mass of the cuboid is ρδxδyδz, the net force 
per unit mass has the following magnitude:
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Figure 2.8  Tangential stresses acting on a fluid parcel. The arrows at the right-hand end of the 
cuboid represent the different velocity shears at its top and bottom surfaces
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or, in the limit as δz → 0,

F
u

z
=

∂
∂

ν
2

2

Here, ν = μ/ρ is called the ‘kinematic coefficient of viscosity’. Similar formulae hold 
for the variation of u in the y- and z-directions, and for the variations of v and w. 
Putting all these results together, the full vector expression for the tangential stress 
gradient force per unit mass is

	 F uT = ∇ν 2 	 (2.41)

Adding this force to the equation of motion, we obtain the ‘Navier–Stokes’ 
equation:
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For a compressible fluid, this is not quite the final result. An additional term repre-
senting the frictional resistance to expansion or compression needs to be included:
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This additional compression term is rarely large in an atmospheric context and is 
not usually of any great importance for our purposes.

To summarize, through this chapter, we have assembled a set of differential 
equations:
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together with the equation of state which, by eliminating T between Equations 2.17 
and 2.18, can be written in the form

	 p p RR
1− −=κ κ ρθ 	 (2.44)

These form a complete set of six scalar equations for the six scalar variables 
u, v, w, p, θ, and ρ. Equations 2.35, 2.28 and 2.43 describe the change of variables 
with time and so are called ‘prognostic’ equations. In principle, we have a mathe-
matically complete description of the system, and we should be able to use these 
equations to start from any initial values of the variables to predict their subse-
quent values.
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2.9  Bernoulli’s Theorem

Bernoulli’s theorem is one simple but powerful result which follows from the equa-
tions derived in the last section. Start from Euler’s equation, Equation 2.40, and 
assume steady, inviscid and incompressible flow. Euler’s equation then reduces to

u u⋅∇ = −∇



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


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Use the vector identity

∇ ⋅( ) = ⋅∇( ) + ⋅∇( ) + × ∇×( ) + × ∇×( )A B B A A B B A A B

with A = B = u to rewrite the nonlinear advection term as follows:
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Use this identity and rearrange the Euler equation into the following form:
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Finally, take scalar product with u of this equation. Notice that the vector u × (∇ × u) 
is perpendicular to u, so its scalar product with u is 0. Therefore,
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The ‘Bernoulli potential’ B is conserved along a streamline. Conservation of B is 
essentially an energy relationship, relating the kinetic energy, potential energy and 
pressure energy along a streamline. The pressure term arises because we are dealing 
with a fluid parcel rather than a simple body. The theorem can be used to relate p, 
u⋅u and Φ along a streamline. For example, consider flow along a pipe of variable 
cross section. If the area of the pipe normal to the flow is A(s), s being the distance 
along the streamline, and if the flow is steady, conservation of matter requires

A u A s u s0 0 = ( ) ( )
Further, assume that the pipe is horizontal so Φ does not change and that the values 
of p and u at entry are p

0
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0
, then
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Thus, where the flow speed is larger, the pressure must be smaller and vice versa. 
Notice that Bernoulli’s theorem can only be used to compare points on the same 
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streamline. It cannot be used to compare the properties of points on different stream-
lines. Neither can it be used to compare the properties of turbulent flow at different 
points, for in that case, the flow is unsteady and streamlines are no longer trajectories.

If A(s) becomes so small that
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then p(s) becomes negative. This is clearly unphysical and indicates a breakdown of 
the assumptions in Bernoulli’s theorem. In fact, this criterion marks the transition to 
‘cavitating flow’, in which voids open up and collapse in the fluid so that it becomes 
highly unsteady. Of course, Bernoulli’s theorem is not applicable beyond the transi-
tion to cavitating flow. A foaming mountain stream is a good natural example of a 
cavitating flow.

For compressible flow, such as characterizes the atmosphere, Equation 2.47 is 
incomplete. The reason for this is that if the density changes so that the volume of the 
parcel changes, the parcel does work against the pressure force exerted by its neigh-
bours. To include this work, note that the first law of thermodynamics states that
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(see Equation 2.22) where q  is the rate at which heat is added to the parcel. This 
equation states that the heating can be manifested either as a change of the internal 
energy of the parcel, or by the parcel doing work against its surroundings. As well 
as mechanical energy, account must be taken of the heat energy added to a parcel. 
So in place of Equation 2.46, we now have
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This is now a total energy equation for the parcel, including the rates of change of 
both mechanical and internal energy. Assume zero heating, so the flow is adiabatic, 
and rearrange to give
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Now from the ideal gas equation, p/ρ = RT and c
v
 + R = c

p
, the specific heat at constant 

pressure, so that Equation 2.51 can finally be rewritten as:

	
u u u⋅∇ = = ⋅ + +B B c T0 2where p/ Φ 	 (2.52)

In words, Bernoulli’s theorem for steady compressible flow is that the sum of kinetic 
energy, potential energy and ‘enthalpy’ for a parcel is conserved following the 
streamlines. Thus, if a parcel moves along a streamline to a place where the flow is 
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accelerated (e.g., above an aerofoil), the temperature must fall to conserve B. 
Associated with this adiabatic cooling, the pressure must drop according to

Tp p− −=κ κθ 0

One may say that an aircraft flies because the air above the wing is colder than that 
below the wing, as a result of adiabatic expansion and compression. If the tempera-
ture change along a streamline is sufficiently small, Equation 2.52 reduces to the 
incompressible form, Equation 2.47. The condition for this to be the case is that the 
Mach number, the ratio of the typical flow speed to the sound speed, be small, a 
condition to which we shall return in Section 4.5. Strong winds in the lee of moun-
tains are an example of Bernoulli’s theorem acting in an atmospheric context. If a 
streamline descends from the top of a 1 km high mountain to near the surface, then 
Equation 2.52 suggests that winds as strong as 140 m s−1 are theoretically possible.

2.10  Heating and water vapour

Air parcels do not evolve exactly adiabatically, and so the heating and cooling terms 
on the right-hand side of the thermodynamic equation, Equation 2.35, can be 
significant. Air parcels both gain and lose heat by a variety of processes. Often, the 
rates of heating or cooling are sufficiently slow that the parcel motion can be treated 
as approximately adiabatic for periods shorter than 1 or 2 days. For example, clear 
air in the troposphere loses heat, eventually to space, by the emission of infrared 
thermal radiation. The typical cooling rate is around 1–2 K day−1, which is an order 
of magnitude smaller than the Eulerian rates of temperature change associated with 
a typical weather system. Similarly, the Earth–atmosphere system is heated by sun-
light, most of which reaches the ground in clear conditions. A variety of processes 
then mix this heat through the depth of the atmosphere. A typical excess of short-
wave heating over longwave cooling is around 102 W m−2. If this heat were mixed 
throughout the depth of the troposphere, it would result in a rate of temperature 
change of around 1 K day−1, comparable to the temperature change from longwave 
cooling. So on the basis of these calculations, one might conclude that for synoptic 
timescales of not more than a few days, the effects of heating and cooling will be no 
more than a small correction to the dynamics of air parcels.

However, this conclusion is of course misleading, and the reason it is misleading 
is because the discussion so far has neglected the role of water in the atmosphere. It 
is indeed remarkable that so much can be said about atmospheric dynamics without 
including the effects of water. After all, in the popular mind, the major application 
of meteorology is to predict rain and cloud events. Yet many of the major features 
of midlatitude weather systems can be elucidated without detailed discussion of the 
effects of moisture. But even if moisture does not change the character of basic 
dynamical processes, changes of phase of water substance have important effects on 
the details of the evolution of weather systems and on the vigour of certain 
processes.
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Water vapour is a highly variable atmospheric constituent. It can make up as 
much as 3% of the mass of an air parcel over the warm tropical ocean, while in the 
cold stratosphere, water vapour concentrations are measured in parts per million. 
The water vapour content of an air parcel can be expressed by quoting the specific 
humidity, denoted by q and defined as the mass of water vapour in an air parcel 
divided by the total mass of the air parcel. A sample of moist air is treated as a mix-
ture of dry air and water vapour, each of which satisfies the ideal gas equation. 
Because the properties of water vapour are different from those of dry air, the equa-
tion of state for moist air differs slightly from that for dry air:
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Here, R
d
 denotes the gas constant for dry air and R

v
 the gas constant for pure water 

vapour. The factor R
v
/R

d
, the ratio of the gas constants for water vapour and dry air, 

has a value of 1.61. Since q is of order 10−2 or smaller, the difference between the 
equation of state for dry air and moist air is not very large. Another measure of the 
water vapour content of the air is the partial pressure exerted by the water vapour 
component of the air, usually called the vapour pressure and denoted e. The specific 
humidity is related to the vapour pressure by
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The approximate expression is valid in the limit where e is very small compared 
to p. Crucially, the maximum vapour pressure of an air parcel, and therefore its 
specific humidity, is limited. Beyond a maximum vapour pressure, called the satu-
rated vapour pressure, water vapour will condense to form liquid droplets. For the 
purposes of our discussion, such condensation takes place virtually instantaneously 
when the air becomes saturated. The saturation vapour pressure e

s
 is given by the 

Clausius–Clapeyron equation:
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Here, α ρv v= −1 and α ρl l= −1 are the ‘specific volumes’ of water vapour and liquid 
water respectively, and L is the ‘latent heat of condensation’, the energy released when 
the water vapour condenses. Equation 2.55 can be integrated to give the dependence of 
saturated vapour pressure on temperature, an integration made simpler if L is assumed 
constant and if the specific volume of water vapour is assumed very large compared to 
the specific volume of liquid water. Then, for some temperature T = T

0
 + ΔT,
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That is, the saturated vapour pressure, and hence the saturated specific humidity, 
increases roughly exponentially with temperature, doubling every 10 K or so. For T

0
 

of 273 K, the saturated vapour pressure is 611 Pa, corresponding to a specific humid-
ity of 3.8 × 10− 3 at a pressure of 100 kPa.

The significance of water vapour in atmospheric dynamics is due to the very large 
value of the latent heat of condensation of water, L. This has a value of around 
2.5 × 106  J kg− 1, which is huge, an order of magnitude greater than that of other 
common substances. So when air becomes saturated, typically the result of rising 
through the atmosphere and expanding adiabatically, large amounts of latent heat 
are released. The result is that the rising parcel of air is much warmer than it would 
be if it were unsaturated. If the specific humidity were to change by an amount Δq, 
then the latent heat of condensation released would be

∆ ∆Q L q= −

The minus sign indicates that heat is released when the specific humidity is reduced, 
and vice versa. To appreciate how important latent heat release can be, a few simple 
calculations are helpful. Suppose a weather system generates a rainfall of 
10 mm day−1, a relatively modest amount, which corresponds to 10 kg m−2 of water 
falling in 24 hour. If the rain falls from a column of air reaching from the surface to, 
say, 40 kPa, the average change of specific humidity of air is around 1.7 × 10− 3. The 
latent heat released by condensation of this rainfall is 2.5 × 107 J m− 2 day− 1, that is, 
about 290 W m−2. This is roughly the same as the global mean insolation and three 
times larger than the typical net heating or cooling. The corresponding source term 
in the thermodynamic equation is
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The saturated humidity mixing ratio q
s
 is a function both of temperature and pressure 

and varies most rapidly in the vertical. When vertical motion advects saturated air 
parcels, then the source term for the thermodynamic equation becomes
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Consider the application of Equation 2.57 to a significant region of the atmosphere, 
rather than to an individual air parcel. In a numerical weather prediction model, 
such a region might be a grid box. Denote the area average by an overbar, and 
departures from the area average by a prime. Then, averaging Equation 2.57 over 
this area gives
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Two extreme cases arise. First, if fluctuations across the region are negligible, 
then the latent heating and rainfall depend simply on the area averages of humidity, 
temperature and so on. Mean upward motion leads to condensation throughout the 
region, which is often referred to as ‘large-scale rain’. Fronts and depressions are 
examples where the precipitation may be dominated by such a large-scale process. 
In the other extreme, the mean vertical motion is negligible, but large local fluc
tuations of vertical velocity and humidity mean that the area mean heating can be 
large. An example of this situation arises if the region is filled with deep cumulus 
clouds, with strong updrafts in the clouds and descent in the surrounding clear air. 
Precipitation in this case is referred to as ‘convective rain’. In a numerical model, 
with a resolution too coarse to represent individual cumulus clouds, such convective 
precipitation has to be inferred from the large-scale resolved fields of temperature, 
humidity and wind. A number of such ‘convective parametrization’ schemes are in 
use, all with empirical elements, and it is difficult to argue from first principles 
which should be preferred. Parametrization of convective processes is a significant 
uncertainty in weather forecasting and climate modelling. This is particularly the 
case in the tropics where latent heat release from cumulus convection is often 
the dominant form of heating. Convective heating can also be very significant in the 
midlatitudes.

There are two particular complications introduced when water vapour condenses 
in the weather system. Before latent heat release takes place, an initially moist but 
unsaturated air parcel has to be lifted a certain height. Moist processes therefore do 
not fit easily into the linear instability framework used extensively in later chapters 
to discuss the development of weather systems. They begin to operate only when a 
disturbance reaches a finite amplitude.

Secondly, descent is not necessarily the reverse of ascent when phase changes of 
water vapour are involved. Consider a large-scale atmospheric wave. As clear air 
descends and warms, its relative humidity is reduced. The descending air remains 
clear, and no latent heat is released. Its dynamics remain much as discussed in 
chapter 14. In contrast, air in the ascending part of the waves quickly becomes 
cloudy and substantial heating takes place. In this way, a major asymmetry between 
ascent and descent develops. From a more Lagrangian perspective, focus on an 
individual air parcel. As it ascends, water condenses and heats it, and it becomes 
cloudy. When it descends, the liquid water droplets re-evaporate, cooling the air. If 
all the condensed liquid water remained suspended in the air parcel, the process 
would be reversible: the descending parcel would progress through the same ther-
modynamic states as the ascending parcel. But if a substantial fraction of the water 
vapour were rained out during the ascent, the descending air parcel would follow a 
very different set of states. In effect, it would be warmer, corresponding to the latent 
heat released by the condensation of the water which rained out of the parcel. The 
fraction of condensed water which is retained by an air mass as ‘cloud liquid water’ 
can vary considerably. In many situations, it is qualitatively adequate to assume that 
all liquid water rains out of the air immediately. More accurately, suspended liquid 
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water must be treated as a separate variable. The processes whereby liquid water 
rains out bring us into the area of cloud microphysics, a major subject in its own 
right, and beyond the scope of this book.

Both these factors mean that the simple linear instability approach that will be 
developed in later chapters does not apply to systems where some of the air becomes 
saturated.
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Rotating frames of reference
3

3.1  Vectors in a rotating frame of reference

Chapter 2 outlined the classical development of fluid mechanics, using the princi-
ples of mass conservation, the first law of thermodynamics and Newton’s second 
law of motion. The first two principles are expressed as prognostic equations for 
scalar variables, namely, the density and potential temperature, respectively, and 
their form is independent of the frame of reference used to describe the fields. 
Newton’s law, however, is a vector equation, expressing the rate of change of 
velocity as a function of the various forces acting upon fluid elements. It holds 
only in non-accelerating or ‘inertial’ frames of reference. This is a real problem 
for geophysical fluid dynamics, as to a first approximation the atmosphere and 
ocean move around with the Earth: the movement of a point on the surface of the 
Earth due to its rotation is more than 300 m s−1 at latitude 45°. Compared with this, 
the relative movements of the atmosphere, the winds, and of the ocean, the cur-
rents, are small, perhaps 15 m s−1 and 5 cm s−1, respectively. Therefore, the natural 
coordinate system for geophysical problems is one which is fixed in the rotating 
Earth and which is consequently rotating, that is, accelerating. In this chapter, the 
basic equations of motion will be modified so they hold in a uniformly rotating 
frame of reference.

First some notation is introduced. A subscript A denotes a quantity in an inertial 
or ‘absolute’ frame of reference, while the subscript R denotes a quantity in a uni-
formly rotating frame of reference. The axes in an inertial frame of reference are 
defined by orthogonal unit vectors i

A
, j

A
, k

A
. These vectors are constant; neither their 

magnitudes nor their directions change in time. A rotating frame of reference is 
defined by orthogonal unit vectors i

R
, j

R
, k

R
. The unit vectors in a rotating frame are 

not constant. Although their magnitudes do not change, their directions continually 
change as the coordinate system rotates. Note that scalars are invariant with respect 
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to direction, and so their rates of change are the same in either a rotating or inertial 
frame of reference, or
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t
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S being any arbitrary scalar.
Figure 3.1 shows a rotating unit vector i

R
 which makes an angle θ with the 

rotation axis. The tip of the unit vector moves around the rotation axis on a 
circle of radius s = sin(θ). In a short interval of time δt, the unit vector will be 
modified to

	 i i iR R Rt t t( ) ( )+ = +δ δ 	 (3.2)

where δi
R
 has magnitude sΩδt and is at right angles to both i

R
 and Ω. In other words,
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Figure 3.1  A rotating unit vector
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This important result is the basis of what follows. Note that the dot product of the 
right-hand side of Equation 3.4 with i

R
 is 0, which is consistent with the length of i

R
 

being constant (equal to 1). Identical results hold, of course, for j
R
 and k

R
.

From the absolute rate of change of a unit vector in a rotating system, it is straight-
forward to relate the rates of change of an arbitrary vector in inertial and rotating 
frames. Let

	 V i j k= + +V V VR R R1 2 3 	 (3.5)

Now consider the absolute rate of change of V:
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Notice for the moment that it not specified whether Lagrangian or Eulerian rates of 
change are being considered. Since V

1
, etc., are simply scalars, their rates of change 

are the same in either a rotating or an inertial frame and so
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or gathering up terms
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If V is a constant in a rotating frame, then in an inertial frame, it must be in a direc-
tion that has rotated from the original direction, so that in this frame, V is actually 
changing. This is what is represented by the second term on the right-hand side of 
Equation 3.8. In what follows, this general result will be applied to different specific 
examples of the vector V.

3.2  Velocity and Acceleration

The Lagrangian rate of change of position of a fluid parcel is simply its velocity u. 
The velocity will depend upon whether the motion is referred to an inertial or 
rotating frame of reference. Letting the arbitrary vector V in Equation 3.8 be r, the 
position vector, this result follows:
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The adjustment to u
R
 to obtain u

A
 is generally large. The second term due to the 

rotation is of magnitude Ωs where s is the distance of the point in question from the 
axis of rotation and is directed around this axis. Using the numbers given before, for 
the atmosphere, the magnitude of u

R
 may be of order 15 m s−1 and that of Ω × r about 

300 m s−1.
Equation 3.9 now leads to an expression for the acceleration of a fluid parcel in a 

rotating frame of reference. The acceleration in an absolute frame is
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Now write the entire right-hand side in terms of the rotating coordinates:
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Thus, in order to transform the acceleration from a rotating frame of reference to an 
inertial frame of reference, two corrective accelerations must be added. The first is 
called the Coriolis acceleration and the second the centripetal acceleration. The cen-
tripetal term is quite familiar: it is of magnitude Ω2s and is directed inwards. The 
Coriolis term is less familiar. It can be seen that it comes equally from viewing the 
change of u

R
 in a rotating frame and from the relative rate of change of the velocity 

associated with the coordinate rotation, Ω × r. It is always orthogonal to both Ω and u
R
 

and to the left of this velocity if the rotation axis is considered to be pointing upwards.

3.3  The momentum equation in a rotating frame

The Navier–Stokes equation derived in Chapter 2 is straightforwardly modified to 
a rotating frame of reference. The expression just derived, Equation 3.11, replaces 
the acceleration in an inertial frame on the left-hand side of the Navier–Stokes 
equation. The terms on the right-hand side of the equation, involving the pressure 
gradient force, the gravitational force and the viscous stress, are all unchanged in 
a rotating frame of reference. It is conventional to move the corrective accelera-
tions over to the right-hand side of the equation set and to refer to them as ‘forces’ 
or more correctly, ‘pseudo-forces’. In this perspective, the centrifugal force acts 
‘outwards’ and the Coriolis force acts to the ‘right’ of the relative velocity. Each 
has the dimension of a force per unit mass. The result is an equation which is very 
similar to the Navier–Stokes equation (and which reduces to it in the limit Ω → 0) 
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but which includes additional ‘pseudo-forces’ that account for the rotation of the 
frame of reference:
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It is important to recognize that the Coriolis and centrifugal forces are not real 
physical forces, but simply corrections added to maintain the illusion that Newton’s 
second law of motion holds in a rotating frame of reference. Even so, if the rotation 
is rapid, these new terms can become dominant.

This notation is rather cumbersome, and so in subsequent chapters, the A or R 
subscripts will generally be dropped. The context usually makes it clear whether a 
rotating or inertial frame of reference is implied.

When is it important to include the Coriolis and centrifugal forces? The answer 
to this question requires some simple scale analysis, the subject of Chapter 5. The 
arguments of that chapter will be anticipated here. Suppose the fluid motion has a 
characteristic velocity U which fluctuates over a characteristic length scale L. Then, 
the relative acceleration will have a typical magnitude U2/L, the Coriolis force will 
have a typical magnitude ΩU and the centrifugal force a characteristic magnitude 
Ω2a, a being the radius of the Earth. The ratio of the Coriolis force to the total 
observed acceleration is of order Ro− 1 where the dimensionless combination of 
parameters Ro = U/ΩL is called the ‘Rossby number’. The ratio of the total accelera-
tion to the centrifugal force can be written as Ro− 2(a/L). The ratio of typical weather 
system scales L to the radius of the Earth is always less than 1 and generally consid-
erably less than 1. So if the Rossby number is of order 1 or smaller, then the effects 
of rotation on the momentum equation are substantial and important; the rotating 
form of the equation should be used in such circumstances.

3.4  The centrifugal pseudo-force

The centrifugal force depends only upon position and not on the state of motion of 
the fluid parcel. Consider a point on the Earth’s surface, position vector r, and at 
latitude ϕ. The vector Ω × r has magnitude Ωs where s = rcos(ϕ) is the perpendicular 
distance from the rotation axis (Figure 3.2). The vector Ω × r is directed perpendicu-
larly into the plane of the diagram. It follows that the centrifugal force itself is 
perpendicular both to Ω and to Ω × r and so must be directed radially outwards from 
the rotation axis. Its magnitude is Ω2s. This is by no means a small force. At latitude 
45°, for example, the horizontal component of the centrifugal force has magnitude 
0.017 N kg−1. Compare this with the typical horizontal pressure gradient force, 
which is of the order of 0.0016 N kg−1, that is, an order of magnitude smaller.
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Although the centrifugal force may often be larger than other terms in the momen-
tum equations, it is generally possible to avoid quoting it explicitly. The reason for 
this is that the centrifugal force is a so-called conservative force, meaning that its 
whole value depends solely upon position and that its curl is 0. Consequently, it can 
be expressed as the gradient of a scalar function of the following position:

	
− × ×( ) = ∇







ΩΩ ΩΩ r

Ω2 2

2

s
	 (3.13)

where s = rcos(ϕ). But the gravitational force can also be expressed as the gradient 
of a scalar potential, Φ. The two scalars can be combined to form an ‘effective’ 
gravitational potential

	
Φ Φe = −

Ω2 2

2

s
, 	 (3.14)

and so the momentum equation can be written in a way in which the centrifugal 
force is not explicit:
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Although the centrifugal acceleration is often much larger than the horizontal accelera-
tions, it is small compared with the gravitational acceleration for the Earth. Thus, the 
differences between ∇Φ and ∇Φ

e
 are small and can be ignored for many purposes.

s

r

Ω

Ω⨯(Ω⨯ r)

ϕ

Figure 3.2  Illustrating the centrifugal pseudo-force
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The use of an effective gravitational potential means that the level surfaces, that 
is, the surfaces of constant potential, are not spheres but are slightly oblate, with 
the polar radius less than the equatorial radius. The surface of the Earth, whose 
mantle behaves as a fluid on geological timescales, is indeed approximately 
oblately spheroidal in shape, with a polar radius of 6357 km and an equatorial 
radius of 6378 km. The difference of 21 km is only about 1/300 of the radius. 
However, it is much bigger than any mountain on Earth! The magnitude of the 
effective gravitational acceleration, that is, |∇Φ

e
|, also varies from 9.83 m s−2 at the 

pole to 9.79 m s−2 at the equator. It is usually a very good approximation to ignore 
the slight oblateness of the Earth and consider it to be a sphere of radius 6371 km 
(having the same volume as the real oblate Earth) and the gravitational acceleration 
to be a uniform 9.81 m s−2.

3.5  The Coriolis pseudo-force

The Coriolis force depends upon the velocity, but not on the location of a fluid par-
cel. Its magnitude is 2ΩU, and its direction is perpendicular to both Ω and u. It is 
worth writing out the components of the Coriolis force relative to the local vertical 
direction on the Earth’s surface. Assuming the Earth is a sphere, then at a latitude ϕ, 
the components of the Earth’s angular velocity are

ΩΩ = +Ω Ωcos( ) sin( )φ φj k

Then, the Coriolis force is

− × = − − +2 2 2 2 2ΩΩ u i j k( sin( ) cos( ) ) sin( ) cos( )Ω Ω Ω Ωφ φ φ φv w u u

Although u is usually nearly parallel to the ground, so that w is small, the Coriolis 
force generally has a substantial vertical component, save for the special case when 
u is directed towards or away from the pole. Figure 3.3 illustrates the Coriolis force 
for the case relevant to the atmosphere, when the velocity vector is nearly horizon-
tal, with only relatively small vertical components. Such a horizontal wind is desig-
nated v. The Coriolis force lies in a plane perpendicular to Ω and at right angles to v. 
The horizontal components of the Coriolis force have a combined magnitude of 
2ΩUsin(ϕ), independent of wind direction. It has a maximum vertical component 
when v is directed to the east and a minimum (negative) vertical component when v 
is directed to the west. Because the Coriolis force acts at right angles to the velocity 
vector, it can do no work on a fluid parcel. That is, the speed of a fluid parcel subject 
only to the Coriolis force remains constant although the direction of motion will 
change uniformly in time. If no other forces act on a fluid parcel, it will move in a 
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circular orbit, the plane of which is perpendicular to the rotation axis. The radius of 
the orbit is given by
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and the period of the orbit is
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π π
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2 R

U
	 (3.17)

In practice, because of the large gravitational acceleration on Earth, the only pos-
sible realization of such motion is in the local horizontal, and then it is the local 
vertical component of rotation, Ωsin(ϕ), that is relevant and replaces Ω in these 
expressions. Such motion is called ‘inertial oscillation’, and the orbit is called an 
‘inertial circle’. The length of the sidereal day is 2π/Ω, so the period of inertial 
oscillations is 12/sin(ϕ) hours.

At a latitude of 45°, the period is about 17 hour, and for a wind of 10 m s−1, the 
radius of the inertial circle would be 97 km. For an ocean current a 100 times slower, 
the radius would be about 1 km. Nearer the equator, the period and the radius become 
much larger. Inertial oscillations are not easily seen in the atmosphere, where the 
pressure gradient term is usually so large as to mask any inertial oscillations, but 
they can be observed in the ocean. At 30° latitude, the inertial period is 1 day, and it 
has sometimes been considered that there could be special behaviour because of 
this. However, no convincing evidence has been found. The Somali Jet is a very 
strong wind in the Northern Hemisphere summer taking a large amount of moisture 
from the Southern Indian Ocean into the Northern Indian Ocean and feeding it into 
the Indian Summer Monsoon. The tendency to move in inertial circles can some-
times mean that the air in the Somali Jet starts to move back towards the equator 
rather than moving into India. However, friction and heating usually act to stop this.

v

Ω
Fc

Figure 3.3  The relationship between the vectors Ω, v, and the Coriolis force, F
c
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3.6  The Taylor–Proudman theorem

The impact of rapid rotation can be very dramatic. ‘Rapid’ rotation means a flow for 
which the Rossby number Ro = U/fL, introduced in Section 2.4, is small compared 
to 1. When the rotation is slow, so the Rossby number is large compared to 1, the 
effects of rotation are no more than a small correction and can often be ignored 
completely. So, in the context of flow in the Earth’s midlatitude atmosphere, is the 
rotation of the Earth rapid or slow?

By way of example, in the Earth’s midlatitude troposphere, a typical flow speed 
U is 10 m s−1 and a typical large length scale over which U varies is 106 m. The rota-
tion rate of the Earth is (to the nearest power of 10) around 10−4 s−1. The correspond-
ing Rossby number is around 0.1. So rotation dominates. For ocean flows, which 
are generally much slower, the Rossby number may be as small as 10−3.

One might say that appreciable, or indeed, rapid rotation is the defining charac-
teristic of geophysical fluid dynamics. Stratification also plays an important role, 
but rotation is crucial. In this section, some dramatic results in simple situations will 
be described. Later sections will show how these extreme examples relate to the 
flows observed in more realistic circumstances.

Consider a tank of fluid which has been standing on a rotating turntable for 
sufficient time to come to rest relative to the rotating frame of reference fixed in the 
turntable (Figure 3.4). It is then gently stirred to generate some weak motion relative 
to the turntable. We shall make three assumptions about the flow:

1.	 The relative motions are weak, in the sense that the Rossby number U/ΩL is 
small compared to 1.

2.	 The fluid is incompressible, with constant density, so that (1/ρ)∇p → ∇(p/ρ).

Ω

Figure 3.4  A tank of homogeneous fluid on a rotating turntable
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3.	 The flow is inviscid in the sense that viscous stresses are much smaller than other 
forces acting.

The equations of motion for the tank of fluid are
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Incorporating the three assumptions given earlier provides
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Take the curl of this equation; the gravitational and pressure gradient terms, being 
pure gradients, have zero curl, and so

	 ∇× × =( )ΩΩ u 0 	 (3.20)

From the standard vector identity,

	 ∇× × = ⋅∇ − ∇ ⋅ − ⋅∇ + ∇ ⋅( ) ( ) ( ) ( ) ( )A B B A B A A B A B 	 (3.21)

and noting that for incompressible fluid, the continuity equation is ∇ ⋅ u = 0, the curl 
of the equation of motion reduces to

	 ( )ΩΩ ⋅∇ =u 0 	 (3.22)

That is, the velocity vector u cannot vary in a direction parallel to the rotation axis. 
Let the rotation axis be parallel to the vertical (z-) axis, parallel to unit vector k. 
Then, splitting Equation 3.22 into its vertical and horizontal components gives
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Now the boundary condition at the bottom of the tank is w = 0. Equation 3.23(a) 
implies that if w is zero for any particular value of z, it must be zero at all other 
values of z. Thus, rapid rotation suppresses vertical motion.

The constraints on the horizontal components of the flow implied by Equation 
3.23(b) are not quite as strong. No particular value is implied for v. However, what-
ever value v has at any point in the fluid, it must have the same value at all other 
points on a line parallel to the rotation axis which passes through that point. That 
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means that the fluid must move as coherent columns orientated parallel to the 
rotation axis, with the same velocity at every level in the fluid.

The effect of rapid rotation on fluid flow expressed by the Taylor–Proudman 
theorem is both dramatic and counter-intuitive. It is as if the rotation imparts a 
degree of rigidity to the flow. Many beautiful experiments can be devised to illus-
trate the Taylor–Proudman theorem. One of the simplest is ‘Taylor’s inkwall experi-
ment’. A tank of water on a turntable is allowed to spin up and is then lightly stirred. 
The flow is visualized by dropping a droplet of dense dye into the tank. As the dye 
falls, it leaves a vertical trail behind. After a short time, this trail is spread and dis-
torted by the weak motions in the fluid. But the velocity field is the same at every 
level, according to the Taylor–Proudman theorem. So each column is pulled out into 
a curving thin sheet, with the same distortion at every level, a sheet which Taylor 
called an ‘inkwall’. Seen from above, the round spot of dye left by the droplet is 
pulled and sheared into long curving streamers, but with a high degree of vertical 
coherence (Figure 3.5).

Another experiment which illustrates the Taylor–Proudman theorem consists of 
towing a shallow obstacle slowly across the base of a rotating tank. The tank is filled 
with water which has been allowed to spin up to rest in the rotating frame of refer-
ence of the tank. At a level below the summit of the shallow obstacle, the flow must 
part and move around the obstacle. But because the Taylor–Proudman theorem 
operates, the flow at every other level, even those well above the obstacle, must also 
pass around the obstacle edge. As a result, a column of fluid extends through the 
depth of the tank, from the obstacle to the surface, apparently attached to the obsta-
cle. The rest of the flow passes around that column. It is as if the obstacle had been 
extended to fill the entire depth of the tank. Such a column is called a ‘Taylor 
column’. There is some evidence for such structures in the ocean, where gentle 
currents pass over isolated seamounts on the oceans’ abyssal plains. Taylor columns 
have been suggested as the origin of long-lived features in the outer fluid layers of 
the giant planets: Jupiter’s ‘Great Red Spot’, in particular, has been interpreted in 
these terms.

Figure 3.5  Taylor’s inkwall experiment. (a) top view and (b) side view

(a) (b)
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The Taylor–Proudman theorem does not apply directly to the atmosphere, princi-
pally because the density is not constant. Also, the Rossby number, though small, is 
not infinitesimal. However, we can generalize the theorem to the atmospheric situ-
ation, and we can devise a continuum of behaviour linking the Taylor regime to 
more realistic situations. Chapter 12 and later chapters will address these issues.
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The spherical Earth
4

4.1  Spherical polar coordinates

The Earth is very nearly a sphere, and so spherical polar coordinates are an appro-
priate frame of reference for atmospheric motions. In saying this, there are two 
matters which will need further discussion. First, the Earth is not exactly a sphere, 
but is slightly oblate. Section 3.4 discussed the slight distortion of geopotential sur-
faces by the centrifugal force and the associated small variations of the magnitude 
of the apparent gravitational acceleration. Secondly, the discussion benefits from 
recognizing that the vertical extent of the atmosphere is very much less than the 
horizontal extent. This leads to a shallow atmosphere approximation which will be 
discussed in Section 4.3.

The spherical polar coordinate system is illustrated in Figure 4.1. The coordinates 
are longitude λ, latitude ϕ and distance from the centre of the Earth, r. Each increases 
in the direction of the unit vectors ˆ ˆ ˆ,i j kand  respectively. Some of the implications 
of using a coordinate system like this can be envisaged by thinking about what hap-
pens to the unit vectors as you move around a non-rotating Earth. First consider 
moving due north from the equator. The eastward direction stays the same, but the 
northward and upward vectors rotate so that by the time you nearly reach the pole, 
the upward direction is almost the same as the northward direction at the equator, 
and the northward direction is almost in the opposite direction to the local vertical 
at the equator. The rotation rate for these unit vectors is v/r where v is the northward 
speed. Secondly, consider moving around a latitude circle at latitude ϕ. As you 
move, the local direction away from the Earth’s axis of rotation and the eastward 
direction rotate such that by the time you have moved a quarter way around the 
Earth, the local outward direction is parallel to the eastward direction at the starting 
point and the eastward direction is in the opposite direction to the vertical at the 
starting point. The radius of the latitudinal circle at latitude ϕ is s = r cos(ϕ), and 
the rotation rate of the unit vectors is u/s where u is the eastward speed. In this case, 
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the local northward direction also rotates. Therefore, using a spherical polar 
coordinate system will imply the introduction of additional coordinate rotation 
terms in the equations of motion.

The process of determining the equations of motion in spherical coordinates 
starts with a consideration of the variations of vector quantities. Consider a small 
displacement of position δr where (following the notation of Chapter 2) r is the 
position vector. The displacement is related to changes of λ, ϕ and r by

	
δ δλ δ δλr i j k= + +h h h rr

ˆ ˆ ˆ
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are called the ‘metrics’ of the coordinate system.
An immediate application of this formalism is the velocity vector. The velocity in 

a spherical system is
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Denoting the zonal, azimuthal (or meridional) and radial components of velocity by 
u, v and w respectively, then we have
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Figure 4.1  Spherical polar coordinates, showing the unit vectors ˆ ˆ ˆ,i j kand  as well as a, 
b, c and l
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A second application is to calculate the gradient of any scalar, S(r):
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4.2  Scalar equations

The thermodynamic equation was derived in Chapter 2. It simply states that the 
scalar potential temperature is advected by the flow and modified by a source or 
sink term which is in general a function of time and space:
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The Lagrangian rate of change of a scalar in spherical coordinates follows from 
Equation 4.5, and so the thermodynamic equation can be written as
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The continuity equation can be written in several forms. Take the form
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The first two terms, the Lagrangian rate of change, take the same form as for the 
thermodynamic equation. The ∇ ⋅ u term is more complicated. In general curvilinear 
coordinates, the divergence can easily be constructed from the definitions of the 
metrics given in the last section. Given that ∇ ⋅ u is the net emergent flux of u per 
unit volume from an infinitesimal parallelepiped, it follows that
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Using this result, the continuity equation in spherical coordinates becomes
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4.3  The momentum equations

We must now recognize explicitly the variation of the directions of the unit vectors 
ˆ ˆ ˆ,i j kand  as a fluid element moves around. Figure 4.1 shows the geometry envis-
aged. The vectors ˆ ˆ ˆ,i j kand  point in the eastward, northward and upward directions 
respectively. At the same time, it is helpful for the moment to refer to a set of unit 
vectors fixed in the solid Earth; they are denoted a, b and c. Unit vector c is parallel 
to the rotation axis, while a and b are in the plane of the equator, emerging from the 
Earth’s surface at the Greenwich meridian and at 90°E respectively. Finally, unit 
vector l is perpendicular to the rotation axis and to the unit vector î. In terms of the 
constant unit vectors a, b and c, ˆ ˆ ˆ,i j kand  are
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Also,

	 l a b j k= + = +cos( ) sin( ) sin( ) cosλ λ φ φ− ˆ ˆ 	 (4.10)

We are now in a position to work out the Lagrangian rates of change of the unit vec-
tors ˆ ˆ ˆ,i j kand . For example,
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since the vectors a, b and c are fixed. But u = r cos(ϕ)Dλ/Dt and so
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A similar argument leads to
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and so we obtain
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and
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Referring back to the discussion of rotation as one moves about the sphere at 
the beginning of the chapter, the v/r terms in Equations 4.12 and 4.13 represent the 
movement poleward and the u/r terms in (4.11), (4.12) and (4.13) represent the 
movement around a latitude circle.

The acceleration in spherical coordinates is
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Substituting for the Lagrangian rates of change of the unit vectors, and gathering up 
the terms in each direction separately, yields a final expression for the acceleration 
in spherical coordinates:
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The remaining terms in the momentum equations are more straightforward. The 
pressure gradient term follows from Equation 4.5:
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The Coriolis term is
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The gravitational and friction terms complete the set:

	 g k u i j k= ∇ = − = + +Φe eg u v wˆ ˆ ˆ ˆ;     	 (4.17)

Combining all these results leads to the three components of the momentum equation 
in polar spherical coordinates:
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where the Lagrangian (material) time derivative is
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The new terms involving products of wind components owe their origin to the rota-
tion of the coordinate system used as air moves around the sphere. They are some-
times referred to as ‘metric terms’. Terms involving Ω originate with the rotation 
of axes embedded in the sphere and the consequent Coriolis term, and reflect the 
variations in the angle between the rotation axis and the coordinate system from 
place to place.

These equations represent something of a climax of complexity. In later sec-
tions,  we shall explore various ways of simplifying the equations in particular 
circumstances.

4.4  Energy and angular momentum

A cursory inspection of the metric and Coriolis terms suggests that the various 
additional terms may have very different magnitudes, raising the possibility that 
the equation set might be simplified without significant loss of accuracy. 
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However, care needs to be taken in carrying out such a simplification. By omit-
ting even small terms, the fundamental character of the equation set might be 
changed in an undesirable way. Among the most important properties of the 
equation set to be preserved when they are simplified are their conservation 
properties.

The kinetic energy per unit mass of the motion relative to the rotating coordinate 
system is

	
K u v w= + +( )1

2
2 2 2 	 (4.22)

From Equations 4.18 to 4.20, K evolves according to
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All the contributions to changes of kinetic energy due to the metric terms have 
cancelled out. Similarly, contributions from the Coriolis force, which operates at 
right angles to the motion, lead to no change of the kinetic energy. According to 
Equation 4.23, changes of kinetic energy can only arise from motion across the 
pressure contours so that the pressure gradient force does work, from vertical 
motion so the gravitational force does work or from motion with a component 
parallel to the friction force so the friction force does work. When simplifying the 
equations, it will be necessary to ensure that these properties are preserved. 
Consequently, arbitrary deletion of apparently small terms may not be consistent 
with energy conservation.

Now consider the potential energy of a fluid parcel. The rate of change of potential 
energy per unit mass is
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so that the equation for the sum of kinetic and potential energy becomes
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The first term on the right-hand side can be rewritten as
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From the continuity equation, the last term in this equation can be expressed as:
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Following Equation 2.22, the first law of thermodynamics can be written in the 
following form:
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This equation relates the rate of change of internal energy, on the left-hand side, 
to the work done by the pressure exerted by the surrounding fluid and the effects of 
direct input of heat. The last term in Equation 4.26 is minus the pressure work term 
in the thermodynamic equation and therefore represents the conversion from inter-
nal to mechanical energy. Add the thermodynamic equation and the kinetic energy 
equation and thus obtain a total energy equation:
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Therefore, the sum of the kinetic, potential and internal energies can change 
following the fluid only through the terms on the right-hand side. The first term 
on the right-hand side, when multiplied by ρ and integrated over a volume using 
the Gauss divergence theorem, gives ∮ 

A
pu ⋅ n dA. It is simply the rate of working 

of the pressure force on the volume. The second and third terms in the energy 
equation represent generation of energy by frictional and heating processes. 
All contributions from the various metric terms and Coriolis terms have can-
celled out. Again, any approximation to the governing equations must preserve 
this property if the approximated equations are to retain realistic conservation 
properties.

Angular momentum is another important quantity that has conservation properties. 
The absolute angular momentum per unit mass is the eastward component of the 
absolute velocity multiplied by the perpendicular distance to the rotation axis:

	 m u r r= +( cos( )) cos( )Ω φ φ 	 (4.29)

As in the case of the energy equation, an equation for the rate of change of m can be 
derived from the momentum equations; the various metric and Coriolis terms cancel 
out, leaving
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This equation reveals that m can only change moving with the fluid if there is an 
eastward pressure gradient or an east-west frictional force. Again, any approximated 
form of the equations should retain this property.

4.5  The shallow atmosphere approximation

We have already stated, and in the next chapter will deduce, that the vertical scale 
of the troposphere is of order 10 km. The horizontal scale of atmospheric motions 
is much larger and may be as large as a scale comparable with the radius of the 
Earth a. The thin atmosphere approximation recognizes this asymmetry between 
the vertical and horizontal scales and is based upon the inequality |D| ≪ a.

For example, the zonal component of the momentum equation, Equation 4.18, 
contains a term uw/r. The ratio of this term to the vertical advection term, w∂u/∂z, 
will be of the order of D/a and so wu/r should be negligible. But dropping this term 
alone would lead to an inconsistency in deriving the principle of angular momentum 
conservation, Equation 4.30. The term uw/r is related to the use of r in the definition 
of specific angular momentum m given by Equation 4.29. If we redefine m as

	 ′ = +m u a a( cos( )) cos( )Ω φ φ 	 (4.31)

then Equation 4.30 is maintained only if

1.	 The term 2Ω cos(ϕ)w is simultaneously neglected in Equation 4.18

2.	 r is replaced by a in the uv tan(ϕ) term in the same equation

3.	 r is replaced by a in the metrics h
l
 and h

f

Similar remarks apply to the derivation of the mechanical energy equation, 
Equation 4.25. If wu/r is neglected in Equation 4.18, then the corresponding terms 
vw/r and (u2 + v2)/r in Equations 4.19 and 4.20 must also be neglected. Again, if the 
small term 2Ω cos(ϕ)w is neglected in Equation 4.18, then so must the term 
2Ω cos(ϕ)w in Equation 4.19. In the mass conservation equation, r must be replaced 
by a everywhere.

Each of these extra approximations can be justified by detailed scale analysis. 
However, the arguments in this section show that either all or none of these approxi-
mations must be made. So, making these various approximations and using z = r − a, 
a consistent set of ‘shallow atmosphere’ equations results:
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where
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Together with the thermodynamic energy equation and the equation of state, these 
equations form a complete set for the atmosphere and serve as a starting point 
for further analysis. They are sometimes referred to as the ‘primitive equations’. 
The only explicit reference to the rotation of the planet is through the ‘Coriolis 
parameter’.

	 f = 2Ωsin( )φ 	 (4.37)

a measure of the component of the Earth’s rotation about the local vertical. From 
this point on, the suffix e will be dropped from the geopotential Φ and the gravita-
tional acceleration, g.

The shallow atmosphere approximation is adequate for the terrestrial planets 
and the oceans. It may not be satisfactory for the gas giants Jupiter and Saturn 
whose atmospheres are much deeper and probably extend to a significant fraction 
of the planetary radius. In any case, these rapidly rotating bodies are very distorted 
by the centrifugal force, and so the use of spherical coordinates may be 
inappropriate.

4.6  The beta effect and the spherical Earth

Replacing Cartesian coordinates with spherical polar coordinates greatly compli-
cates the equations of fluid dynamics. It has added new nonlinear terms to the equa-
tions and has added variable coefficients to other terms that simply had constant 
coefficients in the Cartesian set. One may ask how important are these complica-
tions. The answer is usually not very important. With a couple of exceptions, the 
new terms are simply minor corrections which add no substantial new dynamical 
processes to the equation sets. In fact, for many purposes, it will prove helpful to 
revert to ‘local Cartesian coordinates’, with an origin at some reference latitude. All 
the metric terms associated with the Earth’s curvature can be neglected, but two of 
the Coriolis terms must be retained.
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These two terms are the terms involving f, the Coriolis parameter, in Equations 
4.32 and 4.33. Based on a reference latitude ϕ

0
, f can be written as

These equations can be written in local Cartesian coordinates:
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or in vector form
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This is called the ‘β-plane approximation’, and it is the simplest modification of 
the equations which permits an important class of wave motions called Rossby 
waves. These will be introduced in Chapter  9. Their properties are relevant for 
much of the discussion in the latter part of this book. If meridional displacements 
are sufficiently small, the βy term can be neglected, and one then has the ‘f-plane’ 
approximation. The f-plane approximation is often appropriate for discussing local 
mesoscale phenomena.
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Scale analysis and its 
applications

5

5.1  Principles of scaling methods

In the previous three chapters, we have assembled and elaborated the equations of 
fluid dynamics, particularly as they apply to the Earth’s atmosphere. In many 
branches of physics, that would be the end of the interesting science. Once the gov-
erning equations are complete and appropriate boundary conditions have been spec-
ified, the problem is done, apart from a certain amount of routine algebra and 
computation. With the equations of fluid flow, however, this is far from the case. 
The equations are very complex, highly nonlinear and with many couplings between 
them. They have no known analytical solutions in general, and indeed only a hand-
ful of exact solutions for highly simplified and contrived situations exist. In general, 
exploring their solution requires recourse to numerical simulation, that is, to solving 
some discretized analogue to the full equations. Such an approach requires the use 
of large computers; solutions are only generated for specific cases. Numerical simu-
lation raises questions of how representative the chosen cases might be, as well as 
difficulties in proving that the numerical results have converged onto the hypotheti-
cal exact solution to the continuous equations.

However, considerable progress can be made simply by estimating the typical 
magnitude of terms in the governing equations and using the results to examine the 
various balances between the terms that hold. The estimates can also suggest ways 
in which the equations can be approximated and simplified in particular circum-
stances. The technique is called scale analysis. The basic principle is to consider 
typical fluctuations in various state and dynamical variables and the time or space 
scales over which these fluctuations occur. For example, if any flow quantity Q has 
a typical fluctuation ΔQ over a distance of order L, then a term in the equations such 
as ∇Q will have a magnitude
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∇ ∼Q

Q

L

∆
	 (5.1)

Here, the relation ‘~’ should be read as ‘of the same order of magnitude as’. 
Factors of 2 or 3 or less will be regarded as order-1 factors. Similarly, geometric 
factors such as sin(α) or cos(α) will generally be regarded as order 1. For a sinu-
soidal distribution of Q, Q = Q

0
 + A sin(kx), the amplitude A is the natural choice 

for ΔQ, and for L, the natural choice is k− 1, which is the wavelength of the fluctua-
tion divided by 2π. In this case, Equation 5.1 is exact. For a weather system with 
wavelength 3000 km, that is, about 1500 km across a low-pressure centre, then 
L ~ 500 km.

In this chapter, we will attempt to be as general as possible by analysing each 
equation in terms of various geometric and flow variables which will take differ-
ent values in different systems, such as the midlatitude troposphere, the ocean or 
a laboratory experiment. Table  5.1 lists the principal such variables, but also 
suggests values relevant to a typical midlatitude weather system such as a 
depression.

As a very simple example of scale analysis, consider the continuity equation for 
incompressible flow:
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Denote the typical fluctuation of horizontal velocity as U over a length scale L, and 
the typical fluctuation of vertical velocity W over a vertical length scale of D. Then, 
the orders of magnitude of each term can be estimated as

Table 5.1  Order of magnitude values of various constants and flow  
variables appropriate to a midlatitude weather system

Quantity Value

Horizontal wind U 10 m s−1

Horizontal length scale L 5 × 105 m
System depth D ≤ 5 × 103m
Coriolis parameter f = 2Ω sin(ϕ) 10−4 s−1

Gravitational acceleration g 10 m s−2

Density ρ 1 − 0.3 kg m−3

Radius of Earth a 6.37 × 106 m ~ 107 m
Depth mean potential temperature q 300 K
Brunt–Väisälä frequency N 10−2 s−1
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Since there are only two terms in the equation, they must balance, and so
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The dimensionless factor (D/L) is called the aspect ratio; it is about 1 for a labora-
tory experiment but nearer to 0.01 for a synoptic weather system. For such a system, 
therefore, this scale analysis predicts typical vertical velocities of around 10 cm s−1. 
In fact, this is at least an order of magnitude larger than observed on the scale of a 
weather system. What has gone wrong with our analysis is that term (1) is in fact the 
sum of two terms ∂u/∂x and ∂v/∂y. They are usually comparable in magnitude but 
opposite in sign. Term (1) is therefore the small residual between two larger terms 
of opposite sign, and our estimate of W is very much an upper bound. We shall 
derive a more realistic estimate of W in Section 5.3.

5.2  The use of a reference atmosphere

We will write the various thermodynamic variables in terms of their deviation from 
some reference atmosphere relevant to the region under study. The reference ther-
modynamic variables are functions of z only:

p p z z T T z zR R R R R R R R= = = =( ), ( ), ( ), ( )ρ ρ θ θ

This choice of reference atmosphere is such that it obeys the equation of state and 
the associated definition of potential temperature:

p R T T
p

pR R R R R
R= =
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−

ρ θ
κ

,
0

As for any system with no motion, the reference atmosphere is also in hydrostatic 
balance:
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Use the equation of state to write the hydrostatic relationship as
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Assume g is constant with z. Then, if T
R
 is constant as well (i.e., an isothermal 

atmosphere), the equation is easily integrated to give

	 p p z H
R e= −

0
/ 	 (5.7)

where p
0
 is the pressure at z = 0 and H = RT

r
/g is called the ‘pressure scale height’; it 

has a value of 7.5 km for the troposphere. Also, for an isothermal atmosphere,

ρ ρR e= −
0

z H/

Although the assumption of constant temperature is rather crude in the troposphere, 
it is more accurate in the stratosphere. However, the roughly exponential decrease 
in pressure and density with height is quite robust. The hydrostatic equation is 
straightforward to integrate if the more realistic assumption of a constant lapse rate 
is made:

T z T zR ( ) = −0 Γ

A representative value of Γ is around 6 K km−1.
Now write all thermodynamic variables in terms of their deviation from the refer-

ence atmosphere so that

	 p p z p x y z t= + ′
R , , ,( ) ( ) 	 (5.8)

and similarly for ρ, T and θ. It is assumed that |p′| ≪ p
r
 and so on. We will scale the 

deviations from the reference atmosphere by Δp,  Δρ,  ΔT and Δθ.
The logarithm of the ideal gas equation is

ln( ) ln( ) ln( ) ln( )p T R= + +ρ

Then differentiating gives
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For the scaling of the thermodynamic variables, this implies:
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The definition of potential temperature leads to a similar relationship:
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Here and subsequently the overbar for quantities such as p TR R Rand, ρ  denotes a 
typical value of p

R
,  ρ

R
 and T

R
 for the range of heights being considered. They may, 

for example, represent the relevant vertical average of these quantities.

5.3  The horizontal momentum equations

This and subsequent equations involve the Lagrangian rate of change of one of the 
variables. In general, propagating or stationary midlatitude weather systems are 
observed to change relatively slowly in structure in the time it takes for air parcels 
to move through them. Consequently, we will assume that the Eulerian rate of 
change is not larger in magnitude than the advective rate of change U/L, and we will 
therefore scale it as u ⋅ ∇ ~ U/L. With this assumption, the Lagrangian rate of change 
scales like the advective terms, U/L.

Consider first the zonal component of the momentum equation in spherical coor-
dinates, Equation 4.32:
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	 (5.12)

In the last line, the result has been made more general by dividing by the magnitude 
of term (3), so that the magnitude of each term can be represented by products of 
dimensionless ratios. The most significant of these is the Rossby number, which we 
introduced in Section 3.3:
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U

fL
	 (5.13)

The Rossby number is the most important dimensionless number in geophysical 
fluid dynamics. It represents the ratio of the characteristic net acceleration of fluid 
elements to the Coriolis acceleration and so measures the importance of planetary 
rotation. The smaller the Rossby number, the more dominant is the Coriolis accel-
eration in the dynamics. For a typical midlatitude weather system, Ro is around 0.2, 
while in the ocean, where U is much smaller and L is rather smaller than in the 
atmosphere, the Rossby number may be closer to 10−2.

Thus, for a midlatitude synoptic-scale weather system, for which L/a ≪ 1, term 
(1) is relatively small and term (2) is even smaller. The meridional component of 
the momentum equation, Equation 4.33, scales similarly:
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	 (5.14)

Therefore, the metric terms (2) in both horizontal momentum equations are suffi-
ciently small that they may generally be dropped compared to the remaining terms. 
In both equations, terms (3) and (4) have to provide the dominant balance. Therefore, 
the scaling gives

	 ∆p fULR~ ρ 	 (5.15)

For a typical midlatitude weather system, Equation 5.15 suggests that the typical 
horizontal pressure fluctuation will be of order 5 × 102 Pa. This is an Eulerian pres-
sure fluctuation, the typical pressure fluctuation observed across the weather system 
at a given time and height. The Lagrangian pressure fluctuation, the pressure fluc-
tuation in time to which an individual fluid parcel is subject to as it circulates 
through the weather system, is usually a good deal larger.

In Equations 5.12 and 5.14, the leading order balance is between the Coriolis 
terms and the pressure gradient terms. In these terms, provided the length scale L is 
small compared to the planetary radius a, the Coriolis parameter f can be approxi-
mated by a constant value f

0
; the density ρ can also be approximated by its reference 

atmosphere value ρ
R
. Then,
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or, in vector notation,
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This result is called ‘geostrophic balance’, and it provides a direct relationship 
between the pressure field and the velocity field. In fact, it states that streamfunction 
and pressure are related by

ψ
ρ

=
p

fR 0

Under conditions of geostrophic balance, the flow is parallel to isobars, with low 
pressure to the left in the Northern Hemisphere (right in the Southern Hemisphere). 
The scaling for pressure, Δp, given by Equation 5.15 follows directly from geos-
trophic balance.

However, such a drastic simplification of the momentum equation as Equation 
5.17 has thrown the baby out with the bath water. Equation 5.17 expresses a balance 
between the pressure and velocity fields, but it gives no way of calculating either. 
Indeed, the loss of the time derivative term means that we cannot predict the evolu-
tion of the flow at all at this level of approximation. We will return to this matter in 
Section 5.5, where account will also be taken of small yet crucial deviations from 
geostrophic balance. First, the next section elaborates the concept of balanced flow.

5.4  �Natural coordinates, geostrophic and gradient  
wind balance

Geostrophic balance is the simplest balance condition. A parcel of air in exact geo-
strophic balance with the local pressure field would move at a constant speed in a 
straight line. If the parcel is accelerating in some way, for example, if it is moving 
along a curved trajectory, then the balance condition becomes more complicated. A 
straightforward way of exploring this is to rewrite the Euler equations in so-called 
natural coordinates, which are illustrated in Figure 5.1.

We use the momentum equation on an f- or beta- plane, Equation 4.38, and denote 
the local horizontal direction of the flow by a unit vector s and distance along the 
trajectory by s. Similarly, n is a unit vector perpendicular to the horizontal trajectory 
rotated anticlockwise from s, while n denotes distance in the n direction. Then, the 
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horizontal component of the flow velocity is v = Vs, where V is the speed and is always 
positive or zero. Since the Coriolis force always acts at right angles to the velocity 
vector, it plays no part in the equation of motion in the s direction, which is simply

	

D

D

V

t

p

s
= −

∂
∂

1

ρ
	 (5.18)

This component of the Euler equation shows that the flow speed can only change in 
response to changes in pressure in the direction of motion.

The equation of motion in the n-direction is

	

V

R
fV

p

n

2 1
+ = −

∂
∂ρ

	 (5.19)

Here, R is the radius of curvature of the trajectory. The first term on the left-hand 
side is the centripetal acceleration associated with the fluid parcel moving in a 
curved trajectory. The rate of change of the direction of motion is

	

D

D

s
n

t

V

R
= 	 (5.20)

so that the radius of curvature R must be taken as positive when the trajectory is curved 
in an anticlockwise direction, that is, cyclonically in the Northern Hemisphere, and as 
negative when it is curved clockwise, that is, anticyclonically in the Northern Hemisphere.

If we define V
g
 to be the component of the geostrophic wind in the direction of 

motion, then the pressure gradient force term in Equation 5.19 may be written as fV
g
 

and the equation itself as

	

V

R
fV fV

2

0+ − =g 	 (5.21)

R > 0
R < 0

n

s

Figure 5.1  Illustrating natural coordinates. The thick curve represents the trajectory of a fluid 
parcel
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From Equation 5.20, the equation of motion in the n-direction in the form Equation 
5.19 or 5.21 is actually an equation for the curvature of the trajectory R and the 
material rate of change of s. Equation 5.21 can be rearranged to give

	

1
2R

f V V

V
=

−( )g 	 (5.22)

Quite generally, it follows that the curvature of the trajectory is cyclonic, that is, 
R > 0, when V < V

g
, that is, the flow is sub-geostrophic. Conversely, when V > V

g
, 

that is, when the flow is super-geostrophic, trajectories are anticyclonically 
curved.

Equation 5.21 represents a balance of forces in the negative n-direction acting on 
a fluid parcel: the first term is the centrifugal force, the second term is the Coriolis 
force and the third is the pressure gradient force. Dividing this equation by the 
Coriolis force fV leads to

	

V

fR

V

V

y x

+ − =

+ − =

1 0

1 0

g

or 	 (5.23)

Here, the first term, denoted y, is the rate of change of the direction of motion nor-
malized by f, and the third term, denoted x, measures the relative strength of the 
component of the geostrophic wind in the direction of motion to the actual flow 
speed. Figure 5.2 shows the line described by Equation 5.23. When y is positive, the 
trajectory curvature is cyclonic, and when it is negative, the curvature is anticy-
clonic. When x is greater than 1, the flow is sub-geostrophic; between 0 and 1, it is 
super-geostrophic; and when x is less than 0, it may be called anti-geostrophic.

Near point A, where x = 1 and y = 0, the trajectories are nearly straight, V ≃ V
g
 and 

the flow speed is close to the geostrophic wind speed in the direction of motion. The 
condition for this to be the case is that

V

fR
� 1

The parameter V/fR is a Rossby number which uses the radius of curvature of the 
trajectory as a length scale. So geostrophic balance is a good approximation if 
R ≫ R

I
 = V/f. For typical midlatitude weather systems, R

I
 is around 100 km. For an 

alternative perspective, Equation 5.20 shows that the condition is that the rate of 
change of the direction s for a fluid parcel must be much smaller than f. This means 
that the timescale for change in the direction of motion of a fluid parcel must be 
much longer than f −1, which is around 3 hour in middle latitudes.
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In Figure 5.2, moving from point A to larger x, the flow becomes sub-geostrophic. 
At point B, x = 2 and y = 1 and so R = R

I
. Here the centrifugal and Coriolis forces are 

equal and together balance the pressure gradient force. At very large x, the Coriolis 
force is negligible compared with the centrifugal force. So the centrifugal force 
must balance the pressure gradient force alone. The flow is then said to be in ‘cyclos-
trophic balance’. Cyclostrophic balance is a feature of a very tight vortex such as a 
tornado. It also characterizes the large-scale flow on a slowly rotating planet such as 
Venus.

Moving from point A to smaller values of x, the flow becomes super-geostrophic 
and anticyclonic. At point C, where x = 0.5 and y = −0.5, R = − 2R

I
, the centrifugal 

and pressure gradient forces are equal and together they balance the Coriolis force. 
At point D, where x = 0 and y = −1, the pressure gradient force is 0 and the Coriolis 
and centrifugal forces must balance. In this case, the anticyclonic trajectory has the 
radius of curvature R = − R

I
. When x is negative, the flow is anti-geostrophic, that is, 

the trajectories have anticyclonic curvature around a low-pressure centre. Although 
this configuration represents an equilibrium balance of forces, it would be highly 
unstable and is never observed.

In the aforementioned analysis, V
g
 is the component of the geostrophic wind 

in the direction of the parcel motion. If the geostrophic wind is nearly parallel 
to the parcel motion, or, equivalently, if the fluid parcel moves nearly parallel to 
isobars, then V

g
 is close to the magnitude of the total geostrophic wind. The balance 

x

y

S
uper-geostrophic

S
ub-geostrophic

A
nti-geostrophic

Anticyclonic

CyclonicA

B

C

D

1 2

–1

1

Figure 5.2  A plot of V
g
/fR versus V/V

g
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represented by Equation 5.22 is then called ‘gradient wind balance’. The condi-
tion for this is that |∂p/∂s| should be much smaller than |∂p/∂n|. Scaling these 
terms from the equations in the s- and n-directions, Equations 5.18 and 5.19 
respectively, suggests that |DV/Dt| must be much smaller than |fV|. Therefore, the 
condition for gradient wind balance is that the timescale of the change in speed 
following the motion must be much longer than f −1.

The condition for the flow to be approximately equal to the component of the 
geostrophic wind in the direction of the motion discussed earlier is that the direction 
of movement of a parcel must also not change much in this time. Thus, the wind is 
approximately equal to the vector geostrophic wind if the Lagrangian timescale for 
change in both the speed and direction of the motion is much longer than f−1.

A special case of gradient wind balance is when the analysis refers to steady flow 
around a circle of radius R. Then, the flow is parallel to the isobars, and so the gradi-
ent wind balance condition V

g
 nearly parallel to V is exactly satisfied. Many authors 

then treat Equation 5.21 as a quadratic equation for V given R and V
g
. However, the 

approach outlined here, in which Equation 5.21 leads to R given V and V
g
, is more 

consistent with the physical basis for the equation. For circular motion, the particu-
lar case when V

g
 is zero (point D) is anticyclonic motion around circles of radius R

I
 

and is referred to as motion in inertial circles.
This discussion illustrates the point that geophysical flows are never exactly in 

geostrophic balance if air parcels experience any acceleration. If the Coriolis and 
pressure gradient accelerations balanced exactly, and friction were negligible, then 
no net force would act on air parcels. They would simply move in straight lines at a 
constant speed equal to the geostrophic speed. Whenever air parcels are accelerat-
ing, either because their speed changes or because their direction of motion changes, 
there must be a degree of imbalance between the Coriolis and pressure gradient 
forces acting, and the parcel will move with a velocity different from the geos-
trophic velocity. In the examples of gradient wind balance just discussed, cycloni-
cally curved trajectories and a speed less than geostrophic are associated. In many 
important circumstances, the difference between the actual flow velocity and the 
geostrophic velocity is small. Nevertheless, this small difference is crucial in deter-
mining the evolution of the flow.

5.5  Vertical motion

In Section 5.3, we remarked that neglecting all O(Ro) terms in the momentum equa-
tion led to a diagnostic set of equations which gave no information about the flow 
evolution. In order to recover the central representation of flow evolution, we return 
to the geostrophic relationship, Equation 5.17. While this will generally give a fair 
approximation to the observed wind, at least outside the atmospheric boundary 
layer, it will rarely be exact. Instead, use Equation 5.17 to define an ideal ‘geos-
trophic wind’, close to but not equal to the actual wind:



88	 Fluid Dynamics of the MidLatitude Atmosphere

	

v kg = ×∇
1

0ρR
Hf

p 	 (5.24)

The vector difference between the actual wind and the geostrophic wind is called 
the ‘ageostrophic’ wind:

v v va g= −

In the midlatitude troposphere, the magnitude of the geostrophic wind is typically 
10–20 m s−1, possibly more in upper tropospheric jet streams, while the magnitude 
of the ageostrophic wind is an order of magnitude smaller, often only 1–2 m s−1, 
which is comparable to the measurement uncertainty in the wind observations. Take 
the f-plane horizontal momentum equation as in Equation 4.38; using Equation 5.24 
to substitute for the pressure gradient gives

	

D

D g a

v
k v k v k v

t
f f f= × − × = − ×0 0 0 	 (5.25)

This remarkable result says that there is a direct link between the ageostrophic part 
of the wind and the evolution or development of the flow. If a typical magnitude of 
the ageostrophic wind is denoted by U

a
, then scale analysis of Equation 5.25 leads to
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So here is another interpretation of the Rossby number. It is the ratio of the magni-
tude of the ageostrophic wind to the magnitude of the total wind.

Now the geostrophic wind is non-divergent. This is easily demonstrated by taking 
the horizontal divergence of Equation 5.24:

	
∇ ⋅ =H vg 0 	 (5.27)

Then, the continuity equation for an incompressible fluid, Equation 5.2, can be 
written in terms of the ageostrophic wind and the vertical motion:

	
∇ ⋅ = −

∂
∂H

w

z
va 	 (5.28)

Not only is the evolution of the flow directly related to the ageostrophic flow, but the 
vertical motion is also a proxy for the ageostrophic motion. It follows that vertical 
motion, or rather more precisely the rate of change of vertical motion in the vertical 
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direction, is directly related to the evolution of the horizontal component of flow. 
The actual mechanism responsible is made clear by a consideration of vorticity 
dynamics, the subject of Chapter  8. But for now, a simple scaling analysis of 
Equation 5.28 leads to an estimate of the typical magnitude W of the vertical motion:

	
W

D

L
U∼ 






Ro 	 (5.29)

This analysis reveals that the estimate of vertical motion in Equation 5.4 is really 
no more than an upper bound on the vertical motion. In general, W is considerably 
less than the aspect ratio multiplied by the horizontal flow speed. In the limit 
Ro → 0, Equation 5.29 reduces to the Taylor–Proudman result that vertical velocity 
is suppressed in a rapidly rotating system.

5.6  The vertical momentum equation

The vertical form of the momentum equation using spherical coordinates and incor-
porating the shallow atmosphere approximation was given in Equations 4.34 and 
may be written as
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ρ

where the viscous term has been ignored for the present. The centrifugal force has 
been absorbed into the effective gravitational acceleration. Setting p = p

R
 + p′ in the 

final term and using the hydrostatic relation, Equation 5.5, the last two terms can be 
rewritten as
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The characteristic vertical velocity is given by Equation 5.29. Then, a term by term 
scale analysis gives
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We already have the scaling for W and Δp. If these are included, then the terms scale as
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The last line compares the magnitude of each of the terms to the magnitude of term 
(3), the pressure gradient term. Term (1) is extremely small, and so in all but the 
most extreme circumstances, term (3) must balance term (2). To a good approxima-
tion, then, the vertical component of the momentum equation can be reduced to the 
diagnostic relationship:

	

∂ ′
∂

= − ′p

z
gρ 	 (5.31)

Thus, the hydrostatic relationship also applies to the deviation from the reference 
atmosphere as well as to the reference atmosphere itself. The hydrostatic relation-
ship is equivalent to the statement that the pressure at any point in the fluid is equal 
to the weight of overlying fluid. So, at the Earth’s surface, with a pressure of around 
105 Pa, the mass of gas overlying each square metre is p

0
/g, which is around 10 t m−2. 

As will be discussed later, hydrostatic balance can become inaccurate when vertical 
accelerations become comparable with g. From the scale analysis, this requires D to 
be comparable to L. But for the examples discussed in this book, hydrostatic balance 
is a very good approximation.

The balance between terms (3) and (4) in Equation 5.30 gives a scaling for the 
density fluctuations:
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Here, the dimensionless number Fr = U2/gD is called the Froude number. One inter-
pretation of the Froude number is that it is the ratio of the kinetic energy of fluid 
parcels to the change of potential energy over the depth of the system. A typical value 
of Fr for a midlatitude weather system is 2 × 10−3, so that ∆ρ ρ/ ~R 10 2− . Also, it fol-
lows directly from the scaling of terms (4) and (5) in Equation 5.30 that the ratio
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This number is close to, but is probably rather less than, 1. Consistent with this and 
Equation 5.11, then

	

∆ ∆ ∆θ
θ

ρ
ρR R R

T

T
~ ~ ~ Ro Fr−1 	 (5.33)

It follows that the typical temperature or potential temperature fluctuation across a 
synoptic weather system will be of the order of 3 K.

