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Preface

Any real system be it physical, biological, chemical, astronomical, electrical,
electronic, etc. operates in continuous time and is governed by differential
equations. To learn the world we are living in and so comprehend the laws
inherent to its organisms, the mathematical methods of system analysis, syn-
thesis, and design have been under development for centuries. With time,
these methods have framed what we now call the “system theory” covering
all aspects of mathematical modeling of structures comprising subsystems and
even components.

A very specific area unites electronic systems, such as navigation, position-
ing, radar, sonar, control, broadcasting, television, communications, measure-
ments, remote sensing, etc. with permanently increasing fields of applications,
such as military, space exploration, aviation, bioengineering, cartography, as-
tronomy, manufacturing, robotics, medicine, metrology, scientific, entertain-
ment, and this list is not exhausted.

In spite of a relatively short history, electronic systems have passed a way
of tremendous development starting from the early days of communication
by telephone (Elisha Gray and Graham Bell, 1870s) and radio broadcasting
(Aleksandr Popov and Guglielmo Marconi, 1890s) up to the automatic control
(1940s), chaotic systems (1970s) (mechanical chaotic system have been studied
for over 200 years), and fractals (1980s). An enormous number of papers have
been published for decades as associated with different aspects of the system
theory and applications and the number of publications intensively grows
every year.

This book introduces the reader to the deterministic theory of the
continuous-time linear and nonlinear systems assuming them to be either
time-varying or time-invariant. We do not give cross-references to the crit-
ical and widely recognized works (the list of these works is applied). Instead,
we mention short biographies of the most outstanding people contributing to
the field, whenever the name first appears in the text.

To keep the development logical and more understandable, the systems are
observed from the linear time-invariant (LTI), to linear time-varying (LTV),
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nonlinear time-invariant (NTI), and nonlinear time-varying (NTV). The main
material is supplied with the Introduction and two Chapters presenting the
qualitative and quantitative methods.

The organization of the book is illustrated by the following humorous
diagram with a personage taken from the Education Cartoons for Teachers,
by Randy Glasbergen.

The following chapters elucidate the theory of the continuous-time sys-
tems:

1. In Introduction (Chapter 1), basic principles of operation of the most typ-
ical electronic systems are first observed. The systems are then classified
in nowadays seemingly obvious and acceptable terms. Finally, basic op-
erations with signals are briefly outlined for all general types of systems:
linear and nonlinear, time-invariant and time-varying.

2. Chapter 2 addresses the quantitative methods of systems analysis. It starts
with the definitions of the system responses to test signals. The rigor-
ous methods are then observed for both linear and nonlinear systems.
The rigor is not for its own sake and not always necessary. Therefore, in
the sequel, the approximate methods are discussed for nonlinear systems.
Among these methods, the two far reaching approaches called averaging
and equivalent linearization are observed in detail. An analysis is finished
with the system norms and theory of stability.
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3. The qualitative methods are observed in Chapter 3. System presentation
in phase plane is given along with a description of phase trajectories (limit
cycles, homoclinic and heteroclinic, and attractors). Structural stability,
bifurcations, chaotic orbits, and fractals are also discussed. Finally, con-
servative and dissipative structures are presented with the methods of
their analysis.

4. Beginning with Chapter 4, the systems are analyzed systematically using
the conceptual cannons, foundations, and methods given in Chapters 1–3.
In Chapter 4, the LTI systems are examined in the time domain. Starting
with the convolution, the LTI systems are then described by the ordi-
nary differential equations (ODEs), simulated with block diagrams, and
represented in state space.

5. In Chapter 5, the LTI systems are examined in the frequency (transform)
domain. Major tools here are the Fourier transform and Laplace transform
(bilateral and unilateral) applied to earlier observed the different forms in
the time domain. Stability analysis in the frequency domain and transform
domain is also given.

6. Chapter 6 is devoted to LTV systems. In the time domain, this system is
represented with the time-varying impulse response (standard and modi-
fied) and general convolution. It is also represented with the ODEs and in
state space. In the transform domain, the tool is mostly the time-varying
frequency response. Linear periodic systems are observed and analyzed
as suggested by Floquet’s theory. Examples are taken from the frequency
transformation, parametric modulation, parametric excitation, paramet-
ric amplification, and synchronous detection.

7. NTI systems are observed and analyzed in Chapter 7. Here, a memoryless
nonlinearity is described, interpolated, and approximated. The Volterra
and Wiener approaches are applied to memory systems both in the time
and frequency domains. As applications, the Hammerstein and Wiener
models are considered. Systems are also represented approximately with
the describing function method. Description by the ODEs is supported
with examples of nonlinear piezoelectric filter, harmonic oscillator, bi-
harmonic oscillatory system, and synchronized harmonic oscillator. Fi-
nally, state space presentation is given and illustrated with the phase
locked loop.

8. In the last Chapter 8, the most general system model, namely NTV, is
examined. The memoryless nonlinearity is considered in time and the
Volterra approach is extended to the time-variant coefficients of a mem-
ory system. The system is also analyzed with the ODE and illustrated
with the voltage controlled oscillator. Periodic (modulated) NTV systems
are described with the modulation functions method and supported by
examples of FM oscillators. Finally, state space presentation is given for
the time-varying Hammerstein and Wiener systems.
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The remainder of the book is build with Appendices reviewing the prop-
erties of the Dirac delta function (Appendix A), matrices (Appendix B), the
Fourier transform and transform properties (Appendix C), and the Laplace
transform and transform properties (Appendix D). Useful mathematical for-
mulas are postponed to Appendix E.

As well as the first part Signals1, this book is essentially an extensive revi-
sion and development of my Lectures on Radio Signals, Circuits, and Systems
given during a couple of decades in Kharkiv Military University of Ukraine
and several courses on Signals and Systems, System Theory, and Signal Pro-
cessing in the Guanajuato University of Mexico in recent years. The book is
intended for the sophomore-junior and upper level electrical engineering stu-
dent who wants to acquire knowledge in classical and modern system analysis
and comprehend the links between linear and nonlinear, time-invariant and
time-varying structures. It may also be useful for post graduate studies and
specialists in electronic and other systems.

Salamanca, Mexico, Yuriy S. Shmaliy

1 Shmaliy, Y.S., Continuous-Time Signals, Springer, Dordrecht, 2006.
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1

Introduction

All physical systems are governed by differential equations and operate in con-
tinuous time. Therefore, they are labeled as dynamical systems and interpreted
as functions that map input signals into output signals. This mapping may be
linear or nonlinear, time-invariant or time-variant, deterministic or stochas-
tic (random). The system input may fully be specified by its output and the
system then becomes closed loop (no input) being either passive (negative
feedback) or active or oscillating (positive feedback). If a closed loop system
has an auxiliary control input, then it is a closed loop control system or merely
a control system. Contrary, if a system is designed without output, then it is
an isolated system (no output) also called a closed system. A common idea
about a system may thus be formulated as follows:

System : A system is an assemblage of physical or mathematical com-
ponents organized and interacting to convert an input signal (also
called excitation signal or driving force) to an output signal (also
called response signal).

��
A system is presented as a mathematical model of a physical process that

relates the input signal to the output signal. Therefore, basically, the system
theory is forwarded toward solving four major problems:

• System analysis, to understand properties of a given system. ��
• System design, to find a proper system that meets given specifications.

��
• System synthesis, to find a system structure or a proper block diagram.

��
• System implementation, to realize a system practically. ��

In modern signals mapping, attention is focused not solely on how the
function is defined, but also on what is the domain and range of signals.
Domains and ranges are often converted that makes a modern system typically
complex but also optimized. An example is when an analog signal is converted
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to the discrete form, then processed digitally, and returned back to the analog
form. In the other example, to transmit a digital signal through the telephone
system, the digital signal has to be converted into a bandlimited audio signal
in the analog domain of the telephone system.

Many systems are designed to have constant coefficients with negligible
noise. Such systems labeled deterministic are considered throughout this book.
For a long time, researchers were deeply convinced that deterministic systems
always give a deterministic output. It then occurred that, under certain con-
ditions, the deterministic system may produce the output that is not strongly
deterministic, but chaotic.

The essential feature of system theory is that the analytical results
for dynamical systems with discrete time are not always applicable in the
continuous-time systems. This is why the dynamical systems in continuous
time, also often called flows, and the discrete-time dynamic systems have dif-
ferent mathematics, even though the fundamental concepts are common for
both types.

In this book, we consider fundamentals and basic canons of all types of
the continuous-time deterministic systems, namely linear and nonlinear, time-
invariant and time-varying, with their presentations in the time and frequency
(transform) domains. Since the material relates to electrical engineering, prime
attention is paid to linear electronic systems associated with 2π signal period-
icity and methods of description of time-varying and nonlinear systems with
applications to their principle representatives, such as frequency transformers,
oscillators, nonlinear amplifiers, modulators, demodulators, control systems,
phase locked loops, etc. The reader is encouraged to follow fundamentals, defi-
nitions, and basic canons of signals given in [Shmaliy, Yu.S., Continuous-Time
Signals, Springer, 2006] that is referred to throughout the book as Signals.

1.1 Principles of Operation of Typical Systems

As many physical processes are of interest, many systems may be designed
to meet practical needs. In the modern view, systems exploiting electrical
and/or electromagnetic nature of signals can quite fully be represented with
the following examples grounded on practical usefulness.

1.1.1 Communications

In communications, a system is called a device that realizes a transformation of
the information in its input signal to the information in its output signal. Via
the communication channel, the information is submitted by the transmitter
at a distance and received by the receiver. Two structures are practically
feasible: the communication channel may be either wireless (Fig. 1.1a) or wire
(Fig. 1.1b).



1.1 Principles of Operation of Typical Systems 3

Fig. 1.1. Structures of communication systems: (a) wireless and (b) wire.

A typical situation is when the information is represented not in electrical
media. It may be voice or image, for example. Therefore, an important block is
a modulator that performs the transformation of the nonelectric information
(voice) to the electric signal (voice-like). At the receiver, the electric signal
(voice-like) is transformed back to the nonelectric information (voice) by what
is called the demodulator . The other important operation of the transmitter
is information coding necessary to detect different signals. The receiver also
provides amplification, demodulation, filtering, and information decoding.

The information is transmitted via the amplitude or/and angle of a carrier
signal, so that a general form of a transmitted signal may be performed as

y(t) = A(t) cosΨ(t) , (1.1)

where various kinds of amplitude modulation (AM) are realized by variations
in the amplitude A(t). Frequency modulation (FM) and phase modulation
(PM) are provided by altering the signal angle Ψ(t).

With AM, the signal (1.1) may be written as

y(t) = A0[1 + kam(t)] cos(ω0t + ψ0) , (1.2)

where m(t) is the baseband message, A0 is the mean amplitude without AM,
ka is the amplitude sensitivity, ω0 is a carrier frequency, and ψ0 is a initial
constant phase. By FM, the function (1.1) is transformed to

y(t) = A0 cos

⎡
⎣ω0t + kω

t∫

0

m(t) dt + ψ0

⎤
⎦ , (1.3)

where kω = 2πkf and kf is the frequency sensitivity. Finally, with PM, the
signal is formed as

y(t) = A0 cos[ω0t + kpm(t) + ψ0] , (1.4)

where kp is the phase sensitivity .
At the receiver, the signal ỹ(t) appears as a corrupted version of y(t) owing

to the channel imperfection. It is then detected and the message estimate m̂(t)
is formed. With ideal wireless transmission, it is assumed that m̂(t) = m(t).



4 1 Introduction

1.1.2 Distance Measurement by Phase Radars

The principle of distance measurement between a stationary object (car) and
phase radar (acronym for radio detection and ranging) is illustrated in Fig.
1.2. The radar system consists of the transmitter and receiver organized in the
same equipment. A precision oscillator (Osc) generates the reference signal

Fig. 1.2. Distance measuring radar system.

v0(t) = V0 cos(ω0t + ψ0) , (1.5)

where V0, ω0, and ψ0 are constant.
The transmitter gains oscillations, which are then radiated by the antenna

as an electromagnetic field with an electric intensity

e1(t) = E1 cos(ω0t + ψ0 + ϕt) , (1.6)

where ϕt a phase shift caused by signal amplification and propagation. While
propagating, an electromagnetic field acquires a phase shift

2π
(2d)
λ

=
4πd
λ

, (1.7)

where d is a distance between the measurement set (radar) and an object
(car) and λ is the wave length determined by the frequency ω0 and the phase
speed ν of the wave propagation in the medium.

At the receiving antenna, an electric intensity of the electromagnetic field
becomes

e2(t) = E2 cos
(
ω0t + ψ0 + ϕt − 4πd

λ

)
, (1.8)

and, after amplified and properly transformed at the receiver, the following
signal goes to the signal processing (SP) block,

v1(t) = V1 cos
(
ω0t + ψ0 + ϕt − 4πd

λ
+ ϕr

)
, (1.9)
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where ϕr the phase shift induced by the receiver. The SP block calculates
the phase difference between two signals, v0(t) and v1(t); that is,

φ =
4πd
λ
− ϕt − ϕr , (1.10)

and the distance d is then defined by

d =
λ

4π
φ +

λ

4π
(ϕt + ϕr) , (1.11)

where the phase shifts, ϕt and ϕr, are measured at the early stage while testing
the system.

1.1.3 Radial Velocity Measurement of an Aircraft

Every pilot needs to know true airspeed to avoid critical situations. A geomet-
rical interpretation of a possibility of determining a radial velocity of an air-
craft is shown in Fig.1.3. The ground-placed equipment is located at a center
point 0 of the stationary coordinates (x, y, z). The point A, associated with
the aircraft, lies at the plane y1z1 of the moving coordinates [x1(t1), y1, z1]
with a center at 01. It is also assumed that the axes x and x1 coincide, time
t1 corresponds to the moving coordinates, and that the aircraft moves along
the direction r with a constant velocity ṙ.

Fig. 1.3. Flying aircraft.

To measure ṙ, the system (Fig. 1.4) is organized such that the ground-
placed transmitter radiates toward the aircraft a continuous harmonic wave
with a reference frequency ω0. Owing to the Doppler1 effect caused by the
aircraft movement, the frequency ω1 of the received signal differs from ω0 and
ω0 − ω1 is proportional to ṙ.
1 Christian Andreas Doppler, Austrian mathematician, 29 November 1803–17

March 1853.
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Fig. 1.4. Measurements of the radial velocity of an aircraft.

For the velocity ν in the direction x and velocity of a radio wave υ, the
time t1 is defined by the direct Lorentz2 transform that gives

t1 =
t− ν

υ2 x√
1− ( νυ

)2 . (1.12)

Since the signal phase is invariant to the coordinate system, it is supposed
that ϕ = ϕ1, where

ϕ = ω0

(
t− r

ν

)
, and ϕ1 = ω1

(
t1 − r1

ν

)
. (1.13)

If we now differentiate an equality ϕ = ϕ1 with account of (1.12), we shall
go, by r1 = const and ẋ = ν, to

ω0

(
1− ṙ

υ

)
= ω1

√
1−
(ν
υ

)2

. (1.14)

By taking into consideration that ν = ṙ cos θ, the Doppler frequency Ω =
ω0 − ω1 is approximately calculated as

Ω = ω0

(
ṙ

υ
− 1

2
ṙ2

υ2
cos θ

)
. (1.15)

The aircraft-placed electronic system measures Ω and its SP block calculates,
by (1.15), the radial velocity ṙ for known θ and υ.

1.1.4 Control

A critically important kind of problem is solved with control systems. An
example of application of such systems to manage a manufacturing process is
shown in Fig. 1.5.

It is supposed that the manufacturing plant produces some multiple output
(production) y(t) that is evaluated by sensors to convert y(t) to x1(t). The
latter value is compared to the reference input (plan) x(t) and the evaluated

2 Hendrik Antoon Lorentz, Dutch physicist and mathematician, 18 July 1853–4
February 1928.
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Fig. 1.5. Control of a manufacturing process.

difference Δx(t) = x(t)− x1(t) goes to a regulator. To manage the process, a
regulator produces the value Δy(t) such that the difference Δx(t) decreases
toward zero.

In an ideal case of x1(t) = x(t), the value Δy(t) becomes zero and no
adjustment is necessary for the process. If x1(t) > x(t) or x1(t) < x(t), the
manufacturing process develops under the external control.

1.1.5 Medical Ultrasonography

An example of application of systems in medicine is ultrasonography illus-
trated in Fig. 1.6. Here, a short pulse signal is generated and sent through the
attenuator to the ultrasonic acoustic transducer. For the Gaussian waveform,
the generated signal may be written as

v0(t) = V0e
−a2t2 cosω0t , (1.16)

where V0 and ω0 are the constant peak amplitude and carrier frequency,
respectively, and the coefficient a is responsable for the pulse width. The

Fig. 1.6. Medical ultrasonography of a human body.
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transducer converts v0(t) to the acoustic wave and forwards it into a human
body.

Whenever a sound wave encounters a material with a different acoustical
impedance, part of the sound wave is reflected, which the probe detects as an
echo. The signal, reflected and converted back to electric form, becomes

v1(t) = α(t)V0e
−a2(t−t1)2 cos[ω0t− ϕ1(t)] , (1.17)

where α, t1, and ϕ1 indicate the depth of the tissue interface causing the echo
at time t = t1. The greater the difference between acoustic impedances, the
larger the echo is. Along with the reference pulse v0(t), the reflected pulses
v1(t) go through the pulse shaper to the SP block, where they are jointly
processed to produce an electronic image.

Real ultrasonographs (Fig. 1.7a) exploit multiple transducers with high
resolution in space. Owing to this, an electronic image (Fig. 1.7b) looks like
a section of a human body allowing for qualified medical personnel to make a
decision about a state of human organs.

Fig. 1.7. Medical ultrasonography: (a) ultrasonographer and (b) example of an
electronic image.

1.1.6 Robot Positioning

In many ways a position of a robot can be determined. Electronic, mechani-
cal, optical, and even satellite systems such as the Global Positioning System
(GPS) are used. An example is a wireless electronic system (Fig. 1.8a) consist-
ing of the three transmitters placed at the points A, B, and C and radiating
electromagnetic signals at given frequencies. The rotating antenna of a robot
determines directions to every transmitter and indicates the relevant angles,
ϕ1, ϕ2, and ϕ3.
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Fig. 1.8. Robot positioning for three spaced local stations with known coordinates:
(a) geometrical interpretation and (b) measuring system.

An interaction of the robot’s receiver with every transmitter is shown in
Fig. 1.8b. An antenna of the receiver is designed to have a narrow directional
pattern such that an angle θ is measured for the maximum signal at the
receiver with high accuracy. When all angles are measured, the SP block of a
receiver calculates the robot coordinates x0, y0 as follows.

For known coordinates of all of the transmitters (Fig. 1.8b), the distances
d1 and d2 between A and B, and B and C, respectively, are defined by

d1 =
√

(x1 − x2)2 + (y2 − y1)2 , (1.18)

d2 =
√

(x3 − x2)2 + (y2 − y3)2 . (1.19)

Distances between the robot and each of the transmitters are defined in a
like manner, so that, for A, B, and C, respectively, we can write

a1 =
√

(y0 − y1)2 + (x0 − x1)2 , (1.20)

a2 =
√

(y2 − y0)2 + (x0 − x2)2 , (1.21)



10 1 Introduction

a3 =
√

(y3 − y0)2 + (x3 − x0)2 . (1.22)

The unknown coordinates x0 and y0 are then calculated by solving jointly
the equations

d2
1 = a2

1 + a2
2 − 2a1a2 cos(θ1 − θ2) , (1.23)

d2
2 = a2

2 + a2
3 − 2a2a3 cos(θ2 − θ3) , (1.24)

comprising the functions defined by (1.18)–(1.22). This simple algorithm illus-
trates a system operation for a stationary robot. Most generally, for a moving
robot, the equations complicate by accounting the parameters of movement
(velocity and acceleration).

1.1.7 Remote Sensing

Nowadays, remote sensing is used widely for geophysical, meteorological,
oceanographical and other purposes. In passive satellite sensing (Fig. 1.9a),
energy El from an external source, e.g., the sun, leads to radiation with energy
ER that is received by the satellite-placed system. In an active method, energy
generated by the satellite-placed sensor system is beamed outward and the
fraction returned is measured. Radiation bears information about color and
positioning (longitude, altitude, latitude), so that an image may be restored,
in principle, as two-dimensional (2D) or three-dimensional (3D).

A critical component of the remote sensing system is the sensor (detector)
that instantaneously measures radiation coming from the entire scene. The
whole picture is then electronically recorded, processed, and restored to obtain
a more or less true imagination about the scene. Fig. 1.9b shows a restored
image of the western U.S. and adjoining Pacific Ocean provided by the GOES
10 geostationary satellite.

1.1.8 Reference Source of Frequency

Even a quick look at the above-considered structures selects a separate block
called “Osc” (oscillator) . It is presumed that the carrier frequency ω0 of a
signal generated by “Osc” is constant, so time invariant. To meet this require-
ment, special systems termed reference sources of frequency are designed.

The widely used “Osc” is the Oven Controlled Crystal Oscillator (OCXO),
which basic structure is shown in Fig. 1.10. The principle component here is
a precision quartz crystal resonator, whose resonant frequency is highly ac-
curate, precise, and low sensitive to environment. The resonator is excited
in an oscillator scheme with small nonlinearity. To reduce the amplitude-to-
frequency conversion, a power supply voltage EPS is stabilized. Also, to dimin-
ish a frequency vs. temperature dependence, an electronic block is placed to an
oven, whose temperature is sustained at the point of a minimum temperature
sensitivity of a resonator.
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Fig. 1.9. Remote sensing: (a) principle of passive sensing and (b) electronic image.

The output signal of a reference source of frequency is obtained to be
almost harmonic y(t) = A0 cos[ω0t + Ψ(t)], where the amplitude A0 is near
constant and the frequency instability is small being predetermined by the
time derivative of a nonstationary phase Ψ(t). The phase Ψ(t) is affected by
a number of internal and external factors such that the frequency instability
Δω(t) may be evaluated by

Δω(t) =
dΨ(t)

dt
= Δω0 + at +

d
dt

ePM(t) + eFM(t) , (1.25)

where Δω0 is a small frequency offset for the desired (required) reference
frequency, a is a linear frequency drift coefficient due to aging, and ePM(t)
and eFM(t) are components of phase and frequency modulations, respectively,
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Fig. 1.10. Basic structure of an oven controlled crystal oscillator.

caused by noise and environment. Seemingly obvious is that the goal of any
reference source of frequency is to set Δω(t) to zero. If the internal resources
are insufficient to fulfill this requirement, an external signal Ec is applied of the
higher level reference frequency source to discipline an oscillator. Frequently,
an OCXO is disciplined with the GPS timing signals. If such signals are not
available or the GPS timing receiver induces too much noise, the ground-
placed rubidium, cesium, and even hydrogen atomic standards of frequency
are used.

1.2 Systems Performance and Classification

Most generally, a system may be described with some operator (function) O
that couples the vector input signal x(t) with the vector output signal y(t)
by the relation

y(t) = Ox(t) . (1.26)

In the sequel, we conventionally will denote a system operator as in Table
1.1 and, when a system is not specified, use a simble O, as in (1.26). The
operator may be either scalar O or vector O.

Depending on the properties of operator O, continuous-time systems may
be performed to have different characteristics. Classification of systems is given
below.

1.2.1 Regularity

It is commonly desirable to have a system, which operator is exactly described
by mathematical functions (usually simple) at every time instant. Such a sys-
tem is called deterministic meeting the requirements of regularity. If the oper-
ator can be described only in statistical terms or in frames of the probability
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Table 1.1. System operator

System Operator

Linear time-invariant O
Linear time-varying O(t)

Nonlinear time-invariant O(x) ≡ O[x(t)]

Nonlinear time-varying O(x, t) ≡ O[x(t), t]

theory, the system is said to be random or stochastic. For example, if multi-
ple measurements of the input-to output characteristic of a square amplifier
give the same table, the amplifier may be said to be deterministic. If every
new measurement differs from others owing to fluctuations in the amplifier
components, the characteristic (and so amplifier) will be noisy or random.

Throughout this book we consider only deterministic systems.

1.2.2 Continuity

In the modern world, time-continuity is the simplest and one of the most
important properties of all signals and systems. It gives the idea of continuous-
time and discrete-time.

Continuity : A system, where input and output are both continuous,
is the continuous-time system (1.26) and the one having the input and
output both discrete, is the discrete-time system.

��
If a system operates in discrete time tn, where n is integer, the relation

(1.26) is written as y[n] = Ox[n].
The definition of continuity is certainly conditional in a sense. Indeed,

many modern systems operating in continuous-time scale utilize computers
in their signal processing blocks, thereby becoming continuous/discrete-time.
On the other hand, in some systems having discrete-time scale, signals are
converted to analog forms, then transmitted, received, and returned back to
discrete forms. Such systems may be said to be discrete/continuous-time.

1.2.3 Dimensionality

Systems can be designed in different configurations to have not only one input
and one output. Depending on a number of inputs and outputs, the following
types of systems are recognized:

• Multiple-input multiple-output (MIMO) system is the one having
more than one input and more than one output. The MIMO system has
a structure (Fig. 1.11a) with a multiple k × 1 input and multiple p × 1
output, respectively,
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Fig. 1.11. Generalized system models: (a) MIMO and (b) SISO.

x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xk(t)

⎤
⎥⎥⎥⎦ and y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yp(t)

⎤
⎥⎥⎥⎦ , (1.27)

which components are xi(t), i = 1, 2, . . . , k, and yj(t), j = 1, 2, . . . , p. ��
• Single-input single-output (SISO) system is the one having only one

input x(t) (k = 1) and only one output y(t) (p = 1)(Fig. 1.11b). ��
• Single-input multiple-output (SIMO) system is designed, having only

one input x(t) (k = 1), but more than one output, y(t) (p > 1). ��
• Multiple-input single-output (MISO) system has several inputs, x(t)

(k > 1), but only one output y(t) (p = 1). ��

1.2.4 Memory

Memory of a system is predetermined by the form of its operator allowing for
two structures.

Memoryless Systems: A system is memoryless (or static) if a sys-
tem output at a time instant t depends on only a system input at the
same time instant t.

��
For MIMO memoryless linear systems, the following relation holds true,

y(t) = Ox(t) = Ax(t) , (1.28)

where an operator O is just a matrix A with constant components. An ex-
ample of SISO memoryless nonlinear systems is a square amplifier described
with

y(t) = O(x)x(t) = ax2(t) ,

where O(x) means the product x(t)x(t) gained with a.

Memory Systems: A system is memory (or dynamic) if a system
output at a time instant t depends on not only a system input at t,
but also on some past history.

��
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Examples of memory systems are integrators and differentiators. The mem-
ory operation of integration

y(t) = Ox(t) =

t∫

−∞
x(τ) dτ (1.29)

is provided by the system operator O ≡
t∫
−∞

dt involving all past history and

the memory operation of differentiation

y(t) = Ox(t) =
d
dt

x(t) (1.30)

is obtained with the system operator O ≡ d
dt exploiting the most nearest past.

1.2.5 Causality

This property is usually associated with physical realizability of systems.

Causal Systems: A system is said to be causal if its output y(t)
at an arbitrary time instant t depends on only its input x(t − θ) for
θ � 0.

��
In other words, the output of a causal system at the present time depends

on only the present and/or past values of the input and does not depend on
its future values, suggesting that

y(t) = Ox(t− θ) , θ � 0 . (1.31)

Practically, (1.31) means that, in causal systems, the output cannot ap-
pear before the input is applied to a system. In fact, in real communication
channels a signal can only be delayed with time that meets (1.31) and never
be advanced.

Noncausal Systems: A system is said to be noncausal if its output
y(t) at an arbitrary time instant t depends on its input x(t + θ) for
θ � 0.

��
The definition suggests that

y(t) = Ox(t + θ) , θ � 0 , (1.32)

and thus a noncausal system requires future (thus unknown) points of the
input. An example is the Fourier transform claiming a signal to be known
from t = −∞ to t =∞ that obviously cannot be met in practice.

It is worth remembering that all memoryless systems are causal, but not
every causal system is memoryless.
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1.2.6 Linearity

The most natural engineering approach is to model a system in simple forms
and functions. First of all, a system is examined for linearity and, if so, the
well developed methods and transforms are applied.

Linear Systems: A system is said to be linear if a system operator O
satisfies the conditions of both homogeneity (scaling) and additivity
(superposition). Otherwise, a system is nonlinear.

��
The condition of homogeneity (also called scaling property) implies that

the operator O is linear (and so a system is linear) if for a given input ax(t)
the output y(t) is provided in two equal forms of

y(t) = O[ax(t)] = aO[x(t)] . (1.33)

The property (1.33) is illustrated in Fig. 1.12a for a constant coefficient a.

Fig. 1.12. Linearity conditions: (a) scaling and (b) additivity.

The other condition termed additivity and often called the superposition
principle implies that the operator O is linear if the following relation holds
true for the given inputs a1x1(t), a2x2(t), . . . , akxk(t):

y(t) = O
k∑
i=1

aixi(t) =
k∑
i=1

O[aixi(t)] . (1.34)

This property also realizable in two equal forms is illustrated in Fig. 1.12b
for constant coefficients ai, i = 1, 2, . . . , k.

Typically, the conditions of homogeneity and additivity are met in the
same linear operator. An example is the relation (1.34) that, by the homo-
geneity property (1.33), may ultimately be written as
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y(t) = O
k∑
i=1

aixi(t) =
k∑
i=1

O[aixi(t)] =
k∑
i=1

aiOxi(t) .

The other example is a linear memoryless operation of the transformation
of a vector input x(t) to the vector output y(t) by means of a matrix A,
namely y(t) = Ax(t).

1.2.7 Time Invariance

One of the most critical properties of a system is a dependence of its operator
on time.

Time-invariant system : A system is said to be time-invariant if
any time shift θ in the input signal causes the same time shift in the
output signal; that is,

y(t± θ) = Ox(t± θ) . (1.35)

A system is time-varying or time-variant otherwise.
��

In the theory of random (or stochastic) systems, time invariance is related
to mean values. Therefore, time-invariant systems are often called stationary.
Fig. 1.13 illustrates the property (1.35) and we notice that, by Table 1.1,
the operators of both linear and nonlinear systems can demonstrate time
invariance.

Fig. 1.13. Time invariance of systems.

The most general classification of input-to-output systems relates to
whether the system is linear and/or time-invariant or not.

Liner Time-invariant (LTI) System

The linear time-invariant system is a linear system that is also time-invariant
(all its coefficients are time constants). The simplest LTI system is described
with an operator O = a, where a is a constant; that is,

y(t) = Ox(t) = ax(t) . (1.36)

A generalized structure of an LTI system is shown in Fig. 1.14a.
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Fig. 1.14. Continuous-time systems: (a) LTI, (b) LTV, (c) NTI, and (d) NTV.

Linear Time-varying (LTV) System

The LTV system is a linear system, in which at least one of the coefficients is
time-varying and thus its operator O is time-variant as well (Fig. 1.14b). The
simplest example of an LTV system is a memoryless mapping

y(t) = O(t)x(t) = a(t)x(t) , (1.37)

where a(t) is a time-varying coefficient, provided O(t) = a(t). Note that, in
practice, communication and other wireless channels are always time-variant,
since they are affected by environment and thus the coefficients are not time-
constant. All adaptive and modulated linear systems are also tame-varying,
by the definition.

Nonlinear Time-invariant (NTI) System

The NTI system is a system, whose operator is time-invariant but depends
on the input (Fig. 1.4c). An example is a square amplifier, provided

y(t) = O[x(t)]x(t) = ax2(t) . (1.38)

Other examples are rectifiers, oscillators, phase-looked loops (PLL), etc.
Note that all real electronic systems become practically nonlinear owing to
saturation.

Nonlinear Time-varying (NTV) System

The NTV system is a nonlinear system, in which at least one of the coefficients
depends on time (Fig. 1.14d). For instance, if a coefficient a in (1.38) changes
with time by some reasons, the system becomes NTV, provided

y(t) = O[x(t), t]x(t) = a(t)x2(t) . (1.39)
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All synchronized oscillators and adaptive nonlinear structures are NTV.
The NTV systems seem more “mystical” from the standpoint of stability, but
typically have simpler structures and, in a modern view, often solve problems
in the most accurate and even optimum way.

Let us notice that, owing to the environmental influence, aging in compo-
nents, temperature effects caused by large values of signals, and saturation, all
real physical continuous-time systems are virtually time-varying and nonlin-
ear. Digital systems are much lesser affected by those factors and any software
is absolutely insensitive to them.

1.2.8 Observability and Controllability

Every dynamic system may be described in terms of states. The terms state
observability and state controllability were introduced by Kalman3 in 1960 as
characterizing the system structure.

Observability : A system is completely observable on the finite time
interval [t0, t1] if for any t0 an initial state q(t0) can be determined
from observation of the output y(t) over this interval with the input
x(t) known over the same interval.

��
State observability is thus a measure for how well internal states of a system

can be inferred by knowledge of its external outputs. Formally, a system is
said to be observable if, for any possible sequence of state and control vectors,
the current state can be determined in finite time using only the outputs. In
other words, this means that we can watch the system outputs and figure out
what is going on inside the system with its states, even if it takes a very long
time.

In turn, the term state controllability is associated with “state control.”
Even intuitively, it predetermines that the system state is supposed to be
adjusted in some way.

Controllability : A system is completely controllable on the finite
time interval [t0, t1] if for any initial state q(t0) there may be found
an input x(t) to transfer the system to the other given state q(t1).

��
A system is thus controllable if its state variables can be directly controlled

by the input(s). Contrary, in the uncontrollable or partly controllable system,
all or some state variables cannot be “adjusted” in finite time by the admissible
input(s).

3 Rudolf Emil Kalman, Hungarian-born American scientist, 19 May 1930 – .
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1.2.9 Detectability and Stabilizability

Closely related to controllability and observability are two other fundamental
properties of systems called detectability and stabilizability.

Suppose the system is unobservable but the unobservable mode is stable.
Detectability requires the unobservable part of the system to be asymptot-
ically stable and hence is a weaker concept that observability, provided the
definition:

Detectability : An LTI system is detectable if every unobservable state
is stable.

��
It then follows that an observable system is automatically detectable, since

it has no unobservable states.

Stabilizability : An LTI system is stabilizable if every unocontrollable
state is stable.

��
This definition suggests that the effective control law may be found even

though a system is uncontrollable. It can be shown that an LTI system is
stabilizable by feedback if there exists a feedback matrix gain such that the
system behavior is asymptotically stable. Note that for finite-dimensional lin-
ear systems if the system is open-loop stabilizable then it is stabilizable by
feedback and conversely.

1.2.10 Accuracy and Precision

No one system is ideal, and each system operates with errors. When a system
is one of measurement, such as radar, GPS, etc., the error limits its functional
facilities, so must somehow be evaluated and, if possible, reduced. The error
is typically random (deterministic or methodological errors are usually elimi-
nated at the early stage) and the system “mistakes” are usually evaluated in
terms of accuracy and precision.

Accuracy : Accuracy is the degree of conformity with an ideal (or
reference) system also called standard.

��
A simple treatment of accuracy may be done by associating the system

input with a ball and its output with a target. A system is thus accurate (Fig.
1.15a) if it hits the center of a target with the scattering allowed.

It is accepted that accuracy relates to the quality of a system, and is dis-
tinguished from precision, which relates to the quality of the system operation
by which the result is obtained.

Precision : Precision is the degree of perfection in the system or the
degree of refinement in the performance of the system operation.
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Fig. 1.15. Accuracy and precision: (a) accurate, (b) precise, (c) both accurate and
precise, and (d) neither accurate nor precise.

��
Fig. 1.15b illustrates the system precision associated with the small scat-

tering of hits on target. In other words, precision indicates reproducibility of
a result obtained by a system. As such, precision relates to the quality of a
system operation, by which a result is obtained, and is distinguished from
accuracy, which relates to the quality of the result.

It follows from the comparison of Fig. 1.15a and Fig. 1.15b that an accurate
system is not obligatory precise and a precise system is not always accurate.
Fig. 1.15c gives an idea about the system that is both accurate and precise.
In turn, the performance sketched in Fig. 1.15d addresses the system that is
neither accurate nor precise. Let us notice that highly precise and accurate
systems, such as GPS, are typically very costly.

1.2.11 Uncertainty and Robustness

Readers may wonder if the system can be designed to operate with infinite
accuracy and precision and, if not, what are the limitations?

An important physical (and theoretical) limitation on the combined accu-
racy of certain pairs of simultaneous measurements was introduced in 1927
by Heisenberg4 that is now known as the uncertainty principle.

4 Werner Karl Heisenberg, German physicist, 5 December 1901-1 February 1976.
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Heisenberg’s uncertainty principle: The conjugate quantities
such as pairs of observables (position and momentum) of a single
elementary particle cannot be measured with arbitrary precision.

��
Specifically for applications in systems, this principle suggests that the

system states cannot be measured all at once with infinite accuracy and pre-
cision. In fact, whenever we describe a system as state space, we commonly
think about the system states (phase, frequency, linear frequency drift rate,
etc.) as related to the current time t. Such values are called instantaneous.
However, the frequency, for example, is evaluated by the phase rate. So, we
need two different (even very closely placed) points to evaluate frequency.
Therefore the term instantaneous may only be used in the sense of a theoret-
ical limit for the evaluated quantity.

Reasoning similarly for the other system states, one arrives at the conclu-
sion that any dynamic system (with nonzero states) inherently has “internal
faults” that gives certain problems to system design. For example, decision
making under uncertainty is a central problem in robotics, plant control, and
machine learning. Therefore, closely tied to the problem of uncertainty is that
of approximation. For instance, in large scale system problems, learning deci-
sions under uncertainty inevitably requires approximation.

The uncertainty may be evaluated as follows. Let an LTI system be charac-
terized with the operatorO in the transform domain, so with the transfer func-
tion H̃(s). The function may then be composed with the nominal frequency
response H(s) and the uncertainty addition Δ(s), namely H̃(s) = H(s)+Δ(s).
If the magnitude response |Δ(jω)| does not exceed unity over all frequencies,
the disturbance Δ is called allowable. Usually, allowable uncertainties Δ are
assumed in applications.

It seems that the first solution for the uncertainty problem was found
by Black5 in the 1930s for the telephone industry regarding the constructing
feedback amplifiers insensitive to variations in their units and supply volt-
ages. The achieved pioneering result by Black was lately recognized among 25
seminal papers in control published in 20th century.

The system uncertainty is closely related to the required system robust-
ness. “Robust” is a term introduced by Box6 in the 1950s as relevant to devis-
ing tests on data “contaminated” and other relevant problems. Furthermore,
the term was applied to system problems and Black’s amplifier was treated
as an example of robust systems.

Robustness: System robustness is the measure of its ability to oper-
ate correctly in the presence of invalid inputs and despite the internal
faults.

��

5 Harold Stephen Black, American engineer and inventor, 1898-1983.
6 George Edward Pelham Box, English statistician, 18 October 1919 -.
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To diminish an influence of the uncertainty Δ upon the system perfor-
mance, the weighting transfer function W (s) is searched, satisfying the con-
ditions for the system to be robust. Three basic models may be observed in
designing robust systems:

• Additive (Fig. 1.16a): H̃ = H + WΔ ,
• Multiplicative (Fig. 1.16b): H̃ = H(1 + WΔ) ,
• Feedback (Fig. 1.16c): H̃ = H

1+HWΔ .

Fig. 1.16. Robust system models with uncertainty: (a) additive, (b) multiplicative,
and (c) feedback.

Example 1.1. An ideal integrator is given with the nominal transfer function
H(s) = 1/s. The first order real physical integrator is described with H̃ =
1/(s+a), where a is a small constant. Find the weight W for the multiplicative
model (Fig. 1.16b).

Having H̃ = H(1 + WΔ), we may write H̃
H − 1 = WΔ. For the allowable

|Δ| < 1, the relation yields an inequality
∣∣∣∣∣
H̃

H
− 1

∣∣∣∣∣ � |W |

that, for the transfer functions given, results in
∣∣∣ s
a+s − 1

∣∣∣ � |W |. The weight-
ing transfer function is thus

W (s) =
a

a + s
.

It follows that, by a = 0, the weight is zero, W = 0. Indeed, without
uncertainty, a = 0, no correction is necessary and the relevant branch in Fig.
1.16b vanishes. Overall, the weight derived claims that the integrator would
be robust for the uncertainty associated with a small coefficient a. ��
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1.2.12 Stability

Any system is critically sensitive to stability. Independently on types and ap-
plications, it is usually highly desirable for the systems to be stable in order
to operate properly and fulfil the requirements. If we think that the neces-
sary condition of system operation is to fulfil some operator (function), then
stability of this operator may be treated as a sufficient condition of system
operation. Basically, two factors (external and internal) affect the system op-
eration, and provided the definition:

Stability : The system is stable 1) if its output does not diverge as long
as the input does not diverge and 2) a slight disturbance in a system
does not produce a significant disrupting effect on that system.

��
Systems with the input x(t) and output y(t) are always desirable to be

stable. The closed-loop systems (no input) are usually oscillatory. Such sys-
tems (oscillators) are underdamped with low input signals, critically damped
with normal amplitudes, and overdamped with large amplitudes. Therefore,
oscillators are typically unstable at zero and stable at an equilibrium point.

There are several approaches of how to ascertain stability of systems in a
different sense depending on stationarity and linearity. In the sequel, we shall
observe most of them in the time and transform domains as well as in the
phase plane. For now, it seems in order to give the reader an idea about the
seemingly most obvious input-to-output stability.

The requirement for the system output not to diverge as long as the input
does not diverge relates to whether the signal is bounded or not.

BIBO Stability : A system is said to be bounded-input/bounded-
output (BIBO) stable if for any bounded input x(t) the corresponding
output y(t) is also bounded; that is,

|x(t)| � α ⇐⇒ |y(t)| = |Ox(t)| � β , (1.40)

where α and β are finite real constants. A system is BIBO unstable
if (1.40) is not met, i.e. y(t) grows without limit (diverges) from a
bounded input.

��
Note that the BIBO stability of an LTI system is neatly described in terms

of whether or not its impulse response is absolutely integrable (satisfies the
Dirichlet conditions).

Example 1.2. The SISO memory systems are described with the equations,

y(t) = ax(t) +
1
b

t∫

−∞
x(τ)dτ + c

d
dt

x(t) , (1.41)
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y(t) = at|x(t)|+ 1
b

t+θ∫

−∞
x(τ)dτ +

d
dt

c(t)x(t) , θ � 0 . (1.42)

The first system (1.41) is causal, linear, time-invariant, and BIBO-stable. The
second system (1.42) is not causal (the integration involves future points at
θ), nonlinear (due to the term |x(t)|), time-variant (due to the time-dependent
coefficient c(t)), and BIBO-unstable (the first term evolves proportionally with
time t and hence the upper bound of |y(t)| lies at infinity). ��

1.3 Basic Structures

Three basic structures of systems are recognized, namely the open system or
input-to-output system, closed loop system, and closed loop control system.

1.3.1 Open (Input-to-output) System

A simple system structure implies an input x(t) and output y(t) coupled
with an operator O by (1.26). Systems shown in Fig. 1.14 are examples of
input-to-output systems.

1.3.2 Closed Loop System

If the system output is coupled with the system input by an operator O1 as
y(t) = O1x(t) and the input in turn is fully defined by the output via some
other operator O2 as x(t) = O2y(t), then the system becomes closed loop
(having no input) (Fig. 1.17a).

Fig. 1.17. Feedback systems: (a) closed loop and (b) closed loop control.

It can be shown that a closed loop system also called feedback system is
described with the equation

(1−O1O2)y(t) = 0 . (1.43)

The term “feedback” suggests that the output “feeds back” the input
through the block O2. Two possible realizations of the closed loop systems
are feasible. The feedback can be organized to be either positive or negative.
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Negative Feedback

If an operator O2 inverts a signal x(t) on its way round the closed loop, the
system is said to be the negative feedback closed loop system. Practically, such
systems have limited applications, since they have no input and are unable
to generate the output signal. For the cascade-connected system, the negative
feedback closed loop system plays typically a role of a load.

Positive Feedback

If an operator O2 does not invert a signal in the feedback, the system is said
to be the positive feedback system. When an open loop gain in such a sys-
tem overcomes unity, the feedback causes the output to increase. Otherwise,
the output attenuates. With unit feedback gain, a dissipated energy is fully
recovered that is used in oscillators at steady state.

Example 1.3. An LTI system is described with the ODE

y′′ + ay′ + by = ax′ (1.44)

and, by x = Ky, becomes closed loop performed by

y′′ + a(1−K)y′ + by = 0 . (1.45)

It can be shown, by the theory of the ODEs, that stability of a system
described with (1.45) is guaranteed if a(1 − K) > 0. Thus, having negative
feedback with K < 0, the system is always stable. With positive feedback
and 0 < K < 1, it is still stable and oscillations attenuate with time. If K =
1, the system becomes conservative to mean that oscillations have constant
amplitude. Finally, if K > 1, the system is unstable and oscillations develop.

��

1.3.3 Closed Loop Control System

Without an input, a closed loop (Fig. 1.17a) has a practical meaning if it
generates oscillations, thus is nonlinear and with positive feedback. To extend
an application range for feedback systems, a control input is induced as shown
in Fig. 1.17b. Such a system is called closed loop control.

The input x1(t) of a block O1 is predefined to be x1(t) = O2y(t) + x(t).
Therefore, the system equation is given by

O1x(t) = (1−O1O2)y(t) . (1.46)

In line with the closed loop, any closed loop control system can also be
designed to have either negative or positive feedback. Negative feedback is of-
ten deliberately introduced to increase the stability and accuracy of a system.
Positive feedback is usually an unwanted consequence of system behavior. It
is induced when a nonlinear system is intended to generate oscillations.
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Example 1.4. A system (1.44) is closed with a feedback x1(t) = Ky(t)+x(t)
and described by an equation

y′′ + a(1−K)y′ + by = ax′ (1.47)

with zero initial conditions. The Laplace transform of (1.47) is

s2Y (s) + a(1−K)sY (s) + bY (s) = asX(s) ,

producing the system transfer function

H(s) =
Y (s)
X(s)

=
as

s2 + a(1−K)s + b
. (1.48)

The roots of the denominator of (1.48) are defined by

s1,2 = −a(1−K)
2

±
√

a2(1−K)2

4
− b .

It can be shown, by the theory of the ODEs, that the system is stable if the
real parts of s1,2 are negative that is only possible if K < 1. Stability is thus
always guarantied with the negative feedback, K < 0, and with the positive
feedback, if 0 < K < 1. ��

1.3.4 Interconnection

Different interconnections are used in system design: cascade, parallel, and
feedback.

Cascade Interconnection

When the output of one system with the operatorO1 is connected to the input
of another one with the operatorO2, the interconnection is called cascade (Fig.
1.18a). Two systems included in cascade are described with the equation

y(t) = O2O1x(t) . (1.49)

Examples of cascade interconnections may be found in Fig. 1.16. Note
that, in some cases, the ordering of the systems matters, in others it does not.

Parallel Interconnection

A signal x(t) may go simultaneously to several (two and more) systems, which
outputs are added together to create a signal y(t). This is what is called
parallel interconnection (Fig. 1.18b). Two subsystems included in parallel are
described with the equation

y(t) = (O1 +O2)x(t) . (1.50)
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Fig. 1.18. Interconnection of systems: (a) cascade and (b) parallel.

Feedback Interconnection

This subtle type of interconnection was already discussed when considered
closed loops (Fig. 1.17). What is worth keeping in mind is that each of the
subsystems, O1 and O2, in both structures (Fig. 1.17a and Fig. 1.17b) can
also be feedback.

1.4 Basic Operations with Signals in Systems

Irrespective of the physical nature of systems, their basic operation principles
remain virtually the same. Below, we will not subtilize (details are eluci-
dated in the following Chapters) and list only the basic operations peculiar
to continuous-time LTI, LTV, NTI, and NTV electronic systems.

1.4.1 Linear Time-invariant Systems

Every LTI electronic system be it very sophisticated obeys the following basic
principles of operation:

Amplitude Scaling

Assume that a signal x(t) passes through a system and appears at the out-
put with a gain factor a (Fig. 1.19a). The output is thus provided with the
memoryless operation of scaling

y(t) = Ox(t) = ax(t) , (1.51)

representing the product of a constant coefficient a and a signal x(t) both
having arbitrary signs and values. An electric equivalent of (1.51) is shown
in Fig. 1.19b meaning that the output voltage vR(t) is induced on a resistor
R by an electric current i(t) without shifting in time and violating the wave-
form of i(t). Vectors i(t) and vR(t) hence coincide in direction (Fig. 1.19d)
that is supported by the direct and inverse memoryless relations (Fig. 1.19c),
respectively,

vR(t) = Ri(t) , (1.52)
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i(t) =
1
R

vR(t) , (1.53)

associated with (1.51).

Fig. 1.19. Amplitude scaling: (a) basic structure, (b) memoryless electric circuit,
(c) basic equations, and (d) vector diagram.

Ideal Integration

An ideal integration of x(t) (Fig. 1.20a) is provided in a purely capacitive elec-
tric circuit (Fig. 1.20b). Such a system comprises the only memory element,
a capacitor C. Accordingly, the waveform of an electric current i(t) leads the
waveform of an electric voltage vC(t) by 90◦ in phase (Fig. 1.20d) that is
represented by the direct and inverse relations (Fig. 1.20c), respectively,

vC(t) =
1
C

t∫

−∞
i(τ) dτ , (1.54)

i(t) = C
d
dt

vC(t) . (1.55)

τ τ

Fig. 1.20. Ideal integration: (a) basic structure, (b) memory capacitive electric
circuit, (c) basic equations, and (d) vector diagram.

If to apply the Fourier transform to either (1.54) or (1.55) and assign
XC(jω) = V (jω)/I(jω), the purely imaginary impedance of a capacitor will
be defined in the frequency domain by

XC(jω) =
1

jωC
= −j 1

ωC
. (1.56)

One thus concludes that the memory operation of integration is associated
with a complex gain of a system.
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Ideal Differentiation

The other ideal memory operation provides differentiation (Fig. 1.21a) in the
purely inductive electric circuit (Fig. 1.21b). A system consists of only the
component, the inductor L. It can be shown that the voltage vL(t) induced on
L leads the electric current i(t) by 90◦ in phase (Fig. 1.21d) that is supported
by the relationships (Fig. 1.21c):

vL(t) = L
d
dt

i(t) , (1.57)

i(t) =
1
L

t∫

−∞
vL(τ) dτ . (1.58)

b

Fig. 1.21. Ideal differentiation: (a) basic structure, (b) memory inductive electric
circuit, (c) basic equations, and (d) vector diagram.

Analogously to (1.56), the Fourier transform applied to either (1.57) or
(1.58) allows finding the purely imaginary impedance of an inductor

XL(jω) = jωL . (1.59)

Again one can notice that an ideal differentiation (as the memory opera-
tion) is also associated with a complex gain of a system.

Addition

Given k signals xi(t), i = 1, 2, . . . , k, each of which is gained with a constant
coefficient ai, i = 1, 2, . . . , k. For LTI systems, the following additive operation
is fundamental,

y(t) = a1x1(t) + a2x2(t) + ... + aixi(t) . (1.60)

An example of an addition of two harmonic signals x1(t) (Fig. 1.22a) and
x2(t) (Fig. 1.22b) is given in Fig. 1.22c.
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Fig. 1.22. Operations with signals in systems: (a) signal x1(t), (b) signal x2(t), (c)
addition x1(t) + x2(t), and (d) product x1(t)x2(t).

Ideal Time Shifting

In system channels, a signal x(t) (electric voltage or current) is typically de-
layed in time on some amount t0. The ideal operation of delay (time shifting)
produces the output signal y(t) (electric voltage or current)

y(t) = x(t− t0) . (1.61)

Note that an advance shifting x(t + t0) cannot physically be realized as
involving future points, thus unknown.

Basic ideal operations with signals in electrical LTV systems are postponed
to Table 1.2.

Table 1.2. Basic ideal operations with signals in electrical linear systems

Operation LTI system LTV system

Amplitude scaling v(t) = Ri(t) v(t) = R(t)i(t)

i(t) = 1
R

v(t) i(t) = 1
R(t)

v(t)

Integration v(t) = 1
C

t∫
−∞

i(τ )dτ v(t) =
t∫

−∞
1

C(τ)
i(τ )dτ

i(t) = 1
L

t∫
−∞

v(τ )dτ i(t) = 1
L(t)

t∫
−∞

v(τ )dτ

Differentiation v(t) = L d
dt

i(t) v(t) = d
dt

L(t)i(t)

i(t) = C d
dt

v(t) i(t) = C(t) d
dt

v(t)

Time delay y(t) = x(t− t0) y(t) = x[t− t0(t)]
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Example 1.5. A series connection of a resistor R, capacitor C, inductance
L, and a source of an electric voltage v(t) is described with an equation

v(t) = Ri(t) +
1
C

t∫

−∞
i(τ) dτ + L

d
dt

i(t) . (1.62)

This system realizes the LTI operations of scaling (1.51), integration (1.54),
differentiation (1.57), and addition (1.60). ��

1.4.2 Linear Time-varying Systems

In LTV systems, at least one of the coefficients is varied with time (intention-
ally or randomly). Assuming that a system has only one such coefficient a(t),
the basic operations peculiar to LTV systems can be performed for a signal
x(t) (referring to the comments given for LTI systems) as in the following:

• Amplitude scaling of a signal x(t) is provided by

y(t) = Ox(t) = a(t)x(t) . (1.63)

This operation has two electrical equivalents supported by the equations
given in Table 1.2. ��

• Ideal integration of a signal x(t) is obtained with

y(t) =

t∫

−∞
a(τ)x(τ) dτ or y(t) = a(t)

t∫

−∞
x(τ) dτ (1.64)

by two electrical equivalents described with the equations postponed to
Table 1.2. ��

• Ideal differentiation of a signal x(t) can be realized in two forms of

y(t) =
d
dt

a(t)i(t) or y(t) = a(t)
d
dt

i(t) (1.65)

associated with two electrical equivalents given in Table 1.2. ��
• Addition. Given k signals xi(t) (electric voltages or currents), i = 1, 2, . . . , k,

each of which is gained with the time-variant coefficient ai(t), i =
1, 2, . . . , k. An additive sum of these signals is defined by

y(t) = a1(t)x1(t) + a2(t)x2(t) + . . . + ai(t)xi(t) . (1.66)

��
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Example 1.6. A low-pass RC system has the bandwidth controlled by a
time-varying capacitor C(t). The ODEs of this system written with respect
to the input voltage v(t) and output voltage vC(t) are, respectively,

v(t) = R[C(t)vC(t)]′ + vC(t) ,

v′C +
(

1
RC

+
C′

C

)
vC =

1
RC

v .

As can be seen, the equations combine the operations of scaling (1.63),
differentiation7 (1.65), and addition (1.66). ��

1.4.3 Nonlinear Time-invariant Systems

It is seemingly obvious that nonlinear systems can utilize an infinite variety
of nonlinear operations. Nevertheless, the following operations might be most
frequently met in electrical and electronic systems.

Nonlinear Memoryless Amplification

Amplifiers can be designed to provide the input-to-output memoryless (or
functional) nonlinear transformations with arbitrary laws. Not all nonlinear
functions meet practical needs. Most frequently, the following nonlinear am-
plifiers are used.

Square-law amplifier. The memoryless transformation may follow what is
called a “square-law” curve, meaning that the output is proportional to the
input power,

y(t) = O(x)x(t) = a2x2(t) , (1.67)

where a is constant.

Example 1.7. Given a harmonic signal x(t) = a cosω0t with period T =
2π/ω0. Its average power is defined by

Px =
a2

T

T/2∫

−T/2

cos2 ω0t dt =
a2

2
.

A signal goes through a square amplifier, which output calculates

y(t) = a2 cos2 ω0t =
a2

2
+

1
2

cos 2ω0t .

The signal average power a2/2 is evaluated by attaching a low-pass filter at
the output of an amplifier. ��
7 Remark: Throughout the book we also equivalently use the following notation of

differentiation: d
dt

y = y′.
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Logarithmic amplifier. Sometimes the output voltage of an amplifier may
want to represent the natural logarithm of its input voltage. This can be
done using feedback. Fig. 1.23a shows the circuit diagram of a logarithmic
amplifier, which feedback includes a diode. Here the output voltage y(t) =
Vout(t) depends on its input voltage x(t) = Vin(t) as

y(t) = O(x)x(t) = −a ln
x(t)
b

, (1.68)

where a and b are constants.

Fig. 1.23. Nonlinear amplifiers: (a) logarithmic and (b) exponential.

Exponential amplifier. An exponential curve is achieved by interchanging
the diode and resistor as in Fig. 1.23b. Accordingly, the operator of an expo-
nential amplifier is performed by

y(t) = O(x)x(t) = −b exp
x(t)
a

, (1.69)

where a and b are still constants.

Power amplification. In power amplification, they typically design the am-
plifier structure with two nonlinear subamplifiers. A harmonic wave x(t) =
cosω0t is gained here so that one of its parts passes through one subamplifier
and another one through the other subamplifier. The operator of a subampli-
fier is defined by

y(t) = O(x)x(t) =
{

a cosω0t, −ϕ + 2πn � ω0t � ϕ + 2πn
0, otherwise , (1.70)

where n is integer. Depending on an angle ϕ, the following classes of nonlinear
amplifiers are distinguished:

• Class B is when ϕ = π/2 and thus only 50% of the input signal is used,
meaning that a half of a harmonic wave is gained and the other half cut-off.
A disadvantage of this class is that two gained waveforms cannot typically
be fused without distorsiones caused by real circuits. ��
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• Class AB relates to π < ϕ < π/2 and hence more than 50% but less than
100% is used. In the limiting case of Class A (ϕ = π), an amplifier gains
a full signal and becomes linear. ��

• Class C refers to as employing π/2 < ϕ < 0. Here less than 50% of a signal
is used. ��

• Class D unites amplifiers, which are also known as switching amplifiers or
digital amplifiers. Operating in switch mode, such an amplifier is either
completely turned on or completely turned off by an input signal. ��
One needs to remember that all linear amplifiers become nonlinear, when

the input voltage exceeds the power supply voltage. This effect is termed
saturation.

Product (Multiplication)

For the two-dimensional vector input x(t) = [x1(t)x2(t)]T , the operation of
multiplication of its components is provided with the product

y(t) = O(x)x(t) = ax1(t)x2(t) . (1.71)

An example is given in Fig. 1.22d for two harmonic signals x1(t) (Fig. 1.22a)
and x2(t) (Fig. 1.22b). Following Fig. 1.22c and Fig. 1.22d, one could realize
the difference between the sum and product of two signals.

Example 1.8. Given two signal, x1(t) = a sin(ω1t + ϕ) and x2(t) = cosω2t.
The product produced by a unit-gain multiplier can be written as

y(t) = a sin(ω1t + ϕ) cosω2t

=
a

2
sin[(ω1 − ω2)t + ϕ] +

a

2
sin[(ω1 + ω2)t + ϕ] .

By applying a LP filter with a gain factor of 2 and cut-off frequency ω1−ω2 �
ωc � ω1 + ω2, we save only the first component with the frequency ω1 − ω2,
thereby supporting two useful applications:

• With ω1 	= ω2, a signal x1(t) might be supposed to be removed by a refer-
ence signal x2(t) from ω1 to ω1 − ω2 that is used in heterodyne receivers.

• With ω1 = ω2 and |ϕ| � π, the output varies as a function of ϕ, namely
y = sinϕ, that is exploited in phase detectors and phase locked loops. ��

In applications, the products are used to realize different nonlinear opera-
tions exploited, for example, in conventional AM with double sideband large
carrier, synchronous demodulation of AM, signals heterodyning, and phase
detection. In each of these cases, a mixer multiplies the signals together and
the product (or its part) is thereafter filtered to produce a desired quality.
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Rectification

Rectifiers are used to restore the envelope x̃(t) of a signal y(t) = x(t)z(t),
where x(t) is a message signal and z(t) is a carrier signal, or to convert an
alternative current (AC) waveform into a direct current (DC) waveform. Typ-
ically, two rectification schemes are used: the half-wave rectifier (Fig. 1.24a)
and the full-wave rectifier (Fig. 1.24b). Both schemes utilize semiconductor
diodes.

Fig. 1.24. Rectifiers: (a) half-wave and (b) full-wave (bridge method).

The nonlinear part of a half-wave rectifier may be described with the
operator

ỹ(t) = O(y)y(t) =
{

ax(t)z(t), z(t) � 0
0, z(t) < 0 (1.72)

and that of a full-wave rectifier by

ỹ(t) = Oy(t) = |ax(t)z(t)| . (1.73)

In a simplest case of each of the schemes, the envelope x̃(t) associated with
a message signal x(t) carried by the input y(t) is obtained by using an RC LP
filter.

Comparison

To go from an analog signal to the impulse signal, a comparator is used as a
nonlinear device intended to compare the input x(t) to the reference voltage xr

and switch the output y(t) to A if the input is above the threshold, x(t) > xr.
If drops below that value, x(t) < xr, the output is switched to B. The operator
of the transformation is therefore

y(t) = O(x)x(t) =
{

A, x(t) > xr

B, x(t) < xr
. (1.74)

A schematic realization of (1.74) is shown in Fig. 1.25, where a resistor R
obtains the necessary gain of a comparator at the threshold x(t) = xr.
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Fig. 1.25. Comparison of two voltages, x(t) and xr.

A comparator (Fig. 1.25) is also often used in filter structures as a high
gain linear amplifier.

Limitation

A comparator (or a system of comparators) can be used to gain the input
linearly in a gap between two thresholds (reference voltages), xr1 < x < xr2,
and limit (hold) the input at some level A when x(t) drops below xr1 and
at B if x(t) exceeds xr2. The relevant nonlinear operator of limitation can be
described with the piecewise function

y(t) = O(x)x(t) =

⎧
⎨
⎩

ax(t), xr1 < x(t) < xr2

A, x(t) < xr1

B, x(t) > xr2

. (1.75)

We notice that, typically, any linear amplifier with saturation fits (1.75).

1.4.4 Nonlinear Time-varying Systems

In applications, nonlinear systems may undergo intentional and/or “annoy-
ing” changes in their structures, thereby becoming time-varying. Because the
nonlinear blocks are typically designed to be memoryless, time variations in
their components result merely in time dependencies of the coefficients in the
above-discussed nonlinear memoryless operators.

So, we passed over the most typical and thus basic linear and nonlinear,
memory and memoryless operations in systems. Using them separately, or
combining the memoryless nonlinear subsystems with linear memory blocks
allows designing a variety of linear and nonlinear systems and structures, such
as filters, resonant amplifiers, oscillators, control systems, modulators, demod-
ulators, phase locked loops (PLLs), etc. Methods of analysis and examples of
systems will be considered in the following chapters.

1.5 Summary

What we discussed above introduces the reader to the fundamental canons of
systems and, in what follows, we shall start elucidating the methods of systems
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description. To keep the development more understandable and transparent,
the reader has to remember the fundamental definitions and classifications of
systems based on the following foundations:

− A system is a mathematical model of a physical process that relates the
input signal to the output signal.

− System analysis is provided to understand major properties of a system.

− System design is used to find a proper system that meets given specifica-
tions.

− System synthesis is carried out to find a proper system structure or block
diagram.

− System simplification is necessary to realize a system practically.

1.6 Problems

1.1 (Systems). A message is transmitted in the communication channel
simultaneously via the amplitude and angle of a modulated carrier signal.
Based upon (1.1)–(1.4), write the modulated signals for simultaneous

1. AM and FM
2. AM and PM
3. FM and PM
4. AM, FM and PM

1.2. The radar (Fig. 1.2) has measured a frequency shift Ω between the
transmitted and received signals. Write properly the received signal model
(1.9) and explain why the frequency shift may occur? How it might be coupled
with the vehicular velocity?

1.3. The Doppler frequency of a measurement is given by (1.15). Based upon
and following Fig. 1.3, derive the radial velocity ṙ and define the velocity

1. in direction x
2. in direction y
3. in direction z

1.4. Write an equation of the control system shown in Fig. 1.5. How the
function would be changed if there is an external additive factor v(t) at the
output of the “Manufacturing Process”?

1.5. Analyze the operation principle of ultrasonography (Fig. 1.6) and de-
duce what information about the human body may be extracted from the
amplitude, phase, and frequency of the reflected signal (1.17)?
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1.6. Following (1.18)–(1.24), solve the positioning problem for the robot in
the three coordinates x0, y0, and z0. Suppose that the 3D coordinates of the
transmitters, xi, yi, and zi, at the points A, B, and C are known. Note that
an antenna of the robot can be rotated only in a horizontal plane.

1.7. Analyze the principle equation (1.25) of an OXCO and explain a physical
essence of every term in its right-hand side. Suggest practical ways to diminish
the annoying components to zero.

1.8 (Systems classification). A system is performed with an input x(t)
and output y(t), which in vector forms are, x(t) and y(t), respectively. System
equations are given below. Realize whether the system is SISO, MISO, SIMO,
or MIMO?

1. q′(t) = Aq(t) + Bx(t)
y(t) = Cq(t) + Dx(t)

2. y(t) = Ax(t) + b d2

dt2 y(t) + d
dtc(t)y(t)

3. q′(t) = Aq(t) + Bx(t)
y(t) = Cq(t)

4. Ay(t) = a d
dty1(t) + bx(t) + c d

dtx(t)

5. ax(t) = By(t)

6. q′(t) = Aq(t) + Bx(t)
y(t) = Cq(t)

7. q′(t) = Aq(t) + Bx(t)
y(t) = Cq(t) + Dx(t)

1.9. Given the following SISO system:

1. y(t) = ax(t) + eat
t+θ∫
−∞

x(τ)dτ + c d
dtx(t) , θ ≥ 0

2. y(t) = at|x(t)| + b d2

dt2x(t) + d
dtc(t)x(t)

3. y(t) = a d
dty(t) + bx(t) + c d2

dt2 x(t) + d
dtd(t)x(t)

4. y(t) = a d
dty(t) + b d2

dt2 y(t) + c d3

dt3 y(t) + dx(t)

5. y(t) = ax(t) + c d
dt [x(t) − g]2

6. y(t) = at|x(t)| + b d
dtx(t)

Which system is memory and which is not? Why?
Which system is causal and which is not causal? Why?
Which system is linear and which is nonlinear? Why?
Which system is time-invariant and which is time-variant? Why?
Which system may be said to be BIBO stable? Why?



40 1 Introduction

Fig. 1.26. System block diagrams.

1.10. A systems is represented with the block diagram (Fig. 1.26). Analyze
the system structure and deduce whether a system is LTI, LTV, NTI, or NTV.

1.11. Write an equation of the system shown in Fig. 1.26 in the form used
in Problem 1.9.

1.12. Analyze the system shown in Fig. 1.26 and realize whether a system
is BIBO stable or not obligatorily BIBO stable. Formulate conditions (con-
straints) under which a system would always be BIBO stable.

1.13. Realize, which system structure shown in Fig. 1.26 is closed loop and
which is not? Which closed loop has a positive feedback and which has a
negative feedback? Which is closed loop control and which is not?

1.14. Consider any two systems shown in Fig. 1.26 and sketch a new structure
with their

1. Series interconnection
2. Parallel interconnection
3. Feedback interconnection

If possible, simplify a resulting structure. Write an equation of a new system.

1.15. An electric circuit is shown in Fig. 1.27. Implying that all its electric
units are time constants and using Table 1.2, write an ODE of the system.

1.16. All memory electric units (C and L) in the scheme shown in Fig. 1.27
are assumed to be time-controllable. Using Table 1.2, write an ODE of the
system.
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Fig. 1.27. Electrical systems.

1.17. A nonlinear memoryless system is represented with the below given
mapping equation:

1. y(t) = a + bx(t) + cx2(t)
2. y(t) = a2x2(t)− a ln x(t)

b

3. y(t) = ax(t) − b exp x(t)
a

4. y(t) = a ln b
x(t)

5. y(t) = ax−1(t) + b exp c
x(t)

Supposing that x(t) = cosω0t, determine the frequency content of the
output y(t) in the range of 0 � ω � 2ω0.

1.18. The system input x(t) and output y(t) are represented with the mag-
nitude spectra, |Cxk| and |Cyk|, respectively, as shown in Fig. 1.28. Realize,
which system is linear and which is nonlinear.

1.19 (Accuracy and precision). Positioning systems provide measure-
ments of the coordinates (x, y) of a linearly moving object (Fig. 1.29). Observe
the measurements and make a conclusion about accuracy and precision of each
of the systems.

1.20 (Uncertainty and robustness). The nominal performance of a sys-
tem (Problem 1.19) is shown in Fig. 1.29 with a bold line. Analyze the actual
performance and realize the system uncertainty 1) at every time instant, 2) at
particular parts of measurements, and 3) over all measurements.
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Fig. 1.28. Magnitude spectra, |Cxk| and |Cyk|, of the input signal x(t) and output
signal y(t), respectively.

Fig. 1.29. Coordinates measured of a linearly moving object (bold) with different
systems.

1.21. Following Example 1.1, specify the weighting transfer function for the
additive and feedback robust system models with uncertainty. Verify that, by
H̃ = 1

s+a and H = 1
s , the weights are W = a

s(s+a) and W = as for the additive
and feedback cases, respectively.
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Quantitative Methods of Systems Description

Any system represents some physical process with a mathematical model.
Therefore, its operator O is not always defined to be absolutely rigorous, but
rather described appropriately with some methods. Depending on applications
and practical needs, different methods may be used and different forms of sys-
tem presentation can be found. The most well developed methods are created
for LTI systems. All general responses of LTI systems are coupled with each
other by the transforms and already quite complete the LTI system theory
seems rigorous and strong. The other systems (LTV, NTI, and NTV) also
demonstrate abilities for generalization that will be shown in the sequel. Even
so, many nonlinear problems are still being solved involving approximation
and linearization as well as decomposing a system to well-studied blocks. Be-
low, we observe the most efficient methods of systems description in the time
and frequency (transform) domains. Such methods are called quantitative.

2.1 System Responses to Test Signals

Any input-to-output system responds to the input signal with its own unique
output signal. To generalize a system performance, the following standard test
waveforms are used.

The unit impulse δ(t) also called the Dirac1 delta function possesses the
following fundamental properties:

δ(t) =
{∞, t = 0

0, t 	= 0 and

∞∫

−∞
δ(t) dt = 1 . (2.1)

The other useful properties of δ(t) are postponed to Appendix A. The unit
step function u(t) is defined by

1 Paul Adrien Maurice Dirac, English mathematician, 8 August 1902–20 October
1984.
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u(t) =
{

1, t � 0
0, t < 0 (2.2)

and is coupled with δ(t) by a pair of the transformations:

δ(t) =
du(t)

dt
and u(t) =

t∫

−∞
δ(τ) dτ . (2.3)

Finally, the complex exponential signal ejωt is defined, as a test signal, by two
harmonic functions as

ejωt = cosωt + j sinωt , (2.4)

where ω is an angular frequency. Note that, in some special cases, albeit not
commonly, other test signals may be useful.

The response of a system to the standard test waveform (function) is then
described mathematically to be the system general response: impulse, step,
or frequency.

2.1.1 Impulse Response

When we use δ(t) as a test signal, we think about the response of a system to
the unit impulse, so about the impulse response, provided the definition:

Impulse response: The response of a system to the unit impulse is
the system impulse response.

��
More specifically, an LTI system is characterized by the impulse response

h(t) that is its response at time t to the unit impulse at time t,

h(t) = Oδ(t) . (2.5)

In turn, an LTV system is characterized by the time-varying impulse response
h(t, θ) that is its response at time t to the unit impulse at time θ,

h(t, θ) = O(t)δ(t − θ) . (2.6)

Example 2.1. An LTI system (Fig. 2.1a) is described with the ODE

d
dt

vC(t) +
1
τc

vC(t) =
1
τc

v(t) ,

where τc = RC is a system time constant, having a general solution

vC(t) = vC(0)e−
t

τc + e−
t

τc
1
τc

t∫

−0

e
θ

τc v(θ) dθ . (2.7)
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Suppose that the input is shaped with the unit impulse, v(t) = δ(t). Then,
by the sifting property of the delta function (Appendix A) and vC(0) = 0, the
solution (2.7) produces the system impulse response function

h(t) = vC(t) =
{

1
τc
e−t/τc , t � 0

0, t < 0
, (2.8)

illustrated in Fig. 2.1b. ��

Fig. 2.1. General responses of a system: (a) low-pass LTI system, (b) impulse
response h(t), (c) step-response s(t), (d) magnitude response |H(jω)|, and (e) phase
response Θ(ω).

Examples of the impulse responses of time-varying and nonlinear systems
will be considered in the relevant Chapters.
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2.1.2 Step Response

The other standard test signal, the unit step u(t), is associated with the step
response of a system, provided the definition:

Step response: The response of a system to the unit-step is the
system step response.

��
Similarly to the impulse response, the step response is specifically mea-

sured for time-invariant and time-varying systems. For LTI systems, the step
response g(t) is defined as the system response at time t to u(t) at t,

g(t) = Ou(t) . (2.9)

For LTV systems, it is characterized by the time-varying step response g(t, θ)
that is its response at time t to the unit step at time θ,

g(t, θ) = O(t)u(t− θ) . (2.10)

It can be shown that, for LTI systems, the step response is equivalently
defined by integrating the impulse response and the impulse response by dif-
ferentiating the step response, respectively,

g(t) =

t∫

0

h(τ) dτ and h(t) =
d
dt

g(t) . (2.11)

Note that for time-varying and nonlinear systems the relevant pair of the
transformations (2.11) is not commonly valid.

Example 2.2. Given a system (Fig. 2.1a) described in Example 2.1. Let the
input be a unit-step function, v(t) = u(t). Then (2.7) produces, by vC(0) = 0,
the system step response

g(t) = vC(t) =
{

1− e−t/τc , t � 0
0, t < 0

, (2.12)

shown in Fig. 2.1c. It may easily be verified that, by (2.11), the function (2.12)
becomes the impulse response (2.8) and integrating (2.8) produces the step
response (2.12). ��

2.1.3 Frequency Response

In the frequency domain, a system is characterized with the frequency response
also called the system function that is the measure of its response to a har-
monic signal, which amplitude is unit and which frequency can be arbitrary,
provided the definition:
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Frequency response: The ratio of the system response to the com-
plex exponential signal x(t) = ejωt and ejωt is the system frequency
response,

Frequency response =
Response to ejωt

ejωt
. (2.13)

��
Because a system is typically with memory, its frequency response is com-

monly a complex function. The absolute value of this function is called the
magnitude response and its phase the phase response.

Specifically for LTI systems, the frequency response is defined by

H(jω) =
Response to ejωt

ejωt
= |H(jω)|ejϕH(ω) , (2.14)

where |H(jω)| is the magnitude response and ϕH(ω) phase response. The
frequency response of an LTI system can be measured as follows. Sweep a
unit amplitude harmonic input signal through the bandwidth of a system and
measure the magnitude and phase of a relevant harmonic signal at the output.

It is of high importance that the impulse and frequency responses of an
LTI system are coupled by the Fourier2 transform (Appendix C)

H(jω)
F⇔ h(t) . (2.15)

For LTI systems we thus can say that the frequency response H(jω) is
the Fourier transform of its impulse response h(t) and the impulse response
is the inverse Fourier transform of its frequency response. Overall, all general
responses of LTI systems are interchangeable by the transformations. There-
fore, both SISO and MIMO LTI systems are consistently described in the time
and frequency (transform) domains.

If a system is LTV, its frequency response as well as magnitude and phase
responses become time-varying,

H(jω, t) =
Response to ejωt

ejωt
= |H(jω, t)|ejϕH (ω,t) . (2.16)

However, the time-varying impulse and frequency responses are not coupled
by the Fourier transform, contrary to (2.15) valid for LTI systems.

Note that nonlinear systems respond to the input signal with new har-
monics. Therefore the definition of the frequency response can only be used
as related to the harmonic of the same frequency as in the input.

Example 2.3. Consider a system described in Example 2.1. To define the
frequency response, the input signal must be set to be harmonic (cosine or
sine) with unit amplitude. Then suppose that v(t) = sinωt. The output is
thus predetermined to be
2 Jean Baptiste Joseph Fourier, French mathematician, 21 March 1768–16 May

1830.
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vC(t) = |H(jω)| sin[ωt + ϕH(ω)] .

Exploiting the general solution (2.7) with vC(0) = 0, substituting the
harmonic input and output, and using the Euler3 formula (Appendix E) allows
us to write

|H(jω)| sin[ωt + ϕH(ω)] = e−
t

τc
1
τc

t∫

−0

e
θ

τc sinωθ dθ

= e−
t

τc
1
τc

t∫

−0

e
θ

τc
ejωθ − e−jωθ

2j
dθ

=
e−

t
τc

2jτc

⎡
⎣

t∫

0

e(
1

τc
+jω)θ dθ −

t∫

0

e(
1

τc
−jω)θ dθ

⎤
⎦

=
1

1 + ω2τ2
c

(sinωt− ωτc cosωt) .

The expression results in two equations,

|H(jω)| sinϕH(ω) = − ωτc
1 + ω2τ2

c

,

|H(jω)| cosϕH(ω) =
1

1 + ω2τ2
c

,

yielding the magnitude and phase responses of a system, respectively,

|H(jω)| = 1√
1 + ω2τ2

c

, (2.17)

tanϕH(ω) = −ωτc (2.18)

The functions (2.17) and (2.18) are sketched in Fig. 2.1d and Fig. 2.1e,
respectively. ��
Example 2.4. In a much lesser sophisticated way, the responses (2.17) and
(2.18) can be derived exploiting (2.15). Indeed, by the Fourier transform ap-
plied to (2.8), the frequency response is easily found to be

H(jω) =

∞∫

0

e−
t

τc e−jωt dt =
1

1 + jωτc
(2.19)

and it is evident that the magnitude and phase responses associated with
(2.19) are given by (2.17) and (2.18), respectively. ��
3 Leonhard Euler, Swiss mathematician, 15 April 1707–18 September 1783.
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Nonlinear systems can also be characterized by responses to test signals,
following the general definitions. However, for such systems, the general re-
sponses are not interchangeable by the transformations, unlike the LTI sys-
tems case. For many nonlinear systems, the test responses cannot mathe-
matically be performed at all and approximate methods of identification are
applied. The other problem is here that the test responses can differ cardinally
for different values in different regions of signals. Therefore, nonlinear systems
are often locally linearized that makes the responses of linear systems to be
fundamental in the system theory.

2.2 Methods for Linear Systems

As follows from what was observed above, all LTI systems are exhaustively
characterized by responses to the standard test signals both in the time and
frequency (transform) domains. Their time responses (impulse and step) pre-
define each other by integration and differentiation and the impulse and fre-
quency responses are coupled by the Fourier transform. These splendid prop-
erties have created solid foundation for the methods of LTI systems analysis.

2.2.1 Convolution

In the time domain, the operator of an LTI system is called the convolution.
By the convolution, the output y(t) of a SISO LTI system is coupled with its
input x(t) via the impulse response h(t) as follows:

y(t) = Ox(t) =

∞∫

−∞
x(θ)h(t − θ) dθ = x(t) ∗ h(t)

=

∞∫

−∞
h(θ)x(t− θ) dθ = h(t) ∗ x(t) , (2.20)

where the symbol “∗” commonly denotes a convolution. Relations in (2.20)
hold true for both noncausal signals and systems and suggest that x(t) and
h(t) are commuting. When signals and systems are both causal, the lower
integral bound becomes zero and the upper equal to the current time value
t. By the convolution, a generalized structure of an LTI system in the time
domain appears as in Fig. 2.2a.

Example 2.5. Given a noncausal signal x(t) = ejω0t, driving a system rep-
resented with the impulse response

h(t) =
1
τc

e−
t

τc u(t) .



50 2 Quantitative Methods of Systems Description

Fig. 2.2. A generalized structure of a SISO LTI system: (a) in the time domain
and (b) in the frequency domain.

By (2.20), the output is calculated to be

y(t) =
1
τc

t∫

−∞
ejω0θe−

t−θ
τc dθ =

e−t/τc

τc

t∫

−∞
e(jω0+ 1

τc
)θ dθ =

ejω0t

1 + jω0τc
. (2.21)

With τc → ∞, the system is absolutely inertial (infinite memory) that
tends the output toward zero. In the other limiting case of τc → 0, the system
is memoryless having unity gain and the output becomes equal to the input.

��
If the Fourier transforms are known of

X(jω)
F⇔ x(t) , Y (jω)

F⇔ y(t) , and H(jω)
F⇔ h(t) ,

then the Fourier transform applied to the convolution integral (2.20) produces
an equivalent form in the frequency domain,

Y (jω) = H(jω)X(jω) . (2.22)

Relation (2.22) suggests that the operator of an LTI system in the fre-
quency domain is the frequency response H(jω) = |H(jω)|ejϕH(ω) specified
by (2.14). We thus can say that the frequency response of an LTI system is the
ratio of the Fourier transform of its output Y (jω) and the Fourier transform
X(jω) of its input, namely

H(jω) =
Y (jω)
X(jω)

. (2.23)

A generalized structure of an LTI system in the frequency domain is shown
in Fig. 2.2b.

Example 2.6. Given a signal

x(t) = ejω0t F⇔ X(jω) = 2πδ(ω − ω0)
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driving a SISO LTI system (Example 2.5) having the impulse response

h(t) =
1
τc

e−
t

τc u(t)
F⇔ H(jω) =

1
1 + jωτc

.

It can easily be verified that the Fourier transform applied to the output (2.21)
and the product H(jω)X(jω) produce the same result, respectively,

Y (jω) =
2π

1 + jω0τc
δ(ω − ω0)

that is the spectral density (Fourier transform) of the output. ��
If a system is LTV, then its input x(t) and output y(t) are coupled via the

time-varying impulse response h(t, θ) by the general convolution

y(t) = O(t)x(t) =

∞∫

−∞
x(θ)h(t, θ) dθ (2.24)

that, contrary to (2.20), commonly does not commute.

2.2.2 Differential Equations

In the time domain, an LTI system can be described with the N -order linear
ordinarily differential equation (ODE)

N∑
n=0

an
dn

dtn
y(t) =

M∑
m=0

bm
dm

dtm
x(t) , (2.25)

where an and bm are real constant coefficients bearing all dynamic (memory)
properties of a system and N refers to the highest order derivative of the
output, meaning that the condition N � M ensures physical realizability. The
system output can then be expressed as follows

y(t) =
M∑
m=0

bm
a0

dm

dtm
x(t)−

N∑
n=1

an
a0

dn

dtn
y(t) , (2.26)

where the first sum in the right-hand side represents the direct transformation
of x(t) to y(t) and the second one accounts for the feedback branches.

Example 2.7. A system (Example 2.1) is generalized with

1∑
n=0

an
dn

dtn
y(t) =

0∑
m=0

bm
dm

dtm
x(t) ,

where y(t) = vC(t), x(t) = v(t), a0 = 1/τc, a1 = 1, and b0 = 1/τc. ��
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A generalized N -order ODE of an LTV system is written as

N∑
n=0

dn

dtn
[an(t)y(t)] =

M∑
m=0

dm

dtm
[bm(t)x(t)] , (2.27)

where at least one of the real coefficients, an and bm, is time-varying. By
differentiating the products, (2.27) can be transformed to (2.25) with at least
one coefficient time-varying.

CARMA Model

An alternative form of the linear system ODE (2.26) came from the series
analysis and is known as the continuous-time autoregressive moving average
(CARMA) model,

y(t) =
M∑
m=0

βM−m
dm

dtm
x(t) −

N∑
n=1

αN−n
dn

dtn
y(t) , (2.28)

where the coefficients βm and αn are constants. Originally, the CARMA model
was used to investigate correlation in discrete-time series. Therefore, the first
sum in the right-hand side was called the moving average (MA) model and the
second one autoregressive (AR) model. It is evident that two models, (2.26)
and (2.28), have no substantial differences, because of, by αN−n = an/a0 and
βM−m = bm/a0, they convert to each other.

2.2.3 Transfer Function

It is known from the theory of ODEs that a solution of either (2.26) or (2.28)
cannot typically be found in the time domain in simple forms when N is
large. An alternative way implies applying the Laplace4 transform (Appendix
D) to both sides of the linear ODE, exploiting the transforms of the input

X(s)
L⇔x(t) and output Y (s)

L⇔ y(t), and representing (2.25) as follows

Y (s)
N∑
n=0

ans
n = X(s)

M∑
m=0

bmsm , (2.29)

where s = σ + jω is the Laplace variable. This equation gives another form of
the system operator that can now be represented in the transform domain as
the system transfer function, provided the definition:

Transfer function : The transfer function of a LTI system is the
ratio of the Laplace transform Y (s) of its output and the Laplace
transform X(s) of its input,

4 Pierre Simon Laplace, French physicist and mathematician, 23 March 1749–5
March 1827.
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H(s) =
Y (s)
X(s)

. (2.30)

��
By (2.29) and (2.30), the system transfer function can be expressed as

H(s) =
Y (s)
X(s)

=

M∑
m=0

bmsm

N∑
n=0

ansn
=

b0 + b1s + . . . bMsM

a0 + a1s + . . . + aNsN

=
bM
aN

(s− z1)(s− z2) . . . (s− zM )
(s− p1)(s− p2) . . . (s− pN )

, (2.31)

where the roots zm, m = 1, 2, . . . ,M , of the polynomial in the numerator are
called the zeros to mean that H(s) by each of these roots will tend toward zero.
In turn, the roots pn, n = 1, 2, . . . , N , of the polynomial in the denominator
are called the poles, because H(s) goes to infinite by each of them.

It is of importance that the transfer function and impulse response of an
LTI system are coupled by the pair of the Laplace transform, i. e.

H(s)
L⇔ h(t) . (2.32)

The generalized structure of a SISO LTI system in the s domain is shown
in Fig. 2.3b along with its counterpart in the time domain (Fig. 2.3a).

Fig. 2.3. A generalized structure of a SISO LTI system: (a) in the time domain
and (b) in the s domain.

Example 2.8. A system is given with the ODE (Example 2.1). Applying the
Laplace transform to the both sides of this equation, we have

sVC(s) +
1
τc

VC(s) =
1
τc

V (s) ,

where VC(s)
L⇔ vC(t) and V (s)

L⇔ v(t), that allows us to write the system trans-
fer function as
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H(s) =
VC(s)
V (s)

=
1

1 + sτc
. (2.33)

Note that, by s = jω, (2.33) becomes the system frequency response H(jω)
given in Example 2.6. ��

Overall, the transfer function, as a mathematical statement, is a relation-
ship between the input and the output of an LTI system in terms of the
transfer characteristics. Because the Fourier transform is a special case of the
bilateral Laplace transform then, by σ = 0, the system frequency response
H(jω) is a special case of the system transfer function H(s).

2.2.4 State Space Representation

The ODE (2.25) is coupled straightforwardly with the system model in state
space. The term “space” may be treated as a “memory element” of the system
and therefore the number of states is associated with the number of deriva-
tives. The set of all state variables is called the system’s state. Because the
set describes a system completely, it also contains sufficient information to
compute all future system’s states and outputs.

Most commonly, a MIMO LTV system is described with the so-called state
equation that is the first-order matrix ODE and state observation equation
that is a matrix algebraic equation, respectively,

q′(t) = A(t)q(t) + B(t)x(t) , (2.34)

y(t) = C(t)q(t) + D(t)x(t) , (2.35)

where q(t) is the N × 1 vector of the system states and q′(t) = d
dtq(t) is its

time derivative of the same dimensions. The k × 1 vector of a multiple input
x(t) and the p× 1 vector of a multiple output y(t) are, respectively,

x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xk(t)

⎤
⎥⎥⎥⎦ and y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yp(t)

⎤
⎥⎥⎥⎦ . (2.36)

The N × N matrix A(t) is called the system matrix, B(t) of dimensions
N ×k the input matrix, C(t) of p×N the observation matrix or measurement
matrix, and D(t) of p× k the output matrix.

At least one of the matrices in (2.34) and (2.35) must be time-variant for
the system to be LTV. Otherwise, the system is LTI and the equations become

q′(t) = Aq(t) + Bx(t) , (2.37)

y(t) = Cq(t) + Dx(t) . (2.38)
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If it is also a SISO LTI system, then its input x(t) and output y(t) are both
scalars, and the state-space model simplifies to

q′(t) = Aq(t) + Bx(t) , (2.39)

y(t) = Cq(t) + Dx(t) , (2.40)

where A has the same dimensions and the matrices B, C, and D possess the
dimensions N × 1, 1 × N , and 1 × 1, respectively. Moreover, if M < N in
(2.25), then the last term in the right-hand side of (2.40) vanishes, because
D = [0].

Example 2.9. A SISO system is described with the ODE (2.25). By assigning
the state variables

q1(t) = y(t) ,

q2(t) = y′(t) = q′1(t) ,

q3(t) = y′′(t) = q′2(t) ,

...

qN (t) = y(N−1)(t) = q′N−1(t) ,

we arrive at the state space model (2.39) and (2.40), for the N × 1 system’s
state vector

q(t) =
[
q1(t) q2(t) . . . qN (t)

]T (2.41)

and matrices

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1

−a0/aN −a1/aN . . . −aN−2/aN −aN−1/aN

⎤
⎥⎥⎥⎥⎥⎦

, (2.42)

B =
[
0 0 . . . 1/aN

]T
, (2.43)

C =

⎡
⎢⎢⎢⎣

b0 − a0bN/aN
b1 − a1bN/aN

...
bN−1 − aN−1bN/aN

⎤
⎥⎥⎥⎦

T

, (2.44)

D =
[
bN/aN

]
. (2.45)

��
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Just from the definition of the system state, it follows that the state space
equation describes the internal dynamic structure of a system and the obser-
vation equation shows how the states result in the system output.

Example 2.10. A system described by the ODE (Example 2.1) is SISO LTI.
Therefore, its equations in state space are (2.39) and (2.40) with x(t) = v(t)
and y(t) = vC(t). Having N = 1, the state variable may be assigned to be
q1(t) = y(t) = vC(t) and then the state vector becomes of 1× 1 dimensions,

q(t) = [q1(t)] .

By the known coefficients of the system generalized ODE (2.25): a0 =
1/τc, a1 = 1, and b0 = 1/τc, the matrices of the state space model become,
respectively,

A =
[
− 1

τc

]
, B = [1] , C =

[
1
τc

]
, and D = [0] .

