
DISEASE SURVEILLANCE 

A Public Health Informatics Approach 

Edited by 

Joseph S. Lombard0 

The Johns Hopkins University 
Applied Physics Laboratory 
Laurel, Maryland 

David L. Buckeridge 

McGill University 
Montreal, Quebec 
Canada 

B I C E N T E N N I A L  

A JOHN WILEY & SONS, INC., PUBLICATION 



This Page Intentionally Left Blank



DISEASE SURVEILLANCE 



T H E  W I L E Y  BICENTENNIAL-KNOWLEDGE FOR G E N E R A T I O N S  

G a c h  generation has its unique needs and aspirations. When Charles Wiley first 
opened his small printing shop in lower Manhattan in 1807, it was a generation 
of boundless potential searching for an identity. And we were there, helping to 
define a new American literary tradition. Over half a century later, in the midst 
of the Second Industrial Revolution, it was a generation focused on building the 
future. Once again, we were there, supplying the critical scientific, technical, and 
engineering knowledge that helped frame the world. Throughout the 20th 
Century, and into the new millennium, nations began to reach out beyond their 
own borders and a new international community was born. Wiley was there, 
expanding its operations around the world to enable a global exchange of ideas, 
opinions, and know-how. 

For 200 years, Wiley has been an integral part of each generation's journey, 
enabling the flow of information and understanding necessary to meet their needs 
and fulfill their aspirations, Today, bold new technologies are changing the way 
we live and learn. Wiley will be there, providing you the must-have knowledge 
you need to imagine new worlds, new possibilities, and new opportunities. 

Generations come and go, but you can always count on Wiley to provide you the 
knowledge you need, when and where you need it! 

4 

W I L L I A M  J. PESCE PETER BOOTH W l L E ' f  
PRESIDENT AND CHIEF EXEcUnVE OmCER CHAIRMAN OF THE BOARD 



DISEASE SURVEILLANCE 

A Public Health Informatics Approach 

Edited by 

Joseph S. Lombard0 

The Johns Hopkins University 
Applied Physics Laboratory 
Laurel, Maryland 

David L. Buckeridge 

McGill University 
Montreal, Quebec 
Canada 

B I C E N T E N N I A L  

A JOHN WILEY & SONS, INC., PUBLICATION 



Copyright 0 2007 by John Wiley & Sons, Inc. All rights reserved 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as 
permitted under Section 107 or 108 ofthe 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 11  1 River Street, Hoboken, NJ 
07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.codgo/permission. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book, they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages. 

For general information on our other products and services or for technical support, please contact our 
Customer Care Department within the United States at (800) 762-2974, outside the United States at 
(317) 572-3993 or fax (317) 572-4002. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may 
not be available in electronic format. For information about Wiley products, visit our web site at 
www.wiley.com. 

Wiley Bicentennial Logo: Richard J. Pacific0 

Library of Congress Cataloging-in-Publication Data: 

Disease surveillance : a public health informatics approach / [edited by] Joseph S. 
Lombardo, David Buckeridge. 

p.; cm. 
Includes bibliographical references and index. 
ISBN 978-0-470-06812-0 (cloth : alk. paper) 
1. Public health surveillance. 2. Medical informatics. I. Lombardo, Joseph S., 1946- 

11. Buckeridge, David, 1970- 
[DNLM: 1. Population Surveillance-methods. 
D6 1 17 20071 
RA652.2.P82D57 2007 
3 6 2 . 1 4 ~  22 2006053118 

2. Public Health Informatics. WA 105 

Printed in the United States of America. 

10 9 8 7 6 5 4 3 2 1 



To thosepublic health workers who get the call at 5 PM. 
on Friday afternoon and give freely of their own time 

to protect the health of the populations they sene .  
It is hoped that the advance disease suweillance methods 

described in this book will help them to use their time 
and talents more efficiently to accomplish their mission. 
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Preface 

During the last quarter of the twentieth century, countries with advanced healthcare 
systems felt comfortable in their ability to manage the spread of diseases that would 
have had high morbidity and mortality in earlier years. Smallpox had been eradicated 
and the memory of the Spanish Influenza outbreak of 19 18 had faded. Toward the end 
of the twentieth and into the twenty-first century, the overuse of antibiotics, resulting 
in disease resistance, the rapid spread of HIV, and the increasing threat of bioterrorism 
were examples of public health issues that were beginning to increase pressure to 
enhance existing disease surveillance processes. 

Among these concerns, the clandestine release of a deadly pathogen on an unsus- 
pecting population maybe the most insidious public health threat. Most pathogens 
available as bioweapons can cause high mortality and could lead to the collapse of 
the healthcare delivery and emergency response systems in an area under attack. The 
contamination and the possible closure of major medical centers, even if only tem- 
porary, would have a serious impact on the health of the population. To mitigate the 
consequences of this type of public health event, an effective detection and treatment 
campaign must be launched early in the course of the outbreak. 

Because of the threat of bioterrorism and the emergence of new infectious dis- 
eases, disease surveillance systems that utilize modern technology are becoming 
commonplace in public health agencies. The objective of this book is to present the 
components of an effective disease surveillance program that utilize modern tech- 
nology. These components include the research, development, implementation, and 
operational strategies that are finding their way into successful practice. 

Advanced disease surveillance systems automatically acquire, archive, process, 
and present data to the user. The development and maintenance of the systems 
require skilled personnel from the fields of medicine, epidemiology, biostatistics, and 
information technology. In addition, for the surveillance systems to be useful, they 
must adapt to the changing environment in which they operate and accommodate 
emerging public health requirements that were not conceived previously. 

Research and innovation have led to the implementation of surveillance methods 
that would have been considered impossible or radical only a few years ago. For 
example, the case definitions or events under surveillance, which traditionally rely on 
diagnosis, have been altered in many systems to rely on less specific pre-diagonstic 
health indicators of syndromes. Correctly filtering data into syndromes or other cate- 
gories for analysis requires knowledge of the underlying diseases and health-seeking 
behaviors of the population. Additionally, for analytical tools to have high specificity, 
they must take into account the normal range of all of the variables that comprise the 

xix 
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background for the health indicators. Tools that fuse data and information from inho- 
mogeneous indicators are necessary to provide decision-maker with comprehendable 
output. Similarly, information technologists must automate data ingestion and cleans- 
ing, optimize system architecture, and create user-friendly interfaces while meeting 
the challenge of using and customizing commercial, off-the-shelf products. 

Users’ requirements must have a higher priority than solutions that are technolog- 
ically exciting. Continuing dialogue must exist among the users and the multidis- 
ciplinary development team to establish an effective surveillance capability that fits 
within the environment where it will be deployed. Without close interaction between 
these groups, effective advanced disease surveillance will be compromised. Changes 
to traditional thinking have resulted in the implementation of improved methods that 
are more suited to meeting the current challenges facing health departments. Because 
it is difficult to anticipate future public health emergencies, a continuing adaptation is 
required to maintain satisfactory system performance. 

The field of public health informatics is growing rapidly as applications of technol- 
ogy are being applied to permit health departments to recognize and manage disease 
in the populations they serve. This book is intended for use (1) as a textbook for 
public health informatics students, (2) as a reference for health departments that are 
exploring modern information technology to support their surveillance activities, and 
(3) as training material for workshops that are components of disease surveillance and 
public health conferences. 

The contents of this book provide insight into not only the technology but also 
into the difficulties and the successes that the public health community has had with 
the implementation and operational use of advanced disease surveillance systems. 
Hence, chapter authors provide not only the views of academics and developers of the 
technology, but also of users from health departments in the United States, Canada, 
United Kingdom, South America, and Asia. This wide variety of perspectives will 
hopefully provide a broad and balanced treatment of issues related to developing and 
operating advanced surveillance systems. 

The book is divided into three parts. Following an introductory chapter (Chapter l) ,  
the first part (Chapters 2 through 5) presents the methods and technologies needed to 
implement a modern disease surveillance system, including the data sources currently 
being used in syndromic surveillance systems (Chapter 2 ) ;  the mechanisms for the 
acquisition of data for surveillance systems (Chapter 3); an overview of analytical 
methods for the recognition of abnormal trends within the data captured for surveil- 
lance (Chapter 4); and some basics of systems architectures, text parsing, and data 
visualization techniques (Chapter 5). 

The second part of the book (Chapters 6 through 9) is devoted to case studies of 
modern disease surveillance systems and provides examples of several implementa- 
tions in the United States, Canada, Europe, and Asia. These chapters indicate the 
breadth of the techniques used across the globe in applications of modern technology 
to disease surveillance. 

The third and last part of this book (Chapters 10 through 12) addresses practical 
questions regarding the evaluation of disease surveillance systems, education of future 
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public health informatics personnel and disease surveillance practitioners, and a look 
to the future to consider how technology will continue to influence the practice of 
disease surveillance. 
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1 Disease Surveillance, a Public 
Health Priority 

Joseph S .  Lombardo, David Ross 

Pandemic influenza, West Nile virus, severe acute respiratory syndrome (SARS), 
and bioterrorism are a few of the current challenges facing public health officials. The 
need for early notification of, and response to, an emerging health threat is gaining 
increasing visibility as public opinion increases the pressure to reduce the mortality 
and morbidity of health threats. With the greater emphasis on the early recognition and 
management of health threats, federal, state, and local health departments are turning 
to modem technology to support their disease surveillance activities. Several modern 
disease surveillance systems are in operational use today. This book presents the 
components of an effective automated disease surveillance system and is intended for 
use by public health informatics students, masters of public health students interested 
in modern disease surveillance techniques, and health departments seeking to improve 
their disease surveillance capacities. 

This introductory chapter provides an overview of the changing requirements for 
disease surveillance from the perspective of past, present, and future concerns. It 
includes a brief history of how technology has evolved to enhance disease surveillance, 
as well as a cursory look at modern disease surveillance technology and activities. 

1.1 INTRODUCTION 

Control of infectious diseases is a cornerstone of public health. Various surveillance 
methods have been used over the centuries to inform health officials of the presence 
and spread of disease. The practice of disease surveillance began in the Middle Ages 
and evolved into the mandatory reporting of infectious disease cases to authorities 
responsible for the health of populations. 

A common definition of surveillance is “the ongoing systematic collection, analysis, 
and interpretation of outcome-specific data for use in planning, implementation, and 
evaluation of public health practice” [l]. One of the more challenging aspects of 
public health surveillance is the early identification of infectious disease outbreaks 
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that have the potential to cause high morbidity and mortality. In recent years, concern 
over potential uncontrolled outbreaks due to bioterrorism or the appearance of highly 
virulent viruses such as avian influenza has placed increased pressure on public health 
officials to monitor for abnormal diseases. Public concern was heightened when at the 
beginning of the twenty-first century, the dissemination of a biological warfare agent 
through the U.S. mail system revealed weaknesses in the ability of existing public 
health surveillance systems to provide early detection of a biological attack. 

Containment of potential outbreaks is also confounded by advances in transporta- 
tion technology. Modem transportation systems permit communicable diseases to be 
carried around the world in hours over many public health jurisdictions. Health author- 
ities can no longer simply be concerned only with the health status of the populations 
they serve; they must also cooperate and collaborate in surveillance and containment 
activities at regional, national, and international levels. 

The Internet is an enabling technology for collaboration across wide geographic 
areas. Information technology in general is also playing a vital role in the timely 
capture and dissemination of information needed for identification and control of 
outbreaks. The subject of this book is the use of modem information technology to 
support the public health mission for early disease recognition and containment. 

1.2 THE EMERGING ROLE OF INFORMATICS IN PUBLIC HEALTH 
PRACTICE 

For more than 50 years, public health has been undergoing a change in identity 
that strongly affects how the public health sector envisions the use of information 
technologies. Public health is best viewed as an emergent industry. It has grown 
from a collection of single-purpose disease prevention and intervention programs to 
a national network of professionals linked through professional and organizational 
bonds. The 1988 Institute of Medicine report titled “The Future of Public Health” 
recognized that public health was established around three core functions and 10 
essential services. 

The core functions are: 

0 Assessment 

0 Assurance 

0 Policy development 

The 10 essential services are: 

1. Monitor health status to identify and solve community health problems. 

2.  Diagnose and investigate health problems and health hazards in the community. 

3. Inform, educate, and empower people about health issues. 
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4. Mobilize community partnerships to identify and solve health problems. 

5. Develop policies and plans that support individual and community health efforts. 

6. Enforce laws and regulations that protect health and ensure safety. 

7. Link people to needed personal health services and assure the provision of 
health care when otherwise unavailable. 

8. Assure a competent public health and personal health care workforce. 

9. Evaluate effectiveness, accessibility, and quality of personal and population- 
based health services. 

10. Research for new insights and innovative solutions to health problems, 

Information is one of the central products produced by public health. Protecting 
community health; promoting health; and preventing disease, injury and disability 
require vigorous monitoring and surveillance of health threats and aggressive appli- 
cation of information and knowledge by those able to prevent and protect the public’s 
health. Thus, public health informatics supports the activities, programs, and needs of 
those entrusted with assessing and ensuring that the health status of entire populations 
is protected and improves over time. 

Public health informatics has been defined as the systematic application of infor- 
mation and computer science and technology to public health practice [2]. The topic 
supports the programmatic needs of agencies, improves the quality of population- 
based information upon which public health policy is based, and expands the range of 
disease prevention, health promotion, and health threat assessment capability extant 
in every locale throughout the world [3]. In the future, public health informatics may 
change to be defined as informatics supporting the public’s health, a discipline that 
may be practiced beyond the walls of the health department. 

In 1854, John Snow conducted the first comprehensive epidemiological study by 
linking the locations of cholera patients’ homes to a single water pump. In doing 
so, he established that cholera was a waterborne disease. Using visual data, Snow 
quickly convinced the authorities to remove the pump handle. Following that simple 
intervention, the number of infections and deaths fell rapidly [4]. 

Over the past 30-50 years, public health programs have emerged around specific 
diseases, behaviors, or intervention technologies (e.g., immunization for vaccine pre- 
ventable diseases), each having specific data and information needs. Not surprisingly, 
information systems were developed to meet the specific needs of each categorical 
program, and a culture of program-specific information system design permeated pub- 
lic health thinking. By the mid-l990s, leaders in public health acknowledged the need 
to rethink public health information systems, conceive of systems as support tools 
for enterprise goals, and do so through nationally adopted standards. As noted in [3] 
“Public health has lagged behind health care delivery and other sectors of industry 
in adopting new information technologies, in part because public health is a public 
enterprise depending on funding action by legislative bodies (local, state, and federal). 
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Additionally, adoption of new technologies requires significant effort to work through 
government procurement processes.” A 1995 Centers for Disease Control and Pre- 
vention (CDC) study reported that integrated information and surveillance systems 
“can join fragments of information by combining or linking the data systems that 
hold such information. What holds these systems together are uniform data standards, 
communications networks, and policy-level agreements regarding confidentiality, data 
access, sharing, and reduction of the burden of collecting data” [ 5 ] .  

In the late 1990s, it became apparent that public health should be more com- 
prehensive in understanding disease and injury threats. Reassessing its information 
mission has led federal programs such as CDC and Health Resources Service Ad- 
ministration (HRSA), to view information system integration as the driver for future 
information system funding. Integration across programs and organizations requires 
interoperability: data from various sources being brought together, collated in a com- 
mon format, analyzed, and interpreted without manual intervention. Interoperability 
also requires an underlying architecture for data coding, vocabularies, message for- 
mats, message transmission packets, and system security. Interoperability implies 
connectedness among systems, which requires agreements that cover data standards, 
communications protocols, and sharing or use agreements. Interconnected, interop- 
erable information systems will allow public health to address larger aspects of the 
public’s health. The twenty-first century will probably be seen as the enterprise era of 
public health informatics. Once the domain of humans alone, the process of gathering 
and interpretating data should now be mediated by computers. Major advances in 
the quality, timeliness, and use of public health data will require a degree of machine 
intelligence not presently embedded in public health information systems [6]. 

The context in which informatics can contribute to public health progress is chang- 
ing. New initiatives within public health and throughout the health care industry 
portend changes in how data are captured, the breadth of data recorded, the speed with 
which data are exchanged, the number of parties involved in the exchange of data, 
and how results of analyses are shared. Increasing use of electronic health record 
systems provides an opportunity to gather more granular, discrete data from a variety 
of sources, including nursing, pharmacy, laboratory, radiology, and physician notes, 
thereby changing the specificity and timeliness of knowledge about the distribution of 
risk factors, preventive measures, disease, and injury within subpopulations. 

As agreements are reached on the major information architectural standards (data, 
transmission, and security) and appropriate approaches to governance and viable 
business models can be demonstrated, health information exchanges will emerge to 
assist and transform how health care is delivered. Public health considerations must 
be central to this transformation, and public health informatics will be central to how 
public health agencies participate in this rapidly evolving environment. 
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1.3 EARLY USE OF TECHNOLOGY FOR PUBLIC HEALTH PRACTICE 

There are historical accounts in the bible of social distancing as a control measure to 
stop the spread of leprosy. During the spread of plague in Europe in the fourteenth 
century, public health authorities searched vessels looking for signs of disease in pas- 
sengers waiting to disembark. In the United States, the practice of disease surveillance 
by public health inspection at immigration has been highly publicized as a result of 
the renovation of Ellis Island. The immigration law of 189 1 required a health in- 
spection of all immigrants coming into the United States by Public Health Service 
physicians. Between 1892 and 1924, over 22 million immigrants seeking to become 
American citizens were subject to health inspections (Fig. 1.1). The law stipulated the 
exclusion of “all idiots, insane persons, paupers or persons likely to become public 
charges, persons suffering from a loathsome or dangerous contagious diseases” [7]. 
Technology was limited to paper-and-pencil recordkeeping for these surveillance and 
control activities. 

Fig. 1.1 
trachoma. (Photo courtesy of the National Library of Medicine) 

Public health inspectors at Ellis Island looking at the eyes of immigrants for signs of 

1.3.1 

One of the earliest technologies used in disease surveillance was the statistical inter- 
pretation of mortality data. In 18.50, William Farr analyzed the 1849 cholera outbreak 
in London by deriving a mathematical solution using multiple causation [8]. 

Florence Nightingale used statistical methods to fight for reform in the British 
military. She developed the polar-area diagram to demonstrate the needless deaths 

Early Use of Analytics, Visualization, and Communications 
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caused by unsanitary conditions during the Crimean War (1854-1 856). Nightingale 
was an innovator in the collection, tabulation, interpretation, and graphical display of 
descriptive statistics. Figure 1.2 is Florence Nightingale’s famous diagram depicting 
the causes of mortality for British troops during the Crimean War. The circle in 
the figure is divided into wedges, each representing a month of the war. The radius 
of each wedge is equal to the square root of the number of deaths for the month. 
The area of each wedge, measured from the center, is proportional to the statistic 
being represented. Dark gray wedges represent deaths from “preventable or mitigable 
zymotic” diseases (contagious diseases such as cholera and typhus), medium gray 
wedges represent deaths from wounds, and light gray wedges are deaths from all other 
causes [9]. 

Another example of the use of graphics to support epidemiological investigations 
is the 1869 chart by C. J. Minard describing Napoleon’s ill-fated 18 12-1 8 13 march to 
Moscow and back [lo]. Figure 1.3 is Minard’s chart. The upper portion of the chart 
provides the strength of the French forces as a function of time superimposed on a 
map of Russia. The gray band is a measure of the size and location of the force as it 
advanced to Moscow; the black band represents the size and location of the retreating 
forces. On the lower portion of the chart is a record of the temperatures that the army 
encountered upon their retreat. Napoleon’s army numbered 422,000 when it crossed 
the Polish border on the way to Russia. Only 100,000 survived to participate in the 
battle at Moscow. The returning army facing the Russians at the Battle of Berezina 
numbered only 19,000. The returning forces suffered massive casualties due to disease 
and hypothermia associated with the declining temperatures. Temperatures in Russia 
dropped to -35 degrees Celsius during the campaign. 

The invention of the telegraph and Morse code in the mid nineteenth century 
provided a means for rapid dissemination of information over a wide geographic area. 
This technology had important implications for public health surveillance. During the 
Spanish Flu outbreak in 1918, the telegraph and the weekly Public Health Reports 
became essential tools to provide the Public Health Service with surveillance data on 
the progression of the pandemic. 

1.3.2 

Medical computing applications evolved with the development of computing tech- 
nology. The very earliest applications were patient records to support diagnosis and 
clinical laboratory work. Bruce Blum describes the objects that are processed by 
computers as data, information, or knowledge [ 111. A data point is a single measure- 
ment, element of demographics, or physical condition made available to the computer 
application or analyst. Information is a set of data with some interpretation or pro- 
cessing to add value. Knowledge is a set of rules, formulas, or heuristics applied to 
the information and data to create greater understanding. 

Early Informatics Applications in Medicine & Public Health 
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Applications using data were introduced in the 1960s when the IBM 1401 main- 
frame computer found use in university and research settings. In the 1970s, with 
the advent of low-cost minicomputers, such as the DEC PDP series or Data General 
Nova series, computer processing applications were developed to create information 
to support diagnosis in various branches of medicine. Medical imaging made great 
advances because images could now be acquired, stored, and processed as individual 
pixels, permitting multidimensional slices with high resolution. In 1970, a prototype 
computerized tomography system, developed by Grant [ 121, enabled multiaxis images 
to be acquired of a region under investigation. By 1973, Ledley had begun devel- 
opment of a whole-body CT scanner, called the automatic computerized transverse 
scanner (ACTA), which began clinical service early in 1974 [ 131. 

One of the initial languages developed specifically for the organization of files 
in the health care industry was the Massachusetts General Hospital Utility Multi- 
programming System (MUMPS). The language was developed by Neil Pappalardo, 
an MIT student working in the animal laboratory at Massachusetts General Hospital 
in Boston during 1966 and 1967. The original MUMPS system was built on a 
spare DEC minicomputer. MUMPS was designed for building database applications 
that help programmers develop applications that use as few computing resources as 
possible. The core feature of MUMPS is that database interaction is built transparently 
into the language [14]. 

The Veterans' Health Administration (VHA) adopted MUMPS as the programming 
language for an integrated laboratory/pharmacy/patient admission, tracking, and dis- 
charge system in the early 1980s. This system, known originally as the Decentralized 
Hospital Computer Program (DHCP), has been extended continuously in the years 
since. In March 1988, the Department of Defense launched the Composite Health 
Care System (CHCS), based on the VHA's DHCP software, for all of its military 
hospitals [15]. DHCP and CHCS form the largest medical records archiving systems 
in the United States. These archives are sources of indicators of emerging diseases 
and outbreaks. 

1.3.3 Public Health Records Archiving 

In the United States, state and local health departments have taken on the role of col- 
lecting and archiving vital statistics for the populations they serve. Health departments 
issue certified copies of birth, death, fetal death, and marriage certificates for events 
that occur in their population. Many departments also provide divorce verifications 
and registries on adoption and act as adjudicators of paternity. 

The National Center for Health Statistics (NCHS) is the lead U.S. federal govern- 
ment agency for collecting, sharing, and developing procedures and standards for vital 
statistics. The NCHS is the oldest and one of the first examples of intergovernmental 
data sharing in public health. The data are provided through contracts between NCHS 
and individual record systems operated in the various jurisdictions legally responsi- 
ble for the registration of vital events: births, deaths, marriages, divorces, and fetal 
deaths. In the United States, legal authority for maintaining registries of vital events 
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and for issuing copies of birth, marriage, divorce, and death certificates resides with 
the states, some individual cities (Washington, DC, and New York City), and the 
territories [16, 171. 

In 1916, the Illinois Department of Public Health (IDPH) assumed responsibility 
for collecting data on vital events such as live births, still births, and deaths. In 1938, 
the department acquired IBM tabulation equipment for the generation of vital statistics 
and other health data. A computer was first used in population monitoring to support 
the Census Bureau in tabulating data from the 1950 census. In 1962, the IDPH became 
the first state health department to convert its applications on tabulation equipment 
to the newly acquired IBM 1401 computer. Many applications were developed for 
the IDPH computers, one of the most famous for a large salmonellosis outbreak in 
1985. The IDPH identified communications with local heath departments as a major 
weakness to the response. As a result, a minicomputer network was established 
that used modems and phone lines to pass information among state and local health 
departments. This system was known as the Public Health Information Network [ 181. 

1.4 GUIDING PRINCIPLES FOR DEVELOPMENT OF PUBLIC HEALTH 
APPLICATIONS 

The Public Health Informatics Institute (PHII) was formed in 1992 with a grant from 
the Robert Wood Johnson Foundation. The Institute helps to foster applications 
that provide value to public health rather than just using the latest technology for 
technology’s sake [19]. The Institute has outlined a set of principles to assist in 
guiding the development and use of computer applications for public health [20]: 

1. Engage all stakeholders throughout the life cycle of the project. 

2. Consider the business processes and operational constraints and develop the 
requirements prior to system design. In other words, think logically before 
physically. 

3. Plan for the system to be interoperable with emerging standards such as the 
Public Health Informatics Network. 

4. Manage the project and maintain accountability through the use of detailed 
plans, status reports, and meetings to help focus the project on obtaining its 
goals. 

Figure 1.4 provides a graphical representation of the PHII principles and the four 
major steps in the development of a public health informatics application. The first step 
is to determine how the new system can improve health outcomes by quantifying the 
health problem, developing a business case for the system, and defining the indicators 
for measuring success. The second step is to determine how the work will be accom- 
plished through a series of analyses to define the workflow and business processes that 
will support the application. The third step is to determine the requirements for the 
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application through performance requirements analysis and system design. Once the 
system is implemented, the final step is to determine how success will be measured 
through an evaluation and a series of metrics that measure the performance of the sys- 
tem. For advanced disease surveillance systems, the Centers for Disease Control and 
Prevention (CDC) has developed a framework for evaluating syndromic surveillance 
systems that contains a series of metrics [21,22]. The framework assumes that the sys- 
tem has been fully developed and operational for several years; thus, a comprehensive 
evaluation in the early implementation stages of the system using the framework is 
not possible. It is one of the most comprehensive sets of metrics developed for disease 
surveillance systems. See Chapter 10 for a discussion of this and other frameworks. 

Fig. 1.4 Principles and approach for planning and design of an enterprise information system. 
(From Public Health Informatics Institute [20], OPHII) 
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1.5 INFORMATION REQUIREMENTS FOR AUTOMATED DISEASE 
SURVEILLANCE 

James Jekel describes surveillance as the entire process of collecting, analyzing, in- 
terpreting, and reporting data concerning the incidence of death, diseases, and injuries 
and the prevalence of certain conditions whose knowledge is considered important for 
promoting the health of the public [23]. Most surveillance systems are developed and 
implemented with a clear objective of the specific outcome being sought. Examples 
are the linkage of specific environmental risk factors to chronic diseases such as cancer 
or monitoring of behavioral factors associated with the transfer of sexually transmit- 
ted diseases (STDs). As mentioned earlier, a main focus of this book is surveillance 
systems for the early recognition of outbreaks due to highly infectious diseases that 
have a potential for high morbidity and mortality, such as virulent forms of influenza 
or disease agents of bioterrorism. A main objective of a system developed around 
this focus is to reduce the number of cases by enabling the administration of prophy- 
laxis rapidly or by allowing for social distancing to reduce the spread of disease. To 
achieve this objective, a disease outbreak must be recognized in the very early stages 
for a highly contagious disease such as influenza or during the initial symptoms of 
a disease like anthrax so that treatment and control efforts still have a high chance 
of a successful outcome. Traditional disease surveillance and response can be repre- 
sented by the steps shown in Fig. 1.5. Health departments have traditionally relied on 
reporting from health care providers or laboratories before initiating epidemiological 
investigations. This surveillance approach is highly specific, but neither sensitive or 
timely. In the case of anthrax, preventing the mortality of those infected relies on the 
rapid identification and treatment of the disease. 

One potential approach for early identification of abnormal disease in a community 
is to collect and analyze data that are not used traditionally for surveillance and may 
contain early indicators of the outbreak. This approach relies on capturing health- 
seeking information when a person becomes ill. The concept of how such a system 
may operate is illustrated in Fig. 1.6. The concept is based on the assumption that 
a pathogen is released into the environment either in the air or in the water supply. 
If some type of sensor is present that can detect the presence of the pathogen and 
determine its identity, the detection phase is complete, but it is not possible for sensors 
to be located everywhere. Also, environmental sensors may be of little value if 
the health threat is due to highly contagious persons rather than pathogens released 
into the environment. If biological or chemical material has been released into the 
environment, the effect may be seen in animals, birds, and plant life, as well as in 
humans. Zoonotic diseases such as West Nile virus may first present with animal 
illness and death before presenting in humans. 

Several types of data are collected routinely for purposes other than disease surveil- 
lance could contain indicators and warnings of an abnormal health event. When 
continual feeds are established for these data, analytical techniques can be applied 
to identify abnormal behavior. Signals identified through this process can fall into 
several different classes, where the most important is an outbreak with the potential 
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for high morbidity or mortality in the population. Once it has been established that 
the signal is of importance, additional data are needed to understand what is occurring 
before a public health response can be executed. 

Following the detection of a statistical aberration in surveillance data, several 
questions must be answered. What disease is present, and what agent is causing it? 
What are the characteristics of the disease and what methods are used to treat the 
disease? Where and when did people get infected? Was the exposure at a single 
point over a short duration, or was exposure over an extended time period and a large 
geographic area? Knowledge of the population at risk is also necessary to assess the 
potential public health implications of a surveillance alarm. If the disease is highly 
contagious, is it contagious before symptoms develop, and which persons are at risk 
of being infected by contact with those initially infected? Where are those who have 
been infected, and how can they be contacted? These are just a few of the questions 
for which answers would be urgently needed. 

Health departments need the answers to these questions to develop and execute 
a response to contain an outbreak. However, surveillance systems that use non- 
specific data as early indicators of disease cannot provide many answers; traditional 
epidemiological investigations are still needed. The best modern disease surveillance 
systems recognize this burden and attempt to collect as much data as possible to assist 
investigators in pulling together as much information as possible in a timely manner. 

1.6 HISTORICAL IMPACT OF INFECTIOUS DISEASE OUTBREAKS 

Modern medicine has had a significant impact on the control of infectious disease 
outbreaks. During the majority of the past century, Western countries have had 
abundant supplies of vaccines and antibiotics to control emerging outbreaks. A large 
outbreak of an unknown strain of an infectious disease agent or a large bioterrorist 
event could overburden the ability of the medical communities to give high-quality 
care to all those infected. A review of the history of significant outbreaks provides 
insight into the challenges facing the public health community. 

1.6.1 Smallpox 

One of the most significant diseases in the history of humankind is smallpox. Early 
accounts of smallpox date back to 10,000 B.C., when it appeared in the agricultural 
settlements of northeastern Africa [24]. Egyptian merchants helped to spread the 
disease to India in the last millennium B.C. Lesions resembling smallpox were found 
on the faces of mummies, including the well-preserved mummy of Ramses V, who 
died in 1157 B.C. 

Western civilization has been affected greatly by smallpox. The plague of Anto- 
nine, around A.D. 180, killed between 3.5 and 7 million persons and coincided with 
the beginning of the decline of the Roman Empire [25, 261. Arab expansionism, 
the Crusades, and the discovery of the West Indies all contributed to the spread of 
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smallpox. The disease was introduced into the new world by Spanish and Portuguese 
conquistadors and contributed to the fall of the Aztec and Inca empires. During the 
decade following the Spanish arrival in Mexico, the population decreased from 25 
million to 1.6 million, with disease contributing significantly to the decline [27]. 

The diseases that ravaged Europe and Asia for centuries were for some time 
unknown to Native North Americans. Ultimately, infectious diseases introduced by 
expansionism devastated the American Indian, with the greatest number of deaths 
caused by smallpox - sometimes intentionally. During the Indian siege of Fort Pitt 
in the summer of 1763, the British sent smallpox-infected blankets and handkerchiefs 
to the Indians in a deliberate attempt to start an epidemic [28]. The plan to infect 
the Indians and quell the siege was documented in a letter written by Colonel Henry 
Bouquet to Sir Jeffrey Amherst, the commander-in-chief of British forces in North 
America. 

In 1796, Edward Jenner, an English physician, observed that dairymaids who 
contracted cowpox, a much milder disease, were immune to smallpox. With serum 
taken from a dairymaid, Jenner began vaccination. When it was available, vaccination 
became an effective way of controlling the spread of smallpox. 

In 1947, the Soviet Union established its first smallpox weapons factory in Zagorsk 
just northwest of Moscow. Animal tests showed that fewer than five viral particles 
were needed to cause infection in 50 percent of subjects. In comparison, 1500 plague 
cells and 10,000 anthrax spores were needed to achieve the same results. By 1970, 
smallpox was considered so important to the biological weapons arsenal that over 20 
tons were stored annually at Zagorsk for immediate use [29]. 

In 1967, the World Health Organization (WHO) initiated a mass vaccination pro- 
gram that resulted in the eradication of smallpox by 1978 [30, 31, 321. On May 8, 
1980, WHO announced that smallpox had been eradicated from the planet. Smallpox 
immunization programs were discontinued, and only limited quantities of the virus 
were retained for research purposes at the Centers for Disease Control in Atlanta and 
the Ivanovsky Institute of Virology in Moscow. Coincidently, the Soviet weapons pro- 
gram, Biopreparat, included smallpox in the weapons improvement list in its five-year 
1981-1985 plan [29]. 

1.6.2 Plague 

Bubonic plague. or Black Death, left an indelible mark on history. In 1346, there 
were fearful rumors of plague in the East at major European seaports. India was 
depopulated; Tartary, Mesopotamia, Syria, and Armenia were covered with dead 
bodies. The disease traveled from the Black Sea to the Mediterranean in galleys 
following the trade routes to Constantinople, Messina, Sicily, Sardinia, Genoa, Venice, 
and Marseilles. By 1348, the Black Death had taken a firm grip on Italy. Between 
the years 1347 and 1352, plague accounted for the destruction of one third to one 
half the population of Europe, approximately 25 million victims. The disease terrified 
the populations of European cities because it struck so swiftly and consumed a town 
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or city within weeks. Victims died within days in agony from fevers and infected 
swellings [33]. 

Plague had been around London since it first appeared in Britain in 1348, but 
in 1665, a major outbreak occurred. Two years earlier, plague ravaged Holland. 
Trade was restricted with the Dutch, but despite the precautions, plague broke out in 
London, starting in the poorer sections of the city. Initially, the authorities ignored 
it, but as spring turned into one of the hottest summers in recent years, the number 
of deaths increased dramatically. In July, over 1000 deaths per week were reported, 
and by August, the rate peaked at over 6000 deaths per week. A rumor that dogs and 
cats caused the spread resulted in a drastic reduction in their numbers, leaving the 
plague-carrying rats without predators. 

Control measures consisted of quarantining families in their homes. When a person 
in a household became infected, the house was sealed until 40 days after the victim 
either recovered or died. Guards were posted at the door to see that no one left. The 
guard had to be bribed to allow any food to pass to the homes. Accounting for victims 
was difficult because the quarantine measures were so harsh that families were not 
willing to report the death of family members. Nurses went from door to door in an 
attempt to quantify the number dead. Estimates are that over 100,000 people (about 
a quarter of the population of London) perished in the outbreak. In 1666, the Great 
Fire of London burned down the city slums and brought the plague under control. 

1.6.3 Spanish Influenza, 1918 

In colonial times, laws were passed mandating the reporting of smallpox, yellow 
fever, and cholera [24]. By the nineteenth century, mandatory reporting at the state 
and federal levels became common. During the twentieth century, increasing use 
of vaccines and antibiotics, improvements in communication, and the dedication of 
individuals and organizations led to a significant decline in morbidity and mortality 
due to highly contagious diseases. The twentieth century also saw the pandemic or 
world-wide epidemic of the Spanish influenza of 1918 and the belief by government 
leadership that modern medicine had conquered the risk of infectious disease outbreaks 
by the end of the century. These beliefs led to complacency in allocating funding to 
improve disease surveillance activities. 

There were three major pandemic influenza outbreaks in the twentieth century 
[34]. In 1918-1919, Spanish influenza, caused by the H l N l  subtype of the influenza 
A virus, infected up to one-third of the world's populations.' The pandemic erupted 
during the final stages of World War I and ultimately killed more people than the 
war. The number of dead is estimated at between 20 and 40 million, with the exact 

lInfluenza A virus subtypes are labeled by an H number and an N number. The H number represents HA 
antigens or hemagglutinin proteins and varies from H1 to H16. The HA antigen is responsible for binding 
the virus to the cell. The N number represents the NA antigen, or neuraminidase enzyme, and varies from 
N1 to N9. The NA antigen is responsible for releasing the virus from infected cells. H l N l  is a subtype of 
the of avian influenza virus species 
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numbers unknown due to inadequate reporting. In the United States, the outbreak 
claimed 675,000 lives. It has been cited as the most devastating epidemic in recorded 
world history. More people died of influenza in a single year than in the four years of 
the Black Death from 1347 to 1351. 

From analysis to determine the virulence of the H l N l  virus strain, a U.S. Armed 
Forces Institute of Pathology study determined that the Spanish influenza could first 
have appeared in a young British soldier during the Battle of the Somme in 1916 [35]. 
In 1916, supply lines stretching through the French town of Etaple comprised not only 
hundreds of thousands of troops but also piggeries and chicken coops to supply food 
for the forces. Etaple could have been the incubation site for the transfer of the virus 
from chickens and pigs to humans. The Institute of Pathology study also included 
the collection of virus samples from victims buried in the Alaska permafrost. Using 
documentary evidence and new genetic clues, researchers have been able to trace the 
flu’s spread in three waves around the world. These studies are being used to speculate 
about the impact of a potential H5N1 Avian Influenza pandemic [36]. 

Camp Funston provides a graphic example of how the 1918 pandemic ravaged 
communities. The 29th Field Artillery Battalion was constituted on July 5, 1918, as 
part of the Army’s 10th Division at Camp Funston, Kansas. There, they underwent 
equipment issue and tactical training and began preparations to deploy to Europe. 
However, during this period, Camp Funston suffered an influenza outbreak that devas- 
tated the installation. Figure 1.7 shows an emergency hospital set up at Camp Funston 
to care for the influenza patients. By the end of October 1918, there were 14,000 
reported cases and 861 deaths in Camp Funston alone. The State of Kansas reported a 
total of 12,000 deaths by the time the flu had run its course and the units were healthy, 
the war had ended. Camp Funston was originally considered the initial site of the 
Spanish Influenza outbreak. 

There are still several questions regarding the characteristics of the 1918-1919 
pandemic. Figure 1.8 gives the mortality rate in the United Kingdom for the Spanish 
Flu. Three distinct waves occurred: in the spring of 1918, the fall of 1918, and the 
late winter of 1919. The first two waves of the pandemic occurred at a time of the year 
unfavorable to normal influenza virus strains. Could the virus have mutated around 
the world so quickly and simultaneously? 

Another major difference between the pandemic strain and normal flu related to 
the groups affected. Mortality for influenza typically occurs among the very young or 
aged populations. In the 1918-1919 pandemic, disproportionate numbers of healthy 
young adults became victims. One theory is that earlier circulating influenza strains 
provided partial immunity for those exposed to a similar strain of the virus. The 
elderly would have been exposed to many more strains. Because most elderly could 
be expected to have weaker immune systems, the rates remained high. Figure 1.9 
provides a comparison of the number of deaths per 100,000 persons in the United 
States by age group during 1911-1917 with those that occurred during 1918. 



18 DISEASE SURVEILLANCE 

Fig. 1.7 
1918 influenza epidemic. (Photo courtesy of the National Museum of Health and Medicine) 

Emergency hospital set up in Camp Funston, Kansas, during the beginning of the 
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1919. 

Combined influenza and pneumonia mortality rate in the United Kingdom for 1918- 

1.6.4 Influenza Pandemics after 1918 

Two influenza pandemics have swept the world since 1919: the Asian influenza 
pandemic of 1957 (H2N2) and the Hong Kong influenza pandemic of 1968 (H3N2), 
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Fig. 1.9 Combined influenza and pneumonia mortality by age at death per 100,000 persons in 
each age group, United States, 191 1-1918. Influenza- and pneumonia-specific death rates are 
plotted for the nonpandemic years 191 1-1917 (dashed line) and for the pandemic year 1918 
(solid line). 

both of which were avian influenza viruses. The Asian flu pandemic probably made 
more people sick than the pandemic of 1918, but the availability of antibiotics to 
treat the secondary infections resulted in a much lower death rate. Asian flu was 
first identified in China in February 1957. The virus was quickly identified due to 
advances in scientific technology, and vaccine production began in May 1957, before 
the disease spread to the United States in June 1957. By August 1957, vaccine was 
available in limited supply in the United States. The virus claimed 1 million victims 
worldwide. 

The Hong Kong flu pandemic strain of H3N2 evolved from H2N2 by antigenic shift. 
Antigenic shift is the process by which two different strains of influenza combine to 
form a new subtype with a mixture of the surface antigens of the two original strains. 
Annual flu virus mutation occurs through a process called antigenic d r f t ,  where the 
surface proteins change slowly over time. The body’s immune system can react to slow 
changes but cannot readily adapt to a rapid antigenic shift. Because of its similarity 
to the 1957 Asian flu and, possibly, the subsequent accumulation of related antibodies 
in the affected population, the Hong Kong flu resulted in far fewer casualties than in 
most pandemics. Casualty estimates vary; between 750,000 and 2 million people died 
of the virus worldwide during the two years (1968-1969) that it was active [37]. 

A highly virulent form of the avian virus H5Nl is currently being spread across 
the world by migrating waterfowl. Domestic poultry catch the virus from contact 
with migratory birds. Humans have caught H5N1 from close contact with infected 
chickens. Originally endemic only in birds in Southeast Asia, migratory patterns 
threaten to infect birds everywhere. Tens of millions of birds have died of the H5N1 
virus, with hundreds of millions slaughtered in an attempt to control the disease. 
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Figure 1.10 shows an example of the flyways currently being used by migratory bird. 
The flyway patterns cover most populated areas of the globe. 

Fig. 1.10 Flyway patterns of migratory birds. (Adapted from United Nations Food and 
Agriculture Organization Figure [38]) 

The present form of the H5N1 virus does not pass efficiently between humans. 
However, as the virus continues to evolve, another pandemic on the order of the 
Spanish flu is feared. Table 1.1 presents the number of human cases of H5N1 and 
related deaths from 2003 until March 16, 2006. Of the 176 confirmed cases, there 
have been 97 fatalities, yielding a case fatality rate of 56.4%. The rate far exceeds 
that of previous pandemics [40]. 

Table 1.2 provides a list of major outbreaks considered pandemics from an- 
swers.com. There were undoubtedly many more episodes that did not make this 
list due to the lack of documented historical evidence prior to the eighteenth century. 
For the last entry, severe acute respiratory syndrome (SARS), there were fewer than 
10,000 cases of the disease, but air travel spread the previously unknown contagious 
disease quickly. 

1.7 DISEASE AS A WEAPON 

Before the twentieth century, biological weapons were relatively simple. Infected 
materials were used to induce illness in an opponent’s forces, or food or water supplies 
were poisoned. In the sixth century B.C., the Assyrians poisoned the drinking water of 
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Table 1.1 
Reported to WHO as of March 10,2006. Source: World Health Organization [39] 

Cumulative Number of Confirmed Human Cases of Avian Influenza N(H5N1) 

Year Cambodia China Indonesia Iraq Thailand Turkey Viet Nam Total 

2003 
Cases 0 0 0 0 0  0 3 3 
Deaths 0 0 0 0 0  0 3 3 

2004 
Cases 0 0 0 0 17 0 29 46 
Deaths 0 0 0 0 12 0 20 32 

2005 
Cases 4 8 17 0 5  0 61 95 
Deaths 4 5 11 0 2  0 19 41 

2006 
Cases 0 7 11 2 0  12 0 32 
Deaths 0 5 10 2 0  4 0 21 

Total 
Cases 4 15 28 2 22 12 93 176 
Deaths 4 10 21 2 14 4 42 97 

their enemies; in medieval times Mongol and Turkish armies catapulted the diseased 
corpses of animals or humans into fortified castles; and as late as 17 10, Russian armies 
used plague corpses as weapons. During World War I, German agents in the United 
States inoculated horses and cattle with glanders before they were shipped to France 
for use by the Allied powers. 

In 1925, the first international agreement, known as the Geneva Protocol, to limit 
the use of chemical and biological weapons was signed. The Protocol prohibited 
the use in war of asphyxiating gases and of bacteriological methods of warfare. The 
agreement did not address production, storage, or verification mechanisms and could 
not be used to support disarmament. As a result, significant research was performed 
in the twentieth century to increase the performance of biowarfare agents and delivery 
methods. Biological weapons could be developed very cheaply and cause large 
numbers of casualties compared with conventional weapons [4 11. 

The Soviet Union established its biological weapons program in the late 1920s 
after a typhus epidemic in Russia from 1918 to 1922 killed between 2 and 10 million, 
illustrating graphically the destructive and disruptive power of biological weapons. 
From the occupation of Manchuria in 1931 to the end of World War I1 in 1945, the 
Imperial Japanese Army experimented with biological weapons on thousands of Chi- 
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Table 1.2 Documented Pandemics 

165-1 80 Antonine plague (smallpox) 

54 1 

1300s The Black Death (plague) 

Plague of Justinian (bubonic plague) 

1732-1733 Influenza 

1775- 1776 Influenza 

1816-1826 Cholera 

1829-1851 Cholera 

1847- 1848 Influenza 

1852-1860 Cholera 

1857-1859 Influenza 

1863- 1875 Cholera 

1899-1923 Cholera 

1918-1919 Spanish flu (influenza) 

1957-1958 Asian flu (influenza) 

1959-present AIDS 

1960s El Tor (cholera) 

1968-1969 Hong Kong flu (influenza) 

1993- 1994 Plague, Gujarat. India 

2002-2003 SARS 

nese. These experiments were conducted in a disguised water purification plant known 
as Unit 731 at Pingfan, near the city of Harbin in northeastern China [42]. Japanese 
scientists tested plague, cholera, smallpox, botulism, and other diseases on prisoners. 
Their research led to the development of a defoliation bacilli bomb to destroy crops 
and a flea bomb to spread bubonic plague. Initial successes with this technology 
stimulated other developments, which enabled Japanese soldiers to launch biologi- 
cal attacks with anthrax, plague-carrying fleas, typhoid, dysentery, choler, and other 
deadly pathogens. At least 11 Chinese cities were attacked with biological weapons, 
resulting in an estimated 10,000 to 200,000 deaths. In addition, there are firsthand ac- 
counts of the Japanese infecting civilians through the distribution of infected food and 
contaminated water supplies, with estimated casualties of over 580,000 from plague 
and cholera. Following the war, the United States granted amnesty to the Japanese 
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scientists in exchange for their experimentation data. Figure 1.11 shows a human 
vivisection experiment conducted by Unit 73 1 during World War 11, in which a team 
of Japanese surgeons is removing organs while another is taking measurements on the 
organs. 

Fig. 1.11 
biological agent. (From Hal Gold [42], p. 169) 

Japanese vivisection experiment conducted on a Chinese victim infected with a 

In 1941, a biological weapons development program initiated by the United States, 
the United Kingdom, and Canada in response to German and Japanese weapons 
development activities resulted in the weaponization of anthrax, brucellosis, and 
botulinum toxin. During World War 11, the United Kingdom developed the Allies’ 
first anthrax bomb by experimenting with sheep on Gruinard Island in Scotland. Sheep 
were used because they were similar in weight to humans, are highly susceptible to 
anthrax, and are plentiful in the area. The research left the island contaminated with 
anthrax spores (Fig. 1.12). 

In another World War 11 program, termed Operation Vegetarian, the UK manufac- 
tured and planned to drop 5 million anthrax cattle cakes on German beef and dairy 
herds. The plan was to wipe out the German herds and simultaneously infect the 
German human population. Because antibiotics were not available to the general pop- 
ulation, the operation could have caused thousands, if not millions of human deaths. 
The operation was abandoned due to the success of the Normandy invasion. At the 
end of 1945, the British incinerated 5 million anthrax cattle cakes, 

Stockpiles of biological weapons were destroyed after President Nixon unilater- 
ally ended the United States’ offensive biological warfare program. This initiative 
ultimately resulted in the Biological Weapons Convention in 1972. Signers of the 
Convention pledged to never develop, produce, stockpile, acquire, or retain biological 
warfare agents or the means to deliver them. 
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Fig. 1.12 
Association, used with permission.) 

Gruinard Island was the site of an experimental anthrax bomb (AP PhotoRress 

Following World War 11, the Soviet Union formulated a doctrine on the production 
and use of biological weapons. Two types of biological weapons were developed: 
strategic weapons, consisting of such highly lethal agents as anthrax, smallpox, and 
plague, for use on deep targets inside the United States and other countries, and 
operational weapons, to be used to incapacitate vital civilian and military activities 
well behind the battlefront. The latter weapons contained agents causing diseases 
such as tularemia, glanders, and Venezuelan equine encephalomyelitis. Biological 
weapons were not considered for tactical targets because they were not immediately 
effective in stopping advancing forces [43]. 

Concern over the use of biological weapons against civilian populations resulted in 
a research effort within the United States. In June 1965, the U.S. Central Intelligence 
Agency released a harmless simulant into the New York City subway system during 
peak traffic periods to demonstrate the vulnerability of U.S. cities to a covert biological 
warfare attack. These experiments were performed in secret; commuters had no 
knowledge that they had been exposed to the simulant. 

Despite signing the Biological Weapons Convention, the Soviet Union contin- 
ued research and production of biological weapons in a program called Biopreparat 
[29]. The United States was unaware of the program until the first deputy direc- 
tor of Biopreparat, Dr. Kanatjan Alibekov, defected in 1992. The program em- 
ployed 30,000 in the research and development of biological weapons and antidotes. 
Pathogens weaponized or under development included smallpox, bubonic plague, 
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anthrax, Venezuelan equine encephalitis, tularemia, influenza, brucellosis, Marburg 
virus, Ebola virus, and Machupo virus. 

Documented testimony indicated that the Soviets conducted aerosol attacks on 
Laos, Kampuchea, and, eventually, Afghanistan using “yellow rain” (trichothecene 
mycotoxins) and causing thousands of deaths between 1974 and 1981. In 1979, 
an accidental release of Bacillus anthracis spores from the Compound 19 production 
facility in the town of Sverdlovsk resulted in at least 66 fatalities. The Soviets initiated 
mass prophylaxis of the population, burying victims using special procedures without 
the attendance of family members. A massive cover-up of the incident has made it 
difficult to reconstruct the event to determine the actual death toll, but estimates have 
ranged from 200 to 1000. In 1992, President Boris Yeltsin acknowledged that the 
Sverdlovsk incident was an accident involving aerosol release of anthrax spores. 

In 1991, the United Nations’ Bioweapons Inspection Team found evidence that the 
Iraqis were in the early stages of developing an offensive biological warfare capability. 
Inspectors found several state-of-the-art facilities that could have been used for agent 
production, as well as evidence of the weaponization of anthrax, botulinum toxin, 
and aflatoxin [44]. Fortunately, these weapons were not used during Desert Shield or 
Desert Storm. Pressure from the United Nations resulted in the destruction of the Iraqi 
offensive program by 1996. Several other countries have biological warfare programs 
in place or under development, including Russia, Israel, China, Iran, Libya, Syria, and 
North Korea. 

1.7.1 Bioterrorism 

In 1995, the religious cult Aum Shinrikyo released sarin nerve gas in a Japanese 
subway system. The group was subsequently found to have been developing biological 
weapons, including anthrax, botulism, and Q fever. Following an Ebola outbreak in 
1993, the group sent cult doctors and nurses to Zaire to bring back samples of the 
virus for a possible biological weapon. The group staged several unsuccessful attacks 
using their biological weapons before resorting to sarin for the subway attack. 

In September and October 2001, letters containing anthrax spores were mailed 
to addressees in Florida, New York City, and Washington, DC (Fig. 1.13). The 
incident resulted in five fatalities, with more than a dozen victims developing full- 
blown infections. Tens of thousands at risk of exposure were prescribed antibiotics 
prophylactically. The perpetrator of the attacks has not yet been identified, but it is 
known that the strain of anthrax was obtained from the U.S. Army Medical Research 
Institute for Infectious Diseases at Fort Detrick, Maryland. The letters contained 2 
to 3 grams of weaponized spores of remarkable purity, indicating use of the latest 
technology and a well-funded and sizable research program with possible government 
support. The anthrax letters revealed how unprepared the public health infrastructure 
in the United States was to respond to acts of bioterrorism or biowarfare. 
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Fig. 1.13 Example of an Anthrax letter. 

1.8 MODERN DISEASE SURVEILLANCE APPLICATIONS 

1.8.1 Components of an Early Recognition Disease Surveillance System 

In response to the need for earlier recognition of significant health events, health 
departments, academics, and information technologists have developed surveillance 
systems that use data which may provide early indications of disease, but are not 
specific enough to confirm the presence of any particular disease. These routinely 
collected data include records of over-the-counter (OTC) medication sales; school 
absenteeism; school nurse visits; 91 1 calls; calls to poison control centers; reports 
of illness from nursing homes; animal health data; health maintenance organization 
encounter data; and reports of chief complaints from emergency medical services and 
hospital emergency departments. These data sources have some features in common. 
For example, although they may provide an early indication of a health event, they 
do not typically provide a specific signal. OTC medication sales can increase due to 
sales promotions, consumers stocking-up, or just to movement of product displays in 
the store. Data generated by interactions with health care providers are typically more 
specific but arise only when symptoms become uncomfortable enough for a person to 
seek professional help. Figure 1.14 shows data sources that may contain indicators 
of health status. They are arranged from left to right, with the sources on the left 
more likely to provide an earlier but less specific indicator and the sources on the right 
likely to be more specific but less timely. Chapter 2 addresses the value of various 
data sources as indicators of events of interest for public health surveillance. 

Since the attacks of September 11, 2001, in the United States, organizations ac- 
quiring data containing health indicators have been willing to provide data feeds to 
health departments for disease surveillance. Data can be acquired in a variety of 
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Fig. 1.14 Estimation of the value of data sources in surveillance. 

modes, including real-time feeds of the data via a secure connection to the facility or 
batched transmission where data are aggregated over time and sent periodically to the 
surveillance system. Chapter 3 addresses the most common data feeds as well as data 
privacy issues and standards used in the formatting and transmission of data. 

Once data are acquired, a variety of different analytical processes can be applied to 
convert them into information that can be used in surveillance. Statistical algorithms 
are used to find anomalies in individual data streams or in many data streams where 
the data elements are the same, but are coming from different facilities. Examples are 
sales of OTC medications from stores distributed across a region or chief complaint 
data from hospitals distributed across the same region. Analytic techniques may also 
be used to fuse data or information from several data sources to look for abnormal 
patterns that may not be obvious in a single data stream but become evident when 
data sources are used together. There are also analytic techniques for identifing 
clusters in time and space from single or multiple sources of data. Chapter 4 provides 
an introduction to some of the more popular analytical techniques used in modern 
disease surveillance systems. 

Continued operation of a disease surveillance system is an important issue for 
health departments. IT resources must be allocated to operate and maintain the 
application, and an epidemiologist must take time to review the system’s outputs. 
One system’s architecture may fit more readily into a health department’s business 
processes than others. Visualizing data in a specific format may fit more easily 
into a health department’s review protocol than others. Chapter 5 presents different 
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architectures, data processing, and visualization options available to developers of 
disease surveillance systems. 

Because surveillance data may be nonspecific, and because algorithms detect spu- 
rious statistical anomalies as well as events of epidemiological interest, algorithms 
often give rise to false triggers, alarms, or alerts. The greater the number of data 
sources and the larger the number of algorithms applied to the data, the greater the 
potential for false alarms. The astute epidemiologist who is experienced in looking at 
local surveillance data and the alerts coming from a system can dismiss many alarms 
quickly. An experienced epidemiologist also can use the data and information within 
the system to make decisions efficiently about the health status of a population. When 
an epidemiologist cannot dismiss an alerts quickly, additional information may be 
needed to determine its importance to public health. Chapter 6 describes the business 
processes used by health departments to perform surveillance with nonspecific data 
sources. 

The first place to look to for additional data to resolve a suspicious alert is the 
organization that provided the data causing the alert. For example, chief complaint 
data provided by a hospital emergency department may not contain a diagnosis or the 
personnel identifiers needed to contact the person or persons causing the alerts. A 
health department can, however, request that the hospital perform a chart review to 
capture the information needed to resolve the alert. 

Presenting large amounts of disease surveillance data or information in a manner 
that is comprehensible to the users of a surveillance system is a challenge. Data can 
be represented as the aggregate count of patients with the same syndrome, the number 
of OTC medication products sold, or the number of students absent. Information can 
be the outputs of various detector algorithms applied to one or more data streams. 
Information can be presented in graphical terms, such as time-series graphs of counts 
over time, geographic representation of counts by zip code, or census tracks overlaid 
on maps, along with other information needed by the user of the system. 

Figure 1.15 is an example of outbreaks indicated by a time series of counts of the 
number of patients presenting to military clinics in San Diego County with respiratory 
illness. The data in the example are simulated, but they contain many of the charac- 
teristics of previous large respiratory events in the region. The example is taken from 
an exercise performed to evaluate the ability of the ESSENCE surveillance system 
to identify the health status of the population during a simulated bioterrorism event 
(see Section 1.8.2). Several types of data can be shown on the same graph. As seen, 
the graph displays both the total count of patients seen at clinics and the number of 
patients who return after being seen some time during the previous 14 days. Activity 
decreases for two days (Saturday and Sunday), followed by an increase early in the 
week. Counts increase near the end of the time series, which is one indication of the 
beginning of a synthetic outbreak. The detector output is noted by the change in shade 
of the small dot representing the daily patient count. Two levels of threshold levels 
are provided as outputs from the algorithm. The grey shade represents a warning level 
and the black an alert level. Because time-series plots provide an easily interpreted 
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overview of the data, they have become an important visualization tool in modem 
disease surveillance systems. 
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Fig. 1.15 Example of a time-series representation of respiratory syndrome counts. The solid 
lines represent daily counts and the dashed lines represent counts for new patients that have not 
been seen for at least the previous 14 days. 

An example of a geographic representation of data is provided in Fig. 1.16. A map 
of zip codes in San Diego County is overlaid with small squares representing the sites 
of medical treatment facilities. The shade of the square represents the level of activity 
at the facility for the syndrome of interest. The intensity of the shading represents the 
number of patients residing in that zip code who were seen at the treatment facilities. 
This technique allows spatial clusters of disease to be readily identified. Another 
informative representation would be the number of patients seen by zip code where 
people spend most of their time during the day. An example would be work zip codes. 
The representation may identify exposure at the worksite. 

The work zip codes of persons seeking treatment are also an important demographic. 
These data are rarely available for analysis because most disease surveillance systems 
do not capture them. Working adults tend to travel large distances to work, so their 
working zip code is probably different from their zip code of residence. School-aged 
and elderly persons spend more time closer to their zip code of residence. 

For regions of the country where there is a large transient population due to tourism, 
sporting events, or other activities, the local geographic representation of data may 
be of limited value. Other representations for counts and detection results would be 
needed for patients living outside the region under surveillance. 
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Fig. 1.16 Geographical representation of a simulated outbreak in San Diego County from an 
ESSENCE simulation. 

Most modern disease surveillance systems provide some map graphing feature. The 
example shown in Fig. 1.16 is a geographic presentation of the data provided in Fig. 
1.15. Different visualizations may be required for different users: epidemiologists 
reviewing the data would require detail, whereas higher level decision makers would 
require a summary view. Chapter 5 discusses approaches to the visualization of data 
used in modem disease surveillance applications. 

The appropriate definition of regions for the aggregation and analysis of data in 
surveillance at a national or multinational level poses a problem. Algorithms that form 
clusters using all the zip codes or census tracks in the country could be a processing 
bottleneck if innovative analytical techniques are not employed. These concepts are 
explored in more detail in Chapter 4. 

1.8.2 Modern Surveillance Applications for Use by State and Local Health 
Departments 

In the mid to late 1990s, the fear of the reemergence of highly virulent forms of 
naturally occurring infectious diseases such as influenza and tuberculosis (TB), com- 
bined with the ever-increasing threat of bioterrorism, spurred increased development 
of disease surveillance systems. These systems focused on early detection rather than 
specificity of disease identification to reduce the risk of high mortality and morbidity. 

One of the first systems in use was the Electronic System for the Early Notification 
of Community-based Epidemics (ESSENCE), which grew out of a pilot project for 
the Maryland Department of Health and Mental Hygiene and a preventive medicine 
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project at the Walter Reed Army Institute of Research [45, 461. The initial pilot of 
ESSENCE was developed for surveillance during year 2000 celebrations. Develop- 
ment for ESSENCE included the acquisition and evaluation of several data sources 
that could contain early indicators of infectious diseases. An important characteristic 
of ESSENCE is that it was developed in close coordination with the stakeholders in 
health departments, taking into consideration their business processes and operational 
requirements. It was the first system to integrate health indicators from both the mil- 
itary and civilian populations. ESSENCE became operational across the Department 
of Defense and was implemented by the District of Columbia, Maryland, and Vir- 
ginia Health departments in a network that performs surveillance across the National 
Capital Region. The ESSENCE software is provided free to any health department 
that wants to set up its own surveillance system. ESSENCE is designed to be hosted 
locally by health departments so that they can keep the health indicator records within 
their jurisdictions [46,47]. 

The Real-Time Outbreak Detection System (RODS) was developed by the Uni- 
versity of Pittsburgh in conjunction with Carnegie Mellon University. RODS was 
originally developed for use by large medical centers receiving real-time data feeds 
from emergency departments. It was converted for use by health departments in two 
modes. It was the first system to provide a version of its software in open-source 
form on the Internet for download and installation by local users. RODS is also pro- 
vided as an application service provider, connecting local hospitals to archives in the 
RODS Laboratory at the University of Pittsburgh and providing web access to health 
departments using the service [48]. 

The New York City Health Department has responsibility for one of the largest 
and most concentrated populations in the United States. The city is therefore thought 
to be an attractive target for terrorist activities and a favorable environment for the 
spread of naturally occurring diseases. Following the attack on the World Trade 
Center in New York in September 2001, the New York City Department of Health 
and Mental Hygiene initiated a fully operational syndromic surveillance project to 
collect data from emergency departments, pharmacy chains, and other data sources 
[49]. During the first year of operation, the system was able to capture data from 
39 hospitals covering 2.5 million patient visits, or approximately 75% of the total 
visits. The system was able to provide early recognition of seasonal influenza and 
gastrointestinal illness shortly after it became operational. 

The Early Aberration Reporting System (EARS) began as a CDC initiative to 
provide health departments with a set of easy-to-implement analytical tools for ad- 
vanced disease surveillance applications, including bioterrorism monitoring during 
large-scale events. Following the terrorist attacks of September 1 1, 2001, the EARS 
tool evolved into a complete standalone application for download and use by health 
departments. Because it is easy to download, install, and use and is available at no 
cost, various city, county, and state public health officials in the United States and 
abroad have used or are currently using the EARS application [SO]. 

These surveillance systems use data captured for routine business purposes in the 
health care industry so that little additional burden is placed on the facilities providing 
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the data. Another model exists where data are obtained specifically for surveillance 
purposes. Data collected with one of these systems can be much more specific in 
recognizing abnormal disease occurrences. One of the first systems to exploit this 
feature is the Rapid Syndrome Validation Project (RSVP), developed by Los Alamos 
National Laboratory [5 11. Physicians enter records of patient visits to a secure website. 
The physician is made aware of abnormal cases of disease in his or her area. The 
system also works with personal digital assistants (PDAs) to facilitate data entry in 
mobile environments. This form of data capture permits easy entry of animal health 
data by veterinarians and handlers on farms and ranches. This system is available 
commercially under the name SYRIS. 

1.8.3 National Disease Surveillance Initiatives 

Historically, advances in disease surveillance have been made first at the national level 
by federal agencies with resources and requirement sufficient to respond to political 
pressures regarding health matters. In the United States, the National Centers for 
Disease Control and Prevention (CDC) has the clearest mandate at the federal level for 
disease surveillance and control. The Centers have several programs for conducting 
advanced surveillance at the national level and supporting state and local health 
departments in performing their responsibilities within their jurisdictions. Support 
comes in the form of personnel assigned to health departments through the Epidemic 
Intelligence Service (EIS), which is a two-year postgraduate program of service and 
on-the-job training for health professionals interested in the practice of epidemiology. 
At least 25% of all EIS trainees are assigned to local health departments. Funding 
has also been provided to health departments of states and large cities through CDC 
cooperative agreements on public health preparedness and response for bioterrorism. 
These funds are intended to upgrade the preparedness of state and local public health 
jurisdictions for responding to bioterrorism, outbreaks of infectious disease, and other 
public health threats and emergencies. Many of the states have used these funds to 
upgrade their surveillance systems. 

1.8.3.1 National Electronic Telecommunications Surveillance System The Na- 
tional Electronic Telecommunications System for Surveillance (NETSS) is a com- 
puterized public health surveillance information system that provides the CDC with 
weekly data regarding cases of nationally notifiable diseases. Through NETSS, the 
CDC receives reports of notifiable diseases from the 50 state health departments, New 
York City, the District of Columbia, and five U.S. Territories. These reports are ini- 
tiated when health care providers or laboratory directors suspect or diagnose a case 
of disease that is notifiable in their state. When a case of disease is reported at the 
local level, staff members in the local or county health department conduct further 
investigation, implement control measures as needed, and forward the report to the 
state health department. 

Only designated staff in state and territorial health departments or in the New 
York City or District of Columbia health departments may transmit data to the CDC 
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through NETSS. In some states, city and county staff enter data that will ultimately be 
transmitted to the CDC, but the weekly transmission of all reported data is overseen 
by the appropriate state or temtorial health department staff. NETSS does not require 
the use of a specific computer software program. However, data are transmitted 
in common ASCII format, which allows the NETSS system to integrate data from 
surveillance systems throughout the United States. 

Provisional weekly reports of notifiable diseases are published in the CDC’s Mor- 
bidity and Mortality Weekly Report ( M M W R ) .  Final, corrected data are published in 
the annual MMWR Summary of Notifiable Diseases, United States [52]. The NETSS 
program began in 1984 as the Epidemiologic Surveillance Project. By 1989, all 50 
states were reporting to the CDC. 

1.8.3.2 National Electronic Disease Surveillance System In 1995, the CDC ini- 
tiated the National Electronic Disease Surveillance System (NEDSS). The goal of 
NEDSS is the automated capture and analysis of data of public health significance 
from public and private health entities. The vision for NEDSS is a network of com- 
plementary electronic information systems that automatically gather health data from 
a variety of sources on a real-time basis to facilitate the monitoring of community 
health and to assist in the ongoing analysis of trends and detection of emerging public 
health problems. The foundation of NEDSS is a series of standards for the collec- 
tion, archiving, and reporting of significant health events through the use of low-cost 
commercial off-the-shelf (COTS) products to support state and local systems for data 
collection and analysis. The NEDSS system architecture is intended to integrate and 
eventually replace several current CDC surveillance systems, including NETSS and 
systems for reporting HIV/AIDS, vaccine-preventable diseases, and tuberculosis and 
infectious diseases [52]. 

The NEDSS Base System is a platform to support state-notifiable disease surveil- 
lance and analysis activities in a secure environment. The Base System is a modular 
platform that provides a seamless view and management of cross-program data, sup- 
ports the storage and maintenance of data in an integrated database, and supports data 
analysis and visualization activities through the use of specific COTS products [53] .  
States are not required to use the Base System, but funds provided under the CDC 
cooperative agreements require the use of NEDSS standards in the communications 
among NEDSS systems. 

1.8.3.3 Public Health Information Network and BioSense The CDC’s Public 
Health Information Network (PHIN) initiative began in 2004 with the objective of 
implementing a multiorganizational business and technical architecture for interoper- 
able public health information systems. PHIN includes a portfolio of standards and 
software solutions to build and maintain the connectivity among information systems 
throughout the public health sector at the local, state, and federal levels. Applications 
using PHIN standards include systems for disease surveillance, national health status 
indicators, data analysis, public health decision support, information resources and 
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knowledge management, alerting and communications, and the management of public 
health responses [54]. 

BioSense is a CDC initiative to perform advanced disease surveillance at the na- 
tional level [55,56].  BioSense collects and analyzes data from emergency departments 
in large cities, Department of Defense and Veterans Health Affairs ambulatory visits, 
and laboratory test orders from the Laboratory Corporation of America. The applica- 
tion summarizes and presents analytical results and data visualizations by source, day, 
and syndrome for each zip code, state, and metropolitan area through maps, graphs, 
and tables. BioSense data are analyzed at CDC’s BioIntelligence Center and made 
available to local health departments via a secure website. Substantial investments in 
standards and common infrastructure are also being made through Biosense to collect 
real-time hospital data. A goal of BioSense is to permit hospital data feeds to be sent 
to local health department surveillance systems in parallel with the data feed to CDC 
for BioSense. Figure 1.17 provides an example of where the early event detection 
capabilities of BioSense fit into the framework of PHIN. 

Fig. 1.17 Applications using the network standards proposed by PHIN. (From CDC [ 5 5 ,  561) 

1.8.3.4 U S .  Department of Defense Disease Surveillance The U S .  Department 
of Defense (DoD) operates its own version of ESSENCE for surveillance of all U.S. 
military treatment facilities worldwide. Data for the DoD instance of ESSENCE 
come from the TriCare system, which acquires data under the Composite Health Care 
System (CHCS) program. The system is operated by the Office of the Secretary of 
Defense for Health Affairs; users are provided with web access across the globe. 
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The DoD ESSENCE system currently provides service to approximately 800 users 
worldwide, making it the largest modern informatics program for disease surveillance. 

1.9 SUMMARY 

Public health organizations are facing increased challenges in rapidly identifying 
outbreaks in their communities. Health indicator surveillance data and modern infor- 
mation technology has helped to automatically collect, archive, process, and present 
summaries of a communities health status. Most implementations of automated 
surveillance systems lack the desired specificity or timeliness, but provide valuable 
information to monitors of disease surveillance. It is hoped that the information con- 
tained in the following chapters will provide insights to the readers to advance the 
technology and to better meet the challenges of the future. 
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2 Understanding the Data: Health 
Indicators in Disease Surveillance 

Steven Babin, Steven Magruder, Shilpa Hakre, Jacqueline Coberly, Joseph 
S. Lombard0 

A primary goal of using modem technology to monitor infectious diseases is to 
obtain as early as possible an indication that a outbreak might be occurring. In any 
given population over a given time, many diseases are prevalent routinely or are 
endemic and may be considered a normal part of the human ecosystem. Therefore, 
particular diseases of concern must be chosen by public health authorities for routine 
surveillance so that appropriate monitoring and alerting methods may be developed. 
There are many health indicators that may be monitored for this purpose: individual, 
socioeconomic, environmental, and health care usage factors all reflect the health 
status of a population. These indicators reflect determinants of health and health 
outcomes. Health outcomes include morbidity and mortality. Determinants of health 
include genetics; socioeconomic status; drug, alcohol, and tobacco use; educational 
status; health care usage; air quality; environmental conditions; infrastructure quality; 
and health care accessibility. Health care accessibility is affected by such issues as 
race, ethnicity, language, disability, mobility, distance to health care, and the number 
of health care providers in an area. Adverse environmental conditions (including 
flooding, extreme heat, extreme cold, poor air quality, and inadequate water) may be 
more prevalent in some areas than in others. Infrastructure quality includes public 
utilities such as drinking water, sewage treatment, and transportation. Health care 
use comprises such issues as how comfortable people feel about seeking health care 
and how often they seek preventive care. Health determinants and outcomes are 
intricately related, so it can be difficult to measure accurately the influence of a single 
determinant on an outcome. Many determinants influence what happens when a 
person feels unwell, and understanding these determinants and their related outcomes 
is necessary for disease surveillance. For example, when people feel unwell, they 
may first seek remedies from their own medicine cabinet. If they have access to a 
local drugstore (i.e., feel well enough to shop on their own or have someone who will 
shop for them), they may purchase OTC remedies, depending on their needs, income, 
and cultural influences. These drugstore purchases are often the first place that 
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their health-seeking behavior appears in data available for biosurveillance. Additional 
health indicators useful for biosurveillance include patient visits to hospital emergency 
departments (EDs), walk-in clinics, and physician offices; calls to 91 1 and nurse triage 
telephone hotlines; and school absenteeism. This chapter discusses how certain health 
indicators may be used in disease surveillance. General data issues are described first, 
then specific data sources, and, finally, examples of how different data sources might 
be evaluated and compared. 

2.1 DATA SOURCE CONCEPTS 

For daily disease surveillance, where the goal is the earliest possible indication of 
a health anomaly, the focus is on pre-diagnostic data. Not all health indicators 
are easily and electronically accessible for study or are strongly related to public 
health diseases of interest. In automated disease surveillance, the most commonly 
used health indicators are daily physician office visit data, hospital ED visit data, 
hospital admissions data, pharmacy sales, nurse-hotline data, ambulance 9 1 1 calls, 
and laboratory-test requests (as discussed later, test requests are used because they are 
considered pre-diagnostic and are more timely than test results). These indicators are 
likely to provide a signal at different times in the course of disease progression (see 
Fig. 2. l),  depending on the disease and the individual patient. 

Stages of Disease & Health Indicators 

Self-Medicate Phone Triage Lab 
Absent from School Nurse Reporting 
Actlvit’es 0 Physician Radiology 

Emergency 
Dept Visits 
91 1 Calls 
Poison Center 
Calls 
etc 

etc office visits *etc 

Fig. 2.1 Example of a typical progression of disease onset and health care-seeking behavior. 

To facilitate analysis, these data are typically sorted into groups called syndromes 
before anomaly detection algorithms are applied. Thus, this type of disease surveil- 
lance has come to be called syndromic surveillance. The medical usage of the word 
syndrome must be distinguished from its usage in syndromic surveillance. The Oxford 
Concise Medical Dictionary defines a syndrome as “a combination of signs and/or 
symptoms that forms a distinct clinical picture indicative of a particular disorder.” 
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A sign is a disease feature that is objectively determined by the physician during 
the physical examination, while a symptom is a disease feature that is subjectively 
reported to the physician by the patient. Therefore, a medically defined syndrome is a 
recognizable pattern of symptoms, signs, or other abnormalities that indicate specific 
traits with a single underlying cause, a specific disease, or an increased chance of 
developing a specific disease. In medical practice, this pattern is identified as a par- 
ticular syndrome while the cause is unknown, thereby giving other physicians a tool 
for more easily detecting similar patterns and, ultimately, discovering the underlying 
cause or causes. When the cause is discovered and confirmed, the medical community 
typically replaces the syndrome by the disease or diseases if the syndrome results from 
more than one disease. However, syndromic surveillance doesn’t necessarily use the 
term syndrome in the same way. 

In syndromic surveillance, a syndrome may be a set of pre-diagnostic data that 
indicate the likelihood of a specific disease or that relate to a particular organ system 
or region of the body. Those data that relate to an organ system or part of the body 
are less specific than those for a particular disease, but they may be more sensitive for 
outbreak detection. Syndromic classifications are used to group pre-diagnostic data, 
which differ by source. For example, physicians’ office visit data are typically in the 
form of International Classification of Diseases, Ninth revision (ICD-9) codes, while 
many hospital ED data are chief complaints in free or nonstandardized text. Chief 
complaints and ICD-9 codes are described in more detail in Sections 2.6 and 2.7, 
respectively. Figure 2.2 shows an example of such a mapping for the fever syndrome 
group. The table on the left lists ICD-9 codes and their corresponding descriptions 
that map into the fever syndrome, while the table on the right lists the chief complaints 
that map into the same syndrome. More details on performing syndrome grouping 
may be found in Chapter 5. 

Some syndromic categories are much broader than specific disease patterns. For 
example, the gastrointestinal (GI) syndrome may be defined to include signs and 
symptoms that can be related to the either the abdomen or pelvis and may actually have 
nothing to do with the gastrointestinal system (e.g., genitourinary, musculoskeletal). 
Figure 2.3 shows how a respiratory syndromic category might be defined. Each 
of the disease descriptions listed comprises a group categorized as the respiratory 
syndrome. It is important to note also that syndromic categories don’t have to be 
mutually exclusive, although the potential for “double-counting’’ of events should be 
accounted for when analyzing the data. 

Important properties of pre-diagnostic data include sensitivity, specificity, latency, 
and completeness. Sensitivity is the probability that a public health event of interest will 
be detected in the data given that the event really occurred. Sensitivity is influenced 
by many factors including the type of event, the data source, and the processing 
algorithms that are used, A data source is more sensitive if it captures a larger fraction 
of the cases of interest. For example, physician visit data covering all the physicians 
in a city will tend to be more sensitive than a data source that includes only a subset 
of the physicians. The fraction of the affected population that is sampled is called 
the representativeness or sample density of the data source. For example, assume that 



'038.8 Septicemia NEC 
038.9 Septicemia NOS 
066.1 Fever, tick-borne 
066.3 Fever, mosquito-borne NEC 
066.8 Disease, arthrop-borne viral NEC 
066.9 Disease, arthrop-borne viral NOS 
078.2 Sweating fever 
079.89 Infection, viral NEC 
079.99 Infection, viral NOS 
780.31 Convulsions, febrile 
780.6 Fever 
790.7 Bacteremia 
790.8 Viremia NOS 
795.39 NONSP POSITIVE CULT NEC 

Fig. 2.2 Example of a classification system containing nine different syndromes, including 
fever. The ICD-9-based group on the left maps into the fever syndrome. The chief complaint- 
based group on the right also maps into the fever syndrome. 

Sepsis 

Malaise 

Botulism-like 
Febrile Disease 

Gastrointestinal 
Hemorrhagic 
Neurological 
Rash 
Respiratory 
Shock 1 Coma 

0 Fever 

Fig. 2.3 Example of how a respiratory syndrome might be defined. This figure shows a daily 
decomposition of respiratory syndrome into its component disease descriptions. The vertical 
axis represents the number of patients seen that day with these components of the respiratory 
syndrome during a 3-month period. 
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our source of hospital ED data and our source of physicians’ office visit data capture 
1.9% and 64%, respectively, of the incidence of some acute condition. Figure 2.4 is 
a plot of the number of additional cases of this acute condition required for outbreak 
detection versus the number of background cases per day of this acute condition. As 
might be expected, the more syndromic data that occur in the background, the more 
additional cases are needed for outbreak detection. However, as the sample density 
increases, fewer additional cases above background levels are required for outbreak 
detection. Sample density is therefore critical for sensitive detection. 

L 

P 

Background Cases per Day 

Fig. 2.4 Example of how sample density improves detection sensitivity. The number of 
background cases per day of an acute condition is plotted against the number of additional cases 
of this condition that are required for detection of an outbreak (1 standard deviation or higher 
than normal) of this condition. The differently shaded dots represent different sample densities 
plotted on a log-log scale. 

A data source is also likely to be more sensitive if it carries information that can be 
used to group together persons potentially affected by an event while excluding those 
that would be unaffected. Types of information potentially useful for this purpose are 
the characteristics of the people sampled, such as home location, work location, or age. 
However, this information may be restricted by anonymity requirements. To protect 
patient privacy, it may be necessary to remove personal identifiers from the data that 
would allow identification of a specific individual or family. With spatial information, 
there is a trade-off between precision and privacy. The more precise the patient 
location information, the easier it will be to find spatial patterns in disease outbreaks. 
One compromise that is often used is to limit the spatial resolution to the residence 
zip code. Because the patient’s work and school locations are often unavailable, the 
implicit assumption is that people go home first and then seek health care. However, 
working adults and college-aged children often spend considerable time away from 
home, so they often are not in their residence zip code when they become ill. Sensitivity 
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is also improved when data sources carry more specific information about signs and 
symptoms, enabling greater focus on more probable victims of a particular event of 
interest. 

SpeciJcity is the probability that no health event of concern will be detected when 
no such event has in fact occurred. As with sensitivity, many factors influence 
specificity, including the type of event, the data source, and the processing algorithms 
that are used. Information in a data source that can distinguish different types of health 
events can help to enhance specificity, because the information can be used to reject 
health events that have a lower probability of being due to the event of interest. For 
example, in influenza surveillance, physician encounter data will be more specific than 
records of cold remedy purchases, because physician visit data include information 
that can better distinguish between various types of respiratory infections. Factors 
that may appear to have little to do with public health can reduce data specificity. For 
example, many data sources will be influenced by the day of week, by holidays, or 
by the weather. Data sources can also be affected by commercial events, such as the 
promotion of a new product or an arrangement with an insurance company to acquire 
physician visit data. It may be possible to correct for some external influences, but they 
still tend to reduce specificity. Information needed to correct for external factors may 
be obtained from ancillary sources, such as weather data or public school schedules 
that are not related directly to public health. Specificity can also be improved through 
the use of data sources that provide evidence to explain actual public health events 
observed in the data. For example, access to pollen count data might provide evidence 
that a sudden increase in headache, rhinitis, and pharyngitis was due to the pollen 
rather than to some more alarming cause. 

Latency is the time lag between the occurrence of a health risk in the environment 
and the appearance of a detectable event in the data. Public health response is most 
effective if the health threat is observed quickly, with a short latency. The latency of 
a data source depends on many factors, including biological processes. For example, 
detection of health-seeking behavior may have longer latency than detection of a 
pathogen in the air or water. Latency also depends on the behavior of the victims of 
the health threat (e.g., how long they wait before visiting a hospital ED) and on the 
way the data are captured and reported. For example, physician visit data that are 
captured via billing to insurance companies have a latency associated with the billing 
process. For a given type of data (e.g., physician office visits), the latency may not be 
a single number but a distribution of time intervals (e.g., 5 - 7 days versus 2 days). 

Another important property is data completeness. A data reporting problem may 
result in a nonrandom sampling of available data, leading to bias in the alerting 
algorithms. Therefore, it is important to know how much of the expected data stream 
has actually been received and processed. Ideally, there should be some means of 
including information on data completeness, although this is complicated by the fact 
that different data streams arrive at different times. For example, some data may be 
collected weekly while other data are collected daily. Different organizations may 
send data at different times, resulting in lags that get backfilled over time. 
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Multiple data streams are often used in syndromic surveillance to improve sensi- 
tivity and specificity. When multiple data streams are used, it is important to have 
an estimate of how these different sources might be ordered in time. Although the 
ordering depends both on the above-mentioned data lags and on individual health- 
seeking behavior, some general assumptions are often made. An example is seen in 
Fig. 2.1. Many people seek OTC drugs first and, if these don’t work, they tend to see 
physicians. However, if a disease attacks suddenly and severely, telephone hotlines 
and ED visits may be the data through which health-seeking behavior is first revealed. 
All these factors may vary with location and socioeconomic status. People of low 
socioeconomic status may not have the resources to purchase OTC drugs and may 
wait until symptoms are severe before seeking help at a clinic or hospital ED. People 
whose residences are remote from such resources may similarly wait until symptoms 
are severe before seeking OTC drugs or visiting a hospital ED or clinic. For example, 
in urban populations, OTC drug-seeking behavior tends to precede hospital ED visits 
and physician office visits, but not always [ l ,  21. 

2.2 DATA FROM PHARMACY CHAINS 

Data from pharmacy chains include the date of purchase, the amount and type of 
drug, and the location of the store where the item was purchased. Retailers routinely 
collect pharmacy sales information using the manufacturer-labeled standard codes 
on each product. The Universal Product Code (UPC) and the National Drug Code 
(NDC) numbers are unique to each type of OTC remedy and prescription drug, re- 
spectively. The UPC codes are assigned and managed by the Uniform Code Council, 
Inc. (UCC); the NDC numbers are maintained in the Food and Drug Administration’s 
(FDA) NDC directory (http://www.fda.gov/cder/ndc/). When a consumer purchases 
medications, these standard codes are scanned and the sales are electronically regis- 
tered into a database. These sales are then aggregated by the retailer on an hourly, 
daily, or weekly basis. The resulting database may contain information on thousands 
of medications. If a remedy is removed from the market, the corresponding code is 
abandoned. Similarly, when a new medication is introduced, a new code is entered 
into the retailers’ database. The utility of these data for surveillance therefore depends 
on continuous updating of the coding changes. The quantity of sales at a store is 
influenced by the demographic characteristics of the population, such as age group, 
socioeconomic status, and population size as well as that population’s access to health 
care. For OTC sales, because the residence location or zip code of the purchaser 
is typically unknown, the store’s location (preferably specified as the street address, 
or as latitude and longitude) is used for spatial reference under the implicit (though 
not necessarily correct) assumption that this location is spatially correlated with the 
residence location. In other words, it is usually assumed that a store’s pharmacy sales 
data most likely represent only the health status of the population living or working 
within the vicinity of the store. 
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In syndromic surveillance, the type of drug may be classified both according to 
its target age group (children, adults) and to the symptoms it is designed to relieve 
(colds, sinus, headache, diarrhea, etc.). Syndromic classifications based on these 
criteria would tend to be as general or as specific as the product descriptions. A 
“flu” syndrome would include OTC drugs that have the wordju in their labeling. Of 
course, such drugs could also be used to treat colds and other respiratory infections. 
Similarly, some antidiarrheal OTC drugs are also used to treat nausea. Other OTC 
drugs, such as antifungal or antibiotic creams, have more specific indications. Drugs 
may also be classified by the syndrome treated (respiratory illness, gastrointestinal 
illness, allergy, etc.) and active ingredients in the drug (loperamide, bismuth sub- 
salicylate, diphenhydramine, etc.) [3, 41. For example, in a study of a waterborne 
Crjptosporidiosis outbreak in North Battleford, Saskatchewan, Canada, weekly sales 
of specific antidiarrheal products mirrored the epidemic curve of illness [ 5 ] .  

Alternatively, classification may be derived from sales data via a data-driven ap- 
proach. Magruder et al. [ 11 began with groupings of OTC products intended primarily 
for adults, sorted according to the symptom indicated (e.g., cough) and the physical 
type of medication (e.g., pill or liquid). They considered 41 different combinations 
of symptom indication and physical type (Fig. 2.5). Syndrome groups were then 
formed out of these 41 different aggregations by comparison of the daily sales histo- 
ries. If the sales histories of two different OTC groups could be fit well by a model 
that assumed their ratio was constant, the histories were judged similar. Otherwise, 
they were dissimilar. This measure of “distance” between sales histories was used 
to identify clusters of product groups with relatively similar sales histories. Because 
these clusters of products with similar sales histories were assumed to be used for 
similar purposes, they were aggregated into OTC syndrome groups. This empirical 
approach to syndrome group definitions has the advantage that it can identify flaws in 
assumptions about product usage. For example, in the study cited, it was discovered 
that usage patterns of products labeled for pain relief were similar to those for allergy 
products (i.e., they showed strong sales peaks during allergy season). On the other 
hand, sales of products advertised to treat chest congestion did not cluster well with 
either flu remedies or allergy remedies. 

Many advantages exist in using OTC sales data for disease surveillance. First, the 
data may be available electronically and in near real time without the reporting delays 
seen in other pre-diagnostic data, such as physician office visits. Therefore, using these 
data may translate into earlier detection of an outbreak, although there are important 
exceptions [2]. Second, the data contain detailed information, such as geographic 
location of the store, and the date, quantity, and type of product sold. Therefore, 
these data offer the possibility of not only detecting spatial and temporal clustering 
of cases, but also disseminating preventive and control measures for the disease in 
a focused fashion. Third, the type of OTC medications sold reflects the symptoms 
experienced by the consumer and, by inference, the type of disease burdening the 
community. Fourth, because pharmacy sales data have been routinely collected for 
commercial purposes, patterns seen in current sales data may be compared to those in 
previous years. The availability of historical data can be used to adjust for confounding 
influences in the development of statistical algorithms for disease detection. 
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Fig. 2.5 OTC product groups clustered according to the similarity of their sales histories. 
Empirical syndrome groups are formed by setting a threshold on sales history dissimilarity. 
Products that are joined by lines falling below the threshold are aggregated into a single 
syndrome group. 

As a result of confounding influences, fluctuations in OTC sales data may be 
attributable to factors other than disease. Coupons and discounts, clay of the week, 
holidays, store hours, weather conditions, and seasonal variations affect OTC sales 
and may mask the impact of a disease on sales. Sales promotions affect OTC data in 
at least two ways. A promotion or discount on a particular drug may increase its sales 
as people buy it in anticipation of some indefinite future use (i.e., “stocking up”). An 
example of this behavior is shown in Fig. 2.6, which shows the OTC sales first reach 
a peak and then fall abruptly as people can now use their stocked supplies for several 
days without additional purchases. 

Stores also use sales promotions as “loss leaders” to bring people to the store with 
the expectation that they will buy non-sale items while there. Such a promotion may 
persuade people to visit the store but does not ensure they will buy the promoted drug. 
They may buy a non-sale drug because it has preferred product features or is less 
expensive than the sale item. If they buy the on-sale item, sales of that item increase; 
if they don’t buy the on-sale item, sales of similar items increase. Therefore, it is useful 
to include flags in the OTC data to indicate which products are being promoted during 
a particular time. However, not all promotions are chainwide. Some are managers’ 
specials limited to a specific store or are regional specials limited to stores in a specific 
region that may contain as few as two or three stores. In addition, the location of the 
product within a store will bias the sales. For example, sales will tend to be higher 
for products on prominent display (e.g., near the cash register or the front of an aisle) 
than for other products. 
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Fig. 2.6 Time-series plot of OTC flu remedy sales compared with hospital ED visits and 
physicians’ office (PO) visits for influenza-like illnesses (ILI). The ordinate is daily sales or 
visits in multiples of the mean daily counts. 

The other factors that affect OTC sales include day of the week and holiday 
effects. For example, sales may be higher on certain days and lower on following 
days. Adverse weather on certain days may also lower sales below what is expected. 
There are also seasonal effects. High pollen levels tend to occur during certain 
seasons, thereby affecting OTC allergy drug sales. Poor-air-quality days may affect 
asthma drug sales. Figure 2.7 shows various influences, such as consumer habits, 
marketing efforts, and the impacts of disease and environment, that may contribute 
to the OTC selling process and must therefore be taken into account in processing 
the OTC data. The electronic records are processed into a database in which the 
products are categorized into syndromic groups. These groups can then be evaluated 
for their accuracy, latency, sensitivity, etc., for detecting disease anomalies of interest. 
Furthermore, sales data may corroborate other surveillance data (e.g., hospital visits) 
and thereby increase the confidence that the detector is responding to a real disease 
rather than a statistical anomaly. Therefore, despite limitations that may prevent the 
data from being a reliable early disease outbreak detector, OTC drug sales are a useful 
source of data in syndromic surveillance. 

Surveillance systems using OTC sales have attempted to adjust for the limitations 
of these data in several ways. The National Retail Data Monitor in Pittsburgh, 
Pennsylvania, receives health care product data daily from 10,000 stores nationwide 
in the United States [4]. The system addresses temporal and spatial limitations in the 
data by mapping sales for each OTC remedy category by store zip code and uses color 
coding to indicate whether the day’s sales differ from what is expected based on the 
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Fig. 2.7 
cause high syndrome levels, confusing the surveillance process. 

OTC sales include other factors in addition to health indicators. These factors can 

Fig. 2.8 
average. Note that the day-of-week effect is mitigated. 

Time series comparing daily OTC sales with those smoothed using a 7-day moving 



54 UNDERSTANDING THE DATA 

previous sales histories for that category. As shown in Fig. 2.8, using 7-day moving 
averages in viewing sales data is one method of addressing effects due to day of the 
week, holidays, and store-closing days [ 11. Another way of adjusting for non-disease- 
related factors is to determine the percentage of change from baseline sales figures, as 
seen in a study conducted by Welliver et al. [6] that investigated trends in OTC cold 
remedy sales for signs of increased influenza in the community. 

As mentioned earlier, the usefulness of a particular syndromic surveillance system 
and the data sources feeding it depend on how early (timeliness) and how well this 
system detects the presence (sensitivity) and absence (specificity) of a disease. For the 
data to be sensitive in detecting disease in a community, the data source would need 
to capture a representative sample of the affected population in the community (see 
Fig. 2.4). Evidence of this is seen in a 1993 outbreak in Milwaukee [7]. The public 
health department first became aware of the outbreak when a pharmacist noticed a 
17- to 20-fold increase in sales of antidiarrheal and antispasmodic remedies at his 
pharmacy [8]. An outbreak investigation revealed that the public water supply to 
southern areas in the city was contaminated with Cryptosporidium. Because this 
outbreak was waterborne with a broad geographic distribution and affected large 
segments of the community, the disease was detectable in a single pharmacy’s sales 
data. In another study conducted in New York State, Medicaid prescription data were 
evaluated for use in syndromic surveillance with the results that macrolide antibiotics 
had 50% sensitivity and 32% specificity for detecting pertussis outbreaks in a county 
[9]. The Medicaid program provided coverage for 4 to 20% of the county’s population. 

Because many people self-treat prior to, instead of, or in addition to seeking 
attention from the health care system, pharmacy sales data may be an earlier indicator 
of disease than either physicians’ office visits or diagnostic data such as laboratory 
reports. For example, Fig. 2.9 demonstrates that OTC sales around the holidays 
appears to increase prior to an increase in physicians’ office visits for bronchitis. 
Note the weekly drops in visits (related to office closures) and sales patterns. The 
office visits tend to peak on Mondays but this peak is lower during the last week in 
December because of the holidays. In contrast, OTC sales increase during this same 
period, possibly because of the lack of physician availability and thus an increased 
reliance on OTC self-medication. Once the holidays are past, physicians’ office visits 
show a large increase that is at least partially associated with the forced deferral of 
visits over the holidays when offices were closed. 