The Lagrangian pressure fluctuation was mentioned in Section 5.4. We are now 
in a position to estimate a scale for this. The pressure changes on an individual fluid 
element are dominated by vertical motions. To a first approximation,

D

D

d

d

p

t
w

p

z
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So, assuming the pressure acting on the parcel varies on the usual advective time-
scale L/U, the scaling for Lagrangian pressure fluctuations is

∆p g
W

U
LL R~ ρ

Comparing this with the Eulerian pressure fluctuation Δp, Equation 5.15, it follows 
that

∆
∆
p

p
L ~ Ro Fr2 1−

For a midlatitude synoptic-scale weather system, this ratio is around 20, confirming 
the dominance of vertical motion in changing the pressure of individual fluid 
elements.

5.7  The mass continuity equation

For compressible flow, the continuity equation has the following form:

1

ρ
ρD

Dt
= −∇ ⋅u

which, on substituting ρ = ρ
r
 + ρ′, can be written as
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Here, Equation 5.32 gives the scaling for ∆ρ ρ/ R, and Equation 5.29 gives the scal-
ing for W. For a midlatitude synoptic-scale weather system, term (1) is typically of 
order 0.05 and so is small compared with terms (3) and (4). Term (2) is negligible 
for a shallow system, but for a deep system could be almost as large as terms (3) and 
(4). Terms (2) and (3) will generally be comparable. In term (2), the denominator 
can be approximated by ρ

R
. Then, the continuity equation may have the following 

form:

	

∇ ⋅ +
∂
∂

+ 







 = ∇ ⋅ ( ) =v u

w

z

w

zR
Rρ

ρ
ρ

d

d
that isr 0 0, , 	 (5.35)

This form of the continuity equation is the so-called anelastic approximation. For a 
shallow system, the motion is approximately non-divergent, so then the continuity 
equation for incompressible flow ∇ ⋅ u = 0 is adequate. Chapter 7 will contain fur-
ther discussion of the forms of the continuity equation for a stratified atmosphere.

5.8  The thermodynamic energy equation

The analysis of the thermodynamic equation hinges upon an appropriate scaling for 
temperature or potential temperature fluctuations associated with a weather system. 
Such a scaling was deduced in Section 5.4 and given by Equation 5.33. Typical 
midlatitude values suggest that the horizontal fluctuations of potential temperature 
in a synoptic-scale weather system will be around 3 K.

Figure 1.2 is a useful preliminary to discussing the scaling of the thermodynamic 
equation. It shows the seasonal and zonal mean potential temperature, θ, for the 
December–January–February season. Since, to a first approximation, motion in the 
atmosphere is adiabatic for short periods, this picture gives a good idea of the mean 
state about which the atmosphere is continually fluctuating. Note first that the trop-
osphere is stably stratified, with θ increasing upwards. The stratosphere is much 
more stably stratified, with potential temperature increasing upwards very rapidly. 
Secondly, at all tropospheric levels, the potential temperature is lower at the pole 
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than in the tropics. As a result, isentropes slope downwards towards the tropics, with 
a typical gradient in the midlatitudes of around 10−3. A typical potential temperature 
difference between the pole and the equator at any level is around 40 K. The typical 
potential temperature difference between the surface and the tropopause in the mid-
latitudes is rather similar, around 50 K. The change of potential temperature in the 
vertical direction describes the stratification of the atmosphere, about which more 
will be said in Section 7.3. The stratification is conveniently measured by a param-
eter N, the Brunt–Väisälä frequency, defined from
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If H denotes the depth of the troposphere, and θ
0
 a depth average potential tempera-

ture, then a typical value of N 2 is

N
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H
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Substituting in representative values, a typical N 2 is around 10−4 s−2.
Setting θ = θ

R
 + θ′, the thermodynamic equation may be rewritten as
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A scale analysis gives for the following various terms:
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In the last line, the scale of each term has been divided by term (1) to express them in 
dimensionless form. The scaling of term (4) is a combination which will appear many 
times in subsequent discussion and is called the Burger number, denoted by Bu:
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N D

f L

2 2

2 2
	 (5.39)
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From Equation 5.38, a physical interpretation of this number is that it is the ratio of 
the vertical to horizontal advection of θ. The result of the scaling of the thermody-
namic equation is less simple than that of the earlier equations. For midlatitude 
synoptic-scale weather systems, Bu ~ 1, although the dependence of Bu on the 
squares of the horizontal and vertical scales means that it can deviate quite substan-
tially from 1 in particular cases. Terms (1), (2) and (3) in Equation 5.38 are therefore 
generally comparable in magnitude, and so the balance of terms on the left-hand 
side of the equation cannot be simplified further. The discussion can be turned 
around to say that in the absence of heating, if θ is not just to be advected horizon-
tally, then Bu must be of order 1. Equivalently, this implies that the ratio of vertical 
to horizontal length scales is

D

L

f

N
~ ~ .0 01

This ‘natural’ ratio of scales is characteristic of midlatitude weather systems.
In the clear troposphere, a typical value of S, largely due to infrared radiative 

cooling, is 1–2 K day−1. The non-dimensional scaling for term (5) can be written as 
S/(fθ

R
Fr). With typical midlatitude synoptic-scale values for the other parameters in 

the scaling of term (5), the typical magnitude of term (5) turns out to be around 0.3, 
smaller than terms (1–3), but not much smaller.

The tropics are rather different. There, with the reduced value of the Coriolis 
parameter, the scale analysis shown in Equation 5.38 is not appropriate. But as 
Figure 5.1 shows, the isentropes are extremely flat in the tropics, and the horizontal 
Eulerian variations of θ are therefore at least an order of magnitude smaller than in 
the midlatitudes. The vertical stratification is similar in magnitude to its midlatitude 
value. Repeating the scale analysis with Δθ of 0.5 K, we now find that terms (1) and 
(2) are an order of magnitude smaller than terms (4) and (5), which must approxi-
mately balance. It follows that in the tropics, the thermodynamic equation can be 
written, to a first degree of approximation, as
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That is, the thermodynamic equation becomes simply a diagnostic equation for the 
vertical velocity. Within the deep tropics, ∂θ/∂z is closely related to the saturated 
adiabatic lapse rate, which in turn depends principally on the level in the tropo-
sphere and the surface temperature.

The scaling analysis of the thermodynamic equation given by Equation 5.38 has 
split the vertical advection term into contributions from the advection of deviations 
from the reference atmosphere, term (3), and from the advection of the reference 
atmosphere, term (4). The ratio of terms (3–4) scales as RoBu. So, if Bu ~ 1 and Ro is 
small, the thermodynamic equation can be approximated by neglecting the impact of 
the perturbation on the stratification. These conditions just about hold through the 



	SCALE  ANALYSIS AND ITS APPLICATIONS	 95

Earth’s troposphere. But dropping the term w(∂θ′/∂z) is not always a particularly good 
approximation. Nevertheless, rewriting the thermodynamic equation in the form
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d
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is a basic part of what will be referred to as the ‘quasi-geostrophic’ approximation. 
This equation set is widely used for analytical developments even if it is too inexact 
an equation set for detailed numerical work. We shall explore the implications of 
Equation 5.41 further in Chapter 12.

To summarize the results of this chapter, Table 5.2 sets out a number of parame-
ters and flow variables, of which our scale analysis gives estimates. Also shown are 
values appropriate to a midlatitude weather system. The reader may like to repeat 
these estimates for different circumstances, such as flow in an oceanic gyre or 
eddies in a rotating laboratory apparatus. Subsequent chapters will make regular 
reference to the summary in Table 5.2.

5.9  Scalings for Rossby numbers that are not small

For horizontal length scales significantly smaller than the synoptic-scale examples 
which have formed the basis of the discussions in the preceding sections, the Rossby 
number may be of order 1 or larger. In this case, the metric terms in the momentum 
Equations 5.12 and 5.14 are again negligible, but now the pressure gradient term 
will be of the order of the momentum advection, term (1), so that

	 ∆p UR~ ρ 2 	 (5.42)

Table 5.2  Various parameters and variables emerging from the scale analysis of 
this chapter, together with characteristic estimates for a midlatitude weather system

Quantity Midlatitude Estimate

Rossby number Ro = U/fL 0.2
Froude number Fr = U2/gD 2 × 10−3

Burger number Bu = N2D2/f 2L2 1
Aspect ratio D/L 10−2

Vertical velocity scale W
D

L
U~ Ro









0.02 m s−1

Horizontal pressure fluctuation (Eulerian) Δp ~ ρfUL 103 Pa

Potential temperature fluctuation ∆θ θ~
fUL

gD 0 3 K
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The scaling of the vertical momentum equation, Equation 5.30, when the Rossby 
number is of order 1 suggests that the acceleration term be of order (D2/L2), the 
square of the aspect ratio, compared with the perturbation pressure gradient term. 
The validity of the hydrostatic approximation depends upon this aspect ratio being 
small. It will not be valid for phenomena such as deep convection or flow over steep 
mountains, in which the vertical and horizontal scales are comparable. However, the 
buoyancy term, term (4), and the pressure gradient term, term (5), will still be of 
comparable magnitude. This leads to the scaling

	

∆ρ
ρR

U

gD
~

2

≡ Fr 	 (5.43)

For a phenomenon with U ~ 5 m s−1 and D ~ 1 km, Fr ~ 2.5 × 10−3. As before, the ratio

δ
δρ ρ

ρ
p p gD

p

D

H
R

R
R

R R

/

/
~ ≡

So, for systems with vertical scale much smaller than 7 km, the δ p pR/  term in the 
equation of state, Equation 5.9, is small and so to a first approximation,

δρ
ρ

δ

R R

T

T
~

In the continuity equation, Equation 5.34, the first term on the left-hand side, term 
(1), scales as Fr compared with the remaining terms. So the anelastic approximation 
is again applicable, reducing to incompressibility for a shallow system.

Finally, consider the thermodynamic equation when Ro ~ 1. The ratio of the verti-
cal to horizontal advection scales as

	
Ri =

N D

U

2 2

2
	 (5.44)

where Ri is the Richardson number. For midlatitude scaling, it has a value around 
25. However, in the atmospheric boundary layer, where a wind shear of 5 m s−1 over 
a depth of 500 m would be typical, it is around 1. The Richardson number can be 
written in terms of the Rossby and Burger numbers:

	 Ri Ro Bu= −2 	 (5.45)

Therefore, small Rossby number and Burger number of order 1 imply a very large 
Richardson number. An alternative scaling of the horizontal momentum equations 
reaches geostrophic balance on the equivalent basis of large Richardson number 
rather than the small Rossby number basis used here.
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Alternative vertical coordinates
6

6.1  A general vertical coordinate

The basic equations of atmospheric motion derived in the previous chapters use 
geometrical height z as vertical coordinate. While this might seem a natural and 
obvious choice, it leads to a number of undesirable features. Among them are:

1.	 The pressure gradient force term is nonlinear, involving the product of 1/ρ and ∇p.

2.	 The mass conservation equation is complicated if the flow extends over such a 
range of heights that the mean density at each level changes significantly.

3.	 All three components of velocity turn out to be equally important.

4.	 In general, the lower boundary is not a coordinate surface. This makes it particu-
larly difficult to apply numerical methods to the lower boundary.

In this chapter and the next, we consider some ways of avoiding these problems. 
One way, which is the subject of this chapter, is to use variables other than z as the 
vertical coordinate. In the next chapter, we shall consider ways of retaining z as 
vertical coordinate while linearizing the pressure gradient term. Any variable which 
varies monotonically with height may be used to relabel the vertical axis. Such a 
general variable is denoted ξ; it may either increase or decrease with height, and in 
Figure 6.1, δξ may be either positive or negative.

In what follows, we shall neglect the metric terms and simply use local Cartesian 
coordinates. The adjustments that will be introduced all carry over straightforwardly 
to the spherical case. The hydrostatic approximation is made. This is not strictly 
necessary, but many of the advantages of the coordinate transform are lost if the 
hydrostatic approximation is relaxed.
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From the definition of geopotential,

	 g zδ δ= Φ 	 (6.1)

and so the hydrostatic relation may be written as

	
δ

ρ
δΦ = −

1
p 	 (6.2)

or, in terms of the new vertical coordinate ξ,

	

∂
∂

= −
∂
∂

Φ
ξ ρ ξ

1 p
	 (6.3)

The surfaces of constant ξ in Figure 6.1 are tilted with respect to level surfaces on 
which z is a constant. Their slope is − δz/δx, and this must be allowed for when 
transforming the gradient of pressure on a horizontal surface into the gradient of 
pressure along a ξ = constant surface. Referring to Figure 6.1,

p p p p p pC A B A C B− = −( ) + −( )

and so, in terms of the pressure gradient term:

1 1 1

ρ ρ ρξ ξ

∂
∂

=
∂
∂

+
∂
∂

∂
∂

p

x

p

x

p

z

z

xx x

Using the hydrostatic relation, this may be written as

	

1 1

ρ ρ ξ ξ

∂
∂

=
∂
∂

+
∂
∂

p

x

p

x xz

Φ
	 (6.4)

A similar result holds in the y-direction. Notice that if ξ = ξ(p) only, the first term 
on the right-hand side of Equation 6.4 is 0, and we are left simply with the linear 
term ∂Φ/∂x.

z
δx

ξ + δξ

z + δz

ξ

A B

C

Figure 6.1  A general vertical coordinate
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In height coordinates, the mass of a fluid element is δm = ρδxδyδz. In the new 
general coordinate, this will become rδxδyδξ, where the ‘pseudo-density’ r is 
defined so that ρδz = rδξ. Using the hydrostatic relation,

	
r

z

g

p
=

∂
∂

= −
∂
∂

ρ
ξ ξ

1 	 (6.5)

Following a fluid element, its pseudo-volume in a general vertical coordinate system 
δτ = δxδyδξ will change as a result of velocity divergence in that coordinate system. 
We may write:

	

1

τ
τ

ξ
D

Dt
= ∇ ⋅u 	 (6.6)

Conservation of mass δm = rδτ following the fluid element implies that:

	

1 1
0

r

r

t t

D

D

D

D
+ =
τ

τ
	 (6.7)

Combining this with Equation 6.6, mass conservation becomes:

	

D

D

r

t
r+ ∇ ⋅ =ξ u 0 	 (6.8)

Vertical velocity in the new coordinate system is replaced by the rate of change of ξ 
following the fluid motion. The new ‘velocity’ vector has components

	
u = ( ) = =u v

t r
w, , where

D

D
ω ω

ξ ρ
	 (6.9)

In terms of this new ‘vertical velocity’, the Lagrangian time derivative may be 
written as:

	

D

Dt t
u

x
v

y
=
∂
∂
+

∂
∂

+
∂
∂

+
∂
∂ξ ξ

ω
ξ

	 (6.10)

Introducing the notation

u v k v= + =
∂
∂
+ ⋅∇ +

∂
∂

ω ω
ξ

,
D

D Ht t

provides a convenient separation between the horizontal and vertical components 
of flow and of advection. Note that we have introduced a relabelling of the vertical 
coordinate: v is the horizontal wind, but ‘horizontal’ derivatives are calculated 
keeping ξ constant.
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The relationships derived in this section are sufficient to transform the various 
equations into the new vertical coordinate system. However, to specify the problem 
completely, boundary conditions, and in particular, a boundary condition at the 
planetary surface, must be derived. The surface of the planet is defined by its surface 
geopotential Φ* = Φ*(x, y) or equivalently by the height of its surface above a refer-
ence geoid z* = z*(x, y). If the surface is rigid and impenetrable to atmospheric flow, 
then fluid at the surface must share the same geopotential as the boundary:

D

D

D

D
at

Φ Φ
t t

z z= =
*

*

or since the planetary surface deforms only very slowly if at all,

	

D

D
at

Φ
Φ

t
z z= ⋅∇ =v * * 	 (6.11)

If one writes Φ* = Φ
0
 + gz*, then this boundary condition reduces to

	

D

D
at

Φ
t

gw z z= =* * 	 (6.12)

Here, w* is the vertical velocity of fluid elements at the surface, by virtue of their 
up- or downslope component of motion.

All the elements needed to transform the primitive equations from one vertical 
coordinate to another have now been assembled. They include the hydrostatic equa-
tion (Equation 6.3); the pressure gradient force (Equation 6.4); the mass conserva-
tion equation (Equation 6.8); the Lagrangian time derivative (Equation 6.10); and 
the lower boundary condition (Equation 6.11).

6.2  Isobaric coordinates

A popular and convenient choice for ξ is the pressure p. From the hydrostatic rela-
tionship in the form of Equation 4.9, it is clear that pressure must decrease mono-
tonically with height, and so it makes a suitable alternative vertical coordinate. Note 
also from Equation 4.9 that the mass per unit area of a slab of atmosphere is related 
to the pressure drop across it. Integrating Equation 4.9 with respect to z gives:

	
m z

p

gz

z z

= = −
+

∫
∆ ∆
ρd 	 (6.13)

The minus sign results from the decrease of pressure with height, so that if Δz is 
positive, Δp must be negative.
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From Equation 6.3, the hydrostatic equation in pressure coordinates is:

	

∂
∂

= −
Φ
p

1

ρ
	 (6.14)

Using the equation of state, Equation 2.17, and the definition of potential temperature, 
Equation 2.18, it is conveniently rewritten as:

	

∂
∂

= − ( ) =










Φ
κ

p
R p R

R

p

p

p
ˆ ˆθ where

0

	 (6.15)

Recall that p
0
 is an arbitrary reference pressure, often but not necessarily taken to be 

100 kPa.
The pressure gradient term takes a particularly simple form in pressure coordinates, 

since of course pressure does not vary on the coordinate surfaces. From Equation 6.4,

	

1

ρ
∇ = ∇z pp Φ 	 (6.16)

This form of the pressure gradient term has an intuitive physical interpretation. 
Writing Φ = Φ

0
 + gz, the pressure gradient force reduces to − g∇

p
z, the component of 

the gravitational acceleration parallel to the sloping pressure surface.
From Equation 6.5, the pseudo-density is simply

r
g

= −
1

So the pseudo-density, and equivalently the pseudo-volume of a fluid element in 
pressure coordinates, is constant. The mass of a fluid element is proportional to its 
pseudo-volume, and so conservation of mass is simply a statement of conservation 
of volume in the pressure coordinates:

	
∇ ⋅ +

∂
∂

=p p
v

ω
0 	 (6.17)

To summarize, the basic equation set in pressure coordinates is as follows:
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Φ
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0

	 (6.18)



102	 Fluid Dynamics of the MidLatitude Atmosphere

The use of pressure as a vertical coordinate has simplified and linearized the pres-
sure gradient term. It has also simplified the continuity equation which even for a 
compressible fluid has the same simple form as for an incompressible fluid. However, 
these simplifications come at a cost. First, all three velocity components are equally 
important for the dynamics of a fluid element, including the virtually unmeasurable 
pressure vertical velocity ω. More seriously, the lower boundary condition has not 
been simplified. The lower boundary is no longer a coordinate surface, even for a 
flat boundary with no orography, and in general it varies with time.

The momentum equation in Equation 6.18 implies that the geostrophic wind is

	
v kg = ×∇

1

f
Φ 	 (6.19)

Taking a p derivative and eliminating Φ using the hydrostatic equation give the 
following thermal wind equation:

	
f

p
R

∂

∂
= − ×∇

v
kg ˆ θ 	 (6.20)

The increase in geostrophic wind with p is in the horizontal direction of θ contours 
and proportional to the gradient of θ.

The lower boundary condition is obtained from Equation 6.12, using the hydro-
static equation in the form Equation 6.14:

	

∂
∂

+ ⋅∇ − = ⋅∇
Φ

Φ Φ
t

v v
ω
ρ

* 	 (6.21)

Note that each side of this equation is equal to wg at the surface. The vertical velocity 
at the surface must scale as w ~ UH/L where H is the typical orography height. For 
high frequency, non-geostrophic motion, Equation 6.18, suggests

U

T L
~
∆Φ

Then, the ratio of the first term on the left-hand side of Equation 6.21 to the right-
hand side is

LU

T
g

UH

L

L

T
gH

2

2

2
~ ( )

From this result, it is clear that the first term on the left-hand side of Equation 6.21 is 
only important for extremely fast motions, of order hundreds of metres per second. 
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The second term on the left-hand side is 0 for geostrophic motion. The ageostrophic 
velocity scales as URo, and consequently the ratio of this second term to wg is:

max ,
U

gH

f L

gH

2 2 2

Ro










So the first two terms in Equation 6.21 are usually neglected. For a flat surface, the 
deviation Δp of the surface pressure from the mean surface pressure p

0
 is generally 

sufficiently small that it suffices to apply the boundary condition at p = p
0
. So for a 

flat surface, the lower boundary condition can often be approximated reasonably by

	 ω = =0 0at p p 	 (6.22)

The other aspect of pressure coordinates that can be more difficult to deal with in 
pressure than in height coordinates, particularly in analytical work, is the background 
vertical gradient of potential temperature. Whereas ∂θ

R
/∂z is roughly uniform in the 

troposphere, ∂θ
R
/∂p increases with decreasing p, varying approximately as ρ− 1.

6.3  Other pressure-based vertical coordinates

A closely similar vertical coordinate is based upon the logarithm of pressure:

	
Z H

p

p
H

RT

g
= −









 =ln

0

0where 	 (6.23)

Here T
0
 is some constant reference temperature and p

0
 some constant reference 

pressure. The latter is often but arbitrarily taken as 100 kPa. For an isothermal 
atmosphere of temperature T

0
, Z would be the geometric height. In the real atmos-

phere, in which temperature varies with position, it is similar to, but not identical 
with, the geometric height. The use of ln(p) as a vertical coordinate combines the 
intuitive appeal of height coordinates while retaining the advantages of p-coordi-
nates in simplifying the pressure gradient term. The vertical coordinate (6.23) is 
often used in middle atmosphere studies. Since the atmosphere is more nearly iso-
thermal in the stratosphere than in the troposphere, the coordinate is more height-
like in the stratosphere.

From the equation of state, Equation 2.17, it is easily shown that the hydrostatic 
relation becomes:

∂
∂

=
Φ
Z

g
T

T0
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However, the pseudo-density is:

r
p

gH

Z
H=











−0 e

and so the mass conservation equation may be written as

∇ ⋅ +
∂
∂

− =v
W

Z

W

H
0

Here, W = DZ/Dt denotes vertical velocity in this coordinate. The extra complexity 
compared with p-coordinates is offset by the vertical gradient of θ

R
 being nearly 

uniform because of the height-like nature of log(p) coordinates. The geostrophic 
velocity has the same form as in p-coordinates, and from the hydrostatic relation, 
the thermal wind equation is

	
f
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∂

∂
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v
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	 (6.24)

Another particularly useful height-like, but pressure based, vertical coordinate is 
defined to be

	

z
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p
p

a = −
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




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
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
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θ κ
0

0

1 	 (6.25)

Since this coordinate is a simple function of pressure, the pressure gradient term 
will have the same form as for simple pressure coordinates, Equation 6.16. An 
increment in z

a
 is related to an increment in pressure p by:
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	 (6.26)

From this result, the hydrostatic equation in the new coordinate system can be 
obtained as

	

∂
∂

=
Φ
z

g

a θ
θ

0

	 (6.27)

from which it follows that

	

∂
∂

=
z

z
a θ

θ0

	 (6.28)
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Consider an adiabatic atmospheric temperature profile, for which θ = θ
0
 at all levels. 

Then, z
a
 = 0 for p = p

0
; at other levels, z

a
 = z. So z

a
 becomes identical with geometrical 

height for such an adiabatic atmosphere. For the real stratified troposphere, z
a
 differs 

from z, but not by much. For example, throughout the Earth’s troposphere, z
a
 differs 

from z by less than 1 km. The analogue of density is:
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	 (6.29)

Since this is a function of z
a
 only, the mass conservation relation, Equation 6.17, can 

be reduced to:

	
∇ ⋅ ( ) =ru 0 	 (6.30)

Again the geostrophic wind has the same form as in p-coordinates, and from the 
hydrostatic relation, Equation 6.25, the thermal wind relation is

	
f

z

g∂

∂
= − ×∇

v
kg

a θ
θ

0

	 (6.31)

Using these results, the choice of z
a
 as vertical coordinate leads to equations which 

are identical in form to approximate height coordinate versions discussed in 
Chapter 7. The coordinate itself is similar to height, z, and the static stability measure, 
(g/θ

0
)dθ

R
/dz

a
, is approximately uniform with height. It has a simpler form for the 

hydrostatic relation than other coordinates, having merely a constant times θ on the 
right-hand side. The height-like nature of the coordinate again means that the vertical 
gradient of θ

R
 is almost uniform. However, the mass conservation equation, Equation 

6.30, is perhaps more complicated than for log(p) coordinates, save in the limit 
H ≪ Hρ, when the factor r can be omitted. Of course, this coordinate suffers from the 
same difficulties as p as far as the lower boundary is concerned; the lower boundary 
is not a coordinate surface, and the value of z

a
 on the boundary varies in time. In 

Chapter 7, we will specify a standard set of equations that will be used in many sub-
sequent chapters. This set can be derived using z

a
 as vertical coordinate or using z but 

making an additional approximation in the equations. For the sake of brevity, and 
recognizing that z

a
 and z are very similar, we shall not include the subscript ‘a’.

Any other monotonic function of p can be used as the basis of a vertical coordinate. 
A final choice which is popular for numerical models but which is rarely used for 
theoretical studies is the so-called σ-coordinate, defined as:

	
σ =

p

p*
	 (6.32)
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where p* is the actual surface pressure, that is, the surface pressure not corrected to 
mean sea level. The σ coordinate system has the advantage that the mountainous 
surface of the Earth is a coordinate surface, σ  = 1. However, in other respects, it 
loses the advantages of pressure coordinate. Consider the pressure gradient term. 
The hydrostatic relation takes the form:

	

∂
∂

= −
Φ
σ σ

RT
	 (6.33)

From Equation 6.4, the pressure gradient force is

	
− ∇ −∇ = − ∇ ( ) −∇1

ρ
σ p RT p* *lnΦ Φ 	 (6.34)

From Equation 6.5, the analogue of density is r = − p*/g
e
, leading to the mass 

conservation relationship:

	

D

Dt
pln *( ) + ∇ ⋅ =u 0 	 (6.35)

The great disadvantage of this system is revealed by the pressure gradient force. 
It has two terms, one of which is nonlinear. For steep orography, when the slope of 
the σ-surfaces is much larger than the slope of the pressure surfaces, the cancellation 
between the two terms in the pressure gradient term is generally very large. Another 
disadvantage is that Equation 6.35 appears to be a prognostic equation for p* but 
applicable at every level of the atmosphere. In fact, the ∇ ⋅ u term dominates away 
from low levels near steep orography. Nevertheless, the system is widely used for 
numerical work.

6.4  Isentropic coordinates

In the absence of heating, parcels of fluid conserve their potential temperature θ, 
that is, they move on surfaces of constant potential temperature. Furthermore, in a 
stably stratified atmosphere, θ always increases with height. This suggests that the 
equations of fluid dynamics might usefully be reformulated, using potential tem-
perature θ as the vertical coordinate. The main advantage of such a coordinate sys-
tem is that advection by the ‘vertical’ component of velocity θ  is small compared to 
horizontal advection, unless the heating or cooling is strong.

To formulate the equations in θ- or ‘isentropic’ coordinates, it is helpful to intro-
duce two functions, the Exner function:
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and the Montgomery potential:

	
M c Tp= + = +Φ Φπθ 	 (6.37)

From Equation 6.36, it follows that:
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and consequently:

	
δ δθ

ρ
δ δM p= + +π

1
Φ 	 (6.38)

The hydrostatic equation (6.3), becomes, for isentropic coordinates:

∂
∂

= −
∂
∂

Φ
θ ρ θ

1 p

which means that Equation 6.38 can be rewritten as:

	

∂
∂

=
M

θ
π 	 (6.39)

Use Equation 6.4 to write the pressure gradient term as:

	
− ∇ −∇ = −∇

1

ρ H H Hp MΦ 	 (6.40)

This means that the use of isentropic coordinates linearizes the pressure gradient 
term, just as does the use of pressure coordinates. It also means that the Montgomery 
potential M is a streamfunction for the geostrophic wind

	
v kg = ×∇

1

f
Mθ 	 (6.41)

From Equation 6.39, it follows that the thermal wind equation has the form:

	
f
∂

∂
= ×∇

v
kg

θ
π 	 (6.42)

The analogue of density, Equation 6.5, is r = − (1/g)∂p/∂θ, and so the continuity 
equation is:
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In adiabatic conditions, flow is parallel to θ-surfaces. When there is strong heating 
or cooling, material crosses isentropes. The pressure gradient term is a simple linear 
gradient term. Against these advantages, the major reservation is that isentropes 
have a significant slope, generally between 10−2 and 10−3. This means that the θ-
surfaces have a significant angle of intersection with the lower boundary, even when 
the lower boundary is nearly flat. The lower boundary condition can be derived 
from Equation 6.12 as follows:

	

D

Dt
M −( ) = ⋅∇πθ v Φ* 	 (6.44)

In general, there is no simple approximation to this boundary condition. This means 
that isentropic coordinates are of limited value in qualitative or analytic discussion 
in the troposphere, at least in problems where the kinematic constraint imposed by 
the lower boundary is important. A further drawback is that the daytime atmos-
pheric boundary layer is often close to isentropic.
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Variations of density and 
the basic equations

7

7.1  Boussinesq approximation

This chapter contains a discussion of the role of density, particularly in the pressure 
gradient term. In some classical laboratory and engineering fluid dynamics, we simply 
assume that flow is incompressible with constant ρ so that the pressure gradient term 
remains a linear term. But for most geophysical flows, density variations are crucial 
elements in the flow. This is true of the ocean where even quite small variations of 
density give rise to important buoyancy forces. It is even more true of the atmosphere, 
which, being composed of compressible fluid, has very large variations of density with 
height and rather smaller, but nevertheless important, variations in the horizontal.

First, we consider the vertical structure of the atmosphere, building upon some of 
the concepts introduced in Chapter 1. Define a ‘reference atmosphere’ in which pres-
sure, temperature, density and other thermodynamic variables are functions of height 
only. Such a reference variation of a thermodynamic variable is denoted by a subscript 
R. So T

R
(z) could be defined as the horizontal average of temperature T on a level 

surface at height z. Similarly, reference profiles of density, pressure, potential tem-
perature and so on may all be defined. Some of these quantities vary very markedly 
with height, others less so. For any quantity Q, define a ‘scale height’ H

Q
 such that
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If H
Q
 is constant with height, Equation 7.1 implies that Q decreases or increases 

exponentially with height, with a characteristic vertical scale H
Q
. For example, if Q 

is pressure and temperature is constant with height, then using the hydrostatic rela-
tionship in Equation 7.1 leads to

	 p pR

z Hp= −
0e

/ 	 (7.2)
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where

	
H

RT

gp
R= 	 (7.3)

is called the ‘pressure scale height’. For a typical value of T
R
 ~ 260 K, Equation 7.3 

leads to H
p
 around 7.6 km. Although T

R
 varies with height, in fact, the value of H

p
 

does not change greatly, so 7.6 km is a typical vertical scale in the atmosphere. 
Similarly, scale heights for density, temperature and potential temperature are
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These scale heights are interrelated through the equation of state. For example, taking 
the usual form of the ideal gas equation and differentiating logarithmically gives

1 1 1
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or
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= +
ρ
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In the lower troposphere, temperature is observed to decline with height at about 
6.5 K km−1. Hence H

T
 is typically 40 km. It follows from Equation 7.5 that the den-

sity scale height is 9.4 km. The potential temperature scale height can be estimated 
from the equation of state in the form

	 θ ρκ κ= − −p Rp1 1
0 	 (7.6)

Noting that ‘theta’ increases with height, as before, differentiate logarithmically and find

	

1 1 1

H H Hpθ ρ

κ
= −

−( )
+ 	 (7.7)

Putting in values for H
p
 and Hρ, a value for Hθ is around 80 km.

A secondary heading for this chapter might be ‘ways of linearizing the pressure 
gradient term’. The pressure gradient term in the Navier–Stokes equation is nonlin-
ear, since it involves the product of the pressure gradient with the specific volume 
1/ρ. In many circumstances, the variations of density are sufficiently small that the 
pressure gradient term can be simplified. Suppose density can be split into a large 
background part which is constant, together with a small fluctuation which varies in 
time and space:

	
ρ ρ δρr r, ,t t( ) = + ( )0 	 (7.8)



	 VARIATIONS OF DENSITY AND THE BASIC EQUATIONS	 111

A similar partitioning can also be applied to the pressure
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The Euler equations become
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Assume |δρ| ≪ ρ
0
 and so neglect δρ compared with ρ

0
 on the left-hand side of this 

equation. Then,
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where the only place that δρ still occurs is

	
b gρ

ρ
ρ

= −
δ

0

	 (7.12)

The quantity bρ is called the ‘buoyancy’. It looks like a scaled-down gravitational 
acceleration and is sometimes called the ‘reduced gravity’. But it is better thought 
of as a pressure gradient force. It results from the pressure field which is consistent 
with hydrostatic balance in a fluid of density ρ

0
 acting upon an element of fluid with 

slightly different density ρ
0
 + δρ. In other words, it is that part of the pressure gradi-

ent force which is not balanced by the gravitational acceleration.
This approximation is called the ‘Boussinesq approximation’. It is satisfactory in 

a wide variety of circumstances, wherever density fluctuations are small compared 
to the mean density. It is widely used in the oceans where salinity and temperature 
variations both lead to important changes in density, to laboratory systems using 
water as a working fluid in which small variations of temperature or salinity intro-
duce density fluctuations, and in the atmosphere for circumstances where the flow 
is confined to a small range of heights. However, in many circumstances, the range 
of heights spanned by atmospheric circulation systems is comparable to or greater 
than the density scale height. In this case, the Boussinesq approximation may be 
inadequate.

7.2  Anelastic approximation

A development of the Boussinesq approximation to a system such as the atmosphere 
which spans heights comparable to or larger than the density scale height is called the 
anelastic approximation. It amounts to recognizing the larger variation of density 
across the domain, principally in the vertical, while assuming that the density fluc-
tuations of an individual fluid element remain small. Let the density be partitioned, 
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not into a constant and a perturbation, but into a reference profile that varies only in 
the vertical, and a fluctuating part which in general varies in both space and time:

	
ρ ρ ρ= ( ) + ( )R z t′ r, 	 (7.13)

with the assumption that |ρ ′ | ≪ ρ
R
. For synoptic systems, in Equation 5.32 of 

Section 5.6, it was shown that ρ′/ρ
R
 ∼ fUL/gD = Fr/Ro ∼ 10− 2, and so this approxima-

tion is certainly valid. It is very similar to the Boussinesq approximation, save the 
background density varies with height. As before, we also partition the pressure:

p p z p tR= ( ) + ( )′ r,

The reference density profiles are chosen to satisfy the hydrostatic equation, so that
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First, consider the horizontal component of the pressure gradient force:
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With this approximation, the horizontal pressure gradient force can be written as a 
gradient as is the case for pressure-type vertical coordinates. Using the reference 
profile and deviation splitting also in the vertical component of the momentum 
equation gives
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Again, neglect ρ′ on the left-hand side to obtain
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Finally, use Equation 7.6 to eliminate ρ ′
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where bθ = − g(θ′/θ
R
) is closely similar to the buoyancy term in the Boussinesq equa-

tion, except that bθ is defined in terms of potential temperature rather than density. 
We can approximate θ

R
 by a constant value θ

0
 in b to give

b g= −










θ
θ
′

0

The last term in Equation 7.17 is small since the potential temperature scale height is 
so large compared to the pressure or density scale heights. The term is lost altogether 
if θ

R
 is an adiabatic profile, with θ

R
 constant.

It remains to discuss the continuity equation within the anelastic framework. The 
full continuity equation can be written in its Eulerian form as

	

∂
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+ ∇ ⋅ ( ) =ρ
ρ

t
u 0 	 (7.18)

The scale analysis in Section 5.7 gave the magnitude of the first term relative to the 
second term to be

Ro Fr− = ∼2
2 2

0 05
f L

gD
.

Dropping this first term is equivalent to filtering sound waves from the system so 
that the compressibility or ‘elasticity’ of an individual parcel of air is neglected. 
The second term is usefully separated into contributions from the horizontal and 
vertical components of the motion. The anelastic version of the continuity equa-
tion therefore becomes
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The principal qualitative result from the anelastic system is contained in this equa-
tion; it concerns the increasing asymmetry of circulations in the vertical plane as 
their depth increases. For example, in order to conserve mass flux, an ascending 
plume of air must rise more rapidly at upper levels, where the density is low, and 
less rapidly at low levels, where the density is large.

As will be discussed in Section 7.5, using height coordinates and the anelastic 
approximation is one way to derive the basic set of equations that will be used for 
much of the analysis of atmospheric motions in the rest of this book.

7.3  Stratification and gravity waves

Consider an initially motionless atmosphere in which parcels of air undergo small 
vertical displacements δz from their equilibrium level. The displacements are adiabatic 
so the parcels conserve their potential temperature. Assume pressure perturbations are 
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negligible. Because parcels conserve their potential temperature and have the same 
potential temperature as their environment at their equilibrium level, it follows that
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The Equation 7.15 may therefore be written as follows:
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The parameter N = (g(∂θ
R
/∂z)/θ

R
)1/2 has the unit s−1 of frequency. It is the frequency 

with which vertically displaced parcels of air will oscillate about their home level, 
and it is called the Brunt–Väisälä frequency. An alternative expression for the 
Brunt–Väisälä frequency is N = (g/Hθ)

1/2. It should be emphasized that this argument 
is rather crude: a more rigorous derivation of this result is given in Section 7.5. As 
discussed briefly in Section 1.1, provided ∂θ

R
/∂z is positive, N is real, and gently 

displaced parcels will remain in the neighbourhood of their original level, simply 
oscillating in the vertical. Such an atmosphere is said to be ‘stably stratified’. If 
∂θ

R
/∂z were negative, N would be imaginary, corresponding to even initially small 

parcel displacements increasing exponentially with time. In such a case, there would 
be very rapid exchange of parcels from different levels and mixing of potential tem-
perature, leading eventually to a ‘neutral’ or ‘adiabatic’ profile with θ

R
 constant with 

height. Significantly unstable stratification, in which θ
R
 decreases with height, is 

rarely observed, apart from in shallow layers immediately above strongly heated 
surfaces. The bulk of the Earth’s atmosphere is significantly stably stratified; given 
Hθ is around 80 km, the Brunt–Väisälä frequency works out to be around 1.1 × 10−2 s−1. 
This translates into an oscillation period of around 10 minutes.

Two properties are crucial in determining the nature of the flow in a planet’s 
atmosphere. The first is the planet’s rotation rate Ω. The second is the characteristic 
Brunt–Väisälä frequency N of its atmosphere. The factors determining the mean 
value of N for an atmosphere are complicated and poorly understood. Indeed, for 
the giant planets Jupiter, Saturn, Uranus and Neptune, the large-scale values of N 
are more or less unknown, making any account of their large-scale atmospheric 
circulations extremely uncertain.

In the Earth’s atmosphere, the rotation frequency is two orders of magnitude 
smaller than the Brunt–Väisälä frequency. This means that the atmosphere supports 
both low-frequency motion, with periods of order the day length or longer, and 
high-frequency motions, with periods of 10 minutes or so. A third, even higher, 
frequency is associated with sound waves. However, as said in Section 7.2, these are 
normally filtered out of the equations by approximating the continuity equation. 
Even with this simplification, the atmosphere exhibits multiple timescales. This is 
one major source of difficulty in setting up numerical models of the atmosphere, 
either for forecasting or in order to simulate the large-scale atmospheric circulation 
and its sensitivities.
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7.4  Balance, gravity waves and Richardson number

In Section 5.3, scale analysis of the horizontal momentum equation revealed that 
for synoptic scales, there was a near-balance between the Coriolis acceleration and 
the pressure gradient acceleration. This balanced state has been elaborated in the 
previous sections. In subsequent chapters, the conditions for such a balance to exist 
will be shown to impose strong constraints on the flow and its evolution. The 
assumption of balance will lead to important insights into the nature of small 
Rossby number flow in the atmosphere and in other rotating fluid systems. In this 
section, we address the reasons why balanced states are established and persist. 
The role of density variations turns out to be central to the persistence of near-
balanced states.

Consider a motionless stratified atmosphere, into which a small, localized distur-
bance is introduced. The disturbance involves perturbations to the velocity and pres-
sure fields, not generally in a state of balance. Provided the perturbations are small, 
the various advection terms can be neglected as being even smaller. Furthermore, 
for simplicity, we shall assume that the disturbances vary only in the zonal or 
x-direction. With these assumptions, the two horizontal momentum equations are as 
follows:
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The vertical accelerations are retained; no assumption about hydrostatic balance is 
made. Then, the vertical component of the momentum equation is
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Here, the buoyancy field has been split into two parts b = b
0
(z) + b ′, where b

0
 reflects 

the variation of density with height in the unperturbed, motionless, stably stratified 
fluid. The Boussinesq approximation has been made in writing Equation 7.24. The 
evolution of the buoyancy field is given by the thermodynamic equation in the 
following form:
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Here, N is the Brunt–Väisälä frequency, introduced in Section 7.3. It is assumed 
constant with height. Finally, the continuity equation for slow motions and the 
Boussinesq approximation takes the form:
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The equation set is now complete, with five equations in the five variables u, v, w, 
b′ and ϕ.

The evolution of the flow field is revealed by eliminating variables from 
Equations 7.22–7.26 to form a single equation for w. The algebra is straightforward and 
left as an exercise for the reader. The essential steps are, firstly, to eliminate f between 
Equations 7.22 and 7.24, secondly to eliminate v using Equation 7.23, and finally to 
eliminate u using Equation 7.26. The second step involves taking a time derivative of the 
prognostic equation; effectively, this eradicates any balanced modes from the problem, 
because they cannot evolve in this idealized linear system. The result is

	
w w N w f wxx zz tt xx zz+( ) + + =2 2 0 	 (7.27)

where the subscripts denote differentiation.
Seek wave-like solutions of the following form:

	
w W i kx mz t= + −( )( )exp ω 	 (7.28)

Here, k and m are the horizontal and vertical wavenumbers respectively, and ω is the 
frequency of the wave. Substituting into Equation 7.27 gives a consistency condition 
for this form of solution to be valid. It is
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This consistency condition is called the ‘dispersion relationship’. It is a relationship 
between the frequency of disturbances and their wavenumbers. The waves it describes, 
which depend both on the stratification N and the Coriolis parameter f, are called 
‘inertia–gravity waves’.

Equation 7.29 has a number of interesting properties and limiting forms which bear 
upon the matter of how flows achieve a balanced state. First, note the quadratic form 
of the dispersion relationship. This means that both positive and negative roots for ω 
exist, and therefore that the phase speed ω/k and group velocity ∂ω/∂k can take either 
sign. In other words, a localized region of imbalance will radiate disturbances which 
can propagate equally happily in either direction. Secondly, consider the case of deep 
waves whose structure is vertically coherent and for which therefore m → 0. In this 
limit, fluid parcels oscillate only in the vertical, and the dispersion relationship reduces 
to ω = ± N. This is the result derived less rigorously as Equation 7.21 in Section 7.3.

In order to explore the implications of Equation 7.29, some typical magnitudes of 
the various quantities involved are needed. In the Earth’s troposphere, the Brunt–
Väisälä frequency N is around 10−2 s−1. The Coriolis parameter f is two orders of mag-
nitude smaller, around 10−4 s−1. For the purposes of the present discussion, consider 
disturbances whose vertical scale is comparable to the depth of the troposphere H, 
which we may take to be around 10 km. In that case, the vertical wavenumber is 
m ∼ H− 1. The dispersion relation is illustrated in Figure 7.1, which shows the variation of 
ω with k for the case f = 10−4 s−1, N = 10−2 s−1 and H = 104 m. For small k, the frequency 
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ω → f. At larger k, the frequency increases approximately linearly with k. before asymp-
toting to N.

The numerator of Equation 7.29 is made up of two terms, the first dependent upon the 
stratification and the second upon the rotation rate. These two terms are comparable when

k

m

f

N
∼ ∼

1

100

This is referred to as the natural ratio of vertical and horizontal scales, D/L. For the 
particular case with m = H− 1,

k
NH

f
LR

− ∼ ≡1

The horizontal length scale L
R
 is called the ‘Rossby radius of deformation’ or simply 

the ‘Rossby radius’. It distinguishes between small scales, for which stable stratifica-
tion acts to flatten pressure or density surfaces, and larger scales, for which the 
Coriolis effect tends to deform and tilt such surfaces. In later chapters, the Rossby 
radius will turn out to be a crucial horizontal scale. For example, it determines the 
synoptic scale, the typical scale of midlatitude weather systems. A representative 
midlatitude value of L

R
 is 106 m.

The analysis of inertia–gravity waves is relevant to the problem we are considering 
of the development of an isolated, imbalanced disturbance, because such a disturbance 
can be thought of as a super-position of inertia–gravity waves of various wavelengths. 
Such a wave complex propagates away from its source at the group velocity; the com-
ponent of group velocity parallel to the x-axis is given by c

gx
 = ∂ω/∂k. For small k, with 
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Figure 7.1  The dispersion relationship, Equation 7.29, for inertia gravity waves. Here, 
f = 10−4 s−1, N = 10−2 s−1 and m = H−1 where H = 104 m
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ω ≈ f, the group velocity is 0. For large k, the limiting case needs to be discussed rather 
carefully. At first sight, one might imagine that the dispersion relation for k LR� −1  
should reduce simply to ω = N. However, there is an important range of horizontal 
scales for which k2N2 ≫ f2/H2 even though k2 ≪ H− 2. In this range,

ω ≈ ≈kNH c NHx, . .,i e g

A representative value of c
gx

 is therefore around 100 m s−1. This is much faster than 
typical advection speeds and is much faster than the group velocities associated with 
balanced wave motions such as Rossby waves.

The route to balanced flow is neatly illustrated by a calculation first carried out 
by Rossby in the 1930s and called the ‘Rossby adjustment problem’. Suppose the 
atmosphere is initially stratified but motionless. A region is impulsively set into 
motion. How do the velocity and pressure fields react to this impulse?

For the purposes of illustration, a numerical solution to the problem is shown in 
Figure 7.2. This is based on a set of equations called the shallow water equations. 
The shallow water equations represent the dynamics of a shallow layer of fluid of 
constant density, depth H. Mathematically, the results are very similar to the results 
given in the discussion just given earlier but with a prescribed vertical scale H to the 
motions in place of a varying vertical wavenumber m. For simplicity, the initial 
disturbance is assumed to be of so small an amplitude that the equations can be 
linearized about a state of rest, meaning that all the nonlinear advection terms are 
dropped. The momentum equations may be written as follows:
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Here, h is the small deviation of the fluid depth from H. We assume no variations in 
the y-direction. The continuity equation for this system is
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The results can be generalized by making these equations dimensionless. A character-
istic time is f − 1, sometimes called the ‘inertial timescale’, and a characteristic length 
scale is the Rossby radius L

R
 = (gH)1/2/f. Vertical displacements of the fluid surface 

are scaled by the mean depth H. The dimensionless form of the equation set is
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where the asterisk indicates dimensionless variables. Figure 7.2 was generated by 
solving these equations in a domain periodic in x from an initial state in which u and 
h were both 0, and v was 0 apart from a region around x = 0 where it was positive.

Figure 7.2a shows a longitude–time plot, or ‘Hovmöller’ plot, of the height field. 
Initially zero everywhere, the height develops a characteristic slope in the region of 
non-zero v, bringing it into geostrophic balance with the v field on a timescale of 
O(f− 1). At the same time, a packet of disturbances propagates away from the region 
of non-zero v towards both larger and smaller x. The speed of the leading edge of 
this packet is very close to the shortwave group velocity NH. In the rather artificial 
configuration described here, with its periodic boundary condition and virtual 
absence of any dissipation, the wave packets propagate right around the domain and 
would eventually meet again in the region of non-zero v. Thereafter, the sequence 

Figure 7.2  The Rossby adjustment problem: longitude-time plots showing (a) geopotential 
height and (b) zonal wind. Distances along the x-axis are in units of L

R
 while time is given in units 

of f−1. Negative values are indicated by dashed contours
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would more or less repeat itself. The calculation shown in Figure 7.2 was stopped 
as the wavefront crossed the periodic boundary. In a larger domain, or in a domain 
with appreciable friction, the wave packets would eventually dissipate at some large 
distance from their origin, leaving a balanced flow near their source.

The corresponding zonal wind is shown in Figure  7.2b. In the vicinity of the 
imposed meridional wind, positive values of u quickly develop: they represent the 
eastward movement of mass as the height increases to the east of the meridional jet 
and reduces to its west. After an initial transient, the u drops back to 0 and even 
becomes weakly negative as the flow settles down. Again, the disturbance in the 
u-field propagates away from the source region at a speed close to NH, the group 
speed of short inertia–gravity waves.

Examples like this reveal that key to flows evolving so they become close to a bal-
anced state is the disparity between the inertia–gravity wave speed and the typical 
advection speeds. Imbalanced disturbances propagate rapidly out of the region of a 
localized flow feature, eventually to be dissipated, while the feature itself settles down 
to a slowly evolving balanced state. So for balance to be achieved, the flow must have

U NH�

This relation can be expressed in terms of a further dimensionless number, the 
so-called Richardson number, which may be thought of as a dimensionless measure 
of stratification:
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Ri was introduced before in Section 5.9 and its relationship to the Rossby and Burger 
numbers given in Equation 5.45. For the midlatitudes of the Earth’s atmosphere, it 
has values of order 100, and so this condition in Equation 7.33 is generally met. A 
key to much of the discussion in the later chapters of this book is that atmospheric 
flow evolves so that it remains close to a balanced state, although crucially, it is rarely 
exactly in a state of balance. This is the basis of ‘quasi-geostrophic theory’, which 
will be introduced in Chapter 12 and will be explained in subsequent chapters.

The Richardson number has been interpreted in terms of the ratio of the advection 
speeds to the speed of inertia–gravity waves. It can also be related to the thermal 
structure of the atmosphere. Note that

N
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In Chapter 6, we have given the thermal wind relations in various coordinate sys-
tems, and thermal wind balance will be discussed in detail in Chapter 12. Taking 
characteristic scales in the relation as given in Equation 6.24 or 6.31 leads to
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It follows that
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(Here, the variable s is simply horizontal distance parallel to ∇
H
θ). Now the first 

factor on the right-hand side of this relationship is simply the magnitude of the slope 
of the θ-surfaces. Rearranging gives
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	 (7.34)

Taking H ~ 104 m, L ~ 106 m, Ri ~ 100, Ro ~ 0.1 and Bu ~ 1 for the Earth’s midlatitudes, 
the isentropic slope is around |∂z/∂s|θ ∼ 10− 3. This slope indicates that isentropes are 
flat compared to the purely geometric slope (D/L). In turn, such flat isentropes mean 
that changes of θ over a depth H in the vertical are large compared to the changes of 
θ over a horizontal distance L. We shall return to this important result in Chapter 12, 
where it lies at the heart of the quasi-geostrophic approximation.

7.5  Summary of the basic equation sets

In this section, we gather together the basic equation sets that will be used for much 
of the analysis in the later chapters. From Section 7.2, the frictionless, adiabatic equa-
tions with the hydrostatic and anelastic approximations may be written as follows:
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	 (7.35)

Here, Φ′ = p′/p
R
, ρ

R
 is a function of z only, the buoyancy b = gθ′/θ

0
 and

N z
g

zR

R2 ( ) =
θ

θd

d

For a flat bounding surface, the boundary condition is w = 0 on z = 0.
If the hydrostatic approximation is not made, then the corresponding vertical 

momentum equation is

D
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∂
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If we set
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then the equations are
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with w = 0 at z = 0. For completeness, a friction term v and heating terms  b orθ  have 
been retained in Equations 7.35 and 7.36. But for many of the applications in later 
chapters, where the relevant timescales are less than a few days, we shall assume 
these terms are small and so will drop them.

As shown in Section 6.3, the equation set, Equation 7.36 is obtained directly 
using the pressure-based coordinate
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Here H
0
 = Rθ

0
/g. For this vertical coordinate, in Equation 7.36, Φ is the geopotential, 

ρ
R
 stands for the equivalent density r defined in Equation 6.25 and the vertical coor-

dinate z is similar to geometrical height, provided θ is close to θ
0
. In this case, no 

equivalent of the anelastic approximation that was necessary in height coordinates 
has been made. However, using this pressure-based vertical coordinate, the bound-
ary condition w = 0  at  z = 0 is an approximation. The equation set in the form 
Equation 7.35 can be derived by setting Φ = Φ

R
 + Φ′ and θ = θ

R
 + θ′, and then 

b = gθ′/θ
0
, and N2(z) = (g/θ

R
)(dθ

R
/dz) as before.

These two basic equation sets will provide the starting point for many analyses in 
the subsequent chapters.

7.6  The energy of atmospheric motions

The atmosphere is in continual motion. By forming an energy equation from 
Equations 7.35 or 7.36, the mechanism for generating the kinetic energy of atmos-
pheric motion becomes clear.
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The kinetic energy per unit volume of the atmosphere is

	
K R= ρ

u u⋅⋅
2

	 (7.37)

There is a tiny contribution from the vertical velocity, but for synoptic-scale motion, 
it is several orders of magnitude smaller than the contribution from the horizontal 
components of the velocity. It is convenient to retain it here and use the non-hydro-
static form of the momentum equations in Equation 7.35a, in the following form:
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(7.38)

Here, v denotes the acceleration due to friction. Use vector identities to write the 
advection term in the form

u u
u u

u u⋅⋅ ⋅⋅
⋅⋅
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and take the scalar product of the momentum equation with ρ
R
v to form a kinetic 

energy equation:
∂
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K
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K wbR R R Rρ ρ ρ ρu u⋅⋅ ⋅⋅ ⋅⋅Φ′ − v v

Using the mass conservation equation, this may be written:
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Finally, integrate over the whole domain, so that the divergence terms become inte-
grals around the boundary which are zero with the boundary conditions that v = 0 on 
vertical boundaries and w=0 on horizontal boundaries, to obtain an equation for the 
total kinetic energy

	

d

dt
K wbR R= +ρ ρ v v⋅⋅  	 (7.40)

Here, the angle brackets represent the domain averaging operator

= ∫ ∫
V V

x y z x y zd d d d d d

No simple exact form for the friction v is realistic, but in nearly all circumstances, 
v v⋅⋅  < 0, that is, the friction will be in the opposite direction to the velocity v. So the 
second term on the right-hand side of Equation 7.40 is negative; it will deplete kinetic 
energy and dissipate atmospheric motions. The first term on the right-hand side will 
generate kinetic energy if there is a positive correlation between ascent and buoy-
ancy, that is, if on average warm air rises and cold air sinks. The existence of such an 
upward buoyancy flux is a necessary condition for any process which generates 
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winds in the atmosphere. In the long-term average, the friction and buoyancy terms 
must balance.

A complementary energy equation results from a similar development from the 
thermodynamic equation, Equation 7.35d. Multiply by b/N2 and integrate over the 
whole domain, applying appropriate boundary conditions, to give

	

d

dt
A wb

bb

NR R= − +ρ ρ

2 	 (7.41)

where

	
A

b

N
R=
ρ 2

22 	 (7.42)

has the units of energy per unit volume and is called the ‘available potential energy’. 
Available potential energy is generated if there is heating of warm air and cooling 
of colder air, so the buoyancy variance is increased. On the global scale, heating of 
the warm tropics and cooling of the cold polar regions generate global available 
potential energy. The first term on the right-hand side of Equation 7.41 depletes 
available potential energy if there is on average a positive correlation between 
ascent and positive buoyancy. It is equal in magnitude but opposite in sign to the 
first term on the right-hand side of Equation 7.40; it therefore represents a conver-
sion from available potential energy to kinetic energy. Figure 7.3 summarizes this 
energy cycle.

A K

ρRbb N2

ρRwb
ρRv∙v

Figure 7.3  Energy cycle of atmospheric motion. Differential heating generates available poten-
tial energy 〈A〉. Upward buoyancy fluxes convert available potential energy to kinetic energy 〈K〉, 
which is dissipated by friction
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Rotation in the atmosphere
8

8.1  The concept of vorticity

Geophysical flows are characterized by rotational components of the velocity field 
which are large compared to the divergent components. This asymmetry is exploited 
in this section by developing an alternative to the momentum equations, using a vor-
ticity equation in place of the momentum equation to predict the evolution of the flow. 
The rotational and divergent components of a flow were discussed in Section 2.2 
in terms of two-dimensional flows. There, a measure of the spin of individual fluid 
parcels, the ‘vorticity’, was introduced. For a two-dimensional flow in the x–y plane,
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y

The concept of ‘vorticity’ or ‘spin’ is readily generalized to three-dimensional flow:
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	 (8.1)

In three dimensions, vorticity is a vector quantity. Its direction is parallel to the local 
spin axes of fluid parcels, and its magnitude is twice the magnitude of the angular 
velocity of the parcels.

Consider some closed loop L in the fluid, which encloses a surface A, as shown 
in Figure 8.1. From Stokes’s theorem,

	
= = ∇× ⋅⋅ = ⋅∫ ∫∫� d d d

L A A

C A Au nu nl ξ 	 (8.2)

The quantity C is called the ‘circulation’ of the fluid around L. This relation gives 
a  simple physical interpretation of vorticity. If the loop is small so that the unit 
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vector n is more or less constant across A, then the average component of vorticity 
perpendicular to A is

ξξ ⋅ =n
C

A
,

that is, the magnitude of the vorticity is simply the circulation per unit area. For 
example, suppose that L is a circle of radius R and that a constant tangential wind of 
magnitude V blows around it. Then, the circulation around L is 2πRV. Dividing by 
the area A enclosed by the loop tells us that the magnitude of the average vorticity 
perpendicular to A is ζ = 2V/R. Circulation is a directly measurable quantity, refer-
ring to a finite region of a flow. Vorticity is a mathematical idealization of that 
concept, the circulation per unit area, as the loop becomes infinitesimally small. 
While the continuum hypothesis presumes that ξ tends towards some well-defined 
limiting value as A → 0, in practice, this is not usually so, and there should really be 
a fixed minimum scale in mind when discussing vorticity. We shall discuss one 
example in Chapter 9 where the pointwise concept of vorticity appears to break 
down in a way which the concept of circulation does not.

An aid to visualizing the vorticity of a flow is analogous to the concept of a 
streamline. Imagine a line through the fluid whose direction is always parallel to the 
local vorticity. Such an imaginary line is called a ‘vortex line’ or a ‘vortex filament’, 
and it indicates the local rotation axis of spinning fluid elements. Notice that such a 
vortex line, like a streamline, must either be a closed loop or must extend to the 
boundaries of the fluid. Vortex lines may not be broken.

Now imagine a bundle of such vortex lines. These constitute a ‘vortex tube’. Like 
individual vortex lines, vortex tubes must either be closed or must extend to the fluid 
boundaries. The vortex tube may be stretched and narrowed, but it cannot be broken 
and disconnected. We shall see in later sections that for inviscid flow with constant 

L

A

Figure 8.1  A vortex line and its associated circulation
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density, the vortex tube is also a material tube. It will be advected with the flow field 
and deformed by it. This leads to a very helpful conceptual model of the evolution of 
the vorticity field in terms of the twisting and stretching of vortex tubes.

In atmospheric applications, it is useful to separate the contribution of the hori-
zontal and vertical components of velocity to the vorticity separately. Writing

u v k= + w

and taking its curl gives

	 ξξ = ∇× − ×∇v k Hw 	 (8.3)

The first term contributes to both the horizontal and vertical components of vorti-
city. The second term contributes only to the horizontal components of vorticity. 
Consider the scaling of the first term. Its components can be deduced from 
Equation 8.1. Its horizontal components are of order U/D, while its vertical terms 
are of order U/L. For typical synoptic scale motions with

U L D∼ ∼ ∼−10 500 51ms km km, ,

the horizontal components will have a typical magnitude of 2 × 10−3 s−1, while the typical 
vertical components will be perhaps 10−5 s−1, some two orders of magnitude smaller. In 
the lowest kilometre or so of the atmosphere, through the atmospheric boundary layer, 
the typical horizontal components of vorticity are another order of magnitude larger 
still, at around 10−2 s−1. Following the scale analysis of Section 4.6, the contribution of 
the second term will be of order RoUD/L2 to the horizontal components of vorticity and 
is of order Ro(D2/L2) smaller than the contribution from the first term. We conclude that 
on the synoptic scales, the second term in Equation 8.3 can be neglected, so that

	 ξξ = ∇× v 	 (8.4)

to an adequate level of approximation. In the following text, we shall find that the 
hydrostatic approximation implies that this approximation should be made. One 
might also jump to the conclusion that the vertical components of vorticity could be 
neglected compared to the horizontal components. This turns out to be incorrect. We 
shall see in the next chapter that it is the vertical component of vorticity which is 
dynamically active, even though it is numerically smaller than the horizontal com-
ponents. Indeed, meteorologists, when referring to the atmospheric vorticity, often 
mean the vertical component of vorticity only.

8.2  The vorticity equation

We start with the momentum equation in an absolute frame of reference, written as

∂
= − ⋅∇ − ∇ −∇Φ +

∂
�

� �
�

p
t

u
u u u

ρ
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Here, u represents acceleration due to friction and will generally be small away 
from the ground. To form a vorticity equation, take the curl of this equation to obtain
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t
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ζ
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where ζ = ∇ × u
A
 is the absolute vorticity, the spin in the absolute frame of reference. 

The term involving the gravitational potential has vanished since the gravitational 
force can be expressed as the gradient of a scalar, and the curl of any gradient must 
be 0. The advection term needs further simplification, as in Section 7.6. Using the 
vector identity,

∇ ⋅( ) = ⋅∇( ) + ⋅∇( ) + × ∇×( ) + × ∇×( )A B B A A B B A A B

with A = B = u
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Hence, the vorticity equation becomes

	
( )

ρ
 ∂

= ∇× × −∇ ×∇ +∇× ∂  
�

�
p

t
u u

ζ
ζ 	 (8.7)

Use the vector identity

∇× ×( ) = ⋅∇( ) − ∇ ⋅( ) − ⋅∇( ) + ∇ ⋅( )A B B A B A A B A B

to re-write the first term on the right-hand side:

	
−∇× ×( ) = − ⋅∇ + ∇ ⋅( ) + ⋅∇ − ∇ ⋅( )u u u u uA A A A Aζζ ζζ ζζ ζζ ζζ 	 (8.8)

The second term on the right-hand side is 0, and the last term is 0 for incompressible flow. 
For the moment assuming compressible flow, the final form of the vorticity equation is
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The vorticity equation is in the form of a ‘material conservation relationship’, in 
which the rate of change of absolute vorticity moving with the fluid is equal to the 
sum of a number of source or sink terms. If the source or sink terms are 0, then abso-
lute vorticity is conserved moving with the fluid. But this is not in general the case.

Equation 8.9 can be transformed into a rotating frame of reference, using the 
relationships developed in Chapter 2, Equation 2.8 et seq.
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t t
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Also note that

ζζ ζζ ΩΩ ζζ ΩΩ ζζ⋅∇( ) = ⋅∇( ) + ×( ) = ⋅∇( ) + ×u u r uA R R

and

∇ ⋅ = ∇ ⋅u uA R

With these relationships, the vorticity equation in a rotating frame of reference is
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an equation which has the same form as Equation 8.9. Note however that it involves 
the absolute vorticity but the velocity relative to a rotating frame of reference. From 
now on, the A and R subscripts will be dropped. Equation 8.10 could have been 
obtained directly by taking the curl of the momentum equation in a rotating frame 
of reference, Equation 3.12, and recalling that the absolute and relative vorticities 
are related by ζ = ξ + 2Ω.

8.3  �The vorticity equation for approximate  
sets of equations

When the shallow atmosphere approximation applies, the momentum equations 
(Equations 4.32, 4.33 and 4.34), yield the full vorticity equation:
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This will again take the form of Equation 8.10, with the various metric terms approx-
imated using a in place of r, and with the local horizontal component of the Earth’s 
rotation neglected, so that the absolute vorticity is written as

	 ζζ ξξ= + f k 	 (8.12)

In rectangular Cartesian coordinates on an f- or β-plane,
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If in addition, the hydrostatic approximation is also made, the same vorticity equation 
again results, provided the relative vorticity is redefined to exclude the tiny contribu-
tion from the vertical velocity:

	 ξξ = ∇× v 	 (8.14)
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so that on an f- or β-plane,
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With the anelastic approximation, the third term on the right-hand side of Equation 8.10 
takes a simpler form, and the vorticity equation becomes
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This form applies to the basic equation sets (Equations 7.35 and 7.36), the latter 
with gθ/θ

0
 replacing b. Neglecting friction term and using the mass conservation 

equation, the vertical component of the vorticity equation is
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where ξ
H
 denotes the horizontal components of the vorticity.

8.4  The solenoidal term

The third term on the right-hand side of Equation 8.10 is called the ‘solenoidal’ 
term or the ‘baroclinic’ generation term. Its magnitude depends upon the angle 
between surfaces of constant density and surfaces of constant pressure, and it is zero 
if these surfaces are parallel, that is, if the fluid is barotropic with ρ = ρ(p) only. 
When this is not so, in other words, when the pressure and density surfaces are not 
parallel, the fluid is said to be ‘baroclinic’.

The equation of state enables the solenoidal term to be re-written in terms of 
temperature and pressure rather than density and pressure or indeed in terms of 
potential temperature:
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In the midlatitudes, the slope of the temperature or potential temperature surfaces 
is generally a great deal larger than the slope of the pressure surfaces. Assuming that 
geostrophic balance gives at least a rough estimate of the flow speeds, the slope of 
the pressure surfaces is of order (∂p/∂y)/(∂p/∂z) ∼ fU/g ~ 10− 4. The slope of a 
θ = constant surface is of order (∂θ/∂y)/(∂θ/∂z) ∼ fU/N2D, which is around 5 × 10−3. 
So, if the pressure surfaces are effectively horizontal, by using the hydrostatic rela-
tionship, the solenoidal term can be written as follows:
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This form of the solenoidal term is very similar to that given with the anelastic 
approximation as in Equation 8.16, and it is easy to see that the term results in the 
generation of a horizontal component of vorticity whenever there are horizontal 
temperature gradients. The sign of the resulting circulation is such that warmer air 
rises. An example of the operation of the solenoidal term is a sea breeze circula-
tion. Here a temperature contrast between the land and sea sets up an overturning 
circulation with the warmer air rising. Figure  8.2 illustrates such a sea breeze 
circulation.

In examples such as that in Figure 8.2, the solenoidal term acts principally in 
the horizontal directions. So we split the vorticity into its horizontal and vertical 
parts:
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Then, using the continuity equation, the horizontal components of the vorticity 
equation can be written as follows:
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To order Rossby number, this equation is dominated by the terms on its right-hand 
side, implying a near balance between those terms. So, to O(Ro), the horizontal 
component of the vorticity equation is simply
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This is the thermal wind equation, relating the vertical shear of the horizontal com-
ponents of the wind to the horizontal gradients of temperature that was introduced 
in Chapter 6. We shall return to thermal wind balance in Chapter 12.

p

Figure 8.2  A sea breeze circulation set up by relatively cold water adjacent to a warm land mass, 
a circulation which can be set up during the daytime when the sun warms the land surface
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We now consider the contribution of the solenoidal term to the vertical compo-
nent of vorticity. The vertical component of the term is as follows:
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To order Rossby number, the horizontal pressure gradients are related to the hori-
zontal winds, by Equation 5.16, and the horizontal temperature gradients to the 
vertical shear of the horizontal winds, by Equation 8.21. Therefore, the magnitude 
of the vertical component of the solenoidal term is

R

p
T p
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∇ ×∇( ) ⋅ ∼k

2 2

Compare this with the horizontal advection of the vertical component of vorticity, 
which scales as

D

D

ξ
t

U

L
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2

The ratio of these terms is therefore
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For a typical synoptic scale system, this ratio is around 0.05, and so we conclude 
that the solenoidal term does not make an appreciable contribution to the evolu-
tion of the vertical component of vorticity, at least on the synoptic and larger 
scales.

8.5  The expansion/contraction term

The second term on the right-hand side of Equation 8.10 relates the change of vor-
ticity to the change of volume of a fluid element. Isolating this term
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D
other terms

ζζ
ζζ

t
= − ∇ ⋅( ) +u 	 (8.24)

We shall designate this term as the ‘expansion/contraction’ term. It acts to increase 
or decrease the existing absolute vorticity; it cannot generate vorticity in an initially 
non-rotating fluid. The term is zero if the flow is incompressible. If the flow is com-
pressible, so that the volume V of a fluid element changes according to

∇ ⋅ =u
1

V

V

t

D

D
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then divergence, which increases the volume of fluid elements, reduces the absolute 
vorticity while convergence increases it. That is, the rotation rate of an expanding 
fluid element will slow down, and the rotation rate of a contracting volume will 
increase consistent with ideas of angular momentum conservation.

This term is closely related to the ‘stretching term’ to be described in the next 
section. Indeed, a little manipulation of the first two terms on the right-hand side of 
Equation 8.10 enables the two terms to be combined. For clarity, we shall treat them 
separately in this chapter.