��
The state space model of a MIMO LTI system readily converts to the

system transfer function. In fact, by applying the Laplace transform to (2.39),
we can write

sQ(s) = AQ(s) + BX(s) ,
Q(s) = (sI−A)−1BX(s) ,

where I is an identity matrix and Q(s)
L⇔q(t) and X(s)

L⇔x(t). The transform
of the output equation (2.38) then becomes

Y(s) = [C(sI−A)−1B + D]X(s) ,

where Y(s)
L⇔y(t), producing

H(s) = C(sI−A)−1B + D , (2.46)
where

H(s) = [H1(s)H2(s) . . .HN (s)]T

is the N × 1 transfer function matrix.

Example 2.11. By the matrices given in Example 2.10, the 1 × 1 transfer
function matrix (2.46) associated with the system ODE (Example 2.1) ac-
quires the component equal to (2.33), namely

H(s) =
[

1
τc

](
s[1]−

[
− 1

τc

])−1

[1] + [0] =
1

1 + sτc
.

��
On the whole, it follows that all basic methods intended for LTI systems

are interchangeable that creates an appreciable convenience and makes the
theory of these systems rigorous and strong. The same can be said, in part,
about the LTV systems. The case of nonlinear systems is apparently more
sophisticated requiring other methods of analysis.
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2.3 Common Methods for Nonlinear Systems

So far, we observed the methods intended for linear systems. When a sys-
tem is nonlinear, the functional dependance between its input and output is
described with a nonlinear operator,

y(t) = O(x)x(t) , (2.47)

that can also be time-varying, O(x, t). In line with linear systems, both NTI
and NTV systems can be described by the ODEs and represented in state
space. However, a general solution of the ODE with an arbitrary nonlinearity
apparently does not exist, except for some particular cases. Therefore, several
other methods were developed to describe nonlinear systems. In the reminder
of this Chapter, we shall consider the most common rigorous methods and
widely used approximate methods associated with nonlinear systems.

2.3.1 Volterra Series

In linear systems, the output y(t) is coupled with the input x(t) via the
impulse response by the convolution (2.20) (LTI systems) or via the time-
varying impulse response by the general convolution (2.24) (LTV systems).
If a system is memoryless NTI, we commonly expand its output y(x) to the
Taylor5 series around some point x0,

y(x) = y(x0) +
∂y(x)
∂x

∣∣∣∣
x=x0

(x − x0) +
1
2
∂2y(x)
∂x2

∣∣∣∣
x=x0

(x − x0)2

+ . . . +
1
k!

∂ky(x)
∂xk

∣∣∣∣
x=x0

(x− x0)k + . . . (2.48)

The Volterra6 series method considers a system to be nonlinear and mem-
ory either. Therefore, the Volterra series is often called the Taylor series with
memory. The output accordingly is calculated by the Volterra series operator

y(t) = Vx(t) = H0x(t) + H1x(t) + . . . + Hnx(t) + . . .

= h0 +
∞∑
n=1

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t− θ1) . . . x(t− θn)dθ1 . . . dθn , (2.49)

where hn(θ1, . . . , θn) is called the Volterra kernel. By these kernels, the com-
ponents of the series (2.49) are found to posses the important functional prop-
erties, namely

5 Brook Taylor, English mathematician, 18 August 1685–29 December 1731.
6 Vito Volterra, Italian mathematician, 3 May 1860–11 October 1940.
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H0x(t) = h0 (2.50)

is a constant (the output with zero input),

H1x(t) =

∞∫

−∞
h1(θ1)x(t− θ1)dθ1 (2.51)

is the output (convolution) corresponding to the linear system term, and the
rest of the components is calculated similarly:

H2x(t) =

∞∫

−∞

∞∫

−∞
h2(θ1, θ2)x(t− θ1)x(t− θ2)dθ1dθ2 , (2.52)

H3x(t) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(θ1, θ2, θ3)x(t − θ1)x(t − θ2)x(t− θ3)dθ1dθ2dθ3 ,

(2.53)
...

An expansion (2.49) suggests that, similarly to any LTI system that is
exhaustively characterized by the impulse response, any nonlinear system de-
scribed by the Volterra series is exhaustively characterized by the Volterra
kernels. In fact, the first term (2.50) is a constant value associated with the
system output for zero input. The second term (2.51) means nothing more
than the response of a linearized system. The third term (2.52) is the system
response produced by the square component. The fourth one (2.53) by the
cubic component, and so on. Therefore, if a nonlinear system is expandable to
the Volterra series, they often call its response to δ(t) the generalized impulse
response and say that its output is coupled with the input by the generalized
convolution.

Example 2.12. Consider an NTI system, in which a signal x(t) goes through
a series connection of an LTI filter with the impulse response h(t) and square-
law amplifier. The system block diagram can be performed as in Fig. 2.4.

Fig. 2.4. An NTI system with quadratic nonlinearity.
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First, the output of a filter can be defined by the convolution

y1(t) =

∞∫

−∞
h(θ)x(t− θ)dθ

and then the square value of y1(t) produces the system output

y(t) = y2
1(t) =

∞∫

−∞
h(θ1)x(t − θ1)dθ1

∞∫

−∞
h(θ2)x(t− θ2)dθ2

=

∞∫

−∞

∞∫

−∞
h2(θ1, θ2)x(t − θ1)x(t− θ2)dθ1dθ2 , (2.54)

where h2(θ1, θ2) = h(θ1)h(θ2) is the Volterra kernel. The system is thus per-
formed with the only term H2x(t) (2.52) of the Volterra series (2.49). ��
Example 2.13. A linear part of the system (Fig. 2.4) is described with the
impulse response h(t) = 1

τc
e−

t
τc u(t) and the input is the unit step x(t) = u(t).

The system output is thus the step response defined, by (2.54), to be

g(t) =
1
τ2
c

t∫

0

t∫

0

e−
θ1
τc e−

θ2
τc dθ1dθ2

=
1
τ2
c

⎛
⎝

t∫

0

e−
θ

τc dθ

⎞
⎠

2

=
(
1− e−

t
τc

)2

.

��
In spite of a seemingly obvious generality and convertibility of (2.49) to

the transform domain, there are two typical problems in applications of the
Volterra series: How to measure the Volterra kernels? How to transfer from
the system differential equation to the Volterra series? One more problem is
that the terms in the Volterra series are not orthogonal, therefore must be
identified all at once.

To orthogonalize the Volterra series, Wiener7 proposed a solution that
is known now as the Wiener method (Chapter 7). The method is based on
a simulation of the NTI memory system in a special manner via the func-
tional Volterra series, assuming a Brownian8 motion in the input. In line with
the Volterra and Wiener approaches, some other methods have been devel-
oped, among them the Fliess generating power series. All these methods can
equivalently be used in the transform domain. However, effectiveness of series
expansions is typically acceptable if systems have weak nonlinearities.
7 Norbert Wiener, American scientist, 26 November 1894–18 March 1964.
8 Robert Brown, British botanist, 21 December 1773–10 June 1858.
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2.3.2 Differential Equation Method

Both NTI and NTV systems can be performed by the N-order nonlinear ODEs
with respect to the nighest order time derivative of the output as follows,
respectively,

dNy

dtN
= f

(
y,

dy
dt

, . . . ,
dN−1y

dtN−1
, x,

dx
dt

, . . . ,
dMx

dtM

)
, (2.55)

dNy

dtN
= f

(
y,

dy
dt

, . . . ,
dN−1y

dtN−1
, x,

dx
dt

, . . . ,
dMx

dtM
, t

)
, (2.56)

where M � N . It is evident that general solutions of these equations cannot
be found. Instead, the analytical solutions exist only for several particular
cases.

Example 2.14. An NTI system is represented with the block diagram shown
in Fig. 2.5. Assign y1(t) to be the output of the first integrator. Then the
system equations for the inputs of each integrator may be written as

y′ = −0.5y2 + y1 ,

y′1 = bx− ay .

Differentiating the first equation and substituting for the second one leads
to the system nonlinear ODE

y′′ + yy′ + ay = bx (2.57)

that is modeled by Fig. 2.5 and can be represented in the Volterra form. ��

2.3.3 State Space Representation

It is known that any ODE of high order can be represented by the equations
system of the first order. If a system is NTI, then its state space model can
be performed with the equations

Fig. 2.5. An NTI system with a quadratic nonlinearity.
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q′(t) = Ψ[q(t),x(t)] , (2.58)

y(t) = Υ[q(t),x(t)] , (2.59)

where Ψ and Υ are some nonlinear operators. Supposing that both operators
are linear, we go from (2.58) and (2.59) to (2.37) and (2.38), respectively.

Example 2.15. Consider an NTI system (Fig. 2.5). Assign its output to be
the first state, q1(t) = y(t), and the output of the second integrator y1(t) to
be the second state, q2(t) = y1(t). The system nonlinear state space equations
then appear by simple manipulations:

q′(t) = A[q(t)]q(t) + Bx(t) ,

y(t) = Cq(t) ,

where

q(t) =
[
q1(t)
q2(t)

]
, A =

[−0.5q1(t) 1
−a 0

]
, B =

[
0
b

]
, C =

[
1 0
]
.

Note that these equations cannot be solved in a manner similar to the linear
ODEs, in which A does not depend on the state vector. ��

If a system is NTV, its generalized state space model becomes time-
varying,

q′(t) = Ψ[q(t),x(t), t] , (2.60)

y(t) = Υ[q(t),x(t), t] , (2.61)

that evidently complicates a solution. The most well investigated solutions for
particular structures of NTI and NTV systems in state space will be considered
in the relevant Chapters.

2.4 Approximation and Linearization

Any real electronic system is nonlinear by saturation and not every input-to-
output nonlinearity can be described analytically by physical laws. In many
cases, the function is first measured and then approximated and linearized.
Linearization is often included to the approximation procedure.

2.4.1 Polynomial Approximation

A great deal of nonlinear problems is efficiently solved by polynomial approxi-
mation using the Taylor series. For memoryless SISO systems, (2.48) is usually
written as an approximating k-degree polynomial
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y(x) = y(x0) + a1(x − x0) + a2(x− x0)2 + . . . + ak(x− x0)k , (2.62)

for which the coefficients ak are calculated analytically by ak = 1
k!
∂ky(x)
∂xk

∣∣∣
x=x0

or determined experimentally. If the point x0 is fixed, then (2.62) is very often
written for increments of the variable and function, namely as

Δy = a1Δx + a2Δx2 + . . . + akΔxk , (2.63)

where Δy = y(x)− y(x0) and Δx = x− x0.

Example 2.16. The input-to-output dependence y(x) of a system was mea-
sured at three points: y(0) = 0, y(1) = 1, and y(2) = 3. By (2.63), the
coefficients of the approximating polynomial of the second degree, y(x) =
a1x+a2x

2, are defined by solving the equations 1 = a1 +a2 and 3 = 2a1 +4a2

to be a1 = a2 = 0.5. That yields y(x) = 0.5x(1 + x). Fig. 2.6a shows the
measured points along with the approximating curve. ��

Fig. 2.6. Measured nonlinear function: (a) approximation and (b) linearization.

2.4.2 Methods of Linearization

The most common method of analytical linearization implies describing a non-
linear system by linear functions around some points. Linearization may be
provided by the piecewise-linear (PWL) approach or linear spline interpola-
tion. Exponential, quadratic, cubic, and other piecewise-functions and splines
are also often used.

Analytic Linearization

Analytic linearization of the input-to-output dependence around some oper-
ation point is provided by saving only two first terms (constant and linear)
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in the Taylor series (2.48). If a nonlinear SISO system is memoryless, then a
linearizing expansion in the vicinity of x0 becomes, by (2.48),

y(x) ∼= y(x0) + a1(x− x0) , (2.64)

where the coefficient

a1 =
∂y(x)
∂x

∣∣∣∣
x=x0

(2.65)

is defined either analytically or experimentally.

Example 2.17. Given a memoryless SISO system represented with y(x) =
0.5x(1 + x) (Example 2.16). By (2.65), we have a1 = 0.5 + x0 and then, by
(2.64), the linearizing function becomes

y(x) = y(x0) +
(

1
2

+ x0

)
(x− x0) .

Fig. 2.6b shows this line at three discrete points y(0) = 0, y(1) = 1, and
y(2) = 3. ��

Linearization of Nonlinear ODE

Likewise, linearization can be obtained for the N -order nonlinear ODE (2.55).
The Taylor expansion is applied at some desirable operation point x0, y0 with
seemingly known derivatives y′0, y

′′
0 , . . . , y(N)

0 , x′0, x
′′
0 , . . . , x(M)

0 . Only constant
and linear terms are saved and a linearized equation is complete:

ỹ(N)(t) =
∂f

∂y

∣∣∣∣
0

ỹ(t) +
∂f

∂y′

∣∣∣∣
0

ỹ′(t) + . . . +
∂f

∂y(N−1)

∣∣∣∣
0

ỹ(N−1)(t) + . . .

+
∂f

∂x

∣∣∣∣
0

x̃(t) +
∂f

∂x′

∣∣∣∣
0

x̃′(t) + . . . +
∂f

∂x(M)

∣∣∣∣
0

x̃(M)(t) , (2.66)

where
∂f

∂var

∣∣∣∣
0

� ∂f

∂var

∣∣∣∣
x=x0 ,y=y0 ,xm=xm

0 ,ym=ym
0

,

n = 1, 2, . . . , N − 1, m = 1, 2, . . . ,M , and, for the sake of accuracy, all incre-
ments

ỹ = y − y0 , ỹ′ = y′ − y′0 , . . . , ỹ(N−1) = y(N−1) − y
(N−1)
0 ,

x̃ = x− x0 , x̃′ = x′ − x′0, . . . , x̃(M) = x(M) − x
(M)
0

are commonly preserved to be reasonably small. By assigning
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ã0 =
∂f

∂y

∣∣∣∣
0

, b̃0 =
∂f

∂x

∣∣∣∣
0

, ãn =
∂f

∂y(n)

∣∣∣∣
0

, and b̃n =
∂f

∂x(m)

∣∣∣∣
0

, (2.67)

(2.66) becomes a linear ODE

ỹN (t) = ã0ỹ(t) + ã1ỹ
′(t) + . . . + ãN−1ỹ

(N−1)(t) + . . .

+b̃0x̃(t) + b̃1x̃
′(t) + . . . + b̃M x̃(M)(t) (2.68)

that can be written in the standard form (2.25) and then solved, by aN = 1. In
time-varying problems, the operation point changes with time, y0(t) and x0(t).
Therefore, the ODE linearized by (2.68) possesses at least one time-varying
coefficient.

Example 2.18. An NTI system is given with the ODE (2.57),

y′′ = −yy′ − ay + bx .

By (2.67), the coefficients are defined to be ã0 = −y′0 − a, ã1 = −y0, and
b̃0 = b and then the linearized ODE becomes

ỹ′′ = −(y′0 + a)ỹ − y0ỹ
′ + bx̃ ,

having a general solution. ��

Linearization of State Space Model

In a manner similar to the ODEs, an NTI system state space model, (2.58)
and (2.59), can also be linearized. Assume that the system is examined in
the vicinity of the point y0, x0 corresponding to the state q0 and its time
derivative q′0. The actual system state, input, and output may then be defined
by, respectively,

q(t) = q0(t) + q̃(t) , (2.69)

x(t) = x0(t) + x̃(t) , (2.70)

y(t) = y0(t) + ỹ(t) , (2.71)

where q̃(t), x̃(t), and ỹ(t) are small time varying increments. By (2.69)–(2.71),
the state space model, (2.58) and (2.59), transforms to

q′0(t) + q̃′(t) = Ψ[q0(t) + q̃(t),x0(t) + x̃(t)] , (2.72)

y0(t) + ỹ(t) = Υ[q0(t) + q̃(t),x0(t) + x̃(t)] . (2.73)

Expanding both sides of these equations to the Taylor series and truncating
for the constant and linear terms makes them linearized in the forms of (2.37)
and (2.38), respectively,

q̃′(t) = Aq̃(t) + Bx̃(t) , (2.74)
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ỹ(t) = Cq̃(t) + Dx̃(t) , (2.75)

in which all matrices are Jacobian being predetermined by

A =
∂Ψ
∂q

∣∣∣∣
0

, B =
∂Ψ
∂x

∣∣∣∣
0

, C =
∂Υ
∂q

∣∣∣∣
0

, D =
∂Υ
∂x

∣∣∣∣
0

, (2.76)

where Φ and Υ are taken from (2.58) and (2.59), respectively.
Because the approach is the same, the linearized state space model is akin

to the linearized nonlinear ODE having the same range of applications.

Example 2.19. Following Example 2.14, an NTI system (Fig. 2.5) is de-
scribed in state space with

q′(t) = Ψ[q(t),x(t)] , (2.77)

y(t) = Cq(t) , (2.78)

where

q(t) =
[
q1(t)
q2(t)

]
and Ψ =

[−0.5q2
1(t) + q2(t)

−aq1(t) + bx(t)

]
. (2.79)

By (2.76), the matrices of the linearized equations (2.74) and (2.75) are
defined to be

A =
[−q10(t) 1
−a 0

]
, B =

[
0
b

]
, C =

[
1 0
]
, D = [0] . (2.80)

Because y(t) = q1(t), the matrix equations may be performed as
[
y′(t)
q′2(t)

]
=
[−y0(t) 1
−a 0

] [
y(t)
q2(t)

]
+
[

0
b

]
x (2.81)

that, equivalently, leads to

y′(t) = −y0(t)y(t) + q2(t) , (2.82)

q′2(t) = −ay(t) + bx(t) . (2.83)

By differentiating (2.82) and substituting for the second equation (2.83),
one arrives at the same linearized equation as in Example 2.18. ��

Linearization Techniques

Technical linearization implies using some auxiliary nonlinear blocks to make
the system linear. Several linearization techniques are used, among them the
feedforward linearization, feedback linearization, and nonlinear predistortion
of signals can most frequently be met in designs. The linearization techniques
are expounded in Chapter 7.
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2.5 Averaging

Special approximate methods of averaging have been developed for centuries
to investigate the fundamental properties of nonlinear systems. The approach
relates to the closed loop systems typically modeled with the nonlinear ODE
of the second order

y′′ + ω2
0y = εf (y, y′) , (2.84)

where f(y, y′) is a nonlinear function, ε ∼ 2δ is a small parameter proportional
to the open system bandwidth 2δ � ω0, and ω0 is the system resonance
angular frequency. If a system is of higher order, then, by small ε, its high
order time derivatives are commonly reduced to y or y′. A solution of (2.84)
is usually found by linearization and many linearization methods are based
on averaging.

The history of application of averaging to different physical system prob-
lems returns us back to the works of Lagrange9, Poisson10, Poincaré11,
Laplace, Lyapunov12, Brillouin13, Wentzel14 Kramers15 (BWK method), and
many others. However, a historical breakthrough was done only in the 1920s
by van der Pol16 with his heuristical method of “slowly changing amplitude”.
Considering solely an electronic oscillator, van der Pol, virtually, discovered
a new approach to solve a great deal of problems in vibrating and oscillat-
ing nonlinear systems. Soon after, in the 1930s, Krylov17 with his student
Bogoliubov18 justified the van der Pol method mathematically, extended it
to higher-order approximations, and presented the asymptotic theory of os-
cillations. The first-order approximation of the asymptotic method was then
widely cited as the Krylov-Bogoliubov (KB) method. Thereafter, the theory
has been extended by Krylov, Bogoliubov, and Mitropolskiy19 to the other
method known as the equivalent linearization associated with harmonic bal-
ance. Furthermore, the theory was greatly developed by Bogoliubov and his
student Mitropolskiy and the asymptotic method of the higher-order approxi-
mations was called the Krylov-Bogoliubov-Mitropolskiy (KBM) method (also

9 Joseph-Louis Lagrange, French/Italian mathematician, 25 January 1736–10 April
1813.

10 Simon Denis Poisson, French mathematician, 21 June 1781–25 April 1840.
11 Jules Henri Poincaré, French mathematician, 29 April 1854–17 July 1912.
12 Aleksandr Mikhailovich Lyapunov, Russian/Ukrainian mathematician, 6 June

1857–3 November 1918.
13 Léon Nicolas Brillouin, French physicist, 7 August 1889–4 October 1969.
14 Georg Wentzel, German/Swiss physicist, 17 February 1898-12 August 1978.
15 Hendrik Antony Kramers, Dutch physicist, 17 December 1894–24 April 1952.
16 van der Pol, Balthasar, Dutch engineer, 1889–1959.
17 Nikolay Mitrofanovich Krylov, Russian born Ukrainian mathematician, 29

November 1879–11 May 1955.
18 Nikolai Nikolaevich Bogoliubov, Russian born Ukrainian mathematician, 21 Au-

gust 1909-13 February 1992.
19 Yuriy Alekseevich Mitropolskiy, Ukrainian mathematician, 1917– .



2.5 Averaging 67

cited as the generalized method of averaging). In line with these works, al-
beit not commonly, several other approaches are also used, among them the
shortened (truncated) equations method, averaging by transforming variables
(canonical variables method), and others.

It is worth remembering that almost all approximate methods elaborated
for nonlinear systems are applicable for linear systems with sometimes a
shorter way, although approximate, to reach the result.

2.5.1 Method of Expansion (Perturbation Method)

Even though the perturbation method (or method of expansion) does not ex-
ploit an idea of averaging straightforwardly, it is an asymptotic approach. We
therefore shall consider it in conjunction with the methods of averaging.

Historically, an application of the perturbation method to nonlinear prob-
lems was first formulated by Poisson, then studied by many scientists, and
finally generalized by Poincaré.

An idea of the method is to perform a solution for (2.84) by the series

y = y0 + εy1 + ε2y2 + . . . + εnyn + . . . =
∞∑
i=0

εiyi . (2.85)

Substituting (2.85) to (2.84) formally produces

∞∑
i=0

εiy′′i + ω2
0

∞∑
i=0

εiyi = −εf
( ∞∑
i=0

εiyi,
∞∑
i=0

εiy′i

)
. (2.86)

Supposing that the nonlinear function is multiply differentiable (so ana-
lytic), the right-hand side of (2.86) is expanded, by the method, to the Taylor
series for the powers of a small parameter ε. Herewith, the terms with εi are
discarder if i is higher than n. Equating the coefficients of εi, i � n, yields the
equations

y′′0 + ω2
0y0 = 0 ,

y′′1 + ω2
0y1 = f(y0, y

′
0) ,

y′′2 + ω2
0y2 = f ′y(y0, y

′
0)y1 + f ′y′(y0, y

′
0)y
′
1 ,

... (2.87)

further solved for the unknown values of y0, y1, . . . , yn.
It can be shown that the series expansion often predetermines a critical

disadvantage neatly demonstrated by a harmonic wave

sin(ω0 + ε)t = sinω0t + εt cosω0t− ε2t2

2!
sinω0t− ε3t3

3!
cosω0t + . . .
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As it is seen, in line with the first harmonic term sinω0t, there exist the
so-called secular terms, which amplitudes increase with time infinitely. It is
evident that, by large n and relatively short observation time, the secular
terms will compensate each other. In practice, however, only small n is of
importance. Therefore, the perturbation method has not gained wide currency
in the nonlinear system problems.

2.5.2 Van der Pol’s Method

Let us come back to the closed loop system equation y′′+a(1−K)y′+ by = 0
(1.45), set a = −ε, b = ω2

0 , and K = y2, and represent it in the form of (2.84).
We thus arrive at what is known as the van der Pol oscillator equation,

y′′ + ω2
0y = ε(1− y2)y′ , (2.88)

in which the nonlinear function is represented with f(y, y′) = (1− y2)y′. Note
that the classical van der Pol oscillator is normalized for the dimensionless
time τ = ω0t to be

y′′ + y = ε(1− y2)y′ , (2.89)

where ε ∼ 2δ/ω0 = 1/Q� 1, and Q is the quality factor of an open system.
An heuristical (although correct!) suggestion by van der Pol was to find a

solution of (2.88) in the forms of

y = r cosψ , (2.90)

y′ = −ω0r sinψ , (2.91)

where ψ(t) = ω0t+ϑ(t) and ϑ(t) is a time-varying phase. In further, validity of
(2.90) and (2.91) was justified by many authors and these forms have became
a common feature of most of the methods considering the amplitude r(t) and
phase ϑ(t) of harmonic oscillations as slowly varying with time.

Now, let us write the first time-derivative of (2.90) completely:

y′ = r′ cosψ − ω0r sinψ − ϑ′r sinψ . (2.92)

Since we also want to allow (2.91), the following constraint appears, by com-
paring (2.92) and (2.91),

r′ cosψ − ϑ′r sinψ = 0 . (2.93)

Substituting (2.90) and (2.91) to (2.84) produces

r′ sinψ + ϑ′r cosψ = − ε

ω0
f(r cosψ,−ω0r sinψ) (2.94)

and, by solving (2.94) with (2.93), we arrive at the solutions

r′ = − ε

ω0
f(r cosψ,−ω0r sinψ) sinψ , (2.95)
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ϑ′ = − ε

ω0r
f(r cosψ,−ω0r sinψ) cosψ . (2.96)

Because both functions, r and ϑ, are presumed to change slowly, they may
also be assumed to be constants during period T = 2π/ω. Based upon this
and averaging (2.95) and (2.96) over T , we arrive at

r′ = − ε

2πω0

2π∫

0

f(r cosψ,−ω0r sinψ) sinψ dψ , (2.97)

ϑ′ = − ε

2πω0r

2π∫

0

f(r cosψ,−ω0r sinψ) cosψ dψ . (2.98)

For the van der Pol equation (2.88), substituting f(y, y′) to (2.97) and
(2.98) first gives

r′ =
ε

2π

2π∫

0

r(1 − r2 cos2 ψ) sin2 ψ dψ , (2.99)

ϑ′ =
ε

4πr

2π∫

0

r(1 − r2 cos2 ψ) sin 2ψ dψ (2.100)

and then leads to the final ODEs regarding the amplitude and phase, respec-
tively,

r′ =
ε

2
r

(
1− r2

4

)
, (2.101)

ϑ′ = 0 . (2.102)

To solve (2.101), it is in order, first, to change a variable, z = r2, then
separate variables, and integrate the both sides to get

∫
dz

z(z − 4)
= − ε

4
t + C ,

where C is an integration constant. An integral identity
∫

dx
x(x+a) = 1

a ln
∣∣∣ x
x+a

∣∣∣
then leads to

−1
4

ln
∣∣∣∣

z

z − 4

∣∣∣∣ =
1
4

ln
∣∣∣∣
z − 4
z

∣∣∣∣ = −
ε

4
t + C ,

ln
∣∣∣∣1−

4
z

∣∣∣∣ = −εt + 4C , 1− 4
z

= e−εte4C ,

z =
4

1− e−εte4C
, and r =

2√
1− e−εte4C

.
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For the initial value of r0 = 0, the last relation produces e4C = 1− 4
r20

and
the solution finally becomes

r(t) =
2√

1 +
(

4
r20
− 1
)
e−εt

. (2.103)

Hence, van der Pol’s oscillator generates oscillations

y(t) = r(t) cos(ω0t + ϑ0)

with a constant phase ϑ0 and the transient in the amplitude determined by
(2.103). Fig. 2.7 illustrates (2.103) for the particular values of r0 = 0.01,
ε = 0.1, ω0 = 1, and ϑ0 = 0. It is seen that the oscillations sustain at
r(t) = r0 = 2.

Fig. 2.7. Oscillations in van der Pol’s oscillator with r0 = 0.01, ε = 0.1, ω0 = 1,
and ϑ0 = 0.

An importance of van der Pol’s equation (2.88) resides in the fact that it
models with a sufficient accuracy a great deal of particular oscillator schemes.
On the other hand, the method ignores high harmonics [a solution of (2.102)
produces a constant ϑ0] and, consequently, does not allow us to evaluate the
effect caused by the amplitude-to-phase conversion associated with nonlinear-
ities. This disadvantage is overcame in the asymptotic methods.

2.5.3 Asymptotic Methods of Krylov-Bogoliubov-Mitropolskiy

Created by Krylov and Bogoliubov and thereafter developed by Bogoliubov
and Mitropolskiy, the asymptotic methods are mathematically rigorous.

The main idea of the approach is to find a solution for (2.84) in a series
form of

y = r cosψ + εu1(r, ψ) + ε2u2(r, ψ) + ε3u3(r, ψ) + . . . , (2.104)
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where u1(r, ψ), u2(r, ψ), . . . are 2π-periodic functions of ψ, and slowly chang-
ing with time the values of r and ψ are defined by the differential equations,
respectively,

r′ = εA1(r) + ε2A2(r) + . . . , (2.105)

ψ′ = ω0 + εB1(r) + ε2B2(r) + . . . , (2.106)

in which the functions A1(r), A2(r), . . . , B1(r), B2(r), . . . are determined by
averaging the nonlinear functions of the relevant harmonics of oscillations.

Typically, dealing with high order terms of the asymptotic series entail
difficulties. On the other hand, only the amplitude and its influence upon the
phase are commonly of practical importance. Therefore, application of the
method is usually restricted with the first and second orders of approximation.

The First Order Approximation

In the first order approximation, equations (2.105) and (2.106) are shortened
to, respectively,

r′ = εA1(r) , (2.107)

ψ′ = ω0 + εB1(r) , (2.108)

and the functions A1(r) and B1(r) are given by, respectively,

A1(r) = − 1
2πω0

2π∫

0

f(r cosψ,−rω0 sinψ) sinψ dψ , (2.109)

B1(r) = − 1
2πrω0

2π∫

0

f(r cosψ,−rω0 sinψ) cosψ dψ . (2.110)

As follows from a comparison of (2.97), (2.98) and (2.107), (2.110), the
first order approximation of the Krylov and Boboliubov asymptotic method
coincides with the van der Pol method.

The Second Order Approximation

In the second order approximation, a solution is found as

y = r cosψ + εu1(r, ψ) , (2.111)

where the function u1(r, ψ) is defined by the series

u1(r, ψ) =
g0(r)
ω2

0

− 1
ω2

0

∞∑
n=2

gn(r) cos nψ + hn(r) sinnψ

n2 − 1
, (2.112)
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in which

gn(r) =
1
π

2π∫

0

f(r cosψ,−rω0 sinψ) cosnψ dψ , (2.113)

hn(r) =
1
π

2π∫

0

f(r cosψ,−rω0 sinψ) sinnψ dψ . (2.114)

The slowly changing averaged amplitude and phase are described by, re-
spectively,

r′ = εA1(r) + ε2A2(r) , (2.115)

ψ′ = ω0 + εB1(r) + ε2B2(r) , (2.116)

where, the functions A1(r) and B1(r) are still given by (2.109) and (2.110),
respectively. The remaining functions are defined with

A2(r) = − 1
2ω0

(
2A1B1 + A1

∂B1

∂r
r

)

− 1
2πω0

2π∫

0

[
u1(r, ψ)f ′y +

(
A1 cosψ − rB1 sinψ + ω0

∂u1

∂ψ

)
f ′y′
]

sinψ dψ ,

(2.117)

B2(r) = − 1
2ω0

(
B2

1 −
A1

r

∂A1

∂r

)

− 1
2πω0r

2π∫

0

[
u1(r, ψ)f ′y +

(
A1 cosψ − rB1 sinψ + ω0

∂u1

∂ψ

)
f ′y′
]

cosψ dψ ,

(2.118)
where

f ′y =
∂f(y, y′)

∂y

∣∣∣∣ y=r cosψ
y′=−rω0 sinψ

, f ′y′ =
∂f(y, y′)

∂y′

∣∣∣∣ y=r cosψ
y′=−rω0 sinψ

.

The reader should not be confused by complexity of the functions u1(r, ψ),
A2(r) and B2(r), since they are given in the most common forms. For partic-
ular NTI systems, substantial simplifications could take place that we demon-
strate below traditionally analyzing the van der Pol’s oscillator.

Example 2.20 (Solutions of van der Pol’s equation in the second
order approximation). Consider van der Pol’s equation (2.89) and find its
solutions in the second-order approximation by the asymptotic method.

We first transform (2.113) and (2.114) and realize that
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gn(r) = 0|n�0 , hn(r) =
{

r3/4, n = 3
0, n 	= 3 .

The function (2.112) is then defined to be

u1(r, ψ) = − r3

32ω0
sin 3ψ

and the solution (2.111) in the second order approximation becomes

y = r cosψ − εr3

32ω0
sin 3ψ . (2.119)

To obtain the functions of the slowly changing r and ψ, we first determine

f ′y = r2ω0 sin 2ψ , f ′y′ = 1− r2 cos2 ψ

and thereafter, by (2.117) and (2.118), define

A2(r) = 0 , B2(r) = −1
8

+
r2

8
− 7r4

256
.

By (2.115) and (2.116), the differential equations for the time-varying am-
plitude and phase become, respectively,

r′ =
ε

2
r

(
1− r2

4

)
, (2.120)

ψ′ = ω0 − ε2

8ω0

(
1− r2 +

7r4

32

)
. (2.121)

A solution of (2.120) is given by (2.103) that allows integrating (2.121)
straightforwardly to obtain a solution

ψ = ω0t− ε2

8ω0

(
1− r2 +

7r4

32

)
t + ϑ0 , (2.122)

where ϑ0 is an initial phase.
We then deduce that, in the second order approximation, the amplitude of

van der Pol’s oscillator is still obtained by the first order approximation and
that the main effect is in the amplitude-to-phase conversion produced by the
second term in the right-hand side of (2.122). ��

Overall, asymptotic approximation in the first order (error ∼ ε2) gives
solutions for the variable amplitude and constant phase, second order (error
∼ ε3) contributes for with the amplitude-to-phase conversion, third order
(error ∼ ε4) accounts for the phase-to-amplitude conversion, and so on. Let
us notice again that, since of prime importance is the amplitude behavior and
its influence upon the phase, an analysis is usually restricted with the first
and second order approximations.
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2.5.4 Systems with Slowly Changing Parameters

Bogoliubov and Mitropolskiy showed that the asymptotic approach still can
be useful if a closed loop system is NTV and its coefficients change with time
slowly as compared to period T . It was also shown that a generalized form of
the ODE for such systems is written as

[m(τ)y′]′ + k(τ)y = εf(τ, y, y′) , (2.123)

where τ = εt is a “slow” time. The model implies that the coefficients, m(τ)
and k(τ), are both nonzero and multiply differentiable (analytical) on the
observable time interval.

A solution of (2.123) is searched in frames of the asymptotic methods as

y = r cosψ + εu1(τ, r, ψ) + ε2u2(τ, r, ψ) + . . . , (2.124)

where the functions u1(τ, r, ψ), u2(τ, r, ψ), . . . are 2π-periodic regarding an
angle ψ. The amplitude and phase associated with (2.124) are then defined
by the ODEs, respectively,

r′ = εA1(τ, r) + ε2A2(τ, r) + . . . , (2.125)

ψ′ = ω0(τ) + εB1(τ, r) + ε2B2(τ, r) + . . . , (2.126)

where

ω2
0(τ) =

k(τ)
m(τ)

(2.127)

defines the square natural frequency. As well as for (2.84), here the functions
A1(τ, r), A2(τ, r), . . . , B1(τ, r), B2(τ, r), . . . are determined by averaging the
nonlinear function in the right-hand side of (2.123) from 0 to 2π over ψ for the
relevant harmonic of oscillations. The first and second orders of approximation
obtained by this approach are observed below.

The First Order Approximation

It seems obvious that in the first order approximation a solution of (2.123) is
still found as

y = r cosψ , (2.128)

where the amplitude and phase are defined by the restricted series (2.125) and
(2.126), respectively,

r′ = εA1(τ, r) , (2.129)

ψ′ = ω0(τ) + εB1(τ, r) . (2.130)

For the time-varying coefficients, the functions A1(τ, r) and B1(τ, r) are
given by, respectively,
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A1(τ, r) = − r

2m(τ)ω0(τ)
d[m(τ)ω0(τ)]

dτ

− 1
2πm(τ)ω0(τ)

2π∫

0

f0(τ, r, ψ) sinψ dψ , (2.131)

B1(τ, r) = − 1
2πrm(τ)ω0(τ)

2π∫

0

f0(τ, r, ψ) cosψ dψ , (2.132)

where
f0(τ, r, ψ) = f [τ, r cosψ,−rω0(τ) sinψ] . (2.133)

An important conclusion follows instantly. Because the time-varying pa-
rameters, m(τ) and k(τ), affect both A1 and B1, one should expect variations
in both the amplitude and phase.

Example 2.21 (Van der Pol’s oscillator with modulated frequency).
We will now think that the frequency of van der Pol’s oscillator is harmonically
modulated with a small amplitude a � 1 and frequency 0 < Ω ∼ ε � ω0;
that is,

ω0(t) = ω0(1 + a cosΩt) . (2.134)

The equation (2.84) may therefore be written as

y′′ + ω2
0(1 + a cos γτ)2y = ε(1− y2)y′ , (2.135)

where τ = εt and γ = Ω/ε. In terms of (2.123), this gives the coefficients
m(τ) = 1 and k(τ) = ω2

0(1 + a cosγτ)2.
By (2.131) and (2.132), the functions A1(τ, r) and B1(τ, r) become, re-

spectively,

A1(τ, r) ∼= r

2

(
1− r2

4

)
+

r

2
aγ sin γτ , (2.136)

B1(τ, r) = 0 (2.137)

that transforms (2.129) and (2.130) to, respectively,

r′ =
ε

2
r

(
1− r2

4

)
+

ε

2
raγ sin γτ , (2.138)

ψ′ = ω0(1 + a cos γτ) . (2.139)

It is seen that the first time derivative of the phase (2.139) equals exactly
to the function (2.134) of a modulated frequency. Herewith, the amplitude
(2.138) also undergoes modulation. Inherently, by γ = 0, both equations be-
come solutions of the classical van der Pol oscillator. ��
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The Second Order Approximation

In the second order approximation, a solution (2.124) saves two terms,

y = r cosψ + εu1(τ, r, ψ) , (2.140)

where r and ψ are defined by equations of the second order approximation

r′ = εA1(τ, r) + ε2A2(τ, r) , (2.141)

ψ′ = ω0(τ) + εB1(τ, r) + ε2B2(τ, r) . (2.142)

The functions A1(τ, r) and B1(τ, r) are still defined by (2.131) and (2.132),
respectively. Expressions for A2(τ, r) and B2(τ, r) are given below, respec-
tively,

A2(τ, r) = − 1
2ω0(τ)

[
r
∂B1

∂r
A1 + r

dB1

dτ
+ 2A1B1 +

r

m(τ)
dm(τ)

dτ
B1

]

− 1
2πm(τ)ω0(τ)

2π∫

0

f1(τ, r, ψ) sinψ dψ , (2.143)

B2(τ, r) =
1

2rω0(τ)

[
∂A1

∂r
A1 +

dA1

dτ
− rB2

1 +
1

m(τ)
dm(τ)

dτ
A1

]

− 1
2πrm(τ)ω0(τ)

2π∫

0

f1(τ, r, ψ) cosψ dψ . (2.144)

An auxiliary nonlinear function f1(τ, r, ψ) in (2.143) and (2.144) is per-
formed as

f1(τ, r, ψ) = f ′yu1 + f ′y′
[
A1 cosψ − rB1 sinψ +

∂u1

∂ψ
ω(τ)

]

−m(τ)
[
2
∂2u1

∂τ∂ψ
ω(τ) + 2

∂2u1

∂r∂ψ
A1ω(τ) + 2

∂2u1

∂ψ2
ω(τ)B1

+
∂u1

∂ψ

dω(τ)
dτ

+
∂u1

∂ψ

ω(τ)
m(τ)

dm(τ)
dτ

]
, (2.145)

where

f ′y =
∂f(τ, y, y′)

∂y

∣∣∣∣
y=r cosψ ,y′=−rω0(τ) sinψ

, (2.146)

f ′y′ =
∂f(τ, y, y′)

∂y′

∣∣∣∣
y=r cosψ ,y′=−rω0(τ) sinψ

, (2.147)
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and the function u1(τ, r, ψ) is defined by

u1(τ, r, ψ) =
1

2πk(τ)

∑
n�=±1

ejnψ

1− n2

2π∫

0

f0(τ, r, ψ)e−jnψdψ , (2.148)

in which f0(τ, r, ψ) is given by (2.133).
We notice that in all above-given relevant functions, integration is pro-

vided assuming r and ψ to be constants over period 2π, even though the
functions depend on “slow” time τ . In spite of such important simplifications,
for many cases, solutions cannot be performed analytically in simple func-
tions and numerical analysis often becomes the only choice to investigate a
system.

2.6 Equivalent Linearization

When the signal phase is not of importance, the first order approximation
serves with a sufficient accuracy. Furthermore, if the phase of an oscillator
signal is constant (or zero) with time, then the amplitude-to-phase conver-
sion is absent that is only possible in absence of overtones, so the oscillator is
linear. Referring to this fact, Bogoliubov and Mitropolskiy proposed to trans-
form an original nonlinear ODE with constant coefficients to the linear ODE
with time-varying coefficients. In other words, they suggested to go from the
NTI oscillator model to the LTV oscillator model. The method was called
equivalent linearization.

In accordance with the approach, equation (2.84),

y′′ + ω2
0y = εf (y, y′) ,

is substitutes by the linear ODE

y′′ + λ(r)y′ + k(r)y = 0 , (2.149)

where both the time-variant (amplitude-dependent) equivalent bandwidth
λ(r) and square resonance frequency k(r) are defined by, respectively,

λ(r) =
ε

πrω0

2π∫

0

f(r cosψ,−rω0 sinψ) sinψ dψ , (2.150)

k(r) = ω2
0 −

ε

πr

2π∫

0

f(r cosψ,−rω0 sinψ) cosψ dψ . (2.151)

The equations of the first order approximation associated with (2.149)–
(2.151) are represented with
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r′ = − r

2
λ(r) , (2.152)

ψ′ = k1/2(r) . (2.153)

A transition from (2.84) to (2.149) produces an error of the first order
approximation (∼ ε2). In many cases, such an error is allowed. Therefore, the
method of equivalent linearization has gained currency in different modifica-
tions.

Example 2.22 (Equivalent linearization of van der Pol’s equation).
Represent (2.88) in the form of (2.149). By (2.150) and (2.151), the relevant
coefficients are defined to be, respectively,

λ(r) = −ε
(

1− r2

4

)
,

k(r) = ω2
0 .

Instantly, (2.152) and (2.153) become (2.101) and (2.102), respectively,
meaning that equivalent linearization produces the same result as the van der
Pol’ method and first order approximation, by Krylov and Bogoliubov. ��

Largely, one can conclude that the method of equivalent linearization is
closely related to the method of averaging.

2.6.1 Classical Method of Harmonic Balance

The term harmonic balance was introduced in the text by Krylov, Bogoli-
ubov, and Mitropolskiy, who also developed the harmonic balance method.
The method is akin to equivalent linearization leading, in the first order ap-
proximation, to the same results as by the van der Pol’s and asymptotic
methods.

An idea of classical harmonic balance is to perform a system by the ODE
similarly to (2.84), substitute the solutions

y = r cosψ ,

y′ = −rω0 sinψ ,

y′′ = −r′ω0 sinψ − rω2
0 cosψ − rω0ϑ

′ cosψ , (2.154)

expand the function f(y, y′) to the Fourier series, equate the amplitudes of
the first overtone, and go to the equations for the amplitude and phase.

Indeed, by substituting (2.154) to (2.84) and expanding f(y, y′) to the
Fourier series with only one harmonic, we can write

−r′ω0 sinψ − rω0ϑ
′ cosψ
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=

⎡
⎣ ε

2π

2π∫

0

f(r cosψ,−rω0 sinψ) cosψ dψ

⎤
⎦ cosψ

+

⎡
⎣ ε

2π

2π∫

0

f(r cosψ,−rω0 sinψ) sinψ dψ

⎤
⎦ sinψ . (2.155)

By equating the amplitudes of cosψ and sinψ to zero and assigning

λ(r) = −2ε
r
A1(r) , (2.156)

k(r) = ω2
0 + 2εω0B1(r) , (2.157)

where A1 and B1 are given by (2.109) and (2.110), respectively, we arrive at
the equations of the first order approximation,

r′ = εA1(r) = − r

2
λ(r) , (2.158)

ϑ′ = εB1(r) = −1
2

[
ω0 − k(r)

ω0

]
. (2.159)

Despite the original duty to deal with weakly nonlinear ODEs of the second
order, the method is often applied to higher order ODEs. In the latter case,
the high order time derivatives are first reduced to basic functions y = r cosψ
and y′ = −rω0 sinψ as in the following scheme

y′′′ = rω3
0 sinψ = −ω2

0y
′ ,

y(4) = −rω4
0 cosψ = −ω4

0y ,

... (2.160)

Solutions of the reduced equation are then obtained by (2.158) and (2.159).

2.6.2 Stationary Solutions by Harmonic Balance

An important significance of the harmonic balance approach is that it can
universally be used to define stationary solutions in different orders of ap-
proximation. Most generally, an idea is to express the periodic solution by the
finite Fourier series

y(t) =
N∑
i=0

yi(t) , (2.161)

where N can be arbitrary and yi(t) is defined by

yi(t) = Ui cos iωt + Vi sin iωt (2.162)
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with still unknown constant amplitudes Ui and Vi.
A solution (2.161) is then substituted into the nonlinear ODE neglecting

time derivatives of Ui and Vi. For the second order nonlinear ODE (2.84), this
gives

N∑
i=0

y′′i + ω2
0

N∑
i=0

yi = −εf
(

N∑
i=0

yi,

N∑
i=0

y′i

)
. (2.163)

To find Ui and Vi, the right-hand side of (2.163) is expanded to the Fourier
series. Thereafter, neglecting harmonics with the order higher than N and
equating the constant terms and amplitudes of cos(iωt) and sin(iωt) to zero,
one goes to a system of 2N +1 algebraic equations for unknown Ui and Vi. In
the first order approximation, by N = 1, the solution produces U0, U1, and
V1. In the second order, we additionally have U2 and V2, and so on.

Example 2.23 (Solution of van der Pol’s equation by harmonic bal-
ance in the second order approximation). To find a stationary solution
of the van der Pol equation (2.88) in the second order approximation, we
suppose that, by (2.119), the series (2.161) is

y = U1 cosωt + V3 sin 3ωt . (2.164)

Setting all the time derivatives of the amplitude and phase to zero, we
then write

y′ = −U1ω sinωt + 3V3ω cos 3ωt ,

y′′ = −U1ω
2 cosωt− 9V3ω

2 sin 3ωt

that, neglecting the higher order overtones and equating to zero the ampli-
tudes of cosωt, sinωt, and sin 3ωt allows transferring from (2.89) to

ω2 − ω2
0 =

1
4
εU1V3ω ,

1− U2
1

4
− V 2

3

2
= 0 ,

V3(9ω2 − ω2
0) = −1

4
εU3

1ω .

Since ω ∼= ω0, we let ω = ω0 in the last equation and derive the amplitude
of the third harmonic

V3 = − εU3
1

32ω0
(2.165)

that is equal to that (2.119) obtained by the asymptotic method. For small
ε, we also allow U2

1 � V 2
3 and then the second equation, by setting V 2

3 = 0,
produces U1 = r0 = 2 that coincides with the asymptotical solution (2.120)
in the steady state when r′ = 0.
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Finally, involving (2.165), the first equation, by ω + ω0
∼= 2ω and Δω =

ω − ω0, produces

Δω = − ε2r4
0

256ω0
(2.166)

that, by r0 = 2, gives the same steady state value Δω = −ε2/16ω0 that was
earlier provided by (2.121) in frames of the asymptotic method. ��

An advantage of harmonic balance is that, by the Fourier series, it si-
multaneously solves the analysis and synthesis problems for the output y(t).
However, to apply the method efficiently, the solution form, like (2.164), must
somehow be predicted. Otherwise, the burden of the transformations, although
algebraic, can be very large owing to extra terms involved.

2.6.3 Double Harmonic Balance Method

For modulated oscillators (closed loop NPTV systems), the method of har-
monic balance modifies to what is called double harmonic balance. An idea is,
first, to exploit harmonic balance for the nonlinear ODE and go to ODEs for
the amplitudes of overtones. At the second stage, the time-varying parameters
are expanded to the finite Fourier series for the “slow” (modulation) frequency
and the method of harmonic balance is applied once again.

Let us consider a general form of the second order nonlinear ODE (2.123)
assuming that its coefficients are periodically varied (modulated),

[m(t)y′]′ + k(t)y = εf(t, y, y′) . (2.167)

Supposing a solution (2.161), (2.167) can be rewritten as follows

[
m(t)

N∑
i=0

y′i

]′
+ k(t)

N∑
i=0

yi = −εf
(
t,

N∑
i=0

yi,

N∑
i=0

y′i

)
(2.168)

and, by substituting (2.162) and rearranging the terms, represented with

N∑
i=0

[iωVim
′(t)− i2ω2Uim(t) + Uik(t)] cos iωt

+
N∑
i=0

[−iωUim
′(t)− i2ω2Vim(t) + Vik(t)] sin iωt

= −εf
[
t,

N∑
i=0

(Ui cos iωt + Vi sin iωt),
N∑
i=0

(−iωUi sin iωt + iωVi cos iωt)

]
.

(2.169)
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Further extending the right-hand side of (2.169) to the Fourier series and
thereafter equating the amplitudes of the harmonic functions to zero gives
2N + 1 differential equations for Ui and Vi.

The time-varying known functions m(t) and k(t) and unknown functions
Ui and Vi can now also be extended to the finite Fourier series as in the
following,

m(t) =
M∑
k=0

(mck cos kΩt + msk sin kΩt) , (2.170)

k(t) =
M∑
k=0

(kck cos kΩt + ksk sin kΩt) , (2.171)

Ui =
M∑
k=0

(aik1 cos kΩt + aik2 sin kΩt) , (2.172)

Vi =
M∑
k=0

(bik1 cos kΩt + bik2 sin kΩt) , (2.173)

where, it is implied, all amplitudes of the harmonic functions in right-hand
sides are small constant values. In the first order approximation, the series
length is restricted with M = 1, in the second with M = 2, and so on. By
substituting (2.170)–(2.173) to (2.169), equating to zero the constant terms
and amplitudes of the harmonic functions, and neglecting products of small
values, a system of the algebraic equations is formed to solve for the unknown
amplitudes aik1, aik2, bik1, and bik2.

A solution of (2.167) is hence generally performed by

y =
N∑
i=0

M∑
k=0

(aik1 cos kΩt + aik2 sinkΩt) cos iωt

+
N∑
i=0

M∑
k=0

(bik1 cos kΩt + bik2 sinkΩt) sin iωt . (2.174)

Note that not all the amplitudes aik1, aik2, bik1, and bik2 play the same
role in the model (2.174). For example, in the first order of approximation,
the phase is not of importance and hence the terms with bik1 and bik2 can be
neglected.

Example 2.24 (Solution of the modified van der Pol’ equation by
double harmonic balance in the first order approximation). Consider
an FM van der Pol oscillator represented with (2.135),

y′′ + ω2
0(1 + α cosΩt)2y = ε(1− y2)y′ , (2.175)
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and the harmonically modulated frequency

ω0(t) = ω0(1 + α cosΩt) , ω′0(t) = −αω0Ω sinΩt . (2.176)

By harmonic balance, solutions of the first order approximation, by ψ =
ω0t + ϑ and neglecting products of small values such as r′ϑ′, can be found as

y = r cosψ ,

y′ = −r(ω0 + ϑ′) sinψ ,

y′′ = −rω0(ω0 + 2ϑ′) cosψ − r′ω0 sinψ , (2.177)

where
ϑ(t) =

ω0

Ω
α sinΩt , ϑ′(t) = αω0 cosΩt .

Substituting (2.177) to (2.175), neglecting higher overtones, and equating
to zero the terms with a sine function leads to

ω′0(t)
ω0(t)

= ε

(
1− r2

4

)
− 2

r′

r
,

where ω0(t) is given by (2.176). By simple transformations, the equation be-
comes that, (2.138), derived in frames of the asymptotical methods,

r′ =
ε

2
r

(
1− r2

4

)
+

α

2
rΩ sinΩt . (2.178)

Now, by (2.172), the modulated amplitude can be performed as

r = r0 + a11 cosΩt + a12 sinΩt ,

r′ = −a11Ω sinΩt + a12Ω cosΩt , (2.179)

where r0 is the mean amplitude (unmodulated) and a11 and a12 are small
additions caused by modulation. Substituting (2.179) to (2.178), neglecting
products of small values, and equating to zero the constant term and the
amplitudes of cosine and sine functions produce

1 =
r2
0

4
,

a11
ε

2

(
1− 3

4
r2
0

)
− a12Ω = 0 ,

a11Ω + a12
ε

2

(
1− 3

4
r2
0

)
= −α

2
r0Ω .

The first equation gives r0 = 2 and two remaining yield

a11 = −2α
ν2

ν2 + (G− 1)2
, (2.180)
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a12 = 2α
(G− 1)ν

ν2 + (G− 1)2
, (2.181)

where ν = Ω/δ is a modulation frequency normalized for a system half band-
width δ = 1/2 and G = 3r2

0/4 is the open loop gain.
The steady state solution of a modulated van der Pol oscillator is thus

approximated by the finite Fourier series

y(t) = 2
[
1− αν2

ν2 + (G− 1)2
cos

νt

2
+

α(G − 1)ν
ν2 + (G− 1)2

sin
νt

2

]
cosωt

=
[c0

2
+ c1 cos(Ωt− Ψ1)

]
cosωt , (2.182)

where c0 = 4,

c1 =
2αν√

ν2 + (G− 1)2
, (2.183)

Ψ1 = − arctan
G− 1

ν
. (2.184)

��
Example 2.24 neatly demonstrates an important feature of the double

harmonic balance method. It follows that, by the method, we can reflect
the modulating signal in the amplitude, frequency, and phase of oscilla-
tions. Furthermore, given spectral contents of the modulating and modu-
lated signals, the linearized modulator can be represented with the rele-
vant frequency responses. This approach was first used by Sokolinskiy and
then developed by Shmaliy to be known as the modulation functions method
or dynamic modulation characteristics method. The method and its appli-
cation to the closed loop NPTV systems is expounded in Chapter 8. Be-
low, we illustrate its main idea traditionally considering the van der Pol’s
oscillator.

Example 2.25. The van der Pol oscillator (2.175) is modulated with a signal

s(t) = a cos ντ , (2.185)

where ν = Ω/δ, τ = δt and a is a constant, causing the frequency to vary by
(2.176). FM is accompanied with spurious AM associated with the amplitudes
(2.180) and (2.181).

By small values of a, an oscillator can be linearized and the response of its
frequency to (2.185) can be specified with the frequency modulation function
(FMF)

Hω(jν) = |Hω(jν)|ejϑω(ν) = 1 (2.186)
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that apparently is unit, because of the direct modulation and zero values of
bik1 and bik2, in the first order approximation.

The response of the oscillator amplitude to (2.185) can be specified with
the amplitude modulation function (AMF)

Hr(jν) = |Hr(jν)|ejϑr(ν) , (2.187)

where, by (2.182)–( 2.184), the magnitude AMF and phase AMF are derived
to be, respectively,

|Hr(jν)| = c1
a

=
2ν√

ν2 + (G− 1)2
, (2.188)

ϑr(ν) = Ψr(ν) = − arctan
μ− 1

ν
. (2.189)

As may be seen, spurious AM becomes negligible with ν � 1 and attains
a maximum with ν � 1. Therefore, with a broadband modulation, an ampli-
tude limiter would be in order. ��

2.6.4 Describing Function Method

With time, classical equivalent linearization has been developed to the engi-
neering approach called the describing function method (DF method). Well
elaborated, the method is reminiscent of the familiar harmonic balance, but
proposes its own philosophy. Actually, it deals not with the whole system, but
only with its input-to-output nonlinear part, be it even with memory.

The basic idea of the DF method is to present an input of the nonlinear
system as a periodic harmonic wave (sine or cosine) having the amplitude r
and frequency ω, save only the first harmonic in the output, and describe the
gain of such a linearized system by a ratio of the complex amplitudes of the
output and input vectors. The gain N(r, jω) called the describing function
is thus kind of frequency response of a linearized system. Accordingly, the
input-to-output relation is written as

y(t) = N(r, jω)x(t) . (2.190)

The cosine-input FD is defined by

N(r, jω) =
1
πr

π∫

−π
y(r cosωt,−rω sinωt)e−jωtdωt (2.191)

that, if a system is memoryless, becomes

N(r) =
1
πr

π∫

−π
y(r cosωt)e−jωtdωt . (2.192)
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Example 2.26. A memoryless NTI system is performed with y(t) = x3(t).
Supposing y(t) = r cosωt, the DF is defined, by (2.192), to be

N(r) =
r2

π

π∫

−π
e−jωt cos3 ωt dωt =

3
4
r2 . (2.193)

It can be shown that (2.193) also appears by direct equivalent liarization. ��
Example 2.27 (Linearization of van der Pol’s equation with DF).
Consider van der Pol’s oscillator (2.88). The cosine input DF for the nonlinear
function f(y, y′) is defined, by (2.192), to be

N(r, jω) = −ω

π

π∫

−π
(1− r2 cos2 ψ)e−jψ sinψ dψ

= − ω

2π

π∫

−π
(1− r2 cos2 ψ) sin 2ψ dψ +

jω

π

π∫

−π
(1− r2 cos2 ψ) sin2 ψ dψ

=
(

1− r2

4

)
jω . (2.194)

By the operators identity, jω ≡ d
dt , we thus have

f(y, y′) = N(r, jω)y =
(

1− r2

4

)
y′

and the linearized equation becomes

y′′ − ε

(
1− r2

4

)
y′ + ω2

0y = 0

that was derived earlier, by equivalent linearization. ��
If the input is sinusoidal, the DF is defined by

N(r, jω) =
j

πr

π∫

−π
y(r sinωt, rω cosωt)e−jωtdωt , (2.195)

N(r) =
j

πr

π∫

−π
y(r sinωt)e−jωtdωt (2.196)

for memory and memoryless systems, respectively,
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Example 2.28. A memoryless system with a nonlinearity y(t) = x3(t) has
an input y(t) = r sinωt. The DF is defined, by (2.196), to be

N(r) =
jr2

π

π∫

−π
sin3 ωt e−jωtdωt =

3
4
r2 . (2.197)

As can be seen, the function is exactly that (2.193) obtained for the cosine
input. ��

Like in other attempts of linearization, simplifications allowed by the DF
method do not seem to be useful for subtle nonlinear structures. Moreover, in
some cases, the DF does not fit principle features of systems. The approach,
however, allows predicting and investigating with sufficient trustworthiness
limit cycles in closed loops and solves several other engineering problems. On
the whole, as a product of equivalent linearization, the DF method substitutes
an NTI system by an LTV one with all advantages and disadvantages.

2.7 Norms

An important quantitative measure of system performance is provided by
norms. Basically, evaluation with norms answers on the question how large
will be the output signal for the given input or allowed information about the
input.

Norm : The norm means a measure of the “size” of a signal and,
thereby, a system.

��
System norms are used in evaluating robustness, minimizing the peak of

the largest singular value or all singular values in the frequency domain, speci-
fying the performance in terms of sensitivity, etc. The system norms are evalu-
ated via the impulse response function and its transform. For some problems,
the system norms are expressed via the signal norms.

2.7.1 Norms for Signals

In mathematics, the vector length is called the norm. Accordingly, a linear
space L is said to be normed, if every vector x(t) ∈ L is specified by its norm
‖x‖. For the normed space, the following axioms are valid :

• Positivity: The norm is non negative, ‖x‖ � 0. ��
• Positive definiteness : The norm is ‖x‖ = 0 if and only if x = ∅. ��
• Homogeneity: For any a, the following equality holds ‖ax‖ = |a| · ‖x‖. ��
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• Triangle inequality: If x(t) ∈ L and y(t) ∈ L, then the following triangle
inequality is valid: ‖x + y‖ � ‖x‖+ ‖y‖. ��
Different types of norms of scalar-valued signals are used in applications

depending on their physical meanings and geometrical interpretations.

L1-norm

The L1-norm of a signal x(t) is the integral of the absolute value |x(t)| repre-
senting its length or total resources,

‖x‖1 =

∞∫

−∞
|x(t)|dt . (2.198)

The finite value of this norm ‖x‖1 < ∞ means that the function is abso-
lutely integrable and, by the Dirichlet20 conditions, its transform exists.

L2-norm

The L2-norm of a real x(t) is defined as the square root of the integral of
x2(t),

‖x‖2 =

√√√√√
∞∫

−∞
x2(t)dt , (2.199)

and if a signal is complex, then ‖x‖2 is specified by

‖x‖2 =

√√√√√
∞∫

−∞
x(t)x∗(t)dt =

√√√√√
∞∫

−∞
|x(t)|2dt , (2.200)

where a symbol (∗) means complex conjugate. By the Rayleigh21 theorem
(Parseval22 relation or Plancherel23 identity), the L2-norm can also be defined
by

‖x‖2 = ‖X‖2 =

√√√√√ 1
2π

∞∫

−∞
|X(jω)|2dω . (2.201)

The L2-norm is appropriate for electrical signals at least by two reasons:
20 Johann Peter Gustav Lejeune Dirichlet, Belgium-born German/French mathe-

matician, 13 February 1805–5 May 1859.
21 John William Strutt (Lord Rayleigh), English mathematician, 12 November 1842–

30 June 1919.
22 Marc-Antoine de Parseval des Chsnes, French mathematician, 27 April 1755–16

August 1836.
23 Michel Plancherel, Swiss mathematician, 16 January 1885–4 March 1967.
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• Frequently, a signal is evaluated in terms of the energy effect, for example,
by the amount of warmth induced on a resistance. The squared norm may
thus be treated as a signal energy; that is

Ex = ‖x‖22 =

∞∫

−∞
x(t)x∗(t)dt . (2.202)

For instance, suppose that i(t) is a current through a 1 Ω resistor. Then the
instantaneous power equals i2(t) and the total energy equals the integral
of this, namely, ‖i‖22.

• The energy norm is “insensitive” to changes in the signal waveform. These
changes may be substantial but existing in a short time. Therefore, their
integral effect may be insignificant.

Lp-norm

The Lp-norm of x(t) is a generalization for both the L1-norm and L2-norm.
It is defined as

‖x‖p = p

√√√√√
∞∫

−∞
|x(t)|p dt . (2.203)

The necessity to use the Lp-norm refers to the fact that the integrand in
(2.203) should be Lebesgue24-integrable for the integral to exist. Therefore,
this norm is a generalization of the standard Riemann25 integral to a more
general class of signals.

L∞-norm

The L∞-norm is often called the∞-norm. It is characterized as the maximum
of the absolute value (peak value) of x(t),

‖x‖∞ = max
t
|x(t)| , (2.204)

assuming that the maximum exists. Otherwise, if there is no guarantee that
it exists, the correct way to define the L∞-norm is to calculate it as the least
upper bound (supremum) of the absolute value,

‖x‖∞ = sup
t
|x(t)| . (2.205)

24 Henri Léon Lebesgue, Franch mathematician, 28 June 1875-26 July 1941.
25 Georg Friedrich Bernhard Riemann, German mathematician, 17 September 1826-

20 July 1866.
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Root-Mean-Square Norm

The root-mean-square (RMS) norm or just RMS is calculated by

‖x‖rms =

√√√√√√ lim
T→∞

1
T

T/2∫

−T/2

|x(t)|2 dt . (2.206)

Example 2.29. Given a signal x(t) = e−atu(t), a > 0. It can be shown that
its norms are defined by ‖x‖1 = 1

a , ‖x‖2 = ‖X‖2 = 1√
2a

, and ‖x‖∞ = 1.
Given the other signal y(t) = 1

b−a (e−at − e−bt)u(t), a > 0 and b > 0.
The norms of this signal are given by ‖y‖1 = 1

ab , ‖y‖2 = 1√
2ab(a+b)

, and

‖y‖∞ = 1
b

(
b
a

) a
a−b . ��

In a similar manner are defined the norms of vector signals. If x(t) =
[x1(t), x2(t), . . . , xn(t)]T is a n× 1 vector of some linear n-dimensional space
L
n, x(t) ∈ L

n, then the relevant norms for this vector are ascertained by

‖x‖1 =

∞∫

−∞

∑
i

|xi(t)|dt , (2.207)

‖x‖2 =

√√√√√
∞∫

−∞

∑
i

|xi(t)|2 dt =

√√√√√
∞∫

−∞
xH(t)x(t) dt , (2.208)

‖x‖p =

⎛
⎝
∞∫

−∞

∑
i

|xi(t)|p dt

⎞
⎠

1
p

, (2.209)

‖x‖∞ = sup
t

max
i
|xi(t)| , (2.210)

‖x‖rms =

√√√√√√ lim
T→∞

1
T

T/2∫

−T/2

∑
i

|xi(t)|2 dt , (2.211)

where a symbol (H) means conjugate transpose.
Of applied importance is also the following multiplication condition. Let

two signals x ∈ L
n and y ∈ L

n be coupled by the relevant matrix A of the
transformation, x = Ay. Then the following inequality holds true

‖Ax‖ � ‖A‖‖x‖ for x ∈ L
n .

We notice that the presentation of signals by norms may be useful in
defining the norms for systems. Yet, if the waveform of an input is known and
the norm of an output is given, then the norm of a system may be predicted.
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2.7.2 Norms for Systems

Consider an LTI system characterized with the impulse response h(t), fre-
quency response H(jω), or transfer function H(s). The norms of such sys-
tems are commonly defined for the following recognized types of the transfer
function, namely for

• Stable, if Re s � 0 ��
• Proper, if H(j∞) <∞ ��
• Strictly proper, if H(j∞) = 0 ��
• Biproper, if H(s) and H−1(s) are both proper ��

Typically, causal systems are evaluated with two norms, termed the H2-
norm and H∞-norm.

The H2-norm

For stable SISO systems, the H2-norm characterizes an average gain and is
defined similarly to (2.199) by

‖H‖2 =

√√√√√ 1
2πj

j∞∫

−j∞
H(s)H(−s) ds

=

√√√√√ 1
2π

∞∫

−∞
|H(jω)|2 dω . (2.212)

By the Rayleigh theorem, this norm can also be calculated via the impulse
response function as

‖H‖2 =

√√√√√
∞∫

0

h2(t) dt . (2.213)

Example 2.30. An LP filter is described with the ODE y′ + ay = bx, a >
0, b > 0, that corresponds to the frequency response H(jω) = b

a+jω and
impulse response h(t) = be−atu(t). The square magnitude response of the
filter becomes |H(jω)|2 = b2

a2+ω2 that, by (2.212), symmetry of |H(jω)|, and
an identity

∫∞
0

dz
a2+z2 = π

2a , yields

‖H‖2 =

√
1
π

∫ ∞
0

b2

a2 + ω2
dω =

b√
2a

.

The same value appears if one applies (2.213) to the impulse response. ��
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If a SISO system is performed in state space by equations (2.39) and (2.40)
with D = 0, its transfer function is predetermined by (2.46) with D = 0 and
the H2-norm is specified by

‖H‖2 =
√

CLCT , (2.214)

where the so-called observability Gramian26 matrix is given by

L =

∞∫

0

eAtBBT eA
T tdt . (2.215)

The H2-norm for MIMO systems represented by the transfer function ma-
trix H(s) with the components Hkm(s) and by the impulse response matrix
h(t) with the components hkm(t), is usually evaluated via the Frobenius27

norm, sometimes also called the Euclidean28 norm,

‖A‖F =
√∑

k

∑
m

|akm|2 =
√

trace(AAH) . (2.216)

Employing this norm and taking into account the Rayleigh theorem, the
H2-norm of a MIMO system is found to be

‖H‖2 =

√√√√√ 1
2π

∞∫

−∞
‖H(jω)‖2F dω

=

√√√√√
∞∫

0

‖h(t)‖2F dt . (2.217)

If a MIMO system is represented in state space with equations (2.37) and
(2.38), then, by D = 0, its H2-norm is defined by

‖H‖2 =
√

trace[CLCT ] , (2.218)

where L is still given by (2.215).

26 Jørgen Pedersen Gram, Danish mathematician, 27 June 1850–29 April 1916.
27 Ferdinand Georg Frobenius, German mathematician, 26 October 1849–3 August

1917.
28 Euclid of Alexandria, Mathematician of antiquity, about 325 BC–about 265 BC.
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The H∞-norm

The other widely used fundamental H∞-norm is associated with a peak-value
of the system performance. For instance, if a nominal frequency response of a
system is supposed to be uniform, then the H∞-norm characterizes a measure
of the maximum excursion in the actual frequency response. Therefore, this
norm is useful in ascertaining the system instability.

For SISO systems, similarly to the L∞-norm, the H∞-norm is character-
ized as the maximum of the absolute value (peak value) of H(jω),

‖H‖∞ = max
ω
|H(jω)| , (2.219)

implied that the maximum exists. If there is no guarantee that it exists, the
correct way to define the H∞-norm is to calculate it as the least upper bound
of the absolute value,

‖H‖∞ = sup
ω
|H(jω)| . (2.220)

Example 2.31. A channel is described with the ODE y′ + ay = bx′ + cx
having a > 0, b = 1, and c > 0. By this equation, the frequency response of a
channel is defined to be H(jω) = c+jω

a+jω . The square magnitude response is thus

|H(jω)|2 = c2+ω2

a2+ω2 . A simple observation shows that, by c < a, a maximum of
|H(jω)| is unity at ω → ∞. When c = a, we have unity for all ω. If c > a, a
local maximum c/a exists at ω = 0. One can thus conclude that

‖H‖∞ =
{

c
a , if c > a
1, if c � a

.

��
Example 2.32. A SISO LTI system is represented with the impulse response
h(t) = e−btu(t), b > 0. The norms of this system can be found to be ‖H‖2 =

1√
2b

and ‖H‖∞ = 1
b .

A simple analysis shows that the above-defined system norms are specified
by the signals norms given in Example 2.29 as follows: ‖H‖2 =

√‖y‖1 and
‖H‖∞ = ‖y‖1

‖x‖1 . ��
For a SISO system characterized with the strictly proper transfer function

and represented in state space with D = 0, an important theorem claims
that ‖H‖∞ < γ, where γ is positive and real, if and only if the following
Hamiltonian29 matrix has no eigenvalues on the imaginary axis,

M =
[

A γ−2BBT

−CTC −AT

]
. (2.221)

29 William Rowan Hamilton, Irish mathematician, physicist, and astronomer, 4 Au-
gust 1805–2 September 1865.
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If a system is MIMO, then the H∞-norm is often determined by the least
upper bound of the maximum singular value, denoted σ̄H(jω), of the matrix
H(jω); that is,

‖H‖∞ = sup
ω

σ̄H(jω) . (2.222)

If such a system is represented in state space with D 	= 0, then the above-
mentioned theorem relates to the Hamiltonian matrix

M =
[

A + BR−1DTC BR−1BT

−CT (I + DR−1DT )C −(A + BR−1DTC)T

]
, (2.223)

where R = γ2I − DTD. We notice that, by D = 0, the relation (2.223)
degenerates to (2.221).

2.7.3 System Norms via Signal Norms

We have already mentioned above and illustrated by Example 2.32 that system
norms can be expressed via signal norms.

More specifically, if we consider a SISO LTI system with the input
x(t)

F⇔ X(jω), output y(t)
F⇔ Y (jω), and impulse response h(t)

F⇔ H(jω),
we can specify, by (2.201), its L2-norm as follows

‖y‖22 = ‖Y ‖22 =
1
2π

∞∫

−∞
|H(jω)X(jω)|2 dω

� 1
2π

∞∫

−∞
|H(jω)|2|X(jω)|2 dω � ‖H‖2∞

1
2π

∞∫

−∞
|X(jω)|2 dω

= ‖H‖2∞‖X‖22 = ‖H‖2∞‖x‖22 .
The norms mapping is thus ‖y‖2 � ‖H‖∞‖x‖2.

Reasoning similarly, the other relations between the signal and system
norms have been found and generalized by the authors. For example, let a
stable SISO LTI system be represented with the input x(t), output y(t), im-

pulse response h(t), and frequency response H(jω)
F⇔ h(t). Doyle, Francis,

and Tannenbaum showed that Table 2.1 gives the input/output norms for
such a system.

We notice that the mapping given in Table 2.1 is not exact, but rather
representing useful inequalities, as in the above considered case of ‖y‖2 �
‖H‖∞‖x‖2.
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Table 2.1. Norms mapping in SISO LTI systems

‖x‖2 ‖x‖∞
‖y‖2 ‖H‖∞ ∞
‖y‖∞ ‖H‖2 ‖h‖1

2.8 System Stability

Stability is one of the fundamental properties of any system. Even intuitively,
we think about the system operation as desirably insensitive (so stable) to
slight internal and external disturbances. We also want the output signal to
track the transformed input signal and not to be infinite even at one or several
points. To fit these needs, the system stability must somehow be evaluated
and the relevant conditions described mathematically.

Depending on the system linearity, stationarity, and even application, the
terms “stable” and “stability” are used in rather special and often different
senses. Therefore, when we speak about stability, we usually need to supply
this term with the addition “in the sense of ...”

Most generally, the definitions of stability may be related to the common
state space model of a system, (2.65) and (2.66),

q′(t) = Ψ[q(t),x(t), t] , (2.224)

y(t) = Υ[q(t),x(t), t] , (2.225)

and to its particular forms associated with linear and/or time-invariant re-
alizations. In what follows, we observe the most widely used definitions of
stability.

2.8.1 External (Bounded Input/Bounded Output) Stability

Let us consider a SISO system with the input x(t) and output y(t). We have
already mentioned before, when classified systems, that a system is bounded-
input/bounded-output (BIBO) stable if for any bounded input x(t) the cor-
responding output y(t) is also bounded. The definition involves solely the
external resources. Therefore, the BIBO stability is often called the external
stability as related to the relaxed systems (with zero initial states). Mathe-
matically, the condition for a system to be BIBO stable reads as follows:

BIBO stability : The system is BIBO stable if for any input x(t) with
‖x(t)‖∞ � Mx <∞ there is the output y(t) with ‖y(t)‖∞ � My <∞,
where Mx and My are finite positive real constants.

��
If this condition is not met, i.e. y(t) grows without limit (diverges) from a

bounded input, then the system is BIBO unstable.
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BIBO Stability via the Impulse Response

Because the convergence of the output can only be possible if the impulse
response h(t) of the LTI system has finite total resources, the necessary and
sufficient condition for the LTI system to be BIBO stabile is the finite value
of the L1-norm of the impulse response,

‖h‖1 =

∞∫

−∞
|h(t)| dt � M <∞ , (2.226)

where M is a constant. Let us verify (2.226) recalling that, in LTI systems,
the output and input are coupled by the convolution

y(t) =

∞∫

−∞
x(ϑ)h(t − ϑ) dθ . (2.227)

We can now take the absolute values of both sides of (2.227) and go to

|y(t)| =
∣∣∣∣∣∣

∞∫

−∞
x(θ)h(t − θ) dθ

∣∣∣∣∣∣
=

∞∫

−∞
|x(θ)h(t − θ)| dθ

�
∞∫

−∞
|x(θ)||h(t − θ)| dθ .

Substituting the absolute value |x(t)| with the norm ‖x‖∞,

∞∫

−∞
|x(θ)||h(t − θ)| dθ �

∞∫

−∞
‖x‖∞|h(t− θ)| dθ

= ‖x‖∞
∞∫

−∞
|h(t− θ)| dθ = ‖x‖∞‖h‖1 ,

yields |y(t)| � ‖x‖∞‖h‖1. If y(t) and x(t) are both bounded, then ‖h‖1 must
be finite, ‖h‖1 <∞, and the verification of (2.226) is complete.

Example 2.33. A filter is characterized with the impulse response h(t) =
te−btu(t). By (2.226) and an identity

∫
xeαxdx = eαx

(
x
α − 1

α2

)
, the L1-norm

is defined to be

‖h‖1 =
1
b

(
1
b
− e−b∞∞

)
.

Exploiting the limits lim
z→∞ ze−az = 0 and lim

z→∞ zeaz =∞, a > 0, we conclude
that the filter is BIBO stable only if b > 0. ��
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If an LTI system is MIMO with the impulse response matrix h(t) having
the components hkl(t), then it is BIBO stable if and only if all the components
of h(t) are absolutely integrable, so satisfying (2.226).

If a SISO system is LTV, it is characterized with the time-varying impulse
response h(t, θ). The BIBO stability condition for such systems is that there
must exist a finite value of the integral

t∫

t0

|h(t, θ)| dθ � M <∞ , (2.228)

where t > t0 takes any value exceeding an initial time t0.

Example 2.34. An LTV channel is characterized with the impulse response

h(t, θ) = δ(t− τ0 − θ)ejΩ0tu(t− θ) .

In view of |ejΩ0t| = 1, the absolute value of h(t, θ) becomes |h(t, θ)| =
δ(t− τ0−θ)u(t−θ). The integral (2.228) thus produces unity and the channel
is hence BIBO stable. ��

The relevant condition for a MIMO LTV system is that there must exist
a positive constant M such that

t∫

−∞
‖h(t, θ)‖F dθ � M <∞ (2.229)

for all values of t, where ‖h(t, θ)‖F is the Frobenius (or Euclidean) norm
(2.216) of the impulse response matrix.

BIBO Stability via the Transfer Function

If a SISO LTI system is given with the transfer function H(s), the relevant
condition for a system to be BIBO stable can be derived as in the following.

Consider (2.226). Because |e−jωt| = 1, we can write the L1-norm (2.198)
for h(t) as

‖h‖1 =

∞∫

−∞
|h(t)| dt =

∞∫

−∞
|h(t)||e−jωt| dt

�
∞∫

−∞
|h(t)e−jωt| dt =

∣∣∣∣∣∣

∞∫

−∞
h(t)e−st dt

∣∣∣∣∣∣
σ=0

= |H(s)|σ=0 .

It follows from these manipulations that the only condition for the system
to be BIBO stable is that the region of convergence (ROC) of the Laplace
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transform includes the imaginary axis. The condition is satisfied with σ = 0
and may be interpreted in the following way.

A SISO LTI system with the proper rational transfer function H(s) is
BIBO stable if and only if every pole of H(s) has a negative real part (lies in
the left-hand part of s-plane).

Example 2.35. An LTI system is represented with the transfer function

H(s) =
s(s− 2)

(s + 3)(s− 1)(s + 2)
.

The poles have real parts σ1 = −3, σ1 = 1, and σ1 = −2. Because the
real part of one of the poles is positive (lies in the right half of a plane), the
system in BIBO unstable. ��

Likewise, a MIMO LTI system with the proper rational transfer function
matrix H(s) having the components Hkl(s) is BIBO stable if and only if every
pole of each component in H(s) has a negative real part.

We notice that the modern theory of dynamic systems and control offers
many other definitions and forms of BIBO stability for systems that may be
found in the relevant books.

2.8.2 Internal Stability

So far, we defined the system stability in terms of its input and output avoiding
discussing the system itself. This is what was called the external (or BIBO)
stability. The only condition for ascertaining the external stability is the zero
initial states of a system.

Contrary to the external stability, the internal one is evaluated solely in
terms of the system performance. Therefore, the input is required to be zero
and we are thus deal only with the state equation (2.224) that, by x(t) ≡ 0
becomes

q′(t) = Ψ[q(t), t] . (2.230)

Let us think that the system (2.230) has N points of equilibrium q1, q2,
. . ., qN such that

Ψ(q1, t) = 0 , Ψ(q2, t) = 0 , . . . , Ψ(qN , t) = 0 .

For an arbitrary value of q(t), we can introduce time-varying increments

q̃1(t) = q(t) − q1 , q̃2(t) = q(t)− q2 , . . . , q̃N (t) = q(t)− qN ,

which differentiation produces, respectively,

q̃′1(t) = Ψ[q̃1(t) + q1, t] ≡ f1[q̃1(t), t] ,
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q̃′2(t) = Ψ[q̃2(t) + q2, t] ≡ f2[q̃2(t), t] ,

...

q̃′N (t) = Ψ[q̃N (t) + qN , t] ≡ fN [q̃N (t), t] . (2.231)

By (2.231), every equilibrium point of the system is reduced to the center
of the coordinates to mean that, for example, q′1(t) = f1(0, t) = 0. By the way,
if a system (2.231) is further linearized, it attains the form of the linearized
state space model described earlier.

Instead of (2.231), we shall now consider an equation

q̃′(t) = f [q̃(t), t] (2.232)

to represent a system at an arbitrary equilibrium point such that q̃′(t) =
f(0, t) = 0. Exploiting (2.232), the definitions of the system stability may be
given in a different sense.

In what follows, we shall illustrate definitions of stability with an example
of the phase locked loop (PLL). The phase φ(t) of a local oscillator is mea-
sured for the reference phase φ0. A signal proportional to the phase difference
ϕ(t) = φ(t) − φ0 adjusts the local oscillator to tend ϕ(t) toward zero. Owing
to time variations in φ(t), the difference ϕ(t) is not always zero, but rather
contains some amount of error ϕ̃(t). We therefore wonder whether the system
is internally stable or not to small excursions in ϕ(t).

To find an answer, it needs returning back to works of Lyapunov, who
followed Chebyshev30 and created the theory of stability. The theory was
presented by Lyapunov in 1892 in his Doctoral thesis “The general problem
of the stability of motion,” in which several fundamental definitions of stability
were given. We shall give all definitions of stability as adapted to the notations
given above.

Stability (in the sense of Lyapunov): An equilibrium point “0”
of (2.232) is said to be stable in the sense of Lyapunov if for any real
ε > 0 there exists a real δ(ε, t0) > 0 such that

‖q̃(t0)‖ < δ and ‖q̃(t)‖ < ε for t � t0 . (2.233)
��

Typically, it is assumed that ε � δ. Therefore the above-given definition
is often called local. If the initial value δ(ε, t0) is supposed to be arbitrary and
hence ε ≶ δ < r <∞, the stability is said to be global.

It is seen that the bounds δ and ε are not absorbed by the conditions
(2.233), although in other interpretations of Lyapunov’s stability they are
absorbed. If they are absorbed and a system is linear, then the Lyapunov
stability is often called marginal.

30 Pafnuty Lvovich Chebyshev, Russian mathematician, 16 May 1821–8 December
1894.
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With respect to the above-mentioned phase system, Lyapunov’s definition
of stability means that the phase ϕ(t) with t � t0 must trace within the bounds
|ε| without actually touching them. Examples of locally and globally Lyapunov
stable phase systems are shown in Fig. 2.8a and Fig. 2.8b, respectively.

Fig. 2.8. System stability: (a) local in the sense of Lyapunov, (b) global in the
sense of Lyapunov, (c) local asymptotic, and (d) global asymptotic.

In other words, Lyapuniv’s stability does not guarantee that the system
is absolutely insensitive to any internal disturbances. Instead, it claims that
the sensitivity is just such that the system behaves with time within the
certain bounds |ε|. For a great deal of applications the condition (2.233) is
appropriate. Therefore, this measure has gained wide currency.

Uniform stability (in the sense of Lyapunov): An equilibrium
point “0” of (2.232) is said to be uniformly stable in the sense of Lya-
punov if it is stable in the sense of Lyapunov with δ(ε) > 0, meaning
that δ does not depend on t0.

��
This definition is illustrated by Fig. 2.8a if we think that δ takes values

independently on the start moment t0.

Asymptotic stability : An equilibrium point “0” of (2.232) is said to
be asymptotically stable if
1. It is stable,
2. Every movement beginning closely to zero tends toward zero with

t0 � t→∞ such that

‖q̃(t0)‖ < δ and lim
t→∞ q̃(t) = 0 . (2.234)

��
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As well as the Lyapunov stability, the asymptotic stability is classified
to be local and global. Examples of both kinds are shown in Fig. 2.8c and
Fig. 2.8d, respectively. The difference between the Lyapunov and asymptotic
stabilities is that, in the first case, the system behaves within the bounds
|ε|, whereas the second case claims the system to behave toward zero with
time.

Example 2.36. Consider an electrical circuit shown in Fig. 2.9 and described

Fig. 2.9. Electric circuit of the second order.

for the voltage vC induced on the capacitor C with the ODE

v′′C +
R

L
v′C +

1
LC

vC = 0 .

Let us assign vC to be the first state, q1(t) = vC(t), and an electric current
to be the second state, i(t) = q2(t) = Cv′C = Cq′1(t). We thus go to the
equations

q′1 =
1
C

q2 , q′2 = − 1
L
q1 − R

L
q2 .

To ascertain stability, we find the internal energy of the circuit,

E =
Cv2

C

2
+

Li2

2
=

Cq2
1

2
+

Lq2
2

2
,

and then define its time derivative (rate)

E′(t) = −Rq2
2(t) = −Rv2

L(t) .

Immediately one concludes that, by R > 0, the energy dissipates with time
to zero (by negative rate) and the circuit is thus stable. One then can suppose
some ε > 0 and δ > 0 and realize that this system is stable in the sense of
Lyapunov. Because δ can be set arbitrary, the stability is global. Moreover,
since energy dissipates with time to zero, the circuit is asymptotically stable
and, by arbitrary δ, it is globally asymptotically stable. ��
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When we think about asymptotic convergence of any function, we also
wonder if this convergence is exponential or not. From the standpoint of engi-
neering needs, if any behavior is expressed in terms of simple functions, then
such a behavior is perceived as generalized. Therefore, the asymptotic stability
is often considered to be the exponential stability, provided the definition:

Exponential stability : An equilibrium point “0” of (2.232) is said to
be exponentially stable if there exists positive-valued constants β > 0,
α > 0, and ε > 0 such that

‖q̃(t)‖ � βe−α(t−t0)‖q̃(t0)‖ for ‖q̃(t0)‖ � ε and t � t0 ,
(2.235)

where the largest allowed α is called the rate of convergence.
��

Because the bound ε is not limited and hence the initial state q(t0) may
take any value, this kind of stability is also called the global exponential sta-
bility often abbreviated as G.E.S. In analogous to the asymptotic stability,
if ε < β, the exponential stability may be said to be local. In applications,
exponential stability has appeared to be a strong form of stability, since both
uniform and asymptotic stability definitions are absorbed. In particular, ex-
ponential convergence was shown to be robust to perturbations that makes it
to be essential for control algorithms.

The most loose definition of stability arises from the works of Lagrange on
the stability of equilibrium states of discrete conservative system. Lagrange
showed that if the potential energy reaches its minimum at a position of
equilibrium, then this position is stable, whereas if the potential energy reaches
its maximum, the position is unstable. Developed in further by Dirichlet and
some other authors, the definition of Lagrange’s stability may be formulated
as follows:

Stability (in the sense of Lagrange): The state q̃(t0) of (2.232)
is said to be restricted or stable in the sense of Lagrange if for any t0
there exists a real B[q̃(t0), t0] <∞ such that

‖q̃(t)‖ < B for t � t0 . (2.236)
��

As follows from this definition, the Lagrange stable system is not obliga-
torily staying at equilibrium.

Links with External Stability

It follows from the above-given definitions that the internal stability is com-
pletely determined via the system states. Contrary, the external stability in-
volves the system input and output. In recent decades, many efforts have been
made to find a link between two concepts of stability and ascertain stability in
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some common sense. Consequently, new “cross” definitions were introduced
and elaborated as connected with the important system properties such as
stabilizability and detectability. The problem is still under investigation, be-
cause the externally stable system is not always internally stable. Below we
refer only to several important results:

• Input/output to state stability (IOSS): This property is also called de-
tectability and strong unboundedness observability. The notion suggests
that if the input and output are both small, the state must be eventu-
ally small. It was also mentioned by Sontag and Wang that it is not a
notion of stability, because, for example, the unstable system q′(t) = q(t),
y(t) = q(y) is IOSS. Rather, it represents a property of zero-state de-
tectability. ��

• Input to output stability (IOS): If a system is IOS, then it is also robustly
output stable (ROS). However, there is ROS system that is not IOS. ��

• Input to state stability (ISS): A system is ISS if and only if it is IOSS and
IOS. ��

• Output to state stability (OSS): This property is associated with the prop-
erty of detectability. ��
Overall, there is an opinion that internal system stability is equivalent to

detectability plus external stability. The proof, however, follows by routine
arguments.

Based on the above-given definitions of system stability, we may now con-
tinue with observing general conditions for linear and nonlinear systems to be
stable in different senses.

2.8.3 Stability of Linear Systems

If a system is linear and, possibly, time-varying, its stability at zero is ascer-
tained by the state space equation

q′(t) = A(t)q(t) (2.237)

Moreover, by the theory of ODEs, the equilibrium point is unique if the de-
terminant of A(t) is not zero, |A(t)| 	= 0 for t � t0.

It will be shown in Chapter 4 that a general solution of (2.237) is given by

q(t) = Φ(t, t0)q(t0) , (2.238)

where Φ(t, t0) is the so-called state transition matrix of a system, charac-
terized by two major properties: Φ′(t, t0) = A(t)Φ(t, t0) and Φ(t0, t0) = I.
Employing Φ(t, t0), the condition for a system to be stable can be found as
in the following.
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Stability in the Sense of Lyapunov

An equilibrium point of a system described by (2.237) is stable in the sense
of Lyapunov if for any real ε > 0 there exists a real δ > 0 such that

‖Φ(t, t0)q(t0)‖ < ε for ‖q(t0)‖ < δ . (2.239)

On the other hand, by the multiplication condition, we have

‖Φ(t, t0)q(t0)‖ � ‖Φ(t, t0)‖‖q(t0)‖ ,
where ‖q(t0)‖ is restricted with δ and thus it is in order to write

‖Φ(t, t0)q(t0)‖ < ‖Φ(t, t0)‖δ . (2.240)

Comparing (2.239) and (2.240), one concludes that the condition (2.239)
is satisfied for any real value M such that

‖Φ(t, t0)‖ < M <∞ with δ =
ε

M
. (2.241)

In other words, a linear system is stable in the sense of Lyapunov if the
norm of its state transition matrix does not reach M = ε/δ with q(t0) < δ. If
so, the system behavior is bounded by ‖q(t)‖ < ε for t � t0.

Stability in the Sense of Lagrange

If a linear system (2.237) is supposed to work with any initial state q(t0)
having the finite norm ‖q(t0)‖ < ∞, the system is stable in the sense of
Lagrange if and only if its transition matrix satisfies

‖Φ(t, t0)‖ < M <∞ with t � t0 , (2.242)

where M is some allowed finite real bound. It then follows that an equilibrium
point q(t0) of a linear system is Lyapunov stable if and only if it is Lagrange
stable.

