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Preface

Since their introduction by de Bellescize in 1936, analogue Phase-Locked Loops
(PLLs) have continued to play a major role in the advancement of several fields
such as communications, signal processing and control [11]. Despite their per-
formance advantages, analogue PLLs suffer from major drawbacks related to
their analogue nature. These include aging and temperature drift effects, the
sensitivity to component tolerances and operating conditions. In an attempt to
combat the aforementioned drawbacks, Digital Phase-Locked Loops (DPLLs)
were introduced in the 1970s as a result of the advent of digital technology and
the urgent need for robust methods of synchronization for space communications
[12]. One of the most promising versions of the DPLL is the Digital Tanlock
Loop(DTL), which was introduced [13]. This loop offered many appealing fea-
tures such as the linearity of the phase characteristics and the insensitivity to
the variations in signal power. However, it did not gain a lot of popularity due
to the complexities faced in the design of the Hilbert transformer, one of its
major components.

Recently, an approach was proposed to rid the DTL from the Hilbert Trans-
former and its complexities by replacing it with a fixed time delay unit. This
approach preserves most of the desirable characteristics of the DTL except
for the linearity. The loop was named the Time Delay Digital Tanlock Loop
(TDTL) [71].

Motivated by the desirable features of the TDTL, this book aims at ana-
lyzing the performance of the TDTL and implementing it as a reconfigurable
system, which will serve as a testbed for future experimentations. The flexibil-
ity offered by reconfigurable computing devices, especially Field Programmable
Gate Arrays (FPGAs), is being utilized in most communication systems to
implement complex high-speed algorithms [14]. In addition to that, it will fa-
cilitate in upgrading and modifying of the TDTL testbed with minimum effort
and complexity.

FPGAs are on the verge of revolutionizing digital signal processing in the
manner digital signal processors did two decades ago. This is expected since
FPGAs offer various attractive features such as rapid prototyping, on-the-fly
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upgradeability, code reuse and reduction in size and power consumption
[14, 15].

The Main Contributions

The main contribution offered by this book is the introduction of modified
architectures of the newly proposed TDTL that overcome the inherent limita-
tions of the loop and undermines the tradeoffs between the locking range and
speed of acquisition requirements. The proposed architectures are purely dig-
ital, therefore lending themselves to the implementation using reconfigurable
modules without a significant increase in the complexity of implementation or
design procedures.

Another major contribution offered is what may be considered as the first
documented implementation of the TDTL using FPGAs. The implemented sys-
tem will serve as a testbed for the performance enhancement and optimization
of the loop.

Organization of Book

The first chapter provides a general review of phase-lock loops. Chapter two
reviews the uniform and non-uniform type Digital Phase Lock Loops (DPLL).
Chapter three covers the Time Delay Digital Tanlock Loop (TDTL) and it’s
convergence behavior. The following two chapters will focus on the Hilbert
Transformer and Time-Delay, and the analysis of the TDTL in noise. The sixth
chapter will cover the analysis, modified architectures, and the simulation re-
sults of the various TDTL architectures for improved performance. Chapter
seven documents the design and implementation of a reconfigurable TDTL
system using Field Programmable Gate Arrays, and analyzes the acquired
results. Finally, chapter eight covers selected applications of the TDTL.
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Chapter 1

General Review of Phase-Locked
Loops

1.1 Overview of Phase-Locked Synchronization
Schemes

Although not explicitly stated, the presence of transmitter-receiver synchroniza-
tion is usually assumed in analyzing the performance of communication systems.
For example, in the case of coherent Phase-Shift Keying (PSK) demodulation,
the receiver is required to perform maximum-likelihood symbol decisions
by comparing the incoming signals with a set of internally-generated reference
signals. Generating these reference signals, which are assumed to be identical
to those of the signaling alphabet at the transmitter, requires the receiver to
be synchronized with the received carrier. This means that the there has to
be phase alignment between the incoming carrier and the generated replica at
the receiver, and therefore, the incoming carrier and the replica in the receiver
would pass through zero simultaneously if there were no information modulated
on the incoming carrier. The receiver in this state is said to be in phase-lock with
the transmitter, and this condition must be closely approximated if coherently
modulated signals are going to be accurately demodulated [6, 80].

Being in phase-lock means that the receiver’s local oscillator is synchro-
nized in both frequency and phase with the received carrier. In addition to
that, phase-lock must also be established with the received subcarriers if the
information-bearing signal is not modulated directly on the carrier. If the car-
rier and subcarrier are not kept in phase concurrence by the transmitter, the
receiver is required to generate a replica of the subcarrier and control it’s phase
separately from that of the carrier replica, and therefore, enabling the receiver
to achieve phase-lock on both the carrier and subcarrier [5].

1



2 CHAPTER 1

The receiver is also required to achieve Symbol Synchronization by tracking
the start and end of incoming symbols. These are required to determine the
proper intervals for integrating the energy of symbols, and ensure making correct
symbol decisions. This is achieved by producing a square wave whose zero
transitions are aligned with the incoming signal’s transitions between symbols
in order to reach a symbol-lock state. The typically large number of carrier
cycles per symbol period necessitate that achieving this level of synchronization
with different circuitry than that used for phase synchronization [6, 7].

In the context of communication systems, synchronization is also required
in a higher level, namely frame synchronization. Since information is usually
organized into blocks, which are coded for forward error control and multiple
access purposes, the knowledge of the boundaries between code words must
be available at the decoder to ensure correct message or data extraction. In
Time Division Multiple Access (TDMA), where multiple users are time-sharing
common channels, it is necessary to know where the boundaries between channel
users are in order to distribute the information appropriately. Similar to symbol
synchronization, frame synchronization is equivalent to being able to generate a
square wave at the frame rate, with the zero crossings matching the transitions
from one frame to the next [6, 7].

All levels of synchronization, namely phase, symbol and frame, are required
in most digital communication systems employing coherent modulation tech-
niques. Conversely, noncoherent-modulation-based system usually make use of
symbol and frame synchronization, and another level called frequency synchro-
nization, in which the replica of the carrier generated by the receiver is allowed
to have an arbitrary constant phase offset from the received carrier. The choice
between coherent and noncoherent modulation methods is governed by the de-
sired performance and complexity of implementation [80].

Although so far it seems that the synchronization is related only to the re-
ceiver, there are some communication systems that utilize the transmitter in
performing a great deal of the synchronization role by tuning the timing and
frequency of its transmissions to match the expectations of the receiver. For
example, many terrestrial terminals in satellite communication networks are
directing their transmissions toward a single satellite receiver. These trans-
mitters rely on the receiver return paths to determine the accuracy of their
synchronization, and therefore, transmitter synchronization often implies two-
way communications or a network in order to be successful. Thus, transmitter
synchronization is often called network synchronization [6].
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1.2 The Synchronization Challenge

As mentioned earlier, there is a compromise between the performance and the
implementation complexity. Extra levels of synchronization come at the cost
of additional hardware or software in the receiver for acquisition and tracking.
There are also costs associated with the synchronization overhead, energy and
power consumption. However, the outcome of improved performance and ver-
satility still outweighs the aforementioned costs, and communications system
designers are always oriented towards designing systems with high degree of
synchronization [7].

An example of this design strategy is the case of commercial analogue ra-
dio broadcast employing Amplitude Modulation (AM). This system is usually
comprised of a central transmitter serving multiple receivers within its coverage
area, and involves no synchronization. However, the passband of the receiver
must be wide enough to house the modulating (information-bearing) signal, and
account for its abrupt shifts in frequency due to the fluctuations in the output
frequency of the local oscillator generating the carrier [6]. With this extra re-
quirement, the performance of the receiver will degrade due to the fact that
extra noise energy will be passed to the detector, which was not accounted for
in the theoretical analysis. Adding the element of synchronization to this re-
ceiver will solve the problem, and improve the performance considerably. If the
receiver contains extra circuitry for tracking the incoming carrier, the receiving
filter will be centered about the carrier even if it fluctuates, and the detected
noise energy will be decreased leading to a lower signal-to-noise-ratio (SNR) [6].

Moving to the digital communications domain, the same compromise can be
demonstrated in the choice of modulations schemes. For example, noncoherent
Binary Frequency Shift-Keying (BFSK) is considered among the simplest digital
receivers in terms of implementation, requiring only symbol and frequency syn-
chronization. However, choosing this modulating scheme will result in a 4-dB
penalty in terms of bit error performance, i.e. the more complex coherent BPSK
receiver can achieve the same bit error probability with 4 dB less SNR [7]. The
trade-off between complexity and performance is further extended with the use
of error-control coding algorithms. While they offer better performance under
stringent operating conditions, they also result in more complex implementa-
tions, and require higher levels of synchronization between blocks, messages,
and frames [81, 80]. Having discussed the principles and levels of synchroniza-
tion, and the trade-offs between implementation costs and performance, the
next section will explain the basic building block of almost all synchronization
systems, namely the Phase-Locked Loop (PLL).
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Phase Detector Loop Filter

Voltgae
Controlled
Oscillator

v2(t)

v1(t) vf (t)vd(t)

Figure 1.1: Block Diagram of the PLL.

1.3 Phase-Locked Loops

The PLL represents one of the most active topics in signal processing and com-
munication theory. The initial ideas started as early as 1919 in the context
of synchronization of oscillators. The theory of phase-locked loop was based
on the theory of feedback amplifiers. The PLL contributed significantly to
communications and motor servo systems. Due to the rapid development of in-
tegrated circuits (IC’s) since the 1970’s, PLLs are widely used in modern signal
processing and communication systems, and it is expected that PLL will con-
tribute to improvement in performance and reliability of future communication
systems. The applications of PLLs include filtering, frequency synthesis, motor-
speed control, frequency modulation, demodulation, signal detection, frequency
tracking and many other applications [1, 9, 10, 11].

1.3.1 Analog Phase-locked Loops

A PLL is defined as a circuit that enables a particular system to track another
one. More precisely, a PLL is a circuit synchronizing an output signal (generated
by an oscillator) with a reference or input signal in the frequency as well as in
phase [5].

In the synchronized or the locked state, the phase error between the oscilla-
tor’s output and the reference signal is either zero or an arbitrary constant. In
the case of a phase error building up, the oscillator is tuned by a control mecha-
nism in order to reduce the phase error to a minimum. In such a control system,
the phase of the output signal is actually locked to the phase of the reference
input. This is the reason behind calling this specific control system a Phase-
Locked Loop [5]. The basic functional components of a PLL are: A voltage
controlled oscillator (VCO), A phase detector (PD), and A loop filter (LF).
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The signals of interest in the PLL block diagram shown in Figure 1.1 are de-
fined as follows: The reference (or input signal) v1(t) with an angular frequency
ω1, The output signal v2(t) of the VCO with an angular frequency ω2, The
output signal vd(t) of the phase detector, The output signal vf (t) of the loop
filter, and The phase error θe, defined as the phase difference between signals
v1(t) and v2(t).

The VCO oscillates at an angular frequency ω2 which is determined by the
output signal vf of the loop filter. The angular frequency ω2 is given by

ω2(t) = ωo + Kovf (t) (1.1)

Where ωo is the centre frequency of the VCO and K o is the VCO gain. The
PD compares the phase of the output signal with the phase of the reference
signal and generates an output signal vd that is approximately proportional to
the phase error θe, the former signal is given by:

vd(t) = Kdθe, θe → 0 (1.2)

where Kd represents the gain of the PD. The output signal vd(t) consists of a
dc component and a superimposed ac component. Since the latter is undesired,
it is cancelled by the loop filter. Assuming the angular frequency of the input
signal v1(t) is equal to the centre frequency ωo, the VCO then operates at its
centre frequency ωo, and the phase error is zero, indicating the output signal of
the loop filter vf is also zero. If the phase error θe was not initially zero, the
PD would develop a nonzero output signal vd. After some delay the loop filter
would also produce a finite signal vf , which will cause the VCO to change its
operating frequency in such a way that the phase error finally vanishes.

Now, assume that the frequency of the input signal is changed suddenly at
a time instant to by the amount of ∆ω. This will cause the phase of the input
signal to lead the phase of the output signal, and a phase error will build up and
increase with time. The PD develops a time-increasing signal vd(t), which will
cause vf (t) to rise after some delay introduced by the loop filter. This causes
the VCO to increase its frequency in order to minimize the phase error, and
after some settling time the VCO will oscillate at a frequency that is exactly
the frequency of the input signal. Depending on the type of the loop filter used,
the final phase error will have been reduced to zero or to a finite value.

The VCO now operates at a frequency that is greater than its center fre-
quency ωo by an amount ∆ω, this will force the signal vf (t) to settle at a final
value of vf = ∆ω/Ko. If the centre frequency of the input signal is frequency
modulated by an arbitrary low-frequency signal, then the output signal of the
loop filter is the demodulated signal. The PLL can consequently be used as an
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Figure 1.2: Classical Mixing Phase Detector.

FM demodulator, or in more general terms, it can be used as a demodulator
of any scheme that stores the information in the frequency of the phase of the
modulated carrier [5].

One of the most interesting capabilities of the PLL is its ability to suppress
noise superimposed on its input signal. Assuming that the input signal of the
PLL is degraded by noise, the PD will attempt to measure the phase error
between the input and output signal. The noise at the input causes the zero
crossings of the input signal v1(t) to be advanced or delayed in a stochastic
manner, causing the PD output signal vd(t) to jitter around an average value.

If the cut-off frequency of the loop filter is low enough so that almost no
noise will be noticeable in the signal vf (t) and the VCO will operate in such
a way that the phase of the signal v2(t) is equal to the average phase of the
input signal v1(t), it can be stated that the PLL is able to detect a signal that is
badly degraded by noise. These simplified considerations show that the PLL is
a typical servo system that controls the phase of the output signal v2(t) [1, 5].

1.3.2 PLL Basic Components

The Phase Detector

As previously mentioned the function of the phase detector block is to com-
pare the phases of the input and output signals and generate an error signal
proportional to the phase deviation between them. The most prevalent device
capable of achieving this function is the mixer, which generates the sums and
differences of the frequencies at its input terminals.

The mixing phase detector shown in Figure 1.2 will be discussed later in Sec-
tion 1.3.3. This PD has a superior noise performance to all the other detectors,
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due to the fact that it operates on the entire amplitude of the input and VCO
signals, rather than quantizing them to 1 bit [12]. Balanced mixers are best
suited for PLL applications in the microwave frequency range as well as in low
noise frequency synthesizers. However, this results in a loop whose gain is de-
pendent upon the signal amplitude. Furthermore, nonidealities in the circuit
implementation of the mixer result in nonlinear responses. When noise is not
an issue, it is advantageous to move to a detector that has immunity to these
effects [1, 2, 3, 4].

The Voltage-Controlled Oscillator

The actual clock generated by a PLL comes from the voltage-controlled oscillator
(VCO), which generates a periodic oscillation. The frequency of this oscillation
can be controlled by modulating some control voltage. In a PLL, the control
voltage corresponds to some filtered form of the phase error. In response to this,
the VCO adjusts its frequency. As the VCO frequency is slewed by the control
voltage, the phase error is driven towards zero. This frequency adjustment to
achieve phase lock results in the model of a VCO as an integrator [1, 5].

VCOs are generally of the form of a ring oscillator, relaxation oscillator or
a resonant oscillator. The ring oscillator takes the form of an odd number of
inverters connected in a feedback loop. The relaxation oscillator uses a Schmitt-
trigger to generate a stable square wave [2]. The latter puts a resonant circuit
in the positive feedback path of a voltage to current amplifier as shown in
Figure 1.3. The resonant circuit in the positive feedback path has poles close
to the jω axis. Consider the bandpass filter:

F (s) =
2ζωos

s2 + 2ζωos + ω2
o

(1.3)

and G(s) = K < 1. Then

V CO(s) =
G(s)

1 − G(s)F (s)
= K

s2 + 2ζωos + ω2
o

s2 + 2ζ1ωos + ω2
o

(1.4)

where ζ1 = (1 − K)ζ. The lowering of the damping ratio is called “Q am-
plification” (Q = 1/2ζ) and moves the poles even closer to the jω axis. The
frequency is controlled by altering the capacitance of the resonator by using a
varactor diode as a capacitor. A simple circuit diagram for a resonant circuit
VCO is shown in Figure 1.4, where the frequency is controlled by adjusting the
reverse bias of the varactor diode C1 [1]. Other forms of VCOs, such as crystal
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Figure 1.3: (a) Block Diagram of an Oscillator implemented as a positive feedback
loop between a Voltage to current amplifier through a resonant circuit. (b) Resonant
LC Tank (c) Resonant p network.

oscillators and YIG oscillators essentially run on the same principle, but modify
the resonant circuit [1, 3, 4]. For the all digital and software PLLs, the VCO
is replaced by a digitally or numerically controlled oscillator (DCO/NCO). In
this case, the input voltage is replaced by some digital value, and the output is
a digital oscillating waveform [5, 7].

The Loop Filter

As noted earlier, there is conceptually always a loop filter. Typical analysis
ignores the high frequency low pass filter and other dynamics that do not affect
the behaviour of the loop at the time constants of the phase. Since PLLs are
mostly second order and as the VCO is modelled as an integrator, loop filters
are of the lead lag type. More specifically, the loop filter contains an integrator
which is able to track a phase ramp, and this corresponds to tracking a step in
frequency [4, 7].

For a double integrator system, the loop filter needs a minimum phase zero
to obtain stability. This is true whether the filter is implemented as an analogue
or digital filter. Higher order loops can be obtained by adding extra pole/zero
pairs to the filter [2]. The analogue circuits in Figure 1.5 show typical imple-
mentations active and passive loop filters [1]. The transfer function of the active
section shown in Figure 1.5-b filter is fairly general and given by:

Vo

Va − Vb

=
sR2(C2 + C3) + 1

sR1C2(sR2C3 + 1)
(1.5)
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Figure 1.5: Typical Analogue Filter Sections (a) Passive Lead Lag (b) Active Lead
Lag.
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Figure 1.6: Classical Mixing PLL.

1.3.3 PLL analysis

Figure 1.6 shows the classical mixing PLL, which is mostly used to describe
and analyze the PLL theoretically. However, practical loops usually resemble
Figure 1.7, in which a differential amplifier, acting as a high frequency low pass
filter, is used to attenuate the double frequency term and a bandpass filter is
used to limit the bandwidth of input signals to the loop.

A general sinusoidal signal at the reference input of a PLL as shown in
Figure 1.7 can be written as:

vi = A sin(ωit + θi) (1.6)

The output signal from the Voltage Controlled Oscillator (VCO) into the
mixer is given by

vo = VCOout(t) = cos(ωot + θo) (1.7)

The output of the mixer in Figure 1.7 is then given by

vd = Mixerout(t) = AKm sin(ωit + θi) cos(ωot + θo) (1.8)

where Km is the gain of the mixer. Typically, analysis of such a PLL is done
by taking several simplifying steps. Using the familiar trigonometric identity in
terms of the PLL

2 sin(ωit + θi) cos(ωot + θo) (1.9)

sin[(ωi + ωo)t + θi + θo] + sin[(ωi − ωo)t + θi − θo] (1.10)
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Figure 1.7: Practical PLL block diagram.

and then making the two fundamental assumptions below will lead to the
commonly used model of the analogue PLL. Let θd = θi − θo. Then these
assumptions are

1. The first term in (1.9) is attenuated by the high frequency low pass filter in
Figure 1.7 and by the low pass nature of the PLL itself.

2. ωi ≈ ωo, so that the difference can be incorporated into θd. This means that
the VCO can be modelled as an integrator.

The problem is that this is still a nonlinear system, and as such is in general
difficult to analyze. The typical methods of analysis include:

1) Linearization: For θd small and slowly varying we have

sin(θd) ≈ θd, cos θd ≈ 1, and θ2
d ≈ 0.

While this is useful for studying loops that are near lock, it does not help
for analyzing the loop when θd is large.

2) Phase plane portraits: This method is a classical graphical method of analyz-
ing the behaviour of low order nonlinear systems about a singular point. The
disadvantage is that phase plane portraits can only completely describe first
and second order systems.

The linearized model is shown in Figure 1.8. This is what is used for most
analysis methods and measurements of PLLs. Changing the phase detector and
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Figure 1.8: Linearized Model of the PLL.

VCO can result in a system for which this model is very accurate. Although
this linear model contains useful information about the phase behaviour of the
PLL, it has some very important omissions that show up in the simulating or
constructing the classical PLL ,and these are [1, 5]:

1) As seen in (1.8), the amplitude of the phase error is dependent upon A, the
input signal amplitude. The linearized model has a loop gain that is dependent
upon the loop components. Thus, in practical loop design, the input amplitude
must either be regulated or its effects on the loop must be anticipated.

2) The equations of a PLL are stiff, that is, the loop has a component at base-
band and one at 2ωo. The simulations of that sample fast enough to characterize
the latter are often far too slow (due to the huge number of sample points) to
effectively characterize the former.

The PLL model in Figure 1.8 is a closed-loop feedback system. The compli-
mentary sensitivity transfer function from reference phase input to VCO phase
output, T (s), can be obtained as

T (s) =
θo(s)

θi(s)
=

KdKvF (s)

s + KdKvF (s)
(1.11)

Similarly, the sensitivity transfer function from the reference phase input to
the phase error, S(s), is

S(s) =
θd(s)

θi(s)
=

s

s + KdKvF (s)
(1.12)
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Among the basic properties of interest in this transfer function are the order
and stability of the loop. The order of the PLL system is determined by the
order of the denominator of (1.10). The stability of the system can be deter-
mined by a variety of methods including root locus, Bode plots, Nyquist plots,
and Nichols charts [1].

The Hold Range

The hold range, ∆ωH , is defined as the frequency range over which the PLL is
able to statically maintain phase tracking. It is determined by calculating the
frequency offset at the reference input that causes the phase error to be beyond
the range of linear analysis.

Since loops will be permanently out of lock if the frequency offset at the input
is greater than the hold range, this quantity has negligible effect practically, and
it can be calculated for a classical PLL (sinusoidal phase detector) as [5, 11]:

∆ωH = KoKdF (0). (1.13)

The Lock Range

The lock range, ∆ωL, is defined as the frequency range within which the PLL
locks within one single-beat note between the reference frequency and output
frequency [1]. The lock range must be calculated from a nonlinear equation,
but there are several useful approximations that are made. In particular, if the
relative order of numerator and denominator of the PLL are 1, then the loop
can be said to behave like a first order loop at higher frequencies, and thus the
lock range can be estimated as [11]:

∆ωL ≈ ±KoKdF (∞) (1.14)

1.4 Conclusions
In this chapter we have presented a general review of phase lock loops (PLL) that
included the importance of synchronization in communication, control and mea-
surement applications. The basic components of an analog PLL were described
and a complete linear analysis of the loop was given. The main parameters that
describe the loop performance were also given.



Chapter 2

Digital Phase Lock Loops

2.1 Introduction

The analog PLLs (APLLs) are still widely used, but digital PLLs (DPLLs)
are attracting more attention for the significant advantages of digital systems
over their analog counterparts. These advantages include superiority in per-
formance, speed, reliability, and reduction in size and cost. DPLLs alleviated
many problems associated with APLLs. The following is a brief comparison:

1. APLLs suffer from the sensitivity of the voltage-controlled oscillator
(which decides the center frequency) to temperature and power supply varia-
tions, hence the need for initial calibration and periodic adjustments. DPLLs
do not suffer from such a problem [12, 17, 68].

2. The most familiar error detectors used in APLLs utilize analog multipliers
(balanced modulators) which are sensitive to d.c. drifts [10, 18], a problem that
does not exist in DPLLs.

3. DPLLs can operate at very low frequencies that create problems in APLLs
[17, 18]. These problems are related to the operation of the analog low-pass filter
in extracting the lower frequency component [11, 18],as it needs larger time for
better frequency resolution, and this will reduce the locking speed.

4. Self-acquisition of APLLs is often slow and unreliable, while DPLLs,
a basic block diagram is shown in Figure 2.1, have faster locking speeds [17].
This is due to the basic operation of the analog low-pass filter and the analog
multiplier in the phase detector (PD).

The low pass filter cannot extract the lower frequency within few input cycles
since the narrow time windowing will destroy the information in the frequency
domain (due to the time frequency resolution tradeoff). Same reasoning applies
for the balanced modulator in the PD.

In contrast, a digital filter operation is based on a difference equation with
convergence decided by the coefficients of the equation, and the PD operation

15
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is related to the instant of sampling rather than to frequency comparison. This
is why a DPLL can achieve locking within few cycles (see Chapter 3).

Hence DPLLs are tackled with concentration on sinusoidal DPLLs. The
development of DPLLs started in the 1970’s. The analysis of the positive-going
zero-crossing sinusoidal DPLL was presented in 1980 using fixed point theorems
[50, 51]. The second significant step in sinusoidal DPLLs was the digital tan-
lock loop (DTL) in 1982 [13] that is based on the arctan phase detector which
gave linear system equation. Since 1982 many efforts were made to improve the
performance of DTL [52, 53, 54, 59]. In this book we emphasize a new DPLL
that combines the two major approaches in the field: the approach of sinusoidal
DPLL with fixed point analysis and the approach of DTL with the arctan phase
detector. The main advantages of this DPLL, called the time delay digital tan-
lock loop (TDTL), is the reduced complexity of the loop, wider lock range of
the first-order loop and faster convergence speed under certain choice of the
TDTL parameters.