OTC sales data have been used for disease surveillance in several studies [ l ,  5 , 6 ,  
7, 8, 101. In an investigation carried out in Los Angeles during the winter of 1976- 
1977, sales of cold and antipyretic OTC remedies were evaluated for detection of 
influenza B activity in the community. Sales of cold remedies were found to increase 
3 weeks before influenza B was first isolated and 1 week before peaks in outpatient 
visits at a large county medical center [6]. A study conducted in the Washington, DC, 
area evaluated the relationship between sales of OTC influenza remedies and acute- 
respiratory-related physician office visits. Not only were OTC influenza remedy sales 
found to be strongly associated with physicians’ office visits for respiratory illness, but 
when effects from seasonal and other non-disease factors were removed, OTC sales 
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data detected illness 2-21 days earlier than office visit data [l]. Figure 2.10 shows 
an example of the degree to which routine sales of OTC drugs can be fit by a simple 
model. The model shown here used a Poisson regression based on six parameters to 
describe day-of-week effects, two parameters to describe seasonal fluctuations, one 
parameter to describe the influence of outdoor temperature, and one parameter to 
describe the effects of product promotions. 

Fig. 2.11 Time series of the ratio of the actual data to the model data. Both OTC sales and 
physicians’ office visits for URI are plotted. The effects of confounding factors in Fig. 2.10 
were mitigated by the model. Note the high correlation between OTC flu remedy sales and 
physicians’ office visits for URI, with the OTC sales leading the visits by about 2 days. 

In another illustrative example, the sinusoidal seasonal variation and a linear trend 
were modeled separately and then subtracted from both the OTC time series in Fig. 2.10 
and for a time-series of physicians’ office visits. The resulting time series were then 
smoothed with a moving 7-day average to eliminate day-of-week fluctuations. Figure 
2.11 shows the final time series of both OTC sales and physicians’ office visits with 
only short-term fluctuations not explained by the models remaining. Transformation 
of the two data sources in this way, allows for a comparison of the relative latency 
of the short-term fluctuations in the two series without contamination from seasonal 
and day-of-week effects. Because these confounding effects often vary by region, it 
is important to know how the regional differences affect both the correlations and lead 
times. Aggregating data into smaller regions, as shown in Fig. 2.12, may improve 
the correlation between OTC sales and physicians’ office visits, as is evident from a 
comparison of the correlation in Fig. 2.1 1 with the correlations shown in Table 2.1. 

In a study conducted in six U.S. cities to determine if sales of electrolytes were in- 
dicative of respiratory and diarrheal disease outbreaks in children, electrolyte product 
sales were strongly associated with hospital diagnoses for respiratory and diarrheal 
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Fig. 2.12 
Table 2.1. 

Map of the United States in the vicinity of the NCA showing the regions used in 

Table 2.1 
for Different Geographic Regions in the Vicinity of the National Capital Area (NCA) 

Mean Weekly Mean Weekly Peak Lead Time 

Correlation and Lag Analysis of OTC Sales vs. Physicians’ Office Visits (PO) 

Region OTC Count PO Visit Count Correlation of OTC (days) 

Richmond 166 61 0.90 0 

Eastern Shore 82 137 0.87 2 

Western N C A  119 368 0.90 7 

Urban N C A  1840 2823 0.93 5 

NCASouth  104 225 0.91 - 2  

NCANorth  97 499 0.86 5 
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disease. Furthermore, the OTC sales data gave earlier indications for 12 of 18 out- 
breaks [lo]. In two enteric outbreaks due to Cryptosporidium, 5- to 20-fold increases 
were seen in OTC antidiarrheal sales [5, 7, 81. Additionally, the OTC sales data gave 
earlier warning of disease outbreaks by up to 2 weeks before it was noticed by the 
public health departments. However, because of the confounding factors mentioned 
previously in this section, it is very important to understand that OTC sales are not 
consistently the earliest reliable indicator of an outbreak. The confounding factors 
often vary by region (e.g., snowfall) and by time of year. Thus, the lead times of OTC 
sales may vary considerably by region and time of year, and may even lag physicians’ 
office visits as an indicator [2, 13, as shown in Table 2.1. It is best to use OTC data 
along with other data sources, such as hospital and physicians’ office visits because 
having different data sources to corroborate one another can lead to more confidence 
that a real disease outbreak might be occurring. 

Similar to OTC pharmacy sales data, prescription sales data include information on 
the amount and type of drug, the date it was dispensed, and whether the prescription is 
new or is a refill. Unlike OTC sales data, where the person may or may not have seen a 
health care provider, a prescription is written only after the person has seen a physician. 
Like OTC remedies, a prescribed drug may treat more than one condition. Just as 
with OTC remedies, prescription drug data are subject to confounding influences. 
Dispensing of prescriptions is subject to store hours, the day of the week, holidays, and 
weather conditions. Prescription data may or may not be an early indicator of disease 
in a community because a visit to a provider occurs prior to prescription purchase. 
However, if prescription sales data have less of areporting lag than outpatient visit data, 
the prescription data may be timelier. For example, the New York State Department 
of Health receives Medicaid-reimbursed prescription data within 1-2 days of the date 
in which the prescription was filled [9]. 

However, timely data collection does not automatically translate into timely de- 
tection of disease. Detection is also dependent on the statistical algorithms in place. 
Distinguishing patterns in pharmacy sales due to diseases of concern among the fluc- 
tuations from non-disease and non-public health factors is a function of how well the 
data have been characterized and, accordingly, adjusted for these other factors. 

2.3 DATA FROM EMS AND 911 

Emergency medical services (EMS) are defined as the services needed to provide rapid, 
appropriate medical care to people in the community who are acutely ill or injured. 
EMS personnel travel to their patients, provide on-site care, and transport them to a 
hospital or other health care center for further treatment when needed [ 111. In many 
regions, residents can report emergencies, injuries, or acute illness to authorities via a 
91 1 telephone system. Often, the 91 1 system is linked directly to local EMS services, 
so that dispatchers answer the 91 1 calls and alert and direct EMS personnel as needed. 
Increasingly, 91 1 systems are automated. Dispatchers record information from each 
call directly into a computerized database, producing a single record for each 911 
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call [ 121. These records may be augmented by information recorded directly by the 
system without dispatcher input, such as the caller’s phone number and address. Many 
91 1EMS systems automatically categorize calls based on the nature of the event or 
illnesshnjury being reported. In addition, some systems note when specific hospital 
EDs begin diverting traffic due to shortages of personnel, beds or supplies [ 13, 141. 

91 1 and EMS data have been used for syndromic surveillance in a number of 
regions, including New York City, San Diego County, California, Knox County, Ken- 
tucky, Boston, Massachusetts, and Seattle, Washington [12, 15, 181. In a survey of 
abstracts submitted to the National Syndromic Surveillance Conference in 2003, 6 of 
60 well-described surveillance systems monitored 91 1EMS data [ 191. Data from au- 
tomated 91 1EMS and ambulance diversions are particularly useful because their data 
can readily be adapted for use in electronic surveillance systems [20]. The electronic 
record is completed during or soon after the call [IS], so that the latency is nearly 
zero. Therefore, EMS provides some of the most timely surveillance data available 
if the data are well integrated into the surveillance system. Depending on needs and 
resources, the 91 1EMS data can be fed into an electronic surveillance system con- 
tinuously or at discrete intervals. Most systems opt for batch transfer of records at 
discrete intervals because of limited resources. However, in an emergency situation, 
a constant feed from the EMS would provide perhaps the timeliest information about 
serious illness within a community. Calls to a 911 telephone system are often as- 
signed automatically to a symptom or syndrome category, such as difficulty breathing 
or chest pain. These category labels can be used to select only the records required by 
syndromic surveillance, minimizing work and time during file creation and transfer. 
Categories can also be combined to obtain broader illness syndromes [18]. 

New York City was one of the first localities to develop a syndromic surveillance 
system with 91 1EMS data as one of their sources. Using historical data, city officials 
adapted a traditional statistical influenza surveillance algorithm for use in a syndromic 
surveillance system receiving ambulance dispatch data. Their model adjusts for 
annual periodicity, secular time trends, day-of-week effect, holiday effect, the number 
of positive influenza A and B isolates reported by the World Health Organization 
collaborating laboratories in New York City, and outside temperature over the previous 
3 days. They calibrated the algorithm by simulating daily forecasts for influenza-like 
illness (ILI) EMS data to determine alarm thresholds. They found that their algorithm 
modeled ILI very well in their population, especially when the number of influenza 
isolates was included as a covariate. Ninety percent of alarms produced by the 
algorithm occurred shortly before or during a period of peak influenza. Their model 
generally indicated the start of the flu season in New York City 2 to 3 weeks before 
traditional influenza surveillance detected widespread influenza activity [ 121. 

The utility of 91 UEMS data was also evaluated in San Diego following the major 
wildfire season in 2003. During the wildfires, personnel at the San Diego County 
Health and Human Services Agency monitored the 91 1EMS data fed into their elec- 
tronic surveillance system to study the effect of a series of major wildfires on the 
health of the community. They found increases in fire-related health events, particu- 
larly EMS calls for asthma and respiratory illness, which coincided with deterioration 
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in air quality as the wildfires intensified and decreased as the fires were extinguished 
and air quality improved [17]. Magruder and colleagues [21] also studied the effect of 
the wildfires in the 2003 San Diego data. They quantitatively compared different data 
sources used in the San Diego system for signal strength and timeliness and found 
that EMS asthma data gave the earliest indication of the wildfire event. This study is 
described in more detail in Section 2.10. 

2.4 DATA FROM TELEPHONE TRIAGE HOTLINES 

Telephone triage hotlines are facilities that receive telephone calls from persons re- 
quiring health care advice or assistance, or who urgently seek to make physician 
appointments to address an illness or injury. Government agencies [22], health care 
providers [23], or private contractors may operate these facilities. Triage hotlines 
gather information about a caller’s complaints that enables them to allocate appropri- 
ate clinical resources to that patient with appropriate urgency. These hotlines usually 
produce electronic records that capture syndromic information about calls. 

The information available in telephone triage data will vary, but might typically in- 
clude the time of the call, the caller’s identity, age, place of residence, some description 
of their symptoms, and what advice was given. It may include an assignment of the 
call to one of a finite list of problems or guideline categories (practice guidelines used 
by the nurse to manage the call). This categorization is made by a health professional 
- typically, a registered nurse - based on information provided by the caller. 

Triage data that have been placed in standard diagnostic or guideline categories 
are particularly amenable to syndromic category assignment. The fixed, standard 
diagnostic categories can be mapped to syndrome groups of interest. In some cases, 
triage telephone calls can be linked to follow-up physician appointments on a patient- 
by-patient basis. The call categorizations can then be directly linked to the physician- 
assigned ICD-9 codes [24]. If the syndrome groups have been defined in terms of 
ICD-9 codes, syndrome groups for the telephone diagnostic categories can be inferred. 
Unfortunately, this procedure is complicated by the fact that a given telephone triage 
category is not always associated with the same office visit ICD-9 code, and a given 
ICD-9 code is not always associated with a single telephone category. Nevertheless, 
statistical analysis of these links can provide useful syndrome groupings for triage 
diagnostic categories [24]. Magruder et al. [24] examined nurse advice calls that could 
be linked to corresponding physician encounters. Table 2.2 shows the percentage of 
syndrome groups based on ICD-9 codes that could be linked to specific nurse advice 
calls and the median lag in hours between the advice call and the linked office visit. 

Telephone triage data may contain demographic, geographic and syndromic infor- 
mation that can be used to focus surveillance on relatively small groups of potentially 
affected individuals. The syndromic information is considered less precise than that 
obtained from a physician office visit. The Centers for Disease Control and Prevention 
(CDC) [23] found that the triage data were sensitive for detecting general respiratory 
and/or gastrointestinal syndromes, but far less sensitive for detecting hemorrhagic 
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Table 2.2 Percentage of Syndrome Groups Linked to Nurse Advice Calls and Median 
Lag of Visit Relative to Advice Call, 2002 (Source: [24], courtesy of MMWR.) 

Median lag 
of visit relative 70 Linked to nurse 

Syndrome group advice calls to advice call (hrs) 

Botulism-like 58 19 
Fever 66 4 
Lower GI 75 4 

Hemorrhagic illness 56 14 
Localized cutaneous lesion 61 6 
Lymphadenitis 51 13.5 
Neurologic 57 16.5 
Rash 51 7 
Respiratory 59 6 
Severe illness 
potentially caused 

Upper GI 68 5 

by infectious disease 73 4 

conditions. In addition, there was some evidence [23] that telephone triage calls for 
acute illness were more numerous than office visits, within a population having access 
to both. Hence, these triage calls may be a more sensitive indicator of disease. In 
the United States, this advantage tends to be lessened by the fact that telephone triage 
services are not universally available, even among people who have health insurance. 
In some other countries, telephone triage services are provided to all citizens by the 
government health service [22, 25, 261. 

Telephone triage data tend to be less specific than physician encounter data because 
of the relatively imprecise nature of the syndromic information (see section 2.1 for a 
discussion of data source sensitivity). But the triage data have some advantages with 
respect to confounding influences. When the triage hotline is operated around the 
clock, the data are less affected by the day of the week, holidays, or inclement weather 
than many other sources of syndromic data [24]. Because telephone triage is available 
immediately to patients with no appointment, the data will typically exhibit a shorter 
latency than will physicians’ office visit information. The CDC [23] reported that for 
calls indicating respiratory infection, the median time lag between the triage call and 
the physician encounter was 5 hours. For acute gastrointestinal illness the median lag 
was 4 hours. These results were based on data from a health maintenance organization 
(HMO), where the triage nurse could immediately refer patients to schedule acute-care 
physician appointments. The latency advantage for the telephone data may be greater 
in other cases. 
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The usefulness of telephone triage data has been examined for at least three dif- 
ferent sources of triage data. The first source was emergency room telephone triage 
data obtained when patients called their insurance company representatives to obtain 
permission to go to the emergency room. Some calls could be categorized as respira- 
tory illness, based on the advice guidelines used. A second source of telephone triage 
data was a nurse advice hotline run by an HMO [23, 241. In this latter case, physi- 
cian appointment scheduling and the advice hotline were integrated into a single call 
center that served as a major entry point into the HMO's health care delivery system. 
Appointment clerks in the call center scheduled routine appointments, while the nurse 
advice hotline delivered medical advice and scheduled acute-care office visits when 
necessary. For this linked data, strong temporal correlations were found between the 
daily volume of calls meeting respiratory illness guidelines and the daily volume of 
patients seen with ICD-coded physician office visits falling within the CDC's respira- 
tory illness syndrome group. A similar result held for the gastrointestinal syndrome 
group and the lower gastrointestinal syndrome group. Other syndrome groups did 
not correlate as well between the two data sources. An example of the degree of 
correlation for gastrointestinal (GI) illness is shown in Fig. 2.13 from Magruder. 

0 GI Calls Weekdays 
GI Visits Weekdays 

0 '  I I I I I 
10/06/03 1 1125103 01/14/04 03/04/04 04/23/04 0611 2/04 08/0, 

Date 
04 

Fig. 2.13 
visits) for gastrointestinal syndrome data. (From [21]) 

Time series comparing nurse triage calls (GI calls) with physicians' office visits (GI 

In a series of articles, Cooper et al. describe a surveillance system that uses the 
National Health Service (NHS) Direct telephone service in the UK [ 2 2 ,  261 and noted 
that spikes in GI and ILI were observed in the NHS Direct data when expected. A 
second review of the data [28] reported similar results and concluded that the call 
center data detected substantial levels of illness at both regional and national levels. 
This report also highlighted one of the problems with using this or any other data 
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source for surveillance. Initially, only a limited proportion of the population was 
using the NHS Direct service. When data provide only limited coverage of a region, 
the results seen in the system may present a misleading picture of the health status of 
the community. For the NHS, the severity of this problem is decreasing as a larger 
percentage of the population makes use of the system. In their most recent paper 
Cooper and colleagues injected a historical Cryptosporidium outbreak in the UK into 
their data and analyzed the ability of their surveillance system to detect the outbreak. 
The probability of finding disease was linked to their assumption of how many people 
would use the NHS Direct system to seekcare for their diarrheal illness; the probability 
increased as the percentage of the population calling NHS Direct increased [29]. They 
concluded that the NHS data would probably not have identified the Cryptosporidium 
outbreak as described but maintain that the system is effective in detecting larger, more 
severe outbreaks. A similar system triage call system, Tele-health, is in use in Ontario, 
Canada, and is currently undergoing evaluation, although early results suggest that it 
will be a useful surveillance tool in that setting [30]. 

2.5 DATA FROM SCHOOL ABSENTEEISM AND SCHOOL NURSES 

School systems, especially the public school system, offer an opportunity to monitor 
the health of a very large fraction of school-aged children in a community. According 
to the National Center for Education Statistics [3 1],90% of elementary and secondary 
education students in the United States attended public schools in the 2001-2002 
school year. Because of the large fraction of school-aged children sampled and the 
aggregation of the data by individual school district (a natural epidemiological cohort), 
this data source has the potential to be a very sensitive indicator of illness in the 
school-agd population, whether the illness is geographically isolated or widespread. 
This potential is offset, however, by significant differences in absenteeism rates among 
different school levels (i.e., elementary, middle, and high schools). For a residential 
county with a population of around 250,000, mean percentages of absenteeism during 
the first 10 days of November 2000 were 3.5,4.5, and 5.5% for elementary, middle, and 
high schools, respectively. Figure 2.14 shows the daily absenteeism for elementary, 
middle, and high schools divided by these means. The drop in high school absenteeism 
during school days 47 - 50 is probably associated with required standardized tests 
occurring on those days. Note in Fig. 2.14 that elementary schools seem to have the 
highest absentee rate after the holidays, perhaps due to the greater susceptibility of 
that age group to communicable respiratory illnesses. 

School absentee data are less sensitive than school nurse data because there is 
typically no information about the reason for the absence. Absences could be due to 
family vacations or other obligations, or simple truancy. If the absence is due to an 
illness or injury, there is typically no way to separate the different types of illness or 
injury. Furthermore, there is typically no indication of whether the absence is due 
to the continuation of a previous illness or injury recovery, or whether it is a new 
condition. On the other hand, school nurse data include some information about the 
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Fig. 2.14 Time series comparing school absenteeism for elementary, middle, and high schools 
for the first 70 days of the school year. The daily absenteeism percentages are normalized by 
the mean percent absenteeism during the first 10 school days of November 2000. 

nature of the illness. In a school nurse reporting program in one California county, 
the school nurse reports were separated into 15 categories, including categories such 
as fever, flu, and diarrhea. If the condition is relatively severe, the student presumably 
would see the nurse only once or twice before staying home, so that there would be 
fewer repeat cases to obscure the new cases on each day. 

Both school nurse and absentee data exhibit confounding influences related to 
holidays and to the school schedule. The days before or after holidays, long weekends, 
or school breaks may have higher absenteeism than other days. News events can also 
trigger school absenteeism. For example, a high level of school absenteeism was 
observed in a Maryland county on the day after the September 11 terrorist attack. 
Such events may be rare, but it is just at such a time that public health surveillance 
is most critical. Perhaps the most important confounding factor in both school nurse 
and absentee data is nonreporting. Public health surveillance and absentee reporting 
are not primary functions of a school system. Data quality and completeness are 
dependent on the voluntary attention and cooperation of the school system personnel. 
On some days, some schools simply do not report their data. 

The value of school nurse data has been shown in a study of several public health 
surveillance data sources in San Diego County [32]. School nurse data were compared 
to school absentee data, military and civilian prescription data, military and civilian 
physician office encounters, and EMS reports. The school nurse data were normalized 
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by the number of students present by subtracting the absentee numbers from the 
numbers enrolled.’ The author compared the data sources both on the basis of signal- 
to-noise ratio (SNR) and on latency. Reporting delays were not included in the 
latency measurements (i.e., physician encounters were tagged with the actual day of 
the encounter, not when the encounter was reported to a public health agency). It 
was observed that the response of the school nurse data to an influenza outbreak had 
a higher SNR than any of the other data sources except for the EMS. While the EMS 
data had a higher SNR, the peak in EMS cases lagged the peak in school nurse cases 
by approximately 1 week (see Fig. 2.18). Although the EMS cases probably included 
an older population than the school nurse cases, it is common for many communicable 
diseases that begin among children to spread to adults. 

2.6 DATA FROM HOSPITAL VISITS 

Data from hospitals include daily admissions and ED visits. The ED visits typically 
consist of free text containing chief complaints. A chief complaint is a short phrase 
describing the main concern expressed by a patient as the reason for coming to the ED. 
If the patient is unable to communicate, the nurse or physician will enter what appears 
to be the primary presenting sign of the patient. Examples of chief complaints are 
“abdominal pain,” “headache,” “blood sugar test,” and “gunshot wound,” and might 
include abbreviations or acronyms used by the person recording the chief complaint. 
These chief complaint texts can be parsed into syndromic categories, taking into 
account acronyms, abbreviations, and spelling errors. Hospital ED data don’t often 
include discharge diagnoses, but when they do, this additional information can be 
useful. The discharge diagnosis is usually in the form of an ICD-9 code. One or 
more ICD-9 codes may be entered for each patient. An ICD-9 code may describe 
only symptoms and signs (e.g., 786.2, cough) or may indicate a specific disease (e.g., 
033.9, whooping cough). However, ICD-9 codes are not always provided in hospital 
ED data, and when they are, hospital coding of the chief complaints into ICD-9 
classification may take several days. In contrast, chief complaints are available at the 
time the patient is seen. Because they are timelier, chief complaints are the primary 
ED data used in surveillance systems. Figure 2.6 illustrates how the ED data for ILI 
tends to lead physicians’ office visit data. 

As with other data sources, there are different ways of establishing syndromic 
groupings in ED data, depending on the objectives of the surveillance. A surveillance 
system that is designed to detect specific diseases may have a syndromic grouping that 
includes only the leading signs, symptoms, ICD-9 codes, etc., for that one disease. 
Alternatively, the syndromic grouping could be very general, such as all signs, symp- 
toms, etc., related to the respiratory system representing the respiratory syndrome 

‘It should be noted that this normalization method would exclude those students who were ill at home and 
did not visit the nurse, which potentially could be a large number of excluded cases, thereby reducing the 
sensitivity of this data source. 
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group. However, a general syndromic grouping such as GI may include signs and 
symptoms of diseases that are distinctly not GI. In a hospital emergency department, 
perhaps the most common chief complaint of patients is abdominal pain. Not only is 
this complaint not exclusive to the GI system, it is important to realize that it is preva- 
lent in the ED environment. In many surveillance systems, a compromise between the 
specific and general approaches is used. For example, the same surveillance system 
could have a syndromic grouping for inhalational anthrax and another for respiratory 
infections. The former would improve specificity while the latter would be more 
sensitive. 

The correlation between ED chief complaint and ED discharge diagnosis has been 
studied, but the results differ. One retrospective study [33] comparing ICD-9 diagnosis 
codes and patient chief complaints found similar patterns in seasonal variation but only 
fair agreement between the syndromic groupings based on ICD-9 versus those based on 
ED chief complaints. Another study [34] found good agreement for most syndromic 
groups but not for all. For the most part, these differing conclusions can probably be 
explained by the different ways of determining which chief complaint goes into which 
syndromic grouping. 

Because hospital ED data consist mostly of chief complaints, which are in free text 
and include abbreviations, acronyms, and misspellings, algorithms are used to parse 
them into syndromic groupings [35]. These algorithms process electronic ED data 
records by first normalizing the text. One normalization method is to remove punc- 
tuation and digits, expand abbreviations and acronyms, and account for misspelled 
words. Also, the algorithm has to be able to interpret specific in-house or regional 
abbreviations as well as words and abbreviations that are context-dependent. Next, the 
resulting chief complaint must be classified into one or more syndromic categories. 
An individual patient’s chief complaint may be placed in several categories, depend- 
ing on the text that it contains (e.g., fever and runny nose). More details on chief 
complaint processing are given in Chapter 5. 

2.7 DATA FROM PHYSICIANS’ OFFICE VISITS 

When a patient is examined by a physician, much of the useful information is obtained 
through a carefully taken history. The history includes answers to questions such as: 

0 What symptoms bother you the most? 

0 When did the symptoms first appear? 

0 Were you well before they appeared? 

0 How have the symptoms progressed? 

0 What makes you feel better or worse? 

0 Have any of your acquaintances or family members had something similar? 
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0 What other medical problems have you had or do you have? 

The answers to these questions by the patient are subjective to the patient and are 
commonly called symptoms. The next most useful set of information comes from a 
careful physical examination. These data are commonly called signs because they 
tend to be more objective than what the patient reports. The history and physical 
provide important information and useful evidence for developing what is called the 
differential diagnosis. A differential diagnosis is a prioritized list of possible diseases 
that may explain most, if not all, of the symptoms and signs. The diagnosis at the top 
of this list is not necessarily the final diagnosis. 

Data from physicians’ office visits are typically collected by group insurance 
databases and HMOs. Diagnoses in the form of ICD-9 codes may be obtained 
from these records. Physicians’ office personnel may enter only the ICD-9 code for a 
patient’s primary complaint or sign, or they may enter the ICD-9 code of the primary 
diagnosis. Even when an ICD-9 code is entered for a specific disease, it may not 
mean that the patient has this disease. In some instances, the primary diagnosis is not 
yet known, so either a presumptive diagnosis or a “rule-out” diagnosis may be used. 
The presumptive diagnosis is based on the physician’s experience and best guess that 
is most likely, given the symptoms and signs. A presumptive diagnosis may be con- 
firmed later by laboratory tests or by the favorable response of the patient to treatment. 
If the patient fails to respond to therapy, a laboratory test may be ordered and/or the 
physician may change the diagnosis to the next one on the differential diagnosis list, 
or revise the differential diagnoses themselves if new information from the patient’s 
history and physical become available. A rule-out diagnosis is one that may fit (though 
not necessarily be the best fit) the patient’s symptoms and signs, but also has the most 
severe consequences if left untreated. Therefore, a rule-out diagnosis may be used 
when the physician wants to know as soon as possible if this is the underlying cause 
of the signs and symptoms. Rule-out diagnoses are typically used to justify ordering 
laboratory tests or referrals to specialists. A rule-out diagnosis may not be the most 
likely but is typically a disease with high priority on the physician’s index of suspi- 
cion. Therefore, an ICD-9 code may not represent the final confirmed diagnosis for a 
patient and, in that sense, may be considered pre-diagnostic information. Figure 2.6 
illustrates how physicians’ office visit data can lag other indicators such as ED visits 
and OTC sales. Nonetheless, physicians’ office visit data may corroborate other data 
sources, leading to higher confidence that a real outbreak is occurring. Furthermore, 
office visit data may provide more specific clues to the type of outbreak than other 
data sources. 

The ICD-9 codes may be grouped into syndromic categories in a number of ways, 
depending on the desired specificity and sensitivity. As mentioned above, the ICD-9 
code itself may be more general or specific. As an example of the former, a GI 
syndromic category that includes abdominal pain may include many illnesses not 
associated with the GI system, thereby making interpretation of an increase in this 
syndromic category difficult. Therefore, it is important to design syndromic categories 
balancing sensitivity and specificity with the ultimate goal of the biosurveillance 
system in mind. 
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2.8 LABORATORIES ROLE IN PRE-DIAGNOSTIC SURVEILLANCE 

Laboratory tests may be ordered by physicians in the community or within hospitals. 
Some hospitals have their own laboratories for routine tests. Depending on the 
laboratory test, it may take minutes, hours, days, or even weeks to generate results. 
These results may be positive, negative, indeterminate, or simply suggestive. Because 
syndromic surveillance focuses on pre-diagnostic information, requests for laboratory 
tests are often used as a data source under the assumption that the number of requests 
for a particular test per unit time indicates the suspected presence of a disease in the 
community. However, not all test results are positive, so these data have the potential 
to be misleading. While the implicit assumption is that the physician ordered the test 
because a particular disease was very high on the index of suspicion, a laboratory 
test may also be ordered to rule-out a disease. In this case, there is a non-trivial 
possibility that the patient has this disease, and the adverse consequences of a positive 
diagnosis warrant ruling it out as soon as possible. If the test confirms this diagnosis, 
the physician can begin treating the patient more expeditiously and, hopefully, with a 
better outcome for the patient. One must make the implicit assumption above because 
the thinking of the person ordering the test is unknown. Laboratory tests themselves 
may be nonspecific or specific. A test for anthrax is obviously specific. A complete 
blood count (CBC) is nonspecific, although it provides useful information to the 
clinician. 

Conventionally, health care providers (physicians, nurses, laboratory personnel, 
hospital infection control personnel, etc.) report notifiable disease events to state health 
departments via telephone, e-mail, or facsimile. Large hospital and commercial and 
national laboratories may also use the Health Level 7 (HL7) standard to transmit data 
electronically to health departments. The HL7 standard was developed to facilitate 
communication between health care information systems (http://www.hl7.org). An 
HL7 message may contain information on one or several laboratory test orders for 
a patient. There also may be several messages for a single patient in the same 
transmission. The data may be sent in real time, in batches several times a day, or daily, 
depending on the receiver and the purpose of the data transmission [36, 37, 381. The 
HL7 messages can contain patient identifiers, age, sex, zip code, hospital identification 
number, physician requesting the order, laboratory identification number, laboratory 
specimen details, laboratory procedure, results or status of the test request, ICD-9 
coded reason for test request, and date and time of the HL7 message and laboratory 
request. The data contained in the message depends on the variables of interest to the 
receiver [36, 381. Many laboratories use the Logical Observation Identifiers, Names, 
and Codes (LOINC) protocol developed by the Regenstrief Institute for Health Care to 
encode details about laboratory tests. The LOINC terminology defines standard codes, 
which are used in interpreting laboratory data for outcomes management, clinical care, 
research (www.regenstrief.org/loinc/), and syndromic surveillance. These codes also 
enable lab data to be used across multiple geographic areas, surveillance systems, and 
jurisdictions [36]. 
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Evaluations comparing electronic versus conventional laboratory reporting sys- 
tems of notifiable diseases to local and state health agencies indicate that electronic 
reporting systems are more complete and more timely. An evaluation of the electronic 
laboratory reporting (ELR) system used by three Hawaiian statewide clinical laborato- 
ries indicated that ELR was 3.8 days earlier than the conventional system. In addition, 
the ELR system resulted in 2.3 times more reports and was 80% more complete for 
most data fields than conventional reporting [38]. Similar results were reported in an 
evaluation of a health system in western Pennsylvania [37]. 

Laboratory tests can be grouped into syndromes like other health indicator data. The 
CDC convened a panel to group laboratory test orders into syndromes for its national 
syndromic surveillance system, the BioSense Early Event Detection and Situation 
Awareness System, which monitors laboratory request data for outbreaks in addition to 
other pre-diagnostic data [36]. The panel, comprising experts in surveillance, medical 
informatics, laboratory data, and infectious disease, grouped laboratory requests into 
eight syndromes: fever, respiratory, GI, neurological, rash, lymphadenitis, localized 
cutaneous lesion, and specific infection. Laboratory test request data were in HL7 
format and were from a large national network of laboratories (Laboratory Corporation 
of America or LabCorp). To aid in syndromic grouping, the LabCorp codes were 
classified into five categories: tests for specific and nonspecific infectious diseases, 
system-specific tests, fluid screening tests, and miscellaneous functional tests. A 
few of the test requests were in more than one syndrome. For example, tests for 
Haemophilus inJluenzae were in both respiratory and neurologic syndromes. 

Grouping laboratory test requests into syndromes allows these data to be used for 
surveillance in combination with other health indicator data. For example, syndromic 
groupings of laboratory test requests from the Department of Defense Composite 
Health Care System (DoD CHCS) enabled comparison to military prescription phar- 
macy and clinic visit data in the San Diego area and U.S. National Capital Area (NCA) 
[39]. The syndrome groups of laboratory test requests developed by the CDC’s panel 
of experts mentioned above were adapted for use in a preliminary grouping of microbi- 
ology laboratory tests requested in military treatment facilities in the two metropolitan 
areas. A preliminary evaluation compared 7-day averages of daily counts of military 
laboratory test requests, prescriptions, and outpatient clinic visits for 2 months in 
2004. Requests for laboratory tests by military physicians were strongly correlated 
(-! = 0.82) with GI syndrome in both geographical areas and respiratory syndrome in 
the U S .  NCA. 

A possible limitation of using electronic laboratory test requests for syndromic 
surveillance is the high rate of false positive reports. In a study that evaluated the 
reliability of coding of DoD CHCS laboratory test requests, the lab requests were 
compared with the corresponding ICD-9 code from inpatient and outpatient records 
[40]. While 61-64% of laboratory test requests were ordered appropriately for the 
diagnostic code recorded in the patient’s inpatienuoutpatient electronic record, only 
15-19% had confirmatory results. This finding suggests the possibility of a high 
false positive rate in using test requests alone. Another study, which examined a 
different surveillance system in the Pittsburgh, Pennsylvania, area [37] found that 8% 
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of electronic reports were false positives, which is considerably lower than in the 
DoD CHCS study. The availability of laboratory test requests in electronic format 
and standardization of laboratory test codes facilitate their use along with other data 
sources used in syndromic surveillance. However, syndrome groupings of these data 
to corroborate and confirm disease detection alone or in conjunction with other data 
sources have yet to be evaluated comprehensively. 

2.9 OTHER HEALTH INDICATOR DATA 

Other health indicator data include a wide variety of sources, such as environmental 
and animal health data or more qualitative data such as news articles and reports on 
moderated list servers (e.g., ProMED). Unfortunately, the earliest news reports about 
a developing situation frequently include erroneous information that usually, though 
not always, is removed later. Nevertheless, there may be certain basic information 
(e.g., time or location of occurrence) that is more likely to be reliable and useful 
for establishing a timeline or a region of increased scrutiny. While it is important to 
monitor news sources, it is perhaps as important to prevent erroneous information from 
entering the data stream. Listservers, especially moderated ones such as ProMED, 
tend to be more reliable but not as timely as non-moderated sources. As mentioned 
earlier, OTC ads and circulars may be an important indicator of whether certain OTC 
product sales are being influenced by promotions or coupons. 

2.9.1 Environmental Data 

Environmental data may be nonspecific or specific for particular pathogens or toxins. 
As an example, water utilities routinely measure certain water quality indicators, such 
as turbidity, total organic carbon (TOC), metals, chlorine, phosphorus, pH and alkalin- 
ity. The quantities measured vary from region to region. For example, whereas many 
regions use chlorine to disinfect their water, some regions use ozone or chloramine. 
Other measurements made at the water treatment facility may include the percentage 
of samples that are total coliform positive or the percentage of E. coli-positive sam- 
ples, although these parameters are typically not measured daily. TOC is commonly 
used as a water quality indicator because organic carbon, in addition to bromide, is 
a precursor to the formation of harmful disinfection byproducts in municipal water 
supplies. Therefore, water with high levels of TOC and bromide requires additional 
and costly treatment steps. From a biosecurity perspective, TOC is important because 
it includes any source of organic carbon, whether it be rotting vegetation or a delib- 
erately introduced biological organism. Turbidity is another water quality indicator 
routinely measured. During the 1993 Cryptosporidia outbreak in Milwaukee, an in- 
crease in turbidity preceded the detected onset of illness by a few days [41]. This 
outbreak was subsequent to heavy rains that overwhelmed sewage treatment facilities 
and led to raw sewage entering Lake Michigan in close proximity to the intake of a 
water treatment plant (Cryptosporidia are extremely resistant to commonly used water 
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disinfectants). For these data to be used effectively, a significant quantity of historical 
data must be collected to understand annual, seasonal, and regional variations and 
episodic (e.g., heavy rainfall) or longer (e.g., drought) natural events that may affect 
these measurements. While signals in either syndromic health or water quality data 
alone may indicate no waterborne health anomalies, contemporaneous anomalies in 
multiple data streams should lead to a heightened suspicion and perhaps more specific 
water quality testing at appropriate locations in the distribution system. 

The weather is another environmental indicator worth monitoring because there are 
a variety of ways in which it may affect disease incidence. Certain diseases respond 
almost directly to environmental parameters (e.g., Pfiesteria, vectorborne diseases of 
humans and animals, crop diseases). Extreme weather events may also affect public 
health (e.g., flooding overloads sewage treatment facilities and leads to water pollu- 
tion). A study by the CDC [42] showed significant increases in diarrhea and stomach 
ailments in the areas flooded by the passage of tropical storm Allison over Texas in 
2001. Outside temperature appears to be associated with some variation in disease 
incidence, although the exact causal mechanisms are not well understood at present. 
Cold weather could conceivably increase the incidence of disease by several mecha- 
nisms, such as inducing people to spend more time indoors, which would increase the 
indoor population density and thereby promote person-to-person transfer of disease. 
In addition, cold, dry air may lead to loss of moisture and heat from the bronchial 
mucosa and thereby increasing disease susceptibility. Studies of exercise-induced 
asthma have shown that cold dry air may enhance bronchoconstriction, while rapid 
airway rewarming (e.g., entering a heated building) may cause vascular congestion 
and transient edema [43]. Falling ambient temperatures may also increase morbidity 
from chronic obstructive pulmonary disease [44]. 

Other environmental parameters that are more specific health indicators include 
aeroallergen (i.e., pollen, mold) concentrations, pollutant (e.g., ozone) concentrations, 
and biosensor measurements for specific pathogens (e.g., tularemia) or toxins (e.g., 
ricin). For pathogens and chemical toxins, the fastest response sensors are good for 
screening but tend to yield higher false positives. Slower response tests, such as 
polymerase chain reaction (PCR), are very specific but may take a few hours. For 
example, on February 23, 2006, a suspicious powder was found in a University of 
Texas dormitory laundromat. The FBI initially confirmed that it was positive for 
ricin based on state laboratory tests, but on February 26, after slower, more specific 
tests conducted at a U.S. military laboratory at Fort Detrick, Maryland, the FBI 
concluded that it was definitely not ricin. Sometimes a test can be inconclusive 
due to contamination, naturally occurring material, or bad controls. For example, 
PCR is specific for certain genetic sequences that are presumed to be unique to a 
particular pathogen. However, PCR cannot distinguish whether such a pathogen is 
naturally occurring for that region or season, or whether the genetic material identified 
is associated with a living organism. 

Monitoring concentrations of aeroallergens and air pollutants is important for avoid- 
ing false alarms from sudden increases in such data as respiratory-related hospital ED 
visits or OTC sales. In the Washington, DC, region, there are approximately four 
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aeroallergen seasons per calendar year. Tree pollen peaks from March through April, 
grass pollen peaks around May through June, and weed pollen peaks around August 
through September. The peaks in pollen concentration tend to be rather narrow, on the 
order of 2 to 3 weeks. Peaks in mold concentration last longer and are more variable, 
with annual maxima that may occur in October, August, or as early as May, depending 
on local rainfall. Each of these aeroallergens may have impacts on hospital ED visits, 
OTC purchases, and physicians’ office visits for respiratory-related illnesses such as 
asthma. 

Air pollution is also associated with increases in hospital and ED admissions 
[45, 461 and in increased sales of ambulatory respiratory drugs [47]. The primary 
air pollutants vary among regions and may include ozone, sulfur dioxide, nitrogen 
oxides, particulates with aerodynamic diameters of 2.5 micrometers or less (called 
PM2.5), and others. While lightning may produce some ozone, most ground-level 
ozone results from a photochemical reaction between nitrogen oxides and volatile 
organic compounds, which come primarily from motor vehicle exhausts. Because 
sunlight is required for the chemical reaction to produce ozone, ozone levels correlate 
with the amount of available sunlight. Nitrogen oxides result not only from motor 
vehicle exhausts, but also from electric utilities and other commercial and industrial 
sources. PM2.5 includes a variety of particles that come from motor vehicles, factories, 
construction sites, tilled fields, wood-burning, rock quarries, and roads. Both unpaved 
and heavily traveled paved roads contribute dust that is included in PM2.5. These 
small particles may remain suspended in the air for long periods of time. 

A sudden increase in respiratory complaints on a given day may be due to increases 
in air pollutants andlor aeroallergens rather than the onset of an infectious disease 
outbreak. Poor air quality is associated with stagnant air and temperature inversions 
that keep polluted air concentrated near the ground. These same environmental effects 
may enhance an outdoor bioterrorist attack with pathogenic aerosols or toxic gases. 
Because the effects of a bioterrorist attack may coincide with a day of poor air quality, 
it is important to understand the environmental data so that the earliest signal of the 
attack can be detected above the environmental noise. 

Knowledge of these environmental factors is important in any effort to detect 
bioterrorist-induced or other anomalous disease outbreaks in at least two ways. First, 
because they don’t always occur exactly within the same time period every year, these 
factors may explain increases over the expected disease incidence background that 
would otherwise trigger false alarms. Second, they can present as confounding factors 
that may hide a natural or human-made disease outbreak. Therefore, knowledge of 
environmental effects may help reduce false alarms and increase the sensitivity of a 
biosurveillance system to true positive alarms. 

2.9.2 Animal Health Data 

Because most diseases are specifically adapted to their hosts, in general, humans 
don’t contract animal diseases and vice versa. There are however, important zoonotic 
diseuses, so called because of their ability to infect both humans and animals. These 
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diseases include rabies, West Nile virus, monkeypox, and most of the diseases con- 
sidered to be bioterrorist threats, such as plague and anthrax. Therefore, domestic 
animals and wildlife may serve as early warning indicators or sentinels of naturally oc- 
curring or bioterrorism-caused zoonotic disease outbreaks. For example, in 1999, an 
unexpectedly high number of crows and zoo birds were found dead in New York City. 
A subsequent outbreak of encephalitis in humans was noted in the same communities. 
These bird cases signaled the introduction of West Nile virus into the United States. 
Animals can serve as sentinels for zoonotic disease outbreaks if they are exposed to 
the agent simultaneously with humans, if they are at least as susceptible to the dis- 
ease as humans, and if the disease has a shorter incubation period in animals than in 
humans and leads to identifiable disease signs in the animals. Figure 2.15 shows how 
these properties influence the usefulness of animal data in biosurveillance. The figure 
illustrates the most useful surveillance data on animals is collected automatically on 
animals that are in close proximity to humans. In order to be use for early detection of 
disease in humans, the signs of disease in animals must occur before signs of disease 
in humans. 

Fig. 2.15 
be for early detection of that disease. 

The relationships of animal health to human disease determines how valuable it may 

Among the indications in animals that a zoonotic agent might be present is an 
increase in numbers of certain signs of disease above a pre-established level. The 
normal or expected rate and frequency of specific disease signs or syndromes in the 
community’s animal population must be determined quantitatively over a long period 
of time to account for natural phenomena such as seasonal changes. Knowing this 
normal spatial and temporal “background” in the region will permit statistical recog- 
nition of an “abnormal” or unexpected number of these occurrences, i.e., a possible 
outbreak. Other clues that something unusual is happening in animals include the 
occurrence of disease in a species in which it is not normally observed, the occur- 
rence of a disease that is not responsive to normal treatment modes, the occurrence 
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of a disease in a location where it is normally not seen, or a disease appearing at the 
“wrong” time of year. To use animals as sentinels, we should be able to recognize 
a zoonotic disease outbreak in the animal population before it affects humans. For 
example, sheep, cattle, goats, and horses are more susceptible than humans to anthrax 
[48, 491. Cats, rats, prairie dogs, chipmunks, and ground squirrels may be useful as 
sentinel animals for plague [50, 511. The 1994 pneumonic plague outbreak in India 
was preceded by a large urban rat die-off a few weeks earlier than the first reported 
human case [52, 531. Rohrbach [54] suggested that local die-offs of rabbits or rodents 
should be investigated for possible tularemia. 

Several animal data sources may be available, including private veterinary prac- 
tices, veterinary clinic chains, wildlife rehabilitators, and livestock sales barns. Unlike 
human health data, most of these animal health data are not maintained in electronic 
databases suitable for surveillance. Even when they are available, electronic veteri- 
nary databases can yield a variety of unflagged and unexplained artifacts (e.g., 50% 
drops in data perhaps due to changes in personnel) that may compromise its use for 
biosurveillance. Local departments of agriculture inspect animals at sales barns, but 
many of these records are not computerized. Furthermore, because of these inspec- 
tions, animals showing any obvious signs of being unwell are typically not presented 
for sale. 

The minimum data characteristics for all types of animal sources include number 
of animals, species, date of examination, location, and syndrome. The specific data 
characteristics will vary by source. The location may be the zip code; county; name of 
the pet owner, farm, ranch, care facility; or place of examination. The syndrome may 
be entered directly by the animal health professional or derived indirectly based on the 
primary presenting signs of the animal. Because many veterinary health professionals 
still maintain primarily paper health records and any animal health databases are small, 
specialized, or nonexistent, the establishment of health databases similar to those used 
for humans is a challenge. Furthermore, such data must be collected consistently over 
a long period of time to track normal seasonal and periodic patterns. 

Therefore, despite its potential, using animals for early detection of bioterrorism 
poses unique challenges. The pathogen may be introduced directly into a part of 
an urban area where many potential animal sentinels are likely to be absent (e.g., 
a commercial district with office buildings and restaurants). The large historical 
databases of health data that exist for humans because of insurance requirements are 
not typically kept for animals. For all these reasons, using animal surveillance to 
provide early warning of zoonotic diseases that are intentionally introduced into the 
human population is limited at the present time, but may become more prevalent as 
animal health data become more computerized. 

2.10 DATA SOURCE EVALUATION 

Three public health events in San Diego are used [21] to illustrate an approach to 
evaluating some of the data sources discussed above. These events are varied enough 
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to capture a range of outbreak signals and conditions. The public health events type 
and montldyear of the event were: 

0 Wildfires (October 2003) 

0 Influenza Outbreak (December 2003) 

0 Gastrointestinal Outbreak (January-February 2004) 

Various types of data were compared for each of the three public health events. 
These data sources varied in the timeliness of availability to public health professionals, 
the population represented, and the level of fidelity for capturing health behavior. The 
data sources compared were: 

0 EMSreports 

0 Civilian physician encounters (ICD-9) (“Civ Dx”) 

0 Military treatment facility encounters (ICD-9) (“Mil Dx”) 

0 OTC pharmaceutical sales 

0 Civilian prescriptions (“Civ Rx”) 

Military prescriptions (“Mil Rx”) 

0 School absenteeism 

0 School nurse reports 

Note that all the data sources were included in the analysis, although not all were 
compared for all public health events. The ambulatory encounter data are labeled by 
the day of the encounter, and the prescription drug data are labeled by the day the 
prescription was filled. This analysis did not address possible reporting latencies for 
any of the data sources. 

2.10.1 Approach and Methodology 

The approach to each public health event comprised two primary phases: data process- 
ing and data comparison. The objective of the data processing phase was to prepare 
the data to improve the likelihood of detecting the outbreak in a given data source. 
Data processing entailed development of data filters for each data source and data 
smoothing via application of a 7-day smoothing window. The objective of the data 
comparison phase was to identify data source(s) for each outbreak that were the best 
indicator of the event. Both visual and analytical comparisons of data source signal 
strength and timeliness were performed. 

Data sources were first filtered to extract the types of symptoms associated with 
each outbreak. In some cases, such as EMS data, the categories were broad and readily 
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mapped to the outbreak event. As an example, the Fever/Flu/Rash EMS category was 
mapped to the influenza outbreak. In other cases, such as physicians’ office ICD-9 
codes, data were analyzed prior to developing the filter to select ICD-9 codes that were 
likely to respond to that event and exhibit a response during the time of the event. 

Data were then processed to eliminate effects, such as day-of-week cycles. Discov- 
ering the best possible processing method and then demonstrating that it is in fact the 
best method is difficult as well as potentially time and cost prohibitive. However, by 
applying a simple and uniform process to each data channel, one can learn to remove 
some of the strongest correctable effects. In this case, the strongest confounding 
effect was the day-of-week cycle. In addition, some of the data sources suffered from 
relatively low daily counts. Both of these problems were addressed by smoothing the 
data using a I-day moving average, where each day’s count is replaced by the average 
count over a week centered on that day. 

Following the processing step, the data sources were compared based on timing 
and SNR for their ability to signal these public health events. The data were first 
inspected visually to identify peaks and other characteristics of the time series. This 
step provided essential information that might not stand out in the statistics - which 
are represented by a single response value - along with a calculation of the outbreak 
time span. 

Three measures were utilized for data source comparison: SNR, minimum date, 
and maximum date. These measures require the use of mean and standard deviation 
calculations over a baseline period, where the baseline time periods are outside the 
primary outbreak events and vary by event. Note that given the length of the baseline 
periods selected for each event, an SNR greater than 2 is associated with a p-value of 
approximately 0.03. The SNR provides a measure of the strength of the data source 
response to the event. SNR is defined as: 

peakount  - Pcount S N R  = 
gcount  

where peakcount is the daily count at the peak of the event, pLcount is the mean for 
the baseline period, and ocount is the standard deviation for the baseline period. The 
minimum and maximum dates (Min Date and Max Date), which provide a sense 
of relative timeliness of the data sources, were reported for the first and last days, 
respectively, when the I-day average count reached within 1 standard deviation of the 
peak level for each data source type. 

2.10.2 Example: Wildfires (October 2003) 

EMS, civilian physician encounters, military treatment facility encounters, and mil- 
itary prescription data sources were analyzed for the wildfire event. OTC, civilian 
prescription, and school data were not included. The EMS categories examined for the 
wildfire event were asthma and respiratory distress. For civilian and military treatment 
facility encounters, data were analyzed prior to development of the filter. The method 
for selecting ICD-9 codes was to examine all the codes that showed particularly high 
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counts during the week of the wildfires compared with the previous and following 
weeks. After review of this initial list of ICD-9 codes, only those that seemed to be 
related to poor air quality were retained. Table 2.3 lists the office visit ICD-9 codes 
(and their descriptions) used to filter data for the wildfire event. 

Table 2.3 Wildfire Event ICD-9 Codes Used 

ICD-9 Code Description 

464.00 Acute laryngitis, without mention of obstruction 

493.0 Extrinsic asthma 

493.12 Intrinsic asthma with acute exacerbation 

508.8 Respiratory conditions due to other specified external agents 

518.82 

785.50 Unspecified shock 

Other pulmonary insufficiency, not classified elsewhere 

786.05 Shortness of breath 

786.52 Painful respiration 

Similarly, military prescription data were analyzed prior to development of the 
filter. As a result of the preliminary analysis, two military prescription drug classes 
that displayed a signal corresponding to the fire event were identified: beta-adrenergic 
agent and glucocorticoid. Note that results were reported for individual EMS and 
military prescription categories, whereas office visit data were reported collectively. 

Figure 2.16 displays the normalized October 2003 wildfire daily counts for EMS, 
civilian physician encounters, military treatment facility encounters, and military 
prescription data sources. The raw counts were scaled by the mean daily count over 
a common time interval so that the time-series data could be plotted on a comparable 
y-axis. The daily counts for the wildfire event, shown in Fig. 2.16, reached a local 
maximum during the same time period. Note that the times-series data indicate that the 
EMS-asthma data source had the strongest absolute response as well as the timeliest 
response to the wildfire event. 

Figure 2.17 displays the normalized October 2003 7-day average counts for EMS, 
civilian physician encounters, military treatment facility encounters, and military 
prescription data sources. In this view, each day’s count was replaced by the average 
count over a week centered on that day. After smoothing using a 7-day average, the 
behavior of each data source over time was more apparent, enabling a straightforward 
visual comparison. The EMS-asthma data source had the strongest absolute response 
as well as the timeliest response to the wildfire event. 

Table 2.4 summarizes the SNR and timeliness performance for EMS, civilian 
physician encounters, military treatment facility encounters, and military prescription 
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Fig. 2.16 Wildfire event: normalized daily counts by data source type 

data source types. The baseline period for the mean and standard deviation calculations 
was July 1,2003, through October 21, 2003. 

Table 2.4 Wildfire Event: Data Source Performance Summary 

SNR MinDate MaxDate 
(within 1 c (within 1 u 

of peak) of peak) 

EMS asthma 3.9 Oct 25 Oct 29 

EMS Resp. distress 9.5 Oct 27 Oct 29 

Civ Dx 1.9 Oct 27 Nov 1 

Mil Dx 6.6 Oct 28 Oct 30 

MilRx: BAA 5.6 Oct 27 Oct 31 

Mil Rx: glucocortic 4.4 Oct 29 Oct 31 

The EMS respiratory distress data had the highest SNR and the military treatment 
facility encounters data the second highest. Using the minimum date as the basis for 
comparison, the EMS data, especially the asthma calls, showed the earliest response 



DATA SOURCE EVALUATION 79 

EMS Resp Distress Flu Season 

Civ Dx Selected Codes 

911 9/15 9/29 i0/13 lot27 11/10 11/24 1218 12/22 
2003 

Fig. 2.17 Wildfire event: normalized 7-day average counts by data source type. 

to the event. Note that the shapes of the peaks may differ as a function of data source, 
and a data source may show an earlier indication of an event even though it has a later 
peak. 

2.10.3 

EMS, civilian and military treatment facility encounters for the ILI and fever syndrome 
groupings, military prescription, school absenteeism, and school nurse data source 
types were included in the influenza evaluation. OTC data were not available for this 
time period. The EMS category for the influenza event was fever/flu/rash. Civilian 
and military treatment facility encounters data were filtered for two syndrome groups: 
influenza-like-illness (ILI) and fever. Tables 2.5 and 2.6 provide a list of ICD-9 codes 
for each group. Note that some ICD-9 codes appear in more than one syndrome group. 

Military prescription data used for treating cough and cold symptoms were exam- 
ined first. Subgroups were then identified that had the strongest peak during the time 
of the influenza outbreak. The groups were: bronchial mucolytics, cough prepara- 
tions only with codeine, cough preparations only without codeine, coughkold with 
expectorant, coughkold without expectorant, oral cold preparations with analgesics, 
and oral cold preparations without analgesics. 

School absenteeism data were the percent of students absent based on enrollment. 
School health nurse data describe the number of students that reported flu and respi- 
ratory symptoms. 

Figure 2.18 displays the normalized December 2003 influenza 7-day average counts 
for EMS, civilian and military treatment facility encounters for the ILI and fever 

Example: Influenza Outbreak (December 2003) 
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Table 2.5 Influenza Event: Influenza-Like Illness (ILI) Syndrome ICD-9 

ICD-9 ICD-9 Description 

079.89 Viral infection NEC 

079.99 Viral infection NOS 

460 Nasopharyngitis, acute 

462 Pharyngitis, acute 

464.00 Laryngitis, acute wlo obstruction 

464.10 Tracheitis, acute wlo obstruction 

464.20 Laryngotracheitis, acute wlo obstruction 

465.0 Laryngopharyngitis, acute 

465.8 

465.9 

Infct up rsprt mlt sites, acute NEC 

Infct up rsprt mlt sites, acute NOS 

466.0 Bronchitis, acute 
~ 

466.11 Bronchiolitis dlt RSV 

466.19 Bronchi0 acute d/t 0th infct orgnsm 

478.9 Disease, upper respiratory NEC/NOS 

480.0 Pneumonia d/t adenovirus 

480.1 Pneumonia d/t RSV 

480.2 Pneumonia d/t parainfluenza 

480.8 Pneumonia d/t virus NEC 

480.9 Viral pneumonia unspecified 

484.8 Pneumonia in 0th infct disease CE 

485 Bronchopneumonia, organism, NOS 

486 Pneumonia, organism NOS 

487.0 Influenza wlpneumonia 

487.1 Influenza wlrsprt mnfst NEC 

487.8 Influenza wlmanifestation NEC 

490 Bronchitis NOS 

780.6 Fever 

784.1 Pain, throat 

786.2 Cough 
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Table 2.6 Influenza Event: Fever Syndrome ICD-9 

ICD-9 ICD-9 Description 

038.8 Septicemia NEC 

038.9 Septicemia NOS 

066.1 Fever, tick-borne 

066.3 Fever, mosquito-borne NEC 

066.8 Disease, arthpd-borne viral NEC 

066.9 Disease, arthpd-borne viral NOS 

078.2 Sweating fever 

079.89 Infection, viral NEC 

079.99 Infection, viral NOS 

780.31 Convulsions, febrile 

780.6 Fever 

790.7 B acteremia 

790.8 Viremia NOS 

795.39 Nonsp positive cult NEC 

syndrome groupings, military prescription, school absenteeism, and school nurse 
data sources. This view represents the 7-day average, where each day’s count is 
replaced by the average count over a week centered on that day. School nurse flu and 
respiratory reports and the EMS fever/flu/rash reports stand out as influenza indicators 
here because the reporting rate during flu season was a very high multiple of the 
background rate outside the flu season. 

Table 2.7 summarizes the SNR and timeliness performance for EMS, civilian 
and military treatment facility encounters for the ILI and fever syndrome groupings, 
military prescription, school absenteeism, and school nurse data source types. The 
baseline period for mean and standard deviation calculations was February 1, 2004, 
through June 15,2004. 

The most sensitive indicator for the flu, as measured by the SNR, was the EMS 
data source. However, the outbreak peaked 6 days earlier, on December 6, 2004, in 
the School nurse flu and respiratory data. Military treatment facility encounters also 
provided strong evidence of an outbreak, showing a high SNR and an early indication 
of outbreak. Although the military prescription data exhibited the earliest indication 
of an outbreak as measured by the minimum data statistic, the relative weakness of the 
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Fig. 2.18 Influenza event: normalized 7-day average counts by data source type. 

Table 2.7 Influenza Event: Data Source Performance Summary 

SNR MinDate MaxDate 
(within la (within l a  
of peak) of peak) 

Civ Dx-ILI 2.2 Dec 12 Jan 9 

Civ Dx-fever 5.9 Dec 15 Dec 20 

Mil Dx-ILI 6.7 Dec 9 Dec 20 

Mil Dx-fever 16.9 Dec 11 Dec 17 

EMS FeverFluRash 36.3 Dec 12 Dec 13 

Civ Rx-/cough 5.0 08 Dec 20 Dec 

School absence 5% 11.1 13Dec 19 Dec 

School health nurse-flu and resp 18.2 Dec 6 Dec 6 

Mil Rx resp 4.3 Dec 2 Dec 20 

signal suggests an increased risk of contamination of the leading edge by unrelated 
illnesses. 
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2.10.4 Example: Gastrointestinal Illness (January-February 2004) 

EMS, civilian, and military treatment facility encounters, OTC, school absenteeism, 
and school nurse data source types were analyzed for the GI illness event. Civilian 
and military prescription data were not included. For EMS, school nurse, and OTC 
data source types, the mapping of diagnostic code or category to the gastrointestinal 
illness event was straightforward: 

0 EMS: GI/GU 

a School health nurse: diarrhea 

0 OTC: electrolytes 

However, for civilian and military treatment facility encounters, data were analyzed 
prior to development of the filter. For the GI analysis, the GI syndrome grouping was 
utilized initially. After data analysis revealed that the early stages were dominated by 
a peak in the military treatment facility encounters, the peak was analyzed to identify 
which codes contributed most. Subsequent analysis included this subset in addition to 
the GI group. Table 2.8 lists the codes that comprised the majority of this early peak, 
labeled “Dx Selected Codes.” 

Table 2.8 Gastrointestinal Event: DX Selected Codes ICD-9 

ICD-9 Code Description 

008.00 

008.69 

Intestinal infection due to unspecified E. coli 

Intestinal infection, enteritis due to other viral enteritis 

009.2 Infectious diarrhea 

535.50 Unspecified gastritis and gastroduodenitis, without obstruction 

558.9 Other and unspecified noninfectious gastroenteritis and colitis 

787.02 Nausea alone 

Figure 2.19 displays the normalized January-February 2004 GI 7-day average 
counts for EMS, civilian and military treatment facility encounters for the GI and 
selected codes, OTC, school absenteeism, and school nurse data sources. This view 
represents the 7-day average, where each day’s count is replaced by the average count 
over a week centered on that day. 

When both the GI and Select Codes filters were applied, the military treatment 
facility encounters data suggested two outbreaks: one in mid-to-late January and the 
other in late February. The first peak was identified as a Norovirus outbreak in the 
military population. The corresponding civilian data mostly indicated the second 
peak in late February, although there also appeared to be a general rise in GI illness 
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Fig. 2.19 Gastrointestinal event: normalized 7-day average counts by data source type. 

throughout the January-February time period. This GI illness appeared weakly or 
perhaps not at all in the EMS, school nurse and OTC data. 

Table 2.9 summarizes the SNR and timeliness performance for EMS, civilian and 
military treatment facility encounters for the GI and selected codes, OTC, school 
absenteeism, and school nurse data source types for the second peak of the GI event. 
The baseline period for mean and standard deviation calculations was April 1, 2004, 
through July 15, 2004. 

The military treatment facility encounters data showed the strongest indication of 
the second GI event for both GI and selected codes groups. The civilian physician 
encounters data also produced a signal, although it might be difficult to discern the 
event given the typical variance in the background data. Also, when SNR was used 
as a measure, the school health nurse, school absenteeism, and EMS data gave only a 
weak signal. 

Although a visual inspection of the time series might indicate that the OTC data 
source did not respond to the GI event, the SNR indicated a strong response. For 
these data, the baseline period for the mean and standard deviation that was input to 
the SNR calculation was an approximately 3.5-month period following the GI event, 
where the average daily OTC count was substantially lower than prior to the event. 
When viewing the data in real time, the epidemiologist would probably not notice any 
response to the event because of the higher background level. 



STUDY QUESTIONS 85 

Table 2.9 Gastrointestinal Event: Data Source Performance Summary 

SNR MinDate MaxDate 
(within la (within la 

of peak) of peak) 

Civ DX-GI 3.9 Feb 20 Feb 23 

Civ Dx-selected codes 4.8 Feb 20 Feb 23 

Mil Dx-GI 12.2 Feb20 Feb 21 
~ ~~ 

Mil Dx-selected codes 10.8 Feb20 Feb 22 

EMS Gi-GU 2.3 Feb 14 Feb 19 

OTC electrolytes 10.0 Feb 16 Feb 23 

School 5% absent 3.0 Feb 20 Feb 27 

School health nurse-diarrhea 2.3 Feb 16 Feb 21 

2.10.5 Conclusions 

The three major disease outbreaks were each observable in multiple data sources, 
while the most useful data source varied with the event. EMS, military ambulatory 
encounters, OTC, and school nurse reports each proved especially useful for different 
illness events. For example, the EMS data showed the strongest SNR for disease 
caused by wildfires, the school nurse data gave an early indication of influenza, and 
the military treatment facility encounters data showed the strongest indication of an 
outbreak of GI illness. These results illustrate that a system that integrates multiple 
syndromic data streams into a single prospective surveillance tool will enhance the 
ability of military and civilian authorities in a locality to detect bioten-orist or other 
disease outbreaks in a timely fashion. 

2.11 STUDY QUESTIONS 

Health Indicator Properties: 

2.1 As discussed in this chapter, when evaluating a health indicator, many factors 
are considered. From a quantitative perspective, some of the most important 
measures are sensitivity, specificity, and timeliness. These measures can all be 
calculated for an indicator with respect to individual cases or outbreaks. Q: 
Consider how sensitivity and spec8city of an indicator fo r  individual cases is 
related to the sensitivity and spec$city of the indicator for  outbreaks. Does 
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accuracy fo r  individual cases have a direct and consistent effect on accuracy 
fo r  outbreaks? Explain why or why not. 

2.2 The indicators discussed in this chapter are mainly relevant to automated surveil- 
lance in systems that operate continuously. Another venue for automated 
surveillance is following disasters or around large gatherings. In these “drop-in” 
settings, systems are implemented rapidly and data are often collected by health 
care staff using standardized forms. Q: What types of indicators might be useful 
in a drop-in setting? Would any of the indicators described in this chapter be 
useful? 

Modeling Individual Events: 

2.3 Most of the indicator evaluations in this chapter examined the relationship 
between two time series of different indicators. Each of these time series is 
the aggregated count of individual events. Research in epidemiology and other 
fields has shown that relationships between aggregate data do not always hold 
for individual events. In other words, if a rise in OTC sales tends to precede a rise 
in ED visits, this does not necessarily imply that a person will visit a pharmacy 
before an ED. Q: Describe one possible scenario where a relationship between 
aggregate indicators does not hold for  individual events. 

2.4 One method for attempting to understand the timing and relationship of indica- 
tors is to develop a graphical model of events for individuals. In such a model, 
events are denoted by circles and the influence of one event on another is indi- 
cated by an arrow from the first event to the second. Q: Develop a model of the 
events that might occur fo r  a person following the onset of symptoms. Consider 
how the events you have identijied might injluence aggregate indicators. 

Coding of Events in Health Indicator Data: 

2.5 Events followed in surveillance systems, such as visits to an ED, may be recorded 
using standardized codes or free text. Coded data are generally considered 
easier to handle because the analyst knows in advance the possible codes that 
may be used and the codes are easily grouped into syndromes. An important 
consideration, however, is the validity of the code for a particular event. In 
other words, does the code truly represent the event? Q: Suggest reasons why a 
code fo r  an ED visit might not accurately represent the event. For which of the 
reasons, if any, might free-text data represent an event with greater accuracy? 

2.6 For some indicators, the coding system used was not developed for the purpose 
of surveillance. Codes for OTC data, for example, were developed for product 
tracking and logistics. Q: Whatproblems might be encountered when reusing a 
code set developed for  another purpose fo r  surveillance? In the particular case 
of OTC data, can you think of any solutions to the problems that you identged? 
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3 Obtaining the Data 

Richard Wojcik, Logan Hauenstein, Carol Sniegoski, Rekha Holtry 

Chapter 2 examined various types of data that can contain early indicators of a 
community’s changing health status. The utility of these data types can be measured 
using metrics such as timeliness, specificity, and completeness. Data that come from 
clinical settings such as hospital emergency departments and laboratories, tend to 
have higher utility than non-clinical data. These data can be obtained in real-time and 
reflect the initial comments and insights of knowledgeable health care workers who 
enter the data. Other data streams often lack the timeliness and specificity of clinical 
data and may not be as useful as a primary source of surveillance data. Non-clinical 
sources can, however, provide value by corroborating initial trends found in more 
specific data sources. 

Once the desired data sources are identified for a surveillance system, the system 
developer must find an efficient way to obtain the data. This chapter presents the 
basic knowledge needed to acquire the data for an automated disease surveillance 
system using the data sources described in Chapter 2. This knowledge includes 
basic information technology concepts required for the transfer and storage of the 
acquired health data. Current and emerging standards used to communicate health 
care information, as well as the basics of the privacy constraints imposed by the 
Health Insurance Portability and Accountability Act of 1996, are reviewed. Finally, 
examples are given of a system implementation used to acquire data from a hospital 
that is supporting its local health department in performing surveillance within its 
community. 

3.1 INTRODUCTION TO DATA COLLECTION AND ARCHIVING 

Our modern information technology (IT) infrastructure serves an integral role in 
today’s society. Computers driven by fast and inexpensive processors sift through 
untold amounts of data every second in an effort to enhance our lives. In the realm of 
medical informatics, a wide array of technologies must work together hand-in-hand to 
fully leverage the power provided by modern computers: databases store and process 
large volumes of medical data; the Internet enables users to find data from nearly any 
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location; web applications provide users with interfaces to the medical data; mapping 
applications provide a geographical context for the data. The careful application 
of these modern technologies can greatly enhance the collection, preparation, and 
analysis of important medical data. 

The Internet connects our computers together, enabling worldwide connectivity of 
computer networks. This level of connectivity enables us to exchange information 
quickly and easily through the use of e-mail, websites, instant messaging, and a variety 
of other technologies. 

Databases make it very easy to store large amounts of data electronically. Since 
databases can store and organize data so efficiently, engineers, scientists, economists, 
and nearly everyone can easily collect all sorts of measurable data. Once stored, the 
data can be pulled back out quickly for analysis. 

These two major technologies comprise the core building blocks that enable pow- 
erful informatics-based disease surveillance. The following sections introduce some 
of the fundamental technical concepts relating to the Internet and databases. Chapter 
5 expands on these IT-related concepts and provides more information on how these 
technologies can be used to enhance disease surveillance. 

3.1.1 The Internet: Universal Connectivity 

Most early computer systems were isolated, with data movement limited by portable 
media (disks, tapes, etc.). Early computer networks rarely communicated beyond 
the confines of the organization. Sharing data often meant that someone physically 
transported data on a portable disk from one computer to another. The Defense 
Advanced Research Projects Agency (DARPA), originally known as ARPA, developed 
technology that allowed computers to communicate with each other through existing 
telecommunication lines. Their system, called ARPANET, was the predecessor to the 
modern Internet [ 11. Soon, fast and inexpensive technologies such as Ethernet and the 
Asymmetric Digital Subscriber Line (ADSL) spurred the rapid growth of the Internet. 
Now personal computers routinely connect to the Internet, where they can access a 
worldwide network of information. 

Universal connectivity provides computers with a simple mechanism for informa- 
tion exchange. The ever-growing popularity of the Internet is responsible for increased 
worldwide economic development. At the same time, security issues such as recent 
high-profile computer virus scares have highlighted the importance of software secu- 
rity. 

3.1.1.1 Modern networked computers use the In- 
ternet Protocol (IP) language to communicate with other computers on the network. 
Many organizations allow their computers to communicate freely over an organiza- 
tional intranet, the local organization’s network. Data exchanged between intranet 
computers never leave the organization’s network. Computers in an intranet that wish 
to communicate with computers on the Internet may need to send their data through 
the organization’s firewall (Fig. 3.1). AJirewall is a special piece of computer hard- 
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ware designed to protect the organization’s intranet from the potentially hostile traffic 
that flows through the Internet. Most corporations follow this general network design 
style. Many modern home networks even follow this design by using a Distributed 
Subscriber Line (DSL) or cable modem as a simplified firewall. Once connected to 
the Internet, a computer has access to many different information services, including 
e-mail services, the World Wide Web, instant messaging, and many others. 

Fig. 3.1 Internet connectivity. 

Internet connection speeds have improved dramatically in the recent past. Internet 
service providers (ISPs) provide high-speed Internet connections to nearly all modern 
organizations. Internet connections are most often measured in terms of their band- 
width, which is their capacity for data throughput. Some organizations only require 
the relatively low bandwidth supplied by simple DSL modems. Others, however, may 
need the higher bandwidth supplied by a T1 connection to support communications- 
intensive IT applications. 

Computers that connect to the Internet have a unique number assigned to them - 
called an IP address - that allows them to be identified to the rest of the Internet. 
To communicate with another computer, your computer must know the IP address 
of the other computer. Computers are very good in working with IP addresses, but 
people generally have a hard time dealing with these complicated-looking numbers. 
To solve this problem, a group called the Internet Corporation for Assigned Names 
and Numbers (ICANN) took responsibility for maintaining a list of domain names and 
the corresponding IP addresses to which the domain names are mapped. Figure 3.2 
depicts the general process through which computers communicate with each other 
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over the Internet. First, the computer asks the domain name server (DNS), provided 
by its Internet provider, to find the IP address associated with an Internet site (e.g., 
www.google.com). The computer receives the IP address and then sends a request 
to the address to transfer the contents of the webpage. The computer hosting the 
site identified by this IP address, receives this request and returns the content of the 
webpage back to the requesting computer. Although it seems complicated, the entire 
exchange happens quite quickly. Advances in technology have streamlined the entire 
process to the point of near transparency. 

Fig. 3.2 A computer requests www.google.com using a domain name server lookup. 

Computers that listen and respond to requests sent through a computer network 
are called servers. Servers are usually high-powered machines that are finely tuned 
to respond quickly to requests from clients. Servers are not, however, required to 
be particularly high-powered. In fact, software such as Microsoft’s Personal Web 
Server, included with newer versions of Windows, allows users to turn their personal 
computers into small-scale web servers. A collection of electronic data hosted on 
the Internet often relies on one or more different types of servers. For example, file 
transfer protocol (FTP) servers allow clients to store and retrieve files on the server, 
and database servers (explained in greater detail in Section 3.1.2) provide flexible 
mechanisms for storing, querying, and modifying data. 

FTP servers are used to store and share files on the Internet. Users can log-in 
and upload files from their local computer onto the server, where they are made 
available to other users of the FTP server. The FTP server software is responsible for 
authenticating the users who connect to the server and for determining the permissions 
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assigned to the user - such as what files they may access and what file operations they 
may perform. Secure FTP (SFTP) servers build upon the FTP server functionality 
by adding an additional layer of security around the system via encryption of data 
transmissions and stronger password authentication mechanisms. Organizations will 
often use FTP or SFTP to share files across the Internet because the overall system is 
quite simple to operate and maintain [ 2 ] .  

Even though FTP servers make it easy to exchange individual files or data, most 
IT applications require a more flexible way to access and modify sets of structured 
data. Database servers provide a popular and useful solution to this problem. The 
next section gives a basic overview of databases. 

3.1.2 Databases: Flexible Data Storage 

Before the development of the first electronic databases, data were generally stored 
on paper in files. These files were manually stored and retrieved by staff members 
who were trained in filing. When companies increased the volume and variety of data 
stored, they had to hire more filing staff and find more space in which to store the data. 
Human error complicated the manual storage process - even the most meticulous file 
clerk occasionally misplaced a file. The cost associated with increased data storage 
soon became unmanageable. 

In the 1970s, a company called IBM understood that computers could be used to 
store and organize large amounts of data efficiently. Their research team developed a 
method based on relational calculus for quickly storing and retrieving data in electronic 
form. The original vision of their database project was to allow users to interact directly 
with a database using English-like commands. 

Today, the word database generally refers to a system of structured, organized, and 
persistent data. Manual paper filing systems are technically databases, but the term 
almost always implies a computer-managed system. The program responsible for the 
organization and management of a database is called a database management system 
(DBMS). A DBMS provides mechanisms that enable users to find and store data, in 
addition to controlling the low-level details concerning the physical storage of data. 

Databases have become a critical part of an IT infrastructure. There are great 
volumes of data in the world - far too much to collect by hand. Often, though, there 
is value in collecting all of these data. For example, companies can analyze their 
customers’ purchasing trends to spot patterns and provide an intelligent direction for 
their marketing campaign. Databases make information available in a flexible manner 
so that the data can be used to make well-informed decisions. 

3.1.2.1 The DBMS organizes sets of data using a 
description of the overall structure, called a schema. A schema describes the structure 
of sets of data, in addition to describing the relationships between individual sets of 
data. There are a number of different styles of databases - network, hierarchical, and 
relational, for example - which have different ways of handling data relationships 
and data navigation. The relational database style is by far the most popular. 

Databases: How They Work 
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The functionality of the relational database style is based on relational calculus. 
The fundamental idea behind relational databases is that data are organized in sets of 
tables that consist of a number of rows and columns. The items in a single row of data 
are assumed to be related to each other. Relationships between tables are expressed 
through common values. 

For example, say a company wanted to create a simple database to keep track 
of employees (Table 3.1). An employee table contains data about the company’s 
employees. Each row of the employee table holds information about a single employee 
- in this example, the employee ID, first name, last name, and a sectionID column 
that represents the section to which an employee belongs. The section table represents 
the different sections of the company: human resources, accounting, engineering, etc. 
Each row contains the name of a section along with a section ID number that uniquely 
identifies a section. A relationship between the employee table and the section table 
is expressed through their common SectionID column. For example, employee 2296 
belongs to the section with SectionID 4. This value links into the section table, where 
SectionID 4 corresponds to the Engineering section of the company. 

Table 3.1 Example of Table Relationship in Simple Database 

Employee Table 
EmployeeID FirstNume LustNume SectionID 

2295 Robert Brown 4 

2296 Amanda Smith 4 

2297 Nicholas Williams 7 

Section Table 
SectionID SectionNume 

1 Accounting 

4 Engineering 

7 Human Resources 

8 Sales 

. . .  . . .  

This method may seem like a roundabout way of expressing a simple relationship, 
but it greatly simplifies the process of maintaining very large sets of data. If the 
company wanted to change the name of the Engineering section to Scientific Applica- 
tion Development, only a single value in the section table would need to be updated. 
Conversely, if the actual name of the section were stored in the employee table instead 
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of a reference to a record in the section table, potentially thousands of records would 
need to be updated for a large company (one for every employee in the Engineering 
section). 

Some database vendors develop software that provides a visual front end for access- 
ing the database. At the most basic level, though, users interact with databases using 
a query language. Nearly all modern databases understand a variant of a declarative 
language called the Structured Query Language (SQL), a standard of the American 
National Standards Institute (ANSI) and the International Organization for Standard- 
ization (ISO). SQL contains a number of language subsets [3]. The most commonly 
used subset, the Data Manipulation Language (DML), defines a general grammar 
used to retrieve, insert, delete, and update data in the database. An example DML 
statement that retrieves a list of employees from the database would be: 

S e l e c t  ernp.EmployeeID, ernp.LastName, sect .SectionName 

From Employee emp 

INNER J O I N  S e c t i o n  s e c t  

ON (emp.SectionID = s e c t . S e c t i o n I D )  

This query pulls data from the employee table and matches up each employee row 
with its related section row in the section table. Because SQL is such a fundamental 
part of database systems everywhere, many technical resources are available for 
learning more about the language. 

The Data Definition Language (DDL) subset of the SQL language enables database 
schema information to be created, altered, and removed. Essentially, the DDL is used 
to define the database structure and organization from the creation, augmentation, and 
removal of tables and relationships all the way down to the physical ordering of data. 
The following simple DDL statement would create the section table: 

CREATE TABLE S e c t i o n  

(Sect ionID INT NOT NULL, SectionName VARCHAR(50) NOT NULL) 

Most database vendors also support another subset of SQL called the Data Control 
Language (DCL). The DCL provides functionality for defining users, user roles, and 
access privileges so that the database administrator has control over who can access 
and control different parts of the database. 

The various components of a DBMS combine to form a flexible tool that makes it 
easy to store, modify, and access data in an organized fashion. Nearly all modern IT 
applications are driven by databases in one way or another. 

3.1.3 Summary 

The universal connectivity provided by the Internet and the organized storage capabil- 
ities provided by database servers form two critical building blocks for data collection 
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systems. These technologies leverage the power afforded by the modern comput- 
ing infrastructure to improve communications and increase data availability. Disease 
surveillance applications must keep these technologies in mind in order to provide 
optimal utility for the medical community. 

3.2 OBTAINING ACCESS TO SURVEILLANCE DATA 

The health indicator data used in syndromic surveillance can take many forms: hospital 
emergency department chief complaint records, nurse call center data, pharmacy sales 
data, outpatient insurance claims records, and others. Determining which types of 
health indicator data provide the greatest value is only one step in establishing an 
operational disease surveillance system. Actually obtaining the necessary access to 
real-world data streams can pose a significant challenge. For each data type, access and 
ongoing collection processes must be negotiated, established, and maintained. The 
nature of the negotiations and their accompanying concerns may differ according to 
the type of data, the type of institution providing the data, and the provider’s location. 

Because data access is such a fundamental aspect of surveillance, it is important 
to understand and respect the factors that motivate data owners to share their data for 
surveillance. It is important as well to understand the increasingly complex legal and 
proprietary issues pertaining to data disclosure and use. Although some of the concerns 
are familiar from traditional disease surveillance, others are less so. Unlike traditional 
surveillance, syndromic surveillance requires the collection of much larger quantities 
of data, data transmission on areal-time or near-real-time basis, data types from outside 
the traditional healthcare system, and data collection before any specific disease 
outbreak or health threat has been identified. In agreeing to participate, the institutions 
providing data are making a nontrivial commitment to setting up and maintaining 
steady data feeds for the foreseeable future, potentially in the absence of any serious 
community outbreaks to provide motivation. The importance of maintaining positive 
relationships with data providers cannot be overemphasized. Whether a legal mandate 
for data collection exists or not, the success of the system depends on their ongoing 
cooperation. As one factor in preserving cohesive relationships, it is important that 
all parties involved become familiar with their responsibilities related to issues of data 
privacy and data proprietorship. The overview in this section should not be considered 
a substitute for knowledgeable legal counsel. Parties who are considering disclosing, 
receiving, or using data for surveillance purposes are advised to obtain current legal 
advice before proceeding. 

3.2.1 Sharing Health Indicator Data 

Due to the wide variety of data types used in surveillance, the institutional owners of 
data streams of interest cover the spectrum. They may be local or national; commercial, 
nonprofit, or governmental; or inside or outside the traditional health care industry. 
Not every institution is guided by the same legal requirements, motivations, and 
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concerns. To obtain desired data streams successfully, it is important to understand 
the legal requirements pertaining to data access as well as the informal concerns and 
motivations of the data providers. Some of the factors that commonly motivate data 
owners to participate in public health surveillance are discussed here. 

3.2.1.1 The terrorist attacks of September 11, 2001, 
and the subsequent anthrax mail incidents that followed left communities anxious 
about the possibility of bioterrorism and motivated some in the private sector to do 
their part to protect the public. Recognizing that enhancing public health surveil- 
lance makes a critical contribution to preparedness, some private health care agencies 
and nontraditional data providers began to share their data for use in surveillance. 
Examples of such providers include hospitals and pharmacy chains. 

Supporting the Communio 

3.2.1.2 Obeying Legal Mandates In the United States, there are no federal laws 
currently obliging data owners to supply data for syndromic surveillance. Although 
some mandatory federal disease reporting requirements exist, they are generally lim- 
ited to morbidity and mortality reports for passengers on cruise ships and other types 
of transport [4]. The Centers for Disease Control and Prevention (CDC), in conjunc- 
tion with the Council of State and Territorial Epidemiologists (CSTE), produces a 
yearly list of federal notifiable diseases for which it requests reporting by each state 
and territory. Diseases are put on the list when it believes that their prevention and 
control will benefit from timely and regular information collection. Federal notifiable 
disease reporting, however, is voluntary rather than mandatory, and is acknowledged 
to be incomplete [ 5 ] .  

The bulk of the mandatory disease reporting requirements in the United States lie at 
the state level. Each of the 50 states has mandatory reporting laws that require health 
care providers and private laboratories to report diseases of public health significance 
to state, local, or county agencies. Some statues are couched as specific notifiable 
disease listings and some as broader reporting requirements. The nature of the re- 
porting requirements and the specific diseases that must be reported differ by state. 
Although state-level notifiable disease reporting is an accepted practice, data collec- 
tion for syndromic surveillance is less well established. Many states are reviewing the 
language in their existing broad disease reporting laws to determine whether it may 
apply to syndromic surveillance as well [4]. The following (Adapted from Broome et 
al. [4]) lists the language in each of the 50 states’ broad disease reporting laws that 
may provide statutory authorization for syndromic surveillance, as of 2002: 

Alabama: “cases of diseases of potential public health significance” 

Alaska: “epidemic outbreaks”; “an unusual incidence of infectious disease” 

Arizona: “Outbreaks of foodborne/waterborne illness.” 

Arkansas: “Occurrences which threaten the welfare, safety, or health of the public 
such as epidemic outbreaks.” 
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California: “OCCURRENCE of ANY UNUSUAL DISEASE’; “OUTBREAKS of 
ANY DISEASE.” 

Colorado: “any unusual illness, or outbreak or epidemic of illnesses which may be 
of public concern.” 

Connecticut:“other condition of public health significance.” 

Delaware: “Any disease outbreak in a community, a hospital, or other institution or 
a foodborne. or waterborne outbreak.” 

Georgia: “Outbreaks or unusual clusters of disease (infectious and noninfectious).” 

Hawaii: “Any communicable disease . . . occurring beyond usual frequency or of 
unusual or uncertain etiology, including diseases which might be caused by a 
genetically engineered organism.” 

Idaho: “Rare diseases and unusual outbreaks of illness which may be a risk to the 
public.” 

Illinois: “Any unusual case or cluster of cases”; “any suspected bioterrorist threat of 
events .” 

Indiana: “Unusual occurrence of disease”; “any disease. . . considered a bioterrorism 
threat.” 

Zowa: “Outbreaks of any kind unusual syndromes, or uncommon diseases.” 

Kansas: “Any exotic or newly recognized disease, and any disease unusual in 
incidence or behavior, known or suspected to be infectious or contagious and 
constituting risk to the public health”; “The occurrence of a single case of 
any unusual disease or manifestation of illness that the health care provider 
determines or suspects may be caused by or related to a bioterrorist agent or 
incident.” 

Kentucky: “an extraordinary number of cases or occurrences of disease or condition.” 

Louisiana: “all cases of rare or exotic communicable disease, unexplained death, 
unusual cluster of disease and all outbreaks.” 

Maine: “Any pattern of cases or increased incidence of illness beyond the expected 
number of cases in a given period, or cases which may indicate a newly recog- 
nized infectious agent, or an outbreak or related public health hazard.” 

Maryland: “Outbreaks and Single Cases of Diseases of Public Health Importance.” 

Massachusett: “Illness Believed to be Part of an Outbreak or Cluster.” 

Michigan: “the unusual occurrence of any disease, infection or condition that threat- 
ens the health of the public.” 
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Minnesota: “Any pattern of cases, suspected cases, or increased incidence of any 
illness beyond the expected number of cases in a given period.” 

Mississippi: “Any Suspected Outbreak.” 

Missouri: “The occurrence of an outbreak or epidemic of any illness, disease or 
condition which may be of public health concern . . . [and] public health threats 
that could result from terrorist activities such as clusters of unusual diseases or 
manifestations of illness and clusters of unexplained deaths.” 

Montana: “Any unusual incident of unexplained illness or death in a human or 
animal.” 

Nebraska: “Clusters, outbreaks or epidemics of any health problem, infectious 
or other, including food poisoning, influenza or possible bioterrorist attack; 
increased disease incidence beyond expectations; unexplained deaths possibly 
due to unidentified infectious causes; any unusual disease or manifestations of 
illness.” 

Nevada: “Extraordinary occurrence of illness.” 

New Hampshire: “Unusual occurrence or cluster of illness which may pose a threat 
to the public’s health,” 

New Jersey: “Any outbreak or suspected outbreak, including but not limited to food- 
borne, waterborne, or nosocomial disease or a suspected act of bioterrorism.” 

New Mexico: “Illnesses suspected to be caused by the intentional or accidental 
release of biologic or chemical agents”; “Acute illnesses of any type involving 
large numbers of persons in the same geographic area”; “Other conditions of 
public health significance.” 

New York: “Any disease outbreak or unusual disease.” 

North Carolina: “all outbreaks or suspected outbreaks of foodborne illness”; “a 
cluster of cases of a disease or condition . . .which represents a significant 
threat to the public health.” 

North Dakota: “Unusual cluster of severe or unexplained illness or deaths.” 

Ohio: “Any unexpected pattern of cases, suspected cases, deaths or increased inci- 
dence of any other disease of major pubic health concern because of the severity 
of disease or potential for epidemic spread, which may indicate a newly recog- 
nized infectious agent, an outbreak, epidemic, related public health hazard or 
act of bioterrorism.” 

Oklahoma: “Outbreaks of apparent infectious disease.” 

Oregon: “Any known or suspected common-source outbreaks; Any Uncommon 
Illness of Potential Public Health Significance.” 
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Pennsylvania: “Unusual occurrence of a disease, infection or condition.” 

Rhode Island: “an outbreak of infectious disease or infestation, or a cluster of 
unexplained illness, infectious or noninfectious . . . Exotic diseases and unusual 
group expressions of illnesses which may be of public health concern.” 

South Carolina: “all cases of known or suspected contagious or infectious diseases 
. . . all cases of persons who harbor any illness or health condition that may be 
caused by chemical terrorism, bioterrorism, radiological terrorism, epidemic or 
pandemic disease, or novel and highly fatal infectious agents and might pose 
a substantial risk of a significant number of human fatalities or incidents of 
permanent or long-term disability.” 

South Dakota: “Epidemics or outbreaks . . . and Unexplained illnesses or deaths of 
humans or animals.” 

Tennessee: “disease outbreaks foodborne, waterborne, and all other.” 

Texas: “any outbreak, exotic disease and unusual group expressions of disease which 
may be of public health concern.” 

Utah: “Any sudden or extraordinary occurrence of infectious or communicable dis- 
ease” and “Any disease occurrence, pattern of cases suspect cases, or increased 
coincidence of any illness which may indicate an outbreak, epidemic or related 
public health hazard, including but not limited to suspected or confirmed out- 
breaks of foodborne or waterborne disease, newly recognized or re-emergent 
diseases or disease producing agents.” 

Vermont: “Any unexpected pattern of cases, suspected cases, deaths or increased 
incidence of any other illness of major public health concern, because of the 
severity of illness or potential for epidemic spread, which may indicate a newly 
recognized infectious agent an outbreak, epidemic, related public hazard or act 
of bioterrorism.” 

Virginia: “Outbreaks, all (including foodborne, nosocomial, occupational, toxic 
substance-related, waterborne, and other outbreaks).” 

Washington: “Disease of suspected bioterrorist origin”, “Other rare disease of public 
health significance.” 

West Virginia: “An outbreak or cluster of any illness or condition - suspect or 
confirmed.”, “Unexplained or ill-defined illness, condition, or health occurrence 
of potential public health significance.” 

Wisconsin: “Suspected outbreaks of . . . acute or occupationally related diseases.” 

Wyoming: “A cluster of unusual or unexplained illnesses or deaths and suspected 
biological incidents.” 
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Only a few states have laws that explicitly require hospitals to support syndromic 
surveillance. A revised Nevada statute, which became effective in July 2003, lists reg- 
ulations for the “use of syndromic reporting and active surveillance to monitor public 
health,” including policy for “(a) the manner in which and situations during which 
the system actively gathers information; (b) the persons who are required to report 
information to the system; and (c) the procedures for reporting required information 
to the system” [ 5 ] .  Maryland’s Catastrophic Health Emergency Disease Surveillance 
and Response Program allows a directive to be issued in certain circumstances man- 
dating that health care providers report to public health authorities “(i) the presence 
of an individual or group of individuals with specified illnesses or symptoms; (ii) 
diagnostic and laboratory findings relating to diseases caused by deadly agents; [and] 
(iii) statistical or utilization trends relating to potential disease outbreaks” [6].  Revised 
Arizona statutes allow health information to be gathered in the event of a suspected 
bioterrorism attack [7]. 

3.2.1.3 Boosting the Bottom Line Syndromic surveillance systems frequently use 
nontraditional health indicator data. The technology creates a new demand for data 
types not traditionally used in conventional surveillance. Proprietors of these previ- 
ously untapped data sources may recognize the growing value of their data archives. 
Within the limits of federal regulations, they may be willing to supply selected data 
elements from their proprietary data warehouses to public health agencies in return 
for a fee. Types of data that may be purchased in this way include health maintenance 
organization (HMO) data, laboratory requisition records from privately owned labo- 
ratories, and physician office visit data from health insurance claims clearinghouses. 

A data provider may charge fees based on the duration of the feed, such as a monthly 
or yearly rate, or on the gross number of data records provided. In the latter case, the 
costs may rise with seasonal disease fluctuations or in the case of an actual outbreak. To 
cut down on costs, data purchaser can often arrange to receive only those data records 
that contain values of particular interest to surveillance. Examples include purchasing 
only pharmacy sales records that contained designated National Drug Code (NDC) 
codes or only insurance claims records that contain certain International Classification 
of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes. The cost of 
purchasing data streams can be significant over time and should not be overlooked 
when calculating the total cost of establishing and maintaining a surveillance system. 

3.2.2 Data-Sharing Issues 

Although some providers may agree to provide data for surveillance, others are un- 
derstandably apprehensive. Some of the factors that tend to deter data owners from 
participating in syndromic surveillance are discussed below. 

3.2.2.1 Even otherwise willing data providers can be 
justifiably wary of the time, effort, and resources needed to establish and maintain 
surveillance data feeds. To establish a feed, the scope of the effort must be negotiated, 

Cost and Inconvenience 
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data use agreements drawn up and approved, and technical staff time devoted to 
planning and implementation. To maintain the feed, resources must be set aside 
more or less in perpetuity to provide upkeep and to fix any problems that might arise. 
Designing a data feed that places the least burden on the data provider, for both setup 
and maintenance, can substantially contribute toward allaying such fears. 

3.2.2.2 Protecting Proprietary Information Much of the data used in syndromic 
surveillance are proprietary. Both traditional and nontraditional health indicator data 
may contain information that the owning entity may be unwilling to make available 
in the public domain. Schools, for example, may not want their absenteeism levels 
publicly known to avoid political repercussions. Commercial pharmacies are unlikely 
to want their sales data available to investors or competitors. Because of the proprietary 
nature of many types of surveillance data, potential data recipients must be prepared 
to address issues of nondisclosure. These issues are commonly approached using 
formal, legally binding data use agreements. The agreement should clearly delineate 
which data or data elements are considered proprietary, and it should state who is 
allowed to see the data and under which circumstances. Generally, such an agreement 
includes language to the effect that while the data provided may be used internally 
by public health agencies for matters of public health, no proprietary data should be 
released into the public view unless written authorization is received from the data 
provider. Most owners of proprietary data are unlikely to consent to releasing it for 
public health purposes without such an agreement firmly in place. 