Asymptotic Stability

In a similar manner, the asymptotic stability can be ascertained. An equilib-
rium point of a linear system (2.237) is asymptotically stable if, and only if,
the norm of the state transition matrix is finite with time and tends toward
infinity with t→∞. This means that

‖Φ(t, t0)‖ < M <∞ with t � t0 and

lim
t→∞ ‖Φ(t, t0)‖ = 0 , (2.243)

where M is still some allowed finite real value. So long as the condition (2.243)
deals solely with the norm of the state transition matrix, it is also the condition
for the global asymptotic stability.
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Exponential Stability

The concept of asymptotic stability may now be extended to the exponentially
decaying envelope. By the definition, an equilibrium point is exponentially
stable if there exists positive-valued constants β > 0, α > 0, and ε > 0 such
that

‖Φ(t, t0)q(t0)‖ � βe−α(t−t0)‖q(t0)‖
for ‖q(t0)‖ � ε and t � t0. Applying the multiplication condition, we go to
the relation

‖Φ(t, t0)q(t0)‖ � ‖Φ(t, t0)‖‖q(t0)‖ � βe−α(t−t0)‖q(t0)‖ ,
‖Φ(t, t0)‖ � βe−α(t−t0) , (2.244)

meaning that a system is exponentially stable if the norm of its state transition
matrix traces with time toward zero starting at q(t0) within the exponential
bound.

The above conditions given for linear systems cannot commonly by applied
to nonlinear systems and some other approaches are used. An exception is
when the initial condition is placed closely to equilibrium. In this case, a
nonlinear system is linearized and the above-given definitions guarantee the
system stability. Below we observe the most common methods for nonlinear
systems.

2.8.4 The First Lyapunov Method

Let us come back to the general state equation for nonlinear systems (2.224)
and discuss how the conditions of stability can be derived from. Commonly, the
procedure entails difficulty that, for NTI and NTV systems, is circumvented
by the first and second Lyapunov methods, respectively. However, some other
approaches are also efficiently used.

By his first method also called indirect, Lyapunov solved the problem with
stability by linearizing an NTI system at the point of equilibrium. To follow,
assume that an autonomous NTI system is described with the state equation
q′(t) = Ψ[q(t)] that is the time-invariant version of (2.230). Let this system
has n points of equilibrium qi, i ∈ [1, n], at which Ψ[qi] = 0. The following
theorem states how stability of such a system can be ascertained.

Theorem (the first Lyapunov method): A point of equilibrium qi
of a system described by the nonlinear ODE

q′(t) = Ψ[q(t)] , Ψ[qi] = 0 , (2.245)

is asymptotically stable if the point of equilibrium q̃i of the corre-
sponding linearized system described by the linear ODE
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q̃′(t) = Aq̃(t) , (2.246)

where A = ∂Ψ[q(t)]
∂q(t)

∣∣∣
q̃i

, is asymptotically stable.
��

To verify, one must expand the function Ψ[q(t)] to the Taylor series at the
point of equilibrium. Saving the terms in the second order of approximation,
we thus have

q̃′(t) = Aq̃(t) + e(t) ,

where every component of the vector e(t) ≡ e(‖q̃(t)‖2) is a small value prede-
fined by the relevant component of ‖q̃(t)‖2. Considering e(t) to be the “input”,
one can write a general solution of this ODE as follows (in Chapter 4, we shall
discuss the solution in detail)

q̃(t) = Φ(t, t0)q̃(t0) +

t∫

t0

Φ(t, θ)e(θ) dθ ,

where Φ(t, t0) = eA(t−t0) is the state transition matrix. Exploiting the mul-
tiplication condition and triangle inequality, the norm of the solution can be
expressed by

‖q̃(t)‖ � ‖Φ(t, t0)‖‖q̃(t0)‖ +

t∫

t0

‖Φ(t, θ)‖‖e(θ)‖ dθ .

Now recall that, by (2.244), the exponential stability of a system like
(2.246) is guaranteed if there exist real positive numbers β > 0 and α > 0
such that ‖Φ(t, t0)‖ = ‖eA(t−t0)‖ � βe−α(t−t0) for t � t0. By this condition,
we immediately have

‖q̃(t)‖ � βe−α(t−t0)‖q̃(t0)‖ +

t∫

t0

βe−α(t−θ)‖e(θ)‖ dθ .

On the other hand, the exponentially decaying function must satisfy the
condition for asymptotical stability. This means that for the given real positive
ε > 0 and δ > 0 the norm ‖e(t)‖ must be such that

‖e(t)‖ � ε

β
‖q̃(t)‖ for ‖q̃(t)‖ � δ .

Accordingly, we go to

eα(t−t0)‖q̃(t)‖ � β‖q̃(t0)‖+ ε

t∫

t0

eα(θ−t0)‖q̃(θ)‖ dθ
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and, by the Grönwall31-Bellman32 inequality (Appendix E), arrive at

eα(t−t0)‖q̃(t)‖ � β‖q̃(t0)‖eε(t−t0)

that readily produces

‖q̃(t)‖ � β‖q̃(t0)‖e−(α−ε)(t−t0) .

For a system to be exponentially stable, the value of ε in the latter relation
must be set such that ε < α. If so and still ‖q̃(t)‖ � δ, we can write ‖q̃(t)‖ �
β‖q̃(t0)‖. This means, in turn, that ‖q̃(t0)‖ < δ

β and we finally get

‖q̃(t)‖ � δe−(α−ε)(t−t0) for t � t0 . (2.247)

An importance of the inequality (2.247) resides in the following fact. It
proves that the exponential stability of an NTI system at the point of equi-
librium is guaranteed by the exponential stability of its linearized version at
the same point.

Example 2.37. The amplitude V (t) of a signal of a crystal oscillator is
modeled at low drive levels with the ODE

V ′ =
(
α− γ

V 2

)
V , γ > 0 .

By setting V ′ = 0, the equilibrium point is defined as V0 =
√

γ/α. Following
the linearization procedure, the equation is linearized at V0 to be

Ṽ ′ = 2αṼ .

The conclusion follows instantly. If α > 0, the amplitude develops without
bounds with V0 real. By α < 0, the amplitude attenuates to zero exponentially,
but a real V0 does not exist (V0 is imaginary). So, the point V0 is unstable. ��
Example 2.38. Consider the Rayleigh oscillator

y′ = −ωz , z′ = ωy + ε(1− μz2)z

with ω = ε = 1 and μ arbitrary. Because the factor ε is not small, averaging
cannot be allowed. Instead, assigning q1 = y and q2 = z, we go to the state
space model

q′(t) = Ψ[q(t)] ,

where

q =
[
q1

q2

]
, Ψ =

[ −q2

q1 + (1− μq2
2)q2

]
.

31 Thomas Hakon Grönwall, Swedish-born US mathematician, 16 January 1877–9
May 1932.

32 Richard Ernest Bellman, US mathematician, 26 August 1920–19 March 1984.



108 2 Quantitative Methods of Systems Description

Following (2.246), the linearized system matrix appears to be

A =
[

0 −1
1 1− 3μq2

20

]
,

where q20 is the second state at equilibrium. The characteristic equation as-
sociated with this matrix is λ2 + σλ + Δ = 0, where σ = 3μq2

20 − 1 and
Δ = 1 > 0. It is known from the theory of ODEs that if σ > 0 and Δ > 0,
then the linearized system is asymptotically stable. Accordingly, a solution is
asymptotically stable if μ > 1/3q2

20. ��
Example 2.39. A system is described with the equations

q′1 = 2q1(1 + q2) + 3q2
2 , q′2 = q1 + q2(1 + q1) ,

having the point of equilibrium at zero. For this point, q1 = q2 = 0, the
linearized system is performed, following (2.246), by

[
q′1
q′2

]
=
[

2(1 + q2) 2q1 + 6q2

1 + q2 1 + q1

]∣∣∣∣
0

[
q1

q2

]
,

[
q′1
q′2

]
=
[

2 0
1 1

] [
q1

q2

]
.

The characteristic equation of the linearized system matrix A is given by
λ2 − 3λ + 2 = 0. Because one of the coefficients is negative, the equilibrium
point is unstable. ��

As one can see, the first method by Lyapunov implies that the linearized
solution of a nonlinear ODE can be found. If it cannot be found or a nonlinear
system is time-varying, the second method of Lyapunov also known as the
method of Lyapunov functions is used.

2.8.5 The Second Lyapunov Method

In the second method by Lyapunov often called direct, the stability problem
of an NTV system

q′(t) = Ψ[q(t), t] (2.248)

at a point of equilibrium is solved by finding some scalar continuous func-
tion V (q) (the Lyapunov function) possessing the certain properties. There
is no universal receipt how to find this function, except for some classes of
nonlinear ODEs. Despite this fact, the method has appeared to be highly effi-
cient in solving many theoretical and applied problems associated with system
stability.

An idea of the approach can easily be caught by imitating a system with
a football player kicking a ball in some media to hit a target placed in Fig.
2.10 at “0” of the coordinates q1, q2, z.
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A system is supposed to be stable if with any even absolutely incredible
trajectory (although featured to this system) a ball hits a target. Otherwise,
a system is unstable. If all trajectories hitting a target are closed within some
function V (q1, q2, t), the latter is said to be the Lyapunov function. One there-
fore can truly interprete the Lyapunov function as a “snare for a ball”.

Most generally, the Lyapunov function is a function of n variables and
we can write it as V [q(t), t]. If we now analyze this function for a situation
sketched in Fig. 2.10, we can come to the conclusion that the Lyapunov func-
tion possesses some necessary properties. First of all, it could be thought of as
generalized energy function for a system. In fact, in passive media the energy
always dissipates (except at 0) and the function thus reduces with time to
zero. Moreover, in such media, energy dissipates monotonously, to mean that
the time derivative of V should always be negative. This deduction extends
to NTV systems, in which V is time-varying. Indeed, if we want the system
to work stably, we must think that no time variations are able to affect the
monotonously dissipated energy to be not dissipated.

From what is observed, it follows that the Lyapunov function V must be
positive definite, provided the definition:

Positive definite function : A function V [q(t), t] is positive definite
in some space R if
• V is continuous and differentiable ��
• V � 0 for all q(t) and t ��
• V (0, t) = 0 if and only if q(t) = 0 ��
• V →∞ as q(t)→∞ ��

��
The following Lyapunov theorem states when a system is stabile in terms

of the positive definite function V .

Fig. 2.10. Interpretation of the second Lyapunov method.
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Lyapunov theorem : A point of equilibrium “0” of a system (2.248) is
stable if there exists a positive definite function V [q(t), t] such that its
time derivative V ′ is non-positive for all trajectories q(t) of a system.

��
Because the time derivative of V is allowed to be zero, stability stated

by this theorem is often understood in the sense of Lyapunov. This means
that a stable solution for a system will exist in some bound δ > 0 such that
‖q(t)‖ < δ. If the system behavior is required to be asymptotically stable, the
other theorem is applied.

Lyapunov theorem (asymptotic stability): A point of equilibrium
“0” of a system (2.248) is asymptotically stable (every trajectory con-
verges to zero at t → ∞) if there exists a positive definite function
V [q(t), t] such that its time derivative V ′ is negative for all trajectories
q(t) of a system.

��
In this case, the time derivative of V is always negative. Therefore the sys-

tem solution tends toward zero with time. Because the Lyapunov function can
take any positive finite value, such stability is also called the global asymptotic
stability (G.A.S).

Let us prove this theorem. Suppose a solution of (2.248) converges to some
value ξ � 0 and we wonder if this value should obligatory be zero. Having a
nonzero value at t→∞, the Lyapunov function may be searched such that

ξ � V [q(t)] � V [q(0)] .

We can also think that a solution converges with a maximum rate V ′max =
−v < 0 and hence V ′ � −v for t � 0.

Accounting for the above-given considerations, the Lyapunov function re-
lated to some time instant T must satisfy

ξ � V [q(T )] = V [q(0)] +

T∫

0

V ′(z) dz � V [q(0)]− vT

that yields
ξ � V [q(T )] � V [q(0)]− vT .

If we now increase T , the right-hand side will become negative with T >
V [q(0)]/v that leads to a contradiction. Because the function V cannot be
negative, the only reasonable value for ξ is zero and the proof is complete.

Example 2.40. Let us come back to the circuit (Fig. 2.9) and ascertain its
stability with the direct Lyapunov method. In state space, by q1(t) = vC(t)
and q2(t) = i(t) = Cv′C = Cq′1(t), the circuit is described with the equations

q′1 =
1
C

q2 , q′2 = − 1
L
q1 − R

L
q2 .



2.8 System Stability 111

The best candidate to the Lyapunov function is therefore an equation of
internal energy

V [q(t)] =
Cq2

1

2
+

Lq2
2

2
,

which time-derivative gives

V ′[q(t)] = −Rq2
2(t) ,

where R is real and positive. It may easily be verified that the function V
is continuous, differentiable, and positive for all q(t) and t. Yet, V (0, t) = 0
and V → ∞ with q(t) → ∞. So, this is the Lyapunov function. Because for
real positive R the rate V ′ is always negative, the circuit is asymptotically
stable. Recall that in Example 2.38 we arrived at the same conclusion via the
dissipated energy. ��
Example 2.41. Consider an oscillator loop combined with two RC circuits
and two limiters, direct and inverting, respectively,

f1(q1) =
{

1, q1 > 0
−1, q1 < 0 and f2(q2) =

{−1, q2 > 0
1, q2 < 0

as shown in Fig. 2.11.

Fig. 2.11. Closed oscillator loop.

The voltages at the outputs of the limiters are defined by f1(q1) = q2 +
RCq′2 and f2(q2) = q1 + RCq′1. The system is thus described in state space
with q′(t) = Ψ[q(t)], where, by C = 1 and R = 1,

q =
[
q1

q2

]
, Ψ =

[−q1 + f2(q2)
−q2 + f1(q1)

]
.

To ascertain stability, let us choose the Lyapunov function such that
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V (q) =
Cq2

1

2
+

Cq2
2

2
=

q2
1

2
+

q2
2

2
.

The time-derivative of V is given by

V ′(q) = −(q2
1 + q2

2) + q1f2(q2) + q2f1(q1) .

An analysis of two last terms shows that they take values ±1(q1 − q2),
where the multiplier “1” represents the maximum unit voltage in the loop.
Over period of oscillations, the terms produce zero and we have

V ′(q) = −(q2
1 + q2

2) = −2V ,

meaning that the time-derivative of V is negative and the system is hence
stable. ��

Following the definition, the asymptotic stability can readily be extended
to the exponential stability, provided the definition:

Lyapunov theorem (exponential stability): A point of equilib-
rium “0” of a system (2.148) is exponentially stable, meaning that
every trajectory of q′(t) = Ψ[q(t), t] satisfies

‖q(t)‖ � βe−
αt
2 ‖q(0)‖ ,

where β > 0, if there exists a positive definite function V [q(t), t] and
a constant α > 0 such that V ′ � −αV .

��
A motivation to satisfy an inequality V ′ � −αV arises from the obser-

vation that the latter guarantees minimum dissipation rate, proportional to
energy. Because β is allowed to be any positive finite value, this stability is
global exponential (G.E.S).

In this Chapter, we considered the most efficient and thus basic quan-
titative methods of linear and nonlinear systems analysis in the time and
frequency (transform) domains. It turns out that in many cases time and fre-
quency are not the proper scales to learn systems and another methods called
qualitative are often used to complete an analysis with information taken from
the so-called phase plane.

2.9 Summary

Quantitative methods unite the most powerful tools of system analysis in the
time and frequency (transform) domains. Before continuing with applying
these methods to different kinds of systems, the reader is encouraged to go
over the material once again emphasizing the following fundamentals:



2.10 Problems 113

– The response of a system to the unit impulse is the system impulse re-
sponse.

– The response of a system to the unit step is the system step response.
– The response of a system to ejωt is the system frequency response, repre-

sented with the magnitude and phase responses.
– For LTI systems, the impulse and frequency responses are coupled with

the Fourier transform. This is not valid for another types of systems.
– In LTI systems, the output is coupled with the input via the impulse

response by the convolution.
– In LTV systems, the output is coupled with the input via the time-varying

impulse response by the general convolution.
– In nonlinear systems, the output is coupled with the input via the gener-

alized impulse response (Volterra kernels) by the generalized convolution
(Volterra series).

– Any dynamic system can be described with the ODE of a proper order
and represented in state space.

– System states are associated with time derivatives.
– The transfer function of an LTI system is a ratio of the Laplace transform

of its output and the Laplace transform of its input. This is not valid for
another type of systems.

– The ODE of a nonlinear system with a small parameter may be substituted
with two nonlinear ODEs of the first order for the amplitude and phase.

– By equivalent linearization, an NTI system is converted to the LTV system.
– The “norm” means a measure of the “size” of a signal and, thereby, a

system.
– Stability means a negligible sensitivity of a system to slight external and

internal disturbances.
– Stability can be internal and external. Both can be ascertained in a differ-

ent sense.
– The most general theory of stability was created by Lyapunov.

2.10 Problems

2.1. Find simple words and examples to explain the difference between linear
and nonlinear, time-invariant and time-varying systems.

2.2. They say that the methods for linear systems are not applicable for
nonlinear systems. Is it true? If yes, then why is the theory of LTI systems
fundamental for other systems? Explain with examples.

2.3 (Response of a system). An LTI system is represented with the follow-
ing impulse response. Define the step response, frequency response, magnitude
response, and phase response of a system.

1. h(t) = δ(t)
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2. h(t) = u(t)− u(t− 1)
3. h(t) = ae−btu(t) + cδ(t)
4. h(t) = au(t)− au(t− 1) + bδ(t)
5. h(t) = u(t)

2.4. An LTI system is represented with the following frequency response.
Define the magnitude, phase, impulse, and step responses of a system.

1. H(jω) = a
2. H(jω) = a[u(ω + ω0)− u(ω − ω0)]
3. H(jω) = ae|aω|

4. H(jω) = δ(ω)
5. H(jω) = δ(jω − jω0)
6. H(jω) = aejbω

2.5 (Convolution). A causal input signal is described by x(t) = Ae−btu(t).
Using the convolution integral, define the output signal y(t) for the impulse
response of a system specified in Problem 2.3.

2.6. An input signal has a rectangular waveform x(t) = A[u(t+ τ/2)− u(t−
τ/2)]. Write the spectral density of the input and determine the spectral
density of the output for the frequency response specified in Problem 2.4. By
the inverse Fourier transform, define the time function of the output.

2.7 (Volterra series). A nonlinear system is shown in Fig. 2.4 and described
with the Volterra series (2.54). Define the system output for x(t) = A and the
impulse response given in Problem 2.3.

2.8. Using the Volterra approach, write the integral equations of the nonlin-
ear systems shown in Fig. 2.12.

Fig. 2.12. Nonlinear systems.
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Fig. 2.13. Systems performed with block diagrams.

2.9 (Differential equation). A nonlinear system is performed with the
block diagram shown in Fig. 2.13. Write the differential equation of a system.

2.10. Consider a system shown in Fig. 2.13. Suppose that the multiplier is
absent in the structure and the system is thus linear. Write the differential
equation of a system. Find the impulse and frequency responses of a system.

2.11. A system is represented with the following differential equation. Show
the block diagram of a system.

1. y′′ − 3y′ + 4y = −2x′ + x
2. 3y′′ + yy′ = x
3. 2x′ + y′ = y
4. 2x + y′′ = 2yy′

5. x′ + x = y′ + y
6. y′′ + 2y′ − y = x′′ − 2x′ + x

2.12 (Transfer function). A linear system is represented with the following
differential equation. Define the system transfer function.

1. 2y′′ + 4y = −2x′ + x
2. a2y

′′ + a1y
′ = b1x

3. v′ + 2v = 5vC

4. y(t) =
2∑

m=0
β2−m dm

dtm x(t)−
2∑

n=1
α2−n dn

dtn y(t)

β0 = 2, β1 = 1, β2 = 2, α1 = 3, α1 = 1

5.
3∑

n=0
an

dn

dtn y(t) =
2∑

m=0
bm

dm

dtm x(t)

a0 = 1, a1 = 2, a2 = 3, a3 = 2, b0 = 1, b1 = 3, b2 = 2

6. y(t) =
2∑

m=0

bm

a0

dm

dtm x(t)−
1∑

n=1

an

a0

dn

dtn y(t)
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2.13. A system is described with the following transfer function. Convert the
transfer function to the differential equation.

1. H(s) = s
2. H(s) = 1

s
3. H(s) = 1

s2+2s+1

4. H(s) = s2 + 2s + 1
5. H(s) = (s+1)(s+2)

(s−1)(s−2)

6. H(s) = 1 + 1
s

2.14 (State space presentation). A system is given with the following
state space model. Write the differential equation of a system.

1. ⎡
⎣

dq1(t)
dq2(t)
dq3(t)

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣
q1(t)
q2(t)
q3(t)

⎤
⎦dt , y(t) =

[
1 0 0

]
⎡
⎣
q1(t)
q2(t)
q3(t)

⎤
⎦

2. [
dq1(t)
dq2(t)

]
=
[

0 A
0 0

] [
q1(t)
q2(t)

]
dt , y(t) =

[
B 0

] [ q1(t)
q2(t)

]

3. [
dq′1(t)
dq′2(t)

]
=
[

1 0.5
0 1

] [
q1(t)
q2(t)

]
dt , y(t) =

[
1 0
] [ q1(t)

q2(t)

]

2.15. A system is represented in state space with the equations (Problem
2.14). Write the differential equation of the system.

2.16. The differential equation of a system is defined by the transfer function
derived in Problem 2.12. Represent the system in state space.

2.17. A system is performed with the differential equation derived in Problem
2.10. Represent the system in state space.

2.18 (Linearization). The following nonlinear differential equation de-
scribes a system. Using the method of linearization, rewrite the equation in
the linearized form around the given initial point y0, y′0, . . ., x0, x′0, . . .

1. y′′ − 3yy′ = 4y − 2x′ + x
2. 3y′′ + (y′)2 = x
3. 2x′ = y′ + y2

4. 2x2 + y′′ = 2yy′

5. xx′ + x = y′ + y
6. y′′ + y2 = −2x′ + x

2.19. A system is described with the differential equation associated with the
block diagram (Fig. 2.12). Represent this system with the linearized equation
around the point y0, y′0, . . ., x0, x′0, . . .
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2.20 (Averaging). The oscillatory system is represented with the following
differential equation, in which ε is a small parameter. Using the method by
Krylov and Bogoliubov, write the system equations for the amplitude and
phase in the first order approximation.

1. y′′ + 3y = ε(1− y3)y′

2. 3y′′ + εy′ + y − ε(y3)′ = 0
3. y′′ + ε(1− ay2)y′ + y = 0

2.21 (Equivalent linearization). Using the method of equivalent lineariza-
tion, write the linearized ODEs for the system described in Problem 2.20.

2.22. An oscillatory system is described with the ODE (Problem 2.20). Using
the classical harmonic balance method, define the stationary solution for the
system in the first order approximation.

2.23. Using the method of describing functions, linearize the nonlinear equa-
tions given in Problem 2.20.

2.24 (Norms). Give simple interpretations for norms of signals and systems.
Why not to characterize signals just with the maximum and minimum values
and systems with the peak-values of the responses?

2.25. A system is represented with the impulse response (Problem 2.3). De-
fine the H2-norm of a system.

2.26. A system is represented with the transfer function (Problem 2.13).
Define the H1-norm, H2-norm, and H∞-norm of a system.

2.27 (Stability). A system is given with the impulse response (Problem
2.3) and transfer function (Problem 2.13). Ascertain the BIBO stability of a
system.

2.28. Analyze the block diagrams (Fig. 2.13) and realize how the coefficient
a can affect stability of a system? Which system is stable and which is poten-
tially not?

2.29. A system is represented with the transfer function found in Problem
2.12. Investigate the poles of the transfer function and make a conclusion
about the BIBO stability of a system.

2.30. A system is described in state space with the following equations. The
equilibrium point lies at zero. Investigate stability of a system at this point
by the first Lyapunov method.

1. q′1 = q2
1(2 + q2) + 3q2 , q′2 = q1(2 + q2

2)(q
2
1 + q2

2 − 1) + 3q2

2. q′1 = q2
1(2 + q2)(q2

1 + q2
2 − 1) + q2 , q′2 = q1

3. q′1 = q2 + q1q
2
2 + q2

1q2 , q′2 = 3q2 − 2q2
1q

2
2 − q2

1 + q2
2

4. q′1 = q2q1(1− 3q2q1) , q′2 = (q2 − 3q2
1)(2q

2
2 − q2

1) + q2
2
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2.31. A system is described in state space with the following equations. As-
suming that the Lyapunov function V (q) = (q2

1 + q2
2)/2 is truly selected for

this system, make a conclusion about its stability by the second Lyapunov
method.

1. q′1 = −q1 − 2q3
2 , q′2 = −q2 − q3

1

2. q′1 = −q1 + q2 , q′2 = −q2 − 3q1

3. q′1 = −2q1 − q2
2 , q′2 = −2q2 + q2

1

4. q′1 = −q1 + 2q2 , q′2 = −q2 + 4q1

If a system does not seem to be stable for the Lyapunov function given, try
to find some other function. Alternatively, prove that the Lyapunov function
does not exist and the system is thus unstable.



3

Qualitative Methods of Systems Description

In Chapter 2, we were concerned about the rigorous and approximate quan-
titative methods of linear and nonlinear systems analysis in the time and
frequency (transform) domains. It follows from what was observed that if a
system is nonlinear then not every corresponding ODE can be solved analyti-
cally in simple functions. However, we can glean a lot of information about the
behavior of solutions by looking carefully at what the equation says, without
actually solving it. Well elaborated the methods organized into the relevant
theory and based, first of all, on the works of Poincaré, are called qualitative.

In this Chapter we consider fundamentals of the qualitative theory hav-
ing no intention to examine all aspects of this very powerfull tool (for more
profound learning, the reader should open the dynamic systems theory). In-
stead, we elucidate only the most recognized and widely used methods in the
language suitable for electrical engineering. Several modern qualitative effects
such as chaos, for example, are discussed in brief as the theory still does not
offer simple and distinct engineering methods for their prediction.

3.1 Qualitative Analysis

In the qualitative theory, time is commonly excluded from the direct variables
and the system ODE is investigated in the so-called phase space that is the
collection of possible states of a dynamical system. To investigate, the N -
order ODE is represented with N ODEs of the first order related to each of
the system states. If N = 2, an analysis is provided on the phase plane, since
only two states exist. So long as the states may be assigned in different ways,
different ODEs of the first order may represent the same system.

Example 3.1. Consider a familiar equation by van der Pol,

y′′ + ω2
0y = ε(1− y2)y′ .

If we assign z = y′, we have
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y′ = z , z′ = ε(1− y2)z − ω2
0y , (3.1)

where the states are y and z. We may also let z = y′ − ε
(
y − 1

3y
3
)

and then
equivalently write

y′ = z + ε

(
y − 1

3
y3

)
, z′ = −ω2

0y . (3.2)

Because the states in (3.1) and (3.2) have different meanings, one should
expect different results of an analysis, even though the whole picture of a
system will be the same. ��

3.1.1 Phase Plane

Let us assume that a system of the second order, like van der Pol’s oscillator,
is represented with two ODEs of the first order. The most common form of
such a system in state space is performed with

dy
dt

= P (y, z, t) ,
dz
dt

= Q(y, z, t) , (3.3)

where P (y, z, t) and Q(y, z, t) are some linear or nonlinear, time varying or
time invariant functions. In the qualitative analysis, we typically let z = y′

and go from (3.3) to the function

dz
dy

=
dy′

dy
=

Q(y, z, t)
P (y, z, t)

(3.4)

that is useful, first of all, when both functions, Q and P , are time invariant
and such that

dz
dy

=
dy′

dy
=

Q(y, z)
P (y, z)

. (3.5)

Function (3.5) can now be investigated on a plane of two variables, z = y′

and y, called the phase plane. The term suggests that, for any initial condition
(y0, z0), a solution may be found as z(y) or y(z) and represented with the
so-called phase trajectories. Seemingly obvious is that every point of each of
these trajectories corresponds to a certain time instant and depends on the
initial conditions.

Because the initial conditions can be set arbitrary, a number of the phase
trajectories is infinite. Therefore, researchers, first of all, are interested of
considering some special points, functions, and ranges, by means of which the
system demonstrates its major properties.

As a first step toward sketching the phase trajectories, one needs to find
and mark on a phase plane the functions associated with z′ = Q = 0 and
y′ = P = 0. It follows from (3.5) that the function derived by Q = 0 will give
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us the points, where the phase trajectory has a zero slope (traces horizontally).
A set of these points form a function called the z-nullcline being the isocline
with a zero tangent to the axis y. Analogously, the function derived by P = 0
gives us the points, where the phase trajectory has an infinite slope (traces
vertically). A function formed by a set of these points is called the y-nullcline
or the isocline with a zero tangent to the axis z. One can also let dz/dy = m
and find the isoclines with a slope m.

The special points of a system in phase plane are specified by Q = P = 0.
Since the latter relation means z′ = y′ = 0 and thus there is no behavior, the
relevant points are called fixed as associated with a system in equilibrium.
Every fixed may be stable or unstable.

3.1.2 Stability of Linearized Nonlinear Systems

To study stability of s system at a fixed point means, first, to write

P (y, z) = Q(y, z) = 0 , (3.6)

then find some solution z0, y0, linearize a system at this point, and finally
investigate it. Defined a solution y0, z0, a linearized system is represented in
the matrix form

[
y′

z′

]
=
[
a b
c d

] [
y
z

]
, (3.7)

using the Jacobian1 matrix (Appendix B)

J(z, y) = A =
[
a b
c d

]
, (3.8)

in which

a = P ′y(y0, z0) =
∂P (y, z)

∂y

∣∣∣∣
y=y0,z=z0

, b = P ′z(y0, z0) =
∂P (y, z)

∂z

∣∣∣∣
y=y0,z=z0

,

c = Q′y(y0, z0) =
∂Q(y, z)

∂y

∣∣∣∣
y=y0,z=z0

, d = Q′z(y0, z0) =
∂Q(y, z)

∂z

∣∣∣∣
y=y0,z=z0

.

(3.9)
The characteristic equation, associated with the matrix A (3.8), is written

as
∣∣∣∣
a− λ b

c d− λ

∣∣∣∣ = λ2 + σλ + Δ = 0 , (3.10)

1 Carl Gustav Jacob Jacobi, German mathematician, 10 December 1804-18 Febru-
ary 1851.
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where the coefficients are predetermined to be σ = −(a+ d) and Δ = ad− bc.
The roots of (3.10) are defined by

λ1,2 = −σ

2
±
√

σ2

4
−Δ, (3.11)

being simultaneously the eigenvalues of the Jacobian matrix. If the eigenvalues
are found, a linearized system can fully be described via the eigenvectors.

Analyzing (3.11), we recognize several special cases. First, it is important
to remember that the necessary and sufficient condition for the linear system
to be stable is satisfied by σ > 0 and Δ > 0. All points placed in the first
quadrant of the coordinates (Fig. 3.1) are thus stable.

Fig. 3.1. Fixed points on phase plane.

With σ2 − 4Δ < 0, the roots are complex and an equilibrium is spiral
also called focus. The relevant points lie within the parabola depicted in Fig.
3.1. Here, if σ > 0, spiral is stable (Fig. 3.2a) and, by σ < 0, it is unstable
(Fig. 3.2b). In a special case of σ = 0, spiral degenerates to center also called
neutral center (Fig. 3.2f). In Fig. 3.2 and in the following, a stable point is
depicted by a bold point “ • ” and unstable by a cycle “ ◦ ”.

If σ2 − 4Δ > 0 and Δ > 0, an equilibrium point in the topographical
nature is node. The node is stable (Fig. 3.2d) if σ > 0 and it is unstable (Fig.
3.2c) if σ < 0.

It is seen that, by Δ < 0, the roots are always real with, however, different
signs. The relevant fixed points lie in the third and fourth quadrants and an
equilibrium here, in the topographical nature, is saddle (Fig. 3.2e).
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Fig. 3.2. Topological nature of fixed points on phase plane: (a) stable spiral (or
focus), (b) unstable spiral (or focus), (c) unstable node, (d) stable node, (e) saddle,
and (f) center.

In applications, it sometimes seems convenient to deal directly with the
components a, b, c, and d of the Jacobian matrix rather than with their
functions σ and Δ. Allowing this, the topological nature of the fixed points is
specified by the roots

2λ1,2 = a + d±
√

(a + d)2 − 4(ad− bc)

= a + d±
√

(a− d)2 + 4bc (3.12)
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that is summarized in Table 3.1.

Table 3.1. Topographical nature of fixed points

Condition Fixed point

(a− b)2 + 4bc > 0
ad− bc < 0 Saddle
ad− bc > 0

a + d < 0 Stable node
a + d > 0 Unstable node

(a− b)2 + 4bc < 0
a + d = 0 Center
a + d �= 0

a + d < 0 Stable spiral
a + d > 0 Unstable spiral

Example 3.2. A system is described with the linear differential equation

y′′ = y . (3.13)

Its state plane form is y′ = z and z′ = y. Therefore, the z-nullcline (z, 0)
coincides with the axis z and the y-nullcline (0, y) is the axis y (Fig. 3.3a). The
only fixed point here is y0 = 0 and z0 = 0 and, therefore, the characteristic
equation λ2 + 0 · λ− 1 = 0 gives λ1 = 1 and λ2 = −1 and produces σ = 0 and
Δ = −1. It then follows from Fig. 3.1 that an equilibrium is saddle. ��

3.2 Phase Trajectories

To define the phase trajectories in the phase plane, one needs solving the
differential equation of the first order (3.5),

dz
dy

=
Q(y, z)
P (y, z)

, (3.14)

that can be brought about in different ways depending on the functions P (y, z)
and Q(y, z). An assemblage of the phase trajectories caused by different ini-
tial conditions will represent what we call the phase portrait. Every phase
trajectory traces in phase plane in some direction. The rule to determine the
direction at an arbitrary point (y, z) is established by Table 3.2.

Among all the phase trajectories there are special curves separating the
regions of different behaviors. The curve is called the separatrix that is not
crossed by any other trajectory. The separatrix goes from the unstable saddle
to the stable node or spiral. It may close two branches of the saddle or go
from one saddle to the other.
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Fig. 3.3. Solutions of equations y′ = z and z′ = y on phase plane: (a) nullclines,
(b) separatrices, and (c) phase portrait of phase trajectories.

Table 3.2. Directions of a phase trajectory at y, z

Function Direction

P (y, z) > 0 y directs →
P (y, z) < 0 y directs ←
Q(y, z) > 0 z directs ↑
Q(y, z) < 0 z directs ↓

If a system is linearized or linear, (3.7), the separatrices at each of the
fixed points are specified by two 2 × 1 eigenvectors V corresponding to each
of the eigenvalues. The basic relation is

AV = λV , (3.15)

where λ is either λ1 or λ2. To solve (3.15), one usually fixes one of the coordi-
nate values and then calculates the other one. The eigenvectors corresponding
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to λ1 and λ2 represent the separatrix curves. The phase trajectories are defined
by solving (3.14), where P (y, z) and Q(y, z) are linear functions of y and z.

Example 3.3. Consider a system y′′ = y (Example 3.2), which Jacobian
matrix is

A =
[

0 1
1 0

]

and the eigenvalues are λ1 = 1 and λ2 = −1. For the first eigenvalue λ1 = 1,
the eigenvector is defined, by (3.15), with an equation

[
0 1
1 0

] [
y1

z1

]
= λ1

[
y1

z1

]
,

producing two equal equations z1 = y1 and y1 = z1. For y1 = 1 we hence
have z1 = 1. Reasoning similarly, one can find y2 = 1 and z2 = −1 for the
second eigenvalue λ2 = −1. The eigenvectors directed along the separatrices
(Fig. 3.3b) are thus

V1 =
[

1
1

]
, V2 =

[
1
−1

]
.

Table 3.2 suggests that the phase trajectories are directed as follows. In
the 1st quadrant as ↑→, in the 2st as ↓→, in the 3st as ← ↓, and in the 4st as
← ↑. Fig. 3.3a illustrates this directions for the relevant nullclines. ��

3.2.1 Limit Cycles

A special phase trajectory exhibited by nonlinear systems originates a so-
called limit-cycle or a closed trajectory in phase space. A limit cycle is initiated
in a nonlinear dynamical system when the latter evolves with time and its
trajectory might tend to spiral approaching a closed loop in the phase plane.

The following Bendixson’s2 criterion helps figuring out if a system has
closed trajectories:

Theorem 3.1 (Bendixson’s criterion). Consider a system y′ = P (y, z)
and z′ = Q(y, z) within the given closed region D. If

∂P (y, z)
∂y

+
∂Q(y, z)

∂z
	= 0 , (3.16)

then there cannot be a periodic orbit inside D.
��

In line with the node and spiral, a limit cycle can also be either stable or
not. If the neighboring trajectories evolve towards the limit cycle, then it is
a stable limit cycle (Fig. 3.4a). Otherwise it is an unstable limit cycle (Fig.
3.4b).

2 Ivar Otto Bendixson, Swedish mathematician, 1 August 1861-1935.
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Fig. 3.4. Limit cycles: (a) stable and (b) unstable.

Stable limit-cycles are associated with self sustained oscillations in systems
such as van der Pol’s oscillator. An important peculiarity of a stable limit cycle
is that any small perturbation from its closed loop would cause the system
to return back. The following Poincaré-Bendixson theorem is often used to
determine if there is a closed trajectory in a system.

Theorem 3.2 (Poincaré-Bendixson theorem). Consider a system

y′ = P (y, z) , z′ = Q(y, z)

in the closed bounded region D, where P (y, z) and Q(y, z) are smoothed differ-
entiable functions. If a system trajectory of the dynamic system is such that
it remains in D for t � 0, then this trajectory is either a limit cycle or it
converges to a limit cycle.

��
Example 3.4. Consider a system that is known to be oscillatory,

y′ = −y + az + y2z = P (y, z) , z′ = b− az − y2z = Q(y, z) ,

where a = 0.08 and b = 0.6. A system has a fixed point y0 = b, z0 = b/(a+b2)
that is an unstable spiral. The divergence of the trajectory is ascertained from

∂P (y, z)
∂y

+
∂Q(y, z)

∂z
= 2yz − 1− a− y2 ,

it may be zero at some points, and thus, by the Bendixson criterion, a system
has a limit cycle. It can be shown that all the trajectories exist in some closed
range. Hence, by the Poincaré-Bendixson theorem, a system has a limit cycle.
Fig. 3.5 demonstrates, for two different initial conditions, that the trajectories
approach a stable limit cycle. ��
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Fig. 3.5. Limit cycle in a system.

3.2.2 Homoclinic and Heteroclinic Trajectories

Let us assume that a system has a saddle or two saddles. Then two particular
cases can be considered. A separatrix may go from a saddle O and come back
to the same point with t→ +∞ or t→ −∞. Such a closed trajectory is called
the homoclinic orbit or horseshoe (Fig. 3.6a). In the other case, a separatrix
may go, for example, from a saddle O2 to a saddle O1 and reach this point
at t → +∞ or t → −∞ (Fig. 3.6b). This trajectory is called the heteroclinic
path (cycle or trajectory).

Fig. 3.6. Saddle trajectories: (a) homoclinic and (b) heteroclinic.

If such trajectories exist, the questions arise if they are stable or not and
what are the conditions for them to be stable? In 1923, Dulac has proved the
following theorem that was further justified by Andronov3:

3 Aleksandr Aleksandrovich Andronov, Russian physicist, 11 April 1901-31 October
1952.
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Theorem 3.3 (Dulac theorem). Consider a system y′ = P (y, z) and
z′ = Q(y, z), in which the right-hand sides are analytic and a system has
a homoclinic trajectory L0 (Fig. 3.6a). Then L0 is stable if

σ0 =
(
∂P

∂y
+

∂Q

∂z

)∣∣∣∣
y0=0,z0=0

< 0 (3.17)

and it is unstable if

σ0 =
(
∂P

∂y
+

∂Q

∂z

)∣∣∣∣
y0=0,z0=0

> 0 . (3.18)

��
A special case here is when σ0 = 0. Studied by many authors, this case

results in the following theorem:

Theorem 3.4. Consider a system y′ = P (y, z) and z′ = Q(y, z) such that
σ0 =

(
∂P
∂y + ∂Q

∂z

)∣∣∣
y0=0,z0=0

= 0.

If the integral measure is negative,

σ1 =

∞∫

−∞

(
∂P

∂y
+

∂Q

∂z

)∣∣∣∣
y,z∈L0

dt < 0 , (3.19)

then the homoclinic trajectory L0 is stable and if

σ1 =

∞∫

−∞

(
∂P

∂y
+

∂Q

∂z

)∣∣∣∣
y,z∈L0

dt > 0 , (3.20)

then L0 is unstable.
��

The other special case of σ0 = σ1 = 0 is more complicated to justify
theoretically, even though it has simple examples with analytically derived
trajectories. It follows that, in this case, a system has closed cycles within the
homoclinic cycle.

Example 3.5. Given a system

y′ = 2z = P (y, z) , z′ = 12y − 2y2 = Q(y, z) .

It can be shown that, for this system, σ0 = σ1 = 0 and one should expect
for the closed cycles if the homoclinic trajectory exists. The system has two
fixed points: y = 0, z = 0 and y = 4, z = 0. It can easily be verified that the
first point is saddle and the second one is center. The general integral of a
system is given by

y3 − 6y2 + z2 = C
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and we determine
z = ±

√
6y2 − y3 + C

that, by C = 0, is represented by a saddle with a homocline (Fig. 3.7). ��

Fig. 3.7. System with a homoclinic trajectory (bold).

So far, we discussed the homoclinic cycle. If the trajectory occurs to be
heteroclinic, it goes from one saddle O1 to the other one O2 (Fig. 3.6b),
then the most important question is if this trajectory is sensitive to small
perturbations or it is not. The theorem proved by Andronov et al. claims that
the heteroclinic trajectory is not structurally stable, meaning that even an
insignificant perturbation is able to “destroy” this connection.

3.2.3 Attractors

Typically, the phase portrait of trajectories exhibits one or several curves,
points, or manifolds which the trajectories asymptotically approach. If such
special states are invariant under the dynamics, then they are said to be
attractors.

A stable limit cycle (Fig. 3.4a) acts as an attractor also called regular at-
tractor. A stable fixed point (node and spiral) surrounded by a dissipative
region is an attractor known as a map sink. It needs to remember that sys-
tems without dissipation of energy do not have attractors, since the motion is
periodic. An attractor may also be a complicated set with fractal structures
known as a strange attractor. The strange attractor may be watched both in
the deterministic and chaotic systems. For the latter case, the special theory
known as chaos theory is developed.
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3.2.4 Structural Stability of Systems

An important feature of any system is how it responds to small perturbations
being at equilibrium. The problem was first considered by Andronov apply-
ing the Poincaré theory. Then the definition of a “rough” system or struc-
turally stable system that is akin to physical robustness was stated by the
Andronov-Pontryagin4 theorem. By Andronov, the rough system is the one,
which topography in the considered region is not changed by small perturba-
tions. Accordingly, the system is called “subtle” or (structurally unstable) if
it changes the topography in the considered region, by small variations in its
parameters. This results in the following theorem:

Theorem 3.5 (Andronov-Pontryagin theorem). Consider a system y′ =
P (y, z) and z′ = Q(y, z). If the condition

Δ =
∣∣∣∣
P ′y(y0, z0) P ′z(y0, z0)
Q′y(y0, z0) Q′z(y0, z0)

∣∣∣∣ 	= 0 (3.21)

is met at the fixed point (y0, z0), then the system is “rough” at this point.
��

Since a fixed point may have different nature (Table 3.1), it is of practi-
cal importance to estimate roughness of each of the fixed points. Table 3.3
summarizes such estimates for several equilibria.

Table 3.3. Structural stability

Condition Fixed point Roughness

Δ > 0, σ �= 0 Node or spiral Rough
Δ < 0 Saddle Rough
Δ > 0, σ = 0 Subtle
Separatrix Saddle to saddle Subtle

Simple limit cycle Rough

3.3 Bifurcations

The word “bifurcate” means to “divide into two parts or branches” and the
term bifurcation in the system theory means splitting of attractors. Accord-
ingly, the bifurcation theory learns changes in the topology (or attractor’s
structure) of dynamic systems caused by changes in systems.

4 Lev Semenovich Pontryagin, Russian mathematician, 3 September 1908-3 May
1988.
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Bifurcation parameter : The value μ0 of a parameter μ is said to
be the bifurcation parameter, if a topological structure of a dynamic
system associated with μ0 differs from that associated with μ.

��

Any coefficient of a nonlinear system can play a role of the bifurcation
parameter if some its value changes cardinally a topological structure of the
phase portrait.

Example 3.6. Consider a system described with the equations

y′ = 2z , z′ = 2y − 3μy2 ,

where μ can take different values. The general integral of a system is

z2 − y2 + μy3 = C ,

where C is a constant, and the trajectories are described by

z = ±
√

y2(1− μy) + C .

Fig. 3.8 shows phase portraits of this system for three different values of
μ = 0.3, μ = 0, and μ = −0.3. It is seen that the topology is changed with
μ = 0 (only one saddle point) and hence this value is bifurcation, μ0 = 0.
With another value of μ, the topology has two fixed points: saddle and center.

��
Bifurcation diagram: A bifurcation diagram shows the possible
long-term values a variable of a system can obtain in function of a
parameter of the system.

��

It follows from the definition of the bifurcation diagram that it is a graph
showing the location of a system equilibrium point at different values of the
parameter. Typically, a location of a stable equilibrium is depicted by a solid
curve and that of unstable equilibrium by dashed curve.

A classical illustration for the bifurcation diagram is provided by the lo-
gistic map

yt+1 = μyt(1− yt) ,

where time takes discrete values with a step 1. Fig. 3.9 shows what happens
with the equilibria if changing a parameter μ. It is seen that for 0 � μ � 1, all
the points are plotted at zero and thus zero is the one-point attractor here. For
1 < μ < 3, there is still one-point attractor, which is stable and which value
y = (μ− 1)/μ increases as μ increases. At μ = 3, there is the flip bifurcation.
With further increase of μ, the fixed point becomes unstable. Then, again,
bifurcations occur, approximately, at r = 3.45, 3.54, 3.564, 3.569, . . ., until
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Fig. 3.8. Bifurcation: (a) μ = 0.3, (b) μ = 0, and (c) μ = −0.3.

Fig. 3.9. Bifurcation diagram of a logical map.
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the value 3.57, at which the system is chaotic. However, the system is not
chaotic for all values of μ > 3.57.

Investigated by Poincaré, Andronov, Pontriagin, Hopf5, and many other
scientists, nowadays, the bifurcation theory proposes to readers a broad clas-
sification of bifurcation phenomena. Table 3.4 gives examples of the several
most typical bifurcations in continuous-time dynamic systems.

Table 3.4. Typical bifurcations in dynamic systems

Bifurcation Fixed points Example

Fold Stable and unstable y′ = μ− y2

⇔ no
Pitchfork Stable ⇔ unstable y′ = μy − y3

and two stable
Pitchfork Stable and two unstable y′ = μy + y3

⇔ unstable
Transcritical Stable and unstable y′ = μy − y2

⇔ unstable and stable
Saddle node Saddle ⇔ stable y′ = μ− y2

and unstable
Cusp Stable ⇔ two stable y′ = −b + ay − y3

and one unstable
Andronov-Hopf Stable spiral ⇔ center y′ = [α− (y2 + z2)]y − βz

⇔ unstable spiral z′ = [βy + [α− (y2 + z2)]y

3.4 Chaotic Orbits and Fractals

The theory of chaotic orbits or just chaos is very recent, even though its roots
are in the works of Henri Poincaré (about 1900), who wrote:

“It so happens that small differences in the initial state of the system
can lead to very large differences in its final state. A small error in the
former could then produce an enormous one in the latter. Prediction
becomes impossible, and the system appears to behave randomly.”

��

Poincaré also found that there can be orbits in the motion of three ob-
jects in mutual gravitational attraction which are nonperiodic. This deduction
of Poincaré however, was not properly appreciated and, much later, it had
been thought that chaos is available in complex systems and is a consequence
of a large number of degrees of freedom. Therefore, formally, the theory of

5 Heinz Hopf, German mathematician, 19 November 1894-3 June 1971.
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chaos is often defined as the study of complex (with recursion) nonlinear dy-
namic (time-varying and nonperiodic) systems. Most recently, it was found
that chaotic orbits may nucleate even in deterministic systems with a number
of states no less than three.

With time, the essence of chaos has became more and more clear and
its practical applications were found, despite mathematicians still having not
decided on the definition of chaos. It turned out that chaotic behaviors in non-
linear systems may be used in modulation to transmit messages in what was
further called chaos-based communications and telecommunications. Other
areas of applications are information compression, image recognition, medical
diagnostics, electronic archives, etc.

Based upon the classical notions, the evolution of an initial condition y0

under a system operator does not behave chaotically, because of its predictabil-
ity, if the function y(t)

• Goes to an equilibrium when t→∞ , ��
• Goes to a periodic orbit when t→∞ , ��
• Escapes to ∞ as t→∞ . ��

Contrary to periodic behaviors, a chaotic orbit is not periodic or eventually
periodic. Such an orbit occurs if, as accepted conventionally, the Lyapunov
exponent (which we introduce below) is positive. An example of chaotic be-
haviors is the Lorenz system.

Example 3.7 (Lorenz oscillator). To illustrate the chaotic orbits, we show
below a numerical solution for a system described with the Lorenz equations,

x′ = σ(y − x) , y′ = x(ρ− z)− y , z′ = xy − βz ,

where ρ = 28, σ = 10, and β = 8/3. The initial conditions are set to be
x(0) = y(0) = z(0) = 1. It is seen (Fig. 3.10) that the behaviors of all three
states have some carrier and that they are not periodic on a long time scale.

Fig. 3.11 shows the trajectories in three phase space sections. As it is
seen, the trajectories chaotically behave between two attractors, say “left” and
“right”. Let us consider, for example, the plane z-x (Fig. 3.11b). A trajectory
starts at t = 0 at the point x = y = z = 1, makes only one semi loop, and goes
to the left part, where it moves around the unstable attractor (loop) during a
lot of periods. At t = 14, it leaves the left attractor and appears closely to the
start point. Again, it makes a semi loop and comes back to the left attractor.
It then twice returns at about t = 21 and t = 23.3. But thereafter, before
coming back to the left attractor, the trajectory makes a full loop in the right
part. In a like manner, the trajectories behave in the planes y-x (Fig. 3.11a)
and z-y (Fig. 3.11c). If we look at the picture in a long-time base, we find two
brightly pronounced attractors, called the butterfly attractors, as it is shown
in Fig. 3.11d in the y-x plane.
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Fig. 3.10. Numerical solutions of Lorenz’s equations for ρ = 28, σ = 10, β = 8/3,
and x(0) = y(0) = z(0) = 1.

Fig. 3.11. Lorenz chaotic orbits and attractors: (a) y-x plane, (b) z-x plane, (c)
z-y plane, and (d) y-x plane in long-term time.
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An applied significance of a picture shown in Fig. 3.11d is that it is nothing
less than a chaotic bit sequence. Such an unexpectedly splendid property of
Lorenz’s oscillator has found applications in digital communications. ��

Fractals

The word “fractal” was introduced by Benoit Mandelbrot6 in 1975 from the
Latin fractus (meaning “broken” or “fractured”) to describe an object which
has partial dimension. It is a geometric object that satisfies a specific tech-
nical condition, namely having a Hausdorff7-Besicovitch8 dimension greater
than its topological dimension. The fractal denotes a shape that is recursively
constructed or self-similar: a shape that appears similar at all scales of mag-
nification.

Fractals are usually created by recursive equations in discrete time. There-
fore, they are typically so irregular that they cannot by described by smooth,
differentiable structures; thus, they are not directly associated with continuous-
time systems.

3.4.1 Lyapunov Exponents

A convenient mathematical tool to determine what kind of attractors may
exist in a system is the Lyapunov characteristic exponent or just the Lyapunov
exponent. These exponents describe the mean exponential rate of divergence
of two (or more) trajectories initially close to each other in phase space.

For the sake of simplicity, we shall first demonstrate the meaning of the
Lyapunov exponent considering a one-state system. So, let us assume that a
system is described with

y′ = P (y) , (3.22)

where P (y) is a nonlinear function, and select two nearby initial points y and
y0 of a trajectory. The distance between y and y0 is supposed to be small and
we expand a nonlinear function in the right-hand side to the Taylor series
around y0

y′ = P (y0) +
∂P (y)
∂y

∣∣∣∣
y=y0

(y − y0) + . . . ,

We now let y′0 = P (y0), neglect the nonlinear terms, and write

Δy′ =
∂P (y)
∂y

∣∣∣∣
y=y0

Δy , (3.23)

6 Benoit Mandelbrot, Polish-born French mathematician, 20 November 1924-.
7 Felix Hausdorff, German mathematician, 8 November 1868-26 January 1942.
8 Abram Samoilovitch Besicovitch, Ukrainian-born Russian/English mathemati-

cian, 24 January 1891-2 November 1970.
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where Δy = y− y0 and Δy′ = y′ − P (y0) = y′ − y′0. A general solution of the
linear ODE (3.23) is exponential,

Δy(t) = eλtΔy(0) , (3.24)

that, being rewritten for λ, gives

λ =
1
t

ln
|Δy(t)|
|Δy(0)| .

In applications, a value derived is of interest on a long time scale. There-
fore, an equation is rewritten as

λ = lim
t→∞

1
t

ln
|Δy(t)|
|Δy(0)| (3.25)

and is called the Lyapunov exponent.
If we now differentiate (3.24), Δy′ = λeλtΔy(0), and then substitute Δy

and Δy′ to (3.23), we arrive at an analytical measure of the Lyapunov expo-
nent; that is,

λ =
∂P (y)
∂y

∣∣∣∣
y=y0

. (3.26)

An obvious conclusion follows instantly: if λ > 0, the trajectories diverge;
when λ = 0, they conserve a mutual distance; and, if λ < 0, they converge.

Most generally, a closed loop system is described by a multi-state model
with the Lyapunov exponent derived in a like manner,

λ = lim
t→∞

1
t

ln
|y(t) − y0(t)|
|y(0)− y0(0)| , (3.27)

where the value |y(t) − y0(t)| means a distance between the trajectories in
state space at time t. It is commonly accepted that, like the one-state case, if
the largest Lyapunov exponent is negative, then the trajectories will converge
and the system will evolve to equilibria and limit cycles. With the positive
largest Lyapunov exponent, the trajectories will diverge and a system will go
to chaotic attractors. Finally, a zero largest Lyapunov exponent says that the
trajectories have in average the same space distance with time and the system
has regular attractors.

3.5 Conservative Systems

An important class of systems is formed by the conservative systems which
satisfy an energy-balance equation, provided the definition given by Maxwell9:
9 James Clerk Maxwell, Scottish mathematical physicist, 13 June 1831-5 November

1879.
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Conservative system: “A material system of such a nature that af-
ter the system has undergone any series of changes, and been brought
back in any manner to its original state, the whole work done by ex-
ternal agents on the system is equal to the whole work done by the
system overcoming external forces.”

James Clerk Maxwell
��

In a conservative system, the sum of the energy stored in the system at
some time t plus the outgoing energy equals the sum of the initial energy stored
in the system and of the incoming energy. Therefore, the conservative systems
are often called the system without a dissipation of energy, pointing out that
the systems in which the energy is dissipated, the dissipative systems, are not
conservative. For conservative systems, the sum of all Lyapunov exponents is
zero and, for dissipative, it is negative.

If a system is described with the exact first-order differential equation of
the form

P (y, z)dz −Q(y, z)dy = 0 , (3.28)

where

∂P (y, z)
∂y

= −∂Q(y, z)
∂z

, (3.29)

then it is a conservative system. The solution to (3.28) is given by

z∫

z0

P (y0, z)dz −
y∫

y0

Q(y, z)dy = C , (3.30)

where the integration constant C is associated with the initial conditions. An
example of the conservative system is van der Pol’s oscillator with a zero small
parameter ε = 0 that makes its equation to be y′′ + ω2

0y = 0. A great deal of
systems governed by partial differential equations are also conservative.

Example 3.8. A system is described with the equations

y′ = z + z(y2 + z2) = P (y, z) , z′ = y − y(y2 + z2) = Q(y, z) . (3.31)

Since P ′y = −Q′z = 2yz, then, by (3.29), the system is conservative. The
system has three fixed points: (−1, 0), (0, 0), and (1, 0). A general integral, by
(3.29), is defined to be

(y2 + z2)2 − 2(y2 − z2) = 4C . (3.32)
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If we now let 4C = c4 − 1, then an equation will attain the form

(y2 + z2)2 − 2(y2 − z2) = c4 − 1 , (3.33)

describing the Cassinian10 ovals (Fig. 3.12), in which the directions of the
phase trajectories are readily defined by Table 3.2.

Fig. 3.12. Cassinian ovals following with a step Δc = 0.1.

It can be shown that, by c = 0, the oval degenerates into two points with
the coordinates (−1, 0) and (1, 0). With c = 1, it is a so-called lemniscate. By
c �
√

2, the curves are ovals, if 1 < c <
√

2, they are “dog bones,” and, by
0 < c < 1, the curve consists of two loops. ��

If (3.29) is not satisfied,

∂P (y, z)
∂y

	= −∂Q(y, z)
∂z

, (3.34)

the differential equation (3.28) is inexact. Inexact equations can be solved by
defining an integration factor �(y, z) such that the resulting equation becomes
exact, namely

�(y, z)P (y, z)dz − �(y, z)Q(y, z)dy = 0 , (3.35)

where the factor �(y, z) satisfies the partial differential equation (PDE)

�

(
∂Q

∂z
+

∂P

∂y

)
= −P ∂�

∂y
−Q

∂�

∂z
(3.36)

and (3.29) is satisfied with

10 Giovanni Domenico Cassini, French/Italian astronomer and mathematician, 8
June 1625–14 September 1712.
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∂�(y, z)P (y, z)
∂y

= −∂�(y, z)Q(y, z)
∂z

. (3.37)

It is seen that, by �(y, z) = 1, a relation (3.36) becomes (3.29) and, so, a
condition (3.36) is most general. But we still do not know if a system satisfying
(3.36) is conservative. The definition given by Andronov claims that such a
system is conservative if the factor μ(y, z) also called conservative density or
integral invariant density is positive valued,

�(y, z) � 0 . (3.38)

Defined �(y, z), a solution of (3.35) is obtained in a like manner,

z∫

z0

�(y, z)P (y0, z)dz −
y∫

y0

�(y, z)Q(y, z)dy = C . (3.39)

Example 3.9. Given a system, performed by the equations

y′ = 2z + y2 + z2 − 1 = P (y, z) , z′ = −2y = Q(y, z) . (3.40)

Here we have P ′y = 2y 	= Q′z = 0 and hence the associated differential
equation (3.28) is inexact. To find a general integral, we exploit (3.36) and
arrive at

2y� = −(2z + y2 + z2 − 1)
∂�

∂y
+ 2y

∂�

∂z
.

It is known that an equation like this has an exponential solution. It also
follows that if � does not depend on y, then an equality holds if � = ez. Since
ez > 0, then, by (3.38), a systems is conservative. By this value, a general
integral applied to (3.35) is defined to be

(y2 + z2 − 1)ez = C , (3.41)

where the constant C corresponds to the certain trajectory of a system. ��

3.5.1 Hamiltonian Systems

An important class of conservative systems is united in what is known in
physics as Hamiltonian systems. The dynamical system is said to be a Hamil-
tonian system if for a smooth function H(y, z), where y and z are n×1 vector
functions associated with y and z, respectively, the following equations hold
true:

y′i = −∂H

∂zi
, (3.42)



142 3 Qualitative Methods of Systems Description

z′i =
∂H

∂yi
, (3.43)

where i ∈ [1, n]. If the function H exists, then it is the Hamiltonian function
or the Hamiltonian. Accordingly, (3.42) and (3.38) are called Hamilton’s equa-
tions. A number of degrees of freedom of a Hamiltonian system is the number
of (yi, zi) pairs in (3.42) and (3.43). This number is equal to n and the phase
space is thus 2n-dimensional.

For example, in mechanics, the vector y represents the coordinates of
the system components, while z is a set of momenta. Therefore, typically,
the hamiltonian is often assumed to describe the total energy of a system,
although this is not always the case. If the system energy is constant, the
Hamilton function is constant as well that allows using this fact in integrating
the equation (3.28).

If the Hamiltonian system is of the second order, equations (3.3) may be
rewritten as

dy
dt

= P (y, z) = −∂H

∂z
, (3.44)

dz
dt

= Q(y, z) =
∂H

∂y
, (3.45)

where the Hamiltonian H represents the system energy. It now follows
straightforwardly that the Hamiltonian system is a particular case of a con-
servative system.

Example 3.10. Let us come back to the system (Example 3.2) and write its
equations as follows,

y′ = z = −∂H

∂z
, z′ = y =

∂H

∂y
. (3.46)

For the fixed point (x0 = 0, y0 = 0), we have P = z, and Q = y, and the
system energy is defined by

H =

z∫

0

P (z)dz −
y∫

0

Q(y)dy (3.47)

=
1
2
z2 − 1

2
y2 = C . (3.48)

As can be seen, the Hamiltonian derived (3.48) satisfies the equations
(3.46). The phase trajectories are thus described by

z = ±
√

y2 + 2C (3.49)

that gives, by C = 0, two separatrices, z = y and z = −y (Fig. 3.3b), rep-
resented in Example 3.3 by the eigenvectors. The phase portrait of a saddle
associated with (3.49) is shown in Fig. 3.3c. ��
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Example 3.11. Consider two general integrals, (3.32) and (3.41). It can easily
be shown that, by assigning, respectively,

H = C =
1
4
(y2 + z2)2 − 1

2
(y2 − z2) ,

H =
C

μ
=

C

ez
= (y2 + z2 − 1) ,

and then differentiating (3.44) and (3.45), we arrive at the relevant functions
P (y, z) and Q(y, z) given in Examples 3.8 and 3.9, respectively. ��

3.6 Dissipative (Near Conservative) Systems

As we have already mentioned before, a great deal of nonlinear systems of
practical importance is described by the ODE (2.84), in which ε is a small
value. However, namely this small ε changes a picture cardinally: if ε = 0, a
system is conservative (idealized) and when ε > 0 a system becomes dissipative
(real physical). Referring to this fact, a qualitative analysis of a system may
be provided in the mathematical form like that used in (2.84). Indeed, if we
will think that there is a conservative system, (3.44) and (3.45), with known
properties, then the dissipative (although near conservative) system can be
described by

dy
dt

= P (y, z) + μp(y, z, μ) = P (y, z, μ) , (3.50)

dz
dt

= Q(y, z) + μq(y, z, μ) = Q(y, z, μ) , (3.51)

where μ is a small value and p(y, z, μ) and q(y, z, μ) are analytic functions in
the observed range.

Referring to (3.44) and (3.45), the equations can be rewritten as

dy
dt

= −∂H

∂z
+ μp1(y, z) + μ2p2(y, z) + . . . , (3.52)

dz
dt

=
∂H

∂y
+ μq1(y, z) + μ2q2(y, z) + . . . , (3.53)

where the products of small values μk, k > 1, may be neglected. The following
Pontryagin theorem then helps to recognize whether a limit cycle in a system
(3.52) and (3.53) exists or not.

Theorem 3.6 (Pontryagin theorem). Let (3.52) and (3.53) be a near
Hamiltonian system with a small value μ and L0 a closed loop of a Hamil-
tonian system dy

dt = −∂H∂z and dz
dt = ∂H

∂y . Let also y = ϕ(t) and z = ψ(t) be
behaviors of a system with period T and G0 a range within L0. Then, if



144 3 Qualitative Methods of Systems Description

∫ ∫

G0

[p′1y(y, z) + q′1z(y, z)] dy dz = 0 , (3.54)

l =

T∫

0

{p′1y[ϕ(x), ψ(x)] + q′1z[ϕ(x), ψ(x)]} dx 	= 0 , (3.55)

then there exist values a > 0 and b > 0 such that
a) For any |μ| < b, a system has only one closed loop Lμ that approaches

L0 if μ→ 0,
b) A trajectory Lμ is a “rough” limit cycle that is stable when μl < 0 and

unstable if μl > 0.
��

Example 3.12. Consider van der Pol’s oscillator

y′′ + y = ε(1− y2)y′ ,

where ε is a small value, and rewrite its equation in state space as

y′ = −z , z′ = y + ε(1− y2)z .

With small ε, the oscillator may be considered to be a near Hamiltonian
system,

y′ = −z = −∂H

∂z
, z′ = y =

∂H

∂y
,

where the Hamiltonian is

H(y, z) =
1
2
(y2 + z2) ,

and the trajectories of a system are cycles with a center at (y0 = 0, z0 = 0).
To study the original oscillator equations, we represent them in the forms

of (3.52) and (3.53). Accordingly, we have

p1(y, z) = 0 , q1(y, z) = (1 − y2)z .

In accordance with the Pontryagin theorem, it now needs evaluating the
integral (3.54) attaining the form of

∫ ∫

G0

q′1z(y, z) dy dz =
∫ ∫

G0

(1− y2) dy dz .

To evaluate, we change the variables to y = r cos t and z = r sin t, define the
determinant of the Jacobian of the transformation J = r, and rewrite the
integral as

2π∫

0

r∫

0

r(1 − r2 cos2 θ) dr dθ =
π

4
r2(4 − r2) .
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A simple observation shows that the integral is zero only if r = 2, since any
radius cannot be negative.

Now let us evaluate the value l (3.55) that, for our conditions, becomes

l =

2π∫

0

(1 − r2 cos2 θ) dθ = 2π
(

1− r2

2

)
= −2π < 0 .

It then follows, by Pontryagin’s theorem, that the closed trajectory, y =
−2 cos t and z = 2 sin t, of the Hamiltonian system originates the structurally
stable limit cycle that is stable if ε > 0 and unstable with ε < 0. ��
Example 3.13. Given a system considered by Andronov et al.,

y′ = z , z′ = y(z − 1) + y2 + z2 + μz ,

where μ is a small parameter. The system has two fixed points: A (y = 0, z=
0) and B (y = 1, z = 0). The fixed point B is a saddle for an arbitrary μ. The
eigenvalues of the point A are calculated by

λ1,2 =
μ

2
±
√

μ2

4
− 1

and we have the following characteristics of this point for different small values
of μ:

• If μ � −2, then the fixed point is stable node ��
• If −2 < μ < 0, then the fixed point is stable spiral ��
• If 0 < μ < 2, then the fixed point is unstable spiral ��
• If 2 � μ, then the fixed point is unstable node ��
• If μ = +0, then the fixed point is unstable spiral ��
• If μ = −0, then the fixed point is stable spiral with an unstable cycle ��

��

3.6.1 Near Conservative Time-varying Systems

All real physical systems are affected by environment and many of them are
controlled or synchronized by some external signal. In each of these cases, a
system becomes time-varying, LTV or NTV.

In analogous to (3.50) and (3.51), equations for the near conservative time-
varying systems may be written as

dy
dt

= P (y, z) + μp(y, z, μ, t) , (3.56)

dz
dt

= Q(y, z) + μq(y, z, μ, t) , (3.57)
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where the functions p(y, z, μ, t) and q(y, z, μ, t) are time-dependent and we
still think that μ is a small parameter making a system near conservative,
although dissipative.

Certainly, we must know how the time-varying parts of (3.56) and (3.57)
result in behaviors of systems. If we know everything about the unperturbed
system described with y′ = P (y, z) and z′ = Q(y, z) and a system is at equilib-
rium, then the main question is if a system is still stable or it became chaotic
owing to the perturbing terms. To come up with an answer to this question,
one can apply the common methods and analyze a system at different time in-
stances that usually entails difficulties. In some particular cases, the answer,
even approximate, can be found faster. One of the cases is when a system
is perturbed periodically. Here, a transition to chaos may approximately be
predicted for a class of systems using the Melnikov method.

3.6.2 Melnikov’s Method

One of the common cases of practical importance is when a system described
by (3.56) and (3.57) has a homoclinic trajectory formed by a saddle loop such
as that shown in Fig. 3.7 with C = 0. Most generally, the unperturbed system
can have any periodic orbit. It is known that, under the certain circumstances,
a system may become chaotic. To determine the relevant condition, let us
perform a system with a matrix equation

z′ = f(z) + μg(z, t) , (3.58)

where

z(t) =
[
y(t)
z(t)

]
, f(z) =

[
P (y, z)
Q(y, z)

]
, g(z, t) =

[
p(y, z, t)
q(y, z, t)

]
.

Now consider Fig. 3.13 that shows a homoclinic trajectory (unperturbed
closed loop of a saddle) associated with the equation z′ = f(z) and two sepa-
ratrices (manifolds) of a saddle (perturbed open loop) occurred owing to the
term μg(z, t).

Let us suppose that at some time instant t0 two separatrices of a perturbed
saddle, r1 and r2, trace at a distance D(t0). If this distance occurs to be zero,
D(t0) = 0, then the necessary condition is satisfied for a system to be chaotic.
Melnikov has shown that D(t0) can be calculated by

D(t0) =
μ

|n[z0(0)]|M(t0) , (3.59)

where the components of a vector n[z0(t− t0)] are identified by the equations

f [z0(t− t0)]Tn[z0(t− t0)] = 0 , (3.60)
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Fig. 3.13. Homoclinic trajectory.

|f [z0(t− t0)]| = |n[z0(t− t0)]| , (3.61)

and z0 = z(t− t0) is a solution of the equation z′ = f(z) associated with the
separatrices.

The value M(t0) is provided by

M(t0) =

∞∫

−∞
g[z0(θ), θ + t0]Tn[z0(θ)]e

−
θ∫
0
∇·f(θ′) dθ′

dθ (3.62)

and has an alternative form of

M(t0) =

∞∫

−∞
f [z0(θ)] ∧ g[z0(θ), θ + t0]e

−
θ∫
0
∇·f(θ′) dθ′

dθ , (3.63)

where the divergence of the inner integral is ascertained by

∇ · f =
∂P (y, z)

∂y
+

∂Q(y, z)
∂z

(3.64)

and the wedge product of two vectors is defined by

f ∧ g = Pq −Qp . (3.65)

The value M(t0) is proved by the Melnikov theorem and, therefore, is
called the Melnikov integral.

There is an important particular case when P (z) does not depend on y
and Q(y) on z. Thus, ∇ · f = 0 and the Melnikov integral becomes
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M(t0) =

∞∫

−∞
f [z(θ)] ∧ g[z0(θ), θ + t0]dθ . (3.66)

Solving Melnikov’s integral equations helps understanding whether a sys-
tem is addicted to chaos or its behavior is absolutely predictable for an arbi-
trary control signal.

3.7 Summary

So, we have observed in brief the qualitative theory of systems. Even though
its roots are in the works of Poincaré and many studies have resulted in
a number of books and papers, the qualitative theory is still in progress.
Especially, it is related to chaotic systems. The theory helps investigating
a great deal of problems, when an analytic solution of the system dynamic
equation is problematic both in the time and frequency domains. Moreover,
analytic solutions are often redundant. Summarizing, we list below the most
fundamental canons of the qualitative theory:

− Qualitatively, a system is learned in phase space (multiple states) or phase
plane (two states) with time excluded from the variables and existing
indirectly.

− A line with a constant tangent in phase plane is called the isocline.

− The fixed points in phase plane are determined by zero time derivatives
of all of the system states.

− The topological nature of a fixed point is defined by the coefficients of the
characteristic equation of a linearized system.

− The phase trajectory is a curve of a system behavior in phase plane. An
assemblage of phase trajectories is the phase portrait.

− A special trajectory that is not crossed by any other trajectory is called
a separatrix.

− A special closed phase trajectory exhibited by nonlinear systems is a limit
cycle.

− An attractor is a curve, or point, or manifold which the trajectories asymp-
totically approach. An attractor may be regular or chaotic.

− A fixed point, or trajectory, or manifold is structurally stable if it is robust
to small perturbations.

− A parameter of a system is said to be bifurcation if a topological structure
of a dynamic system associated with this parameter differs from that
associated with other parameter.



3.8 Problems 149

− The conservative systems are often called the systems without a dissipa-
tion of energy.

− The Hamiltonian system is a particular case of conservative systems.

− If a system dissipates energy with time, then it is a dissipative system.

3.8 Problems

3.1 (Stability of linearized nonlinear systems). A system is given with
the following differential equation. Define the fixed points of a system. Realize,
whether the point is stable or not.

1. y′ = 2z , z′ = 6y − 2y2

2. y′ = z2 − 2z , z′ = y
3. y′ = 3z − 2z2 + 2y2 , z′ = 3y
4. y′ = z2 − y2 , z′ = y2 + z2

5. y′ = 12z − 6z3 , z′ = 2y2

6. y′ = 2z , z′ = 6y − 12y3

7. y′ = z + 1
2 (y3 − yz2) , z′ = y − y2 + y2z − z3

8. y′ = −z + yz , z′ = y + z2

9. y′ = y(2− z − y) , z′ = z(4y − y2 − 3)

3.2 (Phase trajectories). Given a system

1. y′′ = y + 2y′

2. y′′ + ay′ + by = 0
3. y′ = 2y′′ − y

Represent the system in state space. Following Example 3.3, determine the
eigenvalues and eigenvectors. Plot the separatrices and define their directions.

3.3. For the linearized system (Problem 3.1), following Example 3.3, define
the eigenvectors at the fixed points. Determine the directions of the separa-
trices.

3.4. A system is represented in phase plane with the separatrices (Fig. 3.14).
Assuming arbitrarily initial conditions, show the possible phase trajectories
of a system.

3.5. In the phase portrait shown in Fig. 3.15, find errors in the separatrices
and fixed points. Recall that a stable fixed point is depicted by a bold point,
whereas unstable by a cycle.

3.6. Using the Bendixson criterion, realize whether the systems given in
Problem 3.1 has a limit cycle or not.
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Fig. 3.14. Fixed points and separatrices in phase plane.

Fig. 3.15. Fixed points and separatrices in phase plane. What is wrong here? Find
errors.
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3.7. A system is given with

1. y′ = y3 + z2 + zy2 − 2yz2 , z′ = −2zy2 − z2y + z3 + sin y
2. y′ = y − z − 2y(y2 + z2) , z′ = y + z − z(y2 + z2)

Using the Bendixson criterion, realize whether a systems has a limit cycle or
not.

3.8 (Structural stability). A system is given with the differential equations
(Problem 3.1). Using the Andronov-Pontriagin theorem, realize whether the
system is structural stable at the fixed point or not.

3.9. Using the Andronov-Pontriagin theorem, ascertain the structural stabil-
ity of a system described in Problem 3.7.

3.10 (Bifurcations). A system is given with the following differential equa-
tions having a free parameter μ:

1. y′ = 2z , z′ = y(1− μy)
2. y′ = z(z − 2μ) , z′ = y
3. y′ = z(3− 2z) + 2μy2 , z′ = 3y
4. y′ = z2 − (μ− 1)y2 , z′ = y2 + μz2

5. y′ = z(2− μz2) , z′ = 2y2

6. y′ = 2z , z′ = 6y(1− 2μy2)
7. y′ = z + y(μ− 1)(y2 − z2) , z′ = y(1− y) + z(μ− 1)(y2 − z2)
8. y′ = −z(1− μy) , z′ = y + (μ− 2)z2

9. y′ = y(2− μz − y) , z′ = z(4y − μy2 − 3)

Investigate the phase portrait of a system and define the bifurcation value of
μ.

3.11. Analyze bifurcations in the systems presented in Problem 3.10. What
kind of bifurcation it has? Use Table 3.4 as a reference.

3.12. Table 3.4 gives several equations associated with the distinguished
kinds of bifurcations. Investigate these equations in the phase plane y′, y and
illustrate each bifurcation graphically.

3.13. Investigate and plot the bifurcation diagram for the systems given in
Problem 3.10.

3.14. Investigate and plot the bifurcation diagram for the systems given in
Table 3.4.

3.15 (Conservative systems). Consider a system given in Problem 3.1.
Which system is conservative and which is not?

3.16. Consider a system given in Problem 3.10. Find a value of the parameter
μ, making the conservative system to be non conservative and vise versa.
Which system cannot transfer from the conservative to non conservative state?
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3.17. Consider a system given in Problem 3.1. Whether this system is conser-
vative or not? If not, find the function �(y, z) to transform the non conservative
system to conservative?

3.18. Given a system

y′ = 2z + y2 + z2 − 1, z′ = −2y .

Verify that its general integral is (y2 + z2 − 1)ez = C.

3.19. Given a system

y′ = z + z(y2 + z2), z′ = y − y(y2 + z2) .

Verify that its general integral is (y2 + z2)2 − 2(y2 − z2) = C.

3.20 (Hamiltonian systems). A system is given with y′ = z and z′ =
−ay − by3. Verify that the Hamiltonian of the system is

H =
1
2
z2 +

a

4
y2 +

b

4
y4 .

3.21. A system is given with y′ = z and z′ = − sin y. Verify that the Hamil-
tonian of the system is

H =
1
2
z2 + 2 sin2 y

2
.

3.22. Revise the systems given in Problem 3.1. If a system is conservative,
write its Hamiltonian.

3.23 (Dissipative (near conservative) systems). Consider a dissipative
system

y′ = −z , z′ = y + μ(a + by − cy2)z ,

describing an electronic oscillator.

1. How many fixed points has this system?
2. Characterize the fixed point of a system at zero.
3. What is the condition for the system to be Hamiltonian? Satisfied this

condition, what will be the Hamiltonian?
4. What is the condition for the system to have a limit cycle?
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LTI Systems in the Time Domain

4.1 Introduction

The most useful mathematical abstraction of real systems is a linear time-
invariant (LTI) system. As a model, an LTI system is represented with some
kind of a linear operator O that maps the input x(t) to the output y(t).
Typically, features and properties of a linear operator are much simpler than
those peculiar to the nonlinear operator. Moreover, it is tacitly implied that
the operator transforms signals linearly in the infinite range of values. Even
though the latter cannot be met in practice, at least by saturation, the LTI
model allows learning principle properties of many real structures and chan-
nels. Therefore, the LTI system analysis and synthesis are fundamental for
the general systems theory.

There are three basic approaches to describe an LTI system in the time
domain. One can use the convolution to couple an arbitrary input signal with
the LTI system output via its impulse response. An LTI system can also
be represented with the linear ordinarily differential equation of some order.
Alternatively, an LTI system could be performed by a set of its states in state
space or, albeit less commonly, in some other coordinates. All these methods
are interchangeable, thus universal for LTI modeling.

4.2 Convolution

Let us start with the mathematical description of LTI systems in the time
domain. For the sake of simplicity, it is in order to first consider a single-input
single-output (SISO) LTI system, whose output y(t) is coupled with its input
x(t) by some linear and time-invariant operator O,

y(t) = Ox(t) . (4.1)

What could be this operator? To find an answer, one needs to apply the
test unit impulse, x(t) = δ(t), and follow the fundamental definition:
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Impulse response of an LTI system : The response h(t) of an LTI
system at time t to the unit impulse δ(t) at time t is the LTI system
impulse response

h(t) = Oδ(t) . (4.2)
��

If we now use the sifting property of the delta function (Appendix A), we
can formally substitute a continuous-time input signal x(t) by

x(t) =

∞∫

−∞
x(θ)δ(t − θ)dθ . (4.3)

Substituting (4.3) to (4.1), using the definition (4.2), and invoking the
time shifting property of any linear operator that in our case gives h(t− θ) =
Oδ(t− θ), we arrive at the rule

y(t) = O
∞∫

−∞
x(θ)δ(t − θ)dθ =

∞∫

−∞
x(θ)Oδ(t − θ)dθ =

∞∫

−∞
x(θ)h(t − θ)dθ

that claims that the LTI system output y(t) is coupled with its input x(t) by
the LTI system impulse response h(t).

The integral relation derived is termed the convolution,

y(t) = x(t) ∗ h(t) =

∞∫

−∞
x(θ)h(t − θ)dθ , (4.4)

describing the process in a continuous-time LTI system that maps a continuous-
time input x(t) into a continuous-time output y(t). The convolution (4.4)
playing a fundamental role in the theory of LTI systems is also known as the
Duhamel’s1 integral or the Duhamel’s convolution principle.

The answer is thus the following. In the time domain, the operator O of
an LTI system is the convolution (4.4) representing the LTI system response
y(t) at time t to an arbitrary input x(t) at time t.

Fig. 4.1 illustrates the convolution principle in the time domain. The sys-
tem impulse response h(t) is determined by applying a unit impulse to the
input, x(t) = δ(t). Then the LTI system output representes the system im-
pulse response y(t) = h(t) as shown in Fig. 4.1a. Provided h(t), the LTI system
response y(t) to an arbitrary signal x(t) is obtained by the convolution (4.4)
as shown in Fig. 4.1b for the rectangular pulse.

Example 4.1. An LTI system is represented with the impulse response

1 Jean Marie Constant Duhamel, French mathematician, 5 February 1797–29 April
1872.
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Fig. 4.1. The convolution principle for LTI systems: (a) determining the impulse
response h(t) and (b) response y(t) to an arbitrary signal x(t) via h(t) and (4.4).

h(t) =
{

ae−bt if t � 0
0 otherwise = ae−btu(t) , b > 0 . (4.5)

A signal acting at the system input is a rectangular pulse (Fig. 4.1b),

x(t) =
{

A0 if 0 � t � τ
0 otherwise . (4.6)

To define the system output by the convolution (4.4), perform the rectan-
gular pulse (4.6) with two shifted unit-step functions as x(t) = x1(t)− x2(t),
where x1(t) = A0u(t) and x2(t) = A0u(t− τ).

It is seen that both h(t) and x1(t) = A0u(t) are zero-valued with negative
time. Therefore, by t < 0, x1(θ) and h(t− θ) in (4.4) do not overlap. If t > 0,
then h(t) and x1(t) = A0u(t) overlap from θ = 0 to θ = t. Accordingly, the
bounds in (4.4) are changed and the system response y1(t) to x1(t) is provided
with

y1(t) =

∞∫

−∞
x1(θ)h(t − θ)dθ = aA0

t∫

0

e−b(t−θ)dθ

=
a

b
A0

(
1− e−bt

)
u(t) . (4.7)

Because the system response y2(t) to x2(t) is merely a shifted version of
y1(t),

y2(t) = y1(t− τ)u(t− τ) =
a

b
A0

[
1− e−b(t−τ)

]
u(t− τ) ,

we instantly arrive at the system response to (4.6); that is,

y(t) = y1(t)−y2(t) =
a

b
A0

(
1− e−bt

)
u(t)−a

b
A0

[
1− e−b(t−τ)

]
u(t−τ) . (4.8)

Fig. 4.2 demonstrates several stages of the convolution calculus, by (4.5)
and (4.6). Geometrically, the convolution can be interpreted as a joint area
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Fig. 4.2. Several stages of the convolution computation.

(shadowed) of two shifted and inversely related functions x(t) and h(t), for
which the output equals zero if θ is negative. It is seen that the response
increases in the amplitude when the area increases (0 < t < t2). It then
reduces with t > t2 asymptotically approaching zero, when the area reduces.

��
A common conclusion following the convolution computation analysis (Fig.

4.2) is that the length of the system response y(t) is the sum of the signal
length τ and the impulse response h(t) length.
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4.2.1 System Step Response

If the input is formed with the test unit step function, x(t) = u(t), the LTI
system output is the step response, provided the other fundamental definition:

Step response of an LTI system : The response g(t) of an LTI
system at time t to the unit step u(t) at time t is the LTI system step
response

g(t) = Ou(t) . (4.9)
��

We now know that the operator O of an LTI system in the time domain
is the convolution. Therefore, the system step response can be defined by

g(t) = u(t) ∗ h(t) =

∞∫

−∞
u(θ)h(t− θ)dθ =

t∫

0

h(t− θ)dθ . (4.10)

The integral form (4.10) establishes two fundamental relations between
the LTI system impulse and step responses:

g(t) =

t∫

−∞
h(τ)dτ ⇔ h(t) =

d
dt

g(t) , (4.11)

meaning that g(t) is performed by the instantaneous area of h(t) and, in turn,
h(t) is represented by the time rate of g(t).

Example 4.2. Consider the system response (4.7) to x1(t) = A0u(t) that, by
A0 = 1, becomes the system step response and we can write

g(t) =
a

b

(
1− e−bt

)
u(t) .

Differentiating this relation, by (4.11), leads to the system impulse response

h(t) = ae−btu(t)

that was earlier specified by (4.5). ��

4.2.2 Properties of the Convolution

As we recently deduced analyzing Fig. 4.2, the convolution length is the sum
of the signal length and the impulse response length. There are many other
widely recognized and important properties of the convolution.
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Commutativity

Consider the convolution integral (4.4). If to introduce a new variable η = t−θ
and substitute θ = t− η and dθ = −dη, then (4.4) transforms to

y(t) =

∞∫

−∞
x(θ)h(t − θ)dθ = −

−∞+t∫

∞+t

x(t − η)h(η)dη

=

∞∫

−∞
h(η)x(t − η)dη ,

establishing the following commutativity property:

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t) , (4.12)

meaning that the input and impulse response are commuting in LTI systems.

Example 4.3. A system is characterized with the impulse response h(t) =
e−atu(t), a > 0, and the input signal is x(t) = e−btu(t), b > 0.

By the convolution (4.4), the system output is defined to be

y(t) =

t∫

0

e−bθe−a(t−θ)dθ = e−at
t∫

0

e−(b−a)θdθ

=
1

b− a

(
e−at − e−bt

)
.

One arrives at the same result, by using the commutativity property (4.12):

y(t) =

t∫

0

e−aθe−b(t−θ)dθ = e−bt
t∫

0

e−(a−b)θdθ

=
1

a− b

(
e−bt − e−at

)
=

1
b− a

(
e−at − e−bt

)
.

Now observe that the functions x(t) and h(t) differ only by the coefficients
a and b. A verification of the commutativity property follows immediately by
interchanging a and b that does not affect the system response. ��

Distributivity

The property of distributivity is supported by the superposition principle and
is critical for the distributed LTI systems. Distributivity suggests that if the
impulse response is composed with an additive sum of N particular impulse
responses, then the convolution can be calculated as
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x(t) ∗
N∑
i=1

hi(t) =
N∑
i=1

x(t) ∗ hi(t) . (4.13)

Inversely, if an input is a superposition of several particular subsignals,
one can employ the rule

h(t) ∗
N∑
i=1

xi(t) =
N∑
i=1

h(t) ∗ xi(t) . (4.14)

An application of (4.14) can be found in Example 4.1, where the input
x(t) is substituted with a sum of two subsignals x1(t) and x2(t).

Homogeneity

When one of the functions, x(t) or h(t), is multiplied (gained) with a constant
a, then the following homogeneity property can be used,

x(t) ∗ [ah(t)] = [ax(t)] ∗ h(t) = a[x(t) ∗ h(t)] . (4.15)

One can find applications of this property in Example 4.1 and Example
4.2 as featured to LTI systems.

Linearity

Both distributivity and homogeneity imply linearity and it is seemingly obvi-
ous that the property of linearity is fundamental for all kinds of LTI systems.
Examples are the convolution, integration, and differentiation representing
the linear system operator O.

Associativity

In applications, a signal x(t) very often passes through two or more LTI sub-
systems, which impulse responses are presumed to be known. The response
of a whole cascade system to x(t) can be calculated using the property of
associativity.

Let an LTI subsystem having the impulse response h1(t) responds to the
input x(t) as y1(t) = x(t) ∗ h1(t). If y1(t) acts in the input of some other LTI
subsystem with the impulse response h2(t), then the output is calculated by

y(t) = y1(t) ∗ h2(t) = [x(t) ∗ h1(t)] ∗ h2(t) .

The property of associativity claims that

[x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)] . (4.16)
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To verify, one can rewrite the left-hand and right-hand sides of (4.16)
separately as in the following:

[x(t) ∗ h1(t)] ∗ h2(t) =

∞∫

−∞
[x(θ1) ∗ h1(θ1)]h2(t− θ1)dθ1

=

∞∫

−∞

∞∫

−∞
x(θ2)h1(θ1 − θ2)h2(t− θ1)dθ1dθ2 , (4.17)

x(t) ∗ [h1(t) ∗ h2(t)] =

∞∫

−∞
x(θ3)[h1(t− θ3) ∗ h2(t− θ3)]dθ3

=

∞∫

−∞

∞∫

−∞
x(θ3)h1(θ4)h2(t− θ3 − θ4)dθ3dθ4 . (4.18)

Now change the variables in (4.18) to θ3 = θ2 and θ4 = θ1−θ2. Having new
variables, (4.18) needs to be multiplied with the determinant of the Jacobian
of the transformation that in our case is unity, J =

∣∣∣∂(θ3,θ4)
∂(θ1,θ2)

∣∣∣ = 1. Instantly
(4.18) becomes (4.17) and the proof of the associative property is complete.

Example 4.4. Define the step response of a system composed by a cascade
of two subsystems (Fig. 4.3a) having equal impulse responses,

h1(t) = h2(t) = ae−btu(t) .

By the associativity property (4.16), we first ascertain the impulse response
of the whole system

h(t) =

t∫

0

h1(θ)h2(t− θ)dθ = a2

t∫

0

e−bθe−b(t−θ)dθ = a2e−bt
t∫

0

dθ = a2te−bt .

Then, by the convolution integral and identity
∫
xeαxdx = eαx

(
x
α − 1

α2

)
,

the system step response becomes

g(t) = a2

t∫

0

(t− θ)e−b(t−θ)dθ =
a2

b2
(
1− e−bt

)− a2

b
te−bt

having a shape shown in Fig. 4.3b. In a bit more sophisticated way, the same
result can be obtained by calculating first the output of the first subsystem
and then the output of the second subsystem (the reader is encouraged to
verify this). Fig. 4.3c illustrates the transformation stages for the latter case.

��
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Fig. 4.3. A cascade LTI system: (a) system, (b) output via h(t), and (c) output
via h1(t) and h2(t).

Consistency with Cross-correlation

Convolution is closely related to cross-correlation. Consider the real input x(t)
and the impulse response h(t). By the definition, the cross-correlation between
two functions is evaluated with (see Signals)

φxh(θ) =

∞∫

−∞
x(t)h(t− θ)dt = x(t) � h(t) .

It is seen that, by the sign changed of a variable in h(t), the cross-
correlation function becomes the convolution (4.4) and we thus can write

x(t) � h(t) = x(t) ∗ h(−t) , (4.19)

x(t) ∗ h(t) = x(t) � h(−t) . (4.20)

The consistency relations (4.19) and (4.20) are often used to evaluate the
correlation properties of a system via the convolution and vise versa.