Phase Error
Detector

Digital  Filter

Digital Controlled
Oscillator (DCO)

Input
PhaseSignal
Error

Output
PulsesDCO Pulses

Figure 2.1: Basic block diagram of the digital phase locked loop.

2.2 Classification of DPLLs
Digital phase-locked loops can be classified into two major categories depending
on the type of sampling process [12]

1. Uniform sampling DPLLs

2. Non-uniform sampling DPLLs

The DPLLs can be also classified according to the mechanization of the
phase detector into five types as follows [12]

1. The flip-flop DPLL (FF-DPLL)
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2. The Nyquist-rate DPLL (NR-DPLL)

3. The lead-lag DPLL (LL-DPLL), a.k.a binary-quantized DPLL (BQ-DPLL)

4. Exclusive-OR DPLL (XOR-DPLL)

5. Zero-crossing DPLL (ZC-DPLL)

Types 2 above belongs to uniform sampling, while the others belong to non-
uniform sampling. A brief discussion of each type is given below.

Flip-flop DPLL

This kind of DPLLs was proposed in the literature by a number of authors [19],
[20], [21] and [22].

In this type the phase detector is realized by a set-clear flip-flop and a counter
as shown in Figure 2.2.

The sinusoidal input signal is converted into a square wave through an
operational amplifier acting as a comparator. The output “Q” of the flip-flop is
set to logic “1” on the positive-going edge of the comparator, and to logic “0”
on the positive-going edge of the digital controlled oscillator (DCO). Hence the
duration when Q is at level “1” will be proportional to phase error between the
input signal and the DCO. This error is used to gate the counter clock which has
a frequency of 2Mfo where fo is the center frequency of the DPLL and 2M is the
number of quantization levels of the phase error over period of 2π. The counter
is zeroed and starts counting on the positive-going edge of the flip-flop wave-
form. The content of the counter, No, which is proportional to the phase error,
is applied to the N-bit first-order digital filter which consists of proportional
and accumulation paths. The output of the digital filter K controls the period
of the DCO which consists basically of a programmable divide-by-K counter.
It is the phase of the input signal that undergoes non-uniform sampling here
rather than the amplitude.

Nyquist-rate DPLL

This DPLL was proposed in [23, 24] and subsequently developed by the works in
[25], [26] and [27]. Nyquist sampling on the phase of the input signal rather than
the amplitude was reported in [28]. In this DPLL the sinusoidal input signal
is sampled uniformly at the Nyquist rate fs and converted to N -bit digital
signal by an analog-to-digital converter (ADC), then it is multiplied digitally
by the DCO output v(k) to form an error signal. This error signal is applied to
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Figure 2.2: The flip-flop DPLL. Above: A block diagram. Below: Waveforms as a
function of time.

N -bit digital filter whose output controls the period of the DCO as shown in
Figure 2.3.

The DCO used in NR-DPLL is of algorithmic type [26]. It is constructed
by utilizing the basic idea of the analog VCO. The analog VCO output can be
given as in [29]

v(t) = B cos

{
ωot + Go

∫ t

−∞
y(τ)dτ

}
(2.1)
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where

ωo = center frequency of the VCO

Go = sensitivity of the VCO (rad/sec.volt)

y(t) = input voltage

In the discrete time domain, (2.1) can be expressed as follows

v(kTs) = B cos

{
2πkfo/fs + Go

k−1∑
n=0

y(n)

}
(2.2)

where Ts = 1/fs is the sampling period and y(n) = y(nTs). The sinusoidal
function v(kTs) is converted to a square wave v(k) as follows

v(k) = sq

{
2πkfo/fs + Go

k−1∑
n=0

y(n)

}
(2.3)
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where

sq(x) = 1 0 ≤ x < π

= −1 π ≤ x < 2π

sq(x) = sq(x + 2π)

The direct implementation of (2.2) above is rather difficult due to the time-
varying term 2πkfo/fs. However, (2.2) can be written in the following form

v(k) = sq

[
k−1∑
n=0

{2πkfo/fs + y(n)}
]

= sq[q(k)] (2.4)

where

q(k) =
k−1∑
n=0

{2πkfo/fs + y(n)} (2.5)

It can be shown that

q(k) = q(k − 1) + 2πfo/fs + Goy(k − 1) (2.6)

Figure 2.3 shows the algorithmic DCO block diagram based on (2.3).

Lead-Lag DPLL

This type of DPLLs has been developed by the work in [30, 31] and extended in
[32] to include a second-order sequential filter with memory. The LL-DPLL is
characterized by the binary output of the phase detector that indicates whether
the DCO waveform leads or lags the input signal. Due to this quantization it
is often named “binary quantized DPLL”. The input sinusoidal signal should be
converted to a square wave by a comparator.

On the occurrence of a DCO pulse, either “lead” or “lag” terminal of the
phase detector will give a pulse depending on the state of the input signal being
“high” or “low”, respectively, as shown in Figure 2.4. These pulses are applied to
a special type of digital filters known as “sequential filter.” The sequential filter
deals with the input “lead” and “lag” pulses statistically; it observes them for a
variable duration of time and gives a decision when a reliable limit is reached.
Figure 2.4 shows that the sequential filter is composed of an up-down counter
whose length is 2N + 1. A pulse at the “lead” terminal causes the content of
the counter to increase by 1, while the “lag” pulse behaves conversely. When
the content of the counter reaches 2N or zero, the corresponding “Retard” (or:
“Advance”) output gives a pulse that resets the counter to “N ” and triggers the
phase controller. A “Retard” pulse causes the phase controller to delete one pulse
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Figure 2.4: The lead-lag DPLL with associated waveforms.

from the clock pulse train that is applied to the divide-by-L counter, forcing the
DCO phase to retard by 2π/L, where L is the number of quantization levels of
the period 2π. An “Advance pulse does the contrary.

When “lead” and “lag” pulses are equally probable, a case that indicates
locking, the counter cycle has maximum duration. Other types of sequential
filters exist like the N -before-M filter [12] and the variable reset random walk
filter [32].
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Exclusive-OR DPLL

Greer has utilized an exclusive-OR gate as a phase detector [17]. He used a
K-counter as a digital filter and an increment-decrement (I/D) counter with
a divide-by-N counter as a DCO. Figure 2.5 shows a block diagram of the
Exclusive-OR DPLL.

The phase error detector (PED) compares the phase of the input signal, φin,
with that of the loop output, φout, and gives an error signal φd defined as follows

φd = Ko φe (2.7)

where Ko is the gain of the PED and φe = φin − φout. The output of the PED
can also be expressed as follows

φd = (%H − %L)/100(cycles) (2.8)

where %H and %L represent percentage “high” and “low” logic levels, respec-
tively, during one cycle. Hence φd (in cycles) varies between +1 and -1. When
φe = 1/4 cycle (π/2 rad) then %H = %L as shown in Figure 2.5-b, hence
φd = 0 ≡ 2π (mod 2π) = 1 cycle, therefore Ko = 4.

The output of the phase detector controls the operation of the K-counter
which consists of two divide-by-K counters, an up-counter and a down-counter,
both triggered by a clock of rate Mfo, where fo is the center frequency and M is
an integer. The output “C” of this counter, which is connected to the increment
input (INR) of the I/D counter, generates a pulse when the K-counter ends an
“up” cycle, while the “borrow” output B which is connected to the decrement
input (DCR) generates a pulse on the end of a “down” cycle. A pulse applied to
the “INR” input adds 1/2 cycle to the I/D output, while a pulse on the “DCR”
input deletes 1/2 cycle.

The I/D counter clock runs at a frequency of 2Nfo, where N is the modulus
of the divide-by-N counter that follows the I/D counter. The I/D counter is
merely a divide-by-2 counter if no “INR” or “DCR” pulses are applied, hence its
output frequency can be given by

F = Nfo + 1/2[KoφeMfo/K] (Hz)

= Nfo + 2φeMfo/K (2.9)

The factor 1/2 above came from the fact that the I/D counter adds or deletes
half a cycle when “INR” or “DCR” pulses are applied, respectively.

The output frequency can be expressed as

fout = fo + 2φeMfo/(KN) (Hz) (2.10)
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Since φd varies between +1 and −1, φe varies between +1/4 and −1/4 cycles,
hence lock range can be derived as follows

∆ = |fin − fo|max

= |fout − fo|max

= Mfo/(2KN)

lock range = 2∆ = Mfo/(KN) (2.11)

There exists a phase error between the input and the output signals even at
locking, i.e. when fout = fin, which is given by [17]

φe = KN(fin − fo)/(2Mfo) (2.12)

Figure 2.5-d clarifies this relationship.



24 CHAPTER 2

-

B

C

K-Counter
D/U

DCR INR
I/D Counter

   (divide-by-2)

MSB

f  = M f1

f  = 2 N f
2

F

Vdfin

fout

(φ in)

(φout)

[ a ]
o

 o

N  Counter.
.

( c )

( b )

1/4

-1/4

f
in

f
out

Vd

infin

f out

Vd

φ

φ

φ

φ

f
info

+∆-fo f
o

e =

d

e

d

1/4

= 1

= 1/8

= 1/2

φe
(cycles)

( d )

 of  = f  + ∆ /2

fin = fo  + ∆ 

∆

Figure 2.5: The Exclusive-OR DPLL with associated waveforms. (a) Block diagram.
(b) Waveforms at fin = fo + ∆. (c) Waveforms at fin = fo + ∆/2. (d) Transfer
function at lock.



DIGITAL PHASE LOCK LOOPS 25

Zero-Crossing DPLL

This type of DPLLs accepts sinusoidal signals and samples the input signal at
or near zero crossings, hence the name zero-crossing DPLL (ZC-DPLL).

There are two variations of ZC-DPLLs. The first, named ZC1−DPLL, sam-
ples only on the positive-going zero crossings, while the other type, ZC2 − DPLL,
samples on both positive and negative-going zero crossings. The first type is the
most important type of DPLLs since it is the simplest to implement, the easiest
to model, and its operation and performance are indicative of the general be-
havior of any DPLL [12]. Although ZC2 − DPLL locks faster, it has additional
design complications over ZC1 − DPLL [12, 111], hence the latter dominated.

ZC2 − DPLL has been proposed first in [33] and developed later as discussed
in [34] and [35]. ZC1 − DPLL has been developed by the work in [36, 37, 38, 39,
40, 41, 42]. The systematic statistical analysis of ZC1 − DPLL is provided in [43]
where it presents a numerical solution to the Chapman-Kolmogorov equation.
Other studies on this have also been presented in the literature [44, 45, 46, 47, 48,
49, 50, 51]. In 1982 a new classification was imposed on DPLLs by the advent
of the digital tanlock loop (DTL) [13]. ZC1 − DPLL and ZC2 − DPLL were
given the name “sinusoidal ZC-DPLL” or simply “sinusoidal DPLL” [13], based
on the phase detection technique. DTL is a new type of ZC1 − DPLLs that has
distinguished phase detection mechanism and significant advantages over other
types of DPLLs. Many efforts have been made to improve the characteristics
of DTL and its application in communication systems [52, 53, 59].

A brief description of the sinusoidal ZC1 − DPLL and DTL is given below.

Sinusoidal ZC1 − DPLL

Figure 2.6 shows the block diagram of sinusoidal ZC1 − DPLL with the asso-
ciated waveforms. Here the function of phase detection is merged with that of
non-uniform sampling since the instant of sampling determines the phase error
[38, 50]. The main parts of this DPLL are explained below.

The N-bit Digital Filter

This filter modifies the analog-to-digital converter (ADC) samples, which are
applied to the DCO, in such a way that leads the phase error to reach a constant
value and hence locking occurs. The digital filter consists of proportional and
accumulation paths.

The order of the digital filter represents the order of its difference equa-
tion, hence the nth-order digital filter can be described in the z-domain by the
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Figure 2.6: The Sinusoidal ZC1 − DPLL with associated waveforms.

following transfer function [39]

D(z) = κ
(z + c1)(z + c2)...(z + cn)

(z + p1)(z + p2)...(z + pn)
(2.13)

Since the present value of the phase error depends on the previous value, the
order of the loop equals the order of the digital filter plus one. Hence in the first-
order loop the digital filter is just a proportional path, while the second-order
loop utilizes a first-order digital filter with the following transfer function

D(z) = κ(z + c1)/(z + p1) (2.14)

For the second-order sinusoidal ZC1 − DPLL to lock on zero phase error, p1

must equal −1 [39], hence (2.14) may be written in a more convenient form as
follows
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D(z) = G1 + G2/(1 − z−1) (2.15)

which gives in the time domain the following input-output relation

y(n) = G1 x(n) + G2

n∑
k=0

x(k) (2.16)

where x(k) and y(k) are the discrete input and output signals, respectively.

The Digital Controlled Oscillator (DCO)

The digital controlled oscillator consists of a programmable counter, a binary
subtracter, and zero detector. Figure 2.7 shows a block diagram of DCO with
associated waveforms. Subtraction is performed using a 2’s complementer and
a full adder. The counter content is decremented by one on the occurrence of
each clock pulse. When it reaches zero, the counter generates a pulse at the
output. This pulse is used to load the counter with the binary number M −K
where M is a constant number and K is the input number. The number M
decides the DCO free-running frequency fo when the input number K is zero
as follows

fo = fc/M (2.17)

where fc is the frequency of the counter clock. The period between the (k−1)th

and the kth pulses is given by

T (k) = (M − K) Tc (2.18)

where Tc = 1/fc.

The Phase Equation

The input signal x(t) is assumed to be in the form

x(t) = A sin{ωot + θ(t)} + n(t) (2.19)

where A is the signal amplitude, ωo = 2πfo, θ(t) is the information bearing
phase, and n(t) is Gaussian additive noise. For a frequency step input θ(t) is
given by

θ(t) = (ω − ωo)t + θo (2.20)

where θo is a phase constant and ω is the input frequency. Under such condi-
tion the (nonlinear) difference equations representing the first-order loop (with
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D(z) = G1) and the second-order loop (with D(z) = G1 + G2z/(z − 1)) can be
respectively given by [50, 51]

φ(k + 1) = φ(k) − K
′
1 sin{φ(k)} − K

′
2n(k) + Λo (2.21)

and

φ(k + 1) = 2φ(k) − φ(k − 1) + K
′
1 sin{φ(k)}

−K
′
2n(k) − r[K

′
1 sin{φ(k)} + K

′
2n(k)] (2.22)

where φ(k) is the phase error at the instant k, K
′
1 = ωG1 A, K2 = ωG1,

Λo = 2π(ω−ωo)/ωo, and r = 1+G2/G1. From these equations it can be shown
that the noise-free steady-state phase error of the first-order loop is given by

φss = sin−1(Λo/K
′
1) (2.23)

while the second-order loop locks on zero phase error.



DIGITAL PHASE LOCK LOOPS 29

tan      (I / Q)-1
Digital
FilterDCO

Hilbert 
Transformer

(90  )
o

Sampler II

Sampler I

I

Q

Sinusoidal

Input Signal

Figure 2.8: Structure of the digital tanlock loop.

Although sinusoidal DPLL has many advantages over other types of DPLLs
[12], it has the shortcomings of sensitivity to the variations in the input signal
power and rather limited lock range. The DTL explained below has solved these
problems.

The Digital Tanlock Loop (DTL)

This DPLL was introduced in [13]. Figure 2.8 shows a block diagram of DTL.
It is composed of 90o phase shifter, two samplers, a phase error detector, a
digital loop filter, and a digital controlled oscillator (DCO). Sampler I takes
a sample I of the incoming signal, and sampler II takes a sample Q of the
phase-shifted version of the incoming signal simultaneously. The phase error,
which is determined by the sampling instant, is extracted by the tan−1 function
at the phase error detector. This phase error is modified by the digital filter
whose output controls the period of the digital controlled oscillator (DCO). This
technique in the phase detection along with the use of a Hilbert transformer led
to a linear phase difference equation.

The noise-free difference equations of the first and second-order DTLs are
given respectively by [13]

φ(k + 1) = (1 − K
′
1)φ(k) + Λo (2.24)

and
φ(k + 2) = (2 − rK

′
1)φ(k + 1) + (K

′
1 − 1)φ(k) (2.25)

where all symbols are defined in the paragraph of sinusoidal ZC1 − DPLL.
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The steady-state phase error of the first-order DTL is

φss = Λo/K
′
1 (2.26)

and the second-order DTL locks on zero phase error. Due to dividing the input
signal by its phase-shifted version at the phase error detector, DTL noise-free
performance is independent of the signal amplitude A, hence under noise-free
condition DTL is insensitive to the variations in signal power. The first-order
DTL has wider lock range than the sinusoidal DPLL.

The analysis of sinusoidal DPLL is nonlinear and based on “fixed point the-
orems” [50, 51], while the analysis of the DTL is linear. Our work in this
book combines the two major approaches in the field: the approach of sinu-
soidal DPLL built on fixed point analysis and the approach of tanlock based on
the arctan phase detection. Our main objective is to reduce the complicated
structure of DTL while preserving its advantages.

2.3 Conclusions
In this chapter we have presented a survey of digital phase-locked loops (DPLLs).
The survey included the major classification of DPLLs according to the sam-
pling scheme where they are classified as uniform and non-uniform sampling
DPLLs. Further classification according to the phase detection scheme was also
considered. The main parts in each class are clarified.

It has been shown that the most important kind of DPLLs is the non-
uniform sampling sinusoidal zero-crossing DPLL (ZC-DPLL). Hence we will
concentrate on this kind of DPLLs in this book. Developments in this respect
are presented. Two major approaches exist in this field: the original approach
of sinusoidal DPLL built on fixed point analysis and the approach of tanlock
phase detection. In this book we will present a combination of the above two
approaches that will give many advantages over the existing types of DPLLs.



Chapter 3

The Time-Delay Digital Tanlock
Loops (TDTLs)

3.1 Introduction

Phase-locked loops play an important role in communication systems since
they contribute significantly to a variety of applications like filtering, frequency
synthesis, frequency modulation, demodulation, signal detection, motor-speed
control and many other applications [11]. Digital phase-locked loops (DPLLs)
were introduced to alleviate some of the problems associated with the analog
loops like sensitivity to d.c. drifts and the need for initial calibration and perio-
dic adjustments. Nonuniform sampling DPLLs are the most important digital
phase-locked loops because they are simple to implement and easy to model
[12]. Digital tanlock loop (DTL), proposed in [13], has introduced several sig-
nificant advantages over other nonuniform sampling digital phase locked loops.
It allows a wider locking range of the first-order loop and a reduced sensitivity
of the locking conditions to the variation of the input signal power [13]. DTL
proved to be efficient for many applications in digital communications (see, for
example, [53, 54]). The constant 90o phase-shifter is a vital part of this con-
ventional DTL (CDTL) and all of its modifications (see, for instance, [56, 57]).
In fact, a digital Hilbert transformer introduces approximations and imposes
limitations on the range of input frequencies, especially when implemented on
a microprocessor [60, 61].

In this chapter, a constant time-delay unit is used to produce a phase-
shifted version of the incoming signal. This method reduces the complexity of
the phase-shifter and avoids the limitations and other problems that accompany
the 90o phase-shifter.

Except for the linearity of the characteristic function of the phase error
detector, the main advantages of CDTL are maintained by TDTL despite its

31
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reduced structure. First, under noise-free conditions its performance is not
affected by the variation of signal power. Second, the first-order loop can have
wider lock range than other sinusoidal DPLLs (including CDTL) if the circuit
parameters are properly chosen. The region of locking independently of initial
phase errors in the first-order loop can be made larger than that of the first-
order CDTL since the conditions of independent locking are less stringent in
TDTL as a result of non-linearity.

Although the lock range of the second-order TDTL is reduced as compared
to that of CDTL, this reduction is not a severe short-coming since it mainly
concerns high values of the loop gain K1 which are not desired [13]. In fact,
any range of input frequencies can be handled after a suitable arrangement of
the circuit parameters.

In the following section, a general description of TDTL is given. In Section
3.3, the system is analyzed and locking conditions are derived for the first- and
second-order TDTLs.

3.2 Structure and System Equation

3.2.1 Structure of the TDTL

The structure of TDTL is similar to that of CDTL in Figure 2.8 except for the
technique of phase-shifting. A block diagram of TDTL is shown in Figure 3.1.
It is composed of a time-delay unit (τ), two samplers, a phase error detector,
a digital loop filter, and a digital controlled oscillator (digital clock). Sampler
I takes a sample x(k) of the time-delayed version of the incoming signal, and
sampler II takes a sample y(k) of the incoming signal simultaneously. The phase
detector takes the function Tan−1[x(k)/y(k)] at every sampling instant, where
Tan−1 is the four-quadrant arctan function. The output of the phase error
detector, e(k), is a function of the phase error between the incoming signal and
the digital clock at the kth sampling instant in modulo (2π) sense. The digital
filter is used to modify the output of the phase error detector e(k) and provide
a control signal to the digital clock to decide the next sampling instant at the
two samplers. Hence the sampling is nonuniform, and the loop arranges its
frequency at the digital clock to be, in the limit, equal to the input frequency
with a minimum phase difference.

3.2.2 System Equation

Under noise-free conditions, the loop accepts a sinusoidal input signal y(t) hav-
ing a radian frequency ω with a frequency offset ∆ω(= ω−ωo) from the nominal
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Figure 3.1: Block diagram of the time-delay digital tanlock loop.

radian frequency ωo of the digital clock. The input signal is given by

y(t) = A sin[ωot + θ(t)] (3.1)

where A is the signal amplitude and θ(t)=∆ωt+θo is the phase process of the
incoming signal, θo being a constant. The signal is assumed not to have a
d.c. component. The time-delay unit introduces a constant time-delay τ in the
input signal which causes a phase lag ψ(= ωτ) proportional to input radian
frequency ω. It is worth noting that in the CDTL of Figure 2.8, the phase lag is
frequency-independent ψ = π/2 ∀ω. Hence, the following analysis can contain
the CDTL as a special case.

The time-delayed version of the TDTL input signal, denoted by x(t), can
be expressed as

x(t) = A sin[ωot + θ(t) − ψ] (3.2)

At the kth sampling instant, the sampled values of y(t) and x(t) are given
respectively by

y(k) = A sin[ωot(k) + θ(k)] (3.3)

and
x(k) = A sin[ωot(k) + θ(k) − ψ] (3.4)

where θ(k) = θ[t(k)].
The sampling interval between the sampling instants t(k) and t(k − 1) is

given by
T (k) = To − c(k − 1) (3.5)
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where To(=
2π
ωo

) is the nominal period of the digital clock and c(i) is the output
of the digital filter at the ith sampling instant. Assuming t(0) = 0, the total
time t(k) up to the kth sampling instant is

t(k) =
k∑

i=1

T (i) = kTo −
k−1∑
i=0

c(i) (3.6)

Thus, y(k) and x(k) can be written as

y(k) = A sin[θ(k) − ωo

k−1∑
i=0

c(i)] (3.7)

and

x(k) = A sin[θ(k) − ωo

k−1∑
i=0

c(i) − ψ] (3.8)

The phase error φ(k) is defined as

φ(k) = θ(k) − ωo

k−1∑
i=0

c(i) − ψ (3.9)

Now y(k) and x(k) can be expressed as

y(k) = A sin[φ(k) + ψ] (3.10)

and
x(k) = A sin[φ(k)] (3.11)

From equations (3.6) and (3.9) it can be shown that

φ(k + 1) = φ(k) − ωc(k) + Λo (3.12)

where Λo = 2π ω−ωo

ωo
. This is the system equation of TDTL; it is similar to that

of CDTL. Note that if D(z) is the transfer function of the digital filter, then
c(k) = hD(k) ∗ e(k), where hD(k)

Z.T.←→ D(z) and e(k) is the output of the phase
error detector at the kth sampling instant.

3.2.3 The Characteristic Function

If we define f [α] = −π + {(α + π) modulo (2π)}, then e(k) is given by

e(k) = f

[
Tan−1

(
sin{φ(k)}

sin{φ(k) + ψ}

)]
(3.13)
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Thus, the characteristic function hψ(φ) of the phase error detector is non-
linear and depends on the input frequency ω and the time delay τ ; it is given
by

hψ(φ) = f

[
Tan−1

(
sin(φ)

sin(φ + ψ)

)]
(3.14)

The function hψ(φ) can equivalently be expressed in terms of the ratio
W{= ωo

ω
} and the nominal phase shift ψo(= ωoτ) as follows

hψ(φ) = f

[
Tan−1

(
sin(φ)

sin(φ + ψo

W
)

)]
(3.15)

The four-quadrant Tan−1(x
y
) function used by the phase detector can distin-

guish between the four quadrants according to the signs of x and y unlike the
ordinary tan−1(.) function. Using this property of the phase detector it can be
shown that the function hψ(φ) is continuous in φ over the interval (−π, π) by
taking the limits at the suspected points where sin(φ+ψ) = 0, also we can prove
that dhψ(φ)

dφ
is continuous over (−π, π) (see Appendix). The continuity of hψ(φ)

and its first derivative makes it possible to analyze the circuit performance using
fixed point theorems [50, 51].

3.3 System Analysis
In this section the performance of the first- and second-order TDTLs is studied
in the absence of noise for an input with a frequency offset. Locking conditions,
locking independently of initial phase error, and steady-state phase error are
considered. Comparisons with CDTL are made whenever appropriate.