8.6  The stretching and tilting terms

In order to interpret the effects of the first term upon the right-hand side of 
Equation  8.10, consider a single vortex line, shown in Figure  8.3, and set up 
Cartesian coordinates, x

l
, y

l
, z

l
, the directions of whose axes are defined by the unit 

vectors i
l
, j

l
, k

l
. The unit vector k

l
 is parallel to the vortex line at the point of interest 

while both i
l
 and j

l
 are perpendicular to it. The local absolute vorticity is

ζζ = + +0 0i j kl l lζ

Then the term can be written as follows:
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	 (8.25)

where v
l
 represents the components of fluid flow perpendicular to the vortex line.

kl

il

jl

Figure 8.3  Local coordinates on a vortex line
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Figure 8.4  (a) The vortex tilting mechanism, in which a shear of the velocity perpendicular 
to a vortex line twists the line into a new direction, and (b) the vortex stretching or squashing 
mechanism, whereby a shear of the velocity parallel to a vortex tube causes thickening and thin-
ning of the tube

(a)

(b)
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The first term of Equation 8.25 is called ‘vortex tilting’. It represents a local 
change of the (vector) vorticity resulting from shears of the velocity perpendicular 
to the vortex line. These tilt the line, changing the direction in which the vortex line 
points. The second term in Equation 8.25 represents a process called ‘vortex stretch-
ing’. It may be thought of as a local change of the vorticity due to difluence in the 
component of flow parallel to the vortex tube, lengthening or shortening the tube. 
Equivalently, if there is net horizontal convergence, a vortex tube will narrow, and 
because it must conserve its angular momentum, its spin or vorticity must increase. 
The process reverses if there is net divergence (‘vortex squashing’). Both processes 
are illustrated in Figure 8.4.

Like the expansion/contraction term, both these terms act on the existing absolute 
vorticity to change it. If there is no absolute vorticity initially, then these terms cannot 
create any. All they can do is to change the magnitude or direction of the pre-existing 
vorticity. The baroclinic term, on the other hand, can create vorticity from an initial 
situation of zero vorticity. In a rotating system, this is sometimes obscured, and it 
appears that vorticity is created in a barotropic flow with zero vorticity initially. Of 
course, in a rotating system, there is always copious planetary vorticity to hand. 
Creation of relative vorticity can be at the expense of planetary vorticity. We will return 
to the topic of generating vorticity in an initially irrotational flow in Section 11.1.

Which of these two processes will be most important in the Earth’s atmosphere? 
We have already seen that the horizontal component of vorticity is large compared 
to the vertical, although we have asserted that it is the vertical component which is 
of greater dynamical significance. Let us first of all estimate the rate of generation 
of vertical vorticity by the tilting of horizontal vortex tubes. Tilting of a horizontal 
tube requires variations of the vertical velocity in the horizontal. Using the usual 
scalings, the horizontal component of vorticity will be of order U/D. Then, the tilting 
terms will have the following magnitude:
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where Equation 5.29 for the scale of vertical motion has been used to relate W to U. 
Now consider the stretching term, applied to the vertical component of vorticity. 
A typical magnitude of the vertical component of the absolute vorticity is simply f, 
the planetary vorticity. Then,
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This result follows because since the divergence of the geostrophic wind is zero, so that 
the divergence in the expression for the stretching term must be the divergence of the 
ageostrophic wind, which scales as RoU. So, comparing the effectiveness of the tilting 
term and the stretching term at increasing the vertical component of vorticity, we find
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Stretching

Tilting Ro
∼

1
	 (8.26)

This is an important result. For synoptic and large-scale flow, it indicates that the tilting 
of the large horizontal component of vorticity into the vertical is a minor contribution 
to the vertical vorticity budget. It implies that the large reservoir of horizontal vorticity 
is effectively decoupled from the vertical component. With this approximation, the 
vertical component of the vorticity equation (Equation 8.17), becomes
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where both expansion and stretching are represented by the term on the right-hand side.

8.7  Friction and vorticity

Up till this point, the friction has simply been represented schematically as an accel-
eration v  in the momentum equation. In this section, some more specific forms of 
v  are considered, and some general implications for the vorticity will be drawn. One 

difficulty is that the surface stress results from turbulent flow over the ground, and it 
is communicated to neighbouring levels in the atmosphere by turbulent momentum 
transports. Simple formulae for v  are very approximate and are generally replaced 
by complicated empirical relationships in all but the simplest atmospheric models.

Figure 8.5 illustrates the general principle schematically. In the free atmosphere, only 
the pressure gradient and Coriolis forces act on a fluid parcel. So if isobars are straight and 
uniformly spaced, in equilibrium, the parcel moves parallel to isobars at speed U where

F fU p Fc p= = ∇ =
1

ρ

(a) (b)

U

εU

α

Fp
Fp

Fc

FcFd

Figure 8.5  Schematic diagram of the horizontal forces acting on a fluid parcel in the northern 
hemisphere, with lower pressure to the north (a) in the free atmosphere (b) in the boundary layer. 
Air in the boundary layer is slowed by a factor ε, and its velocity vector is turned through an angle 
α towards low pressure
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Close to the surface, a drag force F
d
 acts, and it is supposed that this acts in the 

opposite direction to the velocity. In this case, the three forces can balance only if 
the velocity vector is turned through an angle α towards low pressure and the parcel 
speed is reduced by a factor ε. A balance of forces can still exist, with the air parcel 
moving at constant speed at an angle α to the isobars.

Suppose that the drag force takes the idealized form of ‘Rayleigh friction’ in 
which the drag is simply proportional to flow speed and is directed in the opposite 
direction:

	
F

v
d

D

= −
τ

	 (8.28)

Then, balancing the forces acting perpendicular to the velocity leads to

	
F Fc p or= ( ) = ( )cos cosα ε α 	 (8.29)

while balancing the forces acting parallel to the isobars gives
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orcos sin tanα α α
τ

( ) = ( ) ( ) = 1
	 (8.30)

This calculation is very crude, and in particular, it does not determine the depth of 
the boundary layer, which becomes a free parameter of the system. What the model 
does show is that a mass flux from high pressure towards low pressure will develop 
within the boundary layer. This mass flux has important implications for the vorti-
city budget of the atmosphere.

Now take this flow and imagine bending the isobars into circles. Figure 8.6 shows 
a cross section through the system. Within the boundary layer, the Coriolis force on 
the retarded parcel does not balance the pressure gradient force, and as in the uni-
form flow case, there must be a component of ageostrophic flow from high pressure 
towards low pressure. In these circular systems, this ageostrophic flow converges 
into the centre of cyclones and diverges out of the centre of anticyclones. By conti-
nuity, this boundary layer flow must be balanced by vertical motion at the top of the 
boundary layer. This vertical motion may be thought of a lower boundary condition 
for the flow in the free atmosphere, and it is the basis of a series of secondary circu-
lations wherever the flow is rotational. This vertical motion, exchanging boundary 
layer air and free atmosphere air at the top of the boundary layer, is called ‘Ekman 
pumping’. The consequences of Ekman pumping in the region of the cyclone are 
vortex stretching in the boundary layer that offsets the frictional damping of the 
cyclone there and vortex shrinking above the boundary layer. The vortex shrinking 
above the boundary layer produces a spin-down of the cyclone above the boundary 
layer. In this way, secondary ageostrophic circulations act to distribute the boundary 
layer friction through a deeper layer of the atmosphere. A similar process, with 
reversal of the appropriate signs, acts to attenuate anticyclones. The impact of 
Ekman pumping is generally more significant than the direct effect of friction on the 
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vorticity field and is a much more important mechanism for dissipating relative 
vorticity in the atmosphere and ocean.

The conceptual model shown in Figure 8.6 is a plausible qualitative picture of the 
interaction between the boundary layer and the interior flow, but without more 
detail, it does not provide quantitative estimates of, for example, the magnitude of 
the Ekman pumping or the time needed for the mechanism to dissipate vorticity. 
Two further calculations which make the arguments more quantitative are now 
given.

Around two-thirds of the Earth’s surface is fluid: it consists of ocean. So Figure 8.7 
illustrates the boundary layer at the interface of the atmosphere and ocean. It is 
characterized by tangential stresses which fall off with distance from the interface 

ξ > 0ξ < 0

Figure 8.6  Cross section through a cyclone–anticyclone pair, showing the ageostrophic flow in 
the boundary layer and the resulting Ekman pumping

Atmosphere

Ocean

τ

z

za

–zo

Figure 8.7  Schematic tangential stress profile over the oceans
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and which are continuous across that fluid interface. For steady flow in either the 
atmosphere or ocean, there must be a three-way balance between the Coriolis force, 
the pressure gradient force, and the gradient of tangential stress:
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Break the flow into its geostrophic and ageostrophic parts v = v
g
 + v

a
 where

f pk v× = − ∇g

1

ρ

and so

ρ f
z

k v× =
∂
∂a

ττ
.

This can be re-arranged to give
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There will therefore be an Ekman drift of matter between any two levels z
1
 and z

2
, 

with a mass flux of
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If the mass continuity equation is written in the form
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then the Ekman pumping velocity is related to the Ekman drift by
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Finally, combining Equations 8.33 and 8.34 gives the relationship between the 
Ekman pumping velocity and the curl of the wind stress:
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From this relationship, two results follow. First, integrating Equation 8.33 sepa-
rately through the atmospheric and oceanic boundary layers, the Ekman mass fluxes 
through either are found to be equal but opposite in sign:
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In retrospect, the result that the total mass flux produced by internal stresses in the 
two systems is zero is a simple example of Newton’s third law of motion. Since the 
ocean is much denser than the air, the actual velocities are much smaller in the 
ocean, but the mass fluxes are the same in magnitude. Finally, using the continuity 
equations, it follows that
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Again, the mass fluxes are identical, but this time, they are in the same direction. 
In the atmosphere, a typical midlatitude value for w

EA
 is around 1–2 cm s−1. In the 

ocean, the Ekman pumping is smaller by a factor of 103 because of the greater den-
sity of seawater. The coupling between the atmosphere and ocean by means of the 
Ekman layer is the primary mechanism for the wind-driven circulation in the ocean, 
generated by vortex stretching and squashing as a result of the Ekman pumping 
induced by the atmospheric vorticity.

In the laboratory, an explicit expression for the Ekman boundary layer can be 
deduced since the tangential stresses are given by Newton’s law of viscosity 
τ = μ∂v/∂z. Suppose that outside the boundary layer, flow is steady, geostrophic, and 
parallel to the x-axis. Then, balancing the viscous and Coriolis terms gives an esti-
mate of the boundary layer thickness:
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For laboratory scales, a typical f might be 1 rad s−1 and a typical ν around 10−6 m2 s−1, 
suggesting a boundary layer thickness of around 1 mm. The momentum equations 
for straight steady flow reduce to
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A neat trick for solving these equations is to define a complex variable U = u + iv so 
the pair of equations reduces to
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Noting that i i1 2 1 2/ /= +( ) , the solution is
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where H
E
 = (2ν/f)1/2. The Ekman pumping velocity can be calculated using these 

expressions to calculate the horizontal divergence in the boundary layer and then 
integrating from the surface to the top of the boundary layer:
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Here, ξ
g
 is the geostrophic relative vorticity above the boundary layer. Taking w = w

E
 

to be the lower boundary condition for the interior flow, the rate of change of vorti-
city due to vortex stretching is, from Equation 8.25,
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From this expression and formula (8.40), the time taken for the Ekman pumping 
to erode significantly the vortex above the boundary layer can be calculated. This 
timescale is called the spin-down time, τ

E
:
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We have assumed that |ξ| ≪ f, which is equivalent to small Rossby number flow. For 
a typical laboratory experiment using water as a working fluid, with f around 
1 rad s−1, D around 10 cm, and ν around 10−6 m2 s−1, the spin-down time is about 
300 s. A timescale based on vertical diffusion to erode the interior vorticity would 
be much longer, around

τD ∼
D2

ν

which for the same parameters is some 104 s.
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8.8  �The vorticity equation in alternative 
vertical coordinates

An analogue to the vorticity can be defined in pressure-based or in entropy-based vertical 
coordinates. However, some care is needed in the use of the words ‘vertical’ and 
‘horizontal’, for we are now dealing with non-orthogonal coordinates. In general, 
p-surfaces and θ-surfaces make an angle with surfaces of constant geopotential. In the 
midlatitudes, the angle between p and Φ surfaces is typically around 10−3 rad. The angle 
between θ- and Φ surfaces is typically 10−2 rad. However, in the following analysis, 
the ‘vertical’ component of vorticity refers to that component which is perpendicular to 
geopotential surfaces. Similarly, expressions for the vorticity will be given in terms of 
the wind v = ui + vj, which blows parallel to Φ-surfaces. However, these components are 
differentiated with p (or θ) constant, not with Φ constant. Thus, the magnitudes of 
ζ,  ζ

p
 and ζθ may differ, but they are all in the same direction, namely, parallel to ∇Φ.
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, the pressure co-ordinate analogue of 

vorticity may be written as follows:
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The pressure co-ordinate version of absolute vorticity is ζ
p
 = ξ

p
 + f k. Then, 

taking the curl of Equation 6.18a and using the hydrostatic relation in the form 
Equation 6.18b gives
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Each of the terms in this equation is interpreted analogously to the corresponding 
term  in the basic vorticity equation (Equation 8.10). The first term represents 
stretching and tilting, just as before. The second term in Equation 8.10 is not present 
in Equation 8.43 because it is identically zero in pressure coordinates. The second 
term in Equation 8.43 is a p-coordinate version of the baroclinic (or ‘solenoidal’) 
term; note that, like the pressure gradient term in the momentum equations, without 
any further approximation, it is a linear term in pressure coordinates.

A similar development can be carried out in θ-coordinates. The θ-coordinate 
version of vorticity is
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The vorticity equation becomes
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Note that the vertical component of ζθ can be written as follows:
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At the level of the hydrostatic approximation, ∂θ/∂z = |∇θ| so that ζθ approximates the 
component of absolute vorticity normal to an isentropic surface. In the same way,
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is approximately the component of absolute vorticity perpendicular to a pressure 
surface.

8.9  Circulation

We noted in the opening of this chapter the close relationship between vorticity and 
circulation. Circulation is arguably the more basic quantity. It has meaning even 
when the vorticity fields fail to converge to a finite value at a point, and indeed, any 
attempt to measure vorticity ends up as an attempt to measure circulation around an 
appropriately small circuit.

In an absolute or inertial frame of reference, the circulation about some circuit L is
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The evolution of the circulation is described by
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while the first term can be expanded using the momentum equation (Equation 2.40), to give
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Since the circuit L is closed, the exact differentials all integrate to 0, so that the 
absolute circulation equation takes the following form:
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For an incompressible fluid, ρ is a constant so that it can be taken outside the integral 
of the first term, and this becomes zero. Therefore, if the fluid is also frictionless, this 
equation shows that the circulation can never change. This result is sometimes called 
‘Kelvin’s circulation theorem’. In particular, if the initial absolute circulation is 0, 
it  must remain zero at all subsequent times. This result appears paradoxical. 
Incompressible flow in the laboratory and in nature is full of circulating structures, 
even when the friction term is expected to be negligible. Where does all this circula-
tion come from? Furthermore, at first sight, friction looks an unlikely candidate to 
generate circulation. Suppose the friction term takes the form of ‘Rayleigh friction’:

u
u

= − A

Dτ

Then, from Equation 8.49, the absolute circulation evolves according to

 
= − − 

 
∫�� �

�

d � d
d L

C C
p

t ρ τ

If the flow is incompressible, so the first term is zero, then any initial absolute 
circulation will decay towards zero on a timescale τ

D
. We shall return to the prob-

lems posed by the Kelvin circulation theorem in Chapter 11.
Now consider the effect of rotation of the system. The absolute circulation can be 

written in terms of the relative velocities:

( )� d
L

C u r l= + ⋅ ⋅∫� Ω

The right-hand side is equal to the relative circulation C plus a contribution which 
may be transformed to an integral over a surface S bounded by L:

	
C C C

S S

A d d= + ∇× ×( )( ) = + ⋅∫ ∫ΩΩ ΩΩr s s. 2 	 (8.50)

So, finally the absolute circulation may be written as follows:

	 C C SA e= + 2Ω 	 (8.51)

where S
e
 is the area of the circuit S projected onto the equatorial plane. The relative 

circulation equation can be written as follows:

	

 
+ Ω = − + ⋅ ρ 

∫ �edd �� d d
d d L
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p

t t
u l 	 (8.52)
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This result could have been obtained directly from the momentum equation in 
rotating coordinates, Equation 3.15. Alternatively, both Equations 8.49 and 8.52 
can be obtained by integrating the absolute vorticity equations, Equations 8.9 and 
8.10 over a surface bounded by the circuit S.

Under the shallow atmosphere approximation, it is only the vertical component 
of Ω which is relevant. Equation 8.52 remains valid, but S

e
 now must be defined as 

the area of the projection onto the equatorial plane of S
h
, where S

h
 is the projection 

of S onto a geopotential surface. Alternatively, write Equation 8.50 in the following 
form:

= + ∫�
h

� d
S

C C f S

If the hydrostatic approximation is assumed, then this equation and the circulation 
equation (8.49) remain valid, but involve only the horizontal velocities in the defini-
tion of C:

= ⋅∫� d
L

C v l

Consider a circuit which is a line of latitude at a fixed height and a flow which is 
purely zonal. Then, the absolute circulation is

C u r rA = +( )Ω πcos cosφ φ2

and for frictionless flow, this is conserved. This result is equivalent to the conserva-
tion of angular momentum per unit mass.

The close relationship between the vorticity and the circulation means that a 
similar parallelism exists between the circulation equation (Equation 8.52), and the 
vorticity equation (Equation 8.10). The stretching/tilting terms of the vorticity equation 
do not appear explicitly in the circulation equation. However, they are implicitly 
expressed by the motion of the circuit L. The friction term and the solenoidal terms 
are explicit in both equations.

Finally, let us examine the solenoidal term more closely. Different forms of it may 
be written, using the equation of state in its various guises. These are as follows:

	

κ
 

− = − = −  
 

∫ ∫ ∫� � � p
�

� d dln d
L L L

p
p RT p c

p
θ

ρ
	 (8.53)

Under certain circumstances, this term will be 0. In particular, it will be 0 if ρ can 
be expressed as a function of p alone. Equivalently, it will be 0 if either T or θ can 
be expressed as a function of p only. Such an atmosphere is said to be barotropic. A 
particular case is when one of ρ, T, or θ is constant on the circuit. Only one such 
condition can be expected to persist with time: if there are no heat sources or sinks, 
so that the motion is adiabatic, then a circuit initially on a θ-surface must remain on 
that surface and the solenoidal term will vanish identically. The absolute circulation 
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must be conserved on all such isentropic circuits. This proves a very strong constraint 
on atmospheric motion and leads to the development of a concept called ‘potential 
vorticity’, a concept developed in detail in Chapter 10.

For a frictionless adiabatic atmosphere, the vertical component of the vorticity 
equation (8.45) in isentropic co-ordinates is

	
( )θ

θ θ= − ∇ ⋅
�
� t

v
ζ

ζ 	 (8.54)

The absolute circulation around a circuit on an isentropic circuit is

	
( )θ θ= ⋅ = ∇ × = ζ∫ ∫ ∫�

h h

� � �d .d d
L S S

C Sv l v S 	 (8.55)

Note that the surface integral is over the horizontal surface S
h
 since the circulation 

is defined only in terms of the horizontal wind v. The conservation of C
A
 on an 

isentropic circuit is then consistent with the vorticity equation (8.45), which states 
that ζθ only changes as a result of expansion or contraction of the areas of fluid parcels 
on isentropic surfaces.



Fluid Dynamics of the Midlatitude Atmosphere, First Edition. Brian J. Hoskins & Ian N. James.  
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. 

Vorticity and the barotropic 
vorticity equation

9

9.1  The barotropic vorticity equation

The barotropic vorticity equation is an over-simplification of the full vorticity 
equation in most circumstances. Nevertheless, it is useful because it isolates some 
basic dynamical processes which are still represented by more complicated equation 
sets. The configuration envisaged is illustrated in Figure 9.1. Homogeneous fluid of 
constant density flows between two rigid horizontal surfaces, vertical separation D. 
Away from the boundaries, the velocity vector v is independent of height, so fluid 
moves as coherent columns. The vorticity has only a vertical component, which is 
non-zero. Ekman layers form on the top and bottom boundaries, and a small Ekman 
pumping vertical velocity provides the top and bottom boundary conditions for the 
flow in fluid interior. The top boundary is supposed to be horizontal, but the bottom 
boundary may have a topography h(x, y) where |h| ≪ D.

With these assumptions, the baroclinic and tilting terms are zero in the fluid 
interior. The curl of the tangential stress will be ignored, but the Ekman pumping 
velocity w

E
 will represent the effects of boundary layer friction. The vorticity equa-

tion, Equation 8.17, becomes

	

D

Dt

w

z

ζ
ζ=
∂
∂

. 	 (9.1)

Since ζ = f + ξ and

ξ
f

U

fL
∼ = Ro,

we shall assume small Ro and write the right-hand side of Equation 9.1 in terms of 
f only. We shall also adopt the beta-plane approximation, so the vorticity equation 
becomes
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D

Dt
v f

w

z

ξ
β+ =

∂
∂

. 	 (9.2)

At the upper boundary, z = D, the boundary condition is simply w = −w
E
. At the 

lower boundary, the flow must also be parallel to the topography, so that

w w h z= + ⋅∇ =E atv 0.

Here we have assumed that h ≪ D so that the boundary condition can be applied at 
z = 0 rather than z = h. For the motion to be independent of height, it follows from 
Equation 9.2 that ∂w/∂z must be uniform with height. So ∂w/∂z is determined by the 
values of w to at z = 0 and D. Therefore, the vorticity equation becomes

	

D

Dt
v

f

D
w h

ξ
β+ = − + ⋅∇( )2 E v . 	 (9.3)

Finally, substituting from Equation 8.40 for w
E
, the barotropic vorticity equation 

becomes

	

D

Dt
v f

h

D

ξ
β

ξ
τ

= − − ⋅∇





 −v

E

	 (9.4)

where

	

τE = ( )
D

f2
1 2ν /

	 (9.5)

is called the ‘Ekman spin-up time’. If the top boundary was frictionless, the factor 
2 would be omitted in Equation 9.3 and the time τ

E
 in Equation 9.5 would be multi-

plied by 2. The different behaviours of this equation are made clearer by introducing 
dimensionless variables. Scaling horizontal distance by L, velocity by U, time by 
L/U, vorticity by U/L, and topographic height by

v

wE

–wE

Figure 9.1  The configuration envisaged. The velocity v is independent of z outside the Ekman 
layers, and so fluid moves in coherent columns
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h

D
max

Ro
,

Equation 9.4 can be rewritten in terms of dimensionless variables as

	

D

Dt
v h

ξ
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v

1 2/
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Here, various dimensionless numbers have been introduced:

	
Be Ek Ro Hi
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= = = =
βL

U fD

U

fL

h
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2

2

2
, , , .

ν
	 (9.7)

The first three of these are the β-number, the Ekman number, and the Rossby num-
ber, respectively. The importance of Hi was pointed out by Hide (1961) and will be 
designated as the ‘Hide number’ for present purposes.

9.2  Poisson’s equation and vortex interactions

In order to solve either Equation 9.4 or 9.6, the velocity field must be related to the 
vorticity field. This is done by introducing a streamfunction ψ such that

v i j= −
∂
∂









 +

∂
∂









ψ ψ
y x

which is possible because the flow is non-divergent. Then,

	 ξ ψ= ∇H
2 	 (9.8)

This important relationship is called ‘Poisson’s equation’. It is an elliptic partial dif-
ferential equation.

Elliptic equations will be met in several different contexts in this book, and so 
here, at their first appearance, it is worth digressing to discuss some of their basic 
properties. The discussion will focus on functions of two variables, x and y, but it is 
easily generalized to three variables. The general second-order partial differential 
equation

a b c f x yxx xy yy x yψ ψ ψ ψ ψ ψ+ + = ( )2 , , , ,

is said to be elliptic if ac − b2 > 0. This is certainly true for the Poisson equation, in 
which a = c = 1 and b = 0. The equation can be solved on some finite domain A in (x, y) 
space, which is enclosed by a closed circuit L, provided boundary conditions for ψ on 
L are specified. These boundary conditions may be one of a number of different kinds. 
Dirichlet boundary conditions mean that values of ψ at all points on L are specified. 
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For Neumann boundary conditions, the normal gradient of ψ rather than values of ψ 
itself is specified, that is, n ⋅ ∇ψ is specified on the boundary, n being a unit vector 
normal to L and directed out of A. Finally, of considerable utility in many geophysical 
problems, boundary conditions may be periodic, that is, values of ψ and n ⋅ ∇ψ on one 
part of L are the same as the values of ψ and − n ⋅ ∇ψ on another part of L. In a particu-
lar problem, it is possible that different types of boundary condition apply on different 
segments of L.

From now on, we focus on the Poisson Equation 9.8. Note that this is a linear 
equation, so that if ψ

1
 and ψ

2
 are both solutions to the equation, then αψ

1
 + βψ

2
, α and 

β both being constants, is also a solution. This property leads to a little trick which 
makes it easier to deal with general boundary conditions. Suppose that ψ

1
 is the 

solution to the Laplace equation (a special case of the Poisson equation with zero on 
the right-hand side) with appropriate boundary conditions on ψ

1
 and that ψ

2
 is a 

solution to the full Poisson equation subject to simple Dirichlet boundary condi-
tions ψ

2
 = 0 on L:

∇ = =
∇ = =

H

H

with on

with on

2
1

2
2

0

0

ψ ψ ψ
ψ ξ ψ

L L

L

Then adding the two equations, it is clear that ψ
1
  +  ψ

2
 is the solution to the Poisson 

equation with the boundary condition ψ = ψ
L
. In other words, there is no loss of gen-

erality in just discussing solutions to the Poisson equation with a ψ
L
 = 0 boundary 

condition.
For an elliptic equation such as Poisson’s equation, with boundary conditions on 

ψ prescribed on some closed loop in x–y space, values of ψ are defined at all interior 
points of that loop. In particular, suppose ξ and ψ vary sinusoidally:

ξ ψ= +( )( ) = +( )( )Z i kx ly i kx lyexp , expΨ

Then, substituting this solution in Equation 9.8,

	

Ψ = −
+( )
Z

k l2 2
	 (9.9)

This reveals two points about the relationship between the vorticity and stream-
function fields. First, they are anti-correlated, with maxima in ξ corresponding to 
minima in ψ and vice versa. Secondly, the ψ field is a smoothed version of the 
ξ  field, with the larger scales in ξ emphasized and the small scales suppressed. 
The choice of these particular forms for ξ and ψ is not as restrictive as might be at 
first thought, for our sinusoidal forms may be but one term in a Fourier summation 
over all possible wavenumbers k and l.

It is worth exploring the relationship between ξ and ψ in some simple cases. 
Figure 9.2 shows a single isolated patch of vorticity. Suppose that for r < r

0
, the rela-

tive vorticity is uniform with value ξ and that it is zero for larger values of r.
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The mean vorticity is related to the tangential velocity and circulation around the 
edge of the vortex using Stokes’ theorem:

π ξ πr r V C0
2

0 0 02= =

Also at larger radii,

	 π ξ π π ξr rV r C2
0

2
0 02= = = 	 (9.10)

Writing Poisson’s equation in cylindrical coordinates and noting that there is no 
variation in the vertical or azimuthal directions, the streamfunction is

	
ψ ψ
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= −
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This reveals one of the most important consequences of Poisson’s equation, 
Equation 9.8. A localized patch of vorticity induces a circulation which extends to 
infinity. Fluid remote from the centre of a vortex is in motion due to its presence. We 
may describe this principle as ‘the principle of action at a distance’.

This principle of action at a distance means that two discrete separate vortices 
interact with one another. Assume for the moment that the radius of each vortex is 
small compared to their separation. In the case of two vortices of the same sign, 
shown in Figure 9.3a, the vortices move in opposite directions perpendicular to the 
line joining their centres. As a result, they will orbit around their mutual ‘centre of 
circulation’, which for vortices of the same strength will be the midpoint of the line 
joining their centres. In the case of vortices of equal strength but opposite sign, 
Figure 9.3b, they will both move along parallel trajectories, in the direction perpen-
dicular to the line joining their centres.

In more realistic situations, the radius of the vortex may not be particularly small 
compared to the distance separating vortices. In this case, the circulation induced by 
the one vortex will vary across the second vortex, leading to shearing as well as simple 

ξ

Figure 9.2  The flow around an isolated patch of vorticity
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advection. In terms of the flow kinematics of Section 1.3, the vortex will be subject 
both to rotation and deformation. Such shearing is the first step leading to the forma-
tion of long vorticity streamers, a feature characteristic of many geophysical flows.

As well as action at a distance, the behaviour illustrated in Figure 9.4 relies on the 
other major characteristic of the solutions of Poisson’s equation, namely, that the 
streamfunction is a highly smoothed version of the vorticity field. Thus, in Figure 9.4, 
the change of the orbiting vortex from nearly circular to drawn-out has hardly any 
effect on the induced flow far away from it, and the two vortices continue to circu-
late around each other. If two vortices are separated by a distance small compared to 
their radius, then their combined streamfunction is more or less a single extremum, 
with only small internal structure towards its centre. The result is that the component 

(a) (b)

Figure 9.3  The interaction of two compact vortices. (a) Two vortices of the same sign orbit their 
centre of circulation. (b) Two vortices of opposite sign move in parallel tracks, perpendicular to 
the line joining them

Figure 9.4  Schematic illustration of the shearing of one vortex by a neighbouring vortex which 
is taken to be so strong that it is not appreciably sheared itself
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vortices circulate around one another, deforming and shearing, until they consist of 
two intertwining streamers of vorticity. These streamers continue to wrap ever more 
tightly around each other until there is effectively just a single vortex. Such a process 
is called ‘vortex merging’ in the literature since well outside the region of the two 
vortices, the circulation will depend only upon the integrated vorticity. It will be as 
if the two vortices have merged. However, in the vicinity of the two vortices, the 
process is perhaps better described as vortex ‘intervolving’.1 Instabilities and small-
scale mixing processes may act to remove some of the detail of the intertwining 
streamers to produce a more homogeneous distribution of vorticity. Vortex merging/
intervolving is a ubiquitous process in two-dimensional or quasi-two-dimensional 
flows. In the absence of processes to regenerate small-scale eddies, repeated inter-
volving events ultimately result in a flow containing just one large positive and one 
large negative vortex.

These various examples give us a vocabulary with which to discuss the evolution 
of quasi-two-dimensional flows in terms of vortex dynamics. But the description is 
essentially quasi-linear, in that we have described the flow as if the vorticity is more 
or less passively advected by the streamfunction field. This is only roughly true, 
principally for weak isolated vortices. For stronger vortices, the vorticity field deter-
mines the streamfunction field and vice versa, a strong nonlinear feedback which 
dominates most flows.

9.3  Flow over a shallow hill

According to the barotropic vorticity Equation 9.6, only the second term on the 
right-hand side can generate vorticity in a flow that has zero vorticity initially. That 
term represents the effect of orography on the boundaries on the vorticity distribu-
tion. So in this section, we will discuss the operation of the orographic term and the 
subsequent evolution of the vorticity field it generates.

Equation 9.6 can be solved numerically for particular choices of parameter and 
for particular initial conditions. It is not the purpose of this book to discuss the 
appropriate numerical methods in detail, and so only a brief indication of the 
approach which may be used is included here. The domain is divided into a rectan-
gular network of gridpoints, at each of which values of the relative vorticity ξ and 
the streamfunction ψ are defined. Then, the continuous differential Equation 9.6 
may be replaced by a finite-difference analogue:

	

ξ ξx y
t

x y
t

x yt
T, ,

,

+ −−
=

1 1

2∆
	 (9.12)

where T
x,y

 is the Eulerian relative vorticity tendency at time t at each gridpoint, 
calculated by forming a finite-difference analogue to each of the terms in 
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Equation 9.6. Rearranging Equation 9.12, the vorticity at a new time level can be 
calculated from the current and previous time levels. The new streamfunction is 
then obtained by solving the Poisson equation with the new vorticity as right-hand 
side. The iteration is repeated as often as needed to take the solution to the time 
required. There are a number of subtleties. The desired solution to the continuous 
equation can be swamped by unwanted amplifying solutions which result from the 
finite-difference approximations. The various terms in T

x,y
, particularly the nonlin-

ear advection terms and the dissipative Ekman pumping terms, have to be formu-
lated carefully to control such unwanted numerical solutions.

The flows described in this section are examples of ‘inertial flow’ in which 
Ro → 0,  Ek → 0 and also for which Ek1/2/Ro → 0. This last condition means that the 
Coriolis force is dominant but that Ekman pumping is insignificant. Figure 9.5 shows 
a sequence of streamfunction and relative vorticity fields obtained by the numerical 
process outlined in the last paragraph. All variables have been rendered dimension-
less using the scaling suggested for Equation 9.6. The initial state consisted of zero 
relative vorticity and uniform flow everywhere. After a short time, fluid initially over 
the hill has been advected downstream and replaced by fluid advected up the slope. 
The fluid downstream of the hill has been subjected to vortex stretching and so 
acquires positive relative vorticity. The fluid which is advected onto the hill has been 
subjected to vortex squashing and so acquires negative relative vorticity.

The positive vorticity which has been created as fluid was advected off the hill 
gradually dissipates as a result of Ekman pumping. Neglecting all terms but the 
Ekman pumping term, the barotropic vorticity equation reduces to

D

Dt

ξ ξ
τ

= −
E

which has the solution

ξ ξ τ= −
0e

Et /

following the fluid. Thus, non-zero relative vorticity decays downstream to zero on 
a timescale τ

E
. In this example, the fixed negative vortex on top of the hill and the 

shed positive vortex interact while they remain close together. The shed eddy is 
deflected to the right before being advected out of range of the fixed eddy.

If the beta term and the Ekman pumping term are both ignored, the barotropic 
vorticity equation may be written as a conservation relationship:

	

D

Dt
hξ +{ } =Hi 0 	 (9.13)

So, if the hill is a right circular cylinder of height 1 dimensionless unit, the steady-
state relative vorticity at its summit will simply be Hi. This will induce a tangential 
flow of speed:

	
′ ∼u

1

2
Hi 	 (9.14)
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around the edge of the hill. On the left-hand side of the hill, this flow is in the same 
direction as the far upstream flow and so the flow to the left of the hill is accelerated to 
(1 + Hi/2) dimensionless units. To the right of the hill, however, the opposite is true and 
the flow is slowed down to (1 − Hi/2). If Hi > 2, the flow will reverse so that a patch of 
stagnant fluid, which is never able to leave the hill, will form on the left-hand side of 

Figure 9.5  A time sequence of streamfunction (left) and vorticity (right) fields from a numerical 
integration of the barotropic vorticity equation, Equation 9.6, with flow from top to bottom of the 
plots. Negative vorticity is shown by solid contours and positive vorticity by dashed contours. 
Parameters Be = 0.0, Hi = 4.0, τ

E
 = 3.3, contour interval = 0.680. (a) Time t = 0.82, (b) t = 2.41 and 

(c) t = 16.07. From James (1980)

(a)

(b)

(c)
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the hill. As discussed in Section 3.6, such a column of stagnant fluid is called a ‘Taylor 
column’. More precisely, the condition for a Taylor column to form can be written as

Hi >α

where α is an O(1) number which depends upon the profile of the hill. For a right 
cylindrical2 hill, α is 2. For the cosine-squared profile used to construct Figure 9.5, 
its critical value is around 6.7.

Two further cases are illustrated in Figure 9.6. Here, the Ekman pumping was 
reduced to a very weak level, with τ

E
 = 20. For Hi = 2, Figure 9.6a, the streamlines 

are deflected as they pass over the hill, but the flow is more or less symmetrical 
up- and downstream of the hill. Since streamfunction is proportional to pressure for 
balanced flow, such symmetry implies that there is little pressure difference across 
the hill and therefore little force on it. Because action and reaction are equal and 
opposite, there must be little drag on the atmosphere. In Figure 9.6b, Hi has been 
increased to 6, close to the critical value according to the argument of the last para-
graph. Most of the streamlines now pass to the left of the hill, where there is consid-
erable acceleration of the flow. Over the hill, to the right of the summit, there is a 
substantial region of near-stagnant fluid. An embryonic Taylor column is forming.

Figure 9.6  Showing the effect of obstacle height on the flow over a shallow hill. In both cases, 
Be = 0 and τ

E
 = 20. (a) Hi = 2, contour interval = 0.390, (b) Hi = 6, contour interval = 1.15

(a)

(b)
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A feature of Figure 9.6b is the ‘wake’ of weak positive vorticity downstream of 
the hill. The Ekman pumping, though weak, has time to significantly attenuate the 
negative vorticity of the near-stagnant fluid on the top of the hill. When eventually 
it is advected off the hill, so that vortex tubes return to their original length, it will 
then acquire weak positive relative vorticity. A result of this wake is the asymmetry 
of the streamlines up- and downstream of the hill. Consequently, the Ekman pump-
ing increases the drag exerted on the flow by the hill.

9.4  Ekman pumping

In the example shown in Figure 9.6, the Ekman pumping was a small correction to 
the solution. An alternative limit has been explored theoretically and in fact is some-
what easier to reproduce in laboratory experiments. This is the limit Ro → 0,  Ek → 0 
but Ek1/2 ≫ Ro. This means that the Coriolis force dominates the other accelerations 
to which a fluid element is subject, and that the Ekman pumping timescale is short 
compared to the advection timescale. In this case, a more meaningful scaling of the 
hill height is in terms of Ek1/2D.

Figure 9.7  The viscous Taylor column. Two integrations of the barotropic vorticity equation 
with Be = 0, τ

E
 = 0.1. (a) h

max
/Ek1/2D = 1,  contour  interval   =  0.286, (b) h

max
/Ek1/2D = 10,  contour 

interval  =  1.46

(a)

(b)
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Figure 9.7 shows two cases. The first is for a relatively low hill. The streamlines 
are scarcely deflected by the hill, but the vorticity field is very different from the 
inertial case, with negative vorticity on the upslope and positive vorticity on the 
downslope. The pattern is very nearly anti-symmetric up- and downstream of the hill. 
The two vortices are weak and tend to rotate around each other a small amount. The 
second case is a tall hill, with h

max
 = 10Ek1/2D. The positive and negative vortices now 

interact strongly; they spiral into each other and are trapped in the vicinity of the hill. 
The streamline pattern shows a region of near-stagnant fluid over the hill, while other 
streamlines pass either side of the hill. Away from the hill, the flow is remarkably 
similar to non-rotating ‘potential flow’ past a solid cylinder.

9.5  Rossby waves and the beta plane

The remaining term to be discussed in Equation 9.6 is the first term on the right-
hand side, −Bev. An integration with Be of 5.0 is shown in Figure 9.8. Here, the 
boundary conditions are periodic on the inflow and outflow boundaries. Any distur-
bances which are advected across the outflow boundary reappear at the inflow 
boundary. This of course is analogous to large-scale flow in the Earth’s midlati-
tudes, since flow around latitude circles is subject to periodic boundary conditions. 
A shallow hill with Hi of 3.0 was retained to provide some disturbance to the other-
wise uniform steady flow, and a rather short τ

E
 of 3.0 was specified to ensure that 

the wake of vorticity from the hill largely decayed before it interfered with itself. 
In the vicinity of the hill, a nearly circular patch of negative vorticity develops by 
vortex squashing. But downstream of the hill, an intense wake of wavy disturbances 
forms. A weaker wake of longer wavelength waves propagates upstream from the 
hill. The wake spreads both along and across the channel, eventually reflecting off 
the sidewalls. The disturbances which pass over the downstream boundary are start-
ing to reappear at the upstream boundary, but because of the rather fast spin-up time, 
only weak vestiges of the original disturbances propagate right around the channel 
to interact with flow over the hill.

These waves when β ≠ 0 are an example of ‘Rossby waves’, a most important 
category of wave motion in the midlatitude atmosphere. They dominate flow on the 
synoptic and larger scales. Rossby waves have some very curious properties which 
contrast sharply with the behaviour of sound waves, water waves, and waves on 
strings with which most people are familiar. We will explore these properties in this 
section. First, a mathematical derivation of the existence and properties of Rossby 
waves is given, and then that will be complemented by a more descriptive account.

The vorticity equation, Equation 9.6, is rendered analytically tractable by breaking 
the flow into a steady ‘background’ flow and a small wavelike ‘perturbation’. Thus,

	

v i v= +
= − +
= +

U

Uy

′
′

′
ψ ψ
ξ ξ0

	 (9.15)
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The effect of the Be term in Equation 9.6 is isolated by assuming that Hi is small 
and that τ

E
 is extremely long. The perturbation flow is supposed to be weak, in the 

sense that |v′| ≪ U. The form of solution sought, Equation 9.15, is substituted into 
Equation 9.6, and any products of primed quantities are neglected on the assump-
tion that they are very much smaller than the linear terms:

∂
∂

+
∂
∂

+ =
ξ ξ′ ′

′
t

U
x

vBe 0

or in terms of streamfunction:

	

∂
∂

+
∂
∂

+
∂
∂

=
ξ ξ ψ′ ′ ′
t

U
x x

Be 0. 	 (9.16)

Figure 9.8  Streamfunction (thick contours) and vorticity (thin contours) plots from an integra-
tion of the barotropic vorticity equation, with Be = 5.0, Hi = 3.0 and τ

E
 = 3.0. (a) t = 1.0, (b) t = 6.0
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This simple partial differential equation with constant coefficients admits solutions 
of the following form:

	

ξ ω
ψ ω
′ = + −( )
′ = + −( )

Ζ
Ψ

exp

exp

kx ly t

kx ly t
	

(9.17)

Figure 9.9 illustrates this form of solution. The wave crests and troughs are straight 
lines, inclined to the x- and y-axes. The distance between successive crests or 
troughs (the ‘wavelength’) is 2π/k in the x-direction and 2π/l in the y-direction. The 
total wavelength is 2π/K where K k l= +2 2  is called the ‘total wavenumber’. 
The unit vector ˆ / /k i j= +( )k K l K  is directed at right angles to the crests and 
troughs of the wave. The crests and troughs move along the x- and y-axes with 
phase speeds ω/k and ω/l respectively.3 Substituting the supposed solutions, 
Equation 9.17, into Equation 9.16 yields a condition for the validity of these solu-
tions, in the form of an algebraic relationship between the frequency ω and the 
wavenumbers k and l:

	

ω = −
+( )

Uk
k

k l

Be
2 2

	 (9.18)

This important equation is called the ‘dispersion relationship’. Dividing by k, it may 
be rewritten in terms of the phase speed along the x-axis:

	

c U
k l

U
Kxp

Be Be
= −

+( )
= −

2 2 2
	 (9.19)
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k2π/l

ξ < 0

2π/k

Figure 9.9  Plane-wave solution to the barotropic vorticity equation
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Alternatively, Equation 9.19 can be written in terms of dimensional variables:

c U
Kxp = −
β

2

Two implications are immediately apparent from these forms of the dispersion 
relationship. First, relative to the background flow, Rossby waves can only travel in 
one direction along the x-axis, from east to west. This is in sharp contrast to most 
waves of everyday experience, such as sound and surface water waves, which prop-
agate equally happily in any direction. Secondly, when the total wavenumber is 
small compared to Be, the phase speed depends strongly on the wavenumber. Such 
waves are said to be dispersive; an arbitrary disturbance, which may be Fourier-
analysed into a sum of many different wavenumber components, quickly breaks up 
or ‘disperses’ as its different wavenumber components separate.

Equation 9.18 is in fact a complete description of the behaviour of small-amplitude 
Rossby waves in a barotropic fluid. However, the arguments which led to that 
equation are essentially algebraic and may not convey much physical insight into 
the processes responsible for the Rossby wave properties. As an alternative, we 
show how many of the Rossby wave properties implicit in the dispersion relation-
ship may be deduced using vortex interaction arguments.

To simplify, consider a wave with l = 0, so that fluid elements are displaced only 
in the y-direction. Initially, consider a motionless fluid with zero relative vorticity. 
The fluid is displaced meridionally in a sinusoidal pattern, as illustrated in 
Figure 9.10. Write the displacement as

∆ ∆y y kx= ( )0 sin

According to Equation 9.1, the displaced parcels must conserve their absolute vor-
ticity f

0
. So a parcel displaced a distance Δy from its initial latitude will acquire 

relative vorticity:

∆ ∆ξ = −Be y

The sign is important. Poleward displaced fluid acquires anticyclonic (negative) 
relative vorticity, and equatorward displaced fluid acquires cyclonic (positive) rela-
tive vorticity. So we have strips of fluid, perpendicular to the x-axis, with alternating 
positive and negative relative vorticities. Therefore,

∂
∂

= − ∆
v

x
y kxBe 0 sin .

Integrating this shows that each strip has a sheared meridional flow varying between 
− BeΔy

0
/k and + BeΔy

0
/k. Consider the vicinity of x = 0. The line of fluid elements 

which initially lay along the line y = 0 now makes an angle α with the x-axis, where

α = ∆y k0
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where we are assuming that Δy0 ≪ k− 1. Considering the movement of the tangent at 
the intersection of the line of fluid elements with the x-axis, as fluid is advected by 
the meridional flow, so this intersection will migrate along the x-axis at the follow-
ing speed:

c
v

= −
α

This is the phase speed of the wave along the x-axis. We have just seen that 
v = BeΔy0/k and so

	
c

k
= −

Be
2

	 (9.20)

In fact, the whole sinusoidal pattern of displaced fluid elements will migrate along 
the x-axis with this speed. It is, of course, the Rossby phase speed predicted by 
Equation 9.19 for the case l = 0 and U = 0.

By way of an alternative, an interpretation of Rossby wave activity in terms of the 
Euler equations can also be developed. The question is: what provides the restoring 
force associated with the Rossby wave motion? The answer is that the pressure gra-
dients provide the necessary restoring force, and we can deduce the pressure field 
from the vorticity field by considering geostrophic balance.

Take the same configuration as shown in Figure 9.10. The diagram is redrawn as 
Figure 9.11. The meridional velocity, shown by the dashed curve, is independent of 
y and is in geostrophic balance with a pressure field. That pressure field has a mini-
mum where the cyclonic vorticity is largest and a maximum where the anticyclonic 
vorticity is largest. But the relationship between wind and pressure gradient involves 
the Coriolis parameter f. In the north of the domain, where f is larger, the pressure 

ξ < 0
ξ > 0

α

y

x

Figure 9.10  A Rossby wave, pictured as a set of parallel sheets of fluid displaced north and 
south of their initial latitudes. The bold arrows indicate the flow associated with the perturbation 
vorticity



	 VORTICITY AND THE BAROTROPIC VORTICITY EQUATION	 165

wave will have a larger amplitude than in the south, where f is smaller. Therefore, at 
the crests and troughs of the pressure wave, there will be an unbalanced north–south 
pressure gradient. This unbalanced pressure gradient force will accelerate or decel-
erate the meridional winds. The dotted line indicates this acceleration. It is in quad-
rature with the meridional wind wave and therefore will cause the entire pattern of 
v to migrate from east to west.

Rossby waves are ubiquitous in situations where the wavelength of disturbances 
is, in some sense, ‘long’. What is meant by ‘long’ is that

K ∼ Be1 2/

or less. If K ≫ Be1/2, the dispersion relationship reduces to c
px

 = U, that is, distur-
bances are simply advected by the flow.

An interesting isomorphism arises if Be is 0, but the bottom topography is 
simply

h x y Gy,( ) =
Then, the barotropic vorticity equation, Equation 9.6, can be written as follows:

	

D

Dt
v

L

D
G

ξ
+ = = 






Be where Be

Roeff eff0
1

	 (9.21)

This is exactly of the same form as the barotropic vorticity equation with an effec-
tive β proportional to the bottom slope. So an isolated hill, for example, can support 
cylindrical Rossby waves propagating around its edge. The flows over shallow 
topography described in Section 9.3 can be interpreted in terms of such trapped 
cylindrical Rossby waves.

ξ < 0 ξ > 0

y

x

Figure 9.11  As Figure 9.10, but showing the meridional wind and the pressure field associated 
with a Rossby wave. The block arrows indicate the unbalanced north–south pressure gradient 
force
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9.6  Rossby group velocity

The phase speed is the rate at which the lines of constant phase move along the x- or 
y-axes. Of greater physical significance is the rate at which an envelope, enclosing 
the Rossby waves of significant amplitude, can propagate. This is the ‘group veloc-
ity’, and it effectively determines the rate at which information is carried by the 
Rossby wave from one part of the fluid to another.

Suppose two wave trains with zonal wavenumbers k + Δk and k − Δk are super-
posed. Then,

	

ψ = −( )( ) + +( )( )( )
= ( ) ( )

Re exp exp

cos cos

A i k k x A i k k x

A kx kx

∆ ∆

∆2
	

(9.22)

This represents a short-wave wavelength 2π/k modulated by a long-wave envelope 
of wavelength 2π/Δk. While the individual crests and troughs move with the phase 
speed c

px
 along the x-axis, the speed of the envelope will be different. Rewrite 

Equation 9.17 but now include the time dependence of the two superposed waves:

ψ ω ω ω ω′ = +( ) − +( )( )( ) + −( ) − −( )( )( )( )
=

Re exp expA i k k x t A i k k x t∆ ∆ ∆ ∆

2ccos Re exp∆ ∆kx t A i kx t−( ) −( )( )( )ω ω

�
�

(9.23)

The envelope moves along the x-axis at a speed Δω/Δk. In the limit Δk → 0, the 
envelope moves along the x-axis at speed

	
c

kxg =
∂
∂
ω

	 (9.24)

Certain types of wave motion are non-dispersive, which means that the phase speed 
is independent of wavenumber k. In that case, and in that case only, the phase speed 
and the group velocity are identical. Many everyday wave motions belong to this 
category, among them sound waves and waves on a stretched string. However, long 
Rossby waves with k ∼ Be1/2 or less are strongly dispersive.

For the moment, we consider the dimensional case, with dispersion relation 
(Figure 9.12)

ω
β
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k l2 2
.

The phase speed and group velocity in the x-direction are
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Therefore, although the phase speed is always less eastwards than the flow, meridi-
onally extended waves have an eastward group velocity that is greater than the flow 
speed – information is carried eastwards faster than the flow moves!

Figure 9.13 shows a simple example in which an isolated disturbance is introduced 
into a motionless fluid on a β-plane by displacing fluid northwards in a limited 
region. The heavy solid line marks the line of fluid elements which lay along the 
x-axis before the displacement. The northward displacement results in a region of 
negative relative vorticity. The meridional flow induced by this vorticity perturba-
tion is indicated in the diagram. Consistent with the discussion earlier in this chapter, 
this meridional motion spreads beyond the region of the vorticity perturbation. It 
acts to move the vorticity contour poleward on the western side of the original per-
turbation and equatorward on the eastern side, as indicated by the dashed line. 

Cpx

Cgx

x

Figure 9.12  Schematic illustration of a packet of waves propagating along the x-axis. The indi-
vidual crests and troughs move with the phase speed c

px
, while the wave envelope moves with the 

x-component of the group velocity, c
gx

y

x

ξ < 0

Figure 9.13  The development in time of an isolated meridional displacement of a vorticity 
contour (thick line) on a β-plane. Associated with the meridional motion (arrows), the vorticity 
contour changes to look like that given by the dashed line: the initial disturbance propagates to the 
west relative to any basic westerly flow, while an envelope of new disturbances spreads to the east 
relative to the basic flow. The former corresponds to the phase speed and the latter to the group 
velocity
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Therefore, the original poleward displacement of the vorticity contour moves to the 
west. This corresponds to the westward phase speed relative to any basic zonal flow. 
The meridional motion also creates a new meridional displacement of the opposite 
sign on the eastern side. This spreading of a developing wave packet to the east cor-
responds to the group velocity which is eastwards relative to any basic zonal flow.

For a 20 m s−1 wind and taking β = 1.6 × 10−11 m−1 s−1, then β/k2 = U, and the phase 
speed is reduced to zero for k = 0.9 × 10−6 m−1. This corresponds to a wavelength of 
about 7000 km, which is about zonal wavenumber 4 in middle latitudes. The east-
ward group velocity would be 40 m s−1 in this case. Wavelengths shorter than this 
wavelength would move eastwards, and those longer would move westwards.

A similar analysis for the propagation of wave packets in the y-direction yields

c
lyg =

∂
∂
ω

.

The total group velocity is a vector:

	
c i jg =

∂
∂

+
∂
∂

ω ω
k l

	 (9.25)

From the dispersion relation, Equation 9.18, and noting that β/K2 = U − c
px

, it follows 
that for barotropic Rossby waves,

	
c i kg p= +c

k

Kx

2
3

β ˆ 	 (9.26)

Here, ˆ /k i j= +( )k l K  is a unit vector parallel to the wavenumber vector ki + lj. 
This expression implies that the zonal component of group velocity is always 
larger than the phase speed in the zonal direction. The meridional component of 
group velocity is poleward for l > 0, that is, when troughs and ridges of the wave 
are orientated north-west to south-east, and equatorwards for l < 0, that is, when 
the troughs and ridges are orientated south-west to north-east. Equation 9.26 can 
be manipulated further to give a form for c

g
 which can be illustrated by a simple 

graphical construction. If the angle between the x-axis and the vector k̂  is denoted 
by α, then cos(α) = k/K and sin(α) = l/K. Substituting U − c

px
 for β/K2 and using 

some standard trigonometric identities, Equation 9.26 may be rewritten as 
follows:

	
c i jg p p= + −( ) ( )( ) + −( ) ( )( )U U c U cx xcos sin2 2α α 	 (9.27)

The construction, shown in Figure 9.14, works as follows. On axes representing 
the u and v components of velocity, draw a circle, radius U − c

px
 centred on the point 

(U, 0). A line from point (c
px

, 0) at an angle α denotes the direction of the unit vector 
k̂ . Then, a line from the origin to the point where the wave vector intersects the 
circle gives the magnitude and direction of the group velocity. Notice that for suf-
ficiently small K, it is possible for c

px
 to be negative.
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A special case of particular importance is that of steady Rossby waves, that is, 
Rossby waves with zero phase speed. We have considered this case earlier in this 
section, where we found that they may typically have zonal wavenumber 4. As the 
atmosphere flows over fixed regions of vorticity forcing, such as mountain ranges 
and continent/ocean transitions, one might expect Rossby wave activity to be trig-
gered. Over a period of time, the transient activity will average to close to 0, and the 
mean response will be a wave pattern with zero phase speed relative to the forcing. 
However, the fact that the phase speed is zero does not mean that the group velocity 
is 0. Such steady wave patterns can provide an important basis for teleconnection 
patterns, for the remote influence of localized forcing.

Figure 9.15 is the same as Figure 9.14, but for the case c
px

 = 0. The group velocity 
vector is now parallel to the wave vector. The maximum group velocity occurs when 
c

g
 is directed zonally; it then has a magnitude 2U. The group velocity becomes 

U

α

cpx u

v

k

cg

2α

Figure 9.14  Graphical construction for the group velocity of barotropic Rossby waves
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Figure 9.15  As Figure 9.14 but for the special case of steady Rossby waves with c
px

 = 0
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smaller as the angle α increases, and there is no situation in which the group veloc-
ity is directed westwards.

9.7  Rossby ray tracing

Suppose a wave maker is inserted into a uniform westerly flow. The nature of the 
wave maker need not be specified; it might be forcing by a mountain as the flow 
passes over it, or some other localized vorticity forcing. We shall seek the remote 
steady response to this wave maker. We shall suppose that the wave maker excites 
disturbances of every wavenumber. Some of these will be able to propagate and 
some not. Trains of Rossby waves will leave the wave maker in various directions, 
depending upon their wave number. Choose a particular zonal wave number k. 
Then, from the dispersion relationship 9.18 with ω = 0,

	
l

U
k= ± −

Be 2 	 (9.28)

Notice that the meridional wavenumber requires U to be positive and 
k < (Be/U)1/2 if it is to be real. If l is imaginary, then no propagating solution is 
possible, and any disturbance with the chosen value of k remains trapped in the 
immediate vicinity of the wave maker. Provided l is real, then the angle of the 
wave vector is

α = 







−tan .1 l

k

Since a real l can have either sign, waves emerge from the wave maker in pairs: 
one wave train, with l > 0, towards the pole and the other, with l < 0, towards the 
equator. The magnitude of the group velocity is given by the construction shown in 
Figure 9.16. After a certain time Δt, the envelope of the steady waves will have 
advanced into a circular region radius UΔt extending east, north and south of the 
wave maker. Figure  9.16 illustrates the advance of a wavefront of ω = 0 Rossby 
waves from a wave maker.

This argument will only work for a fairly short time from the initiation of the 
waves. Generally, Rossby waves will propagate into regions where the flow is dif-
ferent from that at their point of origin. A theory to deal with this, called ‘ray trac-
ing’, is borrowed from optics. It considers how a wave propagates through a slowly 
varying medium. ‘Slowly varying’ means that the lengthscale over which the 
medium changes substantially is long compared to the wavelength of the waves 
themselves. This assumption is often only marginally satisfied for long Rossby 
waves, but nevertheless, the theory seems to give a satisfactory qualitative account 
of Rossby wave propagation over global scales.
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Suppose that the zonal flow is given by some U = U(y). We must also recognize that 
the parameter Be also varies on a scale comparable to a, the Earth radius. Then, the 
linearized barotropic vorticity equation, Equation 9.16, becomes
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+ ( ) ∂ ′
∂

+ ( ) − ∂
∂
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y
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y x
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2

2
0 	 (9.29)

Now if U, Be and so on are slowly varying functions of y, we shall treat this equa-
tion as if it had constant coefficients, albeit different constant coefficients, at each 
latitude. As before, the dispersion relationship can be arranged into a diagnostic for 
the meridional wave number:

	
l

U

U
kyy= ±

−
−

Be
2 	 (9.30)

Now if a packet of waves propagates through a varying medium, its properties will 
evolve as it propagates. If the medium does not vary in the x-direction, then the 
wave will conserve its zonal wavenumber k. If the medium does not change in time, 
then the packet will conserve its frequency ω. However, the meridional wavenum-
ber will change. In this simple case, it is sufficient simply to diagnose the value of l 
from Equation 9.30, using the local values of Be and U. The critical parameter 
which controls the meridional wavelength is

	
K

U

Us
yy2 =

−Be
	 (9.31)

The parameter K
s
 is called the ‘total steady wavenumber’. Taking the upper tropo-

spheric zonal wind as an example, U typically has a maximum in the subtropics 
and becomes weakly easterly near the equator. Near the tropical zero wind line, 

k increasing

x = 2U∆t

x

y

Figure 9.16  The envelope of steady Rossby waves emanating from a wave maker at the origin 
after time Δt
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where U is still positive, K
s
 may be very large. Once U is negative, K

s
 becomes 

imaginary, and no steady Rossby wave can be supported. So the typical variation 
of K

s
 is dominated by large values in the subtropics and generally decreasing values 

with increasing latitude throughout the midlatitudes.
Consider first a poleward propagating ω = 0 Rossby wave packet excited in the 

midlatitudes. It sets off north eastwards, at an angle α = tan− 1(l/k), towards the pole. 
As latitude increases, K

s
 becomes smaller, and so, from Equation 9.30, the meridi-

onal wavenumber decreases while, at the same time, the angle α becomes smaller. 
The ray of Rossby waves is refracted to a more zonal direction. At the latitude where 
K

s
 = k, l = 0, and the ray is propagating entirely zonally. The meridional wavenumber 

then becomes negative, and the ray turns to propagate equatorwards. It has been 
totally internally reflected from the latitude where K

s
 = k. Indeed, K

s
 behaves as a 

refractive index since the Rossby wave: rays bend away from low values of K
s
 and 

towards high values.
Now consider the fortunes of a ray with negative l, whose group velocity has an 

equatorward component. Generally, as the wave packet propagates to lower lati-
tudes, K

s
 will increase, and equatorwards of the subtropical jet, U will decrease. As 

K
s
 increases, l will become more negative, as will α. The packet propagates in an 

increasingly meridional direction. As is clear from Figure 9.14, the magnitude of the 
group velocity becomes smaller compared to U. Once equatorwards of the jet maxi-
mum, the magnitude of U itself becomes smaller, so the equatorward propagation of 
the wave packet becomes slower and slower. Indeed, the packet can never actually 
reach the zero wind line; the nearer it gets, its north–south scale collapses, and α 
tends towards −90°. The zero wind line is called a ‘critical latitude’ for steady 
Rossby waves, and according to linear theory, the critical latitude acts as an impervi-
ous barrier to propagating Rossby waves. The decreasing meridional scale of phase 
speed as a wave approaches a critical line suggests that they are likely to be absorbed 
there. However, nonlinear ideas also suggest that reflection can be possible.

We shall return to ray tracing and its application to large-scale atmospheric flow 
in Chapter 19.

9.8  Inflexion point instability

The ideas developed in this chapter can be combined to describe a generic form of 
fluid instability which operates in many situations where two sets of waves can have 
similar phase speeds and so can interact with each other. In particular, this arises 
when a basic undisturbed flow has a maximum of absolute vorticity. In other words, 
it arises in situations where the gradient of absolute vorticity changes sign. Later 
chapters will develop specific examples which include complications, such as rota-
tion or stratification. In this section, rather than a formal stability analysis, qualita-
tive arguments will be used to set out the basic physical mechanism responsible for 
instability. The argument will combine the two elements central to the arguments of 
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the last section: propagation of Rossby-like waves and the interaction of discrete 
vortices.

For the present, we shall work in an inertial frame of reference and so consider 
the absolute vorticity. Consider an absolute flow U(y) initially parallel to the x-axis 
and locally sheared, as illustrated in Figure 9.17. The shear has been drawn so as to 
imply a maximum of absolute vorticity at y = 0. Shading indicates the region of 
large vorticity in the diagram. A frame of reference is selected such that it moves 
with the flow at y = 0. Then, the flow for y < 0 is in the positive x-direction, while for 
y > 0, it is in the negative x-direction. The flow velocity parallel to the x-axis has an 
inflexion point at y = 0, a feature which gives the name to the instability.

Now suppose the flow is perturbed into a wave-like pattern, so that fluid is dis-
placed alternately in the y > 0 and y < 0 directions. Displacement towards the centre 
of the shear zone brings smaller vorticity to a particular location, while displace-
ment away from the centre brings larger values of vorticity there. Thus, the initial 
state is modified by a series of positive and negative vorticity anomalies. The dimen-
sions of these anomalies can be characterized by a wavenumber k in the x-direction 
and a wavenumber l in the y-direction. Since they are located within a gradient of 
absolute vorticity, such anomalies will propagate as Rossby waves in the x-direction. 
Their phase speed relative to the local flow will be

	

c U y
y

k l
− ( ) = − ∂ ∂

+( )
ζ /
2 2

	 (9.32)

Now for y > 0, U(y) is negative and ∂ζ/∂y is also negative. For an appropriate 
choice of k and l, the train of waves will be stationary relative to the midpoint of 
the shear zone. Exactly the same argument, but with all the signs reversed, applies 

A B

C D

Figure 9.17  A schematic illustration of the mechanism for inflexion point instability in a 
sheared flow
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for y < 0. So it is possible to choose k and l so that the wave trains either side of the 
shear maximum are stationary with respect to each other and so preserve the same 
relative phase.

Assuming that the wave trains have wave numbers such that they are indeed 
stationary with respect to each other, consider now the interactions between the 
vortices that make them up. In Figure 9.16, the vortices labelled A and B combine 
to push vortex C in the negative y-direction. Similarly, vortices C and D combine to 
push vortex B in the positive y-direction. In the same way, pairs of vortices all along 
the wave train act to increase the displacement of vortices in the neighbouring wave 
train, and vice versa. The consequence is that small disturbances along the shear 
zone will amplify. It will be discussed later, in Section 14.3, that it is not necessary 
for the two wave trains to move at exactly the same phase speed. Through their 
interaction, they are able to phase-lock with each other as well as amplify. This 
interaction between parallel trains of vortices leading to instability is a generic form 
of fluid instability, found in many different situations and contexts. In this kind of 
situation, it is variously termed inflexion point instability or shear instability. The 
basic criterion for the instability to exist is that the gradient of absolute vorticity 
should change sign, that is,

	

∂
∂

=
ζ
y

y0 for some value of . 	 (9.33)

An alternative form of this criterion, in terms of the flow u(y) parallel to the x-axis 
is that the second derivative − ∂2u/∂y2 should change sign for some value of y, u here 
being defined in an inertial frame of reference.

Equation 9.33 is easily modified for a rotating fluid. In terms of the relative vor-
ticity, the criterion for instability is

	
β

ξ
β+

∂
∂

= −
∂
∂

=
y

u

y
y

2

2
0 for some 	 (9.34)

where β = ∂f
0
/∂y is the poleward gradient of planetary vorticity. Since β is always 

positive, the effect of rotation is to inhibit instability. In fact, for typical midlatitude 
synoptic scale flows, it is quite unusual for a jet to be strong enough and sharp 
enough for ∂2u/∂y2 to exceed β, although the absolute vorticity gradient is often 
close to zero on the flanks of a strong jet. When the criterion 9.34 is met, the result-
ing instability in an atmospheric or ocean context is often called ‘barotropic 
instability’.

A further generalization is needed to take account of stratification as well as rota-
tion. Similar arguments to those which led to Equation 9.33 apply, except that now 
the gradient of potential vorticity, rather than absolute vorticity, must change sign. 
Much more will be said about potential vorticity in subsequent chapters. But one 
example serves to illustrate the effect at this point. In certain conditions where a 
quasi-geostrophic scaling is appropriate (see Chapter 12), the criterion for instabil-
ity becomes
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N
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z
y zfor some zonal line through the , plane 	 (9.35)

Here, the Brunt–Väisälä frequency N is taken to be constant. In the midlatitude 
atmosphere, this criterion is more readily met as a result of variations of vertical 
shear in the atmosphere than as a result of horizontal shears. That is, it is more likely 
that the third term f N u z0

2 2 2 2/ /( )∂ ∂  should exceed β than the second term ∂2u/∂y2. 
In such a case, the instability arises from the interaction between vertically stacked 
trains of vortices, rather than the horizontally arranged vortices of barotropic instabil-
ity. The instability which is generated when vertically stacked trains of vortices interact 
is called ‘baroclinic instability’. Baroclinic instability is ubiquitous in the midlatitude 
atmosphere and will be the subject of much of the later chapters of this book.

Notes

1.  ‘To intervolve’ is a rarely used verb coined by the poet John Milton; it means ‘to 
wind together’ and is a particularly apt description of the vortex merging process in 
geophysical flows.

2.  A ‘right cylinder’ is a cylinder whose axis is perpendicular to its ends.
3.  Note that the x- and y-phase speeds do not transform as components of a vector when 

the co-ordinate axes are rotated. We may not, therefore, speak of a phase velocity, 
only a phase speed in a specified direction.
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Potential vorticity
10

10.1  Potential vorticity

This chapter introduces one of the most important unifying concepts in rotating 
fluid dynamics, the concept of potential vorticity. The principle is closely related to 
the Kelvin circulation theorem, mentioned in Section 8.9. However, in this section, 
the principle of potential vorticity conservation is approached rather intuitively. 
Subsequent sections make the discussion more rigorous and relate the properties of 
potential vorticity and circulation. Then, we shall explore some of the consequences 
of potential vorticity conservation.

Consider a parcel of dry air. On timescales short compared to a radiative relaxa-
tion time (typically around 30 days for the troposphere) and above the atmospheric 
boundary so that friction is small, such a parcel will be subject to a number of 
conservation principles. These are as follows:

1.	 It will conserve potential temperature since its motion is adiabatic.

2.	 It will conserve its mass.

3.	 The circulation around it will not change if the integral of the pressure gradient 
force around it is zero (see Section 8.8).

Figure  10.1 illustrates such a parcel, a cylinder confined between two nearby 
surfaces of constant potential temperature θ and at right angles to them. The first 
conservation principle says that the parcel must remain confined between the same 
two θ-surfaces. The length δh of the cylinder will vary according to the details of the 
flow. But it must always be bounded by the same θ surfaces.

The cross-sectional area of the fluid parcel projected onto the θ-surfaces is δA. As 
the flow evolves, δz (or ρ) may change. But δA must also change in step with such 
fluctuations if the mass is to remain constant. The mass δm of the parcel is

δ ρδ δm A h= .
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So the second conservation principle may be written as follows:

	 δ ρδ δm A h= = constant. 	 (10.1)

Considering the third conservation principle, a circuit around the cylinder lies in 
a  θ-surface, and so the circulation around it is constant in time, as shown in 
Section 8.8. The circulation around a circuit is equal to the integral across the area 
of the circuit of the component of absolute vorticity perpendicular to the θ-surfaces, 
ζ

n
 = ζ ⋅ n, where n is a unit vector perpendicular to the θ-surfaces. Therefore, for a 

small cylinder, the conservation of the circulation around it can be written as 
follows:

	 ζζ ⋅ =nδ A constant 	 (10.2)

Equations 10.1 and 10.2 summarize the behaviour, and both include the area δA that 
is not itself of interest. Dividing one expression by the other gives

	

ζζ ⋅
=

n
ρδh

constant. 	 (10.3)

The conservation expressed in Equation 10.3 is an amazingly simple summary of a 
combination of vorticity dynamics and thermodynamics. Referring to Figure 10.2a, 
if the θ-surfaces move apart, then as the cylinder is stretched, δh increases, and so 
the component of vorticity normal to the surfaces ζ

n
 increases (Figure 10.2b). If the 

θ-surfaces tilt, then the magnitude of the component of the vorticity normal to them 
is unchanged, but it now refers to the tilted direction (Figure 10.2c). Finally, if ρ 
increases due to compression, then the vorticity normal to the isentropes increases. 
This is like a conservation of angular momentum.

n θ + δθ

θ

ζ

δh

Figure 10.1  A parcel of fluid moves between two nearby surfaces of constant potential 
temperature, conserving its mass and the circulation around it
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The conservation relation expressed by Equation 10.3 is of more general analyti-
cal use if it can be turned into a calculus expression applicable to an infinitesimally 
small cylinder. This can be done by multiplying Equation 10.3 by the constant δθ 
and noting that in the limit of a small cylinder,

∇ =θ
δθ
δh

.