4.2.3 Properties of LTI Systems

Using the properties of convolution, it becomes possible to outline many of
the useful properties of applied importance featured to LTI systems. The most
common of those are listed below.
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Linearity

By definition, any LTI system is linear and time-invariant. The output and
input of such a system are coupled by the convolution via the system impulse
response. The convolution cannot be applied in its standard form (4.4) to
time-variant and nonlinear systems.

Stationarity

The property of stationarity means time-invariance of the system operator
that is the second fundamental property of any kind of LTI systems. Because
the operator O of an LTI system is time-constant, the system performance is
not affected by time and it can be shown that, most generally, time shifting
in the input results solely in time shifting in the output:

y(t− τ) = Ox(t − τ) =

∞∫

−∞
h(θ)x(t− τ − θ)dθ .

Any linear system that does not meet this requirement belongs to the class
of time-variant systems.

Memory (Inertia)

An LTI system can be with or without memory. The term “memory” in
electronic systems is consistent with the term “inertia” in mechanical systems.
In memoryless (inertialess) systems, the present output y(t) depends on only
the present input x(t). The relationship between y(t) and x(t) thus can be of
the form

y(t) = Gx(t) , (4.21)

where G is a constant gain factor representing the system operator by an
identity O ≡ G.

The impulse response of the memoryless system is delta-shaped,

h(t) = Gδ(t) , (4.22)

and hence does not equal to zero only at t = 0. Otherwise, if h(t) 	= 0 when
t 	= 0, a system has some memory and thus is inertial or dynamical. An
example of a memoryless system is amplitude scaling, whereas integration and
differentiation are elements of memory systems. Based upon this definition,
it can easily be observed that all systems considered in Examples 4.1–4.4 are
memory.

Example 4.5. An LTI system is represented with the impulse response h(t) =
aδ(t). The input is a harmonic signal x(t) = A0 cosω0t with constant both the
amplitude A0 and carrier angular frequency ω0. By the convolution integral
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(4.4) and sifting property of the delta function (Appendix A), the output is
defined to be

y(t) = aA0

∞∫

−∞
δ(t− θ) cosω0θdθ = aA0 cosω0t

and we see that the system provides amplitude scaling, thus is memoryless.
��

Causality

Most generally, the convolution (4.4) implies integration over the infinite
bounds, thereby fitting the cases of both causal and noncausal signals and
systems. If a signal or/and system is causal, then the convolution modifies,
basically resulting in two special cases.

Convolution for either causal systems or signals. To modify the
convolution for causal systems, one needs to recall that a system is causal
if its output y(t) at an arbitrary time instant t1 depends on only its input
x(t) for t1 � t. This means that a causal system does not respond to any
input event until that event actually occurs. Indeed, the impulse response is
generated by a unit impulse that exists at only zero point, t = 0. Thus, for
causal LTI systems, we have

h(t) =
{

h(t) if t � 0
0 if t < 0 . (4.23)

Applying (4.23) to (4.12), we arrive at two equal forms of convolution for
causal systems:

y(t) =

t∫

−∞
x(θ)h(t − θ)dθ =

∞∫

0

h(θ)x(t− θ)dθ . (4.24)

Reasoning along similar lines, one can verify that if a signal is causal; that
is,

x(t) =
{

x(t) if t � 0
0 if t < 0 , (4.25)

and a system is noncausal, then the convolution is calculated with

y(t) =

∞∫

0

x(θ)h(t − θ)dθ =

t∫

−∞
h(θ)x(t− θ)dθ.

Convolution for causal both systems and signals. Assume that
a system is causal and thus its impulse response is defined by (4.23). Let
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the input x(t) be also causal as specified by (4.25). By (4.25), the convolu-
tion forms (4.24) modify to those associated with causal both systems and
signals,

y(t) =

t∫

0

x(θ)h(t − θ)dθ =

t∫

0

h(θ)x(t − θ)dθ . (4.26)

We notice that the forms (4.26) were used in the examples considered
above in this Chapter.

Stability

For LTI systems, the critical property of stability is commonly associated with
the bounded-input/bounded-output (BIBO) stability. To ascertain the BIBO
stability, the absolute value of the impulse response is integrated over the
infinite bounds. A finite value of the integral

∞∫

−∞
|h(θ)|dθ � M <∞ , (4.27)

where M <∞, means that a system is BIBO stable.

Example 4.6. A causal system has the impulse response h(t) = ae−btu(t).
Its BIBO stability is ascertained by (4.27) via the relation

B = a

∞∫

0

e−btdt = −a

b
e−bt

∣∣∣
∞

0
.

Depending on the value of b, three particular cases can be distinguished:

• If b > 0, then B = a/b < ∞, the area of the impulse response is finite
(Fig. 4.4a), and the system is thus BIBO stable.

• If b < 0, then B → ∞, the area of the impulse response is infinite (Fig.
4.4c), and the system is thus BIBO unstable.

• If b = 0, we have an intermediate case (Fig. 4.4b).

��

4.2.4 Problems Solved with Convolution

As a rigorous and exact tool for LTI systems, the convolution allows solving
three principle system problems.
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Fig. 4.4. Impulse response h(t) = ae−btu(t): (a) b > 0, (b) b = 0, and (c) b < 0.

Direct Problem

Given the input signal x(t), an LTI system is represented with the impulse
response h(t). Then the convolution straightforwardly solves the so-called di-
rect problem defining, by (4.4), the system output y(t). Examples 4.1, 4.3–4.5
illustrate solutions of the direct problem.

Inverse Problem

If an LTI system is represented with a known impulse response h(t) and
its output y(t) is measured, then the input x(t) can be restored using the
convolution in what is called the inverse problem.

To define x(t), one can try solving the integral equation (4.4) that com-
monly entails difficulties. Alternatively, we can recall that the Fourier trans-
form of the convolution of two functions is the product of their spectral densi-
ties (Appendix C). Applying the transform to the both sides of (4.4), we thus
have

Y (jω) = X(jω)H(jω) ,

where H(jω)
F⇔h(t) is the system transfer function defined as the Fourier

transform of the impulse response h(t) and X(jω)
F⇔x(t) and Y (jω)

F⇔ y(t)
are the spectral densities of x(t) and y(t), respectively.

Expressing X(jω) = Y (jω)/H(jω) and thereafter applying the inverse
transform to, we arrive at the time presentation of the input signal

x(t) =
1
2π

∞∫

−∞

Y (jω)
H(jω)

ejωtdω (4.28)

and the inverse problem is solved.

Example 4.7. A causal LTI system is given with the impulse response h(t) =
ae−btu(t) and the output is measured to be y(t) = B0

(
1− e−bt

)
u(t). The

Fourier transforms of h(t) and y(t) are defined (Appendix C) by
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h(t) = ae−btu(t)
F⇔ H(jω) =

a

b + jω
,

y(t) = B0

(
1− e−bt

)
u(t)

F⇔ Y (jω) =
B0b

jω(b + jω)
.

The inverse Fourier transform applied to the ratio Y (jω)/H(jω) produces,
by (4.28), the input signal

Y (jω)
H(jω)

= B0
b

a

1
jω

F⇔ x(t) = B0
b

a
u(t)

that is gained with B0b/a the step function u(t). It then follows that the
measured output y(t) represents the step response of this system. ��

System Identification

In applications, especially in complex systems, they often consider a situation
when the input x(t) and output y(t) are both measurable in the unknown
system often called “black box”. The problem is thus to identify a system via
its input and output.

To define the system impulse response, we can apply the inverse Fourier
transform to the system transfer function H(jω) = Y (jω)/X(jω) and go to
its counterpart in the time domain,

h(t) =
1
2π

∞∫

−∞

Y (jω)
X(jω)

ejωtdω . (4.29)

This, in turn, gives an alternative definition for the LTI system impulse
response having an important practical significance. In fact, as can be seen,
(4.29) does not claim the input x(t) to be obligatorily the unit impulse. In-
stead, any input waveform can be applied if the system input is observable.

Example 4.8. The input and output of a “black box” were measured in the
same time scale to be, respectively, x(t) = A0u(t) and y(t) = B0

(
1− e−bt

)
u(t).

The Fourier transforms of these signals (Appendix C) are, respectively,

x(t) = A0u(t)
F⇔ X(jω) =

A0

jω
,

y(t) = B0

(
1− e−bt

)
u(t)

F⇔ Y (jω) =
B0b

jω(1 + jω)
.

By (4.29), the system is identified to have the frequency and impulse responses,
respectively,

H(jω) =
Y (jω)
X(jω)

=
B0

A0

b

1 + jω

F⇔ h(t) =
B0

A0
b e−btu(t) .

We hence defined the system impulse response without actually applying
the unit impulse. ��
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4.2.5 Convolution Form for Multiple Systems

So far, we discussed applications of convolution for SISO LTI systems. If a
system has more than one input and/or output, the approach virtually remains
the same, albeit three basic structures shown in Fig. 4.5 are recognized. If an
LTI system has one input and more than one output, then it is the single-input
multiple-output (SIMO) LTI system (Fig. 4.5a). When several (more than
one) inputs are organized such that the only output exists, we call the LTI
system multiple-input single-output (MISO) (Fig. 4.5b). The most general LTI
structure having more than one input and several outputs is termed multiple-
input multiple-output (MIMO) (Fig. 4.5c).

Because the MIMO model obviously absorbs all others as its particular
cases, we shall now discuss an LTI system having k inputs and p outputs
performed by the k × 1 and p× 1 vectors, respectively,

x(t) = [x1(t) x2(t) . . . xk(t)]T , (4.30)

y(t) = [y1(t) y2(t) . . . yp(t)]T . (4.31)

Generally, in MIMO LTI systems, all of the inputs can interact with all of
the outputs (Fig. 4.5c). Therefore, a system can be represented with the k×p
impulse response matrix

Fig. 4.5. Multiple LTI systems: (a) SIMO, (b) MISO, and (c) MIMO.
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h(t) =

⎡
⎢⎢⎢⎣

h11(t) h12(t) . . . h1p(t)
h21(t) h22(t) . . . h2p(t)

...
...

. . .
...

hk1(t) hk2(t) . . . hkp(t)

⎤
⎥⎥⎥⎦ , (4.32)

in which the component hij(t), i ∈ [1, k], j ∈ [1, p], represents the impulse
response at the jth output to ith input. Convolution for the MIMO LTI
system is therefore commonly written as

y(t) =

∞∫

−∞
hT (t− θ)x(θ)dθ . (4.33)

Example 4.9. A causal MIMO LTI system having two inputs and two out-
puts is represented with the impulse response matrix

h(t) =
[

ae−btu(t) ae−2btu(t)
−ae−2btu(t) ae−btu(t)

]
.

A vector of the causal input is described by

x(t) = [A0u(t) B0u(t)]T .

By (4.33), the system response to the input can be rewritten as

[
y1(t)
y2(t)

]
= a

t∫

0

[
e−b(t−θ) −e−2b(t−θ)

e−2b(t−θ) e−b(t−θ)

] [
A0

B0

]
dθ

that produces two output signals

y1(t) = A0
a

b

(
1− e−bt

)−B0
a

2b
(
1− e−2bt

)
,

y2(t) = A0
a

2b
(
1− e−2bt

)
+ B0

a

b

(
1− e−bt

)
.

As it is seen, each of the outputs comprises two responses associated with
two inputs. ��

4.3 Representation by Differential Equations

Convolution is not the only tool to couple the input and output of an LTI
system in the time domain. Alternatively, because the output y(t) is generated
by the input x(t), both y(t) and x(t) can be coupled by an ordinary differential
equation (ODE) of some Nth order. The coefficients of such an equation are
predetermined by an LTI system to be constant and the order N is associated
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with the system memory. The LTI system operator O is thus also the ODE
equation operator.

Most generally, an SISO system is described with the ODE as

a0y(t) + a1
d
dt

y(t) + a2
d2

dt2
y(t) + . . . + aN−1

dN−1

dtN−1
y(t) + aN

dN

dtN
y(t)

= b0x(t)+b1
d
dt

x(t)+b2
d2

dt2
x(t)+. . .+bM−1

dM−1

dtM−1
x(t)+bM

dM

dtM
x(t) , (4.34)

where constant coefficients bm, m ∈ [0,M ], and an, n ∈ [0, N ], are real. An
important point to notice is that the system can physically be realized only if
N is a highest order derivative in (4.34), i.e. N � M .

In a compact batch form, (4.34) becomes

N∑
n=0

an
dn

dtn
y(t) =

M∑
m=0

bm
dm

dtm
x(t) (4.35)

and the output can be expresses straightforwardly as

y(t) =
M∑
m=0

bm
a0

dm

dtm
x(t)−

N∑
n=1

an
a0

dn

dtn
y(t) . (4.36)

If the input x(t) is known and the system coefficients, am and bn, are
completely determined, then the ODE, (4.35) or (4.36), can be solved for
y(t), provided the necessary initial conditions. This means, by extension, that
if x(t) is a unit impulse δ(t), then a solution of (4.35) is the system impulse
response h(t) and if x(t) is a unit step u(t), then the ODE produces the
system step response g(t). In this sense, the method of differential equations
is consistent with convolution.

4.3.1 CARMA model

An alternative form of (4.36) came from the series analysis and is known as the
continuous-time autoregressive moving average (CARMA) model. The model
is performed as

y(t) =
M∑
m=0

βM−m
dm

dtm
x(t) −

N∑
n=1

αN−n
dn

dtn
y(t) , (4.37)

where the coefficients βm and αn are constant. Originally, ARMA model was
used to learn correlation in discrete-time series. Therefore, its part with the
coefficients βm is called the moving average (MA) model and the rest with
the coefficients αn the autoregressive (AR) model. By βM−m = bm/a0 and
αN−n = an/a0, (4.37) becomes (4.36) and thus there is no principle difference
between two models.
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Example 4.10. A voltage v(t) = x(t) forces an electric current i(t) = y(t) to
pass through a series connection of a resistance R, inductance L, and capaci-
tance C. The system motion equation is therefore

x(t) = Ry(t) + L
dy(t)
dt

+
1
C

t∫

−∞
y(θ)dθ .

By the first time derivative, the equation becomes

d2y(t)
dt2

+
R

L

dy(t)
dt

+
1

LC
y(t) =

1
L

dx(t)
dt

that, in the batch forms (4.35), is

2∑
n=0

an
dn

dtn
y(t) =

1∑
m=0

bm
dm

dtm
x(t) ,

where, the coefficients are defined by a0 = 1/LC, a1 = R/L, a2 = 1, b0 = 0,
and b1 = 1/L. By α0 = LC, α1 = RC, α2 = 1, β0 = C, and β1 = 0, the model
is easily transformed to (4.37). ��

4.3.2 Properties of the ODE Operator

Application of the ODE operator to LTI systems, (4.35), presumes using some
specific properties discussed below.

Solutions

A general solution of (4.35) comprises two functions,

y(t) = y(t) + ỹ(t) , (4.38)

where y(t) is known as a homogenous solution sometimes called complimentary
solution and ỹ(t) is a forced solution also called particular solution, provided
the definitions:

Homogenous solution : The system response to the initial condi-
tions with zero input represents the homogenous solution y(t) of the
system ODE.

��
In other words, to define y(t) starting at t = t0, (4.35) must be solved

under the condition that the input and all of its time derivatives are zero.

Forced solution : The system response to the input x(t) with zero
initial conditions represents the forced solution ỹ(t) of the system
ODE.
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��
It follows that, contrary to the homogenous solution, to define the system

ODE solution ỹ(t) forced by the input x(t) we must set all of the initial
conditions to zero.

Homogenous solution. Following the definition, a homogenous solution
y(t) is defined by setting to zero the right-hand side of (4.35) that gives

N∑
n=0

an
dn

dtn
y(t) = 0 . (4.39)

The exact solution of (4.39) is determined by N auxiliary initial conditions.
In general, a set of these conditions is given at some start time point t0 by
the values of

y(t0),
dy(t)
dt

∣∣∣∣
t=t0

, . . . ,
dyN−1(t)
dtN−1

∣∣∣∣
t=t0

, (4.40)

where t0 is very often let to be zero, t0 = 0.
The problem with solving (4.39) is coupled with finding the eigenvalues

(roots) of the system’s characteristic equation

N∑
n=0

anλ
n = 0 (4.41)

that is algebraic with exactly N roots λi, i ∈ [1, N ], which may be either real
or complex conjugate.

It is known from the theory of ODEs that the first order linear ODE
describing the first order LTI system has an exponential solution. The N -order
linear ODE can be presented with N ODEs of the first order. Therefore, most
commonly, when all of the roots of (4.41) are distinct and different, a solution
of (4.39) can be found as a superposition of N weighted exponential functions
called eigenfunctions as

y(t) =
N∑
i=1

Cie
λit , (4.42)

where each of the constant coefficients Ci is specified by the initial conditions
(4.40) as follows. Take time derivatives of the right-hand side of (4.42) and
set them to be equal at t = t0 to the proper values of the initial conditions.
We thus have N algebraic equations

y(t0) =
N∑
i=1

Cie
λit0 ,
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dy(t)
dt

∣∣∣∣
t=t0

=
N∑
i=1

λiCie
λit0 ,

...

dyN−1(t)
dtN−1

∣∣∣∣
t=t0

=
N∑
i=1

λN−1
i Cie

λit0 , (4.43)

where all λi are specified by (4.41), to solve for N unknown values of Ci.
It is seen that zero initial conditions degenerate (4.43) at t0 = 0 to the

linear algebraic equations system

0 = C1 + C2 + . . . + CN ,

0 = λ1C1 + λ2C2 + . . . + λNCN ,

...

0 = λN−1
1 C1 + λN−1

2 C2 + . . . + λN−1
N CN (4.44)

that can be solved for Ci in different ways.
In applications, the homogenous solution (4.42) is used to study stability,

internal properties, and dynamics of systems in absence of any of the external
signals and disturbances.

Forced solution. Because the input x(t) can be of any waveform, the
forced solution ỹ(t), contrary to y(t), cannot be generalized in closed form.
Typically, to find a forced solution for the given x(t), the function ỹ(t) must
somehow be predicted to satisfy the ODE order. Then the unknown coeffi-
cients of this function are defined.

Linearity

The N -order equation (4.35) describing an LTI system belongs to the class of
linear ODEs with constant coefficients. Linearity is thus an inherent property
of this equation. Namely for this reason, its solution is defined as the sum
(4.38) of the homogenous and forced solutions.

Causality

As we remember, causality is associated with physical realizability. An LTI
system can physically be realized by the following principle constraints:

• Order N . The order N in (4.35) refers to the highest derivative of the
output. This means that a signal in the LTI system feedback cannot be
changed faster than in the direct way and hence N � M . Otherwise, a
system does not meet physical imaginations and thus cannot be realized
practically. ��
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• SISO system. If the input x(t) of a SISO system is such that x(t) = 0
for t < t0, then its output must also be such that y(t) = 0 for t < t0. This
means that the response of a causal SISO system for t � t0 is calculated
by (4.35) with zero initial conditions (4.40). ��

• MISO system. If a causal MISO system has, for example, two inputs,
x1(t) and x2(t), then its initial conditions for x1(t) may be defined by x2(t).
Therefore, the system response y(t) to x1(t) for t � t0 cannot obligatory
be associated with zero initial conditions. ��

Time-invariance

Time-invariance is an inherent property of LTI systems. With respect to the
system ODE (4.35), the term “time-invariance” means that all of the coeffi-
cients in (4.35) are time-constant.

Test Responses

The impulse response h(t) and step response g(t) of an LTI system are derived,
by (4.35), in the following forms, respectively,

N∑
n=0

an
dn

dtn
h(t) =

M∑
m=0

bm
dm

dtm
δ(t) , (4.45)

N∑
n=0

an
dn

dtn
g(t) =

M∑
m=0

bm
dm

dtm
u(t) . (4.46)

Following the definition, all of the initial conditions in (4.45) and (4.46) must
be set to zero.

Example 4.11. An LTI system is described with the ODE

d
dt

y(t) + ay(t) = x(t) , (4.47)

in which a is constant and the input is performed by

x(t) = A0e
−btu(t) , (4.48)

where A0 and b are also constant. The initial condition is y(0) = y0.
The characteristic equation (4.41) associated with (4.47) is λ + a = 0

having the only root λ = −a. Therefore, the homogenous solution is given by

y(t) = Ceλt = Ce−at .

By the initial condition applied to y(t) we have y(0) = y0 = C and thus the
homogenous solution is
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y(t) = y0e
−at . (4.49)

Because x(t) is performed with the exponential function (4.48) and y(t)
also has an exponential solution (4.49), it is logical to suppose that the forced
solution comprises two exponential functions. We therefore suppose that

ỹ(t) = Be−at + De−bt , (4.50)

where B and D are still unknown. Now substitute (4.50) to (4.47), provide
the transformation, define

D =
A0

a− b
,

and rewrite (4.50) as

ỹ(t) = Be−at +
A0

a− b
e−bt . (4.51)

By the definition, the forced solution is defined for zero initial conditions.
Letting ỹ(0) = 0 at t = 0 in (4.51) produces

B = − A0

a− b
.

A common solution of (4.47) can now be written as

y(t) = y(t) + ỹ(t) = y0e
−at +

A0

a− b

(
e−bt − e−at

)
, t � 0 . (4.52)

Fig. 4.6 illustrates (4.52) for some given initial condition y0 along with the
input signal (4.48). As can be seen, a common solution y(t) is strongly affected

Fig. 4.6. Solutions of (4.47) for (4.48) and y(0) = y0.

by both the homogenous and forced constituents. It is not unexpected, because
the system (4.47) is almost equally sensitive to variations in the input and
initial conditions. ��
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As an exact and convenient tool, the ODE operator allows representing an
LTI electronic system in two widely recognized forms:

• Electric circuit presentation. Any LTI system can be composed by the
components of electric circuits, such as resistors R, inductances L, and
capacitors C. At any point of such a system, signals can be gained with
linear amplifiers. ��

• Block diagram presentation. Any LTI system can also be performed
(simulated) by a proper connection of three linear blocks, such as integra-
tors, adders, and amplifiers. ��

4.4 Electric Circuit Presentation by ODEs

An electronic LTI system is a real physical device having very often a great
number of units, owing to which an exact solution of the system ODE becomes
unwieldy and awkward. However, not all of the components of a system con-
tribute equally to its dynamics. Therefore, many auxiliary units are usually
omitted and the ODE is reduced to the more or less standard form of much
lower order.

If the ODE order cannot be reduced without losing important features,
the other way is to split a system into several subsystems, each of which
can be presented with well studied elementary blocks of low order. Typically,
the elementary blocks are associated with LTI systems of the first and second
orders. A complex LTI system can then be composed by the elementary blocks
and linear amplifiers.

4.4.1 LTI Systems of the First Order

An LTI system of the first order is often associated with the first order
low-pass (LP) and high-pass (HP) filters. Two basic elementary configura-
tions of the first order LTI systems are used, namely the RC circuit and the
LR circuit, among which, the former has gained the most wide currency in
applications.

A generalized ODE of an LTI system of the first order has the form of

d
dt

y(t) + ay(t) = bx(t) (4.53)

and its solution is found in the form of (4.38). A standard way to find a
solution of (4.53) is to multiply both its sides with the so-called integration
factor e

∫
adt that transforms (4.53) to the equation

d
dt

[
e
∫
adty(t)

]
= be

∫
adtx(t) ,
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which integration yields

y(t) = e−
∫
adt

[∫
bx(t)e

∫
adtdt + C

]
, (4.54)

where C is predetermined by the initial condition y(t0) = y0 and the inte-
gration must be provided from the start point t0 up to the current time t. A
solution (4.54) is general for both LTI and LTV systems. For LTI systems, in
which all of the coefficients are constant, (4.54) attains the form of

y(t) = y0e
−a(t−t0) + be−a(t−t0)

t∫

t0

x(τ)ea(τ−t0)dτ , (4.55)

where the first term in the right-hand side represents the homogenous solution

y(t) = y0e
−a(t−t0) (4.56)

that was derived earlier by (4.49) for t = 0, and the second term represents
the forced solution

ỹ(t) = be−a(t−t0)
t∫

t0

x(τ)ea(τ−t0)dτ (4.57)

that must further be transformed for the particular input x(t).

Example 4.12. Consider an LTI system described by (4.47) with the input
given by (4.48). By (4.57), its forced solution is defined to be

ỹ(t) = A0e
−at

t∫

0

e−bτeaτdτ =
A0

a− b

(
e−bt − e−at

)

that is equal to that obtained by (4.52). We thus conclude that a logical
supposition about the form of a forced solution made in (4.50) was correct.

��

Response to Unit Impulse

If we let the input x(t) to be a unit impulse acting at t = 0, then, by (4.45),
the ODE (4.53) and so a solution (4.55) must produce the function associated
with the system impulse response. Indeed, by setting x(t) = δ(t), we go to

h(t) =

⎛
⎝y0e

−at + be−at
t∫

0

δ(τ)eaτdτ

⎞
⎠ u(t)
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that, by the sifting property of the delta function (Appendix A), reduces to

h(t) = (y0 + b)e−atu(t) . (4.58)

If we now set a zero initial condition y0 = 0, (4.58) becomes

h(t) = be−atu(t) (4.59)

and we verify that a forced solution of the ODE of the first order causal LTI
system for the input unit impulse represents its impulse response.

Note that a reciprocal T = 1/a plays a role of the system time constant.
Fig. 4.7a illustrates (4.59) and we notice that a tangent to h(t) at t = 0 crosses
the axis exactly at t = T = 1/a. Thus the time constant T of a system can
easily be ascertained from the plot of the impulse response.

Fig. 4.7. Test responses of an LTI system of the first order: (a) impulse response
and (b) step response.
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Response to Unit Step

Let us now allow the input x(t) to be the unit step u(t) acting at t = 0. By the
definition, a solution (4.55) must be associated with the system step response.
In fact, setting x(t) = u(t) gives

g(t) =

⎛
⎝y0e

−at + be−at
t∫

0

eaτdτ

⎞
⎠ u(t)

= y0e
−atu(t) +

b

a

(
1− e−at

)
u(t) (4.60)

that, by y0 = 0, yields the system step response

g(t) =
b

a
(1− e−at)u(t) . (4.61)

Note that (4.61) was earlier derived in the form of (4.7) via the convolution.
And it is just a matter of simple manipulations to show that, by differentiating,
(4.61) becomes (4.59) and, by integrating, (4.59) becomes (4.61) exactly as it
is stated by (4.11). Fig. 4.7b illustrates the step response provided by (4.61).

Example 4.13. Fig. 4.8a represents the RC circuit as an LTI system of the
first order. Here a resistor R causes the energy to dissipate and a capacitor
C represents a memory component. A mechanical equivalent of a system is
shown in Fig. 4.8b, where the force x(t) acts on a spring in the presence of a
friction that dissipates energy.

Fig. 4.8. LTI system of the first order: (a) electrical and (b) mechanical.

The system (Fig. 4.8a) is performed for the output voltage y(t) = vC(t)
induced on a capacitor C and input voltage x(t) = v(t) by the ODE of the
first order

d
dt

vC(t) +
1

RC
vC(t) =

1
RC

v(t) .

In a causal system, we set v(t) = 0 for t < 0 and thus vc(0) = 0. Accord-
ingly, a solution of the equation is provided by (4.55) in the form of
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vC(t) =
1

RC
e−

t
RC

t∫

0

v(τ)e
τ

RC dτ .

The system impulse and step responses can now readily be obtained by
letting v(t) = δ(t) and v(t) = u(t), respectively,

h(t) =
1

RC
e−

t
RC u(t) , (4.62)

g(t) = (1− e−
t

RC )u(t) . (4.63)

It can easily be verified that (4.62) and (4.63) are coupled by the rule estab-
lished by (4.11). ��

4.4.2 LTI Systems of the Second Order

The other widely used elementary block is associated with LTI systems of the
second order. Typically, this block is represented with the 2-order ODE

d2

dt2
y(t) + a

d
dt

y(t) + by(t) = cx(t) , (4.64)

in which the coefficients a, b, and c are predetermined to be constant.
In applications, (4.64) commonly models oscillations and vibrations in se-

lective LTI structures. The coefficient a has a meaning of the system band-
width BW = 2δ and both b and c are typically associated with the system
square natural frequency ω2

0 . Therefore, (4.64) is usually rewritten in the other
general form of

d2

dt2
y(t) + 2δ

d
dt

y(t) + ω2
0y(t) = cx(t) (4.65)

with arbitrary initial conditions at t = 0:

y(t0) = y0 ,
dy(t)
dt

∣∣∣∣
t=t0

= y′0 . (4.66)

An important characteristic of any bandpass or oscillatory system is the
quality factor specified by

Q =
ω0

BW
=

ω0

2δ
. (4.67)

A system can also be characterized with the damping factor

α =
BW

2ω0
=

δ

ω0
=

1
2Q

. (4.68)

It can be shown that the characteristic equation associated with (4.65) is

λ2 + 2δλ + ω2
0 = 0 , (4.69)
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having two complex-conjugate roots

λ1,2 = −δ ± j
√

ω2
0 − δ2 = −δ ± jωs

= ω0

(
−α±

√
α2 − 1

)
, (4.70)

where ωs =
√

ω2
0 − δ2 is called the system eigenfrequency. In bandpass systems

with high quality factor, Q� 1, losses of energy are usually small. Therefore,
ω0 � δ and they typically allow ωs

∼= ω0.

Homogenous Solution

The homogenous solution (4.42) associated with (4.65) is found in a like man-
ner to comprise two exponential functions,

y(t) = C1e
λ1t + C2e

λ2t , (4.71)

where λ1 and λ2 are provided by (4.70) and C1 and C2 are predetermined by
the initial conditions (4.66). By these conditions applied to (4.71) at t = 0,
we arrive at two algebraic equations

y0 = C1 + C2 ,

y′0 = λ1C1 + λ2C2 ,

readily soluble for C1 and C2,

C1 =
−y′0 + λ2y0

λ2 − λ1
, C2 =

y′0 − λ1y0

λ2 − λ1
. (4.72)

By (4.70) and (4.72), the homogenous solution (4.71) becomes

y(t) =
−y′0 + λ2y0

λ2 − λ1
eλ1t +

y′0 − λ1y0

λ2 − λ1
eλ2t

=
y′0 + (δ + jωs)y0

2jωs
e−(δ−jωs)t − y′0 + (δ − jωs)y0

2jωs
e−(δ+jωs)t (4.73)

and it can easily be shown that, by y0 = 0, (4.73) degenerates to

y(t) =
y′0
ωs

e−δt sinωst

=
y′0

ω0

√
1− α2

e−αω0t sinω0

√
1− α2t . (4.74)

In applications, three particular cases are commonly analyzed for the ho-
mogenous solution (4.74) to provide the proper system quality associated with
its dynamics (Fig. 4.9):
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Fig. 4.9. Homogenous solutions for the 2-order LTI system with different damping
factors.

• Underdamping. If α < 1, then the system is said to be underdamped.
The relevant solution oscillates about zero with an angular eigenfrequency
ωs that is lesser than the natural frequency, ωs < ω0. The oscillations
envelope decays with time exponentially starting at y(0) = y′0/ω0

√
1− α2

and having a time constant T = 1/αω0. ��
• Overdamping. With α > 1, the solution has only positive values. It starts

with zero, then goes up, attains a maximum, and thereafter attenuates to
zero with time asymptotically. ��

• Critical damping. The case of α = 1 is intermediate. Therefore the
systems is said to be critically damped. A solution for the critically damped
system is y(t) = y′0te

−ω0t. ��
An applied convenience of the above used damping factor α resides in the

fact that it, in a like manner, also separates the forced solutions.

Forced Solution

It can be shown that the closed forms forced solutions of (4.65) differ depend-
ing on the values of the damping factor α. Referring to the above-considered
three cases, the solutions can be presented in the following forms:

• Underdamping. If a system is underdamped, α < 1, the forced solution
is given by

ỹ(t) =
ce−αω0t

ω0

√
1− α2

t∫

0

x(θ)eαω0θ sin[ω0

√
1− α2(t− θ)]dθ
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=
ce−δt

ωs

t∫

0

x(θ)eδθ sinωs(t− θ)dθ . (4.75)

��
• Overdamping. In the overdamped case, α > 1, we have

ỹ(t) =
ce−αω0t

ω0

√
α2 − 1

t∫

0

x(θ)eαω0θ sinh[ω0

√
α2 − 1(t− θ)]dθ

=
ce−δt

ωs

t∫

0

x(θ)eδθ sinhωs(t− θ)dθ . (4.76)

��
• Critical damping. A critical value of α = 1 produces

ỹ(t) = ce−ω0t

t∫

0

x(θ)(t − θ)eω0θdθ . (4.77)

��
So, we now know both the homogenous solutions, (4.73) and (4.74), and

forced solutions, (4.75)–(4.77), of a generalized LTI system of the second or-
der. By applying the standard test functions, the solutions can easily be trans-
formed to the the system test responses.

Impulse Response

The impulse response of an LTI system of the second order is defined by
setting x(t) = δ(t) to (4.75)–(4.77). After the integration, we arrive at three
different analytic results corresponding to the underdamped, overdamped, and
critically damped systems, respectively,

h(t) =
ceαω0t

ω0

√
1− α2

sin
(
ω0

√
1− α2t

)

=
c

ωs
e−δt sinωst , α < 1 , (4.78)

h(t) =
ceαω0t

ω0

√
α2 − 1

sinh
(
ω0

√
α2 − 1t

)

=
c

jωs
e−δt sinh jωst , α > 1 , (4.79)

h(t) = cte−ω0t , α = 1 . (4.80)
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Fig. 4.10 exhibits what happens with the system impulse response, by
changing the damping factor. It is seen that the functions differ cardinally
in the underdamped and overdamped ranges. This is clearly illustrated in
Fig. 4.10b, where the ranges for the underdamped and overdamped solutions
are separated by the critical value of α = 1. Two limiting cases can also be
observed:

• Zero damping factor, α = 0. With α → 0, a system works without
dissipation of energy that, of course, cannot be met in practice and is just
a useful mathematical idealization. Accordingly, the system bandwidth
tends toward zero, δ → 0, and the ODE (4.65) degenerates to the form

d2

dt2
y(t) + ω2

0y(t) = cx(t) , (4.81)

associated with a linear conservative system of the second order, which
impulse response is a sine wave with a natural frequency ω0 and constant
amplitude c/ω0,

h(t) =
c

ω0
sinω0t . (4.82)

We notice that, even though this case cannot be reached fully, the goal of
any precision nonlinear oscillatory system (reference oscillator) is to tend
α toward zero as close as it is allowed by stability of the closed loop. ��

• Infinite damping factor, α → ∞. In the other limiting case of infinite
α, the system bandwidth becomes infinite, δ →∞, and the system hence
totally loses its selectivity. It follows from (4.79) that, by δ → ∞, the
system impulse response becomes zero. ��

Step Response

The step response function of an LTI system of the second order is defined
by setting x(t) = u(t) to (4.75)–(4.77). In line with the impulse response,
three particular solutions characterize the step response as associated with
the underdamped, overdamped, and critically damped systems, respectively

g(t) =
c

ω2
0

[
1− e−αω0t

(
cosω0

√
1− α2t +

α√
1− α2

sinω0

√
1− α2t

)]

=
c

ω2
0

[
1− e−δt

(
cosωst +

δ

ωs
sinωst

)]
, α < 1 , (4.83)

g(t) =
c

ω2
0

[
1− e−αω0t

(
coshω0

√
α2 − 1t +

α√
α2 − 1

sinhω0

√
α2 − 1t

)]
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Fig. 4.10. Impulse response of a generalized LTI system of the second order with
different damping factors: (a) several values of α and (b) transition from α = 0 to
α = 2 through the critical value of α = 1.

=
c

ω2
0

[
1− e−δt

(
cosωst +

δ

ωs
sinωst

)]
, α > 1 , (4.84)

g(t) =
c

ω2
0

(
1− e−ω0t − ω0te

−ω0t
)
, α = 1 . (4.85)
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Because a system is still linear and time-invariant, differentiating (4.83)–
(4.85) yields the relevant impulse responses, (4.78)–(4.80), respectively. And,
again, two limiting cases can be recognized:

• Zero damping factor, α = 0. By (4.83) and α → 0, the step response
of a conservative system becomes

g(t) =
c

ω2
0

(1− cosω0t) (4.86)

that, by differentiating, inherently transforms to (4.82). ��
• Infinite damping factor, α → ∞. This case makes the system band-

width 2δ to be extremely larger than the natural frequency ω0 and the
quality factor to be zero, Q→ 0. The system degenerates virtually to the
RC circuit with extremely large R. Therefore, the step response, by (4.84),
changes from zero exponentially and very slowly, approaching c/ω2

0 at in-
finity. ��
In Fig. 4.11, we see how the step response of an LTI system of the second

order evolves if to change α around unity. If to evaluate the transient time for
the process envelope, then it can be shown that its minimum value corresponds
to α = 1. With α > 1, the step response is almost exponential with the
time constant proportional to α. The value α < 1 makes the step response
oscillating about c/ω2

0 , whereas its envelope changes almost exponentially with
the time constant reciprocal to α.

In applications, the transient time is fixed for some allowed level that often
is 90 − 95% of the envelope at t = ∞. A shortest transient time is obtained
by some value of α < 1 when the first oscillation almost crosses this level.

Example 4.14. An RLC LTI system of the second order is performed by
a cascade connection of L, R, and C as shown in Fig. 4.12a. Its mechanical
equivalent is given in Fig. 4.12b. The system input is a voltage v(t) and output
is a voltage vC(t) induced on a capacitor C. In the mechanical equivalent,
the force x(t) acts to the mass connected via a spring to the fixed point.
Mechanical shifts in this system are accomplished in the presence of friction
leading to dissipation of energy.

An electric current in the scheme (Fig. 4.12a) can be performed via the
voltage vC(t) as i(t) = CdvC(t)/dt. Then the sum of all the voltages induced
by i(t) produces the system ODE of the second order

d2

dt2
vC(t) +

R

L

d
dt

vC(t) +
1

LC
vC(t) =

1
LC

v(t)

that, in terms of (4.65), transforms to

d2

dt2
vC(t) + 2δ

d
dt

vC(t) + ω2
0vC(t) = ω2

0v(t) , (4.87)

where 2δ = R/L and ω2
0 = 1/LC. Properties of this system are completely

specified by an equation (4.65) and its solutions if to substitute c with ω2
0 . ��
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Fig. 4.11. Step response of a generalized LTI system of the second order for different
damping factors: (a) several values of α and (b) transition from α = 0 to α = 2
through the critical value of α = 1.

Example 4.15. Consider a system (Fig. 4.12a), in which the input voltage
is constant, v(t) = V0. With time, all transients in the system will finish and
a capacitor C will be charged for the voltage vC = V0. Assuming such a
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Fig. 4.12. LTI system of the second order: (a) electrical and (b) mechanical.

situation at t = 0, we set a switcher in a position shown in Fig. 4.13. This
action forces an electric energy of a capacitor to be periodically exchanged
with a magnetic energy of an inductance. Because of a real resistor, R > 0,
dissipates energy, the amplitude of oscillations attenuates with time.

Transient in the electric current i(t) (Fig. 4.13) is described by the ho-
mogenous ODE

d2

dt2
i(t) + 2δ

d
dt

i(t) + ω2
0i(t) = 0 . (4.88)

At the first moment t = 0 after switched on, an inductance has a huge resis-
tance (an electric current in any inductance cannot change instantly). There-
fore, the first initial condition is zero, i(0) = 0. At the same time, the voltage
on a capacitor is equal to the voltage on an inductance that produces the
second initial condition,

di(t)
dt

∣∣∣∣
t=0

= −V0

L
.

The time function of i(t) is then given by the homogenous solution (4.74)
in the form of

i(t) = − V0

ω0L
√

1− α2
e−αω0t sinω0

√
1− α2t . (4.89)

We notice that a negative sign in (4.89) indicates that the electric current
generated by a voltage on a discharging capacity flows in an opposite direc-
tion. In Fig. 4.13 we have accounted for this fact. Therefore, referring to Fig.

Fig. 4.13. Free discharge of a capacitor C in the RLC series tuned circuit.
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4.13, a negative sign in (4.89) might be omitted. We also notice that Fig. 4.9
illustrates i(t) in Fig. 4.13, by y′0 = V0/L.

��

4.5 System Simulation by Block Diagrams

Another form of description of LTI systems implies using the so-called block
diagrams. The diagram is consistent with the system ODE and, actually, sim-
ulates a system mathematically rather than represents its physical nature.
Therefore, it is also called the simulation diagram. The diagrams are useful in
computed-aided systems design and analysis. They also help optimizing the
system performance and resources.

4.5.1 Basic Blocks of LTI Systems

Any LTI system can be simulated by involving three basic blocks discussed
below. No other kind of blocks is necessary.

• Scalar multiplier. This block is also called a multiplier (Fig. 4.14a),
providing the multiplication (gaining) of any time signal x(t) with any
constant a by

y(t) = ax(t) .

• Adder. The function of an adder is to obtain an addition of K signals
x1(t), x2(t), . . . , xK(t) as shown in Fig. 4.14b by

y(t) =
K∑
k=1

xk(t) .

Fig. 4.14. Basic blocks of LTI systems: (a) scalar multiplier, (b) adder, and (c)
ideal integrator.
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• Ideal integrator. This block is also tacitly called an integrator (Fig.
4.14c) and its function is to integrate a signal x(t) from some far point in
the past up to the current time by

y(t) =

t∫

−∞
x(τ)dτ .

Combining the aforementioned blocks allows simulating any LTI system
performed with the ODE of any order.

Example 4.16. An LTI system of the first order is described with the ODE

d
dt

y(t) + 5y(t) = 2x(t) .

The relevant block diagram is as shown in Fig. 4.15. Indeed, for the output

Fig. 4.15. Block diagram of the LTI systems of the first order.

y(t), the input of an ideal integrator is dy(t)/dt. On the other hand, this input
is formed by the sum of two signals, 2x(t) and −5y(t), and we arrive at the
system ODE. ��

4.5.2 Generalized Structures of LTI Systems

Let us come back to the ODE of a generalized LTI system (4.35),

N∑
n=0

an
dn

dtn
y(t) =

M∑
m=0

bm
dm

dtm
x(t) . (4.90)

Our purpose would be to represent a solution of this equation by the
block diagram. To simplify the presentation form, it is in order to introduce
the operator of multiple differentiation that we would like to denote by Dn �
dn/dtn, n � 1. Equation (4.90) can then be rewritten as

N∑
n=0

anDny(t) =
M∑
m=0

bmDmx(t) . (4.91)

Further transformation of (4.91) is associated with two so-called the
canonic forms of block diagrams, namely with the first direct and second direct
forms. We notice that, albeit less commonly, some other forms are used.
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The First Direct Form

The inverse operator D−1 means integration,D−1 �
∫ t
−∞. Aimed at providing

the multiple N -times integration, we can formally multiply the both sides of
(4.91) with D−N . Without loss in generality, we can even think that N = M
and normalize (4.91) with aN = 1. The transformations lead to the form

y(t) = −
N−1∑
n=0

anDn−Ny(t) +
N∑
m=0

bmDm−Nx(t)

=
N−1∑
n=0

Dn−N [−any(t) + bnx(t)] + bNx(t) (4.92)

that can also be rewritten as

y(t) = D−N [b0x(t)− a0y(t)] +D−N+1[b1x(t) − a1y(t)] + . . .

+D−1[bN−1x(t) − aN−1y(t)] + bNx(t) . (4.93)

Both (4.92) and (4.93) are associated with the first direct (or canonic)
form of the block diagram simulation of the LTI system ODE (4.90). By the
property of distributivity, the operator of integration D−1 can be applied
either to each of the terms in (4.93) or to the sum of these terms. We thus
have two equal structures of block diagrams shown in Fig. 4.16.

Fig. 4.16. The first direct form of LTI systems simulation: (a) addition efficient
and (b) integration efficient.
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In the first case (Fig. 4.16a), the structure exploits only one multi-input
adder (addition efficient), however, suffers of a redundant number of integra-
tors. The second diagram (Fig. 4.16b) utilizes a minimum number of integra-
tors (integration efficient), but has a redundant number of adders. The latter
structure is thus more preferable, because any integrator, as a memory device,
is more complicated than any memoryless adder.

We notice that the power M might not obligatorily be equal to N , as we
supposed in (4.93). If M < N , then the relevant branches with high-order
coefficients bm are omitted in Fig. 4.16.

Example 4.17. An LTI system of the second order is given with the block
diagram of the first direct form shown in Fig. 4.17.

To go from the diagram to the system ODE, first express the output
y′(t) = dy(t)/dt of the first adder as

y′(t) = y1(t) + 2x(t)− 2y(t) .

Differentiating this relation gives

y′′(t) = y′1(t) + 2x′(t)− 2y′(t) ,

where the output y′1(t) of the second adder is performed by y′1(t) = 4x(t) +
4y(t). The system ODE then becomes

y′′(t) = 2x′(t) + 4x(t)− 2y′(t) + 4y(t) .

The reader is encouraged to verify that the above obtained ODE fits the
block diagram shown in Fig. 4.17. ��

Fig. 4.17. Block diagram of an LTI system of the second order.
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The Second Direct Form

The other direct (or canonic) form of diagrams appears if to represent (4.91)
as follows. We first write

(
N∑
n=0

anDn
)

y(t) =

(
M∑
m=0

bmDm
)

x(t)

that identically can be represented as
(

N∑
n=0

anDn
)

y(t)(
M∑
m=0

bmDm
) = x(t) .

If now to substitute the ratio of the functions in the left-hand side with an
auxiliary function q(t), then the above equation can be split into two equations

(
N∑
n=0

anDn
)

q(t) = x(t) ,

y(t) =

(
M∑
m=0

bmDm
)

q(t) ,

which, by multiplying the first of them with D−N , become, by aN = 1,

q(t) = −
N−1∑
n=0

anDn−Nq(t) + D−Nx(t) ,

y(t) =
M∑
m=0

bmDmq(t) . (4.94)

Based upon (4.94), the block diagram is created in two steps. First, an
auxiliary function q(t) is expressed via the input x(t) and then the output
y(t) is performed in terms of q(t). The relevant diagram is shown in Fig. 4.18
for N = M .

One can deduce that, contrary to the first direct form (Fig. 4.16b), the
second direct form requires a twice larger number of adders. In this sense,
this form is not addition efficient that actually is not a great disadvantage.

Example 4.18. An LTI system is given with the ODE

y′′(t) + 2y(t) = 4x′(t) + 2x(t) .

To perform a system in the second direct form, substitute its ODE, by
(4.94), with two equations
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Fig. 4.18. The second direct form of the LTI system presentation.

Fig. 4.19. Block diagram of an LTI system of the second order.

q′′(t) + 2q(t) = x(t) ,

y(t) = 4q′(t) + 2q(t) .

Simulation with the block diagram is then obtained as in Fig. 4.19. ��
A particular case of M = 0. In applications, SISO LTI systems are

often described by the ODE (4.90) with M = 0,

N∑
n=0

an
dn

dtn
y(t) = b0x(t) . (4.95)

This degenerate version of (4.90) is simulated with two significantly simplified
direct forms of block diagrams.

The first form (4.93), by bn = 0, n > 0, leads to the equation

y(t) = D−N [b0x(t)− a0y(t)]− a1D−N+1y(t)− . . .

−aN−1D−1y(t) (4.96)

that is simulated as in Fig. 4.20.
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Fig. 4.20. The first direct form of a SISO LTI system diagram, by M = 0.

The second form (4.94), by M = 0, produces

q(t) = −
N−1∑
n=0

anDn−N q(t) + x(t) ,

y(t) = b0q(t) (4.97)

and we arrive at the diagram shown in Fig. 4.21. Even a quick look at Fig.
4.20 and Fig. 4.21 leads to the immediate conclusion that they are equivalent
having no substantial advantages to each other.

A special case of M = 0 and b = 0. There is an isolated case of LTI
systems, when the ODE is performed with M = 0 and b0 = 0. It follows
from Fig. 4.20 that, by b0 = 0, the system has no input. If it is still an LTI
system then such a structure is of no essential practical importance. However,
if some coefficients an are nonlinear, a system can become oscillating falling
to the class of NTI systems. Contrary, in Fig. 4.21, the value b0 = 0 makes
the system isolated (no output) that is senseless. To avoid this confusion with
simulation, the coefficient b0 might be removed to the system input. Such a
manipulation does not violate the model with b0 	= 0, but makes it equivalent
to that shown in Fig. 4.20 when b0 = 0.

An observation of the aforementioned forms of block diagrams assures that
the tool is highly efficient in systems simulation. Indeed, while describing a real
physical system (electrical and mechanical) by differential equations, we think
in terms of energy bearers (electric current, voltage, charge, etc). Hereby, the
ODE represents the LTI system via its physical resources. Contrary, the block

Fig. 4.21. The second direct form of a SISO LTI systems, by M = 0.
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diagram simulates a system formally via its ODE using the assigned general-
ized signals, x(t) and y(t), without discussing their physical nature. Therefore,
in systems design and optimization, it is worth passing over two important
stages: 1) system presentation by the ODEs and 2) system simulation and
optimization by the diagrams.

The other available and important tool of mathematical presentation of
LTI systems is known as the state space model. The model implies presenting
the system ODE of some N -order with a system of ODEs of the first order.
Such a presentation employs a concept of the system state variables, which can
or cannot be absolutely observable (measured) in real systems. The system
state-space model is now well developed and used widely becoming principle
for many applications.

4.6 State Space Representation

Any system operates with some signals. Any signal or its performance (am-
plitude and phase) can be expanded at some fixed time point t1 to the Taylor
series and thereby performed by an infinite set of weighted time derivatives.
In phase systems, for example, the function of the information bearing phase
can be characterized at t1 by the phase value, linear phase drift rate (or
frequency), linear frequency drift rate, and so on. Since a set of these char-
acteristics represents an LTI system via the Taylor series explicitly, then we
have one more form of the LTI system presentation.

This new form is called the system state space model or the state space
representation of a system. The system’s state is characterized by a set of
state variables that at any given time completely describes the system. The
variables may be assigned in different ways, however, the principle idea must
be preserved: one needs to translate the N -order system ODE to a system of
the 1-order ODEs. This can be done if the state variables are assigned to be the
outputs of integrators in the block diagram. Returning to the phase system,
we observe that the phase can be assigned to be the first state variable q1(t),
the linear phase drift rate the second state variable q2(t), the linear frequency
drift rate the third state variable q3(t), and the assignment can be extended
infinitely.

If we will be able to perform a system with the state variables, we then will
be required to couple these variables with the system input x(t) and output
y(t). In state space modeling, this coupling is achieved with two equations.
The first equation couples the system present state with its nearest past state
and input. Therefore, it is called the system state equation, or system equation,
or state equation. The second equation specifies the output via the system’s
state and input. Since the system state is observed (measured) in this equation
indirectly, the equation is said to be the observation equation or measurement
equation. Both the system state equation and the observation equation are
called the system state space equations or just state space equations.
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To understand the essence of state space modelig in more detail, let us
come back to the second direct form (Fig. 4.18). Here, we use an auxiliary
function q(t) and its time derivatives to represent a system by two differen-
tial equations (4.94), rather than using only one equation (4.91). If to assign
q1(t) = q(t), q2(t) = q′(t), . . . , qN (t) = q(N)(t), we will get the second form
in terms of the system state variables q1(t), q2(t), . . . , qN (t). The final step
toward the state space model will be to translate the system ODE of the
N -order to a system of the 1-order ODEs.

Before continuing with the mathematical presentation of the state space
model, it is worth emphasizing that any LTI system can be described in state
space if the following generic conditions are satisfied:

• Initial conditions. The system past history specifying the initial condi-
tions must be known. ��

• System model. A set of the system state variables or the system input-
to-output equation specifying the system model must be known. ��

• Input signal. The input must be known. ��
After satisfying the conditions, the state space model inherently answers

the following key questions: What is the system state at present? How did the
system come at this state from the nearest past? What should we expect in
the nearest future?

4.6.1 The First Direct Forms of SISO Systems in State Space

The state space model of an LTI system is readily created following the block
diagram shown in Fig. 4.16b. We first assign the output of each of the integra-
tors to be the proper state variable qn(t). Then, observing the diagram from
up to down and differentiating consequently each of the states, we arrive at

y(t) = q1(t) + bNx(t) ,

q′1(t) = q2(t) + bN−1x(t) − aN−1y(t) ,

q′2(t) = q3(t) + bN−2x(t) − aN−2y(t) ,

...

q′N−1(t) = qN (t) + b1x(t)− a1y(t) ,

q′N (t) = b0x(t) − a0y(t) . (4.98)

The first equation in (4.98) can serve to eliminate y(t) in the remaining
equations. If to do so, we will go to the equations of the system’s state,

q′1(t) = q2(t)− aN−1q1(t) + (bN−1 − aN−1bN)x(t) ,



4.6 State Space Representation 197

q′2(t) = q3(t)− aN−2q1(t) + (bN−2 − aN−2bN)x(t) ,

...

q′N−1(t) = qN (t)− a1q1(t) + (b1 − a1bN)x(t) ,

q′N (t) = −a0q1(t) + (b0 − a0bN )x(t)

that can be rewritten in matrix form as

⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N−1(t)
q′N (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−aN−1 1 0 . . . 0
−aN−2 0 1 0

...
...

. . .
...

−a1 0 0 1
−a0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN−1(t)
qN (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

bN−1 − aN−1bN
bN−2 − aN−2bN

...
b1 − a1bN
b0 − a0bN

⎤
⎥⎥⎥⎥⎥⎦
x(t) .

(4.99)
On the other hand, the first equation in (4.98) represents an observation

of the system first state variable q1(t) via the input x(t) and output y(t) that
can be reflected in matrix form as

y(t) =
[
1 0 . . . 0

]
⎡
⎢⎢⎢⎣

q1(t)
q2(t)

...
qN (t)

⎤
⎥⎥⎥⎦+ bNx(t) . (4.100)

Both the state equation (4.99) and the observation equation (4.100) have
compact matrix forms of, respectively,

q′(t) = Aq(t) + Bx(t) , (4.101)

y(t) = Cq(t) + Dx(t) , (4.102)

where the N × 1 vector q(t) of the system’s state is

q(t) =
[
q1(t) q2(t) . . . qN (t)

]T
. (4.103)

Here and in the following, the sign (T ) means transpose (Appendix B). The
time derivative of q(t) is defined by the N × 1 vector

q′(t) =
d
dt

q(t) =
[
q′1(t) q′2(t) . . . q′N (t)

]T
. (4.104)

The N ×N matrix A is called the system matrix,

A =

⎡
⎢⎢⎢⎢⎢⎣

−aN−1 1 0 . . . 0
−aN−2 0 1 0

...
...

. . .
...

−a1 0 0 1
−a0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

. (4.105)
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The 1 ×N matrix C is commonly called the observation matrix or measure-
ment matrix,

C =
[
1 0 ... 0

]
. (4.106)

Finally, two auxiliary N ×1 and 1×1 matrices are known as the input matrix
and output matrix, respectively,

B =

⎡
⎢⎢⎢⎢⎢⎣

bN−1 − aN−1bN
bN−2 − aN−2bN

...
b1 − a1bN
b0 − a0bN

⎤
⎥⎥⎥⎥⎥⎦

, (4.107)

D =
[
bN
]
. (4.108)

The block diagram presentation of SISO LTI systems in state space with
M = N is provided by (4.101) and (4.102) as shown in Fig. 4.22. Here we
recognize two principle parts. The system state vector q(t) is evaluated for the
given input x(t) in the state model (doted) described by (4.101). The output
y(t) is then calculated by (4.102) via q(t) and x(t) in the observation model
(doted).

Example 4.19. A system (Example 4.10) is given with the ODE

2∑
n=0

an
dn

dtn
y(t) =

1∑
m=0

bm
dm

dtm
x(t) ,

where, the coefficients are a0 = 1/LC = ω2
0 , a1 = R/L = 2δ, a2 = 1, b0 = 0,

and b1 = 1/L. The first direct form of this equation is given in state space by
(4.101) and (4.102), where the matrices are defined, by (4.105)–(4.108), as

Fig. 4.22. Block diagram presentation of SISO LTI systems in state space for
M = N .
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A =
[−2δ 1
−ω2

0 0

]
, B =

[
1/L
0

]
, C =

[
1 0
]
, D =

[
0
]
.

It can easily be verified, by the inverse transformation, that the obtained
state space model fits the original ODE. ��
Example 4.20. The ODE of an LTI system of the third order is given by

2y′′′(t) + 4y′′(t)− 2y′(t) + 6y(t) = 3x′′′(t) + x′′(t) + 6x(t) .

The state space presentation of this equation in the first form is given by
(4.101) and (4.102) if to specify the matrices as

A =

⎡
⎣
−2 1 0
1 0 1
−3 0 0

⎤
⎦ , B =

⎡
⎣
−5/2
3/2
−3/2

⎤
⎦ , C =

[
1 0 0

]
, D =

[
3/2
]
.

The reader is encouraged to verify this, provide the inverse transformation,
and come from the state space model to the original ODE. ��

A particular case of M = 0. Having bn = 0 for n > 0, the system ODE
becomes (4.95). In view of that, the state equation of the first direct form
(4.99) degenerates to

⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N−1(t)
q′N (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−aN−1 1 0 . . . 0
−aN−2 0 1 0

...
...

. . .
...

−a1 0 0 1
−a0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN−1(t)
qN (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
b0

⎤
⎥⎥⎥⎥⎥⎦
x(t) . (4.109)

By bN = 0, we have D = 0 and then (4.101) and (4.102) become

q′(t) = Aq(t) + Bx(t) , (4.110)

y(t) = Cq(t) , (4.111)

where the system state vector q(t) and its time derivative q′(t) are defined
by (4.103) and (4.104), respectively. The matrices A and C are described by
(4.105) and (4.106), respectively. Finally, the N × 1 matrix B is given by

B =
[
0 0 ... b0

]T (4.112)

and the output matrix is zero, D = 0. Accordingly, the block diagram (Fig.
4.22) simplifies to that shown in Fig. 4.23.
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Fig. 4.23. Block diagram presentation of SISO LTI systems in state space for
M < N .

4.6.2 The Second Direct Forms of SISO Systems in State Space

In a like manner, the state space presentation of a SISO LTI system can be
provided for the second direct form (Fig. 4.18). In doing so, we first assign the
output of each of the integrators to be the system state variable that leads to
the equations

q′1(t) = q2(t) ,

q′2(t) = q3(t) ,

...

q′N−1(t) = qN (t) ,

q′N (t) = −aN−1qN (t)− aN−2qN−1(t)− ...− a0q1(t) + x(t) ,

y(t) = b0q1(t) + b1q2(t) + ... + bN−1qN (t)

+bN [−a0q1(t)− a1q2(t)− ...− aN−1qN (t) + x(t)] . (4.113)

Without any other transformations, these equations produce the system
state and observation equations in matrix forms, respectively,

⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N−1(t)
q′N (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1
−a0 −a1 −a2 . . . −aN−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN−1(t)
qN (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦
x(t) , (4.114)

y(t) =

⎡
⎢⎢⎢⎣

b0 − a0bN
b1 − a1bN

...
bN−1 − aN−1bN

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

q1(t)
q2(t)

...
qN (t)

⎤
⎥⎥⎥⎦+ bNx(t) . (4.115)
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Now observe that (4.114) and (4.115) are still presented in the compact
forms (4.101) and (4.102), respectively, if to specify the matrices of dimensions
N ×N , N × 1, 1×N , and 1× 1 by, respectively,

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1
−a0 −a1 −a2 . . . −aN−1

⎤
⎥⎥⎥⎥⎥⎦

, (4.116)

B =
[
0 0 ... 0 1

]T
, (4.117)

C =

⎡
⎢⎢⎢⎣

b0 − a0bN
b1 − a1bN

...
bN−1 − aN−1bN

⎤
⎥⎥⎥⎦

T

, (4.118)

D =
[
bN
]
. (4.119)

We thus deduce that, by M = N , both the first and the second direct
forms are simulated with the same structure shown in Fig. 4.22 having an
important common feature. With M < N or bN = 0, the matrix D becomes
identically zero, the matrix C in both forms is calculated in a simpler way,
and the block diagram becomes as in Fig. 4.23.

Example 4.21. An LTI system is given with the ODE considered in Example
4.20 being specified with the coefficients a0 = 6, a1 = −2, a2 = 4, a3 = 2,
b0 = 6, b1 = 0, b2 = 1, and b3 = 3.

To go to the state space model, first, divide all of the coefficients by the
factor of 2 to make a3 = 1. The state space presentation of this equation in
the second form will then be given by (4.101) and (4.102) if to define the
matrices (4.116)–(4.119) by, respectively,

A =

⎡
⎣

0 1 0
0 0 1
−3 1 −2

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , C =

[− 3
2

3
2 − 5

2

]
, D =

[
3
2

]
.

As can be observed, a difference between the first form given in Example
4.20 and the second one considered in this example is in the matrices A, B,
and C. This means that (4.101) and (4.102) can equivalently be filled with
different matrix components for the same system. ��

A particular case of M = 0. Let us consider a SISO LTI system de-
scribed with the ODE (4.95), in which aN = 1. Since M = 0 implies bN = 0, a
system is performed in state space with (4.110) and (4.111), where the matri-
ces A and B are given by (4.116) and (4.117), respectively. The 1×N matrix
C is
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C =
[
b0 0 . . . 0

]
(4.120)

and the 1× 1 matrix D has a zero component, D = 0. Having bN = 0, this
system is simulated with the block diagram shown in Fig. 4.23.

Example 4.22. A SISO RLC-system of the second order is given with the
ODE (4.87),

v′′C(t) + 2δv′C(t) + ω2
0vC(t) = ω2

0v(t) ,

where v(t) is the input and vC(t) is output. In terms of (4.95), the coefficients
of the ODE are a0 = ω2

0 , a1 = 2δ, and b0 = ω2
0 . Its state space presentation is

given by (4.101) and (4.102), where the matrices are defined by

A =
[

0 1
−ω2

0 −2δ

]
, B =

[
0
1

]
, C =

[
ω2

0 0
]
.

The system is simulated with the block diagram shown in Fig. 4.23. ��
The other opportunity to perform a system in state space is to proceed

directly with its ODE avoiding considering the diagram. The approach is akin
to the second form and seems to be most“transparent” in explanation if to
let M = 0 and aN = 1, namely if a system is represented with the ODE

y(N)(t) = −
N−1∑
n=0

an
dn

dtn
y(t) + b0x(t) .

The state variables are assigned here as follows:

q1(t) = y(t) , (4.121)

q2(t) = y′(t) = q′1(t) ,

q3(t) = y′′(t) = q′2(t) ,

...

qN−1(t) = y(N−2)(t) = q′N−2(t) ,

qN (t) = y(N−1)(t) = q′N−1(t) ,

−a0q1(t)− a1q2(t)− . . .− aN−1qN (t) + b0x(t) = y(N)(t) = q′N (t) . (4.122)

Then both (4.122) and (4.121) can be rewritten in matrix forms (4.110) and
(4.111), respectively, representing the system state and observation equations,
respectively,
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⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N−1(t)
q′N (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1
−a0 −a1 −a2 . . . −aN−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN−1(t)
qN (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
b0

⎤
⎥⎥⎥⎥⎥⎦
x(t) , (4.123)

y(t) =
[
1 0 . . . 0

]
⎡
⎢⎢⎢⎣

q1(t)
q2(t)

...
qN (t)

⎤
⎥⎥⎥⎦ . (4.124)

Comparing (4.123) and (4.124) with (4.114) and (4.115) for M = 0, we
find a difference only in the constant coefficient b0 that is removed in the
first case from matrix C to matrix B. This actually gives equivalent results.
However, by b0 = 0, the model, (4.123) and (4.124), has no input, whereas
the model, (4.114) and (4.115), loses its output.

Example 4.23. A system is described with the ODE given in Example 4.22.
By (4.123) and (4.124), the matrices for the state space model (4.110) and
(4.111) are defined by

A =
[

0 1
−ω2

0 −2δ

]
, B =

[
0
ω2

0

]
, C =

[
1 0
]
.

In contrast to Example 4.22, here the coefficient ω2
0 appears in B and vanishes

in C. ��

4.6.3 MIMO Systems in State Space

The state space analysis is easily extended to the general case of MIMO sys-
tems. Assume that a system has k inputs and p outputs (Fig. 4.5c) and is
described with N state variables. The state space model will then be repre-
sented by the equations

q′(t) = Aq(t) + Bx(t) , (4.125)

y(t) = Cq(t) + Dx(t) , (4.126)

where the N × 1 vector of the system state q(t) and its time derivative q′(t)
are given by (4.103) and (4.104), respectively. The k × 1 vector of a multiple
input x(t) and the p × 1 vector of a multiple output y(t) are presented by,
respectively,

x(t) =
[
x1(t) x2(t) . . . xk(t)

]T
, (4.127)

y(t) =
[
y1(t) y2(t) . . . yp(t)

]T
. (4.128)



204 4 LTI Systems in the Time Domain

The N × N system matrix and the p × N observation matrix are given as,
respectively,

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
. . .

...
cp1 cp2 . . . cpN

⎤
⎥⎥⎥⎦ . (4.129)

Finally, the N × k input matrix B and p× k output matrix D are performed
by, respectively,

B =

⎡
⎢⎢⎢⎣

b11 b12 . . . b1k
b21 b22 . . . b2k
...

...
. . .

...
bN1 bN2 . . . bNk

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

d11 d12 . . . d1k

d21 d22 . . . d2k

...
...

. . .
...

dp1 dp2 . . . dpk

⎤
⎥⎥⎥⎦ . (4.130)

We notice that all of the components in the matrices are defined by the
coefficients of the system ODEs corresponding to the multiple input and out-
put. It is also worth to notice that simulation of a MIMO system is provided
by a familiar structure (Fig. 4.22). One merely needs substituting the scalar
functions x(t) and y(t) with the vector functions x(t) and y(t), respectively.

Example 4.24. A MIMO system consists of two systems of the second order
coupled via the mutual inductance M . The system has two inputs, v1(t) and
v2(t), and two outputs, vC1(t) and vC2(t), as shown in Fig. 4.24. A straight-
forward description of a system gives two ODEs:

v′′C1(t) + 2δ1v
′
C1(t) + ω2

01 +
ω2

01

ω2
2

v′′C2(t) = ω2
01v1(t) ,

v′′C2(t) + 2δ2v
′
C2(t) + ω2

02 +
ω2

02

ω2
1

v′′C1(t) = ω2
02v2(t) ,

where δ1 = R1/2L1, δ2 = R2/2L2, ω2
01 = 1/L1C1, ω2

02 = 1/L2C2, ω2
1 =

1/MC1, and ω2
2 = 1/MC2.

Fig. 4.24. A MIMO LTI electronic system.
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To arrive at the standard forms, the equations can be rewritten for the
high order time derivatives of the outputs as in the following:

v′′C1 = −2δ1γv
′
C1−ω2

01γvC1+2δ2γ
ω2

01

ω2
2

v′C2+ω2
02γ

ω2
01

ω2
2

vC2+ω2
01γv1−ω02γ

ω2
01

ω2
2

v2 ,

v′′C2 = −2δ2γv
′
C2−ω2

02γvC2+2δ1γ
ω2

02

ω2
1

v′C1+ω2
01γ

ω2
02

ω2
1

vC1+ω2
02γv2−ω01γ

ω2
02

ω2
1

v1 ,

where γ = ω2
2ω

2
1/(ω

2
2ω

2
1 − ω2

01ω
2
02).

The state variables can now be assigned as follows:

q1 = vC1 ,

q2 = v′C1 = q′1 ,

q′2 = v′′C1 = −2δ1γq2−ω2
01γq1+2δ2γ

ω2
01

ω2
2

q4+ω2
02γ

ω2
01

ω2
2

q3+ω2
01γv1−ω2

02γ
ω2

01

ω2
2

v2 ,

q3 = vC2 ,

q4 = v′C2 = q′3 ,

q′4 = v′′C2 = −2δ2γq4−ω2
02γq3+2δ1γ

ω2
02

ω2
1

q2+ω2
01γ

ω2
02

ω2
1

q1+ω2
02γv2−ω2

01γ
ω2

02

ω2
1

v1 .

Based upon, the system state and observation equations attain the forms of,
respectively,

⎡
⎢⎢⎣
q′1
q′2
q′3
q′4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
−ω2

01γ −2δ1γ ω2
02γ

ω2
01
ω2

2
2δ2γ

ω2
01
ω2

2

0 0 0 1
ω2

01γ
ω2

02
ω2

1
2δ1γ

ω2
02
ω2

1
−ω2

02γ −2δ2γ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
q1

q2

q3

q4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0
ω2

01γ −ω2
02γ

ω2
01
ω2

2

0 0
−ω2

01γ
ω2

02
ω2

1
ω2

02γ

⎤
⎥⎥⎥⎦
[
v1

v2

]
,

[
vC1

vC2

]
=
[

1 0 0 0
0 0 1 0

]
⎡
⎢⎢⎣
q1

q2

q3

q4

⎤
⎥⎥⎦ .

We notice that, by the state variables assigned, the matrix D in the obser-
vation equation (4.126) acquires zero components. Therefore the last equation
lost its dependence on the input. ��
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4.6.4 LTI Systems with Feedback

There is a class of LTI systems utilizing feedback. Systems of this kind are
used in control systems and are often subject to the control theory.

Most commonly, two general models of LTI systems with feedback are
recognized. The feedback can organize either a closed loop system with an
output (no input) or a closed loop control system with an external control
signal as an input.

Closed Loop LTI System

In closed loop LTI systems, the input vector x(t) is specified by the output
vector y(t) and the k × p feedback matrix

K =

⎡
⎢⎢⎢⎣

k11 k12 . . . k1p

k21 k22 . . . k2p

...
...

. . .
...

kk1 kk2 . . . kkp

⎤
⎥⎥⎥⎦ (4.131)

such that x(t) = Ky(t). The components to K are typically set such that
some special requirements for the closed loop are satisfied.

Substituting x(t) = Ky(t) to (4.101) and (4.102) yields

q′(t) = Aq(t) + BKy(t) , (4.132)

y(t) = Cq(t) + DKy(t) . (4.133)

The observation equation (4.133) can now be solved for y(t) and we arrive, by
substituting y(t) in (4.132) and (4.133), at the state space model of a closed
loop:

q′(t) = [A + BK(I−DK)−1C]q(t) , (4.134)

y(t) = (I−DK)−1Cq(t) . (4.135)

The block diagram simulating (4.134) and (4.135) is shown in Fig. 4.25.
As it is seen, the system lost the input fitting the term “closed loop”.

Two particular cases of the model, (4.134) and (4.135), should also be
mentioned. If the state variables are assigned such that the matrix D has zero
components, the equations simplify to

q′(t) = (A + BKC)q(t) , (4.136)

y(t) = Cq(t) . (4.137)

And when the matrix C is identity (we meet this case in many applications),
then equations become
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Fig. 4.25. Block diagram of a closed loop LTI system in state space.

q′(t) = (A + BK)q(t) , (4.138)

y(t) = q(t) . (4.139)

As it is seen, the state equations (4.134), (4.136), and (4.138) are ho-
mogenous and therefore a composed matrix in their right-hand sides is totally
responsible for system stability. Indeed, the unstable eigenvalues of A can be
made stable through appropriate choice of a matrix K that is certainly an
advantage of systems with feedback.

Of importance is that a stable closed loop is typically organized to have
negative feedback. This means that the components in K must be negative.
Therefore, the coefficient K very often appears in block diagrams (such as in
Fig. 4.25) with a negative sign, namely as −K, to emphasize that feedback is
negative and the closed loop is stable.

Example 4.25. An LTI system of the second order represents a series tuned
circuit shown in Fig. 4.26a. The scheme is described by the ODE

v′′R(t) + 2δv′R(t) + ω2
0vR = 2δv′(t) . (4.140)

with known initial conditions, vR(0) and v′R(0).
The feedback induced (Fig. 4.26b) generates a voltage vFB(t) = v(t) =

KvR(t) and the system equation becomes homogenous

v′′R(t) + 2δ(1−K)v′R(t) + ω2
0vR = 0 . (4.141)

It follows that, with K < 1, losses in the system are always positive and
oscillations attenuate owing to energy dissipation. With K > 1, the losses are
negative meaning that the feedback overcompensates dissipation of energy
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Fig. 4.26. LTI system of the second order: (a) input-to-output and (b) closed loop.

and oscillations develop. Finally, with K = 1, the losses are zero that can be
met only if the dissipated energy is fully recovered by feedback.

The second direct form of (4.140) is given in state space by (4.136) and
(4.137), if to define the matrices by

A =
[

0 1
−ω2

0 −2δ

]
, B =

[
0
1

]
, C =

[
0 2δ

]
, D =

[
0
]
.

Having only one input and one output, the feedback matrix has 1 × 1
dimensions, K = [K]. The state equation (4.136) and the observation equation
(4.137) attain therefore the forms of, respectively,

[
q′1(t)
q′2(t)

]
=
([

0 1
−ω2

0 −2δ

]
+
[

0
1

]
[K]
[
0 2δ

]) [ q1(t)
q2(t)

]
,

vR =
[
1 2δ

] [ q1(t)
q2(t)

]
.

After simple transformations, the state equation becomes
[
q′1(t)
q′2(t)

]
=
[

0 1
−ω2

0 −2δ(1−K)

] [
q1(t)
q2(t)

]
.

It now becomes obvious that the coefficient K affects the system so that, by
K > 1, the component A22 of A is always positive. Furthermore, we will show
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that such a value of K makes the system unstable to mean that the amplitude
of oscillations develops with time. With K < 1, the system is always stable,
once the amplitude of oscillations decreases with time. The case of K = 1 is
intermediate. ��

Closed Loop Control LTI System

In the second important and widely used case, the input signal x(t) is formed
as an additive sum of the output-generated signal Ky(t) and the external
control signal uc(t), namely we have x(t) = Ky(t) + uc(t). By such an input,
the state and observation equations become, respectively,

q′(t) = Aq(t) + BKy(t) + Buc(t) , (4.142)

y(t) = Cq(t) + DKy(t) + Duc(t) . (4.143)

The block diagram directly simulating (4.142) and (4.143) is presented in
Fig. 4.27. As one can observe, the closed loop control system is the input-

Fig. 4.27. Block diagram of a closed loop control LTI system in state space.

to-output system. However, unlike any open loop, the closed loop control
possesses many useful properties of practical importance and its complexity
is often compensated by its flexibility.

In a manner similar to the closed loop, one can solve (4.143) for y(t),
substitute the result to (4.142) and go to the ultimate state space equations
for the closed loop control:

q′(t) = [A + BK(I−DK)−1C]q(t) + B[I + K(I−DK)−1D]uc(t) , (4.144)

y(t) = (I−DK)−1Cq(t) + (I−DK)−1Duc(t) , (4.145)
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where I is an identity matrix. By zero components in D, the equations become

q′(t) = (A + BKC)q(t) + Buc(t) , (4.146)

y(t) = Cq(t) (4.147)

and, if C = I, they degenerate to

q′(t) = (A + BK)q(t) + Buc(t) , (4.148)

y(t) = q(t) . (4.149)

An advantage of this model is in its ability to be both stable and control-
lable by uc(t), if the feedback matrix K is chosen appropriately.

Example 4.26. A system (Fig. 4.26b) is complicated for the control signal
uc(t) = [uc(t)] to be as in Fig. 4.28. The system is represented with the
following ODE

v′′R(t) + 2δ(1−K)v′R(t) + ω2
0vR = 2δu′c(t) , (4.150)

having a forced solution affected by the control signal uc(t). The coefficients
of the model (4.90) are a0 = ω2

0 , a1 = 2δ(1 −K), a2 = 1, b0 = b2 = 0, and
b1 = 2δ.

Fig. 4.28. Closed loop control LTI system of the second order.

Following Example 4.25, the second direct form of the system equations
(4.146) and (4.147) becomes, after the transformations,

[
q′1(t)
q′2(t)

]
=
[

0 1
−ω2

0 −2δ(1−K)

] [
q1(t)
q2(t)

]
+
[

0
1

]
uc(t) ,

vR =
[
0 2δ

] [ q1(t)
q2(t)

]
.

Except for the control input uc(t), the system has the same structure as
in Fig. 4.26b. Therefore, K affects its stability in the same manner. It follows



4.6 State Space Representation 211

from the state equation that with K < 1 the system is always stable, by
K > 1, it is unstable, and K = 1 corresponds to the intermediate case. ��

4.6.5 Properties of State Space Model

As an incredibly effective and powerfull tool of system description and pre-
sentation, the state space model possesses many of useful properties of impor-
tance.

Convertibility of State Variables

Returning back to the introduction on state space modeling, we recall that
any LTI system can be performed either in the first or second direct forms of
block diagrams. Moreover, although less commonly, other forms of diagrams
are used. Because all of these forms can represent the same system with,
however, different state variables, there must exist some rule to transfer from
one set of state variables to the other one. The relevant rule is known as
similarity transformation.

Assume that we have a system described for the state vector q(t) by (4.125)
and (4.126), respectively,

q′(t) = Aq(t) + Bx(t) ,

y(t) = Cq(t) + Dx(t) .

Let us also suppose that some other state vector v(t) of the same dimen-
sions N × 1 is of interest. Since the system is LTI, then v(t) and q(t) are
coupled linearly and we can formally write

v1(t) = p11q1(t) + p12q2(t) + · · ·+ p1NqN (t) ,

v2(t) = p21q1(t) + p22q2(t) + · · ·+ p2NqN (t) ,

...

vN (t) = pN1q1(t) + pN2q2(t) + · · ·+ pNNqN (t)

that in compact matrix form is

v(t) = Pq(t) . (4.151)

The N × N matrix P is said to be the similarity transformation matrix
(or merely transformation matrix) with constant components pij , i, j ∈ [1, N ].
From (4.151) we have q(t) = P−1v(t) and then substituting to (4.125) and
(4.126) gives

P−1v′(t) = AP−1v(t) + Bx(t) ,

y(t) = CP−1v(t) + Dx(t) .
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By multiplying the first of the above equations with P we finally arrive at
the state space model performed in terms of a new state vector v(t),

v′(t) = Avv(t) + Bvx(t) , (4.152)

y(t) = Cvv(t) + Dvx(t) , (4.153)

where

Av = PAP−1 , Bv = PB , Cv = CP−1 , Dv = D . (4.154)

A new system state v(t) can now be expressed via the original state q(t).

Example 4.27. Consider a SISO LTI system (Example 4.22) described in
state space with the matrices

A =
[

0 1
−ω2

0 −2δ

]
, B =

[
0
1

]
, C =

[
ω2

0 0
]
, D =

[
0
]
.

We want to describe the system’s state in terms of a new state vector v(t)
coupled with q(t) by the matrix

P =
[
ω2

0 0
0 ω2

0

]
.

By (4.154), we define

Av =
[
ω2

0 0
0 ω2

0

] [
0 1
−ω2

0 −2δ

] [
ω−2

0 0
0 ω−2

0

]
=
[

0 1
−ω2

0 −2δ

]
,

Bv =
[
ω2

0 0
0 ω2

0

] [
0
1

]
=
[

0
ω2

0

]
,

Cv =
[
ω2

0 0
] [ω−2

0 0
0 ω−2

0

]
=
[
1 0
]
.

Now observe that, by this transformation, we arrived at the system model
given in Example 4.23. ��

Example 4.28. An LTI system is represented in the second form (Example
4.21) by

A1 =

⎡
⎣

0 1 0
0 0 1
−3 1 −2

⎤
⎦ , B1 =

⎡
⎣

0
0
1

⎤
⎦ , C1 =

[− 3
2

3
2 − 5

2

]
, D1 =

[
3
2

]

and in the first form (Example 4.20) by
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A2 =

⎡
⎣
−2 1 0
1 0 1
−3 0 0

⎤
⎦ , B2 =

⎡
⎣
−5/2
3/2
−3/2

⎤
⎦ , C2 =

[
1 0 0

]
, D2 =

[
3
2

]
.

We want to identify the similarity transformation matrix P to translate the
first form to the second one.

The second relation in (4.154) gives B2 = PB1,
⎡
⎣
−5/2
3/2
−3/2

⎤
⎦ =

⎡
⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦
⎡
⎣

0
0
1

⎤
⎦

that determines p13 = −5/2, p23 = 3/2, and p33 = −3/2. The third relation
in (4.154), being rewritten as C2P = C1,

[
1 0 0

]
⎡
⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦ =

[− 3
2

3
2 − 5

2

]
,

produces p11 = −3/2, p12 = 3/2, and p13 = −5/2. Finally, the first equality
in (4.154) performed as A2P = PA1,

⎡
⎣
−2 1 0
1 0 1
−3 0 0

⎤
⎦
⎡
⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦ =

⎡
⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦
⎡
⎣

0 1 0
0 0 1
−3 1 −2

⎤
⎦ ,

allows getting the rest of the components of P, namely: p21 = 9/2, p31 = −3,
p22 = −1, and p32 = 9/2.

The similarity transformation matrix is thus identified by

P =

⎡
⎣
−3/2 3/2 −5/2

9/2 −1 3/2
−3 9/2 −3/2

⎤
⎦

that allows us to transfer from the first direct form to the second one and vise
versa. ��

State Controllability

The term state controllability is akin to “state control.” Even intuitively, it
predefines the system’s state to be adjustable in some way. The term was
introduced to the text by Kalman in 1960, along with the other term state
observability that we shall consider in the sequel.

Most commonly, we call a system controllable if its state variables can
directly be controlled by the input(s). Contrary, in the uncontrollable or partly
controllable system, all or some state variables cannot be steered in finite time
by the admissible input(s). Specifically for LTI systems represented in state
space, the definition of controllability means the following:
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Controllability : An LTI system described by (4.125) and (4.126)
is completely controllable on the finite time interval [t0, t1] if for any
initial state q(t0) there may be found an input x(t) to transfer the
system to the other given state q(t1).

��
The test for controllability is as follows. The system (4.125) and (4.125) is

state controllable if the matrix

Sc =
[
B AB A2B . . . AN−1B

]
(4.155)

has full rank (Appendix B); that is,

rankSc = N .

Recall that rank is the number of linearly independent rows in a matrix.
Herewith, the matrix Sc has to be non singular if it is square, but is not
necessarily square. Note that the N -order square matrix Sc is not singular if
and only if its rank is N , i.e. detSc 	= 0.

Example 4.29. The system state equation (4.125) is given as

q′(t) =
[−1 0

0 −2

]
q(t) +

[
0
1

]
x(t)

and the matrix Sc is thus determined to be

Sc =
([

0
1

] [−1 0
0 −2

] [
0
1

])
=
[

0 0
1 −2

]
.

It can be shown that the rank of Sc is unity, rankSc = 1 < N = 2.
Therefore, the matrix is singular and the system’s state is not controllable.

Alternatively, we can rewrite the system state equation as follows:

q′1(t) = −q1(t) ,

q′2(t) = −2q2(t) + x(t) .

A conclusion about uncontrollability follows directly from the fact that the
first state q′1(t) is not affected by the input and hence is not controllable. ��
Example 4.30. Given the system state equation

q′(t) =
[−1 0

0 −2

]
q(t) +

[
1
1

]
x(t) ,

for which the matrix Sc is calculated by

Sc =
([

1
1

] [−1 0
0 −2

] [
1
1

])
=
[

1 −1
1 −2

]
.
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This system is controllable, because the determinant of Sc is not zero,
detSc = −1 	= 0, and the rank is full, rankSc = 2. Alternatively, we can write

q′1(t) = −q1(t) + x(t) ,

q′2(t) = −2q2(t) + x(t)

and conclude that system is controllable, because both the first and second
states are affected by the input. ��

The definition of state controllability allows figuring out what the sys-
tem is that is absolutely controllable? It can be shown that such a system is
represented with the following controllable canonic form

q′(t) =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . −aN−1 −aN
1 0 . . . 0 0
0 1 0 0
...

...
. . .

...
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

q(t) +

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
uc(t) , (4.156)

y(t) =
[
b1 b2 . . . bN−1 bN

]
q(t) + Duc(t) . (4.157)

As it follows from an analysis of (4.156), the first component q′1(t) of a
vector q′(t) comprises all of the state variables and is controlled by uc(t). The
system’s state is thus absolutely controllable.

State Observability

Observability is a measure for how well internal states of a system can be
inferred by knowledge of its external outputs. Formally, a system is said to be
observable if, for any possible sequence of state and control vectors, the current
state can be determined in finite time using only the outputs. Specifically for
LTI systems, this means the following:

Observability : An LTI system described by (4.125) and (4.126) is
completely observable on the finite time interval [t0, t1] if for any t0
an initial state q(t0) can be determined from observation of the out-
put y(t) over this interval with the input x(t) known over the same
interval.

��
In other words, we can watch the outputs of an observable system and

figure out what is going on inside the system with its states, even if it takes
a very long time. For LTI systems, a commonly used test for observability is
as follows: the system is observable if the observability matrix



216 4 LTI Systems in the Time Domain

So =

⎡
⎢⎢⎢⎣

C
CA

...
CAN−1

⎤
⎥⎥⎥⎦ (4.158)

has full rank; that is,
rankSo = N .

Example 4.31. An LTI system (Example 4.26) is represented with the sys-
tem and observation matrices, respectively,

A =
[

0 1
−ω2

0 −2δ(1−K)

]
, C =

[
0 2δ

]
.

The observability matrix (4.156) of a system is defined to be

So = 2δ
[

0 1
−ω2

0 −2δ(1−K)

]
.

Because the determinant of So is not zero, its rank is full, rankSo = 2 = N ,
and the system is thus completely observable. ��

In line with the controllable canonic form, an LTI system can also be
represented with the observable canonic form

q′(t) =

⎡
⎢⎢⎢⎢⎢⎣

−a1 1 0 . . . 0
−a2 0 1 0

...
...

. . .
−aN−1 0 0 1
−aN 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

q(t) +

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

bN−1

bN

⎤
⎥⎥⎥⎥⎥⎦
uc(t) , (4.159)

y(t) =
[
1 0 0 . . . 0

]
q(t) + Duc(t) . (4.160)

Examining (4.159), one deduces that the first system state is specified via
the second state. In turn, the second state is performed via the third state,
and so on. In other words, the first system state q1(t) and thereby the system
output (4.160) are performed by all of the other system states and the system
is thus observable.

Duality of State Observability and Controllability

Both the state observability and state controllability are mathematically dual
that is supported by the fact that controllability of the system described with

q′(t) = Aq(t) + Buc(t)

is the same as observability for the system represented by
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q′(t) = ATq(t) ,

y = BTq .

In view of that, the test for controllability can be substituted by the test for
observability through the following transformations:

A→ AT , B→ CT , Sc → So . (4.161)

Example 4.32. An LTI system (Example 4.26) is given in the state space
form, (4.147) and (4.148), with the matrices

A =
[

0 1
−ω2

0 −2δ(1−K)

]
, B =

[
0
1

]
, C =

[
0 2δ

]
.

By (4.155), its controllability matrix is defined to be

Sc =
[

0 1
1 −2δ(1−K)

]
.

Following (4.161), one arrives at the same result, by substituting A with

AT =
[

0 −ω2
0

1 −2δ(1−K)

]
,

C with BT =
[
0 1
]
, and then So with Sc. ��

Kalman Decomposition

Any LTI system can be performed in state space with what is called the
Kalman decomposition. Kalman proposed splitting a system into the four qual-
itatively different substructures regarding the system states: controllable and
observable qco, controllable and not observable qcō, non-controllable and ob-
servable qc̄o, and non-controllable and not observable qc̄ō. Presenting the state
vector as q = [qco qcō qc̄o qc̄ō]T allows formally writing the system state and
observation equations as follows

q′(t) =

⎡
⎢⎢⎣

A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦q(t) +

⎡
⎢⎢⎣

B1

B2

0
0

⎤
⎥⎥⎦uc(t) , (4.162)

y(t) =
[
C1 0 C2 0

]
q(t) , (4.163)

where all of the auxiliary matrices are specified by the matrices A, B, and C
taken from the state and observation equations.

The block diagram simulating (4.162) and (4.163) is shown in Fig. 4.29
clearly illustrating all kinds of subsystems.
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Fig. 4.29. Kalman decomposition of LTI systems.

As can be seen, a subsystem with the impulse response matrix hco has
the input controlled by uc(t) and the output connected to y(t). This block is
thus both controllable and observable. Contrary, a subsystem hc̄ō is discon-
nected from uc(t) and y(t), therefore, is non-controllable and not observable.
Connected to uc(t) and disconnected from y(t), a subsystem hcō is control-
lable, but not observable. Finally, a subsystem hc̄o is observable, but non-
controllable, because it is disconnected from uc(t) and connected to y(t).

It would not be a big surprise that real systems do not always comprise
all of the subsystems shown in Fig. 4.29. The seemingly obvious point is that
the fully controllable and observable system would be represented by only the
block hco.

4.6.6 Stability

As the Lyapunov theory suggests, stability of an LTI system can completely
be ascertained by investigating the homogenous matrix state equation

q′ = Aq , (4.164)

where the N ×N system matrix A with constant components,

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1N

a21 a22 a2N

...
...

. . .
...

aN1 aN2 aNN

⎤
⎥⎥⎥⎦ , (4.165)

bears all the necessary information about behavior of a system. Ascertaining
stability can be provided in different ways, by the following widely recognized
criteria.
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Lyapunov Criterion

The most widely used criterion of stability was proposed by Lyapunov. By the
Lyapunov criterion, the sufficient condition for the trivial solution of (4.164)
to be stable in the Lyapunov sense is that all of the roots of the characteristic
equation

det(aij − λδij) = 0 ,

where δij =
{

1, if i = j
0, if i 	= j

, i,∈ [1, N ], have negative real parts. If a square

matrix A possesses such a property, then it is called the Hurwitz2 matrix.
The determinant can be rewritten in the form of

∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1N

a21 a22 − λ a2N

...
...

. . .
...

aN1 aN2 aNN − λ

∣∣∣∣∣∣∣∣∣
= 0 , (4.166)

allowing us to represent the characteristic equation by a polynomial

f(λ) = aNλN + aN−1λ
N−1 + . . . + a1λ + a0 = 0 , a0 > 0 . (4.167)

To apply the Lyapunov criterion, all of the roots of (4.167) must be found
and investigated for negative real parts.

Example 4.33. An LTI system is represented in state space with the ho-
mogenous matrix equation

[
q′1(t)
q′2(t)

]
=
[

0 1
−ω2

0 −2δ(1−K)

] [
q1(t)
q2(t)

]
.