3.3.1 First-order TDTL

The first-order loop utilizes a digital filter having just a positive proportionality
constant G1. Thus the system equation (3.12) becomes

φ(k + 1) = φ(k) − K
′
1 hψ[φ(k)] + Λo (3.16)

where K
′
1 = ωG1. If K1 is defined to be ωoG1 then K

′
1 = K1/W .

A. Locking Conditions

To see whether the system represented by (3.16) will finally reach a steady-
state, we follow the same analysis given by Osborne [50]. First, we seek a fixed
point of the equation

g(φ) = φ − K
′
1 hψ(φ) + Λo (3.17)
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that is, a solution φss such that

φss = g(φss) (3.18)

The sequence {φ(k)} defined by (3.16) will converge (locally) to the solution
φss, i.e., lim

k→∞
[φ(k)] = φss if

|g′
(φss)| < 1 (3.19)

provided that g(φ) is continuously differentiable at the fixed point φss. Knowing
that hψ(φ) is continuously differentiable over (−π, π), it is easy to see that g(φ)
is also continuously differentiable over (−π, π). Now from (3.13), (3.14), (3.17),
and(3.18) it can be shown that

ess = f

[
Tan−1

(
sin(φss)

sin(φss + ψ)

)]
=

Λo

K
′
1

(3.20)

where ess is the steady-state output of the phase error detector. Since |f [.]| < π,
we must have

|Λo/K
′
1| < π (3.21)

From (3.20) it can be shown that

tan (φss) =
sin(ψ)tan(η)

1 − cos(ψ)tan(η)
(3.22)

where η = Λo/K
′
1. We now postpone the task of finding the exact expression

for φss and define β and α by

β =
sin(ψ)tan(η)

1 − cos(ψ)tan(η)
=

sin(ψ)

cot(η) − cos(ψ)
(3.23)

α = tan−1(β) (3.24)

where tan−1(.) is the ordinary arctan over(−π
2
, π

2
). Then it follows that

φss = α + jπ , j ∈ {−1, 0, 1} (3.25)

From (3.14), (3.17) and (3.19) we obtain

|1 − K
′
1 sin(ψ)

sin2(φss) + sin2(φss + ψ)
| < 1 (3.26)

Using (3.24) we get

|1 − K
′
1 sin(ψ)

sin2(α) + sin2(α + ψ)
| < 1 (3.27)
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Knowing that K
′
1 = K1/W, ψ = ψo/W, and Λo = 2π(1 − W )/W, the

inequalities (3.21) and (3.27) lead to

2|1 − W | < K1 < 2W
sin2(α) + sin2(α + ψ)

sin(ψ)

or equivalently

2|1 − W | < K1 < 2W
sin2(α) + sin2(α + ψo/W )

sin(ψo/W )
(3.28)

Since K1 > 0, we must have

0 < f [ψ] < π (3.29)

The inequality (3.28) can be solved numerically to find the lock range of
the first-order TDTL. Figure 3.2 shows the major range of locking for different
values of ψo. If ψo increases beyond π, the lock range begins to separate. It can
also be seen that under a suitable choice of ψo (e.g. ψo = π), TDTL can have
wider lock range than CDTL.

B. The Region of Independent Locking

Inequality (3.28) ensures locking only in a neighborhood of φss where φ(k)
leads to φ(k+1) inside (−π, π) such that the phase “locks” finally on φss. Hence
locking occurs for some range of values of the initial phase error φ(0) but not
necessarily for all values. If the incoming signal has a single frequency (not
modulated) within the lock range, changing the initial phase error would result
in locking. But in many applications, like tracking M -ary FSK signals, the
input frequency is modulated, i.e. having different values. Transition from
one frequency to another gives different steady-state phase errors φss according
to equations (3.22-3.25). Each φss would be the initial phase error φ(0) for
the next incoming frequency. To track (demodulate) such signals, the loop
should lock on all incoming frequencies (within the lock range) for all possible
values of φ(0) in the range (−π, π), i.e. independently of the initial phase error.
Since independent locking entails further condition(s), the range of independent
locking is always a subspace of the range of lock.

Inside the lock range of the first-order CDTL, the region in which |φ(k +1)|
can exceed π is excluded entirely from the range of independent locking [13].
For TDTL this is no longer true owing to the non-linearity of the characteristic
function h(φ). At some points of the lock range, the case when |φ(k + 1)| > π
may only cause some cycle slips, therefore these points cannot be excluded from
the range of independent locking.
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Figure 3.2: Major range of locking of the first-order TDTL for different values of
ψo = ωoτ . Note: the region enclosed by (1), (2), and (3) is for CDTL; the region
enclosed by (1), (2) and (4) is for TDTL when ψo=π/2; and the region enclosed by
(1) and (5) is for TDTL when ψo = π.

It is true, however, that if |φ(k + 1)| < π for all φ(k) ∈ (−π, π) at some
point of the lock range, then this point is in the range of independent locking.
This is ensured if the extrema of the function y given below lie inside (−π, π).

y = φ − K
′
1 hψ(φ) + Λo, φ ∈ (−π, π) (3.30)

These extrema can occur at φ = ±π or at the critical points of y which exist
only when |K

′
1 sin(ψ)−1

cos(ψ)
| < 1 and can be expressed after suitable manipulations

as
φi = f [

1

2
{ π(i +

n

2
) − ψ + (1 − 2(i modulo(2)))sin−1(κ)}] (3.31)

where i ∈ {0, 1, 2, 3}, κ = (K
′
1sin(ψ) − 1)/|cos(ψ)|, n = 1 or -1 according as

f [ψ] < π
2

or f [ψ] > π
2
, respectively, keeping in mind that 0 < f [ψ] < π. The

case f [ψ] = π
2

is excluded here as it corresponds to conventional DTL.
Hence, if the function y above intersects the line y1(φ) = φ at a point

φ = φ∗ ∈ (−π, π) such that |y′
(φ∗)| < 1, then TDTL is inside the lock range

according to (3.19), and it would lock on the input frequency with φss = φ∗
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independently of the initial phase error φ(0) if the above extrema of y lie inside
(−π, π). If one of these extrema exceeds the range (−π, π), there are two cases
to handle:
1) if y does not intersect the line y2(φ) = φ + 2π or the line y3(φ) = φ − 2π,
φ ∈ (−π, π), then locking occurs independently of initial phase error φ(0).
2) if y intersects either y2 or y3 at a point φ = φ∗∗ ∈ (−π, π), then locking
occurs independently of the initial phase error only when |y′

(φ∗∗)| > 1. This
leads to the following condition

| 1 − K
′
1 sin(ψ)

sin2(α1) + sin2(α1 + ψ)
| > 1 (3.32)

where

α1 = tan−1

(
sin(ψ)tan(η ± 2π

K
′
1

)

1 − cos(ψ)tan(η ± 2π

K
′
1

)

)

If this case happens for CDTL, we have y
′
(φ∗∗) = y

′
(φ∗) due to linearity,

hence |y′
(φ∗∗)| < 1 and locking would be dependent on the initial phase error.

Thus the actual range of independent locking for TDTL can be found only
by a numerical search throughout the range of locking. Figure 3.3 shows this
range for ψo = π

2
; it is wider than that of first-order CDTL.

C. The Steady-state Phase Error φss

Let the four quadrants of phase be defined as Q1 = [0, π
2
], Q2 = (π

2
, π),

Q3 = (−π,−π
2
), and Q4 = [−π

2
, 0), noting that ±π are excluded. The actual

value of φss can be obtained from (3.20) by careful consideration of the four
quadrants. For example, let η {= Λo/K

′
1} ∈ Q2 and consider all angles to be

measured modulo (2π) so that f [.] can be dropped off. Then we have
(i) sin(φss) > 0, which implies φss ∈ Q1 or Q2.
(ii) sin(φss + ψ) < 0, which implies φss + ψ ∈ Q3 or Q4

Thus, ψ ∈ Q1 implies that φss ∈ Q2 or Q3, and ψ ∈ Q2 implies φss ∈ Q1

or Q2 (noting that 0 < ψ < π). The steady-state phase error φss can now be
expressed as

φss =

⎧⎨
⎩

α β > 0 and ψ ∈ Q2

−π + α β > 0 and ψ ∈ Q1

π + α β < 0

Noting that β > 0 implies ψ ∈ Q2, φss can be re-expressed as

φss =

{
α β > 0

π + α β < 0
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Following the same reasoning as above and noting that β = 0 implies and is
implied by η = 0 ∈ Q1, it can be shown that

φss =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α if η ∈ Q1 and β ≥ 0 ,
η ∈ Q2 and β > 0 ,
η ∈ Q3 and β < 0 ,

or η ∈ Q4 and β > 0
f [α + π] otherwise.

More succinctly, φss can be expressed as

φss =

{
α β sin(η) ≥ 0

f [α + π] otherwise.
(3.33)

For the first-order CDTL we have φss = η = Λo/K
′
1, which is dependent on

W = ωo/ω and K
′
1 = K1/W . For the first-order TDTL, φss is a function of

the above parameters in addition to ψ = ψo/W , as can be seen from eqs.(3.33),
(3.24) and (3.23). Hence, for the same W and K1, the relationship between the
steady-state phase errors of CDTL and TDTL is decided by ψo = ωoτ .
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D. Simulation Results

Example 1:
Consider a modulation-free input signal y(t) = sin(ωt + θo), θo = constant.

Assume that the loop center frequency ωo and the time-delay τ are arranged
such that ψo = ωoτ = π/3, and that G1 is chosen such that K1 = G1ωo = 1.4.
Note that the specific choice of ωo is application dependent and not important in
this analysis since only the ratio W = ωo/ω and the product ωoτ are considered.
Once chosen, ωo and τ are constant.

Now let the incoming frequency be such that W = 0.9 (i.e. the incoming
frequency ω is more than the loop center frequency ωo). This value is inside
the lock range since it satisfies (3.28). It is also inside the range of independent
locking since all of the extrema of y, (3.30), lie inside (−π, π). Figure 3.4 shows
the locking phase process of TDTL for initial phase error φ(0) = θo − ψ = −1
(rad). The phase plane is plotted modulo (2π). Figure 3.4 also shows the
sampling process of TDTL on the delayed version of the input signal, x(t), as
in (3.11). TDTL arranges its frequency to be equal to the input frequency ω
in few steps. The steady-state phase error is φss = 0.5001 (rad), in accordance
with (3.33). To study the convergence (locking) speed, we define the relative
error between the input frequency ω and TDTL output frequency at the kth

sampling interval as

E(k) =
|ω − 2π

T (k)
|

ω

and the convergence indicator kc as

kc = k at which E(k + n) < ε for n = 0, 1, 2, ...

where ε is a small positive number. This indicator decides the locking (con-
vergence) speed and is important in dealing with modulated signals. In this
example ε = 0.01 is considered and we have kc = 3, i.e. locking occurs ap-
proximately at the third sampling instant. For CDTL with same parameters
K1, W and φ(0) as above we have kc = 7. The same ratio between the con-
vergence indicators of TDTL and CDTL is approximately true for all values of
the initial phase error φ(0) in this example. Therefore, the convergence speed
is nearly doubled in this case by using TDTL with ψo = π/3. Further studies
on convergence behavior would be presented later in this chapter.
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independently of the initial phase error φ(0). Below: Sampling process of TDTL on
the delayed version of the input signal, x(t), for the above parameters.

Example 2:
Now we consider a binary FSK input signal with two frequencies ω1 and ω2

such that W1 = ωo/ω1 = 0.8 and W2 = ωo/ω2 = 1.1. Assume ψo = ωoτ = π/2
and K1 = G1ωo = 1. According to Figure 3.2, the loop can lock on both
frequencies independently of the initial phase errors. The minimum value of
the input frequencies, which is decided by fo and the range of independent
locking, should be reasonably larger than the symbol rate R to ensure locking.
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Figure 3.5: Tracking a binary FSK signal using the first-order TDTL with W1 =
ωo/ω1 = 0.8, W2 = ωo/ω2 = 1.1, ψo = ωoτ = π/2 and K1 = G1ωo = 1.

A loop with higher convergence speed can handle higher R for a fixed fo. For
clarity we take in this example fo/R = 20. Figure 3.5 shows the output of the
phase error detector, e(k), as a function of time for this signal. The two values
of ess are 1.2566 (rad) and -0.6283 (rad), in accordance with (3.20).

3.3.2 Second-Order TDTL

The second-order TDTL utilizes a proportional-plus accumulation digital filter
with a transfer function D(z) given by

D(z) = G1 + G2/(1 − z−1) (3.34)

where G1 and G2 are positive constants. From eqs.(3.34) and (3.12), the system
equation of the second-order TDTL can be obtained as

φ(k + 2) = 2φ(k + 1) − φ(k) − rK
′
1e(k + 1) + K

′
1e(k) (3.35)

where r = 1 + G2/G1 and K
′
1 = G1ω.

A. Locking Conditions

In the steady-state we have φ(k+2) = φ(k+1) = φ(k), hence e(k+1) = e(k).
Therefore, the steady-state value of the output of the phase detector ess is zero.
From (3.13) it is evident that the steady-state phase error φss is nπ (n being
an integer). Since f [φss] �= ±π we must have f [φss] = 0, hence φss = 2mπ (m
being an integer).
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Following the same fixed point analysis as that given by Osborne [51], the
locking conditions can be obtained from the condition that the eigenvalues of
the matrix G given by

G =

[
0 1

−1 + K
′
1 csc(ψ) 2 − rK

′
1 csc(ψ)

]

must be less than 1. If 0 < f [ψ] < π, then the matrix G is similar to that
given in [51], (2.9), with K

′
1 replaced by K

′
1csc(ψ). Thus, we have the following

conditions

0 < K1 <
4

1 + r
W sin

(
ψo

W

)
, r > 1 (3.36)

If −π < f [ψ] < 0, G will be similar to the matrix in (2.11) obtained [51]
with K

′
1 replaced by −K

′
1csc(ψ) and conditions that are mutually exclusive with

(3.35) are obtained. Therefore, we will consider f [ψ] to be in the interval (0, π)
only, adding the following condition

0 < f [ψ] < π (3.37)

Figure 3.6 shows the major range of locking of the second-order TDTL for
different values of ψo. Although the lock range is reduced in comparison to the
lock range of the second-order CDTL, any range of input frequencies can be
handled after suitable modification of the circuit parameters, keeping in mind
that high values of K1 in the lock range of CDTL are not desired [13].

B. The Region of Independent Locking

As for the range of locking independently of initial phase errors φ(0) and
φ(1), numerical search throughout the lock range has showed that the range of
independent locking is still bounded by the conditions of independent locking
for the second-order CDTL given by

2W

r + 1
< K1 <

4W

r + 1
(3.38)

and
0 < K1 <

2W

r − 1
(3.39)

These conditions can also be obtained from (3.35) by assuming that |φ(k +
2)| < π when |φ(k + 1)| = |φ(k)| = π, and noting that

lim
φ→π−

hψ(φ) = π, lim
φ→−π+

hψ(φ) = −π,
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and that the other limits, lim
φ→π+

hψ(φ) and lim
φ→−π−

hψ(φ), are not considered as they

are outside the interval (−π, π). It is worth noting that the above two conditions
are independent of ψo.

Figure 3.6 shows the boundaries of independent locking with r = 1.2 for the
second-order CDTL and TDTL with different values of ψo.

3.4 Locking Speed

In this section, the convergence behavior of the TDTL in the absence of noise
is analyzed. This analysis concentrates on the actual number of steps necessary
for convergence of the phase error to within a radius ε of the steady-state phase
error. In [50] and [52], the convergence behavior of the first-order sinusoidal
DPLL and CDTL are analyzed based on Lipschitz constant. We adopt the
similar approach here, using different values of the circuit parameters.
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3.4.1 Convergence of the First-Order TDTL

The first-order TDTL utilizes a digital filter with a positive proportionality
constant G1 only. The system equation is given by (3.16) as follows:

φ(k + 1) = φ(k) − K
′
1 hψ[φ(k)] + Λo

where K
′
1 = ωG1, K1 = ωoG1, and K

′
1 = K1/W .

The locking range of the first-order TDTL is shown in Figure 3.2 for different
values of ψo. In the analysis below, it should be noted that the choice of the loop
parameters ωo and τ will decide the lock range as in Figure 3.2, where ψo = ωoτ ,
while the choice of the parameter K1 and the frequency ratio W = ωo/ω should
ensure that the loop is inside the lock range. The steady-state phase error at
the input of the phase error detector was derived as [70].

φss =

{
α β sin(λ) ≥ 0

f [α + π] otherwise,
(3.40)

where

λ = Λo/K
′
1

β =
sin(ψ)

cot(λ) − cos(ψ)

α = tan−1(β). (3.41)

The characteristic function hψ(φ) and its first derivative are continuously
differentiable in the principal interval (−π, π), hence fixed point analysis is
applicable to the TDTL [70]. Following fixed point analysis developed in [50]
for the sinusoidal digital phase-locked loop, the Lipschitz constant for the first-
order TDTL can be given by

L = max

∣∣∣∣g(φ) − g(φss)

φ − φss

∣∣∣∣ (3.42)

where g(φ) = φ − K
′
1hψ(φ) + Λo. The asymptotic estimate (upper bound) to

the number of steps required for convergence of the phase error φ(k) within a
radius ε of the fixed point φss is given by [50]

m = int

[
ln(ε/|φ − φss|)

ln(L)

]
+ 1 (3.43)

where int[.] is the integer function.
It can be shown that the time required to reach the fixed point φss is given

by
Tc = mToW + (φ(m) − θo + ψ)/ω ≈ mToW (3.44)
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Figure 3.7: Normalized convergence time with asymptotic bounds for the first-order
TDTL (ψo = π/3) and CDTL with phase step input (W = 1), ε= 0.01, and K1 = 0.25.

where (φ(m) − θo + ψ) ≪ ω. This is the same as CDTL case, with Lipschitz
bound m = |1 − K

′
1| [52].

Numerical simulation showed that, unlike the case of CDTL, Lipschitz bound
m is not a tight limit for M , the true number of steps for convergence. This
is true for all values of TDTL parameters. The difference m − M increases
with the absolute difference of the initial phase φo from the steady-state phase
error φss.

Figure 3.7 shows the normalized convergence time, Tc/To, based on simula-
tion, along with the asymptotic normalized convergence time based on Lipschitz
constant as given by (3.44), for a phase step input (i.e. W = 1), ψo = π/3, and
K1 = 0.25. For a phase step input we have φss = 0, as in (3.40). Although the
asymptotic convergence time for TDTL is higher than the actual convergence
time, the actual convergence time is essentially the same as that of CDTL for
all values of K1 and ψo.

Figure 3.8 shows the normalized convergence time with the asymptotic
bound for a frequency step input W = 0.9 (i.e. the input frequency, ω, is higher
than the nominal loop frequency, ωo), K1 = 0.25, and ψo = π/3. Note that for
both CDTL and TDTL, the loop converges instantly at φo = φss. Although the
asymptotic convergence time for TDTL is higher than that of CDTL, the actual
convergence time is much less. Hence, for a robust estimation of the conver-
gence time of TDTL, a numerical study is essential. This is rather similar to the
discrepancy found in [50] for the sinusoidal DPLL. Note that the characteristic
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function of the phase error detector is non-linear for TDTL and the sinusoidal
DPLL, while it is linear for CDTL.

In Figure 3.9, the normalized convergence times for CDTL and TDTL for
the same parameters as above and different values of TDTL nominal phase shift
ψo. The value of ψo is decided by the center frequency ωo and the time-delay τ .
Hence, by a suitable arrangement of the parameters ωo, K1, and τ , the locking
speed of TDTL can be made higher than that of CDTL.

3.5 Conclusions

A nonuniform-sampling time-delay digital tanlock loop (TDTL) has been pre-
sented, where the conventional constant 90o phase-shifter is replaced by a time-
delay unit. This is to avoid many of the practical problems associated with
the implementation of the digital Hilbert transformer which is an essential part
of CDTL and all of its modifications. These problems include approximations,
frequency limitations, and implementation complexity. Although non-linearity
is introduced in the analysis of the loop, the most important merits of CDTL
over other sinusoidal DPLLs are preserved. The first-order TDTL has wider
lock range, wider range of independent locking, and faster convergence than
CDTL if the circuit parameters are properly chosen.
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We discussed the convergence behavior of the first-order TDTL. It is found
that, unlike the conventional digital tanlock loop (CDTL), the asymptotic
bound of the number of steps required for convergence based on Lipschitz con-
stant diverges from the actual number of steps. This difference increases with
the absolute difference of the initial phase from the steady-state phase error.
For both CDTL and TDTL, convergence speed decreases as the initial phase
error diverges from the steady-state phase error. Numerical study showed that
the first-order TDTL locks as fast as CDTL for a phase step input for all ranges
of the effective parameters, although the Lipschitz asymptotic bound for TDTL
is higher than that of CDTL in this case. For a frequency step input, the first-
order TDTL locks faster than CDTL under suitable arrangement of the loop
parameters: the time-delay τ , the center frequency ωo, and the loop gain K1.

Appendix

The characteristic function hψ(φ), defined by (3.14), is continuous in φ over the
interval (−π, π). This can be seen by considering the limits when φ approaches
the suspected points at which sin(φ + ψ) = 0. Consider 0 < ψ < π, which is
the basic version of the locking condition 0 < f [ψ] < π (see Section 3.3). Now
in the interval (−π, π), sin(φ + ψ) = 0 implies φ + ψ = 0 or π. Consider the
point at which φ + ψ = π. Hence 0 < φ < π and sin(φ) > 0. Then the left and
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right limits of the characteristic function are equal at this point as follows

lim
φ+ψ→π−

f

[
Tan−1 sin(φ)

sin(φ + ψ)

]
= lim

φ+ψ→π−
f

[
Tan−1 sin(φ)

0+

]

= lim
φ+ψ→π−

f
[π
2

]
=

π

2

and

lim
φ+ψ→π+

f

[
Tan−1 sin(φ)

sin(φ + ψ)

]
= lim

φ+ψ→π−
f

[
Tan−1 sin(φ)

0−

]

= lim
φ+ψ→π−

f

[
−3π

2

]
=

π

2

The point at which φ + ψ = 0 can be handled similarly.
Since α and f [α] = −π + {(α + π)modulo (2π)} differ only by a constant,

their derivatives are the same. Hence we have after some manipulations

dhψ(φ)

dφ
=

sin(ψ)

sin2(φ) + sin2(φ + ψ)

It is clear that for 0 < f [ψ] < π, which is a locking condition for both
first and second-order TDTLs (Section 3.3), the denominator of dhψ(φ)

dφ
is always

positive, hence dhψ(φ)

dφ
is continuous in φ over the interval (−π, π).



Chapter 4

Hilbert Transformer and
Time-Delay

4.1 Introduction
Hilbert Transform (HT) is a significant tool in mathematics, physics, and signal
analysis wherever Fourier techniques are used to represent or analyze functions
or signals.

In the continuous-time domain the Hilbert transform s(t) of the function
s(t) is given by the following linear operation [61]

s(t) = H[s(t)] =
1

π
P
[∫ ∞

−∞

s(r)

t − r
dr
]

= lim
L→∞

δ→0

1

π

[ ∫ t−δ

−L

s(r)

t − r
dr +

∫ L

t+δ

s(r)

t − r
dr
]

(4.1)

where the Cauchy principal value (P) is used here to ensure convergence of the
integral. It is apparent that H[s(t)] represents the convolution of s(t) with 1/πt.

If the signal is causal, the real and the imaginary parts of its Fourier trans-
form are related by Hilbert transform integral, a fact of importance in signal
analysis [62].

Hilbert transformers are widely used in modulation theory [61, 63]. The
statistical properties of a signal s(t) in noise can be obtained in a more suc-
cinct fashion by utilizing Hilbert Transform representation of the signal and
the concept of the analytic signal z(t) associated with s(t) which is defined as
[63, 64]

z(t) = s(t) + j H[s(t)] (4.2)

In time-frequency signal analysis, which is a powerful tool to deal with non-
stationary signals, the discretization of the time-frequency distribution (TFD)

51
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of any signal s(t) creates aliasing problem that reduces the acceptable signal
frequency range to ωmax ≤ ωs/4 instead of the Nyquist bound ωmax ≤ ωs/2
in the continuous-time analysis [64] (ωmax being the highest frequency in the
signal and ωs the sampling radian frequency). However, the introduction of the
analytic signal (defined above) eliminates the aliasing problem by eliminating
the negative frequencies from the spectrum of the signal s(t), which results in
significant enlargement of the frequency range and clearer study of the signal
[64, 65].