Also, the normal to the θ-surface can be written as

n =
∇
∇
θ
θ

This then gives the conservation of a quantity P following the motion:

	

D

D
where

P

t
P= = ∇0

1

ρ
θζζ . . 	 (10.4)

The quantity P is perhaps correctly called ‘Ertel–Rossby potential vorticity’ after 
the two who were first involved in its derivation. Rossby gave a discussion like that 
in this section, whereas Ertel gave a mathematical derivation like that in the next 
section. The name is often shortened to potential vorticity or just potential vorticity. 
It does not have the units of vorticity, but it is proportional to the vorticity the fluid 
element would have if ∇θ and ρ were to take some standard values. Rossby first 
discussed it using a form of Equation 10.3 and, considering the value ζ

n
 would have 

if ρ and δh were given standard values, referred to this or, more precisely, the rela-
tive vorticity at a standard latitude, as the potential vorticity. However, the name was 
subsequently attached to P, and so now atmospheric scientists have to put up with a 
rather confusing piece of nomenclature.

Figure 10.2  Illustration of the conservation following the motion of the expression in Equation 10.3. 
(a) A cylinder between two neighbouring isentropic surfaces. (b) The isentropes move apart, the 
cylinder is stretched and the normal component of vorticity increases. (c) The isentropes and the 
cylinder tilt, and the normal component of vorticity is the same but refers to the tilted direction

ζm

(a)

ζm

(b)
ζm

(c)
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In fact, the units of P are K m2 kg−1 s−1. To estimate a typical upper troposphere 
value for P, note that the tropospheric Brunt–Väisälä frequency squared 
N2 = (g/θ)∂θ/∂z is around 10−4 s−2, which is consistent with ∂θ/∂z about 3 × 10−3 K m−1. 
In the upper troposphere, ρ will be around 0.3 kg m−3, and the absolute vorticity may 
be taken as comparable to f = 10−4 s−1. Thus, a typical midlatitude upper tropospheric 
value of P will be around 10−6 K m2 kg−1 s−1. This quantity has been adopted as a 
‘standard’ value of potential vorticity, so that values are quoted in ‘potential vorti-
city units’ or ‘PVU’. Figure 10.3 shows P and θ contours in a latitude–pressure 
section for a climatological zonal average northern hemisphere winter. In the tropo-
sphere, P increases from zero near the equator to higher values at high latitudes. In 
the vertical, P generally increases from the surface up to the tropopause. Even in 
this very smoothed section, a dramatic change of P occurs at the tropopause, where 
the stratification abruptly increases with height. Since in the lower stratosphere, N2 
is around 4 × 10−4 s−2, a typical midlatitude value of potential vorticity immediately 
above the tropopause will be around 4 PVU. The abrupt jump of P from around 1 
PVU to 4 or more PVU is sometimes taken as a dynamical definition of the tropo-
pause, with the actual critical value often taken to be 2 PVU.

10.2  Alternative derivations of Ertel’s theorem

In this section, conservation of potential vorticity will be derived rigorously from the 
equations of motion as was first done in a more general context by Ertel. One aspect of 
the generalization is to consider an atmosphere in which there may be heating and fric-
tion. The general vorticity equation in height coordinates, Equation 8.10, can be writ-
ten in terms of the vorticity divided by the density so as to absorb the divergence term: 
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Figure 10.3  Potential vorticity (P) and potential temperature (θ) contours in a latitude–pressure 
section for the N hemisphere winter zonal average. The contours of P are drawn at 0, 0.5, 1, 2, 
4, and 10 PVU, and those of θ every 30 K from 270 to 390 K. The approximate position of the 
tropopause is shown by a dotted line
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Now for any vector V and any scalar s, the following identity holds:
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So if V is the absolute vorticity ζ, this identity enables the vorticity equation, multi-
plied by ∇s, to be written in the following form:
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Now if s is a function of the state variables ρ and p only, the first term on the right-hand 
side is 0. In this case, in the absence of a frictional torque,
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This result that the material time derivative can be taken through the expression to 
apply to s only is a very surprising one due to Ertel. Returning to the frictional case 
and taking s to be the potential temperature θ, which is indeed a function of the state 
variables, then
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Here, θ  denotes the heating Dθ/Dt. If heating and friction are both 0, then the 
conservation of Ertel–Rossby potential vorticity, P, on fluid parcels, Equation 10.4, 
is recovered. Friction is mostly concentrated at the lower boundary in the atmos-
phere. Strong heating is associated with latent heat release and is often localized in 
fronts or relatively small regions of intense precipitation. Consequently, P is nearly 
conserved for much of the flow in the mid- and upper troposphere.

Since ∇ ⋅ ζ ≡ 0, because ζ is a pure curl, a rearrangement of the expression for P 
in Equation 10.4 or 10.6 is

	 ρ θP = ∇ ⋅ ( ).ζζ 	 (10.7)

Integrate this equation over a volume V, which is bounded by a closed surface S, and 
use the Gauss divergence theorem:

	 V S

P V S∫ ∫= ⋅ρ θd d ( )ζζ n 	 (10.8)
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Also the right-hand side of Equation 10.6 multiplied by ρ can be written as a pure 
divergence since

∇ ⋅ ∇× + ≡ ∇× ⋅∇ + ⋅∇([ ] ) ( ) .

 u θ θ θ θζζ ζζu

It follows from Equation 10.6 that
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d
d d

t
P V S

V S
∫ ∫





 = ∇× + ⋅ρ θ θ○ � �[ ( ) ] .u ζζ n 	 (10.9)

This equation reveals that the mass-weighted potential vorticity in a volume V 
only changes in response to heating and friction on the bounding surface S. If 
friction or heating operate within V but are zero on the boundary S, the distribu-
tion of P may be altered, but the mass-weighted P integrated over the volume 
remains constant. For example, if there is an isolated region of heating, P will be 
decreased above the heating, but there will be a compensating increase of P below 
the heating maximum. The effects of friction and heating on potential vorticity 
will be discussed further in Section 17.6.

10.3  The principle of invertibility

The conservation of potential vorticity is a very strong constraint on atmospheric 
motion. It is also valuable in practice in the quality control of atmospheric analy-
ses. Any non-conservation of analysed potential vorticity on short timescales almost 
certainly points to problems with data or with the data analysis, so that successive 
analyses are not dynamically consistent.

However, the importance of potential vorticity goes beyond its conservation 
properties. If the distribution of potential vorticity is known, then, with certain con-
ditions, the distribution of wind and potential temperature can be deduced. This is 
called the ‘principle of invertibility’, and it adds greatly to the dynamical signifi-
cance of potential vorticity. The principle is an extension of results we have already 
seen for the barotropic vorticity equation. There, the distribution of relative vorticity 
was related to the stream function field by a Poisson equation:

∇ =2ψ ξ .

Given the vorticity field at a given time, the Poisson equation can be ‘inverted’ to 
give the stream function field at that time. From the stream function, the velocity 
components can be calculated, and so the advective processes affecting the vorticity 
deduced. Within the limitations of the barotropic vorticity equation, a complete 
description of the dynamics of the flow is achieved.
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There are some provisos to the principle of invertibility. They are as follows:

1.	 Inverting the potential vorticity to obtain the wind and temperature fields involves 
solving a Poisson-like elliptical partial differential equation. This can only be 
done if complete and consistent boundary conditions are specified around the 
edge of the flow domain.

2.	 A balance condition, linking the vorticity and potential temperature fields, must 
be specified. In the simplest case, this might be straightforward geostrophic 
balance, where

∂
∂

= ∇
ξ

θ
θ

z

g

f 0

2
H

More complicated and generally nonlinear balance conditions, such as gradient 
wind balance, may be adopted.

3.	 The total mass distribution must be known as a function of θ.

The mathematical details of the inversion process depend upon the balance condi-
tion used and the level of approximation in the definition of potential vorticity. For 
the present, we shall illustrate inversion by reference to a steady circular vortex, 
using gradient wind balance.

For such a circular vortex, the wind and geopotential are related by

	
f

v

r
v

r
+






 =

∂
∂
φ 	 (10.10)

The details of the analysis are summarized by Thorpe (1985). Defining a potential 
function Φ = ϕ + v2/2, and using a transformed co-ordinate R for the distance from 
the centre of the vortex, where
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the relationship between gravitational potential Φ and potential vorticity can be 
written as follows:

	

1
1

2

3
1

2

2

2

2

2

2

2 2f R

f R R

P z f R R

∂
∂

+
+

∂
∂









 ∂

∂
−

∂
∂

=
Φ

Φ
Φ Φ

ρ
	 (10.11)

Although it is nonlinear, this is an elliptic equation provided P > 0. It is also 
complicated by a singularity at R = 0. However, qualitatively, its solutions are not 
unlike those of the Poisson equation.
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Figure 10.4 illustrates two solutions. Both imagine an initial motionless state, 
with high potential vorticity above the tropopause and low potential vorticity below. 
In this motionless state, contours of potential temperature and potential vorticity are 
parallel. Now suppose that there is a minimum in potential temperature on the trop-
opause centred at r = 0, implying high potential vorticity there on isentropes that 
cross the tropopause. Figure 10.4 shows the resulting tangential winds and potential 
temperature assuming that Φ and its gradient tend to 0 as r → 0. The region of anom-
alous potential vorticity is stippled. The tropopause is depressed in the region of the 
potential vorticity anomaly, and cyclonic winds circulate around it, with maximum 
values near the tropopause. Above and below the anomaly, the winds are reduced, 

Figure 10.4  Inversion of a potential vorticity structure to give the wind and potential tempera-
ture field. The inversion is for circularly symmetric (a) depression and (b) elevation of the tropo-
pause, using gradient wind balance. From Hoskins et al. (1985)

100

(a)

(m
b)

200

300

400

500

600
700
800
900
1000

0

(b)

100

(m
b)

200

300

400

500

600
700
800
900
1000

0



	POTENTIAL  VORTICITY	 185

as they are at large r. All this is a three-dimensional extension to the circulation 
around an isolated barotropic vortex, discussed in Section 8.2. At the same time, the 
potential temperature contours bow up towards the potential vorticity anomaly in 
the troposphere and down towards the anomaly in the stratosphere. The result is that 
∂v/∂z and ∂θ/∂R are in a state of balance, which may be derived from Equation 10.4.

In the case of Figure 10.4b, there is a potential temperature maximum on the tropo-
pause and, therefore, negative potential vorticity anomalies on isentropes that cross 
the tropopause. The tropopause is elevated, and anticyclonic winds circulate around 
it. In thermal wind balance with them, isentropes bow upwards away from the poten-
tial vorticity anomaly in the stratosphere and downwards in the troposphere.

Figure 10.5  As Figure 10.4, but showing the effect of (a) a warm and (b) a cold anomaly on the 
lower boundary
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The importance of boundary conditions is highlighted by the two solutions shown 
in Figure 10.5. This time, there is uniform potential vorticity in the interior but a 
maximum or minimum in potential temperature along the lower boundary. For a 
warm boundary anomaly, the isentropes bow down towards the surface, and there is 
a cyclonic circulation which is a maximum at the surface. For the cold boundary 
temperature anomaly, the isentropes bow upwards and there is anticyclonic circula-
tion. The solutions have some similarity with inverted versions of those in Figure 10.4. 
This analogy is carried further by the inserts in Figure 10.5, which note that the solu-
tions are the same as those for uniform boundary temperature but with sheets of very 
large positive or negative potential vorticity anomalies just above the boundaries.

10.4  Shallow water equation potential vorticity

The concept of Ertel’s potential vorticity developed in this chapter relates to the ideas 
introduced in Chapter 9 concerning the barotropic vorticity equation. This is done 
through a series of brutal approximations, but is useful in consolidating a conceptual 
framework for describing potential vorticity and the processes associated with it.

Imagine a flow confined between two isentropic surfaces characterized by poten-
tial temperatures θ and θ + Δθ, illustrated in Figure 10.6. Assume that the unit vector 
normal to the surface is directed vertically, or equivalently, that the slopes of the 
θ-surfaces are always small. Then, from Equation 10.4, the potential vorticity is

P
Dn= ζ
θ

ρ
∆

If the layer is sufficiently thin, that is, if Δθ is sufficiently small, then the component 
of velocity parallel to the θ-surfaces is nearly constant through the layer. Note though 
that this quasi-two-dimensional velocity may be divergent since the distance between 
the θ-surfaces may vary. In this case, conservation of potential vorticity becomes
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Figure 10.6  Potential vorticity in a shallow fluid layer
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As an example, suppose the upper isentrope is flat, but that the lower isentrope rises 
and falls over some orography, height h, at the surface, providing a crude simulation 
of mountains on the lower boundary. Then Equation 10.12 becomes
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Finally, assuming the density ρ is constant, the role of potential vorticity in this situ-
ation is played by the conserved quantity:

	
P

f

D h
=

+
−
ξ

	 (10.14)

If |h| ≪ D, the potential vorticity equation, Equation 10.13, reduces to the barotropic 
vorticity equation, Equation 9.3.

The discussions of Chapter 9 reduce to conservation of potential vorticity in the 
form given in Equation 10.14. Making the β-plane approximation, and assuming the 
relative vorticity is 0 at the reference latitude and away from any orography, poten-
tial vorticity conservation means that

	
ξ β= − −y

f h

D
0 	 (10.15)

From this relationship, much of the discussion of flow over shallow orography and 
of Rossby wave propagation given in Sections 9.3 and 9.5 follows.
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Turbulence and atmospheric flow
11

11.1  The Reynolds number

A dimensionless measure of the role of viscosity in a particular flow is the Reynolds 
number:

	
Re =

UL

ν
	 (11.1)

where U is the magnitude of a characteristic velocity fluctuation, L is the length 
scale of that fluctuation and ν is the kinematic coefficient of viscosity. At first sight, 
the Reynolds number would appear to be the typical ratio of the acceleration terms, 
u ⋅ ∇u ~ U2/L in the Navier–Stokes equations, Equation 2.43, to the viscous term 
ν∇2u ~ νU/L2. However, we shall show later that this is an over-simplification. 
Nevertheless, the Euler equations might be thought of as the limit as Re → ∞, and 
we might expect that as Re becomes large, solutions of the Navier–Stokes equation 
should tend towards solutions of the Euler equations. It turns out that this expectation 
too is misleading.

Figure 11.1 shows a schematic summary of a classical sequence of fluid experi-
ments. Each frame illustrates the flow around a circular cylinder at different Reynolds 
numbers. In the definition of the Reynolds number for these flows, U is the uniform 
upstream flow speed, and L is the diameter of the cylinder. A beautiful and classic 
series of photographs of such flows is given in van Dyke (1982). Regardless of the 
size of the cylinder, the flow speed and the viscosity of the fluid, the character of the 
flow depends simply upon the Reynolds number.

At the smallest Reynolds number, Re ~ 1, the flow is very nearly symmetric 
up- and downstream of the cylinder. Streamlines close to the axis of the system 
part, with a stagnation point on the leading face of the cylinder, and pass either side. 
Those close to the surface of the cylinder remain close to the surface until they 
reach the vicinity of the trailing face, where they break away into the fluid interior. 
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Paradoxically, the whole flow is qualitatively rather similar to ‘potential flow’, an 
idealized two-dimensional solution to the Euler equations which neglects viscosity 
entirely. Such very low Reynolds number flow is called ‘creeping flow’.

As Re increases, the flow around the upstream half of the cylinder remains rather 
similar, with an upstream stagnation point and streamlines passing either side of the 
cylinder. The differences come on the trailing side of the cylinder and in the wake 
behind the cylinder. At Re around 4 or 5, streamlines on the trailing side of the 
cylinder break away from its surface, and enclose two small counter-rotating eddies, 
to produce a flow like that shown for Re ~ 10. As the Reynolds number increases 
further, the separation point moves towards the equator of the cylinder, and the 
length of the trailing vortices increases, roughly as Re1/2. Above Reynolds numbers of 
80 or so, the flow becomes unsteady; the flow shown for Re = 100 typifies this regime. 
The trailing vortices alternately break away from the rear of the cylinder and are 
swept away downstream. The result is a periodic ‘Karman vortex street’. The regular 
periodicity of the vortex street breaks down as the Reynolds number approaches 
1000, and the wake then becomes turbulent, with irregular fluctuations in both 
space and time. Even at such a very large Reynolds number, when it might be thought 
that the effect of viscosity was becoming negligible, the flow still varies with Re. For 
Re greater than 10 000, patches of turbulence break away quasi-periodically from the 
cylinder in a fashion reminiscent of the vortex street. But now it is circulating patches 
of turbulence rather than laminar eddies which are being shed. In all the cases illustrated, 
the upstream flow remains rather similar whatever the Reynolds number.

Re ~ 1 Re ~ 10

Re ~ 100

Re ~ 1000

Turbulent wake

Figure 11.1  Schematic illustrations of flow past a circular cylinder at different Reynolds numbers
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The crucial point in all these flows, with the exception of creeping flow, is that the 
flow upstream of the cylinder is characterized by zero vorticity, while downstream, 
the flow has a complex vorticity structure which depends upon Re up to very large 
values of Re. Where has this vorticity come from?

Consider an even simpler flow, the uniform steady flow of fluid past a thin flat 
plate which is aligned parallel to the flow, illustrated in Figure 11.2. Upstream of 
the plate, the flow has uniform speed U parallel to the x-axis; it therefore has zero 
vorticity since it has neither shear nor curvature. At the surface of the plate, a no-slip 
boundary condition applies: the velocity components both parallel and perpendicular 
to the plate fall to zero at the surface of the plate. Now consider a streamline which 
at a distance X from the leading edge of the plate is close to the plate surface, say, 
a small distance δ from its surface, but which, immediately upstream of the plate, has 
flow speed U. Then, the average acceleration term must be

u u⋅∇ ~
U

X

2

In a steady state, this acceleration must be balanced, and the only process which 
can accomplish this is viscous stress. Assuming the flow changes from U to 0 over 
a distance δ, then

ν
ν
δ

∇2
2

u ~
U

and so balancing these terms, the boundary layer thickness must be
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The boundary thickness increases with distance along the plate being zero at the 
leading edge and reaching a maximum thickness at the trailing edge of
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/
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1 2 	 (11.3)

L

X
<δx>

δz δ

Figure 11.2  The Blasius boundary layer on a thin plate
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if L is the total length of the plate. Associated with the shear of the flow in the 
boundary layer is vorticity of magnitude

	
ξ

δ
~ Re /

/



U U

L

X

L
= 















−
1 2

1 2

	 (11.4)

(where the minus sign refers to the top of the plate and the plus sign to its lower 
surface). Notice that this vorticity is infinite at the leading edge of the plate and 
drops to (U/L)Re1/2 at the trailing edge. Thin sheets of vorticity of this magnitude are 
shed into the wake behind the plate.

This simple, idealized flow is called a ‘Blasius boundary layer’, and it is full of 
implications. In fact, the boundary layers on a cylinder in the flows shown in 
Figure  11.1 would be very similar in their scale characteristics, though with the 
additional complication of curvature. The first thing it reveals is that there are at 
least two distinct space scales in the problem. There is the external scale L, imposed 
by the length of the plate, or, in the cylinder problem, by the diameter of the cylinder. 
But there is also an intrinsic length scale, characterizing the depth of the boundary 
layer. Because the viscous stress term contains higher derivatives than the remaining 
terms, the viscous stress can always balance the other forces acting, provided the 
vertical length scale is sufficiently small. In the Blasius problem, the viscous stresses 
are small throughout most of the fluid, but become large enough to balance the total 
forces acting within a small distance δ of the plate surface. So the Reynolds number, 
naïvely thought of as the typical ratio of viscous stresses to total acceleration, is better 
thought of as related to the ratio of the imposed and intrinsic scales in the flow:

	
Re = 








L

δ

2

	 (11.5)

Secondly, the example gives us a clue as to the origin of vorticity in an initially 
irrotational flow. It is generated in boundary layers and may be shed into the fluid 
interior when separation takes place. In the cylinder flows of Figure 11.1, very 
little vorticity is generated for small Re, and it is confined to the region immedi-
ately downstream of the cylinder. As Re increases, the magnitude of the vorticity 
increases, and the separation point moves further up the cylinder, towards its 
equator. In the vortex street regime, the shed sheets of vorticity quickly wrap up to 
form separate eddies of alternate sign. Their scale is comparable to L, rather than 
the small thickness δ of the initial vortex sheet, and consequently, the vortices can 
survive for long distances downstream. As the Reynolds number increases, so the 
proportion of the downstream wake, which becomes full of vorticity, increases.

Having said this, it is important to avoid the error of supposing that viscous 
stresses generate vorticity. They do not. Rather, the effect of viscosity is to diffuse 
vorticity, to weaken the vorticity extrema and to spread them out spatially. To under-
stand this, consider a tiny rectangular circuit, shown in Figure 11.2, of length δx 
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and height δz where δz > δ. The circulation around this circuit is constant, with mag-
nitude Uδx, no matter where on the plate it is calculated. The vorticity, the circulation 
per unit area, is of order U/δ and so is unbounded sufficiently close to the leading 
edge of the plate, falling to around (U/L)Re1/2 at the trailing edge. The total circula-
tion has not changed; what has happened is that it has been spread over a greater 
region of the fluid, and the associated vorticity correspondingly weakened. The 
difference between the circuit immediately upstream of the leading edge, where the 
vorticity is 0, and immediately downstream, where it is unbounded sufficiently 
close to the leading edge, is not the action of viscous stress. It is the discontinuous 
application of the no-slip boundary condition as soon as the plate is encountered, 
which is responsible for the first appearance of vorticity in the flow near the plate 
surface. Viscous stresses then spread this vorticity to adjacent layers, attenuating its 
magnitude but preserving the total circulation.

In terms of mathematics, we note that since

∇ = ∇ ∇ ⋅( ) −∇×2u u ξξ

taking the curl of the momentum equation to obtain the vorticity equation introduces 
a viscous term ν∇2ξ to the vorticity equation. This new term represents the diffusion 
of vorticity.

Traditional fluid dynamics serves to give a satisfactory description of the 
Blasius boundary layer upstream of the plate and for points well downstream of its 
leading edge. However, there are real difficulties very close to the leading edge 
where the vorticity tends to infinity and the boundary layer thickness tends to 0. 
Such a singularity means of course that the continuum hypothesis itself becomes 
inadequate immediately downstream of the point where the flow encounters the 
plate. There is a region, a few times the mean molecular spacing in width, where 
the establishment of the boundary layer should be described in terms of the ballistic 
behaviour of individual molecules. The Blasius layer is a salutary example of how 
we need to remain alert to the basic assumptions that are being made, even in appar-
ently everyday situations.

In the flows considered in this chapter, whenever the Reynolds number exceeds 
a value of order 103, laminar flow breaks down and becomes turbulent. Large irregular 
fluctuations of the flow variables develop in both time and space. Parcels of fluid 
become shredded and inextricably muddled with shreds of other fluid parcels within 
a short time. Not unrelated is the behaviour of vortex tubes. They too become highly 
contorted and tangled together so that their identities become vague. A precise deter-
ministic description of the flow quickly becomes impossible, and turbulent flows are 
generally described in terms of statistical concepts, in terms of means, of variances 
and co-variances of flow quantities.

Consider the Earth’s boundary layer, which has a typical depth of around 103 m 
and across which the wind might increase from small values near the ground to 
10 m s−1 or more at the top of the boundary layer. The Reynolds number estimated 
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from these figures is around 109. The atmospheric boundary layer is therefore highly 
turbulent. Wind in the boundary layer does not blow steadily. It fluctuates around 
some mean value, with irregular gusts and periods of relative calm. Similar fluctua-
tions characterize conserved quantities such as potential temperature, humidity or 
tracer concentration. As these properties are advected by the turbulent wind field, 
so their values fluctuate erratically on a range of time and space scales.

11.2  Three-dimensional flow at large Reynolds number

Consider incompressible homogeneous flow, which is stirred into motion by some 
large-scale forcing F. Ignore for the moment the effects of rotation and form an 
equation for total kinetic energy Ê  by taking the scalar product of the Navier–Stokes 
equation with the velocity vector and integrating over the volume of the fluid, so that

	

d

d
d

Ê

t
V

V

= ⋅ − ⋅∇×( )∫ F u uν ξξ 	 (11.6)

Other terms, such as those arising from the advection term and the pressure gradient 
term, integrate to 0 over the entire volume of the fluid by virtue of the boundary 
conditions. Now in a steady state, the two terms within the integrand must balance. 
But imagine separating the different scales of motion present by Fourier analysis 
of the velocity field and other flow variables. The term F⋅u will have a typical mag-
nitude FU and will be large on the forcing scale. The second term has a typical 
magnitude νU2/L2 and will generally be negligible on the scale of F, because the 
coefficient of viscosity for air is so small. Only for small values of L, that is, for small 
scales of motion, will this term become important. These scales might be millimetres 
for atmospheric flow. We deduce that for scales intermediate between the forcing 
scale and the viscous dissipation scale, energy is neither created nor destroyed but 
simply passed from one scale to another. On average, energy generated at large 
scales is passed by the turbulence to smaller scales until viscosity can destroy it. This 
process is called a ‘turbulent cascade’ of energy and is illustrated in Figure 11.3. 
The scales between the forcing scale with wavenumber K

f
 and the viscous dissipa-

tion scale with wavenumber Kν are called the ‘inertial subrange’. Neither the forcing 
nor the dissipation terms are important in the inertial subrange. Central to the cascade 
in the inertial subrange is vortex stretching, a fundamental process which reduces 
the scale of energetic vortices.

The distribution of energy according to scale is described by the spectral density 
of energy, E(k), defined so that

	
δ δE E K K= ( ) 	 (11.7)

is the energy per unit mass between wavenumber k and k + δk. Note that if we assume 
the turbulence is ‘isotropic’, with properties independent of direction, then E is a 
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function only of the total wavenumber K = |k| and not of the individual components 
of the wavenumber. The rate at which energy is passing from large to small scales is 
called the energy flux and denoted by ε(K).

Any attempt to predict E(K) by direct integration of the Navier–Stokes equations 
would be a formidable problem and would involve numerical integration of the 
equations at a resolution high enough to span values of K ranging from K

f
 to Kν. 

However, it turns out that considerable progress can be made using dimensional 
analysis. Suppose that E(K) is some function of the energy flux ε, the wavenumber 
K and the forcing and dissipation wavenumbers K

f
 and Kν:

E K f K K Kf( ) = ( )ε ν, , ,

This relationship can be simplified further if the ‘localization hypothesis’ is invoked. 
The localization hypothesis suggests that in the ‘inertial subrange’ K

f
 < K < Kν, the 

spectral energy density does not depend directly on the forcing or the dissipation. If 
that is so, then E(K) does not depend on either K

f
 or Kν. Then,

	
E K f K( ) = ( )ε , 	 (11.8)

Now ε, the spectral energy flux, has dimensions of energy per unit mass per unit 
time, or velocity squared per unit time. It must be of order a characteristic velocity 
squared divided by a characteristic timescale. From Equation 11.7, a characteristic 
velocity for wavenumber K is

U E K Kk ~
/( ) 

1 2

K

E(K)

KνKf

Energy flux 
ε(K)

Forcing Dissipation

Figure 11.3  Schematic illustration of the turbulent cascade of energy
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Indeed, this is the only velocity scale which can be defined without reference to the 
forcing or the dissipation. A characteristic length scale at wavenumber k is simply 
K−1, and so a characteristic timescale must be τ

K
 = (K− 1)/U

K
. The spectral energy flux 

is therefore

	
ε

τ
K

E K K
E K K K

K

( ) ( ) ( ) ~ ~
/3 2

	 (11.9)

This expression is rearranged to give the following form of the energy spectrum:

	
E K C KD( ) = −

3
2 3 5 3ε / / 	 (11.10)

where C
3D

 is some constant. Because the argument contains no direct reference to 
the forcing scale K

f
 or the viscous scale K

n
, C

3D
 must be a universal constant. This 

form of the turbulent energy spectrum is called the ‘Kolmogorov spectrum’. Its 
characteristic K−5/3 power law is observed in a variety of turbulent contexts. Such 
power law spectra imply ‘self-similarity’, that is, that similar structures exist in the 
flow at any scale in the inertial subrange. However, the assumptions made in deriv-
ing the Kolmogorov spectrum are quite severe. In geophysical situations, the tur-
bulence intensity is likely to vary from place to place, violating the homogeneous 
assumption, and the three space dimensions are likely to behave differently so that 
the isotropic assumption is violated.

11.3  Two-dimensional flow at large Reynolds number

The Kolmogorov result for homogeneous, isotropic three-dimensional turbulence is 
extremely straightforward. Virtually no other result in turbulence theory is so straight-
forward. But relaxing any of the highly idealized assumptions in the Kolmogorov 
dimensional analysis is difficult, and progress is very limited.

For atmospheric flow on the synoptic or larger scales, the three-dimensional, iso-
tropic assumptions are particularly suspect. We have already seen that both rotation and 
stable stratifications suppress vertical motion. As a result, there is a great asymmetry 
between the vertical and horizontal directions. In this section, we shall consider an 
idealized case of ‘turbulent’ motions of a purely two-dimensional flow. In such a case, 
the vertical component of the vorticity equation reduces to

	

∂
∂

+ ⋅∇ =
ζ

ζ
t

v 0,	 (11.11)

which is a simple, if nonlinear, conservation relationship. The stretching and tilting 
terms are 0 for a simple two-dimensional configuration. We have ignored the effects 
of friction although we shall see that some friction is needed on a sufficiently small 
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scale for the system to have stationary statistics. The absence of vortex stretching 
is crucial. That is an essential process in the energy cascade of the Kolmogorov 
model: stretching of vortices leads to the collapse of their scale in that case. In two 
dimensions, vorticity is conserved. An individual vortex might be deformed, but 
it cannot be strengthened or weakened by the flow. As far as the integral properties 
of the flow are concerned, not only must the energy of the flow be conserved, so 
must its enstrophy ζζ ζζ.. This additional constraint changes the character of the 
turbulence greatly.

So the archetypal process in two-dimensional flow is vortex deformation. This 
can proceed to extraordinary lengths, with initially compact vortices ending up 
completely shredded into long, thin, sinuous streamers which fill the flow domain. 
Figure 11.4 illustrates a single vortex subject to constant deformation. An initially 
square vortex, width π/k is deformed, with the dilation axis in the y-direction. 

Initially, the total wavenumber K k l k= + =2 2 2 . Since vorticity is conserved, 
the area of the vortex must remain constant, which means that as its y-dimension 
expands, so its x-dimension must contract. Thus, when the deformation is α, the 
width of the vortex is απ/k in the x-direction and π/αk in the y-direction. The total 
wavenumber is therefore

	
K kα α

α
( ) = +2

2

1
	 (11.12)

Note that α−2 is the aspect ratio of the deforming eddy. Since vorticity is conserved 
by the vortex, its enstrophy remains constant. But the streamfunction will change; 
from Poisson’s equation,

ψ
ζ

α
= −

( )K
2

Deformation

π/αk

απ/k

π/k

π/k

Figure 11.4  Schematic illustration of a vortex undergoing deformation in two-dimensional flow
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Consequently, the kinetic energy of the vortex

E A
A

= ∇∫∫ ψ 2
d

must also decrease as the deformation increases.
Figure  11.5 shows the results of such calculations. As the aspect ratio of the 

eddy changes, so its total wavenumber K increases according to Equation 11.2. The 
enstrophy remains constant, whereas the kinetic energy drops quickly as the eddy 
is deformed. This result leads to two inferences. Firstly, the enstrophy cascades from 
larger to smaller scales when the two-dimensional flow is subject to random fluctuat-
ing deformations. In this particular example, the vortex preserves its vorticity and 
hence its enstrophy, while the total wavenumber increases, that is, the average spatial 
scale of the vortex decreases. Secondly, kinetic energy rapidly declines for the vortex 
as it is deformed. The total kinetic energy of the fluid must be conserved, and so we 
conclude that in such two-dimensional flows, the kinetic energy must pass from small 
scales, or larger wavenumbers, to large scales. As well as the enstrophy cascade, there 
must be an inverse kinetic energy cascade. Figure 11.6 shows a schematic illustration 
of the energy spectrum. The turbulence is forced at wavenumber K

f
. Enstrophy 

cascades downscale to wavenumber Kν where viscous dissipation becomes effective. 
Kinetic energy cascades upscale to some wavenumber K

u
 where large-scale drag 

limits further cascade.
The basic properties of such an energy spectrum can be established using arguments 

parallel to those in the last section. At any wavenumber K, there is a characteristic eddy 
velocity given by
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Aspect ratio

Total wavenumber
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Kinetic energy

Figure 11.5  Variation of total wavenumber (solid), kinetic energy (dashed) and enstrophy (dotted) 
with the aspect ratio of a deforming vortex
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U E K KK ~

/( ) 
1 2

	 (11.13)

The eddy has the characteristic spatial scale K−1, and so it has a characteristic over-
turning timescale given by
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Now the enstrophy spectrum is related to the kinetic energy spectrum by

Z Z K K E K K K= ( ) = ( )∫ ∫d d2

Assume that the enstrophy flux is related to the eddy overturning timescale, so that

η
τ τ

~ ~ ~
/ /Z K K E K K

E K K
K K

( ) ( ) ( )
3

3 2 9 2

If η is independent of wavenumber, that is, if the cascade of enstrophy is purely 
inertial, then the energy spectrum is obtained by rearranging this last expression:

	
E K C KD( ) −~ /

2
2 3 3η 	 (11.15)

where C
2D

 is some universal constant. Comparing Equations 11.4 and 11.7, notice 
that for the enstrophy cascade inertial subrange, the eddy overturning timescale is 
independent of wavenumber. The cascading enstrophy will eventually be dissipated 

Kf Kν
Ku

E(k)

Energy 
cascade ε 

Enstrophy
cascade η 

K

Figure 11.6  Schematic view of two-dimensional turbulence. The turbulence is forced at wave-
number K

f
; enstrophy cascades to wavenumber Kν while energy cascades to wavenumber K

u
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by viscosity at a sufficiently small scale. This scale can be estimated by noting that 
the timescale for viscous dissipation of an eddy is

τ
νν =

1
2K

Equating the eddy overturning timescale, Equation 11.4, with the viscous timescale 
gives an estimate of the wavenumber kν at which viscous dissipation becomes 
important:

	 Kν η ν~ / /1 6 1 2− 	 (11.16)

The properties of the spectrum for K < K
f
 are derived in a very similar way as for 

three-dimensional turbulence. The only difference is that ε is to be understood now 
as an upscale cascade of kinetic energy. The upscale flux of energy is

ε
τ

~ ~
/ /E K K

E K K
K

( ) ( )2 3 5 2

And so, rearranging,

	
E K C KD( ) −~ / /

2
2 3 5 3ε 	 (11.17)

The system can be closed if some linear drag law of the form − ξ/τ
D
, such as that 

suggested by Ekman pumping, be included in the vorticity equation. Although this 
term is scale invariant, it has the effect of preventing the cascade proceeding to very 
small wavenumber, since it becomes effective at dissipating eddies once the eddy 
overturning time becomes longer than the friction timescale τ

D
. This occurs when 

K < K
u
 where

	
Ku
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~
/ /

1
1 2 3 2ε τ

	 (11.18)

In an atmospheric context, this scale may not be relevant. As the scale of eddies 
increases, variations of the Coriolis parameter become more important, and for 
wavenumbers less than around Kβ ~ (β/U)1/2, the turbulent deformation of eddies is 
replaced by the dispersive radiation of Rossby waves (see Section 9.8).

The crucial difference between three- and two-dimensional turbulence lies in 
the flux of kinetic energy from scale to scale. For three-dimensional turbulence, the 
energy flux is systematically from large to small scales and ultimately to scales 
sufficiently small that viscosity dissipates the energy. Put another way, energy forced 
at some given scale only cascades to smaller scales, not to larger scales. Larger 
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scales are therefore unaffected by events at very much smaller scales. This is not the 
case for two-dimensional turbulence. From some forcing scale, energy cascades 
upscale, eventually to arbitrarily large scales. Small details of the flow at some initial 
time will therefore eventually modify the large-scale flow.

The result of upscale energy cascade is that large-scale flow becomes inherently 
unpredictable. Consider any arbitrary flow, with energy on many scales. If this 
flow is observed, a minimum observable scale is defined by the spatial distribution 
of the sensors used. Flow features on smaller scales are unobservable and can 
be thought of as random small-scale forcing. If energy cascaded to smaller scales, 
these unobservable scales would not affect the larger observed scales. However, if 
energy cascades upscale, then eventually random and unpredictable small-scale 
forcings will become manifest on the larger observable scales. This is the origin 
of  the picturesquely termed ‘butterfly effect’. Even forcing as tiny as an insect 
flapping, its wings will eventually modify the large-scale flow and may, for exam-
ple, be said to change the evolution of a developing circulation system in some 
distant part of the fluid.

These arguments have a strongly practical relevance to the business of weather 
forecasting. A modern weather prediction model is based on an equation set such as 
the primitive equations of Section 4.5, with the equations discretized in some way. 
Most straightforwardly, the flow variables are represented at nodes on some grid 
filling the domain under consideration, with the derivatives in the primitive equa-
tions replaced by finite-difference formulae. This means that events on scales 
smaller than the grid spacing are not represented in the model, even if they could be 
observed. They can be thought of as a random forcing of the flow at sub-gridscales. 
For short times, this forcing will have little effect on the large scales of interest. But 
eventually, the continual random forcing will have increasingly significant impacts 
on the large scale. In other, beyond a certain time, the forecast will become uncertain 
and eventually meaningless. The upscale cascade of energy implies a fundamental 
limit to the predictability of the flow. This is not a technical limitation, a result of 
poor models or inadequate measuring instruments. The inevitable uncertainties in 
any observation of the flow will eventually limit the value of a prediction even if the 
model could be made perfect.

11.4  Vertical mixing in a stratified fluid

Most of the Earth’s atmosphere is stably stratified, which means that energy has to 
be supplied to an air parcel in order to displace it vertically. As a result, vertical 
mixing in the atmosphere is inhibited, despite the very large vertical shears which 
would suggest ubiquitous vertical mixing if the stratifications were weak. A neces-
sary condition for shear instability to occur is that the kinetic energy associated 
with the shear is sufficient to supply the potential energy needed to overcome the 
stable stratification.
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Consider a fluid parcel which is lifted a distance δz in a sheared, stratified flow. 
The buoyancy force acting upon the displaced parcel will be
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The total work done per unit mass lifting the parcel to this position is E
b
 = (N 2δz2)/2. 

The kinetic energy per unit mass associated with the shear over a layer δz deep is
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The shear can sustain continued lifting of the parcel provided E
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Ri is called the Richardson number, and it may be thought of a dimensionless meas-
ure of stratification. It was discussed before in Section 5.9 as a measure of vertical-
to-horizontal thermal advection when Ro ~ 1, and in Section 7.4 as a dimensionless 
measure of stratification. A typical tropospheric value is obtained assuming N 2 of 
10−4 s−2 and a shear of 20 m s−1 over 10 km. This leads to Ri of 25, at least an order of 
magnitude larger than the maximum which would permit turbulence. The Richardson 
number is a most important parameter setting the large-scale circulation of a planet’s 
atmosphere. In the boundary layer, the shear is greater and the stratification smaller. 
In the lowest kilometre of the midlatitude atmosphere, the Richardson number is 
often less than O(1), and there turbulence is ubiquitous.

However, the global value of Ri may be misleading, since the stability, but more 
especially the wind shear, can vary greatly from place to place. In Figure 11.7, the local 
Richardson number is plotted on the meridional plane. Even this involves a great of 
zonal averaging. The field is difficult to plot since Ri has very large values when the 
shear changes sign. Ri is large in the tropics and polar regions, where wind shear is 
small, and around the jet cores near 20 kPa where ∂u/∂z changes sign. It is small in the 
strongly sheared, weakly stratified parts of the upper midlatitude troposphere, beneath 
the main tropospheric jets. Here values as small as 1, but not as small as 0.25, are found 
in the winter hemisphere. Small values, less than 0.25, are found in the midlatitude 
boundary layer, and here at least shear-driven turbulence is expected to be ubiquitous.

The conclusion from Figure 11.7 is that the stratification of most of the tropo-
sphere and stratosphere outside the boundary layer is sufficient to stabilize the atmos-
phere to shear instability. However, the use of time and zonal mean fields undoubted 
exaggerates the stability of the flow. If three-dimensional synoptic fields are exam-
ined, then transient regions of small Ri in frontal regions will almost certainly be 
found. Theoretical examples will be given in Chapter 15. These patches of low Ri 
are regions where clear air turbulence is likely to occur, a matter of practical aviation 
forecasting and not merely of theoretical interest.
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11.5  Reynolds stresses

As a result of the discussion in the earlier part of this chapter, it seems inevitable that 
atmospheric flow is always, to a degree, turbulent. Eddies exist on every scale, and 
energy and enstrophy are exchanged between the different scales. Yet for much of 
this book, we have proceeded as if the flow was smooth and laminar, as if parcels 
of  fluid retained their identity for finite times, and we have pretended that fluid 
trajectories are smooth curves.

The approach will be to partition the flow into a mean part and a fluctuating part, 
so that
	 u u u= + ′ 	 (11.20)

where the overbar denotes the average over of a range of space and timescales, and 
the prime denotes local deviations from this average. The choice of averaging scale 
has little theoretical basis and is generally made on the grounds of technical conveni-
ence. For example, in a numerical weather prediction or climate model, the overbar 
might denote averaging over a portion of space-time based on the model resolution 
and timestep. The prime denotes the local turbulent fluctuation around the mean 
state. Similar notation applies to all variables. Now by definition,

u′ = 0

So if Equation 11.20 is substituted into the equations of fluid motion, and the equa-
tions averaged over our small space and time volume, the linear terms are simply 
replaced by an equivalent term in the mean quantities. However, any nonlinear 
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Figure 11.7  Richardson number based on the time and zonal mean fields of θ and u for the 
December–January–February season. Dashed contours for Ri of 5 and 10; solid contours every 10 
from 20 until Ri = 100; shading indicates larger values
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products will result in co-variances whose average will not necessarily be 0. So, 
for example, applying this formalism just to the x-component of the momentum 
equation for incompressible flow,

	

∂
∂

+ ⋅∇ +∇ ⋅ ( ) = ∂
∂

+ + ∇
u

t
u u

p

x
f vu u u′ ′

1

0

2

ρ
ν ( ) 	 (11.21)

where the continuity equation for incompressible flow has been assumed. This aver-
aged equation has the same form as the original component of the full Navier–Stokes 
equation but with the addition of a new term, the third on the left-hand side. The new 
term takes the form of the divergence of eddy co-variances, sometimes referred to 
as the ‘turbulent eddy fluxes’, in this case fluxes of westerly momentum. The new 
terms in the Navier–Stokes equations, taking the form of the divergence of eddy 
fluxes, are called ‘Reynolds’ stresses’. Further similar terms arise when the same 
averaging is applied to the remaining components of the Navier–Stokes equation, 
or to the other equations. For example, the averaged version of the thermodynamic 
equation becomes

	

∂
∂

+ ⋅∇ +∇ ⋅( ) =θ
θ θ

t
Su u′ ′ 	 (11.22)

which includes the divergence of the eddy potential temperature fluxes.
Further deductive progress would require a detailed description of the turbulence, 

and this is in general extremely difficult. Ideally, one would like a relationship 
between the Reynolds’ stresses and the mean fields of velocity, pressure and so on. 
Such a relationship is called a ‘closure’. With its aid, the entire equation set could 
be written in terms of mean quantities, and we would have a complete, ‘closed’ set 
of equations. However, no rigorous way of deriving such relationships is known. In 
practice, a number of heuristic or empirical approaches of varying degrees of com-
plexity have been proposed. These can yield adequate results over limited ranges of 
flow variables. In the remainder of this section, we merely sketch some approaches.

One attractive approach would be simply to ignore the sub-gridscale Reynolds’ 
stresses, that is, to show that they are negligible compared with the accelerations repre-
sented by the resolved terms of the equation. This indeed is the approach taken by most 
teachers of atmospheric dynamics and in much analytic work. Can it be justified?

Suppose the flow is an example of two-dimensional turbulence, with its charac-
teristic k−3 spectrum. It is forced at wavenumber k

f
, and the enstrophy cascade is 

terminated by viscous dissipation at wavenumber k
d
. Suppose furthermore that the 

flow is resolved down to some scale Δx. This means that the shortest wavelength 
resolved is 2Δx, and the corresponding wavenumber is k

r
 = π/Δx. The kinetic energy 

associated with sub-gridscale motions is therefore
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Assuming k
r
 ≫ k

d
, the unresolved eddy kinetic energy can be written with adequate 

accuracy:
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kr
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η 2 3

22

1/

	 (11.24)

Now, the eddy fluxes depend upon the two components of eddy velocity, multiplied by 
an O(1) factor which depends upon the relative phase of the u and v waves. Therefore,

v′ ′u E~ r

Assume that the eddy fluxes vary slowly, on a scale comparable to the scale of the 
system. Then, the typical acceleration due to sub-gridscale Reynolds’ stresses will be

u
u

L
k Efr

r
r~ ~

u′ ′

A similar argument will give an estimate for the acceleration due to resolved eddies 
for which k

f
 < k < k

r
. The eddy kinetic energy associated with these scales is
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which leads to an acceleration of

u
u

L
k Ef

f
f f~ ~

u′ ′

Comparing these two expressions for the acceleration affords a direct comparison of 
the typical accelerations due to Reynolds’ stresses of the resolved motion with those 
due to the sub-gridscale motions:
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Thus, provided that there is at least an order of magnitude difference in scale between 
L and Δx, the error made in ignoring the Reynolds’ stresses due to sub-gridscale 
motion is probably not very important. However, many coarse resolution studies use 
low-resolution models, either in the interests of simplicity or to enable a large number 
of cases to be studied with limited computer resources. In many studies, the difference 
between L and Δx might only be a factor of two or three; in that case, substantial errors 
might result by neglecting the Reynolds’ stresses due to sub-gridscale motions.
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A very simple closure for the equations of atmospheric flow is an analogy with 
the kinetic theory of ideal gases. In a sheared flow, individual molecules carry their 
momentum for a short distance before colliding with other molecules and sharing 
their momentum with them. The mean distance between collisions is called the 
‘mean free path’, and the average speed of the molecules is proportional to T1/2, T 
being the temperature of the gas. In a sheared flow, molecules on average transport 
momentum across the shear, so that one layer of fluid exerts a stress on adjacent 
layers: this stress is quantified by Newton’s law of viscosity. Kinetic theory gives a 
relationship between the dynamical coefficient of viscosity and the microscope 
properties of the molecules:

	
ν =

1

2
vl 	 (11.26)

Here, l is the mean free path for the molecules, and v  is their mean speed. This result 
predicts that the dynamic coefficient of viscosity for an ideal gas should increase with 
temperature, other factors being constant.

In a turbulent flow, something similar but on a much larger scale is going on. 
Blobs of fluid move more or less randomly through the fluid. They exert forces on 
neighbouring blobs as they go and are deformed. Eventually, a particular blob will 
lose its identity and mix with its environs, and any property it carries, such as poten-
tial temperature or tracer mixing ratio, or indeed momentum will be mixed with the 
fluid at this location. The average distance over which a blob preserves its identity 
is called the ‘mixing length’, denoted by λ, and the typical speed of the blob is given 
by the turbulent fluctuations of flow speed around the mean. So, by analogy with 
molecular viscosity, we may define an ‘eddy viscosity’ as

	
ν λe =

1

2
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1 2

v′
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If ν
e is assumed constant, Equation 11.27 provides a crude closure. The Navier–Stokes 

equation for a turbulent flow then becomes
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It is exactly the same as the Navier–Stokes equation for laminar flow, but with an 
eddy viscosity coefficient in place of the molecular viscosity coefficient.

Ideally, theories of turbulence would provide estimates of λ and v′2
1 2/

 and hence 
of ν

e
. Such approaches do not readily lead to simple expressions for the eddy viscos-

ity. Instead, an estimate of a reasonable value for ν
e
 comes from the observed depth 

of the midlatitude boundary layer, which is of order 1 km. Equating this to the 
Ekman layer thickness discussed in Section 8.7, the effective eddy viscosity is 
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νe E~ H f2 , that is, around 100 m2 s−1, around 8 orders of magnitude greater than the 
molecular viscosity.

Eddy viscosity in some form or other is frequently incorporated in numerical 
models of atmospheric flow, whether for short-term weather prediction or for 
longer-term global atmospheric circulation studies. Without it, energy and enstro-
phy would accumulate at the gridscale and eventually render all the fields noisy and 
unrealistic. By providing a means of removing such gridscale noise, eddy viscosity 
at least mimics turbulent cascades to small, unresolved scales of motion. The eddy 
viscosity term in Equation 11.28 is effectively a scale-selective filter, attenuating the 
small-scale features in the velocity field but leaving the larger, well-resolved scales 
more or less untouched. Various other filtering approaches are used in modern 
weather prediction and global circulation models, often with the aim of making the 
filtering more scale selective. But the aim is the same: to prevent variance building 
up on the smallest scales represented by the model, scales which will not be well 
handled by the discretization inherent in the model formulation.

It is clear that eddy viscosity is a gross over-simplification. The analogy with 
molecular viscosity and the kinetic theory of gases is weak. Parcels of air in a turbu-
lent flow do not behave like molecules, conserving their properties until colliding 
with another parcel. Instead, air parcels in turbulent flow are only ever vaguely 
defined, and they steadily lose their identity in the surrounding fluid. In particular, air 
parcels do not conserve their momentum until they experience an elastic collision 
with another parcel. Instead, pressure forces between the parcel and the surrounding 
fluid continually change its momentum. The arguments for an eddy viscosity are at 
most order of magnitude estimates based on dimensional analysis. There are circum-
stances, some examples of which are discussed in Chapter 18, in which the concept 
of eddy viscosity can be very misleading.
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Quasi-geostrophic flows
12

12.1  Wind and temperature in balanced flows

An exact balance between the horizontal pressure gradient term and the Coriolis 
term in the momentum defines a hypothetical velocity vector called the ‘geostrophic 
wind’. Using the basic equation sets, Equations 7.35 and 7.36, for pressure coordi-
nates, Equation 6.10, the geostrophic wind is

	
v kg = − ×∇

1

0f
HΦ′ 	 (12.1)

In Section 5.6, scale analysis suggested that synoptic scale flows in the midlatitudes 
should be close to geostrophic balance, that is, that the observed wind v should be 
approximately v

g
. More precisely, the magnitude of the ageostrophic wind v

a
 = v − v

g
 

should be of order Rossby number times the magnitude of the geostrophic wind. 
Figure 12.1a is an example of upper air flow over the North Atlantic. It shows vec-
tors of the horizontal component of the wind as well as contours of geopotential 
height. The wind is closely parallel to the height contours, with stronger winds in 
regions where the contours are closely spaced, in accordance with Equation 12.1. 
Figure 12.1b shows the ageostrophic wind deduced for the same case. First notice 
the different scale for the wind vectors. The magnitude of the ageostrophic wind is 
an order of magnitude smaller than the geostrophic wind. The direction of the ageo-
strophic wind indicates the direction in which fluid parcels are accelerating, which 
in turn has implications for the vertical motion field.

In the basic equation set, Equation 7.35, hydrostatic balance is

	

∂
∂

=
Φ′
z

b 	 (12.2)

where b is buoyancy. Eliminate the pressure between Equations 12.1 and 12.2 
to give
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An equivalent pressure co-ordinate version of these equations is
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Figure 12.1  Showing contours of geopotential height and vectors of (a) geostrophic wind and 
(b) ageostrophic wind at 50 kPa at 00Z on 19 February 1997 during one of the FASTEX intensive 
observing periods
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According to the relationships (12.3) or (12.4), vertical variations of the geostrophic 
wind are proportional to the horizontal variations of the temperature field. The surface 
geostrophic wind is specified by the surface pressure field, from Equation 12.1, while 
the temperature and pressure fields are related by the various forms of the hydrostatic 
Equation 12.2. Therefore, the pressure field defines both the wind and the temperature 
fields. If geostrophic and hydrostatic balances are good approximations, these fields 
are not independent, and the number of variables in the problem is reduced.

Equation 12.3 or 12.4 represent ‘thermal wind balance’. This balance can be 
thought of as a generalization of the Taylor–Proudman theorem, discussed in 
Section 3.6. For if ∇

H
b = 0, the thermal wind equation reduces to ∂v

g
/∂z = 0. The 

implication then is that fluid moves in coherent vertical columns, with the same 
velocity at each level in the column.

If the equation of thermal wind balance is integrated in the vertical, the result is a 
relationship between the change of wind over the vertical interval and the mean 
temperature of the slab of air traversed. We follow the more usual convention by 
integrating the pressure co-ordinate version of the thermal wind equation from some 
low-level pressure p

2
 to some upper-level pressure p

1
. Then,
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where T  is a mean temperature through the slab of air. The quantity on the right-
hand side of this equation is called the ‘thermal wind’ v

T
:

v kT = ×∇
R

f
T

0

The thermal wind is parallel to the contours of constant temperature (Figure 12.2). It 
is directed with cold air on the left in the northern hemisphere, and vice versa in the 
southern hemisphere. For geostrophic flow, the upper-level wind is the vector sum of 
the low-level wind and the thermal wind. If the low-level wind is parallel to the iso-
therms, then so must be the upper-level wind. In such a case, there is no advection of 
the isotherms throughout the slab of air. But if the low-level wind has a component 
parallel to the temperature gradient, so there is advection of temperature, then the 
upper-level wind will have the same component parallel to the temperature gradient. 
Throughout the slab, thermal advection will take place. Figure 12.3 illustrates two con-
figurations. In Figure 12.3a, the wind has a component pointing from warm air towards 
cold air, leading to warm advection. In this case, the wind vector turns clockwise with 
height; it is said to ‘veer’. In Figure 12.3b, cold advection takes place, and so the wind 
turns anticlockwise with height, or ‘backs’.

The equations of thermal wind balance in their various forms can also be written 
in terms of the vertical component of the geostrophic vorticity
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For example, taking the curl of Equation 12.3 and using the identity that 
k k⋅∇× ×∇( ) = ∇H Hb b2  give

	
f

z
bH0

2
∂

∂
= ∇

ξg 	 (12.6)

As pointed out in Section 9.2, ∇H b2  generally has the opposite sign to b′. It follows 
that a system with a warm core generally has vorticity which becomes more 

20 m s–1

Figure 12.2  Showing the thickness of the 90 kPa to the 50 kPa layer, together with vectors of the 
wind shear across this layer. Other details as Figure 12.1

Figure 12.3  Thermal wind shear in (a) warm advection situations and (b) cold advection situa-
tions. The upper-level wind is the vector sum of the low-level wind and the thermal wind. In (a), 
the wind is said to veer, and in (b), it is said to back
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anticyclonic with height, while the vorticity of a cold cored system becomes more 
cyclonic with height. For example, a cyclone with a cold core becomes more 
intense with height. In contrast, the intensely cold core Siberian anticyclone over 
northern Eurasia in winter is confined to the lower troposphere: in the middle and 
upper troposphere, the vorticity becomes cyclonic. A tropical cyclone has a warm 
core. Its cyclonic vorticity near the surface reverses and becomes anticyclonic 
near the tropopause.

12.2  The quasi-geostrophic approximation

Using the basic equation set, Equation 7.35, we first introduce the geostrophic 
streamfunction ψ

g
 = Φ′/f

0
. Then, Equations 12.1 and 12.2 become
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The geostrophic relative vorticity is ξ ψg g= ∇H
2 , and the thermal wind equation
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follows directly.
In Chapter 8, we showed how the vertical component of the vorticity was decou-

pled from the horizontal components of vorticity and that the generation of the 
vertical component of vorticity was a slow process. In this section, we continue 
this analysis of the vertical component of the vorticity equation. Following 
Equation 8.17, we write the vertical component of the vorticity equations:
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Here, the vertical component of the absolute vorticity is ζ = f
0
 + βy + ξ. This is the 

‘beta plane approximation’ introduced in Section 4.6. If the meridional scale of 
motion is small so that βL2/U ≪ 1, then |βy| ≪ |ξ|, and we have the f-plane approxi-
mation for which ζ = f

0
 + ξ. Firstly, note that in Equation 12.9, the horizontal velocity 

can be split into geostrophic and ageostrophic parts and that the typical magnitude 
of the ageostrophic wind is O(Ro) times the geostrophic wind. Secondly, this split 
implies that the vertical component of relative vorticity can be written in terms of 
the geostrophic and ageostrophic winds:
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Since |v
a
| ∼ Ro|v

g
|, it follows that |ξ

a
| ∼ Ro|ξ

g
|. Ignoring terms of O(Ro) and smaller 

means that the first two terms of Equation 12.9 can be rewritten:
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We may think of the last term in Equation 12.10 as the sum of two terms, the stretch-
ing of planetary vorticity and the stretching of relative vorticity. Now the typical 
ratio of relative to planetary vorticity is

ξ
f

U

fL
∼ ∼ Ro.

So, to order Rossby number, the stretching of planetary dominates over the stretch-
ing of relative vorticity. Finally, consider the ratio of the horizontal and vertical 
advection terms:
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But, as was shown in Equation 5.24, W ∼ Ro(D/L)U and so
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Putting these together, an approximate form of the equation for the vertical component 
of vorticity is
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where D
g
/Dt ≡ ∂/∂t + v

g
 ⋅ ∇ denotes a rate of change following the geostrophic wind. 

To O(Ro), Equation 12.11 is a consistently approximated form of the vorticity 
equation.

A similar scaling analysis can be applied to the thermodynamic equation, which 
may be written as follows:
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Once more, split v into its geostrophic and ageostrophic parts and replace b by 
gθ′/θ

0
 in the third term so that Equation 12.12 becomes
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to order (Ro). The ratio of the two vertical advection terms is simply

∂ ∂
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where Δθ
V
 is the typical change in potential temperature over a height scale H and 

Δθ
H
 is the typical fluctuation of potential temperature in the horizontal. Now Δθ

V
 is 

related to the stratification by
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while Δθ
H
 can be related to the typical horizontal wind using the thermal wind 

relationship:
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With a little manipulation,

∆
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RoRi

where Ri = N2D2/U2 is the Richardson number. We shall make the assumption that this 
ratio is small, that is, the Richardson number Ri ≫ Ro−1, so that vertical advection of 
the reference profile dominates over vertical advection of potential temperature 
anomalies.

In fact, as given in Equation 5.45, the Richardson number, Rossby number and 
Burger number Bu = N2D2/f 2L2 are related as

Ro Ri Bu2 =

So if there is the natural ratio of scales D/L ∼ f/N implying that Bu ∼ 1, then Ri ∼ Ro− 2 
and (RiRo)− 1 ∼ Ro. For the midlatitude atmosphere, Ro is typically 0.1, and Ri is 
typically around 100 and consistently (RoRi)− 1 ∼ 0.1. With the assumption Ri ≫ Ro−1, 
we have an approximated thermodynamic equation in the compact and elegant form:
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Note that in this equation, the stratification may vary with height but not with position 
in the horizontal. Equations 12.11 and 12.13 form the so-called quasi-geostrophic set. 
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They are actually a set of two equations in just two dependent variables since θ and ξ
g
 

are related as they are both functions of ψ only. As v
g
 is also a function of ψ, there are 

just two unknowns, ψ and w.
Hence Equations 12.3 and 12.5 give a complete description of the flow to O(Ro). 

They are referred to as the ‘quasi-geostrophic’ equations. In the early days of 
numerical weather prediction, the quasi-geostrophic equations were actually used 
as the basis of forecasting models. They had the huge advantage of filtering out fast 
gravity wave motions, therefore permitting a longer timestep. As the power of com-
puters increased, this advantage was outweighed by the approximations made in the 
equation set, and it became usual to base climate and weather prediction models on 
the full primitive equations. However, the quasi-geostrophic set remains of great 
value for teaching and theoretical discussions since they isolate low-frequency 
balanced motions, giving insight into those motions which dominate the spectrum 
of synoptic and global scales of motion in the atmosphere.

The scaling analysis of this section can equally be carried out using pressure as a 
vertical coordinate. The resulting vorticity equation is
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An advantage of this version is that the background variation of density with height 
no longer plays a role. The corresponding thermodynamic equation is
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The static stability parameter − ∂θ
R
/∂p is a function of only p in the quasi-geostrophic 

approximation. It is always positive in a stably stratified atmosphere. However, as we 
noted in Section 6.2, ∂θ

R
/∂p varies sharply with height and, unlike ∂θ

R
/∂z, cannot be 

treated as approximately constant.
The quasi-geostrophic equation set has been given in terms of the vorticity and 

thermodynamic equations. A consistent momentum equation can also be derived 
from Equation 5.25. Splitting the horizontal velocity into a geostrophic and O(Ro) 
ageostrophic parts and dropping all O(Ro) terms result in
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t
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The reader can show by direct differentiation that this leads back to the quasi-
geostrophic form of the vorticity equation.

The physical nature of the quasi-geostrophic Equations 12.11 and 12.13, 12.14 
and 12.15 is worth remarking upon. They have been written so that all the geostrophic 
terms are on the left-hand side, principally horizontal advection by the geostrophic 
wind. The right-hand sides, in contrast, depend upon the small ageostrophic component 
of the wind. This component tends to 0 as the Rossby number decreases. However, 
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because the terms involving w are multiplied by the background rotation or stratifica-
tion variables f or N2, the total effect of these terms is to balance the horizontal advec-
tion; these terms are not in general negligible as Ro tends to 0, even though they involve 
the small ageostrophic flow. Thus, even in the limit of vanishingly small Rossby num-
ber, the development of the flow depends critically upon the vanishingly small ageos-
trophic flow. In the Earth’s atmosphere, the geostrophic winds can be measured 
reasonably accurately, either by direct measurement of the total wind or by inference 
from the pressure field. The ageostrophic flow, on the other hand, is often smaller than 
the uncertainties in the wind measurements and so cannot be observed directly.

Two complementary lines of development from these quasi-geostrophic equa-
tions are possible. One is to use the thermal wind relationship to eliminate the time 
derivatives between Equations 12.11 and 12.13. The result is a diagnostic equation 
for the vertical velocity, epitomizing the ageostrophic flow, in terms of the geos-
trophic flow. This line of development will be studied in Chapter 13. The alternative 
is to eliminate the vertical motion between Equations 12.11 and 12.13. The result is 
a prognostic equation for the evolution of a quantity defined entirely in terms of 
geostrophic quantities which we shall call the ‘quasi-geostrophic potential vorti-
city’. It is related to the Ertel potential vorticity discussed in Chapter 9. Applications 
of the quasi-geostrophic potential vorticity equation will be discussed in Chapter 14.

12.3  Quasi-geostrophic potential vorticity

Start with Equations 12.11 and 12.13, the latter in the form

w
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t
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1
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D
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Use this form of the thermodynamic equation to eliminate w from the vorticity 
equation:
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Now, in the quasi-geostrophic framework, N 2 and ρ
R
 are functions only of z. So 

these factors can be taken inside the D
g
/Dt operator, which when expanded leads to
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But the thermal wind relationships, Equation 12.3, mean that the last two terms are 
equal in magnitude but opposite in sign, while the first term on the right can be 
combined with the left-hand side to give
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That is, the quantity q is conserved following the geostrophic flow on pressure surfaces 
and is called the ‘quasi-geostrophic potential vorticity’. In terms of the geostrophic 
streamfunction, Equation 12.17 becomes
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If D ≪ Hρ, and if N2 is constant, then this expression simplifies even further:

	
q f y

f

N zH= + +∇ +
∂

∂0
2 0

2

2

2

2
β ψ

ψ
g

g 	 (12.19)

With a rescaled, stretched vertical co-ordinate z
g
 = Nz/f

0
, the last term would be 

∂ ∂2 2ψg g/ z , and comparison with the horizontal term ∂2ψ/∂x2 again highlights the 
natural ratio of vertical to horizontal scales discussed previously. For the tropo-
sphere, z

g
 ∼ 100z. Equation 12.19 is a simple three-dimensional Poisson-like equa-

tion relating the geostrophic streamfunction to quasi-geostrophic potential vorticity.
Although they are often small compared with the advection terms, the friction 

and heating terms are often not negligible. Therefore, we write the quasi-geostrophic 
vorticity equation and thermodynamic equations in more general forms:
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Here, ζ
.
 represents the vorticity tendency due to friction. For the simple Ekman 

pumping discussed in Section 9.4, ζ
.
 would simply be − ξ

g
/τ

E
, while b represents 

the rate of change of buoyancy due to heating or cooling processes. Reworking the 
derivation of Equation 12.17 with these additional terms leads to
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Mechanical friction, by reducing the relative vorticity contribution to q, will gener-
ally tend to dissipate potential vorticity anomalies on the friction timescale. The last 
term can usually be approximated by

f

N

b

z
0
2

∂
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

,

showing that the effect of heating on q is proportional to the vertical gradient of 
heating. Consequently, an isolated, mid-tropospheric anomaly of heating will tend 
to generate a dipole of potential vorticity anomalies, with positive q tendency below 
the heating maximum and negative q tendency above.
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In pressure co-ordinates, the thermodynamic equation is conveniently written as 
follows:
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gθ ω
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s= − 2 	 (12.22)

where s2 is the (positive) static stability parameter − ∂θ
R
/∂p. The potential vorticity 

equation can be derived just as earlier. The result is
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We recall that the static stability parameter s2 varies rather sharply with pressure, 
especially in the upper troposphere, and so it may not be treated as a constant.

Within the quasi-geostrophic framework, q gives all the relevant information 
about the flow. That is, an invertibility principle applies to quasi-geostrophic poten-
tial vorticity in a similar way as it does to Ertel’s potential vorticity. Equation 12.18 
can be rewritten as
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which is an elliptic diagnostic equation for ψ
g
 in terms of q and latitude y. For 

motions with a small vertical scale, and when N2 is constant, Equation 12.18 is 
simply a Poisson equation. The problem is completed by specifying boundary con-
ditions for ψ

g
 at the upper, lower and lateral boundaries of the domain. A direct 

consequence of the quasi-elliptic character of Equation 12.18 may be termed ‘action 
at a distance’. A localized anomaly of q will affect the geostrophic flow at remote 
parts of the fluid, an influence which penetrates both in the horizontal and the 
vertical.

The boundary condition on horizontal surfaces may be obtained from the thermo-
dynamic Equation 12.11, which with w set to 0 becomes simply horizontal advec-
tion of ∂ψ

g
/∂z.

12.4  Ertel and quasi-geostrophic potential vorticities

The quantity defined in Equation 12.18 or 12.23 has been called a ‘potential 
vorticity’. The fundamental potential vorticity, namely, that due to Rossby and 
Ertel, was derived in Section 10.1. What is the relationship between Ertel’s poten-
tial vorticity and the quasi-geostrophic potential vorticity derived in this section? 
Quasi-geostrophic potential vorticity is not a straightforward approximation of 
Ertel’s potential vorticity, but as we shall show, they are related in certain param-
eter regimes.
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Write Ertel’s potential vorticity in the following form:
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Already one approximation has been made: deviations from the reference density 
profile are taken to be negligible. We shall also make the hydrostatic approximation 
so that the absolute vorticity can be written as
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As in Section 8.3, the horizontal component of vorticity do not include contributions 
from the horizontal gradients of vertical velocity. In fact as pointed out in Section 8.1, 
these terms are of order Ro(D/L)2 compared to the vertical shear of the horizontal 
wind and would in any case be negligible. Substituting into Equation 12.24 and 
expanding, we get
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Use the thermal wind equations in the form of Equation 12.3, to write the potential 
temperature gradients in the last two terms in terms of wind shears, so they become
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Compare this with the dominant term in Equation 12.25; this is
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Then, the ratio of the two terms is
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So, if the Richardson number is large, the last two terms of Equation 12.25 are 
small, and Ertel’s potential vorticity can be approximated as
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Now each of the bracketed factors in Equation 12.27 contains two terms, one gener-
ally larger than the other. A first approximation to P retains only the two large terms 
and has already been invoked earlier. Denote it by P

R
 where
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A second approximation would also retain the large term from one factor multiplied 
by the small term from the other. In this way, a second approximation to P can be 
constructed:
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Since P
R
 is a function only of z, a consistent first approximation to the potential 

vorticity equation would combine vertical advection of the first approximation to P 
with horizontal advection of the second-order term, a procedure which is closely 
parallel to the quasi-geostrophic treatment of the thermodynamic equation. So write 
the potential vorticity equation as
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The vertical velocity is, from Equation 12.13,
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Substituting in Equation 12.30 for w, P
R
 and P′ leads to
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The last two terms in the curly brackets can be combined to give
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A constant f
0
 can be added to the term in curly brackets without altering 

Equation 12.33, giving
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which is nearly the quasi-geostrophic potential vorticity equation. It differs from 
Equation 12.17 by including advection by the total horizontal wind rather than by 
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the geostrophic wind; hence, Equation 12.34 will tend to Equation 12.17 in the limit 
of small Rossby number. However, the analysis shows that conservation of Ertel’s 
potential vorticity implies conservation of quasi-geostrophic potential vorticity in 
the limit of small Ro, large Ri and when Ri− 1 ≪ Ro.

In fact, from this derivation, it is clear that
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This result shows that the quasi-geostrophic potential vorticity is not a formal 
approximation to the full potential vorticity. Rather, it is a quantity whose advection 
on horizontal surfaces mimics the advection of the full potential vorticity on isen-
tropic surfaces.
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The omega equation
13

13.1  Vorticity and thermal advection form

Vertical motion is arguably one of the most important, as well as one of the most 
elusive, of dynamical variables. At a practical level, vertical motion is tightly related 
to weather type. Upward motion leads to cooling by adiabatic expansion, and if an 
air parcel continues to rise, then ultimately it will become saturated. So cloudiness 
and rainfall are the products of either local or large-scale vertical motion. Downward 
motion is associated with adiabatic warming and sub-saturation of air parcels, and 
therefore with cloudlessness and warmth in the free atmosphere, although radiative 
cooling can lead to different conditions at the surface. At the same time, the domi-
nance of the vortex stretching or squashing mechanism revealed by the scale analy-
sis of the previous chapter shows that vertical motion is central to the evolution of 
the vorticity field and hence to the dynamical development of a flow.