The corresponding characteristic equation is written as
∣∣∣∣
−λ 1
−ω2

0 −2δ(1−K)− λ

∣∣∣∣ = 0 ,

λ2 + 2δ(1−K)λ + ω2
0 = 0 ,

having two roots,

λ1,2 = −δ(1−K)±
√

δ2(1−K)2 − ω2
0 .

Because, typically, K is not large and ω0 � 2δ, both roots are complex.
For the real parts of the roots to be negative, we need to obtain K < 1. By
the Lyapunov criterion, the system is thus stable only if K < 1. ��
2 Adolf Hurwitz, German mathematician, 26 March 1859–18 November 1919.
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Routh-Hurwitz Criterion

One can also realize if the characteristic equation (4.167) has roots with neg-
ative real parts, using the Routh3-Hurwitz criterion. In accordance with this
criterion, all of the roots of (4.167) have negative real part if and only if all
of the following determinants are positive-valued:

D1 = a1 , D2 =
∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ , D3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣
, . . . ,

DN =

∣∣∣∣∣∣∣∣∣

a1 a0 0 0 . . . 0
a3 a2 a1 0 0
...

...
...

. . .
...

a2N−1 a2N−2 a2N−3 a2N−4 aN

∣∣∣∣∣∣∣∣∣
. (4.168)

Example 4.34. Consider Example 4.33, in which the characteristic equation
(4.167) is given with the coefficients a0 = ω2

0, a1 = 2δ(1 − K), and a2 = 1.
By the Routh-Hurwitz criterion (4.168), the relevant system would be stable
if the determinants D1 and D2 are positive-valued.

Providing the necessary transformations, we arrive at

D1 = a1 = 2δ(1−K) ,

D2 =
∣∣∣∣
2δ(1−K) ω2

0

0 1

∣∣∣∣ = 2δ(1−K)

and point out that D1 and D2 yield the same condition 2δ(1−K) > 0 for the
system to be stable. The latter is satisfied with K < 1 and thus the Lyapunov
and Routh-Hurwitz criteria are consistent (Compare with Example 4.33). ��

Lyapunov Function Criterion

Because the Lyapunov functions method (Chapter 2) is applicable to any
system, it could be used to ascertain stability of LTI systems. Before applying,
it needs to introduce a concept of the positive definite matrix for LTI systems.

A matrix A is said to be positive definite if the quadratic form qTAq is
positive definite. If so, then this quadratic form is the Lyapunov function

V (q) = qTAq > 0 (4.169)

that is positive for all q 	= 0 and has a negative time-derivative, V ′(q) < 0.
Using this definition, the following theorem is proved:

3 Edward John Routh, English mathematician, 20 January 1831-7 June 1907.
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Theorem 4.1. An LTI system (4.164) is asymptotically stable at zero if and
only if for any given positive definite symmetric matrix Q there exists a pos-
itive definite symmetric matrix P such that the following equality is satisfied,

ATP + PA = −Q . (4.170)
��

To prove, let us think that P and Q are positive definite matrices. Then
V (q) = qTPq is the Lyapunov function, because, first of all, it is positive-
valued,

V (q) = qTPq > 0 , (4.171)

and, second of all, by differentiating V (q) and using (4.164) and (4.170), we
have a negative-valued function

V ′(q) = (qT )′Pq + qTPq′ = qTATPq + qTPAq

= −qTQq < 0 . (4.172)

The proof is hence complete.
The reader has to remember that the goal is to define the matrix P for

the given matrix Q and not vice versa. If one first define P and then find
Q, then the conditions for the above-mentioned theorem are violated and an
evaluation of the system stability may lead to wrong results.

Example 4.35. Consider two systems given with the system matrices and
characteristic equations, respectively,

1. A =
[

0 1
−2 −1

]
, λ2 + λ + 2 = 0

2. A =
[

1 0
2 1

]
, λ2 − 2λ− 1 = 0

Because the coefficients of the first equation are both positive, the system
is stable. The second characteristic equation has negative coefficients and the
system is thus unstable.

To verify this fact by the second Lyapunov method, one can assign the
positive definite symmetric matrix Q and matrix P as follows, respectively,

Q =
[
a 0
0 b

]
, and P =

[
p11 p12

p21 p22

]
,

where a > 0, b > 0, and the components of P are still unknown. Substituting
Q to (4.172), we realize that −qTQq = −(aq2

1 + bq2
2) < 0 fits the Lyapunov

function condition (4.172) for all q1 and q2. The matrix Q is thus positive
definite.

We shall now determine P separately for each of the systems to realize
which matrix is symmetric and positive definite satisfying (4.171).
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1. The first system. Substituting A, Q, and P to (4.170) produces an
equality

[ −2p21 − 2p12 −2p22 + p11 − p12

p11 − p21 − 2p22 p12 − 2p22 + p21

]
= −

[
a 0
0 b

]
,

which solution gives

P =
[

3a
4 + b a

4
a
4

1
2

(
a
2 + b

)
]
.

By this matrix, (4.171) yields the value

−qTPq = −a

4
(q1 + q2)2 −

(a
2

+ b
)
q2
1 −

b

2
q2
2 < 0

that is negative for all q1 and q2. The Lyapunov conditions are satisfied and
the first system is thus stable.

2. Reasoning similarly regarding the second system, we have
[
p11 + p21 + p12 p12 + p22

p21 + p22 p22

]
= −1

2

[
a 0
0 b

]

that identifies the matrix P to be

P =
1
2

[−a− 2b b
b −b

]
.

Now, by (4.171), we have

−qTPq = (a + b)q2
1 + b(q1 − q2)2 > 0

that is positive-valued for all q1 and q2. The system is thus unstable. ��

4.7 Solution of State Space Equations

As any linear ODE of the first order, the state equation (4.125) associated
with either SISO or MIMO LTI system can be solved for q(t). To arrive at
the relevant solution, let us recall that a single ODE of the first order (4.53)
is solved using the exponential integration factor. Similarly, the matrix ODE
(4.125) can be solved using the integration factor e−At.

To find a general solution of (4.125), we multiply both its sides with e−At,

e−Atq′(t)− e−AtAq(t) = e−AtBx(t) .

The left-hand side is now the time derivative of the product and we go to the
equation [

e−Atq(t)
]′

= e−AtBx(t) ,
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which integration from t0 to t yields

e−Atq(t) = e−At0q(t0) +

t∫

t0

e−AθBx(θ)dθ .

Multiplying the both sided of this equation with a reciprocal of the inte-
gration factor, eAt, results in the solution

q(t) = eA(t−t0)q(t0) +

t∫

t0

eA(t−θ)Bx(θ)dθ (4.173)

that, by zero input x(t) = 0, becomes homogenous,

q(t) = eA(t−t0)q(t0) = Φ(t, t0)q(t0) . (4.174)

The matrix Φ(t, t0) = eA(t−t0) in (4.174) predetermines a transition of
the state vector q from t0 to t. Therefore, this matrix is termed the state
transition matrix.

If we now substitute (4.173) to the observation equation (4.126), we arrive
at a general solution of the state space equations

y(t) = CeA(t−t0)q(t0) + C

t∫

t0

eA(t−θ)Bx(θ)dθ + Dx(t) ,

= CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bx(θ)dθ + Dx(t) . (4.175)

To compute (4.175), the state transition matrix Φ(t, t0) must somehow be
evaluated in proper dimensions. As it follows, Φ(t, t0) is formed by a reciprocal
of the integration factor, Φ(t) = eAt. The latter, owing to A in its power, is
called the matrix exponential, possessing several useful properties.

4.7.1 Matrix Exponential

Analogously to a reciprocal eat of the integration factor e−at for linear ODEs
of the first order, the matrix exponential can be expanded to the Taylor series

Φ(t) = eAt =
∞∑
k=0

tk

k!
Ak

= I + At +
A2

2!
t2 + . . . +

Ak

k!
tk + . . . , (4.176)

where I = A0 is the N ×N identity matrix.
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Example 4.36. The system matrix is specified with the components

A =

⎡
⎣

0 1 2
0 0 3
0 0 0

⎤
⎦ .

To expand the relevant matrix exponential eAt to the Taylor series (4.176),
first, define the product A2 = AA,

A2 =

⎡
⎣

0 1 2
0 0 3
0 0 0

⎤
⎦
⎡
⎣

0 1 2
0 0 3
0 0 0

⎤
⎦ =

⎡
⎣

0 0 3
0 0 0
0 0 0

⎤
⎦ .

Then the matrix A3 = A2A becomes nilpotent,

A3 =

⎡
⎣

0 0 3
0 0 0
0 0 0

⎤
⎦
⎡
⎣

0 1 2
0 0 3
0 0 0

⎤
⎦ =

⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦

and all other higher order matrices Ak, k > 3, are nilpotent as well. The
matrix exponential eAt is thus produced by the Taylor series to be

eAt = I + tA +
t2

2
A2

=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦+ t

⎡
⎣

0 1 2
0 0 3
0 0 0

⎤
⎦+

t2

2

⎡
⎣

0 0 3
0 0 0
0 0 0

⎤
⎦

=

⎡
⎣

1 t 2t + 3t2

2
0 1 3t
0 0 1

⎤
⎦ , (4.177)

An important finding follows instantly. Disregarding the general infinite
length of the Taylor series, the matrix exponential was produced by the finite
Taylor series. The latter is obviously of high importance for state space mod-
eling. ��

Based upon (4.176), several important properties of the matrix exponential
Φ(t) can be distinguished:

• Value at zero. At t = 0, the matrix Φ(t) is identity,

Φ(0) = e0 = I . (4.178)

��
Example 4.37. As can be seen, by t = 0, the matrix exponential (4.177)
becomes identity. ��
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• Time shifting. An identity eA(t−θ) = eAte−Aθ allows representing the
state transition matrix Φ(t, θ) by the matrix exponential as

Φ(t− θ) = Φ(t, θ) = Φ(t)Φ(−θ) . (4.179)

��
• Inverse matrix exponential. Since eAte−At = I and hence e−At =(

eAt
)−1, then

Φ−1(t) = Φ(−t) . (4.180)

��
• Differentiation. Differentiating Φ(t) gives

d
dt

eAt = AeAt = eAtA (4.181)

that is supported by the manipulations:

d
dt

eAt = 0 + A + 2t
A2

2!
+ . . . + ktk−1 Ak

k!
+ . . .

= A
(
I + At +

A2

2!
+ . . .

)
=
(
I + At +

A2

2!
+ . . .

)
A .

��

Cayley-Hamilton Theorem

One more important property of the matrix exponential is established by the
Cayley4-Hamilton theorem.

Generally, the Taylor series (4.176) evaluates Φ(t) via the infinite series
length. The Cayley-Hamilton theorem states, in its applications to the LTI
systems theory, that Φ(t) can be evaluated in the finite series of length N ,

Φ(t) = eAt = α0I + α1A + . . . + αN−1AN−1 , (4.182)

if to specify properly the constant coefficients α0, α1, . . .αN−1.
For the known eigenvalues λk, k ∈ [1, N ], of A, the coefficients of (4.182)

are defined by the linear equations system

α0 + α1λ0 + ... + αN−1λ
N−1
0 = eλ0t ,

α0 + α1λ1 + ... + αN−1λ
N−1
1 = eλ1t ,

...

α0 + α1λN−1 + ... + αN−1λ
N−1
N−1 = eλN−1t (4.183)

4 Arthur Cayley, English mathematician, 16 August 1821-26 January 1895.



226 4 LTI Systems in the Time Domain

and it follows that the coefficients are commonly time-varying.
Because both (4.176) and (4.181) expand Φ(t) to the series regarding the

same matrix A, the coefficients α0, α1, . . . , αN−1 can be determined via the
Taylor series (4.176), if to set all of the matrices Ak for k > N − 1 to be
nilpotent (having zero components).

Example 4.38. Consider the system matrix A given in Example 4.36. The
relevant characteristic equation is

∣∣∣∣∣∣
−λ 1 2
0 −λ 3
0 0 −λ

∣∣∣∣∣∣
= −λ3 = 0 ,

having the only one zero root λ = 0. The coefficients of a polynomial (4.182)
can be determined if to consider the first equation in (4.183) and supply two
its time derivatives:

α0 + α1λ + α2λ
2 = eλt ,

α1 + 2α2λ = teλt ,

2α2 = t2eλt .

From these equations, we have α0 = 1, α1 = t, and α2 = t2/2. The matrix
exponential is thus evaluated by

eAt = I + tA +
t2

2
A2

that coincides with the Taylor expansion (4.177). ��
So, we now know how to evaluate the matrix exponential. One thus is able

to find a closed form solution of a particular system state space model in the
form of (4.175).

Example 4.39. An LTI system considered in Example 4.22 is assumed to
have an infinite quality factor. Therefore, the bandwidth is zero, 2δ = 0, and
the matrices of the state space model,

q′(t) = Aq(t) + Bx(t) ,

y(t) = Cq(t) ,

are specified by

A =
[

0 1
−ω2

0 0

]
, B =

[
0
1

]
, C =

[
ω2

0 0
]
.

By t0 = 0, a solution (4.175) of the state space equations becomes
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y(t) = CeAtq(0) + C

t∫

0

eA(t−θ)Bx(θ)dθ (4.184)

and the characteristic equation, for the given A, is written as
∣∣∣∣
−λ 1
−ω2

0 −λ
∣∣∣∣ = λ2 + ω2

0 = 0

producing two roots,
λ1 = jω0 , λ2 = −jω0 .

By the Carley-Hamilton theorem, the matrix exponential (4.182) is per-
formed with

eAt = α0I + α1A

that, by (4.183), results in

α0 + α1jω0 = ejω0t ,

α0 − α1jω0 = e−jω0t .

The coefficients are thus determined to be

α0 = cosω0t ,

α1 =
1
ω0

sinω0t

and we specify the matrix exponential with

eAt = I cosω0t + A
1
ω0

sinω0t

=
[

cosω0t
1
ω0

sinω0t

−ω0 sinω0t cosω0t

]
.

The solution (4.184) can now be written as

y(t) =
[
ω2

0 0
] [ cosω0t

1
ω0

sinω0t

−ω0 sinω0t cosω0t

] [
q1(0)
q2(0)

]

+
[
ω2

0 0
] t∫

0

[
cosω0(t− θ) 1

ω0
sinω0(t− θ)

−ω0 sinω0(t− θ) cosω0(t− θ)

] [
0
1

]
x(θ)dθ

= q1(0)ω2
0 cosω0t + q2(0)ω0 sinω0t + ω0

t∫

0

x(θ) sinω0(t− θ)dθ (4.185)

comprising a homogenous solution (two first terms) and a forced solution (the
rest integral term). ��



228 4 LTI Systems in the Time Domain

4.7.2 System Impulse Response in State Space

An inherent property of the general solution (4.175) is that it predefines the
system impulse response by the unit impulse in the input.

For SISO LTI systems, (4.175) can be rewritten as

y(t) = CeA(t−t0)q(t0) + C

t∫

t0

eA(t−θ)Bx(θ)dθ . (4.186)

Aimed at determining the system impulse response, we allow t0 = 0, as-
sume zero initial condition, q(0) = 0, and set x(t) = δ(t). Instantly, by the
sifting property of the delta function, the impulse response function appears
to be

h(t) = C

t∫

0

eA(t−θ)Bδ(θ)dθ

= CeAtB . (4.187)

Example 4.40. An LTI system is given with the equation (4.185). By q1(0) =
q2(0) = 0 and x(t) = δ(t), we go to the system impulse response

h(t) = ω0

t∫

0

δ(θ) sinω0θdθ = ω0 sinω0t .

The same result appears, for known matrices (Example 4.39), if we employ
the general solution (4.187):

h(t) =
[
ω2

0 0
] [ cosω0θ

1
ω0

sinω0θ

−ω0 sinω0θ cosω0θ

] [
0
1

]

= ω0 sinω0t .

Let us notice that the above derived impulse response function corresponds
to conservative systems without dissipation of energy. Therefore, the function
oscillates with time without attenuation that is illustrated in Fig. 4.10b for
α = 0. ��

4.7.3 System Step Response in State Space

In line with the impulse response, the system step response is readily produced
by (4.186) if to set to zero the initial condition, q(0) = 0, suppose t0 = 0, and
apply the unit step in the input. For SISO LTI systems, this leads to

g(t) = C

t∫

0

eA(t−θ)Bu(θ)dθ = C

t∫

0

eA(t−θ)Bdθ . (4.188)
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Example 4.41. The step response function of an LTI system (Example 4.39)
is calculated via its impulse response (Example 4.40) to be

g(t) =

t∫

0

h(τ)dτ = ω0

t∫

0

sinω0τdτ = 1− cosω0t .

Equivalently, following (4.188), we arrive at the same result by

g(t) =
[
ω2

0 0
] t∫

0

[
cosω0θ

1
ω0

sinω0θ

−ω0 sinω0θ cosω0θ

] [
0
1

]
dθ

=
[
ω2

0 0
] t∫

0

[
1
ω0

sinω0θ

cosω0θ

]
dθ = ω0

t∫

0

sinω0θdθ

= 1− cosω0t .

Now note that the step response derived is illustrated in Fig. 4.11b, by
α = 0. ��

We finished with presentation and description of LTI systems in the time
domain. As it follows from what was observed, such systems obey many use-
ful properties and turn out to be particularly simpler than any other kind of
systems. Their inherent properties are linearity (homogeneity and distribu-
tivity) and that they do not depend on when they occur (time-invariance).
Especially important and often critical for applications is that the methods
of LTI systems description (convolution, ODEs, and state space) are consis-
tent, interchangeable, and produce equal results in rather different ways and
forms, although translatable into each other. This splendid feature saves in
the frequency (transform) domain.

4.8 Summary

As the most useful idealizations of real systems, LTI models are used widely
to investigate a great deal of practical and applied problems. The following
basic canons characterize LTI systems in the time domain:

− Any system that provides linear transformations with a time-invariant
operator is the LTI system.

− Any linear system is time-invariant, if all of its coefficients are time-
constant.

− The response of a system at time t to the unit impulse at time t is the
LTI system impulse response.
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− The response of a system at time t to the unit step at time t is the LTI
system step response.

− Convolution couples the input and output of an LTI system via the im-
pulse response by the integral equation; convolution in its standard form
is not valid for time-variant and nonlinear systems.

− Convolution becomes cross-correlation by a sign changed in a variable of
the impulse response.

− Any LTI system can be described by the N -order ODE; a solution of the
ODE is consistent with that provided by convolution.

− The homogenous solution of the LTI system ODE is the LTI system re-
sponse to the nonzero initial conditions with zero input.

− The forced solution of the LTI system ODE is the LTI system response
to the input with zero initial conditions.

− Any LTI system can be simulated with the first and second direct
(canonic) forms of block diagrams.

− The state variable is associated with time derivative and is commonly
interpreted as the system“memory element”.

− Any LTI system can be represented in state space via the ODE or block
diagram if the state variables are properly assigned.

− The state space representation of any LTI system is provided in matrix
form by the state and observation equations (state space equations).

− The matrix form of state space equations is universal for both SISO and
MIMO LTI systems.

− In state space, all of the properties of LTI systems are fully accounted by
the time-invariant matrices (system, observation, input, and output).

− A general solution of the state space equations is universal for all kinds
of LTI systems.

4.9 Problems

4.1. Observing different electronic systems (Chapter 1), find applications for
LTI modeling in their structures.

4.2. An electronic system comprises the following blocks: Gaining amplifier,
Reference oscillator, Phase modulator, Amplitude detector. Examine opera-
tion principles of these subsystems and realize which one can be analyzed by
LTI modeling and which cannot.

4.3 (Convolution). A noncausal input signal has a waveform x(t) = e−bt,
b > 0. Using the convolution, define the output for the impulse response given:
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1. h(t) = e−atu(t), a > 0
2. h(t) = Au(t)−Au(t− τ)
3. h(t) = Au(t)− 2Au(t− τ) + Au(t− 2τ)
4. h(t) = a

(
1− t

τ

)
[u(t)− u(t− τ)]

5. h(t) = a tτ [u(t)− u(t− τ)]

4.4. Using the convolution, define the system output for the impulse response
h(t) and input x(t) given, respectively,

1. h(t) = u(t) x(t) = te−2tu(t)
2. h(t) = u(t) x(t) = t2e−tu(t)
3. h(t) = e−tu(t) x(t) = u(t)
4. h(t) = u(t)− e−2tu(t− τ) x(t) = e−2tu(t)
5. h(t) = a tτ [u(t)− u(t− τ)] x(t) = a[u(t)− u(t− τ)]
6. h(t) = a

(
1− t

τ

)
[u(t)− u(t− τ)] x(t) = a tτ [u(t)− u(t− τ)]

4.5. An LTI system is characterized with the impulse response h(t) =
A [u(t)− u(t− τ)]. Using the convolution, define the system response to the
causal and noncausal cosine inputs, x(t) = u(t) cos t and x(t) = cos t, respec-
tively. Give graphical interpretations.

4.6. Solve Problem 4.5 for the impulse response h(t) = e−atu(t), a > 0, and
sinusoid inputs, x(t) = u(t) sin t and x(t) = sin t.

4.7. Using the convolution, define the system step response for the impulse
responses given in Problems 4.3 and 4.4. Verify the results by (4.11).

4.8 (Properties of LTI systems). The system impulse response and input
are given by, respectively,

1. h(t) = e−|t| x(t) = te−2tu(t)
2. h(t) = 2e−4|t−τ | x(t) = t2e−|t|

3. h(t) = 2e−4|t−τ |δ(t) x(t) = e−|t| cosω0t
4. h(t) = te−tu(t) x(t) = cosω0t
5. h(t) = u(t)− e−2t x(t) = e−2tu(t)
6. h(t) = a |t−τ |τ δ(t) x(t) = a[u(t)− u(t− τ)]
7. h(t) = a

(
1− t

τ

)
[u(t)− u(t− τ)] x(t) = a | sinω0t|

τ

Ascertain causality of each of these systems and signals and write properly
the convolution integral.

4.9. Realize which system given in Problem 4.8 is stationarity and/or mem-
ory and which is not. Verify your deduction.

4.10. An LTI system characterized with the impulse response h(t) = ae−btu(t)
produces the output y(t) = a2(1/b + t)e−btu(t). Using the convolution, solve
the inverse problem to define the input x(t).
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4.11. The input and output of an LTI system are represented with the spec-
tral densities, respectively,

X(jω) =
{

A if −ωc/2 � ω � ωc/2
0 otherwise ,

Y (jω) =
{

B if −ωc/2 � ω � ωc/2
0 otherwise ,

where A and B are constant. Identify a system by the impulse response.

4.12 (LTI systems of the first order). Verify that an LTI system of the
first order (Fig. 4.30) is described by the ODE

v′L(t) +
R1

L
vL(t) =

R2

R1 + R2
v′(t) .

Fig. 4.30. An LTI system of the first order.

Write the general solution for an arbitrary initial condition. Investigate the
homogenous solution. Define the system impulse and step responses.

4.13. Write the ODE and solve Problem 4.12 for an LTI system shown in
Fig. 4.31.

4.14 (LTI systems of the second order). Verify that an LTI system given
in Fig. 4.32 is described with the ODE

v′′L(t) +
R1

L
v′L(t) +

1
LC

vL(t) =
R2

R1 + R2
v′′(t) .

Write the general solution for arbitrary initial conditions. Investigate the
homogenous solution. Define the system impulse and step responses. Investi-
gate the responses numerically for R1 = R2 = 100 Ohm, L = 5× 10−3 H, and
C = 2× 10−6F.

4.15. Write the ODE of an LTI system shown in Fig. 4.33 and solve Problem
4.14 for this system.

4.16 (Block diagrams). Verify that an LTI system described with the ODE
(Problem 4.14) can be simulated by block diagrams in the first and second
direct forms as shown in Fig. 4.34a and Fig. 4.34b.
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Fig. 4.31. LTI systems of the first order.

Fig. 4.32. An LTI system of the second order.

4.17. Write the ODE of an LTI systems represented in Fig. 4.35 with the
block diagrams of the first direct form.

4.18. An LTI system is described with the following ODE

1. ay′′ + by′ + cy = dx′′ − ex′

2. 3
∫
ydt + 2y′′ − 4y′ + y = 3x′′ − x

3. 2y′′′ − 3y = 2x′′ − x

4. y′′ +
∫
ydt− 2y′ =

1∑
m=0

bm
dmx
dtm , b0 = 2, b1 = 1

5. x =
∫
y′′dt

6. 2 d
2x
dt2 + 4x + y = 2 d

3y
dt3 + 4 dxdt

7. 4(y′′ − x) = 3(y′ − x′′)
8. x′ +

∫
xdt− 2y′ =

∫
ydt− 2y′′

9. a2y
′′ − b0x− a1y

′ − b1x
′ = 0
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Fig. 4.33. LTI systems of the second order.

Fig. 4.34. Block diagrams of an LTI system: (a) the first direct form and (b) the
second direct form.

10. 2y +
∫
xdt− 2y′ =

∫ ∫
ydtdt− 2y

11. 3y′′ + 2
∫
ydt = 2x

12.
1∑

n=0
an

dny
dtn = x +

∫
xdt− 2y′, a0 = 2, a1 = 1

13.
1∑

n=0
an

dny
dtn + 2

∫
xdt =

1∑
m=0

bm
dmx
dtm + 2y +

∫
ydt,

a0 = 2, a1 = 1, b0 = 2, b1 = 1

14. 3y′′′ +
2∑

m=1
bm

dmx
dtm − 4y′ + y = 2x, b2 = 2, b1 = 1
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Fig. 4.35. LTI systems represented with the block diagrams of the first direct form.

15. x +
∫
xdt− 2y′ =

1∑
m=0

bm
dmx
dtm , b0 = 2, b1 = 1

16. 2 d
2y
dt2 + x + 2y = 2 d

3y
dt3 + 4 dxdt

Represent a system with the diagrams of the first and second canonic
forms.

4.19. An LTI system is simulated with the block diagram of the second direct
form (Fig. 4.36). Using the diagram, write the ODE of the system.

Fig. 4.36. LTI systems represented with the block diagrams of the second direct
form.
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4.20 (SISO systems in state space). A SISO LTI system of the first
order is shown in Fig. 4.33. Represent this system in state space via the ODE
defined in Problem 4.15.

4.21. A SISO LTI system is given with the block diagram shown in 4.35.
Represent a system in state space via the ODE defined in Problem 4.17.

4.22 (MIMO systems in state space). A MIMO LTI system is given as
in Fig. 4.37. Represent the system in state space.

Fig. 4.37. MIMO LTI systems performed with block diagrams.

4.23 (LTI closed loop in state space). An LTI system is given with the
block diagram as shown in Fig. 4.35. Assuming that the input is connected
to the output with the function x(t) = −2y(t), represent the system in state
space.

4.24. The inputs and outputs of a MIMO feedback system (Fig. 4.37) are
coupled with the functions x1(t) = −3y2(t) and x2(t) = 0.2y1(t). Represent a
system in state space.

4.25 (LTI closed loop control in state space). Solve Problem 4.23 for
x(t) = −2y(t) + uc(t), where uc(t) is a control signal.

4.26. Solve Problem 4.24 for x1(t) = −3y2(t)+uc1(t) and x2(t) = 0.2y1(t)−
uc2(t).

4.27 (Convertibility of state variables). An LTI system is represented in
Problem 4.19 in state space in the first direct form. Find a similarity matrix
and transfer to the second direct form.

4.28 (Stability). An LTI system is given with one of the following system
matrices

A1 =

⎡
⎣
−1 2 1
1 −1 1
0 0 1

⎤
⎦ , A2 =

⎡
⎣

1 2 1
0 −1 1
1 2 −1

⎤
⎦ , A3 =

⎡
⎣

1 2 3
0 1 2
0 0 1

⎤
⎦ , A4 =

⎡
⎣

1 1 1
0 1 1
0 0 1

⎤
⎦ .

Using the Lyapunov criterion, realize which system is stable and which is
not.
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4.29 (Observability and controllability). An LTI system is given in state
space with the following matrices

A =

⎡
⎣
−1 2 1
0 −1 1
0 0 1

⎤
⎦ , B =

⎡
⎣

1
0
1

⎤
⎦ , C =

[
1 1 0

]
.

Investigate a system for observability and controllability.

4.30 (Matrix exponential). Using the Cayley-Hamilton theorem, evaluate
the matrix exponential of an LTI system given with the matrices (Problem
4.28).

4.31. An LTI system is represented in state space with the equations defined
in Problem 4.20. Evaluate the matrix exponential for this system.

4.32 (Solution of state space equations). The system state space equa-
tions are defined in Problem 4.20. The relevant matrix exponential is evaluated
in Problem 4.31. Using (4.171), write a general solution of the system state
space equations.

4.33. Define and investigate numerically the impulse and step responses of
an LTI system represented in Problem 4.32 with the general solution.
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LTI Systems in the Frequency Domain
(Transform Analysis)

5.1 Introduction

An alternative form of LTI systems presentation, although adequate and com-
monly used, is available in the frequency domain. Two approaches are basically
employed. In Fourier analysis (the reader is encouraged to read Signals and
follow Appendix C), an LTI system is described by the system frequency re-
sponse that can be obtained as the Fourier transform of the system impulse
response. In the more general Laplace analysis, an LTI system is represented
by the system transfer function that turns out to be the Laplace transform
of the system impulse response. All forms of an LTI system presentation in
the time domain (convolution, ODE, and state space model) can be converted
to the Fourier and Laplace transform domains equivalently, thus representing
such a system explicitly and exhaustively.

5.2 Fourier Analysis

An efficient tool to study any LTI system in the frequency domain is based
on the Fourier transform application. In the frequency domain often called
Fourier transform domain, an LTI system is characterized with the frequency
response that is the system complex function of frequency. The frequency
response is characterized by the system magnitude response, often measured in
dB, and phase response, typically measured in radians, both versus frequency.

To introduce the reader immediately to the essence of Fourier analysis,
let us consider an SISO LTI system with known transforms of its input and
output, respectively,

x(t)
F⇔X(jω) , y(t)

F⇔Y (jω) .

Certainly, both spectral densities, X(jω) and Y (jω), must be coupled in
the frequency domain by some system operator O as



240 5 LTI Systems in the Frequency Domain (Transform Analysis)

Y (jω) = OX(jω). (5.1)

Then what should be this operator?
To find an answer, we recall that, in the time domain, the output y(t)

is coupled with the input x(t) via the system impulse response h(t) by the
convolution h(t)∗x(t). Then, the convolution property of the Fourier transform
allows us to write

OX(jω) = Y (jω) = Fy(t) = F [h(t) ∗ x(t)] = H(jω)X(jω) . (5.2)

Comparing the first and last expressions in (5.2), we deduce that the oper-
ator O is a complex function H(jω) that is identical to the Fourier transform
of the system impulse response,

H(jω)
F⇔ h(t) . (5.3)

This means that the system impulse response is translated from the time
domain to the frequency domain. Therefore, it would be absolutely logical to
call H(jω) the system frequency response. In the LTI system theory, Fourier
analysis operates mostly with transforms of the system input, output, and
impulse response.

Example 5.1. An LTI system is represented with the impulse response

h(t) = ae−atu(t) .

The Fourier transform produces the system frequency response (Appendix C)

Fh(t) = H(jω) =
a

a + jω

and one can easily verify that the inverse Fourier transform applied to H(jω)
produces the impulse response h(t). ��

5.2.1 Frequency Response

As one of the principle characteristics of LTI systems in the frequency domain,
the frequency response is measured for the harmonic test signal, provided the
definition:

Frequency response: The ratio of the LTI system response to the
complex exponential signal x(t) = ejωt and ejωt is the system fre-
quency response,

H(jω) =
Response to ejωt

ejωt
. (5.4)

��
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Example 5.2. The ODE
y′ + ay = bx

represents an LTI system of the first order, where a and b are time-constant.
By (5.4), assuming x(t) = ejωt and y(t) = H(jω)ejωt, we go to jωH +aH = b
that instantly yields the system frequency response

H(jω) =
b

a + jω
.

��
On the other hand, by (5.2) and (5.3), we have two other equivalent defi-

nitions valid for LTI systems, respectively:

Frequency response: The ratio of the Fourier transform (spectral
density) Y (jω) of the system output and the Fourier transform (spec-
tral density) X(jω) of the system input is the LTI system frequency
response

H(jω) =
Y (jω)
X(jω)

. (5.5)

��
Frequency response: The Fourier transform of the system impulse
response h(t) is the LTI system frequency response

H(jω)
F⇔ h(t) .

��
Example 5.3. Consider an LTI system given with the ODE (Example 5.2).
By applying the Fourier transform to both sided of this equation and using
the transform properties (Appendix C), we go to

jωY (jω) + aY (jω) = bX(jω)

that, by (5.5), leads to the same expression for the system frequency response
as that found in Example 5.2. ��

The above-considered Examples 5.2 and 5.3 neatly verify equivalency of
both definitions of the system frequency response. Accordingly, by (5.5), the
generalized structure of an LTI system in the frequency domain appears as
shown in Fig. 5.1. It follows that if X(jω) is unity with zero phase over all
frequencies (input is the unit impulse), then the frequency response H(jω)
repeats the shape of the spectral density Y (jω) of the output.
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Fig. 5.1. Generalized structure of an LTI system in the frequency domain.

Magnitude and Phase Responses

By the above-given definitions, the frequency response is commonly a complex
function. As such, it can be represented with

H(jω) = ReH(jω) + jImH(jω)

= |H(jω)|ejϕH (ω) , (5.6)

where |H(jω)| is called the magnitude response, or magnitude of the frequency
response, or magnitude frequency response, or sometimes system gain,

|H(jω)| =
√

[ReH(jω)]2 + [ImH(jω)]2 . (5.7)

In turn, the phase response ϕH(ω) is defined by

ϕH(ω) = argH(jω) or tanϕH(ω) =
ImH(jω)
ReH(jω)

. (5.8)

In electronic systems and, in particular, in Fourier analysis of these sys-
tems we deal with signals possessing the property of 2π-periodicity (harmonic
signals). Therefore, the phase response is assumed to range from −π to π. The
phase with such a property is called the principle phase, or wrapped phase, or
very often modulo 2π phase, or just phase mod 2π. The phase response mod
2π can be calculated by

ϕH(ω) =

⎧
⎨
⎩

arctan(Q/I), I � 0

arctan(Q/I)± π, I < 0,
{

Q � 0
Q < 0

, (5.9)

where I ≡ ReH(jω) and Q ≡ ImH(jω).
We notice that the general definition of the phase response (5.8) allows

restoring its unwrapped values existing in the infinite angular range if to ac-
count for a π-periodicity of the arctan-function.

If to substitute the spectral densities of the input and output as follows

X(jω) = |X(jω)|e−jϕx(ω) and Y (jω) = |Y (jω)|e−jϕy(ω) ,

where |X(jω)| and |Y (jω)| are the magnitude spectral densities of the input
and output, respectively, and ϕx(ω) and ϕy(ω) are the phase spectral densities
of the input and output, respectively, then the magnitude and phase frequency
responses will attain the forms of, respectively,
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|H(jω)| = |Y (jω)|
|X(jω)| , (5.10)

ϕH(ω) = ϕy(ω)− ϕx(ω) . (5.11)

By these relations, the magnitude response |H(jω)| is determined as a
ratio of the magnitude spectral densities of the output, |Y (jω)|, and input,
|X(jω)|. In turn, the phase response is defined by the difference between the
phase spectral densities of the output, ϕy(ω), and input, ϕx(ω).

Example 5.4. The spectral densities of the system input and output are
performed with, respectively,

X(jω) =
1

3 + jω
, Y (jω) =

1
2 + jω

.

By (5.5), the system frequency response attains the form of

H(jω) =
3 + jω

2 + jω
= 1 +

1
2 + jω

causing the magnitude and phase responses to be, respectively,

|H(jω)| =
√

(6 + ω2)2 + ω2

4 + ω2
,

tanϕH(ω) = − ω

6 + ω2
.

By the inverse Fourier transform applied to H(jω), the system impulse
response is defined as

F−1H(jω) = h(t) = δ(t) + e−2tu(t) .

It can easily be verified that the direct Fourier transform applied to h(t)
produces the above specified system frequency response. ��

As a product of the Fourier transform applied to the impulse response, the
frequency response function possesses all of the Fourier transform properties
featured to the spectral density of a signal. These properties are considered
in detail in Signals and their review is postponed to Appendix C. The most
critical characterizations of H(jω) are the following:

• Evenness (symmetry property): |H(jω)| is an even function; it is a
symmetric function about zero. ��

• Oddness (antisymmetry property): ϕH(ω) is an odd function; it is an
antisymmetric function about zero. ��
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Cascade LTI Systems

Complex LTI systems are often performed by cascades of elementary (basic)
systems. It can easily be shown that the frequency response of a cascade sys-
tem is defined by the multiplication of the frequency responses of elementary
blocks,

H(jω) =
N∏
i=1

Hi(jω) =
N∏
i=1

|Hi(jω)|ejϕHi(ω) , (5.12)

therefore, the relevant magnitude and phase responses are specified by, re-
spectively,

|H(jω)| =
N∏
i=1

|Hi(jω)| , (5.13)

ϕH(ω) =
N∑
i=1

ϕHi(ω) . (5.14)

Logarithmic Measures and Bode Plot

An important measure of the system performance in the frequency domain is
the logarithmic magnitude response (in decibel units),

|H(jω)|dB = 20 log10 |H(jω)| . (5.15)

If the frequency response occupies a wide frequency range of several
decades, then the logarithmic measure of frequency, log(f), is also preferable.
The display of |H(jω)|dB versus log(ω) or log(f) is known as the Bode1 plot.
A benefit of Bode’s plot is that 1) it allows evaluating the particular parts of
the magnitude response in terms of the function rate in dB/decade and 2) the
magnitude response may by bounded with lines that, in many cases, leads to
useful generalizations.

Representation via Differential Equations

Many LTI systems are described by ODEs of the form

N∑
n=0

an
dn

dtn
y(t) =

M∑
m=0

bm
dm

dtm
x(t) , M � N . (5.16)

Applying the Fourier transform to (5.16) and using the properties of lin-
earity and differentiation, one can find out that

1 Hendrik Wade Bode, American engineer, 24 December, 1905-21 June, 1982.
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Y (ω)
N∑
n=0

an(jω)n = X(jω)
M∑
m=0

bm(jω)m .

By (5.5), the system frequency response would then be found to be

H(jω) =
Y (jω)
X(jω)

=

M∑
m=0

bm(jω)m

N∑
n=0

an(jω)n
. (5.17)

Such a fast transition from the ODE in the time domain to the algebraic
form in the frequency domain often substantially simplifies an analysis. In
fact, instead of solving the ODE (5.16) for the impulse response, one can
consider the ratio (5.17) of two power polynomials with a complex variable
jω, representing the frequency response. The procedure is universal, however,
in engineering practice it often becomes easier defining the frequency response
by the methods of electric circuits.

Example 5.5. An LTI system is described with the ODE

y′′′(t) + 0.2y′′(t)− y(t) = 0.2x′′(t)− x(t) .

By the Fourier transform applied to both sides of the equation, we have

(jω)3Y (jω) + 0.2(jω)2Y (jω)− Y (jω) = 0.2(jω)2X(jω)−X(jω) ,

(0.2ω2 + 1 + jω3)Y (jω) = (0.2ω2 + 1)X(jω) .

and, by (5.5), the system frequency response appears to be

H(jω) =
0.2ω2 + 1

0.2ω2 + 1 + jω3
= ReH(jω) + jImH(jω) ,

where

ReH(jω) =
(0.2ω2 + 1)2

(0.2ω2 + 1)2 + ω6
,

ImH(jω) = − ω3(0.2ω2 + 1)
(0.2ω2 + 1)2 + ω6

.

The magnitude and phase responses can now be readily described with,
respectively,

|H(jω)| = 0.2ω2 + 1√
(0.2ω2 + 1)2 + ω6

,

tanϕH(ω) = − ω3

0.2ω2 + 1
.
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Fig. 5.2. Frequency response of an LTI system: (a) magnitude response, (b) Bode
plot, (c) phase response, and (d) phase and group delays.

Fig. 5.2a illustrates |H(jω)| in the positive frequency domain and Fig. 5.2b
gives the relevant Bode plot. The phase response ϕH(ω) is sketched in Fig.
5.2c. It is seen that the magnitude response has the slope of −20dB/decade
beyond the system bandwidth and that the phase response ranges from 0 to
−π/2. ��

5.2.2 Phase Distortions

A typical duty of an input-to-output system is to alter the magnitude spectral
density of an input signal, thereby providing the necessary spectral content
in the output. In line with this, the output phase can also be changed by the
phase response of a system to produce the so-called phase distortions. For
some applications, violation of phase spectral density is not of importance
and relevant errors are ignored. For some others, phase distortions can lead
to errors in transmission of information, therefore are accounted. To evaluate
phase distortions, two measures are commonly used: phase delay and group
delay.
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Phase Delay

An important characteristic of any LTI system is the phase delay, provided
the definition:

Phase delay : The phase delay (in units of time) is a measure of how
much each sinusoidal component of the input signal is delayed in time
in the output signal of a system.

��
To find a quantitative measure for the phase delay, let us assume, following

the definition, that the input is a harmonic signal x(t) = A cos(ω0t + φ0),
where A, ω0, and φ0 are constant. Let an LTI system has at ω0 the response
H(jω0) = |H(jω0)|ejϕH (ω0). If we present the input as

x(t) = A cos(ω0t + φ0) =
1
2
Aej(ω0t+φ0) +

1
2
Ae−j(ω0t+φ0)

then the output, by the oddness of the phase response, will be defined as

y(t) =
1
2
AH(jω0)ej(ω0t+φ0) +

1
2
AH(jω0)e−j(ω0t+φ0)

= A|H(jω0)| cos[ω0t + ϕH(ω0) + φ0]

= A|H(jω0)| cos
[
ω0

(
t +

ϕH(ω0)
ω0

)
+ φ0

]

= A|H(jω0)| cos [ω0 (t− τp) + φ0] .
In this relation, obeying the definition, the frequency-dependent quantity

τp(ω0) = −ϕH(ω0)
ω0

(5.18)

has a meaning of the phase delay (in units of time) in a harmonic signal at the
frequency ω0. One thus infer that the phase delay is evaluated by the negative
ratio of the system phase response at ω0 and ω0.

Group Delay

In some cases, the measure of phase delay is not appropriate, and the other
quantity called the group delay is used to characterize an LTI system, provided
the definition:

Group delay : The group delay (in units of time) is a measure of
how much a group of input signal components with neighboring close
frequencies is delayed in time in the output signal of a system. ��
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Let us now think that the input is a cosine carrier signal with a cosine
envelope, x(t) = A cosΩt cosω0t, Ω � ω0. For the sake of simplicity, we will
let the system frequency response to have a unit magnitude in the observed
frequency range, so H(jω) = ejϕH (ω) for ω0 −Ω � ω � ω0 + Ω.

The output is therefore defined by

y(t) =
1
2
A cos[(ω0 −Ω)t + ϕH(ω0 −Ω)]

+
1
2
A cos[(ω0 + Ω)t + ϕH(ω0 + Ω)]

= A cos
[
ω0t +

ϕH(ω0 + Ω) + ϕH(ω0 −Ω)
2

]

× cos
[
Ω0t +

ϕH(ω0 + Ω)− ϕH(ω0 −Ω)
2

]

= A cos
{
ω0

[
t +

ϕH(ω0 + Ω) + ϕH(ω0 −Ω)
2ω0

]}

× cos
{
Ω0

[
t +

ϕH(ω0 + Ω)− ϕH(ω0 −Ω)
2Ω

]}
.

If we now allow ϕH(ω0 + Ω) + ϕH(ω0 −Ω) ≈ 2ϕH(ω0) and assign

τp(ω0) = −ϕH(ω0 + Ω) + ϕH(ω0 −Ω)
2ω0

≈ −ϕH(ω0)
ω0

to be the phase delay in the carrier signal, we then can also let

τg(ω0) = −ϕH(ω0 + Ω)− ϕH(ω0 −Ω)
2Ω

≈ − dϕH(ω)
dω

∣∣∣∣
ω=ω0

to be a delay in the group of signals with neighboring frequencies around ω0.
It then follows that, obeying the definition, the quantity

τg(ω) = −dϕH(ω)
dω

(5.19)

plays a role of a delay in units of time of a group of signal’s components
with neighboring close frequencies. The group delay is hence evaluated by the
negative derivative of the system phase response with respect to ω at ω0.

Example 5.6. The phase response of an LTI system is found in Example 5.5
to be

ϕH(ω) = − arctan
ω3

0.2ω2 + 1
.

By (5.18) and (5.19), the phase and group delays are evaluated at an
arbitrary angular frequency ω with, respectively,
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τp(ω) =
1
ω

arctan
ω3

0.2ω2 + 1
,

τg(ω) =
ω2(3 + 0.2ω2)

(0.2ω2 + 1)2 + ω6
.

Fig. 5.2d sketches both these functions. It is seen that the maximum of the
group delay corresponds to the maximum rate of the phase response. However,
the maxima of the phase and group delays do not coincide. Because a system
in question is bandlimited (LP filter), the group delay is a more appropriate
measure of phase distortions in this case. ��

5.2.3 Distortionless Transmission

In some cases, an LTI system is intended for transmitting and receiving signals
without distortions. For distortionless transmission through an LTI system, it
is required that the exact input signal waveform be reproduced at the output.
Herewith, it is allowed for the signal amplitude to be gained and phase delayed
in time.

Most generally, with distortionless transmission, the output is coupled with
the input by the relation

y(t) = Kx(t− τd) (5.20)

where K > 0 is a constant positive-valued coefficient often called a gain
constant and τd is the time delay. If we assume an arbitrary input waveform
(Fig. 5.3a), then the undistorted output will be as in Fig. 5.3b. The signal is
delayed in time on τd and its amplitude is gained with K.

By taking the Fourier transform (Appendix B) of both sides of (5.20), we
provide

Y (jω) = Ke−jτdωX(jω) . (5.21)

The system frequency response hence attains the form of

H(jω) =
Y (jω)
X(jω)

= Ke−jτdω (5.22)

and thus the magnitude and phase responses with distortionless transmission
are, respectively,

|H(jω)| = K , (5.23)

ϕH(ω) = −ωτd . (5.24)

A conclusion follows immediately: ideal distortionless transmission is
achieved solely in noncausal LTI systems, which magnitude response is con-
stant and phase response is linear over all frequencies.

The inverse Fourier transform applied to (5.22) produces (Appendix C)

h(t) = F−1H(jω) = KF−1e−jτdω = Kδ(t− τd) , (5.25)
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Fig. 5.3. Distortionless transmission: (a) input, (b) output, (c) uniform magnitude
response of a system, and (d) linear phase response of a system.

indicating that the impulse response of an LTI system with distortionless
transmission is delta-shaped at τd. It also follows that the phase and group
delays associated with (5.24) are equal,

τp = τg = τd .

On the other hand, the linear phase response can not obligatory be zero
at a center of coordinates, t = 0. Most generally, one can consider ϕH(ω) =
ϕ0 − ωτd. In this case, the phase delay is not constant over frequencies and
tends toward infinity at t = 0. Contrary, the group delay still remains constant,

τg = − d
dω

(ϕ0 − τdω) = τd .

The latter has an important practical meaning. In fact, because information
is usually transmitted via the neighboring spectral components around the
carrier, the linear phase response with an arbitrary initial phase ϕ0 is also
appropriate for distortionless transmission.

5.2.4 Filtering

One of the most important duties of electronic LTI systems is filtering.

Filtering : Filtering is said to be the process by which the amplitudes
of some spectral components of an input signal are changed or even
suppressed at the output of a system.
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��
Because, by (5.5), spectral content of the output is affected by the fre-

quency response, then any LTI system is actually a filter or a device that
exhibits some sort of frequency-selective behavior. The following types of fil-
ters are commonly recognized.

All-pass filter. An all-pass filter is a device whose spectral magnitude
response is unity over all frequencies. Fig. 5.3c illustrates the magnitude re-
sponse of an all-pass filter, which phase response is linear (Fig. 5.3d). There-
fore, an all-pass filter is the delay operator e−jωτd itself. Its phase response as
a function of ω is −ωτd (5.24).

As one may observe, the amplitude of a signal is not changed by an all-pass
filter that contradicts to the definition of filtering. Therefore an all-pass filter
is not actually a filter in the applied sense. It is rather a delay-line.

Low-pass filter. A low-pass filter (LP filter) passes low frequencies and
attenuates all other unwanted (high) frequencies. It is also sometimes called
a high-cut filter, or treble cut filter, or even hiss filter.

A simplest LP filter is the RC circuit that consists of a resistor in series
with the input signal path in conjunction with a capacitor in parallel with
the output signal path. An example is an LP filter in an audio amplifier that
would let through all signals below 3 KHz and suppress all others above 10
KHz.

An ideal LP filter is also called perfect LP filter and is specified with the
rectangular shape of the frequency response,

H(jω) =
{

1, |ω| � ωc

0, |ω| > ωc
, (5.26)

where ωc is a cut-off frequency. Fig. 5.4a shows the rectangular-shape mag-
nitude response of this filter. The relevant impulse response is provided by
taking the inverse Fourier transform of (5.25); that is,

h(t) =
ωc

π

sinωct

ωct
. (5.27)

High-pass filter. A high-pass filter (HP filter) passes high frequencies and
attenuates unwanted low frequencies. Therefore, a HP filter is the opposite of
an LP filter. The other term is a low-cut filter, or bass-cut filter, or rumble
filter.

A simplest HP filter is the RC circuit that consists of a capacitor C in
series with the input signal path in conjunction with a resistor R in parallel
with the output signal path. For example, a HP filter with a cut-off frequency
of fc = ωc/2π = 2 MHz might be required for the antenna input to a receiver
where AM Radio interference is proving troublesome. We thus will want to
pass all frequencies above 2 MHz but attenuate those below 2 MHz.
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Fig. 5.4. Ideal LTI filters: (a) low-pass (LP), (b) high-pass (HP), (c) bandpass
(BP), and (d) band-rejection (BR).

An ideal HP filter (or perfect HP filter) has a rectangular-shape frequency
response

H(jω) =
{

1, |ω| > ωc

0, |ω| � ωc
, (5.28)

The magnitude response of an ideal HP filter is shown in Fig. 5.4b. Because
(5.28) can be interpreted as a difference between the frequency responses of
an all-pass filter and an LP filter, the impulse response of a HP filter can be
found, by (5.27) and (5.25) with τd = 0 and K = 1, to be

h(t) = δ(t)− ωc

π

sinωct

ωct
. (5.29)

Band-pass filter. A band-pass filter (BP filter) lets through signal spec-
tral components in a gap between two given cut-off frequencies. It can be
created by a combination of an LP filter and a HP filter.

A simplest BP filter is the RLC circuit that consists of a capacitor C
and inductance L in series with the input signal path in conjunction with
a resistor R in parallel with the output signal path. An example is a radio
receiver selective circuit (BP filter) that would let through all of the signals of
the received station. All of the other signals of the neighboring stations have
to be suppressed.

An ideal BP filter (or perfect BP filter) is performed with a rectangular-
shape selective frequency response that is unity between two given cut-off
frequencies, ωc1 and ωc2, and is zero otherwise,
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H(jω) =
{

1, −ωc2 � ω � −ωc1 and ωc1 � ω � ωc2

0, otherwise . (5.30)

Fig. 5.4c illustrates the magnitude response of an ideal BP filter. It is seen
that (5.30) can be treated as a difference of the frequency responses of two
ideal LP filters having the cut-off frequencies ωc2 and ωc1, respectively. The
relevant impulse response is therefore calculated, using (5.27), by

h(t) =
ωc2

π

sinωc2t

ωc2t
− ωc1

π

sinωc1t

ωc1t

=
2Ω
π

sinΩt

Ωt
cosω0t , (5.31)

where Ω = (ωc2 − ωc1)/2 is an algebraic mean difference between two cut-off
frequencies and

ω0 =
ωc1 + ωc2

2
(5.32)

is an algebraic mean cut-off frequency. We notice that in other cases the central
frequency may be evaluated as the geometric mean by

ω0 =
√
ωc1ωc2 . (5.33)

However, both these simple measures, (5.32) and (5.33), may not be appropri-
ate when the frequency response is not symmetric about ω0. Then the more
common measures of a central frequency must be used (see Signals).

Band-rejection filter. In electronics, the band-rejection filter (BR filter)
is the one that attenuates all frequencies between two given cut-off frequencies
and passes all frequencies beyond this gap. It is also called a band-stop filter,
or band-elimination filter, or band-suppression filter, or notch filter. The latter
term is also used for a special kind of BR filters.

A simplest BP filter is the RLC circuit that consists of a resistor R in series
with the input signal path in conjunction with a capacitor C and inductance
(L) in parallel with the output signal path. For example, a BP filter would be
used to protect a Radio receiver against interference from a nearby transmitter
in the selected frequency range say 136-154 MHz or 152-175 MHz. The filter
must be tuned to reject the interfering signal.

An ideal BR filter (or perfect BR filter) is the opposite of an ideal BP
filter. As such, it is performed with the frequency response shown in Fig. 5.4d
and described by

H(jω) =
{

0, −ωc2 � ω � −ωc1 and ωc1 � ω � ωc2

1, otherwise . (5.34)

The frequency response of an ideal BR filter may be combined by the
frequency response of an ideal LP filter with the cut-off frequency ωc1 and
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an ideal HP filter with the cut-off frequency ωc2 > ωc1. The relevant impulse
response is then readily provided, by (5.27) and (5.29), to be

h(t) = δ(t)−
(
ωc2

π

sinωc2t

ωc2t
− ωc1

π

sinωc1t

ωc1t

)

= δ(t) − 2Ω
π

sinΩt

Ωt
cosω0t . (5.35)

Notch filter. A special kind of BR filters is called a notch filter. It is also
known as a band-stop filter, narrow band-pass filter, or T-notch filter.

The filter is typically used when ωc2 and ωc1 are less than 1 to 2 decades
apart (that is, ωc2 is less than 10 to 20 times the ωc1). For example, an anti-
hum filter would have fc1 = ωc1/2π = 59 Hz and fc2 = ωc2/2π = 61 Hz
and an anti-presence filter is designed to have fc1 = ωc1/2π = 1 KHz and
fc2 = ωc2/2π = 4 KHz.

As any other ‘ideal’ devices, all of the above-considered ideal filters are
not realizable physically. That is because the sinc function in their impulse
response requires infinite time, thus, the filter would need to predict the future.
Even so, an ideal LP filter is used, for example, in the Nyquist-Kotelnikov-
Shannon interpolation formula to reconstruct the continuous (analog) signal
from the digital one (samples).

Therefore, in practice, selective filters are not ideal and do not attenuate
frequencies just outside the desired frequency range completely. Instead, there
is typically a smooth and quick decrease in transmitted frequency outside
the band. This is known as the roll-off, and usually expressed in parts of
dB/decade as in Fig. 5.2d, for example.

In some applied problems, the filter is intended to represent a desired
(optimized) shape of the magnitude response that may not always be rectan-
gular. Such filters are commonly called optimal filters. The phase response of
an optimal filter is usually required to be linear, but not obligatorily.

As we observed before in Chapter 4, any LTI system (filter or other de-
vice) can be described in the time domain with ordinary differential equations
(5.16). In Fourier analysis, the ODEs are translated to the frequency domain
and investigated for the system frequency response (5.17). Below we consider
two elementary LTI systems of the first and second orders.

5.2.5 LTI Systems of the First Order

The most general form of the ODE of an LTI system of the first order appears
if to set N = 1 in (5.16). By M � N that can be either 1 or 0, the equation
becomes

a1
d
dt

y(t) + a0y = b1
d
dt

x(t) + b0x(t) . (5.36)
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The Fourier transform applied to the both sides of (5.36) produces

jωa1Y (jω) + a0Y (jω) = jωb1X(jω) + b0X(jω) (5.37)

that, by (5.5), instantly leads to the system frequency response

H(jω) =
b0 + jωb1
a0 + jωa1

=
a0b0 + a1b1ω

2 + jω(a0b1 − a1b0)
a2
0 + ω2a2

1

. (5.38)

The magnitude and phase responses associated with (5.38) are thus, re-
spectively,

|H(jω)| =
√

(a0b0 + a1b1ω2)2 + ω2(a0b1 − a1b0)2

a2
0 + ω2a2

1

, (5.39)

tanϕH(ω) =
ω(a0b1 − a1b0)
a0b0 + a1b1ω2

. (5.40)

As can be seen, |H(jω)| has no special points (singularities and zeros) and
thus (5.38) is a smooth function.

By ϕH(ω), the phase delay (5.18) and group delay (5.19) are defined to
be, respectively,

τp(ω) = − 1
ω

arctan
ω(a0b1 − a1b0)
a0b0 + a1b1ω2

, (5.41)

τg(ω) = −dϕH(ω)
dω

= − (a0b1 − a1b0)(a0b0 − a1b1ω
2)

(a0b0 + a1b1ω2)2 + ω2(a0b1 − a1b0)2
. (5.42)

In electronic applications, a dynamic LTI system of the first order (5.36)
is commonly represented with two simplest schemes of LP and HP filters.

Simplest LP Filters

Fig. 5.5 exhibits two electrical circuits of the most simple LP filters organized
with series connections of a resistor R and capacitor C (Fig. 5.5a) and inductor
L and resistor R (Fig. 5.5b).

Fig. 5.5. Simplest LP filters: (a) RC and (b) RL.
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The RC filter and RL filter are governed by the voltage v(t) and described
with the ODEs, respectively,

d
dt

vC +
1

RC
vC =

1
RC

v , (5.43)

d
dt

vR +
R

L
vR =

R

L
v , (5.44)

where the value

1
RC

=
R

L
= 2δ , (5.45)

has a dimension of angular frequency and physical meaning of the filter cut-off
frequency ωc associated with the system bandwidth.

If we now assign x(t) = v(t), y(t) = vC(t) or y(t) = vR(t), a1 = 1, a0 = a,
b1 = 0, b0 = b, and think that a = b may be either 1/RC or R/L, we arrive
at a general ODE form of a simplest LP filter of the first order

y′(t) + ay(t) = bx(t) ,

earlier studied in the time domain.
The frequency response, magnitude response, phase response, phase delay,

and group delay associated with this equation are readily provided, by (5.38)–
(5.42), to be, respectively,

H(jω) =
b

a + jω
, (5.46)

|H(jω)| = b√
a2 + ω2

, (5.47)

tanϕH(ω) = −ω

a
, (5.48)

τp(ω) =
1
ω

arctan
ω

a
, (5.49)

τg(ω) =
a

a2 + ω2
, (5.50)

where a = b = 2δ.
Alternatively, one can exploit the impedances of a capacitor and inductor,

respectively,

xC(jω) =
1

jωC
, xL(jω) = jωL (5.51)

and straightforwardly write the frequency responses of the RC circuit and RL
circuit as, respectively,
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H(jω) =
xC

R + xC
=

1/jωC

R + 1/jωC
,

H(jω) =
R

R + xL
=

R

R + jωL
.

After simple transformations, both functions become (5.46).
Fig. 5.6 illustrates the frequency characteristics of a simplest LP filter.

An analysis shows that attenuation of the magnitude response at the level

Fig. 5.6. Frequency characteristics of a simplest LP filter: (a) magnitude response,
(b) Bode plot, (c) phase response, and (d) phase and group delays.

of 1/
√

2 (Fig. 5.6a) or −3dB in the Bode plot (Fig. 5.6b) corresponds to the
cut-off frequency ωc = 2δ. Beyond the filter bandwidth, the frequency con-
tent attenuates with a slope of −20dB/decade. At ωc, the phase attains a
shift of −π/4 (Fig. 5.6c), the phase delay reduces from 1/2δ to π/8δ, and the
group delay becomes twice smaller than at ω = 0 (Fig. 5.6d). With ω increas-
ing toward infinity, the magnitude response and both delays asymptotically
approach zero, whereas the phase response approaches −π/2.

One thus can truly conclude that this simplest LTI system is not able
to obtain neither a constant phase delay nor group delay and thus phase
distortions will accompany the process.
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Example 5.7. An LP filter (Fig. 5.5a) is loaded with the input resistor R1

of a cascade included block. The frequency response of a loaded filter is thus
defined by

H(jω) =
R1/jωC
R1+1/jωC

R + R1/jωC
R1+1/jωC

=
R1

R + R1 + jωCRR1
.

The function can now be represented as

H(jω) =
R1

R + R1

1
1 + jωCRx

= k
2δ

2δ + jω
,

where
k =

R1

R + R1
, 2δ =

1
CRx

, Rx =
RR1

R + R1
.

As it follows, the loaded filter can be represented with the frequency re-
sponse (5.46) and functions shown in Fig. 5.6 if we account for an attenuation
coefficient k = R1/(R + R1) and set 2δ = 1/CRx. ��

Simplest HP Filters

The other widely used representative of LTI systems of the first order is an
HP filter. Fig. 5.7 gives two electrical schemes of the most simple HP filters
composed by series connections of C and R (Fig. 5.7a) and R and L (Fig. 5.7b).
The schemes are obtained from Fig. 5.5 by interchanging the components.

Fig. 5.7. Simplest HP filters: (a) RC and (b) RL.

The ODEs corresponding to Fig. 5.7a and 5.7b are readily derived to be,
respectively,

d
dt

vR +
1

RC
vR =

d
dt

v , (5.52)

d
dt

vL +
R

L
vL =

d
dt

v (5.53)

and, in analogous to an LP filter, generalized by
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y′(t) + ay(t) = x′(t) , (5.54)

where a = 1/RC or a = R/L. In a like manner, by (5.38)–(5.42), the frequency
response, magnitude response, phase response, phase delay, and group delay
associated with (5.54) can be derived to be, respectively,

H(jω) =
jω

a + jω
, (5.55)

|H(jω)| = ω√
a2 + ω2

, (5.56)

tanϕH(ω) =
a

ω
, (5.57)

τp(ω) = − 1
ω

arctan
a

ω
, (5.58)

τg(ω) = − a

a2 + ω2
. (5.59)

An illustration for all these functions is given in Fig. 5.8. It is seen that
within the system bandwidth, ω > ωc = 2δ, the magnitude response varies
from 1/

√
2 to unity in Fig. 5.8a or from −3dB to 0dB in the Bode plot

Fig. 5.8. Frequency characteristics of a simplest LP filter: (a) magnitude response,
(b) Bode plot, (c) phase response, and (d) phase and group delays.
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(Fig. 5.8b). Beyond the bandwidth, ω < ωc, the frequency content attenuates
with the slope of 20dB/decade. At ω = 0, the phase acquires a shift of π/2 and,
at ωc, the value reduces to π/4 (Fig. 5.8c). It also follows that the group delay
is equal to that, with its sign changed, featured to an LP filter (Fig. 5.4d).
However, both these filters do not allow for a constant phase delay or group
delay. Finally, the phase delay is not a proper measure of phase distortions
for this kind of filters, once τp exhibits a singularity at ω = 0.

Example 5.8. A simplest HP filter (Fig. 5.7b) is loaded with the input re-
sistor R1 of a cascade system. The frequency response of a loaded filter is
therefore

H(jω) =
R1jωL
R1+jωL

R + R1jωL
R1+jωL

= k
jω

2δ + jω
,

where
k =

R1

R + R1
, 2δ =

Rx

L
, Rx =

RR1

R + R1
.

This filter can be characterized with the frequency response (5.55) and
functions shown in Fig. 5.8, if to account for an attenuation coefficient k and
set 2δ = Rx/L. ��

5.2.6 LTI Systems of the Second Order

Second-order LTI systems are usually associated with a resonance frequency
and some bandwidth around. They are used to increase sharpness of band-
width’s sides for different kinds of filters. Their most important property is
an ability to select or suppress signals in the narrow frequency band. Because
the gain of such systems becomes purely real at some frequency called reso-
nance frequency, the second-order LTI system is often called resonant system.
Two elementary resonant schemes are available: the series resonant circuit
and parallel resonant circuit.

Series Resonant RLC Circuit

A simplest second-order LTI system has a main part as a series resonant RLC
circuit that is a series connection of an inductance L, capacitance C, and
resistance R as shown in Fig. 5.9.

The resonance of such a circuit occurs at a frequency ω0 at which the
inductive reactance jωL and capacitive reactance 1/jωC are equal in magni-
tude but cancel each other because they are 180 degrees apart in phase. The
sharp minimum in impedance which occurs is useful in tuning applications.
The sharpness of the minimum depends on the value of R and is characterized
by the quality factor Q of the circuit.

The complex impedance of a circuit (Fig. 5.9) can be written as
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Fig. 5.9. Series resonant RLC circuit.

Zs(jω) = R + jωL +
1

jωC
. (5.60)

For the purposes of generalization, we need to introduce the resonance fre-
quency ω0 = 1/

√
LC, bandwidth 2δ = R/L, quality factor Q = ω0/2δ, and

generalized detuning

ξ = Q

(
ω

ω0
− ω0

ω

)∣∣∣∣
Q
1

∼= 2Q
ω − ω0

ω0
. (5.61)

The quality factor of an RLC circuits is typically provided to be large,
Q � 1. If so, then the value ξ = 1 means that a system is exactly a half
bandwidth δ apart from ω0.

The complex impedance (5.60) can now be rewritten as

Zs(jξ) = |Zs(jξ)|ejϕs(ξ) = R(1 + jξ) , (5.62)

having the total impedance and phase, respectively,

|Zs(jξ)| = R
√

1 + ξ2 , (5.63)

tanϕs(ξ) = ξ . (5.64)

A simple observation shows that, by ξ = 0, the circuit is at resonance,
ω = ω0, exhibiting a minimum impedance Zs(jω0) = R that is real and zero
phase ϕs(ω0) = 0. If ξ 	= 0 and increases, the total impedance becomes larger
with the rate totally dependent on the quality factor. With ξ < 0, the phase
ranges from −π/2 to 0 and, if ξ > 0, it behaves from 0 to π/2.

If such a circuit is driven by a voltage x(t) = v(t), than the output y(t) can
be assigned to be a voltage induced on any of the components (typically on
L or C). Therefore, there could not be found a universal scheme. Based upon
a series resonant circuit, a second-order LTI system can appear in different
configurations.

Example 5.9. Consider a simplest BR (or notch) filter shown in Fig. 5.10,
in which the output is a voltage induced on both L and C.

The filter frequency response is defined by

H(jω) =
jωL + 1/jωC

R + jωL + 1/jωC
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Fig. 5.10. Simplest BR filter.

and, in terms of the generalized detuning ξ, becomes

H(jξ) =
jξ

1 + jξ
. (5.65)

The filter is thus characterized with the following magnitude and phase
responses, respectively,

|H(jξ)| = |ξ|√
1 + ξ2

, tanϕH(ξ) =
1
ξ
. (5.66)

Fig. 5.11 illustrates (5.66). It follows that substituting ξ = 0 with ω = ω0,

Fig. 5.11. Frequency response of a simplest BR filter: (a) magnitude and (b) phase.

needs substituting ξ = ±1 with ω0 ± δ. It is also seen that, by ξ = 0, the
magnitude response is zero and the phase response has a singularity. The
latter is due to the ideal elements L and C allowed for the filter model. Thus
it is not the case to fit real measurements. To provide the more realistic
responses, one needs accounting for the ohmic resistances of an inductor and
capacitor. ��
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Parallel Resonant Circuit

The other basic configuration of the second-order LTI systems comprises in-
cluded in parallel the L, C, and R. This antipode of a series resonant circuit
called the parallel resonant circuit (Fig. 5.12) has appeared to be incredibly
useful in design of resonant amplifiers, channels, and tracts.

Fig. 5.12. Parallel resonant circuit.

The admittance of the parallel circuit is straightforwardly written as

1
Zp(jω)

=
1
Rr

+ jωC +
1

jωL
. (5.67)

If we substitute Rr = Z0Q, where Z0 =
√

L/C is the characteristic
impedance, then the complex impedance can be obtained via the generalized
detuning ξ (5.61) by a reciprocal of (5.67) as

Zp(jξ) =
Rr

1 + jξ
. (5.68)

The total impedance and phase are thus, respectively,

|Zp(jξ)| = Rr√
1 + ξ2

, (5.69)

ϕp(ξ) = − arctan ξ . (5.70)

The bandwidth 2δ of a parallel circuit is ascertained in the same manner
as for the series circuit. We measure the frequency span between two points
around ω0, at which the impedance is reduced by the factor of 1/

√
2. This

span appears to be reduced by Q the resonance frequency ω0, i.e.,

2δ =
ω0

Q
. (5.71)

The value Rr of a parallel resonant circuit is substantially larger than that
R of a series resonant circuit. It can be shown that Rr is a counterpart of a
reciprocal of R such that infinite Q means infinite Rr and zero R.
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Fig. 5.13. Simplest BP filter.

Example 5.10. A simplest BP filter is designed as shown in Fig. 5.13.
Because neither C nor L is ideal (see remarks for Example 5.9), one can

think that a parallel resonant circuit is loaded with some resistance Rr as
in Fig. 5.12 to have a complex impedance Zp(jξ) given by (5.68). The filter
frequency response is then defined by

H(jξ) =
Zp(jξ)

R + Zp(jξ)
=

Rr

R + Rr

1
1 + j R

R+Rr
ξ
.

An observation shows that if Rr � R→ 0, then H(jξ)→ 1 and the filter
loses an ability to process the input. In the other limiting case of R� Rr, the
frequency response becomes H(jξ) = k/(1+jξ), where the gain k is extremely
small, k = Rr/(R + Rr)� 1. The filter is thus inefficient.

In the matched case of R = Rr, the frequency response is calculated by

H(jξ) =
1
2

1
1 + j0.5ξ

(5.72)

and we notice that the input is attenuated by the factor of 2 and the filter
bandwidth becomes twice wider. The relevant magnitude and phase responses
are, respectively,

|H(jξ)| = 1

2
√

1 + 0.25ξ2
, tanϕH(ξ) = − ξ

2
. (5.73)

Fig. 5.14 sketches both these functions. ��
An advantage of a parallel resonance circuit is that its large resistance Rr

is well matched with a large resistance of the source of an electric current.
For this reason, transistor resonant amplifiers are typically designed to have
a parallel resonant circuit in a load.

Example 5.11. A narrowband LTI system is represented by a linear transis-
tor resonant amplifier (Fig. 5.15a) combining the functions of gaining (tran-
sistor amplifier) and BP filtering (parallel resonant circuit).

A transistor amplifier converts the input voltage v(t) to the electric current
i(t). To match the collector-emitter impedance of a transistor, its collector is
partially connected to the parallel resonant circuit.
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Fig. 5.14. Frequency response of a simplest BP filter: (a) magnitude and (b) phase.

Fig. 5.15. Linear transistor resonant amplifier: (a) electrical equivalent scheme and
(b) generalized equivalent scheme.

Equivalently, the scheme can be represented as in Fig. 5.15b. It is assumed
that the harmonic input current has a complex amplitude −SV , where S is a
transconductance of a transistor and V is a complex amplitude of a harmonic
input voltage. The source of an electric current has an inner resistance Ri

and the parallel resonant circuit is represented with the complex impedance
Zp(jω) described by (5.68).

An equivalent impedance of the scheme is combined with the parallel con-
nection of Ri and Zp to be

Ze(jω) =
RiZp

Ri + Zp

that, invoking (5.68), transforms to

Ze(jξ) =
Re

1 + jξe
, (5.74)

where Re = RiRr/(Ri + Rr) and ξe = ξRi/(Ri + Rr).
It can be shown that the value Ri reduces the quality factor of a parallel

circuit so that it becomes

Qe =
QRi

Ri + Rr
.
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The complex amplitude of an output voltage is now calculated by Vout =
−SZeV and the frequency response of an amplifier is thus

H(jξ) =
Vout

V
= −SZe = − SRe

1 + jξe
(5.75)

producing the magnitude and phase responses, respectively,

|H(jξ)| = SRe√
1 + ξ2

e

, ϕH(ξ) = π − arctan ξe . (5.76)

If an amplifier is matched with the resonant circuit by Ri = Rr, the mag-
nitude and phase responses become, respectively,

|H(jξ)| = SRr

2
√

1 + 0.25ξ2
, ϕH(ξ) = π − arctan

ξ

2
. (5.77)

As it is seen, the functions in (5.77) are consistent to those associated with a
simplest BP filter (Example 5.10). ��

5.2.7 LTI Systems of High Orders

Simple structures of the first and second orders possess not enough capabili-
ties to solve problems associated with high selectivity of signals. Mostly, it is
because attenuation of spectral components beyond the bandwidth is not ef-
ficient in such systems. The problem may be solved by using several resonant
circuits coupled properly. A cascade, however, suffers of instability. There-
fore, a number of circuits typically does not exceed three. The effect rises
dramatically by using piezoelectric structures, in which case both the high
sides roll-off and system stability are achieved.

Amplifier with Two Coupled Resonant Circuits

A straightforward solution is to use a cascade of systems of low-orders (RC,
RL, and/or RLC), thereby achieving the high side roll-off of the frequency re-
sponse. An example is a resonant amplifier with two parallel resonant circuits
coupled by a mutual inductance M as shown in Fig. 5.16a (or in Fig. 4.24).

A generalized equivalent scheme of this amplifier is shown in Fig. 5.16b.
Here, two equal complex impedances Zp(jω) described by (5.68) as associated
with two equal parallel resonant circuits, are coupled by means of an inductive
impedance ZM (jω) = jωM . It can be shown that the magnitude response of
such a system is described by

|H(jω)| = k1KSRe√
(1 + K2 − ξ2) + 4ξ2

,

where, SRe is as in (5.75), 0 < k1 � 1 is a coefficient indicating a power of
inclusion of a transistor amplifier to the first resonant circuit and K = MQ/L
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Fig. 5.16. Linear transistor resonant amplifier with two coupled resonant circuits:
(a) electrical equivalent scheme and (b) generalized equivalent scheme.

is a coefficient of a mutual detuning of two resonant circuits. If K = 1, the
magnitude response exhibits a flat part around the resonance frequency, ξ = 0.
If a nonuniformity is allowed in the system bandwidth, then, by increasing K,
the shape of |H(jω)| can be obtained as shown in Fig. 5.17a.

Fig. 5.17b gives a surface plot of the magnitude response for small values
of K. It is seen that, by K = 0, the amplifier gain is zero. When K is set to
be unity, the gain also becomes unity at ω0. With greater values of K, the
picture passes over sections shown in Fig. 5.17a.

Certainly, even with two coupled tuned circuits, rectangularity of the mag-
nitude response is far from ideal. To increase the sides roll-off substantially,
filters with active feedback are used. However, the problem arises of stability.
The latter is overcame if piezoelectric resonators and filters are used.

5.2.8 Piezoelectric Structures

Selective properties of electronic systems are improved dramatically by using
piezoelectric resonators, filters, and structures, which quality factor and op-
eration stability can be achieved to be extremely high. Discovered by Pierre
Curie2 (with his brother Jacques) in 1880, the piezoelectric effect took several
decades until it was finally used in 1921 by Cady3 to design first crystal res-
onators. Soon after, in 1923, Pierce4 designed the first quartz crystal oscillator
and, in 1927, Marrison5 created the first quartz oscillator clock based on the
works of Cady and Pierce.

Modern piezoelectric resonators and filters effectively exploit accuracy and
precision of balk acoustic waves (BAWs) and surface acoustic waves (SAWs)
of the crystal media and surface, respectively. They can be organized with
several units and even decades of elementary resonators.

2 Pierre Curie, French chemist and physicist, 15 May 1859-19 April 1906.
3 Walter Guyton Cady, US scientist, 1874-1974.
4 George Washington Pierce, US physicist, 11 January 1872-25 25 August 1956.
5 Warren Marrison, US electrical engineer, 1896-1980.
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Fig. 5.17. Magnitude response of a two coupled resonant circuits: (a) by several
values of K and (b) surface plot, by small values of K.

Piezoelectric Resonators

As electro-mechanical devices, piezoelectric resonators employ BAW vibra-
tions featured to crystals. Nowadays, piezoelectric resonators are manufac-
tured for watches (Fig. 5.18a), oscillators of different frequencies and applica-
tions (Fig. 5.18b), quartz crystal standards of frequency (Fig. 5.18c), sensors
of various physical quantities, and for special applications.

Because waves in bulk media propagate in different directions, there are
different kinds of BAW vibrations in any crystal resonator. Therefore, the
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fundamental vibration is accompanied with a number of spurious vibrations
often called anharmonics. In schemes, a piezoelectric resonator is imaged as in
Fig. 5.18d. Its basic equivalent scheme comprises four principle components:
motional inductance Lq, capacitance Cq, resistance Rq, and a static capaci-
tance C0. Any of the ahnarmonic vibrations is commonly accounted for by
an additional series resonance branch as shown in Fig. 5.18e.

Fig. 5.18. Piezoelectric resonator: (a) for watches, (b), for oscillators, (c) precision,
(d) schematic image, and (e) basic equivalent scheme.

For the fundamental vibration, the complex impedance of a resonator is
specified by the relation

Zr(jω) =

(
jωLq + 1

jωCq
+ Rq

)
1

jωC0

jωLq + 1
jωCq

+ Rq + 1
jωC0

.

= |Zr(jω)|ejϕr(ω) = rr(ω) + jxr(ω) (5.78)

that can be represented in simpler forms if to introduce the resonator κ-factor,
normalized frequency offset ν, and auxiliary coefficient α(ν), respectively,

κ = RqωC0 > 0 , (5.79)

ν =
ω − ωr

δr
,

α = ν

(
1 +

ν

4Qr

)(
1 +

ν

2Qr

)−1

,

where ω2
r = 1

LqCq
is the resonator angular frequency, 2δr = Rq

Lq
= 1

Q2
rRqCq

is a
resonator bandwidth, and Qr = ωr

2δr
is the quality factor.
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By the above introduces quantities, the real part, imaginary part, total
impedance, and phase of a resonator are described by, respectively,

rr = Rq
1

(1 − ακ)2 + κ2
, (5.80)

xr = Rq
α(1− ακ)− κ

(1 − ακ)2 + κ2
, (5.81)

Zr = Rq

√
1 + [α(1− ακ)− κ]2

(1− ακ)2 + κ2
, (5.82)

tanϕr = α(1 − ακ)− κ . (5.83)

Fig. 5.19 shows (sold curves) typical spectral functions of an admittance
Yr(jω) = Z−1

r (jω) associated with the fundamental vibration of a piezoelectric
resonator. It is seen that the maximum, Yr(jωs) ∼= Rq, and minimum of Yr(jω)

Fig. 5.19. Admittance of a piezoelectric resonator for κ = 0.06 and Q = 100,
rigorous (sold) and approximate (dashed): (a) total and (b) phase.

correspond to the series and parallel resonance frequencies, respectively,

ωs
∼= 1√

LqCq

,

ωp
∼= ωs

(
1 +

Cq

2C0

)
.

The most important particular value of the κ-factor (5.79) is κ0 = RqωrC0.
It can be shown that when κ0 > 0.5, the phase never crosses zero that does
not meet practical needs. Therefore, the κ-factor is commonly obtained such
that 0 < κ0 < 0.5. We notice that a reciprocal of κ0 is often called the figure
of merit,

M0 =
1
κ0

,
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for which the relevant range of existence is 2 < M0 <∞.
The quality factor of a crystal resonator is large, Q > 104. Therefore, by

Q� 1, one can allow κ ∼= κ0 and α ∼= ν, representing the spectral character-
istics (5.80)-(5.83) in the interresonance gap by, respectively,

rr = Rq
1

(1− νκ0)2 + κ2
0

, (5.84)

xr = Rq
ν(1− νκ0)− κ0

(1− νκ0)2 + κ2
0

, (5.85)

Zr = Rq

√
1 + [ν(1− νκ0)− κ0]2

(1− νκ0)2 + κ2
0

, (5.86)

tanϕr = ν(1 − νκ0)− κ0 . (5.87)

Dashed curves in Fig. 5.19 sketch approximate values of the total impedance
and phase for Q = 100. It follows that, even by Q = 100, the difference be-
tween the relative curves is small. It almost vanishes when Q > 104.

Owing to highly stable structure of crystal media, the bandwidth of a
crystal resonator can be achieved to be extremely narrow and the Q in best
quartz crystal resonators of millions of units. That is, of course, of high applied
importance for accurate and precise electronic systems.

BAW Piezoelectric Filters

Piezoelectric filters are used as signal processing devices allowing for high op-
eration quality both in passband (minimum attenuation) and stopband (max-
imum attenuation). In such filters, owing to high quality factor, the transition
region between the passband and stopband can be obtained to be extremely
narrow. However, the constant group delay cannot be achieved and its devia-
tion from the required value may cause troubles.

Two elementary configurations of piezoelectric filters are recognized. The
‘crystal’ can be placed either in the series arm (Fig. 5.20a) or shunt arm
(Fig. 5.20b) of a ladder circuit. In each of these generalized schemes, the
impedances Z1 and Z2 are intended to provide final adjustment of the fre-
quency response and match the filter at the input and output. An additional

Fig. 5.20. Elementary ladder piezoelectric filters with a ‘crystal’: (a) in series arm
and (b) in shunt arm.
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capacitor may be included in series with a crystal to obtain a subtle correction
of frequency.

Crystal ladder filters are widely used in SSB transmitters and CW re-
ceivers. However, they are not as perfect as the somewhat sophisticated lattice
piezoelectric filter showns in Fig. 5.21. The lattice filter is fully symmetrical

Fig. 5.21. Lattice piezoelectric filter: (a) basic and (b) redrawn as a bridge.

and balanced. Its bandwidth extends to more than twice the bandwidth of
a corresponding ladder filter. In the stopband, the attenuation depends on
the ratio of impedances of ‘crystals’ in the bridges. Overall, the frequency
response of the lattice filter can be obtained to be highly symmetric about a
center of the passband.

Any of the above-considered elementary schemes can be organized to struc-
tures in order to obtain small attenuation in the passband and efficient sup-
pression beyond the bandwidth. Examples of the ladder filter structures are
shown in Fig. 5.22. In the upper sideband (USB) structure (Fig. 5.22a), the

Fig. 5.22. Ladder piezoelectric filter structures: (a) upper sideband and (b) lower
sideband.
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filter passes signals with high frequencies and provides an efficient attenuation
in the low frequency stopband. Contrary, the lower sideband (LSB) structure
(Fig. 5.22b) allows through signals with low frequencies and efficiently sup-
presses components with high frequencies.

Examples of the frequency responses of USB and LSB ladder filter struc-
tures are shown in Fig. 5.23 with dashed and sold curves, respectively. If to

Fig. 5.23. Frequency response of a cascade of LSB and USB ladder piezoelectric
structures.

include these structures in cascade, the resulting frequency response will pos-
sess a high-order of rectangularity in the extremely narrow band (Fig. 5.23).

SAW Devices

Surface acoustic wave (SAW) devices exploit properties of an acoustic wave
traveling along the piezoelectric surface. The waves were discovered in 1887 by
Lord Rayleigh and named for their discoverer. The first SAW devices based on
the transduction of acoustic waves were made in 1965 for pulse compression
radars and in the subsequent years there has been an explosion in their de-
velopment. Nowadays, SAW devices are employed as filters, oscillators, trans-
formers, and sensors covering applications ranging from professional radar
and communications systems to consumer areas such as TV (SAW filters be-
gan replacing LC filters in TV-sets since 1985), pagers and mobile phones
(since 1990). The world-wide production of different SAW devices stands at
hundreds of millions annually.
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Fig. 5.24. Basic design of the SAW device.

A typical design of the SAW device is sketched in Fig. 5.24. The basic
SAW device consists of two interdigital transducers (ITDs) placed on one of
the surfaces of a piezoelectric substrate. The input ITD converts the electric
signal v(t) to the SAW and about a half of its energy propagates in opposite
directions as shown in Fig. 5.24. While propagating, the SAW attenuates with
about 6dB/μs. The part of the SAW distributed toward the output IDT is
reconverted, by this IDT, back to the electric signal. Other operation princi-
ples of the SAW device can easily be understood if it is mentioned that each
IDT can be represented by a parallel resonant circuit of three elements: radial
conductance (resistance), acoustic susceptance (inductance), and transducer
capacitance (capacitance).

LTI SAW devices are manufactured with different configurations of evap-
orated elements. Their typical duties are time delaying, BP or BR filtering,
and resonance.

A typical organization of the SAW delay line is shown in Fig. 5.25. Having
a small propagation velocity (3000–5000 m/s) of the SAW, the design allows
for time delay of microseconds with low attenuation in the radio frequency
(RF) range up to gigahertz.

Fig. 5.25. SAW delay line.
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In principle, the IDT can be designed to provide any required frequency
response. This noble feature allows designing the SAW filters of different ap-
plications. A typical design of the BP one is shown in Fig. 5.26. The filter still

Fig. 5.26. SAW BP filter.

has two IDTs. Therefore, the required frequency response is formed by both
IDTs. However, only the first IDT is usually manufactured to have a desired
configuration as, for example, in Fig. 5.26. In spite of all the utterly useful
properties demonstrated by the filter, there is an important disadvantage.
Because of finite dimensions of the substrate truncate the ideal impulse re-
sponse, unwanted in-band ripples appear along with the reduced out-of-band
rejection.

Typically, SAW filters are designed to have the central frequency from 10
MHz to 2 GHz, transition bandwidth of 0.35 MHz to 1.5 MHz, insertion loss
of < 3 dB to > 30 dB, passband amplitude ripple of ±3dB, and peak phase
deviation of ±3◦.

A SAW device can serve a resonator if to make efforts in conserving the
SAW energy in the IDT area. A typical design of the SAW resonator is shown
in Fig. 5.27. A short IDT is placed at a center of the crystal substrate. To re-
flect the SAW back to the IDT with small dissipation, two distributed passive
reflector banks (reflection gratings) of period λ/4 are closely placed to the left
and right from the IDT. In best SAW resonators, the reflection coefficient is
achieved more than 99% allowing for the quality factor of Q ∼ 104.

The highly important property of the above considered BAW and SAW
devices is that they can realize LTI systems of extremely high orders. Thus,
the frequency response may be obtained of almost any reasonably desired
shape. On the other hand, precision and accuracy featured to such devices
requires special efforts in modeling. Therefore, the piezoelectric structures are
commonly subject to the computer-aided design.

All of the LTI systems so far considered in this Chapter have been analyzed
in the frames of Fourier analysis. A usefulness of the approach is that the
system ODE of an arbitrary order is substituted with the ratio of two power
polynomials with the variable jω and the coefficients exactly equal to those
in the ODE. This ratio, having a meaning of the frequency response, can also
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Fig. 5.27. SAW resonator.

be defined by the methods of linear circuits as we demonstrated above for
systems of high-orders. Despite the certain engineering features, the Fourier
method is not a suitable tool to investigate system stability. Whenever the
latter is in question, the Laplace method is very often used being the most
powerful in the transform domain.

5.3 Laplace Transform

The method by Laplace gives the other powerful technique to provide an
analysis of LTI systems in the transform domain. The Laplace transform exists
in two forms. The bilateral Laplace transform is a straightforward extension
of the Fourier transform associated with non causal signals and systems. The
unilateral Laplace transform relates to causal cases and is often used to solve
the LTI system ODEs.

5.3.1 Bilateral Laplace Transform vs. Fourier Transform

To derive the bilateral Laplace transform, one can start with the familiar
direct Fourier transform

X(jω) =

∞∫

−∞
x(t)e−jωtdt (5.88)

applied to some signal x(t) satisfying the Dirichlet conditions.
The transform (5.88) exploits the complex exponent function

ejωt = cosωt + j sinωt (5.89)
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that is basic in the spectral analysis of signals. Real and imaginary components
of (5.89) are shown in Fig. 5.28a. A generalization of the Fourier transform is
achieved by using instead the general complex exponential function

e(σ+jω)t = eσt(cosωt + j sinωt) , (5.90)

which real and imaginary parts are sketched in Fig. 5.28b for negative σ. The
prime difference between two functions is that the envelope of ejωt is constant
with time, whereas in e(σ+jω)t it becomes zero at infinity.

Fig. 5.28. Exponent functions: (a) complex (Fourier transform) and (b) general
complex (Laplace transform).

Formally, we can rewrite (5.88) as

X(jω) =

∞∫

−∞
x(t)eσte−(σ+jω)tdt ,

introduce a new variable s = σ + jω, and go to the form of

X(jω) =

∞∫

−∞
[x(t)eσt]e−stdt ,

meaning that

F [x(t)] � X(jω) = L[x(t)eσt] ,

where L is newly introduced an integral operator. If we will think that x(t) =
x(t)e−σt, we will arrive at the relation
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F [x(t)e−σt] = L[x(t)] � X(s) . (5.91)

The function X(s) in (5.91) is defined by the transform

X(s) � L[x(t)] =

∞∫

−∞
x(t)e−stdt (5.92)

known as the direct bilateral Laplace transform of x(t).
Let us now apply the inverse Fourier transform to (5.91) and write

x(t)e−σt =
1
2π

∞∫

−∞
X(σ + jω)ejωtdω .

By multiplying the both sides of this relation with eσt and changing the vari-
able, we arrive at the relation

x(t) � L−1[X(s)] =
1

2πj

σ+j∞∫

σ−j∞
X(s)estds (5.93)

called the inverse bilateral Laplace transform of X(s). Accordingly, both (5.92)
and (5.93) are said to be the bilinear Laplace transform pair.

The Laplace transform is denoted by

x(t)
L⇔ X(s) ,

where X(s) is usually a rational function in s-plane

X(s) =
b0 + b1s + . . . bMsM

a0 + a1s + . . . + aNsN

=
bM
aN

(s− z1)(s− z2) . . . (s− zM )
(s− p1)(s− p2) . . . (s− pN )

. (5.94)

Here, M and N are positive integers and the coefficients ai and bj are real
constants. The value M cannot exceed N in descriptions of real physical pro-
cesses. If N > M , a ratio (5.94) is said to be the proper ratio. If N � M , it
is the improper ratio.

In the Fourier transform, both x(t) and X(jω) are one-dimensional com-
plex functions. In contrast, the Laplace transform X(s) of x(t) is a function
defined over a two-dimensional complex plane, called s-plane, spanned by σ
for the horizontal real axis and ω for the vertical imaginary axis. If σ = 0, the
transforms are identical, so one-dimensional.

The roots zi of the numerator tend X(s) toward zero. Therefore, zi are
called zeros (or sometimes nulls) and indicated in the s-plane by cycles (“◦”).
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Contrary, the roots pj of the denominator tend X(s) toward infinity. There-
fore, they are called the poles and indicated in the s-plane with crosses (“×”).
The zeroes may lie inside and outside the region of convergence, whereas the
poles cannot lie within this region, by the definition.