The transfer function H(jw) of the system represented by (4.1) is given in
continuous-time by [61]

H(jω) =

⎧⎨
⎩

−j ω ≥ 0
0 ω = 0
j ω < 0

(4.3)

and in discrete-time by [62]

H(ejω) =

⎧⎨
⎩

−j 0 ≤ ω < π
0 ω = 0
j −π ≤ ω < 0

(4.4)

The above transfer functions, in continuous-time or discrete-time, represent
a −90o phase-shift operation on the input signal s(t) in the frequency range
0 ≤ ω < ∞ in the continuous time and 0 ≤ ω < π in the discrete-time.
The output signal is a delayed version of the input signal and therefore HT
is considered in this general sense as a time-delay phase-shifting system. The
difference is that HT produces a signal-dependent delay and signal-independent
phase-shift, while the time-delay system gives a signal-independent delay and
signal dependent phase-shift. Hence in some signal processing systems it may be
possible to replace a HT by a time-delay. If this is possible, significant reduction
in the system complexity can be achieved since the time-delay is much easier
to implement than the complicated Hilbert transformer [61, 62]. Recently this
idea has been proposed in the area of digital phase-locked loops [70, 71] (see
also Chapter 2) in an attempt to reduce the complexity of the signal processing
system and to avoid the limitations and other problems that accompany the
implementation of the HT [61, 60]. This resulted in similar performance of the
new system except that non-linearity was introduced in the system equation.
In addition, locking speed can be doubled and locking range of the first-order
loop can be extended by suitable arrangement of the time-delay with other
circuit parameters, a fact that is not verified by the signal-independent system
using Hilbert transformer. This idea may be applied to other areas in signal
processing.
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The behavior of the HT in additive Gaussian noise was considered in [13] in
a context of digital phase-locked loops (DPLLs). In this chapter we concentrate
on the behavior of the time-delay τ as a phase-shifter for sinusoidal signals in the
presence of Gaussian noise. Noise analysis of the HT reduces to a special case
of this general analysis. The study is based on the statistical characteristics
of the phase estimation. The Cramer-Rao bound, which was missing in the
treatment of the HT in [13], is included to know the limitations of the phase
estimator and to present better comparison between the time-delay and Hilbert
transform. This comparison is based on considering an ideal Hilbert transformer
that gives exactly −90o phase shift without phase or amplitude distortion or
other practical problems associated with the HT implementation.

In the next section the joint probability density function (pdf) of the input
signal and its time-delayed (or: phase-shifted) version is derived in additive
Gaussian noise, from which the pdf of the phase estimator is obtained and
analyzed under various values of the effective parameters: the phase shift ψ,
the true phase value φ, and the signal-to-noise ratio SNR.

4.2 Statistical Behavior of HT and Time-Delay
in i.i.d. Additive Gaussian Noise

4.2.1 Input-Output Relationships in the Presence of Noise

For sinusoidal signals we have the relationship H(cos(ωt)) = sin(ωt). The input
and the output of the time-delay are given under noise-free condition by x(t) =
A sin(ωt + ψ) and y(t + τ) = A sin(ωt), where A is the signal amplitude and
ψ = ωτ is the signal-dependent phase shift. In a causal system we have the
following range of ψ

0 < f [ψ] < π (4.5)

where
f [ψ] = −π + {(ψ + π) modulo (2π)} (4.6)

In the presence of noise the input-output relationships become

x(t) = A sin(φ(t) + ψ) + n(t) (4.7)
y(t + τ) = A sin(φ(t)) + n′(t) (4.8)

where φ(t) = wt, n(t) is assumed to be Gaussian noise of zero mean and vari-
ance σ2

n, and n′(t) is the time-delayed version of n(t). Apparently n′(t) is also
Gaussian with the same mean and variance as n(t). It follows that x(t) and
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y(t) are also Gaussian random variables with variance σ2
n and ensemble means

given at any time instant t by

E[x(t)] = A sin(φ(t) + ψ) (4.9)
E[y(t + τ)] = A sin(φ(t)) (4.10)

In the presence of noise both x(t) and its phase-shifted version y(t + τ) are
random both in amplitude and in phase. To find the pdf of the random phase
of x(t) and y(t + τ) and its relationship to the deterministic phase at any time
instant t, we should first write the sample functions x(t) and y(t + τ) in terms
of two new sample functions R(t) (for amplitude) and ε(t) (for phase) such that
the sample functions x(t) and y(t) maintain the same relationship between them
as in the deterministic (noise-free) case. This gives in the case of time-delay (τ)
the following transformations

x(t) = R(t) sin
(
ε(t) + ψ

)
(4.11)

y(t + τ) = R(t) sin
(
ε(t)

)
(4.12)

This is the same assumption made in reference [13] for the Hilbert trans-
former case. It is equivalent to defining a set of two new random variables (R, ε)
in terms of the original random variables (x, y) according to the mappings f1

and f2 defined by

R = f1(x, y) =
x − cos(ψ)y

sin(ψ) cos

⎛
⎝Tan−1

⎧⎨
⎩

sin(ψ)

1 − y

x
cos(ψ)

⎫⎬
⎭
⎞
⎠

and

ε = f2(x, y) = f

⎡
⎣Tan−1

⎧⎨
⎩

sin(ψ)

1 − y

x
cos(ψ)

⎫⎬
⎭
⎤
⎦

where f [.] is defined in (4.6) and Tan−1 is the four-quadrant inverse tangent. The
above choice of the relationships between (R, ε) and (x, y) makes sense when a
comparison is made between the noise-free and noisy expressions for the original
variables x and y in terms of amplitude and phase. This comparison constitutes
the basis of this work. Figure 4.1 summarizes these relationships for HT and
time-delay.

4.2.2 Joint PDF of the Amplitude and Phase Random
Variables

In this analysis we concentrate on the discrete case and assume that the dis-
crete noise process {n(k)} is a sequence of i.i.d. (independent and identically
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Hilbert transform

 phase shift = π/2 

Timedelay

phase shift = ψ =  ω τ 

 HT

τ

x(t ) = A sin [φ(t ) + π/2]

( noise    free )

x(t ) = R(t ) sin [ε (t ) + π/2]

( in noise)

y(t+τ ′ ) = A sin [φ(t )]
( noise − free )−

 y(t+τ ′ ) = R(t ) sin [ε (t )]
( in noise )

x(t ) = A sin [φ(t ) + ψ]

( noise − free )

x(t ) = R(t ) sin [ε (t ) + ψ]

( in noise)

y(t+τ) = A sin [φ(t )]

( noise − free )

 y(t+τ ) = R(t ) sin [ε (t )]

( in noise )

Figure 4.1: Input-output relationships for Hilbert transformer and time-delay τ under
noise-free and noise conditions. R(t) is the amplitude random variable, ε(t) is the
phase random variable, and ω is the input radian frequency. τ

′ is the practical delay
caused by FIR implementation of HT.

distributed) Gaussian random variables. It follows that the phase shifted noise
process {n′

(k)} is also a sequence of i.i.d. Gaussian random variables with same
mean and variance, and that the two random variables {n(k)} and {n′

(k)} are
independent at any sampling instant k. Hence the discrete versions of x and
y in (4.7) and (4.8) are also independent Gaussian random variables at any
sampling instant k with joint probability density function (pdf) given at
any sampling instant k by

gψ,φ(x, y) =
1

2πσ2
n

exp
[
− 1

2σ2
n

{(
x − A sin(φ + ψ)

)2

+
(
y − A sin(φ)

)2}] (4.13)

where for simplicity x, y, φ, R, and ε will be used to represent x(k), y(k + τ),
φ(k), R(k), and ε(k) respectively.

In the presence of noise the relationship between x and its phase-shifted
version y in terms of the amplitude and phase random variables R and ε would
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be as in (4.11) and (4.12). Hence the joint pdf of R and ε is given by [74]

Pψ,φ(R, ε) = gψ,φ

(
R sin(ε + ψ), R sin(ε)

)
×
∣∣∣∣ sin(ε + ψ) R cos(ε + ψ)

sin(ε) R cos(ε)

∣∣∣∣ (4.14)

where gx,y is given by (4.13) with x and y written in terms of R and ε as in
(4.11) and (4.12).

4.2.3 PDF of the Phase Random Variable

In this chapter we concentrate on phase estimation rather than amplitude
estimation. The pdf of the phase random variable ε is given by

pψ,φ(ε) =

∫ ∞

0

Pψ,φ(R, ε) dR (4.15)

which can be given, after some trigonometric manipulations, in the following
functional form

pψ,φ(ε) = h
′
ψ(ε)

×
[

1

2π
exp{−µψ,φα} +

√
µψ,φα

π
cos
(
Hψ,φ(ε)

)

× exp{−µψ,φα sin2
(
Hψ,φ(ε)

)
}

×
(1

2
+ erf{

√
2µψ,φα cos

(
Hψ,φ(ε)

)
}
)]

(4.16)

where

α = A2/2σ2
n (signal − to − noise ratio) (4.17)

hψ(ε) = f [Tan−1{ sin(ε)

sin(ε + ψ)
}] (4.18)

h
′
ψ(ε) =

dhψ(ε)

dε
=

sin(ψ)

sin2(ε) + sin2(ε + ψ)
(4.19)

µψ,φ =
sin(ψ)

h
′
ψ(φ)

(4.20)

Hψ,φ(ε) = hψ(ε) − hψ(φ) (4.21)

erf(x) =
1√
2π

∫ x

0

e−t2/2dt (4.22)
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and f [.] is defined in (4.6). Note that Tan−1 is the four-quadrant inverse tangent.
It is clear that pψ,φ(ε) is non-Gaussian. For high values of SNR, pψ,φ(ε) can be
approximated by

pψ,φ(ε) = h
′
ψ(ε)

√
µψ,φα

π
cos
(
Hψ,φ(ε)

)
× exp{−µψ,φα sin2

(
Hψ,φ(ε)

)
}

×
(1

2
+ erf{

√
2µψ,φα cos

(
Hψ,φ(ε)

)
}
)

(4.23)

The above approximation can be used even for as low values of SNR as
1 dB, but the minimum value of pψ,φ(ε) would be slightly negative; and this
has no effect on the general shape of pψ,φ(ε).

If ψ = π/2, we have h
′
ψ(ε) = 1, Hψ,φ(ε) = f [ε]−f [φ] = ε−φ in the principal

interval (−π, π), and µψ,φ = 1
(
see (4.18) - (4.21)

)
, hence (4.16) reduces to the

Hilbert transform case obtained in [13] in a context of DPLLs

pψ,φ(ε) =
1

2π
exp(−α) +

√
α

π
cos(ε − φ) exp {−α sin2(ε − φ)}

×
(1

2
+ erf{

√
2α cos(ε − φ)}

)
(4.24)

Note that pψ,φ(ε) for HT is symmetric about ε = φ with a peak that depends
only on SNR. In this case, the function pψ,φ(ε) = zψ(φ, ε), which is periodic in ε
for each φ with a period of 2π, has its peak exactly along the lines ε = f [φ]+2mπ
in the (φ, ε) plane (for all integer m). This peak has a maximum value that is
constant for a given SNR. In the general case (time-delay case) the peaks are
slightly biased from ε = f [φ]+2mπ and have variable maximum value depending
on SNR, ψ, and the true value of the phase, f [φ]. The bias of the pdf peak
decreases as SNR increases or ψ approaches π/2. It is worth noting that this
bias of the pdf peak at any φ does not mean that the expected value of the
phase random variable ε is shifted by the same amount from the true value of
the phase, f [φ], since this pdf is non-symmetric. In fact, the expected value of
ε − f [φ] is nearly zero for any φ when SNR is not very low, as will be shown
in Subsection (4.2.5). The 2-D plot of pψ,φ(ε) for SNR=10 dB and ψ = π/3
is shown in Figure 4.2 along with the contour plot to reveal the approximate
symmetry about the line ε = φ in the (φ, ε) plane.

4.2.4 PDF of the Phase Noise

From the above subsection we conclude that in the principal interval (−π, π),
the phase ε can be generally decomposed into a deterministic term f [φ] and a
random variable η as follows
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ε = f [φ] + η (4.25)

where η is in the interval (−π − f [φ], π − f [φ]). This is similar to the result
obtained for the Hilbert transformer [13] when the phase shift was π/2. The
pdf of the phase noise η is given by

ρψ,φ(η) = pψ,φ(ε − f [φ]) (4.26)

which is generally dependent on ψ and f [φ] when the phase shift ψ �= π/2.
We can obtain this pdf from pψ,φ(ε) for any value of ψ and φ by the intersection
with the suitable plane.

The intersection of a plane φ = constant with pψ,φ(ε) is symmetric when
ψ = π/2 (HT case), while it is non-symmetric for general ψ except for high
SNR. This can be seen in Figure 4.2. Although the contour plot is approximately
symmetric about ε = φ, its boundaries are slightly varying, not straight parallel
lines, giving non-symmetry when a plane φ = constant intersects the pψ,φ(ε)
plot. As SNR increases, the boundaries of the contour plot approach straight
parallel lines and consequently pψ,φ(η) becomes symmetric. Figure 4.3 shows
ρψ,φ(η) when f [φ] = 0 for different values of SNR (ψ = π/3) and different values
of ψ (SNR = 10 dB). Only the principal period (−π, π) is considered. It is clear
that ρψ,φ(η) is more symmetric and concentrated around η = 0 for higher values
of SNR.

From (4.16) and (4.26) it is possible to show that ρψ,φ(η) has the following
anti-symmetry in the interval (−π, π)

ρψ,φ(η) = ρπ−ψ,φ(−η) (4.27)

This anti-symmetry is clarified in Figure 4.3.

4.2.5 Expectation and Variance of the Phase Noise

The expected value and the variance of the phase noise η when f [φ] = 0 are
shown in Figure 4.4 for different values of ψ and SNR. Note that the symmetry
in the expected value and the similarity in the variance result from the anti-
symmetry in (4.27). For this value of f [φ] the Hilbert transform case (ψ = π/2)
gives the minimum variance, but this is not always true for the whole range of
f [φ]. Figure 4.5 shows the expected value and the variance of the phase noise η
for ψ = π/3 and different values of f [φ] as compared to the HT case. The HT
phase pdf is φ-independent and give the same plots for the absolute expectation
(which is zero) and the variance of the phase noise η for all values of f [φ]. For
the time-delay with any value of ψ, changing the value of f [φ] would result in
changing the maximum of ρψ,φ(η). This difference results in a slight difference
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Figure 4.2: Above: the probability density function of the phase random variable,
pψ,φ(ε) = zψ(φ, ε), for ψ = π/3 and SNR = 10 dB. Below: contour plot of the above
pψ,φ(ε) at the level of 0.5 for one period in the (φ, ε) plane. Dotted line is the ε = φ

line. It is clear that pψ,φ(ε) is nearly symmetric about ε = φ line. As SNR increases,
the contour plot becomes two parallel lines.

in the expected value and the variance of η for different values of f [φ] as shown
in Figure 4.5 for ψ = π/3 and different values of f [φ]. For some values of f [φ]
the variance can go below the HT case. However, the performance is measured
by considering the expectation and the variance of η for the whole range of
f [φ]. Therefore the (ideal) Hilbert transformer outperforms the time-delay in
all cases.
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Figure 4.3: The probability density function ρψ,φ(η) of the phase noise η when f [φ] =
0. Above: ρψ,φ(η) for ψ = π/3 and different values of SNR. Below: ρψ,φ(η) for SNR =
10 dB and different values of ψ. Note that the dashed curve (ψ = π/2) is symmetric
and represents the Hilbert transform (HT) case. The two solid curves clarify the ψ

anti-symmetry of the phase noise pdf.

Note that this comparison is based on considering an ideal Hilbert trans-
former that gives exactly −90o phase shift without phase or amplitude distortion
or other practical problems associated with the implementation [61, 60].
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Figure 4.4: The expected value (above) and the variance (below) of the phase noise
η for different values of ψ and SNR (f [φ] = 0). The case ψ = π/2 is the Hilbert
transform (HT) case which gives minimum value for the variance and the absolute
expectation (approximately zero) of the phase noise η. The symmetry of the expected
value about zero and the similarity of the variance for ψ and π − ψ cases are due to
the ψ anti-symmetry of the phase noise pdf.

In all the cases studied above for the time-delay, the expected value of the
phase noise η is approximately zero and decreases when SNR increases, also the
variance decreases substantially when SNR increases.
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Figure 4.5: The expected value (above) and the variance (below) of the phase noise
η for different values of f [φ] and SNR when ψ = π/3. The solid line represents the
HT case which is φ-independent.

4.2.6 The phase Estimator and Ranges of Cramer-Rao
Bounds

From the above analysis, the random phase variable ε can be used as a phase
estimator, φ̂. It can be expressed in the interval (−π, π) in terms of ψ, x, and
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y according to (4.11) and (4.12) as follows

ε = φ̂ = f

⎡
⎣Tan−1

⎧⎨
⎩

sin(ψ)

1 − y

x
cos(ψ)

⎫⎬
⎭
⎤
⎦ (4.28)

where f [.] is defined in (4.6) and Tan−1 is the four-quadrant inverse tangent.
Since φ̂ is approximately unbiased for reasonable values of SNR (a minimum

of 10 dB is acceptable in all cases), its variance is lower-bounded by the Cramer-
Rao (CR) bound [75], which can be expressed in this case as follows

var(φ̂) = E(ε − φ)2 ≥ 1

E
{[∂ ln{pψ,φ(ε)}

∂φ

]2}

=
1∫ π−f [φ]

−π−f [φ]

[∂ ln{pψ,φ(ε)}
∂φ

]2

pψ,φ(ε) dε

= CRψ(φ) (4.29)

There is no analytic expression for the CR bound CRψ(φ), hence it should
be found numerically using (4.29) and (4.16). Figure 4.6 shows the variance
of the time-delay phase estimator var(φ̂) and its CR bound for ψ = π/3 and
f [φ] = 0. The variance converges to its CR bound as SNR increases. This is
true for all values of ψ = π/3 and f [φ]. For HT, the variance of the phase
estimator, var(φ̂), is nearly identical with the CR bound in the range of SNR
shown in Figure 4.6.

Figure 4.6 also shows the approximate ranges of CR bounds of the time-
delay phase estimator when ψ = π/7 & 6π/7 (the area between dotted lines)
and ψ = π/3 & 2π/3 (the area between dashed lines) as f [φ] ranges throughout
the interval (−π, π]. The range is found numerically for each ψ by calculating
CR bounds for all values of f [φ] in the principal interval −π < f [φ] ≤ π.
Similarity in CR bounds between ψ and π − ψ cases is due to the ψ anti-
symmetry of pψ,φ discussed earlier. The solid line represents CR bound of the
HT phase estimator, which is independent of the phase true value f [φ]. As ψ
approaches π/2, the range of CR bounds approaches the HT case.

The performance of the time-delay for each ψ is measured by considering
the least upper bound {CRψ(φ) | − π < f [φ] ≤ π}. As such the (ideal)
Hilbert transformer outperforms the time-delay in all cases.

It is clear that the performance of the time-delay phase estimator, regarding
both the expectation and the variance of the phase noise, decreases as ψ goes
far from π/2, especially for low SNR. Hence if a constant time-delay τ is to
replace the Hilbert Transform in some signal processing system while keeping
highest possible performance in the presence of noise, the appropriate choice of
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Figure 4.6: Above: the variance and the Cramer-Rao bound of the time-delay phase
estimator for ψ = π/3 and f [φ] = 0. The variance converges to the CR bound
as SNR increases. Below: approximate ranges of the CR bounds of the time-delay
phase estimator for ψ = π/7 & 6π/7 (the area between dotted lines), and ψ =
π/3 & 2π/3 (the area between dashed lines). The range is found numerically for
each ψ by calculating the CR bounds for all values of f [φ] in the principal interval
−π < f [φ] ≤ π. Similarity in the CR bounds between ψ and π − ψ is due to the
ψ anti-symmetry of the phase pdf. The solid line represents the CR bound of the HT
phase estimator, which is independent of the phase true value f [φ]. As ψ approaches
π/2, the range of the CR bounds approaches the HT case.
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τ would be application dependent. The proper value of τ should keep ψ = ωτ as
near to π/2 as possible throughout the expected range of the input frequencies.
However, this condition on the choice of τ becomes less strict as SNR increases.
Also the performance regarding the expected value of the phase can be made
the same as in the HT case by utilizing a phase transformation that makes the
phase pdf symmetric as shown in the following subsection.

4.2.7 A Symmetric Transformation

As shown above, the pdf of the phase estimator ε is non-symmetric. However,
this pdf can be transformed into a symmetric pdf by the following transforma-
tion of the random variable ε

ξ = hψ(ε) = f

[
Tan−1

{
sin(ε)

sin(ε + ψ)

}]
(4.30)

From (4.6) and (4.19) we can deduce that both the numerator and the
denominator of h

′
(ε) = dh(ε)/dε are positive. Therefore h

′
(ε) is always positive

and h(ε) is monotonically (in fact: strictly) increasing in the principal interval
(−π, π). Hence the pdf of ξ can be given by [74]

pψ,φ(ξ) = pψ,φ

(
h−1

ψ (ξ)
) ∣∣∣∣dε

dξ

∣∣∣∣ (4.31)

From (4.16), (4.21), (4.30), and (4.31) we obtain

pψ,φ(ξ) =
1

2π
exp{−µψ,φα} +

√
µψ,φα

π
cos
(
ξ − hψ(φ)

)
× exp{−µψ,φα sin2

(
ξ − hψ(φ)

)
}

×
(1

2
+ erf{

√
2µψ,φα cos

(
ξ − hψ(φ)

)
}
)

(4.32)

which is symmetric about ξ = hψ(φ), hence ξ − hψ(φ) has zero expected value
irrespective of φ and ψ. Therefore ξ can be decomposed as follows

ξ = Φ + ν (4.33)

where Φ = hψ(φ) is the deterministic transformed phase and ν is a non-Gaussian
phase noise with zero mean. However, the variance of ξ is still dependent on
ψ and φ. Numerical calculations showed that, for every value of ψ, the l.u.b
of the CR bounds of ξ converges for reasonable SNR’s to that of ε discussed in
the previous subsection. If ψ is not far from π/2, these two l.u.b.’s are nearly
identical. Hence ideal improvement in the expectation and no improvement in
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the variance of the phase estimator are obtained by this transformation. Since
the mapping hψ : φ → Φ is one-valued and strictly increasing in the principal
interval of φ (i.e. (−π, π)), h−1

ψ is also one-valued in the principal interval
(−π, π) [76]. Hence there is no ambiguity in transforming (4.32) in terms of Φ
(rather than φ) as long as we consider a period of 2π. The actual expression of
h−1

ψ can be given after some manipulations in the following form

φ = h−1
ψ (Φ) =

{
a b sin(Φ) ≥ 0

f [a + π] otherwise.
(4.34)

where
b =

sin(ψ) tan(Φ)

1 − cos(ψ) tan(Φ)
(4.35)

a = tan−1(b) (4.36)

and f [.] is defined in (4.6). The function tan−1 is the ordinary inverse tangent.
The function hψ(.) defined in (4.18) was originally proposed as the char-

acteristic function of the phase error detector of a new DPLL, the time-delay
digital tanlock loop (TDTL), in an attempt to replace the HT by a time-delay
in DPLLs [70, 71] (see also Chapter 3). However, it appears form the analysis
in this chapter that this function has an inherent relationship to the statistical
behavior of the time-delay in the presence of Gaussian noise.

For TDTL, this symmetric transformation of the phase random variable
would result in high performance of the TDTL in the presence of noise that
is essentially equivalent to the performance when HT is utilized for reasonable
values of SNR.

Hence if it is possible to replace a HT by a time-delay τ (as a phase-shifter)
with the above phase transformation in some signal processing system (like in
DPLLs), the choice of τ would be mainly related to the noise-free performance
of the system, especially for high SNR.

4.3 Conclusions
A time-delay has been introduced in Chapter 3 as a substitute for the Hilbert
transformer (HT) in digital phase-locked loops (DPLLs) for the purpose of phase
shifting. This resulted in a major reduction in the system complexity. This
chapter has shown that if this replacement is possible under noise-free condi-
tions in some signal processing system, it would also be successful in the presence
of additive Gaussian noise. For sinusoidal signals, the performance of a time-
delay τ (which produces a signal-dependent phase-shift ψ = ωτ , ω being the
signal radian frequency) is comparable to the performance of a Hilbert trans-
former (which produces a signal-independent 90o phase-shift) in the presence
of independent and identically distributed (i.i.d.) additive Gaussian noise. The
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performance of the time-delay approaches that of Hilbert transformer for high
signal-to-noise ratios (SNRs) and the proper choice of τ . In case τ is constant
and a range of ω is expected, the performance of the time-delay is best when
τ is chosen to keep the range of ψ as near as possible to π/2 throughout the
expected range of the input frequencies. However, this condition on the choice
of τ becomes less strict as SNR increases. Also, the performance regarding the
expected value of the phase can be made the same as in the HT case by utiliz-
ing a proposed phase transformation that makes the phase probability density
function (pdf) symmetric. The criterion used in this analysis is the effect of
noise on the phase of the input signal and its time-delayed (or: phase-shifted)
version such that similar relationship between them is maintained as in the
noise-free case. In additive Gaussian noise the time-delay phase estimator can
be approximated by the noise-free phase plus a non-Gaussian phase noise. The
pdf of the phase noise in the case of time-delay is non-symmetric with a peak
that depends on ψ, the deterministic phase φ, and SNR. However, as SNR in-
creases, the expected value of the time-delay phase estimator approaches the
true phase value and its variance substantially decreases and converges to the
Cramer-Rao bound for all ranges of the effective parameters: the phase shift ψ,
the true phase value φ, and the signal-to-noise ratio SNR.



Chapter 5

The Time-delay Digital Tanlock
Loop in Noise

5.1 Introduction

In Chapter 3, a constant time-delay unit is used to produce a phase-shifted
version of the incoming signal, giving rise to the time-delay digital tanlock loop
(TDTL) [70, 71]. This method reduces the complexity of the phase-shifter
and avoids the limitations and other problems that accompanies the 90o phase-
shifter in the conventional DTL (CDTL) [13]. The main advantages of CDTL
are maintained by TDTL despite its reduced structure (see Chapter 3).