The catch is that the vertical velocity is orders of magnitude too small to be meas-
ured directly save by very sophisticated and expensive instruments which cannot 
possibly form part of the routine observing network. Even the ageostrophic wind, 
from which the vertical velocity could be deduced, is comparable in magnitude to 
the uncertainty in observations of the horizontal components of the wind. What is 
needed is a way of inferring the vertical motion from quantities that can be meas-
ured with adequate accuracy.

The so-called omega equation uses the concept of balance to provide a simple 
way out of this impasse. Both the geostrophic vorticity and thermodynamic equa-
tions, Equation 12.11 and 12.13, can be written so they relate the rate of change of 
the geostrophic streamfunction to the vertical velocity. Eliminating the time deriva-
tives between these equations leads to a diagnostic relationship between the vertical 
velocity and the geostrophic flow. The original analysis used the pressure coordi-
nate version of the quasi-geostrophic equations, thereby giving a diagnostic rela-
tionship for the pressure vertical velocity ω. This is the origin of the name of the 
equation, the ‘omega’ equation.
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The key to eliminating the time derivatives is the thermal wind equation, Equation 
12.6. The central assumption made is that throughout the evolution of the flow, 
thermal wind balance continues to hold; the vorticity and the buoyancy fields (or 
equivalently, the potential temperature field) must evolve in such a way that Equation 
12.6 continues to hold. Thus,
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This is clearly the case for geostrophic vorticity, but it is not so clear for the actual 
vorticity. On the face of it, the vorticity and buoyancy fields are subject to quite differ-
ent and unrelated forcings, and so they would quickly be thrown out of thermal wind 
balance with each other. The result of such imbalances would be rather high-frequency 
motions typified by inertia-gravity waves, with frequencies between f and N. 
Empirically, rather little energy is observed to be associated with such high-frequency 
motions in most atmospheric situations. Of course, if real data is assimilated so there 
is effectively temporal smoothing on a timescale comparable to or greater than N−1, 
balance could be an illusion of the data assimilation process rather than a real obser-
vation. But generally, the evidence is strong that such high-frequency motions as are 
excited in the large-scale atmosphere are quickly dissipated or dispersed, so that ther-
mal wind balance prevails. So, according to this perspective, balance is a good work-
ing hypothesis and not an artefact of data processing.

From Equation 12.11, but including the effects of friction,
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The poleward advection of planetary vorticity (the ‘β-term’) has now been included 
explicitly. F represents any frictional tendency of the vorticity. In the case of simple 
linear Ekman pumping (see Section 8.6), it would simply have the form ξ    = − ξ

g
/τ

E
 

(see Equations 8.40 and 8.41). Similarly, from the thermodynamic equation, 
Equation 12.13 leads to
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Then, the thermal wind equation in the form Equation 13.1 can be used to eliminate 
the time derivatives, leaving a relationship of the following form:
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and the ‘source function’ S is
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Note that N2 and ρ
R
 occur in different location with respect to the vertical derivatives 

than in the relationship between q and ψ in Equation 12.18. In the case of stable strati-
fication, that is, for N2 > 0, Equation 13.4 is an elliptic equation. On vertical scales, 
D ≪ H and with N2 constant, Equation 13.4 reduces exactly to Poisson’s equation with 
an appropriate (f

0
/N) scaling of the vertical co-ordinate relative to the horizontal. But 

even in more general cases, Equation 13.4 remains very close to a Poisson equation, 
and the qualitative discussion of the nature of the solutions of Section 9.2 remains 
relevant. Thus, the vertical motion will in general be anti-correlated with the source 
function, with maxima in S corresponding to descent and minima to ascent. The wave-
number dependence means that solving the ω-equation effectively filters the source 
term, emphasizing the large scales and attenuating the small scales. However, it would 
be incorrect to suppose that the vertical motion field will be particularly smooth. The 
source term involves first and second derivatives of terms that are already likely to 
be noisy in all but the simplest circumstances. The source term itself will be very 
noisy, and so there will generally be small-scale structure in the w field.

The operator L in Equation 13.4 is made up of a term involving horizontal deriva-
tives and a term involving vertical derivatives. Their relative importance is deter-
mined by the horizontal and vertical scales of the weather system. A scale analysis 
of the two terms yields
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As discussed in Chapter 5, the usual midlatitude synoptic-scale values give Bu ~ 1, 
so both terms are equally important for a typical synoptic-scale system. However, 
because of the quadratic dependence upon L and D, the situation changes rapidly for 
different scales. For example, a system such as a shallow cold-cored anticyclone 
would have large L but small D; in that case, the second term would dominate, and 
the omega equation would reduce to
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Notice that this is not a particularly clear way of writing the approximated omega 
equation. Each term in S contains N2 in its denominator, so in this limit, the omega 
equation actually does not depend upon the stratification. On the other hand, a deep 
but horizontally confined system would be dominated by the first term so that the 
omega equation could then be approximated by

∇ ≈H w S2
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However, these are extreme cases. For most purposes, the scale of synoptic weather 
systems is such that Bu ~ 1, that is, that the two terms on the left-hand side of the 
omega equation are comparable. Indeed, this natural ratio (N/f

0
) of horizontal to 

vertical scale is a primary result of quasi-geostrophic theory.
Scale analysis of the right-hand side of the omega equation gives an indication of 

which terms make the most important contributions to the source function S. As a 
preliminary, scale analysis of the thermal wind equation relates a typical horizontal 
velocity fluctuation U to a typical horizontal buoyancy fluctuation Δb

H
. From 

Equation 12.3,

	
∆b

f LU
H ∼ 0

D
. 	 (13.6)

Substituting typical midlatitude values gives Δb
H
 of around 0.1 m s−2. This corre-

sponds to a typical horizontal potential temperature fluctuation of about 3 K. Write 
the source term as

	 S S S S S S= + + + +1 2 3 4 5. 	 (13.7)

Then, the first term, involving the differential vorticity advection, scales as

	
S

f

N z

f U

N L1
0
2

0
2

2 2
=

∂
∂

⋅∇( ) ∼vg g D
ξ . 	 (13.8)

With typical midlatitude values, S
1
 has a magnitude of around 10−14 m−1 s−1. Similarly, 

the second term, involving thermal advection, scales as

S
N

b
U b

N LH
H

2 2
2

2 3

1
= − ∇ ⋅∇( ) ∼vg

∆

which, making use of the thermal wind scaling, Equation 13.6, can be rewritten as

	
S

f U

N L2
0

2

2 2
∼

D
. 	 (13.9)

This is of the same order of magnitude as S
1
.

Now consider the β-term

S
f

N

v

z

f U

N3
0

2
0

2
=

∂

∂
∼

β βg

D

Compare this result with S
1
,

	

S

S

L

U
3

1

2

∼
β

	 (13.10)

For synoptic scales, this dimensionless ratio is ~0.4, not a lot smaller than unity. 
But for smaller-scale systems, it rapidly becomes small, and so in such circumstances, 
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S
3
 apparently may be neglected compared to S

1
. However, this might be a misleading 

conclusion for, in many circumstances, as we shall see shortly, there is a great deal of 
cancellation between terms S

1
 and S

2
. Even a small S

3
 may be significant compared to 

the residual between S
1
 and S

2
.

The remaining terms, depending upon friction and heating, respectively, are dealt 
with in a similar fashion. In general, both ξ   and θ  are complicated functions of the 
flow. For the sake of simplicity in the present discussion, they may be represented 
schematically by ‘Rayleigh friction’ and ‘Newtonian cooling’:

 ξ
ξ
τ

θ
θ θ
τ

= − =
−

D

; E

E

Here, τ
D
 and τ

E
 are representative ‘spin-up’ and ‘radiative equilibrium’ timescales, 

respectively, and θ
E
(r, t) is a potential temperature distribution in radiative equilib-

rium. Typical values of τ
D
 are around 5 days and of τ

E
 around 30 days. Comparing the 

typical magnitude of terms S
4
 and S

5
 with S

1
 gives

	

S

S

S

S

A

A

E

4

1

5

1

∼

∼

τ
τ
τ
τ

D 	 (13.11)

where τ
A
 = L/U is the advective timescale. In both cases, the ratio is that of the advec-

tive timescale to the relevant process timescale. The advective timescale is of order 
1 day, a good deal smaller than either the friction or the radiative timescales. Both 
terms are likely generally to be small compared with S

1
, but again cancellation 

between S
1
 and S

2
 could change this. Also, significant latent heat release would lead 

to the heating term being of order 1 importance.
So, on the face of it, S

1
 and S

2
 make the dominant contributions to the source term 

in the omega equation. It is instructive to consider a simple example, illustrated in 
Figure 13.1. Suppose a basic zonal flow does not vary with height and that it advects 
some anomalies of temperature. The diagram represents a vertical section through 
this flow, parallel to the streamlines. By thermal wind balance, in regions where 
there is a warm patch of fluid so that the temperature anomaly is positive, the vorti-
city must decrease with height. There will be a tendency for negative vorticity to 
overlie low-level positive vorticity. Similarly, in the vicinity of a cold anomaly, vor-
ticity will decrease with height. Now consider point A. Here, there is a maximum of 
warm advection, so that − v ⋅ ∇b is a maximum. It follows that S

2
 is a minimum in 

the vicinity of A, and therefore it will tend to force ascent. The vorticity advection 
is negative above point A and positive below it. It follows that ∂(−v ⋅ ∇ξ)/∂ z is nega-
tive at point A, so that S

1
 is positive, corresponding to descent. Thus, S

1
 and S

2
 have 

opposite signs. In fact, by using the thermal wind equation to relate buoyancy 
anomalies to vorticity anomalies, it is easy to show that in this situation, S

1
 and S

2
 

are equal in magnitude and opposite in sign. Their contributions to the omega equa-
tion exactly cancel, and so there is no vertical motion.
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This is not a surprising result. The flow illustrated in Figure 13.1 is in thermal 
wind balance, and provided v is constant with height, the advection does not dis-
turb thermal wind balance. The omega equation is essentially a balance condition; 
it specifies a vertical velocity field which is required to maintain thermal wind 
balance. If there is no tendency to disturb thermal wind balance, then there is no 
need for any vertical motion, and so the total source function S must be zero. The 
situation illustrated in Figure 13.1 is a rough approximation to many real situa-
tions in the troposphere. There is often substantial cancellation between terms S

1
 

and S
2
.

The tendency for S
1
 and S

2
 to cancel is clearly revealed by writing the relevant 

terms. Expanding term S
1
 gives
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Similarly, the S
2
 term can be expanded to give

S
N

b
N

bH H H H2 2
2

2
21 1

= − ∇( ) ⋅∇ − ⋅∇ ∇( )v vg g

After some manipulation, and making use of the thermal wind equation in both of 
its two forms,

∇ = − ×
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S
2
 can be rewritten as
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Figure 13.1  Advection of warm and cold anomalies. The co-ordinate s denotes distance along 
a streamline
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The term D depends upon the total deformation and the rotation of the deformation 
axis of dilation with height and can be written as

D = − ( ) ∂
∂

8 0
2f F

z

α

(see Equations 2.15 and 2.16). The second terms in each of Equations 13.12 and 
13.13 are identical but of opposite sign. In the simple example given earlier, these 
second terms were the only non-zero terms on the right-hand side of the omega 
equation, and so the cancellation between S

1
 and S

2
 was exact. But in many more 

complicated situations, this term is still large, and so there is a good deal of cancel-
lation between S

1
 and S

2
.

13.2  Sutcliffe Form

There are various alternative ways of writing the right-hand side of the omega equation, 
some of which avoid or reduce the cancellation problem discussed earlier. This section 
and the next will consider some of these different versions of the omega equation.

In 1947, R.C. Sutcliffe of the UK Meteorological Office produced a theory of 
‘development’, that is, of the conditions in which cyclonic or anticyclonic vorticity 
would intensify. Such changes of vorticity require vortex stretching or squashing, 
and so depend on the vertical variation of vertical velocity, ∂w/∂z. In fact, Sutcliffe’s 
development theory amounts to a derivation of the omega equation, albeit with 
some additional approximations to those made in the previous section. These 
approximations included the following:

1.	 A two-level representation of the atmosphere

2.	 Neglecting ∇H w2  compared to (f 2/N2)∂2w/∂z2 on the left-hand side of the omega 
equation, an approximation which is tantamount to assuming small horizontal 
length scales

3.	 Ignoring the β-effect

4.	 Neglecting terms involving the deformation

A form of the omega equation which is consistent with Sutcliffe’s theory is derived 
in this section. The derivation retains the full vertical variation, but following 
assumption 4, neglects terms involving the deformation part of the flow. For clarity, 
the friction, heating and β terms will be neglected. Start from the full form of the 
omega equation, Equation 13.4, but with the advection terms rewritten according to 
Equations 13.12 and 13.13. Then, neglecting the deformation term gives as the 
right-hand side of the omega equation:

	
S f

zS H=
∂

∂
⋅∇2 0

vg
gξ 	 (13.14)
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Then, if s is a local co-ordinate which is parallel to contours of constant b and point-
ing eastwards, and using the thermal wind equation,

	
S b

sS H= ∇
∂

∂
2

ξg 	 (13.15)

This ‘Sutcliffe form’ of the omega equation has a very simple interpretation. In 
regions of large baroclinicity, that is, of large |∇

H
b|, ascent is forced ahead of a maxi-

mum of relative vorticity and descent behind it. Here, ‘ahead’ and ‘behind’ refer to 
locations along the b-contours. Equivalently, using the thermal wind relationship, 
we may conclude that ascent is forced where there is a strong positive advection of 
vorticity by the thermal wind and vice versa.

Clearly, the Sutcliffe form of the omega forcing, Equation 13.14, has no possibility 
of systematic cancellation. It requires only information about the buoyancy field 
(or potential temperature field) and the geostrophic wind at a single level. In fact, 
Sutcliffe himself used the 100–50 kPa thickness field to give thermodynamic infor-
mation and 50 kPa height field to give information about the geostrophic wind and 
vorticity. It generally gives a good qualitative description of the vertical motion field 
for the larger scales. However, the neglect of the deformation part of the flow, the 
term D in Equation 13.13, means that the Sutcliffe form can be seriously in error for 
smaller-scale flows, such as those associated with frontal regions. This error is exem-
plified by the frontogenetic flow illustrated in Figure 13.2, where the thermal field is 
advected by a pure deformation flow. This basic flow may be written as follows:

u x v y= − =α α,

and it has zero relative vorticity. There is therefore no advection of vorticity parallel 
to the isotherms, and therefore the Sutcliffe form predicts no vertical motion in this 

x

y b = constant 

Figure 13.2  A frontogenetic flow
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situation. Of course, there may be an additional contribution to the geostrophic 
wind field as a result of thermal wind balance with the thermal field. However, this 
contribution has only a component in the y-direction and does not vary in y. 
Therefore, there are no extrema of vorticity parallel to the isotherms and therefore 
no contribution to the vertical motion field. In this situation, the Sutcliffe form of 
the omega equation is seriously misleading. As we shall show in the next section, 
other forms of the omega equation, which do not neglect the contribution from the 
deformation part of the flow, predict strong vertical motions associated with a fron-
togenetic flow. Indeed, such vertical motion is why fronts are important elements of 
weather systems from the perspective of practical weather forecasting.

13.3  Q-vector form

An alternative derivation of the ω-equation starts from the quasi-geostrophic form 
of the momentum equations:

∂

∂
+ ⋅∇ + × +∇ =

v
v v k vg

g gt
fH 0 0Φ .

For present purposes, friction has been ignored. Combining the Coriolis and pressure 
gradient terms by introducing the ageostrophic wind as in Equation 12.16 gives the 
following compact form:

	

∂

∂
+ ⋅∇ + × =

v
v v k vg

g g at
fH 0 0. 	 (13.16)

If thermal wind balance is to be maintained, then
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must hold as the flow evolves. Take the x-component of Equation 13.17. The 
x-derivative of the thermodynamic equation is
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Each of the horizontal advection terms on the left-hand side yields two terms. One 
is simply the advection of ∂b/∂x. The other involves the x-derivatives of the advect-
ing velocity. That is,
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where
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Notice that Q
1
 is defined entirely in terms of geostrophic quantities. It is the tendency 

of the geostrophic motion to change the buoyancy gradient in the x-direction. Now 
take f

0
∂/∂z of the y-component of the momentum equation, Equation 13.16:
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Since the geostrophic wind is non-divergent, then from continuity,
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Using these relationships, the two geostrophic terms on the right-hand side of 
Equation 13.20 can be written in terms of Q

1
:
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Comparing Equations 13.18 and 13.21, the geostrophic flow, summarized by Q
1
, 

acts with opposite signs on the two sides of the thermal wind balance Equation 13.17. 
That is, the geostrophic flow acts continually to destroy thermal wind balance. In 
order to maintain that balance, agesotrophic circulations with their implication of 
vertical motion must develop.

An explicit expression for this vertical motion is given by subtracting Equation 
13.21 from Equation 13.18 to get
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A similar development from the y-component of Equation 13.16 leads to
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Combining these two results,
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Take the divergence of this equation to obtain
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But mass conservation gives
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So finally, we obtain an alternative form of the omega equation as follows:

	
Lw SQ= 	 (13.26)

with L is as defined in Equation 13.4 and
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In fact, it can be shown, in terms of Equation 13.4, that S
Q
 = S

1
 + S

2
 exactly. So 

Equation 13.26 is an exact reformulation of the omega equation which avoids the 
cancellation problems implicit in Equation 13.4 and does not involve neglecting the 
deformation part of the flow, a neglect which is implicit in the Sutcliffe form. The 
β-effect and the friction and heating terms can be added directly to the Q-vector 
form of the omega equation.

From Equation 13.18 and its y-direction equivalent, Q is easily thought of as the 
tendency of the geostrophic motion to change the horizontal buoyancy gradient. 
If gridded data for the temperature and geostrophic wind are available, S

Q
 is read-

ily computed directly, using simple finite-difference formulae to calculate the vari-
ous terms making up the forcing of the omega equation. However, a qualitative 
estimate of Q gives more insight into the vertical motion field in many situations. 
To derive such an estimate, take local Cartesian co-ordinates ( ) x,y  where the 
x -axis is parallel to the local b-contour and the y -axis is parallel to − ∇

H
b 

(Figure 13.3). Then,
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But ∂ ∂ = − ∇b y bH/   and, from continuity, ∂ ∂ = −∂ ∂   v y u xg g/ /  so that
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More compactly,
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where as usual k is a vertical unit vector. The latter form is valid at all points along 
the curved b-contour; s is sometimes called the ‘thermal wind co-ordinate’. In 
words, one can estimate Q by taking the vector change of v

g
 along a contour of b (or 

equivalently, along a contour of T or θ) and rotating that vector anticyclonically 
(i.e., clockwise in the northern hemisphere) through 90°. A simple example is given 
below.

Once Q is known, then the omega equation suggests that there should be a 
negative correlation between ∇

H
 ⋅ Q and the vertical velocity. That is, we expect 

ascent in regions where there is convergence of Q and descent where there is 
divergence. So Q points towards regions of ascent and away from regions of 
descent. At the same time, mass continuity requires there to be horizontal 
components of the ageostrophic flow associated with these vertical motions. As 
shown by Equation 13.24, these will tend to be directed parallel to Q at levels 
below Q and antiparallel at levels above. Figure 13.4 illustrates. So each Q-vector 
may be thought of as the centre of an associated overturning circulation.

b = constant

y~

~x

y

x

Cold

Warm

Figure 13.3  Local co-ordinates for estimating Q



	THE  OMEGA EQUATION	 237

Figure 13.5 shows a simple example of the use of the Q-vector to deduce vertical 
motion. It illustrates an upper-level jet exit in the northern hemisphere, in which the 
geostrophic wind becomes less strong moving from west to east along contours of 
constant b. Along the jet axis, ∂v

g
/∂s, shown by the black arrow, is directed from 

east to west, parallel to the b-contours. The Q-vector, shown by the white arrow, is 
therefore directed across the jet, pointing from south to north. This implies that 
there will be ascent on the northern side of the jet exit and descent on the southern 
side. This same pattern is deduced from the Sutcliffe formulation. Because the 
upper-level ascent to the north of the jet exit implies vortex stretching in the lower 
troposphere and consequent intensification of cyclonic relative vorticity, the north-
ern jet exit has been identified as a region of cyclonic development. In the same 

Q

z

x, y

Figure 13.4  The ageostrophic meridional circulation associated with an isolated large Q-vector

Cold

Warm

Q

s
�vg  �s

Figure 13.5  Schematic illustration of an upper jet exit in the northern hemisphere, showing the 
associated Q-vector. Solid contours represent the upper-level geopotential contours and the 
dashed line contours of constant b (which need not be straight lines)
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way, the southern jet exit is a region of anticyclonic development. In the days before 
numerical weather prediction, such arguments were used to give qualitative guidance 
to weather forecasters.

A second important example of the Q-vector approach is given by the deformation 
flow illustrated in Figure 13.2. Recall that, as shown in Section 13.2, the Sutcliffe form 
of the omega equation failed to predict any vertical motion associated with a deformation 
flow. In this example, the dilation axis is parallel to the b-contours, and so the advection 
of b concentrates the temperature gradient near the dilation axis. Along the dilation 
axis, the geostrophic flow increases with y. According the recipe just given, the 
Q-vector therefore is at right angles to the dilation axis, pointing from cold air towards 
warm air. This is in fact obvious from the interpretation of Q as the geostrophic ten-
dency to change the horizontal buoyancy gradient. An ageostrophic circulation around 
the dilation axis is implied, with rising motion in the warmer air and sinking motion in 
the colder air. Figure 13.6 illustrates this classic example of a flow which intensifies 
the temperature gradients and which is therefore called ‘frontogenetic’. The quasi-
geostrophic description of this chapter breaks down as the temperature gradients become 
stronger, and so extensions of this simple example will be developed in Chapter 15.

13.4  Ageostrophic flow and the maintenance of balance

Mathematically, the various forms of the omega equation determine the ageos-
trophic circulations needed to maintain thermal wind balance against any vorticity 
or temperature tendencies which act to disrupt the balance. In this section, the 

x

y

Q

Cold Warm�vg �s

b = constant 

Figure 13.6  The Q-vector associated with a deformation flow in the northern hemisphere in 
which isotherms are parallel to the dilation axis. The black arrow shows ∂v

g
/∂s and the white 

arrow the corresponding Q-vector
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mathematical description of the previous sections will be complemented by a more 
intuitive approach, applied to the cases of buoyancy and vorticity sources.

For a first simple example, suppose some isolated heating acts on the atmosphere, 
via the thermodynamic equation, in the sense of generating a warm temperature 
anomaly. Since it does not appear in the vorticity or momentum equations, such 
heating on its own would throw the atmosphere out of thermal wind balance by 
creating a thermal anomaly without the balancing decrease in vorticity with height. 
According to the omega equation, ageostrophic circulations are required to main-
tain balance.

The situation is illustrated schematically by Figure 13.7. The warming effect of 
the heating can be reduced by adiabatic cooling associated with ascent in the region. 
This ascent must be associated with convergence and vortex stretching below the 
heating and divergence and vortex shrinking above. The stretching will act to create 
cyclonic vorticity below the heating, and the shrinking will create anticyclonic 
vorticity above the heating, as required for thermal wind balance. The ageostrophic 
circulation thus maintains balance both by reducing the thermal effect of the heating 
and by creating the balancing vorticity field. Whether balance is maintained principally 
by an adjustment of the vorticity field or the temperature field depends upon the 
vertical and horizontal scales of the anomaly and upon the values of f and N.

A similar argument applies to the case of an isolated cyclonic torque. Figure 13.8 
illustrates such a situation. Thermal wind balance would require a warm anomaly 
above the developing vortex, where ∂ξ

g
/∂z < 0, and a cold anomaly beneath the 

vortex, where ∂ξ
g
/∂z < 0. However, the cyclonic tendency can be reduced by divergence 

and vortex shrinking associated with descent above and ascent below. Furthermore, 
this vertical motion will act in the sense of producing the balancing warm anomaly 
above and cooling below through adiabatic warming and cooling. Such an ageos-
trophic circulation can therefore maintain balance by both reducing the cyclonic 
tendency and producing the balancing temperature field.

Other similar examples can be constructed. In each case, the implied ageostrophic 
wind and vertical motion can be deduced from a consideration of the full omega 
equation in one or other of the forms given earlier. However, the qualitative arguments 

b’> 0

Figure 13.7  Schematic diagram showing the response of an initially motionless fluid to local-
ized heating. The curve represents a θ-surface initially centred in the heating region
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of this section give rise to a helpful generalization. Whenever some process, either 
dynamical or due to heating or dissipation, acts to throw the flow away from geos-
trophic balance, the ageostrophic circulations restore thermal wind balance in two 
ways. First, they act in such a way as to offset the original forcing. Second, they 
modify the directly unaffected field in such a way as to restore balance.

13.5  Balance and initialization

Central to the arguments of this, and most subsequent sections, is the concept of 
balance. That is, a near balance of the forces acting upon a fluid element means that 
its accelerations are, in some sense, small. So the atmosphere evolves slowly on 
synoptic timescales of days, rather than on the much faster timescales of minutes or 
less associated with gravity waves or sound waves. One such balance is hydrostatic 
balance. The near balance between the vertical components of the forces acting 
upon fluid elements relates the pressure field to the mass or temperature field. 
Hydrostatic balance is a good approximation for systems with vertical scales much 
smaller than their horizontal scale and has been assumed throughout this book. 
Imposing hydrostatic balance is equivalent to filtering sound waves, characterized 
by very short timescales, out of the dynamics.

Internal and external gravity waves, perhaps better termed buoyancy waves, are less 
easily removed. They are associated with imbalances between the horizontal compo-
nents of the forces acting upon fluid elements and are characterized by timescales of 
the order of N− 1, typically around 10 minutes in the troposphere. The primitive equa-
tions permit such high-frequency motions, but such motions in the atmosphere 
account only for a very small part of the total energy. The velocity and pressure fields 
are such that these high-frequency motions are generally unimportant.

�g> 0

Figure 13.8  An isolated cyclonic vortex generated in an otherwise motionless fluid. The hori-
zontal lines represent lines of constant potential temperature which initially does not vary in 
the horizontal
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The simplest balance condition is geostrophic balance, in which the horizontal 
components of the pressure gradient force balance the Coriolis force:

v k k= − ×∇ ≡ − ×∇
1 1

ρ
Φ

f
p

f

An exact balance between the Coriolis force and the pressure gradient force implies 
that the acceleration of fluid elements is zero. That is, the flow cannot evolve. 
Furthermore, the wind implied by this relationship is non-divergent. Consequently, 
the implied vertical velocity is zero. So while geostrophic balance might hold 
approximately, the importance of the ageostrophic motion is clear. Atmospheric 
motions do evolve, and ageostrophic motions, while small and difficult to measure, 
are crucial to that evolution. This chapter has been about the ageostrophic motion 
and in particular its vertical component. The vertical component of the ageostrophic 
motion is implicit in quasi-geostrophic theory and underlies the evolution of the 
geostrophic motion.

Charney (1955) considered an alternative approach, seeking implications for the 
relationship between the pressure field and the horizontal components of the wind 
field if, instead of taking the divergence itself to be 0, the change of divergence 
following the motion is 0. This is a higher-order balance condition than geostrophic 
balance. Approximating the wind by its rotational component, described by a 
streamfunction ψ, this nonlinear balance condition can be written as follows:
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When the nonlinear terms are small, this expression reduces to simple geostrophic 
balance. When fluid parcels move in circular trajectories at constant speed, it 
reduces to gradient wind balance, discussed in Section 5.4. But the nonlinear 
balance condition can be applied in more general circumstances. For example, flow 
in a jet exit requires a component of flow perpendicular to the isobars to provide the 
necessary deceleration of fluid elements. This ageostrophic flow has a non-zero 
divergence and so predicts vertical motions in association with the jet exit. Of 
course, these features are also given by quasi-geostrophic theory. One interesting 
aspect of the Charney approach is that it raises the prospect of a sequence of higher-
order balance assumptions, associated with setting higher-order material derivatives 
of the divergence to zero.

The Charney balance equation was used at one time to give fields that were suit-
able for initializing numerical weather forecast models. A later approach that is still 
of interest when considering the idea of balance in the atmosphere is called ‘normal-
mode initialization’. The state of the model atmosphere is described by the values 
of wind, temperature and so on at each gridpoint, a set of numbers which can be 
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represented by a column vector x of K elements. Suppose the primitive equations 
are linearized about a state of rest. Then, the numerical prediction model can be 
written schematically as follows:

	

d

d

x
Lx

t
i= 	 (13.29)

Here, L is a K × K symmetric matrix describing the linearized model. Its eigenvalues 
ω

k
 give the frequency of the various wave motions supported by the model, and the 

corresponding eigenfunctions describe the structure of the mode. These eigenfunc-
tions are orthogonal, and the so-called normal modes are of several kinds. Some are 
low-frequency modes, the various Rossby modes supported by the system and 
should be retained in the forecast. They have frequencies smaller than or of order Ω, 
comparable to the rotation rate of the Earth. Others represent high-frequency gravity 
waves, with frequencies comparable to N, around two orders of magnitude larger 
than the Rossby frequencies. These gravity modes have little energy in the atmos-
phere as observed, and so they are modes whose amplitudes are to be reduced in the 
initial fields. Suppose there are J such high-frequency gravity modes. Then, the field 
can be partitioned into a slowly varying Rossby wave part x

R
 and a high-frequency 

gravity wave part x
G
:

	

x x x x g= + = +
=
∑R G R
j

J

j j
1

α 	 (13.30)

Here, the g
j
 are the high-frequency eigenfunctions of L, and the α

j
 are their ampli-

tudes. Because the normal modes are orthogonal, it follows from Equation 13.30 
that the amplitudes are given by

α j j= ⋅g x

and the high-frequency gravity wave part of x, x
G
, can be calculated. Linear 

normal-mode initialization simply means setting x
G
 to zero, so that

	 x x xI G= − 	 (13.31)

The magnitude of the difference between x
I
 and x is small, generally smaller than the 

observational uncertainties in the various elements of x. Notice that in the linearized 
system of Equation 13.29, any residual gravity wave modes evolve according to

d

d

α
ω αj

j jt
i= −

so that the magnitude of their amplitude does not change.
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Linear normal-mode initialization certainly reduces the high-frequency gravity 
wave activity in a forecast, but it does not entirely eliminate it. The reason for this 
is that Equation 13.29 is an approximation to the actual model equations. 
Schematically, we might write the full equations as

	

d

d

x
Lx N x

t
i= + ( ) 	 (13.32)

Here, the column vector N depends upon the state x and describes the tendencies 
due to nonlinear terms which were neglected in linear normal-mode initialization. It 
may also contain forcing terms due to heating, friction and so on. Substituting the 
decomposition 13.30 into the nonlinear equations and projecting onto the J gravity 
modes which are to be initialized give

	

d

d
, , , ,

α
α α α αj

j j j R Jt
i N x= + …( )ω 1 2 	 (13.33)

where N
j
 is the projection of N. Clearly, even if the α

j
 = 0 initially as a result of linear 

normal-mode initialization, gravity wave activity will quickly develop because the 
N

j
 are non-zero. Nonlinear initialization involves generating a non-zero set of α

j
 

such that dα
j
/dt is zero, or at least small, that is, choosing α

j
 so that

	
N ij R J j jx , , , ,α α α ω α1 2 0… + =( ) 	 (13.34)

Since this equation is nonlinear, possibly highly nonlinear, a direct solution of 
Equation 13.34 is not generally possible. Instead, an iterative procedure to reduce 
the gravity wave activity may be employed:

	

α
ω

α α αj
n

j
j R

n n
J
n

i
N x+ = − …( )1

1 2

1
, , , , 	 (13.35)

In practice, only two or three such iterations are needed to improve the forecast 
greatly.

Such initialized fields minimize the high-frequency component of the solutions 
to the governing equations and so represent a slowly varying or nearly balanced 
state. This will not be a state simply of geostrophic or gradient wind balance, for 
other terms which can excite gravity wave motions are also taken into account. 
Consequently, the initialized winds, while close to geostrophic, will have a signifi-
cant ageostrophic component, including vertical velocity.

Modern forecast systems no longer use such initialization systems explicitly. But 
the notion of balance is inherent in the procedures used.
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Linear theories of baroclinic 
instability

14

14.1  Qualitative discussion

The theme of this chapter is the way in which small-amplitude disturbances on an 
initially uniform, vertically sheared flow can evolve. In some circumstances, 
initially small disturbances amplify: in other words, the flow may be unstable. At 
the level of quasi-geostrophic theory, the omega equation and the vorticity equation 
together provide a complete set of predictive equations. For a given geostrophic 
flow at some time t, the omega equation with suitable boundary conditions 
determines the vertical velocity w. Vertical motion leads to vortex stretching or 
shrinking. The vorticity equation then predicts ξ

g
 = ∇2ψ at some later time t + δt. 

With horizontal boundary conditions on ψ, the Laplacian operator can be inverted to 
obtain ψ and thus the geostrophic flow from the vorticity field at the new time. By 
repeating this sequence, the evolution of the flow can be predicted.

For the present qualitative discussion, assume that the vertical velocity w is zero 
at z = 0, H

T
. Consider the configuration shown in Figure 14.1a. The basic state has 

significant baroclinicity, with a thermal wind orientated in the x-direction. Hence 
flow parallel to the x-axis strengthens with height. In the upper troposphere, a weak 
vorticity anomaly has positive v ahead of it and negative v behind it. Consequently, 
the change in v in the direction of the thermal wind is northwards. The Q-vector is 
therefore approximately in the x-direction, implying ascent ahead and descent 
behind, as indicated in the diagram. At the low levels, this vertical motion gives a 
positive vorticity tendency due to vortex stretching ahead of the upper vortex and 
negative vorticity tendency due to vortex shrinking behind the upper vortex, as also 
shown in Figure 14.1b. As low-level vorticity is generated by these tendencies, the 
low-level wind perturbation and Q-vectors must look much as shown in Figure 14.1c. 
The vertical motion forced from the lower-level vorticity anomalies intensifies the 
upper cyclone by stretching and also intensifies the upper anticyclone by shrinking. 
Thus, the vertical motion forced from the low levels acts to reinforce the upper-level 
vorticity anomalies. The cycle of feedbacks can generate stronger and stronger 
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vorticity anomalies until other processes come into play. This positive feedback 
process is sometimes referred to as ‘self-development’ and is one view of the 
essence of the baroclinic instability process.

Two contrasting aspects of the role of the basic baroclinicity are apparent:

1.	 Large baroclinicity is required to ensure that the vertical velocities are 
substantial.

ξ > 0

ξ > 0

ξ < 0

ξ < 0

(a)

(b)

(c)

Figure 14.1  Three stages in the self-development of an unstable baroclinic wave. A basic 
westerly flow, increasing with height, has weak upper-level vorticity anomalies superimposed 
upon it. Shading denotes positive (cyclonic) vorticity. (a) The pattern of Q-vectors indicates 
ascent and descent beneath vorticity anomalies. (b) The stretching/shrinking associated with the 
vertical motion induces low-level vorticity anomalies. (c) The Q-vector pattern associated with 
the low-level anomalies indicates vertical motions whose stretching/shrinking signature amplifies 
the upper-level anomalies
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2.	 The consequent large differential advection of the upper-level pattern in the 
x-direction could mean that the low-level vorticity maximum is realized almost 
directly beneath the upper-level maximum. In such a case, the positive feedback 
shown in Figure 14.1c would be extremely small.

The qualitative discussion of this section indicates that a growing wave-like system 
may be possible. If it is, then its structure along the direction of the thermal wind 
must be qualitatively as shown in Figure 14.2. The pressure distribution follows 
from the vorticity distribution, via the geostrophic relationships. The westward tilt 
with height is that required for ‘self-development’. The temperature structure in the 
mid-troposphere follows from the hydrostatic relationship which may be written in 
the following form:

	

∂ ′
∂

=
′
= ′φ θ

θz
g b

0

	 (14.1)

In the region of the northward flow at mid-levels, there is a relatively low-pressure 
anomaly beneath and a high-pressure anomaly above, so the air must be relatively 
warm. Furthermore, in this region, there is ascent forced from the upper- and lower-
level cyclones. Therefore, relatively warm air is moving polewards and rising. 
Similarly, behind the cyclone region, relatively cool air is moving equatorwards and 
sinking. This net poleward and upward transport of internal energy is crucial to the 
growth of the system.

14.2  Stability analysis of a zonal flow

In this section, we investigate further the possibility of the growth of baroclinic 
disturbances on a steady zonal current. The qualitative discussion of the previous 
section will now be put on a more rigorous mathematical basis, starting from the 

H L

x

H

L H

Tropopause

WarmCold

Ground

Figure 14.2  Schematic illustration of the longitude–height structure of an unstable baroclinic 
disturbance. The dashed lines indicate the centre of the troughs and ridges at each level
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quasi-geostrophic equations, written in the form of a potential vorticity equation in 
the interior and potential temperature advection on a flat lower boundary.

	

∂
∂
+ ⋅∇






 =

t
qv 0 in the fluid interior 	 (14.2)

	

∂
∂
+ ⋅∇






 = =

t
b zv 0 0at 	 (14.3)

where

v k= ×∇

=
∂
∂

= + +
∂
∂

∂
∂











ψ
ψ

β
ρ

b f
z

q f y
z

f

N zR
R

0

0
0
2

2

1
ρ

ψ

A top boundary condition is also required. For the present, assume that Equation 
14.3 applies at z = H also. A final assumption is that the y-dependence of the prob-
lem is trivial. Either the flow is cyclic in y with period Y, or that v = 0 at y = ± Y/2 so 
that ψ has no x-dependence on these surfaces.

The basic zonal flow with streamfunction ψ y z,( )  is characterized by
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	 (14.4c)

This form of the basic flow clearly satisfies the Equations 14.2 and 14.3, there being 
no gradient in q  and b  in the direction of flow.

Now consider a perturbation to this flow:
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where
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All the perturbation quantities are in general functions of x, y, z and t. Insert these 
forms of solution into the basic Equation 14.2 and move all terms which are quad-
ratic in the perturbations to the right-hand side. The result is
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For sufficiently small perturbations, the quadratic term on the right-hand side will 
be negligible. Its neglect will linearize the perturbation equation:
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Similarly, the boundary condition, Equation 14.3, when linearized becomes
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On y = ± Y/2, the boundary conditions are either cyclic or have the form ψ′ = 0.
The perturbation equation, Equation 14.8, together with the boundary conditions 
(14.9) is quite general. We now seek a particular form of solution, a so-called nor-
mal-mode solution, which has the following form:

	
′ = ( )( )−( )ψ ΨRe y z ik x ct, e 	 (14.10)

Such a solution has a fixed structure in y and z and a sinusoidal structure in x with 
wavelength 2π/k; the pattern moves parallel to the x-axis with phase speed c. In 
general, both the wave amplitude Ψ and the phase speed c are taken to be complex, 
while the wavenumber k is taken to be real and positive. Thus, setting c = c

R
 + ic

I
,
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ik x ct kc t ik x c tI R−( ) = + −( )

and so the perturbation may be written

′ = ( )( )−( )ψ Ψ σRe y z t ik x c tR, e e

This is interpreted by saying that the mode moves towards the east with speed c
R
, 

the phase speed, and that it amplifies with growth rate σ = kc
I
. For such a sinusoi-

dal normal-mode solution, taking a derivative with respect to x is equivalent to 
multiplying by ik. Similarly, taking a time derivative is equivalent to multiplying 
by −ikc.

With these comments in mind, the normal-mode solution, Equation 14.10, is sub-
stituted into Equation 14.8. Every term in the result contains the factor Re(eik(x − ct)), 
and so this has been omitted for clarity:
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Similarly, substituting in the boundary condition, Equation 14.9, gives
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On the boundaries y = ± Y/2, either cyclic boundary conditions apply, or Ψ = 0. We 
denote any solution to the linearized perturbation equations as (Ψ, c). Taking the 
complex conjugate (denoted by a *) of Equations 14.11 and 14.12, and using the 
fact that Ψ Ψ/ /* *u c u c−( ) = −( ), we see that if (Ψ, c) is a solution, then so is 
(Ψ*, c*). Its phase speed is the same, but its growth rate is minus that of the original 
mode. Thus, modes are either neutral, with σ or equivalently c

I
 zero, or they occur 

in pairs, one growing and the other decaying. This symmetry breaks down if further 
terms, representing dissipative processes, are retained in the perturbation equations. 
However, if the dissipation is weak, an approximate symmetry holds.

To make further progress in determining Ψ and c, specific forms for u qyand  
need to be chosen. However, some general deductions can be made without 
deriving specific solutions by generating an energy equation from Equation 14.11. 



	LINEAR  THEORIES OF BAROCLINIC INSTABILITY	 251

The technique used is a common one in such stability problems. Multiply the inte-
rior equation, Equation 14.11, by ρ

R
Ψ * and integrate over the y, z domain. To sim-

plify the calculation, assume that there is a rigid upper boundary at z = H, so that 
Equation 14.12 also applies at that level. Note first that ΨΨ * = |Ψ|2 and that integra-
tion by parts gives
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Using Equation 14.12 to substitute for ∂Ψ/∂z at z = 0, H in the first term on the right-
hand side then gives
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Using these last two results, the integral of Equation 14.11 multiplied by ρ
R
Ψ  * is
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	 (14.13)

The first complete integral is positive definite. In fact, it is equal to 4E where E is 
the total eddy energy averaged with respect to x. A positive definite quantity which 
we may call the wave activity may be defined in the following form:
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Then, using the identity u c u c u c−( ) = −( ) −
−1 2* / , Equation 14.13 can be written 

as follows:
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If the wave exists, then E is real and positive. Therefore, the real part of Equation 
14.15 is
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and the imaginary part is
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For a neutral mode, c
I
 is zero and so Equation 14.17 is satisfied trivially, leaving 

only Equation 14.16 to be satisfied. If the wave is growing or decaying, Equation 
14.17 gives
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Equation 14.18 is called the Charney–Stern necessary condition for instability.
The condition for the existence of instability divides into a number of statements, 

any one of which must be satisfied. If, for example, ∂ ∂u z/  is zero on the bounda-
ries z = 0, H, then the first integral vanishes automatically, and the condition for 
instability is that the second integral be zero. Given that A is positive definite, this 
requires that the poleward gradient of potential vorticity ∂ ∂q y/  should change sign 
somewhere in the (y, z) plane. On the other hand, if ∂ ∂q y/  is zero throughout the 
(x, y) plane, then instability is still possible provided −∂ ∂u z/  at z = 0 and ∂ ∂u z/  
at z = H have opposite signs. If ∂ ∂q y/  is non-zero, then a full statement of the 
Charney–Stern condition takes the following form:

For instability, ∂ ∂q y/  in the interior, −∂ ∂u z/  at z = 0 and ∂ ∂u z/  at z = H (if 
there is a boundary at z = H) must somewhere be both positive and negative.

We will discuss some examples of the application of this criterion in Sections 
14.3–14.5. The condition is based on the possibility that eddies can extract energy 
from the zonal flow. However, it does not guarantee that coherent eddy structures 
will be found that can actually grow. The Charney–Stern criterion is therefore a 
necessary, but not a sufficient condition, for instability.
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The discussion of this section has revealed the central role played by the poleward 
gradient of potential vorticity. It is worth examining this quantity more closely. Taking 
the y-derivative of Equation 14.4c and making use of the hydrostatic equation and the 
thermal wind equation, qy  can be written in terms of the zonal mean zonal wind u :
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In the limit where the vertical extent of the region of interest is small compared to 
the scale heights Hρ and Hθ, Equation 14.19 simplifies further to

∂
∂

= −
∂
∂

−
∂
∂

q

y

u

y

u

z
β

2

2

2

2
g

where z
g
 = (N/f

0
)z is the natural, quasi-geostrophic scaling of z. However, more gen-

erally, the vertical variations of ρ
R
 and N need to be taken into account. In that case, 

Equation 14.19 is written as the sum of four terms:
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Figure 14.3 shows the total qy  and its component terms. The fields have not been plotted 
at levels below 80 kPa, where small values of N in the atmospheric boundary layer make 
the calculation of the third and fourth terms extremely ill-conditioned. In the tropo-
sphere, the smallest term is generally β, the horizontal curvature term uyy  is somewhat 
larger, but in most places, the third and fourth terms, involving the vertical variations of 
u Nand , are dominant. In the region of the tropospheric jets, both the third and fourth 
terms are large, amounting to several times the local value of β. In the stratosphere, the 
balance is rather different. The factor f N0

2 2/( )  falls by a factor typically as large as 
four or more from the troposphere into the lower stratosphere, and consequently, the 
third term in Equation 14.20 is generally less important than the second at such levels.

A useful interpretation of the vertical derivative term, the third on the right-hand 
side of Equation 14.19, follows from the thermal wind relationship. Given that this 
third term is the dominant part of qy  in the midlatitude troposphere and tropopause, 
we consider the mass-weighted mean qy  between two levels, z

−
 and z
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The thermal wind equation enables the vertical wind shear to be related to the hori-
zontal potential temperature gradients, while N2 is proportional to the vertical gradi-
ent of potential temperature. With these relationships substituted in, we have
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is the slope of an isentrope. So Equation 14.21 says that the average qy  over a layer 
of the atmosphere is proportional to the change of the slope of the isentropes across 
the layer. One example is seen in Figure 14.3c and d, where large values of qy  are 
seen around the tropopause, above which the isentropes are much flatter than 
below.

The northward potential vorticity gradient, ∂ ∂q y/ , is mostly positive throughout 
the troposphere. It has large values near the jet core and lower, sometimes negative, 
values in the lower troposphere beneath the main jets. More importantly than these 
lower tropospheric values, −∂ ∂u z/  is negative at the lower boundary, with tempera-
tures decreasing towards the pole and westerlies increasing with height. This means 
that the necessary condition for instability is satisfied. From a different perspective, 
at the tropopause, which dynamically can act as an upper boundary with w becom-
ing small if not zero, ∂ ∂u z/  is positive, reinforcing the conditions for instability.

The various criteria for instability can be unified by means of a mathematical 
artifice. Equation 14.18 includes boundary values of ∂ ∂u z/  (or equivalently, by the 
thermal wind relationships, of ∂ ∂θ / y) at z = 0 and z = H. Now suppose that this real 
boundary condition actually were to apply a short distance, δz, in from the boundary 
and that the hypothetical boundary condition was simply ∂ ∂ = =u z H/ ,z at0 0 . 
There, of course, the first integrals in Equation 14.18 would vanish. However, in the 
thin, δz-thickness layer between the physical and hypothetical boundaries, there 
would be an additional contribution to the potential vorticity gradient qy :

− =

=

f

N

u

z
z

f

N

u

z
z H

z

z

0
2

2

0
2

2

0
δ

δ

at

at

More elegantly, using the notation of Dirac’s delta function, as δz → 0, we may write
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Figure 14.3  Latitude–pressure section of qy  for zonal mean Northern Hemisphere winter con-
ditions. Contour interval is 0.2(Ω/a); negative values shaded. (a) The total qy , (b) −uyy , 
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where the δ(H) term occurs if there is a lid at z = H. So the ∂ ∂q y/  field is character-
ized by moderate values through the mid-troposphere, but with an infinitesimally 
thin layer of large negative ∂ ∂q y/  at the lower boundary and an infinitesimally 
thin layer of large positive ∂ ∂q y/  at the tropopause.

So, accepting this formalism of the artifice for the boundary condition, the 
Charney–Stern criterion for instability reduces simply to a single statement:

	 ∂ ∂q y/  must change sign somewhere in the (y, z) plane.�

This condition is a generalization of the condition for ‘inflexion point instability’ 
discussed in Section 9.8. There, the instability requirement was an extremum in the 
absolute vorticity or, equivalently, a sign change of the gradient of absolute vorti-
city, somewhere in the (y, z) plane. The Charney–Stern criterion is equivalent, but 
with ‘potential vorticity’ substituted for ‘absolute vorticity’.

14.3  �Rossby wave interpretation of the stability 
conditions

So far, the argument has largely concerned the potential of the zonal mean flow to 
support amplifying disturbances. We have said rather little about the constraints on the 
scale or shape of those disturbances. In this section, we begin to discuss the implica-
tions of the zonal mean flow for the nature of growing, unstable disturbances.

Consider first the case of neutral modes in an atmosphere which has zero 
temperature gradient on the boundaries, or, equivalently, zero vertical wind shear at 
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the boundaries, shown in Figure 14.4a. The first integral in Equation 14.16 must be 
zero. For the second integral to be equal to the positive definite quantity 4E, then in 
the region where the amplitude is concentrated, as measured by the wave action A, 
∂ ∂q y/  and u c− R  must have the same sign. For the simple barotropic Rossby 
waves described in Section 8.5, ∂ ∂ =q y/ β  and c u Kr = − β / 2  so that u c− R does 
indeed have the same sign as ∂ ∂q y/ .

An alternative case is for a fluid with zero ∂ ∂q y/  but with boundary temperature 
gradients, shown in Figure 14.4b. In this case, the second integral in Equation 14.16 
vanishes, but neutral modes can still exist. Their existence requires that ∂ ∂u z/  and 
u c− R  should have the same signs near an upper boundary but opposite signs near 
a lower boundary.

Rossby-like waves with this property are easily illustrated. Consider a zonal flow 
with zero ∂ ∂q y/  and constant ∂ ∂u z/ . Since q  is constant, the perturbation q 
is zero for any meridional displacement. Consequently, the perturbation potential 
vorticity equation reduces to

′ =q 0

or from Equation 14.6c,
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Figure 14.4  Illustrating the configuration of neutral modes (a) when ∂ ∂u z/  is zero at the 
boundaries; here, the open arrows depict the direction of the potential vorticity gradient and (b) 
when ∂ ∂q y/  is zero in the fluid interior
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For simplicity, assume that ρ
R
 and N2 do not vary with z. Then, Equation 14.23 

reduces to Laplace’s equation with a scaled vertical coordinate z
s
 = (N/f

0
)z:
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This has solutions decaying away from the lower boundary of the following form:
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The phase speed is found by substituting this form of solution into the boundary 
condition at the lower surface, Equation 14.9:
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The phase speed is simply equal to the flow speed a height H
R
 above the surface. 

This level is sometimes called the ‘steering level’; it is as if the eddies were advected 
by the flow at that level. This neutral mode is a ‘trapped mode’, with an amplitude 
which is maximum at the boundary and falls off exponentially with height. For 
waves with no meridional structure, K = k in the definition of H

R
, and Equation 14.26 

implies that the wave frequency is
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Since this is independent of wavenumber, the group velocity in the x-direction is 
zero: wave activity moves with the speed of the flow at the boundary. Note that in 
this example, ∂ ∂u z/  is positive, while u cR−  is negative at the lower boundary, in 
agreement with the condition derived in the previous paragraph. A similar analysis 
applies in cases with an upper boundary, so that upper boundary-trapped Rossby 
wave activity moves with the basic flow speed at that boundary.

Consider for a moment a flow with zero ∂ ∂u z/  at the boundary but non-zero 
∂ ∂q y/  throughout the fluid. Then, the Charney–Stern criterion for instability 
reduces to
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which is possible only if ∂ ∂q y/  takes both signs in the region of significant A. Such 
a sign reversal may be due primarily to the uyy  term in the potential vorticity gradi-
ent, in which case the instability is called ‘barotropic instability’. A simple example 
is flow on an f-plane which is independent of height, so that q uy yy= − . Suppose, as 
shown in Figure 14.5, that uyy  has opposite signs for y > 0 and y < 0. Then, it is possi-
ble for Rossby waves existing in the region where qy  is negative to have a very simi-
lar phase speed to a separate train of Rossby waves centred in the region where qy  is 
positive. Indeed, if the x- and y-wavenumbers are chosen carefully, the phase speeds 
can be identical. The instability can then be viewed as a positive feedback between 
the two trains of Rossby waves, producing phase locking and growth.

A discussion of the mechanism for this was given in Section 9.8. Here we shall 
consider it in more detail. Figure 14.6 shows two trains of Rossby waves, stationary 
with respect to one another, either side of a maximum of potential vorticity. Eddies 
A and B belong to a train northward of the potential vorticity maximum, while 
eddies C and D are part of a train located to the south of the potential vorticity maxi-
mum. The crucial point was discussed extensively in Section 9.2. The circulations 
associated with eddies A and B, say, extend well beyond the confines of their respec-
tive vorticity distributions. In particular, there will be induced velocities near the 
centre of eddy D due to the eddies A and B in the northern region. The sense of that 
circulation is predominantly southwards, that is, it will advect higher potential vor-
ticity air from nearer the maximum of the potential vorticity distribution and will 
therefore amplify the vorticity anomaly of vortex D. In the same way, the circulation 
associated with eddy D and its companions further east in the diagram will act to 
reinforce the vorticity anomaly associated with eddy B. Similar arguments predict 
an intensification of the negative vorticity anomalies of eddies A and C.

y

q

y

u

u

u

cr

cr

Figure 14.5  Sheared barotropic flow showing (left) the zonal wind profile and (right) the cor-
responding potential vorticity profile. For the baroclinic case, the y-axis must be relabelled as the 
z-axis
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Thus, provided the two wave trains maintain their phase relative to one another, 
a positive feedback means that all the eddies will amplify. This is the basis of 
‘barotropic instability’. It depends crucially on the dispersive nature of Rossby 
waves, which allows us to choose wavenumbers such that the trains have similar 
phase speeds and therefore have the possibility of remaining in the same relative 
phase to one another. The diagram has been drawn with about 66° phase difference 
between the two wave trains. For such a phase difference that is less than 90°, the 
eddies A and B induce a maximum southward motion and therefore q tendency 
which is slightly to the west of D. This and the similar action near C act to reduce 
the eastward phase speed of this wave train. Similarly, the action of C and D is to 
increase the eastward phase speed of the wave train including A and B. Therefore, 
the interaction helps both waves move against the shear in the basic state and in the 
sense of increasing the phase difference between the two wave trains. If the phase 
difference was a little greater than 90°, a similar argument shows that the interac-
tion leads to growth and movement in the sense of reducing the phase difference. 
If the phase difference were reduced to 0 or increased to 180°, then the feedback 
between them would not amplify the waves at all, but it would modify their phase 
speeds more strongly in the sense of respectively increasing or decreasing the 
phase. For a 90° phase difference, the interaction gives maximum growth but no 
effect on the phase speeds. Thus, the interaction between the two wave trains can 
promote phase locking between them, a necessary condition for growth, as well as 
amplification of the waves.

Figure 14.6 also shows dashed lines of constant phase. These have a characteris-
tic slope from south-west to north-east, in the opposite sense from what one might 
have expected if the disturbance was simply sheared passively by the background 
flow. Such a ‘counter shear’ tilt is the characteristic of growing waves. It is associ-
ated with a poleward momentum flux carried by the growing eddies in such a sense 
as to reduce the shear. Thus, as the energy of the eddies increases, the northward 
flux of momentum acts to weaken the shear, and hence the kinetic energy, of the 
background flow.

qy< 0+

+
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A B

C D

qy> 0

x

y

Figure 14.6  Sheared barotropic flow, showing the interactions between trains of vortices either 
side of the potential vorticity maximum
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Finally, note that the arguments of this section are linear and really only apply to 
the initial stages of the evolution of an unstable flow. The vortices amplify because 
meridional displacements bring air with more extreme potential vorticity to a given 
latitude. As the total meridional displacement of fluid elements approaches the 
width of the potential vorticity anomaly, this supply of high or low potential vorticity 
becomes exhausted. Growth will cease, and more complex dynamics, associated 
either with vortex interactions or with Rossby wave radiation, will take over.

When the sign change of ∂ ∂q y/  is associated with the third, vertical curvature 
term in Equation 14.19 (and so represents a vertical stratification of ∂ ∂q y/ ; see 
Figure 14.5), the instability is termed ‘baroclinic instability’. One interpretation of 
what is happening is precisely parallel to the earlier discussion of barotropic insta-
bility. Two Rossby wave trains, now at different levels rather than at different lati-
tudes, interact with one another, inducing positive feedbacks which promote phase 
locking and amplification in appropriate circumstances. The basis of the argument 
is the quasi-elliptic relationship between streamfunction and potential vorticity 
anomaly, Equation 14.6c. If vertical variations of ρ

R
 and N2 are negligible, Equation 

14.6c is a Poisson equation. Even if ρ
R
 and N2 vary substantially, the qualitative 

nature of the solutions to Equation 14.6c is still similar to those of the Poisson equa-
tion. For all the qualitative arguments in this chapter, the essential character of the 
relationship between potential vorticity anomaly and streamfunction is ‘action at a 
distance’, that is, a localized potential vorticity anomaly is associated with induced 
circulations at points remote from the anomaly. This influence affects both the hori-
zontal, as discussed in Section 9.2, and also the vertical. The ratio of the depth of the 
vertical to the width of the horizontal response is (f

0
/N).

Consider the flow shown in Figure 14.7. It is bounded by rigid surfaces at z = ± H/2 
and is sheared with height so that it is easterly for z < 0 and westerly for z > 0 with an 
inflexion point at z = 0, and zero shear at each boundary. There is assumed to be no 
variation in the y-direction. The potential vorticity in the upper layer increases in the 
y-direction by virtue of negative uzz  at these levels. The potential vorticity gradient 
is reversed in the lower layer. So in the upper layer, a train of Rossby waves will 
propagate to the west relative to the mean flow at that level. In the lower layer, 
Rossby waves will propagate to the east relative to the local zonal flow. It is possible 
to choose x- and y-scales for the Rossby waves such that they will be stationary with 
respect to one another. The situation is of course precisely analogous to the 
barotropic situation illustrated in Figure 14.5, but with the two trains of Rossby 
waves stacked on top of one another rather than side by side.

The interactions between the two wave trains are illustrated by means of a 
longitude–height section in Figure 14.8. The circulation around each extremum of 
potential vorticity extends to either side of that extremum and, by influencing 
neighbouring vortices, ensures that the train of vortices propagates relative to the 
mean flow. The argument for this is essentially that set out in Section 9.5. But the 
circulation also extends in the vertical and affects the vortices in the adjacent level. 
So, for example, vortices A and B in Figure 14.8 both induce northward motion near 
the centre of vortex C. Now in the lower layer, qy < 0 , and so this northward motion 
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will advect air with larger potential vorticity from lower latitudes, thereby 
strengthening vortex C. In the same way, the combined effect of vortices C and D is 
to induce northward motion near the centre of vortex B, in the upper layer. This 
time, qy < 0 . So the induced circulation advects low potential vorticity air into the 
centre of vortex B. Such advection strengthens the negative anomaly of q which 
already exists there. In this way, a consistent positive feedback exists between the 
upper and lower wave trains, increasing the amplitude of both. The amplification 
depends upon the characteristic phase tilt, from east to west with height, of the 
velocity and vorticity fields of the eddies. Just as in the barotropic case, the phase 
tilt is in the opposite sense from that which might have been expected on the basis 
of the shear of the basic flow. In the baroclinic case, the phase tilt is associated with 
poleward eddy temperature fluxes. Baroclinic waves systematically move cold air 
equatorwards and warm air polewards, reducing the temperature gradient or, 
equivalently, the vertical wind shear.

Figure 14.8 has been drawn with a 90° phase lag of the upper wave over the lower 
wave, and this leads to pure growth. If the phase lag differed from 90°, the induced 
flow would also act to modify the phase, as well as the amplitude, of the wave in the 
other layer. In other words, the feedback between the trains of waves would modify 
their phase speeds and promote phase locking. Again, such phase locking is analo-
gous to equivalent phase locking in the barotropic case.

The arguments in this section have been largely qualitative. However, they can be 
used to give some order-of-magnitude estimates of the characteristics of unstable 
baroclinic waves. The phase speed of a Rossby wave is

qy> 0

z

x

qy> 0

Figure 14.7  A vertically sheared flow on an f-plane. If the flow is uniform in the y-direction, the 
potential vorticity gradient will be positive in the upper half and negative in the lower half of the fluid
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(see Equation 8.19), where K k l= +2 2  is the total horizontal wavenumber of the 
waves. First, note that if K is too large, that is, the wavelength is too small, the waves 
in each layer will have a phase speed close to the local flow speed. Furthermore, the 
modes will be shallow, and they will only affect each other weakly. Phase locking will 
be difficult, and so one might suppose that the baroclinic instability mechanism will 
not be very effective. The same is true for very long waves, that is, for waves with 
extremely small values of wavenumber. In that case, the wave phase speeds will be 
extremely large and in the opposite direction to the local flow speed. Again, it will be 
difficult to have effective phase locking, and baroclinic instability will not be large. In 
terms of the flow presented in this section, with the zonal wind changing from 
− ΔU to ΔU between the lower and upper boundaries, the optimum phase locking will 
be for waves whose phase speed is close to the mean flow speed, that is, for

� � yq
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U∆

Now for the basic flow envisaged in Figure 14.7, where the potential vorticity gradi-
ent is associated with the vertical curvature term in Equation 14.6c, the potential 
vorticity gradient is
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It follows that

	
K

f

NH
KR� 0 ≡ 	 (14.27)

q′> 0

q′> 0

q′< 0

q′< 0 q′< 0

q′< 0

A B

C D

Figure 14.8  Longitude–height section of two Rossby wave trains in the flow illustrated in 
Figure 14.7
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is the optimum wavenumber for baroclinic instability. The corresponding length scale 
L L K NH fR R� = =−1

0 is the Rossby radius which corresponds to the natural ratio of 
vertical and horizontal scales and Bu ~ 1 as discussed in Sections 5.8, 12.2 and 13.1. A time-
scale for the vorticity to amplify can also be estimated. Define a ‘growth rate’ as
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If the typical meridional velocity associated with the wave is denoted by V′, then the 
typical vorticity is V′K. Now consider the rate of change of relative vorticity at one 
level due to velocity induced by the wave at the upper level. For the most rapidly 
growing wave, this will be of the following order:
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Here, ε where 0 < ε < 1 is a number which measures the attenuation of the circulation 
induced by the upper-layer wave train at the level of the lower-layer train. Setting 
ε = 1 will give an upper bound on the growth rate. Combining this last result with 
Equation 14.27 gives the following growth rate:
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These arguments are quite general and give a characteristic space and timescale for 
baroclinic instability. For the Earth’s midlatitudes, a typical length scale K−1 is 
around 500 km and a typical timescale σ−1 is around 1 day.

The qualitative argument given in this section has much in common with the 
argument given in Section 14.1 and Figure 14.1. There, we used the omega equation 
and vortex stretching to illustrate the positive feedback possible between two verti-
cally stacked trains of waves. The present arguments based on potential vorticity 
give a more direct approach to the vorticity tendencies. But more importantly, the 
potential vorticity argument has shown directly how the Rossby wave dispersion 
relationship predicts that the two trains of waves can become phase locked. In 
Figure 14.1 et seq, we merely presumed such phase locking.

14.4  The Eady model

The preceding sections have dealt in generalities. To proceed further, we need to 
consider the stability properties of specific zonal flows u y z,( )  along with the den-
sity and stratification profiles ρ

R
 and N. Our aim is to calculate the growth rates and 
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structures of unstable modes which can grow on such a flow. This turns out to be 
difficult. Very few u y z,( )  are amenable to an analytic stability calculation. Instead, 
one is usually driven to discretize the problem in some way and to use numerical 
techniques to determine eigenvalues and eigenvectors. However, the idealized prob-
lems which do admit of direct solution give considerable insight and are suggestive 
of more general ideas.

The simplest such model is that due to Eady (1949). He considered flow on an 
f-plane, confined between rigid surfaces a distance H apart. For simplicity, suppose 
that the variation with height of ρ

R
 can be neglected and N2 is constant. It is also 

convenient to use a coordinate system fixed in the mid-level flow and with the origin 
of the z-axis at that level, so the flow is bounded by rigid boundaries at z = ± H/2. 
The basic state has a uniform vertical shear and may be written as follows:

	 u z z( ) = Λ 	 (14.29)

The meridional buoyancy gradient is constant, with
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f0 0Λ 	 (14.30)

corresponding to a uniform poleward temperature gradient everywhere (Figure 14.9). 
For this basic state, the interior ∂ ∂q y/  is zero (see Equation 14.19).

The Eady model satisfies the Charney–Stern criterion for instability. The vertical 
shear ∂ ∂u z/  is positive at z = + H/2 while −∂ ∂ = −u z z H/ /at 2 is negative. The 
interior potential vorticity gradient is 0. Therefore, the instability relies on the inter-
actions between two Rossby wave trains trapped at the top and bottom boundaries.

The analysis is closely similar to that already carried out for a boundary Rossby 
wave in such a system (see Equations 14.23–14.26). Because the interior potential 
vorticity gradient is 0, it follows that the potential vorticity perturbation must also be 0:
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while the boundary conditions, Equation 14.9, are
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The problem is made dimensionless, using H for the vertical length scale, 
L

R
 = NH/f

0
, for the horizontal length scale and an arbitrary amplitude A for the 

perturbation streamfunction. The variables are transformed as
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With these transformations, the perturbation equations become
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Note that there are no parameters in the transformed equations. A single solution 
describes all possible cases.

Equation 14.33 can only be satisfied if ′ =q 0  everywhere. Assume solutions of 
the following form:

	
    ′ = ( ) + −( )( ){ }ψ Re expΨ z i kx ly kct 	 (14.34)

It then follows that
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Figure 14.9  The configuration envisaged in the Eady model
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where   K k l= +( )2 2 1 2/
 is the total dimensionless horizontal wavenumber. Instead of 

posing solutions with exponential growth and decay with z, as we did for boundary-
trapped waves, here it is convenient to look for solutions of the following form:

     Ψ z a Kz b Kz( ) = ( ) + ( )cosh sinh

where a and b are arbitrary constants, to be determined from the boundary conditions, 
Equation 14.3b. Substituting this solution into Equation 14.3b gives

           Kc a Kz b Kz zK a Kz b Kzsinh cosh sinh cosh( ) + ( )( ) − ( ) + ( )( )) +
( ) + ( )( ) = = ±a Kz b Kz zcosh sinh    0

1

2
on

This expression contains terms such as cosh , sinh    Kz z Kz( ) ( ), which are even func-
tions of z, and others, such as     z Kz Kzcosh , sinh( ) ( ), which are odd functions of z. 
If the boundary condition is to be satisfied at both the upper and lower boundaries, 
it follows that the sum of the odd terms and the sum of the even terms must sepa-
rately be zero at z̃ =1/2:
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Since the amplitude is arbitrary, only the ratio a/b is relevant for the structure of the 
wave. The imaginary part of the phase speed c determines whether or not the mode 
is unstable. Eliminating a/b between the two equations 14.36 gives, after a little 
manipulation,
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Now the first term in brackets is positive for K  greater than 2.399 and negative 
otherwise. The second bracketed term is negative for all K  and the first bracketed 
term has a zero at K̃ =2.399. Two cases are distinguished:

1.	 K  < 2.399: these long waves have c2  negative or c  imaginary. This corresponds 
to pairs of growing and decaying modes.

2.	 K  > 2.399: these short waves have c2  positive or c  real. This corresponds to 
pairs of neutral modes, propagating at phase speeds ± c.



268	 Fluid Dynamics of the MidLatitude Atmosphere

Figure 14.10 shows the growth rate on the wavenumber plane. The critical K , 
Kc = 2 399. , is referred to as the ‘shortwave cut-off’, being the wavenumber beyond 

which baroclinic instability ceases. The most unstable wave has zonal wavenumber 
k = 1.61K

R
,  l = 0 and a growth rate of 0 31 0. /f N uz( ) . These values are consistent 

with the scaling derived in the previous section, Equations 14.27 and 14.28). The 
reason for the shortwave cut-off can be understood in terms of the interaction of 
Rossby wave trains trapped on the two boundaries that underlies the instability. 
These waves have a ratio f/N for their vertical and horizontal scales. For short wave-
lengths, the mutual interaction of the waves over the depth H is too weak to give 
phase locking.
The structure of the waves is obtained by evaluating the ratio (b/a) from Equations 
14.36. Divide the two equations to eliminate c

˜

 and obtain
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Figure 14.10  Growth rate for the Eady model as a function of zonal wavenumber k and meridi-
onal wavenumber l. Contour interval 0 05 0. /f N uz( ) . Shading indicates regions where there is 
no instability
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For unstable waves with K < 2 399. , the numerator on the right-hand side of 
Equation 14.38 is negative. Then,
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The positive root corresponds to the growing mode. Arbitrarily fix the phase of the 
wave by assuming that a is real. Then, the normal-mode perturbation, Equation 
14.34, will be

	
% % % % % m % % %′( ) = ( ) ( ) ( ) ( )±ψ ασx y z ae ly Kz k x Kzt, , cos cosh cos sinh sin kkx%( )( ) 	 (4.40)

The signs imply that the  ′ψ  field tilts to the west with height for growing modes 
and to the east with height for decaying modes. Fields of  ′ ′v band  are obtained 
by differentiating Equation 14.40 with respect to  x zor  respectively. The vertical 
velocity for the Eady wave can be obtained from the omega equation with con-
stant ρ

R
 and a source term which in dimensional terms reduces to the following 

form:
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This equation, with boundary conditions w = 0 on the two boundaries, can be solved 
analytically.