The magnitude function |X(s)| can represent both nulls and poles by a
surface plot. Fig. 5.29 shows an example of such a representation which benefit
is in clarity featured to surface plots. A disadvantage is that |X(s)| does not
bear information about the region of convergence requiring an additional plot.

Fig. 5.29. Surface plot, by |X(s)| = | s+2
(s+1)(s+3)

|.

5.3.2 Region of Convergence

Because the Laplace transform of x(t) is the Fourier transform of x(t)e−σt, the
former can be applied to a broader class of functions, including exponentially
growing functions, satisfied the Dirichlet condition

∞∫

−∞
|x(t)e−σt|dt <∞ . (5.95)

The set of values s for which (5.95) is true is called the region of con-
vergence (ROC) of the function. The ROC of X(s) is represented by strips
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parallel to the jω-axis in the s-plane. Such a representation also includes zeros
and poles of X(s) exhibiting the following properties:

Property 1: If x(t) is absolutely integrable and of finite duration, then
the ROC is the entire s-plane, since the Laplace transform is finite and X(s)
exists for any s. ��
Example 5.12. Consider a unit impulse x(t) = δ(t). By the sifting property
of δ(t), the Laplace transform is defined to be

X(s) =

∞∫

−∞
δ(t)e−st dt = e−s0 = 1 .

The ROC thus occupies the entire s-plane without any zeros (and, of course,
poles) as it is shown in Fig. 5.30a. ��

Property 2: If x(t) is right-sided (i.e., exists with t � 0) and Re[s] = a
is in the ROC, then any s to the right of a (i.e., Re[s] > a) is also in the
ROC. ��
Example 5.13. Given a signal x(t) = eatu(t), where a is arbitrary real. With
a > 0, the Fourier transform of this function does not exist, since the Dirichlet
conditions are not satisfied. Contrary, the Laplace transform is derived to be

X(s) =

∞∫

−∞
eatu(t)e−st dt =

∞∫

0

e−(s−a)t dt = − 1
s− a

e−(s−a)t
∣∣∣∣
∞

0

= − 1
σ − a + jω

e−(σ−a)te−jωt
∣∣∣∣
∞

0

.

The integral converges if only σ > a and we have

X(s) =
1

s− a
, Re(s) > a .

By s = a, the transform tends toward infinity, so there is a pole p = a. Fig.
5.30b sketches the ROC for this case. ��

Property 3: If x(t) is left-sided (i.e., exists with t � 0) and Re[s] = a is
in the ROC, then any s to the left of a (i.e., Re[s] < a) is also in the ROC. ��
Example 5.14. Given a signal x(t) = eatu(−t), where a is arbitrary real.
The Laplace transform integral

X(s) =

0∫

−∞
e−(s−a)t dt = − e−(σ−a)te−jωt

σ − a + jω

∣∣∣∣
0

−∞
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Fig. 5.30. ROCs of the Laplace transforms: (a) Example 5.12, (b) Example 5.13,
(c) Example 5.14, (d) Example 5.15, (e) Example 5.16.

converges if σ < a to produce

X(s) =
1

a− s
, Re(s) < a ,

with the pole p = a. Fig. 5.30c sketches the ROC for this case. ��
Example 5.15. Given a signal x(t) = −e−atu(−t), where a is arbitrary real.
The Laplace transform is

F (s) =
1

s− a
, Re(s) < a ,
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having a pole p = a and the same ROC as in Fig. 5.30c. ��

Property 4: If x(t) is two-sided, then the ROC is the intersection of the
two one-sided ROCs corresponding to the two one-sided components of x(t).
This intersection can be either a vertical strip or an empty set. ��
Example 5.16. Given a signal x(t) = e−atu(t) + ebtu(−t), where a > 0 and
b > 0. It follows, by Examples 5.13 and 5.14 that the ROC is a strip with two
poles, p1 = −a and p2 = b, as shown in Fig. 5.30d.

If we consider x(t) = eatu(t)+e−btu(−t), where a > 0 and b > 0, we arrive
at the picture shown in Fig. 5.30e. ��

Property 5: A function x(t) is absolutely integrable (satisfying the Dirich-
let conditions and having the Fourier transform) if and only if the ROC of
the corresponding Laplace transform X(s) includes the imaginary axis, since
Re[s]=0 and s = jω. ��
Example 5.17. Let us come back to Example 5.16. The ROC shown in Fig.
5.30d includes the imaginary axis and it can be shown that the relevant signal
x(t) = e−atu(t)+ebtu(−t), a > 0 and b > 0, is absolutely integrable. Contrary,
the ROC in Fig. 5.30e does not contain the imaginary axis and the relevant
function x(t) = eatu(t) + e−btu(−t), a > 0 and b > 0, does not satisfy the
Dirichlet conditions, so is not absolutely integrable. ��

Observing Examples 5.13–5.15, we conclude that the same transform
1/(s − a) corresponds to different signals eatu(t) and −e−atu(−t). Yet, the
same ROC Re(s) < a fits different signals, eatu(−t) and −e−atu(−t). To ex-
plain these facts, one needs to remember the following fundamental property:

Fundamental property : In order for the bilateral Laplace transform
X(s) to be unique for each function x(t), the ROC must be specified
as part of the transform.

��
Overall, to represent X(s) graphically, one can use either the |X(s)| plot

(Fig. 5.29) or ROC plot (Fig. 5.30). The latter is more preferable, because it
bears a complete information about the transform, contrary to the former.

5.3.3 Properties of the Bilateral Laplace Transform

As any other transform, the Laplace transform demonstrates many useful
properties allowing an efficient analysis of systems. In presenting these prop-
erties, we will think that the transform X(s) of x(t) is known and that the
ROC depicted by R is known as well.
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Time Shifting

Given a signal x(t)
L⇔X(s), ROC = R, and its shifted version x1(t) = x(t−t0).

The Laplace transform X1(s) of x1(t) is defined, by (5.92), as

X1(s) =

∞∫

−∞
x(t− t0)e−stdt , ROC = R1 .

By changing a variable to θ = t− t0, we have

X1(s) =

∞∫

−∞
x(θ)e−s(θ+t0)dθ = e−st0

∞∫

−∞
x(θ)e−sθdθ = e−st0X(s) .

The time shifting property is thus ascertained by the following relationship
and the same ROC as for X(s):

x(t− t0)
L⇔ e−st0X(s) , R1 = R . (5.96)

Example 5.18. A signal

x(t) = eatu(t)
L⇔ X(s) =

1
s− a

, Re(s) > a , (5.97)

where a is arbitrary real, is shifted in time to be x1(t) = ea(t−t0)u(t− t0). By
(5.96), the Laplace transform X1(s) of x1(t) becomes

X1(s) =
e−st0

s− a
, Re(s) > a

and the inverse transformation readily leads to x1(s). ��

Time Scaling

A pulse x(t)
L⇔F (s), ROC = R, is compressed (or stretched) in time to be

x1(t) = x(αt), where α > 0. The Laplace transform X1(s) of x1(s) is

X1(s) =

∞∫

−∞
x(αt)e−stdt , ROC = R1 .

By a new variable θ = αt and t = θ/α with α > 0, we have

X1(s) =
1
α

∞∫

−∞
x(θ)e−

s
α θdθ =

1
α
X
( s

α

)
, R1 = αR ,
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where the ROC is scaled because of the scaling s/α in the transform. If α < 0,
a new variable θ = −αt can be assigned leading to

X1(s) =
1
α

−∞∫

∞
x(θ)e−

s
α θdθ

= − 1
α

∞∫

−∞
x(θ)e−

s
αθdθ = − 1

α
X
( s

α

)
, R1 = αR .

Thus, for arbitrary α 	= 0, the following scaling property (also known as
the similarity theorem) holds true:

x(αt)
L⇔ 1
|α|X

( s

α

)
, R1 = αR . (5.98)

Example 5.19. A signal (5.97) is scaled with α > 0 to be x1(t) = eaαtu(αt).
By (5.88), the Laplace transform of the scaled signal is defined to be

F1(s) =
1

s− aα
, Re(s) > αa

and the inverse transform produces the origin. ��

Time Reversal

A signal x(t)
L⇔X(s), ROC = R, is presented in time reversal by x1(t) =

x(−t). The Laplace transform X1(s) of x1(s) is given by

X1(s) =

∞∫

−∞
x(−t)e−stdt , ROC = R1 .

By a sign changed of time, we have

X1(s) = −
−∞∫

∞
x(t)estdt =

∞∫

−∞
x(t)e−(−s)tdt = X(−s)

and thus

x(−t) L⇔ X(−s) , R1 = −R , (5.99)

meaning that time reversal of x(t) produces a reversal of both σ axis and s
axis in s-plane.

Example 5.20. A signal (5.97) is presented in time reversal by x1(t) =
e−atu(−t). By (5.98), the Laplace transform of the scaled function is

X1(s) = − 1
s + a

, Re(s) < a ,

and the inverse transform leads to the origin. ��
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Differentiation in Time

A signal x(t)
L⇔X(s), ROC = R, is differentiated in time to be x1 = dx(t)/dt.

To find the transform of x1(t), differentiate the both sides of (5.93) to have

dx(t)
dt

=
1

2πj

σ+j∞∫

σ−j∞
[sF (s)]estds .

It then follows straightforwardly that

dx(t)
dt

L⇔ sX(s) , R1 ⊃ R . (5.100)

Here R belongs to R1 meaning that the ROC of the differentiated function is
unchanged unless a cancelation (pole-zero) exists at s = 0.

Example 5.21. A unit impulse x(t) = δ(t)
L⇔X(s) = 1, R all s, is differenti-

ated to be x1(t) = dδ(t)/dt. By (5.100), the transform of x1(t) becomes

F1(s) = s , R all s ,

and the inverse transform leads to the origin. ��

Differentiation in the s Domain

A signal x(t)
L⇔X(s), ROC = R, is differentiated in the s domain to have a

transform X1(s) = dX(s)/ds. Differentiating (5.92) with respect to s yields

dX(s)
ds

=

∞∫

−∞
[−tx(t)]e−stdt

and thus

−tx(t)
L⇔ dX(s)

ds
, R1 = R . (5.101)

Example 5.22. A unit impulse x(t) = δ(t)
L⇔X(s) = 1, R all s, is gained by

t to be x1(s) = tδ(t). By (5.101) and the sifting property of the δ-function,
the transform of x1(t) is defined to be

X1(s) =
dX(s)

ds
=

∞∫

−∞
[−tδ(t)]e−stdt = 0e−s0 = 0 , R all s .

We arrive at the same result by differentiating F (s) = 1 with respect to s. ��
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Integration in Time

A signal x(t)
L⇔X(s), ROC = R, is integrated in time to be

x1(t) =
∫ t

−∞
x(θ)dθ

L⇔ X1(s) .

By differentiating x1(t) and using (5.100), we have

x(t) =
dx1(t)

dt
L⇔ sX1(s) = X(s)

and thus
∫ t

−∞
x(θ)dθ

L⇔ 1
s
X(s) , R1 = R ∩ [Re(s) > 0] . (5.102)

The ROC R1 follows from the possibility to have a pole at s = 0, by 1/s.

Example 5.23. A signal

x(t) = e−atu(t)
L⇔ X(s) =

1
s + a

, Re(s) > −a ,

a > 0, is integrated to be x1(t) = 1
a (1− e−at)u(t). By (5.92), we have

X1(s) =
1
a

∞∫

0

(
1− e−at

)
e−stdt =

1
a

∞∫

0

e−stdt− 1
a

∞∫

0

e−(s+a)tdt

=
1
as
− 1

a(s + a)
=

1
s(s + a)

, [Re(s) > −a] ∩ [Re(s) > 0] .

Thus, X1(s) = 1
sX(s) and the ROC is combined with two stripes, as

claimed by (5.102). ��

Linearity

By the inherent property of linearity, if we have N signals,

xi(t)
L⇔ Xi(s), ROC = Ri ,

where i ∈ [1, N ], then the transform of their addition is

N∑
i=1

aixi(t)
L⇔

N∑
i=1

aiXi(s) , RΣ ⊃ R1 ∩R2 ∩ . . . ∩RN . (5.103)

The ROC RΣ contains intersections between all of the particular ROCs
as it is shown in Fig. 5.31 for two signals.
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Fig. 5.31. ROC of an addition of two signals.

Example 5.24. A signal is composed by an additive sum of three truncated
exponential subfunctions,

x(t) = e−2tu(t) + 2e2tu(−t) + e−tu(t) .

The transforms of the subfunctions are

x1(t) = e−2tu(t)
L⇔ X1(s) =

1
s + 2

, Re(s) > −2 ,

x2(t) = e2tu(−t) L⇔ X2(s) =
−1

s− 2
, Re(s) < 2 ,

x3(t) = e−tu(t)
L⇔ X3(s) =

1
s + 1

, Re(s) > −1 .

By (5.103), the Laplace transform of a signal is defined to be

X(s) = X1(s) + 2X2(s) + X3(s) =
1

s + 2
− 2

s− 2
+

1
s + 1

=
−6(s + 1

3 )
(s + 1)(s + 2)(s− 2)

, −1 < Re(s) < 2 .

��
Example 5.25. A signal is given with

x(t) = Ae−a|t−τ |u(t) ,
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where A and a are positive-values and τ is a time shift. A signal can be
represented by an addition of three subfunctions,

x(t) = Aea(t−τ)u(t)−Aea(t−τ)u(t− τ) + Ae−a(t−τ)u(t− τ) ,

with known transform,

x1(t) = ea(t−τ)u(t)
L⇔ X1(s) =

e−aτ

s− a
, Re(s) > a ,

x2(t) = ea(t−τ)u(t− τ)
L⇔ X2(s) =

e−sτ

s− a
, Re(s) > a ,

x3(t) = e−a(t−τ)u(t− τ)
L⇔ X3(s) =

e−sτ

s + a
, Re(s) > −a .

The transform of a signal is then defined, by (5.103), to be

X(s) = A[X1(s) + X2(s) + X3(s)]

= A
(s + a)e−aτ + 2se−sτ

(s + a)(s− a)
, Re(s) > a .

��

Convolution in the Time Domain

This property is fundamental for the LTI systems description in the transform
domain. Suppose the transforms of the input x(t) and impulse response h(t)
of a system are known, respectively,

x(t)
L⇔ X(s), ROC = Rx ,

h(t)
L⇔ H(s), ROC = Rh .

The output y(t) is coupled with x(t) via h(t) by the convolution

y(t) = x(t) ∗ h(t) =

∞∫

−∞
x(θ)h(t − θ)dθ .

By (5.92) applied to y(t), we have

Y (s) =

∞∫

−∞

∞∫

−∞
x(θ)h(t − θ)e−stdθdt =

∞∫

−∞
x(θ)

⎡
⎣
∞∫

−∞
h(t− θ)e−stdt

⎤
⎦dθ

and then the time shift property (5.96) yields
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Y (s) =

∞∫

−∞
x(θ)e−sθH(s)dθ = H(s)

∞∫

−∞
x(θ)e−sθdθ = H(s)X(s) .

The latter relation means that

x(t) ∗ h(t)
L⇔ X(s)H(s) , Rc ⊃ Rx ∩Rh , (5.104)

where the ROC Rc contains an intersection of the ROCs of X(s) and H(ω).

Example 5.26. Given a signal

x(t) = δ(t)
L⇔X(s) = 1

acting in the input of an LTI system having the impulse response, a > 0,

h(t) = e−atu(t)
L⇔ H(s) =

1
s + a

, Re(s) > −a .

The convolution and sifting property of the delta function yield the output

y(t) = x(t) ∗ h(t) =

∞∫

−∞
δ(θ)e−a(t−θ)u(t− θ)dθ = e−atu(t)

that is equal to the impulse response. Thus

Y (s) =
1

s + a
, Re(s) > −a .

By (5.104), we arrive at the same result straightforwardly. ��

Convolution in the Frequency Domain

Consider the transform of the product x(t) = x1(t)x2(t) of two functions

x1(t)
L⇔ X1(s) , a1 < Re(s) < b1 ,

x2(t)
L⇔ X2(s) , a2 < Re(s) < b2 ,

We thus need evaluating the integral

X(s) =

∞∫

−∞
x1(t)x2(t)e−stdt .

Then substitute x2(t) with its inverse transform
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x2(t) =
1

2πj

σ+j∞∫

σ−j∞
X2(s)estds

and provide the transformations:

X(s) =
1

2πj

∞∫

−∞
x1(t)

⎡
⎣
σ+j∞∫

σ−j∞
X2(s1)es1tds1

⎤
⎦ e−stdt

=
1

2πj

σ+j∞∫

σ−j∞
X2(s1)

⎡
⎣
∞∫

−∞
x1(t)e−(s−s1)tdt

⎤
⎦ ds1 .

Because the integral in brackets is the transform X1(s− s1), we have

X(s) =
1

2πj

σ+j∞∫

σ−j∞
X2(s1)X1(s− s1) ds1

that comprises the convolution in the transform domain, and thus

x1(t)x2(t)
L⇔ 1

2πj
X1(s) ∗X2(s) , a1 + a2 < Re(s) < b1 + b2 , (5.105)

where, it can be shown, the ROC’s lower and upper bounds are summed.

Modulation

Let us think that the following signal is known,

x(t)
L⇔ X(s) , a < Re(s) < b ,

and be interested of the transform X1(s) of the modulated signal x1(t) =
eαtx(t). We then have

X1(s) =

∞∫

−∞
x(t)eαte−stdt =

∞∫

−∞
x(t)e−(s−α)tdt

and thus

eαtx(t)
L⇔ X(s− α) , a + α < Re(s) < b + α . (5.106)

We have considered, proved, and illustrated with examples many of the
most common properties of the bilateral Laplace transform. These and some
other properties are postponed to Appendix D. A common conclusion is that
the bilateral Laplace transform, as a generalization of the Fourier transform,
deals with both causal and noncausal signals and systems. Yet, it must be
supplied with the ROC for the transform to be unique for each function.
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5.3.4 System Characterization with Transfer Function

The convolution property of the Laplace transform gives us the rule (5.104) to
investigate an LTI system in the transform domain, provided the definition:

Transfer function : The ratio of the Laplace transform Y (s) of the
output y(t) and the Laplace transform X(s) of the input x(t) is the
LTI system transfer function H(s),

H(s) =
Y (s)
X(s)

. (5.107)

��
An equivalent alternative definition is also valid for LTI systems:

Transfer function : The Laplace transform of the system impulse
response h(t) is the LTI system transfer function H(s),

h(t)
L⇔ H(s)

��
So, the transfer function H(s) completely characterizes an LTI system

because the impulse response h(t) completely characterizes the same system.
The generalized structure of an LTI system in the transform domain is thus
as in Fig. 5.32.

Fig. 5.32. Generalized structure of an LTI system in the transform domain.

Stability

To ascertain stability of an LTI system in the transform domain, we recall
that the system is BIBO stable if and only if its impulse response function
h(t) is absolutely integrable; that is,

∫ ∞
−∞
|h(τ)|dτ � M <∞ .

Let us now consider the absolute value of the Laplace transform of the
absolutely integrable h(t) assuming that s = jω (or σ = 0):

|H(jω)| =
∣∣∣∣∣∣

∞∫

−∞
h(t)e−jωtdt

∣∣∣∣∣∣
�
∞∫

−∞
|h(t)e−jωt|dt
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=

∞∫

−∞
|h(t)|e−jωtdt <∞ . (5.108)

We thus have the only condition, meaning that an LTI system is stable if
the ROC of its H(s), by σ = 0, contains the imaginary axis jω.

Causality

The property of causality is usually associated with stability. The following
typical cases are recognized.

Causal system. The ROC of H(s) for the causal system must be right-
hand placed (Property 2 of the ROC),

Re(s) > a , (5.109)

where a is real. By virtue of that, the ROC of a causal system is the region in
the s-plane to the right of all the system poles. Example 5.27 and Fig. 5.33a
give relevant illustrations, by H1(s) and Re(s) > −0.5.

Noncausal system. If an LTI system is characterized with the impulse

response h(t) =
{

h(t) t < 0
0 t � 0 , the system is noncausal. For such a system, the

ROC of H(s) is specified by

Re(s) < a , (5.110)

meaning that the region of the ROC is left-hand placed in the s-plane and all
the system poles are to the right of this region. Example 5.25 and Fig. 5.33b
illustrate this case, by H3(s) and Re(s) < 0.5.

Stable and causal systems. If an LTI system is both causal and stable,
all the poles of H(s) must lie in the left half of the s-plane. Moreover, because
of Re(s) > a, all poles have negative real parts and, since the axis jω is
included in the ROC, the value of a must be negative, a < 0.

Example 5.27. Consider LTI systems represented with the transfer functions

H1(s) =
s− 1

(s + 2)(s2 + 2s + 2)
, Re(s) > −0.5 ,

H2(s) =
s− 1

(s + 2)(s2 + 2s + 2)
, Re(s) > 1 ,

H3(s) =
s + 2

(s− 1)(s2 − 2s + 2)
, Re(s) < 0.5 ,

H4(s) =
s + 2

(s− 1)(s2 − 2s + 2)
, Re(s) < −0.5 .
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The system H1(s) has a zero z1 = 1 and three roots in the denominator:
s1 = −2, s2 = −1 + j, and s3 = −1 − j. Because the ROC includes the axis
jω and all of the poles lie to the left of the ROC, the system is both stable
and causal (Fig. 5.33a).

Fig. 5.33. LTI systems: (a) stable and causal, (b) unstable and causal, (c) stable
and noncausal, and (d) unstable and noncausal.

The system H2(s) has the same roots as in H1(s). However, its ROC does
not include the jω axis and this causal system is thus unstable (Fig. 5.33b).

The system H3(s) is characterized with a zero z1 = −2 and three poles,
p1 = 1, p2 = 1 + j, and p3 = 1 − j. Since the ROC includes the jω axis and
all of the poles lie to the right of the ROC, the system is both stable and
noncausal (Fig. 5.33c).

The system H4(s) has the same roots as in H3(s). However, its ROC does
not contain the jω axis and the system is thus unstable and noncausal (Fig.
5.33d). ��

5.3.5 The Inverse Laplace Transform

It is now a proper place to say several words about the calculus of the inverse
Laplace transform that was earlier formally defined by (5.93) as
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x(t) � L−1[X(s)] =
1

2πj

v+j∞∫

v−j∞
X(s)estds . (5.111)

To calculate (5.111) properly, the real value v in the integral bounds must
satisfy the condition for the ROC. For example, if X(s) has the ROC a <
Re(s) < b, the value v must be chosen such that a < v < b. If v is set
correctly, the inverse transform (5.111) can be applied to all forms of the
transform function.

Typically, X(s) is represented with a ratio of the polynomial functions
(5.94). Irrespective of a number of zeros and poles in the transform, the
methods of evaluating the integral in (5.111) remain actually the same. If
one cannot represent X(s) by the sum of simple functions placed to a Laplace
transform table, the partial fraction expansion is used. The technique allows
splitting X(s) into fractions with known inverse transforms. To define un-
known coefficients in fractions, the cover-up method is exploited.

Distinct Real Roots

Let us think that (5.94) is performed with bM = aN = 1 having distinct real
roots. We then may represent this ratio as a sum of fractions,

F (s) =
(s− z1)(s− z2) . . . (s− zM )
(s− p1)(s− p2) . . . (s− pN )

=
α1

s− p1
+

α2

s− p2
+ . . . +

αN
s− pN

, (5.112)

where the coefficients αi, i ∈ [1, N ], are still unknown. By the cover-up
method, αi is predetermined to be

αi = (s− pi)X(s)|s=pi
(5.113)

and the problem is reduced to algebraic manipulations.

Example 5.28. The transfer function is represented by the sum of fractions,

H(s) =
s + 1

s(s + 2)
=

α1

s
+

α2

s + 2
,

in which the coefficients, α1 and α2, are unknown. By (5.113), we have

α1 = s
s + 1

s(s + 2)

∣∣∣∣
s=0

=
1
2
,

α2 = (s + 2)
s + 1

s(s + 2)

∣∣∣∣
s=−2

=
1
2
,
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and the transfer function becomes

H(s) =
1
2s

+
1

2(s + 2)
.

A Laplace transform table (Appendix D) gives the impulse response

h(t) =
1
2
(1 + e−2t)u(t)

that can also be obtained by the inverse Laplace integral. ��

Repeated Real Roots

If X(s) is performed with repeated real roots, containing factors of the form
(s − pj)n, where n is integer, they say that pj is the multiple pole of X(s)
with multiplicity n. In line with the terms associated with i ∈ [1, N ], i 	= j,
an expansion of X(s) will contain of terms caused by i = j,

β1

s− pj
+

β2

(s− pj)2
+ . . . +

βn
(s− pj)n

, (5.114)

for which the coefficients βl, l ∈ [1, n], are commonly determined by

βn−i =
1
i!

di

dsi
[(s− pj)nX(s)]

∣∣∣∣
s=pj

. (5.115)

Example 5.29. The transfer function is represented by the sum of fractions
as

H(s) =
s2 + 1

s2(s + 2)
=

α1

s + 2
+

β1

s
+

β2

s2
,

where α1, β1, and β2 are unknown. By the cover-up method we have

α1 = (s + 2)
s2 + 1

s2(s + 2)

∣∣∣∣
s=−2

=
5
4
,

β2 = s2 s2 + 1
s2(s + 2)

∣∣∣∣
s=0

=
1
2

and, by (5.115), the remaining coefficient is defined to be

β1 =
d
ds

[
s2 s2 + 1

s2(s + 2)

]∣∣∣∣
s=0

= −1
4
.

The transfer function is thus represented with

H(s) =
5

4(s + 2)
− 1

4s
+

1
2s2
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that readily converts, by a table of the transforms, to the impulse response

h(t) =
1
4
(5e−2t − 1 + 2t)u(t) .

Note that the function can also be derived by (5.111) with, however, larger
routine. ��

Complex Roots

When some roots occur to be complex conjugate, two approaches are used.
Frequently, they agree with complex roots and use partial fraction expansion
to find simpler forms. We can also expand X(s) to fractions with the polyno-
mials of order higher than one and find transforms in a table. So, for complex
conjugate roots, one can follow the rule provided by (5.112) and (5.114).

Example 5.30. Given a transfer function

H(s) =
A

(s + 2)(s2 + 2s + 2)
=

α1

s + 2
+

β1 + β2s

s2 + 2s + 2
,

having in the denominator three roots: s1 = −2, s2 = −1+j, and s3 = −1−j.
By the cover-up method, (5.113), the coefficient α1 is defined to be

α1 = (s + 2)
A

(s + 2)(s2 + 2s + 2)

∣∣∣∣
s=−2

=
A

2
.

To determine β1 and β2, we apply the same approach and go to

(β1 + β2s)|s=s1 = (s2 + 2s + 2)
A

(s + 2)(s2 + 2s + 2)

∣∣∣∣
s=s1

,

β1 − β2 + jβ2 =
A

−1 + j + 2
=

A

2
− j

A

2
.

By comparing the terms in the left-hand and right-hand sides, we define

β1 = 0 , β2 =
A

2
.

Finally, by α1, β1, and β2, the transfer function H(s) is found to be

H(s) =
A

2(s + 2)
+

As

2(s2 + 2s + 2)

and, by rearranging the terms, becomes

H(s) =
A

2

[
1

(s + 1)2 + 1
− s + 1

(s + 1)2 + 1
+

1
s + 2

]
.

By a table of the transforms, H(s) easily converts to the impulse response
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h(t) =
Ae−t

2
(
sin t− cos t + e−t

)
u(t) .

Observe that h(t) derived is absolutely integrable, because a multiplier e−t

approaches zero with time. Yet, the system is stable, since all the roots are
placed in the second and third quadrants of the s-plane. ��

5.4 Unilateral Laplace transform

For causal signals and systems, the unilateral (or one-sided or singly-infinite)
Laplace transform turns out to be more efficient. Because the transform deals
with functions defined in positive time, (5.92) modifies to

X(s) � L[x(t)] =

∞∫

0−

x(t)e−stdt , (5.116)

being the Laplace transform of a causal signal x(t)u(t).
The lower bound is chosen in (5.116) as “0−” to integrate the delta function

and its derivatives. This means that a small (zero) amount of a nearest past
is allowed for the transform. Sometimes, the bound is set as “0+” to avoid
integrating the delta function.

Because (5.116) ignores x(t) for t < 0, the ROC of any unilateral Laplace
transform, by the Property 2 of the ROC, is always of the form Re(s) > a and
thus right-hand placed in the s-plane. For this reason, the ROC for (5.116) is
often omitted and the transform is called just the Laplace transform.

5.4.1 Properties of the Unilateral Laplace Transform

Restricted to zero, the lower integration bound causes special properties of the
unilateral Laplace transform associated with differentiation and integration.
The other properties are common for both forms of the transform.

Differentiation in Time

Let us think that a causal x(t) and its unilateral transform X(s) are known.
Then the transform X1(s) of x1(t) = dx(t)/dt is defined, by (5.116), as

X1(s) =

∞∫

0−

dx(t)
dt

e−stdt .

By differentiating by parts, we go to the relation

X1(s) = x(t)e−st
∣∣∞
0− + s

∞∫

0−

x(t)e−stdt
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that produces X1(s) = −x(0−) + sX(s), Re(s) > 0. The property of differen-
tiation in time is thus stated by

dx(t)
dt

L⇔ sX(s)− x(0−) , (5.117)

claiming that the unilateral Laplace transform is sensitive to the initial con-
dition in a causal LTI system.

Example 5.31. An LTI system of the first order is represented with the ODE
y′+2y = 0, y(0) = y0. By (5.117), the unilateral transform gives sY (s)−y0 +
2Y (s) = 0 and

Y (s) =
y0

s + 2
.

Using a table of the Laplace transforms, we arrive at

y(t) = y0e
−2t

avoiding solving the ODE in the time domain by traditional methods. ��

Double Differentiation in Time

Let us find the Laplace transform of the second time derivative of a signal
x(t), which X(s) is known. By (5.117), the transform can be written as

dx2(t)
dt2

=
d
dt

dx(t)
dt

L⇔ s[sX(s)− x(0−)]− x′(0−) ,

where x′(0−) is the value of the first time derivative of x(t) and zero. The
property is thus established by

dx2(t)
dt2

L⇔ s2X(s)− sx(0−)− x′(0−) . (5.118)

Example 5.32. An LTI system of the second order is represented with the
ODE y′′ + 2y′ + y = 0, y(0) = 0.5, and y′(0) = 1.

By (5.117) and (5.118), the transform is written as

s2Y (s)− s

2
− 1 + 2sY (s)− 1 + Y (s) = 0 ,

producing

Y (s) =
1
2

s + 4
s2 + 2s + 1

=
s + 4

2(s + 1)2
.

For repeated roots, by (5.114) and (5.115), we can write

Y (s) =
s + 4

2(s + 1)2
=

β1

s + 1
+

β2

(s + 1)2
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and define the coefficients as

β2 = (s + 1)2
s + 4

2(s + 1)2

∣∣∣∣
s=−1

=
3
2
,

β1 =
d

ds

[
(s + 1)2

s + 4
2(s + 1)2

]∣∣∣∣
s=−1

=
1
2
.

The transform then attains the form

Y (s) =
1

2(s + 1)
+

3
2(s + 1)2

and, by a table of the transforms, we go to a solution

y(t) =
1
2
(1 + 3t)e−t ,

without actually solving the ODE. ��

Integration in Time

In causal systems, signals are integrated over finite bounds from 0 to t. They
can also be integrated over the entire past history from −∞ to t.

In the first case, if a causal signal x(t)
L⇔X(s) is known, of interest is

evaluating the unilateral Laplace transform of the integral measure

x1(t) =

t∫

0−

x(θ) dθ (5.119)

that, alternatively, can be written as

x(t) =
dx1(t)

dt
, x1(0−) = 0 . (5.120)

If we apply the unilateral Laplace transform to (5.120), we arrive at

X(s) = sX1(s)− x1(0−) = sX1(s) or X1(s) =
1
s
X(s)

that proves the property of integration in time:

t∫

0−

x(θ) dθ
L⇔ 1

s
X(s) . (5.121)

In the second case, we can consider two integrals,
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x1(t) =

t∫

−∞
x(θ) dθ =

0−∫

−∞
x(θ) dθ +

t∫

0−

x(θ) dθ . (5.122)

By virtue of the fact that the integration from −∞ to 0− of any function
produces a constant, say A, we arrive at the relevant property:

t∫

−∞
x(θ) dθ

L⇔ 1
s
X(s) +

1
s
A , A =

0−∫

−∞
x(θ) dθ . (5.123)

Example 5.33. An LTI system is described with the integral equation

y(t) + 2

t∫

−∞
y(θ) dθ = 0 ,

0−∫

−∞
y(θ) dθ = 1 .

The unilateral Laplace transform, by (5.123), produces

Y (s) +
2
s

+
2
s
Y (s) = 0

that becomes
Y (s) = − 2

s + 2

corresponding to the time-signal y(t) = −2e−2t. ��

Initial Value Theorem

Frequently, it needs evaluating an initial value x(0−) of x(t) via the unilateral
Laplace transform X(s). To find this value, let us rewrite (5.117) as

∞∫

0−

dx(t)
dt

e−st dt = sX(s)− x(0−)

and tend s to infinity,

lim
s→∞

∞∫

0−

dx(t)
dt

e−st dt = lim
s→∞[sX(s)− x(0−)] .

Because lims→∞
∫∞
0−

dx(t)
dt e−st dt = 0, we have

x(0−) = lim
s→∞ sX(s) (5.124)

that is stated by the final value theorem.
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Example 5.34. Let us come back to Example 5.31, where we found that

y(t) = −2e−2t L⇔ Y (s) = − 2
s + 2

.

An initial value of a signal is y(0) = −2. We go to the same result by the
initial value theorem (5.124). Indeed, we can write

lim
s→∞ sY (s) = lim

s→∞−s
2

s + 2
= −2

getting the same result alternatively. ��

Final Value Theorem

In a like manner, one can find the value of x(t) at infinity. Consider the limit

lim
s→0

∞∫

0−

dx(t)
dt

e−st dt = lim
s→0

[sX(s)− x(0−)] .

Providing the transformations, we have

∞∫

0−

dx(t)
dt

dt =

∞∫

0−

dx(t) = x(∞) − x(0−) = lim
s→0

[sX(s)− x(0−)]

and arrive at the relation

x(∞) = lim
s→0

sX(s) (5.125)

that is stated by the final value theorem.

Example 5.35. Consider the transform found in Example 5.32,

y(t) =
1
2
(1 + 3t)e−t

L⇔ Y (s) =
1

2(s + 1)
+

3
2(s + 1)2

.

The final value y(∞) is ascertained, by (5.125), to be zero,

lim
s→0

sF (s) = lim
s→0

s

[
1

2(s + 1)
+

3
2(s + 1)2

]
= 0 .

We arrive at the same result, by considering the limit

lim
t→∞x(t) = lim

t→∞
1
2
(1 + 3t)e−t = 0

that shows an alternative way to hit a target. ��
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5.4.2 Laplace Transforms of Some Common Functions

Not only properties of the Laplace transform are of prime importance in solv-
ing applied problems. The transforms of some common and widely used func-
tions often help reaching the goal in the shortest way. Below we observe the
transforms of several common functions and the reader is referred to Appendix
D, where the transform pairs of many others are gathered.

Dirac Delta function

The Laplace transform of the delta function x(t) = δ(t) is derived by using
the sifting property of δ(t),

X(s) =

∞∫

0−

δ(t)e−stdt = e−s0 = 1 .

No restrictions to the ROC are produced and we have

δ(t)
L⇔ 1 , ROC is all s . (5.126)

Unit Step Function

For x(t) = u(t), we have

X(s) =

∞∫

0−

u(t)e−stdt =

∞∫

0

e−stdt = −1
s
e−st

∣∣∣∣
∞

0

.

The integral converges only if Re(s) > 0 and thus

u(t)
L⇔ 1

s
, Re(s) > 0 . (5.127)

Rectangular Pulse

Having x(t) = u(t)− u(t− τ), we use the time shift property and obtain

X(s) =

∞∫

0−

u(t)e−stdt−
∞∫

0−

u(t− τ)e−stdt

=
1
s

(−e−st∣∣∞
0

+ e−st
∣∣∞
τ

)
.

The integrals converge if Re(s) > 0 and we have

u(t)− u(t− τ)
L⇔ 1

s

(
1− e−sτ

)
, Re(s) > 0 . (5.128)
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Truncated Exponential Function

The transform of x(t) = e−atu(t), where a is real, is defined by

X(s) =

∞∫

0−

e−atu(t)e−stdt =

∞∫

0

e−(s+a)tdt

= − 1
s + a

e−(s+a)t

∣∣∣∣
∞

0

.

It is seen that the integrals converge if Re(s) > −a and hence

e−atu(t)
L⇔ 1

s + a
, Re(s) > −a . (5.129)

Truncated Sinusoid

Given a signal x(t) = u(t) sinω0t. By Euler’s formula, we have

X(s) =

∞∫

0−

u(t) sinω0t e
−stdt =

∞∫

0

ejω0t − e−jω0t

2j
e−stdt

=
1
2j

∞∫

0

e−(s−jω0)tdt− 1
2j

∞∫

0

e−(s+jω0)tdt

= − 1
2j(s− jω0)

e−(s−jω0)t

∣∣∣∣
∞

0

+
1

2j(s + jω0)
e−(s+jω0)t

∣∣∣∣
∞

0

.

Here, both integrals converge if Re(s) > 0. For this ROC, we have

X(s) =
1

2j(s− jω0)
− 1

2j(s + jω0)
=

ω0

s2 + ω2
0

and thus
u(t) sinω0t

L⇔ ω0

s2 + ω2
0

, Re(s) > 0 . (5.130)

Truncated Cosine Function

In a like manner, the transform of a causal cosine signal x(t) = u(t) cosω0t
can be found to be

u(t) cosω0t
L⇔ s

s2 + ω2
0

, Re(s) > 0 . (5.131)

Finishing with examples, we notice again that the Laplace transforms of
some other common functions are postponed to Appendix D.
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5.5 Applications of Laplace transform

Owing to many splendid properties, the Laplace transform has found wide
applications in a broad area of systems problems. The transform helps solv-
ing elegantly linear ODEs of systems and offers an incredibly useful tool for
electrical circuits. LTI systems can efficiently be simulated in the transform
domain by block diagrams. Finally, the state space model is easily analyzed,
by the transform.

5.5.1 Solution of ODEs of LTI Systems

The most appreciable application of the Laplace transform is in solving the
ODEs of LTI systems. To apply the transform to the N -order ODE, it first
needs extending a property (5.117) to the multiple time derivative case. Com-
paring (5.117) and (5.118) one logically arrives at the rule

dxn(t)
dtn

L⇔ snX(s)− sn−1x(0−)− sn−2x′(0−)− . . .

−sx(n−2)(0−)− x(n−1)(0−) . (5.132)

Now consider a familiar general ODE of an LTI system,

N∑
n=0

an
dn

dtn
y(t) =

M∑
m=0

bm
dm

dtm
x(t) , M � N . (5.133)

If we think that the input is known, x(t)
L⇔X(s), the function x(t) is

multiply differentiable,

x(0) = x0 , x′(0) = x′0 , . . . , x(M−1)(0) = x
(m−1)
0 ,

and all of the initial conditions are distinct,

y(0) = y0 , y′(0) = y′0 , . . . y(N−1)(0) = y
(N−1)
0 ,

we can apply the unilateral transform to (5.133), use (5.132), and write

N∑
n=0

an

[
snY (s)− sn−1y(0−)− . . .− sy(n−2)(0−)− y(n−1)(0−)

]

=
M∑
m=0

bm

[
smX(s)− sm−1x(0−)− . . .− sx(m−2)(0−)− x(m−1)(0−)

]
.

The transform of y(t) can now be expressed as
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Y (s) = X(s)

M∑
m=0

bmsm

N∑
n=0

ansn
+

N∑
n=0

anF1n(s)−
M∑
m=0

bmF2m(s)

N∑
n=0

ansn
, (5.134)

where

F1n(s) = sn−1y(0−) + . . . + sy(n−2)(0−) + y(n−1)(0−) , (5.135)

F2m(s) = sm−1x(0−) + . . . + sx(m−2)(0−) + x(m−1)(0−) . (5.136)

As can be seen, the first term in the right-hand side of (5.134) is the
bilateral transform of y(t) and the remainder accounts for the initial conditions
and time derivatives of the input. It is clear that the remainder is zero if all
of the initial conditions and derivatives are zero. Defined Y (s), a table of the
Laplace transforms may serve finding an analytic expression for y(t).

Below, we use the Laplace transform to analyze in detail familiar LTI
systems of the first and second orders.

LTI system of the First Order

A SISO LTI system of the first order is described with the ODE

a1
d
dt

y(t) + a0y(t) = b0x(t) . (5.137)

Assuming that the initial condition y(0−) = y0 is known and the input

x(t)
L⇔X(s) is known as well, we apply (5.117) and arrive at

a1[sY (s)− y0] + a0Y (s) = b0X(s) (5.138)

that leads to the transform

Y (s) =
b0

a1s + a0
X(s) +

y0a1

a1s + a0
. (5.139)

The next step is to substitute X(s) and represent Y (s) with forms that
can be found in tables of the Laplace transforms. Below we find solutions of
(5.139) for two test signals.

Unit impulse in the input. If the input is x(t) = δ(t)
L⇔X(s) = 1, the

transform (5.139) becomes

Y (s) =
y0 + b0/a1

s + a0/a1
,

producing the output

y(t) =
(
y0 +

b0
a1

)
e−

a0
a1
t . (5.140)

By y0 = 0, the system impulse response appears to be h(t) = b0
a1

e−
a0
a1
t.
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Example 5.36. Consider a system y′ + 2y = 0, y(0) = y0, which solution is
y(t) = y0e

−2t. Compared to (5.137), this equation has the coefficients a0 = 2,
a1 = 1, and b0 = 0. Instantly, by (5.140), we have a solution y(t) = y0e

−2t. ��

Unit step in the input. By x(t) = u(t)
L⇔X(s) = 1/s, the transform

(5.139) becomes

Y (s) =
b0/a1

s(s + a0/a1)
+

y0

s + a0/a1

=
y0 − b0/a0

s + a0/a1
+

b0
a0s

(5.141)

producing a solution

y(t) = y0e
−a0

a1
t +

b0
a0

(1 − e
−a0

a1
t) . (5.142)

The system step response g(t) = b0
a0

(1− e
− a0

a1
t) appears if to set y0 = 0.

Example 5.37. Given a system, described with the ODE y′+2y = x, y(0) =
0, having the coefficients a0 = 2, a1 = 1, and b0 = 1. For x(t) = u(t), its step
responce, by (5.142), becomes g(t) = 0.5(1− e−2t). ��

LTI System of the Second Order

A SISO LTI system of the second order can be described with the ODE

a2
d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = b0x(t) . (5.143)

For arbitrary initial conditions, y(0−) = y0 and y′(0−) = y′0, and known

input x(t)
L⇔X(s), the transform applied to (5.143) yields

a2[s2Y (s)− sy0 − y′0] + a1[sY (s)− y0] + a0Y (s) = b0X(s) . (5.144)

From (5.144) one instantly derives

Y (s) =
b0

a2s2 + a1s + a0
X(s) +

a2y0s + a2y
′
0 + a1y0

a2s2 + a1s + a0
(5.145)

and, again, a shortest way to find a solution y(t) for known X(s) is to use a
table of the Laplace transforms.

Let, for example, the input be delta-shaped, x(t) = δ(t), thus X(s) = 1.
The transform (5.145) then attains the form

Y (s) =
a2y0s + a2y

′
0 + a1y0 + b0

a2s2 + a1s + a0
= y0

s + λ

(s + α)2 + β2
, (5.146)

where
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α =
a1

2a2
, β2 =

4a0a2 − a2
1

4a2
2

, λ =
a2y
′
0 + a1y0 + b0

a2y0
. (5.147)

By a table of the Laplace transforms, the output is obtained to be

y(t) = y0e
−αt
(

cosβ +
λ− α

β
sinβt

)
. (5.148)

Example 5.38. Consider a system described by y′′ + 2y + y = 0, y(0) = 1
2 ,

with the coefficients a0 = 1, a1 = 2, a2 = 1, and b0 = 0. By (5.147), we have
α = 1, β = 0, and λ = 4. The solution then becomes that, y(t) = 1

2 (1+3t)e−t,
earlier found in Example 5.32 for the same system. ��

5.5.2 Application to Electric Circuits

The approach to solve ODEs of LTI systems using the Laplace transform is
efficiently exploited in electric circuits. Here, first, all signals and memory
operations are substituted with the Laplace transform equivalents. Then the
terms are properly rearranged and a table of the transforms is used to produce
time functions. This new equivalent form in the s domain needs to remember
that all memory components are physical, thus their energy at some initial
time t = 0 may not be zero. The unilateral Laplace transform is therefore the
best candidate to solve the block of problems.

Electric Voltage and Current

Because both the electric voltage v(t) and current i(t) are commonly some
time functions, they can be represented in the s domain with the relevant
transforms, respectively,

v(t)
L⇔ V (s) , i(t)

L⇔ I(s) (5.149)

and graphical images in both domains as shown in Fig. 5.34. Note that
throughout the book we use equal images of i(t) and v(t) sources for the
alternative and direct currents and voltages, respectively.

Resistor

The transform of a voltage v(t) = Ri(t) induced on a resistor R by an electric
current i(t) can be represented in the s domain, by (5.149), as

v(t) = Ri(t)
L⇔ V (s) = RI(s) . (5.150)

and sketched graphically as in Fig. 5.34.
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Fig. 5.34. Electric elements and their Laplace transform equivalents.
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Capacitor

A voltage v(t) induced on a constant capacitor C by an electric current i(t)
is given by the relation v(t) = 1

C

∫ t
−∞ i(t) dt. On the other hand, an elec-

tric current generated by the voltage through a capacitor is provided by
i(t) = Cdv(t)/dt. By the properties of differentiation, (5.117), and integration,
(5.123), we thus have two equal transforms

v(t) =
1
C

∫ t

−∞
i(τ) dτ

L⇔ V (s) =
1
sC

I(s) +
1
s
v(0−) , (5.151)

i(t) = C
dv(t)
dt

L⇔ I(s) = sCV (s)− Cv(0−) (5.152)

and two options (Fig. 5.34) in graphical representation.

Inductance

Reasoning similarly for an inductance L, we write

i(t) =
1
L

∫ t

−∞
v(t) dt

L⇔ I(s) =
1
sL

V (s) +
1
s
i(0−) , (5.153)

v(t) = L
di(t)
dt

L⇔ V (s) = sLI(s)− Li(0−) (5.154)

that is supported in Fig. 5.34 by graphical images.

RC and RL Circuits

Because of two different memory elements available, L and C, even a simplest
electric circuit of the first order has two different schematic realizations.

RC circuit. Let us come back to a familiar LP filter organized with a
resistor R and capacitor C (Fig. 5.5a). By Fig. 5.34, a representation of this
circuit in the s domain becomes as in Fig. 5.35.

Fig. 5.35. Representation of an RC circuit in the s domain.
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To describe the circuit, we first write an equality of voltages

V (s) = RI(s) +
1
sC

I(s) +
1
s
vC(0−) (5.155)

that can further be rewritten for the electric current as

I(s) =
1
R

s

s + 1/τc

[
V (s)− 1

s
vC(0−)

]
, (5.156)

where τc = RC is a time constant of the system.
By (5.156), the transform of a voltage induced on R is given by

VR(s) = RI(s) =
s

s + 1/τc

[
V (s)− 1

s
vC(0−)

]
(5.157)

and, by (5.151) and (5.156), the transform of a voltage on C becomes

VC(s) = I(s)
1
sC

+
vC(0−)

s

=
1/τc

s + 1/τc

[
V (s)− 1

s
vC(0−)

]
+

vC(0−)
s

. (5.158)

So, the RC circuit is now fully represented in the s domain. Given the
initial conditions, the functions can further be translated to the time domain,
by a table of the Laplace transforms.

Example 5.39. Consider an RC circuit (Fig. 5.35), in which the input voltage

is v(t) = V u(t)
L⇔V (s) = V/s.

By (5.156), the transform of an electric current can be found to be

I(s) =
V − vC(0−)

R

1
s + 1/τc

(5.159)

that in the time domain becomes

i(t) =
V − vC(0−)

R
e−

t
τc . (5.160)

Instantly, we find the voltage induced on a resistor,

vR(t) = Ri(t) = [V − vC(0−)]e−
t

τc . (5.161)

Substituting V (s) = V/s to (5.158) gives

VC(s) = [V − vC(0−)]
1/τc

s(s + 1/τc)
+

vC(0−)
s

(5.162)

that has a counterpart in the time domain,

vC(t) = [V − vC(0−)](1− e−
t

τc )u(t) + vC(0−)u(t)
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= V (1− e−
t

τc )u(t) + vC(0−)e−
t

τc u(t) . (5.163)

If we now set V = 1 and assume vC(0−) = 0, the function (5.163) becomes
the system step response

g(t) = (1 − e−
t

τc )u(t) , (5.164)

earlier provided by (4.63) with τc = RC. ��

RL circuit. The other electric circuit of the first order (Fig. 5.5b) com-
prises a resistor R and inductor L. By Fig. 5.34, its equivalent in the s domain
is as shown in Fig. 5.36.

Fig. 5.36. Representation of an RL circuit in the s domain.

The voltage balance equation of the circuit can be written as

V (s) = (sL + R)I(s)− Li(0−) (5.165)

that allows finding the transforms of an electric current

I(s) =
1
L

1
s + 1/τc

[
V (s) + Li(0−)

]
, (5.166)

where T = L/R is a time constant, and voltage induced on a resistor

VR(s) = RI(s) =
1/τc

s + 1/τc

[
V (s) + Li(0−)

]
. (5.167)

By (5.166), the transform of a voltage induced on L can be written as

VL(s) = I(s)sL− Li(0−)

= V (s)− 1/τc
s + 1/τc

[
V (s)− Li(0−)

]
. (5.168)

The circuit is thus exhaustively represented in the s domain and all of
the functions can further be translated to the time domain by tables of the
Laplace transforms.
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Example 5.40. Given a system (Fig. 5.36) with the input voltage v(t) =

V e−αtu(t)
L⇔V (s) = V

s+α , α > 0.
For the input given, the transform (5.166) of i(t) becomes

I(s) =
V

L

1
(s + 1/τc)(s + α)

+
1

s + 1/τc
i(0−) (5.169)

corresponding, by a table of the Laplace transforms, to the time function

i(t) =
V

L

1
α− 1/τc

(
e−

t
τc − e−αt

)
+ i(0−)e−

t
τc . (5.170)

The voltage induced on a resistor is thus

VR(t) = V
1/τc

α− 1/τc

(
e−

t
τc − e−αt

)
+ i(0−)e−

t
τc . (5.171)

By (5.168), the transform VL(s) is defined as

VL(s) =
V

s + α
− V/τc

(s + 1/τc)(s + α)
+

L/τc
s + 1/τc

i(0−) , (5.172)

having a time domain presentation

vL(t) = V
α

α− 1/τc
e−αtu(t)−

[
V

1/τc
α− 1/τc

−Ri(0−)
]
e−

t
τc u(t) . (5.173)

One can observe that all of the time functions were obtained here with a
relatively lower burden, unlike a direct solution of the ODE. ��

Series Resonant RLC Circuit

Basic electric RLC circuits of the second order exist in two configurations.
They typically exploit either a series or parallel connection.

By Fig. 5.34, a series RLC circuit is represented in the s domain as shown
in Fig. 5.37. The voltage balance equation is written as

V (s) = I(s)
(
sL +

1
sC

+ R

)
− Li(0−) +

1
s
vC(0−)

and the transform of an electric current is readily expressed by

I(s) =
1
L

s

s2 + 2δs + ω2
0

[
V (s) + Li(0−)− 1

s
vC(0−)

]
, (5.174)

where 2δ = R/L and ω2
0 = 1/LC. The transforms of voltages induced on the

circuit components are
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Fig. 5.37. Representation of a series RLC circuit in the s domain.

VR(s) =
2δs

s2 + 2δs + ω2
0

[
V (s) + Li(0−)− 1

s
vC(0−)

]
, (5.175)

VL(s) =
s2

s2 + 2δs + ω2
0

[
V (s) + Li(0−)− 1

s
vC(0−)

]
− Li(0−) , (5.176)

VC(s) =
ω2

0

s2 + 2δs + ω2
0

[
V (s) + Li(0−)− 1

s
vC(0−)

]
+

vC(0−)
s

. (5.177)

Example 5.41. Given a system (Fig. 5.37) with the input v(t) = V u(t)
L⇔V (s) =

V
s and following components: C = 0.5F, L = 1H, R = 2Ω, i(0−) = 0, V = 2V,
and vC(0−) = 1V. We thus have ω2

0 = 2 and δ = 1.
For the parameters given, the transform (5.174) of i(t) becomes

I(s) =
1

s2 + 2s + 2
=

1
(s + 1)2 + 1

having a time representation i(t) = e−tu(t) sin t. Reasoning similarly, one can
find time functions of each of the voltages in the circuit:

vR(t) = 2e−tu(t) sin t ,

vL(t) = e−t(cos t− sin t)u(t) ,

vC(t) = [2− e−t(cos t + sin t)]u(t) .

Fig. 5.38 illustrates all time functions associated with this circuit obtained
by the Laplace transform equivalents. ��

5.5.3 Block Diagram Presentation by the Laplace Transform

The other value of the Laplace transform is that we can efficiently simulate
any LTI systems by block diagrams in a manner similar to the time domain.

The simulation by diagrams presumes starting with the system ODE
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Fig. 5.38. Time functions of a series RLC circuits (Example 5.41).

N∑
n=0

anDny(t) =
M∑
m=0

bmDmx(t) , (5.178)

where Dn ≡ dn/dtn, n � 1, and M � N . The Laplace operator is applied
to the both sides of (5.178) and, by zero initial conditions and L(D) = s, we
obtain

Y (s)
N∑
n=0

ans
n = X(s)

M∑
m=0

bmsm (5.179)

that allows representing the system transfer function as

H(s) =
Y (s)
X(s)

=

M∑
m=0

bmsm

N∑
n=0

ansn
. (5.180)

A representation of an LTI system in the s domain can now be made in
two familiar direct (canonic) forms.

The First Direct Form

To arrive at the first direct form, one needs rewriting (5.179) for powers of a
variable s. Without losing a generality, we set aN = 1 and M = N and write

[a0Y (s)− b0X(s)] + s[a1Y (s)− b1X(s)] + . . .

+sN−1[aN−1Y (s)− bN−1X(s)] + sN [Y (s)− bNX(s)] = 0 . (5.181)

Divided the both sided with sN , (5.181) can be rewritten as
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Y (s) = s−N [b0X(s)− a0Y (s)] + sN−1[b1X(s)− a1Y (s)] + . . .

+s−1[bN−1X(s)− aN−1Y (s)] + bNX(s) (5.182)

that allows us to sketch the first direct form of the diagrams as shown in Fig.
5.39. As well as in the time domain, the diagram is available in two forms.

Fig. 5.39. The first direct form of block diagrams of LTI systems in the s domain:
(a) addition efficient and (b) integration efficient.

It can be organized to be either addition efficient (Fig. 5.39a) or integration
efficient (Fig. 5.39b). As can be seen, there is no substantial difference between
the diagrams in the time and s domains. Integrators are merely substituted
with the operators s−1.

Example 5.42. A system is represented with the transfer function

H(s) =
s− 3

s2 + 2s + 10
, (5.183)

having the following coefficients in (5.180): a0 = 10, a1 = 2, a2 = 1, b0 = −3,
and b1 = 1. The first direct form of the diagram presentation of this system
is shown in Fig. 5.40. ��

The Second Direct Form

Similarly to the time domain, to sketch the second direct form of block dia-
grams in the s domain, we need substituting (5.179) with two relations:
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Fig. 5.40. The first direct form of block diagrams of a system (5.183).

Y (s) =
M∑
m=0

bmsmZ(s) , (5.184)

Z(s) =

(
N∑
n=0

ans
n

)−1

X(s) . (5.185)

The block diagram then appears straightforwardly to have two branches
as shown in Fig. 5.41.

Fig. 5.41. The second direct form of block diagrams of LTI systems in the s domain.
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Example 5.43. Consider an LTI system, which transfer function is given by
(5.183). By known coefficients of the system ODE, the system is simulated
with the diagram of the second direct form as shown in Fig. 5.42. ��

Fig. 5.42. The second direct form of block diagrams of a system (Example 5.43).

Let us notice that not only the first and second canonic forms are used
in simulating LTI systems with block diagrams in the s domain. Albeit not
commonly, some other kinds of diagrams may serve better. Nevertheless, it
is commonly accepted that the above considered canonic solutions cover an
overwhelming majority of practical needs.

5.5.4 State Space Analysis via Laplace Transform

One of the most impressive and utterly important properties of the Laplace
transform is an ability to find the transfer function via the state space model
of a system.

Let us recall that a general state space model, (4.125) and (4.126), of a
MIMO system having k inputs, p outputs, and N state variables is given by

q′(t) = Aq(t) + Bx(t) , (5.186)

y(t) = Cq(t) + Dx(t) , (5.187)

where the N×1 state vector q(t) and its time derivative q′(t) are, respectively,

q(t) =
[
q1(t) q2(t) . . . qN (t)

]T
, (5.188)

q′(t) =
d
dt

q(t) =
[
q′1(t) q′2(t) . . . q′N (t)

]T
. (5.189)

The k × 1 input vector x(t) and p× 1 output vector y(t) are, respectively,
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x(t) =
[
x1(t) x2(t) ... xk(t)

]T
, (5.190)

y(t) =
[
y1(t) y2(t) ... yp(t)

]T
. (5.191)

The N ×N system matrix A and p ×N observation matrix C are given by
(4.129). the N × k input matrix B and p× k output matrix D are performed
with (4.130).

For zero initial conditions, we can apply the transform to (5.186) and write

sQ(s) = AQ(s) + BX(s) , (5.192)

where Q(s) and X(s) are the Laplace transforms of q(t) and x(t), respectively.
From (5.192) we have

Q(s) = (sI−A)−1BX(s) , (5.193)

where I is a proper unit matrix.
Applying the transform to (5.187) and substituting (5.193), we obtain

Y(s) = [C(sI−A)−1B + D]X(s) (5.194)

and thus the transfer function of a system is defined as

H(s) = C(sI−A)−1B + D . (5.195)

The next step is seemingly obvious. One can represent (5.195) in a proper
form, use a table of the Laplace transforms, and arrive at the system impulse
response.

Example 5.44. A SISO LTI system is performed in state space with equa-
tions q′(t) = Aq(t) + Bx(t) and y(t) = Cq(t), given the matrices

A =
[−1 2

0 −1

]
, B =

[
0
1

]
, C =

[
1 1
]
, D =

[
0
]
.

To define the transfer function, we first determine the inverse matrix

(sI−A)−1 =
(
s

[
1 0
0 1

]
−
[−1 2

0 −1

])−1

=
[
s + 1 −2

0 s + 1

]−1

=
1

(s + 1)2 + 2

[
s + 1 2

0 s + 1

]
.

Then substituting to (5.195) and providing the transformations yield

H(s) =
1

(s + 1)2 + 2
[
1 1
] [ s + 1 2

0 s + 1

] [
0
1

]

=
s + 3

(s + 1)2 + 2
.
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By a table of the Laplace transforms, we finally arrive at the system im-
pulse response

h(t) = e−t(cos
√

2t +
√

2 sin
√

2t)u(t)

and notice that the result is obtained with a relatively low burden, unlike a
direct solution in the time domain. ��

Overall, one can truly conclude that the transfer function of an LTI system
can easily be derived via the state space model if all of the matrices are
distinct. This conclusion is valid for both SISO and MIMO systems.

5.6 Stability Analysis of Feedback Systems

Ascertaining stability of LTI systems becomes of prime importance if the lat-
ter have any kinds of feedback. Systems with feedback play an important
role in applications owing to their special properties. Typically, negative feed-
backs allow for a substantial improvement of the characteristics of electronic
systems. Positive feedbacks, in turn, make systems unstable. In the sequel,
we shall show that, like in the time domain, stability of LTI systems can
equivalently be ascertained in the s domain.

5.6.1 Transfer Function of Closed Systems

Most generally, an LTI system with feedback is represented as shown in Fig.
5.43.

Fig. 5.43. Feedback LTI system.

The structure comprises two blocks. The forward path block with the
transfer function Hd(s) is the main part of a system. An auxiliary feedback
branch with the transfer function Hb(s) is placed over the main block con-
necting its output with the input. The feedback signal is subtracted from the
input signal x(t) to produce the input z(t) for the main block. If the trans-
forms X(s) and Y (s) of the input and output, respectively, are both known,
the system equation can easily be written as
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Y (s) = Hd(s)[X(s)−Hb(s)Y (s)] (5.196)

producing the transfer function of a closed loop,

H(s) =
Y (s)
X(s)

=
Hd(s)

1 + Hb(s)Hd(s)
. (5.197)

Observing (5.197), one can conclude that the transform domain properties
of a closed loop system depend both on Hd(s) and Hb(s). This means that
the properties of H(s) can be varied in a wide range by changing the transfer
function either of the main block or feedback. Therefore, of prime importance
is what kind of feedback is organized, negative or positive.

Let us consider the system frequency response, by s = jω,

H(jω) =
Y (jω)
X(jω)

=
Hd(jω)

1 + Hb(jω)Hd(jω)
. (5.198)

The key question is what is the value of the denominator. If at some
frequency ω we have

|1 + Hb(jω)Hd(jω)| > 1 , (5.199)

the system magnitude response H(jω) is reduced by feedback. Therefore, this
kind of feedback is called negative. Note that in physiology and sometimes in
control systems, negative feedback is called homeostasis. Contrary, if

|1 + Hb(jω)Hd(jω)| < 1 , (5.200)

the magnitude response H(jω) increases owing to what is called positive feed-
back. Both negative and positive feedbacks are widely used in electronic blocks,
tracts, and channels, although with different purposes.

Example 5.45 (Gain Stabilization). An amplifier with a uniform gain Gd

in the required frequency range is designed to be marginally stable.
To increase stability, a uniform feedback Hb(jω) = −Gb < 0 is placed over

the amplifier. By (5.198), we have

G =
Gd

1 + GbGd

and, taking a derivative

∂G

∂Gb
=

1
(1 + GdGb)2

=
Gd

1 + GbGd

1
(1 + GdGb)Gd

=
G

Gd(1 + GdGb)
,

evaluate instability of a feedback amplifier by the relation

∂G

G
=

1
1 + GdGb

∂Gd

Gd
.
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As can be seen, by GdGb � 1, the instability factor ∂G/G and gain G
are both reduced by the factor of 1 + GdGb. The amplifier is thus no longer
marginally stable. It is now rather Lyapunov stable. Obtained stability, the
gain can further be increased by an auxiliary amplifier. ��
Example 5.46 (Suppression of Spurious Signals). An RF channel is
composed with a cascade of two amplifiers, G1 and G2. A spurious signal
z acts in the input of the second amplifier as shown in Fig. 5.44. To suppress

Fig. 5.44. Cascade feedback LTI system.

z, a feedback with a gain factor Gb is placed over the amplifier.
It can be shown that the feedback system gain is defined by

G =
G1G2

1 + GbG1G2

and the gain for the spurious signal z is calculated as

Gz =
G2

1 + GbG1G2
.

Typically, amplification channels are designed such that G1 � G2. By
virtue of that, a signal z is suppressed substantially at the output of a channel
as it is sketched in Fig. 5.44. This trick is efficiently used in cascade amplifiers
to lower a content of high harmonics in the output signal. Note that harmonics
caused by nonlinearities often occur with large signals and gains. ��

Let us come back to (5.197). If the denominator is zero,

Δ(s) = 1 + Hb(s)Hd(s) = 0 , (5.201)

a system has poles requiring investigations for stability. It is thus worth finding
proper criteria of the Lyapunov stability in the s domain, directly via (5.201).

One already knows that, in order to ascertain stability of linear systems,
the input must be zero-valued and autonomous equation investigated. If we let
X(jω) = 0, then (5.196) becomes (5.201), meaning that it is the characteristic
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equation. The latter may be represented with the n-degree polynomial having
the roots s1, s2, . . . , sn. By these roots, the output of an autonomous system
can be performed in the time domain by a series of exponential solutions,

y(t) = a1e
s1t + a2e

s2t + . . . + ane
snt . (5.202)

Analyzing (5.202), we inter that the series produces a finite value only if
all of the roots s1, s2, . . . , sn have negative real parts (then all the exponential
functions converge). In other words, a system is stable if all of the roots of
the characteristic equation are placed in the left part of a complex plane.
If the roots that are unknown, stability can be ascertained directly via the
characteristic equation polynomial if one tests a system by the Routh-Hurwitz
or Nyquist stability criteria.

5.6.2 Routh-Hurwitz Criterion

Earlier, we used the criterion by Routh and Hurwitz (4.168) in the time do-
main. In order to apply it equally in the transform domain, let us represent
the characteristic equation (5.201) with the n-degree polynomial

Δ(s) = ans
n + an−1s

n−1 + . . . + a1s + a0 = 0 , (5.203)

in which all of the coefficients are real and roots are still unknown. Stability
of a system can now be ascertained as follows, provided the definition:

Routh-Hurwitz criterion of stability : A system described with
(5.203) is stable (all the roots lie in the left plane) if and only if the
following quantities are positive-valued :
• All of the coefficients ai, i ∈ [0, n],
• Hurwitz determinant

Dn−1 =

∣∣∣∣∣∣∣∣∣∣∣

an−1 an 0 0 . . . 0 0
an−3 an−2 an−1 an . . . 0 0
an−5 an−4 an−3 an−2 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . a0 a1

∣∣∣∣∣∣∣∣∣∣∣

,

• All principle minors of the Hurwitz determinant

∣∣an−1

∣∣ ,
∣∣∣∣
an−1 an
an−3 an−2

∣∣∣∣ ,
∣∣∣∣∣∣
an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣∣∣∣∣∣
, . . .

��
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Example 5.47. A closed loop system is represented with the characteristic
equation s3 + 3s2 + 6s + 2 = 0. The test for stability by the Routh-Hurwitz
criterion is as follows. The first test is positive, because all the coefficients are
positive. The second test is also positive, because the Hurwitz determinant is
positive,

∣∣∣∣
3 1
2 6

∣∣∣∣ = 18− 2 = 16 > 0 .

The only principle minor here is positive, 3 > 0, thus the third test is
positive as well. Because all three tests are positive, the system is stable. ��

5.6.3 Nyquist Criterion

The other test for stability is provided in the frequency domain by the Nyquist6

criterion known from 1932. The criterion is based on the Cauchy7 “Principle
of Argument” from complex analysis. By applying this criterion to the open
loop system transfer function

Λ(s) = Hd(s)Hb(s) , (5.204)

it becomes possible getting information about stability of the closed loop,
provided the definition:

Nyquist criterion of stability : A system is asymptotically stable
if the Nyquist plot of Λ(s) does not encircle the point −1 + 0i in the
complex plane in the clockwise direction. ��
It follows that the Nyquist criterion applied to the frequency response

of an open loop ascertains stability of a closed loop. Why does it become
possible? No magic, just the poles of Δ(s) (5.191) are contributed by the
poles of Λ(s) (5.204). From the plot of magnitude |Λ(jω)| vs. phase ϕ(ω)
or real part ReΛ(jω) vs. imaginary part ImΛ(jω) as ω varies from negative
infinity to positive infinity, the number of unstable poles can be determined.
Additionally, we can realize how “close” the closed loop system is to becoming
unstable.

Example 5.48. Given an LP transistor amplifier with the transfer function

Hd(s) =
2

1 + sτ
,

where τ = 10sec. The output and input are coupled directly, Hb(s) = 1,
therefore the open loop transfer function is Λ(s) = Hd(s). By s = jω, the
frequency response of an open loop is calculated as

6 Harry Nyquist, Swedish born, US physicist, 7 February 1889–4 April 1976
7 Augustin Louis Cauchy, French mathematician, 21 August 1789–23 May 1857.
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Λ(jω) =
2√

1 + ω2τ2
e−j arctan(ωτ) ,

having the real and imaginary parts, respectively,

ReΛ(jω) =
2

1 + ω2τ2
and ImΛ(jω) =

2ωτ

1 + ω2τ2
.

The corresponding Nyquist plot is shown in Fig. 5.45a. Because the plot does
not encircle the point −1 + 0i, the amplifier is stable. ��

Fig. 5.45. Nyquist plots: (a) Example 5.48 and (b) Example 5.49.
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Example 5.49. An amplifier with the transfer function

Hd(s) =
1.5

1 + sτ
,

where τ = 10sec, is closed with the feedback inverting amplifier having the
transfer function Hb(s) = −Hd(s). The open loop transfer function is thus

Λ(s) = Hd(s)Hb(s) = − 1.52

(1 + sτ)2

and the associated frequency response is given by

Λ(jω) =
1.52

1 + ω2τ2
ej(π−2 arctanωτ) .

Fig. 5.45b sketches the relevant Nyquist plot. The curve encircles a point
−1 + 0i and the amplifier is thus unstable. Indeed, the inverting amplifier
makes the feedback positive that cause instability. ��

5.6.4 Gain and Phase Stability Margins

The other value of the Nyquist stability criterion is that it allows determin-
ing the relative degree of system stability by producing the so-called gain
and phase stability margins. The margins tell us how far the given system is
from the instability region that is needed, for example, for frequency domain
controller design techniques.

The gain margin Gm is the factor by which one evaluates how lesser (in
dB) the system open loop gain is than the critical (instability) value (0 dB),

Gm = 20 log
1

|Hd(jωcp)Hb(jωcp)| [dB] . (5.205)

The frequency at which Gm is evaluated is the phase crossover frequency ωcp,
calculated by

arg[Hd(jωcp)Hb(jωcp)] = π . (5.206)

The phase margin Pm, in radian, is defined as the amount by which the
phase of Λ(jω) exceeds π when |Λ(jω)| = 1,

Pm = π + arg[Hd(jωcg)Hb(jωcg)] , (5.207)

and the frequency at which Pm is evaluated is the gain crossover frequency
ωcg, calculated by

|Hd(jωcg)Hb(jωcg)| = 1 . (5.208)

The most transparent way to evaluate Gm and Pm offers the Bode plots
(Fig. 5.46a). With a bit larger burden, the margins can be evaluated via the
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Fig. 5.46. Gain (Gm) and phase (Pm) stability margins: (a) via the Bode plots
and (b) via the Nyquist plot.

Nyquist plot (Fig. 5.46b). In both cases, it is enough considering only positive
frequencies obeying the following rule: A system is stable if Gm > 0, it stays
at a bound of stability by Gm = 0, and it is unstable when Gm < 0.
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Example 5.50. An LTI channel is composed by a cascade of two amplifiers.
The first amplifier inverts a signal with the transfer function H1(jω) = −1

1+jωτ

and the second one, H2(jω) = G0
1+jωτ , has a gain G0 that can be adjusted. An

ideal integrator feedback, Hb(jω) = 1
jω , is placed over the channel so that the

open loop gain is

Λ(jω) =
G0

jω(1 + jωτ)2
.

The crossover frequencies as well as the gain and phase stability margins
calculated for G0 = 1, G0 = 2, and G0 = 3 are postponed to Tab. 5.1. The
relevant Bode and Nyquist plots are shown in Fig. 5.47.

Table 5.1. Stability parameters of a system (Example 5.50)

Gain ωcp ωcg Gm,dB Pm,rad

G0 = 1 1 0.682 6.021 0.373
G0 = 2 1 1 0 0
G0 = 3 1 1.241 –3.522 –0.193

As can be seen (Fig. 5.47a), “stability resources” with G0 = 1 are about
Gm = 6dB and Pm = 10.7◦. With G0 = 2, the system stays at the bound of
stability, Gm = Pm = 0. If G0 = 3, there is a “lack of stability” evaluated by
Gm = −3.5dB and Pm = −5.5◦.

Fig. 5.47. Gain (Gm) and phase (Pm) stability margins: (a) Bode plots and (b)
Nyquist plot.
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In turn, the Nyquist plot (Fig. 5.47b) shows that the point (−1, j0) is
encircled by G0 = 3 (system is unstable), not encircled by G0 = 1 (system is
stable), and the case of G0 = 2 is intermediate. ��

5.6.5 Bandwidth Correction by Feedback

The widely used property of feedback is its ability to correct the bandwidth of
a system. The effect occurs owing to dissipation or insertion of some amount of
energy that results, respectively, in contraction or extension of the bandwidth.
The effect is exploited, for example, in high-quality audio coding.

To demonstrate such facilities of feedback, let us consider an LP amplifier
with the frequency response Ha(jω) such that Ha(j0) = G0. If we place over
a feedback with the uniform gain Gb, the resulting frequency response at zero
will be

H(jω) =
Ha(jω)

1 + GbHa(jω)
. (5.209)

We may now substitute Ha(jω) = A(ω)+ jB(ω) and the relation becomes

H(jω) =
Ha(jω)

1 + GbA(ω) + jGbB(ω)
,

meaning that the real part of the denominator is changed and so is the cut-off
frequency of the bandwidth. Because the feedback gain may be either negative
or positive, the bandwidth is either extended or contracted, respectively.

Bandwidth Flattering and Correction

Consider a simplest inverting LP amplifier with the frequency response

Ha(jω) =
−G0

1 + jωτ
,

where a gain G0 is constant. By the feedback inserted with a gain Gb, the
frequency response and the relevant magnitude response of a closed loop can
be found to be, respectively,

H(jω) =
−G0

1 + GbG0 + jωτ
,

|H(jω)| = G0√
(1 + GbG0)2 + ω2τ2

. (5.210)

Fig. 5.48a sketches the Bode plots of |H(jω)| for several values of the open
loop gain GbG0. Fig. 5.48b gives a picture for the output additionally gained
with 1 + GbG0.

In the first case (Fig. 5.48a), positive values of GbG0 cause flattering of the
frequency response simultaneously with decreasing the gain factor. In turn,
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Fig. 5.48. Bode plot of the magnitude response of an amplifier with feedback for
τ = 10−2sec: (a) original and (b) gained with 1 + GbG0.

negative values of GbG0 produce an opposite effect. To realize what happens
with the bandwidth, by changing GbG0, let us scale each curve with 1+GbG0.
This makes the gain unity at zero for all values of GbG0 and we see that the
bandwidth is extended by the positive feedback and contracted by negative.
Following (5.210), the cut-off frequency is defined at the level of 1/

√
2 by

ωc =
1
τ
(1 + GbG0) ,

allowing evaluating Gb for the required bandwidth.
The simplest way to organize a negative feedback implies including a resis-

tor to the collector branch of a transistor amplifier as shown in Fig. 5.49. Here
increase in the input voltage Vin causes increase in the emitter current. The
latter induces an additional amount of the feedback voltage Vb on a resistor
Rb. Consequently, the base-emitter voltage Vin − Vb becomes lower and the
feedback is thus negative.
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Fig. 5.49. Negative feedback in a transistor amplifier.

Regenerative Amplification

Nowadays, regenerative amplification is used widely in nanosecond and fem-
tosecond techniques. To explain the operation principle, let us consider a
resonant inverting amplifier performed with the response

Ha(jω) =
Ha(j0)

1 + j(ω − ω0)τ
, (5.211)

where Ha(j0) = −G0, τ = 2Q/ω0 is the time constant, ω0 is the resonance
frequency, and Q is the quality factor. A positive feedback loop with a uniform
gain Gb is placed over the amplifier so that the resulting frequency response
becomes

H(jω) =
Ha(jω)

1 + GbHa(jω)
=

−G0

1−GbG0 + j(ω − ω0)τ
. (5.212)

An influence of the feedback gain Gb is illustrated in Fig. 5.50a. It is seen
that, by Gb > 0, the gain increases around ω0, where the feedback is most
efficient. Increasing in the gain results in increasing in the quality factor.
Indeed, if we scale each curve with 1−GbG0, the frequency response acquires
a constant gain G0 at ω0 for all Gb and we watch for narrowing the bandwidth,
by Gb > 0, as shown in Fig. 5.50b.

An example of the regenerative amplifier is shown in Fig. 5.51. Here an
amount of the voltage taken from the parallel resonant circuit is induced to
the input via the mutual inductance M . In such a way, a positive feedback is
organized.

Certainly, regenerative amplification is a very simple way to increase the
gain and reduce the bandwidth of a resonance amplifier. Nevertheless, it is
not the one that is widely used. The fact is that every amplifier with positive
feedback is addicted to self excitation when, even occasionally and by external
factors, the open loop gain tends toward unity, G0Gb → 1. The amplifier then
becomes unstable and its duties can no longer be fulfilled.
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Fig. 5.50. Magnitude response of a regenerative amplifier: (a) original and (b)
gained with 1−GbG0.

Delay Feedback Systems

At high frequencies, system feedbacks often almost ideally delay signals. A
time delay τ0 can also be inserted intentionally to attach some useful prop-
erties to a system. A system with a delay in the feedback is called the delay
feedback system and the delay feedback system can be represented by the
block diagram as shown in Fig. 5.52.

An ideal delay feedback is usually modeled at a frequency ω with the
frequency response Hτ (ω) = e−jωτ0 . In view of that, the frequency response
and magnitude response of the delay feedback system become, respectively,
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Fig. 5.51. Regenerative amplifier.

Fig. 5.52. Delay feedback system.

H(jω) =
G0

1 + GbG0e−jωτ0
(5.213)

|H(jω)| = G0√
1 + 2GbG0 cosωτ0 + G2

bG
2
0

. (5.214)

Owing to a periodic cosine function in the denominator, the response
H(jω) is also periodically repeated with the frequency step Ω = 2π/τ0 as
shown in Fig. 5.53. As it is seen, the magnitude tends toward infinity by
GbG0 → 1 with cosωτ0 = −1 that causes instability.

We notice that a great deal of applications of delayed feedback systems
is associated namely with their ability to have periodic frequency responses.
Such systems can possess chaotic attractors with extremely high dimension,
even if only a few physical degrees of freedom are involved. Delayed feedback
allows designing multifrequency oscillators and watch for the noise-induced
resonances and bifurcations. Also, special robust methods are developed for
controlling delay feedback systems with bounded uncertainty.
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Fig. 5.53. Periodic magnitude response of a delay feedback system.

5.7 Selective Filter Approximations

Except for optimal filters, the filter magnitude response is typically, desirable
to have a rectangular (“ideal”) shape implying an abrupt transition between
the passband and the stopband or the infinitely steep roll-off slope. Practi-
cally, such a magnitude response cannot be obtained and they search for an
approximation that still meets the requirements. Commonly, the approxima-
tion is supposed to be the best if a compromise is found between the following
filter parameters: the filter order n, roll-off rate (in dB per decade or dB per
octave), attenuation rate near the cut-off frequency ωc, monotonicity over all
frequencies, passband ripple, and stopband ripple.

To find and implement practically the best approximation, a number
of standard filter characteristics have been defined and described in special
engineering books. Below, we observe in brief the most widely used continuous-
time filters of high orders, such as Butterworth and Chebyshev. These filters
are represented in the transform and frequency domains and can be described
in state space.

5.7.1 Butterworth Filter

Among all other continuous-time (analog) filters, the arbitrary order filter
designed by Butterworth8 in 1930 has a maximally flat (without ripple) fre-
quency response in the passband and monotonically rolls off towards zero

8 Stephen Butterworth, British engineer.
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beyond the bandwidth (in the stopband). As any other first-order filter, the
first-order Butterworth one has a roll-off slope of -20 dB per decade. A second-
order Butterworth filter rolls off with -40 dB per decade, a third-order with
-60 dB, and so on.

The transfer function of an n-order LP Butterworth filter is given with

H(s) =
G0

n∏
k=1

(s− pk)
, (5.215)

where the poles
pk = ejπ(

1
2+ 2k−1

2n ) , k = 1, 2, . . . , n (5.216)

are entirely placed in the left plane and G0 is a constant gain. It is seen that
(5.215) has no roots in the numerator and thus no zeros.

For the transfer function (5.215), the square magnitude response of a nor-
malized filter having the cut-off frequency ωc = 1rad/sec and G0 = 1 is
defined by

|H(jω)|2 =
1

1 + ω2n
. (5.217)

Equivalently, in the s domain, (5.217) can be rewritten as

H(s)H(−s) =
1

1 + (−s2)n
. (5.218)

Properties of the Butterworth filter are completely defined by (5.217):

• The filter has only poles, because all of its zeros are placed at infinity.
• At ω = 1 rad/s, the filter gain is |H(jωc)| = 1/

√
2, i.e. the magnitude

response rolls off by 3 dB.
• The filter order n fully defines its frequency response.

Design of the Butterworth filter implies calculating the only parameter
that is the filter order n. Given the cut-off frequency ωc and an auxiliary
frequency ωa at which an attenuation parameter is A, the filter order is cal-
culated by

n =
log(A2 − 1)
2 log(ωa/ωc)

. (5.219)

Example 5.51 (Butterworth LP filter). Let the Butterworth LP filter
be designed to have a cut-off frequency fc = 60Hz (-3 dB) and an auxiliary
frequency fa = 120Hz (-66 dB).

Calculate 1/A = 1066/20 = 0.0005 and fa/fc = ωa/ωc = 2. By (5.219), we
have n = 10.99 and let n = 11. By (5.215), (5.216), and G0 = 1, calculate the
filter transfer function.

The filter is characterized with 11 poles, all of which lie in the left plane
as shown in Fig. 5.54. The magnitude response, phase response, and group
delay of this filter are sketched in Fig. 5.55. Observing Fig. 5.55, one can infer
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Fig. 5.54. Poles of an 11-order Butterworth LP filter.

that, in line with a nice flatness in the passband, the filter phase is not linear.
Therefore, the group delay is not constant. ��
To find a practical solution for the Butterworth approximation (to design the
filter), there have been proposed a number of different filter topologies. Of
importance is that the proposed filter circuits differ only in the values of the
components, but not in their connections.

One of the most widely used topology was proposed by Cauer9. The But-
terworth filter of a given order n calculated by (5.219) can be designed using
the Cauer first form shown in Fig. 5.56. The capacitances and inductances for
the normalized filter are given by

Ck = 2 sin
2k − 1

2n
π , k is odd , (5.220)

Lk = 2 sin
2k − 1

2n
π , k is even . (5.221)

Example 5.52 (Design of the Butterworth LP filter). The Butterworth
LP filter is required to have an order n = 5. By (5.220) and (5.221), the
components of the normalized filter (Fig. 5.56) are calculated to be C1 =
C5 = 0.618 F, C3 = 2 F, and L2 = L4 = 1.618 H. ��

9 Wilhelm Cauer, German mathematician and scientist, 24 June 1900-22 April
1945.
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Fig. 5.55. Frequency response of an 11-order Butterworth LP filter (Example 5.51):
(a) magnitude, (b) phase mod 2π, and (c) group delay.

Fig. 5.56. The first form Cauer’s topology of the Butterworth filter.

5.7.2 Chebyshev Filter

A special feature of the Chebyshev filter is that it minimizes the error caused
by ripple in the passband. The filter is named in honor of Chebyshev be-
cause the filter frequency response is derived from Chebyshev polynomials.
This type of filter has a much steeper monotonous roll-off. However, ripple
appears in passband that makes it unsuitable for audio systems, for exam-
ple. The filter is preferable for applications in which the passband includes
only one frequency, e.g., the derivation of a sine wave from a square wave,
by filtering out the harmonics. Two types of Chebyshev filters are commonly
recognized.



5.7 Selective Filter Approximations 337

Type I Chebyshev Filter

The transfer function of the type I Chebyshev filter is defined by (5.215) with
poles specified by

pk = σk + jμk , (5.222)

where

σk = −γ − γ−1

2
sin

(2k − 1)π
2n

,

μk =
γ + γ−1

2
cos

(2k − 1)π
2n

,

γ =

(
1 +
√

1 + ε2

ε

)1/n

,

and ε is the ripple factor.
The magnitude response of a normalized type I Chebyshev filter, ωc = 1,

is defined as
|H(jω)| = 1

1 + ε2T 2
n(ω)

, (5.223)

where Tn(ω) is an n-order Chebyshev polynomial

Tn(ω) =
{

cos(n arccosω), |ω| � 1
cosh(n arccoshω), |ω| > 1 (5.224)

and the order n is calculated by

n =
log
(√

(A2 − 1)/ε2 +
√

(A2 − 1)/ε2 − 1
)

log
(
ωa/ωc +

√
ω2

a/ω
2
c − 1

) , (5.225)

where we allowed for an arbitrary cut-off frequency ωc and auxiliary frequency
ωa > ωc. Fig. 5.57a shows a typical magnitude response of the type I Cheby-
shev filter for odd n. It is seen that the ripple has equal amplitudes over the
passband. The error in the passband is thus 1/(1 + ε2).

Type II Chebyshev Filter

The type II Chebyshev filter has both zeros and poles. Therefore, its transfer
function is represented with a general relation

H(s) = G0

m∏
k=1

(s− zk)

n∏
k=1

(s− pk)
, (5.226)

where all of the zeros are purely imaginary corresponding to the points
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Fig. 5.57. Two types of the Chebyshev filter for odd order n: (a) ripple in bandpass
and (b) ripple in stopband.

zk = jωa

(
cos

2k − 1
2n

π

)−1

, k = 1, 2, . . . , n , (5.227)

and the poles are defined by (5.222) if to substitute

σk = ωa
αk

α2
k + β2

k

, μk = −ωa
βk

α2
k + β2

k

,

where

αk = −γ − γ−1

2
sin

(2k − 1)π
2n

,

βk =
γ + γ−1

2
cos

(2k − 1)π
2n

,

and γ =
(
A +
√
A2 − 1

)1/n
.

The magnitude response of the type II Chebyshev filter is defined by

|H(jω)|2 =
1

1 + ε2T 2
n(ωa

ωc
)/T 2

n( ωa
ωcω

)
, (5.228)

where the Chebyshev polynomial is given by (5.224) and the filter order is
calculated by (5.225). Fig. 5.57b sketches a typical magnitude response of the
type II Chebyshev filter for odd n. As can be seen, the response is flat in the
passband and ripples appear in the stopband with a maximum amplitude at
the level of 1/A.

Overall, as follows, each type of Chebyshev filters is completely specified
with a given ωc by any of the following parameters:

• Filter order n. ��
• Ripple factor ε. ��
• Frequency ωa > ωc at which an attenuation parameter A must be given.

��
• Attenuation parameter A corresponding to ωa. ��
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Example 5.53 (Chebyshev LP filter). The Chebyshev LP filter is de-
signed for fc = 60Hz (-2 dB) and fa = 80Hz (-66 dB).

From an equality −2 = 20 log 1√
1+ε2

, we determine ε = 0.764 and an equal-
ity −66 = 20 log 1

A yields A = 1995. By (5.225), the filter order is calculated
as n = 10.762 and we let n = 11.

The frequency response of the type I filter is shown in Fig. 5.58. Inherently,

Fig. 5.58. Frequency response of an 11-order Chebyshev LP filter of type I (Example
5.53): (a) magnitude, (b) phase mod 2π, and (c) group delay.

the ripple appears in the passband with a maximum amplitude corresponding
to −2 dB. Beyond the passband, the magnitude response (Fig. 5.58a) rolls off
monotonously. Like the case of Butterworth filters, here the phase response
(Fig. 5.58b) is not linear causing the group delay to be not constant (Fig.
5.58c) with a maximum delay of about 140 ms at the cut-off frequency.

Fig. 5.59 illustrates the frequency response of the type II filter. Just on the
contrary, here the ripple appears in the magnitude response (Fig. 5.59a) in
the stopband with a maximum amplitude corresponding to −66 dB. Within
the passband, the magnitude response is flat. The phase response (Fig. 5.59b)
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Fig. 5.59. Frequency response of an 11-order Chebyshev LP filter of type II (Ex-
ample 5.53): (a) magnitude, (b) phase mod 2π, and (c) group delay.

is still not linear. Therefore, the group delay (Fig. 5.59c) ranges from zero
up to decades of ms with a maximum value of about 55 ms at the cut-off
frequency. ��

As well as the Butterworth filter, the Chebyshev one of n-order can be
implemented practically for the given ripple factor ε, bandwidth, and roll-off
beyond. Engineering methodologies to design LC and RC Chebyshev filters
of type I and II can be found in a number of books devoted to analog filters
design. These books give also an opportunity to design filters based on the
Bessel, elliptic, and some other useful approximations.

In this Chapter we considered basic methods of LTI systems description
in the frequency (ω) domain and transform (s = σ + jω) domain associated,
respectively, with Fourier analysis and Laplace analysis. Even though the
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transform domain and time domain are equivalent for LTI systems, in many
cases namely the transform allows solving problems with low burden.

5.8 Summary

In the transform domain, LTI systems are analyzed using the Fourier and
Laplace transforms via the frequency response and transfer function, respec-
tively. The following fundamental canons serve in the transform domains:

– The LTI system frequency response is
– The response to ejωt.
– The Fourier transform of the impulse response h(t).
– The ratio of the Fourier transforms of the output and input.

– As a complex function, the frequency response is specified with the mag-
nitude and phase responses.

– A transmission is distortionless, if the input is scaled and delayed.
– The phase delay is evaluated by the negative ratio of the phase response

to the angular frequency.
– The group delay is evaluated by the negative derivative of the phase re-

sponse with respect to the angular frequency.
– Filtering is the process, by which the amplitudes of some spectral compo-

nents of the input are changed or even suppressed.
– The Laplace transform is a generalization of the Fourier transform for the

complex frequency. It may be bilateral and unilateral.
– In order for the Laplace transform to be unique for each function, the

region of convergence must be specified as part of the transform.
– The system transfer function is

– The ratio of the Laplace transforms of the output and input.
– The Laplace transform of the impulse response h(t).

– A closed loop system is stable if all of the roots of the characteristic equa-
tion have negative real part (lie in the left part of the complex plane).

– The gain and phase stability margins determine the relative degree of
system stability.

– Negative feedback reduces the gain and expands the bandwidth of a sys-
tem. Positive feedback increases the gain and contracts the bandwidth.

5.9 Problems

5.1. Find simple words to explain why the LTI systems can equivalently be
represented in the time and frequency domains. How does this property relate
to the inherent property of linearity of LTI systems?
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5.2. Analyze electronic systems briefly described in Chapter 1 and explain
which system may better be analyzed in the time domain and which in the
frequency domain.