In Chapter 4, we analyzed the performance of the time-delay, which produces
a signal-dependent phase shift, in the presence of additive Gaussian noise. We
compared its performance with that of the (ideal) Hilbert transformer. The
result is of general interest in signal processing.

In this chapter we analyze the performance of the first- and second-order
TDTLs in the presence of additive Gaussian noise [72]. Specifically, we inves-
tigate the effect of additive Gaussian noise on the sytem equation, the input
and output of the phase error detector, locking conditions, and the steady-state
phase errors. It is shown that, in the presence of additive Gaussian noise, the
phase at the output of the phase error detector (PED) can be represented by
the noise-free phase plus a non-Gaussian phase errors. Cramer-Rao bound,
which was missing in the treatment of CDTL in [13], is included in this study
for better understanding of the circuit performance. The mean value of the
steady-state phase errors at the input and the output of the phase error detec-
tor are shown to be the same as the noise-free steady-state phase errors φss and
ess, respectively, while the variance decreases as the signal-to-noise ratio (SNR)
increases and converges to the Cramer-Rao bound for all values of the effective
parameters: ψ, K

′
1, and SNR. The locking ranges of the circuit parameters are

69
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the same as those under noise-free conditions. The best possible performance
can be ensured in TDTL design when the time-delay τ is chosen to give a phase
shift ψ = ωτ as near as possible to π/2 from both sides during the expected
range of the input frequency ω.

5.2 Noise Analysis of the TDTL
In this section we investigate the effect of additive Gaussian noise on the per-
formance of the first- and second-order TDTLs.

5.2.1 System Equation

The noise-free system analysis was given in Chapter 3. Here we present the
main equations in the presence of additive Gaussian noise. The loop accepts a
sinusoidal input signal y(t) having a radian frequency ω with a frequency offset
∆ω(= ω − ωo) from the nominal radian frequency ωo of the digital clock. The
input signal is given by

y(t) = A sin[ωot + θ(t)] + n(t) (5.1)

where A is the signal amplitude, θ(t)(= ∆ωt + θo) is the phase process of the
incoming signal, θo being a constant, and n(t) is additive Gaussian noise with
zero mean and variance σ2

n.
The time-delay unit introduces a constant time-delay τ in the input signal

which causes a phase lag ψ(= ωτ) proportional to input radian frequency ω.
The time-delayed version of the input signal, denoted by x(t), can be expressed
as

x(t) = A sin[ωot + θ(t) − ψ] + n
′
(t) (5.2)

where n
′
(t) is the phase-shifted version of n(t). At the kth sampling instant, the

sampled values of y(t) and x(t) are given respectively by

y(k) = A sin[ωot(k) + θ(k)] + n(k) (5.3)
x(k) = A sin[ωot(k) + θ(k) − ψ] + n

′
(k) (5.4)

where θ(k) = θ[t(k)], n(k) = n(t(k)), and n
′
(k) = n

′
(t(k)).

The sampling interval between the sampling instants t(k) and t(k − 1) is
given by

T (k) = To − c(k − 1) (5.5)

where To(=
2π
ωo

) is the nominal period of the digital clock and c(i) is the output
of the digital filter at the ith sampling instant. Assuming t(0) = 0, the total
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time t(k) up to the kth sampling instant is

t(k) =
k∑

i=1

T (i) = kTo −
k−1∑
i=0

c(i) (5.6)

Thus, y(k) and x(k) can be written as

y(k) = A sin

[
θ(k) − ωo

k−1∑
i=0

c(i)

]
+ n(k) (5.7)

x(k) = A sin

[
θ(k) − ωo

k−1∑
i=0

c(i) − ψ

]
+ n

′
(k) (5.8)

The phase error φ(k) is defined as [70, 71] (see also Chapter 3)

φ(k) = θ(k) − ωo

k−1∑
i=0

c(i) − ψ (5.9)

Now y(k) and x(k) in the presence of additive Gaussian noise can be ex-
pressed as

y(k) = A sin[φ(k) + ψ] + n(k) (5.10)
x(k) = A sin[φ(k)] + n

′
(k) (5.11)

The phase equation was given in Chapter 3 as follows

φ(k + 1) = φ(k) − ωc(k) + Λo (5.12)

where Λo = 2π ω−ωo

ωo
. This is the general phase equation of TDTL based on the

definition of phase error. Under noise-free conditions this leads to the results
shown in Chapter 3. In the presence of noise, there would be phase noise in
addition to the noise-free phase process. To find this noise we should analyze
the effect of noise on the input and the output of the phase error detector.

5.2.2 Statistical Behavior of TDTL Phase Error Detector

Assuming that the sampled noise process {n(k)} is a sequence of i.i.d. (indepen-
dent and identically distributed) Gaussian random variables with zero mean and
a variance of σ2

n, it follows that the phase shifted noise process {n′
(k)} is also

a sequence of i.i.d. Gaussian random variables with same mean and variance,
and that the two noise processes {n(k)} and {n′

(k)} are independent. Hence
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y and x in (5.10) and (5.11) are also independent Gaussian random variables
with joint probability density function (pdf) given at any sampling instant k by

gψ,φ(x, y) =
1

2πσ2
n

exp

[
− 1

2σ2
n

(
(x − A sin(φ)

)2
+ (y − A sin(φ + ψ)2

)]
(5.13)

where for simplicity x, y, and φ are used to represent x(k), y(k), and φ(k),
respectively.

In CDTL the characteristic function is linear and there is no phase transfor-
mation. Hence noise analysis at the input of the Phase Error Detector (PED)
is sufficient [13]. For TDTL the characteristic function of the PED, (3.14) and
(3.15) in Chapter 2, performs non-linear transformation of the input phase.
Hence in the next two sub-subsections we will study the statistical behavior of
the phase at the input and at the output of the PED separately.

A. Phase PDF at the Input of the PED

In the presence of noise both y and its phase-shifted version x would be
random in amplitude and phase. To find the pdf of the random phase of y and
x and its relationship to the deterministic phase, we should first write x and
y in terms of two new random variables R (for amplitude) and ε (for phase)
such that the random variables x and y keep the same relationship between
them as in the deterministic case. This gives in the case of TDTL the following
transformations

x = R sin(ε) (5.14)
y = R sin(ε + ψ) (5.15)

hence the joint pdf of R and ε is given by [74]

Pψ,φ(R, ε) = g
(
R sin(ε), R sin(ε + ψ)

)
R sin(ψ) (5.16)

In DPLLs the concentration is on the phase rather than on the amplitude.
The pdf of the input phase random variable ε is given by

pψ,φ(ε) =

∫ ∞

0

Pψ,φ(R, ε) dR (5.17)

which can be given in the following form

pψ,φ(ε) = h
′
ψ(ε)

[
1

2π
exp{−µψ,φα} +

√
µψ,φα

π
cos
(
Hψ,φ(ε)

)
× exp{−µψ,φα sin2

(
Hψ,φ(ε)

)
}

×
(

1

2
+ erf{

√
2µψ,φα cos

(
Hψ,φ(ε)

)
}
)]

(5.18)
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where

α = A2/2σ2
n (signal − to − noise ratio) (5.19)

h
′
ψ(ε) =

dhψ(ε)

dε
=

sin(ψ)

sin2(ε) + sin2(ε + ψ)
(5.20)

µψ,φ =
sin(ψ)

h
′
ψ(φ)

(5.21)

Hψ,φ(ε) = hψ(ε) − hψ(φ) (5.22)

erf(x) =
1√
2π

∫ x

0

e−t2/2dt (5.23)

and f [.] is defined in (4.6). It is clear that pψ,φ(ε) is non-Gaussian and periodic
in ε and φ with periods of 2π. It is also non-symmetric about the plane ε = φ
for ψ �= π/2. If ψ = π/2, we have h

′
ψ(ε) = 1, Hψ,φ(ε) = f [ε] − f [φ] = ε − φ in

the principal interval (−π, π), and µψ,φ = 1
(
see (5.19) - (5.22)

)
, hence (5.18)

reduces to the Hilbert transform case obtained for CDTL in [13].

B. Phase PDF at the Output of the PED

Now the phase at the output of the phase error detector is also a non-
Gaussian random variable ξ given by

ξ = hψ(ε) = f

[
Tan−1

{
sin(ε)

sin(ε + ψ)

}]
(5.24)

where Tan−1 is the four-quadrant arctan function. In Chapter 3, the function
hψ(ε) was shown to be continuous over the principal interval (−π, π) (see Ap-
pendix, Chapter 3). Also we have dhψ(φ)

dφ
> 0 since 0 < sin(ψ) < 1. Therefore

hψ(φ) is monotonically increasing in the principal interval. Hence the pdf of ξ
can be given by [74]

pψ,φ(ξ) = pψ,φ

(
h−1

ψ (ξ)
) ∣∣∣∣dε

dξ

∣∣∣∣ (5.25)

From (3.14), (5.18), (5.24), and (5.25) we obtain

pψ,φ(ξ) =
1

2π
exp{−µψ,φα} +

√
µψ,φα

π
cos
(
ξ − hψ(φ)

)
× exp{−µψ,φα sin2

(
ξ − hψ(φ)

)
}

×
(

1

2
+ erf

{√
2µψ,φα cos

(
ξ − hψ(φ)

)})
(5.26)

which is periodic in ξ of period 2π. It has a maximum at ξ = hψ(φ), hence
ξ − hψ(φ) has zero expected value irrespective of φ and ψ. Therefore ξ can be
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decomposed as follows

ξ = e + η (5.27)

where e = hψ(φ) is the deterministic transformed phase and η is a non-Gaussian
phase noise with zero mean. If we consider ξ in the main interval (−π, π), then
the phase noise η lies in the interval (−π− e, π− e). The pdf of the phase noise
η can be given explicitly as follows

ρψ,e(η) =
1

2π
exp(−mψ,eα) +

√
mψ,eα

π
cos(η) exp{−mψ,eα sin2(η)}

×
(

1

2
+ erf

{√
2mψ,eα cos(η)

})
(5.28)

where

mψ,e = µψ,h−1
ψ (e) (5.29)

This pdf has a form similar to the result obtained for the CDTL [13], except
for the additional factor mψ,e. This factor has no effect on the expected value of
η which is always zero as in the CDTL case. However, the variance of η is now
dependent on ψ and e. Using (5.22), (5.26), and (5.27) we have the following ψ
symmetry

ρψ,e(η) = ρπ−ψ,e(η) (5.30)

Since the mapping hψ : φ → e is one-valued and strictly increasing in the
principal interval of φ (i.e. (−π, π)), h−1

ψ is also one-valued [76]. Hence there is
no ambiguity in transforming the above pdfs in terms of e (rather than φ) as
long as we consider a period of 2π. The actual expression of h−1

ψ is similar to
that of φss given in (5.33) with φss replaced by h−1

ψ (e). Figure 5.1 shows the
2-D plot of pψ,φ(ξ) for ψ = π/3 and SNR = 10 dB and the contour plot of this
pdf as compared to that of CDTL. Figure 5.2 shows ρψ,e(η) when e = 0 for
different values of ψ and SNR.

5.2.3 Phase Estimation and Cramer-Rao Bounds

Since the random phase ξ at the output of the PED gives the deterministic
phase e plus a phase noise as in (5.27), it can be used as a phase estimator ê.
As η = ξ − e has zero expected value for all ψ and φ, this estimator is unbiased
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and therefore its variance var(ê) is lower-bounded by the Cramer-Rao bound
[75], which is given in this case by

var(ê) = E(ξ − e)2

≥ 1

E

⎧⎨
⎩
[

∂ ln{pψ,h−1
ψ (e)(ξ)}

∂e

]2
⎫⎬
⎭

=
1∫ π−e

−π−e

[
∂ ln{pψ,h−1

ψ (e)(ξ)}
∂e

]2

pψ,h−1
ψ (e)(ξ) dξ

= CRψ(e) (5.31)

where E is the expectation functional. Since the mapping h−1
ψ is one-valued in

the principal interval as shown in the previous subsection, there is no ambiguity
in evaluating the above integral as long as we consider a period of 2π.

Numerical calculations showed that the variance of ξ is approximately iden-
tical with the Cramer-Rao (CR) bound for reasonable values of SNR. Hence we
will use CR bounds for the purpose of performance assessment and comparison.

It is evident from (5.31) that the CR bound is dependent on ψ = ψo/W ,
e, and SNR. Hence in TDTL case we expect ranges of CR bounds rather than
single CR bound for CDTL. For every value of ψ, CR bound can go below the
CDTL case for some values of e. However, for every ψ, the performance is
measured by considering all the range of CR bounds for all possible e. In this
case we consider the least upper bound {CRψ(e) | − π < e ≤ π}. Therefore
the (ideal) CDTL outperforms TDTL in the presence of noise in all cases. As ψ
approaches π/2, the range of CR bounds approach the (ideal) CDTL Cramer-
Rao bound. Hence the difference in performance is less evident as ψ approaches
π/2.

It follows that for the best possible performance in the presence of noise we
should choose the time-delay τ such that we keep ψ = ωτ as near as possible to
π/2 throughout the expected range of ω which is supposed to be fit inside the
locking range of TDTL for some value of ψo = ωoτ (that decides the value of ωo)
and a low value of K1. The natural choice in this case is {(ω1 +ω2)/2}τ = π/2.

Figure 5.3 shows the ranges of CR bounds for different values of ψ = ψo/W
and SNR. It is apparent that the range of the CR bounds approaches the CDTL
bound as ψ approaches π/2. According to the above performance measure, the
(ideal) CDTL outperforms TDTL in the presence of noise in all cases when the
variance is considered, while the performance is similar regarding the expected
value of the phase error. However, the difference in performance is less evident
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Figure 5.1: Above: the probability density function of the phase random variable
ξ at the output of the phase error detector (PED) of TDTL, pψ,φ(ξ), for ψ = π/3
and SNR = 10 dB. Note that φ and e = h[φ] are the deterministic phase errors at
the input and the output of the PED, respectively. Below: contour plot of the above
pψ,φ(ξ) at the level of 0.5 for one period in the (e, ξ) plane (solid line) as compared to
the that of CDTL (dashed line). Dotted line is the ξ = e line. As SNR increases, the
solid contour plot becomes two parallel lines as in the CDTL case.

as ψ approaches π/2. Note that this comparison is built on considering an ideal
Hilbert transformer in CDTL, without taking into account the approximations
and other practical problems associated with the implementation of the Hilbert
transformer that are definitely reflected on the performance of the practical
CDTL.
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Figure 5.2: The probability density function ρψ,e(η) of the phase noise η at the output
of the phase error detector (PED) of TDTL when e = h[φ] = 0. Above: ρψ,e(η) for
ψ = π/3 and different values of SNR. Below: ρψ,e(η) for SNR = 10 dB and different
values of ψ. The expected value of η is always zero, but the variance is dependent on
ψ and e. Similarity between curves is due to the ψ symmetry of ρψ,e(η).

5.2.4 Statistical Behavior of the TDTL in Gaussian Noise

In this subsection we study the steady-state pdf, expectation and variance of
the modulo (2π) phase error at the input and the output of the phase error
detector (PED) for the first and second-order TDTLs.
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Figure 5.3: Ranges of the Cramer-Rao bounds of the phase estimator ξ at the output
of the phase error detector of TDTL for ψ = π/3 & 2π/3 (the area between dashed
lines), and ψ = 3π/7 & 4π/7 (the area between dotted lines). The range is found
numerically for each ψ by calculating the CR bounds for the two extreme values of
mψ,e in the principal interval −π < e ≤ π. Similarity in the CR bounds between ψ
and π − ψ is due to the ψ symmetry of the phase pdf. The solid line represents the
CR bound of the (ideal) CDTL phase estimator, which is independent of the output
phase true value e. As ψ approaches π/2, the range of the CR bounds approaches the
CDTL case.

A. First-Order TDTL

(i) Steady-State PDFs of the PED Input and Output Phase Errors:

Since the two noise processes {n(k)} and {n′
(k)} discussed in Subsection

(5.2.1) are independent, it follows that there effect on the phase would result in
noise samples {η(k)} that are independent for different sampling instants k.

The system equation of the first-order TDTL in the presence of noise can
be obtained from (3.16) and (5.27) as follows

φ(k + 1) = φ(k) − K
′
1hψ[φ(k)] + Λo − K

′
1η(k) (5.32)

where φ(k) is the phase error at the input of the phase error detector (PED)
and hψ(φ(k)) = e(k) is the phase error at the output of the PED. Following the
same analysis as in [13] and [43] we reach at the following Chapman-Kolmogorov
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iterative equation

pψ,k+1(φ|φo) =

∫ ∞

−∞
qψ,k(φ|u)pψ,k(u|φo)du (5.33)

where φo = φ(0), pψ,k(φ|φo) is the pdf of φ(k + 1) given φo, and qk(φ|u) is the
pdf of φ(k + 1) given φ(k) = u, which can be given in the case of TDTL by

qψ,k(φ|u) =
1

2πK
′
1

exp(−µψ,uα)

+
1

K
′
1

√
µψ,uα

π
cos

(
φ − ν

K
′
1

)
exp

{
−µψ,uα sin2

(
φ − ν

K
′
1

)}

×
(

1

2
+ erf

{√
2µψ,uα cos

(
φ − ν

K
′
1

)})
(5.34)

where ν = u−K
′
1hψ[u]+Λo and the range of φ is the interval (u+Λo−K

′
1π, u+

Λo + K
′
1π).

The above iteration can be solved numerically by the Weinberg-Liu method
explained in [13] and [43] to get the pdf of the steady-state phase error at the
input of the PED, pψ(φ).

The steady-state pdf of the phase error at the output of the PED, P(e) can
be given by

Pψ(e) = pψ

(
h−1

ψ (e)
)
|dφ/de| (5.35)

where e = hψ(φ). From the above analysis we can deduce that the steady-
state input and output phase error pdfs, pψ(φ) and Pψ(e), are dependent on
Λo = 2π(1 − W )/W , ψ = ψo/W , K

′
1 = K1/W , and SNR. The CDTL phase

error pdf was dependent on Λo, K
′
1, and SNR only [13].

(ii) Steady-State Expectation of the PED Input and Output Phase Errors:

In the steady-state we have E(φ(k + 1)) = E(φ(k)) at the input of the phase
error detector (PED). Also we have E(e(k + 1)) = E(e(k)) at the PED output.
It is worth noting that the steady-state phase errors φss and ess are random
variables in the presence of noise. Taking the expectation E of both sides of
(5.32) under steady-state condition and solving for E(φss) we have

E(ess) = E(hψ[φss]) = {Λo − K
′
1E(η)}/K ′

1 (5.36)

where ess is the steady-state output of the PED. Since ρψ,φ(η) is symmetric
about zero, we have E(η) = 0, hence we obtain

E(ess) = Λo/K
′
1 (5.37)
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which is the same as the noise-free expression of ess given by (3.33). No ad-
ditional condition in the presence of noise is implied by the above equation
on λ = Λo/K

′
1. Hence only the noise-free condition on λ [given in (3.21)] is

effective.
It is not straightforward to prove that the expectation functional E and the

function hψ can be interchanged. However, according to the TDTL structure, a
steady-state condition at the input of the PED implies a steady-state condition
at the output of the PED. Therefore, the steady-state phase error at the output
of the PED, E(ess), should be in the following form

E(ess) = hψ[E(φss)] (5.38)

Using (3.14), (5.37), and (5.38) we obtain the following expression for E(φss)
by manipulations similar to those used in obtaining φss in Section (3.3.1-C)

E(φss) =

{
α β sin(λ) ≥ 0

f [α + π] otherwise.
(5.39)

where λ = Λo/K
′
1, α and β are defined in (3.23) and (3.25). This is the same

as the noise-free expression of φss given by (3.33).
Hence in additive Gaussian noise, the first-order TDTL does not lose track-

ing of the input phase since the expected value of the phase error equals its
deterministic value.

(iii) Steady-State Variance of the PED Input and Output Phase Errors:

Unlike CDTL, the variance of the steady-state input and output phase er-
rors, φss and ess, cannot be given in closed-form expressions in terms of E(η2)
and K

′
1. However, it can be obtained numerically from the steady-state pdfs

pψ(φ) and Pψ(e) obtained in Subsection (5.2.4 - A (i)) above. For all values of
ψ, the input variance and the output variance are decreasing functions of SNR.
They are functions of ψ, K

′
1, and SNR. Numerical calculations have shown that,

as in the case of CDTL, Λo only affects the expectation and has no effect on
the variance. Also numerical calculations have shown that, for any ψ and SNR,
the variance of the steady-state input and output phase errors is always posi-
tive inside the noise-free range of the effective parameters Λo and K

′
1. Hence

no additional conditions are implied by the variance of the phase errors in the
presence of noise.

Figure 5.4 shows the variance of the steady-state phase error at the output
of the PED, var(ess), of the first-order TDTL with ψ = π/3 and ψ = 2π/5 as
compared to that of CDTL for the same parameters Λo = 0 and K

′
1 = 0.7 and 1.

As ψ approaches π/2, TDTL variance approaches that of CDTL. Both CDTL
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and TDTL has E(ess) exactly at the noise-free value of ess, which is Λo/K
′
1,

for all values of the parameters ψ, Λo and K
′
1. Note that the curves related to

ψ = 2π/3 and ψ = 3π/5 are the same as the curves related to ψ = π/3 and
ψ = 2π/5, respectively, due to the ψ symmetry of the phase pdf as given in
(5.30).

B. Second-Order TDTL

We now discuss briefly the behavior of the second-order TDTL in noise since
it can be obtained by analysis similar to that of the first-order TDTL discussed
earlier.

In the presence of noise the system equation of the second-order TDTL can
be obtained using (3.13), (3.35), and (5.27) as follows

φ(k + 2) = 2φ(k + 1) − φ(k) − rK
′
1{h[φ(k + 1)] + η(k + 1)}
+ K

′
1{h[φ(k)] + η(k)} (5.40)

Applying analysis similar to that in Subsection (5.2.4-A) above, we can
obtain the steady-state pdf of the phase error at the input and the output of
the phase error detector (PED). Taking the steady-state expectation of both
sides of the above equation and noting that E(η) = 0 at any sampling instant
k, we obtain the expected value of the phase error at the output of the PED as
follows

E(ess) = 0 (5.41)
which is the same as the noise-free value of ess. By a reasoning similar to that
in the previous Subsection, we obtain the expected value of the phase error at
the input of the PED as follows

E(φss) = 0 (5.42)

which is also the same as the noise-free value of φss. As in the case of the
first-order TDTL, the variance of the steady-state phase errors φss and ess can
be obtained numerically. It is now dependent on ψ, K

′
1, r, and SNR. Numerical

calculations have shown that the variance is not affected by Λo and decreases as
SNR increases or K

′
1 decreases. Also it decreases as r decreases. The variance

is positive for all values of the parameters in the noise-free locking range, hence
no additional conditions are implied on the second-order TDTL in the presence
of Gaussian noise.

5.3 Conclusions
In this chapter we have analyzed the performance of the time-delay digital tan-
lock loop (TDTL) in the presence of additive Gaussian noise. The conventional
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Figure 5.4: Variance of the steady-state phase error, ess, at the output of the phase
error detector of the first-order TDTL with ψ = π/3 and ψ = 2π/5 as compared to
that of CDTL for the same parameters Λo = 0 and K

′
1 = 0.7 and 1. Note that Λo

decides the expected value of ess and has no effect on the variance. As ψ approaches
π/2, TDTL variance approaches that of CDTL. Both CDTL and TDTL has E(ess)
exactly at the noise-free value of ess, which is Λo/K

′
1. Note that the curves related to

ψ = 2π/3 and ψ = 3π/5 are the same as the curves related to ψ = π/3 and ψ = 2π/5,
respectively, due to the ψ symmetry of the phase pdf.

digital tanlock loop (CDTL) introduced significant advantages over other sinu-
soidal DPLLs, except for the complexity of the loop, and TDTL has the same
merits with a reduced complexity. We have shown in Chapter 3 that although
TDTL has a reduced structure as compared to the CDTL, it has a performance
comparable to that of CDTL under noise-free conditions. In this chapter we
have shown that the performance of TDTL in the presence of additive Gaussian
noise is also successful and comparable to that of CDTL, especially under careful
choice of the circuit parameters. Under the steady-state condition of operation,
the first and second-order TDTLs have expected values of the phase error at
the input and the output of the phase error detector (PED) exactly the same as
their noise-free values, while the variance of the phase error is a decreasing func-
tion of the signal-to-noise ratio (SNR) and the loop parameter K

′
1 (in addition

to r for the second-order TDTL). The variance also decreases and approaches
CDTL case as the phase shift ψ (introduced by the time-delay) approaches π/2
from both sides. Hence TDTL does not lose tracking of the input phase in
additive Gaussian noise in all cases. However, it is better in TDTL design to
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choose a time-delay τ that gives a phase shift ψ = ωτ as near to π/2 as possi-
ble during the expected range of the input frequency ω. No change in TDTL
locking ranges is implied by the presence of Gaussian noise.