Figure 14.11 shows the structure of the most unstable Eady wave, with k = 1.61 
and l = 0. The wave has maximum amplitude in streamfunction, v and b perturbations 
at the lower and upper boundaries. Their amplitudes are somewhat smaller at mid-
levels, but the vertical velocity is a maximum here. The poleward velocity wave, 
like the streamfunction perturbation, tilts to the west with height. For the fastest 
growing mode, the upper- and lower-level streamfunction waves are displaced 
relative to one another by exactly one quarter of a wavelength. The vertical velocity 
waves also tilt westwards with height but by a smaller amount. The temperature 
wave, on the other hand, tilts towards the east with height. To the east of the surface, 
low warm air is moving polewards and rising in agreement with the qualitative 
discussion in Section 14.1 and Figure 14.2. In fact, at the middle level, all three 
fields are exactly in phase for the most unstable wave. A consequence of the variation 
of both amplitude and phase with height is that for this wave, the co-variance of the 
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poleward velocity and temperature perturbation, the so-called poleward temperature 
flux, is actually constant with height.

For wavelengths other than that of the fastest growing mode, the structure of the 
wave changes, so that the correlation between the velocity and temperature fields 
becomes smaller. For long waves, with K → 0, the parameter α → ∞. The westward 
phase tilt of velocity wave increases to half a wavelength, while the eastward tilt of 
the temperature wave drops to zero. Towards the shortwave cut-off, as K → 2.399, 
α → 0. In this limit, the phase tilt of the velocity wave is zero, while the eastward tilt 
of the temperature wave has increased to half a wavelength.

Figure 14.11  The structure of the fastest growing Eady wave. (a) Poleward velocity compo-
nent, (b) buoyancy perturbation and (c) vertical velocity. In (a), the low and high in streamfunc-
tion and pressure are located on the zero contours of the poleward wind. In each case, the field has 
been arbitrarily normalized so that its maximum value is 1; contour interval 0.2; negative values 
shaded
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Despite the simplicity of its assumptions, the Eady model does involve signifi-
cant algebraic complexity. Other idealized models of baroclinic instability will be 
discussed in the next section. What seems remarkable about them is that they all 
lead to similar values for the growth rate and wavelength of the most unstable 
waves, despite great disparity in the mathematical details of extracting normal 
modes. However, the basic discussion of necessary structure in Section 14.1 and the 
scales for growth rates and horizontal length scales in Equations 14.27 and 14.28 
make this less surprising.

14.5  The Charney and other quasi-geostrophic models

Charney’s model of baroclinic instability was in fact the first to be published. It is, 
like Eady’s, based on extremely simple assumptions. The main differences are that 
the density decays with height, that the upper boundary is removed to infinity and 
that a non-zero beta effect is included. Otherwise, the assumptions are similar to 
those of Eady, namely, a wind which has a constant vertical shear but no horizontal 
shear and a stratification, as measured by the Brunt–Väisälä frequency N, which is 
constant with height. The model develops baroclinic instability because of the 
phase locking and interaction of an interior Rossby wave with a trapped wave at 
the lower boundary. It is unstable according to the Charney–Stern criteria. Despite 
its similarity to the Eady model, and the modest nature of the extensions it makes 
to the underlying assumptions, the Charney model is considerably more complex 
algebraically.
In the Charney configuration, the temperature or buoyancy gradient on the lower 
boundary is
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Taking the density ρ
R
(z) = ρ

0
e− z/H, the poleward gradient of potential vorticity is
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For typical midlatitude values, with Λ taken as 10−3 s−1, the term f N H0
2 2Λ /  in 

Equation 14.43 is comparable to β. The analysis starts from Equation 14.11 with 14.12 
on z = 0. Since density decreases exponentially with height, and since the energy of 
vertically propagating disturbances should be conserved, the perturbation amplitude 
is written as
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Ψ Ψ= ez H/2 	 (14.44)

The resulting amplitude equation is clarified if it is written in dimensionless form, 
denoted by *, with vertical distance scaled by H, horizontal distance by the Rossby 
radius L

R
 = NH/f and the phase speed c by ΛH. Then, the amplitude equation is
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with the boundary conditions
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Here, α2 = K* 2 + 1/4, and β β* /= ( ) ( )N H f2
0
2Λ  is a dimensionless measure of β. 

Equations 14.45 and 14.46 may be solved analytically by means of hypergeometric 
functions. Today, with the advent of fast computers, they are more usually solved 
numerically. The amplitude equation, Equation 14.45, is in the form of an eigen-
value equation. The phase speed, which is generally complex, is calculated from the 
eigenvalues. The imaginary part of the phase speed is related to the growth rate σ of 
unstable modes:

σ = − ( )k cIm

Note that this is non-dimensionalized by f
0
Λ/N, just as in the Eady problem.

Consider first the case in which β = 0, but in which the density decays with height 
and the upper boundary is removed to infinity. This is an interesting intermediate 
case between the Eady model and the usual form of the Charney model with non-
zero β. The growth rate curve is shown in Figure 14.12. Although the β effect is 
absent, instability is still possible, for there remains a positive poleward gradient of 
potential vorticity in the fluid interior by virtue of the variation of density with 
height, term 2 of Equation 14.43. So according to the Charney–Stern theorem, 
instability is still possible. For longer waves, the growth rate is quite similar to that 
in the Eady model. However, the curves differ markedly for short waves. The short-
wave cut-off of the Eady model is absent. Even the shortest wavelength perturba-
tions, which according to Equation 14.45 will be increasingly shallow as K increases, 
will still feel this interior potential vorticity gradient, and so they will be weakly 
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unstable. In contrast, as discussed in the previous section, in the Eady problem, 
there would be insufficient interaction between the boundary Rossby waves to ena-
ble instability.

As the wavenumber increases, and the unstable modes become shallower, the 
phase speed decreases. This behaviour is in marked contrast to the unstable Eady 
modes, the phase speed of which is constant for all unstable wavenumbers, and 
equal to the mean westerly flow speed. For the Charney modes with β = 0, the 
phase speed is equal to the westerly flow at some level in the fluid interior. It is as 
if the mode was being advected by the flow at this level. The level at which the 
flow speed is equal to the phase speed is therefore called the ‘steering level’. The 
steering level also marks the characteristic depth of the unstable mode. So, as 
the  zonal wavenumber increases, the modes become more shallow, the steering 
level becomes lower and so the phase speed becomes smaller. The long waves, in 
contrast, have deeper structures, with their steering level progressively higher as 
the wavelength increases. Consequently, their phase speed increases as the zonal 
wavenumber becomes smaller.

The solid curves in Figure 14.12 show a case comparable to that considered by 
Charney in his original paper, with a value for β typical of midlatitudes. For large 
zonal wavenumber k, the growth rate and phase speeds are similar to those of the 
β = 0 modes. For such short wavelengths, the effect of β is small. Unstable modes 
exist for the largest wavenumbers; as in the β = 0 case, there is no shortwave cut-off. 
Modes have their maximum growth rate for k corresponding to six or seven waves 
around a latitude circle. This time, the modes have a minimum wavenumber for 
instability, sometimes called a ‘longwave cut-off’. In the case illustrated, this cor-
responds to wavenumber 3–4. At longer wavelengths, the westward propagation 

Figure 14.12  Showing (a) the growth rate and (b) the phase speed of the most unstable normal 
mode at different zonal wavenumbers, according to the Charney model. Dashed curves are for 
β = 0, and solid curve is for β = 8.03 × 10− 12m− 1s− 1

0.5
(a)

0.4

0.3

G
ro

w
th

 r
at

e

0.2

0.1

0
0 5 10

Zonal wavenumber
15

(b)
0.5

0.4

0.3

P
ha

se
 s

pe
ed

0.2

0.1

0
0 5 10

Zonal wavenumber
15



274	 Fluid Dynamics of the MidLatitude Atmosphere

associated with the β effect is too strong to allow simple phase locking and growth 
of two simple Rossby wave trains.

Figure 14.13 illustrates the structure of the most unstable normal modes for this 
β ≠ 0 case. Both the poleward velocity and temperature perturbations have their 
largest values at the surface and become weaker above the steering level. In the 
lower troposphere, the poleward velocity and temperature are closely in phase, 
corresponding to a net poleward flux of internal energy when integrated over a 
complete wavelength. The poleward velocity perturbations show a characteristic 
westward tilt with height below and around the steering level. This westward tilt is 

Figure 14.13  The structure of the most unstable Charney mode. (a) Poleward velocity and 
(b) temperature perturbation. In both cases, the fields have been arbitrarily normalized to have a 
maximum value of 1.0, contour interval 0.1; negative values shaded
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consistent with the temperature perturbation being in phase with the velocity 
perturbation and so with the existence of a poleward flux of internal energy. A 
comparison with the fastest growing Eady mode, Figure  14.11, shows that the 
structure of the Eady mode in the lower half of the domain is qualitatively very 
similar to the structure of the most unstable Charney mode below the steering level, 
with largest amplitudes near the boundaries, and the same characteristic phase tilt 
with height.

At wavelengths longer than the longwave cut-off, weakly unstable modes exist. 
These longwave modes, sometimes called ‘Green modes’, have an entirely differ-
ent structure to the most unstable modes. Instead of a maximum amplitude at the 
surface, their maximum amplitude is at very high levels. Their phase speed is 
large, considerably greater than that of the more unstable classic Charney modes. 
The structure of the lower part of the most unstable of these Green modes is 
shown in Figure 14.14. The modes are physically unrealistic: in order to repro-
duce their properties consistently, the vertical domain extended to 20 units in 
these calculations, corresponding to some 360 km; only the lowest quarter of the 
domain is shown in the diagram. Notice that at upper levels, the temperature and 
velocity waves have little phase tilt with height and are virtually in quadrature. 
This means that the net poleward internal energy flux is close to zero away from 
the lower boundary. In the lowest part of the domain, the amplitudes are relatively 
weak, but the characteristic westward tilt of the velocity wave and the eastward 
tilt of the temperature wave are still to be seen. The Green modes are perhaps a 
curiosity and are likely to be swamped by more unstable modes growing on more 
realistic basic states.

14.6  More realistic basic states

In this section, we return to the problem of the stability of a general zonal jet u y z,( ) , 
which was discussed in Section 14.2. In general, analytical solutions do not exist, 
and numerical methods have to be used to determine the form of unstable modes 
and their growth rates for particular jet profiles.

A simple example is given of how such a procedure can be formulated. 
The  perturbation equations, Equations 14.8 and 14.9, can be approximated 
using finite differences on this grid. First, note that within a quasi-geostrophic 
framework, the problem can be reduced to a set of equations in only one 
dependent variable, the perturbation geostrophic streamfunction ψ′, for from 
that, the perturbation potential vorticity and buoyancy are defined using 
Equation 14.6.

Let us return to the instability problem defined by Equation 14.8 with Equation 
14.9 where u  is a general function of y and z. Assume that the perturbation varies 
sinusoidally in x, so that the perturbations may be written as follows:
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The potential vorticity and geostrophic streamfunction perturbations are related by 
Equation 14.6c, which may be written as
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Figure 14.14  The structure of the most unstable Green mode. Notice that the vertical scale is 
different from that of Figure 14.12. (a) Poleward velocity perturbation and (b) temperature pertur-
bation. As in Figure 14.12, the fields have been arbitrarily normalized so that the maximum value 
is 1, with negative values shaded

5
(a)

4

3

z

2

1

0
0 0.5

x

1

(b)
5

4

3

z

2

1

0
0 0.5

x

1



	LINEAR  THEORIES OF BAROCLINIC INSTABILITY	 277

The (y, z) domain must first be discretized in some way. This may be accom-
plished by setting up a grid in (y, z) space, on the nodes of which values of the flow 
variables are given. Alternatively, the flow might be represented by some appropri-
ate spectral series which is truncated after a sufficient number of terms. For simplic-
ity, we shall consider the gridpoint approach. Divide the domain into N

y
 points in the 

y-direction and N
z
 points in the z-direction, making N

y
 × N

z
 gridpoints in total. The 

N
y
 × N

z
 values of q

k
 and ψ

k
 are conveniently written as column vectors q and ψ, in 

which case, Equation 14.48 can be written more compactly as

q E= ψψ

The elements of the matrix E are generated by writing the various derivatives of ψ
k
 

in finite-difference approximations, for example,

∂
∂

+( ) − ( ) + −( )2

2 2

2ψ ψ δ ψ ψ δ
δ

k k k k

y

y y z y z y y z

y
�

, ,,

In this same matrix notation, the potential vorticity throughout the fluid interior 
evolves according to

	

∂
∂

= − − = − +
∂
∂











∂
∂

q
q E

t
iku ik u

q

y
ik

q

y
ψψ ψψ 	 (14.49)

Operating on the entire equation with the matrix E−1 gives an equation for the evolu-
tion of the streamfunction

	

∂
∂

= − +
∂
∂









 ≡−ψψ
ψψ ψψ

t
ik u

q

y
E A1 	 (14.50)

The boundary conditions 14.9 can also be written in terms of the geostrophic 
streamfunction ψ:

	

∂
∂
+
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




∂
∂

+
∂
∂









 = =

t
iku

z
ik

f

b

y
z H

ψ
ψ

1
0 0

0

for , 	 (14.51)

This equation will contribute further rows, corresponding to the levels z = 0, H, to 
the matrix A in Equation 14.50. Seeking solutions of the form ψ = Ψeσt generates a 
classic matrix eigenvalue problem:

	
A I−( ) =σ ψψ 0 	 (14.52)
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Standard methods are available to determine the eigenvalues σ and corresponding 
eigenfunctions of the matrix A. The former give the growth rate and phase speed of 
each normal mode, while the corresponding eigenvectors give the structure of the 
normal mode. In general, the matrix A has complex elements and, depending upon 
the number of gridpoints N

y
 × N

z
 needed to represent the jet adequately, may be 

rather large. Consequently, the computational effort required to determine the eigen-
values and eigenvectors can be very large indeed: typically, the computer time 
required increases as the sixth power of the number of gridpoints N

y
 × N

z
. 

Furthermore, only a handful of the N
y
 × N

z
 normal modes generated will be of inter-

est, generally those which are the most unstable.
For the primitive equations on a spherical domain, the difficulty in handling the 

huge matrices and also in producing a code for the linearized version of the model 
may often mean that a more straightforward initial value technique is preferable to 
the matrix technique. In the initial value technique, the nonlinear primitive equation 
model is initialized with the zonal flow plus a perturbation in the zonal number of 
interest. The amplitude of the perturbation is taken to be small enough that terms 
that are quadratic in it are negligible but large enough that the calculations are not 
compromised by the accuracy of representing the numbers in the computer. The 
structure of the perturbation is not crucial, but if a good guess at the most unstable 
wave structure is available, then this should be used. The model is integrated for a 
period during which there is some growth, and then the amplitude of the perturba-
tion to the zonal flow is reduced back to a value comparable with its initial ampli-
tude. This process is repeated until the structure hardly changes and the growth is 
almost exponential. This is a sign that the most unstable wave at this wavenumber 
has emerged from the initial structure, which could be envisaged as being composed 
of a large number of neutral, decaying and growing modes. This technique provides 
only the most unstable wave at each wavenumber and works well provided that 
there are no two modes with almost equal growth rates.

Figure 14.15a shows a zonal mean flow, which is an idealization of the observed 
midlatitude jet in winter, having a maximum westerly wind near the tropopause of 
45 m s−1; the jet is centred at 45°N and confined to latitudes 30°N–60°N. A normal-
mode calculation has been carried out using the initial value technique. The growth 
rate and phase speeds of the most unstable waves at zonal wavenumbers 1–11 are 
given in Figure 14.15b. The maximum growth rate is at wavenumber 8, a wave-
length of about 3500 km at 45°N. There is a weak drop-off towards higher wave-
numbers and a smooth drop-off towards 0 at lower wavenumbers. This behaviour is 
similar to that in the Charney model in Figure 14.12a except that there is no sign of 
the longwave-cut-off and very low-wavenumber behaviour. The phase speed shows 
little variation with wavenumber. At the latitude of the jet, this corresponds to the jet 
speed close to 70 kPa, so that this is the steering level. Again the behaviour is like 
that in the Charney model at medium and higher wavenumbers (Figure 14.12b) but 
not at low wavenumbers. This can be understood by noting that for the Charney 
model, the growth rate is σ = kc

i
(K). Figure 14.12 is drawn for a particular choice of 
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meridional wavenumber, l. However, if l is allowed to vary, this gives that the most 
unstable wave at very low wavenumbers will have σ = kc

i
(K

m
), where the total wave-

number K
m
 is a constant such that the low-wavenumber growth rates would be on a 

straight line that is from the origin and tangent to the main growth rate curve in 
Figure 14.12a, and the phase speed of these low-wavenumber modes would all have 
the value at k = K

m
. The Green modes become irrelevant, and the structure is always 

that of the main Charney/Eady modes but with decreasing meridional scale. This 
agrees with what is found in the realistic case discussed here.

The structure of the most unstable zonal wavenumber 6 normal mode is shown in 
the remainder of Figure  14.15. This wavenumber 6 mode has a growth rate of 
0.706 day−1 and a phase speed of 11.9° of longitude per day. Its vertical structure is 
summarized in terms of the phase and amplitude of variables in Figure 14.15c and 
d. The amplitude of the mode is largest in the troposphere, with decay into the 
stratosphere. v has maxima at the surface and also near the tropopause as expected 
given the potential vorticity gradients there. The main maximum for T is at the sur-
face, and ω has a mid-tropospheric maximum. The vertical tilts of the fields in the 
troposphere show behaviour which is very similar to that in the Eady model, with ω 
tilting westward less than v, T tilting eastwards and the phases being nearly identical 
at the steering level. The horizontal structure of the streamfunction near the surface 
and the tropopause is shown in Figure 14.15e. The mode decays away from the 
central latitude of the jet and tilt with the jet. The upper-level wave is somewhat 
broader meridionally than the low-level wave. At shorter wave lengths, the structure 
becomes shallower, and the near-tropopause maximum in v is not found, again con-
sistent with the ideas discussed earlier.

In common with the most unstable Charney mode, the poleward temperature flux 
is largest between the lower boundary and the steering level, and falls away in the 
upper troposphere. There is convergence of the temperature flux poleward of the jet 
and divergence equatorward. The unstable mode acts to reduce the temperature gra-
dient in the midlatitudes. The correlation of vertical motion and temperature pertur-
bation means that there is also an upward temperature flux with a similar distribution. 
The unstable eddies transport internal energy polewards and upwards. An associa-
tion between poleward thermal advection and rising motion is of course exactly 
what our discussion of the omega equation in Chapter 13 predicted.

These qualitative properties of the unstable normal-mode feedback on the mean 
flow are very similar to those of the unstable Charney or Eady modes. However, the 
horizontal shears of the jet and tilts of the wave seen in Figure 14.15e introduce a 
new element which is not demonstrated by the simple modes of baroclinic instability. 
That new element is the presence of meridional fluxes of westerly momentum. 
These are directed equatorwards on the poleward flank of the jet, with rather weaker 
poleward fluxes on the equatorward flank and zero fluxes near the jet centre. Therefore 
there is convergence of the westerly momentum flux towards the centre of the jet, 
so that the eddies induce westerly acceleration in the midlatitudes. The largest 
momentum fluxes are again below the steering level. So not only do the eddies tend 
to accelerate the jet, but they also tend to reduce the vertical shear. However, these 
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linear momentum fluxes are very weak compared to those observed, and their 
distribution is far from that observed. Linear theory does a reasonable job of 
predicting the observed temperature fluxes but a rather inadequate job of predicting 
the observed momentum fluxes.

In conclusion, the linear instability analysis of a realistic zonal jet yields unstable 
normal modes not dissimilar in growth rate, phase speed and structure to those pre-
dicted by simpler models such as the Eady and Charney models. The temperature 
fluxes carried by these waves have much the same pattern as that observed. However, 
the momentum fluxes are weak and unrealistic compared to those observed. To 
improve on them, we shall have to follow the development of the growing mode into 
the nonlinear regime, when feedbacks between the growing mode and the zonal 
mean state start to become appreciable. This discussion will be resumed in Chapter 16.

14.7  Initial value problem

All the models of baroclinic instability discussed so far involve a paradigm in which 
small-amplitude, constant-structure, wave-like disturbances grow on an appropriate 
sheared zonal flow. Although disturbances with a range of different wavenumbers 
can grow, after a time, one would expect the flow to be dominated by the fastest 
growing modes. In fact, purely zonal flows on which wave-like disturbances develop 
are rarely observed in the atmosphere. Rather, the flow is always disturbed, with a 
variety of vorticity patches of different scale and shape to be seen. Such patches 
sometimes intensify, sometimes weaken and sometimes are simply shredded by the 
flow to lose their identity. So, as an alternative to the approach taken in previous 
sections, in this section, we explore the evolution of isolated disturbances in a 
sheared flow, the so-called initial value problem. We shall retain the assumptions of 
quasi-geostrophic dynamics and linearity.

The distinction between the initial value problem and the normal-mode problem 
is neatly illustrated by a problem discussed by Orr in 1912, which we shall call the 
‘Venetian blind’ problem.

For simplicity, consider the basic state of uniform shear with u z= Λ  and con-
stant stratification used for the Eady model. But now assume the fluid is infinitely 
deep, so that the effects of upper and lower boundaries are ignored. Because the 
basic state has zero-potential vorticity gradient and there are no boundary tempera-
ture gradients, the flow is stable to normal-mode disturbances according to the 
Charney–Stern criteria, Equation 14.18. However, this does not mean that distur-
bances cannot amplify transiently. Suppose there are small-amplitude potential vor-
ticity perturbations which take the form of plane waves with zonal wavenumber k 
and vertical wavenumber m:

	
′ = +( )q Q i kx mze 	 (14.53)
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Scaling z by the quasi-geostrophic aspect ratio factor f/N, the perturbations have the 
following tilt:

	
α = 








f

N

m

k
	 (14.54)

When m is positive, the phase lines tilt towards the east with height. When m is 
negative, they tilt towards the west. The question we address is how such a distur-
bance evolves as it is sheared by the zonal flow. Since the potential vorticity gradi-
ent is zero, and there are no effects of boundaries in the vertical, the potential 
vorticity perturbations are simply advected with the flow at each level. The ampli-
tude and zonal wavenumber of the potential vorticity perturbation remain unchanged, 
but shear changes the vertical wavenumber. Substituting the form Equation 14.53 
with m as a function of time into the potential vorticity advection equation gives 
dm/dt = − Λk so that

m m kt= −0 Λ

It follows that the tilt changes at a constant rate as a result of the shear:

	

d

d

α
t

f

N
= −

Λ
	 (14.55)

The lines of constant phase rotate under the influence of the shear. A wave which 
initially had phase lines tilting to the west with height would become first vertical 
and then would begin to tilt to the east.
Given the relationship between potential vorticity and streamfunction,

	
′ =

∂ ′
∂

+
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∂

q
x

f

N z

2

2

2

2

2

2

ψ ψ
	 (14.56)

the perturbation streamfunction is related to α by

	
′ = −

′

+( )
ψ

α
q

k2 21
	 (14.57)

This relationship shows that the amplitude of the streamfunction perturbation will 
change as α changes in response to the shear. The total kinetic energy of the distur-
bance per unit area is
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	 (14.58)

where X represents a distance equal to the x-wavelength of the disturbance and Z the 
vertical wavelength. The magnitude of the kinetic energy is arbitrary, depending 
upon the amplitude Q of the potential vorticity perturbation. But Equation 14.58 
shows that the kinetic energy is a maximum for zero tilt and is always smaller for 
|α| > 0. Imagine that a disturbance initially tilts to the west with height, that is, α < 0. 
Then as the pattern is sheared by the background flow, the phase lines become more 
vertical and kinetic energy increases to its maximum when α = 0. As the phase lines 
begin to tilt towards the east, the kinetic energy decreases.
The rate of change of kinetic energy is

d KE

d

d

d

( )
= −

+( )t

Q

k t

ρα

α

α2

2 2 3
1

Substituting from Equation 14.55,

	

d KE

d

( )
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+( )t

Q

k

f

N

2

2 2 3
1

ρ α

α

Λ 	 (14.59)

Since the amplitude Q of the potential vorticity disturbances is arbitrary, the kinetic 
energy and its rate of change are also arbitrary. A more useful result comes from 
normalizing Equation 14.59 by the kinetic energy itself to obtain an effective kinetic 
energy growth rate:

	
σ

α
α

≡
( )

=
+( )

1
4

1 2KE

d KE

dt

f

N

Λ 	 (14.60)

The kinetic energy growth rate is a maximum of 2(fΛ/N) when α = 1. Compare this 
with the kinetic energy growth rate of the most unstable Eady wave, which is 
0.62(fΛ/N).1 For a time, this disturbance can grow nearly three times more rapidly 
than an unstable normal mode. But as α becomes negative, growth is replaced by 
decay. Generation of kinetic energy in the first phase is balanced by decay in the 
second phase, and so there is no net growth. This is consistent with the predictions 
of the Charney–Stern theorem. We are dealing with a state which is baroclinically 
stable. The variations of KE and σ with −α, and hence with time, are shown in 
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Figure 14.16. Note that the total energy is like Equation 14.58 but with just (1 + α2) 
in the numerator. Hence, the total energy also has a maximum growth rate at α = 1, 
but it is now fΛ/N. Therefore, there is a conversion of energy from the mean flow to 
the perturbation for a westward tilt and in the opposite direction for an eastward tilt 
with height.

Figure 14.16  Showing the variation of KE (a) and kinetic energy growth rate (b) versus tilt, or 
equivalently, time, for the Orr calculation
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An alternative approach to the wave-based analysis just carried out is to imagine 
isolated anomalies of potential vorticity. Assume a similar basic state of uniform 
vertical shear, zero-potential vorticity gradients and with boundary removed to 
infinity. In the point vortex limit, point potential vorticity anomalies can be taken as 
δ-functions. A single isolated vortex has the following potential vorticity:

	
′ = − −( )q Q x x Z Zδ 0 0, 	 (14.61)

Here, as earlier, Z is related to the geometrical height z by Z = (N/f)z. Q denotes the 
strength of the vortex. The geostrophic streamfunction corresponding to such a 
potential vorticity anomaly is obtained by solving the Poisson equation, Equation 
14.56. The result may be written as follows:

	
′ = − = −( ) + −( )ψ

π
Q

R
R x x Z Z

4
2

0

2

0

2
where 	 (14.62)

From this distribution of ψ′, geostrophic wind anomalies, proportional to the hori-
zontal gradient of ψ′, and temperature anomalies, proportional to the vertical gradi-
ent of ψ′, are implied. Figure 14.17 is a schematic illustration of these anomalies. A 
positive or cyclonic vortex induces cyclonic winds around its centre, which die 
away with distance from the centre. Above the vortex is a warm temperature anom-
aly and below a cold temperature anomaly. Again, these temperature anomalies die 
away as distance from the centre of the vortex increases. The temperature and wind 
anomalies are linked through the thermal wind relationship.

x

N
Z

z
f

=

+

Warm

Cold

• ×

Figure 14.17  Schematic illustration of the wind and temperature anomalies associated with a 
point potential vorticity anomaly in a deep fluid of uniform potential vorticity. The dashed line 
indicates the associated perturbation geostrophic streamfunction
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Now suppose two such vortices, with the same magnitude but opposite signs, are 
stacked vertically, forming a dipole structure, as shown in Figure 14.18. The geos-
trophic streamfunction induced by each vortex is given by Equation 14.62. When 
the distance from the centre of the dipole R is large compared to the separation of 
the vortices s, the streamfunction due to the combined effect of the two point vorti-
ces is given by superposing the streamfunctions for two vortices of opposite sign, 
using Equation 14.62; Figure 14.18 illustrates the geometry:

	
′ = − ( )ψ

π
θ

Q s

R4 2
cos 	 (14.63)

At locations where R ≫ s, the streamfunction anomalies excited by the two vortices 
nearly cancel out, and so the disturbance falls away more rapidly, as R−2, than that 
induced by a single monopole vortex. It is as if the second vortex effectively shields 
the fluid from the circulations induced by the first vortex and vice versa. Stronger 
circulations are concentrated in the region between and close to the vortices; if s is 
large compared with the distance from one or other vortex, then the streamfunction 
falls off as R−1 in accordance with Equation 14.62.

Now if the dipole is situated in a sheared flow with zero-potential vorticity gradi-
ents, each component vortex will simply be advected by the flow at that level. So, 
starting from an initial configuration with the two vortices stacked vertically, the 
spacing between the dipoles increases, and the axis of the dipole tilts towards the 
horizontal. The effect is that the mutual shielding of the vortices weakens, and a 
larger volume of the fluid is set into motion. Just as in the Venetian blind problem, 
the eddy kinetic energy increases as the plane bisecting the dipole becomes more 

x

N
Z

z
f

=

+

–

s
Rθ

Figure 14.18  Schematic illustration of a pair of potential vortices of opposite sign and the cir-
culation induced by them
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vertical. Indeed, the Venetian blind problem is an example of potential vorticity 
unshielding applying to plane waves rather than to point vortices.

The previous calculations ignored the effects of boundaries. A more realistic 
problem includes upper and lower boundaries as in the Eady instability problem. 
Figure 14.19 shows the meridional wind in a calculation with a confined vortex as its 
initial state. In terms of potential vorticity, this state actually corresponds to a tripole 
structure, with patches of negative potential vorticity anomaly above and below a 
stronger patch of positive potential vorticity anomaly. When the potential vorticity 
anomalies are lined up vertically, the shielding effect is very strong, and there is little 
circulation outside the immediate vicinity of the vortices. Figure 14.19b shows the 
circulation after the ambient shear has begun to separate the vortex anomalies. The 
shielding effect is reduced, and a series of boundary-trapped waves propagates to the 
west along the upper boundary and to the east along the lower boundary. A strong 
westward tilting vortex has formed near the centre of the anomaly. Its structure 
closely resembles that of the unstable Eady modes, Figure 14.10a. The boundary-
trapped wave fringes propagate at the speed of the ambient zonal flow near the upper 
and lower boundaries, giving rise to downstream development of disturbances near 
the upper boundary and upstream development near the lower boundary.

In this example, the horizontal scale of the anomaly was smaller than the scale of 
the shortwave cut-off in the Eady problem. So it should be stable in the normal-
mode sense. Yet there was a substantial, if transient, increase in kinetic energy asso-
ciated with the anomaly during its early evolution, as the vortex unshielding took 
place. This kind of mechanism, in which an upper-level potential vorticity feature 
comes into an appropriate alignment with a low-level potential vorticity or tempera-
ture anomaly, is implicated in many examples where a depression system deepens 
unusually rapidly.

Similar results are found for a localized disturbance to a zonal jet on the sphere 
using the nonlinear primitive equations. Figure 14.20 shows the surface pressure, 
90 kPa temperature and 50 kPa streamfunction 17 days after a localized surface 
pressure perturbation was inserted at longitudes between 60° and 90° from the top 
of the plots. A succession of low- and high-pressure systems developed downstream 
from the initial perturbation with the fringe of the development moving at a typical 
jet speed and proceeding in the manner of the downstream propagation of Rossby 
wave activity trapped at the tropopause. This is consistent with the analysis in 

0

10
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0

z 
(k

m
)

–8 –4 0 4 8

x (103 km)x (103 km)

Figure 14.19  Development of the meridional wind anomaly associated with an isolated poten-
tial vorticity anomaly in a sheared zonal flow. Left: the initial state. Right: a subsequent state. 
From Badger and Hoskins (2001) 
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Section 14.3 of the group velocity for waves trapped at a boundary in a much simpler 
model. The latest weather system has a structure similar to a half wavelength of a 
growing normal mode. Downstream of it, the flow is hardly altered from the initial 
jet. The previous systems have occluded, and the temperature contours have been 
pushed either side of the initial baroclinic region. The baroclinic component of the 
midlatitude jet has been weakened, but at the same time, the barotropic component 
has been strengthened. In consequence, the upper tropospheric jet speed has shown 
only a small increase, but the surface westerlies are strengthened considerably. The 
nonlinear wave structure and the behaviour of baroclinic waves are the topic for 
Chapter 16.

Figure 14.20  An example of downstream development in a spherical primitive equation model. 
(a) Surface pressure, (b) temperature at 90 kPa and (c) streamfunction at 50 kPa. From Simmons 
and Hoskins (1979) 

(a) (b)

(c)
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The initial jet has zero flow at the ground, and consistent with the simpler model 
in Section 14.3, new disturbances are also created successively in this region. 
However, consistent with an asymmetry that would be given in the Charney set-up, 
the scale of these systems in the horizontal and vertical directions is much smaller.

In the real atmosphere, the downstream development of Rossby waves and syn-
optic weather systems is very commonly observed.

Note

1.  Since the kinetic energy depends upon the square of the perturbation velocity or 
streamfunction, the kinetic energy growth rate is twice the streamfunction growth 
rate, which was calculated in Section 14.4.
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Frontogenesis
15

15.1  Frontal scales

One of the significant features of midlatitude depression systems is their propensity for 
developing fronts. Fronts are extended features across which there are rapid changes of 
velocity and temperature. Associated with them, and of overwhelming practical impor-
tance are often clouds and rain. The ubiquity of frontal structures in midlatitude flow 
was the basis of the Norwegian frontal model of cyclones discussed in Chapter 1.

Elementary kinematic considerations suggest circumstances where gradients of 
conserved quantities, such as potential temperature, might increase. Figure  15.1 
illustrates two of these. Consider an initially gentle gradient of potential tempera-
ture θ. Then persistent deformation flow, as discussed in Sections 2.3 and 13.3, 
shown in Figure 15.1a, in which the axis of dilation is roughly parallel to the 
θ-contours, will concentrate the gradient of θ into an increasingly narrow zone. The 
magnitude of the gradient will increase indefinitely as long as the deformation 
persists, approaching a discontinuity only as time tends towards infinity. Of course, 
this simple two-dimensional picture is inadequate. As the temperature gradients 
tighten, so the wind field must adjust if thermal wind balance is to be retained. 
Following the discussion of Section 13.3, tightening of the temperature gradients 
implies that meridional circulations must develop to bring the wind and temperature 
fields into balance. This chapter explores the nature and consequences of such cir-
culations. Similar considerations apply to the other frontogenetic situation, shown 
in Figure 15.1b. Here, a persistent sheared wind, blowing roughly perpendicular to 
isotherms, causes a tightening of the gradient around the zero wind line. Again, the 
gradient will only approach a discontinuity after an infinite time, and again, main-
tenance of thermal wind balance requires meridional circulations to develop.

The quasi-geostrophic theories developed in Chapters 12 and 13 give a qualita-
tively realistic picture of the meridional circulation in the vicinity of fronts. However, 
a typical frontal region might be only of order 100 km across, although the relevant 
scale in the long-front direction will be much larger, typically of order 1000 km. 
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A  Rossby number based on the cross-frontal scale is therefore Ro   =   V/fl ~ 10/
(10− 4105) ~ 1. Such a large Rossby number implies that the quasi-geostrophic theory 
developed in earlier chapters is likely to be inadequate to represent the essential 
dynamics of frontal zones.

The different scales in the across-front and along-front directions suggest that a 
more careful scale analysis of the momentum equations, looking at the balance of 
terms in these directions separately, might be fruitful. Figure 15.2 explains the nota-
tion we shall use. Consider a frame of reference which is fixed relative to the front. 
The y-axis is parallel to the front, while the x-axis is perpendicular to the front. The 
along-front scale is denoted L, while the smaller cross-front scale is denoted l. The 
corresponding velocity scales are V parallel to y and U parallel to x.

Observations suggest that the component of velocity across the front, U, is small 
compared with the velocity component along the front, V. This is consistent with 
there being little interaction between the air on the two sides of the front, and so is 
consistent with the traditional concept of air masses. However, at the same time, the 

Figure 15.1  Examples of frontogenetic flow. (a) Persistent deformation, (b) persistent shear. 
The solid contours represent isopleths of potential temperature, which is advected conservatively 
in the absence of heating or cooling

(a)

(b)
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length scale for changes across the front is much smaller than that along the front. 
So assume that advection in the along-front direction is comparable to, or smaller 
than, that in the cross-front direction, that is,

	
v

y
u

x

∂
∂

∂
∂

~ . 	 (15.1)

In terms of the characteristic length and velocity scales we have introduced
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~ . 	 (15.2)

Assume also that the temporal rate of change is not larger than the advection terms, 
so that
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l
~ . 	 (15.3)

Now apply this scaling to the two components of the momentum equation. 
Comparing the acceleration and Coriolis term in the along-front momentum equa-
tion gives
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This is a Rossby number involving the large wind speed and the small-length scale, 
and as we have already shown, it is of order 1. This implies that for a strong front, 

x

y

L

l

U

V

Figure 15.2  Notation used to describe a front
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the acceleration parallel to the front is not small, and so the cross-front flow is not 
geostrophic. A similar analysis for the cross-front momentum equation gives
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f V
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2
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Even for a strong front, this ratio will be small. Consequently, the acceleration of the 
cross-front flow is negligible and the along-front wind is approximately in geostrophic 
balance. This approximation, of geostrophic along-front wind but ageostrophic cross-
front wind, is called the ‘frontal geostrophy’ approximation. The frontal geostrophic 
approximation amounts to noting that the horizontal component of wind, which is 
dominated by the along-front wind for a stationary front, is well approximated by the 
geostrophic wind. However, because of the large gradients in the cross-frontal direc-
tion, the full, rather than geostrophic, wind has to be used in the cross-front advection 
terms. The advecting wind will, of course, include any vertical velocity.

15.2  Ageostrophic circulation

Having established a consistent scaling for an idealized front, we shall now discuss 
the meridional circulation associated with a frontal structure. This is a necessary first 
step to a discussion of how a front might develop and evolve. We use the hydrostatic, 
z-coordinate equations, with the anelastic approximation, as in Equation 7.36. The 
variation of f is considered secondary and will be ignored, although it might play a 
role in a front which is sufficiently extended in the meridional direction. The equa-
tions will be written making the frontal geostrophy approximation. As in the previ-
ous section, the coordinates are orientated so that the y-axis is parallel to the front. 
The cross-frontal momentum equation is
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	 (15.6)

and the thermodynamic equation is

	

D

Dt

θ
= 0. 	 (15.7)

The set of equations is completed with a number of diagnostic relationships. First, 
anelastic continuity equation

	
∇ ⋅ ( ) =ρRu 0, 	 (15.8)
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second, geostrophy for the along-front flow
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, 	 (15.9)

and, finally, the hydrostatic relationship
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The advection terms are
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From Equations 15.9 and 15.10, the equation of thermal wind balance is derived:
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The logic proceeds in a parallel way to the derivation of the Q-vector form of the 
quasi-geostrophic omega equation given in Section 13.3. That is, a cross-frontal 
circulation is derived such that thermal wind balance, Equation 15.12, continues to 
hold as the flow evolves.

It is convenient to partition the velocity field into its geostrophic and ageostrophic 
parts:
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First, consider the thermodynamic equation, Equation 15.7. Taking the x-derivative 
and multiplying by g/θ

0
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The differentiation acting on each of the advection terms yields two terms, and so 
we obtain
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where
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This expression for Q
1
 is just the same expression as in Equation 13.19, which was 

derived in Section 13.3 for a quasi-geostrophic scaling. Equation 15.14 should 
be  compared with its quasi-geostrophic form, Equation 13.18. Second, take the 
z-derivative of the momentum equation, equation and multiply by f

0
. This gives
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or, making use of the thermal wind equation, Equation 15.12
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which should be compared with the quasi-geostrophic form, Equation 13.21. As 
before, the geostrophic term Q

1
 acts to modify both sides of the thermal wind 

Equation 15.12 with equal magnitude but with opposite signs. In other words, the 
geostrophic forcing, if non-zero, continually acts to destroy thermal wind balance. 
Compensating meridional circulations are required to maintain a balanced state.

Although Equations 15.14 and 15.16 resemble their quasi-geostrophic counter-
parts derived in Section 13.3, there are some important differences. First, the 
Lagrangian rates of change in both equations follow the full three-dimensional flow, 
not simply the horizontal geostrophic flow. In the region of fronts, where strong 
meridional circulations form, this is a significant difference. Second, the static sta-
bility term, (g/θ

0
)∂θ/∂z, on the right-hand side of Equation 15.14 represents the local 

instantaneous static stability rather than a reference static stability. Again, this is 
particularly important in the region of front where there can be substantial changes 
of stratification between the different air masses. In the upper troposphere, a par-
ticular θ- surface can cross from the low static stability troposphere into the high 
static stability stratosphere across a frontal region. Thirdly, new terms involving the 
ageostrophic flow have been introduced. These are the first ageostrophic term in 
Equation 15.14 and the last ageostrophic term in Equation 15.16. Finally, the 
coefficient of ∂u

a
/∂z in Equation 15.16 is more complicated, involving the relative 

vorticity as well as the planetary vorticity.
The frontal circulation required to maintain thermal wind balance follows imme-

diately if the Lagrangian time derivatives are eliminated between Equations 15.14 
and 15.16, using the thermal wind relationship, Equation 15.12. The result is
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Define the coefficients:
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each of which is the square of a frequency. Then Equation 15.17 can be rewritten as 
follows:
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This can be compared with the quasi-geostrophic version in Equation 13.22. There 
the S2 term is omitted and N2 is taken to be a function of z only, while F 2 is replaced 
by the constant f0

2 .
The ageostrophic cross-frontal circulation is (u

a
i + 0j + wk). From the continuity 

equation, Equation 15.8, it follows that
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The cross-frontal circulation can be summarized by a stream function ψ, such that
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Substituting in Equation 15.19 gives an equation for the cross-frontal stream 
function:
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For situations in which the vertical scale of the motion is much less than the scale-
height, this can be approximated as follows:
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This celebrated equation is often called the Sawyer–Eliassen equation, after the two 
scientists who originally and independently derived it. Again, this equation would 
be identical in quasi-geostrophic theory except that S2 term would be omitted, and 
N2 taken to be a function of z only, while F2 would be replaced by f0

2 .
The character of the Sawyer–Eliassen equation depends upon the coefficients N, 

S and F. Notice first that if S is zero or small enough to be ignored, then Equation 
15.21 starts to look very much like the Q-vector form of the omega equation dis-
cussed in Section 13.3. This could be solved for the meridional stream function, 
provided suitable boundary conditions on ψ were specified. If S is not small, but 
(N2F2 − S4) is nevertheless positive, then Equation 15.21 is elliptic and its solution is 
analogous to that of the omega equation: given boundary conditions on ψ, values of 
ψ throughout the domain can be calculated.

It is worth discussing the physical significance of the coefficients in more detail. 
From the equations with the frontal geostrophy approximation, Equations 15.6 and 
15.9 with 15.8, the vector vorticity equation can be written in its full form:
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where the relative vorticity is now only determined from the component v so that the 
geostrophic absolute vorticity is now
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Hence, the coefficient F2 = f
0
ζ. From the vorticity equation and the potential tem-

perature equation, an equation for conservation of potential vorticity can be derived, 
but now
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With a little manipulation, this expression can be related to N, S and F so that
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Since N2  is proportional to the potential vorticity, conservation of potential vorti-
city implies that if the Sawyer–Eliassen equation, Equation 15.21, is elliptic initially, 
it will remain elliptic as the flow evolves. However, as gradients increase in a frontal 
region and N2, F2 and S2 all become large, then the constancy of N2  means that 
there is strong cancellation between the terms in it and the Sawyer–Eliassen equa-
tion becomes close to parabolic. The implications of this will become clear in the 
following.

15.3  Description of frontal collapse

The form of the Sawyer–Eliassen equation can be simplified by a transformation of 
coordinates. This frontal transformation maps the horizontal distance x onto X 
where
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As in the previous section, the bracketed term on the right-hand side is related to ζ
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and it follows that

	
δ

ζ
δX

f
x= g

0

	 (15.26)

The implication of Equation 15.26 is that surfaces of constant X cluster towards 
regions of large absolute vorticity. Figure 15.3 illustrates the transformation for an 
idealized flow in which there is a concentration of low level cyclonic vorticity 
around x = 0.

We now rewrite the Sawyer–Eliassen equation, Equation 15.21 in (X, Z) space 
where X is given by the transformation 15.25. The vertical co-ordinate Z is simply 
z. Note that
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Note that even though z = Z, the derivative in this direction holding X constant 
∂/∂Z ≠ ∂/∂z because surfaces of constant X do not coincide with surfaces of con-
stant x. In fact, surfaces of constant X have slope − (∂v

g
/∂z)/(f + ∂v

g
/∂x) and are there-

fore parallel to the absolute vorticity vector ζ
g
. Also, from the definitions 15.18, it 

follows that
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Then the transformed Sawyer–Eliassen equation is
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For the case when D ≪ Hρ this becomes
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Figure 15.3  Illustrating the frontal transformation, Equation 15.25, albeit for an idealized arti-
ficial situation. A geostrophic wind blowing into the plane of the cross section decays with height 
and has surface values of −20 m s−1 changing to +20 m s−1 across a zone 100 km wide. The heavy 
contours are lines of constant X, contour interval 100 km. The light contours show the geostrophic 
wind, contour interval 5 m s−1, with negative values shaded
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The mixed derivative term has gone, and Equation 15.29 is identical to the quasi-
geostrophic form of the cross-frontal circulation equation except that it is in (X, 
Z) space, the Brunt–Väisälä frequency N is replaced by N , which is closely 
related to the potential vorticity, as shown by Equation 15.24, and the right-hand 
side includes the factor f

0
/ζ

g
. Indeed, in the limit ξ → 0 so that the factor f

0
/ζ

g
 → 1 

and ∂/∂X → ∂/∂x, Equation 15.29 reduces to the quasi-geostrophic form. It is clear 
that in transformed space there is no special behaviour as frontal gradients become 
large.

Having established the transformed Sawyer–Eliassen equation, its implications 
for frontogenesis can now be explored. Consider first a frontogenetic deformation 
flow such as that illustrated schematically in Figure  15.1a. As discussed in 
Chapter 13, in this case, ∇

H
θ is perpendicular to the dilation axis, which is taken to 

be the y-axis. The large-scale variation of the geostrophic wind is
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Consequently, Q
1
 is positive; the Q-vector is parallel to the x-axis, and points from 

cold to warm air. A similar Q-vector arises from shear frontogenesis, illustrated in 
Figure 15.1b. Here, in the initial large-scale field, ∇

H
θ is parallel to the y-axis, with

∂
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g
 component of the geostrophic wind is zero, but
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x
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Once again, this implies that Q
1
 is positive in the frontal region. The implied meridi-

onal circulation, therefore, has rising motion at large x, that is, in the warm air, and 
sinking motion in the colder air, at small x.

Making the frontal geostrophy approximation, so that the Sawyer–Eliassen 
equation describes the meridional circulation, the meridional circulation in trans-
formed (X, Z) space is similar to that derived from quasi-geostrophic theory. Near 
the surface, there will be rising motion in the warm air and sinking motion in the 
cold air. The circulation is represented schematically in Figure 15.4a. Now con-
sider the effect of the co-ordinate transform. Figure 15.4b shows the same situa-
tion, but this time in physical (x, y) space. Assuming that the strong shears are 
confined to the lower troposphere, the surfaces of constant X are strongly distorted 
near the surface, but less so at upper levels. The meridional circulation is therefore 
distorted in the lower troposphere, as shown. The shrinking of the x- and z-scales 
in the vicinity of the front implies that all the second derivatives of ψ, but especially 
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∂2ψ/∂x∂z, will have large values here. The stronger the front, so that the collapse of 
the x-scale is more pronounced, the stronger the distortion of the meridional circu-
lation will be.

The implication of this distortion of the meridional circulation in the vicinity of 
regions of strong horizontal shear leads to an important feedback which provides 
the primary mechanism for frontogenesis. Consider Equation 15.22 for the vertical 
component of vorticity with the cross-frontal geostrophy approximation. On a 
boundary at which w = 0, the equation becomes
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ρg g=
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This equation differs in two respects from the quasi-geostrophic vorticity equation. 
Both are related to the fact that the Rossby number is not necessarily small in the 
frontal region. First, the advecting velocity in the Lagrangian time derivative is the 
total velocity, not simply the geostrophic velocity. Second, the geostrophic vorticity 
is not necessarily small compared to the planetary vorticity, and so the stretching 
term includes the total absolute vorticity, not merely the planetary vorticity. From 
Equation 15.20, the stretching is given by
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This is related to the geostrophic stretching by

Figure 15.4  Schematic illustration of a frontal circulation in (a) the transformed (X, Z) space 
and (b) in the physical (x, z) space. The heavy dashed lines are lines of constant X
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The second equality follows from application of the transformation formulae, 
Equation 15.27, and using the fact that ψ and its X derivatives are zero on Z = 0. Near 
the ground, at Z = 0, where ψ and ∂ψ/∂X are zero, this reduces to
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Because ψ satisfies equation 15.29, an equation which has no singular behaviour as 
the front becomes stronger and N2,  S2 and F2 become larger, it is clear from Equation 
15.31 that the stretching becomes larger with the vorticity. For the short time of a 
frontal collapse and material movement in that time, we can take

γ
ρ

ψ
= −

∂
∂ ∂

1

0

2

R f X Z

to be constant. Then the vorticity equation, Equation 15.30, can be written:
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Now suppose an air parcel remains for a sufficient length of time near the same 
location in (X, Z) space. Then Equation 15.33 may be integrated following a fluid 
parcel to give
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A being a constant of integration. This constant can be determined by specifying an 
initial condition. Suppose that when t = 0, the absolute vorticity is ζ

0
, then
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	 (15.34)

Persistent stretching, which becomes larger and larger as the circulation in (x, y) 
space becomes progressively more distorted means that the absolute vorticity 
increases from ζ

0
 at t = 0 and becomes infinite at t = (ζ

0
γ)− 1. For example, suppose the 

front forms in an already well-developed depression where ζ
0
 = 2f

0
. A reasonable 
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estimate for γ might be 0.2. Then the time to frontal collapse would be about 7 hours. 
If the initial vorticity were larger, the time to collapse would be correspondingly 
shorter. The crucial ingredient in the collapse to a discontinuity is that as the vorticity 
gets larger, so the stretching gets larger. This leads to the quadratic term on the 
right-hand side of Equation 15.33.

Another perspective on the fact that the convergence in the frontal region increases 
with the vorticity considers a state independent of one horizontal direction, taken to 
be y, and perturbations to it. In the first panel of Figure 15.5, frontal gradients are 
weak, with θ-surfaces almost horizontal and X-surfaces almost vertical. In the sec-
ond panel, a strong front is present and the angle between the surfaces is much 
smaller. That this must be the case can be seen by writing Equation 15.24:
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Dividing by ∂θ/∂z and ∂X/∂z gives
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which is simply the difference between the slopes of the θ and X surfaces. As the 
gradients in X and θ become larger, the numbers on the left-hand side of this equa-
tion must become smaller and the slopes must become more similar.

It can be shown that for perturbations to this state, the highest frequency oscilla-
tions, frequency σ

max
, are almost buoyancy oscillations in the vertical direction, and 

the lowest frequency oscillations, with frequency σ
min

, are almost inertial oscilla-
tions along the isentropes. A rather beautiful result is that

Figure 15.5  Slopes of X and θ surfaces in a cross-front, vertical section. (a) Weak frontal region, 
(b) strong frontal region, with the direction of the upglide indicated by the arrow
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For frictionless, adiabatic motion P is conserved when moving with the fluid, and 
so the product of the two frequencies is therefore also conserved.

For weak gradients, the Sawyer–Eliassen circulation is like that in Figure 15.4a. 
However, as the vertical stability and therefore σ

max
 increases during frontogenesis, 

so the  inertial stability to motion along θ-surfaces must decrease, as indicated in 
Figure 15.5b. Consequently, the cross-frontal circulation distorts in the manner indi-
cated in Figure 15.4b so that the stretching near the surface front becomes stronger 
and stronger. This is the crucial ingredient in the analysis of the frontal collapse in 
a finite time.

15.4  The semi-geostrophic Eady model

The Eady problem, discussed in detail in Section 14.4, envisages a Bousinesq, anelas-
tic fluid with constant N2 and vertical shear Λ = ∂u/∂z, confined between rigid bounda-
ries a distance H apart, with constant potential vorticity in the fluid interior. For the 
current argument, we confine our attention to the case of a perturbation with no 
y-variation, that is, to the l = 0 case. In the fluid interior, from Equation 14.32, conser-
vation of quasi-geostrophic potential vorticity can be written in the following form:
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Here, ϕ′ is the perturbation geopotential. The boundary conditions at the top and 
bottom are
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A similar problem can be set up, but using the extension of the cross-front geostro-
phy approximation to be discussed in Chapter 16, and making the co-ordinate trans-
forms introduced in the previous sections:
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Then the so-called semi-geostrophic equations parallel to Equation 15.37 can be 
written in the following form:
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subject to boundary conditions at z = 0, H:
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Here, ϕ′ is a modified geopotential

′ = ′ +Φ φ
1

2
2vg

What is immediately apparent is that Equations 15.37 and 15.38 have exactly the same 
form as Equations 15.39 and 15.40. The differences are that the semi-geostrophic ver-
sion uses the transformed co-ordinate set, and that N2 , which is proportional to the 
potential vorticity P, plays the role of N2 in the advected quantity in the fluid interior. It 
follows that the solutions to Equations 15.39 and 15.40 in transformed space are nearly 
the same as the solutions to the quasi-geostrophic form shown in Figure  14.11. 
However, in physical x-y space, the scale of regions of positive perturbation vorticity is 
compressed, while the anti-cyclonic region of negative perturbation vorticity expands. 
Temperature gradients in the cyclonic regions increase compared to those in the anti-
cyclonic regions. The wave becomes increasingly asymmetric as its amplitude 
increases. This stretching and compressing of the x-coordinate is greatest near the 
upper and lower boundaries and small in the fluid interior. In a finite time, just as for 

0
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0.5
z

x
1 2 3 4 5 6

Figure 15.6  The fastest growing semi-geostrophic Eady mode, showing the perturbation 
poleward velocity component, negative values shaded. The amplitude has been chosen so that 
frontal discontinuities at the upper and lower boundaries are about to form
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the simple frontogenetic flow discussed in the previous section, infinite temperature 
and velocity gradients will develop adjacent to the boundaries and so sharp fronts will 
have formed.

Figure 15.6 illustrates the solution to the semi-geostrophic Eady problem in x-y 
space, using the fastest growing l = 0 mode. The diagram may be compared with the 
quasi-geostrophic solution shown in Figure 14.11. The amplitude of the Eady wave 
in Figure 15.6 was chosen so that frontal discontinuities were about to form at the 
upper and lower boundaries. The mechanism for the frontal formation is similar to 
the idealized frontogenesis described in Section 15.3: secondary circulations that 
develop to maintain balance distort as the gradients become stronger. This leads to 
the formation of discontinuities in a finite time.

15.5  The confluence model

The Eady model demonstrates frontogenesis in the manner of the shear mechanism 
shown in Figure 15.1b. The first mechanism, confluence has been used as an exam-
ple in Chapter 13 also. As there, consider a simple confluence field:

u x v y= − =α α,

with a balancing pressure field. Then the impact of this flow on a potential temperature 
field that varies in x but not y, as in Figure 13.6, gives a problem where the deviations 
from the confluence flow remain independent of y. Making the cross-front geostrophy 
approximation and using the transformation of coordinates leads to the conservation 
of potential vorticity. Since the potential vorticity is initially uniform, then
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as in the Eady model. In this model it can be shown that the conditions on horizontal 
boundaries above and below the domain are
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In X-space, θ is simply advected by the confluence flow. Again the equations are 
identical to those given by a quasi-geostrophic analysis of the problem but here they 
apply in X-space.

For an initially broad, smooth temperature contrast, which is symmetrical about 
x = 0 and independent of height, the solution to this confluence model at a time of 
large absolute vorticity (~5 f) at the surface front is illustrated in Figure 15.7. Only 
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the lower half of the domain is shown. Large gradients in v (upper panel) and θ 
(lower panel) are seen near the surface on the warm side of the temperature contrast. 
In both panels the location of the largest vorticity at the surface is indicated by an 
arrow and in the upper panel low Richardson numbers (1.0 and 0.5) by dashed con-
tours. Also shown in the lower panel is the full motion in the x, z section, and the 
basic confluence motion which is indicated below the lower boundary. The warm 
air rises almost along isentropic surfaces above the sloping frontal region with sig-
nificant ascent occurring even close to the lower boundary. Again the frontogenesis 

Figure 15.7  Solution of the uniform potential vorticity confluence model at a time when the 
maximum absolute vorticity has reached 5 f. Only the top half of the domain is shown. Top panel: 
the along-front wind (into the section) with contour interval 4 m s−1. Also shown in dashed lines are 
contours of Ri at 0.5 and 1.0. Lower panel: contours of potential temperature with interval 2.4 K. 
Also shown are air parcel displacements from a previous time, which can be compared with the 
displacements associated with the basic confluence flow alone, shown below the surface. In both 
panels, an arrow indicates the location of the surface vorticity maximum. From Hoskins (1971)

x = 0
200 km
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x = 0

(b)
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mechanism is as discussed in Section 15.3. There is weaker descent on the cold side 
of the temperature contrast.

15.6  Upper-level frontogenesis

The focus so far in this chapter has been on frontogenesis near the surface. However, 
as discussed in Section 1.5 and shown in Figure 1.14, frontogenesis also occurs near 
the tropopause with relatively thin ‘tongues’ of stratospheric air sometimes descend-
ing deep into the troposphere. The two-dimensional Eady shear frontal model and 
the confluence frontal model both have rigid lids at which frontogenesis occurs 
much as it does near the surface. The tropopause, with its high potential vorticity 
stratospheric air above it, does act somewhat like a rigid boundary for the tropo-
sphere, but this is clearly not a good model to represent the observed upper-air 
frontogenesis.

Figure 15.8  A model showing the formation of an upper-air front. A troposphere with uniform 
potential vorticity is bounded above by a tropopause and a layer of four times larger uniform 
potential vorticity. A basic confluence motion, indicated at the bottom, has acted on the initially 
broad temperature contrast. At the time of the solution, the tropopause would have looked like that 
shown at the top of the figure if only the confluence field had acted on it. The potential tempera-
ture field is shown by continuous contours drawn every 7.8 K, and the velocity into the section by 
dashed contours every 10.5 m s−1. Fluid displacement vectors from a previous time are shown by 
vectors. From Hoskins (1972)
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The cross-frontal circulation equation is quite generally valid and if the geos-
trophic motion over a deep layer which includes the tropopause is such as to increase 
horizontal temperature gradients, we can expect a direct circulation that will include 
the tropopause region. However, without studying some actual solutions it is not 
clear what response will occur.

The confluence model can be extended to include two regions, a uniform poten-
tial vorticity troposphere with a uniform higher potential vorticity stratosphere 
above it. Solutions have to be determined numerically with matching across the 
‘tropopause’ separating the two regions. Figure 15.8 shows the results for a case in 
which the tropospheric potential vorticity is the same as in the previous confluence 
model while the stratospheric potential vorticity is four times larger. The variation 
of the reference density with height is included here because of the height range of 
interest. The x-component of the basic confluence field is shown at the bottom. 
The  solution is shown at a time when the tropopause would have had the shape 
shown at the top of the figure if it had not been deformed by the ageostrophic circu-
lation. The wind into the section and the potential temperature field indicate strong 
near-surface frontogenesis, a weaker gradient through the mid-troposphere and a 
stronger gradient again in the upper troposphere. In particular, a tongue of strato-
spheric air has descended along some isentropes that cross the tropopause down to 
the mid-troposphere. The tongue is a region of large cyclonic vorticity (about 8 f) 
and temperature gradients. The jet maximum sits on the high tropopause on the 
warm side of the temperature contrast.

The vectors on the figure show fluid parcel displacements from a previous time. 
They exhibit signatures of both the basic confluence flow and the cross-frontal cir-
culation with ascent on the warm side and descent on the cold side. Of particular 
interest here is the tropopause folding motion with the descent almost along sloping 
isentropes in the region of the tongue. This can be understood from consideration of 
the stability to displacements in direction across and along isentropes, discussed at 
the end of Section 5.3. The high potential vorticity of the stratosphere means that it 
is very stable to displacements across isentropes. However, its stability is no larger 
than that for the troposphere to motion along isentropes. Therefore, provided there 
are isentropes crossing the tropopause, the response of the tropopause in the cross-
frontal circulation forced by the tendency of the geostrophic motion to increase 
temperature gradients will tend to be descent along those sloping isentropes. The 
similarity of the model solution in Figure 5.8 with the observed upper-air front in 
Figure 1.13 is marked, though the latter is more intense in the depth of the descent 
of the tongue of stratospheric air and in the mid-tropospheric gradients. Without a 
rigid boundary there is no tendency for the model to give a discontinuity in a finite 
time. The even more intense descent and mid-tropospheric gradients in the observed 
case can only be achieved with fully three-dimensional flow.
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The nonlinear development 
of baroclinic waves

16

16.1  The nonlinear domain

In Chapter 14, the development of baroclinic waves was discussed by means of a 
classical perturbation analysis. The flow was partitioned into a basic state, which 
was zonally invariant, and a wave-like perturbation. A set of linearized equations for 
the flow resulted by neglecting all terms involving the products of perturbation 
quantities. Such an approximation is valid provided the perturbation remains suffi-
ciently small. However, for a range of wavelengths, perturbations grow exponen-
tially in time. So no matter how small the initial perturbation amplitude might be, 
there comes a time when it is no longer small, and consequently the neglect of 
products of perturbation quantities is no longer justified. The purpose of this chapter 
is to explore the consequences of the breakdown of the linear assumption as the 
amplitude of the waves becomes larger.

The linear normal mode analysis of Chapter  14 implies a strict partitioning 
between the basic state and the developing wave: the basic state remains fixed, and 
the wave grows. In fact, the normal modes discussed in Chapter 14 have the prop-
erty that although their amplitude increases exponentially with time, their shape 
remains constant. Both these features break down as the amplitude of the perturba-
tion becomes appreciable. The shape of the waves begins to change, and at the same 
time, the perturbations begin to modify the background flow. When the amplitude 
becomes sufficiently large, indeed, the distinction between basic state and perturba-
tion becomes more arbitrary. The effect of nonlinearity can be thought of in terms 
of scale interactions: on the one hand, the growing disturbance begins to develop 
small-scale structures, manifested in the changing shape of the wave, particularly in 
developing small-scale frontal structures. On the other hand, the disturbance also 
begins to modify the larger-scale flow in which it is embedded. In what follows, a 
convenient approach is to consider first the development of small-scale structures, 
and then the ways in which the growing waves begin to modify the larger scale.
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16.2  Semi-geostrophic baroclinic waves

In discussing the generation of small-scale structures within a developing wave, we 
shall make use of similar scaling arguments to those deployed in Chapter 15. The 
basis is the recognition that the horizontal velocity comes into the basic equations 
in two different ways, the advection of fluid parcels and the momentum carried. The 
core scaling result is that if the Lagrangian time rates of change are longer than f− 1, 
then the momentum of an air parcel is well approximated by its geostrophic value. 
In Section 7.4, this was seen as the criterion for the geostrophic velocity to be a 
good approximation to the full velocity. However, here we consider the further 
implications of this criterion for the momentum equations. We use the basic equa-
tions, Equation 7.36, with the momentum equation in the following form:

	

D

D g

v
k v v

t
f+ × −( ) = 0 	 (16.1)

For simplicity, take f to be constant. Taking k × this equation and rearranging gives
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Substituting for this expression for v into the second term on the right-hand side 
gives
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Note that no approximation beyond the basic set momentum equation with f con-
stant has been made at this point Comparing the left-hand side and the last term on 
the right-hand side, it is clear that if the Lagrangian timescale for changing the 
velocity is much longer than f− 1, then the latter term may be neglected to give
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Finally, taking the vector product of k with this equation and rearranging gives
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Note that here
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so that the ageostrophic horizontal velocity is neglected in the momentum but not in 
the advecting velocity. In this way, the ‘geostrophic momentum’ approximation is 
analogous to the hydrostatic approximation in which w is neglected in the momen-
tum but not in the advecting velocity.

The basic equations, Equation 7.35, with the geostrophic momentum approxima-
tion, are
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For simplicity we will assume that the vertical scale of the motion is much smaller 
than Hρ, so that ρ

R
 will be taken as a constant ρ

0
 and the atmosphere is effectively 

incompressible.
From the momentum equations, it can be shown with some effort that the vorti-

city equation has the usual form:
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However, the three-dimensional vorticity is
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Here
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and for the other two similar terms x and y are replaced by y and z, and by z and x. 
The first term in Equation 16.9 is the expected vorticity determined from the geos-
trophic velocity alone. In conditions in which the geostrophic convergence is much 
smaller than f and the rotation of the geostrophic flow with height is small, it can be 
shown that the additional term is small.

It follows from the vorticity and potential temperature equations, Equations 16.8 
and 7.35), that there is also a potential vorticity conservation:
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As in Section 15.2 and Equation 15.23, it is useful to use as the conserved potential 
vorticity-like variable
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The equations are simplified with a coordinate transformation, which is simply a two-
dimensional generalization of the coordinate transformation Equation 15.25 which 
was introduced in the study of fronts. The transformation may be written as follows:
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The horizontal velocity components in transformed space are
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With the geostrophic momentum approximation, the momentum equation, Equation 
16.5, gives
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Therefore, the horizontal motion in transformed space is geostrophic. Consequently, 
X and Y are referred to as geostrophic coordinates. The ageostrophic horizontal 
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motion is implicit in the coordinate transformation. Note, however, that there is still 
vertical motion in the transformed space.

The transformation of coordinates is
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Therefore, the Jacobian of the transformation is
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A physical interpretation of the Jacobian is that it represents the ratio of the volume 
of a cell in transformed space, δXδYδZ, to its corresponding volume δxδyδz in ordi-
nary Cartesian (x, y, z) space. So, Equation 16.15 shows that a uniform mesh of 
points in transformed space clusters together in regions of (x, y, z) space where the 
vertical component of the absolute vorticity is large, and becomes more widely 
spaced where it is small. This is, of course, exactly the two-dimensional horizontal 
coordinate transformation generalization of the one-dimensional transformation 
introduced in Section 15.3.

Eliminating between the coordinate transformation equations, Equation 16.14, gives
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Therefore, from Equation 16.11, the conserved variable potential vorticity can be 
written as follows:
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Also, from the coordinate transformations it can be shown that
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The last term on the right-hand side is analogous to the additional term in the abso-
lute vorticity with the geostrophic momentum approximation, Equation 16.9, and is 
in general small.

The three-dimensional gradient of ϕ in physical space determines the geostrophic 
velocity components and the potential temperature. If we define
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2
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it can be shown that it plays the same role in transformed space:
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Substituting into Equation 16.18 and neglecting the last term on the right-hand side 
of it gives
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Finally, substituting this and the third expression of Equation 16.10 into Equation 
16.17 gives that the conserved potential vorticity variable in transformed space can 
be written as
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On horizontal boundaries, the boundary conditions are

w = 0

and from the conservation of potential temperature
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The conservation of �N  (PV) and θ moving with velocity (u
g
, v

g
, w) in transformed 

space and the Equations 16.21 and 16.20 relating �N  and θ to Φ, with the boundary 
conditions, Equations 16.22 form a complete set of equations for Φ and w that are 
known as the semi-geostrophic equations. They are closely similar to the corre-
sponding quasi-geostrophic equations, which are derived under more restrictive 
assumptions, with the difference that the semi-geostrophic equations are expressed 
in ‘semi-geostrophic’ (X, Y, Z, T) space, while the quasi-geostrophic set are in real 
(x, y, z, t) space. The similarity is exact when the potential vorticity is uniform, so 
that the coefficients in Equation 16.21 are all constant. For such an initial state, the 
potential vorticity remains a uniform constant for all subsequent times and so the 
only time dependence in the problem enters through the boundary conditions, 
Equation 16.22. The case in which the basic state has no Y-variation but simply 
increases with height satisfies this constant potential vorticity condition. This is 
simply the Eady problem which was discussed in Section 14.4. The difference from 
the quasi-geostrophic Eady problem is that when the solutions are transformed from 
semi-geostrophic to real space, the scale of cyclonic regions shrinks and the scale of 
the anti-cyclonic regions expands; in other words, as the amplitude increases, the 
shape of the growing mode changes. Eventually, the shrinking of coordinates in the 
regions of largest absolute vorticity leads to frontogenesis, that is, to infinite gradi-
ents of conserved quantities such as θ in a finite time. This is the frontogenesis 
model that was discussed in Section 15.4.

A more realistic example of the solution of this semi-geostrophic equation set 
was given by Hoskins and West (1979). Rather than a simple linear shear with 
height, it is possible to construct a jet-like basic but still with constant potential 
vorticity, that is, for a zonal flow that satisfies
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An example of such a jet is a simple shear in the vertical, plus a flow that is zero at the 
lower boundary, Z = 0, and sinusoidally varying at an upper boundary, Z = H. Defining 
non-dimensional variables  Z Z H Y Y LR= =/ , /and , where /RL H f= N , consider
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This is zero at Z = 0, and at Z = H u U=  at the central latitude (Y = πL
R
/l) and it reduces 

to (1 − μ)U at Y = 0 and Y = 2πL
R
/l. Therefore, the total vertical shear in the wind at the 

central latitude is always the same, but for increasing μ it becomes more jet-like. For 
illustrating solutions, we use the parameter values given in Hoskins and West (1979) 
with H = 9 km, � � ��.� �� s− −×�N , U ≃ 29.4 m s− 1, and a wavelength in the meridional 
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direction of about 5600 km. For each zonal flow, the initial conditions comprise the 
basic zonal flow plus the most unstable wave for that flow with a small amplitude.

First we take the strong jet case with μ = 1. Figure 16.1 shows the surface devel-
opment after 6.3 days of integration. The plot shows the surface pressure, potential 
temperature and vorticity fields, along with the geopotential field. There is large 
vorticity in the cyclone, and strong temperature gradients and a streak of large vor-
ticity along a strong cold front on the warm side of the temperature contrast to the 
southwest of the surface low. There is also a weaker warm front feature ahead of the 
surface low pressure. The surface temperature gradients and vorticity associated 
with the cold front would become infinite some 5 hour after this time.