3.2.2.3 Privacy Concerns The Health Insurance Portability and Accountability 
Act of 1996 (HIPAA) has increased health care providers’ concerns about privacy 
issues [8]. The act contains privacy rules that govern the manner and circumstances in 
which health care providers are allowed to release patients’ health care information. 
The rules carry civil and criminal penalties for violation, including fines of up to 
$250,000 and up to 10 years of imprisonment [9]. If a health care institution that 
is covered by HIPAA is approached about supplying surveillance data, it is likely to 
raise concerns about HIPAA compliance. To gain the cooperation of potential data 
providers, it is important to understand the legal restrictions that the HIPAA privacy 
rules place on health data disclosure. 

3.2.3 HIPAA and Disease Surveillance 

HIPAA consists of two major parts. Title I addresses health insurance portability, 
protecting coverage for workers and their families when they change or lose their 
jobs. Title I1 has three parts: transaction standards, security rules, and privacy rules. 
The transaction standards, sometimes referred to as the administrative simpli$cation 
provisions, require health organizations to adopt a common set of codes and protocols 
to transmit health data in electronic form. The security rules require the adoption 
of appropriate policies, procedures, and technical security measures for protecting 
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electronic health data. The privacy rules mandate federal privacy protections for 
certain types of individually identifiable health information. 

The privacy rules, approved in 2001 and effective two years later, are most pertinent 
with respect to obtaining access to data for public health purposes. They describe in 
detail which types of health information must be protected, which institutions must 
protect them, and from whom and under what circumstances they must be protected. 
All parties that disclose, receive, or use surveillance data should understand the 
implications of these rules for public health surveillance. 

3.2.3.1 HIPAA requires all cov- 
ered entities to protect health information. The definition of covered entities in- 
cludes all health plans, healthcare clearinghouses, and health care providers that 
transmit health information in electronic form for certain specified transactions (45 
CFR 5160.103) [lo]. Clearinghouses are defined to include “public or private enti- 
ties, including billing services, re-pricing companies, community health management 
information systems or community health information systems, and ’value added’ net- 
works and switches” (45 CFR 5160.103) [lo]. Many major sources of data for public 
health surveillance are covered entities under HIPAA, including hospitals, HMOs, 
health care clearinghouses, and laboratories. HIPAA legally binds each of these 
institutions to protect the privacy and security of its health care information. 

A public health agency generally does not qualify as a covered entity under HIPAA, 
except in special circumstances, such as when the agency engages in covered func- 
tions, the fundamental activities of a health care provider, health plan, or health care 
clearinghouse. Examples of covered functions related to public health include Medi- 
caid administration and immunization programs. The flowcharts provided in Figs. 3.3 
and 3.4, developed by the CDC, can be used by a public health agency to determine 
whether it qualifies as a health plan or a health care provider under HIPAA. 

A public health agency that does not engage in covered functions is not bound by 
the HIPAA privacy rule. This means that once a health data set is transferred from 
a covered entity to a noncovered public health agency, HIPAA no longer applies to 
it directly. The public health agency must still adhere to any privacy policies and 
procedures for its jurisdiction, however, and must obey any data use agreements into 
which it has entered with the data provider [4]. 

Who Must Protect Private Health Information? 

3.2.3.2 HIPAA defines health 
information as any data related to a patient’s health status, treatment, or payments 
[ 121. The act aims to protect patient privacy by restricting access to those aspects of 
health information that could be used to identify an individual patient. 

Individually identifiable health information is defined as information “(i) which 
identifies the individual, or (ii) with respect to which there is a reasonable basis to 
believe that the information can be used to identify the individual” [45 CFR 5164.514 
(a)] [ 101. Protected health information (PHI) is defined as “individually identifiable 
health information that is or has been electronically maintained or electronically 
transmitted by a covered entity” (45 CFR 5164.501) [lo]. Although the HIPAA 

What Kinds of Health Information Are Protected? 
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Fig. 3.3 Flowchart for determining whether a business, agency, or person is a covered health 
care provider under the HIPAA privacy rules. (From the Centers for Medicare and Medicaid 
Services of the U.S. Department of Health and Human Services [ 1 I]) 

privacy rules were originally developed to protect health information used in electronic 
transactions, they cover health data transmitted or maintained in any form, electronic 
or otherwise [ 121. The HIPAA privacy standards apply to all individually identifiable 
health information [45 CFR 5164.506 (d)] [lo]. 

Under HIPAA regulations, the protected status of health information can be nullified 
if the information is de-identified. The act provides two ways to de-identify health 
data [45 CFR §164.514(b)] [lo]. The first approach, the safe harbor method, consists 
of stripping out 18 specific types of information, listed in Fig. 3.5. If these elements 
are removed, and if the covered entity has no other reason to believe the remaining data 
elements can be used to identify individual patients, the HIPAA privacy requirements 
are considered to be met. The second approach, statistical de-identijkation, is more 
complex. In this approach, statistical analysis determines which data elements, either 
alone or in combination with other information, pose a nontrivial risk of allowing 
individual patients to be identified. These elements are then aggregated or removed 
[ 121. The statistical de-identification process must be documented and certified by 
an expert. Regardless of how de-identification is achieved, the resulting data set no 
longer qualifies as PHI and is not subject to the HIPAA privacy rules. 

Because situations might arise in which establishing identity is important, HIPAA 
allows a de-identified data set to contain a special identifier that can be used later to 
re-identify the data [45 CFR 5164.514 (c)] [ lo] . The identifier must not be derived 
from any information related to the person and may not be used or disclosed for any 
other purpose. The process for assigning the identifier may not be revealed. 
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Fig. 3.4 Flowchart for determining whether a government-funded program is a covered health 
plan under HIPAA privacy rules. (From the Centers for Medicare and Medicaid Services of the 
U S .  Department of Health and Human Services [l 11) 

3.2.3.3 When one in- 
terprets the HIPAA privacy rules, it is important to distinguish between required and 
permissible data disclosures. Required disclosures are those that are mandated by 
law. Permissible disclosures are those that are allowed by law but are left up to the 
data owner’s professional judgment, ethics, and discretion. From the public health 
perspective, HIPAA describes only which disclosures are permissible. Nothing in the 
act requires data disclosure for public health purposes [ 121. Required disclosures are 
generally mandated by individual state laws, as discussed in Section 3.2.1. 

When Can Protected Health Information Be Disclosed? 

Required disclosures. There are only two circumstances under which HIPAA 
requires disclosure of PHI: first, to patients themselves upon request; and second, 
to the U.S. Department of Health and Human Services to determine HIPAA 
compliance (45 CFR f j  164.502) [ 101 . If other laws require disclosure, HIPAA 
does not bar such disclosures [45 CFR fj164.512(a)] [lo]. 

Permissible disclosures. HIPAA discusses at great length which PHI disclosures 
are permissible. Under HIPAA, covered entities may use or disclose PHI for 
purposes of health care treatment, payment, or operations. Most other uses or 
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1. 

2. 

3. 
4. 
5. 
6. 
7. 
8. 

9. 
10. 

11. 
12. 
13. 
14. 
15. 

16. 
17. 
18. 

Names. 
Postal address information, other than town or city, state, and zip code. 
Ages > 89, including dates from which age can be determined. 
Telephone numbers. 
Fax numbers. 
Electronic mail addresses. 

Social Security numbers. 
Medical record numbers. 

Health plan beneficiary numbers. 
Account numbers. 

Certificate/license numbers. 
Vehicle identifiers and serial numbers, including license plate numbers. 
Medical device identifiers and serial numbers. 
Web universal resource locators (URLs). 
Internet Protocol (IP) address numbers. 

Biometric identifiers, including finger and voice prints. 
Full face photographic images and any comparable images. 
Any other unique identifying attributes, with the exception of codes assigned to 
allow de-identified information to be re-identified. 

Fig. 3.5 The 18 types of health care information that must be removed in the safe harbor 
method of de-identifying protected health information under HIPAA. 

disclosures of PHI that are not otherwise required by law are forbidden unless 
written authorization is obtained from the patient [ 121. 

HIPAA does, however, acknowledge the need to balance personal privacy with 
the public good. Certain types of data collection are considered too important to 
public welfare to be contingent on the express authorization of each patient. Twelve 
specific activities of public interest or benefit are granted exceptions to the written 
authorization requirement, including law enforcement, reporting of domestic violence, 
judicial proceedings, and public health (45 CFR 5 164.5 12) [ 101. 

The public health exceptions written into HIPAA permit, for certain purposes, the 
disclosure of PHI without patient authorization to apublic health authority, defined as 
an “agency or authority of the United States, a state, a territory, [or] a public subdivision 
of a state or territory. . . that is responsible for public health matters as part of its 
official mandate” (45 CFR 5164.501) [lo]. The public health authority that receives 
the information must be “authorized by law to collect or receive such information 
for the purpose of preventing or controlling disease.. . including, but not limited 
to. . . the reporting of disease. . . and the conduct of public health surveillance, public 
health investigations, and public health interventions” [45 CFR 5 164.5 12(b)( l)(i)] 
[ 10). Examples of legitimate public health authorities include state and local public 
health authorities, the CDC, the National Institutes of Health (NIH), the Federal 
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Drug Administration (FDA), and the Occupational Safety and Health Administration 
(OSHA) [12]. 

The public health exceptions in HIPAA also permit data to be disclosed to a person 
or entity, which, although not itself a public health authority, has received a grant 
of authority from one (45 CFR 5164.501) [lo]. In the context of surveillance, this 
permission allows a public health authority to authorize a third party to perform 
designated aspects of data collection, data archiving, or data monitoring on its behalf. 
Because the HIPAA rules on data disclosure are not always well understood, the CDC 
provides sample letter templates (Figs. 3.6 and 3.7) that a public health authority can 
use to clarify data disclosure rules to a covered entity or to extend a grant of authority 
to an external agency. 

To Whom it May Concern: 

[Public health authorify] is an agency of [parent authority] and is conducting the 
activity described here in its capacity as a public health authority as defined by the 

Health Insurance Portability and Accountability Act (HIPAA), Standards for Privacy of 
Individually Identifiable Health Information; Final Rule (Privacy Rule) [45 CFR 9 
164.5011. Pursuant to 45 CFR 3 164.512(b) of the Privacy Rule, covered entities such 
as your organization may disclose, without individual authorization, protected health 
information to public health authorities ‘ I . . .  authorized by law to collect or receive such 
information for the purpose of preventing or controlling disease, injury, or disability, 
including, but not limited to, the reporting of disease, injury, vital events such as birth or 
death, and the conduct of public health surveillance, public health investigations, and 

public health interventions .._” 

[Public health authority] is conducting [project], a public health activity as described by 
45 CRF 9 164.512(b), and is authorized by [law orregulation]. The information being 
requested represents the minimum necessary to carry out the public health purposes 
of this project pursuant to 45 CFR 8 164.514(d) of the Privacy Rule. 

If you have questions or concerns please contact [project leader]. 

Fig. 3.6 
regarding disclosure. 

Example of a letter from a public health authority to a covered entity, clarifying rules 

3.2.3.4 Even when it makes a 
permissible disclosure of information, a covered entity is usually required to disclose 
only the minimum necessary amount of information, described as the “amount rea- 
sonably necessary to achieve the purpose of the disclosure” [amended 2002 version, 

How Much Health Information Can Be Disclosed? 
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Dear [Authorized Agency]: 

This letter serves as verification of a grant of authority from [public health authority] for 

you to conduct the public health activities described here, acting as a public health 
authority pursuant to the Standards for Privacy of Individually Identifiable Health 
Information promulgated under the Health Insurance Portability and Accountability Act 

(HIPAA) 145 CFR Parts 160 and 1641. Under this rule, covered entities may disclose, 
without individual authorization, protected health information to public health authori- 
ties ’I. . authorized by law to collect or receive such information for the purpose of 

preventing or controlling disease, injury, or disability, including, but not limited to, the 

reporting of disease, injury, vital events such as birth or death, and the conduct of 
public health surveillance, public health investigations, and public health 
interventions . . . ”  The definition of a public health authority includes ‘I... and individual 
or entity acting under a grant of authority from or contract with such public agency ...” 

[Aufborized agency] is acting under [contract, grant, or cooperative agreement] with 

[public heakh authority] to conduct [project], which is authorized by [law or regulation]. 
[Public health authority] grants this authority to [authorized agency] for purposes of 
this project. Further, [public health authority] considers this to be [activity type], for 
which disclosure of protected health information by covered entities is authorized by 

45 CRF lj 164.512(b) of the Privacy Rule. 

Fig. 3.7 
a grant of authority. 

Example of a letter from a public health authority to an authorized agency, providing 

45 CFR $164.514 (d)] [ 101. When making a permitted disclosure to public officials, 
such as public health authorities, a covered entity is allowed to assume that the amount 
of the information requested is the minimum amount necessary for the stated purpose 

Also in the context of permissible disclosure, HIPAA introduces the concept of a 
limited data set [amended 2002 version, 45 CFR $164.514 (e)(l)] [lo]. This type 
of dataset may be used or disclosed without patient authorization for purposes of 
research, public health, or health care operations. It excludes specific identifying 
information pertaining to the person or to any of the person’s relatives, employers, 
or household members. The identifiable elements that must be removed to create a 
limited data set are listed in Fig. 3.8. These are identical to the elements removed 
to de-identify data, with the exception of the age restriction and the medical device 
identifiers or serial numbers (items 3 and 13 in Fig. 3.5). 

Because a limited data set may still contain identifiable information, it continues 
to qualify as PHI. Before releasing it, a covered entity is required to put into place 
a data use agreement ensuring that the new owner will maintain certain privacy and 

~131. 
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1. 

2. 
3. 
4. 

5. 
6. 

7. 
8. 

9. 
10. 

11. 
12. 
13. 

14, 

15. 
16. 

Fig. 3.8 

Names. 
Postal address information, other than town or city, state, and zip code. 
Telephone numbers. 
Fax numbers. 
Electronic mai I addresses. 
Social security numbers. 
Medical record numbers. 
Health plan beneficiary numbers. 
Account numbers. 
CertificateAicense numbers. 
Vehicle identifiers and serial numbers, including license plate numbers. 
Device identifiers and serial numbers. 
Web universal resource locators (URLs). 
Internet protocol (IP) address numbers. 
Biometric identifiers, including fingerprints and voiceprints. 
Full-face photographic images and any comparable images. 

The 16 types of health care information that must be removed from protected health 
care information to create a limited data set under HIPAA. 

security protections. The required terms of the agreement are outlined in Fig. 3.9. 
Any covered entity that receives a limited data set and violates the data use agreement 
is considered to be in violation of HIPAA. Any covered entity that releases a limited 
data set to a recipient that it knows is not obeying the data use agreement is also in 
violation of HIPAA [ 131. 

3.2.3.5 What Types of Health Information Does Syndromic Surveillance Need? 
Although traditional disease outbreak investigations have an inherent need to gather 
detailed patient health data, syndromic surveillance may have limited need for many of 
the details. Detecting a suspicious increase in disease counts does not require directly 
identifiable information such as name, street address, or medical record number. 
Most syndromic surveillance systems focus on core information about syndrome, 
date, zip code or larger region, age group, and sex. The data elements that are 
needed to support these analyses are permitted to appear in both de-identified and 
limited data sets. Anomaly detection methods in syndromic surveillance systems can 
function effectively without further personal details. Some systems are developing 
the capability to use only aggregate-level or summary data, moving a step farther from 
HIPAA's protected health information. 

Effective public health disease surveillance requires having the tools and capabili- 
ties to monitor community health indicators and detect abnormal health events quickly. 
Beyond having the proper tools, it is as important for public health entities to have 
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The data use agreement must: 
A. Establish the permitted uses and disclosures of the health information. 
6. Establish who is permitted to use or receive the limited dataset. 
C. Provide that the limited dataset recipient will do the following: 

i. Not use or further release the information other than as allowed by the 
data use agreement or as may be required by law; 

ii. Use proper safety measures to prevent use or disclosure of the 
information other than as allowed by the data use agreement; 

iii. Inform the covered entity if the recipient becomes aware that data is 
being used or disclosed in any way not described in the data use 

agreement; 
iv. Make sure that any agents including subcontractors to whom the limited 

dataset is provided agrees to the same restrictions and conditions that 
apply to the recipient; 

v. Does not identify the information or contact the individuals. 

Fig. 3.9 
discloses a limited data set. (From the 2002 amended version, 45 CFR §164.514(e)(2) [lo]) 

Provisions of the data use agreement required by HIPAA when a covered entity 

the authority to conduct detailed investigations when needed. If an unusual disease 
cluster is detected by a surveillance system, public health personnel will generally 
need identifiable health information in order to follow up on the potential outbreak. 
In a known or suspected emergency, it may be crucial to have HIPAA-permitted re- 
identification codes available that allow investigators to re-identify health records of 
interest quickly and reliably. A thorough understanding of the rules governing the 
privacy and confidentiality of health care information can help to design surveillance 
systems that are able provide maximum public health benefit while respecting legal 
and ethical limitations. 

3.2.4 Summary of Data Sharing 

Reliable data streams of health indicator data are a foundation of operational syndromic 
surveillance. Obtaining access to the necessary types of data often poses one of 
the major early challenges of establishing an operational surveillance system. It is 
important to understand the factors that motivate data owners to share their information 
and the legal and proprietary issues pertaining to data disclosure and use. 

Many of the nontraditional health indicator data types used in surveillance have 
not historically been needed for public health purposes. Access to these types of data 
must generally be obtained either through purchase or through voluntary disclosure 
by their owners. In either case, due to the proprietary nature of the data, data providers 
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commonly require a data use agreement that limits the ways in which the recipient 
can use or further disclose the data received. 

Traditional health care data, on the other hand, are subject to numerous rules and 
regulations. All states have laws that grant state and local public health authorities the 
power to gather health information for local public health activities. In some cases, 
these laws might be interpreted as providing legal authority for syndromic surveillance 
as well. 

The privacy rules of HIPAA primarily restrict the use and disclosure of traditional 
health care information. HIPAA does provide exceptions for data disclosure for public 
health purposes, however, and it does not block data disclosures that are otherwise 
required by law. Permissible data disclosures designed to support surveillance will 
most likely be one of the following types: disclosure of a de-identified data set that is 
no longer protected by HIPAA; disclosure of a protected data set that consists of the 
minimum data needed for public health purposes; or disclosure of a limited data set 
that is still considered protected and must be accompanied by a data use agreement 
that limits how the data recipient can use or further disclose the data. 

Regardless of the data type, the data source, or the existence or absence of legal 
mandates, maintaining the goodwill and cooperation of data providers is an enormous 
asset for practitioners of syndromic surveillance. Accommodating concerns about 
privacy and proprietorship, respecting data use agreements, and working to minimize 
cost and inconvenience all contribute to developing the positive long-term relations 
needed to establish and maintain the level of data access required to support operational 
syndromic surveillance systems for the benefit of the community. 

3.3 THE ROLE OF STANDARDS IN DATA EXCHANGE 

Much of the health indicator data used for surveillance already exist within health care 
institutions in electronic form. In normal daily business operations, these institutions 
enter, retrieve, view, and exchange electronic data. It also has become increasingly 
important for these institutions to be able to exchange their data with external or- 
ganizations responsible for protecting the health of the nation. To exchange data 
electronically, each aspect of the exchange needs to be defined in some way using 
either ad hoc approaches or existing standards. Using existing standards can help 
improve efficiency and lower implementation cost when sharing data with national 
health information systems. Because surveillance applications collect electronic data 
from other systems, builders of electronic surveillance systems need to understand 
electronic data standards used by data provider institutions and industries. Efforts are 
under way, through organizations such as the American National Standards Institute 
(ANSI) [ 141 and the Healthcare Information Technology Standards Panel (HITSP) 
[ 151, to standardize for the collection and exchange of public health data. Data stan- 
dards are the principal informatics component necessary for information flow through 
the national health information infrastructure. With common standards, clinical and 
patient safety systems can share an integrated information infrastructure whereby data 
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are collected and reused for multiple purposes to meet more efficiently the broad scope 
of data collection and reporting requirements [ 161. This section focuses primarily on 
health care industry data standards that are related to public health surveillance. 

3.3.1 Types of Standards 

In information technology, data standards are the common language that allows infor- 
mation to be shared across systems. They can be formally defined as “documented 
agreements containing technical specifications or other precise criteria to be used con- 
sistently as rules, guidelines, or definitions of characteristics, to ensure that materials, 
products, processes and services are fit for their purpose” [ 171. In the context of health 
care, data standards encompass the broad range of methods, protocols, terminologies, 
and specifications for the collection, exchange, storage, and retrieval of informa- 
tion associated with health care applications, including medical records, medications, 
billing, and administrative processes [ 171. 

Consider the standards used when communicating laboratory test results using 
paper-based forms. 

0 Words and numbers are written on a standardized report form. They come from 
the standard set of English words and Arabic numerals. 

0 The layout of the form dictates the placement of words and numbers in a way 
that allows their meanings to be interpreted (e.g., the number in the box labeled 
“Zipcode” should be interpreted differently from the number in the box labeled 
“Blood Cholesterol”). 

0 An understanding of the relationships between the various words and numbers 
on the form allows the viewer to recognize, for instance, that the person whose 
name appears on the form is the person to whom the results on the form pertain. 

0 The form is transmitted via the postal system mail, a complex system that 
involves standardized packaging in envelopes, standardized payment via stamp, 
standardized routing using a written address, and standardized drop-off and 
pickup locations. 

0 The laboratory transmits the form to a clinician’s office in response to the 
clinician’s previous request for laboratory testing, and the staff member that 
receives the form understands why it has arrived and files it appropriately. 

The numerous kinds of informal standards used in the above scenario parallel the 
formal standards needed for exchanging electronic data. Standards exist to codify 
each aspect of data exchange. Unfortunately, competing or overlapping standards 
commonly exist for each type. When one is trying to make sense of the large number 
of existing standards, it helps to understand the aspects of data exchange that each 
covers. Some address only one aspect, such as vocabulary or record format, while 
others bundle several into a single package, such as data format and transmission. 
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This section focuses on standards for surveillance data. Other standards for elec- 
tronic data exchange more pertinent to basic computer science issues, such as network 
protocols and security, are not covered here. The major types of standards covered 
are terminologies, message formats, message protocols, and knowledge models. Of 
these, terminologies and message formats are most pertinent to surveillance. 

Several terms with similar meanings are commonly employed to designate a finite 
set of defined terms used to describe, classify, and encode the concepts in a domain. 

0 Vocabulary, terminology: the terms and their definitions only. 

0 Codeset: a terminology whose terms are numeric or alphanumeric strings rather 
than words. 

0 Class$cation: a terminology organized for easy retrieval, such as by major and 
minor categories. 

0 Nomenclature, taxonomy: the terms, their definitions, and an associated hierar- 
chical scheme specifying “is-a” relations among terms. 

0 Ontology: the terms, their definitions, and an associated scheme describing 
more complex semantic relations among terms. Although sometimes used as 
simple vocabularies, ontologies properly belong to the category of knowledge 
models. 

Message format: the structure of a data message. The message format typically 
specifies the data elements that appear in the message, their data types, their 
order of appearance, and any headers, trailers, and delimiters. 

0 Message protocol: an agreed-upon format for transmitting data between two 
devices. Although the term is often used loosely for any type of electronic 
communication, a protocol typically specifies the following: 

- The message format 

- Error checking methods 

- When messages are sent 

- How a device indicates that it has finished sending a message 

- How a device acknowledges having received a message. 

0 Knowledge model: a formal representation of the knowledge proper to a domain. 
A knowledge model typically includes terms, their definitions, and a logic that 
describes semantic relations among terms and supports reasoning. 

3.3.2 Standards Development 

Standards are developed and gain acceptance de facto, de jure, or by consensus. De 
facto standards are typically not developed or endorsed by an official standards body 
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but have gained acceptance because of their wide use. De jure standards are those 
whose use is required by law. Consensus standards are developed and approved by 
official standards bodies through collaborative processes among working groups of 
stakeholders. An enormous number of government and industry standards organi- 
zations are involved in developing standards related to health data. The two major 
organizations in consensus standards development are the International Standards 
Organization (ISO) [ 181 and the American National Standards Organization (ANSI) 

The ISO, an international agency headquartered in Geneva, is broadly tasked with 
advancing worldwide standardization for trade and cooperation in intellectual, scien- 
tific, technological, and economic activity. Its members are the national standards 
institutes of some 150 countries, and it presently comprises over 2000 technical 
committees, subcommittees, and working groups. The I S 0  itself does not develop 
standards or dictate who uses them. It coordinates the development processes for 
international standards and publishes the finished standards. IS0 standards related 
to health care data include the electronic business mode using extensible Markup 
Language (ebXML) protocol [19], Health Level Seven (HL7) [20], and the Electronic 
Health Record (EHR) [21]. 

ANSI, a private, nonprofit organization dating back to 1918, is the U.S. national 
standards body belonging to the ISO. Like the ISO, ANSI does not develop standards 
itself or mandate their use. It acts primarily as a coordinator to designate official ANSI- 
accredited standards development bodies, such as the HITSP mentioned earlier, to 
ensure that the processes they use meet ANSI criteria for openness and accountability, 
and to accredit the results as American National Standards. 

As broadly outlined by the Public Health Data Standards Consortium [22], the 
process for creating consensus-based standards consists of the following steps: 

~ 4 1 .  

1. First, an appropriate ANSI-accredited or other organization must be convinced 
of the need for the new standard. 

2. An appropriate standards development organization (SDO) is then designated 
to develop the standard. 

3. The SDO drafts the standard, ensuring that appropriate participation opportu- 
nities are provided, feedback is obtained and incorporated, and consensus has 
been reached among stakeholders. 

4. After completing the initial development process, the standard is approved and 
published. 

5. Post publication, the SDO may collect further comments about the implemen- 
tation of the standard and revise it accordingly. 
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3.3.3 Standards for Health Indicator Data in Biosurveillence 

Many standards exist for the health care data. This section covers a representative 
handful of standards related to the leading types of health indicator data used in 
biosurveillance. The list is organized by data type. 

0 Pharmacy Data (Over-the-counter and Prescription) 

- UPC (Universal Product Code) The UPC is an 8- or 12-digit identifier 
that is unique for every commercial product, including OTC pharmacy 
products. In the United States, UPC codes are managed by the Uniform 
Code Council [23] and are assigned upon application from the manufac- 
turer. 

- NDC (National Drug Code) The NDC is a three-segment, 10-digit unique 
identifier for every human prescription drug product manufactured for 
commercial sale in the United States. NDC codes are assigned by the 
FDA and maintained in its NDC directory, as mandated by the Drug 
Listing Act of 1972 [24]. 

0 Laboratory Data 

- LOINC (R) (Logical Observation Identifiers, Names, and Codes) The 
LOINC code is a five- to six-digit alphanumeric identifier for labora- 
tory and clinical observations. The approximately 30,000 laboratory 
codes cover chemistry, hematology, serology, microbiology (including 
parasitology and virology), toxicology, drugs, cell counts, and antibi- 
otic susceptibilities. The approximately 10,000 clinical codes cover vital 
signs, hemodynamics, intake/output, EKG, obstetric ultrasound, cardiac 
echo, urologic imaging, gastroendoscopic procedures, pulmonary ventila- 
tor management, selected survey instruments, and other clinical observa- 
tions. Originating in 1994, LOINC is a proprietary, copyrighted standard 
owned by the nonprofit Regenstrief Institute for Health Care, associated 
with Indiana University. It is available free due to financial support from 
the National Library of Medicine (NLM). The standard’s continued de- 
velopment is overseen jointly by Regenstrief and the ANSI-accredited 
LOINC standards development committee. LOINC enjoys significant 
market penetration. In 1999, it was identified by the HL7 Standards De- 
velopment Organization as a preferred code set for laboratory test names 
in health care transactions. Under HIPAA, LOINC has been designated 
for use in the HL7 messages included in claims attachments [25]. 

0 Hospital Emergency Department and Physicians’ Office Visit Data 

- ICD-9-CM (International Classification of Diseases, Ninth Revision, 
Clinical Modification) The ICD-9-CM code is an alphanumeric code, at 
most five digits long, used to uniquely represent clinical diagnoses and 
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procedures. A semihierarchical classification system, ICD-9-CM repre- 
sents similar diagnoses and procedures with similar codes and represents 
subclasses with additional digits beyond the decimal point. Based on the 
World Health Organization (WHO) standard of the same name, the ICD- 
9-CM system is maintained within the United States by the government’s 
National Center for Health Statistics (NCHS) and Centers for Medicare 
and Medicaid Services (CMS) and is freely available. Historically de- 
veloped as a classification system for statistical compilation of data in 
inpatient settings, ICD-9-CM is now the cornerstone of health care reim- 
bursement. In 2000, the U.S. Department of Health and Human Services 
(DHHS) designated it as one of the five code sets that must be used to en- 
code diagnoses and procedures in health care transactions under HIPAA. 
ICD-9-CM volumes 1 and 2 are designated for diagnosis codes, and ICD- 
9-CM volume 3 is designated for inpatient hospital services. In 1994, 
the WHO replaced the aging Version 9, first implemented in 1979, with 
an expanded and more detailed Version 10. Several countries, including 
Australia and Canada, have converted to ICD-10, but conversion is still 
under evaluation in the United States. [26, 271. 

- CPT-4 (Current Procedural Terminology, Version 4) The CPT code is 
a five-digit code used to uniquely represent medical, surgical, and diag- 
nostic services and procedures. Originally developed in 1966 with a focus 
on surgical procedures, it has greatly expanded over the years - a 2006 
version contains 8568 codes and descriptors. The CPT standard is copy- 
righted and maintained by the American Medical Association (AMA), 
which charges a modest licensing fee for its use. In the 1980s, CMS, then 
known as the Health Care Finance Administration (HCFA), mandated use 
of CPT codes for Medicaid and Medicare reporting. CPT-4 is another of 
the five code sets mandated by the DHHS in 2000 for encoding diagnoses 
and procedures in health care transactions under HIPAA [28]. 

- HL7 The common format and protocol for exchanging health care in- 
formation is through Health Level Seven (HL7). HL7 is a set of imple- 
mentation specifications at the highest level (application or level 7) of 
the IS0 communications model for open systems interconnection (OSI) 
[29]. It defines the record structure and transfer protocols for exchanging 
information between health care information systems. HL7 was initially 
introduced in 1987 and is copyrighted and maintained by Health Level 
Seven, a not-for-profit volunteer organization comprising commercial and 
government groups. Its mission is to create standards for the exchange, 
management, and integration of electronic health care information. Sev- 
eral versions of HL7 exist. HL7 v2.5 is the latest approved ANSI standard 
(June 2003); however, a newer version, v3.0, is still evolving and will sig- 
nificantly depart from the current version’s structure and implementation. 
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3.3.4 National Health Information Systems - Implementing Standards 

In addition to creating standards, tools must be provided to implement the standards. 
The CDC has developed many public health-related tools that have adhered to many 
standards for IT, security, and public health. Systems such as the National Electronic 
Disease Surveillance System (NEDSS) [30], the Laboratory Response Network (LRN) 
[31], and BioSense [32] are part of the CDC’s Public Health Information Network 
(PHIN) [33]. PHIN provides an overarching framework for not only helping forge new 
standards, but also implementing them in the field. In addition to complete systems, 
other aspects of standards are being implemented by tools such as the Public Health 
Information Network Messaging System (PHIN-MS) [34] and the Public Health In- 
formation Network Vocabulary Access and Distribution System (PHIN-VADS) [35] 
to allow these surveillance systems and others to adhere to set standards. 

The tools themselves adhere to IT, security, and public health standards. The 
PHIN-MS implements ebXML message service specification [36], XML encryption 
requirements [37], XML signature syntax processing [38], and the simple object 
access protocol (SOAP) [39], among others. The PHIN-VADS is an application that 
provides PHIN, application-based, message-based, and standards-based vocabularies 
to users. These vocabularies include the standards put forth by HL7, LOINC, and 
ICD-9 among others. 

So while the creation of standards is extremely important for public health and 
electronic disease surveillance systems, it is equally important for key institutions to 
recognize these standards and implement them in their applications and systems. 

3.4 ESTABLISHING THE DATA FEEDS 

Data are an important fundamental building blocks of a medical surveillance system. 
The success of the system is highly dependent on the data that it collects. Chapter 2 
provided detail about many different types of health indicator data and their relative 
merits. This section discusses the technical considerations involved with obtaining 
and working with these data sources. In particular, special attention is given to four 
widely available and highly useful data sources: emergency department patient visits, 
school absenteeism reports, OTC pharmacy sales, and physicians’ office visits. 

The data may come from many disparate sources, may be formatted in peculiar 
ways, and may be transmitted by an assortment of different protocols. Some of the 
popular emerging data format and communication protocol standards currently used 
in the medical industry are highlighted. In many instances, however, a surveillance 
system will need to interact with source systems that implement all, some, or none of 
these standards; therefore, it is in the best interest of the developers to be flexible. 
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3.4.1 Information Systems of the Data Provider or Source 

Hospitals, schools, pharmacies, and physician’s offices use information systems to 
gather and process data in their day-to-day operations. Fortunately, most of these 
information systems have existing report generation or data export capabilities that 
can be leveraged to provide data to the surveillance system. The information system 
of the provider of the data will be referred to here as the source information system. 

Data collected directly from their source have the advantage of being very timely. 
Establishing and maintaining a multitude of individual data sources can be overwhelm- 
ing, but one solution is to leverage hierarchical sources of data that act as a central 
collection or accumulation node. This approach has two primary advantages. First, it 
is easier for the surveillance system to collect data from one central node than from 
each source separately. Second, the individual sources that send their data to a central 
node often do so as part of their existing daily routine - so no extra effort is required 
from the individual sources. 

For example, hospitals may belong to hospital groups where the individual hospi- 
tals feed their data to a central system of the hospital group. Schools may provide their 
daily absentee reports to the school district’s central office. Individual pharmacies may 
provide their daily sales to a regional central office. Finally, individual physicians’ of- 
fices may send their data to an insurance claims processor for payment reimbursement. 
Figure 3.10 provides an approach for collecting data for use in a health department’s 
electronic surveillance system. This data acquisition strategy consists of collecting as 
much data as possible from central collection offices. Because not all data sources 
belong to a larger group, individual providers - in this case private hospitals - send 
their data to the surveillance system directly. 

The primary disadvantage with this approach is that the data may be delayed for a 
period of time while they are being accumulated by the central node. Depending on 
how and when the data are collected, the delay may be minutes, hours, or, for some 
sources, even days. 

Once it has been determined that the data are useful, that the source agrees to 
provide the data, and that the data can be easily obtained from a collection node, the 
next issue to consider is the cost to the provider for transmitting the data. To succeed, 
the burden on the data provider for establishing a data feed must be minimal. In many 
cases, data providers will not willingly provide their data if doing so is labor and 
resource intensive or otherwise costly. For this reason, imposing requirements outside 
the providers’ immediate capabilities will result in failure, unless the data providers 
are compensated or mandated by law to supply their data. Success is more likely 
if the requesting organization can be flexible and leverage the provider’s assets and 
resources as much as possible. Often, once the data providers see the merits of their 
participation, they will be willing to supply their data. Similarly, providing routine 
feedback to data providers after a system is established can aid in maintaining the 
relationship. 

Information needed to help understand current trends in health indicator data may 
be available and relatively simple to collect. The National Weather Service data can be 
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Fig. 3.10 Data acquisition strategy leveraging central collection sites. 

accessed via the Web to provide environmental information for surveillance analysis. 
Reference information sources, such as the U.S. Census Bureau or the U.S. Postal 
Service, can also be accessed periodically to provide current reference information 
for the surveillance system. 

3.4.2 Setting Up the Data Feed 

A critical step in the process of setting up a data feed is finding a person who knows the 
technical details of the data repository of the provider. Unfortunately, in many cases, 
this person is not included in discussions until it is time to implement the data feed; 
IT staff should be included in early discussions to identify any immediate technical 
obstacles in setting up a data feed. 

Information systems vary from organization to organization. For example, some 
hospitals may have a hospital information system that integrates the emergency de- 
partment registration application tightly with other hospital applications; others may 
have a stand-alone emergency department registration application that operates sep- 
arately from the other hospital applications. The information required for the data 
feed may need to come from more than one application or information system within 
the hospital. Additionally, the hospital’s source information system may not provide 
data in an established standard, such as HL7, but instead may provide data through a 
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report generator. Electronic surveillance systems must be flexible enough to adapt to 
the idiosyncrasies presented by many different data sources. 

Data feeds can be transmitted using a “push” or “pull” method. In a push Trans- 
mission, the data source pushes data onto the surveillance system by initiating the data 
transfer and copying the data over. Alternatively, the surveillance system initiates the 
data transfer in a pull Transmission by pulling the data from the data provider, often 
querying the provider directly for the data. In almost all cases, the source information 
system will push the data to the surveillance system. Data providers rarely allow an 
external system to query or pull data directly from the provider’s information system. 

3.4.2.1 Once the format of the data feed has been 
determined, the next step is to establish the frequency of the data collection. There 
are essentially two types of data feeds: batched or real time. From a network imple- 
mentation perspective, the fundamental tradeoff between batched and real-time data 
feeds is network infrastructure implementation costs versus data immediacy. 

A batchedfeed usually implies that the data will be sent at a scheduled time interval, 
which could vary from once every 5 minutes to once a day. These data feeds do not 
require continuous network bandwidth. The advantage of a batch feed is that most, if 
not all, of the network infrastructure required to establish a data feed may already be 
in place. There are few disadvantages from an analytic perspective if the batched data 
are sent frequently, such as several times an hour. 

A real-time feed usually implies that the data will be sent at roughly the same time 
that they are processed by the provider. However, establishing a real-time data feed 
requires a network infrastructure with enough network bandwidth to support these 
continuous data streams. Although any source information system can potentially 
provide a real-time data stream, hospital HL7 messages are primarily the format 
considered for real-time data feeds. Conceptually, the advantage of a real-time feed 
is the immediate availability of the data. However, in most instances, real time data 
transfer is limited to the real-time transfer of the data from the source provider to the 
surveillance system and not the actual availability of the data to the end user. The data 
may sit in the surveillance system’s archive waiting for processing for several minutes 
or hours before they are processed by surveillance algorithms. 

A batched feed that processes the data upon receipt and makes them available to 
the user may provide more timely information than a system that receives a real-time 
data feeds that are directed to the archive for processing at a predetermined interval. 
The necessary network infrastructure to maintain the continuous data stream required 
by a real-time data feed can also be expensive to establish and maintain. Batched 
feeds that are sent every 15 minutes require very little extra network bandwidth and 
provide a real-time-like level of data immediacy without the expense of a real-time 
connection. 

Not every source system will be able to provide the data the same way. A surveil- 
lance system will very likely use a mixture of batched and real-time feeds. Ultimately, 
the budget for implementing a surveillance system will dictate which type of data feeds 
can be supported. The cost to implement the data feeds depends upon the type of data 

Batched and Real-Time Feeds 
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feed, the level of IT staff resources needed to extract the data from the source informa- 
tion system, and the state of the existing hardware and network infrastructure of both 
the data provider and the surveillance system. The cost associated with extracting 
data from the source information system depends on the IT programming and network 
capabilities of the provider. In most instances, hospitals use their own IT staff to set 
up the data feed. In some cases, however, hospitals use turnkey information systems 
and will need the system’s vendor to create the data feed. Other hospitals outsource 
their IT and network staff and will need to contract with them for the creation of the 
data feed. 

The amount of time needed to develop the extract software for the data feed may 
range from one to two days to several weeks or months depending on the complexity 
of the data source’s information system. This setup is usually a one-time cost in IT 
resources. Additional IT resources are occasionally needed afterward for maintenance 
or troubleshooting problems. 

For a batched data feed, the hardware costs incurred by the source provider are 
minimal. If the health department already has a server infrastructure that can receive 
these batched files, the hardware and network costs for the health department will 
be minimal. If the health department does not have a server infrastructure, startup 
hardware costs are usually limited to the cost of acquiring a low- to mid-range server 
($2000-$5000) and server software ($100-$1000) to accept files from providers. 

The hardware costs are minimal for real-time data feeds if both the source provider 
and health department already have the hardware and network infrastructure in place. 
If not, startup hardware and network costs are usually higher than those for batched 
feeds. The source provider may need to install a security network device (e.g., virtual 
private network router) to communicate with the health department. The health 
department will need to acquire a mid- to high-range server to receive the real-time 
data, one or more secure network devices (e.g., virtual private network concentrator at 
$4000 - $5000) each, and possibly an Internet connection with sufficient bandwidth 
to handle the increased network traffic ($200-$2000 per month). 

3.4.3 Data Characteristics 

From a surveillance perspective, the data collected by the system should provide 
representative coverage of the population. Although ideal, complete coverage is 
unlikely due to restricted budgets, unwillingness of the data providers to participate, 
and limitations of the automated collection capabilities of the data sources. 

A typical question encountered when a system is being developed is how much disk 
space does the surveillance system require? The answer depends on the geographic 
area and number of data sources. Metropolitan, suburban, and rural areas will vary 
in the number of hospitals, schools, pharmacy chains, and physician offices. A large 
metropolitan hospital may see 200-500 patients in the emergency department a day, 
whereas a small suburban hospital may see 50-100 patients a day in its emergency 
department. 
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For purposes of discussion on disk capacity, assume that the surveillance system has 
established data feeds from 10 hospitals, three pharmacy chains, five school districts, 
and a central medical insurance claims processor who provides data for 100 local 
physicians. 

Table 3.2 presents rough estimations of the number of individual data sources, 
number of records, record sizes, and file storage requirements per day and per year 
for each of the different types of data feeds. The following calculations were used to 
populate the table: 

0 Records per site x bytes per record => bytes per day 

0 Bytes per day x number of aggregated sites => bytes per day per site 

0 Bytes per day per site x days per year => bytes per year per site 

0 Bytes per year per site/1,048,576 => Mbytes per year per site 

0 Mbytes per year per site x number of data providers => total Mbytes per year 

The daily total file sizes are in bytes and the yearly totals are in megabytes (Mbyte 
= 220 = 1,048,576 bytes) and do not reflect any additional overhead bytes needed by 
the disk storage system. 

Assumptions: 

0 Each of the 10 hospitals sees, on average, 150 patients each day. 

0 Each of the five school districts has 100 schools per district that report student 
attendance during a 170-day school year to each of their respective central 
district offices. 

0 Each of the three pharmacy chains averages 10 individual stores, each of which 
sells 100 products of interest per day and reports the sales to each of their 
respective central regional offices. 

0 Eeach of the 100 individual physician offices sends an average of eight insurance 
claims per day during the work week (Monday - Friday) to one central claims 
processor. 

Summing the individual sources together gives the total for one day as 400,000 
bytes, or approximately 0.38 Mbytes daily and 390 Mbytes annually. With current 
off-the-shelf technology, an entry-level server may have anywhere from 300 to 600 
gigabytes of disk space capacity and could comfortably store 390 Mbytes a year. 
Commercial and noncommercial (i.e., freeware) utilities are available to compress the 
data files after they have been processed to reduce the amount of disk space consumed. 
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Table 3.2 Example of Disk Storage Estimates for a Small Surveillance System 

Data Records Bytes per Bytes per Aggregated Bytes per 
per Site Record Day Sites Day per Site 

Hospital 150 100 15,000 1 15,000 

School 1 50 50 100 5,000 
district 

Pharmacy 100 300 30,000 10 300,000 
chain 

Physician 8 100 800 100 80,000 
office 

Totals 400,000 

Data Days Bytes per Mbytes Number of Total 
Per Year per Per Data Mbytes 
Year Site Year Providers per Year 

Hospital 365 5,47 5,000 5.22 10 52.21 

School 170 850,000 0.8 1 5 4.05 
district 

Pharmacy 365 109,500,000 104.43 3 313.28 
chain 

Physician 260 20,800,000 19.84 1 19.84 
office 

Totals 130.30 389.39 

3.4.4 Data Fields or Elements 

The primary goal of collecting surveillance data is to gather enough information 
to help answer the basic questions of when, where, who, and what relating to a 
potential public health event. The amount of data that the system can collect may 
be governed by local and federal privacy regulations and laws such as HIPAA. Also, 
commercial competitive market concerns may limit the data collected from both health 
and nonhealth data providers. 

HIPAA restricts not only specific protected health information (PHI), such as a 
person’s name and residence address, but also potentially identifying information, 
such as dates when a service was performed. However, HIPAA does allow for a 
limited data set that includes service dates, such demographics as birth dates, and such 
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geographic information as five-digit zip codes, counties, or cities. However, address 
and account information is still excluded from the limited data set [lo, 401. 

The following list contains the bare minimum PHI data fields needed to ascertain 
when an event is occurring, where it is occurring, who is involved, and what is 
involved: 

0 Date 

0 Time 

0 Location (e.g., a hospital name, a store name, a school name) 

0 Residence (e.g., census tract, residential zip code) 

0 Item (e.g., an emergency department initial complaint, product UPC code) 

Other data fields (such as age and sex) provide more granular stratification of the 
data to help determine if an event involves a particular demographic group. PHI 
data elements (e.g., medical record number, transaction number) provide information 
for further follow-up with the data provider. These fields are also extremely useful 
in reducing duplicate records ingested by the surveillance system. In real-time data 
feeds, providers will include “updates” to records that have already been transmitted 
to the surveillance system. If the provider includes a unique account identifier, the 
surveillance system will be able to identify and update these records. Otherwise, it is 
very difficult to distinguish “new” records from duplicate “update” records. 

A provider may be reluctant to provide a unique account identifier field because of 
HIPAA, but at least one data element needs to be included that uniquely identifies the 
data event or record. Demographics may be enough to uniquely distinguish individual 
hospital patients in most instances. However, if two people with the same demographic 
profile are seen at the same time, then distinguishing them uniquely is much more 
difficult. 

With the sample data fields listed above as a foundation, Table 3.3 presents fields 
that might be part of a surveillance system data feeds. The data fields are divided into 
basic, account, and supplementary information categories. By no means is this is an 
exhaustive list of all possible data elements. It does, however, represent a list of data 
fields that a provider may reasonably be able to provide. 
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Table 3.3 Basic Surveillance System Data Elements 

Hospital Pharmacy School Physician 
Emergency Chain Absenteeism Ofice 
Department Visits 

Date of 

Time of 

Name of 

Primary 

encounter; 

encounter; 

hospital; 

complaint 
of patient; 

Residence zip 
code 

Age 

Sex 

Basic Information: 
Date of Date of 

sale; attendance; 
Store School 

identification; identification; 
Store School 

location; location; 
Product Number of 

UPC; students 
enrolled; 

absent 
Product Name Number of students 

Number of 

Product category 
units sold 

Date of 

Provider 

Provider 

Patient 

encounter; 

identification; 

zip code; 

residence 
zip code; 

codes 
ICD-9 diagnosis 

Age 

Sex 

Account Information: 
Medical record Transaction 

number number 
Visit number 

Supplementary Information: 
Mode of arrival Promotion indicator Planned event 
Work zip Product regular Weather event 

Discharge Product promotion 

Discharge 

code price 

diagnosis price 

disposition 
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For hospital emergency department encounters, the basic data fields may include 
the date, time, and location of the patient’s encounter; such patient demographic 
information, as age, sex, and residence zip code; and the primary reason (chief 
complaint) for going to the emergency department. Account information can be used 
to update existing records with newer information. The account information includes 
the patient’s medical record number, which is usually a unique account number that 
is associated with the patient across visits to the hospital, and a visit number, which is 
usually a unique account number associated with the specific hospital visit. The visit 
number is useful to determine if a patient was seen in the emergency department more 
than once during a particular day. 

Other hospital visit data fields that provide supplementary information are also 
useful. It is useful to know how patients arrived at the emergency department (e.g., 
ambulance, walk-in), work zip codes, their diagnoses, and disposition after being seen 
in the emergency department (e.g., admitted as inpatient, released, left before being 
seen). Hospital registration protocols vary greatly, so these additional data items may 
not be collected or transmitted to other hospital applications. 

For OTC self-medication information, a pharmacy chain’s basic data fields could 
include the date of purchase, the purchase location, the product purchased, and the 
number of units sold. An extremely useful piece of information is the chain’s internal 
categorization of the product (e.g., beauty, cough and cold). However, this piece of 
information may be retained in a separate system from an inventory system and be 
very difficult to obtain as part of the extract. 

Pharmacy chains may also be able to include information about their current store 
promotions. Additionally, some pharmacy chains can include the difference in price 
between the regular and promotional prices for the items sold. Although these two 
promotional indicators are not definitive, they help to determine if an increase in 
the number of units sold can be attributed to a promotion instead of an illness. For 
example, a healthy person may be induced to stockpile a product available at 50% off 
the regular price, whereas a product at 10% off the regular price may not explain as 
much of a spike in sales. These additional informative data items may be difficult to 
obtain, however, because of competitive market concerns. Other pharmacy data, such 
as prescription drugs, may be available and may include the date the prescription was 
written, the prescription drug, the dosage, the number of refills, and the date filled. 

A school’s attendance extract from the school district may include the basic data 
fields of the attendance date, the school location, the number of students enrolled, and 
the number of students absent. Other information that is useful to know is sanctioned 
school or weather events, such as field trips or snow delays that can account for absent 
students. Although not definitive, this information helps to determine if an increase 
in the number of absent students can be attributable to a sanctioned school event, such 
as a field trip, or a weather event, such as a snowstorm delay. Other school data, such 
as health office visits, may be available. However, in many cases, these data are not 
stored electronically or collected centrally. 

For physicians’ office visits, an insurance claim broker’s extract may contain the 
patient’s encounter date, the location where the patient was seen, the patient’s demo- 
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graphics, and the ICD-9 diagnosis codes submitted for payment. As with hospital 
emergency department data, a unique account number is useful for follow-up and for 
reducing duplicate records. 

3.4.5 Data Transfer Format 

Source information systems generally use a variety of different operating systems and 
applications to store their data. This variety can make it difficult for source providers 
to package the data in a common format that is understandable by both the source and 
destination systems. 

Two of the most common data file formats are structuredfuced width and delimited 
ASCII text files (i.e., files with suffixes of .csv, .txt, or .tab). These types of files are 
commonly referred to asJclat$les because all the data elements for a single record are 
specified on single line or row. The data content of this type of file can be viewed 
easily with any text editor. Data elements in a fixed-width ASCII text file are placed at 
specific column positions for every line in the file. The first line of a file may contain 
an optional header record that describes the data in each column. For field content 
clarity, a header record should be included whenever possible. 

Excerpt of data elements in a fixed-width file (MRN = Medical Record Number) 
Date Time Age Sex Complaint MRN 
03/11/2006 12:OO:OO 25 F Has an "upset stomach" M2400 
03/11/2006 12:OO:Ol 30 M Fever, sore throat M240 1 

Data elements in delimited ASCII text files are separated by a delimiter character. 
Common character delimiters are a tab or comma. Commas, tabs, or quotes may be 
embedded in the actual data element and may cause problems while importing the 
data. 

Excerpt of data elements in a comma(,)-delimited file: 
Date,Time,Age,Sex,Complaint,MRN 
03/11/2006,12:00:00,25,F,Has an "upset stomach",M2400 
03/11/2006,12:00:01,30,M,Fever, sore throat,M2401 

Note that the second record in the excerpt contains an embedded comma in the 
chief complaint, a condition that would likely cause a data ingestion routine to fail. To 
avoid problems with embedded commas, the data elements may also be surrounded 
by double quotes. 

"Date","Time","Age","Sex","Complaint","MRN" 
"03/11/2006","12:00:00","25","F","Has an "upset stomach"","M2400" 
"03/ 1 1 /2006" ," 1 2: 00: 0 1 " , " 30", "M" , "Fever, sore throat" ,I'M240 1 " 
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Note, however, that the first record now has double quotes embedded within its chief 
complaint field. Some import routines have problems distinguishing the embedded 
quotes from the quotes surrounding the field. The delimiter character chosen should 
be one that will not be found in the data elements, such as a pipe character ( I ) .  

Excerpt of data elements in of a pipe( 1)-delimited file: 
Date lTime I Age I Sex 1 Complaint lMRN 

03/11/2006~12:00:00/25~F/Has an "upset stomach"lM2400 
03/11/2006~12:00:01~30/M~Fever, sore throatlM2401 
Other common data exchange file formats are Microsoft Excel (.xls) and dBASE or 

xBASE (.dbQ files. These types of files are similar to an ASCII text flat file in that all 
the data elements for a single record are nominally on a single line or row. However, 
they are different in that the individual data elements are stored in the file in a format 
that is unique or proprietary to the application that created it. The data content cannot 
be viewed easily with a text editor and must be imported into an application that can 
translate the proprietary format. 

More recently, source information systems are able to package their data as an 
extensible Markup Language (XML) document (.xml). For this discussion, XML, is 
conceptually similar to a flat file in that it contains records of data. Individual data 
elements are surrounded by "tags" (e.g., <Age>25</Age>) and are components of 
a parent structure such as a record. 

Excerpt of data elements of a XML payload document: 
<Hospital Chief Complaint> 
<Date>03/11/2006</Date> 
<Time > 12:00:00</Time> 
<Age>25</Age> 

<Sex>F</Sex> 
<Complaint>Has an "upset stomach"</Complaint> 
<MRN>M2400</MRN> 
< /Hospital Chief Complaint> 
<Hospital Chief Complaint> 
<Date>03/11/2006</Date> 
<Time >12:00:01</Time> 
<Age>30</Age> 
< Sex>M</Sex> 
<Complaint>Fever, sore throat</Complaint> 
<MRN>M2401 </MRN> 
< /Hospital Chief Complaint> 

This excerpt provides a very simplistic example of an XML document. An XML 
document is more than just a set of data elements. XML documents can also describe 
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what the data elements represent and how they relate to other data elements and 
structures 141,421. 

In all of the examples given, the data package, field names, order, and form 
of the data elements are mutually agreed upon by both the sending and receiving 
organizations and do not adhere to a universal standard. Alternatively, the data 
can be packaged to adhere to a specified standard. The CDC, for example, has 
established PHIN implementation and specification guides for various data types [43]. 
As of this writing (September 2006), the PHIN specification guide uses HL7 version 
2.3.1 ADT (admit, discharge, transfer) A04 register patient messages for healt care- 
related encounter information. This specification defines the structure, layout, and 
arrangement of the data needed to process an ADT message. Any system that adheres 
to this specification should be able to read and process these types of messages. 

The following is an excerpt of an HL7 ADT A04 (version 2.3.1) message stream for 
emergency department encounters with the chief complaint in the PV2 segment. For 
readability, the MSH and PV1 segments in this excerpt are not complete and have been 
altered to fit the page. This excerpt is only meant to provide a general understanding 
of the format. 

MSH/^- \&~ADTlHospitall~120061 1031200/~ADTAA04~142248~/2.3.1~142248~~ 
EVN~A04/200603111200~ I 
PIDI 1 11~2401 I I I1198103111Fl I I I1 I I I I I I1 I 
p v 1  l1lEll I l l  I l l  I l l  I l l  IIERII I l l  1 1  I l l  I l l  1 1  I l l  1 IlHOsPital... 
PV2111 lHas an "upset stomach" 
MSHIA- \&/ADT/Hospital~~/200611031201~/ADT^A04~142249~~2.3.1/142249/~ 
EVN~A04~200603111201 
PIDIl/ IM24021 I I ~19760311~M~ l A A A A l  1 1  1 I 1 1  1 1  1 

PV211 I IFever, sore throat 
There are other types of messages and segments of the HL7 specification that can 

provide additional information, such as messages that provide updated patient informa- 
tion (A08) or additional segments that provide diagnosis information (DG1). Starting 
with HL7 version 2.3.1, messages may also be expressed as an XML document. 

As with all standards, the HL7 specification is evolving to incorporate newer 
methodologies and technologies. HL7 version 3 will use the reference information 
model (RIM) and will be very different in structure than earlier versions [ 191. 

Established standards should be used whenever possible. However, if not available, 
a format can be selected to maintain structure across the same type of data. For exam- 
ple, use the same flat file format, data element order, and data format for every hospital 
that will supply a flat file, The majority of hospitals will be able to accommodate the 
format specified, but there will always be hospitals that cannot provide the data in the 
format requested. 

PV1I1 (El I1 I I1 I I 1 I I1 I I I IERI 1 I I1 I1 1 I1 I j 1 I I1 I1 1 I IHospital . . . 
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3.4.6 Data Transfer Protocol 

As mentioned in Section 3.4.5, data are commonly packaged in files. Data pack- 
aged as files can be transferred from the source information system in various ways. 
Figure 3.1 1 illustrates various data transfer options available to health departments 
establishing a surveillance system. 

Fig. 3.11 Data transfer options available to health departments for acquiring surveillance data. 

One of the most common data transfer protocols is the file transfer protocol (FTP). 
This protocol operates on the open network and does not encrypt usernames, pass- 
words, or file payloads during transmission. This protocol does not include sender 
integrity, encryption, or file transfer validation. If encryption of the payload is re- 
quired, the file must be encrypted separately prior to its transmission. 

This protocol is used mostly for FTP “deposit only” sites, which restrict the sender 
to write-only privileges. With this type of server, files can be written by the sending 
organization to the FTP site but cannot be read. The sending organization is responsible 
for validating the success of the transfer. The receiving organization must have an FTP 
server, and the sender must have an FTP client. Both commercial and noncommercial 
(i.e., shareware and freeware) versions of FTP client software are available to perform 
file transfer verification. 

Although the FTP payload may be encrypted, the FTP protocol is inherently in- 
secure because it does not encrypt the FTP account’s user name or password during 
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transmission. It is possible for malicious users on the Internet to steal user names and 
passwords by looking for these unencrypted FTP transmissions and then using the 
account information to gain unauthorized access to the FTP server. To help reduce the 
risk of compromise, many FTP servers will accept files only from specific network 
addresses. Malicious users, however, can still gain access to the server by “spoofing” 
the data source provider’s network address, so this approach to FTP server security is 
not perfect. More information about FTP vulnerabilities can be found at the CERT 
Coordination Center [44]. 

A more secure data transfer protocol similar to FTP is the SSH (secure shell) secure 
file transfer protocol (sFTP). This protocol provides for public key infrastructure (PKI) 
certificates for sender integrity, encrypted user names and passwords for account 
access, and encryption of the data file payloads prior to transit. This protocol does not 
include file verification. The receiving organization must have an SSH server, and the 
sender must have an sFTP client. Commercial and noncommercial (i.e., shareware 
and freeware) versions of SSH client software are available to perform file transfer 
verification [45]. 

Alternatively, data can be transfered via e-mail. The data payload may be sent as 
part of the e-mail body or as a file attachment. The receiving system must be able to 
process the content of the e-mail body or attachment. As with FTP, if the payload or 
file must be encrypted, the file must be encrypted separately prior to its transmission. 
Commercial and noncommercial versions of e-mail text body extraction, attachment 
extraction, and encryption utilities are available. 

Although the e-mail payload may be encrypted, privacy concerns have been raised 
about sending sensitive information in e-mail messages. The message may pass 
through and be saved on several intermediate e-mail servers along its transmission 
route. The message may reside on the intermediate servers long enough to be compro- 
mised. Transferring data through e-mail has become increasingly difficult as organi- 
zations grapple with security policies to restrict data transmissions (e.g., compressed 
.zip files) in an effort to stave off spam and malicious payloads. 

Real-time HL7 data may also be sent as network packet payloads using the minimal 
lower layer protocol (MLLP, which connects the sending system application directly 
to the receiving system application through the network. The HL7 specification not 
only specifies the structure and format of the data (as mentioned in Section 3.4.6, but 
also defines how the sending and receiving systems communicate with each other. 
The receiving organization must have an application or “listener” waiting for HL7 
messages to arrive on the network. 

HL7 messages are sent to the receiver one at a time. The receiver listens for a 
message, and after a message is received, the listener sends an acknowledgment back 
to the sender to confirm receipt of the message. If a connection to the listener cannot 
be made, or the last message was not acknowledged, newer messages will be buffered 
and queued by the sender until the receiver is ready to receive the messages. The 
sender will continue to attempt to send unacknowledged messages. 

HL7 messages almost always travel securely over virtual private networks (VPNs) 
that connect the sending and receiving organizations securely. The VPN infrastructure 
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is used to validate the account and encrypt network messages prior to transit. The 
sending and receiving organization must have a network infrastructure capable of 
establishing a continuous VPN connection between them. 

HL7 messages may also be transmitted through the electronic business mode using 
the extensible Markup Language (ebXML) protocol. This protocol, used in the PHIN- 
MS architecture, provides for sender integrity through certificates, data encryption in 
transit, and message acknowledgment or file verification. It is similar in concept to 
the “acknowledgment and retry” scheme of HL7, where negative receipt of messages 
or files will cause the ebXML message service to attempt to resend the message or 
file. However, it is also different in that the protocol does not specify the structure 
or format of the message being delivered. The data payload is decoupled from the 
delivery, which allows any type of payload (text files, binary data or XML documents) 
to be transferred. This protocol requires both the sending and receiving organizations 
to have an ebXML Message Server. The CDC provides a no-cost ebXML server 
for organizations that will be transferring files to or from CDC through PHIN-MS 
[18, 331. 

Some nontraditional information sources may have a really simple syndication 
(RSS) service available, such as syndicated news agencies. An RSS service provides 
brief or summary data in XML documents to subscribers. An RSS reader or aggre- 
gator periodically polls the RSS service site for data content. The National Weather 
Service has an experimental RSS service available that lists various weather-related 
items, such as temperature, relative humidity, and heat index [46, 471. A less de- 
sirable means of obtaining nontraditional information is through a technique called 
screen scraping. Basically, screen scraping parses the HyperText Markup Language 
(HTML) of a website’s web page for information. This method is prone to frequent 
problems and is not a very desirable means of obtaining consistent data because of 
the high rate of change in the source’s web page content. Without approval from the 
information source, the ethics and legality of obtaining information in this manner are 
also questionable. 

3.4.7 Security Considerations 

After the data arrive at the health department, they must be stored in an appropriate 
manner. HIPAA applies to covered entities that collect public health information 
(PHI). The security standard offers sound guidance for the administrative, physical, 
and technical aspects of storing and accessing the data [48]. Access to the PHI data 
must be traceable and limited physically and electronically to only those persons and 
programs that process or analyze the data. 

The standard’s physical safeguards include guidelines for access control to the 
facility and equipment, data tampering, data restoration, personnel validation, mainte- 
nance records, appropriate workstation access controls and locations, removable media 
storage, data disposal, accountability, and data backups. The standard’s technical safe- 
guards include guidelines for access control to programs and data, unique user names 
per user, emergency access procedures, automatic log-off, encryptioddecryption, au- 
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dit controls, data tampering, data validation, personnel validation, network security, 
and data integrity. 

3.4.8 Data Import Methods 

In previous sections, several types of data formats and transport protocols were men- 
tioned. For data packaged as data files using FTP or sFTP, the files may either be sent 
or “pushed” from the sending system to the receiving system server or retrieved or 
“pulled” by the receiving system from the sending system’s server. 

In almost all cases, the source information system will push the data to the surveil- 
lance system. Rarely will the data provider allow an external system to pull data 
directly from the provider’s information system. Even if the file is “pulled” from the 
source, the data are first exported to a file within the source system for pickup. Most 
surveillance systems will probably use a mixture of pushed and pulled data files. The 
file transfers may occur once or multiple times throughout the day. For files that are 
pulled from a remote site, the system must know the exact time when a file is ready 
or must occasionally look or “poll” for the file on the remote site. Most operating 
systems have schedulers that can schedule tasks or “jobs” to automate the process. 
Data files transferred through PHIN-MS are always pushed from a sending system to 
a receiving server. 

Once the data files reside on the local system, the contents of the files must be 
stored where an analyst or application can access them. In most cases, the files 
will be read into a database management system (DBMS) or other analysis appli- 
cation. Where appropriate, a consistant filename convention should be used, such 
as provider-yyyymmdd-hhss . csv, where “provider” in the filename is replaced 
with the name of the data provider, and yyyymmdd-hhss is replaced with the current 
date and time specified as a four-digit year, two-digit month, two-digit day, two-digit 
24 hours, two-digit minutes, and two-digit seconds. Using the date and time in the 
file name will allow the data files to be organized by provider and file date and time. 

Just as the system polls for remote files, the operating system or DBMS can be 
programmed to poll a local directory folder periodically for files to process. Routines 
to import or ingest the data files will read the contents of the data files and place the 
contents into the local data repository or database archive. This process is referred to 
as extract, transform, and load (ETL). The DBMS may have a native ETL product for 
importing the data. Commercial and open-source ETL products are available as well. 

3.4.9 Data Cleaning 

The same data element from different sources may have its value represented in 
different ways. To use the data effectively in the surveillance system, the source’s data 
elements need to conform to the surveillance system’s data format, representation, and 
vocabulary. The PHIN and NEDSS vocabulary standards and specifications provide 
a foundation for a health care-related vocabulary across systems [35] .  
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Systems that collect data across date and or time zones may need to convert date 
and time data to a common time zone. Hospitals may represent their patients’ ages 
by a date of birth or as an age listed in years. For younger children, the age might be 
listed in months or even weeks and days. The surveillance system may need the date 
of birth or age converted to years or placed into an age groups. The source system 
may list patient sex as male, female, or unknown (M, F, U). Occasionally, the sex field 
may be empty. Zip codes may be listed as 5 digits or 5 + 4 digits. The 5 + 4-digit 
zip code may be formatted with a dash (e.g., 12345-6789) or without a dash (e.g., 
123456789). 

Data cleaning also includes detecting duplicate records. Duplicate records may 
occur if the sending system inadvertently or unexpectedly sends a duplicate extract or 
data record. Duplicate or updated records may also occur when the sending system, 
such as a hospital, sends multiple records for the same patient throughout the patient 
encounter. For example, a hospital may send a record when the patient first registers, 
another when a diagnosis is determined, another after the patient is discharged, and, 
a final record, after ICD-9 diagnosis codes are assigned several days later. Removing 
duplicate data or updating existing data is more difficult if a specific identifier, such 
as the medical record number or visit identifier, is not provided. If an identifier is not 
included, duplicates can enter the archive and impact the overall results provided by 
the surveillance system. 

3.4.10 Data Quality 

Even though the data format and file structure may arrive as expected, the quality of 
the data may be poor. OTC pharmacy records are typically very predictable because 
they are produced from scanned items at the point of sale. The data fields supplied 
by other sources that enter data into the source system manually are not always so 
predictable, however. 

Obvious data quality problems arise when erroneous or mistyped information is 
entered into the source system. All data entries that are not generated automatically 
are potential sources of error. For example, items selected from pulldown lists or data 
entered in free-text fields are prone to error. If a hospital’s data entry system requires 
the user to enter the date manually, the resulting data will occasionally include dates 
in the future or dates a century in the past. Even with automatically generated values, 
it is possible (although to a lesser extent) that the source system may be incorrectly 
programmed. 

Other data quality problems arise when data are not received when expected. Failure 
to receive automated data feeds may be caused by internal or external server crashes, 
network outages, or power outages. Without expensive and extensive redundancy 
throughout the data flow, these events are bound to happen, and unfortunately, they 
happen more than one would like. Manual data feeds are subject to the same problems 
as automated feeds but are extremely dependent on personnel availability and are 
prone to schedule fluctuations. 
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Problems also arise when a single source, such as a pharmacy chain, accumulates 
the data for its individual stores. Although this is the best way to collect the data, it 
can lead to fluctuations in the number of individual stores providing data on a daily 
basis. Just like any other data source, a connection problem may prevent an individual 
store from reporting to the central node. 

Less obvious data quality problems can occur. Although the data supplied may not 
be erroneous, per se, they may not provide enough detail. For example, a hospital’s 
registration protocol may list a patient’s chief complaint as “Sick” for every patient 
who does not feel well, instead of being more descriptive. This type of problem can 
be mitigated if the hospital is willing to change its registration protocol. 

Content problems can also occur due to changes in the data provider’s environ- 
ment. Over time, new schools, pharmacy stores, pharmacy products, ICD-9 codes, or 
registration protocols may be added or existing ones removed. All of these changes 
may affect the surveillance system. 

3.4.11 Summary 

Obtaining data for an automated surveillance system requires numerous considera- 
tions on the part of both the data providers and the system developers. To ensure 
strong provider participation and sustainability, the system must be flexible enough 
to receive data of differing frequency and format, using the method that best suits the 
provider. Furthermore, due to security concerns, standards for the transmission, use, 
and protection of health information must be taken into consideration at every step of 
the data transmission process. 

3.5 STUDY QUESTIONS 

3.1 Consider the laws and regulations in your locality or jurisdiction. Q: What 
speciJc legislative regulation, code, or authority governs your ability to collect 
health care data for  surveillance? How much detail about the patient can be 
obtained? Under what circumstances or situations are you able to collect more 
detailed patient information ? 

3.2 Q: Which people and resources in your organization would you need to engage 
to initiate an automated disease surveillance program? 

3.3 Q: Which data sources and data elements in your jurisdiction would you con- 
sider to be crucial to a surveillance program? Where would you obtain the 
data? How would you go about requesting the data? What nonlegislative 
issues or barriers will you need to consider? 

3.4 For a surveillance program, the ability to exchange data is extremely important. 
Several representative standards organization and standards are available. Q: 
Given the types of data that you would like to collect, which of the standards 
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bodies, committees, organizations, and consortiums mentioned should you con- 
sider for the implementation of your system? What other organizations not 
mentioned are you aware of? How do their decisions affect your surveillance 
efforts? 

3.5 Various methods for formatting and transmitting data were mentioned in this 
chapter. Q: What are the tradeoffs in IT resources and infrastructure between 
receiving transmissions once a day, several times a day, and in realtime? What 
day-to-day operational issues will you need to consider? 

3.6 Q: Given your organization’s existing IT resources and infrastructure, which 
data formats and transmission methods would best$t within your organization ? 
What day-to-day operational issues will you need to consider? 
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4 Alerting Algorithms for 
Biosurveillance 

Howard Burkom 

Chapter 3 addressed several issues that developers and operators of disease surveil- 
lance systems must consider to acquire data automatically for the purpose of conduct- 
ing disease surveillance. Included were basics of the Internet for beginners in the 
field as well as more in-depth examples of data transfer between data providers and 
surveillance systems. 

This chapter discusses the analytic processes that can be applied to the data once 
they are acquired and archived into a database. The analytic processes described here 
are intended to provide an earlier notification of a change in the normal levels of 
observed counts of the desired health indicator. These indicators include a variety 
of data types, such as patients seen for a syndrome of interest, the number of OTC 
products sold that relieve certain disease symptoms, and the number of students absent 
from classes. The emphasis here is on the importance of matching the analytic process 
to the data type so as to achieve the performance needed for early identification of the 
event with minimum false alarms. The chapter ends with examples of how to evaluate 
the performance of these analytic processes using accepted metrics. 

4.1 NEED FOR STATISTICAL ALERTING ALGORITHMS 

A primary goal of an automated health surveillance system is to enable early recog- 
nition of disease outbreaks. The only information accessible to these systems is the 
data streams described in Chapters 2 and 3. In other words, the only evidence of 
the desired epidemiological truth available to the system is contained in these data 
streams, as illustrated in Fig. 4.1. 

The background disease levels (i.e., actual levels in the absence of an outbreak) 
determine the customary scale and distribution of data observed in the system. The 
surveillance system is based on the premise that when an outbreak occurs, the care- 
seeking behavior of an infected population will add a signal to the background data 
that will be recognizable if the data are processed appropriately. The value of the 
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Surveillance Data 

Automated 
Prospective Alerting 

System 

Fig. 4.1 
are the only link between the system users and epidemiological reality. 

In the automated health surveillance, understanding the data is crucial because they 

system for outbreak detection depends on its capability for prompt signal alerting 
without excessive false alarms (i.e., without alerts in the absence of an outbreak). The 
analyst might naively hope to visually inspect a data time series or group of series 
each day and start an investigation when observed data levels were high according to 
some heuristic condition. such as: 

more than 10 respiratory diagnoses in a day 

a 50% increase in diagnoses over counts from the previous day 

However, with the variety of data types to monitor for multiple syndromic signals 
on a daily or more frequent basis, visual inspection could be too labor intensive and 
subjective. A simple alerting algorithm might be envisioned that would trigger an 
investigation whenever the specified condition is observed. Although the simplicity 
of that approach is appealing, there are several reasons why such an algorithm would 
be inadequate: 

1. Evolving data streams. Data streams evolve because of changes in the under- 
lying population, including care-seeking behavior, and the changes in the data- 
processing steps producing the surveillance data streams. Examples of such 
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changes are modifications in hospital information systems, insurance plans, 
care providers, coding practices, and product groupings. 

2. Required detection pegormance. The dilemma in infectious disease surveil- 
lance is that the system must be sensitive to early signs of an outbreak, especially 
threats related to bioterrorism or pandemic influenza, but if false alarm rates 
are excessive, alerts will eventually be ignored. The example in Fig. 4.2 shows 
regional counts of a GI syndrome group comprising only relatively rare diag- 
noses. No diagnoses are recorded on many days, and the maximum on any day 
is 3. The plot shows the effects of a single outbreak beginning in mid-April 
of 1999 and continuing for about 6 weeks. A simple data threshold criterion 
would yield poor detection performance. For example, if the rule were to alert 
when the number of daily cases exceeded a threshold of 2, the event would be 
missed completely. If the threshold were dropped to 1 case, there would be 44 
alerts outside the outbreak interval. 

Fig. 4.2 Daily time series of regional counts of a GI syndrome group limited to relatively 
rare diagnoses. When a denominator variable (such as total of all diagnoses) is available, the 
proportion of syndromic counts can be more effective than the actual counts for distinguishing 
an outbreak signal. 

Several simple strategies could overcome this problem - for example, a 
moving- average filter could be used to detect the outbreak signal with fewer 
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false alarms. The point is that an algorithm must be chosen that is appropriate 
for both the data background (here, a small-count series with many zeros) and 
the signal of interest (here, a distributed cluster of rare diagnoses). It might be 
argued that a more inclusive syndrome grouping could yield higher daily counts 
that might permit more accurate data forecasts. However, if the outbreak were 
confined to the rare cases included in Fig. 4.2, the daily variability of the more 
general diagnoses would probably mask the 6-week outbreak. Furthermore, if 
an epidemiological investigation yielded a restrictive case definition, the sparse 
time series should dictate the algorithmic detection approach. Thus, the algo- 
rithms discussed in this chapter should not be chosen in a vacuum but as part of 
an overall surveillance plan. 

3. Systematic data features. Simplistic alerting methods cannot account for pre- 
dictable data features that generate nuisance alarms irrelevant to monitoring 
objectives. For example, suppose that visit counts are being monitored at a 
clinic that is known to be closed on Sundays and holidays, and visits rise 
sharply at the start of each school year. Ignoring the resulting frequent sta- 
tistical alerts on Mondays, after holidays, and at certain times of year would 
result in a loss of sensitivity to true health events, undermining the utility and 
credibility of the system. Modeling or other means of accounting for seasonal 
trends, day-of-week effects, and other known features in alerting algorithms can 
provide sustained sensitivity through repeated cycles of data behavior. 

4. Multiplicity of data types, substreams, and class$cations. These issues are 
exacerbated by the general nature of syndromic surveillance, where there is 
no single public health threat or case definition of concern. When systems 
monitor multiple syndrome groups in multiple subregions, a multiple testing 
problem results. For example, from the discussion of Fig. 4.2, an alarm on 
any day with more than a single syndromic visit count would have caused 44 
false alarms in about 1360 nonoutbreak days. One might argue that this rate is 
less than one false alarm per month and might be acceptable, depending on the 
cost of an investigation. However, if nindependent syndromefsubregion data 
streams are monitored with this false alarm rate, the probability of at least one 
false alarm is 1 - [l - (44/1360)In, so that the rate doubles for two streams, 
exceeds one alarm per week for five streams, and produces more nuisance 
alarms as more data sources are monitored. As the number of data sources 
and ways of monitoring them increase, statistical methods must be applied to 
retain sensitivity while both minimizing false alarm rates and controlling for 
the multiple testing problem. 

Statistical algorithms may thus be seen as more sophisticated alerting criteria or as 
data filters to achieve the required sensitivity while reducing the number of false alerts 
to manageable levels. The algorithm yielding optimal detection performance depends 
on the data background and other factors. Most surveillance algorithms are based 
on statistical hypothesis tests or process control charts, as discussed in section 4.4. 
Such methods cannot eliminate alerts when no outbreak is in progress-alerts that 
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may be correct mathematically but are still false alarms in the surveillance context. 
As illustrated in Fig. 4.1, the data can contain only the footprint of a health event 
of concern. In view of this gap between statistical and epidemiological significance, 
alerting algorithms form one link in the surveillance chain; their role is to focus 
the attention of health monitors on data features or combinations of features that 
merit further investigation. The accuracy of this filtering is important for directing 
subsequent investigations and conserving resources. 

4.2 FEATURES OF ALERTING ALGORITHMS 

4.2.1 Expected Data Behavior and the Denominator Problem 

The algorithms described in this chapter are intended to detect statistical behavior that 
is in some sense anomalous or unusual enough to indicate a possible public health 
threat among the cases contributing to this behavior. The detected behavior may 
take the form of a time-series spike, or the changes may be more subtle. Whatever 
the trigger, recognition of unusual data requires an estimate of baseline or expected 
behavior for comparison with the data being tested. 

Epidemiology employs rates to compare data across geographic regions, time 
periods, and other strata. For example, the prevalence of a disease in a population 
at a given time is the number of cases of that disease in that population at that time 
divided by the population size at that time [ 11. Uniform comparisons are enabled by 
good estimates for the denominator, which in the prevalence example is the count of 
the population of interest at the time of interest. Whereas obtaining direct estimates of 
the population may be difficult and expensive in classical epidemiology, in syndromic 
data, it is often impossible. Examples of such estimates include: 

0 The current population of the catchment area of a hospital emergency department 

0 The current number of consumers using physician practices that subscribe to 
a data warehouse; even more difficult, the number using practices whose data 
have been reported in time for current monitoring 

0 The current number of consumers eligible for a medical insurance plan whose 
data are used for health monitoring 

Without these estimates, recognition of anomalous counts in the numerator (i.e., 
the observed case count) may be biased by changes in the denominator. For example, 
a sudden jump in influenza-like illness (ILI) diagnoses in a military treatment facility 
may be the natural result of a large influx of recruits and standard examinations and 
may be independent of any increase in disease incidence. Conversely, a drop in the 
monitored population could mask an actual outbreak. 

Several solutions to this denominator problem have been attempted; a practical, 
effective solution in a given situation depends on the data and processing resources 
available. Basic approaches include: 
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0 Monitoring syndromic counts relative to other information internal to the data 
source. Such approaches use information contained within the data records to 
derive an inherent denominator instead of using classical rates. For example, 
suppose that the total number of facility encounters is recorded in addition to 
the number of ILI diagnoses. One can then monitor the proportion 

(number of ILI diagnoses on day d)l(total encounters on day d) 

The use of such proportions may remove the unwanted effects of unexpected 
increases or decreases that are irrelevant to biosurveillance. For example, if 
the data-processing system in one hospital in a monitored hospital system is 
out of operation for a week for replacement, or if a large hospital is added to 
the system, the resulting change affects both the numerator and denominator 
and is thus likely to affect the proportion less than the diagnosis count alone. 
Figure 4.3 gives a sample comparison of time series of syndromic counts and 
proportions, with the effect of a small outbreak indicated. The event is clearer 
from the proportion plot. 

Fig. 4.3 
can clarify an outbreak signal. 

When a denominator variable such as total diagnosis count is available, a proportion 

Depending on what is available in the data records of the system, alternative 
proportions to consider are: 
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(no. syndromic diagnoses, day d)l(no. reporting clinics, day d) 

or 

(no. syndromic diagnoses, day d)l(no. of reporting care providers, day d) 

This approach is most effective if the denominator is large and the proportion 
is well under 0.5. For example, if the diagnosis group of interest includes most 
records in the system, the effect of an outbreak could be large in both numerator 
and denominator, resulting in a loss of sensitivity. Further, an unexpected 
change might have a differential effect on the numerator and denominator; 
for example, the total number of visits could rise because of the addition of 
a hospital, but this hospital might not have a clinic treating the syndrome of 
interest. 

0 Modeling the size of the denominator as a function of time. Models may include: 

- Information within the monitored data, as in the previous approach 

- Known calendar-based effects 

- Data history 

- Information from external data streams, such as daily maximum temper- 
ature for respiratory-related clinical diagnoses groups or sales discounts 
for OTC purchases 

Calendar-based effects and the use of external data streams are discussed in 
Section 4.3. A well-known use of data history for denominator adjustment is 
the “Figure 1” approach used in the mortality and morbidity weekly reports of 
the Centers for Disease Control and Prevention [2]. In this approach, the count 
from the current 4-week interval is compared with the average of counts from 
the past 5 years from the same and the two immediately adjacent intervals. See 
Fig. 4.4 for an example. 

Neither of these approaches to denominator adjustment can be expected to work well 
for all monitored data sources; knowledge of both the data source and the syndrome 
of interest should drive the choice of approach. 

4.2.2 Recognizing the Unexpected 

Anomalies are determined by asking statistical questions such as: 

0 Are the observed data sufficiently close to forecasts of an analytical model? 
For example, regression models of varying sophistication have been applied to 
represent systematic behavior such as cyclic trends. The residuals, or values of 
observation minus forecast, are then tested [3]. 

0 Could the observed data reasonably belong to a theoretical or empirically ob- 
served frequency distribution? For example, count data from a homogeneous 
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Fig. 4.4 Historical limits method of Stroup et al. [ 2 ]  used in CDC Figure 1 summaries. 

population are often assumed to obey a Poisson distribution, with a variance 
equal to the mean. The classical control charts of industrial quality technology 
are based on data that are grouped or otherwise transformed to fit a Gaussian 
distribution. Under this assumption, upper and lower data thresholds are derived 
to test for values that are too high or too low [4]. 

4.2.3 Use of Data Covariates 

Various adaptations and combinations of these approaches are used for prospective 
health monitoring. Data records used for biosurveillance commonly include covariates 
such as patient age, sex, and address, in addition to syndromic information. Data 
privacy regulations commonly limit the detail of these covariates, so that a postal code 
may be available instead of an exact address, or an age group instead of a birth date. 
Two strategies for including covariate information are: 

1. Stratify records by covariate value and monitor individual stratified counts. For 
example, apply algorithms to monitor diagnosis counts separately for different 
age groups. The stratification may be imposed by the data - for example, 
when only age groups or postal codes are present in the records - or it may 
be chosen by system developers. This strategy may give added sensitivity 
if the strata are well chosen based on epidemiological considerations: for 
example, when certain age groups are of particular interest. However, if there 
are multiple covariates, each with several strata, the multiple-testing problem 
may be formidable. The count over all strata must be monitored in addition 
to individual stratum statistics because the outbreak effect may be distributed 
evenly, thus aggravating the multiple-testing issue. Approaches to managing 
this problem are discussed in Section 4.6 on distributed monitoring. 
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2. Stratify the data as in strategy 1, but keep the stratified records together and 
apply alerting algorithms to the distribution of covariates. For example, a 
change in the distribution of diagnoses among age groups may give an early 
warning of an outbreak affecting one particular group. The elderly are often 
seen as sentinels for the population at large, and seasonal influenza in cities 
often affects children first; however, in the pandemics of 1918 and 1968, young 
adults were disproportionately stricken. To establish a baseline age distribution 
for such a case, the historical distribution of respiratory diagnoses among m 
age groups can be calculated as a set of expected ratios RJ j = 1, . . . , m. The 
recent daily or weekly counts c j  can be compared with the expected ratios based 
on the well-known D2 statistic: 

D2 = C,(cl, - nR,)’/nRj (4.1) 

which can be approximated by a x 2  distribution with m - 1 degrees of freedom. 
The x 2  tables will then yield nominal threshold values for alerting at the desired 
confidence levels. In practice, as with many alerting algorithms, the underlying 
data conditions may fail; these thresholds can then be adjusted by empirical 
observation to attain the desired maximum false alarm rate. 

A covariate of particular interest is the patient address. Spatial information is 
important because a group of records of patient encounters or customer transactions 
from the same time period and nearby addresses may indicate a cluster of cases caused 
by a common exposure. Such detailed information is extremely valuable for epidemi- 
ological investigation. For this reason, spatial and spatiotemporal scan statistics have 
been widely used in biosurveillance in place of overall anomaly measures such as 
the D2 statistic [ 5 ] .  These methods look for significant clustering without bias aa to 
the location or extent of the cluster, and they attempt to control for multiple testing. 
For each continuous set of candidate clusters, scan statistics test the hypothesis that 
the relationship of within-cluster data to exterior data differs from expectations based 
on model predictions or recent data history. Scan statistics and related issues are 
discussed in Section 4.5. 

4.2.4 Components of an Alerting Algorithm 

The following terms are used in the discussions in subsequent sections: 

0 Adaptive algorithm: an algorithms that is adjusted according to recent data 
behavior, as distinguished from an algorithm with unchanging parameters and 
thresholds. 

0 Baseline period, training period: the time interval used to calculate expected 
data behavior. The expectations may be based on simple statistical moments 
such as the mean or standard deviation, or they may require calculation of 
regression coefficients or covariate proportions from data in this interval. 
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0 Test period: the time interval of the current data to be tested, which depends 
on the data source and acquisition rate. Before the year 2000, surveillance 
was generally applied to monthly or weekly totals. More recent methods have 
sought anomalies based on daily data. Advances in hospital informatics are 
approaching real-time capability, and this interval continues to shorten. 

0 Bufferperiod, guardband: a time interval between the baseline and test periods. 
If the baseline period covers data all the way to the test period, and if the outbreak 
effect on the data is spread over several days, early undetected outbreak effects 
may inflate the baseline data, increase the data expectation, and mask the rest 
of the outbreak. The buffer gives a separation between the baseline and test 
intervals to avoid this masking. 

0 Test values: the current or recent values derived from test period observations 
that will be tested for anomaly. These values may be visit counts, proportions, 
or model residuals from the current test period. 

0 Test statistic: value computed from the test values to be used for making alerting 
decisions. 

0 Reset criterion: rule for clearing the test statistic or reducing it to a moderate 
level after extreme data values to prevent flooding of subsequent alerts. 

0 Threshold: limiting value for the test statistic above which an alert is issued. 
Multiple threshold values may be used for layered alert levels. 

0 Warmupperiod: initial data interval that may be required to establish a minimum 
baseline before an algorithm may be applied prospectively. 

Figure 4.5 schematically illustrates the baseline, buffer, and test periods for an 
adaptive algorithm. Key features of these quantities that can influence algorithm 
utility and performance are: 

0 The length of the required warmup period. An algorithm that needs years of 
data for training will not be useful if little data history is available. 

0 The length of the baseline. Is it long enough to smooth noisy fluctuations but 
recent enough to capture current data behavior? 

0 The presence of outliers. Are outliers removed from the baseline data to prevent 
training on extreme values for calculation of expected statistics? 

0 Sparse data. What does the algorithm do when the baseline data are very sparse 
or contain no cases? For example, suppose that the scaled test statistic must be 
divided by the baseline standard deviation, similar to a sliding z-score: 
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where xt is the recent observation, p.t is the mean estimate, and nt is the 
standard deviation estimate. If the xt are sparse because a rare syndrome is 
chosen or a small geographic area is monitored, a minimum value for ot is 
required to avoid a zero denominator. This minimum must be large enough to 
avoid oversensitivity, such as if system users wish to avoid alarms caused by 
isolated cases. 

Data stream(s) to monitor in time: 

baseline interval guard band 
Used to obtain some estimate of 
normal data behavior contamination of 

Mean, variance baseline with - Regression coefficients 
* Expected covariate distribution 

Avoids 

outbreak signal 

-spatial 
-age category 
- % of claimslsyndrome 

test interval - Counts to be tested 
for anomaly 

* Often 1 day, longer 
to detect distributed 
signals 

May shorten as data 
acquisition improves 

Fig. 4.5 Adaptive strategy for aggregating data in time. 

4.2.5 Steps in Algorithmic Processing 

The following steps are customary parts of the algorithmic procedure, although some 
algorithms do not apply them all explicitly: 

1. Update the computation of the expected data values for the current test period. 
If the algorithm is adaptive, refit any model according to recent data. This step 
may be as simple as updating the baseline mean and standard deviation. 

2 .  Compute the difference between the test data and expectations. 

3. Normalize this difference to account for variability inferred from the baseline 
data. For a z-score, this difference would be divided by the recent standard 
error estimate, whereas for a regression-based model, the difference would be 
divided by the standard error of regression. 

4. Compute the detection statistic based on the normalized difference. Some al- 
gorithms use the normalized difference itself as the detection statistic, whereas 
others might filter it with a time window or apply a CUSUM or EWMA (Expo- 
nentially Weighted Moving Average) control chart. 

5. Apply the empirical or theoretical threshold to make an alerting decision. 
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4.3 OUTBREAK DETECTION AS A SIGNAL-TO-NOISE PROBLEM 

A disease outbreak may be seen as an event whose effect on a data stream is a detectable 
signal. This effect is the set of data stream elements, be they emergency department 
visits, physician office visits, pharmacy sales, or work absences, that are attributable 
to the outbreak. However, the resulting signal may be obscured by noise (i.e., by the 
variation of the data stream background) due to factors that are not of interest to the 
surveillance system. The noise background is considered the data stream behavior in 
the absence of signals of interest. Detection algorithms are designed to “increase the 
signal-to-noise ratio” by reducing background noise from the data while preserving 
as much as possible of the signal of interest. Designing such algorithms requires an 
understanding of both the background noise and the signal of interest. 

4.3.1 Understanding the Noise Background 

Background noise in a particular data stream will have a variety of causes. Some can 
be modeled because the causes are expected and any required information is available 
at the time of forecast; some cannot be modeled because the causes are unexpected or 
required information is unavailable. The former group includes: 

0 Natural random variability that can be measured from data history 

0 Day-of-week variation 

0 Seasonal trends 

0 Calendar events such as holidays or school closings 

0 Available climatic changes such as maximum daily temperature 

All of these factors have been incorporated in models of daily syndromic data. 
Causes of noise that cannot be modeled readily include: 

0 Informatics and data-acquisition issues, such as: 

- Changes in syndromic case definition 

- Changes in health care billing or coding practices 

- Intermittent, sometimes lasting, data dropouts resulting from system prob- 

- Changes in health care eligibility: for example, a change in monitored 
claims from a medical care entitlement program 

- Changes in the behavior or size of the monitored population. An extreme 
example would be the data background from a military treatment facility 
on a base that experiences sudden population increases or decreases when 
large units are relocated. 

lems 
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- Changes in the participation of data providers, such as the addition of a 
private group of hospitals to a citywide system 

- Variable and late reporting by data providers. This factor has been modeled 
by Brookmeyer and Gail [6 ] ,  and research is ongoing on its application in 
syndromic data modeling, but much data history and analysis are required. 

0 External influences on the data streams, such as: 

- Unscheduled holidays or institutional closings 

- Inclement weather interference with usual patient or consumer behavior 

- Changes in population health care behavior 

- Sales promotions affecting OTC sales data 

- Media reports and other influences. A famous example was the “Clinton 
Effect” in Fall 2004, when chief complaints of chest pain peaked in several 
data sources after former U.S. President William Clinton underwent heart 
surgery. 

Most of these factors can be modeled retrospectively with extensive research, but 
including them in prospective models would require resource-intensive auxiliary data 
feeds: for example, a daily capability to receive detailed information about OTC sales 
promotions. These factors are responsible for the gap between the statistical and 
epidemiological significance of algorithm results. 

Note that the definition of background noise provided is flexible in its specification 
of factors “not of interest to the surveillance system.” An event that is significant in 
one context may be irrelevant to another. Thus, the onset of seasonal influenza in 
a monitored population is a signal for a system whose goal is general public health 
surveillance, but it is noise to a system concerned only with detecting a bioterrorist 
attack. 

4.3.2 Characterizing the Outbreak Signal 

The appropriate choice of algorithm for routine surveillance depends on what is to be 
detected. Recall that the signal to be detected is the imprint of a health event of interest 
on the data. Beyond seeking sharp increases, if the shape of the signal is known, one 
can look for time-series segments with that shape. 

Figure 4.6 illustrates some signal shapes, exaggerated for discussion purposes, of 
practical interest in surveillance data. Figure 4.6(a) shows a sustained step increase 
in the level of the time series. The signal shape is a simple step function that might 
result from an increased relative risk of incidence of a chronic disease throughout 
the monitored population. If the monitoring objective is to detect such an increase, 
control charts designed to detect a mean shift are appropriate. However, users of mod- 
ern biosurveillance systems are often interested in detecting outbreaks of infectious 
disease, whether natural or human-made. Signals resulting from such outbreaks are 
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likely to be transient and seasonal, and traditional alerting methods require adaptation 
to detect such signals. 

Figure 4.6(b) illustrates the onset of influenza season in a time series of ILI data. As 
autumn progresses, the diagnosis counts increase as a result of normal viral infections 
and, in most years, accelerate when influenza rises to epidemic levels. The date 
and severity of influenza outbreaks vary from year to year; the double peaks in the 
figure are observed in some years when different viral strains have prevalence peaks 
weeks apart. In normal years, diagnosis counts subside after a period of days or 
weeks, returning to the level of the winter cold shelf and then dropping off as spring 
progresses. In the exceptional situation of a pandemic, the population is affected by 
a new or modified flu strain to which it has no immunological defense. The ILI data 
series might then display peaks in any season, which could occur in distinct waves 
VI .  