Chapter 6

Architectures for Improved
Performance

6.1 Introduction

This chapter presents the simulation results of the conventional first-order and
second-order TDTLs. The simulations show the behavior of both loops as they
get subjected to various frequency disturbances. It also shows a variety of mod-
ified first-order TDTL architectures that are designed to enhance the perfor-
mance of the conventional loop. The performance of the modified architectures
is compared with that of the conventional first-order loop through a study of the
transient responses and phase plane plots as the loops get subjected to large
frequency steps. Similarly, modified second-order architectures are discussed
and their performance is compared with the conventional second-order TDTL.
Finally a variable order TDTL architecture that combines the desirable features
of the first-order and the second-order is presented and its behavior is studied
through simulation.

6.2 Simulation Results of First-Order TDTL

The first-order loop was tested by subjecting it to negative as well as positive
input frequency steps. A negative step results in an input signal with frequency
lower than that of the free running DCO, while a positive step has the opposite
effect. An example of a negative frequency step is shown in Figure 6.1. In
this case, the time delay and free running frequency of the DCO have been
arranged so that the initial phase lag parameter ψo = ωoτ = π/2, and the gain
has been chosen as K1 = G1ωo = 1.5. When an input with a frequency ratio
W = ωo/ωi = 1.6 is applied to the loop (i.e., an input frequency which is 1.6

85
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Figure 6.1: Top: Negative step input. Bottom: Loop response to the negative
frequency step.

times less than the free running frequency), the loop converges to a steady-
state of phase error since the input is within its locking range. This scenario is
demonstrated in Figure 6.1.

Initially, an input of the same frequency as ωo is applied, and it is clear that
the phase error converges to zero before the negative frequency step occurs as
shown in the bottom graph in Figure 6.1. Once the frequency change is applied,
the phase error assumes a negative value owing to the fact that the input is of
a less frequency. The TDTL then converges to a steady state phase error, i.e.,
the loop is in a lock-state and the DCO is tracking the input frequency. The
convergence to a non-zero steady state phase error is a unique property of the
first order loop. This is caused by the proportional filter, which is incapable of
providing sufficient error signal to drive the phase error to zero.

The sampling process of the DCO is shown in Figure 6.2, where it is clear
that the DCO locks to positive-going zero crossing before applying the frequency
step, and varies its period until it matches the new input frequency after the
frequency change is applied. The effect of converging to a non-zero phase error is
evident from the phase offset positive-going zero crossings and the DCO pulses.

The first-order loop has also been tested for positive frequency steps, i.e.,
for input signals with frequency higher than ωo, and an example is shown in
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Figure 6.2: Sampling process of the first-order TDTL (negative step).

Figure 6.3. The time delay τ and the free running frequency ωo have been
arranged such that ψo = π/3, and the gain has been chosen as K1 = G1ωo = 1.3.
A frequency step with W = ωo/ωi = 0.5 (i.e., twice ωo) is applied to the loop,
and as shown in Figure 6.3, the phase error reaches a positive steady state value
indicating that the loop is in-lock with the input frequency.

The above results demonstrate that the TDTL has fast acquisition as it
is capable of locking to an input signal within a few samples. It also has a
wide locking range which enables it to deal with large frequency steps as show
in Figures 6.1 and 6.3 above. However, due to the nonlinear characteristics
of the TDTL optimality cannot be achieved in terms of the loop parameters.
In other words, the advantageous performance characteristics, such as the fast
acquisition and the wide locking range, are dependent on a set of parameters
such as the loop gain K1 and the nominal phase lag ψo. Tuning these parameters
however, is based on trial and error and there is always a trade-off between the
wide locking range and the fast acquisition characteristics [82]. The next section
presents different modifications of the loop that enable the control of the loop
gain and phase lag and hence improve its performance.

The nonzero steady state phase error of the first order TDTL, as shown in
Figures 6.1 and 6.3, is due to the loop filter which is only a gain block in this
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Figure 6.3: Top: Positive step input. Bottom: Loop response to the positive fre-
quency step.

case. This disadvantage can be eliminated by increasing the order of the loop
to second order. However, this will be at the expense of a reduction in the loop
locking range. Therefore, depending on the application in which the loop is
to be used the appropriate order of the loop should be selected. For example,
the nonzero steady state phase error of the first order TDTL would indicates
the existence of a phase offset between the input and the recovered carrier,
hence violating the conditions of coherent demodulation [3, 80] and effectively
precluding its use in such applications.

6.3 Improved First-Order TDTL Architectures
This section discusses modified first-order TDTL architectures that overcome
some of the loop limitations and improve it’s performance in terms of speed and
locking range width. These modifications are based on the use of finite-state
machines to control particular loop parameters and hence achieve the desired
performance. The proposed architectures and their associated simulation results
are described in the subsections below.



ARCHITECTURES FOR IMPROVED PERFORMANCE 89

Phase
Detector

arctan (X/Y)

Finite State
Machine
(FSM)

Digital
Filter

DCO

Sampler 1

Sampler 2

Delay 2

y(k)

x(k)

y(t)

Delay 1
d(k)x1(t)

x2(t)

Figure 6.4: Variable delay TDTL architecture.

6.3.1 Delay Switching Architecture

Since the value of the time delay is of great influence on the convergence be-
havior of the loop. The conflicting requirements of fast acquisition and wide
locking range necessitate the inclusion of more than one time delay [82, 83].
The structure of the variable delay TDTL (VD-TDTL) is shown in Figure 6.4.
It is clear that it resembles the TDTL discussed earlier; however, the time delay
unit has been exchanged with a dual delay structure, which is controlled by
a finite state machine (FSM) block. The time delay units generate two phase
shifted versions of the input signal, which are given by

x1(t) = A sin [ωot + θ(t) − ψ1] (6.1)

x2(t) = A sin [ωot + θ(t) − ψ2] (6.2)

The control signal d(k), which is the output of the FSM, decides which of
the signals given in (6.1) and (6.2) are to be passed to Sampler 1 in order to
produce the following discrete time signal

x(k) = A sin [ωot(k) + θ(k) − ψi] (6.3)

where i is a subscript indicating the time delay block. The signal in (6.3) can
be redefined in terms of the phase error as

x(k) = A sin [φ(k)] (6.4)
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and therefore, the error signal can be re-written as

e(k) = f

[
Tan−1

(
sin [φ(k)]

sin [φ(k) + ψi]

)]
(6.5)

where Tan−1 is the 4-quad arctan. Since the proposed variable delay TDTL
is implemented as a first-order loop, the system difference equation will be the
same as that given in (3.16), and consequently the locking range can be found
by solving the following inequality:

2 |1 − W | < K1 < 2W
sin2(α) + sin2(α + ψoi)

sin(ψoi)
(6.6)

where ψoi is the nominal phase shift.
In the proposed system, the time-delay units have been arranged so that

ψo1 = π/2 and ψo2 = π/3, which will produce the locking range curves shown
in Figure 6.5. This will ensure a symmetric tracking range from W = 0.5 up
to W = 1.5. Hence, the system will exploit the wide range and fast acquisition
characteristics of ψo1 in the area where W > 1, and of ψo2 in the area where
W < 1. The loop gain K1 = 1.13 has been selected to ensure good performance
and wide locking range for both values of the time-delay.

The states of the FSM are defined by the phase error and the control signal
d(k). If the system is subjected to a frequency step causing the input signal
frequency to go higher than ωo, i.e. W < 1, and the phase error is greater than a
predefined threshold ε1 > 0, the control signal d(k) will allow the signal x2(t) to
pass to Sampler 1. If the system is subjected to a frequency step which causes
the input frequency to go lower than ωo, i.e., W > 1, the FSM will monitor the
phase error until it is below another threshold ε2 < 0, then the control signal
d(k) will allow the signal x1(t) to pass to Sampler 1. The parameters ε1 and ε2

allow fine-tuning of the FSM behavior for any intended region of operation of
the loop in order to ensure fast acquisition behavior.

Figure 6.6-a shows the transient response of the single delay loop with ψo1 =
π/2 and K1 = 1.13 to a frequency step with W = 0.5. Since this mode of
operation is outside the locking range of the loop, the phase error diverges
to an unstable state, thus throwing the loop in the unlocked mode. This is
also illustrated in Figure 6.6-b, which shows the phase plane plot for the same
frequency step; where it is clear that the phase does not converge to a steady
state value. The result of applying the same frequency step to the same TDTL
but with ψo2 is shown in Figure 6.7-a. It can be clearly seen that the phase
error settles within a few samples. The same result can also be depicted by
examining the phase plane plot of Figure 6.7-b, which indicates the convergence
of the phase error.
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Figure 6.5: Locking range of first-order TDTL with different values of ψo, the tracking
range is the bold line (1).



92 CHAPTER 6

(a)

(b)

Figure 6.6: (a)Transient response of the single delay TDTL with ψo1 = π/2 and
K1 = 1.13 to a frequency step with W = 0.5 (b) Phase plane behavior.
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(a)

(b)

Figure 6.7: (a)Transient response of the single delay TDTL with ψo2 = π/3 and
K1 = 1.13 to a frequency step with W = 0.5 (b) Phase plane behavior.
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Figure 6.8: Transient response of the single delay TDTL with ψo2 = π/3 and K1 =
1.13 to a frequency step with W = 1.25.

Another scenario is illustrated in Figure 6.8 with a negative frequency step.
It is clear that the transient response of the single delay TDTL with ψo2 = π/3
and K1 = 1.13 to a frequency step with W = 1.25 is poor as the phase error is
not converging to a steady state value within an acceptable time. Whereas the
transient response of the same TDTL with ψo2 = π/3 for the same frequency
step, demonstrated in Figure 6.9, shows that the phase error converges to a
steady state value in two samples. The merit of using the VD-TDTL is that it
is capable of distinguishing, in both of the aforementioned situations, the delay
that yields the optimum performance. Thus, the previous graphs with steady-
state phase error are corresponding to the response of the VD-TDTL under the
same operating conditions.

6.3.2 Adaptive Gain Architecture

If the conventional TDTL is thrown out of lock due to a sudden change in
the input frequency, it will stay out of lock unless an external signal forces
the digitally controlled oscillator (DCO) back into the locking region. In order
to ensure stable operation of the TDTL, it has to keep operating within the
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Figure 6.9: Transient response of the single delay TDTL with ψo1 = π/2 and K1 =
1.13 to a frequency step with W = 1.25.
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Figure 6.10: Structure of the adaptive gain TDTL.

locking boundaries, and this can be achieved by adapting the gain in response
to out-of-range frequency signals [84]. The proposed architecture to achieve this
is shown in Figure 6.10.

The adaptive TDTL in Figure 6.10 is created by utilizing a variable gain
digital filter, which is controlled by means of an appropriate FSM. Choosing the
nominal phase lag of the loop ψo to be equal to π/2 ensures the best state of
linearity in the phase detector output. Thus, the phase error is approximately
proportional to the radian frequency of the input, and can be used as an indi-
cator of the operating point of the loop within the locking boundary shown in
Figure 6.11. The scenario given below explains the operating principles of the
adaptive gain TDTL.

Assuming that the first-order loop is initialized with a loop gain K1 of 0.5,
this has the advantage of reducing the TDTL performance degradation due to
noise, since the variance of the phase error is a decreasing function of the loop
gain K1 and the signal to noise ratio [82]. The locking range boundary indicates
that the loop can acquire the frequencies of all inputs bounded by the points A1

and A2 in Figure 6.11. However, it is very likely that the loop will be subjected
to some disturbances or large frequency steps that will throw the system out of
lock, e.g., the system will be thrown to point B or D. Normally, this will not be
recovered by the conventional TDTL and the loop will carry on in the unlocked
state.

However, the adaptive gain TDTL in Figure 6.10 senses, using the phase
error, that the operating point has been moved outside the locking boundary,
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Figure 6.11: Locking boundary of the adaptive TDTL.

and therefore the FSM updates the gain of the digital filter, thereby moving
to points C or E, which are inside the locking boundary of the system. The
overall locking range of this implementation has been extended symmetrically
from W = 0.6 to W = 1.4. The mathematical analysis of the adaptive gain
TDTL is similar to that of the original TDTL discussed earlier.

The improved loop in Figure 6.10 was tested by subjecting it to large fre-
quency steps (large phase errors) that force the system to go outside the nominal
locking range, such as points B and D, in Figure 6.11. In both test cases the
system senses the phase error through its FSM and accordingly adjusts the gain
of the digital filter in such a way that out of lock operating points B and D are
pulled to in lock points C and E respectively. The settling behavior of the loop
at points B and C is shown in Figure 6.12. The locking behavior at the same
points is also demonstrated by the phase plane plots in Figure 6.13. The plots
show that when the loop is at point C it converges into a steady state condition
within an acceptable number of samples, whereas when the loop is at point B
it stays in the unlocked condition.

When the loop is subjected to a large step in frequency causing the system
to go outside the locking range, e.g. point D in Figure 6.11, the system senses
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(a)

(b)

Figure 6.12: (a) Transient response of the system at point B. (b) Transient response
of the system at point C.
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(a)

(b)

Figure 6.13: (a) Phase plane of unsettled system at point B. (b) Phase plane of
settled system at point C.
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this error through the FSM and updates the gain of the digital filter to bring
the operating point within the locking region at point E. The settling time of
the loop at points D and E are shown in Figure 6.14, and the phase plots are
illustrated for the same operating points in Figure 6.15.

6.3.3 Combined Delay Switching and Adaptive Gain

The previously mentioned methods of TDTL enhancement offer attractive as-
pects in terms of locking range and acquisition characteristics. However, the
outcome of improvement can be increased by combing the two techniques into
the TDTL, which yields a loop with faster acquisition, wider locking range and
more resilience to frequency disturbances.

The proposed loop architecture is depicted in Figure 6.16, where as can
be seen it is a combination of the two previously mentioned architectures [85].
However, the FSM is being fed by discrete time outputs of the samplers, namely
x(k) and y(k). On the other hand, the gain of the digital filter and the active
time delay unit is controlled by the g(k) and d(k) respectively, which are the
output signals of the FSM.

Signals x1(k) and x2(k) are the same as those described by (6.1) and (6.2).
Following the same analysis, the difference equation of the system is given by

φ(k + 1) = φ(k) − ωGsh [φ(k)] + Λo (6.7)

Where Gs denotes the variable gain of the digital filter, and s is a unique code
corresponding to each state of the FSM. The locking range can be acquired by
solving the inequality given by (6.6), resulting in a locking range which is similar
to that of the conventional TDTL in Chapter 3. The operating point of the
TDTL is defined in terms of the frequency ratio W , the nominal phase shift ψoi

and the loop gain K1. Since the two latter parameters are usually predefined,
the changes in the operating point are dependent on an external parameter,
which is the frequency of the input signal; this will move the operating point
either inside or outside the locking boundary of the loop.

The resilience of the loop to frequency disturbances is increased in the adap-
tive gain and delay TDTL by introducing two extra degrees of freedom, namely
the digital filter gain Gs and the nominal phase shift Ψoi. These will be tuned
by the FSM to ensure that the loop operates within the locking range of the
loop regardless of changes in the input frequency. The time delay units have
been arranged so that ψo1 = π/2 and ψo1 = π/3, and areas of operation have
been mapped to the states of the FSM, where each state will have a unique gain
Gs and phase shift Ψoi. The system will switch between the delays according
to the frequency of the input, so that ψo1 operates in the area where W > 1,
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(a)

(b)

Figure 6.14: (a) Transient response of the system at point D. (b) Transient response
of the system at point E.
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(a)

(b)

Figure 6.15: (a) Transient response of the system at point D. (b) Transient response
of the system at point E.
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Figure 6.16: Adaptive gain and delay TDTL.

and ψo2 operates in the area where W < 1, and this is mainly due to the wide
range offered by each delay in its defined region of operation.

Therefore, the overall locking range of the proposed system will increase
and a new locking boundary can be defined as shown in Figure 6.17, which
also shows the tracking range of the system (the bold line inside the locking
boundary). It encapsulates the different possibilities of loop operation points.
It is clear that this range extends from W = 0.4 up to W = 1.65. The FSM
ensures mapping each change of frequency to its desired operating point within
the tracking range. Two main measures are provided by the FSM to counter
the effect of frequency changes, the first is to set the active time delay, and
the second is to make any necessary changes in the value of the digital filter
gain. The FSM criteria for state transition is based on the signs of the signals
x(k) and y(k), which provide meaningful information about the frequency of
the input signal.

To illustrate the improvement in the system performance that the architec-
ture in Figure 6.16 gives, a frequency step of W = 0.4 is applied to the original
TDTL in Figure 3.1 with ψo1 = π/2 and K1 = 1. This drives the loop into
the unlocked state, and the therefore the phase error will assume an unstable
behavior as illustrated in Figure 6.18. When the same frequency input is ap-
plied to the adaptive gain and delay TDTL, it yields the transient response
illustrated in Figure 6.19-a. As the figure shows, the phase error oscillates
during the first two samples, indicating an out-of-range frequency, however, the
FSM then forces the system back into the locked state, which is clearly shown as
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Figure 6.17: Unified locking range of the adaptive gain and delay TDTL.
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Figure 6.18: Transient response of the single delay TDTL with ψo1 = π/2 and K1 = 1
to a frequency step with W = 0.4.

the phase error converges to a steady state value afterwards. The phase plane
portrait shown in Figure 6.19-b also supports this result.

Another test case is conducted at the low frequency part. Figure 6.20-a
demonstrates the transient response due to a frequency step of W = 1.65, where
the loop responds rapidly and converges to a steady state phase error within
five samples, two of which are consumed by the FSM to decide on the operating
point. The phase plane portrait shown in Figure 6.20-b also demonstrates this
result.

6.3.4 Sample Sensing Adaptive Architecture

Figure 6.21 shows an improved TDTL architecture that uses an error-sensing
block to monitor the samples in the delayed path of the loop before they get
fed to the arc-tan phase detector. The error-sensing block includes an FSM
whose output G(k) is used to control the gain of the digital filter. The appro-
priate adjustment of the filter gain ensures that the loop remains in lock when
subjected to large frequency disturbances that would otherwise result in out of
lock condition. The error-sensing block has a fast response, as it does not need
to wait for the arc-tan phase detector to finish processing a sample. Overall
the new loop offers enhanced performance compared with the original TDTL
designs [105].
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(a)

(b)

Figure 6.19: (a) Transient response, adaptive gain and delay TDTL response to a
frequency step with W = 0.4. (b) Phase plane behavior.
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(a)

(b)

Figure 6.20: (a) Adaptive gain and delay TDTL transient response to a frequency
step with W = 1.65. (b) Phase plane behavior.
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Figure 6.21: Sample sensing adaptive TDTL.

Figure 6.22 depicts the locking boundary of the sample sensing adaptive
TDTL (SS-ATDTL) with ψo = π/2. In the original TDTL, if the system is
thrown out of lock due to a sudden change in the input frequency it will stay
out of lock unless an external signal forces the DCO back into the locking region.
In the case of the system shown in Figure 6.21, the error-sensing block with its
adaptive capabilities ensures that the loop stays in a locked state even if it
is subjected to large phase errors. The behaviors of the SS-ATDTL and the
original TDTL were studied assuming that the initial stable point of operation
for each loop is point A in Figure 6.22, where W = 1 and K1 = 0.5. This choice
would result in a good signal to noise ratio for the overall system.

Subjecting the conventional TDTL to frequency disturbances that drive to
say point C or D in Figure 6.22 will drive the system out of lock. However,
subjecting the SS-ATDTL to the same disturbances will make the error sensing
block generate an error signal that corresponds to a unique step value of the
input frequency, consequently the FSM adjusts the digital filter gain to a new
value Gs that forces the DCO to adjust to the new frequency before the system
goes out of lock. The same process is followed for both positive and negative
steps, that is for W < 1 and W > 1 respectively. For example, if the proposed
system gets driven by a frequency step to point C in Figure 6.22 where K1 = 0.5,
it regains stability by increasing G1 until K1 = 1 and hence move the system
to point B. Similarly, if the system is driven to point D it stabilizes by moving
to point E. As can be seen in Figure 6.22, both points B and E are within the
locking range of the loop.
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Figure 6.22: The locking range of the TDTL at ψo1 = π/2.

An example of comparing the SS-ATDTL and the original TDTL responses
to a positive frequency step is shown in Figure 6.23. In this test, the time delay
and free running frequency of the DCO have been arranged so that ψo = π/2,
and the gain of the TDTL has been chosen as K1 = 0.5, and an input frequency
step of 0.3 with W = 0.769. Initially the frequency of the input was equal to
ωo, therefore the phase error settled at zero. Then a positive frequency step
was applied to the loop, causing the phase error to jump to a positive value
indicating that the input frequency is higher than the loop frequency. The
loop then locks to the new input frequency but with a phase shift settling at
a constant positive value. Figure 6.23 shows that the SS-ATDTL locks to the
input step faster than the conventional TDTL but with a bit larger steady state
phase error value.

The phase plane plots in Figure 6.24 and the DCO sampling process shown
in Figure 6.25 confirm the above results. The figures give an indication of the
relative speed of locking. Figure 6.25 also shows the constant phase error in the
two loops, which is due to the fact the both loops are of the first order type.
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(a)

(b)

(c)

Figure 6.23: (a) Positive frequency step. (b) Original TDTL response. (c) SS-
ATDTL response.
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(a)

(b)

Figure 6.24: Phase plane plots: (a) Conventional TDTL (b) ATDTL.
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Figure 6.25: DCO Sampling process of (a) original TDTL (b) SS-ATDTL.
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Figure 6.26: Early error sensing adaptive TDTL.

6.3.5 Early Error Sensing Adaptive Architecture

This section describes an early error sensing adaptive TDTL (EES-ATDTL)
architecture. A block diagram of the EES-ATDTL is depicted in Figure 6.26.
The architecture exploits the fact that the phase shift introduced by the time
delay unit is directly proportional to the input frequency, this means that any
frequency shift that occurs at the input can be detected by calculating the phase
difference between the signals in the two arms of the TDTL [106], namely y(t)
and x(t).

To find the phase difference, the error detector uses a multiplier followed
by a low pass filter and an FSM. Under noise-free conditions, the loop accepts
a sinusoidal input y(t) having a radian frequency ω with a frequency offset
∆ω = ω − ωo from the nominal radian frequency ωo of the DCO. The input
signal is given by

y(t) = A sin[ωot + θ(t)] (6.8)

Where A is the signal amplitude and θ(t) is the phase of the incoming signal.
Assuming a frequency step at the input then

θ(t) = (ω − ωo)t + θo (6.9)
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where ω is the radian frequency of the input signal and θo is a constant. The
time delay unit introduces a constant time-delay τ in the input signal, which
causes a phase lag ψ = ωt. Therefore, the time-delayed signal can be expressed
as

x(t) = A sin[ωot + θ(t) − ψ] (6.10)

and the output of the multiplier is

m(t) = x(t) · y(t) = A2 sin[ωot + θ(t) − ψ] · sin[ωot + θ(t)]

= (A2/2)[cos(ψ) − cos(2ω0t + 2θ(t) − ψ)] (6.11)

Equation (6.11) shows that the output of the multiplier consists of two parts,
the first one is a function of only the phase difference of the two signals, and
the second term is at a frequency that is twice the signal frequency plus the
sum of the two phases.

In Figure 6.26 the low pass filter bandwidth is quite small so that it both
filters out the noise and the unwanted double frequency term. If initially no
frequency shift is applied to the input then the phase difference will be zero
(actually ψo = π/2) and consequently the dc output of the filter will also be
zero. On the other hand, when a frequency step is applied to the input, a phase
error will be generated, resulting in a nonzero dc output as a function of the
applied step as shown in Figure 6.27.

As an example, consider an input signal with initial frequency of 1 Hz. If a
step of 0.2 is applied to the input, that is a frequency shift from 1 to 1.2 Hz,
this will result in a phase shift of ψ = 1.88 rad ≡ 108o and the dc output is
cos(1.88)/2 = −0.15.

Another factor that affects the dc output is the amplitude of the input signal
(denoted as A in (6.11)) which causes the detector dc to change. Therefore,
the locking range of the EES-ATDTL is limited to a certain range of input
amplitudes within which the FSM of the loop can operate properly as illustrated
in Figure 6.27.

The proposed TDTL utilizes a variable gain block that is controlled by the
FSM. Each value of the gain corresponds to a unique state of the of FSM,
therefore

φ(k + 1) = φ(k) − K
′
ih[φ(k)] + Λo (6.12)

where K
′
i = ωGi, Gi is a gain corresponds to a state i. If Ki is defined to be

ωoGi, then K
′
i = Ki/W , with W = ωo/ω.

The operating conditions and simulation scenarios of the EES-ATDTL are
similar to those of the SS-ATDTL. Therefore, the EES-TDTL in Figure 6.26
was tested by subjecting it to different frequency steps, which in the case of
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Figure 6.27: Characteristic function of the multiplier dc output. Delineated area
shows the locking range of the loop in Figure 6.26.

the conventional TDTL can throw the system outside the locking range shown
in Figure 6.22. The results of the simulation show that the loop responds and
converges to a steady state phase error within few samples. These few samples
correspond to the time taken by the newly introduced phase error detection
circuit to respond. For example, a frequency step of -0.4 with W = 1.6, K1 = 1
and ψo1 = π/2 was applied to both the conventional and the new loop and their
responses are shown in Figure 6.28. The locking performance of both loops is
also demonstrated by the phase plane plots illustrated in Figure 6.29. The plots
show that the conventional TDTL stays in the unlocked condition, whereas the
new one converges into a steady state condition within an acceptable time.