The structure of the cold front is very similar to that in the two-dimensional fron-
togenesis cases discussed in Chapter  15. Pursuing this similarity, the transform 
space, Z = 2.8 km Q-vector and vertical velocity distributions together with θ are 
shown in Figure 16.2. In the cold-front region, the Q-vectors are oriented down the 
temperature gradient, indicating a frontogenetic region there. The vertical velocity 
field shows ascent ahead and descent behind. In three-dimensional motion the tra-
jectories of the air become very important in determining the extent to which fron-
togenesis actually occurs. One of the trajectories in Figure  16.1 shows that air 

Figure 16.1  Surface map at day 6.3 for a perturbation to a strong jet zonal flow. Potential 
temperature contours are continuous and drawn every 4 K, Φ′ contours are dashed, and the 
region of relative vorticity greater than f/2 is dashed. The relative vorticity in the cold front has 
a maximum of 5 f. The bold lines indicate two trajectories relative to the system from day 3. 
From Hoskins(1982) 
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parcels tend to move along the cold-front region and so strong frontogenesis occurs. 
However, in the weak warm-front region to the north-east of the low, air parcels 
move rapidly around the top of the low pressure system, forming large gradients in 
a structure often referred to as a bent-back occlusion.

Figure 16.2 shows that, in the region of the temperature contrast ahead of the 
warm sector region, the Q-vectors are almost parallel to the temperature contours 
and so there is no frontogenesis there. This is associated with the tendency of 
the wave to tilt in a southwest–northeast direction on the southern side of the 
domain in sympathy with the basic jet shear. However, this can be changed by a 
simple adjustment to the basic zonal like that of Equation 16.23 but with the lati-
tudinal variation having a maximum at the surface and zero at the lid. For a value 
of μ of 0.3, the surface flow is −4.4 m s−1 at the central latitude and +4.4 m s−1 to 
north and south, and there is a uniform flow of 25.0 m s−1 at the lid. The strong 
ambient cyclonic shear near the surface and the westerly winds to the south of 
the strongest baroclinic region influence the tilt of the developing baroclinic 
wave as is seen in Figure 16.3. Consistent with this, there is now a very strong 
warm-front south-east of the low and ahead of the warm sector. Q-vectors (not 
shown) indicate that this is now the frontogenetic region, and the trajectory 
shown in Figure 16.3 indicates that air parcels move along this region.

Figure 16.2  Some day 6.3 fields in transform space at 2.8 km. Q-vectors are shown together 
with (a) potential temperature (contour interval 4 K) and (b) vertical velocity (contour interval 
0.5 cm s−1, negative values dashed. From Hoskins and Pedder (1980), permission of the Royal 
Meteorological Society 

(a) (b)
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16.3  �Nonlinear baroclinic waves on realistic jets  
on the sphere

The calculations discussed in Section 16.2 are based on the assumption of uniform 
potential vorticity, which in turn requires a very specific zonal flow profile. These 
assumptions, together with the geostrophic momentum, f-plane and constant density 
approximations are relaxed in the calculations discussed in this section, in which the 
results were obtained using the primitive equations on the sphere. The technique is 
essentially the same as in the previous section: specify a zonal flow, determine a 
most unstable normal mode, and start a nonlinear integration with the zonal flow 
plus a small amplitude normal mode. Here the latitudinal scale is not specified but 
the zonal wave number is.

The basic state zonal flow in the case that will be known as LC1 flow is the same 
jet whose stability was discussed in Section 14.6. We will mostly consider the devel-
opment of the most unstable wave number 6, whose structure was discussed earlier 
and shown in Figure 14.15. Figure 16.4 shows the surface pressure and near-surface 
temperature for days 4, 6 and 9. The structure at day 4 is still close to that of the 

Figure 16.3  Surface map at day 5.5 for a perturbation to a flow with surface easterly winds in 
the middle and westerly winds on either flank. Potential temperature contours are continuous and 
drawn every 8 K (double that in Figure 16.1), Φ′ contours are dashed, and the region of relative 
vorticity greater than f/2 is dashed. The relative vorticity in the warm front has a maximum of 5 f. 
The bold line indicates a trajectory relative to the system from day 3. From Hoskins (1982) 
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normal mode, though the lows are slightly stronger than the highs. This is mainly 
because they have drifted polewards and therefore occupy a small area than the highs 
that have drifted southwards. However, nonlinear stretching is also involved to a small 
extent. By day 6, a very strong surface low has formed and the temperature wave has 
steepened. The gradients in temperature and the curvature of the pressure field make 
it clear that a very strong cold front had formed. Also, there is again a ‘bent-back 
occlusion’. In fact, the similarity with the first semi-geostrophic, nonlinear baroclinic 
wave shown in Figure 16.1 is striking. This strongly suggests that the approximations 

Figure 16.4  LC1 surface pressure and near surface (σ = 0.967) temperature at days (a) 4, 
(b) 6 and (c) 9. The contour interval for pressure is 0.4 kPa, with the 100 kPa contour dotted and 
contours for values below that dashed, and for temperature is 4 K. Sectors are shown for two 
wavelengths between latitude 20°N and the pole. Lines of longitude and latitude are drawn 
every 30° and 20°, respectively. From Thorncroft et al. (1993), with permission of the Royal 
Meteorological Society 

(a)

(b)

(c)
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made there are justified and that the insights gained in the conceptually simpler model, 
linking back to the two-dimensional frontogenesis are more generally valid. The final 
panels show the situation 3 days later when the temperature wave has broken and the 
regions of baroclinicity have been moved to the north and south of the region in which 
the wave grew. The surface pressure field is dominated by its zonal component with 
low pressure to the north, high pressure to the south and very strong westerly winds in 
the central region. Since there is only very small low-level temperature gradients in 
this region, these westerly winds must have a strong barotropic component.

The example of the downstream development of baroclinic waves discussed 
at the end of Section 14.7 and illustrated in Figure 14.20 is for a very similar 
basic flow on the sphere. It shows baroclinic waves at various stages of develop-
ment as the waves spreads to the east. The new waves at the eastern fringe of the 

(c)

Figure 16.5  As Figure  6.4, but for the LC2 life cycle at days (a) 4, (b) 6 and (c) 9. From 
Thorncroft et al. (1993), with permission of the Royal Meteorological Society 

(a)

(b)
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wave-packet are like the early stages of the life cycle shown in Figure 16.4, and 
the older ones are like the mature stage.

We now show results for another similar basic zonal flow, but to which a cyclonic 
shear has been added on the equatorward flank. This was originally inspired by the 
semi-geostrophic results of Hoskins and West (1979) shown in the previous section. 
The basic thermal field is identical to that in LC1, but in this case, which will be 
referred to as LC2, barotropic easterly winds are added at 50°N and westerlies at 
20°N, both with amplitude 10 m s−1. In Figure 16.5, the LC2 surface structure is also 
shown for days 4, 6 and 9. Again the day 4 structure shows almost linear growth of 
the wave. Its SE-NW slope is clear, as are the ambient easterlies to the north and 
westerlies to the south. The strong weather system at day 6 does indeed show the 
development of a very strong surface warm front ahead of the warm sector, as antic-
ipated by the semi-geostrophic investigation. The day 9 picture indicates a finite 
amplitude behaviour which is very different from that of LC1. The low pressure 
system is very strong and almost circular. The baroclinic region has not separated 
into two regions to north and south. Rather it is organized around the periphery of 
the lows which are cold core vortices. This very strong eddy structure continues to 
exist over many days.

It is evident that the development of the near surface weather systems and the 
fronts in them can be generally understood from the quasi-geostrophic and semi-
geostrophic theory given in Chapters 14 and 15 and Section 16.1. However, the 
changes in the mean flow and the life cycles of the baroclinic waves clearly need 
more analysis. This is the subject of the rest of this chapter.

16.4  Eddy transports and zonal mean flow changes

The basis of the linear theory described in Chapter 14 was a strict partitioning 
between a constant zonal background flow, and a small amplitude perturbation. 
The feedback of the perturbations onto the background flow is proportional to 
the square of the amplitude, and is therefore very small as long as the amplitude 
remains small. But as the amplitude of a growing mode increases, this assump-
tion is no longer accurate. Eddies then systematically transport fluid properties, 
such as internal energy, momentum or potential vorticity, from place to place 
in the meridional plane. These transports depend upon the square of the perturba-
tion amplitude, and so rapidly become important as the amplitude exceeds some 
significant value. The transports of tracers, such as water vapour or chemical 
constituents, by the growing eddies are important in other contexts. As the back-
ground flow changes, the development of the perturbations themselves begins to 
change. Feedbacks between the mean flow and the eddies develop and these 
feedbacks become increasingly important as the amplitude increases. The feed-
backs may be either negative, reducing the growth of the eddy, or else positive, 
increasing the eddy growth rate.
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Once such feedbacks become important, linear theory breaks down, and the wave 
is said to be ‘nonlinear’. The threshold amplitude for substantial feedbacks depends 
upon the details of the background flow and the perturbation. But generally, when 
the perturbation quantities become comparable in magnitude to the background 
variation of the same quantity, we expect linear theory to begin to break down. So, 
for example, if the temperature perturbation associated with a growing baroclinic 
wave becomes comparable to the temperature difference across the jet, linear theory 
is of doubtful validity. Similarly, if the eddy velocities become comparable to the 
typical zonal flow, again linear theory is likely to breakdown. Another interpretation 
of such criteria is that linearity becomes invalid when isotherms or streamlines of 
the total flow make appreciable angles with latitude circles.

Using the basic equation set (7.35), if Q is any quantity, the mass conservation 
equation enables us to write the material rate of change of Q in its so-called flux form:
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Taking the zonal average, the x-derivative term becomes 0. Analogous to the proce-
dure in Section 11.5, we separate variables into their zonally averaged components 
and the departure from the zonal average. For example,

u u u u= + =′ ′, where 0

Then, in the zonal average of Equation 16.24, the products of zonal mean and eddy 
terms become zero, so that
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The first bracketed term on the right-hand side of this equation is the zonal mean 
flow advection of the zonal mean Q; we denote this by DQ

∼
. The zonal average of 

the mass conservation equation is
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and so we can write DQ
∼

 as a simple meridional advection by the zonal mean flow:
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The impact of the eddy terms in Equation 16.24 is through terms involving the cor-
relations of the departures from the zonal averages of a velocity and the Q. They are 
referred to as the poleward or upward eddy fluxes or transports of Q.

Consider first the poleward eddy flux of westerly momentum, u, associated with 
a plane wave in the horizontal, shown in Figure 16.6a. In this case, the troughs and 
ridges are parallel to the y-axis. Let the y-component of the eddy velocity be

v V kx′ = ( )sin

The x-component u′ is 0, and consequently u v′ ′ = 0; there are zero momentum 
fluxes. Now consider the situation with the same plane wave, but where the troughs 
and ridges make an angle 𝜙 with the y-axis, shown in Figure 16.6b. The components 
of eddy velocity on the x-axis are now
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If 0 ≤ ϕ ≤ π/2, so that the troughs and ridges run from south-east to north-west, as 
shown in Figure 16.4b, the momentum flux is negative, that is, westerly momentum 
is transported southwards. When the troughs and ridges run from south-west to 
north-east, the westerly momentum flux is northwards.

Figure 16.6  A plane wave in the horizontal plane. (a) Troughs and ridges parallel to the y-axis. 
(b) Troughs and ridges making an angle 𝜙 with the y-axis

y

x

(a)

y

�

x

(b)



326	 Fluid Dynamics of the MidLatitude Atmosphere

A similar argument relates the vertical structure of a wave to the poleward 
temperature or buoyancy flux. Consider a wave with

v V z kx z′ = ( ) + ( )( )sin φ

The only variation with height is the phase of the wave. From the thermal wind 
relation f
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Therefore, the buoyancy fluctuation has two components, one associated with the 
increase in wind with height and the other associated with the change in phase with 
height. However, the first term is out of phase with v′ and so it is only the second 
that contributes to the poleward buoyancy flux:
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If the meridional wind field does not tilt with height, then there is zero buoyancy 
flux. However, if d𝜙/dz is positive, so that the wave tilts westward with height, then 
the temperature flux is poleward.

To conclude, the net transport of westerly momentum and temperature by the 
waves depends upon their shape. Waves that tilt in the horizontal from south-west to 
north-east transport westerly momentum northwards. Waves that tilt to the west with 
height transport temperature polewards. Of course, these transports depend upon the 
square of the wave amplitude. This means they are negligible in the limit of small 
amplitude. In that case, consistent with the linear assumption, the waves have negli-
gible effect on the mean flow. However, as the perturbation amplitude increases, the 
eddy transports become appreciable and eventually begin to modify the mean flow.

We apply these ideas to the baroclinic waves we have examined already. A pole-
ward buoyancy flux associated with a westward tilt with height of the pressure and 
meridional velocity waves was discussed in Section 14.1 as being the essence of baro-
clinic instability. The poleward eddy transport of buoyancy implies a mean cooling on 
the equatorial side and warming on the poleward side, and so a tendency to reduce the 
baroclinicity in the zonal flow. The Eady wave has this westward tilt with height. In 
fact for the most unstable Eady wave, the poleward buoyancy flux is positive and 
independent of height. However, the Eady wave has no tilt in the horizontal and hence 
it has zero poleward transport of westerly momentum. Note that the eddy upward flux 
of buoyancy is also an essential ingredient in baroclinic instability. It is formally 
negligible to order Rossby number according to quasi-geostrophic theory but in real-
ity is important in determining the static stability of the atmosphere. The impact of the 
eddy vertical flux of westerly momentum is also formally small in quasi-geostrophic 
theory. It is zero in the Eady wave and is in general small for realistic waves.
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For the LC1 wave number 6 normal mode, discussed in Section 14.6, the structures 
of the poleward eddy transports of temperature and westerly momentum are shown in 
Figure  16.5. There is poleward temperature transport throughout the troposphere, 
though the values are largest at low levels. As we have noted before, the wave tends to 
tilt with the shear in the jet, southwest–northeast to the south and northwest–southeast 
to the north. Consistently, the momentum transports are poleward to the south and 
equatorward to the north, that is, they converge into the jet, acting to strengthen it. So 
the LC1 normal mode acts in the sense of reducing the zonally averaged baroclinicity, 
but increases the westerly momentum in the latitude of the jet.

The day 4–14 average fluxes for the LC1 nonlinear integration are also shown in 
Figure 16.7. The emphasis here is on structure rather than magnitude, which is arbi-
trary for the linear normal mode. All measures of the nonlinear development of the 
wave show that amplitudes increase preferentially in the upper troposphere. The 
temperature flux has a second maximum in the upper troposphere and is broader in 
latitude than the normal mode. The westerly momentum flux occurs in the upper 

Figure 16.7  The poleward eddy fluxes of (a) temperature and (b) westerly momentum for the 
LC1 normal mode, and (c) and (d) the same for the average of days 4–14 in the nonlinear integra-
tion. The directions of the fluxes are indicated by the arrows. The contour interval in each case is 
0.2 of the maximum value. The zero contour is drawn only at latitudes at which the value at 
some height exceeds 0.1 of the contour interval. From Simmons and Hoskins (1977, 1978), 
with permission from the American Meteorological Society 
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troposphere and is now dominated by the poleward flux, acting to shift the jet 
poleward. The vertical fluxes are not shown but have a very similar structure to the 
poleward fluxes, with upward fluxes of temperature and westerly momentum, 
consistent with the strong correlation of v and w throughout the development.

To gain a complete picture of the feedback of the baroclinic waves on to the mean 
flow, we need to take account of the fact that thermal wind balance will be approxi-
mately maintained in the zonal mean flow by the mean meridional circulation. The 
technique for doing this is totally analogous to that used in the frontal circulations 
and omega equation discussions. From Equation 16.25, the zonal mean zonal wind 
and buoyancy equations can be written as follows:
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For ease of manipulation, at this point we will make approximations at the level of 
quasi-geostrophic theory. Neglect the mean meridional advection terms in the left-
hand side, approximating D

∼
 by ∂/∂t. We also neglect the vertical eddy flux terms on 

the right-hand side. These approximations are not very accurate and are not essential 
to the analysis. However, making them for simplicity, Equations 16.30 become
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Maintenance of thermal wind balance f u z b y∂ ∂ = −∂ ∂/ /  then means that f∂/∂z of 
the right-hand side of the u  equation must be equal to − ∂/∂y of the right-hand side 
of the b  equation. Also, from Equation 16.26 we can introduce a stream function ψ  
for the mean meridional mass circulation:
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Therefore, we reach an equation for ψ :
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The form of the operator on the left-hand side is quite familiar. The first term 
describes adjustment of the buoyancy through adiabatic temperature changes and 
the second adjustment of the westerly wind through the Coriolis term.

The actual meridional circulation for LC1 averaged over days 4–14 is shown in the 
left-hand panel of Figure 16.8. There is a strong ‘indirect’ cell with rising motion near 
55° poleward of sinking near 40°, and a weaker direct cell on the equatorward side of 
it. The driving of this circulation can be understood using the theory and the right-
hand panel in Figure 16.8b. The strengthening of the westerlies near 50° by the eddy 
momentum flux, indicated by a dashed +, can be compensated by the Coriolis force 
associated with the equatorward motion indicated, and the reduction in the westerlies 
near 37° (dashed-) by poleward motion. Similarly, the eddy poleward heat transport 
leads to warming near 60° which can be compensated by ascent and cooling near 40° 
by descent as indicated. The net result is clearly consistent with the actual meridional 
circulation. It is the meridional circulation that drives the development of the very 
strong low-level mid-latitude westerly winds noted by day 9 in Figure 16.4, and also 
the subtropical easterly winds. The circulations can also be understood from Equation 
16.33 with the temperature and momentum fluxes shown in Figure 16.7.

It should be noted that the removal of the mid-latitude temperature contrast and 
the development of the strong surface westerly winds are also seen in the region 
‘processed’ by the baroclinic waves in the example of the downstream development 
of baroclinic waves shown in Figure 14.20.

A different perspective emerges by defining a residual circulation v wr r,( ) where wr  
incorporates both the mean circulation and the eddy terms in the buoyancy equation in 
Equation 16.31. At the same time, vr  is defined so that mass conservation is satisfied:
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Figure 16.8  (a) Mean meridional circulation for LC1. (b) The corresponding forcing. From 
Simmons and Hoskins (1978), with permission from the American Meteorological Society 
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Rewrite Equations 16.31 in terms of v ̄
r
 and w̅

r
 to give
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where the vector F is

	
F j k= − +ρ

ρ
R

Ru v
f

N
v b′ ′ ′ ′

2
	 (16.36)

The vector F is called the ‘Eliassen-Palm’ (E-P) flux. The divergence of the E-P 
flux measures the total effect of the eddies on the zonal mean wind. It includes both 
the direct effect of eddy momentum fluxes, and also the indirect effect of the eddy 
temperature fluxes. In a steady state, any buoyancy source, that is, heating, has to be 
balanced directly by the residual circulation. As before, requiring the maintenance 
of thermal wind balance we can form an equation, analogous to Equation 16.33, for 
a stream function for the residual circulation ψ̅

r
:
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The simplification given by the residual circulation and the Eliassen-Palm flux 
perspective does come with a price. Because of the definition of the residual vertical 
velocity, Equation 16.34, the lower boundary becomes more complicated
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This also provides the lower boundary condition for the residual mean circulation, 
Equation 16.37.

Before looking at the Eliassen-Palm flux for LC1, we note that the Eliassen-Palm 
flux can be interpreted in terms of quasi-geostrophic potential vorticity. From the 
conservation of quasi-geostrophic potential vorticity for frictionless, adiabatic 
motion, the zonal mean potential vorticity evolves according to
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where
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Terms representing the zonal mean sources and sinks of potential vorticity result-
ing from heating, friction can be added to the right-hand side of Equation 16.39 but 
here the emphasis is on the eddy effect on the zonal mean potential vorticity. The 
zonal mean potential vorticity changes through the divergence of the poleward 
eddy flux of potential vorticity. A little manipulation, using the continuity equation 
and thermal wind balance equations, enables this flux divergence to be written in 
the following form:
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Therefore, the divergence of the Eliassen-Palm flux, which can be viewed as the 
eddy driving of westerly zonal momentum, is actually the poleward eddy flux of 
potential vorticity. Conversely, the zonal mean distribution of potential vorticity is 
determined by the Eliassen-Palm fluxes, since Equation 16.39 may be rewritten in 
the compact form as follows:
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We shall now look at pictures of the Eliassen-Palm flux and its divergence 
through the development of LC1, given in Figure  16.9. The normal mode 
Eliassen-Palm flux is dominated by the contribution of the low-level buoyancy 
flux, with convergence in the lower troposphere. By day 5 this buoyancy flux, 
and hence the Eliassen-Palm flux, is much deeper. There is now divergence 
near the surface and convergence in the upper troposphere. Thereafter, the upper 
tropospheric poleward momentum flux becomes important and even dominant. 
At day 8, the upper tropospheric Eliassen-Palm flux arrows are strongly oriented 
towards the tropics, and where at day 5 there was convergence in the upper trop-
osphere there is now divergence. The time average picture then shows Eliassen-
Palm flux arrows rising through the troposphere and bending towards the tropics, 
with low-level divergence in mid-latitudes indicating zonal mean westerly forcing 
there and convergence in the subtropical upper troposphere, indicating easterly 
forcing there.
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16.5  Energetics of baroclinic waves

In Section 7.6, we showed that a positive correlation between vertical motion and 
temperature anomalies leads to the generation of kinetic energy of atmospheric 
flow. Here, we will extend those ideas to the development and decay of baroclinic 
waves. We may split the kinetic energy and available potential energy into energy 
associated with the zonal flow and into energy associated with the deviations from 
the zonal mean, that is, with the eddies. The kinetic energy is

Figure 16.9  Eliassen-Palm fluxes and their divergence for LC1. (a) Shows the normal mode, 
(b) day 5, (c) day 8 and (d) the time average. The scales in (a) are arbitrary, but the scale for the 
arrows is the same in the other panels. The contour interval in (d) is 3/8 that in (b) and (c). From 
Edmon et al. (1980), with permission from the American Meteorological Society 
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and the available potential energy is
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Starting from the momentum equation and the thermodynamic equation, a similar 
analysis to that given in Section  7.6, but splitting the variables into their eddy parts, 
leads to expressions for the conversion of energy from one form to another. The 
details of the analysis are omitted here, but will be found in various textbooks, such 
as that of James (1994). For example, the conversion from A

E
 to K

E
 is

	
C w bE R= ρ ′ ′ 	 (16.44)

This expression implies that upward eddy buoyancy fluxes are required to convert 
eddy available potential energy into eddy kinetic energy. For balanced flows, the vertical 
eddy motion is given by the omega equation of Chapter 13: it is the vertical velocity 
demanded to keep the velocity and buoyancy fields in balance with each other.

So, the context of the baroclinic life cycles discussed in this chapter, the eddy 
available potential energy and the eddy kinetic energy are not independent reser-
voirs of energy; they are linked together by the requirements of balance. The total 
eddy energy is

	

E A K u v
b

NE E
R= + = ′ + ′ +

′









ρ
2

2 2
2

2 	 (16.45)

Eddy energy changes either by conversion of zonal available potential energy A
Z
 to 

E, denoted C
A
, or by the conversion of zonal kinetic energy K

Z
 to E, denoted C

K
.

These conversions are
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In the Eady and Charney linear models of baroclinic instability, the poleward fluxes 
of zonal momentum are zero and so C

K
 is 0. The buoyancy fluxes are directed down 

the gradient of zonal mean buoyancy and so C
A
 is positive, generating E. In more 

realistic models of linear instability, in which ∂ ∂ ≠u y/ 0 , the momentum fluxes are 
weak but generally directed up the gradients of u , the conversion C

K
 is weakly 

negative and so presents a sink of eddy energy. Figure 16.10 is a diagram summariz-
ing this energetic scheme. Omitted here for clarity, and because they are not relevant 
to the frictionless, adiabatic life cycles described in this chapter, the scheme should 
additionally include source-and-sink terms for each of the forms of energy due to 
heating and friction. In the time mean global circulation, available potential energy 
is generated by differential solar heating, transformed into zonal and eddy kinetic 
energy by atmospheric circulations, and dissipated by friction. Ultimately, genera-
tion and dissipation must balance.

Turning now to the nonlinear regime, Figure 16.11 shows the variation of the 
energy conversions C

A
 and C

K
 through the LC1 life cycle. The total eddy energy 

grows, initially exponentially, and reaches its maximum around day 7. The conver-
sion C

A
 follows the same pattern, converting energy between A

Z
 and E. During this 

growing phase, the conversion C
K
 remains small, but it becomes large and negative 

as the wave approaches its maximum amplitude, representing a drain on E. This 
conversion remains important during the decay of the wave until day 10, after which 
both the eddy energy and the conversions are small. So, buoyancy fluxes down the 
temperature gradient drive the growth of the wave, while momentum fluxes up the 
gradient of zonal wind drive its subsequent decay.

The conversion C
A
, Equation 16.46, relates to the zonal wind shear by virtue of 

the thermal wind relationship:
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Figure 16.10  Summary of energetics for the baroclinic life cycle calculations
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It follows that the total generation of eddy energy is
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where F is the Eliassen-Palm flux introduced in the previous section, Equation 
16.36. So, eddy energy is generated if, on the average, the Eliassen-Palm flux is 
directed up the zonal wind shear, from low wind to higher wind, and is dissipated if 
the Eliassen-Palm flux is directed down the zonal wind shear. During the early 
stages of the LC1 life cycle, the Eliassen-Palm flux is predominantly vertical, 
directed up the wind shear, from low values of zonal wind near the ground to larger 
zonal winds in the upper troposphere, thereby generating eddy energy. In the later 
decay phase, the Eliassen-Palm flux is largest in the upper troposphere, directed 
mainly horizontally from the upper tropospheric jet towards the tropics where the 
zonal wind becomes small. Such a configuration is associated with CZ rapidly 
draining eddy energy and returning it to the zonal flow.
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The potential vorticity 
perspective

17

17.1  Setting the scene

In many previous chapters, potential vorticity has formed the basis of the analytical 
development. The object of this chapter is to tie together and extend this potential 
vorticity perspective to midlatitude weather systems, including those in the real 
atmosphere. We start with a recapitulation of some of the results of the earlier 
chapters.

In Section 10.1, we derived the conservation of ζ
n
/ρδh for a small cylinder 

between two neighbouring isentropic surfaces with distance δh apart, where ζ
n
 is the 

component of absolute vorticity normal to the isentropic surfaces. This was shown 
to be the essence of the material conservation of the Rossby–Ertel potential 
vorticity:

	
P = ⋅∇

1

ρ
θζζ 	 (17.1)

This is referred to as potential vorticity, sometimes abbreviated as PV. In Chapter 12, 
the quasi-geostrophic approximations were introduced, and in Section 12.3, the 
conservation moving with the horizontal geostrophic motion was derived for the 
quasi-geostrophic potential vorticity:
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In Section 12.4, we showed that quasi-geostrophic potential vorticity is not an 
approximation to potential vorticity, but that the rate of change of q and its horizon-
tal advection based on horizontal surfaces are proportional to approximations to the 
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rate of change and horizontal advection of potential vorticity based on isentropic 
surfaces.

The necessity to pose a basic static stability independent of the horizontal position 
and also the use of geostrophic advection are major caveats to the validity of the 
application of the conservation of quasi-geostrophic potential vorticity to the 
nonlinear development of weather systems and in the region of a sloping tropopause. 
In Chapter 15 and Section 16.2, we showed that, provided the timescale for the 
material change in wind speed and direction is much longer than f− 1, an analytical 
approximation to the conservation of potential vorticity is possible, and that, with a 
transformation of horizontal coordinates, the equations became similar, and, in 
simple cases, identical, to the quasi-geostrophic potential vorticity equation. This 
enabled analytic solutions for frontogenesis and simple numerical simulations of 
nonlinear baroclinic waves. This semi-geostrophic theory therefore provides a link 
between the full conservation of potential vorticity and the geostrophic conservation 
of quasi-geostrophic potential vorticity.

The two fundamental properties of potential vorticity are its material conservation 
in the absence of friction and heating and its invertibility. The implication of the 
change in potential vorticity due to friction and heating is the topic of Section 17.6. 
As discussed in more detail in Section 10.3, invertibility means that, provided the 
total mass between isentropic surfaces is known and boundary conditions specified, 
all the fields associated with a balanced motion can be determined from the 
distribution of potential vorticity on isentropic surfaces. The quasi-geostrophic 
potential vorticity theory demonstrates this invertibility in that Equation 17.1 may 
be solved for ψ given suitable boundary conditions on ψ. Thus, the horizontal 
velocity and buoyancy are determined. Taking a very simple example, in Figure 17.1 
is a sketch of the isentropes and circulation associated with a positive quasi-
geostrophic potential vorticity ‘δ-function’, an infinitesimally small region of very 
large quasi-geostrophic potential vorticity. The isentropes bow towards the positive 
quasi-geostrophic potential vorticity region and there is cyclonic circulation around 
it. The positive vorticity anomaly above and below is compensated by reduced 
static stability to give zero quasi-geostrophic potential vorticity anomaly in each 
region. For a finite-sized quasi-geostrophic potential vorticity anomaly, outside of 
the anomaly very similar circulations and isentropic behaviour are found. Similarly, 
a negative quasi-geostrophic potential vorticity ‘δ-function’ would lead to 
isentropes bowing away from it and an anti-cyclonic circulation. These same 
features were also seen for the idealized circularly symmetric potential vorticity 
anomaly distributions shown in Section 10.3. The positive potential vorticity 
anomaly on isentropes crossing the tropopause in Figure 10.4a led to isentropes 
bowed towards the anomalous potential vorticity region, low static stability in the 
troposphere and cyclonic circulation. The same occurs for the positive boundary 
temperature anomaly case shown in Figure  10.5a. Conversely, in the case of 
negative potential vorticity anomalies on isentropic surfaces crossing the tropopause 
and for a negative surface temperature anomaly, the isentropes bow away from the 
anomaly,  there is high tropospheric static stability and there is anti-cyclonic 
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circulation. The way in which the vertical velocity is also given by the potential 
vorticity distribution and its rate of change will be discussed in the quasi-
geostrophic context in Section 17.2.

Considering Equation 17.2, in the region of a finite positive potential vorticity 
anomaly, there will be both positive relative vorticity (the first two terms) and 
increased static stability (third term). It is evident that the relative strength of the 
two effects is given by the Burger number

	
Bu =

N D

f L

2 2

2 2
	 (17.3)

For Bu ≫ 1, that is, for small horizontal scales or large vertical scales, the circulation 
component dominates the quasi-geostrophic potential vorticity and its conservation. 
Conversely, for Bu ≪ 1, that is, for long horizontal scales or short vertical scales, the 
variation in the static stability component dominates. The presence of both cyclonic 
circulation and increased static stability (compared with values elsewhere on these 
surfaces) on the isentropes crossing the tropopause is evident in Figure 10.4a. In the 
region where there is a negative potential vorticity anomaly of a finite size, there will 
tend to be anti-cyclonic circulation and reduced static stability, as seen in Figure 10.4b.

It is useful to consider some scales for potential vorticity and the corresponding 
fields using quasi-geostrophic potential vorticity theory with f, ρ

R
 and N taken to be 

Z

x

Figure 17.1  A vertical section showing the circulation and θ contours (dashed) for a positive 
δ-function in quasi-geostrophic potential vorticity. Aspects of the associated vertical motion are 
discussed in Section 17.2. Relevant to this, for a basic shear flow and in a coordinate system mov-
ing with the potential vorticity δ-function, the sense of motion along isentropes and the implied 
vertical motion are as indicated by arrows. From Hoskins et al. (2003), with permission from the 
Royal Meteorological Society 
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constant for simplicity. Suppose that q = q
0
 exp[i(kx + ly + mz

g
)] where z

g
 = Nz/f is a 

stretched vertical coordinate. Then,

	
ψ = − + +

q

K
i kx ly mzg

0
2

exp[ ( )] 	 (17.4)

Here, K = (k2 + l2 + m2)1/2 is the total wave number. Therefore, compared with q, the 
high wave numbers in ψ are strongly damped and the low wave numbers dominate. 
In physical space, this means that, in general, ψ is a smoother field than q. For the 
velocity and buoyancy fields, the spectral distributions are like a wave number times 
that of ψ, so that they are still smoother than the potential vorticity field. For a 
shallow, almost linear potential vorticity feature, often referred to as a streamer, the 
wave number is small and the associated velocity field is relatively weak. 
Consequently, such streamers tend to be advected by the velocity fields associated 
with the nearby larger-scale potential vorticity anomalies.

For a boundary temperature or buoyancy anomaly b = f∂ψ/∂z = b
0
 exp[i(kx + ly)],
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where K
h
 = (k2 + l2)1/2 is the horizontal wave number. The higher wave numbers are 

not as damped as they are for a q distribution, and in this case, the velocity field 
tends to have the same scale as the buoyancy field.

17.2  Potential vorticity and vertical velocity

In a potential vorticity perspective, the circulations that perform the adjustment to 
balance are implicit. However, it gives insight if the relationship is considered 
explicitly. This will be done in the quasi-geostrophic context and the analysis will 
produce yet another form of the omega equation beyond those given in Chapter 13.

We start by again considering a positive potential vorticity ‘δ-function’, by 
which we mean an infinitesimally small region of very large potential vorticity, as 
illustrated for the Northern Hemisphere in Figure 17.1. The potential vorticity 
δ-function and the structure associated with it will move with the basic flow in 
which it is embedded, whatever the nature of that flow. If this basic flow is uniform, 
the whole pattern is stationary and there will be no vertical motion. However, this 
is not the case if the potential vorticity δ-function is embedded in a westerly flow 
that increases with height. Referring to Figure 17.1, for simplicity, we take a frame 
of reference moving with the potential vorticity δ-function. The basic shear must 
be accompanied by isentropic surfaces that slope up towards the pole. For these 
surfaces not to move, the cyclonic circulation must be on these surfaces and so it 
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must be accompanied by descent to the west and ascent to the east. This vertical motion 
is illustrated in Figure 17.1. Above the δ-function, the westerly flow must move 
down the isentrope to the west and up the isentrope to the east. Therefore, in this 
region, both components of the flow require descent to the west and ascent to the east 
if the isentropes are to be stationary. Similarly, below the δ-function both the 
relative easterly flow and the circulation require descent to the west and ascent to 
the east.

In this example, in which the potential vorticity field and isentropes do not change 
in time, the vertical motion is given entirely by that implied by the horizontal motion 
up and down fixed isentropic surfaces. We refer to this as ‘isentropic upgliding’, 
w

IU
. In this example, w = w

IU
. More generally, the potential vorticity field and the 

associated isentropic surfaces will change. Using the adiabatic buoyancy equation 
in a frame of reference that can be chosen arbitrarily,
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where w
ID

 is the vertical motion associated with the fact that isentropes are not 
fixed, that is, with isentropic displacement. To relate w

ID
 to the potential vorticity, 

we use an identity relating q and b which can be quite simply verified:
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the same operator that acts on w in the omega equation in Chapter 13. Therefore,
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On horizontal boundaries, the boundary condition w = 0 means that
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N
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Therefore, the vertical motion can be considered to be the sum of an isentropic 
upgliding, w

IU
, and an isentropic displacement component, w

ID
.The latter is 
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associated with changes in the interior potential vorticity and boundary buoy-
ancy, which in the absence of heating or friction must be associated with inte-
rior potential vorticity or boundary buoyancy advection.

The analysis carries through in any frame of reference. The natural one to use is 
the one which minimizes the changes in the interior potential vorticity and bound-
ary temperature and the consequent magnitude of w

ID
. In particular, it is natural to 

use a frame of reference moving with the weather system or the major potential 
vorticity anomaly of interest.

It can be verified by some manipulation that the form, of the omega equation 
given by Equations 17.6, 17.8 and 17.9, is consistent with the other forms of the 
omega equation given in Chapter 13. The advantage of this form for the discussion 
here is that it again shows the primary roles played by interior potential vorticity and 
boundary buoyancy. The frame of reference should normally be taken moving with 
the weather system of interest. Isentropic upglide leads directly to no change in the 
thermal structure of a system. It is the potential vorticity and boundary b advection 
that leads to any changes. However, the isentropic upglide can often dominate the 
vertical motion, as it did in the example illustrated in Figure 17.1, and can therefore 
be very important for latent heat release.

The two-dimensional Eady wave was discussed in Section 14.4, and the vertical 
velocity of the most unstable Eady wave is shown in Figure 14.11. In Figure 17.2, 
the full Eady wave vertical velocity is also shown, along with the components w

IU
 

and w
ID

. For the Eady wave, the latter is driven purely by the need to balance the 
buoyancy advection on the two boundaries. At the mid-level, isentropic upglide 
has the same phase as w but almost twice the magnitude. It is partially cancelled by 
w

ID
 driven by the need to balance w

IU
 on the boundaries to make w = 0 there. The 

reduction enables the poleward ascending air to remain warm for its longitude and 
height, consistent with arguments given in Chapter 14. At the short-wave cut-off, 
as shown in the final panel in Figure 17.2, w

IU
 has a structure similar to that for the 

most unstable wave. Indeed for the same amplitude surface v-wave, the wave at the 
short-wave cut-off has a marginally larger amplitude. However, its w

IU
 now satis-

fies the boundary condition w = 0 so that w
ID

 is zero and the structure does not 
evolve in time.

17.3  Life cycles of some baroclinic waves

The synoptic development in the two nonlinear life cycles, which was discussed 
previously in Section 16.5, will now be analysed from a potential vorticity 
perspective. In particular, the development will be viewed in terms of the 
interaction of the near-tropopause potential vorticity and the near-surface potential 
temperature. As remarked before, the main real-world interest in these life cycles 
is the range of different aspects that they illustrate rather than the complete 
development over the period.
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Figure  17.3 shows the LC1 development between days 6.25 and 10.25 using 
contours of the potential vorticity field on the 300 K surface. Also shown is the near-
surface potential temperature. By day 6.25, the wave amplitude is large. However, 
the basic vertical interaction is seen, with a positive (cyclonic) potential vorticity 
anomaly near the tropopause west of a warm (cyclonic) θ anomaly near the surface. 
By this stage, the θ field has become strongly distorted. The warm air has moved a 
long way polewards (L) but only in a very narrow strip with the tip of the occlusion 
further equatorwards (O), at the end of the strong cold front. The potential vorticity 
trough has extended equatorwards (U). Both fields show evidence of a cyclonic 

Figure 17.2  Vertical velocity analysis for two-dimensional Eady waves. (a)–(c) Most unstable 
mode w, w

IU
 and w

ID
, respectively. (d) w = w

IU
 for the mode at the short-wave cut-off. The most 

unstable and short-wave cut-off mode pictures are shown for the same amplitude in the boundary 
v field. Negative contours are dashed, and the phase is such that the middle level low pressure is 
in the centre of the plot. From Hoskins et al. (2003), with permission from the Royal Meteorological 
Society 

(a)

(b)

(c)

(d)
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turning north of 45°N, and the potential vorticity has been wrapped around in the 
trough to form a spiral. By day 7.25, the tendency of the upper wave to break anti-
cyclonically south of 45°N is apparent. The trough has extended (U) in a narrowing 
filament parallel to the cold front. Vertical sections show that this is part of an upper 
air front in this region, where the high potential vorticity air has locally moved down 
tilted isentropic surfaces. The occlusion process has continued to such an extent that 
the tip of the warm sector (L) is now much further south. Poleward of 45°N, the 
cyclonic spiral breaking is evident at both levels. By day 8.25, a vortex roll-up is 
evident in the filament of high potential vorticity. In this region of small large-scale 
strain, the high potential vorticity has started to create its own cyclonic circulation. 
This has wrapped additional high potential vorticity from the filament into it, and 
this leads to strengthening of the cyclonic circulation. This upper vortex causes a 
wave on the lower temperature field which is just apparent (F) at day 8.25. A coupled 
development follows, and by day 9.25 the wave is very strong. The warm air has 
been drawn in below and just to the east of the upper vortex (U) and has then cut off. 
Such a cut-off of warm sector air is referred to as a ‘seclusion’.

Figure 17.4 shows similar fields for LC2 between days 5.75 and 10.25. This 
time, the potential vorticity contours are for the 320 K surface and so are at higher 

Day 6.25

Day 7.25

Day 9.25
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Figure 17.3  The synoptic evolution of the LC1 baroclinic wave. Contours are for θ on the low-
est model level and are drawn every 5 K. The shading indicates the potential vorticity distribution 
on the 300 K surface, with light contours for PV > 1PVU and heavy shading for PV > 3PVU. Two 
wavelengths and the region north of 15°N are shown, and grid lines are drawn every 15°. From 
Methven et al. (2005), with permission from the Royal Meteorological Society 
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potential vorticity values. The finite amplitude θ wave shows a bent back λ 
structure bounded by the weak cold front and the strong warm front, this 
continuing on to the bent back occlusion. The structure is wrapping cyclonically 
and is producing a seclusion of the warm air (S). The upper potential vorticity 
trough is extending equatorwards (U) west of the warm air, again consistent with 
a westward tilting cyclone throughout the troposphere. By day 7.25, the seclusion 
(S) has become more evident and the warm air has extended further polewards 
(L). This continues until it is pinched off by the occlusion (O) at day 8.75. The 
upper potential vorticity trough (U) continues to break cyclonically. It forms a 
large-scale potential vorticity region over the warm seclusion (S) as seen at days 
7.25 and 8.75, making a strong cyclonic vortex through the troposphere. By day 
10.25, the positive upper potential vorticity region has pinched off (C) from its 
polar source region. Following this event, the vortex becomes more symmetric 
and persists for many days.

In both life cycles, as the primary low-level θ wave occludes, its induced 
meridional flow becomes weaker and its interactions with the upper potential 
vorticity wave become weaker. However, influenced by middle tropospheric 
potential vorticity anomalies, the upper potential vorticity wave continues to grow 
for several more days and dominates the large-scale development. Consistent with 
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Figure 17.4  The synoptic evolution of the LC2 baroclinic wave. Contours are for θ on the 
lowest model level and are drawn every 5 K. The shading indicates the PV distribution on the 
320 K surface, with light contours for PV > 2PVU and heavy shading for PV > 5PVU. From 
Methven et al. (2005), with permission from the Royal Meteorological Society 
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this, in both cases, the eastward movement of the system slows slightly to be nearer 
the intrinsic speed of the upper potential vorticity wave.

17.4  Alternative perspectives

The invertibility principle says that a whole set of maps of potential vorticity on θ, 
along with θ on the lower boundary and a basic mass distribution, will tell us all we 
need to know about balanced flow in a dry atmospheric state. However, there can be 
problems if one wishes to look only at a very limited number of such maps. Consider 
the schematic in Figure 17.5 for the middle/upper troposphere and lower stratosphere. 
Clearly, a map of potential vorticity on θ will show a lot of structure in the 
stratosphere and through to the tropopause, but rather little structure as the θ surface 
dives down into the troposphere. One way around this is to consider again the 
relationship between potential vorticity and its quasi-geostrophic counterpart, q. As 
discussed in Section 12.4, if P = P

R
(z) + P′ then it is really P′/P

R
 that gives the 

essence of the quasi-geostrophic potential vorticity equation. This was shown by the 
derivation of Equation 12.33. Also, from Equation 12.36, it is the horizontal 
advection of P

R
q′ that mimics the θ surface advection of P. In this spirit, Figure 17.6 

shows the quantity P′/P
R
 for the most unstable baroclinic wave, wave number 7, on 

PV4

θ + Δ

θ – Δ

θ PV2

PV1

Latitude

Height

Figure 17.5  Schematic for the distribution of potential temperature (θ) and potential vorticity 
(PV) in a latitude–height section in the upper troposphere and lower stratosphere in middle lati-
tudes. Three θ contours with equal spacing are shown in dashed lines. Potential vorticity contours 
at 1, 2 and 4 PVU are shown in continuous lines. The PV2 contour is heavier, symbolizing that 
this is also the dynamical tropopause
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the LC1 flow. This shows nicely the perturbation in the troposphere, with magnitude 
peaking near the steering level, as well as that near the tropopause. Both are 
important in the structure of the wave.

The argument of the previous paragraph suggests that instead of the conservation of 
P, we might consider the conservation of ln(P). Equivalently, we could use a 
logarithmic contour interval for a map of potential vorticity on θ. Figure 17.7a shows a 
map of the 25 kPa geopotential height for a particular time and Figure 17.7b the corres
ponding potential vorticity on 315 K map with logarithmic contour intervals. This θ-level 
is chosen so that the picture does indeed show the low potential vorticity air displaced a 
long way poleward, giving an anti-cyclonic anomaly in the ridge in the height field, and 
high potential vorticity cyclonic anomalies in the troughs on either side. There is also a 
cut-off high region equatorward of the potential vorticity ridge and a corresponding cut-
off low in the height field. However, this 315 K θ-level has been carefully chosen to 
capture all this structure, and it would not necessarily be suitable for showing the details 
in other events. Furthermore, there is no sign of the potential vorticity structure 
equatorward of 40°N. Here, the θ surface has descended into the lower troposphere 
and so there is no signature of the potential vorticity structure at higher levels.

One answer to this problem is to consider a number of θ-levels. However, if only 
one map is to be considered, Figure 17.5 suggests an alternative. Indeed, that alter-
native has its own advantages. Since potential vorticity and θ are both conserved in 
adiabatic, frictionless flow, we can equally well consider the motion of air on a 
potential vorticity surface and map the materially conserved property θ on that 
surface. Poleward movement of the air will lead to low potential vorticity on a θ 
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Figure 17.6  The potential vorticity structure of the most unstable wave number 7 on the LC1 
basic flow at the latitude of maximum baroclinicity. The quantity shown is the perturbation poten-
tial vorticity divided by a basic potential vorticity distribution. Contour intervals are equal, and 
negative values are dashed. The positions of the maxima and minima in the surface pressure 
and  temperature are indicated. From Methven et al. (2005), with permission from the Royal 
Meteorological Society 



Figure 17.7  Maps for 12Z on 19 June 1996 from European Centre for Medium Range weather 
Forecasting (ECMWF) data. (a) 25 kPa height with contours every 100 m. (b) Potential vorticity 
on the 315 K surface, with contours at 0.5, 1, 2, and 4 PVU and marked by ten times these values. 
(c) θ on the 2 PVU surface with contours every 10 K up to 350 K. From Hoskins (1977), with 
permission of the Royal Meteorological Society 
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surface, or equivalently to high θ on a potential vorticity surface. Both correspond 
to an anti-cyclonic, high static stability anomaly. Similarly high potential vorticity 
on a θ surface and low θ on a potential vorticity surface both correspond to a 
cyclonic, low static stability anomaly.

In some situations, such as the folding in an upper air front, there may not be a 
monotonic PV distribution in z or θ. However, in situations where this is not the 
case, it is clear that knowing the θ distribution on potential vorticity surfaces 
everywhere would also be a sufficient basis for invertibility. However, the focus is 
usually just on one potential vorticity surface, the 2 potential vorticity units (PVU) 
surface, shown by a thicker line in Figure 17.5. This is a very important surface as 
in middle latitudes it is co-located with the tropopause: it is often referred to as the 
dynamical tropopause. Therefore, we can consider motion of the air on the 
dynamical tropopause and follow it with maps of θ on a 2 PVU surface. This map 
is shown in Figure 17.7c for the same synoptic case. Clearly, the 315 K contour on 
this map is identical with the PV2 contour on PV on the θ map in Figure 17.7b. It 
captures all the middle/upper tropospheric and stratospheric structure seen on the 
315 K PV map. However, unlike the 315 K potential vorticity map, it would do this 
for any synoptic situation, and in addition it would also show the subtropical 
structure. One caveat is that equatorwards of the subtropical jet, the 2 PVU surface 
can no longer be considered as a dynamical tropopause: the 2 PVU surface bends 
sharply upwards while the tropical tropopause is closer to a constant θ surface, 
such as the 380 K surface.

Figure 17.8 shows θ on potential vorticity surface maps for day 7 of both LC1 and 
LC2. Compare these with the day 7.25 potential vorticity on θ fields in the higher 
resolution calculations shown in Figures 17.3 and 17.4. There is much similarity in 
the higher latitude structures, but Figure 17.8 gives a much clearer picture of the 
anti-cyclonic wave breaking in the middle and lower latitude regions in LC1. This 
contrasts strongly with the cut-off cold cyclonic feature in LC2.

Day 7 Day 7

Figure 17.8  Maps of θ on the 2 PVU surface for day 7 of LC1 (left) and LC2 (right). Contours 
are drawn every 5 K from 290 to 350 K. Two wavelengths are shown. Here, the domain is given 
only from 20°N to the pole. From Thorncroft et al. (1993), with permission of the Royal 
Meteorological Society 
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17.5  Midlatitude blocking

The synoptic case featured in Figure 17.7 shows an amplified ridge with a cyclonic 
circulation on its equatorward side. Between them, the midlatitude westerlies are 
locally replaced by easterlies. The midlatitude flow is blocked and so is the easterly 
passage of weather systems propagating from upstream. Such a phenomenon is referred 
to as a block. The emphasis often is on the blocking high, but the cut-off low is also 
usually part of such a system and can even be dominant. Blocking systems occur quite 
frequently and are very important in some midlatitude regions, such as Europe.

Figure 17.9 shows a schematic of a block. The contours could be those of upper 
tropospheric geopotential height. More relevant dynamically, they could be those of 
potential vorticity on a θ surface or θ on the 2 PVU surface. With the latter 
interpretation, the anti-cyclonic circulation corresponds to potentially warm air cut 
off from its subtropical source region and the cyclonic circulation to potentially cold 
air cut off from its polar source region. The cyclonic region will be one of low static 
stability. It will tend to be a region of convective instability, particularly as the 
underlying surface and any entrained ambient low-level air are likely to be warm 
and moist. The reverse is true for the anti-cyclonic region. The dipole structure in 
this schematic is dynamically stable and is an example of the sort of structure 
discussed in Figure  9.3b, but with signs reversed. The anti-cyclonic circulation 
around the warm pole acts to stop the cold pole being advected eastwards by the 
ambient westerly flow. Similarly, the cyclonic circulation around the cold pole helps 
keep the warm pole in position.

It is clear from this discussion that, unless heating processes are dominant, the 
formation of a block must come about through motions that lead to cut-offs of the 
warm and/or cold air. Figure 17.10 shows this happening in one event in the north-
western North Atlantic, on the northern side of the jet. An oncoming weather system 
leads to poleward movement of the warm air and equatorward and eastward 

W

C

Figure 17.9  Schematic of a midlatitude blocking structure. The contours could be those of 
upper tropospheric height, potential vorticity on a θ surface or θ on the 2 PVU surface. In the latter 
case, the warm anomaly (W) gives anti-cyclonic circulation and the cold anomaly (C), cyclonic 
circulation. Both give an easterly anomaly on the central latitude, interrupting the westerly flow



	THE  POTENTIAL VORTICITY PERSPECTIVE	 351

movement of the cold air. This is shown by the θ contours in the 21 January map. 
The warm air anomaly develops its own anti-cyclonic circulation, and the cold air 
develops its own cyclonic circulation. Both these circulations act to cut off their 
anomalies from their source region, leading to the situation seen on the 23rd January 
map. The whole process is a wave breaking that is visualized by θ on 2 PVU 
contours. The development of a structure like that in the schematic of Figure 17.9 is 
clear. In this case, the warm air/anti-cyclone dominates. Also the warm and cold 
anomalies move around one another in a cyclonic sense. In other cases, and in other 
regions, the cold air/cyclone can dominate. Also the sense of the wave breaking can 
be anti-cyclonic, particularly in the European region.

Blocks are so important because, once they have been established, they can 
persist for longer than the synoptic timescale. The dynamical perspective achieved 
through using potential vorticity and θ makes it clear why this is the case. Having 
set up such a dipole block, it can only be removed by the cut-off structures returning 
to their source regions or by frictional or heating processes. The latter will be 
discussed in the next section, but their timescale for removing a block is usually a 
week or more. Given the stability of the blocking dipole, the advection of the cut-off 
anomalies away from each other and back towards their source regions often 
requires the influence of a new, very strong, weather system. In fact, more routine 
weather systems are apt to reinforce the block. Ahead of a low-pressure system that 
slows as it reaches the block, the warm air extends polewards and then cuts off and 
joins the existing warm anomaly, while behind the low, the cold air extends 
equatorwards, cuts off and joins the cold anomaly. Figure  17.11 is a schematic 
illustration of this mechanism. In an incoming weather system, subtropical air is 
displaced polewards and polar air displaced equatorwards. As the weather system 
approaches the block, it extends meridionally. The subtropical air develops its own 
anti-cyclonic circulation which acts to produce a cut-off that reinforces the warm 
anti-cyclone in the block. Then, the polar air extends equatorwards and behaves in 
a similar manner, acting to reinforce the cold cyclone in the block. In this way, the 
blocking structure is strengthened and tends to extend westwards.

12Z 23 January 19806Z 21 January 1980

Figure 17.10  Theta on 2 PVU maps showing the development of a high-latitude block. The 
maps are for 6Z on 21 and 12Z on 23 January 1980, respectively, on the left- and right-hand sides. 
Theta contours are drawn at 10 K intervals. From Woolings et al. (2008), with permission from the 
American Meteorological Society 
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17.6  Frictional and heating effects

When heating and frictional torques are present, then potential vorticity is not 
materially conserved. For potential vorticity, Equation 10.6 gave
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For quasi-geostrophic potential vorticity, the derivation of the quasi-geostrophic 
potential vorticity equation in Section 12.3 can easily be extended to include non-
conservative terms:
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The right-hand side of Equation 17.11 clearly has two terms that are approximations 
to those in Equation 17.10 when these are divided by ρ

R
dθ

R
/dz. In Section 10.2, it 

was shown in Equations 10.8 and 10.9 that the mass integral over a region of 
potential vorticity can be written as a divergence and that
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Figure 17.11  Schematic illustration of the mechanism for the reinforcement of a block by (a) an 
approaching synoptic weather system; (b) the tropical air is swept anti-cyclonically around the warm 
pool and develops its own anticyclonic circulation. (c) The warm anomaly cuts off and is effectively 
absorbed into the warm pool, while a similar process is repeated around the cold pool. The contours 
shown could be those of θ on a potential vorticity surface or potential vorticity on a θ surface
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where

	 J v= ∇× +[ ] θ θζζ 	 (17.13)

Note that the form of J is not unique since the curl of any vector that has zero 
divergence could be added to it. From Equation 10.9, the mass integral of potential 
vorticity in a region can only change because of non-zero sources on the boundary 
of the region. Internal sources can only lead to redistribution. Considering the quasi-
geostrophic potential vorticity case and Equation 17.11, it is clear that horizontal 
integration turns the frictional torque term into a boundary integral while vertical 
integration does this for the buoyancy source term. Consequently, the same overall 
result holds for the quasi-geostrophic potential vorticity.

This integral result and the impact of localized heating and frictional torques will 
be considered in more detail later. However, first it is helpful to consider the 
timescales over which the material conservation of potential vorticity on isentropic 
surfaces may be a good approximation. Frictional torque is large in the boundary 
layer but generally very small in the free atmosphere. Consequently, the material 
conservation of potential vorticity is unlikely to be useful on synoptic timescales for 
air in the boundary layer but should be valid elsewhere. In the case of heating, there 
are two requirements for potential vorticity conservation:

1.	 The air on the given isentropic surface at a later time should not come from a 
significantly different part of the system.

2.	 The potential vorticity should not be changed by a significant proportion over the 
time.

The first implies that the change in θ over some time interval Δt, which is of the 
order θ∆t, should be much less than D(∂θ

R
/∂z), D being the characteristic depth of 

the system. The second implies that the change in δθ of a small cylinder, δh(∂θ ̇/∂z)Δt, 
should be much less than δθ . If the height scale for the change in θ  is equal to D, 
the two criteria are equivalent. If it is smaller than D, the latter criterion will be more 
restrictive. In either case, the material conservation should be a good approximation 
for timescales:

	
∆t

z z
R�

&∂
∂
θ θd

d
	 (17.14)

For radiative cooling, with a height scale of 3 km and a basic potential temperature 
gradient of 3 K km–1, Equation 17.14 gives a timescale of 9 days. However, for 
heating by the release of latent heat, which can be three or more times larger and 
with a depth scale somewhat smaller, the timescale could be 3 days or less. Therefore, 
we conclude that when looking at maps of potential vorticity on θ over a few days, 
material conservation will be a good approximation, except in the boundary layer 
and near regions of significant latent heat release.
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Unlike the resolved dynamical processes of earlier chapters, heating and friction 
are complicated processes which do not depend in any simple way upon the flow 
variables. For the sake of illustration, some idealized forms of heating and friction 
will sometimes be incorporated in the equations. But generally, these are so over-
simplified that they are unlikely to be quantitatively correct. Consequently, the 
discussion here will be more descriptive and less quantitative than that elsewhere. A 
more realistic approach would involve simulating atmospheric flow with elaborate 
numerical models. Even then, there is great uncertainty about the best ways of 
representing many heating and friction mechanisms, especially when transport and 
mixing in a turbulent flow are central processes.

The response to heating and friction was discussed in Section 13.4 in terms of the 
ageostrophic circulation that is generated and its impact on the flow. However, from 
a potential vorticity perspective, we can consider frictional and heating effects in 
terms of a two-stage process:

1.	 Determine the material change in potential vorticity implied by the source.

2.	 Invert the potential vorticity to determine the balanced response.

The ageostrophic or higher-order circulation that achieves the balance is implicit in 
step 2 and need not be determined.

Consider first an isolated region of heating, illustrated in Figure  17.12. The 
heating causes the central isentrope in Figure 17.12 to dip down, as shown in the left 
panel. Therefore, for a cylinder above the heating, δh is increased for the same δθ, 
implying that the potential vorticity is decreased, consistent with Equation 17.10. 
Conversely, below the heating, δh is decreased and the potential vorticity is 
increased. In an Eulerian sense, the total potential vorticity in the region has not 
changed, but it has been redistributed, consistent with Equation 17.12. In this panel, 
all the change is in static stability. However, as a result of the adjustment to balance 
process, step 2, shown in the right panel, the decreased potential vorticity above the 
heating is partitioned between low absolute vorticity, that is, anti-cyclonic 
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Figure 17.12  A vertical section schematic showing a potential vorticity interpretation of the 
response to heating. Left: initial θ surfaces (continuous), their perturbation by heating (dashed) 
and the consequent changes in potential vorticity. Right: the adjustment process in which the 
potential vorticity perturbation is shared between static stability and circulation, involving a relax-
ation of the perturbation of the θ surface
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circulation, and low static stability. Similarly, the increased potential vorticity below 
the heating is partitioned between high static stability and high absolute vorticity, 
that is, cyclonic circulation. The adjustment process in step 2 involves an implicit 
ascent in the heating region with vortex shrinking above and stretching below, 
consistent with the discussion in Section 13.4. In the same way, isolated cooling 
would give a rise in the central isentrope, leading to high potential vorticity above 
the cooling and low potential vorticity below. In the balanced state, the deformation 
of the central isentrope would be reduced, and there would be high static stability 
and cyclonic circulation above, and low static stability and anti-cyclonic circulation 
below. In each case, the apportioning between static stability and absolute vorticity 
changes depends on the Burger number, Bu, with static stability changes dominating 
for low Bu and the vorticity changes for high Bu.

If we consider a steady heating situation in which the vortex lines are parallel and 
in a direction ŝ  which is close to vertical, then J is in the direction ŝ. For a parcel 
rising quasi-vertically along ŝ, if the density was constant, then the net change in 
PV on the parcel as it moved from below the heating region, given by

∆P z= ∇ ⋅∫
1

ρ
Jd

would be 0. Because its density actually decreases as the parcel ascends, the posi-
tive change below the heating will tend to be outweighed by the negative change 
above. Consequently, we can expect anomalously low potential vorticity to stream 
out from above a heating region in a weather system.

We now consider some additional aspects of three-dimensional cyclone development 
from the potential vorticity perspective, referring to Figure 17.13. As discussed earlier, 

PV
decreased

Heating

PV increased

Figure 17.13  Schematic of the airflows and potential vorticity changes due to latent heat release 
in a cyclonic weather system
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the latent heat release, which has a maximum in the low to mid-troposphere, implies 
a negative potential vorticity source above it and a positive one below. The air in the 
former region will generally be ascending and moving polewards and eastwards 
relative to the system, and the reduced potential vorticity in it will act to amplify the 
downstream ridge in the upper troposphere. In fact as argued earlier, even if air rises 
from below the heating region to above it, it is likely to have anomalously low potential 
vorticity. The increased potential vorticity in the air that remains in or below the 
heating maximum will mean that as this air tends to move polewards and westwards 
into and around the lower level cyclone, it will act to amplify the cyclone.

The impact of a frictional torque can be understood in a similar manner. Consider 
an initial state with a localized cyclonic vortex associated with a localized positive 
potential vorticity anomaly. A frictional torque will act to reduce the cyclonic 
circulation and therefore the potential vorticity anomaly. In the balanced state, there 
will be a smaller reduction in the cyclonic circulation but now also a reduction in the 
deformation of the isentropes above and below. Similarly, we can consider the 
potential vorticity view of the impact of friction in a surface boundary layer on a 
cyclonic vortex, illustrated in Figure  17.14. In the left panel, a warm boundary 
temperature anomaly has an associated cyclonic circulation that weakens with 
height and low-level isentropes that dip down towards it. Frictional torque in the 
boundary layer will act to reduce the cyclonic vorticity, and therefore the potential 
vorticity, in the near-surface air. In the adjustment to balance process (right panel), 
the low-level isentrope deformation present in the initial state will be reduced and 
the cyclonic circulation in the surface layer will be reduced by less than the direct 
frictional effect. Since δh is reduced for cylinders above this isentrope, the absolute 
vorticity must also be reduced there. Therefore, the spin down effect of the boundary 
layer frictional torque is shared with the fluid above the boundary layer. Of course, 
the adjustment step has an implicit ascent above the boundary layer, which is just 
the secondary Ekman layer circulation discussed in Section 8.6.

When a boundary layer friction scheme is included in a nonlinear LC1 baroclinic 
wave integration, the growth rate is reduced and the time of maximum eddy energy 
is delayed and the maximum reduced. This might be expected from the inclusion of 

–
+ +

Figure 17.14  A schematic vertical section showing a potential vorticity interpretation of the 
impact of boundary friction on a low-level vortex. Left: the circulation and isentropic surfaces in 
a cyclonic vortex weakening with height associated with a warm boundary anomaly (+) and the 
change in potential vorticity associated with surface frictional reduction in the vortex (−). Right: 
the adjustment to balance
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the frictional effect, but the potential vorticity in the nonlinear wave also shows some 
unexpected aspects. Figure 17.15 shows the potential vorticity at day 6 on two bound-
ary layer surfaces. In the lowest of these, the expected negative potential vorticity is 
seen near the low centre. However, at this level it is also clear that positive potential 
vorticity has been generated in the warm frontal region and advected around to the 
north of the low centre. At higher levels, this feature is dominant. This positive poten-
tial vorticity generation is associated with the generation of horizontal vorticity in the 
frontal region. Considering the relevant term, ( )( ) /∇× ⋅∇v Hθ ρ , if we set v v= − / τD  
and, for qualitative argument, assume approximate thermal wind balance, then

	

D
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g z
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∂
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τ ρ

0 v
v

	 (17.15)

When the low-level wind is in the opposite sense to the shear, positive potential vorti-
city is generated. This is the case in this warm frontal region, where the flow relative 
to the system is almost ‘backwards’ along θ contours. The positive potential vorticity 
acts to intensify the warm front and ‘bent-back occlusion’. However, it does not inten-
sify the low as it is advected out of the boundary layer and forms a shallow layer of 
enhanced static stability above the surface low. In other idealized cyclone simulations, 
depending on the underlying surface conditions and the set-up used, vertical thermal 
fluxes can dominate the boundary layer potential vorticity generation.

Figure 17.15  Potential vorticity distributions for day 6 at (a) σ = 0.98 and (b) σ = 0.955 for an 
LC1 plus boundary layer friction simulation, shown by dashed contours with an interval of 0.5PVU. 
Lighter shading indicates regions with potential vorticity less than zero and darker shading indi-
cates regions with potential vorticity greater than 1.5PVU. Potential temperature contours (interval 
4 K) are shown by continuous lines and the surface low- and high-pressure locations are indicated 
by L and H. From Adamson et al. (2006), with permission of the Royal Meteorological Society 
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Finally, we discuss potential vorticity generation and its role using a simulation 
of a real case of explosive cyclogenesis. Figure 17.16 shows an analysis of surface 
pressure for a cyclone in the western North Atlantic that had deepened by some 
4.5 kPa in the previous 36 hour and also for a model run in 1995 that had been 
initialized at the start of this period. The surface low in the model deepened by about 
2/3 of the observed amount, making it realistic enough to form the basis for a 
potential vorticity analysis.

The model was run with an accumulation following the air motion of the poten-
tial vorticity changes due to the separate physical processes. Some of the results for 
the 95–70 kPa layer are shown in Figure  17.17. The positive lower tropospheric 
potential vorticity tendency due to large-scale latent heat release is again accumu-
lated by the air moving poleward and rising ahead of the cold front, and then moving 
around the poleward side of the low. This is spread through the lower to middle 
troposphere, where the values are larger than in the lower tropospheric layer illus-
trated. Low-level heating associated with surface heat fluxes into the boundary layer 
in the cold air leads to reduced potential vorticity in the interior. Surface friction 
again leads to a predominantly positive potential vorticity anomaly.

The potential vorticity anomalies associated with the individual physical 
processes can be inverted to attribute portions of the observed structure to them. For 
this case, the potential vorticity associated with large-scale latent heat release makes 
by far the largest contribution to the surface pressure anomaly and circulation. In 
fact, it is even larger than that due to the surface temperature anomaly. However, it 
should be noted that the existence of the latent heat release depends upon the 
organized structure which has developed; this is largely a result of the dry dynamics 
in which the surface temperature anomalies play a crucial role.

Figure 17.16  Surface pressure (solid) and temperature (dashed) for 00Z 24 February 1987. 
Left: observed. Right: a 36 hour forecast. From Stoelinga (1996), reproduced by permission of the 
American Meteorological Society 
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The main contributions to large positive potential vorticity and associated large 
cyclonic circulation can come from three different origins: depression of the 
tropopause, large-scale latent heat release and poleward displacement of surface 
temperature contours. At the peak time of severe cyclonic systems, it is often found 
that these three forcings stack up in a ‘potential vorticity tower’ such that their 
circulations reinforce. The storm of October 1987, whose winds did great damage 
in southern England, was one example of a potential vorticity tower.

Figure 17.17  The potential vorticity changes accumulated over 36 hour and averaged for the 
95–70 kPa layer for (left) latent heat release, (centre) surface heat fluxes and (right) surface 
momentum fluxes. The contour interval is 0.5PVU. Negative contours are dashed and the zero 
contour is not drawn. From Stoelinga (1996), reproduced by permission of the American 
Meteorological Society 
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Rossby wave propagation and 
potential vorticity mixing

18

18.1  Rossby wave propagation

Rossby waves are a fundamental component of the dynamics of the synoptic and 
larger-scale flow in the midlatitudes. Their essential properties were discussed in 
Section 9.5 in the context of a highly simplified barotropic model of geophysical 
flows. This chapter begins by broadening the discussion to include more compli-
cated flows, and, in particular, to include vertical as well as horizontal propagation. 
However, many of the results discussed earlier for the barotropic case carry over 
more or less directly to this baroclinic situation. We move on to discuss Rossby 
wave propagation when the gradients of potential vorticity are sudden rather than 
smooth. The chapter concludes with a comparison of the effects of individual vorti-
ces and their interactions on the large-scale mixing of potential vorticity.

We will use the quasi-geostrophic framework. Ignoring for the present the effects 
of friction and heating, the quasi-geostrophic potential vorticity equation is

	

D

D
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t
= 0 	 (18.1)

where the potential vorticity q is related to the geostrophic stream function by the 
elliptic relationship
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The inversion of this relationship for a given distribution of q, which requires appro-
priate boundary conditions on ψ, yields the geostrophic stream function. As with the 
relationship between absolute vorticity and stream function, discussed in Chapter 9, 
the important feature of this relationship is that a localized change of q will affect ψ 
throughout the fluid.
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Partitioning q into its zonal mean and wavy parts,

q q q= + ′

where q  denotes the zonal mean of q and q′ the deviation of q from the zonal mean, 
leads to a linearized perturbation equation:

	

D

D
g
′
+ ′ ∂

∂
=

q

t
v

q

y
0 	 (18.3)

We have assumed that the perturbation quantities are so small that their products are 
negligible. The perturbation potential vorticity is
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To simplify the discussion somewhat, we assume that the density drops off expo-
nentially with height:

ρ ρR R
z H= −

0e
/

This expression is exact for an isothermal atmosphere in height coordinates, but, 
more realistically, we can consider that we are now using the vertical coordinate 
z = − H log(p/p0) as introduced in Section 6.3. We also take N2 to be constant. If the 
perturbation is wave-like in the vertical as well as in the horizontal directions, an 
appropriate solution to Equation 18.3 is

	
′ = + + −( )( )ψ ωΨ ez H i kx ly mz t/ exp2 	 (18.4)

The factor ez/2H takes account of the variation of density with height. As the distur-
bance propagates in the vertical direction, from higher to lower density, its ampli-
tude must increase if the energy per unit volume is conserved. With this form of 
solution substituted into Equation 18.3 and recalling that v′ = ∂ψ′/∂x, the perturba-
tion potential vorticity equation leads to a relationship between wave number and 
frequency which is called the dispersion relationship:
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where qy  denotes ∂ ∂q y/ . The dispersion relationship (18.5) is a generalization of 
the barotropic version given in Equation 9.18: new elements are the substitution of 
β  by qy ,  and the new terms derived from the vertical variation of density in 
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the denominator. The structure of qy  was discussed in Section 14.3: the principal 
result for present purposes is that midlatitude values of qy  are substantially larger 
than β, with the largest values in the upper troposphere and around the tropopause.