5.3 (Frequency response). An LTI system is represented with the follow-
ing impulse response. Define the frequency response of a system.

1. h(t) = e−atu(t), a > 0
2. h(t) = e−3tu(t) sin t
3. h(t) = Au(t)−Au(t− τ)
4. h(t) = e3tu(−t)
5. h(t) = Au(t)− 2Au(t− τ) + Au(t− 2τ)
6. h(t) = e−2|t|

7. h(t) = a
(
1− t

τ

)
[u(t)− u(t− τ)]

8. h(t) = |t− 1|e−|t|
9. h(t) = a tτ [u(t)− u(t− τ)]

10. h(t) = δ(t) + e−tu(t)
11. h(t) = a sin b|t|

b|t| , a > 0, b > 0

5.4. Derive and investigate the magnitude and phase responses of an LTI
system, which frequency response is specified in Problem 5.1.

5.5. The input and output signals of an LTI system are given below, x(t)
and y(t), respectively. Define the frequency response H(jω) of a system

1. x(t) = u(t) y(t) = te−2tu(t)
2. x(t) = u(t) y(t) = t2e−tu(t)
3. x(t) = e−tu(t) y(t) = u(t)
4. x(t) = u(t)− e−2tu(t− τ) y(t) = e−2tu(t)
5. x(t) = a tτ [u(t)− u(t− τ)] y(t) = a[u(t)− u(t− τ)]
6. x(t) = a

(
1− t

τ

)
[u(t)− u(t− τ)] y(t) = a tτ [u(t)− u(t− τ)]

5.6. An LTI system is represented with the impulse response shown in Fig.
5.60. Define the frequency response of a system. Derive and plot its magnitude
and phase responses.

5.7. An LTI system is given with the following spectral densities of its input
and output, X(jω) and Y (jω), respectively. Define the frequency response of
a system. Draw plots of the magnitude and phase responses

1. X(jω) = 2
1+jω Y (jω) = 1

(1+jω)2

2. X(jω) = 1
1+jω + 1

1−jω Y (jω) = 1
1+jω

3. X(jω) = k sinωτ
ω Y (jω) = A

1−jω
4. X(jω) = 1

(1+jω)(1−2jω)2 Y (jω) = 1
2(1+jω)2

5. X(jω) = A[u(ω)−u(ω−ωc)] Y (jω) = B[u(ω−0.5ωc)−u(ω−0.8ωc)]
6. X(jω) = k1

sinωτ
ω

sinωτ/2
ω Y (jω) = k2

sin2 ωτ
ω2
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Fig. 5.60. Impulse response of a system.

5.8. A LTI system is given with the ODE

1. 3y′′′ +
2∑

m=1
bm

dmx
dtm − 4y′ + y = 2x, b2 = 2, b1 = 1

2. ay′′ + by′ + cy = dx′′ − ex′

3. 2 d
2x
dt2 + 4x + y = 2 d

3y
dt3 + 4 dxdt

4. 4(
∫
ydt− x′) = 3(y′ − x)

5. a2y
′′ − b0x− a1y

′ − b1x
′ = 0

6. 2y′′ − 3
∫
ydt = 2x′ − x

7. 2 d
2y
dt2 + x + 2y = 2 d

3y
dt3 + 4 dxdt

Define the frequency response of a system. Draw and analyze the magni-
tude and phase responses.

5.9. Show the Bode plot of the magnitude response found in Problem 5.7.
Determine the function slopes, in dB/decade, in different regions.

5.10. Explain why the linear and constant phase and group delays are prefer-
able for systems. Give examples of systems, in which the nonzero and nonlinear
phase and group delays may course substantial errors.

5.11. Define the phase and group delays of an LTI system, which frequency
response is found in Problem 5.8.

5.12 (Filtering). An LTI system is given with the frequency response as-
sociated with the ODE (Problem 5.8). Define the magnitude response. What
kind of filters (LP, HP, BP, or BR) represents this response?

5.13. An LTI filter is designed to have the following frequency response.
Define the impulse response of a filter.

1. H(jω) =
{

1, 0 � ω � ωc and 2ωc � ω � 3ωc

0, otherwise
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2. H(jω) =

{
a
(
1− |ω|ωc

)
, ω � |ωc|

0, otherwise

3. H(jω) =

⎧
⎨
⎩

2A, 0 � ω < 0.5ωc
A, 0.5ωc � ω � ωc

0, otherwise
4. H(jω) = Ae−a|ω|

5. H(jω) = A sin aω
ω

In the last case, use the duality property of the Fourier transform.

5.14. An AM signal x(t) = A0(1 + 0.25 cos0.1ω0t) cosω0t passes through an
LTI filter with the following frequency response. Determine the amplitudes of
the spectral components in the input and output of the filter.

1. LP filter: H(jω) = 1
1+jω/ω0

2. HP filter: H(jω) = jω/ω0
1+jω/ω0

3. BR filter: H(jω) = jξ(ω)
1+jξ(ω) , ξ = 4(ω − ω0)/ω0

4. BP filter: H(jω) = 1
1+jξ(ω) , ξ = 4(ω − ω0)/ω0

5.15 (Systems of the first order). An LTI system of the first order is
given with an electrical equivalent (Fig. 5.61). Define the frequency response
of the system.

Fig. 5.61. Systems of the first order.

5.16. Define the magnitude response of a system given in Problem 5.15. What
kind of filters represents this system. Show the Bode plot and determine the
cut-off frequency.

5.17. Define the phase response of a system given in Problem 5.15. Evaluate
the phase and group delays.
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5.18 (Systems of the second order). An electrical system of the sec-
ond order is given with the scheme shown in Fig. 5.62. Define the frequency
response of the system.

Fig. 5.62. Systems of the second order.

5.19 (Laplace transform). Define the transfer function of a system rep-
resented with the impulse response (Problem 5.3). Determine the region of
convergence for each Laplace transform. Characterize causality of a system.

5.20. Given the input and output (Problem 5.5), define the transfer function
of a system and ascertain its stability.

5.21. An LTI system is represented with the ODE (Problem 5.8). Assuming
zero initial conditions and using the properties of the Laplace transform, define
the transfer function of a system and the relevant ROC.

5.22. An LTI system is represented with the following transfer function. Find
the zeros and poles. Ascertain stability and causality.

1. H1(s) = (s+1)(s−3)
(s2+2s−1)(s+3) , Re(s) > −0.5

2. H2(s) = s−1
(s+2)(s−5)(s+6) , Re(s) > 1

3. H3(s) = s+4
s2−s−2 + 1

s+1 , Re(s) < 0.5
4. H4(s) = 1

s−1 + 2
s+2 + 1

s+3 , Re(s) < −0.5

5.23. Using the cover-up method, represent the transfer functions given in
Problem 5.22 (items 1–3) in the simple forms (as in item 4) placed to a table
of the Laplace transforms.

5.24. The zeros and poles of the LTI system transfer function are placed on
the ROC as shown in Fig. 5.63. Which system is stable and which is not?
Which is causal and which is not?
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Fig. 5.63. ROCs of systems with known poles and zeros.

5.25 (Solving ODEs with the Laplace transform). An LTI system is
given with the ODE y′ + 0.1y = 2x′, y(0) = 1. Solve this equation using the
Laplace method.

5.26. Assuming arbitrary initial conditions and using the unilateral Laplace
transform, solve the ODE of an LTI system given in Problem 5.8.

5.27. Show the Laplace domain equivalent of electric circuits given in Fig.
5.61 and Fig. 5.62. Write an equation of the circuit in the Laplace form. Use
a table of the Laplace transforms and go to the time function.

5.28 (Block diagrams). Represent the system ODE (Problem 5.8) in the
first and second direct forms of diagrams in the s domain.

5.29 (State space model in the s domain). The state space model of a
system, q′(t) = Aq(t) + Bx(t) and y(t) = Cq(t) + Dx(t), is given with the
following matrices. Define the transfer function of a system

1. A =
[

2 4
0 2

]
, B =

[
0
2

]
, C =

[
1 0
]
, D =

[
0
]

.

2. A =
[−1 0

0 −1

]
, B =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
, D =

[−1 0
0 −1

]
.

In the case of a MIMO system (item 2), solve the problem for every input-
to-output pair.

5.30 (Stability of closed loop systems). A feedback with the transfer
function Hb = 1/s is placed over the system given in Problem 5.22. Ascertain
stability of the system by the Routh-Hurwitz test.
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5.31. Test the system given in Problem 5.30 by the Nyquist criterion of
stability.

5.32. Define the gain and phase stability margins of systems described in
Problem 5.30.

5.33 (Selective filters approximations). An LP filter is required with
the cut-off frequency fc = 11 kHz at −1 dB and additional frequency fa = 12
kHz at −60 dB. Determine the Butterworth filter order and Chebyshev filter
order.

5.34. A 5-order Butterworth LP filter is used with a cut-off frequency fc = 1
MHz at −1 dB. Determine the roll-off slope and attenuation (in dB) at fa =
1.5fc.

5.35. Solve Problem 5.34 for the 5-order Chebyshev LP filter having ripple
−1 dB in the passband and a cut-off frequency fc = 100 kHz.



6

Linear Time-Varying Systems

6.1 Introduction

Any linear system represented with the time-dependent operator O(t) demon-
strates different properties at least at two different time instances. A system
of this type is called linear time-varying (LTV) or time-variant and its p× 1
output and k×1 input are coupled by the p×k time-varying operator matrix
O(t) as follows

y(t) = O(t)x(t) . (6.1)

Actually, any real physical system is time-varying at least owing to the
flicker noise in its components and environmental influence (e.g. thermal)
making the operator variable. In some applications, it is allowed to ignore
such a nuisance dependency as being insignificant. In another ones, the effect
results in substantial violations of system’s characteristics. Moreover, it can be
generated artificially to attach some special properties to systems. Examples
are the linear parametric amplifier with its ability to remove spectral compo-
nents from one frequency region to another and tracking filter following with
time the carrier frequency (or phase) of the input.

Since the system operator O(t) is time-varying, of prime importance is to
realize how the variations result in the output. On the other hand, it is often
desirable to find a proper LTV operator to obtain the required characteristics
of a system. In both cases, the problem is directly coupled with stability of
a solution, which investigation occupies an important place in the theory of
LTV systems.

6.2 Time-varying Impulse Response and General
Convolution

Because an LTV system is still linear, we could try representing it with the
convolution. The latter, however, must be modified for the inherent time-
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dependency in the operator O(t) causing the system impulse response to be
time-varying as well.

For the sake of simplicity, we start with a SISO LTV system, which output
y(t), by (6.1), is coupled with the input x(t) by

y(t) = O(t)x(t) . (6.2)

Let us think that the input is shaped with the delta function δ(t) acting at
some arbitrary time θ. Since, by the definition, the response of an LTI system
to δ(t− θ) is its impulse response h(t− θ), then it is in order supposing that
the response of an LTV system to δ(t−θ) is its time-varying impulse response
h(t, θ). We therefore can rewrite (6.2) as

h(t, θ) = O(t)δ(t − θ) , (6.3)

noticing that h(t, θ) cannot commonly be a function of t − θ, like for LTI
systems. It certainly must be a more sophisticated function of t and θ.

We can now exploit an identity

x(t) =

∞∫

−∞
x(θ)δ(t − θ) dθ , (6.4)

apply the operator O(t) to both its sides, and, by (6.2) and (6.3), write

y(t) = O(t)

∞∫

−∞
x(θ)δ(t − θ) dθ =

∞∫

−∞
x(θ)O(t)δ(t − θ) dθ =

∞∫

−∞
x(θ)h(t, θ) dθ .

The convolution for SISO LTV systems has thus the form of

y(t) = x(t) ∗ h(t, θ) =

∞∫

−∞
x(θ)h(t, θ) dθ . (6.5)

Relation (6.5) is called the general convolution or general superposition inte-
gral. Analogously to LTI systems, it is readily extended to SIMO, MISO, and
MIMO LTV systems.

The term “general” suggests that (6.5) is applicable for both LTI and LTV
systems. To verify, let us suppose that the system operator is time-invariant.
For any time shift τ , we hence can write h(t, θ) = h(t − τ, θ − τ). By τ = θ,
one goes to h(t, θ) = h(t − θ, 0). For LTI systems, the second variable“0” is
meaningless, and we arrive at the familiar convolution integral (4.4),

y(t) =

∞∫

−∞
x(θ)h(t− θ, 0) dθ =

∞∫

−∞
x(θ)h(t − θ)dθ . (6.6)
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A verification of (6.6) is straightforward. If one lets x(θ) = δ(θ) and thus,
by the definition, y(t) = h(t), an equality of both sides is guaranteed by the
sifting property of the delta function.

In a like manner, one can verify (6.5). Indeed, by letting x(θ) = δ(θ − τ)
and substituting y(t) = h(t, τ), where τ is any time shift, we obtain an equality
h(t, τ) = h(t, τ), provided the definition:

Time-varying impulse response: The response of a system at time
t to the unit impulse at time θ is the LTV system time-varying impulse
response h(t, θ).

��
The realizability constraint for the time-varying impulse response is a zero

value h(t, θ) = 0 for t < θ. Therefore, the output (6.5) is commonly expressed,
by changing a variable to τ = t− θ, in two equal forms of

y(t) =

t∫

−∞
x(θ)h(t, θ) dθ =

∞∫

0

x(t− τ)h(t, t− τ) dτ . (6.7)

Example 6.1. An LP filter with a modulated bandwidth a(t) = (1+α cosΩt)
is described by the ODE

y′ + a(t)y = b(t)x , (6.8)

having b(t) = a(t) and a zero initial condition, y(0) = 0. By (4.54), a general
solution of (6.8) is given as

y(t) = e
−

t∫
0
a(τ)dτ

t∫

0

b(τ)x(τ)e

τ∫
0
a(τ1)dτ1

dτ (6.9)

= e−t−
α
Ω sinΩt

t∫

0

(1 + α cosΩτ)x(τ)eτ+
α
Ω sinΩτdτ . (6.10)

The time-varying impulse response is provided, by x(t) = δ(t− θ), to be

h(t, θ) = (1 + α cosΩθ)e−(t−θ)e−
α
Ω (sinΩt−sinΩθ)u(t− θ) . (6.11)

It is seen that, by α = 0, the response (6.11) degenerates to h(t, θ) =
e−(t−θ)u(t− θ) as associated with the unmodulated filter. If we further shift
both time variables on θ, the response becomes h(t− θ, θ− θ) = e−(t−θ−θ+θ),
or h(t − θ) = e−(t−θ)u(t − θ) or, by θ = 0, h(t) = e−tu(t), corresponding to
the LTI filter. ��
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Example 6.2. Given a SISO LTV system (LP filter) described by (6.8) with
a(t) = 2t, b(t) = 1, and a zero initial condition y(0) = 0. The solution (6.9)
readily produces

y(t) = e−t
2

t∫

0

x(τ)eτ
2
dτ (6.12)

leading, by x(t) = δ(t− θ), to the time-varying impulse response

h(t, θ) = e−(t2−θ2)u(t− θ) . (6.13)

To get an ultimate assurance that the system is LTV, we allow a time shift
τ to the power of the exponential function in (6.13), (t + τ)2 − (θ + τ)2 =
(t2− θ2) +2τ(t− θ). Once τ causes an additional time-function 2τ(t− θ), the
system is time-varying and thus h(t, θ) 	= h(t − θ). Fig. 6.1a sketches (6.13)
as a bi-time surface plot and Fig. 6.1b gives sections for several values of θ.

It is neatly seen (Fig. 6.1b) that the impulse response narrows as θ in-
creases and that its peak value lies at unity. A phenomenon has a clear phys-
ical explanation. Recall that the coefficient a(t) = 2t represents, in (6.8), the
bandwidth of a system and that the wider bandwidth, the narrower the im-
pulse response. Since a(t) increases with time, the impulse response ought to
compress possessing a zero-width at infinity. Namely this tendency is seen in
Fig. 6.1, by increasing θ. ��
Example 6.3. An LTV system (Example 6.2) is described with the impulse
response (6.13). The input is x(t) = u(t). Therefore, by (6.7) and an iden-

tity
x∫
0

ea
2t2dt =

√
π

2a erfi(ax), where erfi(x) is an imaginary error function, the

output is defined as

y(t) =

t∫

0

e−(t2−θ2) dθ = e−t
2

t∫

0

eθ
2
dθ =

√
π

2
e−t

2
erfi(t) . (6.14)

On the other hand, a general solution (6.9) transforms, by x(t) = u(t), to
y(t) = e−t

2 ∫ t
0
eτ

2
dτ that is identical to (6.14). ��

6.2.1 Modified Time-varying Impulse Response

Two inconveniences arise in applications of the time-varying impulse response
h(t, θ). First, the realizability constraint t < θ involves two variables. Sec-
ond, the Fourier transform of h(t, θ) is not the frequency response of an LTV
system. To circumvent, Kailath1 proposed to modify h(t, θ) in two forms by

1 Thomas Kailath, Indian-born US mathematician, 7 June 1935-
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0 2 4 6 8 10
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t

)0,(th )4,(th )7,(th )10,(th

(b)

Fig. 6.1. Time-varying impulse response (6.13): (a) bi-time presentation and (b)
sections for fixed values of θ.

changing the variables. One of those forms has gained currency in the time-
varying communications channels and can be useful in other applications.
Below we present this form as the modified time-varying impulse response.

Let us change the variables in h(t, θ) based on the relation t− θ = τ . If we
substitute t with τ and θ with t, we arrive at a new function h̄(τ, t), provided
the definition:

The modified time-varying impulse response: The response of a
system at time t to the unit impulse at time t− τ is the LTV system
modified impulse response h̄(τ, t).

��
In other words, h̄(τ, t) is a response measured at t to the unit impulse

applied τ seconds ago. The realizability constraint for the modified response
involves only one variable τ , namely the constraint is a zero value h̄(τ, t) = 0
for τ < 0. This predetermines the convolution to be
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y(t) =

t∫

−∞
h̄(t− θ, t)x(θ)dθ =

∞∫

0

h̄(τ, t)x(t − τ)dτ . (6.15)

The obvious relations between the time-varying impulse response and its
modified version are thus the following

h(t, θ) = h̄(t− θ, t) ,

h̄(τ, t) = h(t, t− τ) , (6.16)

where, by Kailath, t is a current time corresponding to instant of observation,
θ corresponds to instant of the unit impulse in the input, and τ corresponds
to age of input.

Example 6.4. An LTV system is represented with the time-varying impulse
response (6.13). By (6.16), the modified response is readily derived to be

h̄(τ, t) = h(t, t− τ) = e−(2t−τ)τu(τ) . (6.17)

Fig. 6.2a shows the bi-time (two-dimensional) presentation of (6.17) and
Fig. 6.2b sketches several section of the surface plot for small values of τ .

Observing Fig. 6.2, one can infer that the modified function (6.17) tends
toward infinity at t = 0, by increasing τ , and approaches zero with time t,
except for the case when τ = 0. Recall that the response h(t, θ) (6.13) does
not exceed unity in the allowed range of θ and t (Fig. 6.1) that makes it more
preferable from the computational point of view. ��

It can be shown, by the transformation of time variables, that the convo-
lution forms, (6.7) and (6.15), are coupled by the relations:

y(t) =

t∫

−∞
h(t, θ)x(θ)dθ =

∞∫

0

h(t, t− τ)x(t − τ)dτ

=

t∫

−∞
h̄(t− θ, t)x(θ)dθ =

∞∫

0

h̄(τ, t)x(t− τ)dτ . (6.18)

Example 6.5. An LTV system is specified with the responses (6.13) and
(6.17). Although with different variables, the response of a system to the unit
step x(t) = u(t) is equivalently defined, by (6.18), to be

y(t) =

∞∫

0

e−[t2−(t−θ)2]u(θ)u(t− θ)dθ =

∞∫

t

e−2tθ+θ2dθ

=

∞∫

0

e−(2t−τ)τu(τ)u(t− τ)dτ =

∞∫

t

e−2tτ+τ2
dτ ,

meaning that two definitions are equal. ��
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Fig. 6.2. Modified impulse response (6.17): (a) bi-time presentation and (b) sections
for fixed values of τ .

Range of Existence for Impulse Responses

Here is the place to outline and compare the ranges of existence for the time-
varying and modified time-varying impulse responses as shown in Fig. 6.3.
By the bi-variable constraint, the response h(t, θ) does not equal zero in
the shadowed section in Fig. 6.3a, when t � θ. In the case of h̄(τ, t), we
need setting τ nonnegative. By this constraint, the modified response exists
for all nonnegative values, τ � 0, in the shadowed section in Fig. 6.3b. Be-
cause h̄(τ, t) is constrained by only one variable τ , it certainly possesses more
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(a)

Fig. 6.3. Range of existence of the time-varying impulse response: (a) h(t, θ) and
(b) h̄(τ, t).

engineering features. One, however, needs to remember that h̄(τ, t) is defined
in a somewhat artificial way, contrary to h(t, θ).

6.2.2 Time-varying Frequency Response

If h(t, θ) satisfies the Dirichlet conditions, it can be represented in the fre-
quency domain by the Fourier transform. Unfortunately, the transform does
not produce the LTV system frequency response, because the input unit im-
pulse is shifted on θ with respect to the response time t, unlike the LTI systems
case. We thus need starting with the basic definition:

Frequency response: The ratio of the system response to the com-
plex exponential signal x(t) = ejωt and ejωt is the LTV system time-
varying frequency response,

H(jω, t) =
Response to ejωt

ejωt
. (6.19)

��
From (6.19) we have

y(t) = Response to ejωt = H(jω, t)ejωt = O(t)ejωt (6.20)

and conclude that, unlike the LTI systems case, the frequency response of an
LTV system changes with time.

Example 6.6. Consider an LTV system (6.8) with the input x(t) = ejωt and
zero initial condition y(0) = 0. By (6.20), its output is specified by y(t) =
H(jω, t)ejωt. Substituting x(t) and y(t) to (6.8) yields the ODE

H ′ + [jω + a(t)]H = b(t) ,

which general solution, by (6.9), is given as
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H(jω, t) = e
−

t∫
0
[jω+a(τ)]dτ

t∫

0

b(τ)e

τ∫
0
[jω+a(τ1)]dτ1

dτ .

For the coefficients a(t) = 2t and b(t) = 1 (Example 6.2), by an identity∫
e−(ax2+bx+c)dx = 1

2

√
π
a e

b2−4ac
4a erf

(
x
√
a + b

2
√
a

)
, the solution becomes

H(jω, t) = e−jωt−t
2

t∫

0

ejωτ+τ
2
dτ

= −j
√
π

2
e−jωt−t

2+ ω2
4

[
erf
(
jt− ω

2

)
+ erf

(ω
2

)]
. (6.21)

Fig. 6.4 illustrates the magnitude response associated with (6.21). It is
seen (Fig. 6.4a) that, by t = 0, the response is zero for all frequencies. This
is because the integration range is zero with t = 0. The case of t = 0 is thus
isolated. With t ≈ 1, the response is brightly pronounced. Further increase in
t and ω forces |H(jω, t)| to approach zero that is neatly seen in the sections
(Fig. 6.4b and c). ��

Let us now find a correspondence between h(t, θ) and H(jω, t). To translate
h(t, θ) to the frequency domain, we employ the convolution (6.5), suppose
that the input is x(t) = ejωt and therefore y(t) = H(jω, t)ejωt. After simple
manipulations, using (6.19), we arrive at a pair of the transformations

H(jω, t) =

∞∫

−∞
h(t, θ)e−jω(t−θ)dθ , (6.22)

h(t, θ) =
1
2π

∞∫

−∞
H(jω, t)ejω(t−θ)dω (6.23)

that was first shown by Zadeh2. As can be seen, (6.22) and (6.23) are not the
Fourier transform pair. However, for a time variable t, the Fourier transform
can be applied regarding the “slow” system frequency Ω. This leads to the
spectral function

H(θ, jΩ) =

∞∫

−∞
h(t, θ)e−jΩtdt =

∞∫

θ

h(t, θ)e−jΩtdt . (6.24)

Of practical importance also is the two-dimensional frequency response or
bi-frequency response produced by the Fourier transform of (6.22),

2 Lotfi Asker Zadeh, US mathematician and computer scientist, 4 February 1921-.
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t

(a )

(c)

Fig. 6.4. Magnitude time-varying response associated with (6.21): (a) frequency-
time presentation, (b) sections for several t, and (c) sections for several ω.

H(jω, jΩ) =

∞∫

−∞
H(jω, t)e−jΩtdt . (6.25)

Certainly, the inverse Fourier transform can be applied to (6.24) and (6.25)
to produce h(t, θ) and H(jω, t), respectively.

Example 6.7. For the impulse response (6.13), the frequency response is de-
fined, by (6.22), to be
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H(jω, t) =

t∫

0

e−(t2−θ2)e−jω(t−θ)dθ = e−jωt−t
2

t∫

0

ejωθ+θ
2
dθ

that contains the same integral as in (6.21) and is thus identical to (6.21).
The spectral function (6.24) is defined in a like manner to be

H(θ, jΩ) =
√
π

2
eθ

2−Ω2
4

[
1− erf

(
θ + j

Ω

2

)]
.

The bi-frequency response H(jω, jΩ) (6.25) does not have a simple closed
form in this case. We therefore calculate this function numerically.

For the illustrative purposes, Fig. 6.5 shows the two-dimensional pictures
of |H(θ, jΩ)| (Fig. 6.5a) and |H(jω, jΩ)| (Fig. 6.5b). It is seen (Fig. 6.5a)
that, by tending θ toward infinity, the LP filter loses an ability to be a filter,
since its frequency response becomes uniforms with zero magnitude. The same
tendency is seen in Fig. 6.5b. Increasing Ω results in flattering the frequency
response and lowering its magnitude down to zero. ��
Example 6.8. An LTV system channel is characterized by the time-varying
impulse response h(t, θ) = δ(t− τ0 − θ)ejΩ0tu(t− θ), where τ0 is a time delay
and Ω0 is a Doppler shift. By (6.22), (6.24), and (6.25), the representation of
a channel in the frequency domain is provided with, respectively

H(jω, t) =

t∫

−∞
δ(t− τ0 − θ)ejΩ0te−jω(t−θ)dθ = e−jωτ0ejΩ0t , (6.26)

H(θ, jΩ) =

∞∫

θ

δ(t− τ0 − θ)ejΩ0te−jΩtdt = e−j(Ω−Ω0)(τ0+θ) , (6.27)

H(jω, jΩ) =

∞∫

−∞
e−jωτ0ejΩ0te−jΩtdt = 2πe−jωτ0δ(Ω −Ω0) . (6.28)

Here we used the familiar sifting property of the delta function (Appendix
A) and an identity

∫∞
−∞ e±j(ω−ω0)tdt = 2πδ(ω − ω0). ��

Let us come back to the transformations (6.22) and (6.23). Simple manip-
ulations with the variables, τ = t− θ, lead to the relations

H(jω, t) =

∞∫

−∞
h(t, t− τ)e−jωτdτ
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(a)

(b)

Fig. 6.5. Time-varying magnitude responses (Example 6.7): (a) |H(θ, jΩ)| and (b)
|H(jω, jΩ)|.
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=

∞∫

−∞
h̄(τ, t)e−jωτdτ = H̄(jω, t) , (6.29)

h(t, t− τ) =
1
2π

∞∫

−∞
H(jω, t)ejωτdω

=
1
2π

∞∫

−∞
H̄(jω, t)ejωτdω = h̄(τ, t) , (6.30)

producing a noble identity

H̄(jω, t) = H(jω, t) . (6.31)

An important meaning of (6.29) and (6.30) is that the Fourier transform
of h̄(τ, t) over τ is the frequency response H(jω, t) of an LTV system.

In line with (6.24) and (6.25), the so-called spread function or Doppler-
delay spread function and bi-frequency response of a system are also used.
Both these functions are specified by the Fourier transform applied to h̄(τ, t),
respectively,

H̄(τ, jΩ) =

∞∫

−∞
h̄(τ, t)e−jΩtdt , (6.32)

H̄(jω, jΩ) =

∞∫

−∞
H̄(jω, t)e−jΩtdt . (6.33)

From (6.31) and (6.33), the other noble identity can be found,

H̄(jω, jΩ) = H(jω, jΩ) . (6.34)

However, the transformation of variables shows that H̄(τ, jΩ) 	= H(θ, jΩ).

Example 6.9. By an identity (6.16), we transfer from h(t, θ) = δ(t − τ0 −
θ)ejΩ0tu(t − θ) (Example 6.8) to the modified impulse response h̄(τ, t) =
δ(τ − τ0)ejΩ0tu(τ). Thereafter, the transform produces

H̄(jω, t) =

∞∫

0

δ(τ − τ0)ejΩ0te−jωτdτ = e−jωτ0ejΩ0t , (6.35)

H̄(τ, jΩ) =

∞∫

−∞
δ(τ − τ0)ejΩ0te−jΩtdt = 2πδ(τ − τ0)δ(Ω −Ω0) , (6.36)
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H̄(jω, jΩ) =

∞∫

−∞
e−jωτ0ejΩ0te−jΩtdt = 2πe−jωτ0δ(Ω −Ω0) . (6.37)

Comparing these results to (6.26)–(6.28), one infers that (6.35) is equal
to (6.26), (6.37) is identical to (6.28), but (6.36) and (6.27) do not fit each
other. ��

So, we can now sketch the most principle features of the impulse responses,
h(t, θ) and h̄(τ, t):

• h(t, θ) is the strong time-varying impulse response (advantage) having two-
variables constraint (disadvantage) and being not the Fourier transform of
the frequency response (disadvantage). ��

• h̄(τ, t) is an artificial modified version of h(t, θ) (disadvantage) having one-
variable constraint (advantage) and being the Fourier transform of the
frequency response (advantage). ��
Both h(t, θ) and h̄(τ, t) can be used equivalently and the choice typically

depends on what the application area is. It turns out, for example, that the
modified function h̄(τ, t) is more preferable for describing the time-varying
communications channels.

Range of Existence for Frequency Responses

For the illustrative purposes, in the above examples we showed the frequency
responses implying positive variables. Most generally, the range of existence of
the frequency responses in the whole range of variables can be sketched as in
Fig. 6.6. By the constraint h(t, θ) = 0 if t < θ, the response H(jω, t) is not zero
only if t � θ (Fig. 6.6a). Two other responses, H(θ, jΩ) and H(jω, jΩ), are
unconstrained as shown in Fig. 6.6b and Fig. 6.6c, respectively. Unconstrained
also are the modified responses H̄(jω, t) and H̄(jω, jΩ) as shown in Fig. 6.6d
and Fig. 6.6f, respectively. However, the response H(τ, jΩ), by the constrain
h̄(τ, t) = 0 if τ < 0, inherently exists only when τ � 0 (Fig. 6.6e).

6.2.3 Time-varying Transfer Function

The representation of an LTV system by the standard transfer function is
commonly not possible. That is because the standard transfer function is
specified by the ratio of the Laplace transform of the output and Laplace
transform of the input and thus cannot be time-varying. However, if an LTV
system changes with time slowly, the transfer function can be defined with no
large error similarly to the transfer function of an LTI system.

An example is a tracking filter, which coefficients vary with time in the
control loop. If such a filter is of the second order, its general ODE can be
written as
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(a)

(c)

Fig. 6.6. Range of existence for the frequency responses: (a) H(jω, t), (b) H(θ, jΩ),
(c) H(jω, jΩ), (d) H̄(jω, t), (e) H̄(τ, jΩ), and (f) H̄(jω, jΩ).

y′′ + a(t)y′ + b(t)y = c(t)x .

Supposing that the coefficients a(t), b(t), and c(t) of a filter are changed
with time slowly; that is the spectral contents of all of the coefficients occupy
the frequency range narrower (or even much narrower) than the system band-
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width, the Laplace transform is applied straightforwardly, yielding the time
varying transfer function

H(s, t) =
c(t)

s2 + a(t)s + b(t)
,

in which t must be perceived as a “constant” coefficient. Then the Laplace
transform theory of LTI systems can be applied.

6.2.4 Classification of LTV Systems

So, we are now aware of how to represent an LTV system in the time domain
with the time-varying impulse response and in the frequency domain by the
time-varying frequency response. This allows us to classify LTV systems. Most
generally, a classification can be provided with regards to how close time
changes in the system operator relate to time changes in signals.

Linear Asynchronously Time-varying Systems

If the LTV system operator varies by some reason without any relation to the
input and output of a system, the latter can be said to be linear asynchronously
time-varying (LATV). Namely this kind of system is traditionally associated
with LTV systems. Here, an a priori description of h(t, θ) is obligatory, because
the impulse response takes values independently on the signals. An example is
an LP filter, whose parameter (i.e., value C of a capacitor) changes with time
owing to variations in the ambient temperature. Fig. 6.7a illustrates such a
case. Supposing that the start point t = 0 of a system time scale is set arbitrary
for θ, we watch for different shapes of the impulse response depending on θ.

Linear Synchronously Time-varying Systems

Contrary, if changes in the system operator exactly follow changes in signals,
the system can be said to be linear synchronously time-varying (LSTV). An
example is the same LP filter, which capacitance C is varied with time by
the amplitude of the input signal. In view of that, the impulse response of
the filter will also undergo changes. To illustrate these changes qualitatively,
we sketch in Fig. 6.7b the “deformed” (bold) and “linear” (dashed) impulse
responses. It is seemingly obvious that under such conditions the “deformed”
response remains the same irrespective of the start point t = 0 in the system
time scale.

The LSTV system is potentially not self-sufficient and can be represented
by another systems. Let us illustrate this state considering a simplest system
of the first order y′ + a(t)y = x.
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Fig. 6.7. Impulse responses of a linear system: (a) LATV and (b) LSTV. Dashed
curves represent relevant LTI systems.

• If a(t) is representable via the input and thus a(t) = a[x(t)], the system
can be said to be degenerate LTV. If a(t) = a[t, x(t)], the system is LTV.

��
• If a(t) is a function of the output such that a(t) = a[y(t)], the system

becomes NTI. If a(t) = a[t, y(t)], it is an NTV system. ��
Example 6.10. Given an LTV system represented with the ODE

y′ + a(t)y = x .

If a(t) is specified to be a(t) = a0 + x(t), the equation becomes y′ + a0y +
xy = x and the system is degenerate LTV. With a(t) = a0(t) + x(t), the
equation is written as y′ + a0(t)y + xy = x describing the LTV system. By
a(t) = a0 + y, we get y′ + a0y + y2 = x that corresponds to the NTI system.
Finally, supposing a(t) = a0(t) + y, we arrive at y′ + a0(t)y + y2 = x that is
the NTV system. ��

Linear Periodically Time-varying Systems

LTV systems can undergo periodic time-variations, meaning that some pa-
rameter a(t) changes with period T and thus a(t) = a(t + nT ), n = 1, 2, . . .
Such systems have found wide applications mostly owing to an ability of trans-
forming and removing spectral components of input signals. A system with
periodic variations is termed linear periodically time-varying (LPTV) or linear
parametric time-varying (LPTV).
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6.3 Properties of LTV Systems

Because an LTV system is still linear, it demonstrates some features of LTI
systems, however, disagrees with some others, associated with time changes.
The most important properties of LTV systems are observed below.

6.3.1 Linearity

The term “linear” suggests that an LTV system satisfies the conditions of
distributivity and homogeneity.

Distributivity

Featured to LTI systems, this property is supported by the superposition prin-
ciple. If a signal x(t) goes through a parallel connection of N SISO LTV
subsystems, then the output can be calculated as

x(t) ∗
N∑
i=1

hi(t, θ) =
N∑
i=1

[x(t) ∗ hi(t, θ)] . (6.38)

In the other case, if an input is composed by the sum of several subsignals,
then the output can be provided by

(
N∑
i=1

xi(t)

)
∗ h(t, θ) =

N∑
i=1

[xi(t) ∗ h(t, θ)] . (6.39)

Example 6.11. An LTV system is composed with two included in paral-
lel identical subsystems with the impulse responses h1(t, θ) = h2(t, θ) =
e−(t2−θ2)u(t − θ). The input is a unit step x(t) = u(t), for which the out-
put of the first subsystem is given by (6.14),

y1(t) =
√
π

2
e−t

2
erfi(t)u(t) . (6.40)

The second subsystem produces the same result and we thus have

y(t) = y1(t) + y2(t) = 2y1(t) =
√
πe−t

2
erfi(t)u(t) .

By (6.38), one can first get summed the impulse responses to have h(t) =
h1(t)+h2(t) = 2e−(t2−θ2)u(t−θ) and then arrive at the above provided result
by the general convolution. ��

Homogeneity

If one of the functions, x(t) or h(t, θ), is gained with a constant a, then, by
the homogeneity property, we have

x(t) ∗ [ah(t, θ)] = ax(t) ∗ h(t, θ) . (6.41)
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6.3.2 Non-commutativity

Contrary to LTI systems, the time-varying linear operator is potentially non-
commuting. This property was verified before, when we introduced to (6.5) a
new variable τ = t− θ with θ = t− τ and dθ = −dτ ,

y(t) =

∞∫

−∞
x(θ)h(t, θ)dθ = −

−∞+t∫

∞+t

x(t− τ)h(t, t− τ)dτ

=

∞∫

−∞
h(t, t− τ)x(t − τ)dτ . (6.42)

Everything would be fine, if h(t, t−τ) = h[t−(t−τ)] = h(τ). Unfortunately,
the latter commonly does not hold true for LTV systems, and the convolution
thus commonly does not commute,

y(t) = x(t) ∗ h(t, θ) 	= h(t, θ) ∗ x(t) . (6.43)

However, if the impulse response at t occurs to be equal to that at 2τ , we
can substitute h(t, t− τ) = h(t, τ), and the convolution commutes.

6.3.3 Associativity

Let the input x(t) pass through the cascade of two SISO LTV subsystems with
the time-varying impulse responses h1(t, θ) and h2(t, θ). By the associativity
property, the output can be calculated in the same time scale in two ways:

y(t) = [x(t) ∗ h1(t, θ)] ∗ h2(t, θ) = x(t) ∗ [h1(t, θ) ∗ h2(t, θ)] . (6.44)

Indeed, if we obtain two results separately as

[x(t) ∗ h1(t, θ)] ∗ h2(t, θ) =

∞∫

−∞
[x(τ1) ∗ h1(τ1, θ)]h2(t, τ1)dτ1

=

∞∫

−∞

∞∫

−∞
x(τ2)h1(τ1, τ2)h2(t, τ1)dτ1dτ2 , (6.45)

x(t) ∗ [h1(t, θ) ∗ h2(t, θ)] =

∞∫

−∞
x(τ3)[h1(t, τ3) ∗ h2(t, τ3)]dτ3

=

∞∫

−∞

∞∫

−∞
x(τ3)h1(τ4, τ3)h2(t, τ4)dτ3dτ4 (6.46)

and then change in (6.46) τ3 to τ2 and τ4 to τ1, we transfer from (6.46) to
(6.45) and the proof is complete.
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Example 6.12. A cascade LTV system is composed with two subsystems
having equal impulse responses, h1(t, θ) = h2(t, θ) = e−(t2−θ2)u(t − θ). The
input is a unit step, x(t) = u(t).

Because the output of the first subsystem is provided, by (6.14), as

y1(t) =
√
π

2
e−t

2
u(t) erfi(t) ,

the output of the second system is found by the general convolution to be

y(t) =

∞∫

−∞
y1(θ)h2(t, θ)dθ =

∞∫

−∞

√
π

2
e−θ

2
u(θ) erfi(θ)e−(t2−θ2)u(t− θ)dθ

=
√
π

2
e−t

2

t∫

0

erfi(θ)dθ . (6.47)

Alternatively, one can first define the impulse response of the cascade,

h(t, θ) =

∞∫

−∞
h(τ, θ)h(t, τ)dτ =

∞∫

−∞
e−(τ2−θ2)u(τ − θ)e−(t2−τ2)u(t− τ)dτ

= u(t− θ)

t∫

θ

e−(τ2−θ2)e−(t2−τ2)dτ = (t− θ)e−(t2−θ2)u(t− θ) . (6.48)

Then the general convolution yields the output

y(t) =

∞∫

−∞
u(θ)h(t, θ)dθ =

∞∫

0

(t− θ)e−(t2−θ2)u(t− θ)dθ

=

t∫

0

(t− θ)e−(t2−θ2)dθ = te−t
2

t∫

0

eθ
2
dθ − e−t

2

t∫

0

θeθ
2
dθ .

Here, the first integral is represented by
√
π

2 erfi(t) and the second one can be

rewritten as 1
2

t∫
0

d
dθe

θ2dθ = 1
2e
θ2
∣∣∣
t

0
= 1

2 (et
2 − 1). The output hence becomes

y(t) =
√
π

2
te−t

2
erfi(t)− 1

2

(
1− e−t

2
)

. (6.49)

The same result appears if we substitute in (6.47) erfi(x) = −i erf(ix)
and use an identity

∫
erf(ax) dx = x erf(ax) + 1

a
√
π
e−a

2x2
. Fig. 6.8 illustrates

graphically two options in providing the output. ��
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Fig. 6.8. An LTV system: (a) cascade, (b) calculus by [x(t)∗h1(t, θ)]∗h2(t, θ), and
(c) calculus by x(t) ∗ [h1(t, θ) ∗ h2(t, θ)].

6.3.4 Inconvertibility of Impulse and Step Responses

An important feature of an LTV system is that its time-varying impulse re-
sponse and time-varying step response are potentially inconvertible. A veri-
fication can be obtained by considering a SISO LTV system described with
the ODE of the first order y′ + a(t)y = x, which solution is given by (6.9). If
we set x(t) = δ(t − θ) to (6.9), we go, by the sifting property of δ(t), to the
time-varying impulse response

h(t, θ) = e
−

t∫
0
a(τ)dτ

t∫

0

δ(τ − θ)e

τ∫
0
a(τ1)dτ1

dτ

= e
−

t∫
θ

a(τ)dτ

u(t− θ) . (6.50)

Reasoning similarly, we suppose that x(t) = u(t−θ), and then (6.9) ought
to produce the time-varying step-response

g(t, θ) = e
−

t∫
0
a(τ)dτ

t∫

0

u(τ − θ)e

τ∫
0
a(τ1)dτ1

dτ

= e
−

t∫
θ

a(τ)dτ

u(t− θ)

t∫

θ

e

τ∫
θ

a(τ1)dτ1
dτ . (6.51)
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Implying a convertibility of h(t, θ) and g(t, θ), we integrate (6.50) and
equate the result to (6.51) that leads, by t � θ, to the relation

e
−

t∫
θ

a(τ)dτ
t∫

θ

e

τ∫
θ

a(τ1)dτ1
dτ =

t∫

θ

e
−

τ∫
θ

a(τ1)dτ1
dτ .

Let us now suppose that integrating a(t) yields a linear term at and some
time-dependent function f(t). Thus, we write

e−at+aθ−f(t)+f(θ)

t∫

θ

eaτ−aθ+f(τ)−f(θ)dτ =

t∫

θ

e−aτ+aθ−f(τ)+f(θ)dτ ,

e−at−f(t)

t∫

θ

eaτ+f(τ)dτ = eaθ+f(θ)

t∫

θ

e−aτ−f(τ)dτ .

Setting aside a trivial solution associated with a = 0 and f(t) = 0, we deduce
that the above equality is valid if f(t) = 0 and θ = 0 that fits only LTI
systems.

So, for LTV systems, we basically have two inequalities,

g(t, θ) 	=
t∫

0

h(t, θ)dt and h(t, θ) 	= d
dt

g(t, θ) , (6.52)

meaning that the time-varying impulse and step responses are commonly in-
convertible.

Example 6.13. An LTV system is described by y′ + a(t)y = x with a(t) =
(t + 2)/(t + 1). Its time-varying impulse response is defined, by (6.50), to be

h(t, θ) = e
−

t∫
θ

a(τ)dτ

u(t− θ) = e
−

t∫
θ
(1+ 1

t+1 )dt
u(t− θ)

= e−(t−θ)−ln(t+1)+ln(θ+1)u(t− θ) =
θ + 1
t + 1

e−(t−θ)u(t− θ) . (6.53)

By (6.51) and an identity
∫
xeαxdx = eαx

(
x
α − 1

α2

)
, the time-varying step-

response can be found as

g(t, θ) = e
−

t∫
θ

a(τ)dτ

u(t− θ)

t∫

θ

e

τ∫
θ

a(τ1)dτ1
dτ

=
θ + 1
t + 1

e−t+θu(t− θ)

t∫

θ

τ + 1
θ + 1

eτ−θdτ =
e−t

t + 1
u(t− θ)

t∫

θ

(τ + 1)eτdτ
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=
t− θe−(t−θ)

t + 1
u(t− θ) . (6.54)

Now observe that differentiating g(t, θ) (6.54) with respect to t does not
produce h(t, θ) performed by (6.53). The responses are thus inconvertible. ��

6.3.5 BIBO Stability

Being a generalized function, the time-varying impulse response gives an idea
about stability of an LTV system over time. Most generally, an LTV system
is BIBO stable if for every bounded input the output is also bounded. For
SISO LTV systems, the necessary and sufficient condition for BIBO stability
is that there exists a finite value of the the integral,

t∫

t0

|h(t, θ)|dθ � M <∞ , (6.55)

where M is finite and t > t0 takes any value exceeding an initial time t0.

Example 6.14. Consider a system represented with the time-varying impulse
response (6.53). The BIBO stability of a system is ascertained by (6.55) if to
use a familiar identity

∫
xeαxdx = eαx

(
x
α − 1

α2

)
and provide the integration,

t∫

t0

θ + 1
t + 1

e−(t−θ)u(t− θ)dθ =
e−t

t + 1

t∫

t0

(θ + 1)eθdθ

=
1

t + 1

[
t− t0e

−(t−t0)
]
. (6.56)

For t > t0, the integral value ranges from zero to unity and the system is
thus BIBO stable. ��

6.4 Representation by Differential Equations

Similarly to LTI systems, any LTV system can be represented with the ODE
of some order N . In contrast, at least one of the coefficients of the ODE is
time-varying. Most generally, the ODE of an LTV system can be written as

N∑
n=0

an(t)
dn

dtn
y(t) =

M∑
m=0

bm(t)
dm

dtm
x(t) , (6.57)

where N � M is the realizability constraint guaranteing not using the future
points in the calculus. If we introduce two operators
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Oy(D, t) =
N∑
n=0

an(t)Dn and Ox(D, t) =
M∑
m=0

bm(t)Dm ,

where D � d/dt, then the ODE can be rewritten as

Oy(D, t)y(t) = Ox(D, t)x(t) . (6.58)

If we further let x(t) = δ(t − θ), then the time-varying impulse response
h(t, θ) of the system will be specified by the relation

Oy(D, t)h(t, θ) = Ox(D, t)δ(t − θ) . (6.59)

On the other hand, letting x(t) = ejωt and hereby defining y(t) =
H(jω, t)ejωt yield a relation

Oy(D, t)H(jω, t)ejωt = Ox(D, t)ejωt
that can be reduced to the more convenient form proposed by Zadeh,

Oy(D + jω, t)H(jω, t) = Ox(jω, t) . (6.60)

To solve (6.59) and (6.60), one needs to remember that h(t, θ) and H(jω, t)
are coupled by a pair of the transformations, (6.22) and (6.23). We notice that
the relevant solutions depend on an(t) and bn(t) and can not obligatorily have
simple (or even any) analytical forms. If it is the case, numerical analysis or
simulation by the block diagrams could be more efficient that we shall show in
the sequel. Now in order is to consider in detail the familiar first order ODE
with time-varying coefficients.

6.4.1 LTV System of the First Order

Earlier, in Chapters 4 and 5, we investigated an LTI system of the first order
represented with the ODE having constant coefficients. For time-varying a(t)
and b(t), the ODE becomes

d
dt

y(t) + a(t)y(t) = b(t)x(t) (6.61)

or (6.58), if we specify the operators as

Oy = D + a(t) and Ox = b(t) . (6.62)

By multiplying (6.61) with the integration factor e
∫
a(t)dt and reasoning

similarly to the relevant ODE (4.53) having constant coefficients, we arrive at
the general solution

y(t) = e
−

t∫
t0

a(τ)dτ

⎡
⎣

t∫

t0

b(τ)x(τ)e

τ∫
t0

a(τ1)dτ1

dτ + y0

⎤
⎦ , (6.63)
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where y0 = y(t0). Because the coefficient b(t) gains only the input x(t), its
influence can be controlled, e.g., by predistortions in x(t). The other coefficient
a(t) predefines dynamics and stability of the system, thereby playing a key
role in the solution of its ODE.

Example 6.15. An LTV system is described by (6.61) with a(t) = x(t) =
u(t) cos t, b(t) = 1, and zero initial condition y(0) = 0. The general solution
(6.63) produces

y(t) = e
−

t∫
0

cos τdτ
t∫

0

e

τ∫
0

cos τ1dτ1
cos τ dτ = e− sin t

t∫

0

esin τ cos τ dτ

= e− sin t

t∫

0

esin τd sin τ = e− sin t esin τ
∣∣t
0

= e− sin t(esin t − 1)u(t) .

= (1 − e− sin t)u(t) . (6.64)

Fig. 6.9 illustrates x(t) and y(t) and one concludes that the output y(t) is
not absolutely monochromatic owing to the harmonically changing coefficient
a(t). This means that the LTV system is able to produce new spectral com-
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Fig. 6.9. Input x(t) and output y(t) of the LTV system (Example 6.15).

ponents at the output similarly to NTI systems that we shall discuss in the
sequel. ��

Response to Unit Impulse

If we let x(t) = δ(t − θ) and set y(0) = 0, the output (6.63) would be the
time-varying impulse response h(t, θ).

Most generally, we can allow y(0) = y0 	= 0 and write
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y(t, θ) = e
−

t∫
0
a(τ)dτ

⎡
⎣

t∫

0

δ(τ − θ)b(τ)e

τ∫
0
a(τ1)dτ1

dτ + y0

⎤
⎦ u(t)

= y0e
−

t∫
0
a(τ)dτ

u(t) + e
−

t∫
0
a(τ)dτ

u(t)

t∫

0

δ(τ − θ)b(τ)e

τ∫
0
a(τ1)dτ1

dτ

= y0e
−

t∫
0
a(τ)dτ

u(t) + b(θ)e
−

t∫
θ

a(τ)dτ

u(t− θ) , (6.65)

where the first term represents the time-varying homogenous solution starting
at t = 0. The last term contributes to the time-varying forced solution starting
at t = θ, so this is the time-varying system impulse response h(t, θ),

h(t, θ) = b(θ)e
−

t∫
θ

a(τ)dτ

u(t− θ) .

Example 6.16. Consider a system (6.61) with an initial condition y0 = 1
having the coefficients a(t) = 2t and b(t) = −e−t2 . By (6.63), the system
response to the unit impulse is defined as

y(t, θ) = e−t
2
u(t)− e−θ

2
e−(t2−θ2)u(t− θ)

= e−t
2
[u(t)− u(t− θ)] (6.66)

that is the doubly-truncated Gaussian pulse. Function (6.66) approaches zero
owing to the rapidly decaying coefficient b(t). ��

Response to Unit Step

If we let the input signal x(t) of a relaxed system y(0) = 0 to be the unit step
u(t − θ) acting at θ, a solution (6.63) would be treated as the time-varying
system step response g(t, θ).

Most generally, we can imply y(t) = y0 	= 0, and write a solution as

y(t, θ) = e
−

t∫
0
a(τ)dτ

⎡
⎣

t∫

0

b(τ)u(τ − θ)e

τ∫
0
a(τ1)dτ1

dτ + y0

⎤
⎦u(t)

= y0e
−

t∫
0
a(τ)dτ

u(t) + e
−

t∫
0
a(τ)dτ

t∫

0

b(τ)u(τ − θ)e

τ∫
0
a(τ1)dτ1

dτ

= y0e
−

t∫
0
a(τ)dτ

u(t) + e
−

t∫
0
a(τ)dτ

u(t− θ)

t∫

θ

b(τ)e

τ∫
0
a(τ1)dτ1

dτ . (6.67)
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Inherently, (6.67) comprises the homogenous solution (the first term) and
the forced solution (the last term). The step response g(t, θ) is associated
solely with the forced solution, so that we have

g(t, θ) = e
−

t∫
0
a(τ)dτ

u(t− θ)

t∫

θ

b(τ)e

τ∫
0
a(τ1)dτ1

dτ .

Example 6.17. An LTV system is performed with a(t) = 2t, b(t) = −e−t2 ,
and y0 = 1 (Example 6.16). By (6.67), the response of a system to u(t− θ) is
easily defined to be

y(t, θ) = e−t
2
[u(t)− (t− θ)u(t− θ)] . (6.68)

Observe that, by θ > t, (6.66) and (6.68) become identical and independent
on θ. ��

Time-varying Frequency Response

Employing (6.60) with the operators (6.62), we arrive at the ODE

[D + jω + a(t)]H(jω, t) = b(t) ,

H ′ + [jω + a(t)]H = b(t) ,

which solution is provided by (6.63) to be

H(jω, t) = e
−

t∫
0
[jω+a(τ)]dτ

t∫

0

b(τ)e

τ∫
0
[jω+a(τ1)]dτ1

dτ ,

= e−jωte
−

t∫
0
a(τ)dτ

t∫

0

b(τ)ejωτ e

τ∫
0
a(τ1)dτ1

dτ . (6.69)

We notice that for particular functions a(t) and b(t), the relation (6.69)
was applied in Example 6.6.

6.4.2 Application to Electrical Circuits

A specific representation of time-varying electrical circuits as LTV systems ex-
ploits the fundamental relations for the electric current and voltage associated
with an electric resistance, capacitance and inductance. The relations appear
from the physical analysis of energy bearers in each of these components. In
fact, dynamic properties of time-varying a capacitance are associated with the
time-varying electric charge and an inductance with magnetic flux. Therefore,
rigorously, the ODEs of electrical circuits must be written and solved for the
electric charge and magnetic flux, to fit physical processes.
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Time-varying Resistance

A time-varying resistance R(t) is still memoryless, therefore the relations for
the electric current iR(t) and induced voltage vR(t) remain those specified for
its time-invariant analog,

iR(t) =
1

R(t)
vR(t) , (6.70)

vR(t) = R(t)iR(t) . (6.71)

Time-varying Capacitance

A capacitor is evaluated by a measure of the amount of electric charge stored
(or separated) for a given electric potential. This amount is usually defined as
the total electric charge Q placed on the object divided by the potential V of
the object: C = Q/V . The unit of capacitance is the “farad” (F) in honor of
Michael Faraday3.

To define the relations for the time-varying capacitance, one needs to recall
that the electric current iC(t) through the capacitor is calculated by the speed
of change of the charge Q(t) on its plates. This means the following

iC(t) =
dQ
dt

=
dQ
dvC

dvC
dt

= C(t)
dvC
dt

, (6.72)

vC(t) =

t∫

−∞

iC(τ)
C(τ)

dτ . (6.73)

Example 6.18. Consider an electrical RC circuit represented by a closed loop
of R(t), C(t), and a source of voltage v(t).

For the electric current i = Q′ = dQ/dt, the voltage balance, using (6.72)
and (6.73), is obtained by the relation

RQ′ +

t∫

−∞

Q′

C
dτ = v ,

which differentiation and consequent rearranging the terms leads to the ODE
of the second order for the electric charge,

Q′′ +
(
R′

R
+

1
RC

)
Q′ =

1
R

v′ .

Specifying an electric current by i = vR/R, we go to the first order ODE
for the voltage vR induced on a resistance,
3 Michael Faraday, British chemist and physicist, 22 September 1791–25 August 25

1867.
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v′R +
1

RC
vR = v′ . (6.74)

If we define the current, by (6.72), as i = Cv′C , the voltage balance equation
becomes RCv′C + vC = v, meaning that the system can be modeled by the
ODE of the first order

v′C +
1

RC
vC =

1
RC

v . (6.75)

Apparently, solutions of all these equations depend on the functions of
C(t) and R(t). ��

Time-varying Inductance

An inductor is evaluated by a measure of the amount of magnetic flux Φ
produced for a given electric current i. The inductance is defined as L = Φ/iL
and evaluated in henry, H. The term “inductance” was introduced to the text
in 1886 by Oliver Heaviside4 and the dimension “henry” is used in honor of
the physicist Heinrich Lenz5. This definition relates, strictly speaking, to self-
inductance, because the magnetic field is created solely by the conductor that
carries the current.

If an inductor is time-varying, one can consider Φ(t) = L(t)iL(t), differen-
tiate this relation, account for Φ′ = dΦ

dt = vL, and arrive at the basic relations

vL(t) =
d
dt

L(t)iL(t) = L′(t)iL(t) + L(t)i′(t) , (6.76)

iL(t) =
1

L(t)

t∫

−∞
vL(τ)dτ . (6.77)

Example 6.19. Consider a closed loop of a series connection of R, C, L(t),
and v(t). For the electric current i = Φ/L, the voltage balance equation

R
Φ

L
+ Φ′ +

t∫

−∞

1
C

Φ

L
dt

produces the ODE of the second order for the magnetic flux

Φ′′ +
R

C
Φ′ +

(
1

LC
− RL′

L2

)
Φ = v′ .

4 Oliver Heaviside, English electrical engineer, mathematician, and physicist, 18
May 1850–3 February 1925.

5 Heinrich Friedrich Emil Lenz, Baltic German physicist, 12 February 1804–10
February 1865.
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In a like manner, the ODE for the voltages induced, for example, on a
resistor R is defined to be

v′′R +
(
R

L
+ 2

L′

L

)
v′R +

(
1

LC
+

L′′

L

)
vR =

R

L
v′ . (6.78)

It is seen that variations in L(t) affect both the system bandwidth 2δ(t) that,
by L = const, becomes a familiar 2δ = R/L,

2δ(t) =
(

R

L
+ 2

L′

L

)∣∣∣∣
L=const

=
R

L
,

and the system resonance frequency ω0(t) that also tends to ω0 = 1/
√
LC, by

L becoming constant,

ω2
0(t) =

(
1

LC
+

L′′

L

)∣∣∣∣
L=const

=
1

LC
.

��
Two typical situations with LTV electrical circuits are usually met. In the

first block of problems, the components vary periodically and some special
methods are used to solve the ODEs. In the other one, the components change
with time slowly, so that all of their time-derivatives are almost zero and such
systems can be considered to be quasi LTI.

6.4.3 Block Diagrams

Like for LTI systems, simulation of LTV systems in the time domain can also
be provided by block diagrams with all the benefit of such a representation.
However, not all forms of diagrams are suitable for LTV systems.

Similarly, translation starts with the generalized ODE of an LTV system

N∑
n=0

an(t)
dn

dtn
y(t) =

N∑
m=0

bm(t)
dm

dtm
x(t) , (6.79)

in which, without losing generality, each batch is bounded with N .
The next steps forward are those exploited for LTI systems. By the oper-

ator Dn � dn/dtn, n � 1, equation (6.79) becomes

N∑
n=0

an(t)Dny(t) =
N∑
m=0

bm(t)Dmx(t) , (6.80)

allowing for two familiar canonic forms of the block diagrams, namely the first
direct form and second direct form, even in particular cases.
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The First Direct Form

To come up with the first direct form, we use the inverse operator D−1 �
∫ t
−∞,

multiply both sides of (6.80) with D−N , suppose aN = 1, and rewrite the
equation as

y(t) = −
N−1∑
n=0

D−Nan(t)Dny(t) +
N∑
m=0

D−Nbm(t)Dmx(t)

=
N−1∑
n=0

D−N [−an(t)Dny(t) + bn(t)Dnx(t)] +D−NbN (t)DNx(t) (6.81)

that can also be rewritten as

y(t) = D−N [b0(t)x(t) − a0(t)y(t)]

+D−N [b1(t)Dx(t) − a1(t)Dy(t)] + . . .

+D−N [bN−1(t)DN−1x(t)− aN−1(t)DN−1y(t)] +D−NbN(t)DNx(t) . (6.82)

A simulation of (6.82) with a block diagram is shown in Fig. 6.10a. The
principle point to notice is that the input must multiply be differentiable.
Therefore, the N -order time derivative of the input, x(N)(t) = DNx(t) serves

Fig. 6.10. The first direct form of diagrams of LTV systems: (a) M = N and (b)
M = 0.
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actually as an input for the block diagram. Certainly, this is a disadvantage
of the first form that is not peculiar to its particular realization, by M = 0.
This disadvantage can also be overcame if the ODE (6.79) can be rewritten
in the form of

N∑
n=0

dn

dtn
cn(t)y(t) =

N∑
m=0

dm

dtm
dm(t)y(t),

where cn(t) and dm(t) are some time-varying coefficients. The reader is en-
couraged to build the block diagram of the first direct form for this case.

A Particular Case of M = 0

In the important particular case of M = 0, when no one time derivative of
the input is involved to the model, equation (6.79) degenerates to

N∑
n=0

an(t)
dn

dtn
y(t) = b0(t)x(t) (6.83)

and the first direct form originates from

y(t) = D−N [b0(t)x(t) − a0(t)y(t)− a1(t)Dy(t) − a2(t)D2y(t)− . . .

−aN−1(t)DN−1y(t)] . (6.84)

Accordingly, the block diagram becomes as shown in Fig. 6.10b and we
deduce that the algorithm represents a direct transformation of x(t) to y(t)
with time-varying coefficients an(t) and b0(t), unlike the case of (6.81).

Example 6.20. An LTV system of the second order is given with the ODE

y′′ + 2ty′ + 3 cos(t)y = 2 sin(t)x − tx′ . (6.85)

In the standard form (6.79), the equation becomes

2∑
n=0

an(t)
dn

dtn
y(t) =

1∑
m=0

bm(t)
dm

dtm
x(t) ,

where the coefficients are specified as a0 = 3 cos(t), a1 = 2t, a2 = 1, b0 =
2 sin(t), and b1 = −t. By virtue of that, the block diagram (Fig. 6.10a) attains
the form shown in Fig. 6.11a. As it is seen, the first-time derivative of an input
is necessary to simulate a system properly. If a differentiator is available, the
structure modifies to that shown in Fig. 6.11b. ��
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Fig. 6.11. Block diagrams of the first direct form of a system (Example 6.20): (a)
standard structure and (b) involving a differentiator.

The Second Direct Form For M = 0

The second direct form cannot commonly be applied to the general ODE
(6.79). However, it can be used in a particular case of M = 0 and constant b0.
If that is the case, then, similarly to LTI systems, one can represent (6.79) by

(
N∑
n=0

an(t)Dn
)

y(t) = b0x(t) ,

and then transform it to
(

N∑
n=0

an(t)Dn
)

y(t)
b0

= x(t) .

Assigning an additional function q(t) allows for two equations
(

N∑
n=0

an(t)Dn
)

q(t) = x(t) ,

y(t) = b0q(t) .

Thereafter, by multiplying the first of the above equations with D−N and
setting aN = 1, we arrive at

q(t) = −
N−1∑
n=0

D−Nan(t)Dnq(t) +D−Nx(t) ,

y(t) = b0q(t) . (6.86)

The block diagram associated with (6.86) is shown in Fig. 6.12. Similarly
to Fig. 6.10b, this diagram does not involve time-derivatives of the input and
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is thus a straightforward simulation of the output via the input with time-
varying coefficients. One can also infer that, by b0 = 1, the first and second
direct forms become identical.

Fig. 6.12. The second direct form of diagrams of LTV systems.

Example 6.21. Consider an LTV system, described in Example 6.20 with
the ODE y′′ + 2ty′ + 3 cos(t)y = b0x. In the second direct form (6.86), this
ODE is rewritten as

q′′ + 2tq′ + 3 cos(t)q = x ,

y = b0q.

By these equations, the diagram (Fig. 6.12) becomes as shown in Fig. 6.13.

��

Fig. 6.13. The second direct form of diagrams of a system (Example 6.21).

Overall, we conclude like the case of LTI systems, the first and second
direct forms of block diagrams can serve as an efficient tool to simulate LTV
systems, even in particular cases.

We can now continue with representing LTV systems in state space, notic-
ing that state space modeling occupies an important place in the theory of
such systems owing to transparency and universality.
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6.5 State Space Representation

Among other approaches, state space modeling seems to be the most universal
and powerful to represent LTV systems. Below, we first show a particular state
space model translated from Fig. 6.12 and proceed with the general analysis
of LTV systems in state space.

6.5.1 State Space Model via the Second Direct Form for M = 0

Let us come back to the block diagram shown in Fig. 6.12. To transfer to state
space, we assign the output of each of the integrators to be the system state
variable and arrive, similarly to LTI systems, at the equations

q′1(t) = q2(t) ,

q′2(t) = q3(t) ,

...

q′N−1(t) = qN (t) ,

q′N (t) = −aN−1(t)qN (t)− aN−2(t)qN−1(t)− . . .− a0(t)q1(t) + x(t) ,

y(t) = b0q1(t). (6.87)

In matrix forms, (6.87) is represented with the state and observation equa-
tions, respectively,

⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N−1(t)
q′N (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1

−a0(t) −a1(t) −a2(t) . . . −aN−1(t)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN−1(t)
qN (t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦
x(t) ,

(6.88)

y(t) = [b0 0 . . . 0]

⎡
⎢⎢⎢⎣

q1(t)
q2(t)

...
qN (t)

⎤
⎥⎥⎥⎦ , (6.89)

which, in compact forms, can be written as, respectively,

q′(t) = A(t)q(t) + Bx(t) , (6.90)

y(t) = Cq(t) + Dx(t) , (6.91)

where the N ×N system matrix is specified by
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A(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 1

−a0(t) −a1(t) −a2(t) . . . −aN−1(t)

⎤
⎥⎥⎥⎥⎥⎦

, (6.92)

the N × 1 input matrix is given by

B =
[
0 0 ... 0 1

]T
, (6.93)

the 1×N observation (or measurement) matrix is described by

C = [b0 0 . . . 0] (6.94)

and, finally, the 1× 1 output matrix is nilpotent,

D = [0] . (6.95)

As it is seen, here only A(t) is time-varying.

Example 6.22. An LTV system is governed by the ODE with the coefficients
a0 = 2, a1 = t, a2 = 4, a3 = 2, and b0 = 4. To transfer to state space, it
first needs dividing the equation by the factor of 2 to get a3 = 1 The new
coefficients then become a0 = 1, a1 = t/2, a2 = 2, a3 = 1, and b0 = 2. The
state space model, (6.90) and (6.91), is easily described now with the following
matrices:

A(t) =

⎡
⎣

0 1 0
0 0 1
−1 − t

2 −2

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , C = [2 0 0] , D = [0].

As can be seen, A(t) is time-varying, whereas B and C are time-invariant.
��

6.5.2 Block Diagram Representation

In a manner similar to LTI systems, LTV systems can be simulated in state
space with the block diagram as that shown in Fig. 4.22. The diagram sim-
ulating (6.90) and (6.91) with all time-varying coefficients is shown in Fig.
6.14. In the sequel, it will be obvious that this diagram is equivalently valid
for both SISO and MIMO LTV systems.

A Particular Case of M = 0

Because M = 0 implies bN = 0, the system is performed in state space with
the equations
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B(t)

Fig. 6.14. Block diagram representation of LTV systems in state space.

q′(t) = A(t)q(t) + B(t)x(t) , (6.96)

y(t) = C(t)q(t) , (6.97)

in which, for example, the matrices A(t), B(t), and C(t) are given by (6.92),
(6.93), and (6.94), respectively.

Having bN = 0, the system is simulated with the diagram shown in Fig.
6.15, in which the branch associated with the nilpotent matrix D is omitted.
Like the LTI system case, this diagram is valid for any M < N .

Fig. 6.15. Block diagram representation of LTV systems in state space with M < N .

Example 6.23. An LTV system representes a series RLC circuit with a vari-
able resonant frequency. The system equation is given by

v′′C(t) + 2δv′C(t) + ω2
0(t)vC(t) = ω2

0(t)v(t) , (6.98)

where v(t) is an input and vc(t) is an output. The coefficients of the ODE
(6.79) are described here as a0(t) = ω2

0(t), a1 = 2δ, and b0(t) = ω2
0(t). The

state space model, (6.96) and (6.97), represents this system with the matrices

A(t) =
[

0 1
−ω2

0(t) −2δ

]
, B =

[
0
1

]
, C(t) =

[
ω2

0(t) 0
]
.

��
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MIMO LTV Systems in State Space

Representation of MIMO LTV systems in state space has no substantial pe-
culiarities and is provided as for LTI systems. One merely needs modifying
equations (4.125) and (4.126) for time-varying matrices and write

q′(t) = A(t)q(t) + B(t)x(t) , (6.99)

y(t) = C(t)q(t) + D(t)x(t) , (6.100)

where q(t) and q′(t) are described by (4.103) and (4.104), respectively. The
k × 1 vector of a multiple input x(t) and p × 1 vector of a multiple output
y(t) are given by, respectively,

x(t) =
[
x1(t) x2(t) ... xk(t)

]T
, (6.101)

y(t) =
[
y1(t) y2(t) ... yp(t)

]T
, (6.102)

the N×N system matrix A(t) and p×N observation matrix C(t) are described
with, respectively,

A(t) =

⎡
⎢⎢⎢⎣

a11(t) a12(t) . . . a1N (t)
a21(t) a22(t) . . . a2N (t)

...
...

. . .
...

aN1(t) aN2(t) . . . aNN (t)

⎤
⎥⎥⎥⎦ , C(t) =

⎡
⎢⎢⎢⎣

c11(t) c12(t) . . . c1N (t)
c21(t) c22(t) . . . c2N (t)

...
...

. . .
...

cp1(t) cp2(t) . . . cpN (t)

⎤
⎥⎥⎥⎦ ,

(6.103)
and the N×k input matrix B(t) and p×k output matrix D(t) are, respectively,

B(t) =

⎡
⎢⎢⎢⎣

b11(t) b12(t) . . . b1k(t)
b21(t) b22(t) . . . b2k(t)

...
...

. . .
...

bN1(t) bN2(t) . . . bNk(t)

⎤
⎥⎥⎥⎦ , D(t) =

⎡
⎢⎢⎢⎣

d11(t) d12(t) . . . d1k(t)
d21(t) d22(t) . . . d2k(t)

...
...

. . .
...

dp1(t) dp2(t) . . . dpk(t)

⎤
⎥⎥⎥⎦ .

(6.104)
Most generally, all of these matrices are supposed to be time-varying.

It follows that simulation of both SISO and MIMO LTV systems is pro-
vided by the same universal block diagram shown in Fig. 6.14 for M = N and
in Fig. 6.15 for M < N . The choice of x(t) or x(t) and y(t) or y(t) depends
on what kind of LTV systems is simulated: SISO, SIMO, MISO, or MIMO.

6.5.3 Solution of State Space Equations

When we deal with LTI systems in state space, a lucky trick to come up with
a solution to the state space equations is to use the integration factor e−At, in



6.5 State Space Representation 387

which, inherently, the matrix A is time-invariant. For the time-varying A(t),
an instant desire may arise for solving an equation with the more common

factor e
−

t∫
t0

A(τ)dτ

. Indeed, multiplying both sides of (6.99) with this factor
leads to

e
−

t∫
t0

A(τ)dτ

q′(t)− e
−

t∫
t0

A(τ)dτ

A(t)q(t) = e
−

t∫
t0

A(τ)dτ

B(t)x(t)

and a lucky case will be to write an exact ODE

⎡
⎣e
−

t∫
t0

A(τ)dτ

q(t)

⎤
⎦
′

= e
−

t∫
t0

A(τ)dτ

B(t)x(t)

and solve it in a regular way. The time derivative of e
−

t∫
t0

A(τ)dτ

, however,
commonly does not produce the necessary relation. In fact, it can easily be
verified, by some particular example, that

d
dt

e
−

t∫
t0

A(τ)dτ

	= −e
−

t∫
t0

A(τ)dτ

A(t) 	= −A(t)e
−

t∫
t0

A(τ)dτ

and we thus need finding another approach to solve (6.99).
Let us then start with the homogenous ODE

q′(t) = A(t)q(t) , (6.105)

supposing that at least one of the components of A(t) is time-varying.
It is known from the matrix theory that if A(t) is continuous with t � t0,

then a solution of (6.105) with the initial condition q(t0) exists for t � t0, is
unique, and can be written as

q(t) = Q(t)q(t0) , (6.106)

where Q(t) satisfies the differential equation

Q′(t) = A(t)Q(t) , Q(t0) = I , (6.107)

and is called the fundamental matrix. Because any initial conditions could be
chosen to solve (6.107), the fundamental matrix Q(t), for the time-varying
matrix A(t), is not unique, exhibiting the following important properties:
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• Dimensions. It is the N ×N square matrix. ��
• Nonsingularity. It is nonsingular for all t. Otherwise, Q(t) does not satisfy

(6.106) and, in particular, cannot be a unit matrix I at t0 as claimed by
an equality q(t0) = Q(t)q(t0), meaning that q(t0) = Iq(t0). ��
To determine Q(t), a common way is to consider some initial state qn(t0),

n = 1, 2, . . . , N , for which (6.105) produces a unique solution qn(t), n =
1, 2, . . . , N . All N particular solutions qn(t) can be united to the N × N
matrix Q(t) = [q1(t)q2(t) . . .qN (t)]. Because every qn(t) satisfies (6.105),
the matrix Q(t) determined in such a way satisfies (6.106).

Example 6.24. An LTV system is described with the homogenous equation
(6.105) as

[
q′1(t)
q′2(t)

]
=
[

0 t
0 0

] [
q1(t)
q2(t)

]

having initial conditions q1(0) and q2(0). Equivalently, we can write

q′1(t) = tq2(t) and q′2(t) = 0 .

The second equation has an obvious solution q2(t) = q2(0) and thus the
first equation is solved by

q1(t) =

t∫

0

τq2(τ)dτ + q1(0) = q2(0)

t∫

0

τdτ + q1(0) =
t2

2
q2(0) + q1(0) .

Voluntary, one may suppose that q1(0) = 0 and q2(0) = 1. The first par-
ticular solution will then be defined by

q1(0) =
[

0
1

]
and q1(t) =

[
t2/2
1

]
.

If we allow, for example, q1(0) = 3 and q2(0) = 1, we can find the second
particular solution

q2(0) =
[

3
1

]
and q2(t) =

[
t2

2 + 3
1

]
.

The fundamental matrix can now be filled as

Q(t) = [q1(t)q2(t)] =
[
t2

2
t2

2 + 3
1 1

]
. (6.108)

��
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Let us come back to the inhomogeneous equation (6.105). Following the
Lagrange method of variation, we could try finding a solution in the form of
q(t) = Q(t)u(t), where Q(t) satisfies (6.107) and u(t) is still some unknown
function of the same class. Substituting to (6.99) yields

Q′u + Qu′ = AQu + Bx .

By (6.107), we have Q′u = AQu and the above identity becomes

Qu′ = Bx or u′ = Q−1Bx , (6.109)

having a solution, by u(t0) = Q−1(t0)q(t0),

u(t) = u(t0) +

t∫

t0

Q−1(τ)B(τ)x(τ)dτ

= Q−1(t0)q(t0) +

t∫

t0

Q−1(τ)B(τ)x(τ)dτ . (6.110)

A general solution of (6.99), by q(t) = Q(t)u(t) and (6.110), can now be
found to be

q(t) = Q(t)Q−1(t0)q(t0) +

t∫

t0

Q(t)Q−1(τ)B(τ)x(τ)dτ

= Φ(t, t0)q(t0) +

t∫

t0

Φ(t, τ)B(τ)x(τ)dτ , (6.111)

where the function

Φ(t, θ) = Q(t)Q−1(θ) (6.112)

is called the state transition matrix owing to an ability of predetermining a
transition of the system state vector q(t) from θ to t. We notice that, by zero
input x(t) = 0, (6.111) becomes homogenous,

q(t) = Φ(t, t0)q(t0) . (6.113)

Example 6.25. Consider a system (Example 6.24) represented with the fun-
damental matrix (6.108), which determinant calculates

|Q(t)| =
∣∣∣∣
t2

2
t2

2 + 3
1 1

∣∣∣∣ = −3
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and thus the matrix is nonsingular. The inverse matrix Q−1(t) is defined
by

Q−1(t) =

[
− 1

3
t2

6 + 1
1
3 − t26

]

specifying the state transition matrix

Φ(t, θ) = Q(t)Q−1(θ) =
[
t2

2
t2

2 + 3
1 1

][− 1
3
θ2

6 + 1
1
3 − θ26

]
=
[

1 t2−θ2
2

0 1

]
. (6.114)

��
By substituting (6.111) to the observation equation (6.100), we finally

arrive at the solution for the system output

y(t) = C(t)Φ(t, t0)q(t0) + C(t)

t∫

t0

Φ(t, τ)B(τ)x(τ)dτ + D(t)x(t) , (6.115)

in which the last term vanishes if M < N . The next steps in transforming
(6.115) can be facilitated by using properties of the state transition matrix
Φ(t, θ) that we observe below.

Properties of the State Transition Matrix

Because the state transition matrix Φ(t, θ) is formed, by (6.112), with a non-
singular fundamental matrix Q(t) and its inverse version, several important
properties of Φ(t, θ) can be observed:

• For equal time variables t = θ and, in particular, for the initial condition
t = t0, the matrix is unit,

Φ(θ, θ) = Φ(t0, t0) = I . (6.116)

��
• The matrix is a unique solution of the ODE

Φ′(t, θ) = A(t)Φ(t, θ) (6.117)

with the initial condition Φ(θ, θ) = I. This fact follows behind the sub-
stitution of Φ(t, θ) = Q(t)Q−1(θ). Merely observe that Q−1(θ) does not
depend on t and thus (6.117) degenerates to (6.107). ��

• Invertibility:

Φ−1(t, θ) = [Q(t)Q−1(θ)]−1 = Q(θ)Q−1(t) = Φ(θ, t) . (6.118)

��
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• Decomposition:

Φ(t, θ) = Q(t)Q−1(θ) = Q(t)Q−1(θ1)Q(θ1)Q−1(θ)

= Φ(t, θ1)Φ(θ1, θ) . (6.119)

The rule (6.119) is applicable to any t, θ, and θ1. Moreover, it can be
extended to an infinite number of subfunctions such that

Φ(t, θ) = Φ(t, θ1)Φ(θ1, θ2) . . .Φ(θk, θ) . (6.120)

��
• If A(t) is diagonal, it demonstrates a commutative property

A(t)

⎛
⎝

t∫

θ

A(τ)dτ

⎞
⎠ =

⎛
⎝

t∫

θ

A(τ)dτ

⎞
⎠A(t)

for any t and θ. Owing to this, the state transition matrix can be found
as a reciprocal of the integration factor,

Φ(t, θ) = e

t∫
θ

A(τ)dτ

=
∞∑
n=0

1
n!

⎛
⎝

t∫

θ

A(τ)dτ

⎞
⎠
n

. (6.121)

��

6.5.4 System Impulse Response in State Space

If q(t0) = 0, the output (6.115) allows us now to derive the time-varying
impulse response of an LTV system. We notice that, sometimes, the impulse
response is also called the zero-state impulse response. By the sifting property
of the delta function, we can equivalently write

y(t) = C(t)

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ + D(t)x(t) (6.122)

=

t∫

t0

[C(t)Φ(t, θ)B(θ) + D(θ)δ(t − θ)]x(θ)dθ . (6.123)

Equation (6.123) can further be transformed to

y(t) =

t∫

t0

H(t, θ)x(θ)dθ , (6.124)
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where
H(t, θ) = C(t)Φ(t, θ)B(θ) + D(θ)δ(t − θ)

= C(t)Q(t)Q−1(θ)B(θ) + D(θ)δ(t − θ) . (6.125)

Because (6.124) is nothing more than the general convolution for MIMO
LTV systems, the function (6.125) is nothing less than the impulse response
matrix of a MIMO LTV system.

Example 6.26. A MIMO LTV system is described by (6.99) and (6.100) with
the following matrices

A(t) =
[

0 t
0 0

]
, B =

[
0 1
1 0

]
, C =

[
1 − t22
1 0

]
, D = [0] .

Given A(t), the state transition matrix Φ(t, θ) is defined by (6.114). By
virtue of (6.125), the time-varying impulse response matrix is determined as

H(t, θ) = C(t)Φ(t, θ)B ,

[
h11(t, θ) h12(t, θ)
h21(t, θ) h22(t, θ)

]
=
[

1 − t22
1 0

] [
1 t2−θ2

2
0 1

] [
0 1
1 0

]
=

[
− θ22 1
t2−θ2

2 1

]
.

The system is thus specified with the following time-varying impulse re-
sponses

h11(t, θ) = −θ2

2
u(t− θ) , h21(t, θ) =

1
2
(t2 − θ2)u(t− θ) ,

h12(t, θ) = h22(t, θ) = u(t− θ) .

��
Example 6.27. A SISO LTV system is represented in state space by (6.99)
and (6.100) with the matrices

A(t) =
[

0 0
0 0

]
, B =

[−te−at
e−at

]
, C =

[
eat teat

]
, D = [0] .

For A(t) having zero components, solutions of the homogenous equations,
q′1(t) = 0 and q′2(t) = 0, produce, respectively, q1(t) = q1(0) and q2(t) = q2(0).
For some voluntarily assigned initial conditions, one therefore can let

q1(0) = q1(t) =
[

0
1

]
and q2(0) = q2(t) =

[
1
1

]
.

The time-invariant fundamental matrix thus obeys

Q =
[

0 1
1 1

]
, Q−1 =

[−1 1
1 0

]
.
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By (6.112), the state transition matrix becomes identity,

Φ =
[

1 0
0 1

]
, (6.126)

and the time-varying impulse response can be determined, by (6.125), as

h(t, θ) = C(t)ΦB(θ)

=
[
eat teat

] [1 0
0 1

] [−θe−aθ
e−aθ

]
= ea(t−θ)(t− θ)u(t− θ) .

��

6.5.5 BIBO Stability of MIMO LTV Systems

Formerly, we mentioned that a SISO system is BIBO stable if the value M in
(6.55) is finite. For MIMO systems having the time-varying impulse response
matrix H(t, θ), the necessary and sufficient condition for BIBO stability mod-
ifies to

t∫

t0

‖H(t, θ)‖dθ � M <∞ , (6.127)

where t � t0 and ‖H(t, θ)‖ is a norm of H(t, θ). It is allowed to apply any
norm. Most frequently, however, they employ the H∞-norm,

‖H‖∞ = max
t
|H(t)| , (6.128)

as most “reliable”, because it characterizes the maximum of the absolute value
(peak value) of the function,

Let us recall that the LTV system impulse response matrix H(t, θ) is
described by (6.125). The condition for BIBO stability associated with this
function is obtained by (6.127). Additionally, if the input is bounded, (6.125)
brings forward one more claim

‖D(t)‖ <∞ . (6.129)

It can be shown that (6.127) and (6.129) are most general to ascertain
BIBO stability of LTV systems.

The other widely used approach implies analyzing the familiar homogenous
equation (6.113). Apparently, the system states will be bounded if and only
if the norm of Φ(t, t0) is finite,

‖Φ(t, t0)‖ <∞ . (6.130)

If it is the case, the system is said to be marginally stable. This definition
coincides with the other sign of stability. The system is asymptotically stable
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if and only if the response excited by any bounded input is also bounded and
approaches zero at infinity. Thus, for the asymptotically stable system, along
with (6.130) the following condition must also be satisfied,

‖Φ(t, t0)‖t→∞ → 0 . (6.131)

Example 6.28. An LTV system (Example 6.25) is represented with the state
transition matrix

Φ(t, θ) =
[

1 t2−θ2
2

0 1

]
.

The norm ‖Φ(t, θ)‖ can be regarded as the maximum “magnification”
capability of Φ(t, θ). For the initial time θ = 0, the “12” component of Φ(t, θ)
grows quadratically and becomes infinity at t = ∞. Therefore, a system is
neither marginally stable, because (6.130) is not satisfied, nor asymptotically
stable, because (6.131) is not satisfied. ��
Example 6.29. The state transition matrix (6.126) of a system (Example
6.27) is time-invariant and identity,

Φ =
[

1 0
0 1

]
.

This system is thus marginally stable, because (6.130) is satisfied. However,
it is not asymptotically stable, because (6.131) can never be obeyed. ��

We notice that several other criteria of stability used in the theory of LTV
systems can be found in special books.

6.5.6 Controllability

An important characteristic of any system is its controllability. By the def-
inition, an LTV linear system described by (6.99) and (6.100) is completely
controllable on the finite time interval [t0, t1] if for any initial state q(t0) there
may be found an input x(t) to transfer the system to the other given state
q(t1). Without loss in generality, we can let q(t0) = 0 and write a general
solution (6.111) as

q(t) =

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ . (6.132)

Now assume that there is some nonzero vector � of the same dimensions
as q(t). The system will be controllable if the projection of the system state
on this vector can be set arbitrary. To find the relevant condition, we multiply
both sides of (6.132) with �T and go to
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�Tq(t) = �T
t∫

t0

Φ(t, θ)B(θ)x(θ)dθ =

t∫

t0

�TΦ(t, θ)B(θ)x(θ)dθ

=

t∫

t0

[BT (θ)ΦT (t, θ)�]Tx(θ)dθ =

t∫

t0

zTt (θ)x(θ)dθ , (6.133)

where a newly introduced vector is

zt(θ) = BT (θ)ΦT (t, θ)� . (6.134)

Because the input can be assigned arbitrary, we can let x(θ) = γzt(θ),
where γ is some nonzero constant. For such an input, (6.133) transforms to

�Tq(t) =

t∫

t0

zTt (θ)x(θ)dθ = γ

t∫

t0

zTt (θ)zt(θ)dθ = γ

t∫

t0

‖zt(θ)‖2dθ , (6.135)

where the value ‖zt(θ)‖ denotes the length of a vector zt(θ).
If the product (6.135) is zero for any input, �Tq(t) = 0, the system is

certainly uncontrollable. The latter means that, for any θ from t0 to t, we
have

BT (θ)ΦT (t, θ)� = 0 , (6.136)

meaning that, for the nonzero �, the columns of BT (θ)ΦT (t, θ) must be lin-
early dependent. If the columns are linearly independent, the only solution of
(6.136) will be provided with � = 0 that is a contradiction.

We hence have a sign of LTV system controllability: The LTV system
is controllable if the columns of BT (θ)ΦT (t, θ) are linearly independent for
t � t0.

Example 6.30. Consider an LTV system (Example 6.27), which input and
state transition matrices are given by, respectively,

B(θ) =
[−θe−aθ

e−aθ

]
, Φ =

[
1 0
0 1

]
.

The matrix BT (θ)ΦT calculates

BT (θ)ΦT =
[−θe−aθ e−aθ

] [1 0
0 1

]
=
[−θe−aθ e−aθ

]
,

indicating that the columns are linearly independent. The system is thus con-
trollable.

We arrive at the same conclusion even intuitively. In fact, for the matrices
given (Example 6.27), the states of a system are defined as q′1(t) = −te−atx(t)
and q′2(t) = e−atx(t). Because every state directly depends on the input x(t),
the system is controllable. ��
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6.5.7 Observability

An LTV system described in state space by (6.99) and (6.100) is completely
observable on the finite time interval [t0, t1] if for any t0 an initial state q(t0)
can be determined from observation of the output y(t) over this interval with
the input x(t) known over the same interval.

To find a condition for the LTV system to be observable, let us rewrite a
solution (6.115) as

C(t)Φ(t, t0)q(t0) = y(t)−C(t)

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ −D(t)x(t) (6.137)

and solve it at the interval from t0 to t for the initial state q(t0). If it is soluble
for q(t0), the system is observable.

To obtain the necessary solution, we multiply both sides of (6.137) with
[C(t)Φ(t, t0)]−1 and the condition for the system to be observable appears in-
stantly. An LTV system is observable if for any β 	= 0 the vector C(t)Φ(t, t0)β
is not identically zero for all t � t0.

Example 6.31. Evaluate observability of the system considered in Example
6.27. By the matrices given, the vector C(t)Φ(t, t0)β is defined as

C(t)Φ(t, t0)β =
[
eat teat

] [1 0
0 1

]
β =

[
βeat tβeat

]

and, it follows, can never be identically zero if β 	= 0. The system is thus
observable. But it is not absolutely observable with t0 = 0, in view of the fact
that its component “12” becomes zero at t = 0. We confirm this conclusion
by analyzing the observation equation (6.100) with the matrices given in Ex-
ample 6.27. In fact, because y(t) = q1(t)eat+ q2(t)teat, the initial first state is
observable via the output with q1(0) = y(0) and the initial second state q2(0)
is not observable. ��

6.6 Linear Periodically Time-varying Systems

Linear periodically time-varying (LPTV) systems play a tremendous role in
solving a great deal of electronic problems. Utilizing such systems, it becomes
possible to remove spectra of signals from one region to another, modulate,
detect, and amplify signals, excite passive circuits, etc. In spite of an applied
significance, the problem of finding periodic solutions of ODEs with time-
varying coefficients describing periodic systems is still far from simple engi-
neering solutions and distinct receipts. In this section, we bring forward many
engineering solutions and discuss fundamentals of the most general Floquet’s
theory of LPTV systems.
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6.6.1 Basic Foundations

To catch the difference between periodic and non-periodic versions of LTV
systems, it is in order to consider a simplest linear ODE of the first order
with a time-varying coefficient a(t),

y′(t) = a(t)x(t) . (6.138)

Let us apply the Fourier transform to both its sides. By the properties of
the Fourier transform (Appendix C), we get

jωY (jω) =
1
2π

A(jω) ∗X(jω) =
1
2π

∞∫

−∞
A(jω1)X(jω − jω1)dω1 , (6.139)

where Y (jω), A(jω), and X(jω) are the transforms of y(t), a(t), and x(t),
respectively. The ODE is thus transformed to the integral equation that com-
monly gives no preference.

A situation changes cardinally when a(t) becomes periodic. In fact, for
a(t) = a(t + T ), where T is period of repetition, one can extend a(t) to the
Fourier series

a(t) =
∞∑

k=−∞
Cke

jkΩt , (6.140)

where Ω = 2π/T is an angular frequency associated with T and the coefficient
Ck is provided by

Ck =
1
T

T/2∫

−T/2

a(t)e−jkΩtdt . (6.141)

Now we can find the Fourier transform of (6.140),

A(jω) = 2π
∞∑

k=−∞
Ckδ(ω − kΩ) , (6.142)

and substitute (6.142) to (6.139). The transformation produces

jωY (jω) =
1
2π

∞∫

−∞
A(jω1)X(jω − jω1)dω1

=

∞∫

−∞

∞∑
k=−∞

Ckδ(ω1 − kΩ)X(jω − jω1)dω1
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=
∞∑

k=−∞
Ck

∞∫

−∞
δ(ω1 − kΩ)X(jω − jω1)dω1

=
∞∑

k=−∞
CkX(jω − jkΩ) , (6.143)

allowing us to represent the spectral density Y (jω) of the output via the
spectral density X(jω) of the input as in the following,

Y (jω) =
1
jω

∞∑
k=−∞

CkX(jω − jkΩ) . (6.144)

A solution (6.144) for an LPTV system (6.138) is thus found in the fre-
quency domain. A simple observation shows that the spectral content of the
output is enriched with new components caused by the k-order harmonics of
a periodically varying input. The latter represents one of the most recognized
properties of LPTV systems.