6.4 Simulation Results of Second-Order TDTL

As was the case with the first-order TDTL, negative and positive frequency
steps were applied to the second-order loop in order to observe its response.
Figure 6.30 shows the response of the loop to a negative frequency step. The
initial phase shift ψo is arranged as π/2 and K1 is equal to unity. Referring
to the second-order locking characteristics discussed earlier, it is obvious that
the locking range is narrower and imposes restrictions on the choice of fre-
quency ratios, making the second-order loop more susceptible to inputs causing
instability.
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Figure 6.28: (a) The conventional TDTL response to a frequency step with W = 1.6
(b) The proposed TDTL response to the same frequency step.
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Figure 6.29: (a) Phase plane of the conventional TDTL for a W = 1.6 (b) Phase
plane of the proposed system for W=1.6.
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Figure 6.30: Tracking a negative frequency step with the second-order TDTL: (Top)
input frequency step (Bottom) loop phase error.

The effect of applying an input signal with W = 1.67 to the loop, and the
phase error response are shown in Figure 6.30. The most prevalent difference
compared with the first-order loop is that the phase error converges to zero,
i.e., the loop tracks both the frequency and the phase of the input signal. This
fact is also confirmed in Figure 6.31, where it is clear the DCO samples are
converging towards the positive going zero crossings of the input waveform.

The same behavior also applies for positive frequency steps as illustrated in
Figure 6.32, in which a positive frequency step is applied to the second-order
loop with the same set of parameters used in the negative step case. The phase
error in this case converges to zero, causing the DCO to track the frequency
and the phase of the input signal.
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Figure 6.31: Sampling process of the second-order TDTL (negative step).
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Figure 6.32: Tracking a positive frequency step with the second-order TDTL(Top)
input frequency step (Bottom) loop phase error.
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6.5 Improved Second-Order TDTL Architectures

This section discusses modified second-order TDTL architectures that improve
the performance of the loop in terms of speed and locking range width. As in
the case of the first-order, these modifications are based on the use of finite-state
machines to control particular loop parameters and hence achieve the desired
performance. The proposed architectures and their associated simulation results
are described in the subsections below.

6.5.1 Adaptive Filter Coefficients Second-Order TDTL

In the fixed bandwidth TDTL, if the system is thrown out of lock due to a
sudden change in the input frequency it will stay out of lock unless an external
signal forces the digital controlled oscillator (DCO) back into the locking region.
The TDTL can retain the lock state if it was always kept within the locking
boundaries, and this can be achieved by adapting the coefficients of the filter
in response to frequency steps, which will cause large errors.

The Adaptive Filter Coefficients Second-Order TDTL, shown in Figure 6.33,
is created by utilizing digital filter with its coefficients controlled by an appro-
priate FSM. The FSM states are defined by the input phase error signal e(k)
and the output control signals d(k) and g(k). The phase error serves as an
indicator of the operating point of the TDTL, therefore, the FSM can decide on
the value of the filter coefficients G1 and G2 which will keep the loop inside its
locking boundary. Since the system can acquire frequency steps such as point
A in Figure 6.34, that is resulted from an input signal frequency with lower
frequency than the DCO free running frequency ωo, i.e., W > 1, the FSM keep
the filter coefficients the same and does not alter them. When the system is
subjected to a frequency step that causes the input signal frequency to go higher
than ωo, i.e., W < 1 such as point C in Figure 6.34, the FSM will update the
control signals d(k) and g(k) in order to choose the appropriate values of G1

and G2 that ensure operating within the locking boundary of the loop.
The system in Figure 6.33 was tested by subjecting it to a step input change

in frequency that pushes the loop to point C in Figure 6.34, where W = 0.75
and K1 = 1, and comparing its behavior with that of the conventional second-
order TDTL. The conventional loop goes into unlocked state and does not
recover. However, the modified architecture in Figure 6.33 senses the error
through its FSM and accordingly changes the digital filter coefficients so that
the operating point is pushed to point I, which is within the locking boundary
of the second order loop. The settling behaviors of the conventional loop as well
as the adaptive filter coefficients second-order loop to the above step frequency
input are illustrated by the transient responses in Figure 6.35 and the phase
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Figure 6.33: Adaptive filter coefficients second-order TDTL Architecture.

Figure 6.34: Locking range of adaptive gain second-order TDTL.
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plane plots in Figure 6.36. Both figures show that when the loop is at point
I, it converges into a steady state condition, whereas, when it is at point C, it
stays in the unlock condition.

6.5.2 Adaptive Loop Gain Second-Order TDTL

The Adaptive Loop Gain Second-Order TDTL shown in Figure 6.37 offers wider
locking range than the conventional second-order TDTL. The adaptive loop is
designed to operate at the nominal point N, where K1 = 1 and W = 1, shown
in Figure 6.38 [107]. As the frequency changes around the carrier, i.e., 1 < W
or W > 1, the loop is maintained in lock by the FSM block by changing the
DCO frequency and the loop filter coefficients in order to keep K1 = 1.

The FSM block has two inputs, e(k) and y(k). The criterion for state tran-
sitions is based on the magnitude of e(k) and the sign of y(k). The outputs of
the FSM are the control signals d(k) and g(k), where d(k) decides the operating
frequency of the DCO and g(k) decides the values of the filter coefficients that
keeps the loop gain K1 = 1.

The Adaptive Loop Gain Second-Order TDTL was evaluated by subjecting
it to different frequency steps. The extensive results produced indicate that the
adaptive TDTL has an improved locking performance when compared to the
conventional TDTL. This can be illustrated by applying a frequency step that
takes the loop to a point B of Figure 6.38, where W = 0.58 and K1 = 1. This
frequency step will drove the conventional Second Order TDTL out of lock as
shown by the transient response and the phase plane Figure 6.39.

The locking performance of the adaptive loop gain system for the same fre-
quency step is shown in the phase plane plot shown in Figure 6.40. It can be
seen that, while the system in Figure 6.37 manages to settle through its adapta-
tion mechanism within acceptable time when applying the same frequency step
to it, the conventional second order TDTL failed to do so because of its limited
locking range.

6.6 A Variable Order TDTL Architecture

The Variable Order TDTL, shown in Figure 6.41, enhances the performance of
the original loop by utilizing the wide bandwidth of the first order loop and the
high signal to noise ratio with zero steady state phase error of the second order
loop. This is achieved by varying the order of the digital filter block within the
TDTL and hence changing the overall order of the loop in order to maintain
acquisition status.
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(a)

(b)

Figure 6.35: Transient response of (a) Conventional second-order TDTL (b) Adaptive
filter coefficients second-order TDTL.
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(a)

(b)

Figure 6.36: Phase plane plots of (a) Conventional second-order TDTL (b) Adaptive
filter coefficients second-order TDTL.
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Figure 6.37: Adaptive loop gain second-order TDTL architecture.
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Figure 6.38: Locking range of adaptive second-order TDTL.
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(a)

(b)

Figure 6.39: (a) Conventional second-order TDTL (a) Transient response (b) Phase
plane.
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Figure 6.40: Phase plane of the adaptive loop gain second-order TDTL.
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The loop in Figure 6.41 is similar to the conventional TDTL structure except
for the filter bank and the use of the FSM block. The FSM decides on the filter
order that is to be used in order to provide the best achievable locking on the
input signal according to the introduced frequency disturbances. The system is
designed to operate at point N of Figure 6.42, where K1 = 1 and W = 1, with
the second-order loop as a default order due to its zero steady state phase error
and high SNR.

Due to its narrow bandwidth, the second order TDTL is more susceptible to
inputs with higher frequency than the DCO free running frequency, which will
cause more instability than the first order loop. The loop architecture in Figure
6.41 combines both the first-order and second-order loops to get a more reliable
system with zero steady state error and high SNR when the frequency step is
within the locking range of the second order TDTL and a stable system with a
small steady state error when it is outside the locking range of the second order
loop.

The FSM in Figure 6.41 senses the phase error signal and switches from
second order to first order TDTL whenever the frequency step exceeds a pre-
defined positive threshold that is on the boundaries of the locking range of the
second order loop. The FSM also switches the loop back to the second order
TDTL mode when the effect of the frequency step is either omitted or reduced
to within the locking range boundaries of the second order loop. This loop
mode control mechanism of the Variable Order TDTL results in an improved
locking range compared with single mode loop as shown in Figure 6.42.
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Figure 6.42: Variable order TDTL locking range with ψo1 = π/2.

As mentioned in the previous chapter, VO-TDTL combines first- and second-
order TDTLs in order to enhance the locking performance of the loop and
improves its noise immunity to frequency disturbances. The first-order TDTL
provides fast acquisition and hence improved locking range, and the second-
order loop offers high signal to noise ratio and zero steady-state error, which
makes the DCO follow the input signal frequency very closely.

We will take K1 = 1 and assume two points, A at W > 1.5 and B at
W < 0.75. The settling behavior of the first order TDTL at those points is
shown in Figure 6.43. Point A is selected to be outside the locking range of
the first-order TDTL, therefore, the loop stays in the unlock condition. The
phase plane plot of Figure 6.44 demonstrates this. The phase plane plot of
Figure 6.45 shows the loop locking performance at point B. It shows that when
the disturbance is within the locking boundaries of the loop, it converges to a
steady state condition within acceptable time.

Testing the second-order TDTL response at the same set of points with the
same K1 and referring to the loop locking characteristics resulted in the settling
behavior an shown in Figure 6.46. The phase plane plot of Figure 6.47 shows
the loop locking performance at point A. It can be seen that the phase started
at zero and after few samples it reached to the steady state phase error value,
where it converged to zero. Since point B is outside the second order loop
locking range which resulted in the unlock condition shown in the phase plane
plot of Figure 6.48.

Due to the previously mentioned desirable features of the second order
TDTL for many communication applications, the proposed system works as a
second order TDTL until the loop is subjected to a large positive frequency step
causing the second order TDTL to go outside the locking range such as point B
with W < 0.75. The system senses this error through its FSM and switches to
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Figure 6.43: Transient response of the first-order TDTL at points A and B.

Figure 6.44: Phase plane at point A.

Figure 6.45: Phase plane at point B.
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Figure 6.46: Transient response of the second-order TDTL at points A and B.



ARCHITECTURES FOR IMPROVED PERFORMANCE 133

Figure 6.47: Phase plane at point A.

the first order loop, which brings the loop to the locking state. The system also
monitors the frequency disturbances until it is reduced to an amount that can
be handled by the second order TDTL, where the FSM switches the loop back
to second order. With reference to Figure 6.42, the transient response of the
Variable Order TDTL for a sequence of frequency steps that take the operating
point of the loop to points A and B respectively is shown in Figure 6.49. The
variable order TDTL improves the performance of the loop and provides a wide
symmetrical locking range for acquiring both positive and negative frequency
steps.

In addition to the TDTL architectures discussed in this book, a technique
that widens the locking range for both first and second order TDTLs was
reported in [112]. It achieves this through modification of the free running
sampling rate and the digital filter output.

6.7 Conclusions

In this chapter we presented the simulation results of the original TDTL and
compared them with those obtained from the improved TDTL architectures.
The objectives of the improved architectures were to enhance the overall per-
formance of both the first-order and second-order TDTL systems. The results
illustrated that the new architectures achieved the desired objectives with varied
degrees of success.

For the first-order TDTL the following improved architectures were pre-
sented: delay switching, adaptive gain, combined delay switching and adaptive
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Figure 6.48: Phase plane at point B.

Figure 6.49: Transient response of the variable order TDTL at points A and B.
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gain, sample sensing and early error sensing. The combined delay switching and
adaptive gain architecture results in the best improvement in the TDTL locking
range, while the early error sensing architecture enhances the acquisition time
of the loop.

In the case of the second-order TDTL, the adaptive filter coefficients and the
adaptive loop gain architectures were shown to improve the system performance.
The results indicate that the two architectures have comparable performance,
with the adaptive loop gain having marginally faster acquisition capabilities.

We finally presented the variable order architecture that harnessed the de-
sirable characteristics of the first-order and second-order TDTLs. The variable
order architecture achieved a wide locking ranged compared with the fixed order
loop. However, under fast switching conditions the loop performance tends to
get degraded.
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FPGA Reconfigurable TDTL

Some of the TDTL architectures that were presented earlier were implemented
on a reconfigurable field-programmable gate array (FPGA) based system. The
synthesis and subsequent implementation process required the conversion of
the loop blocks to hardware realizable circuitry. This chapter gives an overview
of reconfigurable computing systems and then presents a brief introduction to
FPGA technology, which is the main driver of reconfigurable systems. This
is followed with a detailed discussion of the process of converting the TDTL
Matlab/Simulink models to FPGA implementation and the real-time results
that were obtained.

7.1 Overview of Reconfigurable Systems

In traditional computing systems, the execution of algorithms is carried out by
two dominant methods. The first is to perform the operation in hardware via
the use of an Application Specific Integrated Circuit (ASIC). As these ASICs
are designed and well optimized to specifically perform a given computation,
they are very fast and efficient when executing the exact computation for which
they were designed. However, once fabricated these circuits cannot be altered
because they are hard-wired.

On the other hand, microprocessor based systems execute algorithms with
a high degree of flexibility. In this method, the processor performs the re-
quired computations by executing a set of instructions. The functionality of
processor-based systems can be easily changed by simply changing the software
instructions or program without making any form of alteration to the hard-
ware. However, the performance of microprocessor-based system is far below
that of an ASIC. The reason being that the processor performs computation
by completing a fetch-decode-execute cycle for each instruction; which involves

137
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reading an instruction from memory, interpreting it and then executing it. The
net result is a high execution overhead for each individual operation.

Reconfigurable computing is a paradigm for system design that is intended
to fill the gap between the hardware and software computing systems discussed
above. Its primary aim is to achieve higher performance than software, while
maintaining a higher level of flexibility than hardware. Reconfigurable com-
puting utilizes hardware modules that can be adapted at run-time to facilitate
greater flexibility without compromising performance. Reconfigurable architec-
tures can exploit fine-grain and coarse-grain parallelism available in the appli-
cation due to their adaptability. Exploiting this parallelism provides significant
performance advantages compared with conventional microprocessors. The re-
configurability of the hardware permits adaptation of the hardware for specific
computations in each application to achieve higher performance compared to
software [86, 88].

Complex functions can be mapped onto the architecture achieving higher
silicon utilization and reducing the instruction fetch and execute bottleneck.
Due to their inherent parallelism and reconfigurability, FPGAs are currently the
main building blocks of reconfigurable computing systems for a wide range of
applications [91]. The application areas of FPGA-based reconfigurable systems
include digital communications, digital signal processing, communication secu-
rity, high performance computing and many others. The next section presents
an overview of FPGA architectures.

7.2 FPGA Structure and Operation

FPGAs are general-purpose digital integrated circuits that consist of program-
mable or configurable logic blocks along with configurable interconnects between
these blocks. Depending on the implementation technology used, some FPGAs
may be programmed a single time, while others may be reprogrammed as many
times as needed. In all cases, FPGA programming is done by the user hence
the “field programmable” part of the FPGA’s name. The configurable aspect of
FPGAs is one of the main factors that differentiate them from ASICs.

The general structure of an FPGA is shown in Figure 7.1. It contains three
major types of resources: logic blocks, input/output (I/O) blocks to connect to
the chip pins, and interconnection wires and switches. The logic blocks, which
may include dedicated look-up tables (LUTs), registers, multipliers, dual port
memories, tri-state buffers, multiplexers, digital clock managers and others, are
arranged in a two-dimensional array that can be configured to implement a wide
range of arithmetic and logic functions. The interconnect wires are organized in
dedicated horizontal and vertical routing channels between rows and columns
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Figure 7.1: General structure of an FPGA.

of logic blocks. The routing channels contain wires and programmable switches
that allow the computing logic blocks and I/O resources to be linked in various
ways to form systems under the control of the device configuration bitstream.
[92, 93, 94].

FPGA performance is derived from the ability they provide to construct
highly parallel architectures for processing data. In contrast with a microproces-
sor or DSP processor, where performance is tied to the clock rate at which the
processor can run, FPGA performance is tied to the amount of parallelism that
can be brought to bear in the application algorithms. A combination of in-
creasingly high system clock rates and highly distributed memory architectures
give the system designer an ability to exploit parallelism in processing of data
streams.

All FPGAs need to be configured or programmed in order to synthesize the
required digital system. There are three major circuit technologies for config-
uring an FPGA: SRAM, antifuse, and flash. These technologies are discussed
briefly below.
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Figure 7.2: (a) Programming SRAM Cell. (b) Programmable routing connection.

Static RAM (SRAM): In SRAM-based FPGAs programmable connec-
tions are made using transmission gates, or multiplexers that are controlled by
SRAM cells. Figure 7.2 depicts an SRAM-based programmable cell [96]. The
output (Q) in Figure 7.2-a drives the input (P) of the programmable routing
connection in Figure 7.2-b. In SRAM technology devices can be configured
dynamically over and over again. This distinct property results in many advan-
tages that include: new ideas can be quickly implemented and tested, it allows
fast in-circuit reconfiguration, and an FPGA can be programmed to perform
self-test or system test as well as its main task. Furthermore, SRAM-based
FPGA are at the forefront of technology and that enables them to benefit from
the technological developments in standard SRAM manufacturing. The ma-
jor disadvantage of SRAM-based FPGAs is that they have to be reconfigured
every time the system is powered up. This requires the use of a special external
memory device, which adds to the cost and size of the overall system. Another
disadvantage is that SRAM cells are larger than antifuses and flash cells.

Antifuse: An anti-fuse resides in a high-impedance state, and can be pro-
grammed into low impedance or “fused” state. Figure 7.3 shows an antifuse de-
vice before and after programming [94]. Antifuses are one-time programmable
devices, which when “blown” create a via-connection, while when “unblown” act
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Figure 7.3: Antifuse Device (a) Before Programming (b) After Programming.

as an open circuit with very high resistance. The disadvantage of this technology
is that it is one time programmable and offers less design flexibility compared
with SRAM technology. The main advantage of antifuse-based FPGAs is that
their configuration information is non-volatile, which means they do not need
to be reconfigured on power up.

Flash: Flash memory is a form of EEPROM (electrically erasable pro-
grammable ROM) that can be rapidly erased. Flash uses a floating-point gate
structure in which a low-leakage capacitor holds voltage that controls a tran-
sistor gate. Components based on flash have a variety of architectures. Figure
7.4 shows a possible flash programmed cell [95, 108]. The main advantage of
flash-based FPGAs is that they can be reprogrammed without external storage
for reconfiguration. However, flash devices require five additional processing
steps more than SRAMs and they tend to have high static power dissipation.

The vast majority of FPGAs are based on SRAM technology due to their
flexibility and ease of reconfigurability as outlined above. The remainder of this
chapter will use SRAM-based FPGAs.

Figure 7.1 showed an abstract top-view of an FPGA. Each logic block in Fig-
ure 7.1 has a small number of inputs and one output. In most FPGAs the logic
block is a look-up table (LUT), which contains SRAM cells and multiplexers.
An n-input LUT can implement any possible n-input combinational logic func-
tion. Figure 7.5 illustrates a three-input LUT. It has eight SRAM cells because
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the truth table of a three-variable function has eight rows. Adding more inputs
allows an LUT to represent more complex functions. Most current FPGAs tend
to use 4-input LUTs as they offer an optimal balance of device utilization and
performance. The multiplexers in an LUT are normally implemented in the
form of transmission gates.

The LUT is combined with other components to form the core building block
of an FPGA. In the case of Xilinx FPGAs this is called a logic cell (LC). As
shown in Figure 7.6, an LC consists of a 4-input LUT, which can also act as
16x1 RAM or a 16-bit shift register, a multiplexer and a register. The register
can be configured to act as a flip-flop or a latch.

In the case of Xilinx FPGAs, joining two LCs results in what is called a
slice as illustrated in Figure 7.7. The LUT, multiplexer and register in each LC
have their own data inputs and outputs. However, the slice has one set of clock,
clock enable and set/reset signals that are common to both LCs.

The highest level of the hierarchy in Xilinx FPGAs is called a configurable
logic block (CLB) [96, 97]. Depending on the particular FPGA device, a CLB
consists of either two or four slices. Figure 7.8 shows a 4-slice CLB. A complete
CLB represents a single logic block of those shown in Figure 7.1. The CLB
schematic of an actual Xilinx 4000 FPGA series is shown in Figure 7.9 [96].

7.3 Xtreme DSP Development System

The Xtreme DSP Development Kit-II was the implementation platform of the
reconfigurable TDTL in this work. The development board, shown in Fig-
ure 7.10, is powered by a Virtex-II FPGA chip from Xilinx. In addition to
that, it provides dual channel high performance analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs), enabling the development of
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Figure 7.10: Xtreme DSP development board.

such applications as software defined radio, wireless networking, HDTV, video
imaging and many others [98].

The block diagram of the Xtreme DSP development board is shown in Figure
7.11, where it is clearly seen that the board is composed from three Xilinx FPGA
chips. The first is the Virtex-II XC2V3000, which has a capacity of three million
gates. This chip is called the Main User FPGA, since it is used to implement
the bitstreams developed by the user. The second FPGA chips is the Virtex-
II XC2V80, which is configured by the user for the purposes of clocking and
I/O management. The third FPGA is the Spartan-II interface FPGA, which
is preconfigured for the purpose of communication with the PC using the PCI
bus or the USB [98].

The Xilinx System Generator serves as the software development platform
of the reconfigurable TDTL system. It consists of a MATLAB/ Simulink library
called the Xilinx Blockset, and software to translate a Simulink model into a
hardware realization of the model.

The System Generator maps system parameters defined in Simulink (e.g., as
mask variables in Xilinx Blockset blocks), into entities and architectures, ports,
signals, and attributes in a hardware realization. In addition to that, System
Generator automatically produces command files for FPGA synthesis, hardware
description language (HDL) simulation, and implementation tools, so that the
user can work entirely in graphical environments in going from system speci-
fication to hardware realization [99].
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Figure 7.11: Xtreme DSP block diagram.
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The Xilinx Blockset is accessible in the Simulink library browser, and ele-
ments can be freely combined with other Simulink elements. Only those sub-
systems denoted as Xilinx black boxes, and blocks and subsystems consisting
of blocks from the Xilinx Blockset are translated by System Generator into a
hardware realization.

The generation process is controlled from the System Generator block found
in the Xilinx Blockset Basic Elements library. The System Generator parame-
terization graphical user interface (GUI) allows the user to choose the target
FPGA device, target system clock period, and other implementation options.
The System Generator translates the Simulink model into a hardware real-
ization by mapping Xilinx Blockset elements into Intellectual Property (IP)
library modules, inferring control signals and circuitry from system parameters
(e.g., sample periods), and converting the Simulink hierarchy into a hierarchical
VHDL netlist [98, 99].

Furthermore, the System Generator creates the necessary command files to
create the IP block netlists using CORE Generator, invokes CORE Generator,
and creates project and script files for HDL simulation, synthesis, technology
mapping, placement, routing, and bit stream generation. To ensure efficient
compilation of multi-rate systems, the System Generator creates constraint files
for the physical implementation tools. The System Generator also creates an
HDL test bench for the generated realization, including test vectors computed
during Simulink simulation. A graphical representation of the design flow using
the Xilinx System Generator is shown in Figure 7.12 [99].

7.4 TDTL FPGA Implementation

The implementation of the TDTL discussed in Section 3.2 into an FPGA re-
quires the translation of the major components of the loop, which were pre-
viously modelled using MATLAB/Simulink blocks, into hardware-mappable
blocks. After that, these blocks can be simulated on a bit and cycle true basis
and then complied into a HDL script. Xilinx System Generator includes plenty
of these blocks, and these were used to modify the architecture of the TDTL
into the reconfigurable model shown in Figure 7.13.

The reconfigurable TDTL, shown in Figure 7.13, has undergone some mod-
ification in order to optimize the utilisation of resources. While the TDTL
shown in Figure 3.1 suggests using two sample and hold (S/H) or ADC circuits,
this implementation is expensive in terms of size, cost and power consumption.
Thus, the TDTL was modified to include a single ADC sampled at the system
clock rate, which is much higher than the free running frequency of the loop.
The ADC digitizes the continuous-time input signal so that further process-
ing, including the delay operation, can be carried out digitally. In addition to
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Figure 7.13: Reconfigurable FPGA-based TDTL implementation.

that, each S/H block can be replaced by a latch, as shown in Figure 7.13. The
latches perform the same conceptual function as that of S/H blocks in Figure
3.1; however, they are operating fully in the digital domain.

The DAC blocks are used to propagate the phase error and the output of the
DCO to the outside world, in order to observe the performance of the loop and
perform data acquisition and logging. The following subsections will explain
the major components of the reconfigurable TDTL.

7.4.1 The CORDIC Arctangent Block

The COordinate Rotational DIgital Computer (CORDIC) algorithm is an itera-
tive method of calculating trigonometric and hyperbolic functions using mainly
shift and add operations. This feature made the algorithm an attractive option
for hardware implementation. Specifically, it lends itself for the architecture of
FPGAs in applications such as digital signal processing, digital control, filtering
and matrix algebra [100].

The CORDIC algorithm is used to implement the 4-quad Tan−1(x/y) func-
tion of the phase detector, converging to angles between ±π within eleven
system clock cycles. The architecture of the CORDIC arctangent block is shown
in Figure 7.14.