A useful re-arrangement of Equation 18.5 is
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Here, K
T
 is the effective total wave number of the Rossby wave. This expression makes 

it clear that the wave numbers k, l and m cannot be set arbitrarily. For example, if
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then m would be imaginary and vertical propagation would not be possible. In the 
following discussion, we shall imagine a ‘wavemaker’ inserted into the fluid at some 
location and exciting oscillations with frequency ω. Under what circumstances can 
Rossby waves propagate away from the wavemaker, and what wave numbers are 
able to propagate? A similar discussion was given in Sections 9.6 and 9.7, but there 
the interest was only in horizontal propagation away from the wavemaker.

18.2  Propagation of Rossby waves into the stratosphere

A simple but suggestive calculation models the stratosphere as a uniform layer of 
air, with constant stratification N and constant zonal wind u.  The lower boundary 
is the tropopause and the rich dynamics of the underlying troposphere as weather 
systems develop, decay and propagate mean that the tropopause is continually 
deformed. So the tropopause acts as a wavemaker, the source of disturbances with a 
wide range of wave numbers and frequencies. Some of these disturbances will be 
confined to the vicinity of the tropopause, but when propagation is possible, Rossby 
waves may fill the stratosphere.

Re-arranging Equation 18.6 gives
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Here, K k l= +2 2  denotes the total horizontal wave number. For Rossby waves to 
propagate vertically, m must be real. This means that the first term in the square root 
must be positive and must exceed the sum of the remaining terms. Propagation is 
favoured by large qy , small but positive eastward motion relative to the basic flow, 
u k−ω / , and small K. Vertical propagation is inhibited by large K and prevented 
entirely if u k− <ω / 0. To make it easier to interpret these results, note that each of 



Figure 18.1  Longitude–height sections of the poleward wind in the troposphere and stratosphere at 
60°N, for (a) typical winter conditions on 15 January 2010, contour interval 10 m s−1, and (b) typical 
summer conditions on 15 July 2010, contour interval 5 m s−1. Shading indicates negative values. 
Based on ERA-Interim data

(a)

(b)
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the terms within the square root has the dimensions of m−2, that is, wave number 
squared. For a given latitude ϕ, multiplying a wave number by a cos(ϕ) gives a 
dimensionless wave number, namely, the number n of wavelengths which will fit 
around the latitude circle. Equation 18.7 can therefore be rewritten as
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Taking typical values for the mid-winter lower stratosphere, an estimate of n
q
 is 

around 4 or 5. A representative value of n
H
 is 1.4. It follows that long waves, with 

n
K
 < 3, can propagate vertically. In summer conditions, the midlatitude stratosphere 

is filled with easterly wind. In these conditions, no waves can propagate vertically, 
and so Equation 18.8 predicts that Rossby waves of all scales will be confined to the 
troposphere.

Figure 18.1 shows longitude–height sections of the poleward wind at 60°N for 
two representative days, one in the northern hemisphere summer and one in the 
summer. In both cases, there is vigorous activity in the troposphere, due to a 
succession of weather systems, with a typical zonal wave number of 5–7. 
However, these relatively short wavelengths are confined to the troposphere and 
die away rapidly above 20 kPa. The stratosphere, between 10 and 0.1 kPa, sup-
ports long waves of zonal wave number 1–2, whose amplitude increases with 
height, in January. In July, the stratosphere is essentially devoid of any signifi-
cant waves. These diagrams provide a striking confirmation of the predictions of 
Equation 18.8.

18.3  Propagation through a slowly varying medium

The ideas introduced in the previous section can be extended to more realistic situ-
ations using a technique called ‘ray tracing’, a concept already introduced in a 
barotropic context in Section 9.7. We will consider the propagation of Rossby 
waves through an atmosphere in which q uy , , etc., vary across the meridional 
plane.

Suppose that Rossby waves, with a variety of wave numbers and frequencies, are 
excited at some location within the atmosphere by a wavemaker. The nature of this 
wavemaker need not be specified: it might be provided by vortex shrinking and 
stretching as air flows over some features such as mountains, or it might be provided 
by the instability of the flow itself generating wave-like disturbances. The principle 
is that the wave front advances from the wavemaker at the group velocity of the 
Rossby waves. The disturbances excited by the wavemaker may be of any arbitrary 
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structure, but they can be Fourier decomposed into a set of wave-like disturbances 
with various frequencies and wave numbers. The group velocity, now including a 
vertical component, is a vector given by
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As well as the zonal wind and potential vorticity gradient, the group velocity depends 
upon the frequency and wave number of the waves excited. It follows from the dispersion 
relationship, Equation 18.5, with a little manipulation that

	

c i jg = +








 +









 +










ω
k

q k

K

q kl

K

f

N

q km

K
y

T

y

T

y

T

2 2 22

4 4
0
2

2 4 k 	 (18.10)

This is a generalization to three dimensions of the two dimensional Rossby wave group 
velocity in Equation 9.26. The group velocity will depend upon the local values of 
q uy ,  and wave number. If the waves are of small amplitude and therefore linear, then 
the properties of the zonal flow will be fixed. In general, as the packet moves through the 
fluid, its wave number will evolve in response to local changes of q uy , .

The critical assumption in ray tracing is that the background flow varies only 
slowly, that is, on a length scale which is long compared to the wavelength of the 
Rossby waves. In the original optical applications of ray tracing, this is often an 
extremely good assumption. It is a rather poor one for Rossby waves in the atmos-
phere, especially as the major focus is frequently upon rather long wavelength dis-
turbances. However, the theory does give an illuminating conceptual model of how 
Rossby waves can propagate over large distances, and, qualitatively at least, proves 
surprisingly robust even when this ‘slowly varying’ assumption is not very good.

It remains to determine how the frequency and the wave number of a wave packet 
evolve as the waves propagate through the varying medium. For a dispersion relationship 
of the form ω = W(k, r, t), ū or where the position and time dependence arises through 
variation of the basic state, such as qy, or the parameters of the problem, such as f, with 
position and time. 
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is the rate of change following the wave packet.
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Now suppose we confine our attention to a situation in which the mean flow 
varies neither in time nor in the zonal direction. Then in Equation 18.11, 
∂P/∂t = ∂P/∂x = 0 and so
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D
p pω

t
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t
= = 0,

that is, both the frequency and zonal wave number of the packet are conserved. The 
meridional wave number l and the vertical wave number m will vary as the packet 
propagates. However, if the variation of one of these wave numbers is calculated by 
integrating Equation 18.11, the other can be diagnosed from the dispersion relation-
ship, Equation 18.5. So extending the barotropic ray tracing argument of Section 
9.7, the path of the ray can be calculated from the set of ordinary differential 
equations:
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where at each point along the ray,
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Such a generalization of the ray tracing set out in Section 9.7 is cumbersome and 
does not readily lend itself to simple interpretation. However, there is a graphical 
way of describing rays in the meridional plane which gives more insight. It is the 
topic of the next section.

This theory of ray tracing emphasizes the importance of the parameter
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This parameter has the dimensions of a wave number and is analogous to the refrac-
tive index in optical ray tracing. Rays are refracted away from smaller values of KT 
and towards larger values of KT. In places where u k<ω / , KT becomes imaginary 
and here no propagation is possible. The line defined by u k=ω /  marks a critical 
line. Here, according to linear theory, the wave packets slow down and their scale 
perpendicular to the critical line collapses. This behaviour is the two-dimensional 
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extension of the one-dimensional behaviour discussed for barotropic Rossby waves 
in Section 9.7.

Figure  18.2 shows this refractive index calculated for the mean December–
January–February season. The large noisy values near the surface at high latitudes 
should be disregarded. They arise from difficulties in calculating the potential vor-
ticity gradient accurately in these regions, particularly where atmospheric variables 
have been extrapolated beneath the ice surface of Antarctica. But in the middle and 
upper troposphere and in the stratosphere, the refractive index is fairly clearly 
defined. The smallest values are on the poleward side of the jets in middle and high 
latitudes near the tropopause. A critical line surrounds the jet cores. The exact location 
of this critical line depends upon the choice made for the phase speed ω/k. Since 
long Rossby waves are highly dispersive, the proper choice of ω depends upon the wave 
numbers of the Rossby wave. For the purposes of this discussion, a phase speed 
typical of the midlatitude transients, such as can be deduced from the Hovmöller 
plots shown in Figure 1.8, has been used. Therefore vertically propagating waves in 
middle latitudes will be guided in the tropopause region towards the subtropics.

Figure 18.3 shows an example of ray tracing, applied to steady zonal wave num-
ber 1 disturbances, that is, to disturbances with ω/k = 0. The zonal mean flow corre-
sponds to mean northern hemisphere winter conditions. Rays were initiated at 45°N 
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Figure 18.2  Showing the Rossby refractive index for the December–January–February season, 
assuming a phase speed of 14 m s−1. Contour interval 2 units with values less than 6 indicated by 
light shading; dark shading denotes an imaginary refractive index and therefore no propagation. 
Note that the vertical coordinate in this diagram is pressure
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and at a height of 0.7 H. The different rays correspond to different values of m/l, that 
is, to different directions on the meridional plane in which the initial wave packet 
propagated. Many rays were confined to the troposphere and lower stratosphere, 
quickly turning to propagate nearly horizontally. However, some rays do pass on 
the polar side of the tropopause and penetrate into the upper levels of the stratosphere, 
turning towards the equator at heights of around 50 km. For these rays, the polar night 
jet acts as a waveguide, with vertical propagation near the core of the jet between 
50° and 60°N. This is possible because it is so strong that KT is a maximum in it, as 
is just visible near 65N in Figure 18.2.

Rossby ray tracing in two and three dimensions lacks the intuitive simplicity of 
the barotropic ray tracing discussed in Section 9.7. Furthermore, the rays are very 
sensitive to the fields of q uy and . The potential vorticity gradient depends upon 
the second derivative of the zonal wind, and so even small changes to the zonal wind 
field, well within the uncertainty of the observations, can lead to major changes in 
the refractive index and so to the trajectories of the rays. The zonal state used 
to generate Figure  18.3 was based on a polynomial approximation to the 
observed zonal flow and was therefore smoothed. Using unsmoothed data introduces 
considerable uncertainty into the rays. To some extent, these difficulties can be 
circumvented using the approach outlined in the next section.
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Figure 18.3  An example of a ray tracing calculation from Karoly and Hoskins (1982). Rays for 
zonal wave number 1, initiated at 45°N in the upper troposphere in mean December–January–
February conditions, initially propagating in different directions, are shown. The crosses mark the 
daily position of the wave packets. From Karoly and Hoskins, 1982, with permission from the 
Meteorological Society of Japan 



370	 Fluid Dynamics of the MidLatitude Atmosphere

18.4  The Eliassen–Palm flux and group velocity

The Eliassen–Palm flux was introduced in Section 16.4 as a compact summary of 
the transport of internal energy and zonal momentum by large-scale eddies. In this 
section, we shall see that the Eliassen–Palm flux is also closely related to the group 
velocity of wave packets, the components of which are given by Equation 18.10. 
This means that the Eliassen–Palm flux can form the basis of a short cut to Rossby 
wave ray tracing.

The linear theory of Rossby wave propagation assumes plane wave solutions of 
the form

′ = ( )+ +( )ψ Re Ψe e
z

H i kx ly mz2

where ψ′ is the geostrophic stream function, and the factor ez/2H accounts for the 
variation of density with height. Then the horizontal components of the wind asso-
ciated with the wave are related to ψ′ by
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The hydrostatic relationship relates ψ′ to the buoyancy fluctuation associated with 
the waves:
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Making use of the assumed plane wave form of the Rossby wave solution to the 
governing equations, these relationships relate the eddy fluxes associated with the 
propagating Rossby wave to the structure and scale of the wave. The poleward 
momentum flux is
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In the same way, the poleward buoyancy flux is
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But compare these expressions with those for the group velocity of Rossby waves, 
Equation 18.10. The meridional components of the group velocity can be written as
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The second bracketed term on the right-hand side is the Eliassen–Palm flux defined 
in Section 16.4. The Eliassen–Palm flux is therefore parallel to the local group 
velocity in the meridional plane. This implies that a simple way of constructing 
Rossby rays is to draw Eliassen–Palm lines, that is, lines which are always parallel 
to the local Eliassen–Palm flux vector. In practice, this is easily done by eye.

Figure 18.4 shows Eliassen–Palm sections for the December–January–February 
season, broken into the contributions from the transient eddies in (a) and the 
steady eddies in (b). These diagrams represent the accumulated effect of many 

Figure 18.4  Eliassen–Palm sections for the DJF season, showing the Eliassen–Palm flux 
vectors and contours of its divergence, contour interval 1015 m3, positive values are shaded. 
(a) Contribution from the transient eddies and (b) contribution from the steady eddies
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individual events over several seasons. The flux vectors reveal upward propaga-
tion of Rossby waves in the lower troposphere, with strong divergence near the 
ground. In the upper troposphere, where the momentum fluxes become large, the 
vectors turn mainly towards the equator. There is strong convergence around the 
subtropical tropopause, consistent with a critical line for Rossby waves in that 
vicinity.

However, some of the Rossby wave activity does not turn towards the tropics 
but  propagates on upwards into the stratosphere. This is particularly so for the 
steady waves, reflecting their generally longer wavelengths, and is consistent with 
the simple theory introduced in Section 18.2 and with Figure 18.3. If anything, this 
wave activity tends towards the higher latitudes as it propagates upwards. The polar 
night jet can act as a wave guide for waves excited in the troposphere.

18.5  Baroclinic life cycles and Rossby waves

Section 16.6 discussed two contrasting idealized baroclinic wave life cycles, one of 
which, designated LC1, showed strong growth followed by a rapid decay of the 
eddy energy, and the other of which, designated LC2, showed much slower decay in 
its later stages. The difference between the two calculations lay in the initial zonal–
mean zonal wind. A relatively modest horizontally sheared barotropic element had 
been added to the LC1 initial state to generate the LC2 initial state. The Rossby ray 
tracing ideas introduced in the previous sections give some insight into these two 
different life-cycle behaviours.

The relationship of the Eliassen–Palm flux to the group velocity of Rossby 
waves suggests an interpretation of the life cycle in terms of waves and their prop-
agation. During the linear growth phase of the life cycle, wave activity increases, 
especially in the lower troposphere, as a result of baroclinic instability. During this 
phase, the Eliassen–Palm fluxes are dominated by the contribution from poleward 
temperature fluxes and therefore are directed essentially vertically. Interpreted in 
wave terms, baroclinic instability generates Rossby wave activity in the lower 
troposphere which then propagates upwards. As the baroclinic wave approaches 
its maximum amplitude, nonlinear effects modify the flow in the lower tropo-
sphere and the temperature fluxes become weaker. A packet of wave activity, 
released by the baroclinic instability, is now propagating into the upper tropo-
sphere. What happens next depends critically upon the details of the zonal mean 
flow and upon the wavelength of the baroclinic wave. As already discussed in 
Section 16.4 and shown in Figure 16.9, in the case of LC1, the Eliassen–Palm 
fluxes turn towards the equator in the upper troposphere, and there is a strong flux 
of wave activity from the midlatitudes towards the tropics. This equatorward com-
ponent marks the development of a strong poleward momentum flux, and in terms 
of the energetics discussed in Section 16.4, to the rapid decay of the eddy energy.
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Figure 18.5 shows the Eliassen–Palm fluxes for the LC1 and LC2 life cycles at 
day 8, the time of rapid decay of the LC1 wave. During the decay phase of the LC1 
life cycle, the Eliassen–Palm fluxes develop a strong horizontal component, and 
wave activity propagates parallel to the tropopause towards the tropics. Associated 
with this equatorward propagation is the rapid decay of the baroclinic wave. In con-
trast, there is little equatorward propagation in the case of the LC2 life cycle. Rather, 
the wave activity is refracted towards high latitudes and upper levels, and the 
Eliassen–Palm fluxes develop little horizontal component. In terms of the energet-
ics, there is much less decay of the wave activity; instead, the eddy energy decays 
essentially on a frictional timescale rather than the much faster dynamical timescale 
of the LC1 life cycle.

18.6  Variations of amplitude

Much of the thinking in this section has been based on linear ideas. A background 
flow, typically the zonal mean flow, determines the properties of the medium 
through which waves propagate. But of course, the propagating waves modify the 
zonal mean flow itself. The problem is nonlinear, with feedbacks between eddies 
and zonal flow. These feedbacks are summarized by the equation for the evolution 
of the zonal mean potential vorticity. As discussed in Section 16.4, at the level of 
quasi-geostrophic theory, this is

	

∂
∂

+
∂
∂

′ ′( ) =q

t y
v q 0, 	 (18.15)

Figure 18.5  Eliassen–Palm sections for the decay phase of (a) the LC1 life cycle and (b) the 
LC2 life cycle, both at day 8 of the life cycle. From Thorncroft et al. (1993), with permission from 
the Royal Meteorological Society 
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ignoring friction and heating. But, as discussed in Section 16.4, the poleward flux 
of eddy potential vorticity is related to the potential temperature and momentum 
fluxes due to the waves:
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This follows from the definition of q in a few lines of algebra, making use of the 
continuity equation in the form u

x
 = − v

y
 and the thermal wind relationship. So the 

feedback between the eddies and the zonal mean potential vorticity field is 
summed up by the divergence of the Eliassen–Palm flux. The Eliassen–Palm flux 
takes into account the effects both of momentum and temperature transports by 
the eddies.

But there is more. Take the linearized eddy potential vorticity equation, Equation 
18.3, multiply by ρR yq q′/ , take the zonal mean and find
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The quantity

A
q

q
R

y

=
′ρ 2

is called the wave action density and is arguably the most fundamental measure of 
the vigour of Rossby waves. Equation 18.17 is a conservation law for A; the 
Eliassen–Palm flux, which is parallel to the Rossby wave group velocity, is the flux 
of wave action density. Wave action density propagates with the Rossby group 

velocity, which has been shown earlier in parallel to F. Since A is conserved, ′q 2  
must vary as the wave packet propagates into regions of different density or poten-
tial vorticity gradient.

One interpretation of the wave action density A is in terms of the horizontal dis-
placement of fluid elements. For small amplitude waves, the perturbation potential 
vorticity can be written as

	
′ = ′q q yy 	 (18.18)

where y′ is the meridional displacement of the fluid element from its initial latitude. 
Using this relationship, the wave action density can be re-written in the following form:

	
A q yR y= ′ρ 2 	 (18.19)
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The wave action density is therefore proportional to the mean square parcel disper-
sion for a given density and potential vorticity gradient. Now suppose a wave packet 
propagates from a low level to a higher level where the density is smaller. In order 
to conserve A, the parcel dispersion must increase. Similarly, if the packet propa-
gates into a region of small potential vorticity gradient, the parcel dispersion must 
increase to compensate for the decrease in potential vorticity gradient. There is an 
analogy with the behaviour of surface water waves as they propagate into regions of 
shallow water. As the depth of water decreases, the surface displacements associ-
ated with the waves increase. Eventually the waves break, and linear descriptions of 
wave motion break down. In the same way, the horizontal displacements associated 
with Rossby waves which propagate into regions of low density or small potential 
vorticity gradient will increase until linear theory breaks down.

The reasoning leading to Equation 18.19 was based on a linear, small amplitude 
description of Rossby waves. Equation 18.18 assumed that the potential vorticity 
gradient was unaffected by the passage of the Rossby wave and that parcels of fluid 
in the Rossby wave felt the same potential vorticity gradient regardless of the mag-
nitude of their displacement. Such assumptions inevitably break down as the dis-
placements increase. Certainly, this picture of the wave is completely inappropriate 
when the parcel displacements become comparable with the wavelength of the 
Rossby waves, that is, when

	
′ ∼ −y k2

1 2
1

/
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This is equivalent to saying that the line of fluid elements aligned along a lati-
tude circle in the undisturbed state now makes significantly large angles with the 
latitude circle. This is the point at which breaking started to occur in the baroclinic 
wave life cycle LC1 described in Section 16.3. Such large distortions of lines of 
fluid elements are also a necessary precursor for the development of blocking which 
was discussed in Section 17.5.

18.7  Rossby waves and potential vorticity steps

The preceding development was based on the slowly varying assumption that the 
background state varies on a spatial scale which is larger compared with the wave-
length of the Rossby waves. This is a questionable assumption. In particular, potential 
vorticity and its gradient vary sharply on small scales. In this section, we consider an 
alternative Rossby paradigm, in which waves propagate on a discontinuity in poten-
tial vorticity rather than on a smooth gradient of potential vorticity.

Such a configuration is ubiquitous. In Chapter 17, potential vorticity maps in the 
‘middle world’, the set of isentropes which intersect the tropopause, are character-
ized by a sharp jump in the potential vorticity by a factor of around four where the 
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θ-surfaces cross the tropopause. At higher levels, in the winter stratosphere, the 
potential vorticity increases abruptly in the vicinity of the polar night jet, with much 
higher values of potential vorticity in the polar vortex than in the middle latitudes. 
In the lower troposphere, potential vorticity is generally small through the subtrop-
ics and increases markedly in the region of the subtropical jet.

The key to the formation of such potential vorticity steps is the conservation of 
potential vorticity on synoptic timescales. Figure 18.6 illustrates the configuration 
envisaged. Imagine a restricted region filled with vigorous eddies. As they circu-
late, these eddies transport potential vorticity both polewards and equatorwards. In 
the zonal mean, the eddies will mix potential vorticity and weaken the potential 
vorticity gradients. But at the edge of the eddy mixing region, the distribution of 
potential vorticity will jump more or less abruptly to its unmixed value. In this way, 
steps of potential vorticity will form on either side of the eddy region. Figure 17.8 
shows this process happening in baroclinic wave life cycles. In reality, heating and 
friction may act to offset the eddy mixing. But the timescales of these non-conser-
vation processes will often be rather long compared with circulation timescale of 
the eddies, and so they will only have a minor effect on the potential vorticity 
distribution.

As an example, we will consider barotropic flow in a channel width Δy on a 
β-plane. Suppose the initial flow is a uniform zonal flow U

0
. Mixing concentrates 

the gradient of potential vorticity to a step in the centre of the channel, the mag-
nitude of which is βΔy. Away from the step, the potential vorticity gradient is 
zero, so that

q
U

yy = −
∂
∂

=β
2

2
0

Integrate this to determine the zonal flow profile in the channel. The constants of 
integration are determined from the boundary conditions

Eddy mixing

y

q

Figure 18.6  Schematic illustration of the effect of eddy mixing on the distribution of potential 
vorticity. The initial monotonically increasing distribution is shown by the dashed line, and the 
step-like distribution after eddy mixing by the solid line
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The first two terms ensure that qy = 0 . To satisfy the condition on ∂U/∂y at 
y = ± Δy/2 -a =c = βΔy/2, and to make U continuous at y=0 and the average flow U

0
, 

b = d = βΔy2/12. At y = 0, ∂U/∂y is discontinuous, changing from βΔy/2 for negative 

y to − βΔy/2 for positive y. It follows that there is a δ-function in qy  at y = 0, with 
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0
. The resulting zonal wind profile, shown in Figure 18.7, consists of 

a sharp jet, speed U
J
 = U

0
 + βΔy2/12 at the potential vorticity step, falling away as a 

quadratic with y to U
0
 − βΔy2/24 at the edges of the channel, a speed difference 

across the channel of βΔy2/8.
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Figure 18.7  A potential vorticity step in a barotropic channel flow (dashed line) together with 
the corresponding zonal wind profile (solid line)
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For typical terrestrial midlatitude values, a zonal speed difference between the jet 
and the edges of the channel would be around 20–40 m s−1. If the pole-to-equator 
potential vorticity difference took the form of a number of such steps, the corre-
sponding zonal wind profile would be a series of sharp jets separated by broad 
minima of zonal wind. This is indeed very reminiscent of the patterns of easterly 
and westerly jets observed by tracking cloud motions in the atmospheres of the 
giant planets Jupiter and Saturn.

Just as a smooth variation of zonal mean potential vorticity supports Rossby 
waves, so does a step in potential vorticity. However, the properties of Rossby waves 
on a step differ somewhat from those of Rossby waves on a β-plane. Qualitatively, 
the basic mechanism is the same as for a Rossby wave on a uniform gradient of 
potential vorticity, as discussed in Section 9.5. Figure  18.8 shows an interface 
between a region of large uniform potential vorticity, shown shaded, and a region of 
smaller potential vorticity, shown unshaded. If the interface is distorted in a wave-
like pattern, then there will be a series of positive and negative anomalies of poten-
tial vorticity along the interface. The arrows indicate the circulation associated with 
these anomalies. The perturbation meridional wind is in quadrature with the 
distorted interface, with the result that the whole pattern will migrate along the 
negative x-axis, relative to any mean zonal flow along the interface.

Let us put this analysis on a more quantitative basis. The starting point is the 
linearized perturbation potential vorticity equation
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Away from the line y = 0, this equation is satisfied trivially, since both ′ ∂ ∂q q yand /  
are zero in these regions. It follows that away from y = 0, the stream function 
perturbation satisfies
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Figure 18.8  A Rossby wave on a potential vorticity step. The boundary between a region of 
large potential vorticity (shaded) and lower potential vorticity (clear) has a wavy distortion. The 
arrows indicate the circulation associated with the potential vorticity anomalies
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Seeking wave-like solutions in x and time of the form
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and so, since ψ′ → 0 as y → ± ∞, the perturbation stream function has the form
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Notice that both ψ′ and ∂ψ′/∂x are continuous across the step at y = 0, but that ∂ψ′/∂y 
is discontinuous.

We now turn our attention to the step itself. Here, q′ is ± Δq/2 within a tiny dis-
tance of the y = 0 line, and this is not small. But the integral of q′ across the step is 
small; it follows from Equation 18.23 that
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Here, y = 0 −   or  0 + denotes an infinitesimal distance on either side of the step. 
Integrate the potential vorticity equation across the step to give
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Here, U
J
 denotes the mean zonal wind along the step, that is, at the jet maximum. In 

terms of the stream function, this equation is
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The dispersion relationship is therefore
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or, in terms of the phase speed,
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As in the case of Rossby waves on a β-plane, the waves propagate from east to west rela-
tive to the zonal flow along the step. The long waves propagate westwards most rapidly, 
while the phase speed of short waves differs only slightly from the zonal flow speed. For 
a given zonal wave number, c − U

J
 is proportional to the strength of the potential vorticity 

step. The details of U away from the step play no part in the dispersion relation.
The two components of the group velocity are
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Wave packets are confined to the potential vorticity step, where they move at the 
same speed as the jet. There is no meridional propagation. Since the group 
velocity does not depend upon the wave number k, a packet of any arbitrary 
shape will preserve its identity as it propagates, even though the individual 
troughs and crests will pass along the packet. Figure 18.9 illustrates this behaviour 
in a simple example.
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Figure 18.9  A longitude–time plot, showing a packet of Rossby waves on a potential vorticity 
step. The packet moves from west to east at speed U

J
. The waves making up the packet move 

considerably more slowly.
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This analysis reveals that a potential vorticity step supports low-frequency Rossby 
wave motions, but that the dynamically active part of the flow is confined to the 
vicinity of the step. Away from the step, where the potential vorticity gradient is 
zero, the disturbances simply decay with distance from the step. The step itself is 
elastic or resilient; when disturbed in some way, packets of Rossby waves will prop-
agate along the step at the jet speed. The greater the potential vorticity step Δq, the 
faster the jet speed and so the packets will move more quickly. Packets of Rossby 
waves can be excited if, for example, a vortex impinges upon the potential vorticity 
step. A weak vortex will simply excite Rossby waves which will propagate and 
eventually dissipate. A sufficiently strong vortex may disrupt the step and so suc-
ceed in crossing it.

The problem of Rossby wave propagation on a potential vorticity step has 
implications for a more general insight into the large-scale dynamics of the 
atmosphere. Most of the discussion in earlier chapters has assumed a smooth 
variation of potential vorticity, on a scale larger than that of the waves or vortices 
within the flow. Yet observations and modelling studies all suggest that the field 
of potential vorticity is highly structured down to very small scales. Extended 
streamers of potential vorticity develop as eddies are strained. Sharp gradients of 
potential vorticity separate regions of well mixed, relatively uniform potential 
vorticity. The single potential vorticity step introduced in this section is an ideal-
ized example of such a configuration. A more realistic model would consider a 
succession of steps.

If potential vorticity steps are widely separated, with the distance between them 
large compared with k− 1, then waves on each step will be independent of each other. 
The analysis of this section is relevant to Rossby wave propagation on each step 
separately. But if the spacing is small compared with k− 1, Equation 18.23 shows that 
a disturbance on one step will still have a significant amplitude at the adjacent step. 
A disturbance on one step will excite disturbances on neighbouring steps. In the 
limit of a series of small closely spaced potential vorticity steps, we recover the 
problem of waves on a smoothly varying distribution of potential vorticity.

18.8  Potential vorticity steps and the Rhines scale

In the previous section, we have introduced a distinction between situations in 
which the potential vorticity is distributed smoothly and situations in which sharp 
changes of potential vorticity separate regions of well-mixed, relatively uniform 
potential vorticity. What factors determine which of these configurations is likely to 
be observed? When potential vorticity steps do develop, what factors determine 
their spacing and magnitude? These are the questions which this section sets out to 
address. For simplicity, our discussion will be in terms of the simple barotropic 
configuration of the previous section. The results are readily generalized to more 
realistic configurations.
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Two different timescales characterize the development of the flow. First, there is 
the overturning timescale for individual vorticity anomalies. Denoting the typical 
eddy velocity as U

E
 and the horizontal scale of the eddy as L, the eddy overturning 

timescale is
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which is simply a restatement of the kinematic result of Section 2.3 which relates 
the relative vorticity to the spin of fluid elements. The second important timescale 
is the period of Rossby waves. An isolated vorticity anomaly can be regarded as a 
packet of Rossby waves. It will propagate and disperse on a timescale which is 
related to the Rossby wave period. The frequency of Rossby waves in a frame of 
reference moving with the background flow u  is
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Here, K is the total horizontal wave number; for the purposes of this discussion, the 
typical horizontal scale of the eddy is L ~ K− 1. The typical Rossby dispersion time-
scale for the anomaly is therefore
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β ~ ~

1
	 (18.26)

If this Rossby timescale is short compared with the overturning timescale, that is, if 
Tβ ≪ T

E
, then the anomaly will have dispersed before it has time to overturn and mix 

potential vorticity. In this case, potential vorticity mixing is suppressed. In the oppo-
site case, when Tβ ≫ T

E
, potential vorticity will be mixed before Rossby wave prop-

agation can take place. The condition for effective mixing can be written in terms of 
the intensity of the eddies; mixing is likely if

	
U q LyE �

2 	 (18.27)

One interpretation of this criterion is in terms of the nonlinearity of the flow: when 
U

E
 is large enough to satisfy Equation 18.27, the eddies advect potential vorticity 

and the linear assumptions made in deriving the Rossby dispersion relation (18.25) 
break down.

One example of the condition for potential vorticity mixing, Equation 18.27, 
comes from the vertical propagation of long Rossby waves from the tropopause into 
the stratosphere, discussed in Section 18.1. Even if the potential vorticity gradients 
are constant, the amplitude of the wave increases with height as the density 
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decreases, a variation built into the form of the linear solution given by Equation 
18.4. At lower levels, U q LyE <

2 , so that Rossby wave propagate upwards in accord 
with the linear theory. But at some level, as the amplitude of the wave increases, 
U q LyE >

˜
2 . As the eddy overturning time becomes short compared with the Rossby 

wave period, the waves break and mix potential vorticity. There are of course impor-
tant nonlinear feedback mechanisms at work here. As the eddies mix potential vor-
ticity and so change the distribution of potential vorticity, the propagation of 
subsequent wave packets will be altered.

The principle summarized in Equation 18.27 can also be expressed in terms of 
the length scale of the eddies. Re-write the condition for mixing, Equation 18.27, in 
the form

	

L L L
U

qy

2 2

1 2

� β βwhere E=










/

	 (18.28)

The length scale Lβ is called the ‘Rhines scale’, and it plays an important role in 
determining the character of a geophysical flow. For the Earth’s midlatitude tropo-
sphere, where a typical value of qy  is 1.5 × 10−11 m−1 s−1, and U

E
 can be taken as 

around 15 m s−1, the Rhines scale is around 106 m, comparable to the synoptic scale. 
So for a typical terrestrial weather system, both vortex dynamics and Rossby wave 
propagation will be important.

In Section 11.3, we showed that for two dimensional turbulent flows, energy 
cascades upscale, that is, from large to small wavenumbers, and from high frequen-
cies to lower frequencies. The arguments in that section were based on homogene-
ous, isotropic flow on an f-plane. As the scale of eddies increases, the effects of 
potential vorticity gradients become more important. When Rossby wave dispersion 
becomes faster than eddy overturning, the cascade of energy to larger scales is 
blocked. So, the Rhines scale gives an effective maximum scale for the eddies. 
However, the dispersion relation, Equation 18.25, indicates that the frequency of 
Rossby waves in a frame of reference moving with the local zonal flow depends 
upon the angle α between the wave crests and the zonal direction:

ω
α

− = −
( )

uk
q

K
y cos

The energy cascade can still proceed to lower frequencies if α tends towards 90°, 
that is, if the zonal wave number k tends to 0 while the total wave number 
(k2 + l2)1/2 = kβ,where k Lβ β= −1  is the Rhines wave number. Figure 18.10 is a sche-
matic illustration of this flow of kinetic energy. Eddy energy is generated at some 
small scale: in a baroclinic atmosphere, this might be comparable to the Rossby 
deformation radius. It cascades to smaller wave numbers until the total wave num-
ber is comparable with kβ, at which point the cascade continues only in the zonal 
wave number. The end state is one of parallel zonal jets, with a typical width of π/kβ.
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Figure  18.11 shows a calculation from Williams (1978) which illustrates this 
cascade and its end state of jets, separating regions of more or less uniform potential 
vorticity. Small-scale forcing is applied to a spherical layer of initially motionless 
barotropic fluid: this forcing might represent eddies developing by baroclinic insta-
bility, or, in a low Richardson number atmosphere, from convection. Figure 18.11a 
shows the effect of this forcing a short time after the start of the integration. 
Figure 18.11b shows the eventual development of the flow, with several parallel jets 
separating mixed regions. The jet separation is comparable to the Rhines scale.

For terrestrial parameters, the Rhines scale implies a jet width somewhat less 
than the distance from the pole to the subtropics. In such case, the end state of the 
turbulence could be a single or even a double jet. Two jets are in fact found in the 
zonal average for the Southern Hemisphere winter. They are also found at some 
longitudes in the northern hemisphere winter, but the zonal average is a single jet. 
In contrast, the gas giant planets such as Jupiter and Saturn are much larger so that 
the pole–equator distance is several times that of the Rhines scale. Tracking cloud 
features reveals that at the level of the cloud tops, there are indeed a number of 
alternating easterly and westerly jets. Figure 18.11 illustrates these jets in the atmos-
phere of Jupiter.

Figure  18.11b certainly bears a strong resemblance to the banded structure 
observed on Jupiter and other gas giant planets. Winds at the cloud top levels in 
Jupiter’s atmosphere have been mapped by tracking identifiable features, using 

k

l

kβ

Forcing

Figure 18.10  Schematic illustration of the energy cascade for two-dimensional turbulence in 
the presence of a β-effect.
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high-resolution images from space probes and the Hubble space telescope. 
Figure 18.12 shows wind profiles derived in this way. They display multiple sharp 
westerly jets, separated by broader regions of weaker flow. These too are features of 
the zonal flow for an idealized potential vorticity step, Equations 18.21 and 18.22. 
It seems that in Jupiter and other gas giant planets, the flow at the cloud top levels 
consists of a ‘potential vorticity staircase’, with a number of sharp changes of poten-
tial vorticity separating regions of relatively well-mixed potential vorticity. 
Embedded within these bands are smaller-scale circulating weather systems which 
have variously been interpreted as baroclinic eddies, or convectively driven systems 
analogous to terrestrial hurricanes.

Let us conclude this chapter, and this book, by summarizing a conceptual model 
of midlatitude atmospheric dynamics which repeatedly arises out of much of the 
material we have covered. That conceptual model is founded on potential vorticity 
and its two fundamental properties, conservation and invertibility. First, potential 

Figure 18.11  Results from a barotropic numerical model of two-dimensional turbulence on a 
sphere. (a) Day 4.6, showing weak eddies at the forcing scale, and (b) day 294.4, late in the inte-
gration, showing the development of multiple jets. From Williams (1978), with permission from 
the American Meteorological Society 

(a)

(b)
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vorticity is a conserved variable which is advected by the flow. Patches of potential 
vorticity or ‘eddies’ remain identifiable features for synoptic timescales. Invertibility 
refers to the elliptic relationship between potential vorticity and the stream function 
of the flow. The most important consequence of such an elliptic relationship is that 
even isolated eddies modify the flow at distances large compared to the size of the 
eddy itself. As a result, eddies interact with each other, they are advected and usu-
ally deformed by the flow induced by distant eddies. A far reaching consequence of 
invertibility is that in all except the very simplest situations, lines of constant poten-
tial vorticity and lines of constant stream function are not parallel. In other words, 
the flow is unsteady and continually evolves. Furthermore, its dynamics is inher-
ently nonlinear: the distribution of potential vorticity determines the flow field 
which in turn advects and deforms the potential vorticity.

On the large scale, a paradigm of low-frequency motion in the midlatitude atmos-
phere is the Rossby wave, a wave which can exist whenever there are large-scale 
gradients of potential vorticity. The properties of Rossby waves are intrinsically 
linked to the conservation and invertibility properties of potential vorticity. Processes 
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Figure 18.12  Zonal winds on Jupiter, deduced by tracking cloud features observed from the 
Hubble Space telescope. From Marcus and Shetty (2011), with permission from the Royal Society 
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such as heating, cooling and friction act to set up gradients of potential vorticity, 
while, left to itself, the flow dynamics ultimately tend to mix potential vorticity, 
generating regions of more uniform potential vorticity, where the dynamics of 
individual eddies are dominant, separated by regions of strong potential vorticity 
gradient. Here, Rossby wave propagation is dominant. When the gradients of poten-
tial vorticity are sufficiently strong, such zones behave as elastic barriers, soaking 
away the wave activity associated with weaker disturbances by propagating it to 
remote parts of the fluid. Such potential vorticity barriers are impervious to all but 
the strongest disturbances impinging upon them. The ideas discussed in this section 
suggest how potential vorticity mixing and step formation are related and what 
factors govern their size and strength.

The theoretical basis of potential vorticity has been well known since the pioneer-
ing work of Rossby and Ertel. Only much more recently, with the increasing sophis-
tication of synoptic observing and analysis schemes, and the complementary 
development of high-resolution numerical models of the atmosphere, has it become 
possible to relate this theory to the development and even forecasting of observed 
weather systems. Now, any understanding of midlatitude atmospheric dynamics has 
to be grounded in potential vorticity and its properties.
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Appendix A: Notation

This list is not exhaustive, but is intended to summarize notation which is used in 
several different chapters. Generally, symbols which are only used in a few lines in 
a particular argument will not be included in this list. Inevitably, a few symbols have 
been used to represent different quantities in different places; generally, the context 
will make clear which meaning is intended.

Variable Meaning and Units Equation

a Radius of planet, m
A Available potential energy per unit volume, J m−3 7.41
b Buoyancy, m s−2 7.11
B Bernoulli potential, m2 s−2 2.45
Be Dimensionless β, βL2/U 9.7
Bu Burger number 5.39
c Phase speed, m s−1 9.19
c

p
Specific heat of air at constant pressure, J kg−1 K−1

c
v

Specific heat of air at constant volume, J kg−1 K−1

c
g

Vector group velocity 9.25
C Circulation, m2 s−1 8.2
D = ∂u/∂x + ∂v/∂y, horizontal divergence, s−1

Typical vertical scale of weather system, m
e Vapour pressure of water, Pa
e

s
Saturated vapour pressure of water, Pa

f Coriolis parameter, 2Ω sin(ϕ) s− 1 4.37
F Eliassen–Palm flux, kg m−1 s−2 16.36
Fr Froude number 5.43
g Magnitude of the acceleration due to gravity, m s−2

g
e

Magnitude of the effective acceleration due to gravity, a function 
of position, m s−2

(Continued )
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Variable Meaning and Units Equation

g Vector acceleration due to gravity, m s−2

g
e

Effective acceleration due to gravity at the Earth’s surface
H or H

p
Pressure scale height, m 7.3

Hi ‘Hide number’ h
max

/RoD 9.7
k Wavenumber vector ki + lj + mk, m−1

K Total wavenumber, |k|, m−1 7.36
Kinetic energy per unit volume, J m−3

L Latent heat of condensation of water vapour, J kg−1

Typical horizontal scale of a weather system, m
L

R
Rossby radius of deformation, NH/f, m

M Montgomery potential, m2 s−2 6.37
N Brunt–Väisälä frequency (g∂(ln(θ))/∂z)1/2, s−1

p Pressure, Pa
p

R
(z) Pressure profile of reference atmosphere, Pa

p
0

Standard pressure (often 100 kPa)
P Rossby–Ertel potential vorticity, K m2 kg−1 s−1 10.4
q Heat per unit mass entering or leaving a fluid element, J kg−1 2.19

Specific humidity, dimensionless 2.54
Quasi-geostrophic potential vorticity, s−1 12.19

Q Arbitrary scalar variable (Chapter 2)
Q ‘Q-vector’ determining vertical circulation, s−3 13.27
r Distance to origin in polar coordinates, m 6.5

Pseudo-density, various units
R Gas constant for dry air, J kg−1 K−1

Radius of curvature of parcel trajectory, m
r = xi + yj + zk; position vector
Re Reynolds number 11.1
Ri Richardson number 11.19
Ro Rossby number 5.13
s Specific entropy, J K−1 kg−1

Distance along a fluid trajectory, m
Perpendicular distance to rotation axis, r cos(ϕ), m

S Source term in ω-equation, m−1 s−1 13.4
t Time, s
T Temperature, K
T

R
(z) Temperature profile of reference atmosphere

u Zonal component of velocity, m s−1

U Typical horizontal velocity fluctuation
u = ui + vj + wk; velocity vector
v Meridional component of velocity, m s−1

v = ui + vj; horizontal component of velocity vector, m s−1

v
a

Ageostrophic wind, m s−1

v
g

Geostrophic wind, m s−1 5.24 and 12.1
u, v⋅ ⋅ Acceleration due to friction, m s−2

w Vertical component of velocity, m s−1

x Zonal co-ordinate, m
(X, Y, Z, T ) Semi-geostrophic coordinates 16.5
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Variable Meaning and Units Equation

y Meridional coordinate, m
z Vertical coordinate, m
β Poleward gradient of Coriolis parameter, m−1 s−1 4.39
Γ Lapse rate, K m−1

Γ
a

Adiabatic lapse rate, K m−1

χ Velocity potential, m2 s−1 2.7
ϕ Latitude, rad
Φ Gravitational potential, m2 s−2

κ R/c
p
, dimensionless

Λ Vertical shear ∂u/∂z, s−1 14.29
μ Dynamical coefficient of viscosity, kg m−1 s−1 2.1
ν Kinematic coefficient of viscosity, m2 s−1 2.41
θ Potential temperature, K 1.3
θ

R
(z) Potential temperature profile of reference atmosphere

ξ Vertical component of relative vorticity, s−1

ξ
g

Geostrophic vorticity, s−1

ζ Vertical component of absolute vorticity, s−1

ζ
g

Geostrophic absolute vorticity, s−1

ζ Vector absolute vorticity
π Ratio of circumference to diameter of a circle 6.36

Exner function
ρ Density, kg m−3

ρ
0

Constant reference density, kg m−3

ρ
R
(z) Density profile of reference atmosphere

σ Growth rate of unstable wave, s−1

τ
D

Drag timescale, s
τ

E
Radiative equilibrium timescale, s

ψ Streamfunction, m2 s−1 2.10
ψ

g
Geostrophic streamfunction

Ψ Amplitude of a stream function wave 14.10
ω Pressure vertical velocity, Pa s−1

Frequency of wave, s−1

Ω Rotation rate of planet, rad s−1

Ω Vector rotation rate of planet
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Appendix B: Revision of vectors 
and vector calculus

B.1  Vectors and their algebra

Many physical quantities have a direction as well as a magnitude. Examples include 
position, velocity, force, magnetic field, angular momentum and so on. A vector can 
be described in terms of its components in three orthogonal directions, that is, in 
terms of its projection onto three orthogonal axes. We write this as

	
a i j k= ( ) = + +a a a a a a1 2 3 1 2 3, , 	 (B.1)

Here, i, j, k are ‘unit vectors’ parallel to each coordinate axis. A unit vector is a vec-
tor with a direction and a magnitude of one dimensionless unit.

The magnitude (or ‘modulus’) of a vector is

	
a = + +a a a1

2
2
2

3
2 	 (B.2)

Note that while a and |a| are independent of the coordinate system used, the indi-
vidual components depend upon the arbitrary choice of a coordinate system 
(Figure B.1). The direction of a is given by the unit vector l where

	
l

a
i

a
j

a
k= + +

a a a1 2 3 	 (B.3)

Vectors have an algebra which is similar to that of ordinary numbers. For example, 
a vector can be multiplied by a scalar to give

	 b a i j k= = + +α α α αa a a1 2 3 	 (B.4)
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This operation corresponds simply to changing the length of a vector by the factor 
α but leaving its direction unchanged. The sum of two vectors is obtained by adding 
their components:

	
a b i j k+ = +( ) + +( ) + +( )a b a b a b1 1 2 2 3 3 	 (B.5)

A geometric construction for this operation is shown in Figure B.2.

B.2  Products of vectors

Vectors can be combined in two ways to form a ‘product’, analogously to the 
multiplication of scalar numbers.

x

y

z a

a1

a3

a2

Figure B.1  The vector a and its components

A

BC = A + B

Figure B.2  The ‘triangle’ construction for the sum of two vectors
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The ‘scalar product’ is denoted by

	 s = ⋅a b 	 (B.6)

and is defined as

	 s a b a b a b= + +1 1 2 2 3 3 	 (B.7)

If the vectors a and b make an angle θ with each other, then it is easy to show that

	
s = a b cos( )θ 	 (B.8)

Hence, the scalar product is the product of the magnitude of a multiplied by the 
component of b parallel to a (Figure B.3). The scalar product obeys the commuta-
tive and distributive rules of multiplication, for

	 a b b a a b c a b a c⋅ = ⋅ ⋅ + = ⋅ + ⋅; ( ) 	 (B.9)

The ‘vector product’ is denoted by

	 c a b= × 	 (B.10)

and is defined as

	

c

i j k

i j k= = −( ) − −( ) + −( )a a a

b b b

a b a b a b a b a b a b1 2 3

1 2 3

2 3 3 2 1 3 3 1 1 2 2 1 	 (B.11)

a

b

�

Figure B.3  Illustrating the scalar product
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Although this looks complicated, the vector product has a simple geometrical inter-
pretation. The magnitude of c is

	
c a b= sin( )θ 	 (B.12)

which is simply the area of the parallelogram formed by a and b (Figure B.4). The 
direction of c is at right angles to both a and b. Notice that the associative rule of 
algebra applies, for

	 a b c a b a c× + = × + ×( ) 	 (B.13)

But the commutative rule does not apply. Instead

	 b a a b× = − × 	 (B.14)

B.3  Scalar fields and the grad operator

A physical field which has a value at each point in space is called a ‘field’. Fields 
may be either scalar or vector. A scalar field is denoted by

	 s s= ( )r 	 (B.15)

Examples include pressure, temperature, electrical potential and charge density. 
Vector fields are discussed in Section B.4.

The field s(r) can be represented pictorially by a set of surfaces (or, in two dimen-
sions, a set of curved contours) linking places where s has the same value. The rate 
of change of s can be specified in each of three directions parallel to the x-, y- and 
z-axes. Thus, ∂s/∂x is the rate of change of s in the x-direction with y- and z-held 
fixed. The total gradient of s is a vector:

∂
∂

+
∂
∂

+
∂
∂

s

x

s

y

s

z
i j k

a

b

c

�

Figure B.4  Illustrating the vector product
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It proves convenient to regard this expression as the result of a vector operator, 
denoted by ∇, acting upon s:

	
∇ =

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂









s

s

x

s

y

s

z x y z
si j k i j k 	 (B.16)

∇ is the ‘gradient operator’, sometimes called ‘del’ or ‘nabla’. In many ways, we 
can treat ∇ as a vector quantity, using the algebraic rules set out in the last section. 
There is an important exception to this. s∇ is an operator, while ∇s is a vector field. 
They have entirely different meanings.

The vector ∇s is easily visualized. It is a vector, directed perpendicularly to 
surfaces of s = constant, pointing away from low values and towards large values of s 
(Figure B.5).

B.4  The divergence and curl operators

A complete specification of the rate of change of a vector with respect to position 
would require the rate of change of each of the vector components with respect to 
each of three spatial coordinates. The result would be nine numbers, which may be 
arranged as a 3 × 3 tensor. However, a part-way house uses the ∇ operator notation 
defined in the last section to select certain terms from the full derivative tensor and 
to combine them in physically important ways.

The first is the ‘divergence’, which may be thought of as the scalar product of the 
∇ operator with a vector field V:

	
∇ ⋅ =

∂
∂

+
∂
∂

+
∂
∂

V
V

x

V

y

V

z
1 2 3 	 (B.17)

H

L �s

Figure B.5  Contours of s and an example of ∇s
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We shall show in the next section that ∇ ⋅ V is related to the flux of v emerging from 
an element of volume. Certain vector fields are characterized by ∇ ⋅ V = 0. Such a 
field is said to be ‘non-divergent’. An example of a non-divergent field in meteorol-
ogy is the field of geostrophic wind vectors.

Alternatively, we may take the vector product of the ∇–operator with a vector 
field V. This is called the ‘curl’ of the vector field and is defined as

	

∇× =
∂
∂

∂
∂

∂
∂

=
∂
∂

−
∂
∂









 −

∂
∂

−
∂
∂









V

i j k

i
x y z

V V V

V

y

V

z

V

x

V

z

1 2 3

3 2 3 1
 +

∂
∂

−
∂
∂









j k

V

x

V

y
2 1

 

(B.18)

Notice that between them, the ∇ ⋅ and ∇ × operators include all the elements of the 
full derivative tensor. The curl of a vector field is related to the degree of circulation 
which the field exhibits, a result we shall demonstrate in the next section. A field for 
which ∇ × V = 0 is described as ‘irrotational’. An important example of an irrota-
tional field is the gravitational acceleration.

B.5  Gauss’ and Stokes’ theorems

These two theorems are useful in manipulating vector fields and also in giving a 
physical interpretation of the curl and divergence operators.

Consider first a cuboidal region of space, sides δx, δy and δz, illustrated in Figure B.6. 
Consider the flux of a vector field V through the faces of this cuboid. Provided the 
cuboid is sufficiently small, the flux is the normal component of V out of the surface 
multiplied by the area of the face. So the flux through face A is − V

1
δyδz. The minus 

sign indicates that this is an inward flux. The flux out of face B is similarly 
(V

1
 + δV

1
)δyδz. The net flux leaving the cuboid in the x-direction is therefore δV

1
δyδz. 

Similar results follow for the y- and z-directions so that the total net flux emerging 
from the cuboid is

	

� � �

�� �

dS V y z V x z V x y

VV V
x y z

x y z

δ δ δ δ δ δ δ δ δ
δδ δ

δ δ δ
δ δ δ

⋅ = + +

 
= + + 
 

∫ V A�
	 (B.19)

In the limit, as δx, δy, δz → 0, this equation becomes

	
( )d

S

x y zδ δ δ⋅ = ∇ ⋅∫ V A V� 	 (B.20)
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In other words, for such a cuboid, the divergence of V may be thought of simply as 
the outward flux of V per unit volume.

Now suppose that two such cuboids are placed in contact. Then, the flux out of one 
cuboid through the interface between them will be an inward flux to the second cuboid. 
The total flux will simply be the net outward flux from the combined volume, and this 
according to Equation B.20 will equal the sum of the divergence in each cuboid multi-
plied by the volume. The argument can be extended to a large number of such cuboids, 
forming a finite volume. Then, as their size tends to zero, a generalization of Equation 
B.20 for an arbitrary volume τ enclosed by a closed surface S is obtained:

	
( )d d

S τ

⋅ = ∇ ⋅ τ∫ ∫V A V� 	 (B.21)

This result is called ‘Gauss’ theorem’.
A parallel result gives a physical interpretation of the curl operator, relating the 

curl of a vector field to its circulation around a closed loop. The circulation C of any 
vector field is defined as

d
L

C = ⋅∫ V l�

where L is an arbitrary closed loop in space, and dl is an element of that loop. The 
sign convention is that positive circulation is anticlockwise. To start with, consider 
a rectangular loop with sides δx and δy lying in the x–y plane. Then, assuming the 
components of V vary smoothly from place to place, the circulation around this 
loop may be written as follows:

	

C V x V V y V V x V y

V x V y

xy = + +( ) − +( ) −

= − +
1 2 2 1 1 2

1 2

δ δ δ δ δ δ

δ δ δ δ
	 (B.22)
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y

z

B
A

Figure B.6  Illustrating Gauss’s theorem
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Care has to be taken with the signs here: for each segment of the loop, the 
anticlockwise contribution to the circulation is positive. Equation B.22 can be 
rewritten as follows:

	
C

V

y

V

x
x yxy = − +











δ
δ

δ
δ

δ δ1 2 	 (B.23)

But the right-hand side of this result is simply the z-component of ∇ × V multiplied 
by the area enclosed by the loop.

C x yxy = ∇× ⋅( )V kδ δ

Similar results hold for the circulation about rectangular loops in the x–z and y–z 
planes:

	
C y z C x z C x yyz xz xy= ∇× ⋅ = ∇× ⋅ = ∇× ⋅( ) ; ( ) ; ( )V i V j V kδ δ δ δ δ δ 	 (B.24)

Now the area of a small loop can be regarded as a vector whose direction is perpen-
dicular to the plane of the loop. So for the circulation around a small loop orientated 
in an arbitrary direction, we may write

	 C = ∇× ⋅( )V Aδ 	 (B.25)

This expression gives a physical interpretation for ∇ × V. The curl of a vector is a 
vector directed perpendicularly to an element of area, whose magnitude is simply 
the circulation around the loop enclosing that area per unit area.

The argument now proceeds in much the same way as for Gauss’ theorem. A 
closed finite loop of arbitrary shape and orientation can be built up by adding the 
contributions from any number of infinitesimal loops placed adjacent to one another. 
The contributions to the circulation along the common segments of adjoining loops 
cancel out, and so only the segments on the periphery of the loop contribute to the 
total circulation. Integrating over the entire loop gives

	
( )d d

L A

⋅ = ∇× ⋅∫ ∫V l V A� 	 (B.26)

This result is called ‘Stokes’ theorem’.
Equation B.26 reveals what at first sight now seem a curious and counter-intuitive 

result. Consider any two surfaces A
1
 and A

2
 which terminate on a loop L. Then,

A A1 2

∫ ∫∇×( ) ⋅ = ∇×( ) ⋅V A V Ad d
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This result holds no matter how different the surfaces are, provided they are bounded 
by the same loop. The reason for this result is simply that ∇ ⋅ (∇ × V) ≡ 0 for any 
vector V. In the language of nineteenth-century physics, ‘lines of force’ (or ‘vortex 
lines’) of ∇ × V can neither start nor end between the surfaces A

1
 and A

2
; equal num-

bers of lines must pass through both surfaces. Figure B.7 illustrates.

B.6  Some useful vector identities

Here, ϕ, ψ, A and B are supposed to be continuous, differentiable functions of the 
position vector r. Some of these identities follow directly from the basic definitions 
given earlier. Others are a bit more complicated.

Identity 1 ∇(ϕ + ψ) = ∇ϕ + ∇ψ
Identity 2 ∇ ⋅ (A + B) = ∇ ⋅ A + ∇ ⋅ B
Identity 3 ∇ × (A + B) = ∇ × A + ∇ × B
Identity 4 ∇ ⋅ (ϕ A) = (∇ϕ) ⋅ A + ϕ(∇ ⋅ A)
Identity 5 ∇ × (ϕ A) = (∇ϕ) × A + ϕ(∇ × A)
Identity 6 ∇ ⋅ (A × B) = B ⋅ (∇ × A) − A ⋅ (∇ × B)
Identity 7 ∇ × (A × B) = (B ⋅ ∇)A − B(∇ ⋅ A) − (A ⋅ ∇)B + A(∇ ⋅ B)
Identity 8 ∇(A ⋅ B) = (B ⋅ ∇)A + (A ⋅ ∇)B + B × (∇ × A) + A × (∇ × B)
Identity 9 ∇ ⋅ (∇𝜙) = ∇2ϕ
Identity 10 ∇ × (∇𝜙) = 0
Identity 11 ∇ ⋅ (∇ × A) = 0
Identity 12 ∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A

L

A1

A2

Figure B.7  Two surfaces A
1
 and A

2
 which terminate on the closed loop L. Lines parallel to ∇ × V 

must pass through both surfaces
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Index

absolute acceleration, 56
absolute velocity, 56
absolute vorticity, 130, 131
action at a distance, 153
adiabatic lapse rate, 2
advection, 37, 38
ageostrophic circulation, 238, 310
ageostrophic wind, 88, 137, 211, 218
air mass, 16
anelastic approximation, 92, 112
angular momentum, 72
anti-geostrophic, 85
aspect ratio, 79, 89
available potential energy, 124, 332

backing of wind, 213
balance, 1, 83, 211
baroclinic initial value problem, 278
baroclinic instability, 175, 245
baroclinicity, 245
baroclinic wave, 246
barotropic instability, 174, 259
barotropic vorticity equation, 150
basic equations

height coordinate, 73
pressure coordinate, 101

basic equation sets, 121
Bergen school, 15
Bernoulli potential, 45
Bernoulli’s theorem, 45
beta effect, 75
beta plane, 75, 149
Blasius boundary layer, 192
blocking, 350
body force, 27, 41
boundary condition, surface, 100, 248

boundary layer, 3, 139
boundary Rossby wave, 257
boundary temperature, 186
Boussinesq approximation, 101
Brunt–Väisälä frequency, 2, 93, 114, 186
buoyancy, 101

flux, 326
oscillation, 301

Burger number, 93, 217, 339, 355
butterfly effect, 201

cascade, energy, 194
cavitating flow, 46
centrifugal force, 56, 57
centripetal acceleration, 56, 57
Charney balance equation, 241
Charney model growth rate, 273
Charney model of baroclinic  

instability, 271
Charney model structure, 271
Charney–Stern condition, 252,  

256, 265, 271, 281
circular cylinder, flow around, 189
circular vortex, 183
circulation, 127, 145
circulation equation, 146
Clausius–Clapeyron equation, 48
clear air turbulence, 202
closure hypothesis, 204
cold front, 318, 321
compressible fluid, 28
condensation, 48
conditional instability, 3
confluence model, 307
continuity equation, 40, 67, 91
continuum hypothesis, 20, 193
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contraction axis, 34
convection, 4
convective rain, 50
coordinate surface slope, 98
Coriolis acceleration, 56
Coriolis force, 57
Coriolis parameter, 74, 164
counter shear tilt, 260
creeping flow, 190
critical latitude, 172
critical line, 367, 372
cross frontal circulation, 295
cyclostrophic balance, 86

deformation, 34, 231, 291
deformation flow, 232, 238
delta function, 254, 338, 377
diffusion of vorticity, 193
dilation axis, 34, 236
dispersion, parcel, 375
dispersion relation, 116, 162, 362, 379
dispersive waves, 163
divergence, 32
downstream development, 281
dynamical tropopause, 180, 349
dynamical variables, 29

Eady model, baroclinic instability, 264
Eady wave

growth rate, 268
semi-geostrophic, 307
structure, 269, 326, 342

eddy fluxes, 325
potential vorticity, 331, 374

eddy viscosity, 206
effective gravitational potential, 57
Ekman boundary layer, 142, 206
Ekman circulation, 356
Ekman drift, 141
Ekman number, 151
Ekman pumping, 141, 159
Ekman spin up time, 150
Eliassen–Palm flux, 330, 370, 372
Eliassen–Palm sections, 371
elliptic equations, 151
energetics, 332, 372
energy cascade, 383
energy conversions, 333
energy cycle, 124, 334

energy equation, 250
enstrophy, 197

cascade, 198
enthalpy, 46
equation of state, 28, 35, 48
Ertel’s theorem, 180, 222
Eulerian rate of change, 37
Euler’s equation, 43, 164, 189
Exner function, 106
expansion term, 134
explosive cyclogenesis, 357

finite difference, 155
first law of thermodynamics, 35
flat plate, flow past, 191
flow over a hill, 155
fluid, definition of, 27
fluid parcel, 27
flux form, 324
f-plane, 75
friction, 138, 220, 352
front, 16, 291
frontal collapse, 303
frontal geostrophy, 294
frontal transformation, 299
frontogenesis, 232, 238, 291, 301, 317
Froude number, 90

general vertical coordinate, 97
geostrophic balance, 83
geostrophic coordinates, 314
geostrophic momentum  

approximation, 313
geostrophic stream function, 220, 361
geostrophic vorticity, 143, 213
geostrophic wind, 88, 211
gradient wind balance, 83
gravitational force, 41
gravitational potential, 41

effective, 58
gravity waves, 115, 240
Green modes, 275
group velocity

gravity waves, 116
Rossby waves, 166, 168, 365, 370, 380

growth rate, 250, 264

heating, 220, 229, 352
Helmholtz decomposition, 33
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Hide number, 151
Hooke’s law, 28
horizontal momentum equation  

scaling, 81
horizontal scale, 14
Hubble telescope, 385
hydrostatic balance, 79, 90
hypergeometric functions, 272

ideal gas equation, 35
incompressible fluid, 28
inertia–gravity waves, 116
inertial flow, 156
inertial frame of reference, 53
inertial oscillation, 60, 304
inertial subrange, 194
inflexion point instability, 172, 256
inkwall experiment, 63
instability, 172, 245
internal energy, 36
intervolving, 155
invertibility principle, 182, 221, 338, 385
inviscid, 45
isentrope, 5
isentropic coordinates, 106
isentropic displacement, 341
isentropic slope, 121
isentropic upgliding, 341
isobaric coordinates, 100

jet
core, 368
exit, 237
on potential vorticity step, 377
stream, 7

jets, alternating, 384
Jupiter, 378

Karman vortex street, 190
Kelvin’s circulation theorem, 146
kinematics, 30
kinetic energy equation, 71, 123
kinetic energy growth rate, 283
Kolmogorov spectrum, 196

Lagrangian rate of change, 37
Laplace’s equation, 152
large Rossby number scaling, 95
large scale rain, 50

latent heat, 49, 353, 356
LC1 lifecycle, 320, 327, 343,  

349, 356, 372
LC2 lifecycle, 323, 344, 349, 372
lifecycle, baroclinic, 323, 342, 372
lifecycle energetics, 334
linearise, 249
localization hypothesis, 195
log pressure coordinates, 103

Mach number, 47
Margule’s formula, 16
mass conservation, 38, 40
meridional circulation

frontal, 294
hemispheric, 328

mesosphere, 4
metrics, 70
middle world, 375
mixing, potential vorticity, 376
momentum equation, 43, 81, 292
momentum equations in spherical 

polar coordinates, 70
momentum flux, 260, 280, 329
monsoon, 60
Montgomery potential, 107

natural coordinates, 83
natural ratio of scales, 94, 117,  

217, 228, 264
Navier–Stokes equation, 49, 57, 189, 204
neutral mode, 252, 256
Newtonian cooling, 229
Newtonian fluid, 28
Newton’s law of viscosity, 28
Newton’s second law of motion, 36, 42
nonlinear balance condition, 241
nonlinearity, 311, 324
normal mode initialization, 241
normal modes, 249, 278, 311
normal stress, 27
Norwegian frontal model, 16

occlusion, 17, 321
omega equation, 225, 245, 340, 341

advection form, 228
Q-vector form, 233, 298
Sutcliffe form, 231

orography, 155
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Orr problem, 281
overturning timescale, 382

parametrization, 50
perturbation, 288, 311
phase locking, 259–61
phase speed, 162, 368, 380
pκ vertical coordinate, 104
planetary vorticity, 137
plane waves, 162
Poisson’s equation, 151, 182
polar front, 17
polar night jet, 7, 369, 372
polar vortex, 7
poor man’s filter, 13
potential flow, 160, 189
potential temperature, 4, 35
potential vorticity, 172, 179, 298, 306, 

314, 337, 361
gradient, 252, 253
log, 347
mass weighted, 182
shallow water, 186
shielding, 286
staircase, 385
step, 375, 380
tower, 360

predictability, 201
pressure, 2
pressure fluctuation

horizontal, 82
vertical, 91

pressure gradient force, 42, 98
primitive equations, 72
pseudo-density, 99
pseudo-forces, 56

quasi-geostrophic approximation,  
95, 120, 328

quasi-geostrophic equation set, 218
quasi-geostrophic momentum  

equation, 218
quasi-geostrophic potential  

vorticity, 220, 330, 337, 361
quasi-geostrophic thermodynamic 

equation 217
quasi-geostrophic vorticity  

equation, 216, 245
Q-vector, 235, 245, 295, 318

radiative timescale, 229, 353
Rayleigh friction, 139, 146, 229
ray tracing, 170, 367
realistic jet, stability analysis, 275
reference atmosphere, 79, 109
refractive index, 172, 367
relative vorticity, 131
residual circulation, 329
Reynolds number, 189
Reynolds stresses, 203
Rhines scale, 381
Richardson number, 96, 120, 202,  

222, 384
Rossby adjustment problem, 118
Rossby–Ertel potential vorticity,  

179, 219, 337
Rossby number, 57, 61, 82, 217,  

292, 302
Rossby radius of deformation, 117, 264
Rossby timescale, 382
Rossby wave, 75, 160, 200, 256,  

258, 361, 386
Rossby wave on a potential  

vorticity step, 378
Rotating frame of reference, 53

saturated adiabatic lapse rate, 2
saturated vapour pressure, 48
Saturn, 378
Sawyer–Eliassen equation, 298, 299
scale analysis, 77

front, 292
scale height, 80, 103
scale interactions, 311
scales for midlatitudes, 95
sea breeze, 133
seclusion, 344
self development, 246
semi-geostrophic baroclinic waves, 312
semi-geostrophic Eady wave, 305
semi-geostrophic equations,  

306, 311, 317
separation, 198
shallow atmosphere approximation, 73
shallow atmosphere equations, 73
shallow water equations, 118
shear, 292

instability, 201
short wave cut off, 270, 273
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sigma coordinates, 105
slopes of X and θ surfaces, 304
slowly varying basic flow wave  

theory, 365
solenoidal term, 132, 147
Somali jet, 60
specific entropy, 41
specific heat, 35
specific humidity, 48
specific volume, 36
spherical polar coordinates, 65
spin down time, 143
spin in a fluid, 127
stagnation point, 30
state variables, 29
static stability, 338
stationary wavenumber, 174
steady Rossby waves, 169
steering level, 258, 273, 347
storm track, 13
stratification, 1, 113, 296

stable, 196
stratosphere, 4, 363
streamer, 340
streamfunction, 33, 153
streamline, 30
stress, 27
symmetric oscillations, 304
synoptic scale, 78, 117

tangential stress, 27
Taylor column, 63, 158
Taylor–Proudman theorem, 61,  

89, 213
teleconnections, 169
temperature fluctuation, 91
temperature flux, 270, 326
thermal wind, 213, 245

balance, 6, 120, 213, 226, 291
relationship, 6, 213

thermodynamic equation, 41, 67, 92
thermosphere, 4
theta on PV2, 349
tide, atmospheric, 11
tilt with height, 247, 269, 274,  

280, 326
tilt with latitude, 326
timescales, 15
tongues of stratospheric air, 309

topography, 149
total energy equation, 72, 333
total internal reflection, 172
total wavenumber, 363
trajectory, 31

curvature, 84
transformed Sawyer–Eliassen  

equation, 300
transients, 7, 11
trapped Rossby wave, 258
tropopause, 4. 180, 184, 253, 309, 338, 

349, 363, 369
fold, 23, 309

troposphere, 3
turbulence, 190, 384

two dimensional, 197
three dimensional, 194

turbulent fluxes, 204

upgliding, 341
upper level front, 21, 309
upward temperature flux, 280

vapour pressure, 48
vector in a rotating frame, 55
veering of wind, 213
velocity potential, 33
Venetian blind problem, 281
vertical coordinate, general, 97
vertical momentum equation  

scaling, 89
vertical scale, 14
vertical velocity, 89, 219, 225
viscosity, 28, 44, 189
vortex, 153

deformation, 197
dynamics, 154
line, 128
merging, 155
streamer, 154
stretching, 137, 194, 245, 302
tilting, 137
tube, 128

vorticity, 33, 127
vorticity equation, 130

anelastic, 132
horizontal component, 129
in a variety of coordinates, 144
vertical component, 129, 138
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warm front, 318
warm sector, 17
water vapour, 48
wave action density, 374
wave activity, 251, 372
wave breaking, 349, 375, 383
wave guide, 369, 372

wave maker, 170, 363, 365
wavenumber, 162
wave packet, 366
westward tilt with height, 247, 269, 274, 280
winter jet, 14, 32

zonal wind, 6
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