Fig. 4.6 Possible outbreak signals in surveillance data streams. 

What would be a likely data signal in the event of a bioten-orist attack such as a 
localized, intentional release of a weaponized pathogen? The signal would depend 
on a number of factors, including the number infected, the dosage, and population 
susceptibility, and its shape would be a function of the distribution of incubation 
periods. Among diseases known to be weaponized, the median incubation period can 
range from 1-2 days to 1-2 weeks. A reasonable hypothesis is that the signal would be 
proportional to the number of new symptomatic cases on each day, with adjustments 
according to the nature of the data. For example, the effect of a serious outbreak on 
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school absenteeism would be cumulative, with none on weekends. The signal problem 
is then to estimate the epidemic curve, or the number of new symptomatic cases on 
each day after exposure, resulting from a point-source outbreak. 

For a model of the shape of such a signal, one may use the lognormal distribution 
first discussed by Sartwell and widely used since [8]. From analysis of incubation 
periods of 17 data sets that includd 12 infectious diseases, Sartwell observed that 
incubation periods awere well approximated by a lognormal distribution, with pa- 
rameters dependent on the disease agent and route of infection [8]. In other words, 
the logarithm of the incubation period had a Gaussian distribution, say with mean 
< and standard deviation 0. Figure 4.7 is an example of the lognormal distribution. 
Figure 4.7(a) shows the cumulative distribution function for incubation periods with 
< = 1.3(3.7 - days expected incubation) and r = 0.4. Figure 4.7(b) plots the prob- 
ability density curve. The probability of symptoms occurring during day 4 may be 
approximated at 0.242 by integration under this continuous curve from day 4.5 to day 
5.5, as shown. Given that m patients are infected, one would expect 0.242m of them 
to become symptomatic during day 4. Figure 4.7(c) shows the resulting expected epi- 
demic curve by day for a total of 200 infected patients; the rounded values are charted 
at the right. This plot approximates the total epidemic curve for a noncommunicable 
disease, where all patients are infected at the initial exposure. For a communicable 
disease, the plot represents only primary cases, not those infected in subsequent waves, 
and one can test for signal detection based on primary cases alone. 

Fig. 4.7 Lognormal incubation period distribution example. 

To model a specific disease, the values of lognormal parameters may be inferred 
from histograms of incubation period data from the medical literature (e.g., such 
as [9]). These parameters and a hypothetical number of total cases can be used 
to produce a model epicurve of primary symptomatic cases-all cases if the disease 
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is not communicable. Figure 4.6(c) shows the signal for a disease with a long 
median incubation period of 25 days superimposed on a quiet data background, while 
Fig. 4.6(d) shows the signal for a 3.7-day incubation. Detection is more difficult 
against a noisier background or for a smaller number of infected, and knowledge of 
the signal shape may be critical. 

4.3.3 

The outbreak signal and the background noise are strongly affected by decisions 
about how to aggregate the surveillance data. There is a thematic trade-off between 
expanding the data window to increase structure for modeling and masking a potential 
outbreak signal with the additional counts. For example, to see a seasonal pattern 
in the background or a lognormal shape in the signal, it may be necessary to look 
at week-long counts of county-level data, whereas confining attention to community 
counts or 4-hour time intervals might mask such features. These decisions relate to 
how the data are grouped in: 

Importance of Data Aggregation Decisions 

Time. Should quantities such as clinic visit counts be grouped by week, by 
day, or, as sample rates and analysis approach real-time capability, by %hour or 
smaller blocks? 

Space. The signal-to-noise background depends on whether data are monitored 
at state, city, or local levels. Monitoring of smaller spatial units may allow 
greater sensitivity to small-scale outbreaks, but only if the system is capable of 
controlling or managing the resulting multiple alerts and if the algorithms are 
effective for the scale chosen. 

Syndrome class$cation. Limiting a syndrome group to diagnoses closely re- 
lated to a disease of interest should improve alerting specificity but will likely 
yield a sparse, unstructured data background, and many such groups may be 
needed for general public health surveillance. For more general signals, larger 
and noisier syndrome groups must be analyzed. 

4.4 ALGORITHMS BASED ON TIME-SERIES DATA 

4.4.1 Control Charts for Public Health Monitoring 

4.4.1.1 Control Chart Concepts. For decades, graphical tools based on concepts 
of probability theory have been applied to industrial processes such as manufacturing. 
These tools, widely known as control charts, have traditionally been used to monitor 
time series of measurements from industrial processes to aid in understanding their 
variability, improving their quality, and recognizing abnormal conditions requiring 
correction as soon as possible. For the last of these objectives, abnormal conditions 
are thought to exhibit special cause variation, i.e., variability that control charts can 
help to distinguish promptly from the usual common cause variation of a process. 
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Control charts have traditionally been used to monitor time series of measurements 
from industrial processes. The importance of assuring quality in such processes has led 
to the mature discipline of statistical process control (SPC). See the text by Ryan [4], 
among much useful survey literature, for a detailed introduction to this field. Of the 
listed objectives of using control charts, the early warning feature has motivated most 
control chart applications in medical surveillance. The data forming the time series 
in industry are typically physical quantities, measured from manufactured products, 
whose understanding may lead to product improvements. In contrast, the time series 
of health monitoring are observations such as nosocomial infection counts, surgical 
outcomes, or in the syndromic surveillance context, counts of emergency department 
visits for influenza-like illness. Thus, the process underlying the time series of visit 
counts in a monitored population cannot be improved by understanding its background 
variability; it depends on the spread of endemic disease and is amenable to improved 
hygiene and other public health measures. Control charts have been applied in health 
surveillance to seek prompt alerting capability at acceptable false alarm rates. 

A wide variety of control chart applications in health care were reported by Ben- 
neyan [ 101, and many subsequent applications have arisen [ 1 11. Accounting for 
common cause variation depends on the quantity chosen for monitoring and on its 
underlying distribution. Several common distributions are associated with canonical 
chart types. For example, for continuous quantities (e.g., blood pressure, temperature) 
that are often considered to have a normal distribution, X-bar and S charts are used for 
the mean and standard deviation, respectively. P-charts, with limits derived from the 
binomial distribution, are used for proportions such as the fraction of total admissions 
with gastrointestinal chief complaints. U-charts derived from the Poisson distribution 
are often used for count data such as the weekly number of admissions for neurological 
disorders. Numerous other basic and hybrid chart types are available. 

4.4.1.2 Types of Control Charts. This section presents three chart-based methods 
that have been used in biosurveillance. Methods based on other types of charts should 
also be considered. Each method presented is applied to the time series shown in Table 
4.1, which is a set of averages of weekly counts of clinic visits classified in a rash 
syndrome. Traditional control chart applications use subgroup averages like these 
7-day means to reduce the amount of in-control variation and to take advantage of 
the Central Limit Theorem, which states that a series of means approaches a Gaussian 
distribution as the subgroup size increases. 

Control charts are usually applied in two phases. Phase I is an assessment of the 
appropriate chart for the data and an analysis of the relevant statistical data properties 
based on a set of training data that represent the process in control. Working values of 
the mean, standard deviation, and other chart-related parameters are derived. Phase I1 
is the prospective monitoring, which applies the chart with these parameters to monitor 
subsequent values for special cause variation. When this monitoring determines that 
the process is “out of control,” the process may be interrupted for correction, which 
may be expensive and time-consuming in a manufacturing environment. Depending 
on subsequent chart findings over time, the phase I analysis may be revisited. 
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One of the most widely used control charts is the X-bar chart, which tests the 
variation of the process mean. In phase I, the overall mean x and the standard 
deviation i k  of the subgroup mean are estimated, where k is the subgroup size (7 days 
in Table 4.1). The subgroup mean is considered to be in control if it lies between 
the lower control limit X - 3 6 k  (LCL) and the upper control limit X + 361, (UCL). 
Figure 4.8 is a plot of the chart corresponding to Table 4.1. Equivalently, the mean is 
in control if zt is between -3 and 3, where 

Fig. 4.8 X-bar chart created from weekly syndromic data. 

Table 4.1 also includes a column of values of z, and those for which the mean is 
considered out of control are indicated in boldface. Note that once the control limits 
have been chosen, the in-control decision depends only on a single value, the subgroup 
mean Z in question. This type of chart does not allow an early warning by giving extra 
weight to a local trend that may signify a problem. 

Two additional charts have been shown to be timelier than the X-bar chart at 
detecting small mean shifts and have been applied to biosurveillance. The first is the 
cumulative summation, or CUSUM, chart. This chart maintains a running upper sum 
of differences of Zt above the overall mean estimate x and a corresponding lower sum 
of differences below 5?. Furthermore, small differences are ignored; only differences 
at least 2k standard deviations above or below x are counted for a fixed multiple k .  
A common practice is to set k at 0.5 to detect a shift of 1 standard deviation. In terms 
of the statistic z ,  scaled formulas for these upper and lower sums are then: 

8 H . t  = max(0, zt - 0.5 + S H , ~ - - ~ )  (4.4) 
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5'L.t = max(0, (-a - 0.5) + SH.tPl) (4.5) 

This formulation assures that both sums are nonnegative, with S H , ~  accumulating 
increases above x and S L , ~  accumulating decreases below it. The process is con- 
sidered to be out of control if either sum exceeds a threshold h, selected according 
to the desired run length properties of the chart. For illustration here, h is set to 4, a 
common choice. 

The CUSUM chart allows earlier detection of small shifts than the X-bar chart 
because multiple subgroup measurements may influence each chart value S H . ~  or S L , ~ ;  
however, this feature also has a disadvantage in that large chart values, especially if 
exaggerated by measurement or transcription error, may inflate subsequent ones and 
flood the chart with out-of-control signals. This problem may be aggravated by 
untreated or residual autocorrelation in the input time series. Lucas and Crosier 
treated this problem in their fast initial response (FIR) CUSUM. They obtained the 
desired chart behavior by starting each chart value S H , ~  and Sh.0 at h/2 and resetting 
it to h/2 when the threshold h was exceeded [12]. The values of SH and SL in Table 
4.1 were calculated following this procedure with k = 1 and h = 4. Note that the 
out-of-control condition is signaled an observation earlier than in the X-bar chart and 
that the reset feature prevents further signals. 

A second chart used to gain early detection of small mean shifts is the EWMA 
chart. For this chart, the current time-series value is replaced by a weighted average 
of the recent values such that the weight decreases with the age of the value. This 
weighted average is expressed by the recursive formula: 

where w' is a constant between 0 and 1 that expresses how weight is distributed back 
in time. For a value of w near 0, the decay is slow, and more weight is given to past 
values; if J is close to 1, only the most recent values influence this average. Values 
of w between 0.1 and 0.3 are often used in the SPC community. The initial value Eo 
is often set to x; this initial value has little influence after a few observations, so Eo 
may be set to if a good estimate of 3? is unavailable. This expression is generally 
used for practical calculations, but it may be expanded to yield: 

thus illustrating the decreasing weighting. Because Et is a smoothing of x t ,  its 
estimated standard deviation is smaller, depending on the number of steps t elapsed: 

The rightmost factor in the equation, 1 - (1 - w ) ~ ~ ,  is very close to 1 after four to 
five steps for conventional values of w'. The process is considered to be in control if 
Et lies between (5? - 3 S ~ , t )  and (x + 3 d ~ ~ ~ ) ,  or essentially, if the statistic 
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(Et - X ) / ( S k . t  * d m  (4.9) 

lies between -3 and 3. 
The values of this statistic are plotted in Table 4.1 for w = 0.4 and for Eo = T?. 

Note that the out-of-control value is attained here a step before the CUSUM chart and 
two steps before the X-bar chart. However, as discussed above, the past values keep 
the statistic above the threshold for several steps after the X-bar chart signal stops. 
This “ringing” could devalue the statistic by causing a loss of sensitivity to subsequent 
problems; it can be remedied with reset procedures similar to those described for FIR 
CUSUM. 

4.4.1.3 Challenges and Strategies for Adaptation to Biosurveillance. Why would 
a public health monitor use a control chart? As discussed at the beginning of this 
chapter, the monitor must decide when to initiate an epidemiological investigation. 
Beginning the investigation 1-2 days earlier than traditional monitoring might indicate 
could reduce the disease burden and save lives, but the investigation could be costly, 
and excessive false alarms could weaken the credibility of the alerting system and of 
the public health agency itself. Surveillance system developers seek to exploit the 
large body of process control research to implement biosurveillance control charts 
with high specificity and few false alarms. 

There are several key differences between monitoring a manufacturing process and 
seeking public health anomalies: 

0 The modifier “control” applies in industrial processes because the engineer can 
apply physical science to change the process underlying the data. In a closed 
health setting such as a hospital department monitoring nosocomial infections, 
infection control procedures may affect the data similarly. In contrast, public 
health surveillance data, such as hospital or clinic visits, nurse hotline calls, and 
pharmaceutical purchases, cannot be influenced by the monitor. 

0 Unlike a mechanical or electronic out-of-control decision, a public health alert- 
ing decision is a complex function of 

- The objectives of the monitoring agency and the resources available for 
investigation. The capacity and willingness for follow-up are likely to 
influence the acceptable false alarm rate. 

- The health alert status or degree of concern that a natural or human-made 
infectious disease threat exists. The degree of concern may be affected by 
outbreaks in neighboring populations or by political or media reports. 

- The human monitor’s experience and knowledge of the population and the 
data. These factors will allow many signals to be explained away without 
further investigation. 

These considerations have led to modifications of traditional charting procedures. 
A common modification is that lower bounds are not enforced because monitors are 
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concerned about increases in care-seeking behavior, not decreases. Discarding out-of- 
control signals caused by low data values reduces the overall alert rate, and there are 
many causes for data reduction that are irrelevant to outbreak monitoring. However, 
the potential danger is that the time-series values could be low because the increased 
demand on health care personnel caused by an outbreak is interfering with the usual 
data reporting and transmission. Few health applications monitor low values; if the 
staff is too overburdened with emergent cases to send data, resulting in unusually 
low values, they know they have a problem. Depending on the data collection and 
transmission arrangements, this justification is debatable. 

Another common modification is to apply control charts to individual observations 
rather than subgroup averages, mainly because most biosurveillance data sets are avail- 
able only on a daily basis, and rapid alerting is a principal motivation for automated 
surveillance. Using individual observations has two drawbacks. First, using subgroup 
means reduces the variance as well as the autocorrelation between time-series ele- 
ments. The variance of a time series of individual observations is k times the variance 
between means of subgroups of size k .  To the health monitor, the added variance will 
mean more false alarms. Second, from the Central Limit Theorem, taking subgroup 
averages moves the time series toward a Gaussian distribution. Many control chart 
properties are derived under the assumption of a Gaussian input time series, but the 
unaveraged diagnosis counts of most series in syndromic surveillance have a negative 
binomial or overdispersed Poisson distribution. The tails of these observed distribu- 
tions are longer than Gaussian, so, again, more false alarms are expected if individual 
observations are used. In practice, the false alarm rate depends on the background 
data, and both statistical and heuristic measures are applied to reduce or otherwise 
manage false alarms. 

4.4.1.4 Effect of the Changing, Correlated Data Background. The two-phase 
control chart development paradigm assumes that observations are independent and 
that the training data are representative of future data to be monitored. Among bio- 
surveillance data streams, however, a changing baseline is the rule, not the exception, 
as illustrated by the discussion of background noise in Section 4.3. These data streams 
are typically nonstationary in the sense that a fixed set of baseline data is often unrep- 
resentative of the data to come. 

Biosurveillance time series also commonly violate the independence assumption 
underlying many control chart methods. Figure 4.9 is a plot of 200 weeks of rash 
syndrome diagnosis counts expanded from the data of Fig. 4.8. While the mean 
weekly count is clearly close to 3, individual counts appear to be correlated with 
recent counts. For example, values tend to stay above or below the mean; among 
the 19 weekly counts beginning May 25,1995, only one is below the mean. This 
time series does not satisfy the independence assumption of most control charts: if 
one observation is near a control limit, subsequent observations are more likely to 
be near the same limit. Thus, the overall mean is not a uniformly good measure of 
central tendency. Traditional subgrouping can actually worsen the correlation [4]: in 
the original rash data used to form the weekly averages of Fig. 4.9, the correlation 
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coefficient of a daily count with the previous day’s count was a significant 0.65; taking 
weekly means raised this coefficient above 0.9. 

Fig. 4.9 Time series of syndromic diagnosis counts displaying serial correlation. 

A practical approach to the obstacles of nonstationary and correlated data is to 
adjust the estimates of the mean and standard deviation with a sliding baseline, as 
shown in Fig. 4.5. The baseline is separated from the current value by the buffer of 
immediately preceding values. This adaptive procedure may be seen as a continually 
updated phase I. Two common implementations of this procedure that use time series 
of individual daily counts are: 

0 Algorithms C l ,  C2, and C3 of CDC’s Early Aberration Reporting System [ 131. 
A 7-day baseline is used for these algorithms, and z-scores are computed each 
day : 

where the mean and standard deviation of the seven preceding counts xt--3 - 1, 
X ~ - ~ - Z ,  . . . , xt -%-7  are used as the current estimates Z7.t and 27.t. Algo- 
rithms C l and C2 are comparable to adaptive X-bar charts, and C3 is a type of 
cumulative summation that can include the previous two z-scores. Specifically: 

- For algorithm C1, j = 0, so there is no buffer interval, and an alert is 
issued if zt > 2. From the algebraic expression for z t ,  this criterion is the 
X-bar chart condition that the current observation is 3 standard deviations 
above the mean. 
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- For algorithm C2, j = 2, so there is a 2-day buffer, and the alerting 

- For algorithm C3, j = 2 ,  and the alerting condition is: 

criterion is the same. 

Zt  + Zt-1 + Zt -2  > 2 (4.1 1) 

where the current zt must be positive, and a reset condition is imposed 
by adding zt -1 and ~ t - 2  only if they are each less than the threshold of 
2. Thus, if the C2 algorithm produces an alert, C3 must also alert, and 
C3 gives additional sensitivity from the past two observations. For sparse 
data where the short baseline may include all zeros, a minimum standard 
deviation of 0.02 is imposed. 

The 7-day baseline makes these algorithms somewhat volatile, with an upper 
confidence limit 2 7 . t  + 337, t  that can fluctuate noticeably from day to day. 
However, their simplicity and wide distribution by CDC has made them popular 
among many public health departments. Local users have adopted a variety 
of procedures for combining and interpreting C1, C2, and C3 outputs and for 
coping with the resulting alert rates. 

The adaptive EWMA algorithm of ESSENCE (Electronic Surveillance System 
for Early Notification of Community-based Epidemics) biosuweillance systems. 
This algorithm uses a 28-day baseline and a 2-day buffer. Following the EWMA 
development, the detection statistic is: 

The threshold was derived for a Gaussian data series for a desired confidence 
level that can be expressed as a probability p .  This threshold is the inverse 
cumulative T distribution for 27 degrees of freedom, evaluated at p .  For baseline 
length m, the number of degrees of freedom would be m - 1. Thus, for a 
confidence level of 0.99 with the 28-day baseline, a table lookup gives the 
threshold of 2.427. Because the input time series of counts are not Gaussian, 
more recent ESSENCE systems apply a threshold correction assuming a Poisson 
data distribution. Two values are used for the smoothing coefficient w. For 
detection of gradual or sudden signals, w is set to 0.4 or 0.9, respectively. With 
the latter value, the algorithm is similar to an X-bar chart. For sparse data, a 
minimum B Z ~ , ~  is calculated to avoid alerts on isolated single cases. 

4.4.1.5 Much control chart development has been 
directed toward rapid detection of mean shifts. As discussed in Section 4.2, outbreak 
data signals expected from infectious disease outbreaks are not the lasting step in- 
creases that one would expect of a mean shift. The signals of interest are transient 
data effects of epidemic curves of attributable cases lasting from a few days to a month 
or more. Even for a given disease such as influenza, the outbreak signal may be sudden 

Role of the Outbreak Signal. 



ALGORITHMS BASED ON TIME-SERIES DATA 167 

and explosive or more gradual, reflecting the annual variability in seasonal epidemics. 
Morton et al. applied CUSUM-Shewhart and EWMA-Shewhart charts to detect both 
types of signal in the monitoring of hospital infections [ 141. Their EWMA-Shewhart 
chart was chosen for correlated background data. The ESSENCE EWMA algorithm 
with dual smoothing coefficients was chosen to follow this strategy. 

4.4.2 

Much research has been devoted to forecasting public health data for surveillance. 
Figure 4.10 gives the motivation for this research by illustrating some natural causes 
of background noise (see Section 4.3). The upper plot presents 3 years of daily 
counts of respiratory outpatient visits from a large metropolitan area. The seasonal 
and day-of-week effects of these counts are evident, and the section magnified in the 
lower plot illustrates the reduced visits on calendar holidays, when many clinics are 
closed. There are obvious drawbacks to applying the chart-based methods discussed 
previously to such data: the natural background would give a large bias against alerting 
on a weekend or holiday, and Monday counts would likely be seen as “out of control.” 
Seasonal trends provide additional bias for or against algorithm threshold crossings 
depending on the direction of the trend. Additional causes of bias are well known 
but not graphically obvious: extreme temperatures on weekdays will increase visits 
to certain clinics, and annual sales promotions will increase sales of OTC remedies. 
Forecasts can be applied to remove these known effects and thus prevent the masking 
of potential outbreak signals. 

Data Forecasting for Public Health Monitoring. 

12/1/96 12/11/96 12/21/96 12/31/96 1/10/97 1/20/97 1/30/97 

Fig. 4.10 Seasonal, weekly, and holiday effects in daily time series. 
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However, for outbreak detection, perfect data forecasting may be misleading. For 
example, if an outbreak signal is distributed over time, including early data effects in 
the training data can cause subsequent effects to fall within expected limits and thus 
mask the outbreak event. The desired forecast is the data background as it would 
develop in the absence of an outbreak. If only single-day spike signals are of interest, 
there is no danger in using next-day forecasts. For detection of more gradual signals, 
the use of a buffer period to predict several days ahead should be considered. 

Sections 4.4.2.1 and 4.4.2.2 discuss data forecasting by regression modeling and 
by generalized exponential smoothing. 

4.4.2.1 Regression Modeling of Biosurveillance Data. In epidemiological appli- 
cations, regression is generally used to establish or clarify associations rather than 
make predictions. The typical research questions are: 

0 Do regression covariates such as age or sex affect the treatment outcome? 

0 Does treatment success differ among sites if we control for covariates? 

Predictive capability is not a primary goal in such studies. These studies often use 
static data sets and apply careful exploratory analyses, like the phase I analysis of 
process control, to specify a regression model and covariate set that explain the data 
features of interest without bias. By contrast, the use of regression for prospective 
biosurveillance is more like financial applications that forecast market prices, so that 
model criteria are goodness-of-fit measures for out-of-sample prediction. To illustrate 
the principles and pitfalls of using regression modeling for biosurveillance forecasting, 
a traditional approach and a modified one are presented. 

Traditional Use of Regression for Prediction. The loglinear model described by 
Brillman et al. [3] fits an ordinary least-squares loglinear model to a set of training 
series values to obtain regression coefficients. These coefficients are then used to 
forecast values beyond the training data without adjusting for subsequent changes in 
time-series behavior. 

Defining V ( t )  as the number of syndromic hospital visits on day t ,  the authors 
model the “started log” S ( t )  = l o g ( V ( t )  + 1) as: 

cJ , ( t )  + ( c ~  + cg  x t ) ]  + (c10 x coskt + c11 x sinkt) (4.13) 
S ( t )  [$ ] 

where C I - C ~  are coefficients for day-of-week effect indicators, c8 is a constant in- 
tercept, cg is the slope of a long-term trend, and c10 and c11 are coefficients for 
continuous harmonic terms representing seasonal trends k = 2 ~ 1 3 6 5 . 2 5  to give a 
1 -year sinusoidal period for these terms. 

For the predictors in this model, note that: 

1. The six day-of-week indicators, with the seventh day used as reference, require a 
separate model coefficient for each day. This approach is flexible for modeling 
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multiple types of data that may differ in weekly proportions. For example, 
counts of physician or clinic visits often drop on weekends when office hours 
are reduced, OTC remedy sales may peak on Saturdays, emergency room visit 
patterns depend on staffing of a particular hospital, etc. However, if only one 
type of data is to be forecast, a simpler model may perform as well, such as 
using indicators only for weekends and weekdays. Also, indicators for calendar 
holidays may be used if counts are known to drop on such days, and post-holiday 
indicators may be added to model the surge following the drop-off. 

2 .  The harmonic terms are often used to model an annual seasonal cycle [ 151. 
These terms are generally used when multiple years of historic daily data are 
available and should not be used if the data history changes drastically from 
year to year or if it includes only a small fraction of a year. 

3. The term to capture long-term trends should be considered carefully. If the 
outbreak signal is likely to be gradual, this term could effectively mask the 
signal, as discussed above. 

This model is based on the premise that a large set of representative training 
data is available and desirable. It reflects the strategy of traditional retrospective 
studies concerned primarily with a good fit within the historical data. However, the 
forecast errors may be excessive if the data history does not represent the data to be 
monitored and if covariate relationships change, as often happens in consumer health 
data. As Brillman et al. [3] realistically remark, “When monitoring complaint levels 
over multi-year time frames, it is necessary to periodically update baseline model 
coefficients in order to minimize the extrapolation in forecasting. One approach . . . 
is to do a planned update every year, but also monitor residuals for patterns . . . to 
check whether additional updates are needed.” Such updates require an active quality 
assurance effort, and separate updates may be required for different data types. An 
adaptive model described next does not model seasonality but uses fewer historical 
data and updates itself to an extent. 

Adaptive Example and Result Comparison. The second forecast method is an 
adaptive regression model with a sliding 8-week baseline interval [ 161. This model is 
similar in form to the traditional one: 

cz&(t) + (c8 + c9 t )  + [el0 x Iho l ( t ) ]  (4.14) 

where C I - C ~  are coefficients for day-of-week indicators, cg is a constant intercept, cg 
is the slope of a linear trend using a centered ramp function, and c10 is a coefficient 
for a holiday indicator. This method recomputes the regression coefficients for each 
forecast using only the series values from the 8 weeks before the forecast day. The 
short baseline is intended to capture recent seasonal and trend patterns. The sinusoidal 
covariates cannot be used because the baseline interval is a small portion of their 1- 
year period, which means that the harmonic terms would be nearly linear over some 
baseline intervals. The holiday indicator was added to avoid exaggerated forecasts on 

S ( t )  [$ ] 
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known holidays and the computation of spurious values for c1 to c7 when holidays 
occurred in the short baseline interval. A similar model is applied for anomaly 
detection in ESSENCE biosurveillance systems when an automated goodness-of-fit 
criterion is satisfied. In those operational implementations, a post-holiday indicator is 
also added to account for increases following a holiday, and a 2-day buffer is inserted 
between the baseline and the forecast day to enable the detection of gradual outbreaks. 

Figure 4.11 shows a comparison of the performance of these methods on a syn- 
dromic time series of citywide respiratory visit counts similar to the data of Fig. 4.10. 
For this comparison, a holiday term was also added to the nonadaptive model to avoid 
bias in the results because of a small number of holidays. The curve in Fig. 4.12 
shows the daily recorded visit counts, and the solid diamond and open square symbols 
indicate respective forecasts of the nonadaptive and adaptive regression methods just 
presented. Only next-day forecasts are shown, so the baseline of the adaptive model 
ends on the day before each test day. The nonadaptive method was applied with a 
fixed 1-year baseline, and the adaptive method with a sliding 8-week baseline. The 
baseline adaptation and continuous model refitting show both positive and negative 
effects. For the 3 weeks beginning September 29, 2002, the refitting clearly improves 
the forecast agreement, but for the next 2 weeks, the adaptive method overpredicts. 
The adaptive method reacts well to the 5-week drop beginning at the end of December 
2002, but the high March peaks cause it to overpredict on Mondays in April. From 
a tabulation of forecast errors over a larger, 350-day test interval, the median of the 
absolute errors was 22.6 for the nonadaptive, long-baseline seasonal method and 20.0 
for the adaptive method. The corresponding mean absolute percentage errors were 
11.7% and 9.7%. This comparison illustrates that model decisions should reflect the 
behavior of the data stream to be monitored and that traditional methodologies may 
be worth rethinking for health surveillance. 

For the application of 
models like those just described, analytic modifications may prove helpful, depending 
on the data background and the additional information available: 

Potential Modifications for  More Reliable Forecastiiag. 

1. Use of external covariates. The covariates in the models above may be seen 
as internal covariates because they use no information outside the time series 
being modeled. An external covariate would be a predictor based on additional 
information. For example: 

(a) If the surveillance system receives daily temperature along with health 
indicator data, the temperature can be added as a continuous variable in 
the model as a surrogate for the seasonal harmonic terms. The use of such 
a direct measurement might have better predictive value than a covariate 
based solely on the calendar in years with unusual seasonal behavior, 

(b) In the case of syndromic time series such as daily respiratory counts, 
suppose that daily totals of all clinic visits are available. If these totals 
were stored as another time series, this series could be added as another 
predictor of the syndromic counts. Such a predictor would help prevent 
forecast errors due to unscheduled clinic closings, inclement weather, 
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Fig. 4.11 Comparison of forecasts using non-adaptive and adaptive regression. 

and other circumstances that cannot be modeled. The utility of such a 
predictor depends on several factors, including the relative frequency of 
the syndrome group. 
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2. Outlier removal or replacement. For both adaptive and nonadaptive methods, 
forecasting may be improved if counts that are anomalous in some sense are 
removed from the model-fitting days or replaced with imputed values. Recall 
that the objective of the regression is to forecast the background data as they 
would appear with no disease outbreak. For example, if a daily count in the 
baseline exceeded the fitted value by more than 3 standard deviations, either the 
day could be skipped from the training, or the count could be replaced by the 
anomaly threshold value. However, if such a rule were automated in a model 
with a sliding baseline, checks must be in place to prevent the rejection of all 
training data because of a sudden drastic change in the time series. 

3. Avoiding model speciJication or convergence problems. For adaptive methods 
and for nonadaptive methods applied to many regions and syndromes, the fitting 
of the regression model could fail because of nonsingularity of the covariate 
matrix or because a nonlinear model fails to converge. For example, suppose 
that for a sparse data syndrome, no Sunday visits were recorded. For reliable 
daily forecasting, the implementation should catch such situations and remove 
problematic covariates like the Sunday indicator from the model. If such 
situations occur often, a question should be raised as to whether the model is 
appropriate for the data. 

Extended Regression Techniques 

Nonlinear regression. A variety of nonlinear methods have been developed; 
one method widely used for biosurveillance data [ 171 is general linear modeling 
(GLM), where the model may be expressed as: 

L(Y) = 31x1 + 3 2 2 2  + . ' ' + 3n2, + & (4.15) 

where L is a link function, and the error term E has an assumed distribution 
that need not be Gaussian as assumed in ordinary least-squares regression. For 
example, in Poisson regression, L is a logarithm function, as in the models 
discussed previously, but the error distribution is assumed to be Poisson. For 
modeling with small-count data and with baselines of at least several months, 
GLM regression should be considered. 

Autoregressive modeling. A popular approach for forecasting time series with 
short-term linear trends (see Figs. 4.1 1 and 4.12) is to model the error term in 
addition to the other covariates. Chatfield warned that general ARIMA (au- 
toregressive integrated moving average) modeling may require too much data 
analysis and statistical expertise for application to many types of data [ 181. 
However, Reis and Mandl [ 191 investigated ARIMA modeling for biosurveil- 
lance data and found two ARMA (autoregressive moving average) models that 
achieved substantial forecast improvements on several syndromic hospital data 
streams. These models were able to adjust to data features such as the local 
trends that caused the obvious forecast problems for the nonadaptive model in 
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Fig. 4.12. These models should be considered for city-level data with counts on 
the scale of the examples; research is needed with authentic surveillance data 
to determine their usefulness on smaller data scales. 

Beyond regression-based models, a number of other forecasting methods have been 
applied in biosurveillance. See Zhang et al. [20] for a discussion of the wavelet-based 
approach applied in RODS (Real-time Outbreak and Disease Surveillance) systems, 
and see Shmueli and Fienberg [21] for a more general discussion of wavelets and 
related methods. For an approach adapting LMS (Least Mean Square) filters of 
signal-processing technology to the forecasting of OTC sales data, see Najmi [22]. 

4.4.2.2 Forecasting by Generalized Exponential Smoothing. This relatively sim- 
ple approach has shown promising results. It generalizes the exponential smoothing 
concept to forecast time series with changing trends and cyclic effects as well as 
changing mean level. In industrial and financial time-series forecasting, a well-known 
implementation of this generalization is the Holt-Winters forecasting method [23,24]. 
Along with the level Lt,  the method includes two additional recursive terms, one for 
the trend Tt and one for a seasonal component St. The k-step ahead forecast is given 
by : 

where Af is the number of seasons in a cycle (e.g., for a monthly periodicity M=12), 
and Lt,  Tt, and St are updated as follows: 

(4.18) 

Tt = O(Lt - Lt-1) + (1 - 3)Tt-l (4.19) 

The seasonal effects in syndromic time series are generally proportional to the level 
Lt ,  so that the relationship between St and Lt in these equations is multiplicative. An 
additive formulation is also available [25]. 

This method requires three smoothing constants, a ,  3, and y. Note that this 
formulation is not a global model but an ad hoc adjustment procedure that assumes a 
few variation factors. The amount of ongoing adjustment for each factor is set by the 
smoothing constants. See Chatfield [ 181 for a thorough discussion of the choice of 
these constants. The chosen updating equations should be the simplest formulation 
that can capture the expected data features. 

Holt-Winters forecasting requires initial values for the level, trend, and the Af 
seasonal components. The choice of these initial values is more important than in 
simple exponential smoothing, especially for the cyclic behavior terms. If the cyclic 
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behavior is consistent, and representative starting values for co, el ,  . . . , chf-1 are 
available, a y value near zero may give optimal forecasts. If this behavior changes 
seasonally or changes fairly often as a result of artifacts in the data-acquisition chain, 
a larger value is indicated; analogous simpler guidance applies to the choice of Q 

and 6. 
One forecast comparison study applied both regression models and Holt-Winters 

smoothing to 16 time series of daily city-level syndromic counts [26]. For the Holt- 
Winters implementation, the cyclic component M was set to 7 to capture the common 
day-of-week effects. Note that this method, like the regression method using day-of- 
week indicators, does not assume a particular weekly pattern but can be used for time 
series where weekend counts drop slightly or nearly vanish; where Saturday counts are 
elevated as in some OTC sales data; and where the pattern is more unusual, as in visits 
to clinics with fixed weekly schedules. With a positive :/ value, this smoothing method 
can also adapt to changes in this pattern. To avoid forecasts of negative syndromic 
counts, a lower bound of zero was imposed for the recursively computed level Lt. To 
avoid zero divisors, Lt and St were defined as: 

St = St--M, if Lt = 0. (4.21) 

Another modification was analogous to outlier removal: the updating of the level 
and trend were suppressed when the forecast error was very large to avoid incorrect 
learning from outliers. An empirical choice for this criterion is to update only when 
the absolute forecast error is at most half the forecast value. For time series with small 
counts, a different criterion should be applied. This modification avoids misleading 
training but does not avoid large holiday forecast errors. 

Figure 4.12 extends the comparison of Fig. 4.1 1 to traditional regression versus 
Holt-Winters predictions. For these data, the exponential smoothing method shows 
the same ability to capture local trends as the adaptive regression method but does not 
show the same few intervals of large errors caused by the rigid baseline. The median 
of the absolute errors for the Holt-Winters method was 17.5, compared with 22.6 for 
the traditional regression, and the corresponding median absolute percentage errors 
were 9.1 % and 1 1.7%, respectively. 

Table 4.2 gives a more quantitative comparison of these methods over a 350- 
day test interval. Recall that the forecast residual is defined as the observed value 
minus the forecast. Residuals from the nonadaptive and adaptive regression methods 
and the Holt-Winters smoothing are compared for respiratory syndrome counts for 
10 cities; the column for city a gives the results for the data just discussed. For 
forecasts extended a full week ahead, note that even with the overall degradation in 
the adaptive methods, both are still superior overall to traditional regression with a 
long, fixed baseline. In the residual columns for city c and city j ,  the poor forecasts of 
nonadaptive regression represent situations where subsequent data behavior diverges 
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Table 4.2 Comparison of Predictions from Three Methods for 1 Day and 7 Days Ahead 

sharply from the baseline. In practice, the need for refitting should be obvious soon 
after the start of a season showing consistent, obvious errors. 

Judging from these median-based measures, which ignore the sizes of errors on 
all unusual days, the Holt-Winters forecasts are almost uniformly the best among the 
methods. However, use of the median residuals drops the effects of the 10 calendar 
holidays as well as the post-holiday effects from the 350-day test interval. If residuals 
are compared using the root-mean-squared error criterion, the inclusion of all 10 
holidays degrades the Holt-Winters forecasts for most of the time series relative to 
the other methods, and the adaptive regression forecasts look best. A Holt-Winters 
treatment of calendar holidays analogous to the regression holiday indicator should 
be considered. The median percentage error measures, comparable in scale over 
the test series, averaged 16.5, 11.6, and 9.7 for the nonadaptive regression, adaptive 
regression, and Holt-Winters methods, respectively. 

Application of Residuals for Alerting. Forecast residuals have been used for health 
surveillance in two ways. The first is to form a native regression detector by assuming 
that the residuals obey a theoretical distribution: Gaussian in ordinary least-squares 
regression or a preferred distribution for general linear modeling. Experience with a 
variety of health surveillance data streams shows that the residuals are rarely Gaussian 
and often have too high a variance for a Poisson distribution. A negative binomial 
distribution, discussed in the EWMA-Shewhart chart of suitably describes the resid- 
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uals in many types of data [14]. Once such a distribution is adopted, the detector 
is a hypothesis test for membership in the distribution, and distribution tables may 
be consulted for thresholds at desired confidence levels. From the epidemiological 
viewpoint, such a detector tests only for 1-day data spikes. 

A more general and flexible use of residuals is to incorporate them in a control chart 
[28]. The basic idea is to substitute the forecast for the expected value in a z-score 
and to scale by an estimate of the residual standard deviation: 

(4.22) 

The upper confidence limit may then be the conventional 3-sigma rule, or an 
empirical limit may be calculated. Such a control chart may employ forecasts from 
regression modeling, generalized exponential smoothing, or other methods. The chart- 
based method may be adaptive or nonadaptive, but from the previous discussion, the 
use of a nonadaptive method should be accompanied with diligent inspection for the 
need to refit. The implementation in ESSENCE is adaptive but also automates the 
decision to use a regression model with daily goodness-of-fit testing with the current 
baseline data. 

As an example of regression-based charts, Page’s test [27] is a CUSUM applied to 
regression forecasts. Variants of X-bar, EWMA, and other chart types may be derived 
similarly. Brillman et al. [3] reported the plausible finding that Page’s test gave better 
detection performance on distributed outbreak signals, while an X-bar type ofchart 
had better sensitivity for I-day events. 

4.5 SPATIOTEMPORAL ALERTING METHODS 

4.5.1 

Section 4.2 described the importance of spatial information in biosurveillance data. 
The utility of automated surveillance for detection is to trigger investigations of 
possible outbreaks. Information regarding the location or extent of a possible outbreak 
can be extremely valuable for guiding an investigation. The concern for when and 
where to spend resources on investigation has stimulated research in the area of spatial 
cluster or hotspot detection, which has an extensive literature [29]. Methods intended 
to search for anomalous case clusters look at the data differently than the time-series 
methods of Section 4.4. Instead of testing for anomalous levels or patterns in a specific 
data stream, cluster-detection methods seek anomalies in the spatial distribution of 
data. Rather than baseline time-series behavior, these methods require a baseline 
spatial pattern in the data. 

An important consideration for evaluating these methods for a given data source 
is how well the expected spatial data distribution can be estimated and how stable it 
is. This distribution is represented by a probability vector p(k) for subregions k = 1, 
. . . , K ,  such that if N cases, sales, or other data items are recorded over a test period, 

The Search for Hotspots and the Spatial Baseline 
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the expected number of counts in subregion k is N p(k). Various methods are used 
to estimate this distribution: 

1. If the data cover the entire monitored population and if all subregions report 
without bias, the set of census population estimates of the subregions may be 
used to derive the expected distribution. Hence, a usable estimate of p(k) is 
c ( k ) / E c ( k )  , where c ( k )  is the census count for subregion k .  However, for 
many data types, distributions are not population based. The distribution may 
depend on the area coverage of data providers, the locations of eligible medical 
plan subscribers, or unknown hospital or store catchment areas. 

2. For data sets with sufficiently large counts, subregion counts may be modeled 
as individual time series by the methods of Section 4.4. The c ( k )  may then be 
replaced by forecast values. Hierarchical modeling helps reduce the occurrence 
of excess clustering in subregions with few counts and/or high variance [17]. 

3. A popular means of estimating the vector p(k) is to form the sum of counts in 
a baseline period for each subregion. The c ( k )  values may then be replaced 
by these subtotals. This approach is a simplified form of strategy 2 that can 
be modified depending on what is known about the data. For example, if there 
is a day-of-week effect and interaction between the distribution and the day of 
week, stratified day-of-week distributions may be used. 

A driving factor in the choice of a cluster-detection approach is the quality of the 
spatial information in the data. Typically, electronic records are spatially sorted by 
address fields that denote patient or customer residence or just clinic location. Before 
selecting an analysis method, a system designer should ask: 

a Are these address fields left blank in many records, and is there a bias in who 
uses them? 

0 Are many of the patient addresses institutional or clinic addresses? 

Because of privacy and legal restrictions, this information is often limited to a 
five-digit zip code or postal code. If nearly all the records in the data catchment area 
are limited to a few postal codes, a sophisticated cluster-detection approach will not 
be justified. 

4.5.2 Spatial Scan Statistics and Enhancements 

Epidemiological interest in rapid cluster detection and localization has generated 
corresponding interest in scan statistics and, in particular, in the free downloadable 
program SaTScan developed by Martin Kulldorff for the National Cancer Institute 
[30]. The several versions have kept pace with user needs in a variety of applications; 
see the site bibliography for their range. The underlying concepts and application 
issues are discussed in Sections 4.5.2.1 and 4.5.2.2. 
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4.5.2.1 Scan Statistics Concept. Assume a set of public health data records, each 
of which is mapped to a subregion of a monitored region, as discussed previously. 
The objective is to find the clusters of these subregions whose current record counts 
are most significant relative to the rest of the region, given the expected distribution 
of cases. Some definitions are required: 

Current record counts refers to counts within the period being tested, which 
may be a day, a week, or longer. 

Theoretically, a most significant cluster could be one whose counts are most 
anomalously high or low compared with expectation. SaTScan allows the user 
to look for high values, low values, or both. Most biosurveillance users restrict 
attention to anomalously high counts. 

In purely spatial scan statistics, a cluster is a connected set of subregions within 
the monitored region. In spatiotemporal scan statistics, a cluster may be seen as 
a three-dimensional cylinder-a set of subregions and a set of contiguous time 
intervals over which the cases occur. In most applications, the cases in the 
cylinder end at the current date, so that only active clusters are considered. 

To find purely spatial clusters, a set of grid points is taken as possible centers of case 
clusters; often, the centroids of all of the data subregions are used for this purpose. 
For one of the grid points, candidate clusters are formed by testing the case counts of 
each member of a family of circles centered on that point, as shown in Fig. 4.13. Such 
a circle may contain a single subregion or many subregions up to a preset fraction of 
the total number of cases or total region area. A likelihood ratio statistic is computed 
and stored for each such circle. These statistics are then computed and stored for 
families of circles centered at the other grid points as well. The most commonly used 
formulation of this statistic is Kulldorff's likelihood ratio (LR) [3 11: 

where J is the set of subregions whose centroids lie in a candidate circle, O ( J )  is the 
sum of the counts observed in the subregions included in J ,  E ( J )  is the sum of the 
counts expected in the subregions included in J ,  and N is the total number of cases in 
the region. The cluster J"  whose LR is largest over the sets J obtained from all grid 
centers and all radii up to a fixed limit is then the maximum likelihood cluster. 

For every data set and each test period monitored, a maximum likelihood cluster 
may always be found, but when is this cluster statistically significant? Unfortunately, 
the likelihood ratios do not satisfy a known distribution, so there is no lookup table for 
significance at a given confidence level. SaTScan determines a p-value estimate for 
the statistical significance of this cluster empirically by ranking the value of LR( J * )  
against a set of other maximum likelihood ratios. Each of these trial maxima is 
calculated similarly from another sample of the AJ cases chosen randomly from the 
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Fig. 4.13 Geometric search method for significant clusters. 

expected spatial distribution. If M additional trial case distributions are chosen and 
tested, a p-value for the maximum observed cluster J*  is: 

p ( J * )  = r ank( J=) / (Al+  1) (4.24) 

In practice, the number of trials M is usually at least 999, so that the lowest possible 
p-value is 1/1000. The p-value is then compared with a preset significance threshold 
to determine significance. Experience is often required to determine an appropriate 
threshold for a given data type. 

Following the determination of the maximal cluster, the remaining ordered likeli- 
hood ratios may be examined with the same significance test. The usual practice is to 
find disjoint clusters of decreasing significance by dropping clusters with subregions 
that belong in a more significant cluster. 

The extension of this procedure to the spatiotemporal scan statistic adds the di- 
mension of time (i.e., the number of time intervals for aggregating test cases in each 
candidate set of regions). In common practice, likelihood ratios for the candidate 
regions are stored and compared for cases from the current day, from the current 
and previous day, and so on, back to some limit. Because of both epidemiological 
and run-time constraints, this limit is typically a week at most or a small number of 
intervals. The Monte Carlo significance determination must also be modified for an 
added dimension of multiple testing bias; see Kulldorff [5] for details. 
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The map in Fig. 4.14 illustrates a cluster of ILI cases found using authentic clinic and 
physician visit data as part of a simulation in which cases attributable to a hypothetical 
aerosol attack were injected. The sizes of the solid circular symbols on the map 
correspond to case counts, and the cluster illustrates the ability of scan statistics to 
control for the usual spatial case distribution. 

Fig. 4.14 
to a total daily count of 739. 

Significant ILI cluster found in bioterrorist attack simulation, with 20 cases added 

4.5.2.2 Scan Statistics Application. There are practical issues to be considered in 
the application of SaTScan or similar cluster detection methods. First, some common 
data issues: 

1. Spatial data organization. The patient or customer location in biosurveillance 
data is often limited to a patient residence postal code. Point-pattern methods 
such as SaTScan require an exact location for each subregion and, when possible, 
the postal code population centroid should be used. When hospital, clinic, 
or store locations are used to find the desired clusters, the exact addresses 
are usually available and can be geocoded to derive latitude and longitude 
coordinates. 
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2. Classification bias. Data records should be examined for classification bias 
across subregions. For example, recent analysis of a county data set revealed that 
some school nurses were using a “respiratory distress” category very broadly, 
whereas others used it only for asthma-related problems. If not corrected, this 
inconsistency would badly bias detection of spatial respiratory distress clusters. 
Simple histograms of data across subregions should be used to check for such 
problems before surveillance is implemented. 

3. Inconsistent reporting. The consistency of data reporting should be checked 
for the region overall and for individual subregions. If certain clinics or other 
data providers report intermittently or characteristically late compared with 
other providers, cluster detection will be biased away from the late reporting 
subregions, and the clusters may reveal more about reporting practice than about 
disease incidence. The best solution is to correct the problem data reporting, 
but it is often more feasible to omit the problem subregions from the analysis. 
See Kulldorff [32] for a fuller discussion. 

Surveillance system designers should also consider the population and data distri- 
butions, the subregion shapes, and the epidemiology of diseases of interest in decisions 
affecting the clusters of interest: 

1. Noncircular clusters. Several factors may suggest that likely geographic disease 
clusters may be elongated in one direction or even disconnected. For example, 
in a coastal city, the population may be heavily concentrated near the water 
and increasingly sparse inland. Therefore, residences in a large school district 
may be concentrated along a main highway. In such situations, a search for 
circular clusters is not optimal. SaTScan has an option to seek elliptical clusters, 
and other approaches have been developed for clustering of arbitrary shapes. 
However, such enhancements impose a cost in computation time-computation 
time for the elliptical option is proportional to the number of aspect ratios and 
orientations to be considered-and this cost must be included in system design. 
For the capability to test for disconnected or multiple clusters, designers should 
consider the p-value threshold and the number of secondary clusters to present 
to health monitors. 

2 .  Selection of the test period. When purely spatial scan statistics are used, the 
choice of test period is important. If the emphasis in on single-day clusters, 
the analysis should be applied only to data that are usually available within a 
day. Although the recent emphasis in outbreak detection has been on early 
detection, longer test periods of 3 4  days or a week give more stable results, 
and this trade-off should be weighed in system design. Spatiotemporal scan 
statistics are used to seek clusters of varying duration, and one must decide 
how far back to look. A practical problem is that an extremely unusual case 
distribution recorded 6 days ago may cause a week-long cluster to appear more 
significant than a current-day event of interest. Again, there is a trade-off 
between comprehensive monitoring and efficiency. 
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4.5.3 

Scan statistics are popular in part because they can be used to determine both the 
location and the extent of clusters of interest. There is also a large literature of 
methods for determining global clustering, some of which make more detailed use 
of spatial information and the matrix of distances between subregions than do scan 
statistics. These methods are usually applied to historical data sets to test the null 
hypothesis of no clustering. Recent research efforts have attempted to adapt and, in 
some studies, localize these methods for prospective surveillance. A few of these 
adaptations are cited here: 

Global Clustering Methods and Adaptations 

1. If p is the vector of expected spatial probabilities (as in Section 4.5.2) and r is 
the corresponding vector of spatial proportions observed, Tango’s measure [33] 
of the clustering of a data set is 

CG = (r - p)tA(r - p) (4.25) 

where the matrix A is obtained by applying an exponential kernel to the distance 
matrix for a damping constant 7 :  

a k 3  = exp(-dk,/r) if Ic # j ;  a3] = 1 (4.26) 

and dk3  is the distance between subregions Ic and j .  Rogerson presented a 
cumulative sum statistic based on this measure for early cluster detection and 
applied it in a prospective fashion [34]. 

2 .  Drawing on a large data set of patient records containin g anexact patient 
address, Olson et al. [35] used the distance matrix ( d k ] )  intensively by sorting 
all pairwise distances between record residences into a discrete set of bins. They 
then applied the M-point statistic to form a prospective test for an anomalous 
distribution of paired-distance counts in these bins. The M-statistic is an 
algebraic expression similar to Tango’s statistic, with the matrix A replaced 
by the variance-covariance matrix M of the bin proportions calculated for a 
large baseline period. This statistic helps to control for the variability within 
the distribution of distances. The authors applied the method to several years 
of hospital data with simulated outbreaks of various spatial concentration, with 
promising results. Efforts are ongoing to identify local disease clusters based 
on this approach. 

3. The Knox test for space-time interaction was applied by Theophilides et al. to 
use a database of reported dead bird locations as a sentinel for human cases 
of West Nile virus [36]. Because ertain mosquito species function as vectors 
for this virus and carry it between human and avian hosts, timely knowledge 
of the spread of the virus can guide strategies for mosquito control. Among 
localization methods for global clustering statistics, this one is noteworthy 
because it used the ecology of the mosquito vector to choose temporal and 
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spatial grid limits, and the statistic was applied in each grid cell. The clusters 
identified were significantly associated with the regions where human cases 
occurred. 

4.6 METHODS CONSIDERING MULTIPLE DATA SOURCES 

4.6.1 Decision Making with Multiple Data Sources 

The growing availability of data streams for biosurveillance requires corresponding 
growth in the methodology to analyze them. Both full- and part-time monitors exam- 
ine these data on a daily basis at state and local health departments. Investigation of 
statistical anomalies beyond the database level is labor intensive and time consuming. 
A multiplicity of data sources is appealing because a combination of evidence types 
suggests additional sensitivity and corroboration for a prospective outbreak with en- 
hanced characterization of the spatial and temporal spread of disease, more accurate 
identification of the population at risk, and an improved capability to specify effective 
interventions. 

In practice, however, multiple data sources can give contradictory findings. Fig- 
ure 4.15 shows time-series plots of syndromic data taken from a large Maryland county 
leading into the influenza season of 2004. The data sources represented are counts 
of respiratory diagnoses from visits to civilian physician offices, military clinic visits, 
hospital emergency departments, and sales of related OTC remedies. Retrospectively, 
there is a sharp rise in respiratory illness, confirmed by positive laboratory influenza 
tests, beginning in late November 2003. Public health status in the preceding weeks 
is less clear. The September increase in OTC sales and in civilian office visits is 
not reflected in the other data streams. Sporadic influenza cases were documented in 
October and early November, but the plot shows only gradual increases in the clinical 
data streams for those weeks. The dilemma of the prospective data monitor is when 
and how extensively to investigate and when to issue alarms. Unambiguous, corrob- 
orated data spikes are the exception rather than the rule. For single data streams, 
univariate algorithms can use data modeling and hypothesis tests to provide system- 
atic alerting protocols. In the multivariate data environment, the statistical decision 
requirements of the data monitor include which combinations of data sources to test, 
which algorithms to use according to the correlation characteristics of the data back- 
ground, how to achieve distributed sensitivity over many locations with manageable 
alert rates, and how much corroboration among data streams is required for a credible 
alert. The remainder of this section describe an approach for adapting multivariate 
testing methodologies from other disciplines to meet these requirements. 

In a classical hypothesis test, values of an observed quantity are treated as real- 
izations of a random variable, and the null hypothesis is that this variable satisfies an 
assumed distribution. A test statistic is computed from the observed values. The mean 
or some other property of the assumed distribution is used to calculate the probability, 
or p-value, that randomly chosen values are at least as unlikely as those observed. The 
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Fig. 4.15 Scaled daily data from multiple sources during influenza season in a large county. 

null hypothesis is rejected if this p-value falls below a predetermined threshold C Y .  In 
the biosurveillance context, the null hypothesis is an assumed data distribution in the 
absence of a disease outbreak affecting the data streams monitored. An alert is issued 
if the null hypothesis is rejected. However, an outbreak is not a necessary condition but 
only one possible cause for an alert. Other possible causes include changes or errors 
in diagnosis coding, increases in participating data providers, and database problems. 
However, if a single data stream represents the care-seeking behavior of the monitored 
population for a given syndrome group, an outbreak may be a sufficient condition for 
an alert. Thus, alerts may be used to focus the attention of health monitors on potential 
outbreaks if they occur at a reasonable rate. The question is how to extend hypothesis 
testing to the multisource, distributed surveillance context. 

Two prototype monitoring problems are considered for the multivariate context 
[37]. The parallel monitoring problem pertains to time series representing distributed 
locations, such as counties or treatment facilities, possibly stratified by other covari- 
ates, such as syndrome type or age group. The statistical challenge is to maintain 
sensitivity while limiting the number of alerts arising from testing the resulting time 
series. The second problem, the consensus monitoringproblem, entails testing a single 
hypothesis using multiple sources of evidence. For example, the combination of syn- 
dromic counts of emergency department visits, outpatient clinic office appointments, 
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and sales of OTC remedies may be used to test the hypothesis that there is no current 
outbreak of gastrointestinal disease in the monitored population. 

4.6.1.1 Multiple testing can lead to uncon- 
trolled alert rates as the number of data streams increases. For example, suppose that 
a hypothesis test is conducted on a time series of daily diagnoses of influenza-like ill- 
ness. In a one-sided test, this test results in a statistic whose value in some distribution 
yields a probability p that the current count is as large as observed. For a desired type 
I error probability of a,  the probability is then 1 - a that an alert will not occur in the 
distribution assumed for background data. Thus, for the parallel monitoring problem 
of interest here, if such tests are applied to R independent data streams, the probability 
that no background alerts occur is (1 - a)", which decreases quickly for practical 
error rates a. For a single-test error rate of a = 0.05, for example, the probability of at 
least one background alert exceeds 0.5 if more than 13 independent tests are applied. 

A common method of controlling this multiple testing problem is to replace the 
probability threshold a with the Bonferroni bound a / N ,  where ili is the number of 
monitored data streams. The resulting criterion is sufficient but usually not necessary 
to ensure an overall type I error rate of at most cr, and it often results in an increased 
type I1 error, or loss of sensitivity. Several published modifications of the Bonferroni 
procedure maintain the error rate of Q with less stringent rejection criteria. Let P(11, 
. . . , P(N,  be the p-values sorted in ascending order. Hommel's method [38] was to 
reject the combined null hypothesis if for any j ,  j = 1, . . . . N :  

The Parallel Monitoring Problem. 

P(j) < j . a / c .  N (4.27) 

where C = E l / j .  
This criterion gives an overall error rate of a or C = 1 if the tests are independent 

and this relaxed Simes criterion has been shown to maintain this error rate for many 
common multivariate data sets with positive correlation [39]. These improvements 
gained wide application when it was shown that they control the false discovery rate 
(FDR) or expected ratio of false alerts to the total alert count [40]. For example, FDR 
methods have been used to monitor CUSUM results of hospital data streams from 
numerous districts in the National Health Service of the United Kingdom [41]. For a 
large number of data streams and a well-defined signal, Bonferroni modifications may 
improve detection performance significantly. However, for a relatively small number 
of data streams-say a few dozen counties or treatment facilities-these criteria differ 
little in practice from the pure Bonferroni bound unless the data are highly correlated. 
The combination methods control the increase in alert rates with the number of data 
streams, and for nearly independent streams, Simes-based alert rates are only slightly 
above the Bonferroni-based rates. This difference grows as additional data streams 
are added, as the correlation among them increases, and as the alerting threshold Q 

is raised. These factors should be considered in the choice of a parallel monitoring 
method intended to control alert rates. 
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Several practical considerations should be noted regarding the Simes method. In 
view of the sorting, only those p-values that are below the nominal threshold cy affect 
the result. There is no consensus effect (see Section 4.6.1.2)-the method applied to 
10 p-values of 0.06 returns 0.06. The Simes criterion does not specify which of the 
data streams is anomalous; a popular procedure is to reject the null hypothesis for all 
streams with p-values below the largest one that satisfies the Simes method inequality. 

4.6.1.2 The Consensus Monitoring Problem. 
Multiple Univariate Consensus Monitoring Methods. The multiple univariate methods 
resemble those of Section 4.6.1.1 except that the p-values are combined to produce 
a single p-value p* = f(pl! . . . % p,) with the consensus property that several near- 
critical values can produce a critical value. Many such functions are possible; two 
methods are considered here, adapted from use in independent, sequential clinical 
trials. The first is Fisher’s rule [42], a function of the product of the p-values. The 
statistic is: 

F = 2 c l n ( p j )  (4.28) 
3 

For independent tests, values of this quantity form a x 2  distribution with 2n degrees 
of freedom. As a multiplicative method, it is more sensitive to a few small p-values 
than to a broader number of moderate values. It is recommended if the objective is to 
extract a single decision on whether to reject the overall null hypothesis and to avoid 
considering the individual p, . 

An alternative combination statistic is Edgington’s method [43]. This additive 
method is more sensitive to multiple near-critical values. For more than a few dozen 
data streams, this formula cannot be computed accurately. In such cases, the expres- 
sion: 

[mean(p) - 0.5]/(0.2887/fi) (4.29) 

gives a z-score whose Gaussian probability is a close approximation to this formula 
WI. 

If the data streams are independent, Edgington’s method gives fewer alerts than 
Fisher’s at nominal thresholds, but is more sensitive to data correlation. Edgington’s 
method is recommended if the number of data streams is modest - say, less than 
a dozen - and the user wishes a sensitive consensus indicator in addition to the 
individual test results. The desire for such an indicator has been expressed by epi- 
demiologist users of the ESSENCE biosurveillance systems and is common among 
large system users who require some summarization but are skeptical of bottom-line 
results that hide the contributions of individual sources of evidence. In experiments 
with syndromic data collections, both the Fisher and Edgington methods control the 
alert rate growth with the number of data streams. Edgington’s method gives smaller 
alert rates if the data streams are independent, and most of the alerts found with 
Fisher’s method are also individual stream alerts. However, the alert rate produced 
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by the Edgington method grows quickly with the number of data streams if they are 
correlated. Furthermore, very small single p-values do not necessarily cause alerts in 
the additive Edgington, so if the system is not also monitoring single streams, the use 
of Fisher’s method or both methods is recommended. 

Multivariate Statistical Process Control Charts. Alerting algorithms that combine 
values from separate time series in a single computation have the potential to detect 
distributed faint outbreak evidence that may be lost in individual hypothesis tests. 
Although strong correlation among data sources tends to dilute the benefit of FDR- 
like methods, prospective multivariate algorithms can exploit consistent correlation. 
Published work on multivariate methods, based on weekly data from large regions, 
has focused on multivariate statistical process control (MSPC) because of the long 
usage of control charts for hospital surveillance. Little published research deals with 
more complex multivariate hypothesis tests based on wavelets, Bayesian statistics, 
etc., partly because of the lack of availability of health surveillance data. Most MSPC 
methods are based on Hotelling’s T 2  as applied in monitoring efforts in related fields 
[45]. The T 2  statistic may be written as: 

( X  - p ) W ( X  - p )  (4.30) 

where X is the multivariate data from the test interval+ is the vector mean estimated 
from the baseline interval, and Sis  an estimate of the covariance matrix calculated 
from the baseline interval. 

Although Hotelling’s T2 may be viewed as a multidimensional z-score, this method 
has been generalized to obtain other multivariate control charts. A multivariate EWMA 
chart (MEWMA) has shown improved run-length characteristics and has yielded 
promising results with health surveillance data [46]. In Lowry’s MEWMA, the data 
vector is replaced by the exponentially weighted moving average: 

Z, = RX + (1 - R)Z,-1 (4.31) 

where R is a diagonal matrix of smoothing coefficients, and the covariance matrix 
is a scalar multiple of the data covariance matrix S in the usual application where 
equal smoothing coefficients are used. Analogous multivariate CUSUMs have also 
been applied to surveillance data, with Pignatiello’s MCUSUM applied to yearly 
spatially distributed counts of breast cancer incidence [47]. While the attraction of 
these multivariate methods is their signal sensitivity, they are also sensitive to noise 
background changes. Rogerson notes that combined univariate methods are directional 
in that they may be quick to detect shifts in just a few data sources but less sensitive to 
shifts in more general directions [47]. These methods are omnidirectional-a property 
that can be useful in detecting an earlier signal but can also cause false alerts if there is 
a change in the covariance matrix that is irrelevant to any outbreak signal of interest. 
Figure 4.16 illustrates this problem with applications of three MSPC methods - 
Hotelling’s T 2  [4], Lowry’s MEWMA [48], and Crosier’s MCUSUM [49] - to two 
syndromic time series that are highly correlated. The spikes in the algorithm outputs 
are in general agreement and are plausible alerts except for the sharp spikes seen for 
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August 7, which are purely the result of a change in day-of-week behavior for one 
of the two data streams. For practical monitoring to take advantage of the added 
sensitivity of these MSPC methods, robust methods must be developed and proven to 
avoid irrelevant alerts. 

Fig. 4.16 
data streams. 

Application of multiple statistical process control-based methods to two correlated 

4.7 STUDY QUESTIONS 

4.1 A major question in the design and implementation of any automated surveil- 
lance systems is how much to trust the system with decision making. Few public 
health officials would initiate an investigation based solely on indications from 
a “black-box’’ algorithm suite. On the other hand, the coordination of many data 
sources can be highly labor intensive. Q: What do you see as the required role 
of the man-in-the-loop in the operation of a surveillance system? How should 
algorithmic alerts be used in routine monitoring? What data visualization tools 
would be important for verification? 

4.2 Q: Aside from pure count or proportion levels, what covariate distributions or 
other quantities could be monitored (certain age groups, demographic groups, 
clinics, etc.)? As the number of quantities to monitor increases, so does the 
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chance of a random alert. What are some schemes for  combining results 
from these quantities to reduce the number of algorithm outputs that must be 
weighed? 

4.3 A concern for the utility of health surveillance systems is the effect of media 
reports and rumors on consumer and patient behavior. Such effects could 
change background data levels drastically. Q: Would time series of counts or 
proportions be more robust to such effects? For what syndrome groups and 
other data aggregation strategies would you expect the use of proportions to be 
effective? What other alerting methods might be less sensitive to changes in 
mass health care-seeking behavior? 

4.4 Q: For each of the control charts discussed, give a type of data signal for  
which the chart would be an optimal detectoc For each of these signals, can 
you hypothesize a public health event and/or data collection feature that would 
result in such a signal? A s  a health department assigned definite surveillance 
objectives, how would you devise a minimal set of detectors to get sensitivity to 
all outbreak types of interest? 

4.5 Q: What data sources would lend themselves to the effective use of spatiotem- 
poral scan statistics? What would be an obstacle to using scan statistics to 
detect the start of the injuenza season in a large city with complex commuter 
patterns? For this situation, what data features or data filtering strategies might 
make scan statistics more useful? 

4.6 Q: If multiple data sources divided into syndrome groups are available, how 
could the knowledge of disease symptornatology reduce the number of data 
stream combinations to test? What visualization methods could be used to 
make the monitoring of many data combinations understandable to a skilled 
user? How should nonclinical data sources such as work or school absenteeism 
be combined with clinical data f o r  decision making? 
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5 Putting It Together: The 
Biosurveillance Information 
System 

Logan Hauenstein, Richard Wojcik, Wayne Loschen, Raj Ashar, Carol 
Sniegoski, Nathaniel Tabernero 

Chapter 4 examined analytic processes that can be applied to data streams that are 
acquired and archived automatically for disease surveillance. It included a survey of 
algorithms chosen based on the characteristics of the data and the performance metrics 
required to achieve timely recognition of abnormalities. 

This chapter describes the processes and tools needed to present data and informa- 
tion to the users of the surveillance system. The chapter begins with a discussion of the 
various system architectures and how they influence the operation and scalability of a 
surveillance system. Web-based applications are discussed because they permit easy 
access to a system, which is important for usability. Also addressed are approaches 
to grouping data into syndromes and parsing free text into a structured format for 
use in the analytic processes (described in Chapter 4). Visualization techniques for 
conveying large amounts of data to users and interfaces that permit users to customize 
a system are described. The chapter ends with a discussion of skills needed to operate 
and maintain a surveillance system. The chapter is arranged so that readers can skip 
directly to topics of interest if they do not want to read the entire chapter. 

5.1 INTRODUCTION 

Chapter 3 introduced a few of the fundamental technologies commonly used to build 
data-driven surveillance applications. This chapter expands on these concepts and 
provides practical considerations for building disease surveillance systems. It also in- 
troduces some important Information Technology (IT) tools and technical information 
that is useful in the planning and decision-making process. 

The cornerstone of a robust and effective electronic information system is a carefully 
designed architecture that meets the needs of its users for reliability, performance, and 
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usability and the requirements of the development team for cost, scalability, security, 
and maintainability. Decisions made early in the design process will have a significant 
impact on the future of the system. 

One of the first issues to consider when building an information system is the 
software architecture. A system’s software architecture provides a plan that separates 
the system into logical parts and defines the relationships between those parts. Subtle 
differences between various architecture choices can greatly affect how the system is 
used and how it performs under different conditions. 

Designing the software architecture for an information system is much like de- 
signing the architecture for a house. Many decisions must be made along the way, 
and these small choices dictate many aspects of how the resulting system is used. 
Figure 5.1 shows two example architectures: a client-server architecture that enables 
a system to share data simultaneously with multiple clients, and a simple stand-alone 
system that limits data access to a single user. 

Fig. 5.1 
its own data. 

A client-server architecture shares data with its clients; a stand-alone system stores 

Software architecture choices will affect the cost, scalability, performance, and 
maintainability of the overall system. A web-based system could potentially use 
several web servers and several database servers to help handle very high volumes of 
user traffic, but the startup and system maintenance costs will be high. On the other 
hand, a stand-alone system would be comparatively easy to maintain. 
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After a general software architecture direction is chosen, decisions must be made 
about computer hardware and software. In many cases the selection of hardware and 
software may be constrained by budget and an organization’s IT system configuration 
and maintenance policies. Designing systems to meet the project’s goals within these 
constraints can be challenging. Inappropriate choices can affect the system’s overall 
performance adversely. 

Documents on the World Wide Web evolved from a simple set of unchanging 
interlinked pages into today’s dynamic, interactive, widespread, and interconnected 
collection of sites. The universal connectivity provided by the Internet, combined with 
the ease of data exchange provided by web applications, has fundamentally changed 
the ways in which we share data. Because of this flexibility, many current disease 
surveillance systems use web applications to access information for their users. 

Mapping software makes it possible to situate certain types of data into a geograph- 
ical context, providing additional insights about the data collected. Geographers and 
software engineers have collaborated to produce tools that make it easier to combine 
geographical data from a multitude of sources and display the results in interactive 
maps. 

When combined, web-based, mapping and other technologies enable the develop- 
ment of powerful disease surveillance systems. 

5.2 SYSTEM ARCHITECTURES FOR DISEASE SURVEILLANCE 

Disease surveillance systems contain three major components, corresponding to the 
functional areas of the system: ingestion, detection, and visualization. Ingestion is 
responsible for reading in the data from the data providers; detection runs anomaly 
detection algorithms on the health data; and visualization enables a user to interact 
with the system through data querying, graphing, and geographic map displays. 

The architecture of the system defines how these components operate and interact 
with each other and the user of the system. Several types of system architecture 
designs can be used to implement a disease surveillance system, ranging from a single- 
user stand-alone application to a multiuser client-server application. Ultimately, the 
architecture implemented is defined by the amount and frequency of the data ingested 
into the system, the computational requirements of the detection algorithms, the 
availability of data to the end user, and the budget. Sections 5.2.1 through 5.2.3 cover 
some common architecture design concepts and their impact on the development of a 
disease surveillance system. 

5.2.1 Stand-Alone System Application Design 

Before the explosion of the Internet and web applications, most applications were 
designed to execute on stand-alone systems. Although such a system may be connected 
to a network, all data input, algorithm processing, and user interaction takes place on 
a single computer. Commonly, this design requires user intervention to input data 
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and start the analysis algorithms. This design is usually intended for applications that 
accommodate one user at a time and are developed for a specific operating system, such 
as Microsoft Windows or Unix variants. Examples of stand-alone system applications 
are a desktop word processor or spreadsheet. A disease surveillance application that 
can be considered a stand-alone application is the CDC’s early aberration reporting 
system (EARS) surveillance application [ 11. 

The benefit of this type of design is that all the functional components of the 
application reside on one computer, making the application easier to install. In most 
cases, the cost to maintain the application is usually low for the user. However, new 
releases to the application can be difficult to distribute and install. 

The decision to deploy a stand-alone application depends primarily on the budget 
available to implement and operate the disease surveillance system. For a modest-sized 
public health jurisdiction, a stand-alone application may be sufficient or appropriate 
for the amount of data that it receives, processes, and monitors. 

5.2.2 Thick Client vs. Thin Client Application Design for client-server 
Architectures 

Client-server architectures separate the system into two components, the client and the 
server. The client communicates with the server over a network connection. All user 
interactions with the server application are performed through a client program residing 
on the user’s computer. The server commonly stores the data needed by the client 
in a central repository, processes data requests by the client, and returns data to the 
client. Other server-side functions, such as data gathering, ingestion, and detection, 
are performed by applications that operate behind the scenes. This architecture is 
usually implemented to accommodate multiple clients or users simultaneously. The 
primary benefit of this architecture is increased performance and reduced system 
response time because the processing load is distributed across multiple computers. 

For client-server applications, the user interacts with the system through a client 
program. The client may be deployed as a thick desktop application or a thin (often 
web-based) application. A thick desktop client is similar to a stand-alone application 
in that it relies on the user’s computer resources to perform analysis and processing. 
However, thick clients still rely on the server for the bulk of their data storage. An 
example of a thick client desktop application is an e-mail application such as Microsoft 
Outlook. Thick clients typically are more complex and allow developers tighter control 
over the application, enabling the developer to deploy a more customized and richer 
user interface than with a thin client. However, the tighter control usually requires 
longer development time because of the increased code complexity and imposes higher 
performance requirements on the user’s computer. In many cases, thick clients are 
distributed through a one-time download from a server and installed on the user’s 
computer. Ensuring that users are using the latest version of the user interface may 
be problematic. A common method used to address this issue is to prompt the user 
to update the application through a built-in update feature or by manual retrieval and 
installation of the application when a new version of the client becomes available. 
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Users access thin client applications using a tool such as a web browser. An online 
search engine is an example of a thin client application. Although the web browser 
itself is a thick client, the actual web application accessed through the web browser, 
i.e., the user interface to the search engine, is considered a thin client. Thin web client 
applications use minimal processor and data storage resources on the user’s computer. 
The majority of the application logic resides on the server, as does most, if not all, data 
processing. The client is used primarily for visualization of the data. Thin clients are 
typically easily installed and maintained on the user’s computer. In the case of a web 
browser client, the code to control the user interface is downloaded from the server 
every time the server is accessed, which guarantees that users are accessing the latest 
version of the user interface. The underlying design benefit of deploying a thin client 
is that the application usually places loose or minimal performance requirements on 
the user’s computer to perform its function. It assumes that users will have varying 
hardware capabilities. 

In the past, only stand-alone and thick client applications could provide content- 
rich user interfaces. Now, thin client applications can produce equally rich user 
interfaces by using advanced web-based technologies such as the Document Object 
Model (DOM) [2 ] ,  JavaScript, and Asynchronous JavaScript and extensible Markup 
Language (AJAX) [3, 41. These technologies allow both thick and thin clients to 
implement maps, graphs, and other useful user interface components with the same 
functionality and interactivity as stand-alone desktop applications. 

Aside from budget, which is always of concern to public health jurisdictions, the 
decision to deploy a client-server system application depends primarily on the number 
of simultaneous users that it needs to reach. Large jurisdictions with multiple users 
will probably choose to implement a client-server system. 

5.2.3 Three-Tier and Multitier Architectures 

Client-server systems are commonly implemented as a three-tier architecture (Fig. 
5.2) where the functions of the client-server are defined in three separate tiers or 
layers: presentation, business logic, and data [ 5 ] .  These layers exist as separate 
software modules and are often installed on separate servers. 

The three disease surveillance functions discussed earlier fit into these three tiers. 
The top tier corresponds to the visualization or presentation layer, detection fits into 
the logic tier, and ingestion fits into the data tier. 

One of the benefits of this architecture is that each layer may be upgraded or 
replaced independently. For example, if a new detection algorithm is developed, only 
the detection layer and the detection server are affected. Or, if new ingestion methods 
are developed, only the ingestion layer and ingestion server are affected. Assigning 
each layer to a separate server distributes the processing load, increasing performance 
and system response. 

Client-server systems are not limited to three tiers. The architecture may be further 
segmented into additional tiers to form an n-tier system. Additional tiers or servers 
may need to be added to increase security, isolate computationally intensive functions, 
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Fig. 5.2 Three-tier architecture (Source: Wikipedia). 

and increase performance. For example, the data tier usually maintains a database as 
a data repository. However, it may be necessary to split the database into multiple 
databases, such as when a disease surveillance system is collecting patient-identifiable 
information as part of its data stream. Because of privacy or confidentiality policies, 
the patient-identifiable information may be required to be stored in a database that 
is physically separate from the web-accessible database. The system would use 
network firewalls to prevent unauthorized users from gaining inappropriate access to 
the sensitive data. 

Another important reason to separate the databases in the data layer is to optimize 
performance. In many cases, detection algorithms can consume most of a server’s 
processing resources. It is likely the algorithms will retrieve and process data from 
a database. If the same database is used by the user interface, the interface may be 
adversely affected every time a detection algorithm is run. Ideally the detection and 
user interface layers will access their own independent database in order to solve this 
problem. 
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Partitioning the database into different layers also results in greater independence 
between the application layers. For example, consider a disease surveillance system 
in which the data ingestion server is unavailable because of maintenance. If the data 
ingestion server contains the same database that is used for the user interface, the user 
interface will be inoperable. However, if the data layer is split to create a database 
specifically for the user interface, the user interface could remain operational during 
the maintenance. 

5.3 DATABASES 

Nearly all disease surveillance systems include one or more database servers as part 
of their overall architecture. In Chapter 3, fundamental concepts relevant to databases 
were discussed. This section introduces high-level database design considerations, 
along with practical issues concerning database hardware and software choices. 

5.3.1 Database Design 

Hundreds of books have been devoted entirely to database design considerations. The 
primary concern with the design of a relational database is the degree of normalization. 
Normalization is the process of organizing data and breaking it into smaller tables that 
are easier to manage. The primary reason to normalize a database is to prevent 
redundant data. 

A database design can achieve a number of different levels of normalization. At 
the lowest level, pieces of data are defined in multiple places in the database. For 
example, imagine that a company with a partly normalized database stores copies 
of a customer’s current billing address in two tables: CustomerInfo and BillingInfo. 
When a customer wishes to update a billing address, the software needs to update two 
separate tables to keep the database state consistent. If, instead, the database stores 
the customer billing addresses in a single table, the database content becomes more 
normalized and generally easier to maintain. Higher levels of database normalization 
reduce redundant data and optimize data dependencies. 

In theory, a more normalized database is easier to maintain than a less normalized 
database. However, it is quite impractical (and nearly impossible) for databases to 
achieve the highest levels of normalization. Higher levels of normalization usually 
mean that data are spread across a greater number of tables. As a result, data ma- 
nipulation language (DML) queries are often more complicated, and the database 
management systems (DBMSs) must work harder to retrieve data from the tables. 
Designers must carefully balance the requirements for database maintainability and 
performance when designing a database. 

Another important task for database designers is developing indexes for the tables 
in a database. A table index works in much the same way as the index at the back of, 
for example, a cookbook. The index contains an ordered list of items (recipe names) 
along with a link (a page number) to the item’s associated row (the recipe itself). 
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Imagine querying a cookbook to find all of the recipes that contain the ingredient 
“paprika”. Normally, a DBMS performing a search like this would need to scan each 
recipe’s ingredients, but if the DBMS maintained an “ingredient” index, it would be 
able to quickly look up “paprika” and return a list of the associated recipes. 

Computers use methods to track down individual pieces of data in an ordered list 
that are usually much faster than scanning every single entry in the table. As a result, 
rejoining data that are spread across multiple tables can be surprisingly efficient if the 
tables are indexed in an optimal manner. The way in which these indexes are used 
and maintained is typically transparent to the users of the system. Some structured 
query language (SQL) variants have options for providing the DBMS with hints about 
which indexes to use, but modern systems usually do a very good job of deciding 
which indexes will result in optimal overall performance. 

5.3.2 Database Server Software 

Many software vendors provide DBMS solutions. Some database solutions, such as 
Microsoft Access 161, Core1 Paradox [7], and dBase [8], are well suited for small- 
scale applications. Generally, these databases are small in size and portable compared 
with their full-scale counterparts; many of the features in the larger systems have been 
stripped away to provide a simpler database experience. They tend to cost less and can 
be geared toward beginners so that little or no programming language experience is 
required to use them. These databases usually do not scale upward well because they 
are tuned for small-scale usage. The level of control over these databases is usually 
limited, and data access from multiple concurrent users is often not well supported. 
These types of databases are generally used in situations where a robust database 
solution is not necessary. 

Larger scale database server software packages, such as Oracle Database [9], IBM 
DB2 [lo], Microsoft SQL Server [6], MySQL 1111, and PostgreSQL [12], provide a 
finer level of control over the database and scale upward well as the demands on the 
database increase. Their software is designed to be used by multiple concurrent users 
in a networked environment. Generally, they offer wider support of the SQL language 
standard, tighter control over database tuning, and special considerations for database 
maintenance (e.g., performing data backups, executing routine maintenance). They 
also tend to offer better security than their smaller counterparts. Of course, these 
added benefits usually come along with added complexity and cost. Keeping the 
larger database running smoothly and securely is more complicated in all cases. The 
software tends to cost more (although not in the case of the open-source solutions), 
with vendors often charging per user or per processor. These large-scale solutions are 
used where robust, high performance is required. 

5.3.3 Database Server Hardware 

Because most large-scale database software scales well with increasing demands, the 
main limitation on database performance is server hardware. Databases are resource 
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intensive, requiring high levels of performance from the server’s processors, hard 
drives, and network connection. DBMS software solutions take advantage of multiple 
processors if they are available and if the software is licensed to run on those processors. 
Most DBMS vendors provide support for a variety of processor architectures, and many 
support the newest architectures, such as the 64-bit x86 processors offered by AMD 
[ 131 and Intel [ 141 among others. 

In an effort to boost overall performance, database servers use a great deal of 
random access memory (RAM). Hard disk operations are very slow, and physical 
memory is (comparatively) much faster. Databases often read large amounts of data 
from the disk into physical memory so that they can perform operations on the data 
quickly. Physical memory, while fast, is very expensive compared with hard drive 
space. Ideally, the amount of physical memory installed in a database server should 
be maximized. 

One of the major performance hindrances for the DBMS is the hard disk in- 
put/output. High-performance database servers must find and retrieve large amounts 
of data quickly from the hard disk, a traditionally slow-to-respond technology. Data 
integrity is also an important aspect of data storage. The server still needs to respond 
if a disk drive starts to malfunction or stops working completely. 

The main objectives for hard disk storage performance are to maximize data 
throughput and to ensure high levels of data integrity. A very popular way to meet 
these criteria is to use a redundant array of independent disks (RAID) configuration 
[15]. A RAID setup allows a server to use multiple disks together in a flexible con- 
figuration to maximize data integrity and performance. When a server needs to write 
data to physical storage, the RAID can perform a number of operations transparently. 
First, in a “mirrored” configuration, the RAID can write a copy of the data to two or 
more sets of disks. Because each disk runs independently, the data write operation 
occurs simultaneously on all of the mirrored disks. Second, the RAID system can 
perform “parity” checks on the data written to the drives to ensure that the disk actu- 
ally writes the requested data to the drive. Finally, the RAID system can “stripe” the 
data across multiple drives to improve disk throughput dramatically. For example, if 
the RAID were asked to write the bits “123456” to a system with three disks in this 
configuration, it could write “1” to the first disk, “2” to the second disk, and “3” to the 
third disk - all simultaneously. In the next time slice, the bits “4,” “5,” and “6” could 
be written to the first, second, and third disks, respectively. This RAID setup takes 
two steps to perform what would take a regular disk six steps to perform. The RAID 
system is highly configurable - different ‘‘levels’’ of RAID provide customizable sets 
of functionality. 

Two relatively new solutions to the storage problem involve moving the disk storage 
away from the server. In the storage area network (SAN) and network attached storage 
(NAS) models, disk storage operations are sent over a network to machines that are 
dedicated to performing storage operations using large arrays of hard disks. The 
network can be either a part of the server’s regular network connection or a separate 
network dedicated to the storage subsystem. These approaches enable multiple servers 
to access the same storage space in a relatively efficient and easy-to-administer manner. 
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The final hardware consideration relating to database servers concerns power us- 
age. Most server-oriented machines come with multiple redundant power supplies in 
case one of the power supplies fails. If the power to the server goes out, however, 
uninterruptible power supply (UPS) systems will use their rechargeable batteries to 
keep everything running. Smaller UPS units will keep the server powered only long 
enough for everything to shut down safely. Larger UPS units are designed to keep 
everything working until the power comes back on. 

5.3.4 Database Server Costs 

The startup cost for a database server is higher than the cost of a typical personal 
computer. Major computer vendors offer help with customizing hardware and software 
when a server is ordered. In addition, they will help determine the kinds of software 
licenses required for the setup and offer warranty-related support for the server if 
technical issues arise. 

In general, servers incur ongoing maintenance costs. Database data need to be 
backed up regularly in case of a catastrophic system failure. The server’s software 
needs to be upgraded regularly with the latest security releases to minimize the security 
risks associated with connecting to the Internet. As discussed previously, the cost of 
a database server is a key consideration when jurisdictions are deciding how best to 
establish a disease surveillance capability within their health department. 

5.3.5 DBMS Vendor Overview 

Many DBMS software solutions are available, all of which vary in terms of cost, 
hardware support, operating system support, and overall performance. Table 5.1 
provides a simple overview of some of the different vendor options available for 
database software, which are also described here. 

Microsoft’s most recent database solution is called Microsoft SQL Server 2005 [6]. 
A variety of editions of the DBMS are available, from a stripped-down workgroup 
edition to the full-blown enterprise edition. Microsoft offers flexible licensing options, 
including individual user licensing and processor licensing. The software is supported 
only in the Windows operating system and on x86 processor architectures, including 
the newer 64-bit processors. 

The Oracle Database log software [9] offers much of the same functionality as 
Microsoft’s database family. Like Microsoft, Oracle offers flexible licensing options 
that scale upward as more growth is required. Oracle’s software will run on many 
different operating systems, such as Windows and Linux, and also supports a number 
of different processor architectures. 

IBM offers the last of the big three commercial database solutions with their latest 
software version, DB2 version 8.2 [lo]. Their software is supported on Windows, 
Linux, and many other Unix variants, such as AIX, HP-UX, and Solaris. Correspond- 
ingly, their software supports a very wide variety of processor architectures, making 
it a very flexible solution for different hardware configurations. 
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The open-source software movement has resulted in several strong and popular 
database solutions. MySQL [ 111 and PostgreSQL [ 121 both offer high-performance 
solutions that will run on many operating systems across many different kinds of pro- 
cessors. MySQL is licensed under the GNU public license (GPL) [16], which allows 
users to download and use MySQL for a software project but restricts the distribution 
of the resulting software. PostgreSQL is licensed under the more liberal Berkeley 
software distribution (BSD) [ 171 license, which allows software to be redistributed 
regardless of how it is used. 

In response to the popularity of open-source databases, Microsoft, Oracle, and IBM 
have all released free stripped-down versions of their database solutions. All three 
offer free downloadable “Express” (or for IBM, “Express-C”) variants of their latest 
databases. The Express versions usually limit the number of processors the software 
will use, the amount of memory it can use, and the physical size of the database. 
These solutions work well for small-scale development and prototyping, but must be 
upgraded to the costly database versions if higher performance is required. 

There are many benchmark performance tests available for all of these popular 
database solutions. Often, though, database performance relies greatly on how the 
database itself is designed. The open-source solutions can offer results that meet or 
exceed the performance of their commercial counterparts. Before choosing database 
software, consider how the database will be used. Will it be easy to find developers to 
design and maintain the database? What tools are available to support database-related 
tasks? Databases have become an important part of the IT infrastructure. Fortunately, 
this means that support is widely available for most database solutions. 

5.4 WEB APPLICATIONS 

Web applications can be accessed by any network-enabled device with a web browser. 
Web browsers exist for almost every operating system and platform, including smaller 
devices such as personal digital assistants (PDAs) and cell phones. As a result, users 
can access web applications using a variety of devices almost anywhere that network 
connectivity is available. In contrast, thick client applications will usually run only on 
a specific device (such as a personal computer or PDA) and operating system (such as 
Windows or Mac 0s X). These applications must also be installed on every potential 
user’s device, whereas web applications can usually be accessed immediately without 
any initial setup. 

Web applications offer a strong advantage over thick client applications when 
software needs to be updated. Users who access a web application always see the latest 
version of the application that resides on the web server. The software developers need 
to update the software only on the web server to deploy application updates. Thick 
client applications, on the other hand, reside on the user’s computer. Software updates 
must be deployed to each individual computer through an installation program run 
manually by the user or possibly by an update mechanism built into the application 
itself. 
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Table 5.1 General Comparison of Database Vendor Software 

Vendor/ Operating 
Product Systems Licensing Processors 
Name Supported Options Supported 

Microsoft Windows Per processor, x86 
SQL Server per user, and and x64 

per device; variants 
multiple 
editions 

Oracle Windows, Per processor, Wide variety, 
database Linux, per user; including 

Unix multiple 64-bit 
editions variants 

IBM DB2 Windows, Per processor, Wide variety, 
Linux, per user; including 
Unix multiple 64-bit 

editions variants 

MysQL Windows, Open source Wide variety, 
Linux, under GPL including 
Unix license; 64-bit 

support variants 
packages 
available 

PostgreSQL Windows, Open source Wide variety, 
Linux, under Berkeley including 
Unix license; 64-bit 

community and variants 
corporate 
support 
available 

In designing a website, the developer must make some initial decisions to ensure a 
well-functioning end product. The first step is to decide how the site will work. Will 
the pages all be static, or will the content be dynamic and driven by data retrieved 
from a database? On what external resources will the server rely? How will users 
interact with the web page? Today’s large websites are typically quite dynamic and 
offer much in terms of user interaction. For example, users of Amazon’s website can 
search through thousands of products, read user-entered recommendations, and even 
participate in online auctions. 
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Web applications do, however, have limitations. Traditionally, web applications 
tend to be restrictive in terms of user interaction, although this is a small trade-off 
for universal availability. Security continues to be an important issue for websites, 
especially as the incidence of identity theft increases. Web server software must be 
patched regularly to maintain tight security. 

5.4.1 Web Servers 

Web servers listen for hypertext transfer protocol (HTTP) requests on the network 
from client computers. At the most basic level, these client requests specify the name 
of the page to be accessed. The web server maps this page name request to a particular 
file on the computer and performs different actions based on the contents of the file 
and the configuration of the server. Essentially, the web server acts as an interpreter 
between the client and the content of the files on the web server’s disk drive. The 
most basic operation for a server is simply to return an unchanged copy of the file to 
the client. Alternatively, the web server can interpret the requested file as a scripted 
set of commands to execute, in which case it returns the resulting output of the script 
to the client. Essentially, this output is a webpage that is written on the fly. The script 
can pull data from other sources (such as a database) and dynamically generate the 
content displayed to the user. In this way, web servers act as a very powerful tool for 
information exchange. 

Web servers have a big responsibility, especially if the data they distribute are 
sensitive. Even the most basic web server software can be configured with basic levels 
of security, but it is the responsibility of the developers and system administrator to 
ensure that the web content is secured properly. The information sent between the web 
server and the client can be encrypted using the secure HTTPS protocol to prevent 
others on the Internet from eavesdropping. Conversely, steps must be taken to ensure 
that the data being served by the web server are available when needed. Browsing 
through an unresponsive website can be a very frustrating experience. 

Much like database servers, web servers benefit from faster and more numerous 
processors, more memory, and faster disk access. Larger, more complicated, and busy 
websites will require faster hardware to keep up with their demands. Luckily, it is very 
easy for the software to run web page requests in parallel, so many different clients 
can make simultaneous page requests to the web server with few bottlenecks. 

Two major web server software solutions are used by virtually all major websites: 
Apache HTTP server [ 181 and Microsoft’s Internet Information Service (11s) [ 6 ] .  
The Apache package, the most popular, is free, open source, fast, widely supported, 
extendable, and reliable. It runs on a very wide array of operating systems, such as 
Windows, Linux, and the Unix variants, and on all sorts of processor architectures. 
Microsoft’s 11s is available only for Windows, but it has become popular because it is 
tightly integrated with the Windows server set of tools. 11s and Apache are comparable 
in performance. 

Other web server variants are available for more specialized applications. For 
example, Jakarta’s Tomcat application server [ 181 can serve up dynamic web pages 
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created by Java servlets, which can be executed on most operating systems and 
processor architectures. Table 5.2 highlights some of the differences between these 
three web server applications. 

Table 5.2 Feature Comparison of Popular Web Server Applications 

Vendor/ 
Product 
Name 

Operating 
Systems Licensing 
Supported Options 

Processors 
Supported 

Microsoft IIS Windows Per userldevice x86 
license; and x64 
multiple variants 
editions 

Apache Windows, Open source, Wide variety, 
HTTP server Linux, released including 

Unix, etc. under Apache 64-bit 
license variants 

Apache Windows, Open source, Wide variety, 
Tomcat Linux, released including 

Unix, etc. under Apache 64-bit 
license variants 

5.4.2 Web Applications and Browsers 

A web browser is a popular and useful platform-independent tool used to support 
information exchange. Browsers help users make requests to a web server, translating 
their actions into HTTP requests that web servers understand. Web servers send an 
HTTP response back to the browser, where the information is again translated into a 
human-readable format. Browsers are responsible for formatting the hypertext markup 
language (HTML) data supplied by a web server in a form that is meaningful for end 
users. Some of the popular browsers in use today include Internet Explorer, Netscape, 
Mozilla Firefox, Apple Safari, and Opera. Although most browsers are designed to 
function in a large graphical desktop environment, portable Internet-enabled devices 
such as cell phones and PDAs have their own specialized browsers that display web 
pages on small and occasionally text-only screens. 

On the web server side, web applications are the software packages that create 
the content and implement the elements of user interaction for the users of a web 
page. As mentioned previously, web servers often assemble web pages dynamically 
to deal with constantly changing data and to provide a rich and customized interactive 
experience for the users. 
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In the past, web applications often used a very simplistic (and error-prone) common 
gateway interface (CGI) technology to pass data between users and web servers. As 
tools were developed to simplify the process of creating a web application, it became 
much easier to create secure web pages that responded to user-entered information in 
an interactive environment. One example is Java’s introduction of Applets into a web 
page. Applets are essentially self-contained Java programs that are embedded into 
web pages, complete with all of the highly interactive graphical user interface (GUI) 
components available in the Java library. These tools make it easier for developers to 
maintain large-scale, high-volume, data-driven websites. 