The CORDIC Tan−1(x/y) algorithm is implemented in 3 steps:

Step 1: Coarse Angle Rotation. At this stage, the algorithm converges only for
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Figure 7.14: CORDIC implementation of Tan−1(x/y) function.

angles between −π/2 and π/2, so that if x < 0, the input vector is reflected to
the 1st or 3rd quadrant by making the x-coordinate non-negative.

Step 2: Fine Angle Rotation. For rectangular-to-polar conversion, the resulting
vector is rotated through progressively smaller angles, such that y goes to zero.
In the ith stage, the angular rotation is by either ±arctan(1/2i), depending on
whether or not its input y is less than or greater than zero.

Step 3: Angle Correction. If there was a reflection applied in Step 1, this step
applies the appropriate angle correction by subtracting it from ±π [101, 102].

7.4.2 The Digital Controlled Oscillator

The architecture of the DCO is of great influence on the performance of the loop.
Usually, DCOs are implemented by using modulo-m or divide-by-m counters.
These counter circuits are clocked by a high frequency source, and the output
frequency of the counter source frequency divided by the control word m. The
disadvantage of using such counter is the poor frequency resolution. Therefore,
it was not preferred as a choice of DCO implementation.

The DCO was implemented using a Direct Digital Synthesis (DDS) block,
which can be described as a frequency-controlled synthesizer of sinusoidal wave-
forms. The DDS block diagram is shown in Figure 7.15 [103]. The idea of direct
digital synthesis revolves around storing the values of a sinusoidal waveform
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Figure 7.15: Block Diagram of the DDS Block.

over a quarter of a cycle in a look-up table (LUT), which maps a certain phase
argument to produce the output waveform.

As shown in Figure 7.15, the phase increment, which can be thought of as
the digital word determining the output frequency, is received and then applied
to a phase accumulator consisting of adder A1 and register D1. The slope of
the phase accumulator is then mapped to a sinusoid by the look-up table T1.
However, the high precision output of the phase accumulator is reduced to a
low precision one which matches the input width of the look-up table. This is
performed using the quantizer Q1 and presents the slope to the address port
of a look-up table that performs the mapping from phase-space to time. The
quality of a signal formed by recalling samples of a sinusoid from a look-up table
is affected by both the phase and amplitude quantization of the process. The
length and width of the look-up table affect the signal’s phase angle resolution
and the signal’s amplitude resolution respectively [103].

The output frequency of the DDS is a function of the system clock frequency
fclk, the number of bits Bθ(n) in the phase accumulator and the phase increment
value ∆θ. The output frequency fout can be calculated in Hertz as follows

fout =
fclk∆θ

2Bθ(n)
(7.1)

The DDS block is capable of providing fine frequency resolutions reaching up
to 0.02 Hz at fclk = 100 MHz. Another advantage of using the aforementioned
block is the regeneration of the sinusoidal input to the TDTL directly and
without the need for extra processing blocks, which is not possible with other
architectures. The DCO pulses, which trigger the latches, can be created by
squaring up the output of the DDS block. In addition to that, extra logic gates
are required to form an edge detection circuit as shown in Figure 7.16, and this
is due to the fact that the latch blocks provided by Xilinx Blockset are level
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Figure 7.16: Implementation of the DCO.

triggered. Hence, they will stay active during the high state of the DCO pulses,
unless the formers become high only during transitions.

The free running frequency of the loop fo has been set to 250 KHz, and this
requires a phase increment ∆θo of 212 , for a system clock of 65 MHz. The input
phase increment is the result of adding ∆θo with the modified output of the
digital filter c(k), therefore the output frequency of the DCO can be defined as

fout =
fclk[∆θ + c(k)]

2Bθ(n)
(7.2)

7.4.3 The CORDIC Divider

As mentioned above, the output frequency of the DCO will be updated accord-
ing to (7.2). However, this violates the condition stated in Section 3.2, which
states that the period of the DCO is to be updated at each sampling instant
according to (3.5), which is given again below

T (k) = To − c(k − 1).

Therefore, in order for the DCO to function properly, the output of the
digital filter, which will be denoted as cΛ(k) must be mapped through the
following function in order to obtain the required output c(k)

c(k) = −∆θo

(
1 +

1

cΛ(k)fo − 1

)
(7.3)
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Figure 7.17: CORDIC divider implementation.

Equation (7.3) above must be implemented in hardware in order to bridge the
output of the digital filter with the input of the DCO. The equation requires ad-
dition, multiplication and division operations. While the first two can be easily
implemented using fixed-point hardware, the third one is the most complex and
demanding in terms of hardware implementation. Several algorithms can be
used to perform non-power-of-two division, and the one used in the synthesized
system is the CORDIC divider shown in Figure 7.17.

The steps involved in the implementation of the CORDIC divider algorithm
are as follows:

Step 1: Co-ordinate Rotation. The CORDIC algorithm converges only for
positive values of x, so if x < zero, the input vector is reflected to the 1st

or 3rd quadrant by making the x-coordinate non-negative. For normalizing x
and y, y is always mapped to a non-negative value. The Divider circuit has been
designed to converge for all values of x and y, except for the most negative value.

Step 2: Normalization. The CORDIC algorithm converges only for y greater
than or equal to 2x. For x greater than y, both the inputs x and y are shifted
to the left till they have a 1 in the most significant bit (MSB). The relative shift
of y over x is recorded and passed on to the Quadrant Correct Stage.

Step 3: Linear Rotations. For ratio calculation, the resulting vector is rotated
through progressively smaller angles, such that y goes to zero. In the i -th
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Figure 7.18: Hardware Implementation of Equation (7.3).

stage, the rotation yields ± y/x, depending on whether the input y is less than
or greater than zero.

Step 4: Co-ordinate Correction. If the axis was rotated Step 1 and a relative
shift was applied to y over x, this step assigns the appropriate sign to the
resulting ratio and multiplies it with 2 (relative shift of y/x) [101, 102]. This operation
is expensive in terms of complexity and time, since it consumes 34 system clocks,
and therefore it imposes restrictions on the free running frequency of the TDTL.
The hardware realization of (7.3) is shown in Figure 7.18.

7.5 Real-Time TDTL Results

The following sub-sections present some of the real-time results that were ach-
ieved following the FPGA conversion and subsequent implementation of some of
the TDTL architectures that were discussed in Chapter 7. The results include
those of the first-order TDTL, second-order TDTL and the sample-sensing adap-
tive TDTL. The performance of the reconfigurable TDTL implemented in this
section are compared with those obtained through simulations earlier in order to
ascertain that the overall functionality of the synthesized systems is acceptable.
Complete verification of embedded phase lock loops requires the application of
more tests as discussed in [109].
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7.5.1 First-Order TDTL

The first-order loop is designed by multiplying the output of the phase detector
with G1. The loop gain K1 has been selected as unity, therefore, G1 will be
equal to 1/2π = 0.1592. In order to induce a nominal phase shift of π/2 to the
input signal, the time-delay unit should be equal to quarter the period of fo,
namely 1 microsecond. Since the smallest delay possible is equal to the period
of the system clock (1/65 MHz), the number of delay stages required is the ratio
between the time delay and the system period, which is approximately equal
to 68 in this case. The implementation of the TDTL has consumed a total of
54,751 gates out of the total capacity of the Virtex-II, which is around 3 million
system gates.

Figure 7.19-a shows the behaviour of the phase error when the first-order
reconfigurable TDTL is subjected to a positive frequency step. In this case,
the initial input frequency was 260 KHz, and a sudden increase caused the
input frequency to rise to 280 KHz. As the figure shows, the TDTL follows
the change in frequency and settles rapidly. An interesting observation in the
captured phase error is the existence of noise-like ripples, which contradict with
the theoretical simulations shown in Figure 7.19-b, in which the phase error is
smooth in its steady state condition.

The ripples in the real-time response of Figure 7.19-a do not indicate that
the loop is out of lock. In fact they are the result of various practical factors not
taken into consideration in the simulation. These are mainly caused by quanti-
zation noise, which is related to the resolution of the ADC, the truncation and
calculation errors, since the loop is performing critical calculations in hardware
using a limited number of bits. The limited frequency resolution of the DCO
also introduces errors in calculations, and it can be stated that a ripple free out-
put requires a synthesiser with a frequency resolution that approaches minus
infinity [110].

7.5.2 Second-Order TDTL

The second-order TDTL shares the same implementation issues with the first
order loop except for the digital filter, which is implemented as a proportional
accumulative (PA) filter with the transfer function described in section 3.3.2.
The loop gain has been chosen as 1.5 with a nominal phase shift of π/2. The
hardware implementation of the PA filter is shown in Figure 7.20, and the total
gate count of the implemented second order loop was equal to 55940 gates. Due
to the existence of an accumulator in the digital filter, it is expected that the
truncation and calculation errors are also going to accumulate at each clock
cycle, causing the performance to be very sensitive to frequency changes, and
in most cases oscillatory.
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(a)

(b)

Figure 7.19: Transient response of the first-order TDTL for a frequency step from
260 KHz to 280 KHz. (a) Actual real-time response. (b) Simulated response.
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Figure 7.20: Realization of the PA loop filter.

Since the phase error of the second-order loop is always converging to zero
for inputs within its lock range, the existence of a frequency step can be read
from the phase error output by observing the existence of sudden impulses that
will slowly decay to a steady state level. This is demonstrated by the real-time
response in Figure 7.21-a, where the input frequency of the implemented TDTL
was suddenly increased from 175KHz to 205KHz. The decaying positive impulse
is obvious, so is the effect of error accumulation, where it is clear that the oscil-
lations are growing with time after the step was subjected to the loop. Figure
7.21-b depicts the theoretical response of the second-order TDTL to the same
frequency step. The error accumulation is negligible in the theoretical response
since all calculations are done using double precision arithmetic operations.

7.5.3 Sample Sensing Adaptive TDTL

The sample sensing adaptive first-order TDTL (SS-ATDTL) discussed in Chap-
ter 6 was converted for FPGA implementation as shown in Figure 7.22. The
architecture in Figure 7.22 includes a finite state machine (FSM) block. In
this work, the FSM was designed using Moore state machine approach, which
consists of mainly the next state logic, state register and output logic. The
System Generator provides different methods for implementing Moore FSM,
such as using block and distributed memory, using Black box block with VHDL
instructions or using MCode block to implement the transition function, and
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(a)

(b)

Figure 7.21: Transient response of the second-order loop for a frequency step from
175 KHz to 205 KHz. (a) Actual real-time response. (b) Simulated response.
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Figure 7.22: FPGA Implementation of sample sensing adaptive first-order TDTL.

registers to implement state variables. The last method was used to implement
the FSM as it gives more flexibility and support using Matlab instructions in
the design of the logic. Figure 7.18 shows the hardware implementation of the
FSM.

The behaviour of the SS-ATDTL shown in Figure 7.22 was studied by sub-
jecting it to various frequency steps and comparing it with that of the TDTL
in Figure 7.23. The real-time results of the FPGA-based systems to a positive
frequency step that changed from 140KHz to 156KHz are illustrated in Figure
7.24. From the figure, it can be clearly seen that SS-ATDTL settles rapidly
while the TDTL gets out of lock. This confirms the simulation results discussed
in Chapter 6.

7.6 Conclusions

This chapter presented an overview of the field of reconfigurable computing
and the FPGA technology that is used to implement such systems. It then
detailed the design flow of the Xtreme DSP system that was used to implement
reconfigurable TDTLs.

The process of implementing the TDTL on an FPGA required the transfor-
mation of the MATLAB/ Simulink model to one that is FPGA synthesizable.
Following the transformation process the first-order, second-order as well as
some of the improved architectures of each type were downloaded to the FPGA
based Xtreme DSP system and real-time results were illustrated. Comparison of
the real-time results with those obtained from MATLAB/ Simulink simulations
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Figure 7.23: FSM hardware implementation.

indicates that they are broadly in agreement. In addition to illustrating the
feasibility of implementing the TDTL on an FPGA, the above results show the
flexibility of reconfigurable systems and advantages they offer in applications
such as software defined radio.
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(a)

(b)

Figure 7.24: Positive frequency step transient response of the (a) SS-ATDTL and
(b) TDTL.



Chapter 8

Selected Applications

The previous chapters discussed in detail the structure, mathematical model
and behaviour of the TDTL. We also presented a number of architectures that
enhanced the performance of the loop and showed the process of implement-
ing the TDTL on an FPGA based reconfigurable system. Synchronization and
frequency tracking remain as the main applications of any DPLL in communi-
cations or signal processing. In addition, we further investigate in this chapter
the capability of the TDTL in demodulating angle-modulated signals in the
presence of additive Gaussian noise. Significant improvement over analog tech-
niques of nearly 20 dB is obtained [104]. This is mainly due to the to its fast
locking performance and its less sensitivity to amplitude variation. The TDTL
was also tested for real time demodulation of FSK as well as wide band FM as
will be shown in the following sections.

8.1 PM Demodulation Using TDTL

PM signals convey the information message m(t) in the phase of a sinusoidal
carrier with center frequency ωo = 2πfo such that the phase is linearly propor-
tional to the message as follows

x(t) = Ao sin[ωot + ∆pm(t) + γo] (8.1)

where ∆p is a constant called the phase sensitivity and γo is the initial phase.
For testing purposes we will consider the message to be a single-tone signal
m(t) = Am sin(ωmt) such that the PM signal will be

x(t) = Ao sin[ωot + β sin(ωmt) + γo] (8.2)

where β = Am∆p is the modulation index and γo is a constant.

165
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Figure 8.1: Characteristic function of the time-delay digital tanlock loop (TDTL)
when ψo = π/2. Solid line is for the frequency ratio W = ωo/ω = 1, dashed line for
W = 1.1, and dotted line for W = 0.9.

Now we consider the characteristic function of the TDTL h(φ), which is a
non-linear function as shown in (3.15) except in the case when ψo = π/2 and
W = ωo/ω = 1, which gives hψ(φ) = φ. If we arrange ψo = π/2, then for small
values of the phase error φ(k) (which can be ensured in case the frequency ratio
W = ωo/ω is inside the lock range), the TDTL characteristic function can still
be approximated by (8.3) and as shown in Figure 8.1

hψ(φ) ≈ φ for small φ. (8.3)

Now if we arrange the parameter K1 in (3.16) of the first-order TDTL to be
1 and the carrier frequency to be the loop center frequency ωo, then by using
equations (3.9), (3.13), (3.16), (8.1), and (8.3) it can be shown that

m(k) ≈ 1

∆p

k∑
i=0

e(k) + γo. (8.4)

Hence, a PM signal can be demodulated by adding up the PED output
samples then using a low-pass analog filter for reconstruction as shown in Figure
8.2. However, this is true only if the incoming frequency range is inside the
locking range. In Chapter 3, the locking conditions of the first-order TDTL
were given by:

2|1 − W | < K1 < 2W
sin2(α) + sin2(α + ψo/W )

sin(ψo/W )
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Figure 8.2: Block diagram of the TDTL PM-demodulator. Bold lines represent
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where

α = tan−1(ρ)

ρ =
sin(ψ)tan(ζ)

1 − cos(ψ)tan(ζ)
=

sin(ψ)

cot(ζ) − cos(ψ)

ζ = ess = f [Tan−1(
sin(φss)

sin(φss + ψ)
)] =

Λo

K
′
1

noting that ess is the steady-state output of the phase error detector and φss is
the steady-state value of the phase error process φ(k) as defined in (3.9).

As shown in Figure 8.3, for K1 = 1 the lock range can approximately be
determined from the left-hand side of the above inequality.

The instantaneous frequency of the above single-tone PM signal x(t) is given
by [65]

ωi(t) = d[φ(t)]/dt = ωo + βωm cos(ωmt) (8.5)

where the maximum and the minimum frequencies are given by ωo±βωm. Using
(8.5) and the above discussion we can find the conditions for demodulating the
single-tone PM as follows

βωm/ωo < 1/3. (8.6)

If a similar PM demodulation technique is implemented using the conven-
tional DTL, a dynamic range as in (8.6) will be obtained. It is evident that,
despite the reduced structure, TDTL has a performance similar to that of the
DTL in many aspects. The above dynamic range in TDTL and CDTL for PM
demodulation is much wider than the limit of βωm/ωo < 1/(2π + 1) ≈ 0.13
obtained for the sinusoidal DPLL in [50], [38].
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Figure 8.3: Lock range of the TDTL for ψo = π/2.

From Chapter 2, the steady state phase error at the output of the PED can
be given by:

ess = hψ(φss) = f

[
Tan−1

(
sin(φss)

sin(φss + ψ)

)]
=

Λo

K
′
1

where
|Λo/K

′
1| < π

from which the steady-state phase error φss is given by 3.33) as follows

φss =

{
α ρ sin(λ) ≥ 0

f (α + π) otherwise.
(8.7)

where
λ = Λo/K

′
1

and

ρ =
sin(ψ)

cot(λ) − cos(ψ)
=

sin(ψo/W )

cot(λ) − cos(ψo/W )

α = tan−1(ρ)

noting that tan−1(.) is the ordinary arctan function over(−π/2, π/2). From
eqs.(8.5) and the above discussion, the PED output phase in the case of tone-
PM demodulation will range between ess|max and ess|min as follows

ess

∣∣∣∣max =
Λo

K
′
1

∣∣∣∣
max

=
To

G1

[
1 − 1

1 + βωm/ωo

]
(8.8)
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ess

∣∣∣∣min =
Λo

K
′
1

∣∣∣∣
min

= − To

G1

[
1

1 − βωm/ωo

− 1

]
. (8.9)

The above results are generally true as long as the carrier frequency fo is
much higher than the message maximum frequency fm such that an approxi-
mate locking can occur. This is the case in practical PM and FM transmission
systems.

8.2 Performance in Gaussian Noise

We now consider the performance of the above PM demodulator in additive
Gaussian noise (AWGN) environment. In Chapter 4 we have shown that if the
input signal is affected by AWGN as follows:

y(t) = A sin[ωot + θ(t)] + n(t) (8.10)

where n(t) is additive Gaussian noise with zero mean and variance σ2
n, then the

output of the PED, ξ, can be expressed as follows

ξ = e + η (8.11)

where e = hψ(φ) is the deterministic output phase and η is a non-Gaussian
phase noise with zero mean. The sampling index k is removed for simplicity.
The pdf of the phase noise η was given in Chapter 4 as follows:

ρψ,e(η) =
1

2π
exp(−mψ,eα) +

√
mψ,eα

π
cos(η)

× exp[−mψ,eα sin2(η)]

×
[
1

2
+ erf{

√
2mψ,eα cos(η)}

]

where

α = A2/2σ2
n

µψ,φ =
sin(ψ)

h
′
ψ(φ)

mψ,e = µψ,h−1
ψ (e)

erf(r) =
1√
2π

∫ r

0

e−v2/2dv.
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Figure 8.4: Demodulation of a tone-modulated PM signal using the first-order TDTL
with Am = 1, Ao = 1, fo = 1 Hz, fm = 0.05 Hz, β = 0.1, γo = −0.5, and ψo = π/2.

When ψ = π/2, the above pdf reduces to:

ρo(η) =
1

2π
exp(−α) +

√
α

π
cos(η) × exp[−α sin2(η)]

×
[
1

2
+ erf{

√
2α cos(η)}

]
. (8.12)

The variance of ξ is ψ-dependent. In noisy PM demodulation, (8.4) becomes:

mo(k) ≈ 1

∆p

k∑
i=0

ξ(k) + γo

= m(k) +
1

∆p

k∑
i=0

η(k)

= m(k) + no(k) (8.13)

where

no(k) =
1

∆p

k∑
i=0

η(k). (8.14)

The output noise no(k) is the sum of several non-Gaussian random variables
with zero mean and different values of variance (ψ-dependent). The Central
Limit Theorem [74] is applicable here, which confirms that no(k) is Gaussian
with zero mean.
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Figure 8.5: Phase error process associated with the demodulation of a tone-
modulated PM signal using the first-order TDTL with Am = 1, Ao = 1, fo = 1
Hz, fm = 0.05 Hz, β = 0.1, γo = −0.5, and ψo = π/2.

8.3 Simulation Results

The above system for PM demodulation has been simulated for the following
incoming signal:

x(t) = Ao sin[ωot + β sin(ωmt) + γo] (8.15)

with Am = 1, Ao = 1, fo = 1 Hz, fm = 0.05 Hz, β = 0.1, γo = −0.5, and
ψo = π/2.

Except for a transient disturbance in case of a non-zero initial phase γo,
the TDTL can efficiently demodulate the information from the carrier as shown
in Figure 8.4 and Figure 8.5. The PED output phase error ranges between
ess|max = 0.031 and ess|min = -0.031 as per eqs.(8.8) and (8.9).

Figure 8.6 shows the time-domain performance of the above system in the
presence of AWGN for SNR = 20 dB. Figure 8.7 shows the performance of
the above system in the presence of AWGN for different values of the input
(received) signal-to-noise ratios (SNR’s) and the modulation index β. The per-
formance is measured in terms of the output SNR (SNRo) versus the input SNR
relation as compared to the case of baseband transmission where the two SNR’s
are equal. Figure 8.8 shows the performance of the above system versus analog
PM demodulation in which the output SNR is related to the input SNR (or
baseband SNR, SNRb) as follows [79]:

SNRo = β2PmSNRb. (8.16)

where Pm = pm/M2 is the message power pm normalized with respect to M2 =
[max(m(t))]2, given by 1/2 for a tone PM. It is evident that the TDTL-based
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Figure 8.6: TDTL demodulation for noisy tone PM signal with Am = 1, Ao = 1,
fo = 1 Hz, fm = 0.05 Hz, γo = −0.5 rad, ψo = π/2, and β = 0.5 and received SNR =
20 dB. Dotted curves are for the noiseless case.
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Figure 8.7: Performance of TDTL for noisy tone PM demodulation with Am = 1,
Ao = 1, fo = 1 Hz, fm = 0.05 Hz, γo = 0, ψo = π/2, and different values for β. The
dotted line labelled as SNRb is for baseband transmission.

PM demodulation outperforms analog demodulation techniques by nearly 20
dB.

8.4 FSK and FM Demodulation

This section demonstrates the results of utilizing the TDTL for the demodula-
tion of FSK and FM signals. For these applications, the first-order loop is more
suitable than the second-order one. This is due to the fact that the output
level of the phase error is preserved during frequency changes, since the loop
will always converge to a nonzero steady-state phase error. This is not the case
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Figure 8.8: Performance of TDTL demodulation versus analog demodulation for
noisy tone PM signal with Am = 1, Ao = 1, fo = 1 Hz, fm = 0.05 Hz, γo = 0,
ψo = π/2, and β = 5. The dotted line labelled as SNRb is for baseband transmission.

in the second-order loop, where each change in frequency results in a decaying
impulse at the phase error, i.e., the need for extra circuitry to determine the
level of the transmitted bit is prevalent.

Two examples of FSK demodulation application are shown in Figure 8.9 In
the first case, the modulating frequencies are chosen as 260 KHz and 280 KHz
respectively, and applied to the input of the loop with a bit rate of 13 Kbps.
Figure 8.9-a shows the output of the phase detector in response to the FSK
input, and it is clear that this output can be sent directly to decision devices
without the need for extra circuitry. This fact is also demonstrated by Figure
8.9-b, which shows the demodulated FSK bit stream of an input with a bit rate
of 9 Kbps and modulating frequencies of 225 KHz and 275 KHz.

The first-order TDTL can be also utilized for the detection of analogue angle
modulated signals. A testing scenario was depicted, where a 10 KHz sinusoidal
signal is used to frequency-modulate a carrier of 250 KHz. The FM input is
then applied to the TDTL and the base-band sinusoid is recovered from the
phase detector as shown in Figure 8.10.

8.5 Wideband FM Signal Detection
The second-order TDTL and the adaptive second-order TDTL were used in
the detection of wideband FM signals. Figure 8.11-a and Figure 8-12a show the
outputs of the two loops when FM input signal with β = 7 was applied. The
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(a)

(b)

Figure 8.9: FSK demodulation using the first-order TDTL. (a) Bit rate of 13 Kbps.
(b) Bit rate of 9 Kbps.
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Figure 8.10: FM demodulation using the first-order TDTL.
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Figure 8.11: Second-order TDTL response for wideband FM signal: (a) non-filtered
(b) filtered.

ripples were smoothed using a smoothing filter. The outputs of the two TDTL
systems after the smoothing filters are illustrated in Figure 8.11-b and Figure
8.12-b. It can be clearly seen that the adaptive second-order TDTL is much
better at detecting the applied wideband FM signal than the basic one.

8.6 Conclusions
This chapter has presented some selected applications of the TDTL. Most im-
portantly, it has been shown that the time-delay digital tanlock loop (TDTL)
is capable of demodulating PM (and hence FM) signals in additive Gaussian
noise. The basic idea was approximating the non-linear characteristic function
of the loop phase error detector (and hence the system equation) under a spe-
cific arrangement of the nominal phase-shift to be a right angle. It is shown
that the performance of the TDTL as a PM demodulator is comparable to that
of the conventional digital tan lock loop (DTL) and is nearly 20-dB better in
performance than analog PM demodulators.
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Figure 8.12: Adaptive second-order TDTL response for wideband FM signal: (a)
non-filtered (b) filtered.
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