Specifications developed by the W3C organization define standards for the HTML 
data that browsers are expected to display to the user. These standards, however, 
can be interpreted somewhat differently by different browser applications, which can 
result in odd differences in the layout created by different browsers. Sometimes, a 
page that works perfectly in one browser will not function at all in another browser. 

Web applications provide data and analysis results to the end user as either static or 
dynamic content. Web pages with static content have pregenerated and predefined data, 
analysis results, maps, and other visualization elements that are recreated at scheduled 
intervals. These static web pages are usually delivered to the client very quickly 
because the web server does not need to perform any advanced processing.However, 
users are unable to perform ad hoc analysis through this type of web application. 

Web pages with dynamic content provide the user with data, analysis results, maps, 
and other visualization elements that are generated on-demand by either server- or 
user-defined queries. These web pages need to access data from the surveillance 
system’s data repository as needed. Users of these dynamic web pages are free to 
explore and analyze the data however they see fit. Becauses the web server needs to 
perform much more work to deliver this dynamic content, the query response time 
can increase, potentially up to tens of seconds or even several minutes, for very large 
systems. 

A website with dynamic content will need to use a programming language. Popular 
choices include the open-source PHP (PHP hypertext processor) language, Java, and 
Microsoft’s ASP.NET (application server pages in .NET). The choice of the language 
should be driven by the availability of developers who understand the language and 
by the support in the language for the development tools required, such as database 
drivers. The good news is that most languages are quite functional in terms of the 
external libraries available for software development. 

Deciding on a web application language depends on just a few factors. How 
portable does the application need to be? If the application needs to run on only a 
single operating system, nearly any language will work. Most popular languages offer 
a large library of extensions. If the user interaction provided by the HTML language 
is too limited for the application, solutions such as Java Applets or Macromedia 
Flash applications running on the client’s computer will provide a more expansive 
environment for interaction. However, using these client-side solutions can cause 
compatibility problems. For example, Flash applications require users to download 
and install a plug-in from Macromedia’s website. 
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Website developers do not generally get to choose a web browser - they must, 
instead, try to make their pages compatible with all of the browsers available. It is 
nearly impossible to account for every single version of every single browser in the 
world, but the developer should at least ensure compatibility with the current, most 
popular browsers. It may also be worthwhile to think about how the pages load on 
alternative browsers, such as those used by PDAs and cell phones. 

5.4.3 Web Applications and Geographic Information Systems 

It is often very useful in data analysis to project the data onto a geographical map. 
Several factors must be considered for displaying a map. Where can one get the map 
data, such as the shapes of the counties or the layout of the streets? What kinds of 
data can be projected onto a map? How can map data, which represent real-world 
physical objects, be associated with the user’s own data? How will users interact with 
the map? 

Geographic information systems (GIS) software solutions offer answers to all of 
these questions. They manage and associate pieces of spatial data, provide data- 
querying functions with a map-oriented interface, and offer customized data displays 
on maps through the interactive use of layers, navigation, item selection, etc. Most 
important, they provide a way to load different kinds of data onto a map from a variety 
of sources. 

GIS data can appear in a variety of ways. They can be either discrete or continuous 
and can be stored in either vector or raster format. An example of discrete data would 
be an object in the real world, such as a hospital. Continuous data, on the other hand, 
can hold a value: for example, the annual count of emergency department visits at 
a hospital. Vector data are described as a shape, such as a polygon, line, or point. 
Raster data are described as a multidimensional array of values, like a satellite picture 
of rainfall data, where each pixel in the picture represents the annual rainfall amount 
of a square area of land below. The data are registered with a physical landmark, 
such as latitudellongitude coordinates, global positioning satellite (GPS) coordinates, 
or a road intersection. GIS applications read in map information and associated map 
features, allowing users to interact with those maps and features. 

Traditionally, GIS applications were implemented entirely as client-side applica- 
tions, which meant that heavyweight software had to be installed on client computers 
to allow users to interact with the map data. This setup allowed for a tight feedback 
loop between the user and the GIS program, resulting in a high-quality interactive 
experience. 

More recently, web-based GIS solutions are gaining in popularity. The lower level 
elements of user interaction, such as pressing a button and selecting an object, happen 
on the client’s computer. These solutions typically retrieve maps and map features 
from systems running GIS server software. The Open Geospatial Consortium [ 191 - 
a consensus standards organization - has defined the architecture for two service- 
oriented systems for retrieving map and feature data from online sources. The first 
architecture, called web map sewice (WMS), acts as a server that responds to requests 
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for maps. Clients request a particular kind of map centered around a certain location 
on the earth using a certain scale, and the WMS returns an appropriately formatted 
map. Multiple types of maps can be requested and layered on top of each other. The 
second defined architecture, called Web Feature Service (WFS), responds to requests 
for map features. A client can query a WFS for certain map features, such as a list of 
regional hospitals or a set of shapes representing zip code boundaries for a state, and 
the WFS will return an appropriate set of map objects using a specialized geography 
markup language (GML). 

Three important issues to consider in the selection of a GIS software package are 
accessibility, data import flexibility, and security. Map data can come in a variety 
of formats, but fortunately, a number of standards are becoming popular, such as 
the ShapeFile format for vector data and the Geotiff format for raster data. The final 
important issue for GIS systems concerns security. Mapping applications occasionally 
must display sensitive data. Special consideration must be given to ensure that sensitive 
data are viewed only by authorized users. 

The Environmental Systems Research Institute (ESRI) [20] has developed one of 
the most used GIS solutions in the industry. They provide a family of applications, 
including desktop and server-oriented options. Although licenses must be purchased 
to use this software, it is very popular and enjoys widespread use among the GIS 
community. 

Another example is the free geographic resources analysis support system (GRASS) 
GIS solution [21], originally developed by the U.S. Army Construction Engineering 
Research Laboratories (USA-CERL). GRASS GIS is currently the most popular open- 
source GIS solution. Like the ESRI products, it supports a wide variety of data 
importation formats. Several extra tools are available as extensions to the GRASS 
GIS software. Currently, the system is supported primarily in Unix-like environments 
(including Linux and MacOS X). Support for Windows is offered via the Cygwin 
Linux emulation software. 

5.4.4 Web-Based Application Integration and Automation 

There are various web-based disease surveillance systems with varying levels of 
product integration and automation. They range from fully integrated and automated 
to loosely coupled and manually intensive. In many cases the commercial products 
used in the system influence the ability to integrate and automate the system easily. 

Some systems use a single programming environment, such as SAS [22], to im- 
plement all functions of the system. Other systems use several different products that 
perform specific functions. For example, the data store may be in a relational database 
management system (RDMS) from Microsoft [6], Oracle [9], or others, data analy- 
sis may use SAS, and mapping may be performed using products by Environmental 
Systems Research Institute [20], Microsoft, or MapInfo [23]. Most of these products 
have application programming interfaces (APIs) that allow developers to access their 
functions and integrate them into larger systems. 
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Some systems, such as BioSense [24], Electronic Surveillance System for Early 
Notification of Community-based Epidemics (ESSENCE) [ 2 5 ] ,  and real-time outbreak 
disease surveillance (RODS) [26], have automated input streams, detection algorithm 
schedules, end-user graphics generation, and tightly integrated processes. Other 
non-web-based applications, such as the EARS surveillance application, have tightly 
integrated processes in one application that is not necessarily designed or intended 
to input data or analyze the data automatically. Still other systems, such as the New 
York City syndromic surveillance system [27], are a mixture of manual and automated 
inputs, with the processing, analytics, and visualizations integrated in SAS. 

5.5 IMPLEMENTING SYNDROMIC GROUPING 

Most types of health indicator data used for surveillance are binned into syndromic 
categories before analysis and visualization. Some systems require data providers to 
categorize their data, often by hand, before the data reach the surveillance system. 
More commonly, however, the data are categorized within the system by automated 
methods. Using automated approaches offers several advantages. It shifts the pro- 
cessing burden onto the computerized surveillance system and away from busy data 
providers. It helps ensure that categories are assigned in an objective, standardized 
manner. It makes updating syndrome mapping schemes simpler because editing 
computer code is generally easier than retraining staff. The technical complexity of 
grouping surveillance data varies according to their type. Fixed vocabulary data can 
be handled in a straightforward manner, while free-text data pose a greater challenge. 
This section provides a brief overview of the technical aspects of implementing au- 
tomated processes for assigning syndrome categories to both fixed vocabulary and 
free-text data. 

5.5.1 Fixed Vocabulary Data 

The values in fixed vocabulary data belong to a finite set of defined terms. Terms may 
be alphanumeric, such as the set of approximately 15,000 International Classification 
of Disease, Ninth Edition, Clinical Modification (ICD-9-CM) codes used for reporting 
medical services and diagnoses, or they may be English words and phrases, such as 
the variety of locally defined pick lists often used for nurse triage or EMS data. 

From a technical standpoint, categorizing a record containing fixed vocabulary data 
consists of identifying the term that appears in the record and tagging the record with 
the appropriate syndrome. Database techniques make this mapping from terms to 
syndromes straightforward. If the surveillance data are kept in a relational database, a 
good approach is to set up a static reference table to represent the mapping. The table 
contains two columns, one listing the standard terms and the other listing the names 
of the syndromes to which they map. A database join function is used to link terms 
appearing in surveillance data records with the corresponding entries in the reference 
table, thus mapping data records to syndromes. 
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Several common technical issues arise when fixed vocabulary data are grouped 
syndromically : 

0 Messy data 

Problem: Frequently, the field containing a fixed vocabulary term in the surveil- 
lance data records also contains extra characters or multiple codes, preventing 
clean joins. 

Approach: Write preprocessing steps to clean the data beforehand. Alterna- 
tively, perform the join using wildcard matches instead of exact matches. Decide 
how to handle records containing multiple terms. A system may choose to use 
only the first term, under the assumption that it is the most important. Others 
use all terms, even though each record will likely map to multiple syndromes. 

0 Code updates 

Problem: Standard vocabularies commonly undergo periodic revision. The 
updates may introduce new terms, render old terms obsolete, or even cause 
coding conflicts in which a term has different interpretations under the old and 
new versions. 

Approach: Check vocabulary standards on a regular basis for updates, and 
add new terms to the mapping reference tables as appropriate. Allowing old 
terms to remain in the reference table is advisable because, in practice, they 
may continue to be used for some time. Coding conflicts are more difficult to 
address. To handle them correctly, one must know which vocabulary version 
each data provider uses and implement mappings accordingly - sometimes an 
impossible task. 

0 Syndrome mapping updates 

Problem: If the surveillance system’s syndrome mapping scheme is updated, 
some terms may map to different syndromes in the old and new schemes. 
Updates to the syndrome mapping may therefore alter the behavior of the system 
significantly by changing the total daily counts in syndrome groups, which can 
affect detection algorithm baselines, the timing and numbers of alerts, and the 
appearance of time-series graphs. 

Approach: Consult with users and algorithm designers on how to introduce the 
mapping changes. To smooth the transition to the new mapping scheme, con- 
sider remapping a few months or weeks of recent data using the new definitions. 
Otherwise, the transition may disrupt detection algorithm baselines and throw 
off alerting for days, weeks, or even months afterward. Inform users in advance 
when syndrome mappings are being changed to prepare them for temporary 
unusual behavior in the system. 

0 Multiple mappings 

Problem: Although syndrome mappings are most often mutually exclusive, 
some terms may map into multiple syndromes. For example, in the CDC’s 
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syndrome definitions for bioterrorism-associated agents, ICD-9 code 786.3, 
Hemoptysis, belongs to both the respiratory and hemorrhagic illness syndromes 
1281. 

Approach: Database tables can be designed so that each record contains multiple 
syndrome fields, some of which may be empty. This approach has a number 
of disadvantages. It wastes database space, it artificially limits the number of 
syndromes per record to the number of extra syndrome fields, and it requires 
special processing that checks all syndrome fields when records are counted 
or retrieved by syndrome. An alternative is to create duplicate records, one 
for each syndrome into which a given record maps. This approach requires 
special handling that adjusts for the presence of duplicates when counting 
and retrieving records. Another approach is to use relational table design to 
link each record to multiple syndrome assignment records that are stored in a 
separate table. Although this design is technically the cleanest, care must be 
taken not to introduce database design features that hurt performance. The join 
operations that are needed to relink each record with its syndrome assignments 
are expensive on the large data sets typical of surveillance systems and are likely 
to be performed frequently. 

a The “other” syndrome 

Problem: How should the system handle records that do not map into any 
syndromes? 

Approach: One possibility is to simply eliminate records that do not map to any 
syndrome besides the default “other” category. The resulting space savings can 
be significant in a surveillance system, where typically over half the data map 
to “other.” Preserving all records, however, offers other advantages. It enables 
users to access and view all records, even those not assigned to a syndrome 
group. It can also more readily support the calculation of denominators to use 
in epidemiological algorithms and statistics. 

5.5.2 Free-Text Data 

Free-text data consist of unstructured textual data composed without reference to pick 
lists, codes, or other fixed vocabularies. In surveillance data, free text most commonly 
appears in patient medical records, such as the chief complaint in hospital emergency 
department records. 

Working with free-text data can be challenging. There is no single best method for 
grouping data, although many approaches have been implemented and appear to work 
adequately [29]. The methods used are generally adopted from the related fields of 
natural language processing, text classification, machine learning, and similar areas 
[30]-[32]. Two fundamental approaches should be understood: trained and untrained. 

5.5.2.1 In trained approaches, sometimes referred to as su- 
pervised learning, the algorithm uses a labeled training set to learn automatically how 

Trained Approaches 
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to classify data. Labeling refers to examples of free text data provided by public health 
officials that map into various syndromes. After the algorithm has been trained, it can 
be used to classify new records whose syndrome assignments are unknown. Basic 
issues to consider when generating a trained classifier include: 

Establishing a good training set. The training set must be reasonably represen- 
tative of the data to which the final, trained algorithm will be applied. It must 
be sufficiently large, contain sufficient instances of each syndrome, and have 
accurate and consistent labels. 

Selecting the right data representation. The input data supply the raw material 
from which the learning algorithm must induce meaningful patterns. Text data 
may be represented as word vectors, sets, or bags in which individual terms may 
be stemmed, spell-checked, converted to a standard vocabulary, or weighted by 
topical relevance or frequency of occurrence. Good results can depend on 
finding a data representation able to support effective learning. 

Selecting the right learning algorithm. Every learning algorithm makes as- 
sumptions about the nature of the patterns to be found in the data. If the 
algorithm’s assumptions are well suited to the data, the patterns it learns are 
more likely to be true and meaningful ones that generalize beyond the training 
set. Trained approaches that have been used on textual data include Bayesian 
learning, support vector machines, entropy maximization, and neural networks. 

Trained algorithms offer a sign$cant advantage. Given a properly labeled 
and formatted training set, the algorithm iteratively refines and optimizes itself. 
However, a number of disadvantages arise as well. Labeling an adequate training 
set can be tedious and time consuming. Any labeling errors or inconsistencies 
may be learned by the algorithm. Training sets for surveillance data must 
be sufficiently large to represent even the rarer syndromes. Further, when 
syndromes need to be redefined, the training set must be relabeled and the 
algorithm retrained. In addition, algorithms trained to perform well on data 
from one hospital system or region may not be as successful on data from other 
sources. 

Despite being well understood and established in other domains, trained algorithms 
are not currently widely used in syndromic surveillance. A notable exception is the 
RODS “CoCo” algorithm, a Bayesian classifier [33]. 

5.5.2.2 Untrained Approaches With untrained algorithms, all knowledge about 
data classification must be explicitly encoded by the developer. Untrained algorithms 
do not require a training set, although labeled data sets may be used for testing. To 
classify complex textual data, untrained algorithms might employ relatively sophisti- 
cated techniques for understanding syntax and parsing sentences ([34] - [36]). Simpler 
keyword-matching approaches may suffice to classify the briefer, less structured text 
that appears in chief complaint data. 
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The major advantages of untrained algorithms are control and comprehensibility. 
The algorithm developers can explicitly fine-tune all aspects of classification. Unlike 
with trained methods, the reasons behind a particular classification are fully transpar- 
ent. Syndrome definitions can be updated by editing code or reference tables rather 
than relabeling and retraining. The major disadvantage of untrained algorithms is the 
amount of labor required to develop and test them iteratively. In addition, like trained 
algorithms, an untrained algorithm proven to perform well on one data set may not 
perform well on data sets from other sources. 

In practice, untrained keywording approaches predominate. The New York City 
Department of Health and Mental Hygiene's chief complaint classifier uses a keyword- 
matching algorithm implemented using the SAS data analysis platform [37]. The 
ESSENCE chief complaint classifier employs a weighted keywording approach im- 
plemented in custom software [38]. 

5.5.2.3 
data, free text introduces its own challenges: 

Technical Zssues In addition to the issues associated with fixed vocabulary 

0 Extraneous characters 

Problem: The extraneous punctuation and alphanumeric codes frequently found 
in medical records can make it difficult for classification algorithms to identify 
individual words. 

Approach: Preprocess data to remove extraneous characters and standardize 
white space. Preprocessing may need to be data provider-specific. 

0 Misspellings 

Problem: Medical records are notorious for idiosyncratic misspellings and 
truncations, creating challenges for automated algorithms that need to recognize 
key words or phrases [38]. A study has found that common words such as 
diarrhea, nausea, and vomiting are misspelled in chief complaint data 11 .O- 
18.8% of the time [39]. 

Approach: Three major approaches for handling misspellings are edit distance, 
wildcard matching, and phonetic spelling correction [39]. Each introduces its 
own brand of errors, however, and should be implemented with care: 

- Edit-distance algorithms allow a certain number of character insertions, 
deletions, or substitutions to differentiate matching word variants. An edit- 
distance algorithm might recognize vomitting as a variant of vomiting, but 
it would also erroneously consider head a variant of dead. Check edit- 
distance matches against a dictionary to ensure that a valid English word 
is not being treated as a misspelling of another. 

- Wildcard algorithms attempt to match on an invariant word root. Wildcard 
matches on the root pneum", for example, may pick up some misspellings 
of pneumonia. Choose roots carefully, however, to avoid triggering unex- 
pected false positives - for example, pneum" also matchespneumothorax. 
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caused by substitution of phonetic representations of parts of words, such 
as the substitution of nemonya for pneumonia. A relatively small propor- 
tion of spelling errors in chief complaint data, however, is due to phonetic 
spelling errors. Far more are due to typographical errors and truncations 
WI. 

- Phonetic spelling correction methods attempt to recognize variant spellings 

Overall, a judicious combination of all three methods may be required to obtain 
best performance. 

Abbreviations 

Problem: Medical records are laced with abbreviations, many of which are 
idiosyncratic or have multiple meanings. A recent study found that approxi- 
mately 20% of all words in chief complaints were nonstandard abbreviations or 
acronyms whose use varied according to data source [39]. 

Approach: Abbreviations pose all the challenges of word misspellings without 
allowing as many opportunities for correcting them. The edit distance, word 
root, and phonetics approaches to misspelling corrections cannot be readily 
applied to abbreviations. Abbreviation use often vanes by data provider. In 
some cases, a single term is abbreviated differently by different providers - 
abdominal may be abbreviated ab, abd, or abdo, depending on the source. 
In other cases, different providers interpret a single abbreviation differently- 
ab may mean abdominal in one provider’s data but abortion in another’s. If 
feasible, screen the data from new sources for new abbreviations or novel uses 
of existing ones. Although screening is currently a laborious manual process, 
methods to semiautomate it are being explored [39]. Because of substantial 
variation in abbreviation usage, it may be necessary to introduce contextual 
abbreviation interpretation, in which an abbreviation is interpreted differently 
depending on the words that occur along with it. The abbreviation ab might be 
interpreted as abdominal, for example, except in complaints that mention the 
eye or cornea, in which case it should be interpreted as abrasion. 

Negatives 

Problem: Negative terms in medical records, such as “no fever present,” can 
confuse algorithms looking for straightforward keyword matches. 

Approach: For a simple approach, configure the algorithm to ignore terms that 
appear within a set word window (e.g., five or six terms) around or following a 
negative term [40]. Other more sophisticated approaches can be used if desired 
[41]. Although relatively rare in chief complaint data, negative terms occur 
frequently in longer narrative medical records. The most common include 
“no,” “not,” “denies,” and “without”[42]. 
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5.6 IMPLEMENTING DETECTORS 

The anomaly detection component is an important part of disease surveillance systems. 
Detection algorithms are used to determine where statistical abnormalities occur in 
the data and, hopefully, to alert users to potential epidemiologically significant out- 
breaks. This section discusses how to implement detectors in the surveillance system 
architecture. The type of detection component implemented depends on the answers 
to two primary questions: (1) When will the detection component be used? (2) What 
will the detector interfaces look like? The design of a detector interface (i.e., the 
means by which detection algorithms receive data from the system and return results 
to the system) can make a big difference in the evolution of the disease surveillance 
system over time. Multiple detectors with different detection types may easily be 
integrated into a surveillance system if they all make use of a single well-designed 
detector interface. 

5.6.1 When Will Detectors Be Used? 

The anomaly detection component can be categorized into two types: data-driven 
and user-driven. Both types can run in real-time modes, and the data-driven type can 
also run in a more batched mode. Data-driven detection algorithms will run after the 
data arrive into the database. If data are arriving in batches, the detectors need to 
run only after the data have arrived; if the data are arriving in real time or in very 
frequent batches, the user must choose how often to run the detectors. The detection 
component can be designed to remain constantly active, pulling in new data as they 
arrive and producing results in near-real time. It may also be sufficient to run detectors 
on a batched schedule, producing results during regular intervals. Either choice is 
acceptable and will depend on the incoming data rate and user requirement, as defined 
by each health jurisdiction. 

The second type of detection component is user-driven invoking of algorithms. 
With this type, the user can query an interactive disease surveillance system such as a 
website for a particular set of data and run the detection algorithms dynamically on the 
data requested. The results of the algorithm are returned to the system and published 
to the user. This type of detection component allows the user to run detectors on any 
subset of data the system supports. 

Both data- and user-driven detectors can be used in the same system in a com- 
plementary fashion. Normally, a user-driven detection component will process one 
data set at a time, whereas the data-driven detection system will process an entire set 
of system-defined slices of data each time it runs. When the two types are used in 
one system, the user can view the results of a data-driven run through a large number 
of data slices without having to wait for the entire set of runs but will also have the 
flexibility to look for something that was not predefined. 
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5.6.2 Designing the Detector Interface 

The same detector algorithms can be used for both a data- or a user-driven detec- 
tion component as long as they implement a standard interface. Defining the input 
and output parameters of the detectors is very important for the future of a disease 
surveillance system. If a consistent detector interface is maintained over time, internal 
tools will need to be developed only once, algorithm upgrades will be easy, users can 
control or input data, and third-party developers will be able to add their own detector 
algorithms to the system. A detector interface plan must be designed not only for 
the input and output parameters of current detectors but also for expandability and 
future growth. It is best to design a detector interface that is generic enough for each 
detector to gather the information it will need in a consistent manner. Each of these 
concepts will help the detection component of a disease surveillance system to evolve 
gracefully as the system changes over time. 

A detector interface must be generic enough for every possible detector to have 
access to the data it needs without the need for interface modifications each time 
something new is desired. For example, if the algorithm used initially in a detection 
component required only an array of counts as input, an interface that was hard- 
coded to require only an array of counts as input would cause problems later if a new 
detector were designed that took into account day-of-the-week or holiday effects and 
thus required a start date or array of dates. The detector interface would need to be 
modified, and the goal would not be met. Making the modification would entail not 
just upgrading a detector but also the interface and every piece of code that references 
that interface. If, however, a more generic interface were used in the beginning, only 
the detectors themselves would need to be upgraded. 

Another benefit to keeping a consistent interface is internal tool compatibility. 
Many times, the algorithm developers will use internal tools to help design, build, 
test, and compare detector algorithms. These tools will utilize the standard detector 
interface and sometimes can be written in many languages or by many people with 
different skill levels. 

A benefit of having consistent interfaces is that they allow user-created information 
to pass into the detectors to support real-time analysis. User-inputted parameters, 
such as dates, holidays, or weather information, can be used to modify an algorithm’s 
outputs. Not surprisingly, this user-provided information can be more beneficial than 
any other parameter because it makes the detector results more useful to the user. The 
ability to tailor a detection result to a particular user’s needs gives the system a higher 
acceptance level and makes it more user friendly. 

As another benefit, a standard detector interface will allow third-party developers 
to contribute additional detector algorithms to the system. If the users of a disease 
surveillance system have a detector algorithm they prefer, being able to adjust their 
algorithm to the system’s standard interface so that it can be used in the surveillance 
system can greatly influence user acceptance. This adaptability will also attract others 
to contribute to a disease surveillance system. If a standard interface is general enough 
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to support almost any input and output, there is a good chance third-party developers 
may license, sell, or donate algorithms for use in the system. 

The exact details on how to design this generic standard interface will be different 
for each situation. However, the general concept is to design an interface that can 
pass objects into and out of detectors. These objects can hold hash tables or arrays 
of values that can allow for new parameters to be added in without actual changes 
to the input and output parameters. Old detectors would just ignore these new keys 
and request only those it needs. New detectors could request the new data using keys 
that are now supported. A standard algorithm interface provides stability to give the 
disease surveillance system a solid, reliable foundation for upgrading and expansion. 

5.7 VISUALIZATION IN A DISEASE SURVEILLANCE APPLICATION 

All disease surveillance systems must be able to communicate information to their 
users. Time-series graphs, maps, and data tables are just some of the many visualiza- 
tion components that a system may contain. Deciding which components to include 
in a system will be determined by what type of disease surveillance system is being 
built. Some disease surveillance systems are detection systems only, alerting system 
users when either a statistical anomaly in the data has been detected, or the system 
believes that it has found something of interest to the user. Certain visualization com- 
ponents would be useful in this type of system, such as alert lists and maps of current 
anomalies. Disease surveillance systems may also be information systems that allow 
users to investigate data in many ways. Many information-based disease surveillance 
systems can create new case definitions, select different processing options, and cus- 
tomize the presentation to meet the needs of individual users. For users who rely 
on a surveillance system to support investigations, visualization components such as 
time-series graphs, GIS maps, data tables, query wizards, and real-time displays may 
be useful. It is also possible to build a surveillance system that combines aspects of 
both a detection and an information system. Such systems could include an entire 
suite of visualization components. 

System designers must determine how much flexibility and user control each vi- 
sualization or analysis component should have. Advanced users will require many 
different options to support their investigations. Flexible components allow users 
to design their own queries, modify graphic presentations, and adjust the sensitivity 
levels of detection algorithms. However, for some users, having too many options is 
confusing; these users want limited flexibility. Understanding user requirements is 
critical before selection of the visualization components. 

5.7.1 Detection-Focused Visualizations 

A disease surveillance system with a detection focus usually has visualization com- 
ponents that are static. This type of system will typically have a predefined set of 
visualization components it displays to the user. The focus is not on data displays, but 
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on finding anomalies or patterns. A detection system can be designed with interactive 
features, such as allowing the user to set sensitivity levels on detection algorithms, but 
more often, it is designed so that little input is needed from the user. A detection com- 
ponent will normally have a defined set of syndromes or diseases that it is looking for 
and will display only those results it is set up to analyze. Because of this consistency, 
users become very familiar with the visualizations and can analyze them rapidly and 
with little interaction. 

Detection-focused disease surveillance systems can function well in both real-time 
and non-real-time modes. In a real-time data environment, visualization components 
can be built to display the output of detector algorithms on the fly. In non-real-time 
data environments, the visualizations can be completely static. Background processes 
create HTML pages and images instead of the server-side technologies generating 
them on demand. 

Detector algorithms are a major component of most disease surveillance systems. 
However, even the best detector will not be used to its fullest potential unless its alerts 
and warnings are easily accessible to users. Detection results may be shown as line 
listings, maps, graphs, and other more inventive displays. Each of these types of 
displays serves some purpose; having the right display or combination of displays 
creates a more useful system. 

Detection algorithms may be very sensitive to anomalies and produce a large 
number of false alerts, or they may be specific and produce few false alerts. However, 
specific algorithms that are run across many different data stratifications can still 
produce a large number of alerts. 

Because the detection algorithms are usually run across many different permuta- 
tions of days, geographic regions, age groups, sex, medical groupings, and data sets, 
the system may need to provide visualization capabilities for a large number of alerts. 
Although time-series graphs are very useful for allowing users to visualize the data 
that caused an alert, visualizing a large number of different graphs may be impractical 
for most users. Maps are useful for displaying alert information, but it may be difficult 
to display multiple stratifications of alerts on a small number of maps. Instead, it may 
be more useful to show these stratifications of alerts in table format. Although not as 
immediately informative as maps and graphs, tables allow the user to see all of the 
alerts in a single view. Sorting and filtering through the alerts in these tables can also 
help the user discern patterns about the information. For other users, localized maps 
and graphs may be more useful than tables. 

Users who have limited time might find it useful to see alerts at a higher “summary” 
level. By running a second level of detection above all the individual stratifications, 
the system can produce a much smaller number of alerts for users to visualize. Giving 
users the capability to drill down from the summary level to the more detailed levels of 
alerts benefits users who want to conduct further investigations. Interested users can 
see summary-level alerts and determine how they were formed and why. Users not 
interested in extra investigation have the summary-level alerts to identify a potential 
health event. 
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Interactive control of alert thresholds permits additional customization for the user. 
However, the option can complicate communication between users because each user 
may be looking at different alerts on their individual displays. 

The amount of data a disease surveillance system receives typically increases 
over time. The visualization component should be designed with expandability and 
scalability to accommodate the additional data. If another data set is added, the 
visualization should expand down the page, not across, because it’s easier for users 
to scroll vertically. The visualization component should allocate space for additional 
algorithm parameters or data sources. 

5.7.1.1 Individual Alert Listings Displaying detection algorithm alerts as a table 
or line listing is the simplest visualization technique; examples from ESSENCE are 
provided in Figs. 5.3 and 5.4. An example from BioSense is provided in Fig. 5.5. 
Detection algorithms using a large matrix of input parameters can produce many alerts, 
making it difficult for the user to analyze them. Sortable columns and filtering options 
help users to organize the table to better understand the data elements that are causing 
the alerting. Color coding certain sections of the table to separate normal data from 
alerts or warnings also helps users to see quickly if there are issues requiring further 
investigation. 

Individual alert listings can also provide information other than a detector result. 
The examples in Figs. 5.3 and 5.4 provide not only the level of the detector output, but 
also the count of cases, how many were expected, and the rarity of this type of alert. 
Figure 5.5 shows the count of observed cases, how many were expected, and the ratio 
of the two, in addition to the detector rate. This extra information can be valuable 
to users for deciding if an anomaly warrants further investigation. It is also possible 
to overwhelm users by putting too many statistics on an alert listing page. Enabling 
customization of fields in alert listings can go a long way toward satisfying the needs 
of a diverse set of users. 

The alert line listing component is a simple, effective way of displaying alerts 
to users. A surveillance system can aggregate data by several different parameters. 
Syndromes by facility, region, age, or sex are just a few of the combinations. Multiple 
alert listing pages may be needed to describe all the ways that detection algorithms 
can be used with the data. Figure 5.3 is a list of detector outputs that passed the 
threshold for alerting based on geographic region versus syndrome. Figure 5.4 is a 
list of alerts based on geographic region versus OTC drug categories. Each page has 
different columns, depending on the parameters used to group data for analysis by the 
detectors. 

5.7.1.2 As systems grow larger and the number of alerts grows 
beyond what users consider to be a manageable number, the need for summary-level 
alerts becomes apparent. Summary alert pages give users a concise view of the de- 
tection results across the entire system or in more manageable sections. Figure 5.6 
provides an example of a summary alert presentation from ESSENCE. The presenta- 
tion shows a large amount of information in a small, easy-to-understand view. The 

Summary Alerts 
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Fig. 5.3 
lance system. 

Simulated regiodsymptom-based temporal alerts from the ESSENCE disease surveil- 

Fig. 5.4 
surveillance system. 

Simulated regiodOTC category-based temporal alerts from the ESSENCE disease 

example is a display that collapses all the alerts by data source, syndrome, and region 
into a single summary alert level for a day. An asterisk represents a single day, and 
the shading represents the summary alert level as determined by the p-value. This 
figure provides a week of detector output data for several syndrome groupings from 
emergency departments, office visits, and OTC medication sales for three geographic 
regions (Maryland, District of Columbia, and Virginia), all in a single screen. 

It is useful to be able quickly navigate from the summary-level view into a more 
detailed line listing to gather more detailed information. This feature allows users 
to drill down into an alert line listing that has been filtered by a particular region, 
syndrome group, data source, etc. It might also be possible to navigate directly to a 
time series of data or line listings of the data that made up the alert. The user has 
the ability to continue investigating data of interest easily by clicking on the links 
provided on the display. 
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Fig. 5.5 
surveillance system. 

Simulated statistical anomalies in state hospital data from the BioSense disease 

The data depicted in Fig. 5.6 reflect a simulated outbreak. The red and yellow 
asterisks (here, gray and white) make it easy to identify the region and syndrome 
combinations with the most warnings and alerts, and thus recognize outbreaks. An- 
other benefit of this presentation is that the user can easily see patterns over time and 
across data sources. For example, there were many OTC drug alerts earlier in the 
week, followed by a set of alerts in the emergency departments, indicating a possible 
relationship. The concise presentation of information provides users with a clear 
overview of all regions, syndromes, and data sources simultaneously, thus aiding in 
the discovery of data trends. 

An important issue is how to calculate the summary alert levels. The simple 
approach would be to take the maximum levels of the alerts that fall in specific 
day/region/syndrome/data source combinations. However, that approach is not as 
effective as using a specifically designed algorithm that takes into account the un- 
derlying alert’s detection levels but removes the multiple testing issues. These types 
of algorithms are discussed in Chapter 4, but from a visualization point of view it is 
important to know only if the system will allow more than one type of detector to 
be used. If so, that component must allow users to modify the screen and choose a 
different type of summary alerting algorithm. 
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Fig. 5.6 Temporal alert summary for a simulated outbreak. 

In addition to the view in Fig. 5.6, summary alert pages can incorporate GIS maps 
or a series of graphs and plots. There is no standard view for a summary of a day’s or 
week’s worth of alerts. The main consideration is to make the page easy to understand 
and concise and to allow further investigation of items of interest. 

5.7.1.3 Alerts in Time-Series Graphs Displaying alerts directly in time-series 
graphs is a useful visualization technique. Figure 5.7 gives an example of a time- 
series graph. Red and yellow alerts (black concentric circles and light-gray circles) 
are displayed directly on the data count that produced the alert. This display permits 
users to view the rise and fall of the data trends simultaneously along with the anomaly 
detection results. 

Besides colored lines and dots, a mouse-over link provide more detailed information 
about the underlying data that generated the alert. The link also provides the actual 
detection level, the expected count, and other values of interest to the user. Any 
textual explanation information available that helps users understand why that data 
count generated an alert could also be displayed. 

It is useful to provide data in a tabular form on the same page as the time-series 
graph. A table format allows the inclusion of additional values that cannot easily be 
shown on a time-series plot itself. The detection values in the table can be color-coded 
to correspond to the color-coding on the graph so that users can easily line up alerts 
in the table with the graph. Users can copy and paste the data into their own analysis 
tools. 
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Fig. 5.7 Simulated time series of alerts from the ESSENCE disease biosurveillance system. 

If the system allows for user-defined queries, the detection system must be able 
to run on-demand so that it can display alerts on time-series graphs. If the detection 
system cannot be run while it is responding to a query, the time-series page will have 
to differentiate between queries that it has detection results for and those it does not. 
Allowing a user to query dynamically for a set of data and immediately view a time 
series with detection results is a very valuable feature for the users of the system. 

Many disease surveillance systems use more than one detection algorithm. It is 
useful to be able to compare the outputs for different algorithms available within the 
surveillance system. Figure 5.8 provides a detection algorithm comparison graphic 
from the ESSENCE surveillance system. The top trace is a time series of the data 
input into the algorithms. The second two traces compare the outputs of two different 
algorithms. Each detector graph shows the detector’s alert and warning thresholds. 
This type of presentation is useful when users are trying to verify that multiple 
detectors are alerting on the same event. It is also useful to help determine which 
detector provides the best performance for a particular data stream. 

5.7.1.4 Mapping Alerts The ability to geographically locate clusters is a powerful 
feature of a disease surveillance system. To be mapped, the data causing an alert must 
have a geographical component, such as a zip code, census track, region, county, or 
latitude and longitude. Figure 5.9 shows a map of zip code clusters found by a spatial 
detector (see Chapter 4). The map shows the jurisdictions that comprise the National 
Capital Region along with clusters formed using the zip codes of residence for patients 
presenting in emergency departments with the unspecified infection syndrome. 

Figure 5.10 shows a map of regions that contain alerts generated by a temporal 
detector. This detector determines if a county or region has an elevated number of 
cases, and the display color-codes that county or region appropriately. The temporal 
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Fig. 5.8 Detection algorithm comparison graph. 

Fig. 5.9 Map displaying simulated clusters formed from a spatial detector in ESSENCE. 
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detector map assumes that the jurisdictions are broken down further into subregions 
for the purposes of aggregating data for inputting into the detection algorithms. 

Fig. 5.10 Map displaying simulated regions alerted from a temporal detector in ESSENCE. 

Placing alerts on a map allows users to determine quickly the location of potential 
public health issues and allows visual integration with other information available to 
the user. Mapping can also be used to overlay multiple layers of information from 
within the system and alerts to create a fused or complete picture. Multiple alerts in 
the same location can be distinguished by instructing the GIS display tool to overlay 
slightly transparent layers, which keeps the topmost layers from obscuring the bottom 
layers. Alternatively, the data can be fused outside the GIS display system and then 
displayed on a single map. If the GIS is able to overlay the alerts on the data, users 
may be able to visually correlate information from different sources. 

Many mapping displays permit direct linking from the features on the map to the 
data details. Enabling the user to see an alert on a map and immediately drill down 
into the data is a convenient feature. 

5.7.2 Information System Interfaces 

A disease surveillance system should be interactive and responsive to user requests 
allowing users to query and visualize data in a variety of formats. Query wizards and 
free-text search capabilities can facilitate access to all data elements in the system. 



VISUALIZATION IN A DISEASE SURVEILLANCE APPLICATION 227 

Time-series graphs, pie charts, maps, and tables of data are all typical visualization 
components of a surveillance system. In static systems, which generate output in 
advance of user requests, the designer must create labels for the graphs. In dynamic 
systems, however, the users can define what they wish to view, and graphs, charts, 
and maps must be labeled dynamically. The more data elements that the user can 
query, the more complex the labeling process and the more detailed the labels. One 
solution to the complexity of labeling is to consider collapsible displays that allow 
users to see the complete information about the graph, but to hide detail if desired. 
Another possibility is to allow components to be customized by the user outside the 
surveillance system. This approach would enable users to create descriptive labels 
before they save, print, or export the labeled graphs or maps for further use. 

The learning curve for surveillance systems can be steep. New users may feel 
overwhelmed by choices when they first use the system, and they should be provided 
with default settings while learning to customized displays. 

Bookmarks can also be helpful allowing users to return to analysis sessions, for 
future use, or for sharing results with others. Bookmarking also allows users to 
perform the same analysis protocol repeatedly. 

Dynamic information systems are preferred when users are knowledgeable and 
require additional details on the data. For example, a proactive user who is aware of 
an outbreak in another jurisdiction may want to specify a case definition to determine 
the likelihood of similar cases in their jurisdiction. 

Users of surveillance systems will have different levels of skill, time commitment, 
and responsibilities. A user responsible for surveillance at the city level has a dif- 
ferent level of responsibility than one tasked with monitoring a larger region. Users 
monitoring a particular county may be interested in anything inside that county. They 
may want to view multiple strata of various data elements, and if there is something 
of interest, they then may want to view additional details about the particular stratum. 
A user monitoring an entire state, region, or country may have neither time nor the 
need to view detailed data across an entire geographic region. 

One solution to the need to view data at differing resolutions may be to create a 
visualization component that can view everything at the highest level of detail but 
also offers filtering capabilities and additional summary-level information screens. 
Users at the lowest geographic levels would be able to filter the entire system to view 
only their regions of interest. Users at higher geographic levels would be able to first 
view summary information to guide them to anomalies and then view the detailed 
information for further investigation. A benefit to this solution is that users on the 
smaller geographic levels will still have access to information from of the surrounding 
regions, if needed. 

5.7.3 Visualizing Data and Information 

A fundamental feature of any surveillance system is to support data visualization. 
There are several common ways to view the data, and each display technique has 
advantages and disadvantages. 
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5.7.3.1 Data Query A disease surveillance system should permit users to query 
the available data sources in a variety of ways. The data query feature should support 
very simple queries, such as retrieving all of the hospital records from a particular 
week. The query function should also support complex queries, such as retrieving 
all of the hospital records where patients exhibited respiratory-related illnesses and 
presented to a hospital twice in the same day. The query feature may also allow the 
user to search only a small number of fields or every field collected. The decision 
to implement a complex query function should consider both user experience and 
development complexity. 

Developers must also consider how a user will perform these queries. A very 
complicated data query function will probably require a similarly complicated user 
query interface. A surveillance system may use a simple query form, such as a wizard 
or multipage form or a powerful but more complex SQL query-building form. If 
the system’s users all know SQL and want to query data in complex ways, a query- 
building form that allows them to write raw SQL queries would be a useful tool. Users 
who do not know SQL, however, would probably find the interface complicated and 
frustrating. 

A simple approach is to use a single-query configuration form. The form could 
have controls, such as text fields, list boxes, date selectors, and others, that would 
allow the user to select values for query parameters. Each parameter that the user 
can query on would need to be selectable on the form. Query choices may be 
dependent on previous user selected parameters. A dynamic client could be used to 
assist in selecting the remaining query choices based on the prior parameters selected. 
Because dynamic clients are typically more complicated to develop, another option 
is to design a single large form that has all possible parameter selections for all 
types of possible queries. This static type of form building can become complicated. 
Building simple and uncluttered forms that query across multiple data sources can be 
difficult because different data sources often have different data characteristics. It is 
worthwhile, however, to design the query interface carefully to provide users with an 
effective tool. 

A “wizard”-style user interface has a series of query configuration pages, each of 
which represents a step in the query process. This approach allows dependent query 
parameters to be separated and presented cleanly. Each subsequent step presents 
query controls consistent with previous choices. In addition, the number of query 
parameters presented at any one time can be controlled. The wizard approach also 
allows for context-related help for each step. However, a drawback is that advanced 
users may find it tedious to traverse each step. A possible solution is to allow users to 
save routinely performed queries. 

Figure 5.11 presents a query page from the ESSENCE surveillance system. On the 
upper part of the display, the parameters that have previously been selected are shown. 
On the lower part of the display, the user is presented with the next set of options. 
This specific query is being used to create a new syndrome category for emergency 
department encounters with the words fever and chills in the chief complaint text 
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string. Males in the age groups of 0-17 years have been selected from the period 
March 10,2001 -June 08,2001. 

Fig. 5.11 Example of a query selection feature from ESSENCE. 

The last approach to a query user interface is a query builder, which allows users 
to construct the actual SQL query statement. This interface may allow the user to 
type in the query statement or may provide sophisticated controls to build it. It thus 
provides the most powerful querying capability. It also requires users to have some 
basic knowledge of SQL. If given access to certain reference information, such as a 
list of hospitals, zip codes, or counties, this type of interface allows users to query for 
every possible combination of data, which can then be joined with other combinations 
of data to create even more complicated query results. 

The disadvantage to a query builder approach, other than its requirement for knowl- 
edge of SQL, is that the resulting query does not follow any standard form. A user 
may use the query to return 1 or 100 different fields. The resulting visualization tools 
will therefore need to be complicated. 

5.7.3.2 Data Stratijications Users can be frustrated by query interfaces that contain 
many options for data stratifications. If, for example, the user wants to choose the 
hospital, age group, sex, medical grouping, discharge diagnosis, date range, and 
patient’s home zip code, the user interface must allow all of these choices and more. 
A problem might also arise if a variable offers a user many choices: for example, the 
thousands of zip codes in a large region. 

When there are many options for defining data to be viewed, the interface should 
present the selection process in an easy-to-understand format. A wizard-style querying 
screen with limited choices per screen is an option. The user can then focus on 
answering a small number of related questions. 

Another possible solution is to separate query choices into “basic” and “advanced” 
sections. Commonly used choices can be placed in the basic view, whereas the less 
frequent query options can be placed in a separate advanced section. This solution is 
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suitable if most of the users have similar requirements, and a large percentage of users 
can agree on what to include in the basic and advanced sections. If, however, the user 
base is very diverse, this solution may be inappropriate. 

For a diverse user base, another option is to include user preference information in 
determining what options to make available to a user. Users would be allowed to view 
basic choices and components throughout the site, but those wanting more advanced 
techniques would be able to access them at the site level instead of at the individual 
page level. This method would be useful if the user base has set roles they perform on 
a daily basis, where some need advanced tools and others do not. However, if most 
users need different levels on different days, other options may be preferable. 

In addition to having too many data stratifications to consider, users can also have 
too many choices in a single stratification. This problem generally results in overly 
long and cumbersome pulldown menus that require users to wade through long lists to 
find the options they want. These lists can sometimes be designed to be manageable 
when the system is first developed but are likely to grow over time. Lists such as 
geographic boundaries will expand if the system increases in scope, as will lists of 
hospitals, schools, or pharmacies as new facilities are collected by the system. There 
are techniques to combat this proliferation and make the system scalable. 

The first technique involves pulldown list filters. Filter objects can be placed next 
to a long pulldown list on one of the visualization components in the system. The user 
would then be able to select a filter that would shorten the original list to a manageable 
number of entries. These filters can be useful when the pulldown list can be broken 
up into manageable chunks or there are metadata on which to filter. 

Another technique is to carve out sections of the website via a site selection or site 
navigation step. The user would select a predefined subset of a particular stratification 
when logging into the site, and all pages from that point on would reference the 
selected set. For example, in a national system, a user could select a section of the 
country at login instead of trying to work with the entire country. In a local system, 
the user could select a county or smaller geographic region instead of working with 
all the geographic elements that the system can handle. As a further enhancement, 
users could select from a predefined subset of items or create user-defined subsets that 
could be stored and used every time they logged in. They would thus be able to create 
specialized views in the system without having to mix and match from predefined sets 
or wade through lists. 

5.7.3.3 Visualizing data though graphs is a powerful and 
fundamental tool of a disease surveillance system. A common type of graph is the 
time-series graph, like the ones shown in Figs. 5.7 and 5.12, which provide examples 
from both the ESSENCE and BioSense surveillance systems. A time-series graph is 
a line graph that plots data over time. Time-series graphs allow users to distinguish 
trends and sudden changes. (All figures in this section use simulated data.) 

Displaying alerts on the time-series graph of the data is useful. Colored dots or 
markers allow the user to see where a detector has found an anomaly and to locate 
abnormal data points quickly and easily. It may also help distinguish anomalies that 

Time-Series Graphs 
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are not readily visible just by visual inspection of the graph, such as data numbers that 
look normal but are actually high because of the day of the week, a holiday effect, or 
a hard-to-see seasonal trend. 

Fig. 5.12 
departments in BioSense. 

Time-series graph of simulated gastrointestinal syndrome data from emergency 

Other charts that display data over time, such as bar charts and stacked bar charts, are 
also useful tools for information visualization. The views from these charts are similar 
to line graphs, but they allow multiple series of data to be displayed simultaneously so 
that the user can see which stratum is most responsible for a change in variable. Figure 
5.13 shows an example of a stacked bar chart displaying time-series data broken down 
by age group. 

Several considerations must be addressed when graphs are to be incorporated into 
a user interface. The first is whether the graphs should be static or dynamic. There are 
also implementation issues that can cause problems for a system. Other considerations 
include the amount of customization that will be allowed, and whether graphs can be 
exported or saved. 

Static graphs are images that have no interactive capabilities. They are normally 
pre-generated and are visible to the user, but users are unable to edit or modify the 
look and feel of the graph. The user cannot click on the graph to drill down to a 
more detailed view of the data, nor can they mouse-over on a point to get additional 
information from the data sample. These images are, however, very easy to develop 
and tend to load fast in a web-based application. 

Dynamic graphs are more feature-rich components that not only display informa- 
tion, but that also allow users to gather more information, link to additional informa- 
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Fig. 5.13 Stacked graph of simulated data separated by age group in ESSENCE. 

tion, and control the presentation of the information. Mouse-over effects and dynamic 
highlighting on graphs facilitate understanding of what is being viewed and selected. 
The user can access information about a data point on the graph, select a data point 
for further investigation, and immediately pop up or link to additional viewing com- 
ponents, thus enabling rapid investigation. The final dynamic function is the ability to 
modify the look and feel of the graphs. Static graphs may also support this function, 
but instead of dynamically changing the graph immediately, a new set of static graphs 
would be generated. 

The look and feel of a graph may not seem important at first, but when users are 
required to generate reports or presentations based on what they have viewed in the 
system, they can save time if they are able to alter the title, adjust the axis, rename 
legend items, change color schemes, and change line patterns. Figure 5.14 shows a 
graphical options pane that allows users to change some of these features. 

One issue involving time-series data is how to title and label graphs. Users want 
graphs to be labeled explicitly so that they are self-explanatory in reports and presen- 
tations. Graphs developed from a static list of queries can be titled easily. However, 
if users have the ability to create complex queries, setting graph titles can become 
extremely difficult. If a user queries for data using 10 or 20 different parameters, it 
will be impossible to fit all that information into the title of the graph. Instead, most 
labels are as descriptive as they can be in a limited amount of space on the graph, 
and the complete query parameters are described elsewhere on the page. One useful 
combination for labeling is to have the system define a small, uncomplicated graph 
title but allow the user to generate a more descriptive title for a report or presentation. 

5.7.3.4 Data Line Listings A data line listing is a display that allows the user to 
browse the record-level information of a data source. Figure 5.15 from ESSENCE 
and Fig. 5.16 from BioSense depict data line listings. The visualization component 
for line listings can be a very simple table. Also, similar to the alert line listing, the 
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Fig. 5.14 Options pane for changing graphical viewing parameters in ESSENCE. 

data can be sorted and filtered to organize them for the user in an easy-to-understand 
way. The filtering capability can also allow the system to provide drilldown pages 
from other components. The other components can link directly to a prefiltered data 
line listing page, with the specific parameters filtered for easier investigating. 

Beyond just a simple data table, displays of summary information might also be 
useful. For example, summaries could include a breakdown of the number of records 
from each region, syndrome, age group, and sex. The information could be presented 
as another line listing or as a data table or as pie or bar charts, as in Figs. 5.17 and 
5.18. However, when pie charts are to be used, care must be taken not to include items 
that contain duplicate information. For instance, each record can be given only one 
sex attribute: male, female, or unknown. So if SO records are being displayed, the pie 
chart will show a breakdown that adds up to 50. However, if each record allows for up 
to four ICD-9 codes, a breakdown of ICD-9 codes for the same 50 people could add 
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Fig. 5.15 Data line listings of simulated ESSENCE data. 

Fig. 5.16 Data line listings depicted in the BioSense system. 



VISUALIZATION IN A DISEASE SURVEILLANCE APPLICATION 235 

up to 142. Because of the potential confusion, some data may be better represented 
by bar charts than by pie charts. 

Fig. 5.17 Variety of charts displayed by the ESSENCE system. 

After the user has sorted, filtered, and viewed the data available, the last operation 
is usually to export the data. In most situations, the data of interest on the page can be 
highlighted, copied, and pasted to a report or presentation. However, users may also 
want to export data to programs such as Microsoft Excel. Copying and pasting data 
may be sufficient, but with some data, such as ICD-9 codes, leading and trailing zeros 
are removed by programs like Excel. Hence, giving users the ability to download or 
export preconfigured Excel documents and comma-separated text files can be very 
useful. 
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Describe 
D a t a  Type Chief Complaint Syndrome E v e n t  TVpe Gastrointestinal 

State Florida 

D a t a  Source Emergency Department/Inpatient/Outpatient 

Pat ient  Class ALL 

Time P e n o d  2 Weeks D a t e  Range 07 /20 /2006-08 /02 /2006  

Fig. 5.18 Summary bar charts for simulated gastrointestinal patients in BioSense. 
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5.7.3.5 Matrix Portal In addition to viewing time-series plots, there are occasions 
when users may want to create graphs with fully customizable axes. For these 
situations, displays can be built that give users greater control over the elements 
contained in a graph. 

Figure 5.19 shows a sample entry screen for defining a custom data 'matrix'. This 
display allows the user to choose which specific data sources, syndromes, regions, age 
groups, and date ranges will be contained in a data set. Additionally, the user is able 
to choose which variable should be shown in the columns of the matrix and which 
variables should be shown in the rows. 

Fig. 5.19 Customizable data matrix builder in ESSENCE. 

Once the user chooses the variables for the data query and matrix layout, the 
data matrix and resultant graph are generated. Figure 5.20 shows an example that 
contains the data matrix and a bar chart that corresponds to the query screen shown in 
Figure 5.19. This example shows multiple data sources and syndromes on the same 
graph. Because this type of flexible display allows all data sources or syndromes to 
be visible at the same time, users may be able to see patterns in the data that are not 
dependent on time or are obscured in multiple time-series plots. Flexible visualization 
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components such as this matrix portal also allow users to create complex graphs and 
data summaries for presentations and reports without exporting data and manually 
creating graphs using other applications. 

Fig. 5.20 
generated from the query in Fig. 5.19 

Bar graph with generated data counts separated by syndrome and data source, 

5.7.3.6 Mapping Maps provide a powerful way to visualize spatially referenced 
health data. Figure 5.21 from ESSENCE and Fig. 5.22 from BioSense are examples 
of map displays in modern surveillance systems that can help users to recognize 
spatial patterns or clusters in health data. These data may be combined with other 
information, such as zip code boundries, streets, rivers, and county boundaries, to 
provide a comprehensive view of geographic areas. Maps enable users to superimpose 
additional information about water sources, environmental factors, or demographics 
on top of the illness layers, to explore hypotheses about regions for observed disease 
clusters. 
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Fig. 5.21 
Region. 

ESSENCE example of health data mapped onto the zip codes of the National Capital 

Fig. 5.22 BioSense example of road information superimposed on patient data in Florida. 



240 PUTTING IT TOGETHER 

In addition to allowing the overlay of multiple data layers, interactive maps can also 
support data investigation. Interactive displays permit users to highlight geographic 
areas and drill down into other parts of the system to extract information. Other useful 
interactive features include panning and zooming to focus attention on different areas 
within a map. Users are likely to investigate maps more closely if they have the 
ability to change perspective and the magnification to highlight a particular area of 
interest. The importance of zooming and paning are especially apparent in areas with 
diverse geographic units. Large rural zip codes may be easy to see in a large scale 
map, but smaller urban zip codes can be very difficult to see unless the user zooms in 
to particular areas of interest. Most Geographic Information System (GIS) software 
solutions provide these sorts of interactive features for dynamic maps. 

Maps are also a powerful tools for communicating high-level community health 
information to nonsystem users. Whether the mapping system is interactive or static, 
it will become more useful to users if they can export the images into presentations 
and reports. Being able to view data on a map and then generate a report that includes 
that map quickly is convenient feature for a user of a disease surveillance system. 

5.8 COMMUNICATION AMONG SURVEILLANCE USERS 

The incorporation of a communication capability within a disease surveillance system 
will allow users to share information about events occurring in their jurisdictions. If a 
surveillance system supports multiple users, sharing notes helps to support collabora- 
tive investigations. Even if the system supports only a single user, tracking the history 
of what that user viewed as an anomaly or wanted to investigate more thoroughly can 
be very useful. 

User communication not only helps users share information but can help to improve 
the system’s overall performance. An electronic log of when users investigated an alert 
or communication among users during an investigation can help algorithm developers 
and system designers to build better components. A developer can fine-tune detection 
algorithms to produce more meaningful alerts by analyzing which alerts were (or were 
not) investigated by the system’s users. 

System designers can use the data from a user communication feature to determine 
how and why a user investigated a particular alert. By noting what information the 
users tend to investigate, the system designer can focus users’ attention on those parts 
of the system. For example, if 9 out of 10 comments discussed anomalies involving 
children, a summary alert page could be designed to focus specifically on children so 
that all users could quickly investigate that age group in the system. 

The user communications tool in a disease surveillance system may be combined 
with other components, such as event-tracking tools or case management tools. Users 
can then track ongoing events and comment to other users in the system on those 
events. 
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5.8.1 User Comments 

The user comment feature in a surveillance system can be anything from an online 
chat room to an integrated message board system. The primary requirement is to 
enable users to share information about what they are currently viewing. The best 
design may be multiple techniques connected throughout the system, each of which 
is useful for certain situations. 

Chat rooms work well during a crisis event or situation that demands real-time 
responses with many users. They are not well designed for viewing historical in- 
formation (e.g., reviewing how a certain type of anomaly compares with a similar 
earlier one). Message board-style components are excellent for communicating asyn- 
chronously, but if they are used heavily, it is time consuming to keep current. In-page 
notations are good for viewing what other users discovered during similar investi- 
gations, but they do not provide an overall summary of what users are interested 
in. 

In addition to the types of communication components used, there is also the 
question of what information to track. The information about a comment allows other 
users to filter and sort by what interests them. For example, information such as the 
geography, age group, or disease referred to in the comment allows users to find similar 
comments. Information such as the severity of an outbreak, the user’s confidence in 
the data, or the desirability of further investigative measures allows others to filter 
down to just the important events. 

Algorithm developers and system designers can also use the information about 
comments to improve the system. By keeping track of users perceptions of outbreak 
severity and their confidence in the data, an algorithm developer can match patterns 
of user behavior with algorithm behavior to provide the system with better detectors. 
Similarly, system designers can follow which geographies, age groups, or diseases are 
of most interest to users and promote those parts of the system. 

As with all components, access control is a large part of the security of a disease 
surveillance system. User communication features are no exception. Users sometimes 
want to make comments that are to be viewed only by a specific subset of other users. 
Access control can be especially challenging if users are adding cached items in 
comments. Figure 5.23 presents an example of a communications function within 
ESSENCE, showing notes being passed between two epidemiologists monitoring a 
gastrointestinal event. 

5.8.2 Embedding User Comments into System Components 

A benefit of a user comment feature is that other parts of the system can embed 
relevant information from user comments. Alert information pages can note anomalies 
that produced both mathematical/statistical alarms and user comments with a high 
threshold of confidence or high severity of alarm. Thus, users can see the comments 
of other users for alerts that are considered to be significant. Alert summary pages 
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Fig. 5.23 Example of the communications function in ESSENCE. 

can be designed to show these alerts that both detectors and users consider to be 
significant. 

Presentations of time-series graphs or data tables can direct viewers to evaluations 
already performed by other users. Whether these pages embed the actual comment, 
display meta-information, or just let users know there are comments available, the 
user is aware of previous efforts related to the information or data being viewed. 

5.9 SECURITY 

Handling health data carries both legal and ethical responsibilities to preserve the con- 
fidentiality of patients, providers, and public health authorities. Those who violate that 
trust, deliberately or inadvertently, risk significant financial liabilities, legal sanctions, 
and damage to their public reputations. Electronic health data, or e-health data, offer 
all entities in health care and public health the benefits of faster and more in-depth 
access to health information, but also the greater likelihood of an unauthorized release 
of sensitive information and the potential for system unavailability. Mitigating the 
risks and overhead costs associated with using e-health data requires an understanding 
of the privacy and availability goals that a surveillance system must satisfy. Solutions 
must be identified to meet these goals: 

Ensuring that data remain confidential. Not only must data be safeguarded from 
outsiders, but access to specific data must be granted only to those personnel 
within an organization who have a need-to-know. 

Ensuring data integrity. No unauthorized party may alter the health data in any 
way. 

0 Ensuring that the system remains available to all authorizedpersons. A system 
should remain online for a high percentage of the times when users expect 
access and the system must provide results quickly enough to aid and not hinder 
the job performance of the requestor. Additionally, the system should be able to 
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scale or continue functioning when there is a sudden increase in system usage 
[43, 441. 

The system security and maintenance issues discussed here should be considered 
an introduction to the problems that must be addressed and not a final list since 
there may be many other concerns that apply to a specific system implementation. 
Moreover, because technology evolves rapidly, some of the issues discussed here may 
become moot, while other, new, issues will certainly emerge with new technologies. 
To minimize the chances that protected health data may be divulged, public health 
staff and IT system administrators must collaboratively develop and implement a 
comprehensive data protection plan. 

Given the flexibility and popularity of web-based surveillance systems, the data 
protection information given here assumes that the front end is a web application 
that the user accesses over a network. System developers can then “piggyback” their 
protection measures off the same guidelines as those used to safeguard enterprise web 
applications. 

Health data must be protected at all points of the surveillance system’s workflow. 
Unfortunately, there is no “security by obscurity” against would-be hackers and data 
thieves [45]. Every networked system is a potential target for intruders, who may 
attempt to hold privileged data for ransom, disrupt the system for “fun,” or use the 
system’s computer as a “zombie” machine from which to attack other computers 
anonymously. Securing data proactively through preventive measures during the 
development of a surveillance system is far easier and far cheaper than reacting to 
avoidable security breaches after the system has entered production. 

Nevertheless, it is essential to note that there is no way to completely guarantee 
the security of any IT system. Rather, each preventive measure achieves some limited 
protection, and the sum total of layering these measures, as shown in Fig. 5.24, may 
greatly reduce the risk or impact of an intrusion. System owners are highly encouraged 
to become fully aware of their system’s security strengths and vulnerabilities. 

A successful prevention strategy rests fundamentally on the trustworthiness of 
every person who has any involvement in the surveillance system. In addition to the 
expectation that every stakeholder will keep the protected health data confidential, all 
stakeholders must regard the ongoing security of the data as a mindset, not merely 
a checklist of built-in system features. The various groups of stakeholders and their 
security responsibilities are listed here in the order in which the groups interface with 
the system over the system’s life cycle: 

0 System owners: have ultimate control of and responsibility for the system. They 
are responsible for ensuring that all members of every group have received the 
latest security education needed for their particular roles and have at least a 
high-level understanding of the system’s security features and vulnerabilities. 

0 System developers: design the software “blueprints” for a system that will pro- 
cess, store, and transmit data securely; assemble the system; test the system 
to ensure that it has sufficient technical safeguards; and are responsible for in- 
forming system owners about the system’s security features and vulnerabilities. 
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Fig. 5.24 Layered approach to security. 

System administrators (SysAdmins): monitor the system’s security; perform 
essential security-related maintenance, such as administering accounts; and have 
a technical understanding of the system’s security features and vulnerabilities. 
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End users: keep their own account information secret, and as the primary 
recipients of protected health data, take all steps to ensure that those data are 
safeguarded and not compromised. 

In practice, these roles may be less clearly delineated than they are here. 

5.9.1 Design and Implementation of a Secure System 

Developing a surveillance system’s security entails two steps: design and imple- 
mentation. The following section discusses security issues to be considered in each 
step. 

5.9.1.1 Design 

0 Encryption for Data Storage and Transport. Encryption involves putting 
data into a representation that can be read only by the intended recipients and 
will appear unintelligible to all other parties. Designers are responsible for 
specifying which information in a system must be encrypted, the encryption 
algorithm, and the level of encryption, which is expressed in terms of bits. 
Using 128-bit or higher encryption is strongly recommended to assure security. 
To optimize performance and ensure a greater degree of security, designers 
should rely on the tried-and-true encryption methods that are already built into 
programming languages, rather than building their own [46,47]. The following 
data should be encrypted: 

- Raw health data files from health care providers 

- Any temporary data created during processing 

- Processed health data and user account information stored in the database 

- All data requests and responses between the front end, or server, and the 
user’s web browser, or client. 

Web communications can be secured through the use of a standard cryptographic 
protocol, the Secure Sockets Layer (SSL), which establishes a secure channel 
between the server and the client [48,49]. 

0 Access Control. Access to the system is controlled at two successive levels. 
Support for these levels must be included in the database structure, and the 
design must specify code that enforces the policies: 

1. Who may be authenticated or is authorized to enter the system. This is 
a simple binary criterion-a user either may or may not be authorized to 
enter the system, and any entrance by an unauthorized user is considered 
a security breach. To increase security, a user’s account should be sus- 
pended after a set number of repeated unsuccessful login attempts. To 
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reactivate the account, the user would have to contact the system’s admin- 
istrators and confirm responsibility for the unsuccessful login attempts. 
This measure would prevent intruders from repeatedly guessing at the 
user’s authentication information until they found the right value. 

2 .  Privilege separation or which data an authenticated user is allowed to 
view. Unlike the question of authentication, there could potentially be 
many different sets of access privileges, depending on the number of 
individual viewing privilege criteria (e.g., zip code, county, state). Here, 
the goal is to guarantee data confidentiality by ensuring that legitimate 
users view only the data they are allowed to see [50]. 

0 Reinforce the Network Perimeter. Firewalls are hardware or software devices 
that are “gatekeepers” (i.e., they stand between the surveillance system and the 
outside world). Using firewalls to filter the requests that are allowed to enter the 
surveillance system is an excellent way of blocking unrecognized networks from 
seeing the system. Additionally, firewalls help to protect against a common type 
of attack known as denial of service (DoS), in which a hacker sends a massive 
number of requests at one time to overwhelm a target system. Nonetheless, 
firewalls cannot protect against every possible network attack [5 1, 521. 

5.9.1.2 Implementation 

0 No Encoding of Sensitive Information in Hyperlinks. It is strongly recom- 
mended that surveillance system implementers not encode any sensitive public 
health or system information in hyperlinks because other users of the same 
computer may be able to see the links from the web browser’s history. This in- 
formation includes user names, passwords, and details of specific public health 
data. Following this policy also has the benefit of keeping URLs relatively 
short-browsers have length limits for hyperlinks, so the user’s browser may 
truncate a long URL. Instead, use the POST method to pass information from 
the client to the server. 

0 Exception Handling. When a program experiences any sort of error condition, 
such as a crash or receipt of bad data, it sends out a special message with the 
error’s details, called an exceprion. Although exceptions are a valuable tool 
for software developers, they present a security risk on the front end because 
they may divulge implementation details that would be useful to a hacker. 
Mitigating this risk requires writing exception “handlers” in the code that return 
only minimal error information to the user, such as the error number and a very 
general problem description. To help developers debug the problem, detailed 
exception information could simultaneously be recorded “silently” to an error 
log on the surveillance system computer. A consistent exception-handling 
policy should be applied when implementing the system’s code [46, 471. 

0 Input Validation. All information that the user enters into the system, from 
every hyperlink that “hits” the system to search parameters typed in by users, 
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should be checked to ensure that the data are not intended to gain unautho- 
rized system access, to control the system itself, or to harm legitimate users’ 
computers. Users should not be allowed to upload files to the system because 
they may be contaminated with malicious programs, such as viruses or worms 
[46, 53, 54, 551. 

0 Web Communications Encryption. Given the sensitivity of public health data, 
SSL should be used for communications between the system and the user’s web 
browser [46]. As part of securing the channel, the server must have a digital 
“certificate” that it then shares with the client so that the client may decrypt the 
server’s messages. There are two ways to obtain digital certificates: 

1. Use widely available tools to create digital certificates, such as the “key- 
tool” in Java. 

2.  Purchase a certificate from one of the major certification authorities, such 
as VeriSign, GeoTrust, or Thawte. Purchasing a digital certificate adds 
the advantage of allowing the server to prove its identity to a client [48, 
49, 56, 571. 

0 Build User-Side Security. Although it is difficult to completely ensure that 
users will not let their clients be compromised, there are technical safeguards 
that can be put into place during development to help users keep a system secure: 

- Give the user a means of logging off when a session is finished, such as a 

- Require the user to re-login after a set amount of time has passed since the 

- Implement password security measures. 

- Provide a page on the system that discusses good user security practices, 
and link to it prominently from all other pages. Users might even be 
required to read it the first time that they enter the system. 

logoff button in the upper right corner of each page. 

user last interacted with the system. 

0 Testing the System. Once these and other safeguards have been implemented, 
test them thoroughly. Try to break into your own system, and invite trusted 
others to do so on a system with phony data. In fact, even a “white-hat hacker” 
or a “good guy” who knows hacking techniques could be consulted on finding 
and preventing vulnerabilities [%I. Each surveillance system computer should 
be “locked down” or set to the minimum configuration that will allow it to 
perform only its intended functions. Locking down systems enhances both 
their security and their performance. In fact, a public health organization’s 
IT department will probably require that public health computers go through a 
security process, including lockdown, before the surveillance system may be 
hosted publicly by the organization’s computers. This security process may be 
lengthy, so it is advisable to start well in advance of the date that the surveillance 
system is to come online. 
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Ideally, each computer should be dedicated to just one purpose in the surveil- 
lance system to simplify its configuration. To lock down a computer, work 
with a systems administrator to implement these steps before installing the 
surveillance system software: 

1. Clean install. Start building the surveillance system computer by newly 
installing the operating system and just those applications that are used 
by the system, such as a database server or web server. Install only the 
minimum necessary components of the 0s and applications to decrease 
exposure to vendor bugs. 

2 .  Remove or disable default accounts. For account-based applications, such 
as operating systems and database servers, install special accounts with 
preset passwords and privileges. These “default” accounts, which may 
have names such as “Administrator” or “Guest,” are turned on automati- 
cally at startup and represent a security threat because the account names 
and passwords are publicly known. When possible, these accounts should 
be removed after the application is installed. If the application does not 
allow the removal of the accounts, deactivate the accounts. 

3. Create minimum privilege accounts for the surveillance system. Because 
the surveillance system is user-supplied software and is not built inherently 
into the 0s or database, the surveillance system itself will need to run as 
a “user,” with dedicated user accounts. 0s and database accounts created 
for the surveillance system should be given only the minimum privileges 
necessary for the surveillance system to function. As a rule of thumb, 
surveillance system computers should only have permissions to process, 
read, and as necessary, transmit data. Then, if someone were to break into 
the surveillance system computer through the surveillance software, they 
would not be able to access sensitive information or disrupt the system. 

4. Close all unneeded ports. There are thousands of channels on each net- 
worked computer, known as ports, over which Internet applications com- 
municate. For example, a web server computer sends pages over its port 
80 to port 80 on the client machine that requested the pages. A few ports 
must remain open on each surveillance system so that they can transmit 
data among themselves and to end-user machines, but the surveillance 
system does not require the use of most ports. Leaving open unneeded 
ports exposes a computer to risk of attack because hackers typically find 
unprotected computers by scanning for open ports [59]. 

0 Initiation of Administration Activities. More system administration details 
may be found in Section 5.10. 

5.9.2 User Authentication 

There are three classes of tools that may be used to authenticate users: 
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0 Passwords 

0 Smart cards 

0 Biometrics 

Each class has its own advantages and disadvantages. Currently, passwords are by 
far the most widely used authentication mechanism; password-based solutions may be 
built into the surveillance system without the need for additional software or hardware 
and are the easiest to deploy [60]. 

An approach that is gaining acceptance in enterprises is two-factor authentication, 
where a combination of two authentication mechanisms is used to authenticate a 
single user. This method makes unauthorized authentications harder because the 
unauthorized party would need to obtain two pieces of information and have at least 
one physical object on hand while logging in. One prevalent example of two-factor 
authentication is RSA Security’s SecurID system, which requires both a password 
value and a “key fob” or separate hardware device that displays a frequently changing 
authenticator value. Two-factor authentication has disadvantages: it requires both the 
purchase and integration of a separate authentication system and the deployment of a 
physical authenticator component to every system user [61, 621. 

5.9.2.1 A password is a sequence of characters used to authenticate a 
uses into the system. In theory, the password is known only to its user. A surveil- 
lance system’s designers and developers may either build their own custom password 
authentication component or install a commercial password authentication product. 

Passwords suffer from the major disadvantage that they are easily compromised. 
Intruders may find a password that a uses has written down, trick the user into giving 
away the password, or guess the password. In addition to the database and SSL 
transmission safeguards for handling sensitive data, both good user management and 
implementation-level safeguards may reduce the risk of compromising passwords: 

Passwords 

0 User Management 

- Education. Remind users frequently and emphatically to memorize pass- 
words instead of writing them down and to keep passwords confidential. 

- Accounts. Create a separate login account for each user rather than giving 
a group of users shared access to the system through one account. Besides 
keeping account passwords more secure, separate acccounts help create 
an audit trail of user activity. 

0 Implementation Safeguards 

- Password complexity. To prevent would-be intruders from guessing user 
passwords, require users to create passwords that satisfy certain character 
and combination guidelines. Although guidelines vary by system, they 
generally suggest passwords which, at a minimum: 
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1. Contain six or more characters 
2 .  Contain a mix of at least uppercase, lowercase, and numerical char- 

acters 
3. Are not similar to any English words or proper nouns [46] 

- Frequent password changes. Require users to change passwords at regular 
intervals, such as every 90 days, to passwords that they have not used 
previously [46]. 

5.9.2.2 Unlike passwords, which are known to the user, the user may 
use a physical item, called a smart card or key fob, for authentication. Smart cards are 
devices that display a random number that the user must provide at login. This number 
changes at frequent intervals, typically every minute, on both the smart card and at 
the server, so if the value were intercepted, chances of intrusion would be minimal 
because it would be valid for only a brief period of time. RSA Security’s SecurID, 
Aladdin Knowledge System’s eToken, and WiKID Systems’ Strong Authentication 
System are examples of authentication products that use smart cards [63, 641. 

Smart Cards 

Challenges with smart cards include: 

0 Distributing smart cards to users 

0 Managing who has which smart card 

0 Synchronizing smart card clocks to the server’s clock so that the random number 
matches at both ends 

0 Costs-Each smart card costs approximately $50 [65, 661 

5.9.2.3 Biometrics Biometrics leverages a user’s intrinsic, unique biological char- 
acteristics, such as fingerprints, voice, or retinal patterns. Most enterprises are only 
beginning to deploy biornetrics authentication, but biometrics will probably become 
a useful authentication tool for surveillance systems as the hardware and software be- 
come cheaper and more standard. Already, fingerprint scanning has become the most 
commercially available form of biometrics authentication product: high-end laptops 
are starting to appear with built-in scanners. Although biometrics is an excellent new 
solution to authenticate users, it is worth noting that like other authentication tools, it 
can be tricked into providing system access to creative intruders. 

5.9.3 Access Privilege Management Overview 

Each user should be granted only the minimum privileges necessary for job perfor- 
mance. Health data access should be controlled by the data fields that describe the 
type and location of health care encounters, such as: 

0 Zip codes (e.g., the health care encounter’s zip code, the patient’s residential 
zip code) 
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0 Health regions, which may be defined by county or by another officially defined 
geographic grouping 

a States 

0 Data sources, such as ER, OTC, and military; access may be regulated by an 
individual item within a data source, such as a specific hospital 

To prevent user confusion, fields of health care data that the user does not have 
privileges to view, such as specific zip codes or hospitals, should not even appear on 
the user’s view of the system as menu options or choices. 

Access privileges may be administered in one of two ways: 

1. By individual user accounts. Each user is independently granted privileges to 
view data on a need-to-know basis. This model has the weakness of making 
privilege administration a laborious and error-prone process for surveillance 
systems with large numbers of users, particularly when multiple users should 
share the same privileges. 

2. By user groups. Groups of privilege settings are defined for users with different 
information needs, and every user’s privileges are determined by assigning that 
user to one group [67]. Privilege administration is simplified because privileges 
can be set just once for a group of users with an equal need to know, and setting 
up permissions for new users involves less work. 

5.9.4 User Responsibilities 

System users will need to take several security measures on their own computers that 
cannot be imposed by the system’s software. Note that the users themselves may 
not have administrative control over their computers, which means that they may not 
be able to modify system settings. In that case, they must coordinate with their IT 
organizations. 

5.9.4.1 Minimum Computer Configuration Because browsers that support 128- 
bit or higher encryption are relatively new and run on newer platforms, a minimum 
client computer configuration may be required as a prerequisite for using the surveil- 
lance system. 

5.9.4.2 Location from which Client Accesses the Surveillance System Technolo- 
gies that enhance mobility, such as laptops and wireless networks, are popular with 
many users. Naturally, with greater mobility comes the need for users to exercise 
more discretion as to the location from which they choose to access the system, as 
well as the way they go online remotely. Security threats in this area range from a 
stranger casually looking over a user’s shoulder to a hacker scanning the airwaves for 
unsecured wireless links. Some tools do exist to solve parts of the location problem, 
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such as laptop display screen filters for privacy and virtual private networks (VPNs) 
for secure wireless networking [68]. 

5.9.4.3 Finding and Disabling Malware Users should regularly sweep their ma- 
chines for viruses, worms, and spyware using the latest antivirus and anti-spyware 
applications. Some malware infections secretly install programs that record the user’s 
keystrokes, such as the web pages visited and login information, or gather data from 
the user’s hard disk and quietly transmit the information back to the malware’s authors. 

5.9.4.4 Many web browsers cache (save a copy of) web pages 
that a user visits so that the browser can load the page more quickly on future visits. 
Caching surveillance system data is risky because it saves protected health data to a 
client without the user’s knowledge. Confidentiality is jeopardized because the user 
may be accessing the site from a shared computer. Users are strongly encouraged to 
disable the “Save” function for encrypted pages if the browser provides that option. 

Webpage Caching 

5.9.4.5 Relaxing Certain Browser Security Measures Depending on the surveil- 
lance system’s features, users may need to disable pop-up blockers on just the surveil- 
lance system’s website. The user may also need to enable the web browser to run 
code components, such as scripts or plug-ins for query forms and charts. However, 
enabling code components in a particular browser for some users may enable code 
components for all sites. Consult a system administrator before enabling or disabling 
a web browser’s execution of code components. 

5.10 SYSTEM ADMINISTRATION 

Developing the surveillance system is only the first half of the challenge. To fulfill its 
purpose of surveillance, the system must be made “available” to receive data and host 
its intended users. Of course, the question is: What does “available” mean for my 
system? The quick answer is “it depends”-on the requirements and how the system 
will be used. 

Some questions that will need to be answered are: 

0 How many users are expected to be on the site at one time? 

0 When should the system be online? 

0 How quickly should the system respond to user requests? 

0 How should the system administrator respond if something catastrophic hap- 
pens? 

All of these concerns related to keeping the system up and running, and many more 
not mentioned, fall under the area of administration. 
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System administration is just as crucial as developing the system; without either 
stage, there will be no surveillance. However, administration is too often an in- 
convenient afterthought because system development draws most of system owners’ 
attention and therefore most of the budget. Like owning a house or any other large 
asset, the cost of owning the surveillance system will be greater than just the one-time 
purchase price. There will be “hidden costs” afterward that were not directly fac- 
tored into the purchase-costs to secure the asset, insure it, and keep it in good shape. 
Offsetting at least the known post-purchase costs requires a dedicated funding stream. 

Fortunately, system administration tasks are generally far easier than system de- 
velopment and can even be automated to a great degree. Ongoing maintenance pays 
for itself by giving users a faster response time and keeping the system online with 
up-to-date protection against computer viruses and other major threats. Additionally, 
in concert with security, good system upkeep can drastically reduce the chance that 
confidential data will be compromised, which preserves trust in the system [69]. 

Although administrative tasks are, by themselves, simpler than development tasks, 
successfully managing all of the aspects of administration often still requires full-time 
attention. Given users’ expectations that the system will be available when it is sup- 
posed to be and the importance of maintaining data confidentiality, it is recommended 
that system owners work with experienced system administrator personnel rather than 
attempting to have someone “learn the ropes” while the system is in production. Alter- 
natively, if a web-hosting provider can certifiably protect health data, system owners 
may choose to have their surveillance system hosted by an experienced third party. 

5.10.1 Physical Administration 

There are three facets to administering a surveillance system’s physical space: loca- 
tion, facility security, and electricity and network access. For mission-critical surveil- 
lance systems or larger clusters of computers in a system, greater precautions should 
be taken, and more resources may be necessary. Ideally, multicomputer surveillance 
systems should be housed in their own physical room(s), due to the noise and heat 
that they generate. 

Finding a place for a system is the first challenge. When possible, surveillance 
systems should be located where they have ample access to electricity and the network, 
are least likely to be tampered with, and are least likely to be damaged physically. 
If the user population is likely to grow, the system’s site should have capacity for 
additional computers. Systems need to be protected from flood, fire, and exposure to 
nature, so installing a system near an outside door or below ground level may be risky. 

Moreover, the surveillance system’s physical site should be secured when not in 
use. Guidelines for who may enter the facility should be established, and depending 
on how important the system is, security cameras may be installed. Doors should 
remain locked when the room is not in use. 

Finally, surveillance systems need enough electrical and network outlets to handle 
their demands. Because of the heat generated by large computer clusters, surveillance 
systems may require industrial-scale air conditioning. Furthermore, surveillance 
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system computers should have an emergency power system that will keep mission- 
critical systems running and shut other systems down. Large or mission-critical 
clusters may need to be placed on separate electrical circuits and/or high-bandwidth 
network links. 

5.10.2 Maintaining Software 

Most of a system administrator’s time will be spent monitoring, backing up, and up- 
dating software subsystems. The administrator’s first and primary task is to safeguard 
each surveillance system computer from attack. Antivirus and anti-spyware software 
should be installed and maintained on all machines and checked frequently to ensure 
that these utilities have the latest threat definitions. System administration also means 
keeping up with the constant stream of bug fixes and security updates or patches that 
are released by vendors for the OS, other necessary applications, and perhaps even 
the surveillance system software itself. Delays in installing the latest definitions and 
updates may give hackers time to find and exploit newly identified vulnerabilities that 
may harm surveillance system operations. 

Administrators ae also responsible for setting up and storing backups for surveil- 
lance system data. Backups are vital but are not a complete solution on their own. 
Because any event from a computer failure to a hurricane could knock the system 
down and render it unavailable when it is most needed, organizations need to prepare 
additional measures to ensure that they will be able to recover in a catastrophe. Reg- 
ularly scheduled backups, multiple separate storage locations, and disaster response 
plans that include the immediate setup of a secondary system are prudent parts of a 
surveillance system’s ongoing maintenance policies. 

To monitor system performance and activity, administrators may examine a variety 
of logs that are maintained by different programs, either by hand or with an automated 
software tool. They may look at the computer’s 0s logs to identify any performance 
lags, error states, or unusual activity. To understand how the surveillance system is 
being used, they may use the system’s logs as an audit trail to discover what page 
requests were made, how often during the day a request entered the system, and who 
entered the request. With this information, they can “tune” the system to respond more 
quickly to requests to find out which features are helpful to users, spot any unusual 
user activities, and investigate intrusions. 

5.10.3 User Management 

System administrators and owners need to work together to regulate and ensure autho- 
rized access to a system. Depending on how the system is implemented, administrators 
may or may not need to be actively involved with day-to-day account management. 
Owners should be responsible for approving new accounts, but new accounts could be 
registered either manually by the administrator or automatically through the system. 
When users forget passwords, administrators might reset their accounts manually, or 
the website could perform the reset automatically. 
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Account deactivation is a more complex task because there is often no efficient 
mechanism for determining when users should no longer have access. Depending on 
the system’s implementation, deactivation may entail disabling the account rather than 
removing it entirely in order to preserve the audit trail of system usage. Although a 
user may have changed jobs, the owners and administrators may not be aware that the 
user should not enter the system. Possible solutions are to provide a means for users 
to deactivate themselves when their status changes and to designate points of contact 
at each user agency who are responsible for updating system owners when personnel 
changes occur. Given the circumstances, account deactivation is usually performed 
manually. 

An outbreak of disease may drive up system traffic in the short term, so the system 
should have additional capacity to handle spikes in the number of users online at any 
particular time. This capacity may be 20-50%, or more, of the average load [44]. 
In the long run, as more users or greater levels of usage create more demand for 
system and network resources, it may become necessary to add more computers and 
bandwidth to maintain the same level of service. As part of their duties, administrators 
should monitor system performance and logs on a frequent basis and make the case 
to system owners to add capacity if usage rises. 

5.11 SUMMARY 

The information presented in this chapter should be kept in mind when a healthjuris- 
diction begins the process of implementing a disease surveillance capability. Many 
times, the decision to obtain such a system resides with individuals who are keen to 
address the health threats facing their communities, but who may not be knowledge- 
able about information technology strategies that make a disease surveillance system a 
successful endeavor. As will be discussed in Chapter 6, it is important for public health 
personnel to initiate and continue communication with their IT staff, data providers, 
and stakeholders throughout the development and implementation of a surveillance 
system. 

5.12 STUDY QUESTIONS 

5.1 Consider a hypothetical disease surveillance system that is entirely developed 
in mathematical analysis software such as SAS or MATLAB. Q: What sort 
of drawbacks would such a system have versus a system developed as a web 
application ? 

5.2 Visualizing health indicator data is an important feature of a disease surveillance 
system. Q: What are some of the common queries you might perjform on your 
health data? Which data sets would benefit from being overlaid on the same 
display, such as displaying multiple data sets on the same time-series graph or 
map? 
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5.3 Q: Given your organization’s surveillance activities, would a stand-alone desk- 
top or web client-server application best fit your needs, and why? 

5.4 Q: Given that data may arrive throughout the day, how might you structure a 
surveillance workflow to accommodate once-a-day transmissions versus multi- 
ple or real-time transmissions? 

5.5 Q: What are the trade-offs in resources and infrastructure between receiving 
transmissions once a day, several times a day, and in real time? 

5.6 Q: What are some of the major hardware and software components requiredfor a 
health surveillance system? I f  you were designing a simple health surveillance 
system on a very tight budget, what sort of hardware and software choices 
would you make, and why? I f  you were designing a large-scale full-jeatured 
system with high pelformance and responsiveness requirements, how would 
your hardware and software choices change? 

5.7 Geographic information systems provide important tools for displaying data in 
a geographic context. Q: Identih several types of data that could be useful to 
display alongside health indicator data, and explain what value the users of a 
health surveillance system might find in these data sources. 

5.8 Q: Develop a user-jriendly end-user securiv education and training program 
for  a nationwide group of users. Assume that the users collectively have an 
average level of computer familiarity. To proceed, first identifi all ways in 
which the users themselves are responsible fo r  safeguarding surveillance data, 
from not inadvertently disclosing privileged information they may view on the 
system to memorizing their own login information. Then, develop messages 
to communicate the importance of keeping data secure and the ways in which 
users may do so. Given the geographic spread of users as well as their computer 
literacy, deliver the messages through several different channels, such as posting 
prominent notices on the website, holding web conferences, and an annually 
requirement that users reafirm in writing their responsibility for  using the site 
securely. 
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Chapters 1 through 5 of this text addressed the various topics that must be consid- 
ered in the design and implementation of an automated disease surveillance system. 
Chapter 5 focused on the individual components needed to process and display data 
and information as well as the knowledge needed by IT personnel to operate and 
maintain a web-based disease surveillance system. 

The second part of this book addresses the use of disease surveillance systems 
by health departments. Chapter 6 is directed at the epidemiologist or surveillance 
analyst/public health monitors who will use the disease surveillance system that has 
been implemented. This chapter first reviews the health department’s requirement to 
monitor the health of the population it serves, then discusses the systems in operation, 
and provides examples of public health events that have been identified. The chapter 
ends with an introduction to a Centers for Disease Control and Prevention (CDC) 
initiative to conduct surveillance at the national level by capturing data locally across 
the country. 

6.1 PUBLIC HEALTH SURVEILLANCE REQUIREMENTS 

Public health officials are tasked with the broad mission of protecting and promoting 
the health of their communities [ 11. This obligation consists of three core functions: 
assessment, policy development, and assurance, which are outlined by the CDC’s 10 
Essential Services: 

1. Monitor health status to identify community health problems. 

2. Diagnose and investigate health problems and health hazards in the community. 

3. Inform, educate, and empower people about health issues. 

4. Mobilize community partnerships to identify and solve health problems. 

265 



266 MODERN DISEASE SURVEILLANCE SYSTEMS 

5.  Develop policies and plans that support individual and community health efforts. 

6. Enforce laws and regulations that protect health and ensure safety. 

7. Link people to needed personal health services and assure the provision of 
health care when otherwise unavailable. 

8. Assure a competent public health and personal health care workforce. 

9. Evaluate effectiveness, accessibility, and quality of personal and population- 
based health services. 

10. Conduct research for new insights and innovative solutions to health problems 
[21. 

To be effective, public health officials require timely, accurate, and complete data to 
guide their efforts. This chapter focuses on the first two essential services: monitoring 
health status and investigating health problems. Public health practitioners can support 
these objectives more efficiently by utilizing advances in public health informatics. 

6.1.1 Disease Reporting Requirements 

Until the advent of automated disease surveillance systems, health departments relied 
on manually intensive reporting. Manual reporting introduces significant time lags in 
monitoring the status of a community’s health. Analyses by public health personnel 
are reliant on health care providers (such as physicians, infection control practitioners, 
and diagnostic laboratories), who were required to inform the health department of 
diseases termed “reportable” by law. 

National requirements for public health reporting efforts began as early as 1878 
with the collection of information by the U.S. Marine Hospital Services on infectious 
diseases such as cholera, smallpox, plague, and yellow fever. The reporting of specific 
infectious disease continues today, in addition to the collection of information on the 
occurrence of many other diseases. Figure 6.1 represents a typical morbidity report 
form to be completed by health care providers upon determination of a reportable 
health event. Reportable conditions are stipulated by state law and include both clini- 
cally diagnosed findings and certain laboratory results. Guidance for the designation 
of reportable conditions is provided by the CDC, but variation exists among individual 
states. 

Most states specify the data elements to be reported by health departments within 
their jurisdiction. These data are typically limited to information needed for character- 
ization of the case with respect to person, place, and time; evaluation of the potential 
for spread, which might require public health or clinical intervention; or association 
with other cases. Information regarding risk factors and specific clinical and labora- 
tory findings are also included to support the diagnosis. The morbidity report shown 
in Fig. 6.1 provides an example of data elements required by the state of Maryland. 

The process of notifiable disease reporting was standardized by the U.S. Surgeon 
General in 1902. At that time, standards were instituted for the collection, compilation, 
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Fig. 6.1 Notifiable condition report from the Maryland Department of Health and Mental Hy- 
giene. Source: Maryland Department of Health and Mental Hygiene, Office of Epidemiology 
and Disease Control Programs [3]. 
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and distribution of data at the local, state, and national levels. The CDC took over the 
duties of this system, known as the National Notifiable Diseases Surveillance System 
(NNDSS), in 1961 [4] with continuing responsibilities to act as a data repository 
and to support efforts at the state and local levels. The process begins at the patient 
encounter with either a qualifying diagnosis made by a clinician or a qualifying 
laboratory finding. In such instances, the clinician or laboratory director is required 
to report information to the local health department within a certain time period, 
depending on the nature of the disease. The staff of the health department compiles 
reports in weekly cycles for transmission to the state health department. The state. 
in turn, passes the information to the CDC. The surveillance information is used for 
purposes that vary at each level of report, but reducing the time between the onset 
of illness and its report improves the outcome of public health interventions for all 
purposes. A recent study of reporting lags across states and diseases found that 
the median number of days to report was 12 for meningococcal disease and 40 for 
pertussis. This study concluded that because of such lags in reporting, the NNDSS 
cannot support timely identification of and response to outbreaks at a national level 
[51. 

An established practical application of disease surveillance is the seasonal mon- 
itoring and reporting of influenza through a sentinel physician program coordinated 
by the CDC. Volunteer physicians report influenza activity from their practice on a 
weekly basis during the months of October through May. Reporting includes data on 
the total number of patient visits for the week and the number of visits for influenza- 
like illness by age group. Although valuable, this information suffers in timeliness 
from the weekly reporting cycles. In addition, only a small proportion of the U.S. 
population is actually covered by this surveillance activity because participation in the 
sentinel physician program is strictly voluntary [6]. During the 2004-2005 influenza 
season, the CDC reported that 2200 physicians were included in the network from 
46 states; however, in any given week, approximately 50% of the physicians did not 
complete reports [7]. Finally, the data from this network are statistically weighed 
using state population and background influenza rates, so estimates produced by the 
system cannot be used for understanding influenza activity at the state, regional, or 
local levels. 

These disease reporting processes, namely notifiable disease and sentinel surveil- 
lance, remain in place today. The utility of the data from these systems for recognition 
of important changes in community health status is seriously limited by a reliance on 
clinical providers to initiate reports to authorities in a timely manner and by the inher- 
ent delays in weekly reporting cycles. Additionally, there is a heavy staffing burden 
inherent in a system that relies on exchanging information on paper with subsequent 
manual data entry to support reporting and analysis. 

The need for improved timeliness and automation in surveillance efforts was under- 
stood even before the terrorist events of 2001. The CDC began promoting enhanced 
surveillance activities through their 1998 plan entitled Preventing Emerging Infectious 
Disease: A Strategy for  the 21st Century, Overview of the Updated CDC Plan [8]. 
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Goals and objectives were put forth by health officials in four categories, one of which 
was surveillance and response. The objectives for improved surveillance included: 

1. Strengthening infectious disease surveillance and response 

2. Improving methods for gathering and evaluating surveillance data 

3. Ensuring the use of surveillance data to improve public health practice and 
medical treatment 

4. Strengthening global capacity to monitor and respond to emerging infectious 
diseases [9] 

The terrorist attacks on the World Trade Center and the Pentagon on September 1 1, 
2001, and the anthrax letters that followed in the autumn of that year accelerated the 
development of improved disease surveillance systems [8]. Many efforts had already 
been made to conduct surveillance via “drop-in’’ systems during large events [ lo ,  111. 
Such systems operate by collecting information on emergency department (ED) visits 
in 24-hour cycles via the ED logs. Although potentially useful in the short-term, these 
systems are typically difficult to sustain given the amount of labor required to support 
them and the absence of any historical information to provide context for evaluation 
of detected anomalies. 

The threat of bioterrorism caused many health departments to extend the opera- 
tions of their manually intensive drop-in surveillance systems. In the National Capital 
Region (NCR), for example, ED logs containing the chief complaint or discharge 
diagnosis for each patient from the previous day’s visits were faxed to health depart- 
ments daily. Health department staff then assigned encounters to mutually exclusive 
syndrome groups [ 121 and performed aberration detection using CDC-provided algo- 
rithms. Such approaches are extremely labor intensive at every point in the process, 
which makes this form of surveillance prohibitively expensive over time. Automated 
systems have reduced much of this burden by exploiting advances in clinical informa- 
tion systems and public health informatics. The scope of responsibilities for public 
health officials has become increasingly broad in recent years; therefore, it is imper- 
ative that tools developed to support their work impose as little burden as possible 
while providing meaningful information for action in a timely, coherent fashion. 

Many surveillance activities have been taking place at various government levels 
in recent years. All types of surveillance come with their own inherent advantages 
and disadvantages. Each health department or locality must determine what type of 
system will best meet its needs. Table 6.1 summarizes various types of surveillance 
systems that have been used and lists the potential advantages and disadvantages of 
each. 

6.1.2 Existing Automated Disease Surveillance Systems 

There are a variety of modern disease surveillance systems in use today by health 
departments. These systems vary greatly between localities, ranging from locally 
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Table 6.1 Types of Syndromic Surveillance Systems [8]. 
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maintained systems to application service provider (ASP) systems that collect and 
maintain data at a remote site for analysis and access by users. There are also a variety 
of analytical tools available for users. The differences in systems extend to the types 
of data they utilize, the frequency of reporting, and the role and capability of the users 
that review the output. Although not exhaustive, Sections 6.1.2.1 through 6.1.2.5 
provide a brief overview of a few systems in use today. 

6.1.2.1 Multiple versions of the Electronic Surveillance System for the 
Early Notification of Community-Based Epidemics (ESSENCE) are in use today. For 
example, one version of ESSENCE is used for disease surveillance of all U S .  military 
personnel and their dependents, and another version exists for the Veterans Health 
Administration. Several ESSENCE versions, integrating numerous data sources, are 
also in different civilian localities [ 131, 

ESSENCE is a flexible and scalable application that allows for the import of a 
variety of data sources, including physician outpatient visit data, OTC pharmaceutical 
sales, ED chief complaints, nurse advice data, 91 1 calls, school absentee data, and 
many other data sources that health departments may want to include in their own 
version of the application. While ESSENCE employs an alerting capability that 
identifies and flags statistical anomalies for the end user, it is also customizable, 
permitting epidemiologists to monitor a variety of health issues of interest within their 
communities. 

ESSENCE allows users to select the algorithms that are used to detect aberrations 
in their version of the application. For example, if a health department elects to use 
the CDC Early Aberration Reporting System (EARS) algorithms, these algorithms 
can be selected and their performance compared to that of other algorithms contained 

ESSENCE 
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within the application. Analyses within ESSENCE can be performed by data source, 
region, syndrome group, etc. [14]. 

ESSENCE utilizes a password-protected encrypted website to allow users to view 
the information regardless of their location. The user has the ability to drill down into 
the cause of an alert to see line listings of patients in the case of ED and office visit 
data or listings of products sold in the case of OTC medication sales. ESSENCE is an 
information system that is fully queriable to permit users to customize analyses. For 
instance, new case definitions can be developed and maintained by linking a string 
of key words or ICD-9 codes. This feature is particularly useful for newly identified 
health concerns, such as severe acute respiratory syndrome (SARS) or West Nile virus. 
For example, once a SARS case definition is established, a user can query specifically 
for those defined strings (key words or ICD-9 codes) to identify patients that may have 
SARS or SARS-like illness. 

Another useful feature of ESSENCE is its ability to generate and save graphs in 
various image formats, such as .jpegs, with customized titles, axes, and labels for 
use in presentations, thereby allowing the user to rapidly communicate findings to 
others. Data can be exported from ESSENCE for use in other software applications. 
ESSENCE was developed by The Johns Hopkins University Applied Physics Labora- 
tory (JHU/APL) and the Department of Defense Global Emerging Infections System 
(DoD-GEIS). 

6.1.2.2 RODS The Real-Time Outbreak Detection System (RODS) was developed 
by the University of Pittsburgh and the Auton Lab of Carnegie Mellon University’s 
School of Computer Science to detect a large-scale outbreak due to an outdoor re- 
lease of anthrax [15]. Like ESSENCE, RODS is used widely by health departments 
throughout the United States. 

RODS uses HL7 admission, discharge, and transfer (ADT) messages from EDs and 
walk-in clinics to capture chief complaint data for incorporation into the application’s 
seven predetermined syndrome groups. The University of Pittsburgh also operates an 
OTC pharmacy data-monitoring system known as the National Retail Data Monitor 
(NRDM). 

Like ESSENCE, RODS utilizes a variety of algorithms to identify anomalies in data 
streams, in particular, the recursive-least-square (RLS) adaptive filter [ 161, moving 
average, wavelet [17], and CUSUM with EWMA. The health department can set the 
alerting algorithms to generate alarms at various sensitivities. If a syndrome reaches 
a level that exceeds the preset health department limit, RODS automatically sends 
the health department an e-mail with a link to the RODS site that gives the user the 
pertinent charts and also the individual-level data that generated the alert [ 181. 

RODS uses a password-protected encrypted website that allows users to log in to 
view clinical and OTC data. Because this surveillance system is predominantly an ASP 
model, data are stored at the central RODS laboratory rather than at the local health 
departments. Users can view summary information, customizable plots, geographical 
views, and alerts. Drilldown capabilities provide more detailed information to the 
public health user [17]. 
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6.1.2.3 EARS The Early Aberration Reporting System (EARS) was originally 
developed as a “drop in” surveillance system for large-scale events such as national 
sporting events and political conferences. For example, EARS was used in New York 
City following the attacks on the World Trade Center on September 11, 2001 [lo]. 

The EARS application is a SAS-based program available via download over the 
internet and one requires only a web browser to run the program. It uses aberration- 
detection algorithms to look for changes in frequency or distribution of health events 
compared with historical data [19]. Data are sent via e-mail or file transfer protocol 
(FTP) to the user for analysis by EARS. 

EARS uses three limited baseline algorithms based on CUSUM calculations: C1- 
MILD, C2-MEDIUM, and C3-ULTRA, named for their sensitivities [ 191. CUSUM 
detects shifts in a particular syndrome away from its historical mean [20]. EARS is 
currently being used in many U.S. health departments, as well as internationally. 

6.1.2.4 RedBat RedBat is a commercial software product marketed to health de- 
partments for detection of infectious disease outbreaks. In addition to infectious 
diseases, it may also be used for surveillance of more chronic illnesses, such as 
asthma, and injuries. RedBat automatically imports ASCII data from existing data 
streams and uses data mining technology to identify uncommon syndrome clusters. 
The data can be analyzed either directly within RedBat, or can be exported for analysis 
in another surveillance system. 

Patient demographic data, such as name, ID, age, and address, are collected in an 
ASCII file at the location of service (e.g., the hospital). This information is read into 
a natural language processor, which then parses the information into the appropriate 
syndrome group. Information is then made available to the health department on a 
daily basis. 

RedBat has additional features that assist the health department with the collection 
of other data that may be useful, including reportable diseases, injuries, classification 
of clusters, and tracking of victims during disasters. Redbat is currently being used in 
portions of North Dakota and Texas and other localities [21]. 

6.1.2.5 SYRZS The Syndrome Reporting Information System (SYRIS) is a surveil- 
lance tool aimed at collecting data entered by physicians, veterinarians, nurses, coro- 
ners, emergency management personnel, animal control officers, environmental health 
practitioners, and microbiologists. The data entered into SYRIS are made available 
to public health officials. Once the data are entered, the system determines if they 
meet the criteria for a public health alarm. Only public health officials can set the 
parameters for public health alarms. Public health officials are also able to do routine 
statistical analysis and mapping with the SYRIS system. One region currently using 
SYRIS is the health region around Lubbock, Texas [22]. 
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6.2 IDENTIFICATION OF ABNORMAL HEALTH CONDITIONS 

Many modem syndromic surveillance systems use a variety of analytical processes to 
determine whether the level of disease exceeds the norm for the community. These 
processes alert the user that a statistically significant increase has occurred and the 
user must then determine the public health significance of the alert. However, these 
systems enable important health events to be detected in other ways as well. For 
example, epidemiologists can use disease surveillance systems to monitor disease 
trends systematically and to identify suspicious clusters of disease through ad hoc 
analyses. Epidemiologists also receive information about unusual disease clusters or 
incidence from local health care providers, which they can then evaluate within their 
surveillance systems. Both system- and operator-generated alerts may be of equal 
value. The objective of this section is to examine how existing automated surveillance 
systems are being used by health departments. 

6.2.1 Monitoring Surveillance System Outputs 

Anomaly detection presents jurisdictional challenges that should be accommodated 
in developing response guidelines. Although public health officials have obliga- 
tions within defined geographic boundaries, neither the movement of persons nor the 
distribution of illness is limited by these boundaries. To be effective at detecting 
cross-jurisdictional disease clusters, anomaly detection should be conducted at multi- 
ple levels (local, regional, state, and possibly national) to capture anomalies that might 
remain undetected within or bordering any single jurisdiction. 

The common output of most surveillance systems is an alert or flag generated by 
algorithms applied to data containing indicators of health status. Algorithms typically 
compare present data with expected data estimated from the background of several 
previous days. Some algorithms also compare data from surrounding locations to 
perform a spatiotemporal statistical analysis. The alerts generated reflect statistical 
anomalies based on some threshold of the expected values (see Chapter 4 for further 
discussion). Statistical anomalies, however, do not always reflect true epidemiological 
or clinical anomalies. Because many of these anomalies depend on how the syndromes 
are defined in the data, the challenge for the user is to determine which, if any, of these 
statistically significant anomalies are clinically and/or epidemiologically significant. 
To perform this task, users must have knowledge of possible confounding variables 
(e.g., air quality, pollen, temperature, holidays, data dropouts), clinical presentations 
of diseases (e.g., influenza, infectious gastroenteritis, bioterrorism diseases), and epi- 
demiologically significant disease clustering. One method for reviewing the outputs 
of analytical processes applied to surveillance data is to categorize alerts according to 
the following criteria: 

1. Alerts that appear to be only a result of a statistical process 

2. Alerts with a clinical foundation but that are epidemiologically unimportant 
from a public health perspective 
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3. Alerts with the potential to be clinically and epidemiologically interesting 
enough to warrant further monitoring before their public health importance 
is determined 

4. Alerts clinically and epidemiologically important enough that further action, 
such as detailed epidemiological investigation and alerting of authorities, might 
be warranted 

Figure 6.2 depicts a general process for reviewing information from an electronic 
disease surveillance system [23]. 

6.2.2 Characterization of Anomalies 

Depending on the background of users and the priorities of the health department, 
different features may be required in a disease surveillance system, and different users 
may use the same system differently. General guidelines have been developed to assist 
in the characterization of anomalies, but they provide only initial guidance for new 
users until they develop methods that work within their context. Figure 6.2 illustrates 
the general steps a health department user could consider when evaluating alerts 
found on an electronic surveillance system. Regardless of the user, anomalies should 
be characterized fully to determine whether they are likely to represent an important 
public health event that requires a public health response. From an epidemiological 
standpoint, the anomaly should be described with respect to person, place, and time 
using whatever demographic and geographic information are available. Available 
clinical data (e.g., chief complaint and discharge diagnosis and disposition) should 
be evaluated and summarized. In certain cases, even more specific information ( e g ,  
laboratory test requests or results, detailed ED admission data) might be available to 
characterize the anomaly further. 

While a physician is specifically trained for and accustomed to working with pre- 
diagnostic information, the challenge in analyzing syndromic data is that there is no 
patient to interview or examine. Instead, the analyst must use the brief text listings 
and other clues in the different fields of data. Although the ease and accuracy of 
obtaining a “differential diagnosis” for a particular patient are thereby limited, one 
can still observe patterns and possibly link etiologies among populations of patients. 
These patterns can raise the index of suspicion that a true clinical anomaly exists 
among the statistical anomalies provided by the system. It should be noted that, even 
in traditional epidemiological analyses, statistical clusters of health events occur for 
which no clinical anomaly is ever found. These are frequently seen in noninfectious 
health events for which a common exposure is sought (e.g., cancer clusters), and the 
CDC has developed systematic investigative techniques to evaluate them [24]. 

Once the user is convinced that an anomaly represents a true cluster of similar health 
events, whether the anomaly is expected or unusual should be determined. Normal 
seasonal and temporal syndrome and disease trends should be reviewed. Influenza- 
like illness is easily spotted by a majority of disease surveillance systems. An increase 
in disease causes regular statistical alerts in established syndrome groups as illness 
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Fig. 6.2 
Coberly et al. [23]). 

Schematic presentation of daily review of an electronic biosurveillance system (From 
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spreads through the community. Because this increase is expected each winter, the 
anomaly does not require further evaluation efforts. Similarly, environmental factors 
should be considered. For example, seasonal increases in pollen generate increases 
in respiratory illness that might cause statistical alerts in surveillance systems even 
though these events are expected. If more than one source of data is available within 
a system, part of the validation effort should be to ascertain whether corroboration is 
expected from those sources and whether similar patterns do exist in different data 
sources. 

Figure 6.3 provides an overview of the process for the evaluation of potential 
disease clusters. The process will vary greatly depending on the health department 
and end user, but the general concept can be applied in any area regardless of the 
system being used. 

Additionally, there may be a condition of particular interest to the epidemiologist. 
Some systems allow users to query specific text strings or enter a case definition 
that may be outside the scope of the typical syndrome groups to determine if events 
of particular interest are occurring. Systems with this functionality run aberration 
detection for the ad hoc case definition “on the fly” and allow analysts to review 
the current and historical experience with the particular set of complaints for their 
communities. Such analyses are common among users of systems with the capacity 
to create ad hoc case definitions, especially during flu season. 

Figure 6.4 demonstrates the time series an epidemiologist can obtain using the 
ESSENCE system to query the ED chief complaint records for “fever, sore throat, 
and cough.” symptoms commonly associated with influenza. By allowing queries for 
specific keywords within the patients’ chief complaints, ESSENCE enables the user 
to define new case definitions for a disease of interest. 

Epidemiologists may also receive information from other sources throughout the 
health community. One such source is the Program for Monitoring Emerging Diseases 
(ProMED). ProMED was started in 1993 and is managed by the International Society 
for Infectious Diseases. Members of its steering committee include representatives 
of the CDC, National Institutes of Health (NIH), World Health Organization (WHO), 
PanAmerican Health Organization (PAHO), and the International Office of Epizootics 
(251. ProMED is a global electronic reporting system for outbreaks of emerging 
infectious diseases and illnesses caused by toxins. With subscribers from over 100 
countries, ProMED often provides the earliest public reports of infectious disease 
outbreaks. Reports of suspicious events are submitted via e-mail or website and are 
then screened by teams of experts, including physicians, veterinarians, biologists, and 
epidemiologists. While the screening process results in some delay in dissemination 
of the information, it minimizes the transmission of erroneous or unclear information 
and also allows the ProMED editors to comment on the postings and raise pertinent 
questions for further response and discussion. In addition to providing a service for 
reporting events, ProMED also provides an online forum for discussion of the reports 
among subscribers. The amount of relevant information contained in a ProMED 
report may vary, and the editors make every effort to corroborate information in 
reports from official sources. Although ProMED exists largely as an educational 
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Fig. 6.3 
abbreviation for day-of-week). 

Summation of potential process for evaluating potential disease clusters (DOW is an 
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Fig. 6.4 Time series from the Aggregated National Capital Region (ANCR) site showing the 
daily counts resulting from a query in the chief complaint records for “fever, sore throat, and 
cough” from August 1, 2005, through June 1, 2006. 

resource, it may also provide valuable insight for explaining anomalies observed in 
electronic surveillance systems. 

Different users use different techniques to review and characterize anomalies. 
Much of this variability can be attributed to the system in place, the education and 
training of the user, the amount of time a user can devote to reviewing the system, 
the reliability of data transmission, and the health department’s policy on review and 
follow-up of an electronic disease surveillance system. Some health departments have 
developed a set of queries (unique syndromes) that are processed and examined in 
parallel with routine syndromes. Such queries are commonly used where a particular 
health issue is of ongoing concern, and these issues vary depending on the time of 
the year. Many users also weigh data sources: that is, they pay more attention to one 
particular data stream than another because of its clinical significance, completeness, 
timeliness, or knowledge that it may contain a signal of importance. Some users will 
continue to follow-up on an alert for a few days after first receiving it, while others will 
only focus on alerts for a particular day. In addition, while some users will not rely on 
alerts alone for system review, others will focus primarily on alerts and, if there are 
none, will cease their review. The amount of attention users devote to pursuing alerts 
will depend to a large extent on the time available for system review and follow-up. 
Review and characterization of anomalies will differ greatly among both systems and 
users. 

6.2.3 Case Studies 

Several case studies are offered in this section to demonstrate how syndromic systems 
might be monitored and used. All of these studies are presented using features and 
findings of the ESSENCE system deployed in Montgomery County, Maryland. 
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6.2.3.1 The first order of busi- 
ness in the daily review of system findings is to evaluate the overall incidence of 
each syndrome represented in the region captured. This step is often accomplished 
by review of the data time series. Figure 6.5 represents the number of ED visits 
for chief complaints coded into the respiratory syndrome (solid line). Additionally, 
time-series data are shown for chief complaints containing keywords suggestive of 
pneumonia and/or influenza (dashed line). From this time series, analysts were able to 
observe a modest but significant increase in ED visits for respiratory complaints that 
likely represented the beginning of flu activity in the county. Greater confidence was 
placed on these findings by the excellent correlation of trends in chief complaints that 
were strongly suggestive of pneumonia and/or influenza. Based on these data, health 
officials began discussions with hospital partners about the likelihood of influenza 
virus circulating in the community. As a result, hospital personnel began reviewing 
procedures for cough containment, separation of likely influenza cases in treatment 
rooms, and collection of appropriate specimens for viral isolation. On December 12, 
2004, the first suggestion of circulating flu activity was found by querying for specific 
chief complaint terms. Flu activity was clearly visible in the broad respiratory syn- 
drome group on December 14. The first traditional indicator of flu activity occurred 
on December 27 in the form of an outbreak of influenza-like illness (ILI) in a nursing 
home, which was reported to the health department on December 29. 

Case Study I :  Detection of InJluenza-like Illness 

Fig. 6.5 Early detection of ILI in Montgomery County, 2004-2005 (vertical gray bar: range 
of days over which data began to suggest flu activity; vertical black line: date of onset of first 
nursing home ILI outbreak). 

Figure 6.6 represents a time-series view of multiple data sources available to ana- 
lysts for determining whether all potential data sources were in agreement regarding 
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Fig. 6.6 Early detection of ILI in Montgomery County, Maryland, in multiple data sources 
(dotted black vertical line: earliest data indication of flu activity; solid black vertical line: date 
of first positive clinical isolate obtained for influenza virus). 

the increase in ILI activity in the county. Two OTC pharmaceutical data sources, 
in addition to the ED respiratory syndrome data and specific ED chief complaints 
of pneumonidinfluenza, exhibit the same general trend with an increase in activity 
noted and eventually determined to have been sustained in all four sources late in the 
second week of December. The ability to corroborate findings across data sources is 
particularly helpful to health officials because most individual data sources lack speci- 
ficity. A similar finding in multiple streams gives health officials greater confidence 
in making recommendations based on the findings and can also serve to enhance the 
data by providing additional information about the geographic areas affected. 

6.2.3.2 Routine daily review of the 
time series of gastrointestinal complaints (shown in Fig. 6.7) revealed an event of 
concern for the Montgomery County Health Department. Previous statistical alerts had 
been observed for the past several months without much concern. However, on April 
19,2005, an effort was taken to characterize the alert that occurred. Analysis revealed 
that the increase in gastrointestinal chief complaints was dominated by patients in the 
age bracket between 5 and 17 years old. 

Figure 6.8 presents the patient-level details that were available for characterizing 
the cases with respect to person, place, time, and severity of illness. The simple line 
listing of cases in the 5- to 17-year-old age group demonstrated a clear clustering of 
gastroenteritis-like complaints among a group of 13- and 14-year-olds who were not 

Case Study 2: Outbreak of Gastroenteritis 
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Fig. 6.7 
April 19, 2005. 

Time series of emergency department visits for gastrointestinal complaints, alert on 

Fig. 6.8 
gastrointestinal complaints. 

Line list obtained from system used to characterize patients causing increase in 
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residents of the region, as indicated by “other” in the zip code column. This finding 
prompted a rapid response of public health officials to contact hospital officials to 
ascertain the details of these patient presentations. It was learned that these patients 
were members of a student group visiting the area on a school trip. The name and 
contact information for the chaperone and the hotel where they were lodging were 
obtained. Efforts to gather information about the status of illness in the group and to 
identify potential exposures for investigation were at first unsuccessful because the 
chaperone declined to cooperate with investigating authorities. When it was revealed 
that this group of students was scheduled to depart by air later that afternoon, officials 
had a substantial concern about the public health propriety of allowing this group of 
children to fly, given an illness that could easily be spread in the close quarters of an 
airplane during a transcontinental flight. 

Eventually, the chaperone agreed to allow the children to be interviewed by health 
authorities only if the school principal concurred. However, the principal could not 
be reached because of the 3-hour time difference between the location of the outbreak 
and the school principal. With the departure of the flight becoming imminent, local 
health authorities worked to resolve the situation with their partners in the state 
health department and with authorities at the CDC. Information from the line list in 
Fig. 6.8 provided sufficient details to enable local health authorities, the state health 
department, and the CDC to persuade the airline’s medical director to prohibit air 
travel of these students until their condition at the time of departure could be assessed. 
The chaperone then became much more cooperative and allowed interviews with the 
children. As a result, the airline allowed all children in the group to fly home with the 
stipulations that none were actively ill at the time of travel, they were all seated as a 
group, and a single bathroom was set aside for the children who had been ill or those 
who might become ill in travel. 

The time from identification of this finding to the successful intervention was under 
6 hours. Without the information provided by the syndromic surveillance system, it 
seems unlikely that public health authorities would even have been able to completely 
identify the patients involved as a single group in the limited time available. It should 
also be noted that there were 19 patients in this group, all were seen in one ED, and 
most presented within 1 hour in the very early morning after having been transported 
by ambulance. However, this event did not prompt hospital personnel to notify the 
health department. 

6.2.3.3 Case Study 3: Detection of a Gastroenteritis Outbreak Aggregating 
across an entire region for all age groups, can sometimes mask signals of interest. 
Only normal variations are present in the total Gastrointestinal syndrome time series 
provided in Fig. 6.9. It is sometimes necessary to evaluate the syndromic data and 
algorithm outputs by specific groupings of age, location, or sex. In this particular 
scenario, an interesting finding was noted in a specific age-group during the same time 
period as shown in Fig. 6.10. 

Figure 6.10 shows on August 8, 2005, there was nearly a threefold increase in the 
number of 5- to 17-year-old patients reporting to county EDs with Gastrointestinal 
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2004 

Fig. 6.9 
gomery County. 

Daily data counts of the total Gastrointestinal syndrome group for all ages in Mont- 

2004 

Fig. 6.10 Daily data counts of the Gastrointestinal syndrome group in 5- to 17-year-olds. 

syndrome complaints. This increase required further investigation in order to charac- 
terize the cases causing the increase. Hyperlinks embedded within the surveillance 
application provide users the ability to view the underlying details about the cases 
represented in the daily syndrome counts. 

The underlying data for the 5- to 17-year-old gastrointestinal cases on August 8, 
2005, is provided in Table 6.2. The listing reveals a group of 17-year-olds presenting 
in the last 6 hours of the 24-hour reporting period. An investigation by the county 
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Table 6.2 Data Details from the 5- to 17-Year-Old Time Series for the Gastrointestinal 
Syndrome Group 

health department revealed that a number of young adults had become ill at a summer 
leadership forum in a neighboring county. When the hospitals in the neighboring 
jurisdiction became full, some of these patients had been transported across county 
lines. Officials were able to use the unique identifiers provided within the surveillance 
system to obtain summaries of the medical encounters for these students to facilitate 
the outbreak investigation. 

6.2.4 Summary of Anomaly Characterization 

The previous case studies describe how epidemiologists were able to use knowledge 
of disease processes and relevant community attributes to rapidly review statistical 
anomalies generated by a syndromic surveillance system. In most cases, the investiga- 
tion can be done by examination of individual records to identify common etiologies. 
Patterns suggestive of linked etiologies may be found within or across different syn- 
drome categories and data streams. Each data stream has unique characteristics that 
must be taken into account. Sometimes, non-clinical data may be useful, such as 
air quality, aeroallergen levels, weather (temperature and rainfall), and news media 
reports (e.g., ProMED). 

Data completeness must be assessed to determine the significance of each alert. For 
example, an alert for a county based on ED data from fewer than half the hospitals may 
not have become an alert if all the hospitals had been reporting. Alternatively, there 
may be no alerts for that county simply because most hospitals have not yet reported. 
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Assessments of data completeness for physicians’ office visits may not be possible, 
depending on the data-acquisition strategy in place; because many systems rely on 
data from insurance claims clearinghouses, the denominator of reporting physicians 
is never known. It should be possible, however, to determine data completeness 
automatically for hospital ED and OTC data. 

6.2.5 Assessing the Public Health Importance of Findings 

Once an anomaly is fully characterized, its public health importance should be con- 
sidered. First, the magnitude and continuity of the increase generating the anomaly 
should be evaluated in the context of the particular syndrome group in question. Re- 
gardless of statistical significance, a substantial 1-day increase warrants more scrutiny 
than a smaller increase; similarly, a relatively modest increase over multiple days that 
deviates from known seasonal and historic patterns should also be evaluated closely. In 
each of these instances, the size of the actual increase is characterized by the nature of 
known patterns of the data source and syndrome being evaluated; these considerations 
require an understanding of the usual frequency distribution for the particular event 
of concern. Certain signals can be expected and, when detected, are of less concern, 
especially when the public health response is well established (e.g., the beginning 
of the influenza season, winter increases in cases of viral gastroenteritis). However, 
observations of such anomalies at unexpected times of the year, or when frequency 
is much different than expected, or when presentations are unexpectedly severe, are 
more likely to represent important public health events [26]. 

6.3 UTILITY OF DISEASE SURVEILLANCE SYSTEMS AT THE LOCAL 
LEVEL 

Studies were performed by Feighner and Coberly [ 181 to understand how automated 
disease surveillance systems were being used by state and local health departments 
and the utility of the local system. This section presents information gathered from 
interviews and surveys of users of automated systems. 

Many localities describe the purpose of their disease surveillance system as the early 
detection of any event of public health significance, whether human-made (bioterror- 
ism) or naturally occurring [27]. Many support the notion that optimization of their 
system for one type of event (e.g., illnesses caused by bioterrorism) should also lead 
to development of a system optimized for detection of naturally occurring disease. All 
health departments describe their disease surveillance system as only one of a group of 
surveillance tools that must be used in concert to understand the public’s health. Addi- 
tionally, health departments use their systems not only for early detection, but also to 
gauge the extent of known outbreaks or threats. Examples of other uses of enhanced 
surveillance systems are data mining and public health research. Lastly, a secondary 
gain for public health departments from the implementation of disease surveillance is 
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improved communication with clinicians, hospitals, and other organizations involved 
with public health. 

Many public health practitioners feel that enhanced disease surveillance represents a 
promising, yet unproven, initiative [28, 3 11. Although rigorous cost-benefit analyses 
have not been conducted in most jurisdictions, many feel electronic surveillance 
systems clearly help them to identify seasonal waves of respiratory and gastrointestinal 
illness earlier than traditional surveillance methods. It is also largely felt that a 
syndromic surveillance system should be one component of a “system of systems.” 
As the field of early-event disease surveillance progresses, research to evaluate the 
costs and benefits of disease surveillance will be an important task for public health 
practitioners [32, 351. 

6.3.1 Specific System Features and Utility to Public Health Officials 

Modern disease surveillance systems use pre-existing data sources to reduce the cost 
of the system and to minimize the burden on data providers. If the desire is to 
characterize anomalies with respect to person, place, and time, data streams must be 
selected to provide adequate demographic, geographic, and temporal information. 

The volume of anomalies detected varies between systems, from only a handful 
in a year to numerous anomalies in a given week. Factors influencing the number of 
anomalies are number of syndrome groupings, number of age-group-specific event de- 
tections, and groupings by time and place in the aberration detection strategy. Some 
control over number of anomalies is achieved by decreasing algorithm sensitivity; 
however, reducing sensitivity should be considered carefully because increased sen- 
sitivity over traditional surveillance methods is a major objective for these systems 

6.3.2 Local Perspective on Implementation 

Planning for and implementation of enhanced surveillance systems can be facilitated 
by the establishment of a work group. These groups provide all parties involved with 
opportunities to arrive at mutually agreeable and beneficial specifications and proce- 
dures. The membership of such groups should include practitioners from the health 
department and data partners, as well as information technology professionals from 
those organizations. Depending on the circumstances of funding and implementation, 
many such work groups include academic informatics groups or clinical information 
system vendors [27]. In addition to their technological expertise, these designers of 
disease surveillance packages may also contribute expertise in the administrative and 
legal issues of disease surveillance implementation. 

6.3.2.1 As a locality implements a local disease surveillance 
capability, communication between all interested parties is imperative. Ingestion 
of pre-existing data streams should drastically decrease the reporting effort required 
for data providers such as hospital EDs. Drafting data-sharing agreements (DSAs) 

System Facilitation 
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between hospitals and health departments can be the rate-limiting step in the process 
of establishing an early-event surveillance system because corporate officers and legal 
staff will consider the many implications of such agreements. Data partners may wish 
to share data electronically with the health department only when assurances can be 
provided that this data sharing will not impose an additional burden resulting from 
health officials’ investigations of system findings. 

6.3.2.2 Need for Effective Communication with Stakeholders While an estab- 
lished protocol might exist for communicating concerns in widening circles as the 
certainty andor  severity of findings warrant, such graduated communication processes 
should also contain provisions to avoid alarming the general public. Formal meetings 
between stakeholders in the surveillance system allow for ongoing, consensus-driven 
refinements to the system and help to maintain engagement of all parties. 

Informal communication is equally important, particularly between the health de- 
partment and those entities associated with data sources such as hospital infection 
control practitioners, ED health care providers, and laboratory personnel. Users report 
that an informal phone call to a data source will often quickly clarify the circumstances 
surrounding an anomaly [18]. This kind of communication allows for the efficient 
clarification of data findings and supports collegial relationships that are essential 
to all public health efforts. Communication is essential for sustaining any surveil- 
lance system. Users recognize the need for both formal and informal communication 
frameworks when maintaining a disease surveillance system. Formal communication 
frameworks are useful for a stepwise or phased approach to anomaly evaluation. 

6.3.2.3 Each type of data and each source 
within a given data type have idiosyncrasies. Data peculiarities must be appreciated 
and anomalies evaluated with this knowledge in mind to optimize the public health 
response. Because this knowledge is acquired by working with data and providers at 
the local level, such peculiarities may prove challenging when surveillance systems 
are being monitored at the state and national levels. This point is most appreciated in 
localities where systems allow analysts to manipulate the data to fit their needs; such 
a capacity must be supported by solid understanding of community attributes. 

Understanding Data at the Local Level 

6.3.2.4 All staff and system users must be pro- 
vided with both structured training and opportunities for hands-on experience as they 
learn. New users to early-event disease surveillance systems are faced with substantial 
learning challenges given the complexity of most systems. Owners of such systems 
report that it takes 6 weeks to 3 months to become completely familiar with a ro- 
bust, multidata-source system [ 181 - new users of a disease system must learn the 
peculiarities not only of their data but also of the system itself. Users eventually do 
become comfortable with their systems, even those with the numerous methods for 
anomaly detection discussed previously. In addition to expertise in system use and 
data attributes, users must recognize recurrent patterns in the data over time. 

Training of Staff Is Essential 
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6.3.2.5 Much of the cost as- 
sociated with surveillance systems are incurred during implementation. Initial costs 
include purchasing hardware and software and addressing the administrative, legal, 
and technical issues concerning data acquisition, as well as the substantial staffing 
costs at system start-up. The costs associated with monitoring and following up on 
system findings vary depending on the number of personnel a health department com- 
mits to this task, as well as their pre-existing capacity to support other surveillance 
efforts. An epidemiologist or other analyst must be assigned to evaluate daily findings. 
Most surveillance system monitors report spending 1 to 2 hours per day reviewing 
data. 

Implementation costs generally do not include research and development of new 
technologies. The most economical way to establish a disease surveillance system 
is to use a prepackaged system (e.g., ESSENCE or RODS) via an ASP deployment. 
The ASP model, however, generally does not provide easy access to individual-level 
data due to confidentiality concerns. Furthermore, ASP deployment represents an 
investment risk in terms of funding sustainability at both the host and user ends. 

Costs of Implementing and Maintaining a System 

6.3.3 Regional Perspective 

There are a number of reasons that a health department or group of health departments 
may choose to undertake surveillance at the regional level. Among them are the 
attributes of the region itself. For example, in sparsely populated rural areas where 
logistical or fiscal concerns might preclude individual local systems, the pooling of 
resources and staffing may offer opportunities for a regional surveillance effort. In sit- 
uations where there are large, multi-jurisdictional, densely populated, interconnected 
metropolitan areas, regional capacity is required to understand the health experience of 
a population living, working, and recreating across jurisdictional boundaries. Imple- 
mentation of regional systems requires careful consideration and planning to ensure 
that the regional data captured and analyzed are appropriately shared, maintained, and 
funded. 

A regional system is currently in place in the area surrounding Washington, DC, 
also known as the National Capital Region (NCR). The NCR comprises the District 
of Columbia; the counties of Montgomery and Prince George’s in Maryland; and the 
counties of Loudoun, Fairfax, Arlington, Alexandria, and Prince William in Virginia. 
This region, which serves as the home of the U S .  federal government, is culturally, 
economically, and socially diverse, with residents often living in one location and trav- 
eling inter-jurisdictionally for work or recreation. Additionally, tourists and business 
travelers frequently visit the region, thus increasing the potential for the introduction 
and rapid spread of infectious disease. Given the cross-jurisdictional nature of this 
region and its status as a tier 1 city for bioterrorism threats, as per the U.S. Depart- 
ment of Homeland Security (DHS) 2361, a regional surveillance view is considered 
necessary to completely evaluate important changes in community health status. The 
NCR uses the ESSENCE system. Figure 6.11 illustrates the connectivity of the NCR 
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network. Maryland (MD), Virginia (VA), and the District of Columbia (DC) each 
operates a stand-alone surveillance application. 

N C R Bios u rvei I lance N etwo r k 

Fig. 6.11 
surveillance network. 

Schematic illustrating the system placement and data flow within the NCR disease 

The NCR network permits each health department to collect fully identifiable data 
regarding their residents, which improves the efficiency of additional investigations 
and follow-up activities. For sharing across the region, these data are de-identified, 
aggregated, and sent to the regional node, known as the Aggregated National Capital 
Region (ANCR) system. The ANCR site provides the regional view, and personnel 
from the MD, VA, and DC health departments have access to this site. The aggregation 
and sharing of data between the jurisdictions is supported by a single Data Sharing 
Agreement (DSA) among MD, VA, and DC and the ANCR host. This DSA sets 
parameters for the use, sharing, and release of aggregate data. 

6.3.3.1 Need for Effective Regional Communication with Stakeholders Regional 
systems require another level of communication for both implementation and sustain- 
ability. In addition to local communication within each jurisdiction, there must be a 
forum to communicate effectively among jurisdictions and as a whole group. In the 
case of the NCR, the Enhanced Surveillance Operating Group (ESOG) was created 
to facilitate discussions on topics such as system features and functionality, response 
protocols, and review and approval of all research and functionality developed to 
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address problems unique to regional systems. This group comprises personnel from 
each participating health jurisdiction as well as members of the surveillance system 
development team and ANCR host. 

6.3.3.2 In addition to understanding 
local data anomalies, users of a regional system are also tasked with monitoring 
anomalies that may arise at the regional level. In regional systems, spatial and 
temporal analytics are run both locally and regionally to capture both locally occurring 
problems and to identify potential regional issues. For example, although there may 
be a low level of illness in two neighboring jurisdictions such that neither jurisdiction 
generates an anomaly independently, these illnesses may in fact signal an alert when 
the jurisdictions are combined. As with other statistical anomalies generated by a 
system, these may be explained away by using a different level of knowledge than that 
required in assessing local anomalies alone. 

An eventkommunication feature was designed and developed by a team of epi- 
demiologists and software developers for the ANCR system. This feature allows 
people conducting daily data reviews to communicate their concerns to one another 
about specific events, situations, and statistical detection algorithm outputs. This pro- 
totype tool is embedded within the regional surveillance system and provides a forum 
in which users can write free-text comments, rate events based on level of concern, 
and attach hyperlinks to user screens that relay pertinent information to others. These 
capabilities aid in resolving specific health alerts at both the local and regional levels. 

In addition to meeting the immediate needs of users for better awareness of the 
community’s current health situation, this inter-regional component also enables the 
information recorded to be used for future enhancements of the overall disease surveil- 
lance system. For example, algorithm developers can view the communications logs 
to better understand and compare which detection alarms were met with concern ver- 
sus those that were dismissed. This knowledge can aid in the future refinement of 
alerting algorithms. 

Understanding Data at the Regional Level 

6.3.3.3 Costs of Implementing and Maintaining a Regional System Regional 
systems are more complex than local systems because each jurisdiction must maintain 
its own disease surveillance capacity and then transmit data to a regional hub. From a 
cost standpoint, implementation within each jurisdiction requires funding for hardware 
and system support. At the regional level, organizations have successfully obtained 
federal funds to link local systems and create regional nodes. Potential cost savings 
may be realized in implementations where data are collected and processed centrally 
in the regional node and then passed to local systems. Similarly, if a system is being 
set up in a rural area, only one central hub, rather than multiple nodes, may be needed 
to give users from all localities access. This approach reduces costs to approximately 
those of a locally maintained system that is shared among the supported jurisdictions. 
It also eliminates any duplication of effort that might occur if each jurisdiction were 
to seek data sources individually, and it ensures that all users use the same data set. 
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System maintenance is more complex in a regional system because any existing 
local systems must be maintained in addition to the regional node. At a minimum, each 
system needs to be maintained and updated with the latest version of the software, 
and, for the purposes of communication, the regional node should have the same 
software version. This degree of maintenance can be challenging because individual 
jurisdictions vary in their IT capabilities and financial ability to maintain the hardware. 

6.4 ELECTRONIC BIOSURVEILLANCE AT THE NATIONAL LEVEL 

BioSense, a national program developed by the CDC, is intended to improve the na- 
tion’s capabilities for conducting near real-time biosurveillance and health situational 
awareness through access to existing data from health care organizations. BioSense is 
envisioned to provide local, state, and national public health and clinical partners with 
situational awareness capabilities for suspect illness and disease cases before, during, 
and after a health event, to assist public health officials with confirming or refuting the 
existence of an event, and to monitor an event in terms of size, location, and rate of 
spread. BioSense provides simultaneous access to health data by all levels of public 
health and supports cross-jurisdictional biosurveillance during a public health event. 

6.4.1 BioSense System Description 

BioSense was initially developed in 2003 as the early-event detection component 
of the CDC Public Health Information Network (PHIN) to support enhanced early 
detection, quantification, and localization of possible bioterrorism and other events 
of public health concern on a national level. At that time, BioSense began receiving 
national data feeds from the Department of Veterans Affairs (VA) and Department of 
Defense (DoD) and a web-based application was developed to enable visualization 
of these data. BioSense was made available to state and local public health officials 
in April 2004. In November 2004, a major national clinical laboratory, Laboratory 
Corporation of America (LabCorp), began sending data to BioSense. Therefore, the 
initial BioSense data included International Classification of Diseases, Ninth Revision, 
Clinical Modification (ICD-9-CM) codes and Current Procedural Terminology (CPT) 
codes from VA outpatient medical centers and clinics (n  = 849) and DoD medical 
treatment facilities (n = 355) ,  as well as laboratory test orders (local and LOINC 
codes) from LabCorp. 

In mid-2005, the CDC embarked on a major initiative to enhance BioSense by 
including clinically rich data in real time from hospitals across the United States. 
In December 2005, BioSense began receiving foundational data (patient chief com- 
plaints, diagnoses, and demographics) from hospitals in key public health jurisdictions 
in real time. To protect privacy, BioSense does not receive patient identifiers. Patient 
populations include outpatients, ED patients, and inpatients. In early 2006, daily 
hospital census data (including occupancy rate, admission count, discharge count, 
and death count at the hospital level, and occupied and available beds at the unit 
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level) began to be transmitted. Additional data, including ED clinical (e.g., vital signs 
and triage notes), microbiology laboratory orders and results, radiology orders and 
results, and pharmacy orders, are now being transmitted from some hospitals. In a 
public health event situation, these data are envisioned to provide a real-time window 
on community health status that has not been previously available to public health. 
Rigorous technical and scientific evaluations are needed to determine best practices 
and utility for BioSense data. 

Once data are 
received, they must be pre-processed, categorized, and stored in a data warehouse 
prior to being visualized in the application. Coded (ICD-9 and CPT) and free- 
text (chief complaints and working diagnoses) data are assigned as appropriate to 
1 1 syndromes (botulism-like, fever, gastrointestinal, hemorrhagic illness, localized 
cutaneous lesion, lymphadenitis, neurological, rash, respiratory, severe illneddeath, 
specific infection). A multiagency working group defined these syndromes in 2003 to 
capture pre-diagnostic data relevant to infectious bioterrorism agents [37]. BioSense 
medical staff also defined 78 sub-syndromes to allow for surveillance for more specific 
events and for a wider range of disease indicators. For example, the botulism-like 
syndrome includes several sub-syndromes, such as paralysis, speech disturbance, and 
dysphagia. Certain sub-syndromes do not map to a syndrome category; examples 
include allergy, burns, and excessive heat. For a single patient visit, more than one 
syndrome or sub-syndrome can be assigned; there is no hierarchical mapping. 

ICD-9-CM codes are mapped to sub-syndromes based on definitions created by 
BioSense medical staff. Free-text data are mapped to sub-syndromes based on a text 
search for keywords and their associated misspellings, word fragments, and abbrevi- 
ations. Keywords were derived from terms that appear in the ICD-9-CM descriptions 
or in the Unified Medical Language System [38]. Free-text search methods include 
exact match, partial match, and regular expression. A method to account for nega- 
tion is implemented with keywords within a configurable window. Negations are not 
mapped to a syndrome or sub-syndrome. Keywords were modified during the initial 
implementation period based on experience with sample data; continual improvement 
of free-text data mapping is informed by comparing actual text to final syndrome or 
sub-syndrome results. BioSense plans to compare this method with natural language 
processing methods. 

As of August 2006, some hospitals were also sending laboratory, radiology, and 
pharmacy data. BioSense is defining appropriate pre-processing and classification 
methods for these data. Microbiology laboratory data will be processed to recognize 
potential bioterrorism agents, notifiable diseases, and certain other organisms of inter- 
est (e.g., influenza, respiratory syncytial virus). Radiology data will be processed to 
recognize features such as pneumonia and widened mediastinum (from chest x-rays), 
and fracture and dislocation (from extremity films). Both laboratory and radiology 
data will require text parsing. Pharmacy orders will be classified according to drug 
classes, such as antibacterials and antivirals; antibacterials will be further broken down 
into agent classes (penicillins, aminoglycosides, etc). 

Real-time data are sent to CDC in batches every 15 minutes. 
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Once data are pre-processed and classified into disease indicator categories, statis- 
tical algorithms are applied to the data to determine if health activity is higher than 
expected. BioSense analyzes both counts and rates per 1000 visits. The rate is a 
proportion of the number of patient visits that map to a syndrome or sub-syndrome out 
of all visits for that day multiplied by 1000. For example, the rate per 1000 visits for 
the chief complaint-based respiratory syndrome is the number of patient visits with 
a chief complaint that maps to the respiratory syndrome divided by the total number 
of patient visits with a chief complaint times 1000. Initially, BioSense implemented 
a modified CUSUM [39] approach to identify statistically significant data anomalies. 
This approach compares the current day to a seven-day moving average with a two 
day lag, and with the seven-day moving average separated into weekdays and week- 
endskolidays. For example, if today is a weekday, today’s count is compared with the 
mean of the previous seven weekdays (with a two day lag). If today is a weekend day, 
today’s count is compared with the mean of the previous seven weekend days (with 
a two day lag). Analyses are done at the individual hospital facility level, as well as 
by combining data across hospitals for a state or metropolitan area jurisdiction. A 
recurrence interval is calculated to indicate the expected days of surveillance needed 
for one such event of at least the observed magnitude to occur and can be used to 
characterize the severity of data anomalies. 

In early 2006, new application modules were developed to visualize real-time 
hospital data and were made available in a beta test version to state and local public 
health officials in jurisdictions with hospitals transmitting data, as well as clinical 
partners from those hospitals. They include core functionalities found to be useful 
from experience with the initial BioSense interface and with other well-accepted 
electronic biosurveillance systems. Once the pre-processing and classification for 
laboratory, radiology, and pharmacy data have been determined, additional summary 
tables and customizable reports will be developed to display those data. Continued 
BioSense development will be guided by data analysis and end-user input. 

BioSense modules include: 

0 Chief complaint/diagnosis 

- Purpose: Quick overview of syndrome activity by day for chief com- 
plaint and diagnosis data stratified by patient class, indicating statistically 
significant syndrome counts. 

- Display: Table of syndrome counts for the reason for visit, chief complaint, 
reason for admit, working diagnosis, and final diagnosis data (stratified by 
patient class) for a single day. 

0 Statistical anomalies 

- Purpose: Identifies anomalies found by automated statistical testing. 

- Display: Line list of statistical anomalies for syndrome count and rate; 
analyses are performed for individual facilities as well as for all facilities 
in a metropolitan reporting area (MRA) or state. 
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- Navigation: To go to the time series for the data type and syndrome, click 
on an anomaly. 

0 Time series 

- Purpose: Displays trends and statistical anomalies over time for a disease 

- Display: Graph of count and/or rate per 1000 visits by day. 

- Navigation: To go to the patient list, click on the desired graph point or 
the patient list link in the table beneath the graph. To go to the patient 
map, click on the map link in the table beneath the graph. 

indicator (Fig. 6.12). 

0 Patient list 

- Purpose: Examine clinical and demographic data for a group of patient 

- Navigation: To go to the patient detail for an individual patient, click on 

visits. 

the patient of interest in the patient list. 

Patient detail 

- Purpose: Provides all detailed data for an individual patient. 

0 Patientmap 

- Purpose: Displays number of visits with a specified disease indicator by 
zip code of patient residence (Fig 6.13). 

0 Describe 

- Purpose: Provides basic descriptive statistics for a group of patient visits 
(Fig 6.14). 

0 Hospital census 

- Purpose: Provides daily inpatient hospital census data. 

- Display: Table of hospital-level census data (occupancy rate, admission 
count, discharge count, and death count) and unit-level census data (occu- 
pied beds and available beds). 

Future development plans include increasing application customizability for local 
needs and enhancing statistical analyses. Feedback from BioSense users has indicated 
that flexibility is extremely important. BioSense plans to incorporate the capability 
for the user to modify current definitions and create syndromes and sub-syndromes, 
as well as customize time-series graphs and tables, and set statistical thresholds for 
defining anomalies. Additional statistical analyses, such as regression methods that 
include a longer baseline period and spatiotemporal methods to detect clusters in both 
space and time, are planned. With so many data sources and statistical results for users 
to evaluate, a signal fusion and dashboard concept will allow users to better combine 
results to make informed decisions about the data. 
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Fig. 6.12 Time-series module (demonstration data). 

6.4.2 

BioSense is intended for local, state, and federal public health officials, and hospital 
partners use. Users include epidemiologists, bioterrorism response coordinators, 
and hospital infection control personnel. BioSense Administrators for each state 
and metropolitan area jurisdiction, for each hospital facility, and for the VA and 
the DoD must approve BioSense access for personnel in their jurisdiction. Users 
access BioSense through the CDC Secure Data Network website with user names and 
passwords that permit viewing of hospital or jurisdictional-specific data. Data from 
a given hospital are viewable by personnel at that facility. State or metropolitan area 
public health officials may view data from all facilities in their jurisdiction. 

In 2004, CDC initiated the BioIntelligence Center (BIC) to support state and lo- 
cal use of BioSense. The BIC includes data analysts at the CDC responsible for 
monitoring, analyzing, and interpreting BioSense data. The BIC staff are available 
to answer questions and assist users as requested. Examples of such aid have in- 
cluded surveillance support for large-scale events (including political conventions, 
presidential debates, and major sports events), help with interpreting data anomalies, 
and providing further information for public health follow-up. BIC staff review data 
for a set of jurisdictions daily; they are familiar with general data trends and can be a 
valuable resource for users [40]. 

BioSense does not receive patient identifiers, but during a public health investiga- 
tion, there is a need for local public health officials to be able to link data in BioSense 
with the individual seen at the hospital. To facilitate response, each hospital patient is 

Monitoring of BioSense Application for National Surveillance 
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assigned a longitudinal BioSense patient identifier (ID). This ID is used to uniquely 
distinguish a patient across all visits to a single facility, or in some cases, across all 
visits to a health care system, over time. This ID may be used only by the health care 
facility to associate the BioSense patient ID to a patient’s identity and medical record. 
This linking to patient identifiers only occurs at the local level. 

BioSense is in the process of developing monitoring protocols with the under- 
standing that state and local jurisdictions may have their own monitoring and response 
protocols. A current priority activity is determining how, in a systematic and auto- 
mated way, to characterize anomalies as being of potential public health importance. 
Various criteria are being explored for an anomaly ranking analysis, including the 
recurrence interval and a comparison of the current count to the expected count (risk 
ratio and risk difference) and to previous maximums for that day of the week. Experi- 
ence with this type of characterization will help the CDC determine the criteria that are 
useful in daily public health monitoring of BioSense data, and could be incorporated 
in the application for all users. 

Statistical analyses can assist with, but cannot replace, the human element for 
evaluating anomalies. BIC daily activities involve looking at time series to determine 
if current patterns vary substantially from historical and seasonal trends, observing 
geographic patterns, and assessing data quality, as data duplication and errors in cate- 
gorizing free-text data to syndromes can cause data anomalies. BIC analysts may not 
be overly concerned with anomalies that occur only for a single day. Epidemiological 
characteristics are examined to explore patterns with regard to age, sex, location, and 
disease characteristics. More severe disease, or similar patterns of illness among a 

Fig. 6.13 Map module (demonstration data) 



ELECTRONIC BIOSURVEILLANCE AT THE NATIONAL LEVEL 297 

Fig. 6.14 Describe module (demonstration data). 

group of patients, may indicate an anomaly of potential public health importance. In 
a cross-jurisdictional public health event situation, BIC staff can use BioSense data to 
determine the event location, size, spread, and characteristics to inform public health 
response activities. 

The BioSense vision is to provide local, state, and federal public health and clini- 
cal partners simultaneous access to existing health data for biosurveillance related to 
naturally occurring and bioterrorism-related events, both locally and across jurisdic- 
tions. A major goal of BioSense is to add substantial national and local data sources 
to improve coverage and system utility. Because experience with BioSense data has 
indicated that statistical data anomalies happen often and syndromic data can be dif- 
ficult to interpret, including adequate information to support a public health response 
is essential. BioSense can provide public health officials with access to national data 
sources and rich clinical data that may not otherwise be available at the state and 
local levels. To meet the needs of its users, BioSense will continually be expanded, 
improved, and evaluated. 

6.4.3 Movement Toward Surveillance System Standardization 

Section 6.4.2 included a discussion of the dual use of BioSense data for surveillance 
at the national and local levels. Sharing of data is only one aspect of standardization 
that must be considered in the development of systems that serve a common region. 
Other surveillance system components must be somewhat similar, or confusion will 
arise during collaboration between users of the national BioSense and local health 
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department surveillance systems. Commonality needs to exist not only at the data 
communications level, but also at the receiving, processing, and monitoring levels. 
The alerts and flags produced by system A will be quite different than those produced 
by system B if the data are not aggregated similarly into the same syndrome groupings 
or if different analytics are applied to finding anomalies in similar data streams. An 
alert in system A may not be an alert in system B, causing confusion among users of 
different applications viewing the same data streams. Likewise, different visualization 
techniques applied to similar data streams could represent the data differently, so that 
an event shown in one format could seem highly significant while going unnoticed in 
another surveillance system. Thus, there must be a movement toward commonality 
among systems components that acquire, process, and analyze the same data. As a 
result of the potential differences among systems, BioSense and ESSENCE developers 
have agreed to migrate toward the use of common solutions for both applications. 

6.5 SUMMARY 

This chapter discussed the history of surveillance methods and how electronic surveil- 
lance systems have enhanced the capabilities of public health jurisdictions. While 
community-wide surveillance and epidemiological investigations have long been roles 
of public health, large amounts of timely data have not been readily available to aid in 
active day-to-day surveillance. There are many considerations that must be factored 
into the decision of whether to implement such a system at the various levels of public 
health, including the cost to set up and maintain a system, availability of staff to mon- 
itor, and availability of resources to respond. The case studies included in this chapter 
illustrate instances when an electronic surveillance system allowed epidemiologists to 
identify and respond to a health event expeditiously. Similarly, the role of the CDC in 
national surveillance was discussed. 

Public health officials serve a very important but often unrecognized role in a 
community. Until recently, they have not had access to IT tools to enhance their 
ability to perform their jobs more efficiently. With the mounting threats of both 
bioterrorism and emerging infectious diseases, such as pandemic influenza, electronic 
surveillance systems provide public health officials with an additional tool to assist in 
early detection and effective response. 

6.6 STUDY QUESTIONS 

6.1 Through the years, public health has undertaken numerous surveillance respon- 
sibilities. The threat of bioterrorism has imposed additional responsibilities on 
already resource-strapped departments. Q: How can electronic disease surveil- 
lance systems enhance public health’s abilip to perjGorm surveillance activities? 

6.2 Individual health departments and/or systems users may have unique method- 
ologies for reviewing and responding to an anomaly identified in an electronic 
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disease surveillance system. These methodologies will be based on, among 
other factors, the resources of the health department and the skill level of the 
end user. Q: Describe a generalized method of evaluating system alerts. 

6.3 Requirements and attributes for implementation of electronic surveillance sys- 
tems vary by locality. Q: What are some of these requirements and attributes 
at the local and regional levels? Based on these considerations, what kinds of 
systems would be more desirable? 

6.4 Information requiring action may vary depending on the particular situation, 
such as the time of year and the perceived seventy of the illnesses. This 
chapter provided case studies to explain a variety of situations where action by 
public health officials was required. Q: Explain what constituted actionable 
information in each case scenario. 

6.5 Electronic surveillance systems are being implemented at every level of public 
health, from the local city/county/state level to the national level. The issues 
public health officials face at each one of these levels are very different. Q: 
Describe the challenges faced at the ciQ/county/state, and national levels in 
establishing an electronic disease surveillance system. 
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7 Canadian Applications of Modern 
Surveillance Informatics 

Jeff Aramini, Shamir Nizar Mukhi 

Chapter 6 examined the operational aspects of disease surveillance systems in 
settings that ranged from local public health practice perspective to national disease 
surveillance. The intent of Chapter 6 was to learn from the experience of leaders in 
implementing automated disease surveillance systems in the United States. 

The remaining chapters in Part I1 of the book explore advanced disease surveil- 
lance applications outside the United States. Chapter 7 describes an initiative within 
the Public Health Agency of Canada (PHAC) to establish automated disease surveil- 
lance. The chapter begins by outlining the processes used within PHAC to develop 
surveillance applications. The architecture and functionality of the Canadian Early 
Warning System (CEWS) are then presented. The Federated Area-Based Result Man- 
agement System (FARMS), an application used to manage large data sources and 
various analytics in CEWS, is also described. Finally, the chapter presents insights 
and recommendations based on experiences of the PHAC in implementating these 
automated surveillance applications. 

7.1 INTRODUCTION: DISEASE SURVEILLANCE IN CANADA 

7.1.1 

Over the past several years. a number of widely publicized health events have sparked 
much reflection, debate, and subsequent action relating to the state of public health 
surveillance in Canada. Two large waterborne outbreaks (an E. coli outbreak in 
Walkerton, Ontario, in 2000 and a cryptosporidiosis outbreak in North Battleford, 
Saskatchewan, in 2001), the 2003 limited SARS episode in Toronto, Ontario, and fears 
of bioterrorism since September 2001 have all prompted local, provincial/territorial, 
and federal health authorities to critically assess their surveillance capacities, particu- 
larly with respect to infectious diseases. 

Understanding the True Public Health Needs 

303 
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New technologies and informatics methods are central to the current activities 
to improve public health surveillance capacities at all levels of government. Web- 
based and wireless technologies, data extraction and exchange tools, and sophisticated 
modeling and forecasting methods all have roles in enabling surveillance. However, 
along with potentially facilitating public health surveillance in Canada, information 
technology also has the potential to further complicate an already complex public 
health activity. Over the past several years, there has been an explosion in technologies 
that are potentially applicable to public health surveillance. The challenge from 
an applied perspective is not whether processes are technically possible, but which 
technologies to harness and for what purposes, and how to implement and integrate 
them with existing systems and business processes. The growing divide in technical 
knowledge between the ultimate users of surveillance systems (i.e., public health 
stakeholders) and information technology professionals has the capacity to result in 
surveillance systems and tools that do not fully meet -or do not efficiently meet- 
their intended goals. Given the rapid expansion of new technologies, it is critical 
that in the development and implementation of new surveillance systems, the ultimate 
purpose for harnessing new technologies is defined clearly and understood. 

An assessment of the Canadian public health surveillance environment indicates 
that improvements are needed along the entire surveillance life cycle - from data 
to information, to the sharing of analysis results. Sharing the results of analyses is 
important because public health surveillance includes not only data exchange and 
analysis, but also the dissemination and sharing of information. Communication 
among and between stakeholders is often overlooked as a piece of the surveillance 
puzzle. To the contrary, communications may be the most critical component of an 
effective public health surveillance system. This understanding of health surveillance 
is in line with Naylor’s definition in his 2003 report, in which he reflects upon the 
2003 SARS episode in Canada: 

Health surveillance is “the tracking and forecasting of any health event or health 
determinant through the continuous collection of high-quality data, the integration, 
analysis and interpretation of those data into surveillance products (for example re- 
ports, advisories, alerts, and warnings), and the dissemination of those surveillance 
products to those who need to know” [ 11. 

7.1.2 Developing and Harnessing the Right Technology 

The Public Health Agency of Canada, working with public health stakeholders, has 
undertaken several efforts to improve public health surveillance through the application 
of new technologies. As noted, with so many technical options available, matching 
the right technology with the right problem can be a challenge. A number of guiding 
principles were developed to assist in choosing the right technologies: 

0 Where possible, make use of existing legacy systemshpplications by creating 
interfacing adapters and single-sign-on (SSO) methods to provide a seamless 
user experience. 
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0 Develop systems that are flexible and scalable to meet changing public health 
needs over time. 

0 Adhere to international standards when they exist; attempt to create new stan- 
dards where they do not. 

0 Implement user interfaces that are intuitive and appropriate for the intended 
users. 

0 Choose technologies that align with current fiscal realities. 

0 Implement hosting infrastructures that allow for expansion, using clustered 
setups for inherent redundancy and load balancing to manage increasing traf- 
fic loads during critical periods (e.g., during a disease outbreak) and provide 
scalability. 

Clearly, there are many technologies that could (if applied correctly) contribute to 
an effective public health surveillance system. But when a deliverable can be achieved 
with two servers rather than 12, or a function can be accomplished with a few lines of 
code rather than thousands, the most cost effective choice should be made. 

These principles were applied to the development and implementation of a new in- 
formation managementhnformation technologyknowledge management (IM/IT/KM) 
architecture and framework, the enhanced Federated Architecture for Collaborating 
Technologies (eFACT). As an overall architectural strategy, eFACT provides a mecha- 
nism for standardizing how applications and users communicate and data are captured, 
stored, and analyzed. Based on core J2EE (Java 2 Platform, Enterprise Edition) tech- 
nology, eFACT is a scalable and flexible architecture that enables many useful features 
(Fig. 7.1): 

0 Data center sewer (DCS). DCS enables data extraction and collation and sup- 
ports multiple communication methods. One of the key components of DCS 
is newly developed middleware referred to as smart engine technology (SET). 
SET facilitates data extraction, interrogation, analysis, and communication be- 
tween disparate databases within a federated environment, independent of data 
format and database type. SET allows full control by the user of field-level data 
sharing. The DCS is being designed and developed to continuously enhance ca- 
pabilities to support various technology and nomenclature standards, including 
XML (extensible markup language), HL7 (health level seven), SOAP (simple 
object access protocol), WSDL (web services description language), ICD (in- 
ternational classification of disease), LOINC (logical observation identifiers, 
names, and codes), and SNOMED (systematized nomenclature of medicine). 
This capacity allows interfacing with existing legacy systems, such as emer- 
gency room triage systems, case management systems, tele-health systems, and 
pharmacy databases. 

0 Data exchange server (DES). DES is a central processing device that enables 
seamless communication between applications - for example, between two 
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eFACT instances, between an eFACT instance and an external web services 
compliant application, or between an eFACT instance and an external applica- 
tion with an arbitrary communication protocol. 

0 Intelligent alert not$cation (IAN). IAN is an automated escalation-based com- 
munication management device for the delivery of notifications via multiple 
communication channels, including e-mail, phone, fax, pager, and text messag- 
ing. 

0 Registration system (RS). The RS performs user registration, authentication, and 
access control (role-based and target-based) for each of the data sets and applica- 
tions within the eFACT framework. It allows communication and synchroniza- 
tion between different registration systems. The RS ensures data confidentiality 
while allowing controlled access to multiple databases and applications. 

0 Single-sign-on server ( S S O S ) .  The SSOS is responsible for interfacing with 
external application authentication systems to enable seamless access and navi- 
gation. In addition to supporting standard protocols such as LDAP (lightweight 
directory access protocol), SSOS supports proprietary application adapters and 
custom solutions ranging from token-based access control systems to proxy- 
based access. 

Fig. 7.1 Enhanced federated architecture for collaborating technologies (eFACT). 

All technologies developed and described in the remainder of this chapter have 
been implemented using the eFACT framework. 
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7.2 DISEASE-SPECIFIC SURVEILLANCE ENABLED THROUGH 
TECHNOLOGY 

7.2.1 Introduction 

With the exception of some very recent advances in syndromic surveillance and 
other close-to-real-time surveillance approaches, the methods used for public health 
surveillance have not changed over the past century. Data on deaths and specific 
diseases are gathered, aggregated at a central location, analyzed, and summarized. For 
the most part, public health surveillance is still very much disease or program specific. 
The mechanism by which data are gathered, aggregated, analyzed, and summarized 
may be quite different for influenza than for enteric illnesses, and different again for 
sexually transmitted diseases. Many disease-specific surveillance systems still rely 
on the manual collection of data from the providers, mail and fax (and now e-mail) to 
deliver data to a centralized location, manual execution of basic statistical procedures 
to summarize the data, and mail and fax (and e-mail) to distribute analytic results. 

Over the past few years, there has been much discussion among public health 
stakeholders of the need for an integrated approach to surveillance. An integrated 
approach would ultimately involve different program areas working together to stan- 
dardize and streamline data and information management. Ideally, all programs would 
use the same basic IM/IT/KM framework to share and analyze surveillance data and 
to distribute surveillance products. Although a laudable final goal, experience from 
working with many program groups leads to the conclusion that a stepwise transitional 
approach is needed. It is unrealistic to expect program areas to abandon surveillance 
systems they have used for a decade or more and migrate to an entirely new system in 
one step. To begin with, a “standard system” that meets the current exact needs of each 
and every program area simply does not exist. Furthermore, the standardization of 
definitions (e.g., alert levels, influenza activity levels) and processes (e.g., information 
distribution preferences, communication channels) is not an IM/IT/KM challenge-it 
is a program and business challenge. 

In many respects, new technologies can be used as facilitators to change how public 
health surveillance is done. As described in Section 7.2.2, the implementation of new 
technologies has helped create real advances in the efficacy and efficiency of public 
health surveillance in Canada. A prominent public health stakeholder in Canada 
recently commented that if implemented strategically in public health, technology 
could be “the tail that wags the dog” [ 2 ] .  

7.2.2 Working with Stakeholders to Improve Disease-Specific Surveillance 
Through the Implementation of Technology 

Work with Canadian stakeholders to map the processes of a given disease-specific 
surveillance system showed that technology has a significant role to play in improving 
both the efficiency of existing surveillance systems and the quality of the outputs. The 
National Enteric Surveillance Program (NESP) is one program-specific surveillance 
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system that has been augmented through the application of technology. Established 
in 1997, NESP is a system for monitoring short-term fluctuations in the numbers 
of human enteric pathogen isolates in Canada to enable the timely identification of 
disease outbreaks. Provincial laboratories fax/e-mail weekly summary sheets to the 
Public Health Agency of Canada (PHAC), National Microbiology Laboratory (NML), 
where the data are entered manually into a database. ML microbiologists work with 
PHAC epidemiologists (from a separate office) to analyze and interpret the data, and a 
weekly report is generated that is faxed to stakeholders. The report includes tables with 
isolate numbers, together with comments and interpretation. The audience includes 
federal and provincial/territorial stakeholders involved directly in the identification, 
prevention, and control of enteric disease in Canada. Figure 7.2 outlines the basic 
NESP business prior to technology enhancement. 

Under the underlying IM/IT/KM framework described in Section 7.1.2, the Public 
Health Agency of Canada was engaged to work with NESP stakeholders to techni- 
cally augment NESP to improve its timeliness and usability. The existing system was 
labor intensive and prone to delays. Working with NESP stakeholders, a web-enabled 
application (wNESP) was designed, developed, and implemented. The basic ap- 
proach taken throughout the development of wNESP was to augment, not necessarily 
change, the system. Although a radically new approach to real-time enteric disease 
surveillance could have been developed, where all data were exchanged automatically 
and sophisticated algorithms and GIS (geographic information system) techniques 
were used, experience has shown that stakeholders respond best to a stepwise ap- 
proach to technology implementation. No matter how technically advanced a system, 
without stakeholder buy-in and adoption, it will not serve its intended purpose. To 
ensure success, stakeholders were engaged in all stages of the project, from design to 
implementation. 

wNESP was developed as a secure web-based application with the following goals: 

More eficient data collection and analysis and information dissemination. Data 
can be entered either online or extracted automatically from existing laboratory 
databases. Data (including historical data) and information are accessible to 
appropriate users 24 hours a day, 7 days a week, via a secure web interface. Sta- 
tistical procedures are automated, and custom queries and statistical procedures 
can be conducted. 

Increased data security. Data collection, transfer, and storage are enabled 
through a secure web infrastructure. The infrastructure includes server redun- 
dancy and strict user registration policies. 

Flexible user integace. Users can define what information is displayed: for 
example, time period, organism, and view options. 

Online tools to empower users. wNESP links to a suite of resources to facili- 
tate decision making, including discussion boards, news boards, and keyword 
searches. 
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Fig. 7.2 NESP business before technology enhancement. 

Developing and implementing wNESP transformed the business of NESl? The 
new business framework is shown in Fig. 7.3. 

For the most part, wNESP is a straightforward web application. It includes role- 
based access control, data input screens, charting and graphing resources, etc. Two 
aspects of NESP, however, presented challenges that required the development of 
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Fig. 7.3 NESP business after technology enhancement. 

unique technical solutions: an automated aberration-detection algorithm and a mech- 
anism to extract data from legacy systems automatically. 

7.2.2.1 Anomaly Flagging Algorithm for  Enteric Surveillance A proprietary al- 
gorithm (called a progressive scan) was developed to flag anomalies based on a 
comparison of a week’s current organism count for each classification (genus, species, 
serovar, etc.) and jurisdiction (provincial/territorial, and national) of interest with pre- 
vious years’ values around the same calendar time. The progressive scan algorithm 
depends on the following generic parameters (Fig. 7.4): granularity (g), which defines 
the unit time of primary interest (e.g., day, week, month); step size ( s ) ,  which defines 
the time unit size to consider in each calendar direction from the time of interest; 
walking distance (w), which is the number of steps (and thus number of values) to 
consider; period (p), which indicates the time blocks for historical comparison with 
the current value; and reference block ( T ) ,  which denotes the overall time to consider 
in the comparison. In general, the total number of comparative values to be used is 
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N = r / p  * w. For NESP, g = 1 week, s = 1 week, w = 5 weeks, p = 1 year, r = 5 
years. The value of interest (the current week’s count) is compared to a reference 
value, which, for this case of NESP, is the mean ( p )  of the previous 25 values. 

Fig. 7.4 Progressive scan parameters. 

A standard colored alertkhreshold framework was also implemented for wNESP. 
The aledthreshold takes into account both statistical and biologically relevant param- 
eters: 9 is the current week’s value for a given organism classification for a given 
jurisdiction, p is the comparative mean based on up to 25 values, 0 is the standard 
deviation of the 25 values, and 3 is a minimum critical value. 

0 I f 3 > 1 :  
Alert level = orange (warning) if 
Alert level = red (urgent) if 9 > p + 2 0  and V 2 4 
Alert level = black (no problems) if not orange or red 

> p + 0 and 9 2 ,3 

0 I f 3 = 1 :  
Alert level = red (urgent) if 9 2 1 
Alert level = black (no problems) if 9 < 1 

The minimum critical value (13) was introduced (1) to help prevent excessive alerting 
for very common organisms, and (2) to enable alerting for very rare organisms of 
interest. 

7.2.2.2 Smart Engine Technology wNESP, together with other program-specific 
surveillance systems (including a web-enabled FluWatch application), presented sig- 
nificant challenges with respect to data extraction and exchange. Although potential 
public health data providers were willing to share relevant data for the purposes of 
surveillance, their existing legacy data management systems did not offer simple so- 
lutions for data sharing. Furthermore, the same data providers had limited resources 
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available to help implement costly new technologies. To meet this challenge, the 
new SET middleware was developed. SET facilitates data extraction, interrogation, 
analysis, and communication among disparate databases, independent of data format 
and database type, via extract, transform, and load (ETL) processes. 

A vocabulary of common SET functions was defined to facilitate the development 
of a generic data exchange engine for disparate data source formats and structures: 

0 Data receiver: allows importing of multiformat data from flat files and/or 
databases using ODBC (open database connectivity) and JDBC (Java database 
connectivity). Provides support for various communication protocols and stan- 
dards, including HL7, XML, and ED1 (ASCX12: electronic data interchange). 

0 Data musk: allows for field-level control by data providers. For example, if 
the database being accessed has 100 fields, the data provider might be willing 
to share only 10 fields. Data providers need the ability to control/modify field- 
level access easily because data exchange needs may differ depending on the 
situation: for example, during an outbreak period. 

0 Data validation: applies predefined logical rules to incoming data sets to filter 
any records that are missing key data elements. 

0 Datafixer: applies logical rules to specified data using XML configuration files 
and fixes raw data (if possible) that failed validation rules. For example, if city 
= WINNIPEG and province = MANITOBA, then country = CANADA. 

Data duplicate detector: detects duplicates in the data based on both simple 
and complex statistical matching algorithms. An example of a simple algorithm 
could be to match first name, last name, and address. 

0 Data translator: maps (or transforms) incoming data fields into a common 
format to facilitate data collation. This process is responsible for implementing 
lookup tables and format scripts to convert incoming data to match the predefined 
common data format. 

0 Data coder: converts data values into standard codes: for example, LOINC, 
SNOMED. A key requirement for surveillance in a federated environment is 
the standardization of fields, especially test results. 

0 Data aggregation: provides the capability to aggregate data at specified classi- 
fications (e.g., geography, disease classification). This key process is required 
for disease surveillance and offloads processing from central servers. 

0 Data logger: provides the ability to log various events during the data transfor- 
mation process: for example, dropping a record because of missing data. 

0 Data export: facilitates exporting of data in various formats, including text and 
database tables. Once data are transformed, they must be stored in a format that 
can be transmitted. 



DISEASE-SPECIFIC SURVEILLANCE ENABLED THROUGH TECHNOLOGY 313 

Data transmitter: provides the capability to transmit data based on standard 
protocols. 

Workjow manager: manages the workflow of tasks based on the specific needs 
of the data provider. As shown in Fig. 7.5, an XML-based state machine controls 
the sequence of operations necessary to manage the processes. A bit map is 
used to control the enabling of each process in the state machine, where a value 
of 0 disables a specific process. 

Fig. 7.5 Smart engine technology state machine and associated workflow manager. 

SET has been used successfully to connect and exchange data with a number of 
data providers. Although expensive and hardware-intensive proprietary solutions can 
be purchased, effective data exchange can be achieved through implementation of 
SET with standard equipment and software. 

7.2.2.3 wNESP Is Helping to Improve Enteric Disease Surveillance in Canada 
Although implemented only recently, wNESP has already been successful in achiev- 
ing its ultimate goal of improving enteric disease surveillance in Canada. Data are 
entering the database in a timelier manner. Aberration detection is now standardized 
to allow for meaningful comparisons across jurisdictions. Data and analysis results 
are available online, 24 hours a day, 7 days a week. Users have tools to facilitate data 
exploration, result sharing, and collaboration. The Public Health Agency will continue 
to work with NESP stakeholders to implement additional decision support resources 
and technologies, including real-time GIS and more sophisticated aberration-detection 
algorithms. 
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7.2.3 Lessons Learned Through Disease-Specific Surveillance Application 
Development 

The cooperative efforts between the Public Health Agency and the many program 
stakeholders to develop and implement disease-specific surveillance applications high- 
lighted the need for a new approach to public health IM/IT/KM resource development 
and implementation. Most stakeholders have had negative IM/IT project experiences 
in the past. For the most part, public health program stakeholders expressed dissat- 
isfaction with the traditional IT approach to application development. They felt that 
the traditional approach of endless requirements collection and documentation was 
tedious and unproductive. Furthermore, they felt that the end result rarely met their 
expectations. 

In an attempt to break this unproductive cycle, a program-centric approach was 
developed. The current strategy brings program users (e.g., epidemiologists, microbi- 
ologists, administrators) into the core project team. People with experience and train- 
ing in the program areas were recruited to work with their regional/provincial/terri- 
torial/national colleagues and with a team of engineers and computer scientists to 
guide end users through the entire business cycle from needs assessment to product 
implementation. 

For each of the business cycle stages, new approaches were developed and tested. 
Most important, it became apparent that rarely are user needs well defined from the 
outset. Hence, the business cycle used is based on an iterative and visual approach 
to needs assessment. The primary objective is to provide an environment in which 
users can explore options and, together with the application development team, create 
innovative solutions. The users are buffered from the traditional tedious IM/IT process 
of formal change requests and endless documentation during development stages. 
Applications evolve quickly, and versions are released rapidly. This, user-friendly 
approach to application development has necessitated changes in how applications 
are coded. For example, very little is hard-coded, providing architects and developers 
with a malleable framework. The end result of this approach has been overwhelming 
buy-in and user ownership. It has resulted in an environment of trust, respect, and 
mutual appreciation. 

Another key element of the strategy used is the building block approach to 
IM/IT/KM resource development. Although infectious disease surveillance and re- 
sponse programs have developed in a “siloed” environment (particularly at the federal 
level), there are many similarities in business processes (data flow, analysis needs, 
communication needs, etc.) among the many disease-specific areas. The traditional 
siloed approach has resulted in fragmented IM/IT systems and, as a by-product, has 
encouraged fragmented business approaches. Fragmented public health business ap- 
proaches are a barrier to establishing the much sought-after “integrated” surveillance 
approach alluded to earlier (Section 7.2.1). 

The approach used leverages similarities in business processes among program ar- 
eas to achieve considerable efficiencies in IM/IT/KM resource delivery. The surveil- 
lance framework allows for the rapid configuration and implementation of solutions. 
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Common business needs include real-time data extraction, analysis, and decision 
support; structured alerting/notification; team communication and collaboration; syn- 
dromic surveillance; laboratory-based surveillance; and quality assurance processes. 
The interaction among many program areas has resulted in a rich and diverse suite 
of “infostructure” building blocks that has provided the opportunity to leverage tools 
developed for one specific program across all program areas. Not only has this ap- 
proach been well received by programs, it is also contributing to standardization and 
integration in business functions across public health programs. 

The adoption of a program-centric, stepwise approach to IM/IT/KM implementa- 
tion is intended to help program areas achieve an integrated approach to public health 
surveillance. As mentioned previously, in many respects, new technology can be a 
facilitator for change in how public health surveillance is conducted. 

7.3 REAL-TIME SYNDROMIC SURVEILLANCE 

As is emphasized throughout this book, recent advances in technology have made 
it possible to gather, integrate, and analyze large amounts of data in real time or 
near-real time. For the most part, the traditional purposes of health surveillance have 
been to monitor long-term trends in disease ecology and to guide policy decisions. 
With the introduction of real-time capabilities, surveillance now holds the promise of 
facilitating early event detection and assisting in day-to-day disease management. 

Once detected, disease events must be monitored and assessed accurately and in real 
time. Ongoing information on the prevalence, incidence, characterization, severity, 
and location of cases will provide health professionals with the information necessary 
to mobilize and allocate resources, monitor progression, and plan subsequent steps. 
Mass numbers of persons presenting to one emergency room will require a different 
type of response than modest numbers presenting to several emergency rooms in the 
same city. People phoning into a tele-health service with similar symptoms from 
throughout an entire region would probably indicate the need for greater resource 
mobilization than the case where calls originate from only one neighborhood. 

Taken together, the need for early detection and for the real-time monitoring of 
disease dynamics suggest that existing traditional surveillance capabilities are not 
optimal. The potential benefits of early disease event detection have been demonstrated 
by a number of Canadian experiences: 

Retrospective analyses of a large waterborne outbreak of cryptosporidiosis in 
North Battleford, Saskatchewan, in 2001 demonstrated that sales of OTC an- 
tidiarrheal medication increased approximately 2 weeks prior to the recognition 
of a widespread outbreak by public health officials [3]. 

0 Retrospective analyses of a waterborne outbreak of E. coli 0157:H7 in Walk- 
erton, Ontario, in 2000 showed that sales of OTC antidiarrheal medication 
increased 3 days prior to the first reported laboratory-confirmed case. Early 
detection and implementation of a drinking water advisory would have pre- 
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vented several hundred cases of diarrhea and might have minimized loss of life 
in Walkerton [4]. 

0 Many foodborne outbreaks (particularly those involving distributed food prod- 
ucts) are not identified until increases in laboratory-confirmed gastroenteritis 
cases are reported to public health authorities. The time between symptom on- 
set and laboratory diagnosis is typically between 7 and 14 days. The opportunity 
to identify foodborne-related clusters of disease before laboratory confirmation 
clearly exists. 

It is well recognized that a comprehensive early warning system must identify 
as many people as possible early in the disease process when they have nonspecific 
symptoms, such as cough or diarrhea, and then use statistical algorithms to find any 
interesting patterns among the sick that suggest that an unusual event is occurring. 
Such a system needs to receive data directly and within an acceptable time frame. 
Candidate sources of early warning data are many and include emergency departments, 
laboratories, pharmacies, and tele-triage systems. 

Despite their promise for facilitating early-event detection and real-time disease 
monitoring, the evolution of real-time surveillance systems, particularly syndromic 
surveillance systems, have not been a main priority in the health care community. 

Canada (among other countries with some sort of universal publicly operated 
health care program) has a role to play in helping to test and evaluate syndromic 
surveillance methods. The goal of the Canadian “public” health care system is to give 
everyone equal access to basic health care services, including primary care physicians, 
hospitalization, dental surgery, tele-health, and so on. For example, Canadians may 
visit any emergency room in Canada without a direct charge. Canadians are also 
not charged directly when visiting a physician’s office. For the most part, the data 
associated with publicly funded health care services are centrally managed, stored, 
and accessible. Depending on the data management systems used, much of these data 
can be accessed in real time. 

Concerns about the timeliness of traditional surveillance systems have led to the 
creation of the Canadian early warning system (CEWS), a syndromic surveillance 
system being developed and piloted in Canada. The development of CEWS has 
highlighted some of the unique challenges of syndromic surveillance. 

7.3.1 Canadian Early Warning System 

Prompted by fears of bioterrorism-related disease events, resources have been made 
available in Canada to develop, pilot, and evaluate real-time syndromic surveillance 
technologies. The Public Health Agency of Canada has partnered with the local health 
authority in Winnipeg, Manitoba [the Winnipeg Regional Health Authority (WRHA)], 
to develop and test a syndromic surveillance system. Winnipeg is the largest city in 
Manitoba, with a population of approximately 650,000. The WRHA oversees all 
health care services for the city of Winnipeg and is, in essence, the “owner” of all 
relevant data sources, except for OTC data, which are owned by individual pharmacy 
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chains. OTC data access has been facilitated through a related national project to 
investigate the utility of OTC data for gastroenteritis surveillance. By negotiation 
with WRHA, the Public Health Agency secured access to real-time data from all 
seven emergency rooms and the regionwide tele-health system. All seven emergency 
rooms use the same electronic triage system. The tele-health system is a free telephone 
health service for all Manitobans, manned by nurses 24 hours a day, 7 days a week. The 
basic goal of the pilot project is to work with front-line public health care providers 
to develop and pilot a real-time syndromic surveillance system. Ultimately, it is 
the utility of the system as viewed from the perspective of front-line users that will 
determine the likelihood of system sustainability. 

7.3.1.1 In designing and developing CEWS, the Public 
Health Agency worked hand-in-hand with potential users. The first challenge was 
determining who the users might be. It quickly became clear that potential users 
of a syndromic surveillance system were very diverse and varied in a number of 
dimensions, including jurisdictional role (local, provincial/territorial, federal), dis- 
cipline/expertise (e.g., microbiology, epidemiology, statistics, occupational health), 
education (e.g., MD, DVM, MSc, BSc), and responsibility (e.g., medical officer of 
health, senior epidemiologist, communicable disease nurse, data analyst, clerk). Not 
surprisingly, the diversity of users led to diversity in required functionality. End users 
requested that the system be able to accommodate many different types of potential 
data inputs, including emergency room visits, OTC sales, tele-health calls, laboratory 
data (submissions and results), weather data, and air quality data. Some users wanted 
a very simple user interface with standard default settings; others required the ability 
to manipulate most parameters. 

The initial business requirements, which evolved through the development cycle, 
were used as the basis for a syndromic surveillance system concept design. Central 
to the overall design is the ability to control user access to all aspects of the system. 
For example, access to data could be restricted by type (e.g., OTC data only) and by 
granularity (e.g., provincial aggregate only). Similarly, it would be possible to restrict 
which algorithms and what results were available to each user. The CEWS application 
was then designed from the basic syndromic surveillance system concept design. The 
application design is based on four primary modules: handler, processor, analyze< 
and presenter (Fig. 7.6). 

CEWS - Application 

0 The handler’s primary function is to receive incoming data in various formats 
[e.g., HL7, EDI, comma-separated value (CSV)] and efficiently store the data 
to optimize analytical computations and database access. The handler is re- 
sponsible for parsing the data, organizing them in an optimal object structure to 
facilitate manipulation, and storing the raw data in the system repository. Data 
can be presented to the handler by a number of different mechanisms, including 
via SET (Section 7.2.3). 

0 The processor’s primary function is to perform all necessary data processing, 
preparing it for analysis and presentation, The processor is responsible for 
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Fig. 7.6 High-level conceptual view of the CEWS syndromic surveillance system. 

classifying the data based on standard codes - for example, SNOMED, UPC 
(universal product code) - and aggregating data at various classifications (e.g., 
syndrome, province, health unit, city). 

0 The analyzer’s primary function is to execute analytical anomaly detection 
algorithms on the aggregate data and to flag anomalies. The analyzer supports 
both automated and manual algorithm execution. 

0 The presenter’s primary function is to manage the user interface of the system, 
how results are presented, and how anomaly alerts are distributed. The presenter 
is responsible for controlling user access to data and information based on 
profile parameters, including data type (e.g., emergency room visits, tele-health, 
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OTC), geo level, organization, and function (e.g., mapping, charting, algorithm 
execution, data management). 

Based on this high-level modular design, the system’s technical framework was 
developed. The technical framework consists of a number of independent functional 
blocks that provide flexibility and scalability to accommodate an increasing number 
of data feeds and analysis tools. The technical framework was designed to promote 
functional clarity and manageability. As illustrated in Fig. 7.7, the technical frame- 
work is composed of six main functional blocks, each addressing specific logical 
requirements. 

Fig. 7.7 CEWS technical framework. 

0 Data handler: The system is required to support multiple data feeds with a 
number of different data standards. For example, some data feeds are in a 
simple comma-delimited format, while others consist of HL7-encoded data that 
require HL7 listeners. 

0 Archive manager: As the system receives large amounts of data, a facility is 
needed for managing raw data such that older data that no longer contribute to 
the automated anomaly detection process are archived for historical purposes. 
The system manages two sets of tables that store raw data: active and archived. 
Active tables hold all current data up to a total of 5 years. Data are transferred 
to archived tables at the beginning of each new year. 

0 Counts manager. Once the data are received, they are stored in raw format 
for potential reverse linkage if needed. For example, someone with the proper 
authority may wish to review an emergency room chart associated with a par- 
ticular CEWS record. Once stored, data are aggregated based on system and 
user-defined parameters to facilitate anomaly detection and trend analysis at 
various geo levels and classifications groupings. 

0 Query builder To simplify code manageability and repeated access to data for 
analysis and presentation, a query builder was developed that manages queries 
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in structured query language (SQLs) for data access. The approach utilized 
focuses all database access logic into one area of the code base, thus making it 
simple to manage. 

0 Core functions. There are a number of core system functional requirements 
from the user’s perspective, ranging from simple charting to the execution of 
complex algorithms and mapping. A set of core resources was developed which, 
combined with the user interface module, provides users with access to data and 
results in various ways. 

0 User integace. The system provides a browser-based interface enabling Internet 
access for users. 

7.3.1.2 CEWS has been operational in Winnipeg 
since the fall of 2005. The application continues to evolve with the addition of new 
data streams and user feedback. Challenges to date have included interruptions in 
data flow resulting from technical complexities experienced by the data providers; 
user interface design and development to enable the required level of configurability; 
and manipulation while maintaining intuitive navigation, algorithm implementation, 
and results management. Solutions developed and implemented to address challenges 
related to algorithm implementation and results management are described in Section 
7.3.2. 

A major goal of the pilot study has been to help answer many of the questions 
relating to the utility of syndromic surveillance. For example, which data sources are 
best suited for which syndromes? With respect to emergency room data, are some 
chief complaints better than others? Which algorithms should be used and for what 
purposes? Which disease events are more likely detected sooner using syndromic 
surveillance? As part of the Winnipeg CEWS pilot, a comprehensive evaluation study 
was designed. Included in this study is a descriptive and comparative analysis of the 
data sources, a retrospective analysis of traditional outbreak information compared 
to algorithm results, a simulation study to compare the sensitivity and specificity of 
different algorithms, and a prospective study to examine how CEWS can best be 
integrated into WRHA surveillance practices. The results of these studies will be 
presented as they become available in the future. 

CEWS - Initial Experiences 

7.3.2 Unique Solution for a Unique Problem: FARMS 

With increasing access to data from a wide range of data providers (e.g., hospitals, 
tele-health systems, laboratories), vast amounts of surveillance data can potentially 
be collected, processed with a large array of aberration-detection algorithms, and 
analyzed over many variables (e.g., age, sex, syndromes, geography). Because data 
can be accumulated in real time (or near-real time), continual reanalysis is possible, 
leading to many results sets and the need for results management. This huge quantity 
of data not only leads to technical and computational challenges, it presents significant 
usability issues. The ultimate purpose of a real-time surveillance system should be to 
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help the end user make informed decisions regarding early event detection, not further 
complicate the decision-making process. 

There are many technical approaches to dealing with potential data and analysis 
overload. For instance, a surveillance system could allow only for the manual ex- 
ecution of algorithms, eliminating the need for automated result management in its 
entirety. Another solution is to allow for the automated execution of algorithms on 
a limited number of data strata (e.g., syndrome, geo level) to reduce the amount of 
results to be stored and managed. Clearly, neither approach is optimal. To advance 
the efficiency, effectiveness, and usability of real-time surveillance, a collection of 
processes, definitions, and algorithms is being developed, called the Federated Area- 
Based Result Management System (FARMS). The main elements of FARMS are 
discussed in Sections 7.3.2.1 through 7.3.2.5. 

7.3.2.1 Source-Classification-Spatial (SCS) Hierarchy The complex nature of 
disease syndrome and geo-level hierarchies adds significant complexity to syndromic 
surveillance analysis and results management. Some data sources have clear def- 
initions of syndromes: for example, emergency room data from which syndromes 
are defined using chief complaints. Some data sources have a rather complicated 
syndrome definition: for example, pharmaceutical OTC sales data from which a syn- 
drome is defined as a collection of drugs. Further complication arises because not all 
data sources provide data in a standard format, nor do they provide data at the same 
granular level (such as product UPC). Without some way to standardize and classify 
incoming data to enable “apple-to-apple’’ comparisons, aggregation prior to analysis 
becomes problematic. 

Syndrome specificatiodclassification aside, geography also presents a significant 
challenge. In Canada, health surveillance data have been analyzed at numerous 
geo levels, including postal code point locations (based on a six-digit postal code), 
forward sortation areas (based on the first three digits of the postal code), city, county, 
province/tenitory, health unit, and health region. Given the epidemiology of some 
illnesses and the needs of different users, analysis is required over several different 
geographic levels. Complexity arises because different data types are often more 
amenable to classification at one geographic level than another, and different levels of 
geography are not necessarily hierarchical. 

The SCS hierarchy (Fig. 7.8) provides a means of defining a data organization struc- 
ture to enable aggregation and analysis at various levels based on source, classification, 
and space. 

0 A data source is the type of data, such as emergency room visits, laboratory 
results, and pharmaceutical OTC sales. Each data source has unique character- 
istics. For example, emergency room visits typically provide such data elements 
as arrival time; presenting complaint, patient demographics (potentially), and 
hospital location. Tele-health data provide patient call time, symptoms, ini- 
tial diagnosis, and demographics (potentially). On the other hand, OTC data 
provide time and place of drug sale, UPC, drug name, or drug category. 



322 CANADIAN APPLICATIONS 

Fig. 7.8 SCS hierarchy example. 

0 Class$cation is the outcome of interest. In the case of emergency room data, it 
is probably the chief complaint. The setup of a specific classification hierarchy 
is dictated primarily by the granularity of the data elements provided. For 
example, if one OTC supplier provides products by drug category (e.g., anti- 
nauseants), but another provides drug UPCs, the lowest possible classification 
level must be category. 

0 The spatial element is the actual geographical decomposition of the area under 
consideration. Syndromic surveillance within Canada typically considers the 
following geographic levels: province or territory, health unit, city or town, 
and forward sortation area (FSA). Because geographic levels are not always 
perfectly hierarchal, systematic interpretation is often required. For example, 
whereas most FSAs are contained within a city or town, some can span more 
than one. The selection of geo level for analysis is again dictated primarily by 
the granularity of the data elements provided. 

Careful design and implementation of the SCS hierarchy is critical when setting up 
a syndromic surveillance system. 

7.3.2.2 Algorithm Execution Management Depending on the SCS hierarchy, fre- 
quency of analysis, and suite of algorithms chosen, significant computational power 
may be required to perform the necessary analyses. Accordingly, a dynamic Algo- 
rithm Execution Management (AEM) framework was created to facilitate algorithm 
execution and results management in a multiserver environment. AEM enables algo- 
rithm scheduling and results collation. The basic concept of execution management 
is to execute the algorithms in a systematic manner so that results can be written to a 
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database in a format that enables intuitive access for results presentation. Figure 7.9 
illustrates an execution management workflow algorithm for a three-level SCS hier- 
archy. As shown, the process requires three steps to address the corresponding three 
levels in the SCS hierarchy. The first level addresses the data sources by providing a 
loop for all available data sources; the second level addresses each classification; the 
third level addresses the spatial hierarchy. 

Fig. 7.9 AEM workflow example 

Central to AEM is the task coordination manager table (CMT). The CMT resides 
in a database and houses information necessary for the coordination of all algorithm 
executions (herein referred to as tusks). Figure 7.10 illustrates a typical multiserver 
environment setup. The application server hosts the front-end application, including 
the web server and user interface with which a user may manually request tasks to be 
executed. Tasks may also be predefined to enable routine automated executions. The 
algorithm execution server is responsible for monitoring the CMT and performing 
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pending tasks. The CMT comprises seven key data elements: ID, a unique identifier 
for each task; TASK, a categorical variable describing instructions for the execution 
server (request, abort, and resume); TIME SUBMITTED, a timestamp when the 
task was submitted by the application server; SERVER, which identifies the physical 
algorithm execution server that is processing the task; STATUS, a categorical variable 
describing task state (pending, active, and completed); START TIME, a timestamp 
indicating when an execution server started working on a task; and END TIME, a 
timestamp indicating when an execution server ended working on a task. 

Fig. 7.10 Typical multiserver environment. 

Each algorithm execution server manages the execution of algorithms using a state 
machine. Figure 7.11 depicts a high-level state machine to manage three possible 
states. To date, the algorithm set includes 3-day moving average, 5-day moving 
average, 7-day moving average, weighted moving average, exponentially weighted 
moving average, CUSUM, EARS C1, EARS C2, EARS C3, and progressive scan 
(Section 7.2.2) [5, 6, 71. 

7.3.2.3 As might be expected, the execution of 
several algorithms over a complex SCS hierarchy can lead to many large results sets. 
The number of results sets is further amplified if algorithms are executed automatically 
on a specified schedule (e.g., daily). A structured system is needed to manage results 
so that they can be accessible for presentation in an effective manner. Furthermore, 
storage of results over a specific time frame is critical to save computation power as 
well as for quick access to retrospective results. 

A result storage management (RSM) system framework was created to address the 
needs. Central to RSM is the result storage table (RST), also housed in a database. 
The RST holds information necessary for the coordination of algorithm results. The 
RST consists of the following variables: DAY, the date of analysis; SCS triplet (i.e., 
source, classification, spatial region); VALUE SET, the actual results of the algorithm 
executed for a specific time period (also known as an epidemiologically significant 
window); and RESULT SET, the results from the heuristic approach to alert-based 
result mapping (haARM) analysis (activity rate, activity direction, and alert level) for 
each algorithm. (haARM is discussed in Section 7.3.2.4.) 

Results Storage Management 
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Fig. 7.11 High-level AEM state machine example. 

7.3.2.4 The ultimate purpose of a syndromic surveillance 
system is to facilitate decision making by the end user. The huge amount of data 
produced by daily results from multiple algorithms over multiple classifications from 
multiple data sources and with multiple presentation methods (charts, graphs, maps) 
can potentially complicate rather than facilitate the decision-making process. Whereas 
most surveillance systems provide information to the end user through the analysis 
of data, one of the goals of FARMS is to help the end user to create intelligence. 
To facilitate system usability and decision-making utility, therefore, methods are 
being developed to enable the presentation of results, both spatially (geographic) and 
temporally (time-based) in an intuitive, seamlessly accessible and navigation friendly 
view. This overall approach is called visual impact analysis (VIA). 

haARM is a recently developed and implemented VIA method that is based on 
heuristic approaches as well as mathematical methods for collating results from mul- 
tiple algorithms. Currently, the haARM approach is based on two main parameters: 
activity rate (0) and activity direction (6) computed for a specific geographical level. 
Other parameters, including “area under the curve,” are being considered. Activity 
rate (3)  is defined as the rate of change in parametric values (e.g., moving average, 
CUSUM) over a specific epidemiologically significant window (A), which is typically 
defined in number of days. For the purpose of this discussion, this window is assumed 
to be a 7-day period. Consider a scenario of algorithm result values represented as 
h,, where n is the day within A, as illustrated in Fig. 7.12. The y-axis represents the 
parametric value and the z-axis represents the epidemiologically significant window 
starting with the oldest possible day and ending with the current day under investiga- 

Visual Impact Analysis 
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tion. The activity rate is computed using linear regression to fit the best straight line 
among the h values. The average rate of change over A, normalized to variation for a 
specific algorithm, is defined by ,8 = m/u, where m is the slope and u is the paramet- 
ric standard deviation computed over A. Normalization of slope to obtain activity rate 
is crucial for ultimately facilitating cross-algorithm comparison and metaalgorithm 
analysis. 

Fig. 7.12 Typical algorithm daily results. 

Activity direction S is used to describe the direction of the activity rate based on 
A. It is computed based on the sign of the slope value (m). Once S and j3 have 
been computed, the results can be visually represented with some simple angle-based 
shading via the minima concept from elementary calculus, as shown in Fig. 7.13. 

Fig. 7.13 Representation of activity rate direction. 

Over time, haARM has been further refined to account for epidemiologically 
significant nuances encountered in the interpretation of surveillance data. For example, 
during a very dramatic and quickly developing outbreak, the average slope over A 
days may not capture a sudden and significant change in activity rate direction. To 
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capture these types of scenarios, a new slope parameter was defined: the average-based 
activity rate (see Fig. 7.14). 

Fig. 7.14 Example of a rapidly developing outbreak. 

Here 3 b f  is the activity rate using linear regression best-fit approach, and p, is the 
activity rate computed using the mean value ( p )  such that 13, = (h7 - p ) / o .  The 
final activity rate is then computed as the average of 8bf and P,. Once generated, 
6 and 3 values can be displayed using GIS layers on an area- or geo-level-specific 
basis, yielding a temporal-spatial visualization of the results (Fig. 7.15). 

Fig. 7.15 Temporal-spatial visualization of algorithm results. 

To facilitate visualization, 6 has been categorized as positive, negarive, and no 
change based on preset cutoff values. Colors represent predefined alert levels. For 
example, a green alert is generated when the parametric value is less than a specified 
mean (e.g., a seasonal rolling average), a yellow alert is generated when the parametric 



328 CANADIAN APPLICATIONS 

value is between the mean and 1 standard deviation; an orange alert is generated when 
the parametric value falls between the mean plus 1 standard deviation and 2 standard 
deviations; and a red alert is generated when the parametric value is more than the 
mean plus 2 standard deviations. 

7.3.2.5 Ongoing FARMS Research In further work on haARM, methods are cur- 
rently being developed to provide decision-making intelligence based on the results 
of several different algorithms executed on the same data set. With the availability of 
dozens of different algorithms, it is possible, if not probable, to get different results 
from different algorithms executed in parallel on the same dataset. A new approach, 
called confidence-based aberration interpretation, may help to address this current gap 
in syndromic surveillance utility. 

7.4 CONCLUSIONS: PUBLIC HEALTH SURVEILLANCE 

7.4.1 Importance of Communication and Collaboration 

Communication, collaboration, and information sharing are often afterthoughts when 
the necessary elements for an effective and efficient public health surveillance system 
are being considered. Historically, communication among public health stakeholders 
was the cornerstone of surveillance. Even today, many, if not most, disease events are 
still identified by astute health care professionals (physicians, nurses, epidemiologists, 
microbiologists, etc.) recognizing abnormal patterns in disease or illness parameters. 
The importance of epidemiologists and microbiologists comparing notes on disease 
counts or risk factors across jurisdictions cannot be overstated. 

Together with generating public health information and intelligence, public health 
surveillance systems should facilitate the sharing and distribution of this information 
and intelligence among the appropriate people. Furthermore, an effective public 
health surveillance system should provide tools and resources to facilitate stakeholder 
interaction and seamless collaboration. This collaboration will become even more 
important as the World Wide Web continues to evolve, and web-based surveillance 
technologies potentially replace direct person-to-person interactions. 

The assessment of the needs of public health surveillance in Canada identified the 
need for a mechanism for both structured alert-based communication and informal 
communications and collaboration. Resources were needed not to replace phone, 
fax, and e-mail, but to augment them. To fill these gaps, the Public Health Agency 
developed a national alerting system that now connects more than 2000 public health 
stakeholders countrywide. Furthermore, a suite of Web-based communication and 
collaboration tools was developed and implemented. A unique approach was de- 
veloped to package and provide access to communication and collaboration tools to 
reflect the business needs of public health professionals. The response to such tools 
has been overwhelmingly positive. Current plans are to integrate communication and 
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collaboration resources with all of the agency’s surveillance and response management 
applications. 

7.4.2 Integrating Surveillance into a Comprehensive Public Health 
Information Management Framework 

Public health surveillance applications and resources should not be developed in 
isolation from other public health information management resources. Efforts should 
be made to achieve a comprehensive IM/IT/KM framework that integrates all public 
health functions (alerting, surveillance, response, data and information management, 
case management, etc.), thus providing a seamless environment of resources to meet 
the continuum of needs, including disease detection, investigation, response, and 
evaluation. Although it is not necessary for specific applications to be on the same 
technical platform or from the same software provider, it is essential that public health 
applications be able to communicate and integrate. 

The syndromic surveillance resources and activities discussed in this chapter were 
developed within a national IM/IT/KM framework [the Canadian Network for Public 
Health Intelligence (CNPHI)], Figure 7.16 shows how disease-specific surveillance 
applications (including wNESP) and CEWS fit into this much larger framework. Key 
elements of CNPHI are: 

Data Exchange: includes SET (Section 7.2.2), which facilitates data extrac- 
tion, interrogation, analysis, and communication among disparate databases, 
independent of format and database type. SET allows for full user control of 
field-level data sharing. This component of middleware is required to allow 
data sharing within a federated system of databases. Epi Assist is a generic 
online record management tool based on proprietary formbuilder technology 
that enables nontechnical users to collect and manage data. 

0 Decision support: designed to provide users with easy access to a number of 
resources (e.g., GIs, modeling tools). Users can create custom dynamic queries 
to interrogate data to which they have access. The data can also be presented 
on a GIS map depending on business rules. Decision-support resources are 
available to all application users, and data access is controlled through tiered 
and targeted access control. 

0 Collaboration tools: comprise a number of management and collaboration tools. 
These resources are constantly evolving to accommodate newly emerging tools 
that facilitate peer-to-peer collaboration. 

0 Knowledge management: provides a secure environment for the sharing of 
documents, publications, online texts, protocols, training materials, etc. 

0 Public health alerting/noti$cation: a role-based resource that allows for ju- 
risdictional flexibility and is targeted to tailored audiences. It is secure and 
integrated into all other CNPHI resources. It has multiple levels to facilitate the 
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flow of information among jurisdictional levels. This module currently con- 
nects 100% of federal, provincial/territorial, and local public health authorities 
in Canada. 

Disease-spec$c surveillance: utilizing a common architecture and set of func- 
tional resources, the applications that make up this module facilitate program- 
specific surveillance needs. They accommodate program-specific data, analysis, 
distribution, and communication requirements. wNESP (Section 7.2.2) is one 
example of a disease-specific surveillance application. 

Real-time surveillance: with advances in technology, the real-time exchange 
of data has created the potential for more timely surveillance of health events. 
CEWS (Section 7.3.1) was developed to investigate and evaluate the utility of 
real-time surveillance. 

0 Registration system: performs user registration, authentication, and access con- 
trol (role-based and target-based) for each of the data sets and applications 
within the entire framework. It is implemented to allow communication and 
synchronization among different registration systems. This module ensures data 
confidentiality while allowing access to multiple databases and applications. 

Fig. 7.16 High-level modular overview of a comprehensive public health IM/IT/Kh4 frame- 
work: the Canadian Network for Public Health Intelligence. 

7.4.3 

Opportunities to further advance public health surveillance through the adoption of 
technologies are limited only by the imagination. Consider the following examples: 

Future Opportunities in Public Health Surveillance 
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0 In Canada, it is expected that most, if not all, health records will be in electronic 
format and available online to appropriate persons within the next decade or so. 
Electronic health records (EHRs) provide the opportunity to improve both clin- 
ical care and public health through advances in evidence-based medicine and 
evidenced-based public health. Envision a system that automatically recom- 
mends to a physician a differential diagnosis list, based not only on a patient’s 
presenting symptoms, but also on current population disease dynamics in his 
or her community. Similarly, envision the same system aggregating EHR data, 
providing surveillance information to local public health officials in real time 
and allowing the public health official to push requests for additional required 
data elements (history, tests, etc.) down to the physician to test an hypothesis. 

0 Consider air quality and drinking water advisories based not only on air and 
water sampling results but also on real-time health parameters reported from a 
given community (e.g., emergency room visits, physician visits, sales of OTC 
medications, tele-health activity). Current air and water quality guidelines 
assume the offending chemical/microbe can be detected in the air or water in 
a timely manner. However, some tests are performed only daily or not at all. 
What about pollutants and chemicals that cannot yet be measured? 

0 Occasionally, grocery store receipts are used to help identify a common food 
item during a presumed foodborne outbreak. Could electronically monitored 
transactions (which most are these days) and health records be monitored auto- 
matically to identify a suspect food item or restaurant? 

0 Could wireless devices be used to monitor individual health parameters in real 
time, such as heart rate and respiratory rate? In the event of a heat advisory, 
real-time surveillance of the elderly and shut-ins would probably prevent loss 
of life. 

0 Many infectious diseases in Canada can be traced back to travel to a foreign 
country. Could air and sea travel data be monitored and integrated with health 
information to help identify risk areas outside Canada’s borders? 

These examples are just a few of many surveillance possibilities, all of which 
are technically feasible today or in the near future. The real challenge will be in 
working with stakeholders to evaluate both the need and the potential benefits of new 
surveillance methods. The future of surveillance will inevitably provide many exciting 
challenges and opportunities. 

7.5 STUDY QUESTIONS 

7.1 One of the greatest challenges facing public health surveillance today is achiev- 
ing some degree of standardization and integration among jurisdictions (local, 
state/provincial, national, etc.). Because of this, it is difficult to compare findings 
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among jurisdictions and achieve a “surveillance picture” over a large geograph- 
ical area. This challenge exists for a number of reasons, including the large 
number of different applicable technologies, and because (for the most part) 
each jurisdiction controls and funds its own surveillance systems. Q: Given the 
current situation, please discuss what approaches could be used to help achieve 
a truly national public health surveillance system. 

7.2 Currently in Canada we have implemented a national alerting system to facili- 
tate rapid communication of disease events to appropriate persons. Q: Describe 
how public health surveillance and communication tools such as alerting and 
syndromic surveillance can play a signijcant role in disease outbreak iden- 
tification and management within and among jurisdictions (including across 
national borders). 

7.3 Although stakeholders and contributors to public health surveillance primar- 
ily include those working directly in the public health sector (e.g., physicians, 
epidemiologists, microbiologists, nurses), many disciplines, public-sector agen- 
cies, and industries have a role to play in public health surveillance. Q: Make a 
list of potential “nontraditional ’’ public health stakeholders and describe what 
role each could and should play in a comprehensive public health surveillance 
system. 

7.4 For the most part, public health surveillance systems discussed in this chap- 
ter assume that stakeholders have reliable and high-speed Internet access. In 
Canada (as in most parts of the world), health care providers in rural and remote 
communities often do not have such facilities. Q: Describe how processes and 
technologies could be used to address these technology gaps. 

7.5 Over the next decade, electronic health records will likely become a standard 
tool in the health care sector. Just like Internet banking, detailed personal health 
information will be accessible online. Q: Discuss what potential challenges and 
opportunities electronic health records provide to public health surveillance. 
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8 Case Study: Use of Tele-health 
Data for Syndromic Surveillance in 
England and Wales 

Duncan Cooper 

Chapter 7 discussed initiatives within the Public Health Agency of Canada to 
implement and manage an automated disease surveillance system and provided a 
good example of issues arising during the development and implementation of the 
Canadian Early Warning System. This chapter looks at the experiences of the UK 
Health Protection Agency in using data from a national health service phone triage 
system (NHS Direct). NHS Direct supplies call data that are grouped into syndromes 
and analyzed on a daily basis to detect abnormal trends in disease. Examples of health 
events detected through this system are presented and recommendations are provided 
to those interested in using similar data sources for surveillance. 

8.1 INTRODUCTION 

In recent years, there has been a growth in the number of tele-health systems, which 
provide the public with health advice and information via the telephone. This chapter 
describes the experience of using telephone call data from a national UK National 
Health Service telephone triage system (NHS Direct) for syndromic surveillance. 
The aim of the Health Protection Agency (HPA) NHS Direct syndromic surveillance 
system is to identify, as early as possible, an increase in syndromes indicative of early 
stages of illness due to common infections or the deliberate release of a biological 
or chemical agent. This chapter outlines the design of the surveillance system and 
the methods used by a multidisciplinary public health team to investigate increases in 
syndromes reported to NHS Direct call centres. Results are presented that demonstrate 
the system’s usefulness for providing early warning of rises in infectious disease and 
disease caused by environmental factors, as well as reassurance when there is a 
perceived threat to public health. Two methods of enhancing NHS Direct syndromic 
data are described: (1) a self-sampling study that links syndromic data with traditional 
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surveillance data (laboratory testing) and ( 2 )  a straightforward statistical modeling 
technique to provide added confidence in the interpretation of syndromic surveillance 
data. Also included are recommendations for the design, operation, and evaluation of 
syndromic surveillance systems based on telephone triage data. 

8.1.1 What Is Tele-health? 

Tele-health enables a clinical process to be conducted remotely, thus combining the 
power of health telecommunication and information technology to improve the ef- 
ficiency and quality of health care. The innovative use of technology to deliver 
tele-health services, such as by video or audio-conferencing, means that health care 
services can be provided to those who are some distance from the provider, thus 
reducing geographic barriers to accessing care. Tele-health applications now cover 
a diverse range of health care services, including consulting, psychiatry, cardiology, 
gastroenterology, rehabilitation, ultrasound, remote diagnostics, dialysis, and robotic 
surgery. The current value of the annual U.S. tele-health market alone is in excess of 
$300 million [ 11. Tele-health is also becoming increasingly vital to developing nations 
by providing health care to rural or underserved areas. In 1997, the World Health 
Organization (WHO) announced that it would make tele-health a global strategy area 
for the twenty-first century, advocating its use for disease prevention, education and 
training, and, interestingly, disease surveillance [2]. 

Telenursing or telephone triage is a subset of tele-health in which the focus is on 
nursing practice via telecommunications (usually the telephone). Such systems have 
gained in prominence as governments and major health care providers have sought 
to control rising health care costs, reduce inappropriate visits to emergency care, 
and meet patient demand for round-the-clock health care advice and information. In 
recent years in countries with largely public health care delivery, telephone triage 
systems have been operating on a regional (e.g., Tele-health Ontario in Canada [3], 
HealthDirect in Western Australia [4]) and on a national level (e.g., NHS Direct in 
England and Wales [ 5 ] ,  NHS 24 in Scotland [6 ] ,  Healthline in New Zealand [7]). 
Privately run telephone triage systems have also become commonplace, with at least 
100 million Americans able to access some form of telephone triage. 

8.1.2 The UK Experience: NHS Direct 

NHS Direct is a nurse-led health helpline that provides the population of England and 
Wales with rapid access to professional advice and information about health, illness, 
and the NHS. The service operates 365 days per year from a network of 21 sites in 
England and a single site covering all of Wales (22 in total). It is the world’s largest 
online provider of health care advice and answers nearly 7 million calls per year. 
Other ways of accessing health care information and advice from NHS Direct include 
a digital television channel and, most important, its website (NHS Direct Online), 
which receives over 1 million visits per month. 
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NHS Direct nurses use clinical decision-support software [the NHS Clinical As- 
sessment System (NHS CAS)] to triage, rather than diagnose, NHS Direct callers. 
NHS CAS is structured around approximately 230 computerized clinical algorithms, 
each consisting of a “treelike” structure of questions relating to the symptoms of the 
person calling NHS Direct. Nurses use clinical judgment and the most appropriate 
clinical algorithm to triage the call. The nature and severity of the reported symp- 
toms (e.g., diarrhea, fever, back pain) dictate the algorithm selected and, ultimately, 
the recommendation provided by NHS CAS (e.g., self-care, family doctor referral, 
paramedic dispatch). 

8.1.2.1 NHS Direct total call rates are 
still a fraction of total consultation rates for primary care doctors. NHS Direct 
handles approximately 7 million calls per year compared with approximately 14 
million visits a year to accident and emergency departments in England [8] and 190 
million consultations with family doctors [9]. So although NHS Direct has national 
coverage, the majority of primary care visits in the UK are through face-to-face 
clinician-based services. 

Comparison with Other Health Services 

8.1.2.2 The highest symptomatic call rates to 
NHS Direct are for young children (<1 year: 358 calls per 1000 per year; 1 4  years: 
173 per 1000 during 2005; and younger adults: 76 per 1000). Call rates fall with 
increasing age, and the lowest call rates are for the elderly. This pattern is consistent 
with telephone triage data from Australia [lo]. Women are more likely than men to 
use the service: the ratio of female to male calls (all ages) is 1.3:l. The distribution 
of calls by age and sex is largely comparable to that for family doctor services, except 
for the low NHS Direct call rate from those over 65 years - possibly reflecting the 
older generation’s reluctance to use telephone services for information and services 
rather than traditional local medical centres. 

Age and Sex of NHS Direct Callers 

8.1.2.3 Approximately 25% of the population uses NHS Direct 
[ 111. Although questionnaire studies have indicated low awareness [ 121 and low 
usage [ 11, 131 of the service among lower socioeconomic groups, research using call 
records indicate high call rates from areas where socioeconomic status is low. Studies 
at three NHS Direct sites have shown that local call rates (all ages combined) rise 
with increasing social deprivation before falling in the most deprived areas. Call 
rates were in fact lowest in the least deprived [14, 151 and rural areas [16]. With 
respect to ethnicity, internal NHS Direct figures indicate that the proportion of callers 
from different ethnic groups mirrors the census population data in most areas. To 
limit barriers to accessing the service, NHS Direct has a well-publicized interpreting 
service, will translate written health information on request, and has a dedicated text 
phone for the deaf and hearing impaired. 

Social Factors 

8.1.2.4 Call Outcomes Seventy percent of NHS Direct callers request assessment 
of symptoms. Of these, 19% receive self-care advice or a pharmacy referral, 5 1% are 
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referred to their family doctor, 8% are advised to go to an accident and emergency 
department, and 5% need a paramedic callout. The remaining 17% are directed to a 
variety of other services (e.g., poison centre, family planning clinic). 

8.1.2.5 The 10 most used NHS CAS clin- 
ical algorithms during March 2005 accounted for 29% of total symptomatic calls 
(Table 8.1). Gastrointestinal and respiratory illness algorithms, and algorithms de- 
signed specifically for triage of young children are used most frequently. 

Main Reasons for Calling NHS Direct 

Table 8.1 
Sites in England 

Ten Most Used CAS Clinical Algorithms (March 2006) by the 21 NHS Direct 

10 Most Used Clinical 
Algorithms 

% Total Clinical 
Algorithms Used 

Abdominal pain 5.8 

Vomiting 3.0 

Toothache 2.9 

Vomiting, toddler (Age 1-4 years) 2.7 

Fever, toddler (Age 1-4 years) 2.6 

Chest pain 2.5 

Diarrhea 2.5 

Headache 2.5 

Diarrhea, infants and toddlers (age 0-4 years) 2.4 

Sore throat 2.4 

8.1.3 

8.1.3.1 There are few published examples of the use 
of data from telephone triage or help lines for real-time disease surveillance. In 1998, 
a time-series analysis showed a 17-fold increase in nurse hotline calls about diarrhea 
during a citywide outbreak of cryptosporidiosis in Milwaukee [ 171. Two retrospec- 
tive analyses of nurse hotline data from the Baltimore-Washington metropolitan area 
demonstrated that individual calls can be used to predict respiratory and gastrointesti- 
nal final diagnoses [18], and that trends in telephone triage data accurately predict 
trends in doctor diagnoses [ 191. A study correlating after-hours telephone triage data 
(from physicians’ offices) with CDC influenza surveillance data showed no clear early 
warning advantage to using telephone triage data for surveillance [20]. There are 

Using Telephone Triage Data for Syndromic Surveillance 

North American Experience 
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plans to use real-time tele-health data from Ontario’s Tele-health helpline prospec- 
tively within the province’s syndromic surveillance strategy [21]. 

8.1.3.2 Disease Surveillance in the UK At present, reports of notifiable disease, 
data collected by National Health Service and Health Protection Agency (HPA) labo- 
ratories, and doctor consultations recorded by the Royal College of General Practition- 
ers (RCGP) sentinel surveillance system [22] are the main modes of communicable 
disease surveillance in England and Wales. Other sources of data include hospital 
admissions, death certifications and registrations, and outbreak reports. The HPA also 
monitors chemical incidents reported from a range of sources, including local health 
protection units, the fire service, and the National Poisons Information Service [23]. 
Data from the laboratory and clinical surveillance systems are subject to some report- 
ing delay and generally produce weekly summaries for the public health community, 
media, and general public. 

8.1.3.3 NHS Direct sites use clinical 
software (NHS CAS) and reporting tools to record and report caller details on a 
daily basis. This timeliness, coupled with the broad national population coverage of 
NHS Direct and the wide range of recorded syndromes, makes the data suitable for 
population health surveillance. If a deliberate release of a harmful agent were to cause 
illnesses with a mild prodromal phase, some proportion of the population would be 
likely to contact NHS Direct before visiting other health services. This proportion 
is currently unknown, although in general, 25% of the population use NHS Direct. 
Consequently, an increase in illness may be identified through surveillance of NHS 
Direct before it is reported to other primary care or secondary care services. 

The aim of the HPA NHS Direct syndromic surveillance system is to identify 
an increase in syndromes indicative of common infections and diseases or the early 
stages of illness caused by the deliberate release of a biological or chemical agent. 
Additionally, information on the age, geographical location, and syndromes of affected 
callers to NHS Direct could help track a rise in illness over time. The national 
HPA NHS Direct syndromic surveillance system uses telephone triage data for daily 
surveillance of 1 1 syndromes and has been operational since 2001. The surveillance 
team that oversees all aspects of the surveillance system is drawn from HPA and 
NHS Direct and consists of data analysts, scientists, epidemiologists, and NHS Direct 
managerial and medical staff. Section 8.2 outlines the design of this system and 
the way in which this multidisciplinary team investigates increases in cases detected 
through surveillance. 

Why Use NHS Direct Data for Surveillance? 
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8.2 SYSTEM DESIGN AND EPIDEMIOLOGICAL CONSIDERATIONS 

8.2.1 Data Availability 

The call reporting system linked to NHS CAS was designed for performance manage- 
ment purposes rather than as an epidemiological or surveillance tool. However, NHS 
Direct-derived data do provide a valuable snapshot of symptoms in the community, 
and a number of “off the shelf” NHS CAS reports provide breakdowns of call data 
(e.g., calls grouped by algorithm or outcome). Daily national data that are routinely 
available from NHS Direct are used for surveillance. Problems have been encountered 
with the consistency of syndromic data due to regular software upgrades of NHS CAS, 
which, at times, have resulted in clinical algorithms being merged, changed, or deleted 
from the system. 

8.2.2 System Design 

Total calls and call data relating to 11 algorithm groupings (syndromes) (Table 8.2) 
are received electronically by the HPA from all 22 NHS Direct sites every weekday 
(Fig. 8.1). This list of syndromes is intended to be indicative of the early stages of 
a range of illnesses caused by biological or chemical agents or common infections. 
Data are broken down by NHS Direct site, syndrome, age group, and call outcome. 

Consistent daily data returns were achieved within the first year of the project. 
Factors that helped in this process were: 

1. Using only routinely collected NHS Direct data for surveillance 

2. Causing minimal disruption to the work patterns of the data providers (NHS 
Direct nurses and analysts) and working within existing reporting frameworks 

3. Ensuring continual feedback (both verbal and through routine and ad hoc surveil- 
lance reports) to staff within NHS Direct 

Upper confidence limits (99.5% level) of calls for each syndrome, as a proportion 
of daily total calls, were developed for each NHS Direct site. These confidence 
limits were derived from the standard formula for proportions [24], with the baseline 
numbers of total answered syndromic calls adjusted for seasonal effects (monthly 
adjustment). An exceedance was defined as an observed daily proportion of calls 
above the 99.5% upper confidence limit. A proportional model was used rather than 
an absolute count or population incidence model to account for the gradual year-on- 
year increase in calls and sudden and local increases in call rates due to local publicity. 
Sensitivity/specificity analysis of the NHS Direct syndromic surveillance system’s 
ability to detect a cryptosporidiosis outbreak also confirmed that a proportional model 
outperformed an absolute count model for NHS Direct data [ 2 5 ] .  

In addition to the confidence interval analyses, control charts were constructed 
for 6 of the 10 syndromes (cold/flu, cough, fever, difficulty breathing, diarrhea, and 
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Fig. 8.1 National HPA NHS Direct syndromic surveillance system flow chart. 

vomiting) at the 10 NHS Direct sites covering major conurbations in England (London, 
Manchester, Leeds, Birmingham, Sheffield, and Newcastle). Baselines for the control 
charts were calculated based on the assumption that the number of syndromic calls 
followed a Poisson distribution. Total calls were used as an offset. A model was 
fitted to each site and syndrome separately using data from December 2001 onwards. 
These models always included a public holiday and seasonal term, a day of the week if 
necessary (weekday, Saturday, or Sunday), and a linear long-term trend factor. Scaling 
was performed to account for overdispersion when present. 

A normal approximation was not used to calculate the 99.5% upper control chart 
limit of calls for each symptom because it yielded more exceedances than would 
be expected (i.e., approximately 2% as opposed to the expected 0.5%). Instead, a 
transformation to approximate normality with zero mean was performed and then a 
back-transformation to the original scale. The resulting expression for the 99.5% 
upper limit of syndromic calls, used for the control charts, was: 

where N is the expected value divided by one less than the scale parameter, p is equal 
to the scale parameter minus 1, and z ,  is the 100 * (1 - a ) t h  centile of the normal 
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Table 8.2 Eleven Syndromes Monitored by the NHS Direct Syndromic Surveillance 
System; Number of Calls and Proportion of Total Calls Recorded by the Surveillance 
System, 2005 

Number of % Total 
Syndrome Calls Calls 

Coldlflu 32,462 0.80 

Cough 105,740 2.50 

Diarrhea 119,399 2.80 

Difficulty breathing 49,205 1.20 

Double vision 37 1 0.01 

Eye problems 42,613 1 .oo 
Fever 133,761 3.20 

Heatlsun stroke (monitored only June-September) 947 0.03 

Lumps 3 1,754 0.80 

Rash 170,202 4.10 

Vomiting 164,742 3.90 

Total from I 1  syndromes 851,196 20.30 

Total symptomatic calls to NHS Direct 4,191,779 100.00 

distribution. Ad hoc choices of z were used to achieve the desired proportion of purely 
random exceedances (0.5%). The upper 99.5% control chart limit of syndromic calls 
as a proportion of total calls is calculated on a daily basis. Statistically significant 
excesses (i.e., exceedances) in calls for any of the 11 syndromes are automatically 
highlighted (for the confidence interval and control chart method) and assessed by the 
surveillance team. These are termed stage 1 exceedances. The project analyst and 
scientist assess the public health significance of exceedances daily with input from a 
medically trained consultant epidemiologist. 

8.2.3 Investigating Exceedances 

8.2.3.1 By monitoring 11 syndromes at 22 NHS Direct sites using a 99.5% 
upper prediction limit, one would expect at least 1 exceedance per day throughout 
the year. In reality, even after accounting for daily, monthly, holiday, and long- 
term factors, the temporal distribution of exceedances is far from uniform, with 

Stage I 
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more exceedances occurring during the winter months. The surveillance team must 
decide which exceedances represent a potential threat to public health and require 
further investigation. Because the resources are not available to investigate every 
exceedance fully, the surveillance team takes the following factors into account when 
deciding whether to progress from a stage 1 exceedance (statistical alert) to a stage 2 
investigation: 

0 Obvious data errors. 

0 Single-day or multiple-day exceedances. Single-day exceedances may, in the 
absence of other factors, be left until the next day’s data become available. 

0 The clinical severity of calls. Calls where NHS Direct nurses have recommended 
an emergency care outcome (e.g., paramedic dispatch or emergency department 
referral) are used as a proxy for severity. 

0 The age distribution and time of year of the calls. For example, statistical 
exceedances during winter are more likely due to self-limiting viral illness and 
are less likely to be investigated than exceedances of calls about adults in the 
summer months. 

0 Levels of call activity and exceedances at neighbouring NHS Direct sites. 

0 Previous exceedance history at the site. 

0 Current community levels of disease reported by other surveillance systems. 

0 Media reportdadvertising campaign. Increases in calls have been observed 
during NHS Direct advertising campaigns and during health problems of global 
concern (e.g., the SARS epidemic in 2003). 

0 Upgrades to the clinical decision-support software. Exceedances may occur 
due merely to a change in the way calls are classified by NHS Direct nurses 
(CAS upgrades may cause clinical algorithms to be removed, merged, or added 
to the system). Upgrades will also eventually affect baseline data. 

8.2.3.2 Stage 2 If no reasonable explanation can be found for the exceedance, a 
stage 2 investigation is undertaken in which additional “line listings” of call details 
(including the call IDS and callers’ home postcodes) are requested for the day of the 
exceedance and the current day. The call ID, which is a unique number, is used to 
identify duplicate call records, and the current day’s data, if available, are used to 
determine whether the high level of calls has persisted for a particular syndrome. A 
geographical information system (GIS) may then be used to map calls for obvious 
clustering. Mapping is not a routine procedure for all exceedances. 

Privacy issues have been carefully considered because individual line listings of 
call details (containing postcodes) are analyzed when there is felt to be a potential 
threat to public health. In the UK, the use of patient identifiable data is governed 
by the principles of the Caldicott report (1997) [26] and the UK Data Protection Act 
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(1998). These principles (Fig. 8.2) provide a sensible guide for the use of potentially 
sensitive data for surveillance. 

1. Justify the purpose of using the data. 

2 .  Only use when absolutely necessary, 

JUSTIFIED 

USEFUL 

3. Use the minimum data required. 
MINIMAL 

4 .  Access to  data should be on a need to know basis. 

5 .  Everyone must understand their Responsibilities. 

6. Understand and comply with the law. 

SECURE 

RESPONSIBLE 

LEGAL 

Fig. 8.2 
partment of Health [26]) 

Caldicott’s key principles with regard to patient identifiable data. (From U.S. De- 

8.2.3.3 When the surveillance team believes that the information provided 
by the call line listings (stage 2) necessitates further action, the call information is 
passed to the on-call surveillance team consultant epidemiologist, the NHS Direct 
medical advisor, and other relevant national or local public health staff. This situation 
is termed a stage 3 alert and may result in the dissemination of reports to public health 
teams or, on rare occasions, direct contact of callers by the NHS Direct on-call medical 
adviser to obtain further clinical information. When this type of action is taken, local 
or national agencies are normally informed within 2 4 4 8  hours of the NHS Direct 
calls. To obtain a definitive clinical diagnosis for a caller, it may be necessary to 
collect a sample. Although a mechanism to collect self-testing kits from NHS Direct 
callers has been developed (Section 8.4. l), this procedure is not currently routine. 

Stage 3 
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8.3 RESULTS FROM THE NHS DIRECT SYNDROMIC SURVEILLANCE 
SYSTEM 

8.3.1 Stages 1 to 3 

Table 8.3 lists the number of stage 1 exceedances, stage 2 investigations, and stage 
3 alerts during a single year. Of 158 stage 1 exceedances generated by the control 
chart methodology, 23 were investigated, and a further 3 progressed to stage 3 alerts 
with local public health officials informed. These figures do not include other relevant 
syndromic trends issued through the national weekly syndromic surveillance bulletin. 
Syndromes with fewer exceedances (e.g., fever and cough) were more likely to trigger 
stage 2 investigations. Figure 8.3 provides an example of a control chart showing the 
increase in proportion of fever calls to Manchester NHS Direct (shown as dots) rising 
above the 99.5% upper prediction limit during January 2002 and October 2003. These 
rises in fever calls provided a timely indication of a substantial increase in community 
morbidity. Subsequent laboratory data indicated concurrent rises in reports of a new 
subtype of influenza A (HlN2) during winter 2001-2002 [27] and the emergence 
of a new antigenic drift variant influenza A (H3N2) Fujian-like strain during winter 
2003-2004 [28]. In both these instances, the stage 3 alerts gave national surveillance 
coordinators and local health protection teams early warning of a substantial and 
potentially serious rise in influenza-like illness. 

Table 8.3 Number of Exceedances (Stage l), Exceedances Investigated (Stage 2), and 
Alerts (Stage 3), March 2004-February 2005 

Stage 1: Stage 2: 
No. of Exceedances Stage 3: 

Exceedances Investigated Alerts 

Coldlflu 45 3 1 

Cough 8 3 0 

Diarrhea 31 6 0 

Difficulty breathing 6 2 2 

Fever 6 3 0 

Vomiting 56 6 0 

Total 158 23 3 

Percent of 
total exceedances 

100 14.6 1.9 
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Fig. 8.3 
calls, against a 99.5% upper prediction limit. 

Control chart showing Manchester NHS Direct fever calls as a proportion of total 

8.3.2 What Have the Data Detected? 

Sections 8.3.2.1 through 8.3.2.3 describe stage 3 alerts where the surveillance system 
provided early detection and characterization of increases in illness related to infectious 
diseases, environmental health effects, and, potentially, a major incident. 

8.3.2.1 Case Study 1 (Infectious Diseases): InJEuenza B During the Winter of 
2005-2006 The winter of 2005-2006 was characterized by low rates of clinical 
influenza-like illness reported by the Royal College of General Practitioners Weekly 
Returns Service and low numbers of influenza laboratory reports prior to Christmas 
2005. Sporadic school outbreaks of influenza B were reported in northwest England 
during December 2005 just before a sudden national increase in reports during Jan- 
uary 2006 (689 school outbreaks of influenza-like illness, some also with norovirus, 
reported during January-February 2006) [29]. At the time, there was media concern 
that influenza B was hitting schools particularly hard in the West Midlands region 
of England. The reporting of school outbreaks, however, is not consistent across the 
country, so it was necessary to examine carefully the various sources of available 
surveillance data. 

On January 25, 2006, the weekly NHS Direct syndromic surveillance bulletin 
reported a significant rise in the proportion of NHS Direct fever calls for the 5- to 
14-year-old age group, reaching its highest level since November 2003. At the same 
time, clinical and laboratory indicators of influenza remained relatively low. After 
examination of regional trends in NHS Direct fever calls (5-14 years) (Fig. 8.4), the 
surveillance team reported that although the West Midlands had one of highest levels 
in terms of fever calls (peaking at 14.3%), the level was not unusually high. In fact, 
during this period, the London region had the highest proportion of fever calls for the 
5- to 14-year-old age group, peaking at 21% on February 8. 
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Fig. 8.4 NHS Direct fever calls as a proportion of total calls by English region and Wales (5- 
to 14-year-olds); November 2005-April 2006. 

In this instance, NHS Direct syndromic surveillance data were able to provide an 
early indication of a community rise of influenza-like illness in school-aged children 
(late January 2006). At the time, influenza-like illness reported to sentinel general 
practitioners was still within baseline levels. This case demonstrates how health 
advice-seeking behaviors (calls to a tele-health system) can provide the first indication 
of a widespread community rise in illness (before patients present to family doctors). 
Syndromic data also confirmed that the level of fever calls was not particularly high 
in the West Midlands (quelling media fears) and provided ongoing regional-specific 
monitoring (along with other primary care surveillance systems) for the remainder of 
the national outbreak. 

8.3.2.2 Case Study 2 (Environmental Health Effects): Annual Rise in Grass Pollen 
Counts and NHS Direct Eye Problems Calls The concentration of pollen grains in 
the air is monitored at 33 sites throughout the UK. The data collected are used to detect 
the start and end of the various pollen seasons and the geotemporal variation in pollen 
counts as the season progresses. Publicly available forecasts are used by doctors to 
guide diagnosis and treatment and by hay fever sufferers to manage their condition. In 
the UK, tree pollen affects a small proportion of hay fever sufferers during the spring 
months. By June, grass pollen is the most important pollen type in terms of allergic 
reactions. As much as 90% of hay fever sufferers are allergic to grass pollen [30]. 
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The exact timing of the start, peak, and end of the grass pollen season can vary 
from year to year. The time of day and concentration of pollen spores also influence 
the incidence levels and severity of hay fever symptom. Within this complex mix of 
factors, daily NHS Direct syndromic data have provided a way of measuring whether 
the pollen levels are having a significant public health impact. Figure 8.5 presents 
daily “eye problems” calls (coded as “eye discharge,” “red or painful eye,” or “visual 
disturbance or loss” by NHS Direct nurses) as a proportion of total NHS Direct calls 
from April 2003 to June 2006. The trend for the 15- to 44-year-old age group shows a 
series of minor peaks during spring, which might have been caused by a combination 
of the tree and grass pollen season and other factors. However, there was a sudden 
peak in eye problems calls for school-aged children (5-14 years) on June 14, 2003 
(5.2%), June 13,2004 (4%), and June 18,2005 (6.5%) (Fig. 8.5). The high likelihood 
of a similar sudden peak during June 2006 was highlighted in the national weekly 
bulletin on June 7. The peak, which actually occurred on June 10 in most parts of 
England and Wales (6% nationally), was described in a surveillance alert on June 11 
and was fully characterized in the weekly bulletin on June 14. The notice forewarned 
local health protection teams of a likely rise in community morbidity in their areas 
and alerted NHS Direct sites to expect a change in types of calls received. 

# Grass pollen seasons cover approximate dates when ‘very high’ levels of grass pollen 
were recorded in parts of the United Kingdom. The pollen season generally starts in the 
South of England and gradually moves north. Pollen season data provided by the UK 
National Pollen & Aerobiology Research Unit. 

Fig. 8.5 
for 5- to 14-year olds and 15- to 44-year olds, England and Wales, April 2003-June 2006. 

NHS Direct “eye problems” calls as aproportion of total calls (7-day moving averages) 



RESULTS FROM THE NHS DIRECT SYNDROMIC SURVEILLANCE SYSTEM 349 

8.3.2.3 Case Study 3 (Major Incident Surveillance): Buncejield Fuel Depot Fire 
Early on the morning of Sunday, December 11, 2005, there was a huge explosion 
at the Buncefield fuel depot in southern England (Fig. 8.6) [31]. Twenty oil tanks 
were destroyed in one of the largest blasts in peacetime Europe. The blast injured 
43 people, took 3 days to control, and caused the closure of local schools. A plume 
of smoke, largely made up of carbon dioxide, carbon monoxide, and hydrocarbons, 
drifted in a southerly direction over London and the surrounding area. As in all major 
incidents, a high-level “gold” command team was established, combining emergency 
services and other agencies, including the UK HPA. 

Fig. 8.6 Buncefield fuel depot fire (Photo courtesy of AP Photo/Hertfordshire Police). 

The NHS Direct syndromic surveillance system, along with GP surveillance sys- 
tems, was well placed to monitor the potential short- to midterm health effects of the 
blast on the local population. In the immediate aftermath of the blast, and for the next 
6 weeks, calls to the eight NHS Direct sites serving the area within the path of the 
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plume received increased scrutiny with respect to (1) total NHS Direct calls, ( 2 )  NHS 
Direct calls about “breathing problems” and “cough,” and (3) the outcomes of NHS 
Direct respiratory calls. Daily surveillance bulletins were issued to key personnel on 
the incident response team. 

No significant rises in calls to potentially affected NHS Direct sites were observed 
in the days following the blast. However, an exceedance occurred in “difficulty 
breathing” calls to Bedfordshire and Hertfordshire NHS Direct on 3 consecutive days 
between December 31, 2005, and January 2, 2006 (Fig. 8.7). The blast was located 
in the catchment area of this NHS Direct site. The outcomes of these “difficulty 
breathing” calls were considered normal: accident and emergency department referral 
and paramedic dispatch call outcomes of 32% (baseline 37%) and GP outcomes of 
63% (baseline 54%). As a precautionary measure, “difficulty breathing” calls were 
mapped, but no evidence was found of geographical clustering around the blast location 
or pollution footprint (Fig. 8.8). The surveillance and incident teams concluded that 
the rise in calls was probably due to the general rise in seasonal respiratory disease 
(exceedances had also occurred in November and earlier in December 2005) and 
unusual call patterns possibly associated with the New Year period. The proportion of 
“difficulty breathing” calls at this NHS Direct site was short-lived and dropped below 
the exceedance threshold on January 4, 2006. The incident team was informed of 
these trends via the usual surveillance bulletins. 
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Fig. 8.7 
NHS Direct, November 2005-January 2006. 

“Breathing difficulty” calls as a proportion of calls to Bedfordshire and Hertfordshire 
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Fig. 8.8 
2006 (3-day exceedance). 

Postcode locations of “breathing difficulty” calls, December 3 1, 2005-January 2 ,  

Data from the HPA NHS Direct syndromic surveillance system and other primary 
care surveillance systems were used to monitor potential health effects immediately 
after the explosion and in the following weeks (further chemical release was sus- 
pected). No increases in NHS Direct respiratory calls (preprimary care) or doctor 
consultations (primary care) were observed that were attributed to the blast. This 
conclusion was supported by hospital admissions data (indicating no unusual rise in 
illness) and environmental sampling results (indicating a lack of ground-level pollu- 
tion). The syndromic surveillance data with accompanying interpretation provided 
reassurance to both the incident team and the public that there was no unusual increase 
in clinical illness. 

8.3.3 Weekly Reporting 

Weekly bulletins summarizing NHS Direct call activity for all 11 syndromes are e- 
mailed to local and national health protection teams, surveillance leads, NHS Direct 
sites, and the NHS every Wednesday. These bulletins and additional surveillance data 
are also published on the primary care surveillance pages of the HPA website [32]. 
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8.4 ADDING VALUE TO THE SURVEILLANCE DATA 

8.4.1 Linking Syndromic Data with Traditional Laboratory Sources 

One limitation of syndromic surveillance is the lack of specific medical or laboratory 
confirmation of diagnosis. The collection and testing of samples from syndromic 
surveillance systems is not routine. Microbiological sampling of patients captured by 
syndromic surveillance systems has been attempted in certain settings. For example, 
samples were collected and tested in a follow-up to a rise in diarrhea and vomiting 
syndromes in New York City and were found to be positive for norovirus [33].  During 
the winter of 2004-2005, the NHS Direct syndromic surveillance team explored 
whether a mechanism could be developed that would enable NHS Direct callers to 
self-test for influenza, thereby providing early warning of an increase in influenza and 
complementing syndromic data. Between November 2004 and February 2005, nurses 
at three NHS Direct sites used predefined scripts to recruit NHS Direct callers over 
the age of 15 years who reported “cold/flu” symptoms. Subjects accepted into the 
study were mailed a specimen kit that included an information sheet, two nasal swabs, 
viral transport medium, instructions, appropriate packaging, and a short questionnaire. 
Subjects were asked to take a swab from each nostril and mail the swabs to the national 
influenza reference laboratory of HPA. The swabs were tested by multiplex polymerase 
chain reaction (PCR) for influenza virus, and positive material was cultured for viable 
virus isolation. 

Several important results arose from this study: 

1. Self-testing by  NHS Direct callers can provide early warning of injuenza cir- 
culating in the community. During the study period, there were 1,817 NHS 
Direct cold/flu callers, and 610 agreed to participate in the study. Of these, 
294 were identified as eligible, were recruited to the study (Fig. 8.9), and re- 
ceived self-testing kits. Ultimately,142 samples (48%) were returned, 23 of 
which (16.2%) were positive on PCR for influenza, comparing favorably to a 
positivity rate of 26% for the existing HPA virological surveillance based on 
samples supplied through family doctors’ surgeries. Eight of the self-testing 
samples were positive for RSV (respiratory syncytial virus), highlighting the 
potential of the scheme to detect other viruses, such as those that cause common 
gastrointestinal infections (e.g., norovirus, rotavirus). 

2. Multiple strains of the virus could be detected through self-testing. Fol- 
lowing culture, three Wellington/1/2204-like influenza A (H3N2) and one 
Shanghai/36 1/2002-like influenza B viruses were recovered. The NHS Di- 
rect samples included the second community sample of influenza A (HlNl) ,  
the fourth sample of influenza A (H3), and the first influenza B sample received 
by the national reference laboratory during the 2004-2005 influenza season. 

3.  Virological samples from callers complemented syndromic call data by provid- 
ing a syndromic and virological picture of injuenza circulating in community. 
The early positive NHS Direct samples were obtained between weeks 45 to 
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50 of 2004 and preceded a general community syndromic rise in coldflu calls 
during weeks 51 and 52 of 2005 (Fig. 8.10). 

4. Samples could be collected in a timely way. The mean time between the 
date of the NHS Direct call and the date the swabs were received by the 
laboratory was 7.4 days, with a range of 3-27 days. Despite a week in transit, 
samples maintained good viability for antigenic characterization and molecular 
detection. 

5 .  The self-testing was acceptable to callers and only marginally disruptive to 
NHS Direct call centres. Only 7 out of 141 callers reported problems taking 
the swabs (e.g., “spilt the transport diluent”; “dropped swabs on floor”). What 
is important is that these samples were collected without the intervention of a 
health care worker. Also, when questioned, NHS Direct nurses did not feel that 
the study had markedly increased call length or caused significant disruption 
during the busy winter period. 

Fig. 8.9 Recruitment of NHS Direct callers for the study (November 1,2004 through Novem- 
ber 2, 2005) and results of positive tests for influenza and RSV viruses (eligible participants 
were over 15 years and reporting “colds and flu” symptoms). 
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Fig. 8.10 Number of positive NHS Direct samples by week and virus type; weekly NHS 
Direct coldflu calls as a proportion of total calls in weeks 46 of 2004 through week 13 of 2005. 

8.4.2 A Statistical Model: Qpes of Infections That Cause People to Phone 
Telephone Triage Systems 

Section 8.4.1 described a mechanism for collecting and testing influenza samples taken 
by NHS Direct callers. If resource limitations or privacy issues prohibit this type of 
investigation, other means are available to assess the range of diseases prompting 
people to phone tele-health systems. Multiple linear regression modeling offers a way 
of estimating the relative contribution of a range of pathogens to NHS Direct calls 
without involving the callers directly. This technique has been used previously to 
estimate the contribution of respiratory pathogens (both viral and bacterial) to hospital 
admissions [34] and to family doctor consultations [35] .  Modeling NHS Direct calls 
against laboratory reports has helped elucidate the likely cause of a large proportion 
of NHS Direct respiratory and gastrointestinal calls, which in turn has helped in the 
interpretation of trends in surveillance data. 

For this work, data were collected on the weekly numbers of NHS Direct calls 
about specific syndromes (respiratory and gastrointestinal) for the period October 
2002-October 2004 (outcome variables) and the weekly numbers of laboratory re- 
ports of the main respiratory and gastrointestinal pathogens (explanatory variables). 
Public holidays were added as a dummy variable to account for holiday effects. Mul- 
tiple linear regression models were constructed for each syndrome, with variables 
(pathogens) that contributed little to the model removed by backward stepwise regres- 
sion. The formula used for estimating the number of NHS Direct calls in week j due 



ADDING VALUE TO THE SURVEILLANCE DATA 355 

to pathogen i was 

y3 = C + C u , L ,  

where L, is the number of lab reports in group i (e.g., influenza) in week j ,  is the 
number of NHS Direct calls associated with each lab report, and C is the constant 
number of calls due to other causes. 

Figure 8.1 1 shows the estimated weekly contribution of norovirus and rotavirus to 
NHS Direct diarrhea calls (age 0-4 years). These pathogens were the only two, from a 
range of possible causes, that were significantly associated with NHS Direct diarrhea 
calls within the final model. Table 8.4 provides estimates of the yearly contribution 
and maximum weekly contribution of individual pathogens to NHS Direct calls. It 
must be stressed that, as with any model, the quality of the results is determined 
largely by the quality of the model data. For example, the laboratory data used here 
are subject to case ascertainment bias because some common causes of respiratory 
infection (e.g., rhinovirus, coronavirus) are rarely tested for in UK labs. 

Table 8.4 Estimated Annual Contribution of Specific Pathogens to NHS Direct Calls 
About “Cough” and “Vomiting” (age 0-4 years) for England and Wales (October 2002- 
October 2004) 

Significant Estimated % 
Model Contribution 
Variables and to NHS Maximum 

Goodness Contribution Direct % Weekly 
NHS Direct of Fit: from Other S yndromic Estimated 
Syndrome R2 Value Causes Calls Contribution 

NHS Direct 0.91 Invasive 
cough calls Streptococcus 
(95,000 pneurnoniae 20 33 
calls/yr) Influenza 15 63 

RSV 12 49 
Rhinovirus 6 21 
Bank holidays 3 17 
Other causes 43 88 

NHS Direct 0.80 Rotavirus 27 
vomiting calls Norovirus 15 
(age 0-4 Other causes 58 
years; 70,000 
calls/yr) 

61 
39 
92 

This relatively straightforward modeling technique has provided estimates of the 
contribution of the proportions of NHS Direct calls attributable to specific microbio- 
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Fig. 8.11 Comparison of the observed weekly number of NHS Direct vomiting calls (age 
0-4 years) (England and Wales) with the estimated numbers of weekly calls due to norovirus, 
rotavirus, and other causes (October 2002-October 2004). 

logical causes. For example, most of the seasonal variation in NHS Direct respiratory 
calls is estimated to be caused by influenza, RSV, and invasive pneumococcal dis- 
ease. Rotavirus and norovirus are estimated to be the main causes of NHS Direct 
gastrointestinal calls. The weekly estimates of the contribution of different pathogens 
to NHS Direct respiratory calls have provided greater confidence in the interpretation 
of sudden rises in syndromes reported to NHS Direct. Detailed estimates of the burden 
of specific respiratory diseases reported to NHS Direct have also fed into policy and 
planning documents [36]. 

8.5 CONCLUSIONS 

8.5.1 Main Benefits of the System 

Early warning. The main public health benefit of using NHS Direct tele-health data 
for syndromic surveillance in England and Wales is the early detection and 
tracking of rises in illness in the community at the national and regional lev- 
els. Use of timely and automated data has complemented existing surveillance 
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systems, particularly for the surveillance of influenza-like illness and gastroin- 
testinal disease. Experience has shown that the public may contact tele-health 
services about influenza symptoms before visiting family doctors or hospitals, 
demonstrating further the value of tele-health data for early warning and pro- 
viding lead time for surveillance. A mechanism has also been developed by 
which tele-health callers can self-sample (e.g., for influenza and RSV), provid- 
ing an alternative source of specimens for laboratory testing and a critical link 
between unspecific syndromic data and laboratory confirmation. NHS Direct 
data have also been used to monitor the environmental health effects of pollen, 
high temperatures 1371, and poor air quality [38] and to characterize the areas 
and age groups affected for national and local public health teams. 

Reassurance. Reassurance that a rise in illness is not occurring (during times of per- 
ceived higher risk) has been suggested as one of the main benefits of syndromic 
surveillance [39]. However, this reassurance is valid only if it has already been 
demonstrated (prospectively) that a surveillance system can detect similar rises 
in illness. Because NHS Direct data have been shown to exhibit a signal suffi- 
cient to alert a surveillance team to sudden and widespread rises in syndromic 
calls, these data can provide some reassurance that a widespread rise in disease 
has not occurred during times of increased perceived risk. Although the system 
detected a rise in respiratory illness around the time of a major oil depot explo- 
sion, mapping of these data demonstrated that the probable cause was a seasonal 
rise in respiratory disease rather than explosion-related. On two occasions (after 
traces of ricin were found in a London flat in January 2003 and after the London 
bombs of July 7, 2005), NHS Direct data provided reassurance that there was 
no suspicious rise in illness in the London area. Prompt reassurance was helped 
by the ability of the surveillance team to reduce the time interval of reporting 
(from every 24 hours to every 2 hours) and by mapping of NHS Direct calls. 

Planning. The systematic collection of almost 5 years’ worth of daily national 
tele-health call data with well-established statistical baselines means that the 
surveillance database is now a well-used resource, providing data extracts for 
emergency planning exercises and modeling work. Call data have been used 
for testing national contingency plans for pandemic influenza surveillance, for 
testing local resilience plans (using London as an example), and for modeling 
the potential impact and spread of a pandemic flu strain in the UK. Also, timely 
surveillance data have been fed back to NHS Direct to contribute to operational 
planning. For example, surveillance reports about rises in specific syndromes 
can be relayed to NHS Direct’s online health information service and the NHS 
Direct responsive messaging service, used to inform callers of relevant topical 
information. The supporting clinical advice and rationales within the NHS 
CAS algorithms used by the nurses can be modified to reflect awareness of 
the prevailing respiratory infections (as highlighted by the linear regression 
modeling in Section 8.4.2). 
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Fostering multidisciplinary collaborative working. Syndromic data have provided 
a new source of information for ongoing routine surveillance, for monitoring 
health protection policy (e.g., providing estimates of the burden of specific 
diseases reported to NHS Direct), and for research (e.g., sociodemographic 
profiling of calls [15]). A diverse group of people - epidemiologists, medics, 
tele-health nurses, statisticians, and operational managers - have been brought 
together for various collaborative ventures. In turn, these collaborations have 
raised the profile of NHS Direct outside its core business, demonstrating its 
usefulness for public health and epidemiological purposes. 

8.5.2 System Evaluation 

The need for detailed evaluation of syndromic surveillance systems (in 2003, there 
were over 100 in the United States) led to the publication of the “Framework for 
evaluating public health surveillance systems for early detection of outbreaks” by the 
CDC in 2004 [40]. This framework was used for a preliminary evaluation of the HPA 
NHS Direct syndromic surveillance system in 2004, which concluded that the system 
was timely, representative, and useful [41]. The direct annual operating costs of the 
system - $280,000 per year - were considered to be low for a national surveillance 
system. This valuation did not include data costs, however, because the surveillance 
requirements of the system are embedded in the core operations of NHS Direct (the 
data provider). Plans for surveillance of calls to a private tele-health provider must 
consider data costs and variable costs associated with the investigation of surveillance 
signals (e.g., additional nonroutine tele-health data required, additional staff costs, 
cost of laboratory testing of samples from callers) may be prohibitive. 

8.5.3 Cautionary Note for Future Work 

The evaluation with the CDC framework also found that the system was more likely 
to detect large-scale events and generalized rises in syndromes than very localized 
outbreaks of communicable disease or disease caused by the deliberate release of a 
bioagent. Although there are clear benefits of the surveillance system (outlined in 
Section 8.5.1), to date it has not detected a succession of local disease outbreaks in 
advance of other surveillance systems. At present, total NHS Direct call rates are 
a fraction (approximately one-thirtieth) of total family doctor contacts in the UK. 
Therefore, even though almost 100% of the population has access to NHS Direct, the 
syndromic surveillance system captures only a fraction of illness reported in England 
and Wales. Opportunities to detect localized rises in illness (potential outbreaks) may 
increase as NHS Direct call rates rise over time, and the statistical methodology used to 
flag local data anomalies is refined (e.g., using integrated spatiotemporal analysis tools 
such as SaTScan [42]). In general, local outbreak detection via analysis of telephone 
triage data will be possible only in areas where phoning a telephone triage line is 
high on the population’s list of health-seeking behaviors. For example, in a telephone 
survey of New York City residents with “flu-like-illness,” calling a healthline was 
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fifth on the list of health-seeking behaviors (4% of residents), behind pharmacy and 
physician-based services [43]. Therefore, to be confident of providing reassurance 
that local rises in disease are not occurring, more work is needed to define exactly 
which local events the HPA NHS Direct surveillance system will and will not detect 
given current call rates. 

It is worth stressing that a pragmatic approach to surveillance has been taken. By 
necessity, routine syndromic data based on NHS Direct clinical algorithms have been 
used rather than the more specific case definitions usually associated with outbreak 
detection and laboratory-based surveillance systems. The influenza sampling study 
(Section 8.4.1) and regression modeling (Section 8.4.2) have provided additional 
confidence in interpreting nonspecific syndromic data. It may be possible, however, to 
improve the specificity of the surveillance system’s case definitions through extraction 
of multiple symptoms from a single call record within the NHS Direct CAS relational 
database. The benefits of linking multiple symptoms to a single caller would have to 
be weighed against the additional workload associated with using other than routine 
data. 

8.5.4 Integration with Other UK Primary Care Surveillance 

Routine primary care data provide the means to systematically monitor a variety of 
syndromes that could provide early warning of health protection issues (microbiolog- 
ical and chemical). As well as NHS Direct data, two sentinel surveillance systems 
based on family doctor diagnoses currently operate in the UK: the Royal College 
of General Practitioners (RCGP) Weekly Returns Service [22] (established during 
the 1970s and covering 700,000 people) and the Q-Research [44]/Q-Flu [45] system 
(established in 2003 and covering 17 million people). It is possible, therefore, to 
use preprimary care (NHS Direct) and primary care data (family doctor diagnoses) 
to track illnesses that may not present to hospitals (e.g., chickenpox, conjunctivitis) 
or illnesses for which laboratory specimens are not routinely taken (e.g., influenza). 
The RCGP system has the benefits of long historical baseline data about an extensive 
list of medical conditions. The Q-ResearcWQ-Flu system has the advantage of being 
able to link diagnoses to socioeconomic risk factors and prescribing and vaccination 
details. The relative strengths and weaknesses of these three primary care surveillance 
systems and the HPA NHS Direct syndromic surveillance system complement each 
other to provide a timely picture of illness reported to primary care in the UK. 

8.5.5 Recommendations 

Twenty recommendations have been developed to aid the design, operation, and 
evaluation of a syndromic surveillance system based on tele-health triage data. 

Design 

1. Form a multidisciplinary, dedicated team of analysts and public health person- 
nel. 
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2. Define and involve the stakeholders as early as possible. 

3. Set expectations at an appropriate level by describing, if possible, the type of 
events the system will and will not detect. 

4. Invest time and effort in developing investigation protocols that are integrated 
into the public health response. 

5.  Develop a clear link among data analysis, rapid evaluation of surveillance 
signals, and potential public health action. 

6. Ensure that the data cover as wide a population and area as possible. Alterna- 
tively, define the system’s representativeness. 

7. Use as accurate a geographical identifier as is possible and legal. 

8. Use tele-health data that are routinely available and automated. 

9. If possible, link multiple symptoms, rather than single clinical algorithms, to 
individual callers. 

Operation 

1. Keep routine outputs clear, useful, and simple. 

2. Analyze tele-health data alongside data from traditional surveillance systems 
(e.g., laboratory) to make epidemiological interpretation more confident and 
surveillance messages more persuasive. 

3. Keep an open mind: there are benefits to the work where you least expect them. 

4. Focus on areas where tele-health data can provide a unique picture of community 
morbidity and “added value” over existing surveillance. 

5 .  Be prepared for software changes that may interrupt the flow of data and affect 
data coding and baselines. 

6. Be prepared for resistance: the use of tele-health data for public health surveil- 
lance is a relatively new, innovative, and evolving field. 

7. Engage those who are sceptical or critical of the work. 

Evaluation 

1. Incorporate into the surveillance system a method of evaluating the impact 
of syndromic surveillance signals and investigations on public health (the “so 
what” factor). 

2.  Calibrate the syndromic surveillance system against the CDC evaluation frame- 
work. 
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3. Try a variety of statistical aberration-detection methods (e.g., using simulation 
studies or retrospective analyses) to identify the method(s) that are most suitable 
for the data. 

4. Publish as much as possible and share experience with other syndromic surveil- 
lance practitioners. 

8.5.6 Final Remarks 

Although syndromic surveillance systems based on data from regional telephone triage 
systems exist, the use of data from a national tele-health system (i.e., NHS Direct) 
is unique in the field of syndromic surveillance. The HPA NHS Direct syndromic 
surveillance system is also the only national daily surveillance system in the UK and 
provides a timely national snapshot of community morbidity. To date, no deliberate 
release of either a chemical or a biological agent has been detected. The main 
benefits of using NHS Direct telephone triage data for public health surveillance have 
been in providing early warning of rises in infectious disease and disease caused by 
environmental factors, tracking and verification of trends in community morbidity, and 
reassurance that widespread disease is not occurring when there is a perceived high 
public health risk. When the surveillance team took action, local or national agencies 
received surveillance reports within 24-48 hours of the time the NHS Direct calls were 
made. Secondary benefits of the system include the provision of data for monitoring 
public health policy, emergency planning exercises, and epidemic modeling. Future 
challenges for this system are the provision of surveillance data to a newly defined 
network of local primary care trusts in England and Wales, the integration of routine 
spatiotemporal analyses into the surveillance system, and a targeted evaluation of the 
usefulness of the surveillance outputs to public health practitioners. 

8.6 STUDY QUESTIONS 

8.1 Clinical decision-support software, used by nurses for telephone triage, may 
undergo regular software upgrades. The data providers should have detailed 
documentation of these upgrades. Upgrades may reduce or expand the list of 
syndromes available for surveillance and affect call classification (syndromic 
coding, outcorneldisposition coding). Q: What means of detecting these changes 
might you use? Once you have detected a change, how might you alter your 
syndromic surveillance system to maintain consistent data output and analyses ? 

8.2 NHS Direct call centre data are noisy and subject to overdispersion (the variance 
of the data is greater than expected). Q: What problems could this cause fo r  
signal detection? How would you overcome these problems? 

8.3 Many syndromic surveillance systems use hospital data (e.g., ED visits) or 
medical centre data (e.g., clinician visits) for early event detection. Telephone 
triage and nurse hotline data are less frequently used although these services 
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may be the first point of contact for an unwell person. Q: What are the main 
advantages of using telephone triage or nurse hotline data compared with the 
more common syndromic data sources? 

8.4 There is growing evidence that syndromic surveillance systems are particularly 
sensitive for detecting increases in acute viral disease (e.g., influenza, norovirus) 
and environmental health effects (e.g., atmospheric pollution). There are a wide 
variety of reasons, however, for calling a nurse hotline. Q: Are there any other 
areas of health in which syndromic surveillance based on telephone triage data 
could be useful? What are they, and what syndromes could be useful for  their 
surveillance ? 
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9 Surveillance for Emerging 
Infection Epidemics in Developing 
Countries: EWORS and Alerta 
DISAMAR 

Jean-Paul Chretien, David Blazes, Cecilia Mundaca, Jonathan Glass, Sheri 
Happel Lewis, Joseph S. Lombardo, R. Loren Erickson 

The previous three chapters presented examples of automated disease surveillance 
systems that have been implemented in the United States,Canada, and the United 
Kingdom. In these examples, the systems were developed either by local public health 
authorities or by academic institutions supporting local public health departments. 
This chapter presents surveillance systems that have been implemented in Indonesia 
and Peru through a collaboration between the U S .  military research laboratories and 
the public health authorities in their host countries. Examples are given of innovative 
approaches to capturing data from remote locations for surveillance and containment 
of infectious diseases. 

In 2003, a highly pathogenic strain of avian influenza, A/H5N1, emerged in Viet- 
nam. By early 2007, the strain had infected more than 250 people in Asia, the Middle 
East, and North Africa. More than half of these confirmed infections were fatal [I]. 
Although nearly all cases resulted from exposure to infected birds, the epidemic has 
generated serious international concern and resource commitments because influenza 
viruses undergo unpredictable genetic changes that influence pathogenicity and trans- 
mission characteristics. For example, an avian virus that acquired the ability to spread 
efficiently among humans probably caused the influenza pandemic of 1918-1919, in 
which around 50 million people died [2]. If genetic changes allow the H5N1 virus to 
spread efficiently from person to person (as seasonal influenza viruses do), the world 
would again face the possibility of a pandemic that could kill millions of people and 
devastate economies. 

Avian influenza is an “emerging” infectious disease [3,4], a category that includes 
diseases that have recently appeared (e.g., H5N1, which was first identified as a human 
pathogen in Hong Kong in 1997; acquired immunodeficiency syndrome [AIDS]) 
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and ones that are known but changing in significant ways (e.g., malaria, which is 
spreading to new areas and returning to areas where it was previously eliminated; 
tuberculosis, which, like malaria, has developed resistance to many drugs). Effective 
public health response to emerging infections depends on surveillance systems to 
detect and characterize them and guide interventions [4, 51. However, in much of the 
developing world, public health surveillance systems do not exist or are ineffective [5 ,  
61. Because many emerging infections, such as H5N1, spread easily beyond national 
borders, these deficiencies can have regional or global consequences. Heymann 
and Rodier of the World Health Organization (WHO) captured this interdependence 
in reflecting on the 2003 multicountry severe acute respiratory syndrome (SARS) 
epidemic: “Inadequate surveillance and response capacity in a single country can 
endanger national populations and the public health security of the entire world” [7]. 

This chapter explores strategies for implementing effective surveillance for emerg- 
ing infection outbreaks in developing countries. After a general overview of challenges 
to effective surveillance in developing countries and possible solutions, it turns to two 
systems developed through host country-U.S. military collaboration. These case stud- 
ies offer lessons that could be useful for developing countries, sponsoring agencies, 
and collaborators in developing and improving surveillance systems for emerging 
infections in resource-poor settings. 

9.1 IMPROVING SURVEILLANCE IN RESOURCE-POOR SETTINGS 

Developing countries face significant challenges in implementing effective public 
health surveillance systems. Some of these are similar in kind to, but of greater 
magnitude than, problems that developed countries encounter [8, 91. For example, 
insufficient laboratory diagnostic capabilities [lo, 111 and lack of personnel with nec- 
essary professional skills [ 121 limit surveillance effectiveness in developing countries, 
but affect wealthy nations as well. 

More specific to poor countries are infrastructure constraints that can make even 
rudimentary surveillance functions difficult. For example, poor roads and lack of 
transportation can prevent public health staff from investigating outbreaks; computer- 
based information systems may be difficult to implement because electrical power is 
unreliable; and access to communication systems (such as the Internet) may be very 
limited by lack of or poor telecommunications lines [9]. The bureaucratic structure 
of the health sector may obscure lines of accountability for surveillance functions 
[ 131 and discordant data collection protocols by rival health agencies at the national 
and sub-national level may impair outbreak detection, reporting and response. When 
foreign assistance is provided to strengthen public health systems, well-intentioned 
donors may impose programmatic requirements that impede development of effective 
systems [9. 141. 

Recent WHO efforts to strengthen global infectious disease surveillance depend 
on effective and coordinated national- and sub-national-level systems [ 15, 161. For 
example, the International Health Regulations, revised in 2005 to address SARS and 
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other emerging infections that can spread rapidly through a globalized world, place 
broader obligations on countries to build surveillance and response capacities [ 171 
(the original International Health Regulations, instituted in 1969, focused on monitor- 
ing and control of three diseases capable of causing serious international epidemics: 
cholera, yellow fever, and plague). The Global Outbreak Alert and Response Net- 
work (GOARN), was established in 2000 to facilitate collaboration among existing 
institutions and surveillance networks in identifying, confirming, and responding to 
epidemics of international importance [ 181. However, this network depends on effec- 
tive national and sub-national surveillance systems to identify outbreaks in a timely 
manner. 

Several innovative models have been developed for improving infectious disease 
surveillance in developing countries. A few successful, low-cost examples at the 
sub-national level include a community-based program in Cambodia that employs lay 
volunteers to identify outbreaks [ 191; a hospital-based program in South Africa that 
trains infection-control nurses to identify syndromes that require immediate public 
health action [20]; and a public-private hospital network that monitors a range of 
infectious diseases in India [21]. The success of these and other effective approaches 
is due, in part, to detailed understanding of local public health system problems and 
capabilities. 

9.2 U.S. MILITARY OVERSEAS PUBLIC HEALTH CAPACITY BUILDING 

The U.S. military has long supported public health activities of foreign countries, 
but the formal capacity for surveillance of emerging infectious diseases was built 
within the U.S. Department of Defense (DoD) only relatively recently. A key DoD 
platform for public health capacity building abroad is a network of overseas medical 
research laboratories in Peru, Egypt, Kenya, Thailand, and Indonesia. DoD established 
these facilities between 1943 and 1983 to conduct tropical infectious disease research 
important to both host countries and the U S .  military. The U S .  military and host 
country staff work together to develop regional advanced laboratory capabilities, 
networks of field sites, and a spirit of collaboration and trust to produce medical 
advances of broad importance, including drugs for malaria and typhoid fever, fluid- 
electrolyte rehydration therapy for cholera, and vaccines for hepatitis A and Japanese 
encephalitis, among others [22,23,24,25,26,27,28,29]. U.S. military scientists also 
supported host countries in responding to infectious disease outbreaks with laboratory 
diagnostics, epidemiologic field investigations, and training. 

A seminal report by the U.S. Institute of Medicine in 1992 drew attention to 
emerging infectious diseases as a threat to global health and U S .  security [4]. The 
report called for greater U.S. engagement with emerging infections overseas, and 
identified the DoD overseas medical research laboratories as the most broadly based 
U.S. platforms for monitoring and responding to epidemics abroad. Building on this 
and subsequent reports, a 1996 presidential directive formally expanded the mission 
of DoD and its overseas medical research laboratories to include surveillance, out- 
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break response, host country personnel training, and research for emerging infectious 
diseases [30]. DoD established the Global Emerging Infections Surveillance and 
Response System (DoD-GEIS) to coordinate and support these efforts at the DoD 
overseas medical research laboratories and in the military health system. 

Current DoD-GEIS supported surveillance networks include more than 50 coun- 
tries in South America, the middle east, sub-Saharan Africa, and central and south- 
eastern Asia [31]. A global, laboratory-based network monitors influenza [32], a 
top surveillance priority because of the ever-present pandemic threat. Other systems 
focus on malaria, dengue, diarrheal diseases, and sexually transmitted infections. All 
surveillance networks rely on close U.S. military-host country collaboration and must 
contend with the challenges described above to deliver accurate, timely information 
on emerging infections in resource-poor settings. 

Sections 9.3 and 9.4 describe surveillance systems developed and sustained by a 
collaboration of host countries, DoD-GEIS, DoD overseas medical research laborato- 
ries, and other organizations. The purpose of both systems is to detect outbreaks of 
emerging infections early and to facilitate rapid public health intervention. The first, 
the early warning outbreak recognition system (EWORS), was developed by the U.S. 
Naval Medical Research Unit-2 (NAMRU-2; Jakarta) and deployed in collaboration 
with host country ministries of health in Indonesia, Lao PDR, Cambodia, and Vietnam. 
The U S .  Naval Medical Research Center Detachment (NMRCD; Lima) and the Peru 
Ministry of Health have also collaborated to implement a version of EWORS. The 
second case study focuses on Alerta DISAMAR, which was developed by NMRCD 
and the Voxiva corporation and deployed in collaboration with the Peruvian navy and 
army. 

Several approaches to describing and evaluating public health surveillance systems 
have been proposed [33, 34, 351. The case studies below draw on these approaches 
to present an overview of the systems and their operating environments, focusing 
especially on data acquisition, information flow, the critical connection between the 
surveillance systems and public health response, and features that facilitate effec- 
tive surveillance in resource-poor environments. Rather than provide comprehensive 
evaluations of many system attributes (e.g., simplicity, flexibility, data quality, ac- 
ceptability, sensitivity, specificity, timeliness, stability), the case studies explore a 
key attribute for surveillance systems designed for emerging infections - flexibility. 
The U.S. Centers for Disease Control and Prevention (CDC) describes JEexibility this 
way: A flexible public health surveillance system can adapt to changing information 
needs or operating conditions with little additional time, personnel, or allocated funds. 
Flexible systems can accommodate, for example, new health-related events, changes 
in case definitions or technology, and variations in funding or reporting sources. In 
addition, systems that use standard data formats (e.g., in electronic data interchange) 
can easily be integrated with other systems and thus might be considered flexible [34]. 

Surveillance systems for emerging infectious disease outbreaks, such as EWORS 
and Alerta DISAMAR, must be flexible because clinical presentations of disease 
that could cause sever epidemics cannot be known in advance. Systems must be 
configured so that “unusual” events, such as syndromes not normally seen in an 
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area or an increase in presentations of syndromes that are normally seen at lower 
rates, are identified and investigated. Ideally, systems should also allow for rapid 
implementation of new surveillance protocols: for example, after case definitions are 
established for a newly emerged disease, such as a pandemic influenza. Finally, all 
surveillance systems, but especially those in resource-poor settings, should be able 
to adapt to temporal and spatial variability across important operating environment 
parameters: for example, variation in communication and transportation infrastructure 
across a system’s catchment area, turnover of system operators, and infusion of new 
resources from sponsors. These case studies illustrate different, important aspects of 
surveillance system flexibility. 

9.3 CASE STUDY 1: EWORS (SOUTHEASTERN ASIA AND PERU) 

Infectious diseases that cause localized epidemics across Indonesia and other Southeast 
Asian countries include malaria, dengue, and bacterial, parasitic, and viral diarrhea. 
Of global concern, influenza AMSN1 was reported in humans in Indonesia in 1999 and 
re-emerged in 2003. During 2006, Indonesia reported more human cases (,V = 56) 
and deaths ( N  = 46) than any other country, and the second highest cumulative 
number of cases ( N  = 76) after Vietnam and the most deaths ( N  = 58) since 2003 
[l] .  Most cases are thought to have had contact with infected poultry. However, 
a small number of cases have been identified in self-limited family clusters, and 
human-to-human transmission is strongly suspected [36]. 

NAMRU-2 and the Ministry of Health colleagues from Southeast Asia have re- 
sponded to numerous infectious disease epidemics [37, 38, 39, 40, 41, 42, 431, but 
often found that the response was launched too late for effective intervention. In fact 
newspapers often carried the earliest warnings of epidemics. For example, an out- 
break of influenza-like illness in the remote jungle on Inan Jaya in 1995-1996, which 
involved more than 4000 cases and 300 deaths, was noted first by local newspapers 
several months after the epidemic began [38]. This outbreak and other instances of 
delayed detection prompted NAMRU-2 to develop a more timely system for detect- 
ing and responding to epidemics capabable of adapting to the resource scarcities and 
disparities in integration that impact the developing world; a system to empower both 
the national and sub-national users. 

9.3.1 

When development of what would become the Early Warning Outbreak Recognition 
System (EWORS) began in 1998, it was clear that implementing timely surveillance 
for disease-specific conditions would be difficult. Many clinics and hospitals lacked 
even basic laboratory diagnostic capabilities to make pathogen-specific diagnoses. 
The professional training and experience of clinical staff varied widely, with particu- 
lar differences between urban and rural healthcare workers [44]. Skilled epidemiology 
resources also vary between urban and rural areas as well as between the national and 
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sub-national levels. Remote or underdeveloped districts, often with low population 
densities, posed real challenges to establishing necessary rapid communication link- 
ages and capturing rapidly spreading outbreaks. They generally do not use standard 
diagnostic coding and few acute care clinical databases can be accessed remotely. 

To increase the likelihood of capturing a community outbreak and to minimize 
infrastructure investment requirements, the EWORS system is designed to be imple- 
mented in sentinel urban hospital centers - specifically, outpatient and acute care 
clinics (Fig. 9.1). The protocol relies on clinical identification of patients with sus- 
pected infectious diseases and manual data collection using a half-page, standardized 
questionnaire administered by nurses and physicians. The questionnaire collects de- 
mographic data as well as all of the patient’s symptoms using medical terminology 
rather than a single diagnosis code or chief complaint. 

Fig. 9.1 Country outbreak response technical unit. 

To collect and process that data, a simple, menu-driven software package that 
includes a database and data analysis capabilities was developed. This relies on on- 
site manual data entry of a clinical questionnaire and on-site and remote graphic-driven 
data analysis. Each participating hospital has a computer terminal where data is into 
the EWORS software. Data files are transmitted by email to the EWORS hub for 
additional analysis, ideally once per day. Medical staff and data entry personnel take 
approximately one minute each to complete each patient questionnaire. With a 56 
Kbps modem, it takes approximately 10 minutes of internet connectivity to transmit 
the data file to the hub. 
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The software is designed to allow rapid, intuitive data interpretation by hospital- 
based operators with minimal epidemiologic training in addition to review by experi- 
enced epidemiologists. The user defines the syndrome to be analyzed; the definition 
may be based on WHO case definitions or local variants. Menus provide options for 
time series display based on surveillance sites, demographic groups, and syndromes 
(Figs. 9.2a-9.2~). Data are displayed in a line-chart format with observed case num- 
bers by time, age group, or gender. Geographic information system (GIS) displays are 
easily generated for intuitive assessment of clustering over a period of time (Fig. 9.3). 
Analysis guidelines were developed without quantitative criteria. Instead, because the 
primary analytical tool was a time-series graphic, the analyst is advised to visually 
compare the case numbers with the previous month, the previous three months and the 
same time during the previous year. This is a crude method but simple to understand 
at the local level. The software also allows users to output raw data to statistical 
packages for more complex analysis. 

Although NAMRU-2 maintains a central EWORS hub that provides software and 
clinical protocol enhancements, technical support, and training for all of the national 
EWORS networks in Southeast Asia, host countries have taken over responsibility for 
day-to-day operations, including formation of a national EWORS hub for outbreak 
identification and response. Thus, each country “owns” its EWORS data, and is 
not obligated to report to NAMRU-2. This has the benefit of building analysis and 
decision-making experience in-country, and satisfying national privacy concerns. 

The software and the questionnaire have been developed in six languages, In- 
donesian, Lao, Khmer, Vietnamese, Korean and Spanish. The EWORS pilot im- 
plementation began in 1999 in Indonesia with large public hospitals in Jakarta (on 
the island of Java), Medan (Sumatra), Denpasar (Bali), Pontianak (Kalimantan), and 
Ujung Pandag (Sulawesi). In its first year, this first-generation network enrolled more 
than 10,000 cases. This network facilitated identification of a large cholera outbreak 
[44]. Since then, in collaboration with governments in Asia and South American, 
EWORS has expanded to include 11 sites on the five Indonesian islands (Fig. 9.4), 7 
sites in Lao PDR, 10 sites Cambodia, and 9 sites Vietnam. Together, these Southeast 
Asia EWORS networks enrolled more than 5,000,000 cases. In 2005, NAMRU-2 
and NMRCD collaborated to initiate EWORS in Peru. Though still in pilot stage, 
EWORS-Peru includes modifications based on the EWORS experience in Southeast 
Asia (discussed below). 

9.3.2 Outbreak Detection and Response 

At each national EWORS hub, up to two full-time analysts review daily reports from 
participating hospitals to identify increases in case counts for a particular syndrome 
that could signify an outbreak. Downloading, processing, and analyzing daily data 
from all sites usually requires approximately one day (two days may be required if 
there are data file errors). If a concerning increase in cases is identified, the analyst 
communicates with the affected site(s) to request additional clinical and epidemiologic 
information. If suspicion of an actual outbreak remains, the hub notifies the public 
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Fig. 9.2a EWORS Chart wizard. 

health authorities responsible for responding to outbreaks. In addition to outbreak 
alerts, the EWORS hub also sends a monthly report to each participating hospital 
summarizing surveillance data for that hospital. Provincial health departments also 
receive reports for EWORS hospitals in the province. 

The process described has encountered three important challenges. First, linking 
EWORS-detected suspected outbreaks with outbreak response actions can require 
coordination of complex bureaucracies when agencies within ministries of health 
have compartmentalized roles and responsibilities. For example, in one EWORS 
country, the Ministry of Health must be invited or granted permission by the provincial 
authorities to assist in an outbreak response. There is bureaucratic complexity at 
national levels, too - within one Ministry of Health, three agencies must be involved to 
coordinate outbreak response. One has responsibility for public health surveillance and 
outbreak investigation, another for research and development, and the third for public 
hospital management. When the central government is stronger and the surveillance 
and response agencies better integrated, as in some EWORS countries, there is less 
delay in responding to suspected outbreaks. However, the scarcity of human and 
financial resources can impede investigations based on EWORS findings. 

A second challenge has been standardizing procedures at the EWORS hub for 
identifying possible outbreaks. Early versions of EWORS software emphasized sim- 
plicity, but the decision of whether to issue an outbreak alert was based on suspicion, 
not validated statistical algorithms. With the lack of statistical thresholds to define 
a possible outbreak, EWORS staff - who themselves had variable epidemiological 
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Fig. 9.2b EWORS Chart wizard. 

Fig. 9 . 2 ~  EWORS Line chart. 
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Fig. 9.3 Number of All Cases from Pirngadi Hospital, North Sumatra. 

training - made decisions about abnormal signals based on subjective perception or 
ad hoc methods. For example, at one national hub, EWORS staff calculated histor- 
ical means and standard deviations of case counts to define statistical thresholds for 
issuing alerts. Another national hub’s process was to define an outbreak as a two-fold 
rise in cases over a two-week period. There was no validation performed as to how 
sensitive and specific such thresholds were. This lack of standardization brings an 
uncomfortable uncertainty to issuing outbreak alerts. In the context of scarce public 
health resources, therefore, committing those resources to subjective conclusions can 
be difficult for Ministries of Health. 

To address this problem, NAMRU-2 and NMRCD have collaborated to incorporate 
automated statistical outbreak detection algorithms into EWORS software. The goal is 
to preserve the opportunity for intuitive, qualitative data assessment through graphical 
displays, and offer quantitative assessments and automatic “flags” using algorithms 
currently employed in syndromic surveillance systems in the United States. 

The third challenge has been validating an outbreak detection system in a develop- 
ing country with limited laboratory diagnostic capabilities (in fact, a primary purpose 
of EWORS is to fill a surveillance gap where there is no laboratory network) and 
scarce resources to investigate possible outbreaks. It is too costly to send outbreak 
investigations teams out on every EWORS alert. And, without constant surveillance 
from other systems, it is difficult to determine whether outbreaks are being missed. 

In practice, EWORS in Southeast Asia has been useful less in generating the 
initial identification of an outbreak, and more in guiding the deployment of scarce 
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Fig. 9.4 Influenza-like illness surveillance network. 

resources from central and provincial offices. Because up to three days may elapse 
between a patient presenting to a hospital with a syndrome under surveillance and 
analysis of the data at the EWORS hub, hospitals often have been aware that outbreaks 
are underway before an alert could be sent. Although hospital staff may know 
that an outbreak is underway, persuading provincial and central offices to provide 
epidemiologic or laboratory support can be difficult without convincing data - for 
example, the number of patients suspected of having the disease; the expected number 
of patients with similar presentations seen during a given timeframe; and patient 
clinical and demographic information. For hospitals that participate in EWORS, such 
data can be provided rapidly; in contrast, hospitals that do not routinely participate 
in EWORS or other surveillance systems can become too overwhelmed with patient 
care to produce such data during an outbreak. EWORS has been especially useful in 
demonstrating the geographic scope of outbreaks that have affected several hospitals 
and required mobilization of significant resources from provincial or central levels. 

Although NMRCD implemented EWORS in Peru recently (2005), several features 
of that short experience are noteworthy. In Peru, the Ministry of Health’s primary 
goal in supporting implementation of EWORS was improving the autonomy of the 
hospital and district level health authorities in infectious disease outbreak detection and 
response. For this reason, participating sites send surveillance data to the EWORS hub 
at NMRCD infrequently and are responsible for managing and interpreting their data. 
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This arrangement provided additional impetus to incorporate automated statistical 
detection algorithms into the software, and requires the EWORS hub to provide 
more training to participating sites that would be needed if data management and 
interpretation occurred centrally. An indirect benefit of this training, but one welcome 
by the Ministry of Health, has been improvement in outbreak preparedness in general 
- by learning the clinical, epidemiologic, and computer skills necessary to take an 
active role in EWORS, hospital staff have become better able to identify and investigate 
“unusual” events, whether or not they are reportable in EWORS. 

In addition, the EWORS training program in Peru strengthens feelings of profes- 
sional competence among hospital staff. This has been an important incentive for sites 
to participate in the system, especially because NMRCD staff made a strategic deci- 
sion early in EWORS implementation not to provide financial or resource incentives 
to participating hospitals (e.g., salaries and computers) - a policy that has dissuaded 
some hospitals from participating, but ensured that ones that elect to participate are 
committed to the system and professional development, and not seeking ancillary 
benefits. 

9.3.3 System Flexibility 

NAMRU-2 and host countries developed EWORS to improve surveillance for a wide 
range of emerging infectious diseases. With concern growing for an influenza pan- 
demic beginning in Asia, however, EWORS has been identified as a system that might 
provide an early warning capability critical for effective pandemic response. For ex- 
ample, the U.S. national strategy for pandemic influenza calls for continued support 
of EWORS as part of efforts to strengthen pandemic influenza surveillance overseas 
[45]. In the national influenza strategy of Lao PDR, EWORS is included as a major 
component of surveillance. 

Computer simulation studies showing that rapid detection and public health inter- 
vention might contain an emerging pandemic suggest the utility of an early warning 
system [46,47]. A draft WHO plan [48], based in part on such work, calls on countries 
to rapidly identify and report clusters of people with symptoms and exposures that 
could represent human-to-human transmission of a novel influenza virus-possibly the 
first indication of an emerging pandemic. WHO also has established large stockpiles 
of antiviral drugs to be deployed for pandemic containment, but only if the emerging 
pandemic is detected early enough for containment to be feasible [48]. 

Whether EWORS in its current forms could provide timely detection of an emerging 
influenza pandemic, or whether it is sufficiently flexible to accommodate modifications 
that would enhance early pandemic detection is unknown. To investigate these ques- 
tions, DoD-GEIS, NAMRU-2, NMRCD, and The Johns Hopkins University/Applied 
Physics Laboratory (JHU/APL) initiated an “end-to-end” system evaluation in 2006. 
Because the success of pandemic containment is time dependent, with computer 
simulations providing guidance on how soon interventions must begin [46, 471, the 
evaluation team is using quantitative modeling approaches in addition to qualitative 
epidemiological assessments to understand how EWORS might perform in the face 
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of an emerging pandemic. The system modeling framework will allow assessment of 
various EWORS modifications that could improve performance. One of the project’s 
objectives is to guide future development of EWORS and other systems that countries 
may implement to improve early detection for pandemic influenza or other epidemic- 
prone respiratory viruses. 

Although in the early stages, the EWORS evaluation has identified several features 
of EWORS and its operating environment that are likely to influence its effectiveness as 
an early warning system for an emerging influenza pandemic. For example, important 
system features could include the number and type of clinics at sentinel hospitals that 
participate in EWORS, the time lag between patient admission and data analysis, the 
background rate of syndromes for which an increase might indicate an outbreak of a 
viral respiratory illness such as influenza and many others. Approaches for evaluating 
syndromic surveillance systems in the United States [49, 501 will be adapted for 
evaluating such features in EWORS. 

A realistic projection of EWORS performance for pandemic influenza, though, 
also requires analysis of factors that are external to the system. For example, lo- 
cal preferences for traditional medicine (which could reduce the effectiveness of a 
hospital-based surveillance system such as EWORS), referral patterns for patients 
with suspected avian influenza infection (which could direct such patients to or away 
from sentinel hospitals), population density (which could affect the rate of epidemic 
progression), location and type of laboratory testing capabilities (which could affect 
how rapidly a suspected outbreak is verified), and the administrative relationships 
between the EWORS surveillance hub and outbreak response offices are a few of 
the extra-system factors that a thorough evaluation should consider. Epidemiologic 
capabilities of the host country are also critical and will affect the number and skill of 
personnel available for surveillance activities. 

A tool expected to result from this evaluation is a generic framework for establish- 
ing, enhancing, and evaluating surveillance activities in developing countries. When 
applied, a key consideration must be the ability of the system’s host agency to sustain 
and validate recommended capabilities. While it is possible to suggest many enhance- 
ments to a system with limited existing capability, the host agency must be able to 
sustain the new features. If enhancements are accepted and sustained, they should be 
validated over time to continue improving the system and to assess the potential utility 
of such features for other systems. 

9.3.4 Summary 

A key lesson from several years of EWORS experience in Southeast Asia is the 
importance of the system’s administrative context as a determinant of usefulness. 
In addition, providing actionable information using validated procedures is critical to 
developing confidence in a system that can trigger expenditures of human and financial 
resources. EWORS, in its present or in modified forms, may facilitate rapid detection 
and containment of pandemic influenza, but rigorous evaluation of the system and its 
operating environment is needed to define its role in pandemic influenza preparedness. 
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9.4 CASE STUDY 2: ALERTA DISAMAR (PERU) 

The Peruvian Navy maintains dozens of training facilities, ports, and other bases 
across the country, from modem facilities in Lima to remote bases in border areas. 
Crowded living conditions and challenges to maintaining hygiene-which militaries 
in wealthy and developing countries alike may contend with-contribute to outbreaks 
of respiratory and diarrheal diseases among Peruvian naval personnel. The tropical, 
jungle environment poses additional risks of malaria, yellow fever, dengue, and other 
vector-borne diseases. Outbreaks of such diseases can render a large proportion of a 
base population ill and can significantly affect the Peruvian Navy’s ability to execute 
missions. 

Before 2002, the Peruvian Navy’s public health surveillance system did not facili- 
tate rapid detection, investigation, and control of infectious disease outbreaks among 
medical beneficiaries (approximately 25,000 active duty personnel and 100,000 fam- 
ily members in 2006). At each base, a medical officer recorded diseases targeted 
for surveillance by the Navy. Paper reports were mailed each month to the central 
naval medical office in Lima. Because of the long reporting interval and time required 
for mailed reports to reach Lima (especially for ones sent from remote border areas), 
surveillance data indicating infectious disease outbreaks often did not reach the central 
office until outbreaks were far along or over. Even if reports had reached the central 
office more rapidly, timely public health action might not have been taken because 
the Navy lacked an information system to support the small central staff in managing, 
analyzing, and interpreting the data. The cost of delayed outbreak response was great: 
the Peruvian Navy spent substantial amounts of money evacuating patients to the 
central hospital and treating patients with severe disease. 

After a severe Plasmodium falciparum malaria outbreak at a base along the Colom- 
bian border in 200 1, the Peruvian Navy acknowledged the need for more timely out- 
break detection and response and committed to developing a more effective infectious 
disease surveillance system. For assistance, the Navy turned to NMRCD, which the 
Peruvian Navy had hosted at its national medical campus in Lima since 1983. 

9.4.1 System Development, Configuration, and Operation 

NMRCD and Peruvian Navy system planners recognized communications infrastruc- 
ture as a key consideration in generating timely information. Developing a nationwide 
system that would cover all Navy facilities was an essential objective, but communi- 
cation capabilities varied widely across the Navy. Some facilities had Internet access, 
whereas remote bases did not. Some of these even lacked telephones and used radio 
to communicate with higher level commands. After considering several possible so- 
lutions, system planners settled on an innovative, commercial technology that could 
integrate surveillance data across diverse communications platforms. 

Developed by Voxiva, the system allows real-time data transmission by Internet 
or telephone [51]. Alerta DISAMAR was built around this information system in 
2002, beginning with 11 reporting Navy facilities. The surveillance system has since 
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expanded to 69 reporting units (including several Navy vessels) across the country, 
covering 97.5% of the Peruvian Navy medical beneficiary population (Fig. 9.5). 
Based on successful implementation in the Navy, the Peruvian Army has recently 
enrolled sites into the system, giving priority to posts in remote areas with endemic 
tropical diseases, such as the Amazon basin. The Air Force has also requested to be 
incorporated into the system. 

Fig. 9.5 Reporting units (including several Navy vessels) across Peru. 
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Figure 9.6 summarizes information flow through Alerta DISAMAR (the figure and 
the remainder of the case study focus on the more mature and extensive Navy network). 
At each site, a medical officer (physician or nurse) employed by the Peruvian Navy 
transmits data to the Alerta DISAMAR central hub at NMRCD by the most convenient 
means available: Internet or telephone (the call is toll-free from public land lines). 
Sites without access to either medium transmit reports by radio to regional hubs, where 
they are sent by Internet or telephone to the central hub. 

Fig. 9.6 Information flow through Alerta DISAMAR. 

Reports consist of demographic and clinical data for clinically suspected or laboratory- 
confirmed cases of diseasedsyndromes identified as surveillance priorities by the Pe- 
ruvian Ministry of Health or Navy (Fig. 9.7; approximately one-third of cases are 
laboratory-confirmed during routine surveillance, depending on on-site and nearby 
laboratory capabilities). Reporting frequency depends on the disease-some diseases 
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require a daily report with demographic and clinical information on each case, while 
common syndromes (such as acute diarrhea or respiratory illness) are reported twice 
per week in batches to reduce data transmission time. All units must send a twice- 
per-week “zero report” if no reportable diseases are identified. The medical officer at 
each site devotes approximately 10-30 minutes per day to review medical records in 
preparation for reporting and approximately 2-3 minutes to transmit data on each case 
(or batch of cases for the twice-per-week report). 

Fig. 9.7 Alerta DISAMAR diseases under surveillance, individual reports. 

The Alerta DISAMAR hub staff includes one full-time physician employed by 
NMRCD and a senior noncommissioned officer and two part-time physicians assigned 
by the Peruvian Navy. The hub uses Voxiva software to convert data reported by 
different communication platforms into a common format to facilitate management and 
analysis. Quality assurance includes weekly manual review of automated procedures 
that track reporting timeliness (including “zero reporting”), completeness, and error 
rates (e.g., invalid diagnostic codes) by site (Figs. 9.8 and 9.9). All the data can be 
exported to Excel for further analysis. To identify excess cases rapidly, graphs are 
automatically generated in Excel with weekly counts of the most common diseases 
and expected counts based on historical averages by site within each Navy region (Fig. 
9.10). The staff evaluates the graphs to assess whether additional follow-up is needed. 
Each week, reports summarizing epidemiologic data and quality assurance metrics 
for each site are generated automatically; these include counts of the most common 
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diseaseskyndromes and timely report rates (Fig. 9.11). Medical officers at reporting 
units and the central Peruvian Navy medical leadership can access these reports on 
a restricted, password-protected Internet site. Alerta DISAMAR personnel who lack 
Internet access may elect to receive compressed text reports by cellular telephone. 

Fig. 9.8 Alerta DISAMAR attributes: timeliness. 

9.4.2 Outbreak Detection and Response 

When Alerta DISAMAR graphical displays of observed and usual case counts suggest 
that an outbreak may be underway, the central hub staff first checks the reports for 
obvious errors. The next step is to make contact with the reporting site’s medical officer 
by telephone or radio, to verify the accuracy of the report, gather additional clinical 
information, and identify any additional cases not yet formally reported. Based on this 
assessment, the central hub team decides whether to launch an outbreak investigation. 
Frequently, discussion between central hub and field site staff results in a decision not 
to initiate an investigation - for example, if the etiology already is known, morbidity 
is not severe, and effective control measures are in place. Investigations launched as 
a result of Alerta DISAMAR have identified outbreaks of various infectious diseases, 
including malaria [52] ,  dengue [53] ,  and cyclosporiasis [54] (Fig. 9.12). 

A critical element in this decision-making process is the Peruvian naval senior 
noncommissioned officer assigned to the Alerta DISAMAR central hub. This npers 
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Fig. 9.9 Alerta DISAMAR attributes: sata quality. 

maintains close contact with each site in the surveillance network (a full-time job) to 
provide feedback on reports, respond to requests for technical assistance, and assess 
whether an outbreak investigation is warranted. As a member of the naval service, his 
understanding of the surveillance sites facilitates communication with the sites and 
interpretation of surveillance data. The Peruvian Navy’s decision to detail a senior 
noncommissioned officer to the Alerta DISAMAR central hub attests to its support 
for the system. Efforts are ongoing to persuade other Peruvian government agencies 
enrolling sites into Alerta DISAMAR to assign such a person to the central hub. 

Once the central hub team reaches a decision to investigate a potential outbreak, it 
must obtain permission from the military installation commander or higher levels of 
command. The close relationship between NMRCD and Peruvian naval leadership 
facilitates this process as well. Rather than seek permission from installation com- 
manders (who may not have the time or interest to host an outbreak investigation), the 
central hub team briefs the central naval medical leadership, which has authority to 
approve an investigation at any naval facility. The medical leadership has approved all 
requests for facility access to investigate outbreaks since Alerta DISAMAR was initi- 
ated. To facilitate collaboration with installation personnel, the investigation team, on 
arrival at the facility, briefs the facility commander on why the investigation is needed 
and how it will be executed. 
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Fig. 9.10 ADD cases, 2006, Second Navy region. 

Since outbreaks often are first identified as an increase in clinically suspected 
cases of an infectious disease, an early step in outbreak investigation is collection of 
specimens and their submission to a competent laboratory for confirmatory diagno- 
sis; frequently, the medical staff at the affected site can take this action before the 
investigation team arrives. Most Peruvian naval medical facilities lack advanced diag- 
nostic capabilities, so Alerta DISAMAR interfaces with national laboratory networks 
to identify outbreak etiology: public health laboratories operated by the Ministry of 
Health and a nationwide laboratory-based surveillance network operated by NMRCD 
in collaboration with the Ministry of Health. 

This laboratory-based network, the Febrile Syndromic Surveillance System, en- 
rolls patients presenting with febrile, respiratory, gastrointestinal, or hemorrhagic 
syndromes to 10 clinical sites across the country. Site staff collect demographic, 
historical, and clinical data and diagnostic specimens appropriate for the presenting 
syndrome. Data and specimens are sent at regular intervals to the central labora- 
tory at NMRCD or an NMRCD field laboratory in Iquitos (northeastern Peru, in the 
Amazon basin), which use virological, serological, and polymerase chain reaction 
(PCR) methods to test for a wide range of likely pathogens. The transportation proto- 
cols established for this ongoing surveillance program facilitate transfer of specimens 
collected in an Alerta DISAMAR outbreak investigation to a competent laboratory, 
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provided specimens can be directed to a Febrile Syndromic Surveillance System 
enrollment site. 

On completion of the outbreak investigation, the Alerta DISAMAR central hub 
team prepares a report on its findings and recommendations for preventing or re- 
sponding to future outbreaks to the central naval medical leadership, which may 
direct the affected facility (or others) to implement recommendations. Understanding 
and respecting such chain-of-command relationships has been critical for NMRCD’s 
success in developing and expanding Alerta DISAMAR in the Peruvian Navy. 

9.4.3 System Flexibility 

Voxiva-developed Alerta DISAMAR software provides for system flexibility in key 
domains. As discussed earlier, the system’s ability to integrate surveillance data 
from Internet and telephone is important because communication capabilities vary 
markedly across the Alerta DISAMAR network. The software also allows the central 
hub to define new reportable diseases and syndromes as the Peruvian Navy recognizes 
new health threats. This is an important capability for a system focused on emerging 
infectious diseases, which (by definition) are new or changing. However, experience in 
adding leptospirosis, sexually transmitted infections, and other diseases to the original 
list has shown that the process imposes significant requirements on the surveillance 
sites. Central software modification allows all sites to report new diagnostic codes, 
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Fig. 9.12 Alerta DISAMAR usefulness: outbreaks detected. 

but generating those new data requires busy medical staff to implement new clinical 
procedures ( e g ,  additional questions or physical examination components). 

Voxiva and its software also have proven adaptable to the needs of the Peruvian 
Navy and central hub by incorporating new ways of entering and visualizing data. 
For example, the latest software upgrade allows staff at sites with intermittent Internet 
access to perform data entry offline on a PC, then upload the data to the central hub 
when an Internet connection is available. Reporting platforms are being expanded to 
include smart phones and PDAs. SMS/text messaging will provide another means of 
reporting to the central hub and communicating from the central hub to notify sites 
of new diseases to include in surveillance or of emergency procedures (e.g., if there 
is concern for SARS, pandemic influenza, or another novel, dangerous disease in the 
region). 

The Web-based interface provides data visualization from anywhere with Internet 
access. Multiple “dashboards” have been created to customize data views for users 
with different needs (e.g., surveillance site staff versus central naval leadership). 
These Web-based interfaces display key information using indicators, graphs, alerts, 
and an interactive GIS map. Charts can be generated automatically that use standard 
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epidemiologic formats or charts can be custom-made with user-specified data and 
formats. Data can be exported to standard statistical software packages for further 
analysis. 

As a military surveillance system, an important challenge that Alerta DISAMAR 
contends with is personnel turnover. While most central hub staff members have 
worked there for several years, many medical officers at Navy surveillance sites are 
young physicians or nurses performing short, required national service duty. Although 
such frequent turnover demands frequent training, the central Peruvian naval command 
allocates time to Alerta DISAMAR training during initial medical officer training, a 
2-day session in Lima before assignment to facilities across the country (an example of 
training material developed by the central hub is shown in Fig. 9.13). This arrangement 
allows the central hub to conduct one group basic training session each year for a new 
cohort of surveillance site medical officers, and is another example of how high system 
acceptability by the major stakeholder, the Peruvian Navy, contributes to efficiency 
and effectiveness. 

Fig. 9.13 Alerta DISAMAR training material. 

Finally, broadly based training of surveillance site staff allows them to respond 
appropriately to possible outbreaks, even if modification of usual system procedures 
is required. In one recent example, the medical officer on a naval ship noticed an 
increase in diarrhea cases during a 2-day period over that considered normal on the 
ship. Because diarrhea is not uncommon in the population, and Alerta DISAMAR 
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reporting draws staff away from other important clinical duties, system procedures call 
for reporting of diarrhea cases twice per week. However, the medical officer, who had 
completed an NMRCD outbreak response course as part of Alerta DISAMAR training, 
recognized the increase as a possible outbreak requiring immediate reporting. She 
contacted the Peruvian naval representative at the central hub, who quickly verified 
that other ships in the area that had shared a training environment were experiencing 
excess diarrhea cases as well. 

9.4.4 Summary 

The Peruvian Navy and NMRCD have found Alerta DISAMAR to be useful for timely 
detection of emerging infectious disease outbreaks [ 5 5 ] .  Key factors that contribute 
to the system’s effectiveness are software that integrates surveillance data across 
diverse communication platforms, thus extending surveillance to remote facilities 
with minimal communication capabilities; broadly based training of system operators, 
which prepares them to respond appropriately to situations that require modification 
of usual system procedures; and, perhaps most important, strong stakeholder support, 
which facilitates communication with surveillance sites, addition of new sites to the 
network, physical access to sites for outbreak investigation, and centralized training 
of surveillance site medical officers. As with many infectious disease surveillance 
systems in developing countries, Alerta DISAMAR often reports clinically suspected 
rather than laboratory-confirmed diagnoses. In outbreak scenarios, though, integration 
with laboratory-based networks can provide diagnostic confirmation. 

9.5 CONCLUSIONS 

The two short case studies presented in this chapter illustrate a few common themes: 
the importance of gaining visible endorsement for the surveillance system from offices 
whose authority is recognized by clinical and public health personnel participating in 
the system; the utility of broadly based training for system operators, which prepares 
them to address new situations not covered by the system’s standard operating pro- 
cedures; and the need for integrating laboratory-based and syndromic surveillance. 
Although the case studies covered surveillance systems in developing countries, these 
points apply to systems in wealthy countries as well. 

It would be wrong to assume, however, that evaluations of and experience with 
surveillance systems in wealthy countries provides sufficient guidance for implement- 
ing systems in resource-poor settings. While challenges and solutions may appear 
similar at a high level of abstraction, the brief treatment of EWORS and Alerta 
DISAMAR here shows that some features of the developing country environment call 
for technological or administrative strategies that might not be needed in, for example, 
a county health department in the United States. There are significant challenges 
in developing countries that money alone cannot solve: for example, lack of skilled 
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personnel to operate surveillance systems, and issues of legal authority in outbreak 
investigations or the implementation of new systems. 

The need for surveillance system evaluations in developing countries is greater than 
ever, as concern for an influenza pandemic has driven wealthy countries to provide 
substantial resources for improvement of public health capacity in developing coun- 
tries. Fundamentally, there is a need to identify the advantages, disadvantages, and 
appropriate applications of various sponsorship and support models. For example, 
how useful is direct aid in developing public health capacity in poor countries? How 
does this experience compare with that of overseas platforms like NAMRU-2, NM- 
RCD, and other broadly based laboratories? What models not yet implemented might 
work best? Analyses that answer such questions could prove very useful in guiding 
efficient, effective investment in the public health systems of developing countries. 

9.6 STUDY QUESTIONS 

9.1 Incentives can be a useful tool in enrolling and maintaining sites in a surveillance 
system. But they can increase system sustainment cost and possibly affect data 
validity (for example, if incentives are based on number of events reported). 
Q: Besides jinancial and equipment incentives, what are some ways that busy 
hospitals or clinics in developing countries could be persuaded to participate 
in a surveillance system? 

9.2 In many developing countries, people may seek care at hospitals only after 
pursuing other options (e.g., treatment at home or a traditional healer or phar- 
macist). Q: In such places, how could surveillance systems be designed to 
capture timely and accurate information? 

9.3 This chapter described one system (Alerta DISAMAR) that uses the Internet 
and telephones to communicate surveillance data from remote locations. Q: 
What are some other methods of communicating surveillance data that could 
be implemented in resource-poor settings? 

9.4 Developing country ministries of health usually have small budgets for inves- 
tigating outbreaks. Even if a surveillance system is in place and provides 
convincing evidence that an outbreak is under way, decision makers may elect 
not to expend precious resources on a response. Q: What data could a surveil- 
lance system in a developing country collect to help authorities decide whether 
to launch an investigation? 

9.5 Several approaches to evaluating surveillance systems have been proposed. 
Some have been informed primarily by experience in high-income countries. 
Q: What are some features of surveillance systems (or their operating envi- 
ronments) in developing countries that might require special attention in an 
evaluation ? 
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Disclaimer. The views expressed here are the private views of the authors and 
are not intended to be construed as official, or as reflecting the true views of the 
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10 Evaluating Automated 
Surveillance Systems 

David L. Buckeridge, Michael W. Thompson, Steven Babin, Marvin L. 
Sikes 

Part I1 of this book presented several examples of automated disease surveillance 
systems. Chapter 6 considered systems used locally and nationally in the United 
States and Chapters 7-9 examined systems used in Canada, the United Kingdom, 
Southeastern Asia and South America. Each of the systems examined provides 
surveillance solutions that take advantage of locally available resources for conducting 
disease surveillance. 

Part I11 of this book examines issues in evaluation, training, and research as they 
relate to automated disease surveillance systems. Chapter 10 presents methods for 
evaluating disease surveillance system considering the context in which evaluations 
are performed, the components of the evaluation process and approaches to measuring 
system performance. 

10.1 THE CONTEXT OF EVALUATION 

10.1.1 Why? - The Need to Evaluate 

Automated syndromic surveillance is a novel public health tool characterized by real- 
time data capture and the use of prediagnostic data. These characteristics produce 
systems with low operating costs [ 11, the ability to detect outbreaks rapidly and the 
capacity to enhance “situational awareness”. The ease of system implementation, 
coupled with concerns over bioterrorism, have prompted public health agencies to 
implement hundreds of automated surveillance systems in the United States and 
around the world [ 2 ,  31 at a cost of millions of dollars [4]. 

While the rapid growth in automated surveillance systems is seen by many in 
public health as an exciting and important development, this growth has also prompted 
questions about the need for and the effectiveness of syndromic surveillance within 
a limited public health budget [4, 5, 61. One concern relates to the practical role of 
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syndromic surveillance in the day-to-day operations of a public health department 
[ 5 ] .  Another concern is whether syndromic surveillance works for outbreak detection 
[6]. These appropriate and important questions, which remain unanswered to a large 
extent, are due to the limited evaluation of syndromic surveillance. As discussed in 
this chapter, evaluation should identify not only if syndromic surveillance works, but 
rather the benefits of using syndromic surveillance for defined outcomes in defined 
contexts. In some cases, it may be difficult to quantify the benefit of syndromic 
surveillance for applications such as ruling-out outbreaks and providing situational 
awareness. Evaluation is, nevertheless, essential to ensure the appropriate use of 
syndromic surveillance within an evolving public health infrastructure. 

Early evaluations of syndromic surveillance were limited in number 171, but the 
number of published evaluation studies has increased in recent years 181. This increas- 
ing interest in the evaluation of syndromic surveillance is well placed because many 
questions about syndromic surveillance remain unanswered. As more data sources 
become available electronically in real time in the future, the increased availability 
will lower the barrier to implementing syndromic surveillance. Only when the benefits 
of automated syndromic surveillance are defined clearly will it be possible to answer 
questions about the cost effectiveness of adding automated surveillance to the public 
health toolkit. 

10.1.2 What? - The Focus of Evaluation 

An evaluation study should be driven by a clear question, which may be motivated 
by an issue important to a single location or of more general interest. In posing 
the question and defining the scope of the evaluation, it is helpful to start from an 
evaluation framework. 

A few evaluation frameworks are relevant to automated syndromic surveillance 
systems. A working group established by the CDC adapted existing guidelines for 
evaluating surveillance systems 191 to the evaluation of automated surveillance systems 
focused on rapid outbreak detection [lo]. The CDC evaluation framework includes 
system description, evaluation of outbreak detection, and assessment of system ex- 
perience. Other, more general, evaluation frameworks are also relevant to syndromic 
surveillance systems. The DeLone and McLean (D&M) model of information sys- 
tem success, originally published in 1992 [ 111 and updated recently [ 121, contains 
constructs for information quality, system quality, service quality, intention to use, 
use, user satisfaction, and net benefits. The Public Health Informatics Institute has 
developed a logic model framework based on the D&M model for evaluating public 
health information systems [ 131. 

In general, frameworks identify potential evaluation foci as (1) the quality of the 
system, ( 2 )  the quality of the information used in the system, (3) user experiences 
interacting with the system, and (4) the benefits of the system (Table 10.1). As 
stated earlier, two potential benefits of syndromic surveillance are rapid outbreak 
detection and enhanced situational awareness. This chapter focuses on the evaluation 
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Table 10.1 
Surveillance System. Source: Buehler et al. [2], Delone and McLean [ll],  PHI1 [13] 

Potential Foci Identified by Frameworks for Evaluation of an Automated 

Evaluation Focus Examples 

Information quality Validity of diagnostic codes, frequency of missing values 

System quality Stability of software and hardware, security 

User experience Ease of use, time to perform tasks 

System benefits Accuracy and timeliness of outbreak detection, 
infections averted, cost-effectiveness 

of outbreak detection and considers evaluation of both the human response to statistical 
aberrations in the data and aberration detection itself. 

10.1.3 How? - The Methods of Evaluation 

The steps in an evaluation process are (1) define the evaluation, (2) identify or create 
the evaluation data, (3) apply detection algorithms and response protocols to the 
evaluation data, and (4) measure performance. In the remainder of this chapter, each 
of these four steps is discussed in turn. 

10.2 DEFINING THE EVALUATION 

At the outset of an evaluation, the initial tasks are to clarify the evaluation question, 
identify the configuration of the surveillance system, define the outbreak scenario, and 
describe the overall evaluation plan. 

10.2.1 Question and Scope 

The question to be answered through evaluation may have a specific focus in a practical 
setting. For example, an analyst may be interested in the magnitude of a signal that a 
specific surveillance system will detect or the optimal threshold for an algorithm in the 
context of a specific type of signal. Alternatively, the question may be more general 
or may be related to how results from the system are used in practice. For example, 
a public health department may be interested in how much time it takes to rule out 
false alarms, how analysts tend to interpret alarm signals, or how well their personnel 
work with other agencies in an outbreak situation. The specific question should 
help to determine the appropriate system configuration and outbreak scenario. For 
evaluations aimed at response protocols, the U S .  Federal Emergency Management 
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Agency (FEMA) has developed a process to assist planners in ensuring that their 
objectives are clear and accurate 1141. 

10.2.2 System Configuration 

The surveillance system may be a real system or a model of an operating system. A 
model of a system may be preferable for evaluation studies where performance will 
be examined across many outbreaks because it is generally more efficient to conduct 
multiple tests in a model than an operational system. Multiple tests - thousands to 
tens of thousands - are usually required for evaluations of outbreak detection that 
use simulated outbreaks. Conversely, if the evaluation is aimed at human response 
protocols to statistical alarms, it may be preferable to use a real system in situ to ensure 
that the exercise is realistic. 

10.2.3 Outbreak Scenario 

The outbreak scenario may range from a simple “increase in incidence” with few 
additional details to a complex scenario involving the release of infectious agents 
at multiple locations with a spatially mobile population [ 151. While the outbreak 
scenario should have complexity sufficient for answering the question, the scenario 
should, at the same time, not be overly complex. A practical test of complexity is 
whether the scenario will provide data that are sufficiently complex for the outbreak 
detection algorithms that will be used in the evaluation or the response protocol that 
will be evaluated. For example, if a space-time statistical method is being used without 
adjustment for covariates, the scenario must specify the spatial characteristics of the 
scenario, but details about age groups are not necessary unless this information is 
required by a simulation model that will be used to generate outbreak signals. Details 
beyond those required by the statistical detection algorithms are also needed in an 
evaluation aimed at response protocols, where analysts may need to view individual 
records as a first step in investigating a statistical aberration. The story line of events 
must also be credible and, if possible, based on real-world events 1161. At a minimum, 
the scenario must be supported by realistic threats and data. 

10.2.4 Evaluation Plan 

The evaluation plan describes the steps that will be taken to conduct the evaluation, ide- 
ally in sufficient detail to repeat the evaluation, if desired. For a quantitative evaluation 
focused on outbreak detection or other aspects of detection algorithm performance, 
the evaluation plan may be similar to a protocol for a research study and include such 
factors as the specific data streams and date ranges to be used, the algorithm thresholds 
at which performance will be evaluated, and the number of simulations that will be 
performed. For an evaluation focused on response protocols, considerable resources 
and planning may be required. Accurate planning for the logistical requirements is 
essential for a successful exercise involving many personnel. Planning may include 
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reservation of conference facilities and classrooms, establishment of necessary tele- 
phone and computer network access, security, and administrative support. Once the 
question is stated clearly, the configuration of the surveillance system is determined, 
the outbreak scenario is described, and the overall evaluation plan is in place, the next 
step is to identify or create the evaluation data. 

10.3 IDENTIFYING OR CREATING EVALUATION DATA 

10.3.1 Data for Evaluation 

Data for evaluation must contain outbreaks, ideally with known characteristics. Eval- 
uators use authentic data (i.e., real data, usually taken from historical data in an 
operating surveillance system) or simulated data, alone or in combination, to create 
the data needed for an evaluation. The following combinations are used most com- 
monly in evaluations of outbreak detection and response protocols, and each approach 
has distinct advantages and disadvantages [17, 18, 191: 

1. Authentic background data with authentic disease outbreaks 

2 .  Authentic background data with simulated disease outbreaks 

3. Simulated background data with simulated disease outbreaks 

Although using authentic background data with authentic disease outbreaks may 
seem initially to be the best option, this approach has a number of drawbacks. First, it is 
often difficult to identify with certainty authentic outbreaks in evaluation data. Small, 
sporadic outbreaks may be missed altogether, and when outbreaks are identified, it 
can be difficult be to determine their onset precisely and to identify which cases are 
attributable to the outbreak and which belong to the endemic background. In other 
words, the characteristics of the outbreak signal cannot be derived without error from 
inspection of the data alone. Investigation of individual cases and other coincident 
data sources may help, but this type of validation can be prohibitively expensive. An 
additional problem with using all-authentic data is that few historical time series are 
available containing verified disease outbreaks, and even fewer are available containing 
outbreaks associated with bioterrorism or emerging infectious diseases. 

For these reasons, algorithm detection performance is often measured using the 
semisynthetic approach, where simulated disease outbreaks are injected into authen- 
tic background data [18, 19, 201. This approach enables evaluation of an alerting 
algorithm using many outbreak signals with as much variation as desired. Figure 
10.1 is an example of a simulated outbreak injected into authentic data. Because the 
outbreaks are simulated, their signal characteristics, including onset and magnitude, 
are known with certainty; and because the outbreaks are injected, tests can be re- 
peated with and without the outbreaks present, as well as with random variation in 
the outbreak signals, to obtain precise estimates of key performance statistics, such as 
sensitivity, specificity, and timeliness of detection. One drawback to this approach is 
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that it cannot be proven that the background data do not contain any undocumented 
outbreaks. Another drawback is that simulated outbreak signals might not adequately 
represent the authentic outbreaks encountered by the surveillance system. This ques- 
tion is addressed in Section 10.3.3, where approaches to simulating outbreak signals 
are considered. 

Fig. 10.1 Example of a simulated outbreak injected into authentic background data. The top 
panel shows a year of data, and the bottom panel shows data around the onset of the inject. The 
vertical line indicates the timing of exposure to inhalational anthrax for a simulated population. 

A third possibility is to inject simulated disease outbreaks into simulated back- 
ground data. With this approach, the evaluator has complete control over the test data. 
The characteristics of the background data are known with certainty, the background 
data contain no hidden outbreaks, and both background and signal can be varied 
to produce an even wider variety of test cases. As with the semisynthetic method, 
effects of typical data problems are easily added to the data to evaluate algorithm 
robustness. Furthermore, tests can be repeated with some random variation in both 
the background data and the outbreak signals to study the temporal variation of key 
performance statistics, such as sensitivity and specificity. Drawbacks to this approach 
are the difficulty of modeling the background data and the possibility that simulated 
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data might not adequately represent the authentic data encountered by the surveillance 
system. Sections 10.3.2 through 10.3.4 discuss methods for and issues associated with 
using authentic outbreaks, simulated outbreaks, and simulated background. 

10.3.2 Authentic Outbreaks 

Authentic outbreaks tend to be used in evaluations with qualitative outcomes for 
several reasons: authentic outbreaks are generally small in number, it can be difficult 
to distinguish between background and outbreak cases, and it can be difficult to 
establish when an outbreak begins. Evaluations using authentic outbreaks have tended 
to focus on explaining false positive and false negative detections [ 1,211. Because the 
data are real, evaluators can identify the impact on outbreak detection of factors such 
as population sampling and health care utilization patterns. Despite the difficulty of 
gathering enough data on a number of authentic outbreaks for a quantitative evaluation, 
some researcher have conducted quantitative evaluations using authentic data [22,23]. 
In these situations, the onset of the outbreaks were determined through expert review 
of the authentic data or use of another external gold standard. The results from such 
evaluations are useful, but the reliance on an external and imperfect standard to define 
outbreaks and the constraint of using only outbreaks that have occurred limit the 
accuracy and usefulness of results from this type of evaluation. 

10.3.3 Simulated Outbreaks 

Simulated outbreaks are useful for quantitative evaluation of outbreak detection and 
response protocols, but they do not allow the type of careful qualitative analysis of 
detection performance that is possible with authentic outbreak data. The methods 
used to simulate outbreaks vary in complexity. As with the definition of the outbreak 
scenario, the selection of the simulation method should be tied to the evaluation 
question, and data produced should be of sufficient but not excessive complexity. The 
main approaches to simulating outbreaks entail the use of mathematical functions, 
empirical outbreak distributions, and “mechanistic” models. 

10.3.3.1 Mathematical Functions Outbreaks simulated using mathematical func- 
tions are used frequently in evaluations involving time-series data. Mathematical 
(e.g., step, linear) or probability (e.g., exponential, lognormal) functions are used to 
generate the incidence of the variable under surveillance over time. This is a simple 
approach to simulating outbreaks that requires few resources and produces an outbreak 
signal of complexity sufficient for many questions and scenarios of interest [6,24]. In 
particular, the lognormal function is a good model of the time to onset of symptoms 
for many infectious diseases [25].  

The limitations on using mathematical functions to generate outbreak signals are the 
limited complexity of the signals produced by these functions, their limited ability to 
incorporate information, and the difficulty of relating these abstract shapes to specific 
outbreak scenarios. Although mathematical functions can generate outbreak time 
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series in a straightforward manner, they cannot generate realistic space-time series or 
individual records with multiple attributes. In addition, if an evaluator is interested in 
the impact of increased virulence on outbreak detection, for example, it is not clear 
how to adjust a mathematical function to mimic a change in virulence. Finally, while 
some functions, such as lognormal probability distribution functions, may generate 
realistic symptom-onset epidemic curves, these abstract shapes are still difficult to 
relate to a specific scenario of public health interest. For this reason, the results from 
evaluation studies using mathematical functions to simulate outbreaks may be difficult 
to apply in practice. 

10.3.3.2 Empirical Density Functions Empirical density functions [26] estimated 
from authentic outbreaks can be used to generate simulated outbreaks (Fig. 10.2). 
As with mathematical functions, these functions are best suited to producing time 
series, although it is possible to estimate space-time empirical density functions. The 
function can be taken directly from an observed outbreak, or the empirical density 
function may be altered by smoothing or scaling. The signals produced are more 
authentic than the signals generated by a mathematical function, but the drawback is 
that the signal will also represent faithfully peculiarities of the original scenario that 
may not be relevant to the evaluation scenario. So, while the signal may be “authentic” 
for a particular location where the outbreak occurred, it may not be the signal that 
would be seen if the same outbreak occurred in another location. General-purpose 
software, such as the GenKern package for the R statistical software, can be used to 
estimate a function from historical data [27]. Specialized software is also available to 
facilitate the use of empirical density functions to evaluate outbreak detection [28]. 

10.3.3.3 Mechanistic Models Mechanistic simulation models generate outbreak 
signals with enough complexity for evaluating many types of outbreak detection 
algorithms, for staging realistic response scenarios, and for comparing surveillance to 
other approaches to outbreak detection. These models are called mechanistic because 
they describe the mechanisms underlying an outbreak, including disease, infection, 
and health care utilization. People are modeled in either an agent or a network-based 
framework [29] or as independent stochastic processes [17, 18, 201. The agent-based 
model extends naturally to communicable diseases (i.e., an infectious disease that 
can be spread from person to person), but these models have many parameters and 
they require extensive computing resources, especially if multiple simulation runs are 
required. 

Modeling people as independent stochastic processes works well for noncommu- 
nicable diseases and in scenarios where only primary disease cases are of interest: for 
example, following a large aerosol release of a bioagent or a large common-source 
exposure to a foodborne disease. An example of a model used to simulate an outbreak 
following an aerosol release of anthrax spores is shown in Fig. 10.3. This approach to 
modeling tends to have fewer parameters than agent-based models because indepen- 
dence is assumed between persons. This simplifying assumption limits the number of 
parameters in the simulation model and decreases the computational requirements of 
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Fig. 10.2 Simulated outbreak generated by an empirical density function. The bars represent 
the frequency of symptom onset over time, and the line demonstrates an empirical density 
function [26] fit to the simulated counts. 

the model relative to agent-based approaches. To model communicable diseases, this 
type of model could be linked to the output of a deterministic or stochastic epidemic 
compartment model. 

Both types of models have many parameters, and the influence of parameter value 
selection on the results may be profound. Evaluations using these types of models 
should therefore assess the sensitivity of results to parameter value choices. This 
assessment can be accomplished through univariate sensitivity analysis [ 181 or a 
Latin Hypercube Sampling (LHS) design in which all parameter values are varied 
simultaneously over their prior distributions [30]. LHS is an approach to sampling 
parameter values from a high-dimensional parameter space to obtain estimates of 
output variables that are more efficient and precise than would be obtained with 
simple random sampling [31]. The LHS approach is also attractive because in a 
study using LHS, the evaluation results integrate uncertainty in parameter values with 
random variation. When a simulation model is specified, there are K parameters. 
A given run of the simulation model requires a value for each parameter, or a set 
of parameter values X = { X I .  . . . , X K } .  Each parameter has a space of possible 
values S = { S1, . . . , S K } .  In LHS, the space for each parameter is partitioned into N 
intervals of probability size l/A7. The Cartesian product of these intervals partitions 
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S into N K  cells, which form a hypercube. Obtaining X for a simulation run requires 
random sampling of a partition for each parameter and then sampling a parameter 
value from within that partition, assuming that values are uniformly distributed within 
a partition. Figure 10.4 shows an example of the parameter values sampled for the 
disease model shown in Fig. 10.3. 

Fig. 10.3 Overview of the components in a mechanistic simulation model using inhalational 
anthrax as an example. The dispersion component (1) models the release of an agent into the 
environment and the dose to which a person is exposed at locations throughout the simulation 
region. The infection component ( 2 )  determines the probability of infection given a person’s 
home location. The disease component (3) models the progression over time of infected persons 
through distinct disease states: incubation, prodromal, and fulminant. Finally, a health care 
utilization component (4) is associated with a state in the disease component. In this example, 
the model associated with the prodromal disease state is shown in detail. Upon entering a disease 
state, a person may seek health care goods or services (i.e., “Visit”). If care is sought, the person 
may be assigned an administrative code (the subject of syndromic surveillance). In addition, 
once care is sought, diagnostic tests may be ordered (blood culture, in this example), which may 
ultimately lead to detection of an outbreak through clinical case findings. A separate health 
care utilization component may be associated with different states in the disease component. 
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Fig. 10.4 
lines indicate the best estimate of the value. 

Distribution of sampled values for parameters in the disease component. The vertical 

10.3.4 Simulated Background 

If authentic background data are not available, it is possible to simulate the background. 
Most healthcare utilization data have regular patterns, such as seasonal and day-of- 
week patterns, and the background simulated must contain a similar structure. 

To generate simulated background data, a time series can first be constructed 
that represents the time-varying expected value p( t )  of the data stream. Seasonal 
fluctuations are added by including an oscillatory term: 

(10.1) 

where po is the long-term time-series mean, A 5 1 is the relative peak amplitude of 
the seasonal fluctuations, t is time, t o  is a time value corresponding to one of the peaks 
of the fluctuations, and T is the period of the fluctuations. 

To produce random variability in this time series, a random draw is taken from 
the appropriate statistical distribution for each element of the series. The particular 
distribution used is determined by the expected value p( t )  and the desired variance- 
to-mean ratio of the data stream, k = a’( t ) /p( t ) ,  which should be a constant. If 
k = 1, the appropriate distribution is Poisson with a mean equal to p( t ) .  If k < 1, 
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the appropriate distribution is binomial with the number of independent trials equal to 
round[p(t)/(l - k ) ]  and the probability of success in any given trial equal to 1 - k .  If 
k > 1, the appropriate distribution is negative binomial with the number of successes 
observed equal to p ( t ) / ( k  - 1) and the probability of success in any given trial equal 
to l / k .  The resultant time series is adjusted for day-of-week and holiday variability 
by shifting cases among the elements of the series. 

Some statistical software also has packages that are useful for simulating back- 
ground data. The surveillance package created for the R statistical software is one 
example [ 271. 

10.4 APPLYING DETECTION ALGORITHMS AND RESPONSE 
PROTOCOLS 

10.4.1 Combining Background and Outbreak Data 

If authentic background and outbreak data are used, there is no need to combine 
data. Otherwise, the outbreak data must be injected into or superimposed onto the 
background data, which is usually done by adding the outbreak data beginning on 
randomly selected days in the background data. If desired, a stratified random sample 
of days can be used to oversample the types of days of interest (e.g., season or day 
of week). When simulated outbreak data are combined with authentic background 
data, the usual approach is to combine many different outbreaks in turn with the same 
series of background data. For data that are entirely simulated, multiple baseline and 
outbreak series are generated and combined. 

10.4.2 Applying Outbreak Detection Algorithms 

If the evaluation is using a small number of outbreak series, or if the aim of the exercise 
is to evaluate the response of analysts to aberration detection, it is preferable to use a 
real system. The realism will enhance the face validity of the results and will allow 
analysts to respond naturally during large-scale exercises. On the other hand, if many 
outbreak series will be used, a model of a real system may be preferable for reasons of 
efficiency. Operational surveillance systems often contain many features that are not 
necessary in an evaluation study and that take time to perform. In addition, when large 
numbers of analyses are performed - usually thousands of runs - vast amounts of 
data are generated, and mechanisms must be established for storing and indexing the 
generated data. 

10.4.3 Applying Response Protocols 

The steps taken to apply response protocols within an evaluation will depend on 
the type of exercise and the focus of the evaluation (Table 10.2). In most cases, 
activities will include introductions and orientation; an opportunity to interact with the 
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Table 10.2 
Information in Public Health Settings 

Exercise Type Focus and Purpose 

Orientation seminar 

Types of Exercises Conducted to Evaluate the Response to Alarms and System 

Training and familiarization. Provides 
participants with an overview of concepts, 
protocols, resources, and expectations. 

Tabletop Training and problem solving. Provides 
senior staff and planners with an 
opportunity to discuss response protocols 
that guide action in a specific scenario. 

Drill Testing and evaluation. Performed to test 
response times, equipment, personnel 
readiness, and communication. 

Functional Testing and evaluation. Conducted to 
test and evaluate capabilities, 
functions, and activities of the 
response system. 

Full scale Testing and evaluation. Conducted to 
test and evaluate a major area or 
the entire emergency response system. 

surveillance system and other resources in an unstructured or semistructured manner; 
the exercise itself, including data collection; and a postexercise meeting. In the case of 
multiagency or multijurisdictional exercises, the users can respond and communicate 
with one another as different people evaluate the data from their regional or agency 
perspectives. In these cases, an exercise control room is often used with people who 
can direct the exercise and can simulate responses from different groups (e.g., police, 
fire, hospital, labs) to inquiries from public health users. A method should be used, 
such as audio recording or participant observers, to capture key events, decisions, and 
outcomes throughout each phase of the exercise. 

10.5 MEASURING PERFORMANCE 

Performance measurement is the step in the overall evaluation where the results from 
the outbreak detection algorithms or the results of applying the response protocols are 
analyzed to answer the questions posed at the outset of the evaluation. Several meth- 
ods are available for evaluating the detection performance and robustness of alerting 
algorithms used in public health surveillance. These include receiver operating char- 
acteristics (ROC) and activity monitoring operating characteristics (AMOC) curves, 
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time-varying ensemble statistics, and summary statistics. The performance metrics 
should be chosen early in the design of the evaluation. 

10.5.1 Outbreak Detection 

Sensitivity and specificity are two basic metrics for assessing outbreak detection. A 
ROC curve allows sensitivity and specificity to be compared over a range of algorithm 
decision thresholds. Timeliness measures the speed with which an outbreak is detected 
and can be plotted against specificity in an AMOC curve [32] or against both specificity 
and sensitivity in a timeliness receiver operating characteristics (TROC) surface [33] .  

In addition to these measures of accuracy and timeliness, time-varying ensemble 
statistics allow assessment of detection performance over time, and summary statistics 
enable characterization of algorithm robustness. These metrics are discussed in more 
detail in Sections 10.5.1.1 through 10.5.1.6. The discussions use the concept of the 
alarm value A for an algorithm at a given threshold h for each interval (e.g., day) 
analyzed j .  The alarm value is a binary measure, or 

A(h)j = 1 i f S ( h , j )  > h 
= 0 otherwise 

(10.2) 

where S ( h ,  j )  is a value returned from the algorithm after analysis of the interval j 
with threshold h. 

10.5.1.1 Spec$city 
outbreak: 

Specificity is the probability of no alarm when there is no 

_ _  n(Z, 77) 
specificity = P(AI0) = ~ 

40) 
(10.3) 

_ _  
where n(D) is the number of intervals (e.g., days) in the background data, and n(A,  0) 
is the number of alarms when the algorithm is applied to the background data without 
any superimposed outbreaks. Specificity is calculated at a decision threshold h as: 

. m  
(10.4) 

where there are m analysis intervals in the background data. Note that specificity is 
calculated using only non-outbreak, or background, data. To determine specificity, 
an algorithm is applied at a given threshold to the background data. An assumption 
implicit in this approach to calculating specificity is that any alarm in the background 
data is a false alarm. This assumption is reasonable if one is interested in detecting 
only outbreaks due to the specific agent being modeled, but it may lead to conservative 
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estimates of specificity if one is interested in detecting other types of outbreaks as 
well. 

Specificity is calculated per analysis interval and can be converted to an alarm rate 
per unit time by multiplication by the number of analyses per time interval. People 
may find it easier to interpret the alarm rate per unit time than specificity. 

10.5.1.2 Sensitivity Sensitivity is the probability of an alarm given an outbreak: 

n(A.  0) 
sensitivity = P(AI0)  = ~ 

740) 
(10.5) 

where n ( 0 )  is the number of outbreaks and n(A,  0) is the number of outbreaks during 
which an alarm was sounded. Sensitivity is calculated at a decision threshold h over 
some number n of evaluation data sets i as: 

m, I n  
Se(h) = - rn x r n i n ( l , x A ( h ) t J )  (10.6) 

$ 0  
2 = 1  3=1 

where there are m, analysis intervals in data set i. Note that sensitivity measures only 
whether an alarm occurred at any point during an outbreak; it does not measure the 
timing of an alarm within an outbreak interval. (This formulation assumes that only 
one outbreak exists in each evaluation data set.) 

Sensitivity is calculated only from the algorithm results during outbreak intervals. 
The drawback of calculating sensitivity per outbreak is that sensitivity and specificity 
are not calculated on the same scale, which complicates direct comparison of the 
two metrics see Section 10.5.1.3). Also, the calculation of sensitivity depends on the 
definition of outbreak intervals. The outbreak interval can be defined to include the 
time between the initial infection and the peak day of the outbreak, the entire outbreak 
period, or some other interval of interest. 

10.5.1.3 Accuracy The ROC curve is a means of comparing specificity and sensi- 
tivity graphically over a range of algorithm thresholds. Figure 10.5 shows an example 
ROC curve that quantifies the trade-off between sensitivity and specificity. 

In addition, the area under the ROC curve (AUC) is a summary measure of accuracy. 
It is important to note, however, that the standard approach to calculating the AUC 
weighs each point on the curve equally, when in reality, points farther to the left (i.e., 
with higher sensitivity and specificity) are usually of greater interest because this is 
the range in which it is usually practical to operate a surveillance system. A simple 
solution to this problem is to plot the ROC and calculate the AUC over a subset of 
the specificity range, as is done in Figure 10.5. Another note of caution relates to the 
concept of “random” performance, which is usually a diagonal line on the ROC plot. 
When sensitivity is calculated per outbreak and specificity is calculated per analysis 
interval, however, the random line is not necessarily diagonal. 
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Fig. 10.5 ROC curves for outbreak detection with different numbers of people infected. Note 
that more outbreaks are detected (i.e., the sensitivity improves) at a given alarm rate as the 
number infected increases. 
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Timeliness-Receiver Operating Characteristic Surface 

Fig. 10.6 Example timeliness ROC surface. The surface shows, at different alarm rates (FP), 
the frequency (TP) with which a proportion of time was saved through surveillance compared 
with outbreak detection through clinical case finding. See Buckeridge et al. [30] for details of 
the model to estimate the time to detection through clinical case finding. The top-right corner 
demonstrates, for example, that some time was saved (i.e., 1 - proportion of time saved was 
5 1.0) in over 80% of outbreaks when 1 - specificity (or FP) rose to 0.2. See Fig. 10.7 for 
two-dimensional slices through the surface at different alarm rates. 
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Fig. 10.7 Two-dimensional slices through the TROC surface shown in Fig. 10.6. These 
two-dimensional slices demonstrate the proportion of outbreaks (sensitivity) for which a given 
amount of time was saved through syndromic surveillance relative to clinical case finding (1- 
proportion of time saved) at three alarm rates. The point in the box indicates that when the 
system was operated at an alarm rate of 0.10, surveillance saved at least 50% of the time (i.e., 
I-proportion of time saved, on the horizontal axis) in nearly half of the simulated outbreaks 
(i,e., sensitivity, on the vertical axis). 
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10.5.1.4 Timeliness Timeliness of outbreak detection can be measured relative to 
the onset of the outbreak or relative to the time of detection through another method. 
In both cases, timeliness can be expressed as units of time or the proportion of time 
saved. Timeliness is calculated relative to the onset of an outbreak for a single 
simulated outbreak as: 

T(h:i) = min(j : A(h)ij = 1) (10.7) 
1 

where there are m, intervals i, and timeliness is not defined if CrL, A(h),, = 0. It 
is possible to plot timeliness against specificity, to generate an AMOC curve [32]. 
Timeliness is undefined when the outbreak is not detected, however, so AMOC curves 
must be interpreted in the context of the corresponding sensitivity across the range 
of specificity. One solution is to plot ROC and AMOC curves together, allowing 
both to be inspected simultaneously. Another solution is to plot the three-dimensional 
surface formed by specificity, sensitivity, and timeliness, as shown in Fig. 10.6. The 
volume under this TROCS surface provides a summary measure of accuracy-weighted 
timeliness, analogous to the AUC for the ROC [33]. This surface plot, however, 
presents a considerable amount of information and may be difficult to interpret. An 
alternative is to plot two-dimensional cuts through the surface, as shown in Fig. 10.7. 

10.5.1.5 Time-Varying Ensemble Statistics Although ROC curves, AMOC curves, 
and TROC surfaces are useful for characterizing overall detection performance, they 
are less useful for describing how detection performance varies with respect to time 
in a given data stream, information that is helpful for characterizing algorithm ro- 
bustness. One method of investigating this behavior is simply to plot the individual 
time series associated with a number of key statistics, such as the daily count values 
predicted by the alerting algorithm and the corresponding test statistics. 

However, if fully simulated data are being used, a much more powerful analysis 
can be conducted. First, multiple random realizations of the data stream are generated 
for the test case of interest. Each of these realizations is processed individually by the 
algorithm being evaluated, and the ensemble statistics of interest are then calculated 
and plotted as functions of time element by element across all realizations of the 
series. Some potentially useful statistics that can be plotted in this manner include 
the median values and confidence intervals of the observed count, the expected count, 
the threshold count (which is the minimum count needed to trigger an alert), the 
standardized alert threshold (defined in the next paragraph), the test statistic, the 
sensitivity to a sudden spike, and the specificity. If multiple levels of alerts are used, 
the multinomial distribution of alert types can also be plotted as a function of time. A 
typical presentation of some time-varying ensemble statistics is shown in Fig. 10.8. 

An especially useful statistic for quantifying algorithm robustness is the standard- 
ized alert threshold. This statistic, which is expressed in multiples of the standard 
deviation of the data stream expected on a given day, can be obtained by dividing 
the difference between the threshold count and the observed count by the expected 
time-varying standard deviation a ( t )  = m. Whenever the value of this statistic 
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Fig. 10.8 
performance as a function of time of a data stream. 

Examples of time-varying ensemble statistics for evaluating the variation in detection 

is zero or negative, an alert is produced. Whenever the value is positive, an alert would 
have been produced by a sudden spike with a magnitude greater than or equal to that 
number of standard deviations above the observed count. With this statistic, algorithm 
robustness may be understood in terms of the time variation of algorithm sensitivity 
and specificity. 

A useful statistic for quantifying detection sensitivity and timeliness is the detection 
log-likelihood ratio. First, a time series is calculated representing the running prob- 
ability of obtaining at least one alert after the beginning of an upsurge. A reference 
series is calculated similarly, but without the upsurge. The detection log-likelihood 
ratio is then obtained by dividing the probability with the upsurge present by the prob- 
ability with the upsurge absent and taking the base 10 logarithm. When the value of 
this statistic is positive, the alerting algorithm has a larger than random likelihood of 
detecting the upsurge, while a negative value means a smaller than random likelihood. 
The more rapid the rise of this statistic after the beginning of the upsurge, the more 
timely the detection. 

10.5.1.6 Summary Statistics Although curves such as those discussed can be use- 
ful for characterizing algorithm performance in great detail, it is often helpful to distill 
the key information to a few summary values, especially for characterizing algorithm 
robustness. Calculation of the average values of certain statistics during a fixed time 
interval following a transient event (e.g., the sensitivity and specificity during the 
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Fig. 10.9 
mance. ST refers to settle time, DOR to days out of range and DOW to day of the week. 

Examples of summary statistics for evaluating the robustness of detection perfor- 

7 days after the resumption of data following a drop-out), usually allows algorithm 
robustness to be characterized quite effectively with respect to that event. 

In addition to the time-averaged sensitivity and specificity, two other summary 
statistics that can be useful for characterizing algorithm robustness are the settle time 
(ST) and the days out ofrange (DOR). ST is defined as the number of days required 
for the standardized alert threshold to settle within some acceptable range following 
a transient event. DOR is defined as the number of days on which the standardized 
alert threshold does not lie within the acceptable range during the settling period. 

Two summary statistics that can be useful for characterizing detection sensitivity 
and timeliness are the maximum detection log-likelihood ratio (MDLLR) and the 
detection time (DT). MDLLR is defined as the peak value of the detection log- 
likelihood ratio curve. DT is defined as the number of days required from the beginning 
of the upsurge to achieve that peak value. 

To evaluate the detection performance and robustness of an alerting algorithm 
quickly or to compare the performance of multiple algorithms, it can be useful to 
display the summary statistics in a series of tables. A separate table can be prepared 
for each group of related statistics (e.g., specificity and sensitivity, ST and DOR, 
MDLLR and DT). Within each table, the results for each test case can be listed in 
separate rows, the values of each summary statistic can be listed in minor columns, and 
the results for each algorithm can be grouped into major columns. Cell shading can be 
used to indicate whether these values are acceptable, unacceptable, or indeterminate. 
An example of such a table is shown in Fig. 10.9. 
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10.5.2 Response Protocols 

The approach to measuring performance by the application of response protocols is 
linked to the type of exercise performed (see Section 10.4.3). The kinds of questions 
that might be considered include: 

How do the actions taken by participants compare to the actions described in 
the response protocol? 

0 What are the differences between the actions and the protocol, and what is the 
likely impact of these differences? 

What system or protocol changes, or training, may be needed to address the 
differences observed? 

Evaluation of response protocol performance may be quantitative, but it is more 
likely to be qualitative. For example, if a participant observer collected notes during 
the application of the response protocols, the dominant themes may be identified and 
summarized for discussion in a focus group. A similar approach could be taken by 
transcribing audio recordings of the exercise and using qualitative data analysis to 
identify important issues. Surveys or interviews of participants may also provide 
useful information. 

10.6 SUMMARY 

As interest and investment in automated syndromic surveillance increases, evaluation 
is required to ensure that the method is used effectively by public health agencies. 
An evaluation that examines many components of a surveillance system from many 
different perspectives is needed. For some types of evaluations, such as those that 
evaluate system quality, information quality, and user experiences, suitable methods 
exist and should be applied [34]. Evaluation of outbreak detection and human response 
to system alarms, however, requires novel methods. 

This chapter presents the steps to evaluate outbreak detection and alarm protocols, 
and examines in some detail recently developed methods for these types of evalua- 
tions. In particular, the focus is on methods for simulating disease outbreaks and for 
measuring outbreak detection performance. The number of evaluations of automated 
syndromic surveillance is increasing and more attention is being given to the methods 
used in these evaluations. This development and application of evaluation methods is 
important, and it is expected that the understanding of the effectiveness and benefit of 
automated syndromic surveillance in defined settings for defined tasks will increase 
as this evaluation work continues. 
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10.7 STUDY QUESTIONS 

10.1 This chapter focuses on evaluation of outbreak detection and response protocols. 
As discussed in Section 10.1.2, however, there are other aspects of a surveillance 
system that could be the focus of an evaluation. Q: Describe the steps that you 
would take to evaluate system quality and information quality. 

10.2 The use of mathematical functions to simulate disease outbreaks was discussed 
in Section 10.3.3. These functions are convenient to use but may not reflect the 
temporal dynamics of a real outbreak. Q: I fyou  assume that a real outbreak 
will have a shape like a lognormal distribution, what might be the effect on 
sensitivity and timeliness of using an exponential or linear function to simulate 
outbreaks fo r  use in an evaluation? 

10.3 In an evaluation of response protocols, extensive resources may be required 
to conduct an exercise where public health personnel respond to a simulated 
outbreak scenario. Q: Describe the resources that would be required fo r  an 
exercise involving only a small surveillance team within a public health de- 
partment. How would the required resources change if other agencies, such as 
police and health care institutions, were to be included in the exercise? 

10.4 In measuring timeliness, equal weight can be given to time at the outset of an 
outbreak and time later in an outbreak. For example, outbreak detection on day 
2 of an outbreak lasting 4 days will save 2 days, and outbreak detection on day 
10 of an outbreak lasting 12 days will also save 2 days. Intuitively, however, 
the first example seems more useful. Q: How can you take this type of scenario 
into account when calculating timeliness? 
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11 Educating the Workforce: Public 
Health Informatics Training 

Harold Lehmann 

The “workforce” in public health comprises many professions, ranging from office 
clerks to national directors, from direct providers of health care to formulators of health 
policy. Since the publication of the Institute of Medicine’s (IOM) seminal position 
statement [ 11, the American public health community has researched the state of that 
workforce, has formulated the educational needs, and has worked at fulfilling those 
needs. Disease surveillance ranks as a core competency in the IOM-based framework, 
under the guise of “monitoring health status,” and different educational approaches 
meet its needs to a varying degree [ 2 ] .  This chapter reviews the educational framework 
for training in surveillance as currently practiced, including distance-education-based 
opportunities and reports on the state of public health informatics training, a novel 
approach to meeting these educational needs. 

11.1 COMPETENCIES FOR DISEASE SURVEILLANCE 

Curriculum developers increasingly structure teaching around the concept of compe- 
tencies [3], measurable behaviors that a person needs to demonstrate [4]. Competence, 
on the other hand, tends to refer to the (minimum) standards that those behaviors ought 
to achieve [5]. A core competency takes the role that functional specifications do in 
information system design, providing specifications for teaching (learning) objectives 
and providing the basis for evaluating students and programs. 

In public health, the Council on Linkages Between Academia and Public Health 
Practice and the Public Health Foundation, both of whose agendas concern implemen- 
tation of the IOM framework, put core competencies at the focus of their efforts. They 
define core competencies as “the individual skills desirable for the delivery of Essen- 
tial Public Health Services” [6]. The two relevant services for our purposes are (1) to 
monitor health status to identify community health problems, and (2) to diagnose and 
investigate health problems and health hazards in the community (see Table 1 1.1). A 
focus on competencies is the recommendation of a recent policy article as well [3], a 

425 
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follow-up on these authors’ 2004 article [7], In bioterrorism self-assessment, surveil- 
lance was not raised as an important skill [S]. However, the strategy Healthy People 
2010, which defines the U S .  government’s public health approach, raises surveillance 
as an important function of the public health infrastructure [9]. 

Table 11.1 
and Health Promotion [54]). 

1. 

Essential Health Services in Public Health (From Office of Disease Prevention 

Monitor health status to identify community health problems 

2. Diagnose and investigate health problems and health hazards in the community 

3. Inform, educate, and empower people about health issues 
~ _ _ _ _ _ _ _ _  ~ 

4. Mobilize community partnerships to identify and solve health problems 

5.  Develop policies and plans that support individual and community health 
efforts 

6. Enforce laws and regulations that protect health and ensure safety 

7. Link people to needed personal health services and assure the provision of 
health care when otherwise unavailable 

~ 

8. Assure a competent public health and personal health care workforce 

9. Evaluate effectiveness, accessibility, and quality of personnel and 
population-based health services 

10. Research for new insights and innovative solutions to health problems 

Within the Council on Linkage’s definition of core competency, intended levels of 
mastery, and therefore learning objectives for workers within each competency, will 
differ depending on their backgrounds and job duties [6]. Educators must specify 
core competencies further, based on the skill goal of their students. The Council on 
Linkages specifies three levels of job categories - front-line staff, senior-level staff, 
and supervisory and management staff - and three levels of skill: 

0 Aware: basic level of mastery of the competency. Individuals may be able to 
identify the concept or skill but have limited ability to perform the skill. 

0 Knowledgeable: intermediate level of mastery of the competency. Individuals 
are able to apply and describe the skill. 

0 Advanced: advanced level of mastery of the competency. Individuals are able 
to synthesize, critique or teach the skill. (Formerly used projcient). [6] 

The current chapter will address these three skill levels. 
To help in defining teaching objectives within the core competencies, Tables 1 1.2a- 

1 1.2h lay out the skill classes needed within the two primary essential services. The 
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tables show the large amount of overlap in the two services, with few skills unique 
to either one. These tables and the Case Studies in (Chapters 6 to 10) make clear the 
relevance for surveillance of skills beyond the technical expertise in outlier detection. 

Table 11.2a Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [55]. 

Policy Development/ 
Program Planning Skills 

Essential Essential 
Service f 1 Service # 2 

Collects, summarizes, & interprets 
information relevant to an issue J J 
States policy options & writes 
clear & concise policy statements J 
Articulates the health, fiscal, 
administrative, legal, social, & 
political implications of each 
policy option J 
States the feasibility & expected 
outcomes of each policy option J 
Decides on the appropriate course of action J J 

programs for their effectiveness & quality J 
Develops mechanisms to monitor & evaluate 

The September 11 terrorist attacks, the anthrax attacks, and the worldwide increase 
in terrorism have promoted public health preparedness as a vital function. Rather than 
define preparedness as an essential service, public health leaders have mapped the 
needs of preparedness to the existing services [ 101 and have turned those competencies 
into cumcula [ 111. Although the World Health Organization (WHO) publishes many 
guidances for training in areas of public health, surveillance does not get specific 
treatment in the WHO library. 

From the informatics perspective, competencies have been defined by the Education 
Working Group of the International Medical Informatics Association for informatics 
training that does refer to public health, but the competencies listed are not really 
specific to public health, and certainly not to surveillance [ 121. 
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Table 11.2b Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community). 
Source: Public Health Foundation [55]. 

Analytic/Assessment 
Skills 

Essential Essential 
Service #l Service #2 

Defines a problem J d 
Determines appropriate uses & limitations 
of both quantitative & qualitative data J J 

to defined public health systems J J 
Selects and defines variables relevant 

Identifies relevant & appropriate 
data & information sources 

Evaluates the integrity & comparability 
of data & identifies gaps in data 
sources 

Applies ethical principles to the 
collection, maintenance, use, & 
dissemination of data & 
information 

Partners with communities to attach 
meaning to collected 
quantitative & qualitative data J 

quantitative & qualitative data J J 
Makes relevant inferences from 

Obtains & interprets information 
regarding risks & benefits 
to the community 

Applies data collection processes, 
information technology applications, 
& computer systems storage/ 
retrieval strategies J 
Recognizes how the data illuminate ethical, 
political, scientific, economic, & 
overall public health issues 
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Table 11 .2~ Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [55]. 

~~ 

Communication 
Skills 

Essential Essential 
Service # 1 Service & 2 

Communicates effectively both in writing 
& orally, or in other ways J J 
Solicits input from individuals & 
organizations d 
Advocates for public health programs & 
resources d 
Leads & participates in groups 
to address specific issues 

Uses the media, advanced technologies, & 
community networks to communicate information J J 
Effectively presents accurate demographic 
statistical, programmatic, & scientific 
information for professional & lay audiences J J 
Listens to others in an unbiased manner, 
respects points of view of others, & 
promotes the expression of diverse 
opinions & perspectives (attitude) J J 

Table 11.2d Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [55]. 

Cultural Competency Essential Essential 
Skills Service # 1 Service # 2 

Utilizes appropriate methods for interacting 
sensitively, effectively, & professionally 
with persons from diverse cultural, 
socioeconomic, educational, racial, ethnic & 
professional backgrounds, & persons 
of all ages & lifestyle preferences J J 
Understands the dynamic forces contributing 
contributing to cultural diversity (attitude) J d 
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Table 11.2e Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [SS]. 

Community Dimensions 
of Practice Skills 

Essential Essential 
Service # 1 Service # 2 

Develops, implements, and evaluates a 

community public health assessment J J 
Accomplishes effective community engagements J 
Identifies community assets & available resources J 

Table 11.2f Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [SS]. 

Basic Public Health Essential Essential 
Sciences Skills Service # 1 Service # 2 

Defines, assesses, & understands the health 
status of populations, determinants of health 
& illness, factors contributing to health 
promotion & disease prevention, & 

factors influencing the use of health services J J 
Identifies & applies basic research 
methods used in public health J 
Applies the basic public health sciences 
including behavioral and social sciences, 
biostatistics, epidemiology, environmental 
public health, & prevention of chronic 

& infectious diseases & injuries J J 
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Table 11.2g Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [55]. 

Financial Planning & Essential Essential 
Management Skills Service # 1 Service # 2 

Develops & presents a budget J J 
Manages program within budget constraints J J 
~~~ ~ 

Applies budget processes 

Develops strategies for determining 
budget priorities J J 
Monitors program performance J J 
Prepares proposals for funding 
from external sources 

Applies basic human relations skills 
to the management of organizations, 
motivation of personnel, & 
resolution of conflicts 

Manages information systems for 
collection, retrieval, & use of 
data for decision-making 

Table 11.2h Core Competencies for Essential Services 1 (Monitor Health Status) and 
2 (Diagnose & Investigate Health Problems and Health Hazards in the Community), 
continued. Source: Public Health Foundation [55]. 

Leadership and Systems Essential Essential 
Thinking Skills Service # 1 Service # 2 

Creates a culture of ethical standards 
within organizations & communities J J 
Identifies internal & external issues that 
may impact delivery of essential public 
health services (i.e., strategic planning) 
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11.2 PROFESSIONS OF DISEASE SURVEILLANCE 

The WHO defines surveillance as “ongoing systematic collection, collation, analysis 
and interpretation of data and the dissemination of information to those who need 
to know in order that action may be taken” [13, 141, while CDC uses the definition, 
“the ongoing systematic collection, analysis, and interpretation of outcome-specific 
data for use in the planning, implementation and evaluation of public health practice” 
[15]. Screening, a component of surveillance, is “the use of simple tests across a 
healthy population in order to identify individuals who have disease, but do not yet 
have symptoms” [ 161. The workforce in public health comprises many professions: 
ranging from office clerks to national directors; from direct providers of health care to 
formulators of health policy. Literature searches in PubMed and EMBASE focused 
specifically on surveillance and workforce education and training yield no references. 
Several surveys over the past few years have assessed the size, activity profile, and 
educational needs of each contributing profession for the more general essential ser- 
vices. The most recent was in 2005, commissioned by the Health Resources and 
Services Administration (HRSA) and examined six states - New Mexico, Montana, 
Georgia, California, Texas, and New York - representing different formulas for 
the relationship between the state and local public health agencies 1171. An earlier 
assessment was published in 2000 [18]. These surveys did not examine the perfor- 
mance or needs of managed care organizations as deliverers of population health. 
The following paragraphs summarize the 2005 report, filtered through the concerns 
of disease surveillance and reinforced by cognate research in North Carolina [19], 
further research in Texas [20], and rural UK [21]. Surveillance or screening per se is 
not addressed in these last three reports. 

The HRSA report [ 171 acknowledges the range of public health professions, at a 
proportion of 60 to 95 per 100,000 population: general, nurse, physician, oral health, 
nutrition, social work, health education, epidemiologist, and so on. The researchers 
found a uniform need for health practitioners to improve their knowledge of bioter- 
rorism and disaster preparedness, core public health principles, and epidemiology. 
Scientifichnvestigative work comprised 3 to 20% of the workforce; epidemiologists 
were 1 to 5% of the practitioners. All expressed a need for more education, especially 
training that bridged the academic and practice communities. However, there was a 
“substantial opportunity costs for individuals who sought MPH training,” indicating 
a need either for true release time or for novel approaches to training, especially for 
senior staff. 

11.3 TRAINING OPPORTUNITIES IN PUBLIC HEALTH EDUCATION 

To match the demonstrated needs of the workforce for traditional and novel methods of 
learning, the public health community has assembled a range of options for students 
and practitioners. This section will address surveillance training provided in the 
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context of public health education; the next section will address surveillance training 
in the context of informatics training. 

The Council on Education for Public Health [22] defines the accreditation criteria 
for schools and programs. The most recent amendment (June 2005) contains neither 
surveillance, screening, nor informatics criteria. The Master’s Degree in Public 
Health Core Competency Development Project of the Association of Schools of Public 
Health lists screening in its epidemiology competencies but has not yet incorporated 
informatics formally [23], although researchers in the workforce see that coming soon 
[3]. Public health surveillance, as a topic, can garner continuing education credits. 

Despite the lack of current formal stipulations, many schools and training centers 
currently offer students and professionals the opportunities called for by analyses of 
the workforce. HRSA established under Section 766 of the Public Health Service 
Act, as amended by Public Law 105-392 in November 1998 a national network of 14 
public health training centers [24]. The centers focus on providing courses, over half 
of them distance-based. Few courses relate directly to surveillance. For instance, the 
Mid-America Public Health Training Center provides a course on surveillance in rural 
counties 1251, and the Northwest Center for Public Health Practice offers a course on 
public health surveillance and hot topics in preparedness [26]. 

The Centers for Disease Control and Prevention (CDC) manages educational pro- 
grams of its own. For practitioners around the country, they publish lecture and 
learning material of a host of topics, including over 100 lectures on surveillance 
topics alone. For professionals wanting more formal training, they offer several 
epidemiology-related programs [27]. None is focused specifically on surveillance. 

Partners in Information Access for the Public Health Workforce [28] provides 
a comprehensive list of training opportunities throughout the workforce, including 
many distance-education opportunities. The Association of Schools of Public Health 
maintains a list of distance-education opportunities, indexed by the essential services 
(see the association’s website for further information) [24]. 

11.4 INFORMATICS TRAINING 

The need for informatics in public health and for informatics training in public health 
predates the recent upsurge of interest in disease surveillance, but the promise of 
real-time biosurveillance has heightened the awareness of the relationship between 
informatics and biosurveillance 1291. Certainly, public health researchers and prac- 
titioners were involved in public health informatics even before this discipline had 
a name. Self-identified programs in public health informatics training date at least 
back to the mid-l990s, when the CDC began its informatics course for public health 
managers 1301 and began its informatics training fellowship. The need for work- 
force training in informatics was recognized at the seminal spring meeting of the 
American Medical Informatics Association in 2001 [3 11, where 16 recommendations 
were offered. The Northwest Center for Public Health Practice took one of those 
recommendations to heart and formed a working group to assemble public health 
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informatics competencies [32]. Bryant Karras, under a contract with the CDC, is 
currently working on updating those competencies (personal communication). 

The International Medical Informatics Association (IMIA) recommendations for 
health informatics training divide informatics students into two groups: information 
technology (IT) users and health and medical informatics professionals [ 121. The 
2002 public health informatics competencies divide the users into those who require 
effective use of information, effective use of information technology, and effective 
management of information technology projects [32]. Covvey and colleagues in their 
exemplary document on health informatics training objectives divide the informatics 
field into applied, research and development, and clinician [33].  Lehmann extended 
these further into two axes (see Fig. 1 1.1): professional role [34] and informatics role 
[35] .  These axes implicitly define 25 sets of competencies (one at each intersection 
box), where many specific competencies overlap. 

Administrator 

Researcher 

Learner 

Teacher 

Professional 

User Specifier IT Evaluator Innovator 

lnformat ics 
Role 

Fig. 11.1 Proposed space for educational interventions in public health informatics. Pro- 
fessional role: A single person may have these multiple roles: public health professional 
(epidemiologist, policymaker, etc.), teacher (to clients, colleagues), learner (continuously), re- 
searcher (at the least, describing his or her own performance across cases), and administrator. 
Informatics role: Users (use information via information technology for decision making and 
other aspects of their job), specifier (domain professional who defines the specifications of an 
information system), IT (ranging from tech support to system developer), evaluator (confirming 
that a system meets its specifications but also whether the system as intervention has achieved 
its goals), and innovator (informatics researcher or novel policymaker). 

The needs for surveillance professionals mirror those of informatics. In the 
professional-role axis, public health practitioners must make judgments regarding 
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diseases for which they screen and perform surveillance; they must teach and ex- 
plain to their supervisors and to the public the implications of their results; they 
must continually learn and update their knowledge about the specific diseases as well 
as surveillance methods; they must either perform research as part of their practice 
or simply review their performance across instances of surveillance; and they must 
administer the surveillance program. From the informatics perspective, each profes- 
sional level must use information, may specify the system that collects and manages 
the information, must develop and manage the system, may evaluate the system, or 
may innovate to create new systems, from either the technical or policy perspectives. 

11.4.1 Training Opportunities in Public Health Informatics 

Training opportunities in public health informatics range from certificates, based on a 
small number of courses, through degree programs. The University of Pittsburgh offers 
a five-course certificate in biosurveillance [36], and Loma Linda, in geoinformatics 
[37]. The University of Maryland [38] and University of Texas [39] offer a certificate 
program in the more general public health informatics. The program at the University 
of Illinois-Chicago can be taken online, for either a master’s degree or a certificate 
[40]. Emory also offers both levels of programs [41]. 

The CDC has provided training in public health informatics for several years [42] 
where public health-trained professionals gain experience in developing public health 
information systems. The Robert Wood Johnson Foundation, partly to implement 
the training recommendation of the 2001 AMIA Spring Conference [3 11, initiated 
in 2004 a fellowship training program in public health “as a strategy to catalyze the 
development of the field and create a sustainable pipeline of future leaders in public 
health informatics” [43]. Partnering with the National Library of Medicine, extra 
fellowship slots were added to existing informatics-training programs at Columbia 
University [44], Johns Hopkins [45], the University of Utah [46], and the University 
of Washington [47]. 

Programs outside the United States include Lancashire’s distance certificate pro- 
gram in public health informatics [48], the MPH in public health informatics at the 
University of Essex [49], the new certificate program at Curtin University of Technol- 
ogy in Perth [50], and the more general health informatics program at the School of 
Public Health at the University of New South Wales [51]. 

With the recent attention to national health care information infrastructure and 
networking, it is clear that many informatics specialists will be needed to see these 
efforts through. Although the Office of the National Coordinator for Healthcare In- 
formation Technology did not place informatics training in their framework [52], the 
American Medical Informatics Association is committed to training “1 0,000 infor- 
matics specialists by 2010’ in their “10 x 10” program [53]. Although public health 
informatics is not an offering at the time of this writing, it probably will be by the 
time of publication or shortly thereafter. The need for the 10 x 10 program is evident 
from the various national efforts for a national health care information network that 
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will require informatics expertise, although training of informatics specialists was not 
part of the initial national framework 

11.5 CONCLUSIONS 

Education and training in public health, surveillance, and informatics is achieving 
greater professionalization and organization. There are no outcomes data regarding 
the effectiveness of the new programs, either to advance individual careers or to 
improve the public’s health. However, these recent efforts show great promise to 
apply the results of informatics results to the practice of public health and to improve 
the health of the nation and the world. 

11.6 STUDY QUESTIONS 

1 1.1 Q: Assemble a list of competencies from the prior chapters. Next to each, check 
off the level you would like to attain: aware, knowledgeable, advanced. Has 
this book satisfied the “aware ” and “knowledgeable” columns? 

11.2 Q: To what extent do you feel that it is adequate to leave surveillance spread 
across the other essential services? Is it important enough to stand alone? 

11.3 Q: The skills listed in Table 11.1 are relatively generic. How would you make 
them more speci5c fo r  surveillance? 

1 1.4 Educational competency is often expressed in terms of “Knows that” and 
“Knows how.” Q: How would you construct a study to evaluate the effec- 
tiveness of general public health training in satisfiing the “Knows how ’’ set of 
competencies ? 

11.5 Looking at yourself as a public health practitioner, peruse the public health 
training centers’ educational offerings. Q: What impresses you? What is 
missing ? 

1 1.6 Locate yourself in as many boxes as is relevant in the grid in Fig. 1 1.1. Q: Rate 
how confident you are with your knodedge and skills in each of those locations. 
What experiences (educational, practical) do you need to raise each box to its 
highest level? Are those experiences available? 
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12 The Road Ahead: The Expanding 
Role of Informatics in Disease 
Surveillance 

Joseph S. Lombard0 

The previous chapters in this book presented the components of automated dis- 
ease surveillance systems as well as case studies of systems that have found practical 
use within the public health community. Automated surveillance systems present 
a considerable advance over manual approaches, but the field of automated disease 
surveillance will continue to advance as operational experience and technology im- 
provements are incorporated within new or existing surveillance tools. This final 
chapter surveys a few areas where significant progress is currently being made and 
where advances will probably be available within the next few years. 

12.1 INTRODUCTION 

Advances in information technology are having a major impact on the way that health 
departments conduct the business of disease surveillance. Currently, most major health 
departments use some form of computer application to conduct disease surveillance. 
Many of these applications are first-generation systems that were developed rapidly 
with funding related to bioterrorist threats to enable early disease recognition. The 
terrorist attacks of September 11, 2001, and the use of the U.S. Postal Service to 
transmit Bacillus anthracis caused federal and local health officials to recognize the 
urgent need for improvements to their disease surveillance processes. Many health 
departments enhanced their surveillance activities by requiring hospital emergency 
departments to fax them their patient encounter logs. These records were processed 
manually to look for abnormal trends in disease [l]. However, it quickly became 
evident that manual collection and processing of hospital records i.e. “active” reporting 
was a time-consuming and labor-intensive process that was taking a toll on health 
department personnel and funds. 
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The introduction of automated disease surveillance applications, developed by 
commercial, federal, and academic groups, provided an alternative to manual surveil- 
lance for public health departments. In many cases, however, these applications were 
not designed to take into account unique characteristics of specific jurisdictions, so 
many health departments elected to develop their own surveillance applications. Even 
these custom-built systems were implemented when limited knowledge existed about 
how best to use the data that were being acquired. As a result of this rush to implement 
first-generation systems, the potential for major improvements in existing surveillance 
applications is profound, especially as increased knowledge is obtained through the 
operation and analysis of current processes. 

Several areas exist where improvements in automated public health surveillance 
are likely in the near future. 

1. The enhancement of the interoperability among systems so that national, re- 
gional, and local disease surveillance networks can be assembled to collect and 
share data and information. 

2 .  The adoption of a stable set of standards for the collection, sharing, and vi- 
sualization of data and information among agencies responsible for disease 
surveillance. 

3. The leveraging of enhancements in the electronic patient record, community 
and regional health information networks, and electronic laboratory reporting. 

4. The streamlining of disease surveillance operations by leveraging public health 
informatics. 

The remainder of this chapter addresses medical and public health informatics 
activities that could lead to major improvements in disease surveillance. 

12.2 INTEGRATION OF DISEASE SURVEILLANCE SYSTEMS 

One of the important functions of any public health informatics application is interop- 
erability. Most public health organizations have, over time, developed and operated 
several applications. Many of these applications address some specific objective in 
surveillance or response. Examples from the local health departments include archiv- 
ing and monitoring the occurrences of reportable diseases, cancer registries, medical 
examiners’ reports, and the monitoring of hospital emergency departments and overall 
bed capacity in support of emergency medical systems response. 

At the federal level, the Centers for Disease Control and Prevention (CDC) de- 
veloped many different informatics applications in support of disease surveillance. 
Examples include the Early Warning Infectious Disease Surveillance program fo- 
cused at states bordering Canada and Mexico, the 121 Cities Mortality Reporting 
System, the %City Enhanced BioTerrorism Surveillance Project, the Influenza Sen- 
tinel Physician Program, the Medical Examiner and Coroner Information Sharing 
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Program, the National Electronic Disease Surveillance System (NEDSS), the Health 
Alert Network (HAN), and BioSense. Information sharing among these programs 
should allow public health personnel to better understand disease trends that may be 
difficult to interpret from examination of one system alone. The ability to fuse data 
and information collected across many different systems is made possible through in- 
teroperable data sharing using standard representation of data elements and standard 
formats for transmission of data elements among systems. 

Another example of interoperability enhancements in disease surveillance is the 
exchange of data and information among local, regional, and federal partners sharing 
resources in a secure, controlled environment. Some data sources, such as local emer- 
gency departments, may be acquired more easily by local health departments, where 
as, other such as over-the-counter medications sales, may be acquired more easily 
nationally by federal agencies. Public Health partners may use disease surveillance 
system of their own design or may use a common system. A surveillance network 
could include the distribution of responsibilities among participants for capturing, 
sharing, and analyzing surveillance data as well as supporting follow-up activities for 
investigating abnormal disease events. Sharing responsibilies among several partners 
could reduce the overall cost of surveillance while pooling knowledge from each of 
the partners. 

12.2.1 

The Health Insurance Portability Accountability Act (HIPAA) Privacy Rule recognizes 
the legitimate need for public health authorities and others responsible for ensuring 
public health and safety to have access to protected health information to carry out 
their public health mission. The rule also recognizes that public health reports made 
by covered entities are an important means of identifying threats to the health and 
safety of the public at large as well as to individuals. Accordingly, the rule permits 
covered entities to disclose protected health information without authorization for 
specified public health purposes [ 2 ] .  More specific information regarding the HIPAA 
rules is presented in Chapter 3. 

In the past, most health departments have taken a relatively conservative approach 
to maximizing privacy when acquiring data for surveillance use. These health depart- 
ments minimize the collection and use of personal identifiers to live within the spirit 
of HIPAA even though such information can be acquired legally and used by public 
health departments for surveillance. More recently, some states have passed laws 
mandating the collection of hospital emergency department data [3]. For example, in 
March 2004, the state of Indiana passed a law requiring the state health department to 
collect data related to symptoms and health syndromes that may be a threat to public 
health. This same law required schools to report to the local health departments the 
percentages of students absent above a set threshold. Similar laws have enabled health 
departments to acquire data from covered entities that may have previously taken a 
conservative approach to sharing surveillance data. 

Data Privacy and Public Health Networks 
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However, it may sometimes be difficult for local surveillance systems to share data 
because agreements with local data providers typically do not permit data transfer 
to third parties. Many data-sharing agreements restrict health departments from 
sharing even portions of their data over a surveillance network outside their local 
boundaries. Because infectious diseases do not honor jurisdictional boundaries, public 
health agencies will need to find solutions for sharing information and performing 
surveillance among neighboring jurisdictions. 

12.2.2 Standards for Information Sharing 

In September 2005, the U.S. Department of Health and Human Services (DHHS) 
chartered the American Health Information Community (AHIC) to provide input and 
recommendations to DHHS on how to make health records digital, interoperable, pri- 
vate, and secure. AHIC consists of 17 members from both the federal government and 
private industry. AHIC adopted three priority issues: increasing biosurveillance capa- 
bilities, adopting standards for electronic health records, and defining data fields and 
algorithms for care quality measures. In support of AHIC, the Healthcare Information 
Technology Standards Panel (HITSP) was formed to recommend a set of standards 
to enable interoperability among software applications for local, regional, and na- 
tional networks. Within HITSP, three committees have been formed: biosurveillance, 
consumer empowerment, and electronic health records. 

The biosurveillance committee is chartered with providing recommendations for 
acquiring emergency department data for conducting disease surveillance. In Septem- 
ber 2006, an initial draft of recommendations of the biosurveillance committee was 
submitted [4]. The overall scope of activities for the biosurveillance committee rec- 
ommendations are described in the following six areas: 

1. Populate biosurveillance information systems (BIS) with data from emergency 
departments. 

2 .  Support detection of public health threats with the data provided. 

3. Support ongoing monitoring of an event with a continuing receipt of data. 

4. Support rapid response management of an event using information received. 

5 .  Evaluate the BIS performance. 

6. Improve the BIS performance as needed. 

The Public Health Information Network (PHIN) is a CDC initiative to define a set 
of standards and business practices that support interoperability among public health 
applications [5]. The process of identifying appropriate standards for public health 
informatics applications has been slow and laborious. The process is complicated 
because technology is advancing much faster than standards can be established. Many 
health departments that developed applications based on one set of standards, found 
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that by the time their applications became operational, the interoperability standards 
had changed and the interpretation of the standard used when development began was 
no longer valid. This confusion resulted in developers implementing applications with 
communication solutions that were not able to communicate. AHIC and the HITSP 
will expedite the PHIN standardization process to help prevent this type of occurrence 
in the future. 

12.2.3 Regional and National Networks 

Regional health information organizations (RHIOs), are regional- or state-supported 
projects to assist in the development of privacy and business rules for health informa- 
tion exchange. There are currently over 100 regional projects funded by the federal 
government and many more are supported by private industry or state legislatures. 
A good example of such an initiative is the California Regional Health Information 
Organization (CalRHIO), whose objectives are to construct a secure network for the 
exchange of health information across the state [6] .  

Two projects initiated by CalRHIO that benefit disease surveillance are emergency 
department linking and personal health records. The emergency department linkage 
project will provide information needed for point-of-care decisions, but because the 
project is to link all of the state’s 350 hospitals, the data could also be used for disease 
surveillance by capturing disease trends across the state. The personal health record 
initiative will provide a longitudinal record of a person’s health. This record could 
be used to increase the specificity of the information used in surveillance. Use of 
standard vocabularies and communications protocols are the key for the success of the 
CalRHIO projects. Figure 12.1 provides a roadmap for the implementation of these 
standards by CalRHIO. 

Regional networks have been formed specifically for the purpose of conducting 
surveillance across jurisdictional boundaries. Within the National Capital Region 
(NCR), the state and local health departments surrounding Washington, DC, have 
formed an enhanced surveillance operating group to share surveillance data and anal- 
ysis protocols across the region. Each member of the group provides data into an 
aggregated surveillance system that is used by each member health department in the 
region. This initiative has worked very well because each stakeholder has a vested 
interest in making the network succeed. Details of this network are presented in 
Chapter 6. 

Also as mentioned in Chapter 6, the CDC is establishing a national network to 
acquire data for the BioSense system. The results of analyses conducted at CDC with 
data collected locally are made available to local health departments. The intent of 
BioSense is to share unprocessed data received locally with local health departments 
using the standards proposed in BioSense. If this goal is accomplished, a two-way 
linkage will be established between the local health departments and the CDC. The 
next step will be to create linkages within the network so that local health departments 
can share data and information within a defined region. 
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Fig. 12.1 CalRHIO road map for the implementation of standards in California. 

12.3 SURVEILLANCE SYSTEM ENHANCEMENTS 

12.3.1 Better Health Indicators 

Current initiatives in standardization for electronic medical records, interoperability 
and communications, and the development of regional and national networks have the 
potential to increase the timeliness and specificity of disease surveillance (biosurveil- 
lance) systems. 

12.3.1.1 Electronic Medical Record The electronic medical record (EMR) con- 
tains electronic documents as well as functions including [7]: 

0 Patient demographics 

0 Medical history, examination, and progress reports 

0 Medicine and allergy lists and immunization status 

0 Scheduling, retrieval, and archiving of laboratory and other tests 

0 Graphic image display of x-rays, MRIs, and other medical imaging studies 
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0 Medication ordering, including patient safety functions to minimize interactions 
or side effects 

0 Evidence-based recommendations for specific medical conditions, termed clin- 
ical practice guidelines 

0 Appointment scheduling 

0 Claims and payment processing 

0 Patient reminders of follow-up appointments, test completion, and preventive 
health practices 

Many institutions are developing EMRs. However, because of this institutional 
perspective, EMRs permit viewing only by caregivers who perform their duties within 
a medical institution or medical group. Most EMRs do not permit patients or caregivers 
who work outside the group to view their data. 

The term electronic health record (EHR) has been used to refer to a record that 
can be accessed by any caregiver providing care to a patient. Ideally, the EHR can be 
accessed for point-of-care service within a physician’s office, emergency department, 
or outpatient clinic. This type of record requires one or more archives or repositories 
to be accessed securely, with information merged and presented to those seeking the 
information. 

One component of the EHR is the continuity of care record (CCR), which is 
a historical record of a single patient’s encounters and treatments for every health 
care provider supporting the care of the patient. The CCR provides summaries of 
patients’ historical and present health status for primary care physicians and specialists 
supporting the care of the patient. The CCR plays an important role in making 
decisions on how to treat and support a patient with a history of illness. 

Both the U.S. Department of Defense Tri-Service Healthcare System, known as 
TriCare, and the Veterans’ Health Administration (VHA) have made much progress in 
the development and implementation of the EHR. Health maintenance organizations 
(HMOs) have also developed components of the EMR, EHR, and CCR for the care of 
their enrollees. These successes have occurred because the records remain within the 
local networks for organizations holding data. Challenges remain regarding informa- 
tion exchange among different organizations competing for health insurance revenues 
from large employers. 

Once again, standards are key to the interoperability of EMRs and EHRs. The 
following list includes standards relevant to EMRs [7]. This list will be replaced when 
the HITSP biosurveillance committee completes its mission. 

1. ASTM (CCR): a patient health summary standard based on XML, the CCR can 
be created, read, and interpreted by various EHR or EMR systems, allowing 
easy interoperability between otherwise disparate entities. 

2 .  ANSI X I 2  (EDI): a set of transaction protocols used to transmit virtually any 
aspect of patient data. This has become popular in the United States for transmit- 
ting billing information because several of the transactions are required by the 



450 THE ROAD AHEAD 

Health Insurance Portability and Accountability Act (HIPAA) for transmitting 
data to Medicare. 

3. CEN-EHRcom: EN13606, the European standard for the communication of 
information from EHR systems. 

4. DICOM: a frequently used standard for representing and communicating radi- 
ology images and reporting. 

5.  HL7: HL7 messages are used for interchange between hospital and physician 
record systems and between EMR systems and practice management systems; 
HL7 Clinical Document Architecture (CDA) documents are used to communi- 
cate documents such as physician notes and other material. 

6. ISO: IS0  TC215 has defined the EHR and produced a technical specification, 
I S 0  18308, describing the requirements for EHR architectures. 

7.  openEHR: next-generation public specifications and implementations for EHR 
systems and communication, based on a complete separation of software and 
clinical models. 

8. Electronic laboratory reporting. 

In response to the antiterrorism policies outlined in Presidential Decision Directive 
39 [8], the CDC established the Laboratory Response Network (LRN) [9]. The 
objective of this project is to increase the capacity of state and local laboratories to 
support analysis of samples from acts of bioterrorism. The network is also being 
used to analyze environmental samples collected under the Department of Homeland 
Security’s (DHS) BioWatch Program [lo]. The LRN provides a unique asset linking 
state and local public health laboratories with the CDC. Similar networks are needed 
to link hospital and private clinical laboratories in support of early warning for public 
health surveillance. 

For several years there have been initiatives to improve the laboratory reporting 
of reportable diseases to state health departments. These initiatives are collectively 
designated electronic laboratory reporting [ 1 11. These initiatives also require the 
acceptance of standards to permit interoperability among the local laboratories and 
health departments to which they report. Once the implementation issues are resolved, 
the data will be invaluable to health departments for their surveillance mission because 
the laboratory data provide needed specificity that is missing in most of the other health 
care indicators being used for early alerting. Consideration has been given to the use 
of laboratory requests as an early indicator of specific diseases for surveillance at both 
the national and local levels [ 121. 

12.3.2 Biostatistics 

Developing analytic processes for the early identification of abnormal disease trends 
is challenging for several reasons. Algorithms are typically designed and evaluated 
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against a data characteristic from a specific data source. Because of the wealth of 
possible sources of data that could be used as health indicators, it is unlikely that any 
single algorithm will perform on all data sources. Different time lags exist between 
creation of the data element and the time those data are received by the disease 
surveillance system. Not all data can be received in real time, and the algorithms must 
take into account lags among the data sources. 

The time when an abnormal disease indication may first be evident also varies 
in different data sources and is a function of several parameters, including avail- 
ability of insurance coverage, socioeconomic class, and disease. One might expect 
self-medication to occur early in the stage of a disease compared to an emergency 
department encounter when the symptoms are more acute. Using over-the-counter 
(OTC) medications as an early indicator would not be very effective for socioeconomic 
classes who do not have the ability to purchase these medications. At the other end of 
the socioeconomic spectrum, an early indication would not be expected for those who 
have the resources to stock up with medications frequently used to relieve symptoms 
of common ailments. 

Many modem disease surveillance systems process only homogeneous data sources 
because the differences in characteristics vary widely among data sources. For ex- 
ample, many systems only use chief complaint data from emergency departments. 
To fully exploit the data available for surveillance, analytical techniques will need 
to be able to fuse all data types that provide value for early recognition of a health 
event. The set of analytics will vary for diseases with different signs and symptoms. 
Time-stepped data fusion techniques are needed to take into account the sequence of 
health- seeking behaviors occurring in different indicators. 

Many algorithms currently exist for the identification of changing conditions. Pro- 
cess control techniques used in manufacturing have been found useful in detecting 
health events. Many of the current data mining techniques used to link data from 
several sources could be applied if privacy laws didn’t restrict the use of data elements 
that could be used for linking. Much work is needed to adapt these techniques to 
achieve high values of sensitivity and specificity for early detection of public health 
events. 

12.3.3 Information Technology 

As more data sources become available for use in disease surveillance systems, addi- 
tional techniques will be needed to capture data for use in surveillance processes as 
well as for viewing the vast amount of information collected. The most successful 
systems have relied on capturing data from existing systems. Manual collection of 
data specifically for disease surveillance has proven to be too labor intensive to be 
sustainable over long time periods. New technologies that automate the process of 
data entry are needed. 

Surveillance systems have an enhanced value if they permit the user to see not 
only the outputs of analytical processes, but also the basic data elements. Many users 
of surveillance systems rely on their knowledge of the data sources to resolve false 
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alarms that occur as a result of a variety of factors. As more items become available 
for possible viewing, newer techniques will be needed for digesting large amounts 
of data by the user. Data viewed in a specific format may provide insights for some 
events and not for others, so a wide variety of formats may be needed to obtain optimal 
use of the data. 

12.3.4 Health Department Business Processes 

As health departments expand their use of informatics applications, traditional business 
processes must be modified or expanded. Automated disease surveillance systems 
provide the time-saving benefits of capturing, archiving, and processing large amounts 
of data, but most health departments do not have the personnel and financial resources 
to follow up on alerts that are not true health events. Fortunately, more experienced 
surveillance system users have learned to recognize alerts that can easily be explained 
away or are interesting, but of little significance, as opposed to a public health event 
requiring intervention. 

Disease surveillance systems must have the flexibility to adapt to the ever-changing 
challenges facing health departments. System users must be able to add new data 
sources and define or modify case definitions, syndrome groupings, or analytic pro- 
cesses without having to go back to the system developers or health department IT 
staff. The enhancements mentioned above have the potential for increasing the per- 
formance of modern disease surveillance systems while also increasing their value to 
support the management of public health events. 

12.4 STUDY QUESTIONS 

12.1 Interoperability - the ability to share data and information using a common for- 
mat among different surveillance systems developed by different organizations 
- is a critical improvement. Agreement on a set of standards to make systems 
interoperable is making significant progress. These standards will permit the 
formation of networks at state, local, regional, and national levels. Disease 
surveillance networks require not only interoperability at the application level, 
but also require the ability to share data and information covered by current 
privacy laws. Q: How would you propose to resolve the legal and ethical 
data-sharing issues across public health surveillance networks? 

12.2 Soon, many more sources of data will become available for use in public health 
surveillance systems. Because these data will not have common characteristics, 
automated processing will result in more false alerts, requiring more data to be 
viewed by public health monitors of surveillance systems. Q: Given the time 
constraints of public health employees, suggest business processes to monitor 
large quantities of data, information, and algorithm outputs more eficiently. 
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12.3 Most automated disease surveillance systems rely on acquiring data that have 
been collected for other purposes. A good example is billing using ICD-9 
disease codes. Many other sources of data could also be useful for surveil- 
lance if the labor needed to collect the data was minimal. One example is the 
monitoring of animals that might be good sentinels for acts of terrorism. Cur- 
rently, no automated data collection systems exist to monitor the animals that 
are most sensitive to diseases resulting from acts of bioterrorism. Q: Describe 
mechanisms that could be used to acquire surveillance data automatically from 
sources that are currently very manually intensive. 
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