6.6.2 Floquet’s Theory

Any LPTV system demonstrates a very important feature that is the time-
varying coefficients act as auxiliary sources of energy. This auxiliary resource
is exploited widely. However, an accompanying problem arises of stability
occupying a central place in the theory of periodic systems.

In the most general terms, the conditions for an LPTV system to be stable
as well as solutions in state space were mathematically given by Floquet6.
After many decades apart, recognizing a theoretical and applied significance
of this mathematical work, the approach was called the Floquet theory. Its
basis is in the transformation of the LPTV system into the LTI system through
the Lyapunov transformation of variables. If one follows this transformation,
then stability of the original periodic system can be ascertained from the
relevant LTI system.

Floquet’s Theorem

We have already shown that stability of a system described in state space can
be ascertained for t � t0 by considering only the homogenous equation

q′(t) = A(t)q(t) (6.145)

with known initial condition q(t0).
Now let us think that the matrix A(t) is continuous, bounded, and periodic

with period T , namely A(t) = A(t+T ). We can suppose that the fundamental
6 Achille Marie Gaston Floquet, French mathematician, 15 December 1847-7

October 1920.
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matrix Q(t) is defined and thus the state transition matrix Φ(t, t0) is distinct
as well.

For periodic A(t), the Floquet theorem argues the following.

1. The state transition matrix Φ(t, t0) is periodic for all t and t0

Φ(t, t0) = Φ(t + T, t0 + T ) . (6.146)

To prove, put τ = t−T , then d
dτ q = A(τ+T )q = A(τ)q. Thus, Φ(t+T, t0+T )

is also a fundamental matrix.

2. There exists a nonsingular matrix P(t, t0), satisfying P(t, t0) = P(t +
T, t0) and P(t0, t0) = I, and a constant square matrix F such that

Φ(t, t0) = P(t, t0)eF(t−t0) . (6.147)

In fact, because the fundamental matrices Φ(t, t0) and Φ(t + T, t0 + T ) are
linearly dependent even with unit coefficients as in (6.146), there exists a
nonsingular matrix F1 (known as the monodromy matrix ) such that

Φ(t + T, t0) = Φ(t, t0)F1 (6.148)

and a constant matrix F such that

F1 = eFT and F =
1
T

lnF1. (6.149)

We can now rewrite (6.147) as

P(t, t0) = Φ(t, t0)e−F(t−t0) , (6.150)

put τ = t − T , let for simplicity t0 = 0, and show that P(t, 0) ≡ P(t) is
T -periodic:

P(τ + T ) = Φ(τ + T )e−F(τ+T ) = Φ(τ)F1e
−F(τ+T )

= Φ(τ)eFT e−F(τ+T ) = Φ(τ)e−Fτ = P(τ) .

3. The Lyapunov substitution of a variable,

q(t) = P(t, t0)z(t) , (6.151)

transforms an LPTV system (6.145) to the LTI system

z′(t) = Fz(t) (6.152)

for t � t0 and initial condition z(t0) = q(t0). To verify, we differentiate (6.150)
for t0 = 0, employ the above-given relations, and arrive at

P′(t) = Φ′(t)e−Ft −Φ(t)e−FtF = A(t)Φ(t)e−Ft −P(t)F

= A(t)P(t) −P(t)F . (6.153)
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On the other hand, differentiating (6.151) yields

q′(t) = P′(t)z(t) + P(t)z′(t)

and, by (6.145) and (6.151), we have

A(t)q(t) = P′(t)z(t) + P(t)z′(t) ,

A(t)P(t)z(t) = P′(t)z(t) + P(t)z′(t)

that gives

z′(t) = P−1(t)[A(t)P(t) −P′(t)]z(t) . (6.154)

By (6.153), (6.154) becomes (6.152) and the verification is complete.

Characteristic Exponents and Multipliers

Substituting (6.149) to (6.148) and representing the state transition matrices
via the fundamental solutions allow us now to derive the time-invariant matrix
F. First, by the transformations,

Φ(t + T, t0) = Φ(t, t0)eFT ,

eFT = Φ−1(t, t0)Φ(t + T, t0)

we go to
eFT = Q(t0)Q−1(t)Q(t + T )Q−1(t0) ,

It can be shown that, in line with (6.148), the following relation holds true,
Q(t + T ) = Q(t)eFT , and we arrive at

eFT = Q(t0)Q−1(t)Q(t)eFTQ−1(t0)

= Q(t0 + T )Q−1(t0)

= Φ(t0 + T, t0) . (6.155)

The latter means that F is defined via the state transition matrix,

F =
1
T

lnΦ(t0 + T, t0) . (6.156)

If (6.156) occurs to be complex, a real matrix can be obtained from

F =
1

2T
lnΦ(t0 + 2T, t0) , (6.157)

because any T -periodic function is also 2T -periodic.
In the Floquet theory, the eigenvalues λk of F are said to be the Flo-

quet exponents or characteristic exponents. The real parts of λk are also the
Lyapunov exponents. The eigenvalues ηk of Φ(t0 + T, t0) are called the char-
acteristic multipliers. Finally, the relation

ηk = eλkT (6.158)

establishes the correspondence between λk and ηk.
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Stability of LPTV systems

Floquet’s theory brings forward the following criteria for the linear periodic
system to be stabile:

• The system is exponentially stable if
– all eigenvalues of F have negative real parts, ��
– all eigenvalues of Φ(t0 + T, t0) have magnitudes less than unity. ��

• A zero solution of the system is
– asymptotically stable if all Lyapunov exponents are negative, ��
– Lyapunov stable if the Lyapunov exponents are nonpositive. ��
Otherwise, the system is unstable.

Example 6.32. An LPTV system is represented in state space by the follow-
ing homogenous equation

[
q′1
q′2

]
=
[

0 cos t
0 0

] [
q1

q2

]
(6.159)

with initial conditions q1(0) and q2(0) and period T = 2π.
Equivalently, the system is described with two equations: q′1 = q2 cos t and

q′2 = 0. The second equation leads to the obvious solution q2(t) = q2(0). A
solution of the first equation is provided by

q1(t) =

t∫

0

q2(τ) cos τ dτ + q1(0) = q2(0)

t∫

0

cos τ dτ + q1(0)

= q2(0) sin t + q1(0) . (6.160)

For the initial conditions q1(0) = 0 and q2(0) = 1, solutions become,
respectively, q1(t) = sin t and q2(t) = 1. Setting q1(0) = 1 and q2(0) = 1, we
have, respectively, q1(t) = 1 + sin t and q2(t) = 1.

The fundamental matrix and its inverse version can now be written as

Q(t) =
[

sin t 1 + sin t
1 1

]
, Q−1(t) =

[−1 1 + sin t
1 − sin t

]
, (6.161)

producing the state transition matrix

Φ(t, τ) = Q(t)Q−1(τ) =
[

1 sin t− sin τ
0 1

]
. (6.162)

In accordance with (6.156), to investigate stability of this system, one needs
to describe the matrix Φ(T, 0). It can be shown that the matrix is identity,

Φ(T, 0) =
[

1 0
0 1

]
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having unit eigenvalues (characteristic multipliers) η1 = η2 = 1. By (6.158),
both characteristic exponents are zero here, λ1 = λ2 = 0.

Following the definitions of stability, one infers that the system is not
exponentially stable, because the real λ1,2 are nonnegative and η1,2 are not
less then unity. A zero solution is also unstable for the same reasons. However,
the system is Lyapunov stable, because both λ1 and λ2 are zero (non-positive).

One can arrive at the same conclusions by analyzing a solution (6.160).
Indeed, at t → ∞, the solution still oscillates and, thus, is unstable in the
above senses. At t = 0, it is constant and, hence, Lyapunov stable. ��

On the whole, the main difficulties with applications of Floquet’s theory
are in determination of the fundamental matrix and state transition matrix.
For complex systems, it may become a problem.

6.6.3 Frequency Transformation

One of the classical applications of LPTV systems can be found in the su-
perheterodyne receiver, in which a spectral content of the modulated signal is
removed without any change in the modulation law from the carrier frequency
ωc to some other frequency ωi called the intermediate frequency (IF) (usually
ωi < ωc and ωi is constant). This is what we call the frequency transformation
because ωc is transformed to ωi.

A structure of the superheterodyne receiver is shown in Fig. 6.16. The

Fig. 6.16. Superheterodyne receiver.

basic idea is to multiply the RF signal vs(t) with the time-varying periodic
voltage (coefficient) vh(t) generated by a local oscillator (heterodyne), enrich
the spectrum of the electric current i(t) as in (6.144), and then filter by the IF
amplifier only the components at the intermediate frequency ωi. The voltage
vi(t) is then demodulated to produce the message signal at the output of the
receiver.
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Let us consider the operation principle of such an LPTV system in detail
based on the electric scheme of the frequency transformer shown in Fig. 6.17a.
The voltage vh(t) causes a periodic change of the transconductance slope

Fig. 6.17. Frequency transformer: (a) scheme and (b) frequency diagram.

gm(t) of a transistor. Because the characteristic of a transistor is nonlinear,
the time-varying transconductance slope can be expanded to the harmonic
Fourier series and we have

gm(t) = gm0 + gm1 cosωht + gm2 cos 2ωht + . . . (6.163)

If the input voltage represents, for example, an AM signal

vs(t) = Vs(1 + μ cosΩt) cosωct , (6.164)

where μ is the modulation factor, Vs is a constant amplitude, and Ω is an
angular modulation frequency, the electric current i(t) produced by the tran-
sistor can be written as

i(t) = gm(t)vs(t) ,

where vs(t) is the input, i(t) is the output, and gm(t) plays the role of a
time-varying coefficient. Substituting (6.163) and (6.164) leads to

i(t) = Vs(1 + μ cosΩt) cosωct

×[gm0 + gm1 cosωht + gm2 cos 2ωht + . . .]

= Vs(1 + μ cosΩt)

×
[
gm0 cosωct +

1
2
gm1 cos(ωh − ωc)t +

1
2
gm1 cos(ωh + ωc)t

+
1
2
gm2 cos(2ωh − ωc)t +

1
2
gm2 cos(2ωh + ωc)t + . . .

]
. (6.165)
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If to choose the intermediate frequency to be ωi = |ωh − ωc| and tune the
IF amplifier to this frequency with a proper gain, then the output voltage can
be obtained to be

vi(t) = Vs(1 + μ cosΩt) cosωit . (6.166)

As can be inferred, the spectral content of the input signal (6.164) is
merely removed in (6.166) to the intermediate frequency ωi with the fully
saved modulation law, as shown in Fig. 6.17b.

6.6.4 Parametric Modulation

Using mixers allows the creation of different kinds of parametric modula-
tors exploited in communications: amplitude, phase, and frequency. The basic
structure of a parametric modulator in given in Fig. 6.18.

Fig. 6.18. Basic structure of a parametric modulator.

The LPTV system (Fig. 6.18) has two inputs, x1(t) and x2(t), bearing a
message and one output y(t) = vmod(t). The functions x1(t) and x2(t) are
multiplied in two mixers by periodically time-varying the coefficients, cosωct
and sinωct, shifted on π/2. The product of the second mixture is inverted with
the coefficient −1. Two products are then added to produce the modulated
output

y(t) = x1(t) cosωct− x2(t) sinωct

=
√

x2
1(t) + x2

2(t) cos [ωct + ψ(t)] , (6.167)

where tanψ(t) = x2(t)/x1(t). In the matrix form, (6.167) represents a mem-
oryless system with

y(t) = C(t)x(t) , (6.168)

where C = [cosωct − sinωct] and x(t) = [x1(t) x2(t)]T .
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If x2(t) = 0, the output becomes an AM signal vAM(t) = x1(t) cosωct.
This function can further be added to the carrier signal with a unit amplitude
that yields the standard form of an AM signal vAM(t) = [1 + x1(t)] cosωct.
Otherwise, with x2(t) 	= 0, the output is either FM or PM. A combined
modulation such as AM-FM or AM-PM can also be provided by this structure.

6.6.5 Synchronous Detection

The principle of the frequency transformation utilized to the superheterodyne
receiver is efficiently used in the synchronous detection of RF signals as an
example of parametric demodulation. The scheme of a synchronous detector
is shown in Fig. 6.19.

Fig. 6.19. Scheme of synchronous detection.

To grasp the essence of the synchronous detection, one may suppose an
AM signal

vs(t) = Vs(1 + μ cosΩt) cos(ωct + ϑ0) (6.169)

and think that the heterodyne generates a signal vh(t) exactly of the carrier
frequency, ωh = ωc. The time-varying transconductance slope (6.163) will
therefore be periodically changed with the carrier frequency,

gm(t) = gm0 + gm1 cosωct + gm2 cos 2ωct + . . . (6.170)

By virtue of (6.170), the electric (collector) current of the frequency trans-
former will vary as

i(t) = Vs(1 + μ cosΩt) cos(ωct + ϑ0)
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×[gm0 + gm1 cosωct + gm2 cos 2ωct + . . .]

= Vs(1 + μ cosΩt)
[
gm0 cos(ωct + ϑ0) +

1
2
gm1 cosϑ0

+
1
2
gm1 cos(2ωct + ϑ0) + . . .

]
. (6.171)

It is not hard to observe that the spectral content of (6.171) includes low-
frequency components representing the message signal. By an LP filter, the
output of the detector becomes

VAM(t) =
1
2
Vsgm1(1 + μ cosΩt) cosϑ0 . (6.172)

As it follows, the synchronous detector is sensitive to the phase angle ϑ0

between two signal. The best choice of course is ϑ0 = 0 and if ϑ0 = π/2
the output is merely absent. We notice that such a high dependence on ϑ0

can play a positive role when it is exploited in meters to indicate the phase
differences between two coherent signals.

More sophisticated structures of synchronous detection utilize the phase
locked loop (PLL). In the basic structure (Fig. 6.20a), the PLL tracks the
phase ϑ0 of the input signal at the carrier frequency ωc. The PLL output is

Fig. 6.20. Structures of synchronous detection: (a) basic and (b) with quadrature
channels.

then formed as vPLL = cos(ωct + ϑ0) and a mixer produces

vM(t) = Vs(1 + μ cosΩt) cos(ωct + ϑ0) cos(ωct + ϑ0)

=
1
2
Vs(1 + μ cosΩt) +

1
2
Vs(1 + μ cosΩt) cos(2ωct + 2ϑ0) . (6.173)

If an LP filter has a gain factor of 2, the output becomes exactly equal to
the message signal

VAM(t) = Vs(1 + μ cosΩt) . (6.174)
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The second structure shown in Fig. 6.20b is sophisticated with the quadra-
ture channel, in which the PLL output is shifted in phase to π/2. In view of
that, the output of an auxiliary mixer produces

v̂M(t) = Vs(1 + μ cosΩt) cos(ωct + ϑ0) sin(ωct + ϑ0)

=
1
2
Vs(1 + μ cosΩt) sin(2ωct + 2ϑ0) . (6.175)

If the PLL tracks the carrier phase precisely and an LP filter is used with
the gain factor of 2, the output of the quadrature channel is identically zero,
V̂AM = 0. If it is not the case, this channel produces some amount of energy
indicating errors in synchronous detection.

6.6.6 Linear Parametric Excitation

There is an important practical application of LPTV systems associated with
parametric excitation. The effect occurs when the energy of a modulating
signal is added, under the certain circumstances, to the signal energy.

Historical roots of parametric excitation are in the works of Faraday who
noticed in 1831 that, in the crispations (ruffled surface waves) observed in a
wine glass excited to “sing”, oscillations of one frequency may be excited by
forces of double the frequency. Melde7, in 1859, generated parametric oscilla-
tions in a string by employing a tuning fork to periodically vary the tension at
twice the resonance frequency of the string. Parametric oscillations in general
were first treated by Rayleigh in 1883 and 1887.

Below, we first observe a physical occurrence of the effect in electronic
resonant circuits. We then discuss a linear parametric oscillator and special
features of parametric excitation in LPTV systems.

Excitation of Linear Resonant Circuits

Let us consider a closed series resonant circuit without a source of energy as
shown in Fig. 6.21. Because R dissipates energy, the amplitude of oscillations
in this circuit inherently attenuates with time starting at some initial value.

A situation changes if a capacitor C is modulated. To show that oscillations
could be protected from attenuation, sustained, and even developed, we let
the modulating function to be a rectangular pulse train. A capacitor thus
changes its value abruptly from C0 −ΔC to C0 + ΔC around a mean value
C0 with an increment ΔC as shown in Fig. 6.22a.

To figure out a physical picture, we shall think that, by the modulating
signal, the plates of a capacitor are merely moved together and apart, thereby
increasing and reducing a capacitance, respectively. The voltage vC induced on
a capacitor is coupled with the electric charge Q by the relation vC = Q/C, in

7 Franz Melde, German physicist, 11 March 1832-17 March 1901.
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Fig. 6.21. Linear resonant circuit with a modulated capacitor.

which Q, as an energy bearer, cannot change instantly. In view of that, when
we switch a capacitance, we also instantly change vC .

The modulation process can now be organized as follows. Let us move
the plates together at the moments, when vC(t) reaches extrema (minimum
and maximum) and apart when it crosses zero. By such manipulations, the
amplitude of vc will jump, at extrema, as shown in Fig. 6.22b. With time, the
amplitude will increase more and more and we watch for the effect termed
the parametric excitation or parametric pumping of linear systems. It is also
known as the parametric resonance.

It follows from the physical picture sketched that, to excite the circuit
parametrically, the modulating signal must be synchronized in phase with
the oscillating voltage and that the modulating frequency must be twice the
oscillations frequency f0 = 1/2π

√
LC0.

Fig. 6.22. Parametric excitation of a resonant circuit: (a) modulating signal and
(b) voltage induced on a capacitor.
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6.6.7 Linear Parametric Oscillator. Mathieu’s Equation

It turns out that the effect of parametric excitation of the loop (Fig. 6.21) still
occurs if to substitute the rectangular modulating train with the harmonic
wave. This agrees with what we know as the harmonic pumping.

For the electric current i(t), the ODE of the circuit is written as

L
di
dt

+ Ri +
∫

idt
C(t)

= 0 . (6.176)

If to substitute i(t) = dQ(t)
d(t) , (6.176) becomes

Q(t)′′ + 2δQ(t)′ +
1

LC(t)
Q(t) = 0 , (6.177)

where the system bandwidth 2δ = R
L is typically much smaller than the an-

gular frequency ω(t) = 1/
√

LC(t).
Let us now suppose that a capacitor is modulated harmonically,

C(t) = C0(1 + μ cosωpt) , (6.178)

around the mean value C0 with some frequency ωp and small modulation
factor μ� 1. The frequency of oscillations can then be found as

ω2
0(t) =

1
LC(t)

≈ ω2
0(1− μ cosωpt) ,

where ω0 = 1√
LC0

is the mean natural oscillation frequency. In view of that,
the equation (6.177) becomes

q′′ + 2δq′ + ω2
0(1 − μ cosωpt)q = 0 (6.179)

and its solution bears all the properties of a system associated with oscillations
and stability. It is seen that the ODE is linear and time-varying representing
the so-called linear oscillator. In this “oscillator,” the frequency is modulated,
whereas the bandwidth becomes unaltered.

In state space, (6.179) is equivalently represented with q′ = A(t)q or
[
q′1
q′2

]
=
[

0 1
−ω2

0(1− μ cosωpt) −2δ

] [
q1

q2

]
(6.180)

and we can alternatively write, assigning y = q1 and z = q2,

y′ = z = P (y, z) ,

z′ = −ω2
0(1− μ cosωpt)y − 2δz = Q(y, z) .

The nonzero value P ′y + Q′z = −2δ 	= 0 means that, by Bendixson’s crite-
rion (3.16), the system has no periodic orbit inside the finite bounds. So, the
oscillations can either develop or attenuate.
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Example 6.33. Consider an LPTV system (6.180) with ω0 = 10 rad/s, ωp =
2ω0, and the quality factor of 2.5. Three typical behaviors of the system, by
y(0) = 0 and z(0) = 1, are sketched in Fig. 6.23 for the attenuating (μ < μcr),
near stationary (μ = μcr), and developing (μ > μcr) oscillations. The critical
value of the modulating factor was found numerically to be μcr

∼= 0.8845. The
modulating function is represented by v(t) = μ cosωpt.

Fig. 6.23. Oscillations in an LPTV system (6.180): (a) and (b) attenuation with
μ = 0.5, (c) and (d) near steady state with μ = 8845, and (e) and (f) development
with μ = 1.2.

It is seen that oscillations and their time derivatives are not purely har-
monic. A solution of (6.180) is thus represented with the Fourier series com-
posed of harmonics of the fundamental frequency ω0. ��
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Mathieu’s Equation

If to neglect the dissipation (second) term, 2δ = 0, and introduce a new
variable ζ = ωpt/2, then (6.179) can be generalized in the form of

d2q

dζ2
+ (a− 2b cos 2ζ)q = 0 , (6.181)

where a = 4ω
2
0
ω2

p
and b = 2μω

2
0
ω2

p
. This equation is known as the Mathieu8

equation being a special case of Hill’s9 equation. In state space, (6.181) reads
[
q′1
q′2

]
=
[

0 1
−a + 2b cos 2ζ 0

] [
q1

q2

]
. (6.182)

Because the matrix A(t) in (6.182) is periodic, we can apply the Floquet’s
theory and investigate this system for stability. In accordance with Floquet,
(6.182) has solutions, which for a proper value of the characteristic exponent
λ, satisfy the equation

q(ζ + π) = e2πλq(ζ) .

Stability of a solution is entirely defined by λ. The solution is periodic if
e2πλ = 1 and it is semiperiodic when e2πλ = −1. By that reason, the relevant
real value of λ is called the periodic eigenvalue or semiperiodic eigenvalue.

On the other hand, here we have

q′1 = y′ = z = P (y, z) ,

q′2 = z′ = −ω2
0(1− μ cosωpt)y = Q(y, z) ,

producing P ′y + Q′z = 0. By the Bendixson’s criterion (3.16), the Mathieu
oscillator has thus a periodic orbit inside the finite bounds and that is inde-
pendently on the modulation term.

The theory of Mathieu’s equation (6.181) is well developed via the special
Mathieu functions C(a, b, ς) and S(a, b, ς) representing the even and odd solu-
tions, respectively. The functions can be found in special books, however, their
rigorous forms have not enough engineering features. Moreover, neglected the
dissipation term 2δ, the solution does not fully fit practical needs in electronic
systems, especially when the quality factor is low. We notice that some special
features of this solution can be studied by the method of harmonic balance
that we discuss below.

8 Emile Lonard Mathieu, French mathematician, 15 May 1835-19 October 1890.
9 George William Hill, American mathematician, 3 March 1838-16 April 1914.
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Solution by the Method of Harmonic Balance

Consider an equation (6.179) under the condition that 2δ � ω0. In the view
of a high quality factor, ω0/2δ � 1, the amplitude of the oscillating solution
cannot change substantially during the period of oscillations. Moreover, by
Floquet’s theorem, it is periodic. Therefore, in the first-order approximation,
we can discard all high harmonics and think that a solution is harmonic.

Now recall that the pumping frequency ωp must be twice ω0. However, ωp

is variable, so that one may suppose that ωp = 2ω0 + Δ, where Δ represents
a small frequency offset. If so, then the system frequency is ω = ω0 + Δ

2 .
Under such assumptions, a solution of (6.179) can approximately be found

in the harmonic form of

q(t) = A cosωt + B sinωt , (6.183)

where the amplitudes A(t) and B(t) are time-varying functions. After taking
the first and second time derivatives of (6.183), we write

q′(t) = A′ cosωt−Aω sinωt + B′ sinωt + Bω cosωt , (6.184)

q′′(t) = A′′ cosωt− 2A′ω sinωt−Aω2 cosωt + B′′ sinωt

+2B′ω cosωt−Bω2 sinωt . (6.185)

Substituting (6.183)–(6.185) to (6.179), equating the amplitudes of cosωt
and sinωt, and neglecting the small values, A′′ ∼ 2δA′ � ω2

0A and B′′ ∼
2δB′ � ω2

0B, leads to the differential equations

A′ + δA = −1
2

(
Δ− μω0

2

)
, (6.186)

B′ + δB =
1
2

(
Δ +

μω0

2

)
. (6.187)

Solutions of (6.186) and (6.187) are given by A = αeλt and B = βeλt that
leads to the algebraic equations

(λ + δ)α +
1
2

(
Δ− μω0

2

)
β = 0 ,

1
2

(
Δ +

μω0

2

)
− (λ + δ)β = 0 . (6.188)

A nontrivial (not zero) solution of (6.188) is provided by zero determinant
that gives two eigenvalues

λ1,2 = −δ ± 1
2

√(μω0

2

)2

−Δ2 .

Excitation is possible solely by positive λ, so that, further on, we will be
interested in the value
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λ = −δ +
1
2

√(μω0

2

)2

−Δ2 (6.189)

that, by exact tuning, Δ = 0, becomes λ = −δ + μω0
4 .

Of interest is an unstable region outlined by values of the modulation
factor μ for which the offset Δ yields positive eigenvalues. If we solve (6.189)
for μ(Δ) and plot it, the picture for different quality factors Q will look like
in Fig. 6.24.

An analysis shows that a system with large Q is highly addicted to exci-
tation even by insignificant (noise) levels of μ. On the other hand, lowering
Q results in increase in the excitation threshold that reaches μ = 0.5 with
Q = 4.

In the above analysis, we were concerned only with the first zone of a
possible parametric excitation around the resonant frequency ω0. In a like
manner, other excitation regions associated with harmonics of ω0 can be out-
lined, although with the increased transformation burden and difficulties.

To increase the accuracy in determining the excitation regions, the series
(6.183) must involve high harmonics. If to provide the necessary transforma-
tions and find the regions, the picture will no longer be symmetric as in Fig.
6.24. It will be as shown in Fig. 6.25 for several neighboring regions sketched
in terms of the Mathieu equation (6.181).

p

µ

Fig. 6.24. Excitation regions (shadowed) for a linear oscillator (6.179), by different
quality factors Q.
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Fig. 6.25. Excitation regions corresponding to Mathieu’s equation: dash bounded
are for period T and sold bounded for 2T .

Frequency Dividers

An alternative application of parametrical excitation can be found in fre-
quency dividers having the division factor of 2, 4, . . . The relevant LPTV
system is organized so that the input plays the role of the pumping signal
with the frequency ωp. In turn, oscillations taken from the resonant circuit at
the frequency ωp/2, ωp/4, . . . go to the output. Properly obtained the modu-
lation factor μ, the structure is able to generate the output with almost the
constant amplitude and frequency divided. An example of such a signal is
given in Fig. 6.23c and Fig. 6.23d. Note that a BP filter must be included in
cascade to pass through only the component with the divided frequency.

6.6.8 Parametric Amplification

The other benefit of “pumping” is in its ability to obtain parametric ampli-
fication. The relevant LPTV system is designed without active components
(transistors) and thus has a very low-noise level. That makes “pumping” chal-
lenging to amplify small signals in wireless channels, by using the energy from
the pumping action. Parametric amplifiers with a variable-capacitance main-
oscillator semiconductor diode are used in radar tracking and communications
Earth stations, Earth satellite stations, and deep-space stations.

The principle of parametric amplification is illustrated by the electrical
circuit shown in Fig. 6.26a. Here, the input signal vin(t) with the frequency
ω drives the circuit with the resonance frequency ω0. A capacitor C(t) is
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Fig. 6.26. Parametric amplifier circuits: (a) electrical and (b) equivalent.

modulated with the pumping frequency ωp = 2ω0 and the output voltage is
typically taken from the inductor L.

To come up with the idea of parametric amplification, let us observe again
a passive circuit shown in Fig. 6.21 and modify it for the driving charge
Q1(t) = QMejωt, where QM is a peak charge value, as shown in Fig. 6.26b.
We thus write an equation

Q(t)′′ + 2δQ(t)′ + ω2
0(1− μ cosωpt)Q(t) = qMejωt . (6.190)

To find a solution of (6.190) by the familiar method of harmonica balance,
one first needs to observe its possible spectral components, once there are three
frequencies. The principle point is that an interaction of the modulating signal
with ωp = 2ω0 and the system signal with ω produces a spectral component
with the frequency ωi = ωp − ω = 2ω0 − ω called the idle frequency. In
the sequel, it will become obvious that namely ωi plays a role of a positive
feedback increasing the amplitude of oscillations.

In the first order approximation, since ω is not obligatorily equal to ω0,
we can find a steady-state solution of (6.190) as composed of two harmonic
waves,

Q(t) = Aejωt + Bejωit , (6.191)

where A and B are constants. The first and second time derivatives of (6.191)
are provided by

Q′(t) = jωAejωt + jωiBejωit , (6.192)

Q′′(t) = −ω2Aejωt − ω2
i Bejωit . (6.193)

By representing cosωpt with Euler’s formula, accounting for (6.191)–
(6.193), neglecting harmonics and sums of all frequencies, and taking into
account that ω − ωp = ωi and ωi − ωp = ω, we transform (6.190) to

−ω2Aejωt − ω2
i Bejωit + 2jδωAejωt + 2jδωiBejωit + ω2

0Aejωt + ω2
0Bejωit

−μ

2
ω2

0Aejωit − μ

2
ω2

0Bejωt = qMejωt .
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If we further equate to zero the amplitudes of the relevant exponential
functions and substitute ω2

0 −ω2 ∼= 2ω0Ω, where Ω = ω0−ω, we arrive at the
algebraic equations

A(Ω + jδ) +
μω0

4
B =

qM

2ω0
,

B(Ω + jδ) +
μω0

4
A = 0 ,

whose solutions are

A =
qM

2ω0

Ω + jδ

(Ω + jδ)2 + (μω0/4)2
, (6.194)

B =
qMm

8
1

(Ω + jδ)2 + (μω0/4)2
. (6.195)

The amplifier complex gain at Ω can now be defined by the ratio

G(Ω) =
A(Ω)
A(0)

=
(Ω + jδ)2

(Ω + jδ)2 + (μω0/4)2

=
1

1 +
[

μω0
4(Ω+jδ)

]2 (6.196)

exhibiting a maximum at Ω = 0,

Gmax =
1

1−
(
μQ
2

)2 , (6.197)

where Q = ω0/2δ is the system quality factor. A simple observation shows that
the modulation factor μ must be less than 2/Q. Otherwise, by m = 2/Q, the
system becomes unstable, since Gmax goes toward infinity. If to take the latter
into account and assign normalized the detuning ν = Ω/δ and modulation
factor α = μQ/2, the complex gain (6.196) can be generalized to be

G(ν, α) =
(ν + j)2

(ν + j)2 + α2
. (6.198)

Fig. 6.27 sketches the total gain |G(ν, α)| in a wide range of detunings,
−0.5 � ν � 0.5, for the allowed factor 0 < α < 1. Observing Fig. 6.27,
one infers that the input signal is gained by the factor of more than 10 if
0.95 � α < 1 and |ν| � 0.02.

The most general conclusion following behind our examination of LTV
systems is that such systems are able to produce effects featured to both
LTI and NTI systems. In fact, although an LTV system is still linear, it
produces harmonics of the input in the output that is a fundamental feature of
nonlinear systems. Therefore, LTV systems have a wide range of applications
in electronics.
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Fig. 6.27. Total gain |G(ν, α)| of a parametric amplifier.

6.7 Summary

All major properties of LTV systems are entirely coupled with time-variations
in their parameters. The theory of such system has the following basic foun-
dations:

− A linear system that provides transformations with a time-varying oper-
ator is the LTV system.

− The response of a system at time t to the unit impulse at time θ is the
LTV system time-varying impulse response h(t, θ).

− The response of a system at time t to the unit impulse at time t− τ is the
LTV system modified time-varying impulse response h̄(τ, t).

− The frequency response of an LTV system is coupled by the Fourier trans-
form with h̄(τ, t) and it is not the Fourier transform of h(t, θ).

− An LTV system demonstrates the properties of linearity (distributiv-
ity and homogeneity) and associativity. Its operator commonly is non-
commuting.

− The time-varying impulse and step responses are commonly not convert-
ible by differentiation and integration.

− The first direct form of block diagrams of LTV systems involves time
derivatives of the input.

− The second direct form of block diagrams of LTV systems appears in a
particular case of M = 0 and constant b0.
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− A solution of the time-varying state space equations is provided via the
fundamental matrix and state transition matrix.

− A solution of the LPTV system can be represented in the frequency do-
main by the Fourier series.

− The Floquet’s theory is universal for LPTV systems represented in state
space.

− Stability of LPTV systems in state space is evaluated via the Floquet’s
exponents and characteristic multipliers.

− Frequency transformation, parametric modulation, and synchronous de-
tection exploit an ability of LPTV systems to remove frequency spectra
from one region to another.

− Parametric excitation and amplification is provided by LPTV systems
when the energy of a modulated parameter is added with the signal energy.

6.8 Problems

6.1. Observe different electronic systems (communications, radars, position-
ing, control, etc.) given in Chapter 1. Find subblocks in these systems that
seem to be time-varying.

6.2. Based on the ODE y′ + a(t)y = b(t)x, find simple words to explain the
difference between LTI and LTV systems. Provide explanations in the time
and frequency domains.

6.3 (Time-varying impulse response). Give a simple graphical illustra-
tion for the time-varying impulse response h(t, θ) and its modified version
h̄(τ, t). Explain how to transfer from h(t, θ) to h̄(τ, t) and from h̄(τ, t) to
h(t, θ).

6.4. An LTV system is represented with the time-varying impulse response

1. h(t, θ) = θ+1
t+1 e

−(t−θ)u(t− θ)
2. h(t, θ) = δ(t− θ − θ0)
3. h(t, θ) = δ(t− θ)ejω0t

4. h(t, θ) = (1 + α cosΩθ)e−(t−θ)e−
α
Ω (sinΩt−sinΩθ)u(t− θ)

Involving the necessary constraint, show the plot of the response. By changing
variables, translate the response to the modified form h̄(τ, t). Sketch the plot
of the modified response.

6.5. An LTV system is represented with the modified time-varying impulse
response

1. h̄(τ, t) =
√|a0|δ[b0 − a0τ − (1 − a0)t]
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2. h̄(τ, t) = δ(τ − τ0)ejω0t

3. h̄(τ, t) = e−τe−
α
Ω sinΩtu(τ)

4. h̄(τ, t) = e−a(cosΩτ−sinΩt)e−b(t−τ) cosΩτ u(τ)

Involving the necessary constraint, show the plot of the response. By changing
variables, translate the response to h(t, θ). Sketch the plot of h(t, θ).

6.6 (Frequency response). An LTV system is given with the following
differential equation. Assuming the input to be x = ejωt and the output to be
y(t) = H(jω, t)ejωt, define the time-varying frequency response of a system.

1. y′ + 2ty = 2tx
2. y′ + y = 2tx′

3. y′ + 2ty = te−jωtx
4. y′ + 2ty = t2e−jωtx′

6.7. Define the bi-frequency response of an LTV system given in Problem 6.6.
Investigate this response numerically. Make a conclusion about the bandwidth
of a time-varying system.

6.8. Define the frequency responses H(jω, t), H(θ, jΩ), and H(jω, jΩ) of an
LTV system represented with the impulse response (Problem 6.4). Investigate
these responses numerically.

6.9. Solve Problem 6.8 for the frequency responses H̄(jω, t), H̄(θ, jΩ), and
H̄(jω, jΩ) via the modified impulse response (Problem 6.5).

6.10 (BIBO stability). Ascertain BIBO stability of an LTV system via the
impulse response given in Problems 6.4 and 6.5.

6.11. Realize, whether LTV systems described with the impulse responses
(6.11) and (6.13) are BIBO stable or not.

6.12 (Differential equations presentation). Given three systems de-
scribed with the ODE (6.57). In the first system, one of the coefficients is
sensitive to the ambient temperature. In the second one, several coefficients
are stabilized in the control loop. The third system is designed with the pre-
cision components. Which system can be modeled as LTV and which as LTI?

6.13. An LTV system is represented with the ODE (Problem 6.6). Define
the system time-varying impulse and step responses.

6.14 (Application to electrical circuits). Given an electrical circuit of
the first order with a time-varying component (Fig. 6.28). Write the ODE of
this circuit: 1) for the electric charge or magnetic flux and 2) for the voltage
induced on a component indicated. Define the impulse response, step response,
and frequency response of this circuit with respect to the voltage.
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Fig. 6.28. Electric circuits with time-varying components.

6.15. An LTV system of the second order is represented by the electric cir-
cuit (Fig. 6.29). Write the ODE of the system, assuming that the variable
component is: 1) R, 2) C, 3) L, 4) R and L, 5) L and C, 6) R and C, 7) R,
C, and L.

6.16. Describe the circuit shown in Fig. 6.29 with the ODE:

1. Fig. 6.29a: For the electric charge Q(t) on a capacitor C(t) with R and L
constant.

2. Fig. 6.29b: For the magnetic flux Φ(t) on an inductor L(t) with R and C
constant.

3. Fig. 6.29c: For the electric charge Q(t) on a capacitor C(t) with R and L
constant.

4. Fig. 6.29d: For the magnetic flux Φ(t) on an inductor L(t) with R and C
constant.

Fig. 6.29. Electric circuits with time-varying components.
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6.17 (Block diagrams). Represent an LTV system given in Problem 6.6
with the block diagrams of the first and second direct forms. For the second
direct form, represent the right-hand side of the ODE as b0x, where b0 is
constant.

6.18. An LTV system is given with the ODE

1. ay′′ + b(t)y′ + cy = dx′′ − e(t)x′

2.
∫
ydt− 4y′ + 2ty = −x

3. 2y′′′ − 3 cos(t)y = 2x′′ − sin(t)x

4. y′′ +
∫
ydt− 2ty′ =

1∑
m=0

bm
dmx
dtm , b0 = 2 cos t, b1 = 1

5. x =
∫
y′′dt + ty′

6. 2 d
2x
dt2 + 4tx + e−2ty = 2 d

3y
dt3 + 4 dxdt

7. 4(y′′ − tx) = 3(e−ty′ − x′′)
8. e−4tx′ +

∫
xdt− 2ty′ =

∫
ydt− 2y′′

9. a2y
′′ − b0(t)x− a1(t)y′ − b1x

′ = 0
10. 2ty +

∫
xdt− 2e−3ty′ =

∫ ∫
ydtdt

11. 3ty′′ + 2
∫
ydt = 2t2x

12.
1∑

n=0
an

dny
dtn = 3etx +

∫
xdt − 2y′, a0 = 2e2t, a1 = cos t

13.
1∑

n=0
an

dny
dtn + 2

∫
xdt =

1∑
m=0

bm
dmx
dtm + 2ety +

∫
ydt,

a0 = 2, a1 = 1, b0 = 2, b1 = 1

14. 3y′′′ +
2∑

m=1
bm

dmx
dtm − 4y′ + (1 + t2)y = 2x, b2 = 2 cos t, b1 = 1

15. tx +
∫
xdt− 2y′ =

1∑
m=0

bm
dmx
dtm , b0 = 2, b1 = sin t

16. 2 d
2y
dt2 + tx + 2ety = 2 d

3y
dt3 + 4 dxdt

Represent the system in the first and second direct forms of block dia-
grams. If a system cannot be represented in the second direct form, substitute
the right-hand side of the ODE transformed to (6.79) with b0x, where b0 is
constant.

6.19 (State space presentation). Represent an LTV system given in Prob-
lem 6.18 in state space.

6.20. Verify that the following fundamental and state transition matrices,
respectively,

Q(t) = e−t
[

1 0
t2

2 1

]
and Φ(t, θ) = e−(t−θ)

[
1 0

t2−θ2
2 1

]
,

correspond to the system matrix A(t) =
[−1 0

t −1

]
.
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6.21. An LTV system is represented in state space with the following system
matrix. Define the fundamental matrix and state transition matrix of the
system.

1. A(t) =
[−1 t

0 0

]

2. A(t) =
[−1 0

t2 −1

]

3. A(t) =
[−1 t

0 −1

]

4. A(t) =
[−1 t3

0 0

]

By using the property (6.116), verify that the state transition matrix derived
is correct.

6.22. Ascertain BIBO stability of an LTV system represented with the state
transition matrix derived in Problem 6.21.

6.23. Evaluate controllability and observability of an LTV system given in
Problem 6.6.

6.24 (Linear periodically time-varying systems). An LPTV system
is represented with the following system matrix. Define the state transition
matrix of the system.

1. A(t) =
[−1 cos t

0 0

]

2. A(t) =
[ −1 0

sin t −1

]

3. A(t) =
[−1 cos t

0 −1

]

4. A(t) =
[−1 sin t

0 0

]

6.25. By the Floquet’s theory, determine the Floquet’s exponents and char-
acteristic multipliers for the LTV system described with the matrices given in
Problem 6.24. Ascertain stability of the system.

6.26 (Parametric systems). Analyze the operation principle of the het-
erodyne receiver. The frequency ωc of a received signal may be transformed
to the intermediate frequency ωi in two ways: ωi = ωc−ωh and ωi = ωh−ωc.
Which way is more preferable and why?

6.27. Parametric modulation implies using the quadrature signals, cosωc

and sinωc (Fig. 6.18). Give mathematical and graphical explanations for the
modulation error if the second signal is not exactly shifted on π/2 and is
sin(ωct + φ).
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6.28. Provide a similar error analysis (as in Problem 6.27) for the syn-
chronous detection (Fig. 6.20b).

6.29. Assume that a source of energy is absent in Fig. 6.29; that is the source
of voltage is closed and the source of current is switched-off. A capacitor is
modulated as C−1(t) = C−1

0 (1− α cosΩt) and all other components are con-
stant. Write the ODE of this system and transfer to the form (6.179). Similarly
to Fig. 6.23, investigate behavior and stability of this system numerically.

6.30. Consider a system shown in Fig. 6.29. Write the ODE for the mod-
ulated capacitance C−1(t) = C−1

0 (1 − α cosωpt) and all other components
constant. Find a solution of the ODE by the method of harmonic balance.
Define the conditions for parametric excitation in the system.
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Nonlinear Time Invariant Systems

7.1 Introduction

Not all electronic problems can be solved by linear systems. Many capabilities
possess the nonlinear ones, which output and input are coupled nonlinearly.
Even if the problem is soluble with an LTV system, the nonlinear device does
it usually with a simpler structure; in some cases just with several units.

If a nonlinearity does not undergo any changes with time, the system is
nonlinear time-invariant (NTI). In control systems, nonlinearity is typically
required of the certain shape and can even be synthesized. To design quadratic
and logarithmic amplifiers, semiconductor components are used providing the
necessary characteristics. In many cases, piecewise nonlinearities meet practi-
cal needs. Let us add that, in all electronic systems, natural spurious nonlin-
earities ocurre owing to saturation.

In SISO NTI systems, the input y(t) and output x(t) are coupled by the
nonlinear time-invariant operator O(x),

y(t) = O(x)x(t) ≡ O[x(t)]x(t) , (7.1)

that can be represented by the nonlinear ODE, integro-differential equation,
or integral equation. To study dynamics and stability, the qualitative meth-
ods are used universally. Rigorous analytical solutions of nonlinear problems
are usually available only in particular cases. On the other hand, in the over-
whelming majority of practical situations, of importance are solutions for
harmonics of the input. In view of that, different variations of the methods of
averaging and linearization are used rendering a tremendous influence on the
engineering theory of nonlinear systems.

Our discussion of linear systems was started with the convolution and
differential equation, so with memory (dynamic) solutions. This is because
the memoryless linear system is nothing more than a time-invariant or time-
varying gain. In memoryless nonlinear systems, the gain depends on the signal,
therefore such systems need special investigations. If a nonlinear system is
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memory, the gain inherently changes with time taking different values for the
same signal.

Fig. 7.1 sketches a typical picture explaining how memory affects the out-
put of an NTI system. Suppose that the input-to-output dependence y[x(t)]

A

B

)]([ txy

)(tx0

“Slow” time

“Fast” time

Fig. 7.1. The memory effect in nonlinear systems: “slow” time corresponds to mem-
oryless systems (no hysteresis) and “fast” time to memory systems (with hysteresis).

is nonlinear. If x(t) changes with time slowly, a circular transition from the
point A to B would trace along the same trajectory (“Slow” time). With fast
changes, any dynamic system inherently demonstrates inertia and the transi-
tions from A to B and back to A do not coincide in trajectories (“Fast” time).
The effect is called hysteresis. The negative appearance of hysteresis is that
the input produces two values of the output with coordinates dependent on
the input rate.

Of course, the terms “slow” and “fast” are conditional in a sense. Conven-
tionally, one may think that if the spectrum of an input signal corresponds to
the “slow” time of a system, then the latter is memoryless (negligible hystere-
sis). Having no memory, a system is described by y(x) that does not involve
time t as a variable. Otherwise, a system is memory, y[x(t)] or (7.1).

7.2 Memoryless Systems

If a SISO NTI system is memoryless, its input is coupled with the output by
the operator (7.1) losing a variable t such that

y = O(x)x = y(x) . (7.2)
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Typically, a nonlinearity y(x) is defined analytically and then synthesized
to attach some required properties to a system. An example is a feedback
gain that is usually nonlinear of a certain shape to solve the control problem
with highest efficiency. Frequently, natural nonlinearities of electronic units
are used. In such cases, the function y(x) is measured at discrete points and
then approximated with a reasonable accuracy.

Below, we observe several methods most widely used for approximation,
interpolation, and extrapolation in NTI memoryless systems.

7.2.1 Lagrange Interpolation

The Lagrange method is a classical technique of finding an order polyno-
mial y(x) which passes through measured points. The formula published by
Lagrange in 1795 was earlier found by Waring1 in 1779 and soon after redis-
covered by Euler in 1783. Therefore, it is also called Waring-Lagrange inter-
polation or, rarely, Waring-Euler-Lagrange interpolation.

The Lagrange interpolation is performed as follows. Let a function y(x) be
given at m + 1 discrete points called knots as y(xn), n = 0, 1, . . .m. Then the
following unique order m polynomial interpolates the function between these
points by

Lm(x) =
m∑
i=0

y(xi)lmi(x) , (7.3)

where

lmi(x) =
m∏

k=0,k �=i

x− xk
xi − xk

=
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xm)

(xi − t0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xm)
(7.4)

is an elementary n-order polynomial satisfying the condition of

lmi(tn) =
{

1 if n = i
0 if n 	= i

. (7.5)

A simple observation shows that the numerator of the right-hand side of
(7.4) has zeros at all of the points except the kth and that the denominator
here is a constant playing a role of a normalizing coefficient to satisfy (7.5).
To find the coefficients of the interpolating polynomial (7.3), it needs solving
the equations system of order polynomials that is usually provided via the
Vandermonde2 matrix.

1 Edward Waring, English mathematician, 1736–15 August 1798.
2 Alexandre-Thophile Vandermonde, French mathematician, 28 February 1735–1

January 1796.
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Example 7.1. The nonlinearity is measured at discrete points xn, n =
0, 1, . . . , 5 with a constant step of xn − xn−1 = 1 to posses the values of
y(x0) = 0, y(x1) = 2.256, y(x2) = 3.494, y(x3) = 4.174, y(x4) = 4.546, and
y(x5) = 4.751. The Lagrange interpolation (7.3) applied to these samples
produces a polynomial

y(x) = 2.989x− 0.872x2 + 0.156x3 − 0.016x4 + 7.791× 10−4x5 . (7.6)

Fig. 7.2 demonstrates that (7.6) gives exact interpolation at each of the
measured points and is still accurate in extrapolating to the nearest future.
However, the polynomial order is large having not enough applied features.

x

y x( )

Fig. 7.2. Interpolation of measured points: Lagrange interpolation (bold) and phys-
ical formula (7.7) (dashed).

On the other hand, the measurements fit a physical process described by

y(x) = 5(1− e−0.6x) (7.7)

that corresponds to a dashed line in Fig. 7.2. This example neatly demon-
strates that a physical law can be superior to approximation, whenever the
law is available. ��

Overall, Lagrange interpolation is fairly useful, but its usefulness is not so
doubtless. In fact, a long interpolation order polynomial is not practicable.
Moreover, constructing the (m + 1)-order polynomial ym+1(x) we fully lose
information about the lower order polynomial ym(x). The latter disadvantage
is circumvented in the Newton interpolation formula.

7.2.2 Newton Method

An interpolation polynomial in the Newton form is also called Newton’s di-
vided differences interpolation polynomial because of its coefficients are cal-
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culated using divided differences. Again, we deal here with the function y(x)
that is given at m + 1 knots as y(xn), n = 0, 1, ...m.

The values

y(xn, xn+1) =
y(xn+1)− y(xn)

xn+1 − xn

are called the divided differences of the first order. The ones of the second
order are defined by

y(xn, xn+1, xn+2) =
y(xn+1, xn+2)− y(xn, xn+1)

xn+2 − xn

and then those of an arbitrary k � 2 order are performed as

y(xn, xn+1, . . . , xn+k) =
y(xn+1, . . . , xn+k)− y(xn, . . . , xn+k−1)

xn+k − xn
. (7.8)

Utilizing (7.8), the Newton interpolation polynomial finally becomes

Pm(t) = y(x0) + y(x0, x1)(x− x0) + y(x0, x1, x2)(x − x0)(x− x1) + . . .

+y(x0, . . . , xm)(x− x0) . . . (x− xm−1) . (7.9)

The value εm = |y(x) − Pm(x)| represents the interpolation error or the
rest interpolation term that is the same as in the Lagrange form. Usually, the
approximate relation y(x) − Pm(x) ≈ Pm+1(x) − Pm(x) is used to estimate
the interpolation error by

εm ∼= |Pm+1(x)− Pm(x)| . (7.10)

It can be shown that Newton’s method gives the same result as that by
the Lagrange method (one is encouraged to solve the problem in Example 7.1
employing the Newton approach). There is, however, one important difference
between two these forms. It follows from the definition of the divided differ-
ences that new data points can be added to the data set to create a new inter-
polation polynomial without recalculation the old coefficients. Hence, when a
data point changes one usually does not have to recalculate all coefficients.
Furthermore, if a time-step is constant, the calculation of the divided dif-
ferences becomes significantly easier. Therefore the Newton form is usually
preferred over the Lagrange one. In fact, adding a new sample, the Lagrange
polynomial has to be recalculated fully, whereas the Newton form requires
only an addition calculated for this new term.

7.2.3 Splines

Both Lagrange and Newton interpolations give unsatisfactory long approx-
imating formulas on the interval x ∈ [a, b] if a number of knots is large.
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Moreover, with a high degree of interpolation, the computational errors and
divergency of the interpolation process increase.

Another mathematical tool termed “splines” refers to a wide class of func-
tions that are used to interpolate and/or smooth the measured nonlinearity
only between neighboring points. The spline functions S(x) are therefore fi-
nite dimensional in nature, being represented by the small degree polynomials,
stable, and have a good convergence.

The first mathematical reference to splines was given in the 1946 by
Schoenberg3, who used the word “spline” in connection with smooth, piece-
wise polynomial approximation. Thereafter, many efforts were done to find
the most appropriate interpolating polynomials. Nowadays, it is accepted that
one of the most efficient approximations is provided by cubic splines that fit
a third-degree polynomial through two points so as to achieve a certain slope
at one of the points. There are also used Bezier’s4 splines which interpolate
a set of points using smooth curves and do not necessarily pass through the
points. The Bernstein5 polynomial that is a linear combination of Bernstein
basis polynomials is the other opportunity for interpolation.

A spline is a piecewise polynomial function determined on x ∈ [a, b] of
m + 1 knots, a = x0 < x1 < . . . < xm−1 < xm = b, via the polynomial pieces
as follows

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1(x) , x0 � x < x1

P2(x) , x1 � x < x2

...
...

Pm(x) , xm−1 � x � xm

. (7.11)

Accordingly, the vector x = [x1, x2, . . . , xm] of the points is called a knot
vector. If the knots are equidistantly distributed in the interval [a, b], the spline
is uniform and it is non-uniform otherwise.

If the polynomial pieces on the subintervals between two neighboring
points all have degree at most n, then the spline is said to be of order n + 1
or degree � n. Fig. 7.3 gives examples of interpolation by splines of the ze-
roth (a) and first (b) degrees. We notice that the first degree interpolation by
splines is achieved with the Lagrange formula.

Interpolation by splines of the zeroth and first degrees faces no problem in
describing the elementary polynomial pieces. However, for the degrees n � 2,
additional conditions should be assigned to define the unique coefficients for
the polynomials. Such conditions make the spline to be of smoothness, meaning
that the two pieces Pi−1 and Pi share common derivative values from the
derivative of order 0 (the function value) up through the derivative of order
ri. A vector r = [r1, r2, . . . , rm−1] such that the spline has smoothness at
3 Isaac Jacob Schoenberg, Romanian born scientist, 21 April 1903–21 February

1990.
4 Pierre Étienne Bézier, French engineer, 1 September 1910–25 November 1999.
5 Sergei Bernstein, Ukrainian mathematician, 5 March 1880–26 October 1968.
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Fig. 7.3. Interpolation by splines: (a) degree 0 and (b) degree 1.

xi for 1 � i � m − 1 is called a smoothness vector for the spline. In other
words, the pieces would have the same values and derivatives in the points
from the second to last but one. Embedded smoothness, the spline space is
commonly denoted by Sr

n(x) . Below, we demonstrate the effect of smoothness
in examining the most popular cubic splines.

Cubic Splines

Owing to some important special features, the cubic splines have found
most wide applications in engineering practice. The cubic spline interpola-
tion within the interval x ∈ [a, b] gives the formula that satisfies the following
interpolation conditions :

• On each subinterval xi−1 � x � xi, i = 1, 2, . . . ,m, the function S(x) is
represented, by (7.11), with a polynomial of the third degree.

Pi(x) = ai + bi(x− xi) +
ci
2

(x − xi)2 +
di
6

(x − xi)3 , (7.12)

where ai, bi, ci, and di are the coefficients to be determined for the given
measurement y(xi), i ∈ [0,m]. ��
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• The function S(x) and its first and second derivatives are continuous on
[a, b] that is satisfied by the conditions

Pi(xi) = Pi+1(xi) , i ∈ [1,m− 1] ,

P ′i (xi) = P ′i+1(xi) , i ∈ [1,m− 1] ,

P ′′i (xi) = P ′′i+1(xi) , i ∈ [1,m− 1] .

��
• At each knot, the interpolation function equals exactly to the measure-

ment, S(x) = y(xi) = yi, i = 0, 1, . . .m. ��
It can easily be shown, by taken the derivatives of (7.12) with respect to

x, the coefficients of the polynomial are defined by

ai = Pi(xi) , bi = P ′i (xi) , ci = P ′′i (xi) , di = P ′′′i (xi) . (7.13)

From (7.12) and the third interpolation condition one instantly defines

ai = yi , i ∈ [0,m] . (7.14)

From the rest of the interpolation conditions, there can be found an equa-
tion specifying the coefficients ci,

Δici−1 + 2(Δi + Δi+1)ci + Δi+1ci+1 = 6
(
yi+1 − yi
Δi+1

− yi − yi−1

Δi

)
,

i ∈ [1,m− 1] , (7.15)

where Δi = xi − xi−1 is a variable sample step between measurements. The
coefficients c0 and cm are set arbitrary to obtain the necessary trend of the
interpolating polynomial beyond the interval [a, b]. If c0 = cm = 0, the interpo-
lation polynomial behaves linearly beyond the interval [a, b] that is associated
with the so-called natural cubic spline.

In the matrix form, (7.15) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 Δ2 0 0 . . . 0 0 0
Δ2 u2 Δ3 0 . . . 0 0 0
0 Δ3 u3 Δ4 0 0 0
...

. . . . . . . . .
...

...
0 0 0 0 um−3 Δm−2 0
0 0 0 0 . . . Δm−2 um−2 Δm−1

0 0 0 0 . . . 0 Δm−1 um−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
...

cm−3

cm−2

cm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

...
vm−3

vm−2

vm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.16)

where the (m− 1)× (m− 1) matrix is tridiagonal and the functions ui and vi
are given by, respectively,
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ui = 2(Δi + Δi+1) , (7.17)

vi = 6
(
yi+1 − yi
Δi+1

− yi − yi−1

Δi

)
. (7.18)

Determined ci, the rest of the coefficients in (7.12) are calculated, for
i ∈ [1,m], with the functions

di =
1
Δi

(ci − ci−1) , (7.19)

bi =
Δi

2
ci − Δ2

i

6
di +

1
Δi

(yi − yi−1) . (7.20)

Example 7.2. The ampere-voltage characteristic I(V ) of a semiconductor
tunnel diode was measured from 0 to 7 volts with the step of 1 volt for
the values I = 0, 1.98, 3.01, 2.02, 0.99, 1.99, 4.02 and 6.97 (in amperes). The
characteristic was then interpolated by (7.11) with the cubic splines (7.12). By
(7.14), the coefficient ai was equated to yi. The coefficients ci were determined
for i ∈ [1, 6] by (7.16)–(7.18), and then di and bi were calculated, respectively,
by (7.19) and (7.20). The interpolating curve is shown in Fig. 7.4. ��

0 0.05 0.1 0.15 0.2 0.25 0.3

1

2

3

4

V, volts

I, mA

Fig. 7.4. The ampere-voltage characteristic of a semiconductor tunnel diode inter-
polated by cubic splines.

7.2.4 Exponential Approximation

It is well-known from the operation of semiconductor diodes that the electric
current I is coupled with the applied electric voltage V by the relation
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I(V ) = I0

(
e

V
VT − 1

)
, V > 0 , (7.21)

where I0 is a feedback current of saturation and VT is a temperature potential
that, for the silicon devices with the temperature of 300 K, is about 25×10−3

volts.
The dependence (7.21) is often used to describe nonlinear phenomena

in semiconductor electrical systems. The approximation is quite accurate if
the electric current does not exceed several milliamperes. With larger values,
(7.21) evolves to a straight line which slope is mostly associated with the real
resistance of a semiconductor body.

7.2.5 Taylor Series Expansion

Frequently, owing to complexity, an actual nonlinearity of a memoryless sys-
tem cannot be used straightforwardly in models. The problem then arises how
to find an appropriate and reasonably accurate approximate function. If we
recall that a system typically operates in some bounds, the nonlinear input-
to-output dependence y(x) can be expanded to the Taylor series around some
operation point x0,

y(x) = y(x0) +
∂y(x)
∂x

∣∣∣∣
x=x0

(x − x0) +
1
2
∂2y(x)
∂x2

∣∣∣∣
x=x0

(x − x0)2

+ . . . +
1
k!

∂ky(x)
∂xk

∣∣∣∣
x=x0

(x− x0)k + . . . (7.22)

Such an expansion has several important advantages. We can save only
two first terms in the right-hand side and thereby linearize the nonlinearity
around x0. Such a way is now commonly accepted whenever a linearization
is needed. Accounting for more terms from (7.22) allows substituting a real
function with, for example, quadratic or cubic approximations. Therefore, the
Taylor series is accepted as the most common and universal tool to describe
and approximate memoryless NTI systems.

Example 7.3. A semiconductor diode described by (7.21) operates in the
vicinity of an operation point V = 0.4 volts. By the Taylor series (7.22), the
function is approximated at the given point with a linear (k = 1), quadratic
(k = 2), and cubic (k = 3) polynomials. The results of approximation are
shown in Fig. 7.5.

As can be seen, all three approximating curves are of high accuracy in the
region closely surrounding a point V = 0.4 volts. Beyond this region, better
results are achieved, of course, with quadratic and cubic approximations. ��
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Fig. 7.5. Approximation of the ampere-voltage characteristic of a semiconductor
diode with the Taylor series around the point V = 0.4 volts.

7.2.6 Linearization Techniques

Technical linearization of NTI memoryless systems implies using some aux-
iliary nonlinear blocks to make the system linear. Among a variety of lin-
earization techniques, the feedforward and feedback linearizations as well as
nonlinear predistortion of signals are most popular.

Feedforward Linearization

In the feedforward linearization (Fig. 7.6a), the nonlinear distortions of a
signal y1 = O1(x)x produced by the main amplifier A1 are compensated by
the signal y2 = O2(x)x of an auxiliary amplifier A2. The resulting system is
assumed to be linear and such that

y = O1(x)x −O2(x)x = ax + b , (7.23)

where a and b are some constant values. In the other structures, the distortion
can first be extracted, then amplified, and finally subtracted from the output.

Feedback Linearization

Another technique is known as the feedback linearization (Fig. 7.6b). By the
functions y = O1(x1)x1 of a main nonlinear amplifier A1 and the nonlinear
function x2 = O2(y)y of an auxiliary amplifier A2, the system equation is
written as

y = O1(x)[x −O2(y)y] , (7.24)
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Fig. 7.6. Linearization techniques: (a) feedforward, (b) feedback, and (c) with
predistortions.

where an operator O2(y) is chosen such that the system becomes linear, y =
ax + b.

Nonlinear Predistortion

Efficient linearization can be achieved by the so-called predistortions. The
relevant cascade system is shown in Fig. 7.6c, in which the input signal is
intentionally predistorted by an auxiliary amplifier A1 to compensate distor-
tions of a main amplifier A2. The cascade thus becomes linear if the operator
O1(x) is chosen such that

y = O2(x1)[O1(x)x] = ax + b . (7.25)

At this point, we finish an analysis of principle foundations of memoryless
NTI systems and start discussing how memory affects the model and what
are the methods of describing NTI memory systems. Following the tradition,
we continue with a presentation of the Volterra series method that extends
the convolution approach to the nonlinear systems.

7.3 Representation of Memory Systems by Volterra
Series

In systems with memory, the output depends not solely on the input, but
also on its rate that results in a hysteresis loop (Fig. 7.1). In view of that,
the methods for memoryless systems become inappropriate and the general
operator (7.1) is applied.
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To represent a SISO NTI memory system with some functions, an operator
O(x) can be expanded to the Taylor series (7.22) that formally yields

y(t) = O(x)x(t)

= {V0[x(t)] + V1[x(t)] + . . . + Vn[x(t)] + . . .}x(t) = V [x(t)]x(t) , (7.26)

where Vn is some newly introduced the degree n nonlinear operator. In this
expansion, V0 is associated with the constant term, V1 with linear term, V2

with quadratic term, and so on. A significance of these new operators will
become clear very soon.

The method of determining the degree n operator Vn was proposed by
Volterra and is now commonly referred to as the Volterra series method or
functional method. In accordance with the approach, a system is considered
to be nonlinear and memory either being governed by the operator V called
the Volterra operator. By virtue of the fact that the method exploits the
Taylor expansion, the Volterra series is also often called the Taylor series with
memory.

In the Volterra approach, the series (7.26) is performed as

y(t) = h0 +
∞∑
n=1

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t − θ1) . . . x(t− θn)dθ1 . . .dθn ,

(7.27)
where hn(θ1, . . . , θn) is called the degree n Volterra kernel. In view of similarity
with the LTI systems, (7.27) is often referred to as the generalized convolution.
For the Volterra kernel of degree n, the generalized convolution is depicted as

hn(θ1, . . . , θn) ∗ x(t)

=

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t− θ1) . . . x(t − θn) dθ1 . . . dθn . (7.28)

A direct comparison of (7.26) and (7.27) allows specifying the terms of the
series, using (7.28), as in the following.

The term associated with n = 0,

V0x(t) = h0 , (7.29)

is a constant corresponding to the system output with zero input. The second
term of degree n = 1 is linear,

V1x(t) =

∞∫

−∞
h1(θ1)x(t − θ1)dθ1 , (7.30)
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representing a convolution. In this sense, the Vilterra kernel h1(t) is nothing
more than the impulse response h(t) of a linearized NTI system.

The higher degree terms are defined, by (7.28), in a like manner. For exam-
ple, the quadratic and cubic nonlinearities are associated with, respectively,

V2x(t) =

∞∫

−∞

∞∫

−∞
h2(θ1, θ2)x(t− θ1)x(t− θ2)dθ1dθ2 , (7.31)

V3x(t) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(θ1, θ2, θ3)x(t − θ1)x(t − θ2)x(t− θ3)dθ1dθ2dθ3 .

(7.32)
It follows from what was observed that, like any LTI system that is ex-

haustively characterized by the impulse response, any NTI system described
by the Volterra series is exhaustively characterized by the Volterra kernels.
Does it mean that any NTI memory system can exhaustively be described by
the Volterra series? The answer is both “Yes” and “Not”. On the one hand,
(7.27) is certainly a general model of any NTI system. On the other hand,
application of (7.27) instantly faces three problems:

• How to determine and measure the Volterra kernels? ��
• How to transfer from the system ODE to the Volterra series? ��
• Because the terms in the Volterra series are not orthogonal, they must be

identified all at once. ��
In order to avoid raising strong solutions in this book to the above-listed

problems (the reader can open a book by Rugh or other special books), in
the sequel we shall apply the approach to some particular NTI problems.
Before continuing with applications, it is worth observing a simple example
demonstrating a typical engineering approach to NTI memory systems.

7.3.1 A Noble Example

Let us consider the well-known simplest resonant transistor amplifier (Fig.
7.7a) and think, for simplicity, that the collector current i(t) depends quadrat-
ically on the emitter-base input voltage vin(t).

Whenever such a system is encountered, we typically analyze it via the
equivalent scheme shown in Fig. 7.1b. Even intuitively, one decomposes the
scheme to the memoryless (or static) nonlinear part (transistor) and memory
(or dynamic) linear part (resonant circuit). Why do we act in such a manner?
Because it is much easier to analyze any nonlinearity if it is memoryless. In
fact, having vin(t) = cosωt and a quadratic nonlinearity, we can write

i(t) = av2
in(t) = a cos2 ωt =

a

2
+

a

2
cos 2ωt . (7.33)
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Fig. 7.7. Resonant amplifier: (a) electrical scheme and (b) equivalent scheme.

A resonant circuit tuned to 2ω produces the output voltage vout(t) =
1
2ak cos 2ωt, where k < 1. In this amplifier, the input is removed to the twice
frequency ω with the gain factor ak/2.

This noble example neatly demonstrates that in order to analyze an NTI
memory system in the simplest way, one first needs to split a system into the
memoryless nonlinear and memory linear parts. On the ground of that, two
basic structures of NTI systems appear, namely the Hammerstein and Wiener
systems.

7.3.2 Hammerstein and Wiener Systems

Two basic cascade interconnections of memoryless NTI and memory LTI sub-
blocks are recognized. The Hammerstein system (Fig. 7.8a) is a nonlinear-to-
linear structure. Its example is represented by the scheme shown in Fig. 7.7b.
Another model, linear-to-nonlinear, shown in Fig. 7.8b was investigated by
Wiener. It follows that the Wiener model would fit the scheme (Fig. 7.7b) if
to include a resonant circuit in the input of a transistor amplifier.

The lucky principle of separation resulting in the Hammerstein and Wiener
models is effectively exploited in the Volterra series method. We verify this
fact below by two useful examples.

Example 7.4. A SISO NTI system is performed with the ODE

y′ + 2ay − 2b
√
yx = 0 , y � 0 (7.34)

and zero initial condition y(0) = 0. Substituting y = y2
1 leads to the linear

ODE and nonlinear algebraic equations, respectively,

y′1 + ay1 = bx , y = y2
1 . (7.35)

By (4.55), a general solution of the first equation is written as

y1(t) = be−at
t∫

0

x(τ)eaτdτ ,
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Fig. 7.8. Generalized models of NTI systems: (a) Hammerstein and (b) Wiener.

producing, by x(t) = δ(t), the impulse response h(t) = be−atu(t). A linear
dynamic part of the system is thus represented with the convolution

y1(t) =

∞∫

−∞
h(θ)x(t − θ)dθ .

The second equation in (7.35) completes the input-to-output relation by

y(t) = y2
1(t) =

∞∫

−∞

∞∫

−∞
h2(θ1, θ2)x(t− θ1)x(t− θ2)dθ1dθ2 , (7.36)

where

h2(θ1, θ2) = h(θ1)h(θ2) = b2e−a(θ1+θ2)u(θ1)u(θ2) (7.37)

is the degree n = 2 Volterra kernel. A system (7.34) is hence described by the
Volterra operator V2 (7.31) and simulated with the Wiener model (Fig. 7.8b)
as shown in Fig. 7.9.

Fig. 7.9. The Wiener model of a system (Example 7.4).
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The step response of a system is defined, by x(t) = u(t), (7.36), and (7.37),
to be

g(t) = b2
∞∫

−∞

∞∫

−∞
e−a(θ1+θ2)u(θ1)u(θ2)u(t− θ1)u(t− θ2)dθ1dθ2

= b2
∞∫

−∞
e−aθ1u(θ1)u(t− θ1)dθ1

∞∫

−∞
e−aθ2u(θ2)u(t− θ2)dθ2

= b2
t∫

0

e−aθ1dθ1

t∫

0

e−aθ2dθ2 =
b2

a2

(
1− e−at

)2
u(t) . (7.38)

It can easily be verified that the impulse and step responses of this system
are not coupled by the integral and differential relations. ��
Example 7.5. An NTI system is represented with the block diagram shown
in Fig. 7.10.

)(1 th )(3 th
)(tx

)(2 th
)(1 tx )(2 tx )(ty)(1 ty )(2 ty

Fig. 7.10. Block diagram of an NTI system.

By the commutative property of the convolution, the system equation can
be derived, step-by-step, as in the following:

y1(t) =

∞∫

−∞
h1(t− τ1)x(τ1)dτ1 ,

x1(t) =

∞∫

−∞
h1(t− τ1)x(τ1)dτ1x(t) ,

y2(t) =

∞∫

−∞
h2(t− τ2)x1(τ2)dτ2

=

∞∫

−∞

∞∫

−∞
h2(t− τ2)h1(τ2 − τ1)x(τ1)x(τ2)dτ1dτ2 ,
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x2(t) =

∞∫

−∞

∞∫

−∞
h2(t− τ2)h1(τ2 − τ1)x(τ1)x(τ2)dτ1dτ2x(t) ,

y(t) =

∞∫

−∞
h3(t− τ3)x2(τ3)dτ3 ,

=

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(t−τ3)h2(t−τ2)h1(τ2−τ1)x(τ1)x(τ2)x(τ3)dτ1dτ2dτ3 , (7.39)

If to introduce new variables θ1 = t− τ1, θ2 = t− τ2, and θ3 = t− τ3, then
(7.39) can be transformed to the familiar form (7.32),

y(t) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(θ1, θ2, θ3)x(t − θ1)x(t − θ2)x(t− θ3)dθ1dθ2dθ3 , (7.40)

where h3(θ1, θ2, θ3) = h1(θ1 − θ2)h2(θ2)h3(θ3) is the degree n = 3 Volterra
kernel. ��

Like the convolution of LTI systems, the generalized convolution of NTI
systems is often used in different forms and applied to a variety of interconnec-
tions of nonlinear and linear subsystems as shown, for example, in Example
7.5. To provide an analysis in the most efficient and shortest way, it is worth
knowing the properties of the Volterra operator.

7.3.3 Properties of the Volterra Operator

In this section, we observe several the most common properties of the Volterra
operator bearing in mind that many others can be found in special and rather
mathematical books.

Commutativity

Consider the Volterra series (7.27). Because an NTI system is time-invariant,
we can change variables to τ1 = t− θ1, τ2 = t− θ2, . . . , τn = t− θn and write

y(t) = h0 +
∞∑
n=1

∞∫

−∞
. . .

∞∫

−∞
hn(t− τ1, . . . , t− τn)x(τ1) . . . x(τn)dτ1 . . . dτn ,

(7.41)
where hn(t − τ1, . . . , t − τn) = hn(t, τ1, . . . , τn) is still the Volterra kernel of
degree n.
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For time-invariant systems, one is allowed to set the current time arbitrary.
Thus hn(t, τ1, . . . , τn) = hn(0, τ1, . . . , τn) or, by dropping “0”, it is just

hn(t, τ1, . . . , τn) = hn(τ1, . . . , τn) . (7.42)

The latter means commutativity of the generalized convolution, namely

y(t) = hn(θ1, . . . , θn) ∗ x(t)

= x(t) ∗ hn(θ1, . . . , θn) . (7.43)

Example 7.6. Consider a square amplifier represented with the block dia-
gram shown in Fig. 7.9. By the commutative property of the convolution, one
can write the system equation as follows

y(t) =

⎡
⎣
∞∫

−∞
h(t− τ)x(τ)dτ

⎤
⎦

2

=

∞∫

−∞

∞∫

−∞
h(t− τ1)h(t− τ2)x(τ1)x(τ2)dτ1dτ2 .

By changing variables, θ1 = t−τ1 and θ2 = t−τ2, and using (7.42), the input-
to-output relation becomes (7.36) comprising the Volterra kernel (7.37). ��

Non-distributivity

Contrary to LTI systems, the operator of NTI systems does not demonstrate
an ability to distribute. That means that

V
m∑
i=1

xi(t) 	=
m∑
i=1

Vxi(t) . (7.44)

The simplest case of two signals, the following inequality commonly exists

V [x1(t) + x2(t)] 	= Vx1(t) + Vx2(t) . (7.45)

Example 7.7. Given a system represented by the degree n = 2 Volterra
kernel h2(θ1, θ2) = e−a(θ1+θ2)u(θ1)u(θ2).

Let the Volterra operator act on each of the signals, x1(t) = e−btu(t)
and x2(t) = e−ctu(t), separately producing two subsignals, y1(t) and y2(t),
respectively,

y1(t) =

∞∫

−∞

∞∫

−∞
e−a(θ1+θ2)u(θ1)u(θ2)e−b(t−θ1)u(t− θ1)e−b(t−θ2)u(t− θ2)dθ1dθ2
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=

t∫

0

t∫

0

e−a(θ1+θ2)e−b(t−θ1)e−b(t−θ2)dθ1dθ2

= e−2bt

t∫

0

e−(a−b)θ1dθ1

t∫

0

e−(a−b)θ2dθ2 =

(
e−bt − e−at

)2
(a− b)2

u(t) , (7.46)

y2(t) =
(e−ct − e−at)2

(a− c)2
u(t) . (7.47)

The subsignals y1(t) and y2(t) are added to produce the output

z1(t) = y1(t) + y2(t) =

(
e−bt − e−at

)2
(a− b)2

u(t) +
(e−ct − e−at)2

(a− c)2
u(t) . (7.48)

Now, let us allow the Volterra operator to act on the sum of two signals,
x1(t) + x2(t). This yields

z2(t) =

t∫

0

t∫

0

e−a(θ1+θ2)[e−b(t−θ1) + e−c(t−θ1)]

×[e−b(t−θ2) + e−c(t−θ2)]dθ1dθ2

= z1(t) + e−(b+c)t

t∫

0

t∫

0

e−a(θ1+θ2)(ebθ1ecθ2 + ecθ1ebθ2)dθ1dθ2 , (7.49)

where z1(t) is specified by (7.48). Because the integral remainder in the right-
hand side of (7.49) is not zero for t > 0, we have z1(t) 	= z2(t). Hence, the
system does not distribute and (7.45) holds true. ��

Homogeneity

Scaling a signal x(t) [actually, each of n subsignals in (7.27)] with some con-
stant a is equivalent to the multiplication of hn(θ1, . . . , θn) with an. This
property of homogeneity follows directly from an analysis of (7.27). The prop-
erty results in two forms of the generalized convolution:

[ahn(θ1, . . . , θn)] ∗ x(t) = hn(θ1, . . . , θn) ∗ [a1/nx(t)] , (7.50)

[anhn(θ1, . . . , θn)] ∗ x(t) = hn(θ1, . . . , θn) ∗ [ax(t)] . (7.51)
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Stationarity

The property of stationarity or familiar time shifting is inherent for any NTI
system. It means that the system performance is not changed with time,
because the operator V is time-invariant. In view of that, any time shift τ
induced to the operator (7.27) does not affect the operator itself and hence

y(t− τ) = V [x(t− τ)]x(t − τ)

= h0 +
∞∑
n=1

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t− τ − θ1) . . . x(t− τ − θn)dθ1 . . . dθn .

(7.52)
Any nonlinear system that does not fit this property belongs to the class

of NTV systems.

Example 7.8. Consider an NTI system described by (7.46). Introduce a time
shift τ and write

y(t− τ) =

[
e−b(t−τ) − e−a(t−τ)

]2
(a− b)2

u(t− τ) .

Now change a variable by t1 = t − τ and infer that the result is exactly
(7.46) written in a new time t1,

y(t1) =

(
e−bt1 − e−at1

)2
(a− b)2

u(t1) . (7.53)

Since no one coefficient in (7.53) depends on time, the system is stationary
or time-invariant. ��

Causality

In its most general form, the Volterra operator (7.27) implies integration over
the infinite bounds and hence fits the cases of both causal and noncausal
signals and systems. If a signal or/and system is causal, some or all bounds
become finite.

Causal systems. Recall that a system is causal if its output y(t) at an
arbitrary time instant t1 depends on only its input x(t) for t1 � t. This
means that a causal system does not respond to any input event until that
event actually occurs. Because the Volterra kernels are akin to the impulse
responses, they do not exist in negative time and (7.27) thus becomes

y(t) = h0 +
∞∑
n=1

∞∫

0

. . .

∞∫

0

hn(θ1, . . . , θn)x(t − θ1) . . . x(t− θn)dθ1 . . .dθn .

(7.54)
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Causal signals. By the definition, causal signals do not exist in negative
time. Thus, all auxiliary variables θ cannot exceed the current time t and we
have

y(t) = h0 +
∞∑
n=1

t∫

−∞
. . .

t∫

−∞
hn(θ1, . . . , θn)x(t − θ1) . . . x(t− θn)dθ1 . . .dθn .

(7.55)

Both causal systems and signals. In the real physical world, both
systems and signals are causal, therefore, the lower and upper integration
bounds are both restricted that yields

y(t) = h0 +
∞∑
n=1

t∫

0

. . .

t∫

0

hn(θ1, . . . , θn)x(t − θ1) . . . x(t− θn)dθ1 . . .dθn .

(7.56)
Example 7.7 exploits (7.56) and one can find many other relevant exam-

ples, whenever causal signals and/or systems are of concern.

Stability

In a manner similar to LTI systems, to ascertain BIBO stability of NTI sys-
tems, the absolute values of Volterra kernels must be examined for absolute
integration. By virtue of the finite value

∞∫

−∞
. . .

∞∫

−∞
|hn(θ1, . . . , θn)|dθ1 . . .dθn � M <∞ , (7.57)

the system described with the Volterra kernel hn(θ1, . . . , θn) is said to be
BIBO stable.

Example 7.9. Consider an NTI system represented with the degree n = 2
Volterra kernel (7.37). To ascertain BIBO stability of the system, we evaluate
the integral

b2
∞∫

−∞

∞∫

−∞

∣∣∣e−a(θ1+θ2)u(θ1)u(θ2)
∣∣∣ dθ1dθ2

= b2
∞∫

0

∞∫

0

e−a(θ1+θ2)dθ1dθ2 =
b2

a2
.

If the coefficients of the Volterra kernel are such that b2/a2 < ∞, the
system is BIBO stable. Otherwise, it is BIBO unstable. ��
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7.3.4 Wiener approach

One of the weaknesses of the Volterra approach is that the terms in the series
are not orthogonal and therefore must be identified all at once. To orthogonal-
ize the series, Wiener proposed a solution now known as the Wiener method.
The method is based on a simulation of the NTI memory system in the special
manner via the functional Volterra series with the Brownian motion in the
input.

Similarly to the Volterra approach, in the Wiener method, an NTI system
is represented with the series

y(t) =W [x(t)]x(t)

=W0[k0, x(t)] +W1[k1, x(t)] + . . . +Wn[kn, x(t)] + . . . , (7.58)

where Wn is the degree n Wiener operator and kn is the Wiener kernel that
is symmetric. Presenting the Wiener method in brief without digging the
mathematical justification (the reader is referred to a book by Rugh and
other special books), we notice that (7.58) is equivalently represented with

y(t) = k0 +
∞∑
n=1

[n/2]∑
i=0

(−1)in!Ai

2i(n− 2i)!i!

×
∞∫

−∞
. . .

∞∫

−∞
kn(θ1, . . . , θn−2i, λ1, λ1, . . . , λi, λi)

dλ1 . . . dλi x(t− θ1) . . . x(t− θn−2i)dθ1 . . . dθn−2i , (7.59)

where A is an intensity of the real, stationary, zero mean, and white Gaussian
noise. Yet, [n/2] � n/2 means the greatest integer.

It can be shown, by comparing (7.58) and (7.59), that the degree n Wiener
operator Wn[kn, x(t)] is the degree n polynomial specified via the symmetric
Wiener kernel kn(θ1, . . . , θn) such that

W0[k0, x(t)] = k0 , (7.60)

W1[k1, x(t)] =

∞∫

−∞
k1(θ)x(t − θ) dθ , (7.61)

W2[k2, x(t)] =

∞∫

−∞
k2(θ1, θ2)x(t− θ1)x(t − θ2) dθ1 dθ2

−A
∞∫

−∞
k2(θ, θ) dθ , (7.62)
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W3[k3, x(t)] =

∞∫

−∞
k3(θ1, θ2, θ3)x(t − θ1)x(t− θ2)x(t− θ3) dθ1 dθ2 dθ3

−3A

∞∫

−∞
k3(θ1, θ1, θ)x(t − θ) dθ1 dθ . (7.63)

The higher degree kernels are defined in a like manner.
By the essence of the approach, the Wiener kernels are derived from the

system structure not in such a straightforward way as the Volterra ones.
Therefore, if one needs representing an NTI system with the Wiener kernels,
the latter might be defined by the symmetric Volterra kernels, provided the
relationship

kN (θ1, . . . , θN ) =
∞∑
l=0

(N + 2l)!Al

N ! l! 2l

×
∞∫

−∞
h(N+2l)(θ1, . . . , θN , λ1, λ1, . . . , λl, λl) dλ1 . . .dλl . (7.64)

Example 7.10. An NTI system is represented in Fig. 7.11 with a diagram.
A linear block is described with the impulse response h(t) = 1

τc
e−

t
τc u(t) and

the nonlinear memoryless nonlinearity is cubic.

Fig. 7.11. NTI system with a cubic nonlinearity.

For the noncausal signal x(t), the inner functions, y1(t) and y2(t), are
defined by, respectively,

y1(t) =

∞∫

0

h(θ)x(t− θ)dθ ,

y2(t) =

∞∫

0

∞∫

0

∞∫

0

h(θ1)h(θ2)h(θ3)x(t− θ1)x(t− θ2)x(t − θ3)dθ1dθ2dθ3 ,
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predetermining the output to be

y(t) =

∞∫

0

h1(θ1)x(t − θ1)dθ1

+

∞∫

0

∞∫

0

∞∫

0

h3(θ1, θ2, θ3)x(t− θ1)x(t − θ2)x(t− θ3)dθ1dθ2dθ3 , (7.65)

where the Volterra kernels, h1(θ1) and h3(θ1, θ2, θ3), are given by, respectively,

h1(θ) =
1
τc

e−
θ

τc u(θ) , (7.66)

h3(θ1, θ2, θ3) =
1
τ3
c

e−
θ1+θ2+θ3

τc u(θ1)u(θ2)u(θ3) . (7.67)

It can be shown, using (7.64), (7.66), and (7.67), that the system is de-
scribed with the two Wiener kernels

k1(θ) =
1
τc

(
1 +

3A
2

)
e−

θ
τc u(θ) , (7.68)

k3(θ1, θ2, θ3) = h3(θ1, θ2, θ3) . (7.69)

One can infer that, by A = 0, the degree n = 1 Wiener kernel (7.68)
degenerates to the degree n = 1 Volterra kernel (7.63), k1(θ) = h1(θ). By
virtue of that, orthogonalization of the Volterra series (7.65) by the Wiener
kernels is achieved only with a nonzero intensity of the induced white Gaussian
noise. ��

We notice that, in line with the Volterra and Wiener approaches, some
other methods are used, for example, the Fliess generating power series. Over-
all, in spite of their general forms for any NTI system, the Volterra, Wiener,
and other available series methods allow for satisfactory modeling if systems
have weak and, desirably, symmetric nonlinearities. Otherwise, one encounters
at least two problems typically associated with long series:

• With a large number of the terms (large degree n), the model becomes
cumbersome losing engineering features. ��

• The Gibbs6 phenomenon (see Signals) accompanies the model if a sharp
nonlinearity is described with the finite degree series. ��
Of applied important also is that the series expansion allows providing an

analysis of NTI systems in the transform domain that we discuss below.

6 Josiah Willard Gibbs, US theoretical physicist and chemist, 11 February 1839–28
April 1903.
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7.4 Representation in the Transform Domain

Observing (7.27), one can deduce that the generalized convolution can be
investigated in the transform domain if to employ the multivariate Fourier
and Laplace transforms. In fact, the degree n = 0 Volterra operator that
is a constant is specified in the transform domain by the delta function and
the degree n = 1 operator by the product of the linearized system transfer
function and transform of the input.

To define the transforms of the higher degree Volterra operators, we first
need to extend the definition of the transform to the multivariate function.
The two-variable forms of the Fourier transform were already used in descrip-
tions of LTV systems. Now, let us focus our attention on the most general
multivariate Laplace transform.

Supposing a multivariate function (signal or kernel) f(t1, . . . , tn) of n vari-
ables t1, . . ., tn, the direct and inverse Laplace transforms of f are defined by,
respectively,

F (s1, . . . , sn) = Lf(t1, . . . , tn)

=

∞∫

−∞
. . .

∞∫

−∞
f(t1, . . . , tn)e−s1t1 . . . e−sntndt1 . . . dtn ,

ROC ∈ [R1, . . . , Rn] , (7.70)

f(t1, . . . , tn) = L−1F (s1, . . . , sn)

=
1

(2πj)n

σn+j∞∫

σn−j∞
. . .

σ1+j∞∫

σ1−j∞
F (s1, . . . , sn)es1t1 . . . esntnds1 . . .dsn , (7.71)

where si = σi + jωi, i ∈ [1, n], is the Laplace variable. It is assumed that the
region of convergence ROC is specified for every Laplace variable s1, . . . , sn
by R1, . . . , Rn, respectively. In particular cases, the reader can ascertain the
ROCs (whenever necessary) invoking the basic properties of the Laplace trans-
form given in Chapter 5 and Appendix D. Below, we observe the most critical
properties of the multivariate Laplace transform.

7.4.1 Properties of the Multivariate Laplace Transform

Let us think that we have two or more multivariate functions f1, . . . , fm of
the same class as f(t1, . . . , tn) with different numbers of variables and known

transforms fi(t1, . . . , tn)
L⇔Fi(s1, . . . , sn), i ∈ [1,m]. The following properties

of the Laplace transform can be applied to such functions.
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Distributivity

Given fi, then the following obvious distributivity property holds true

L
m∑
i=1

fi(t1, . . . , tn) =
m∑
i=1

Lfi(t1, . . . , tn) . (7.72)

Homogeneity

Scaling fi with a constant α is equivalent to scaling Fi with the same α. This
property is known as homogeneity. United with (7.72), the property results in

m∑
i=1

aifi(t1, . . . , tn)
L⇔

m∑
i=1

aiFi(s1, . . . , sn) , (7.73)

reminding us that both distributivity and homogeneity imply linearity.

Example 7.11. The degree n = 2 Volterra system is represented with the
kernel h2(θ1, θ2) = 2e−2θ1u(θ1) − 3e−3θ2u(θ2). By the property of linearity,
the two-variable transfer function of the system is defined to be

H2(s1, s2) = Lh2(θ1, θ2) = L[2e−2θ1u(θ1)− 3e−3θ2u(θ2)]

= 2Le−2θ1u(θ1)− 3Le−3θ2u(θ2)

= 2

∞∫

0

e−(s1+2)θ1dθ1 − 3

∞∫

0

e−(s2+3)θ2dθ2

=
2s2 − 3s1 + 1

(s1 + 2)(s2 + 3)
, Re(s1) > −2 , Re(s2) > −3 . (7.74)

��

Time Shifting

If every time variable t1, . . . , tn of a function f(t1, . . . , tn) is individually
shifted on τ1, . . . , τn, respectively, then the transform of the shifted function
is defined by

Lf(t1 − τ1, . . . , tn − τn) = F (s1, . . . , sn)e−s1τ1−...−snτn . (7.75)

Reminiscent of the single-variable case, the proof of (7.75) is readily pro-
vided by changing variables.
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Example 7.12. The Volterra kernel of degree n = 2 is given by

h2(θ1 − τ1, θ2) = 2e−2(θ1−τ1)u(θ1 − τ1)− 3e−3θ2u(θ2) .

By the time-shifting property (7.75) and the transform (7.70), the transfer
function of the system is defined to be

H2(s1, s2) = − 2
s1 + 2

e−s1τ1 +
3

s2 + 3

=
3(s1 + 2)− 2(s2 + 3)e−s1τ2

(s1 + 2)(s2 + 3)
, Re(s1) > −2 , Re(s2) > −3 . (7.76)

��

Product Transform

Assume we have a function f(t1, . . . , tn) that is represented by the prod-
uct of two subfunctions. If subfunctions are given with different variables,
f(t1, . . . , tn) = f1(t1, . . . , tk)f2(tk+1, . . . , tn), thus non-overlapped in time, the
transform of f is given by

F (s1, . . . , sn) = F1(s1, . . . , sk)F2(sk+1, . . . , sn) . (7.77)

In a case of the same variables, f(t1, . . . , tn) = f1(t1, . . . , tn)f2(t1, . . . , tn),
the transform is represented with the convolution

F (s1, . . . , sn) =
1

(2πj)n

σ+j∞∫

σ−j∞
F1(s1−v1, . . . , sn−vn)F2(v1, . . . , vn)dv1 . . . dvn .

(7.78)

Example 7.13. A system is represented with the degree n = 2 Volterra kernel
h2(θ1, θ2) = e−2(θ1+θ2)u(θ1)u(θ2). The kernel can be rewritten as h2(θ1, θ2) =
e−2θ1u(θ1)e−2θ2u(θ2) = f1(θ1)f2(θ2) and the property (7.77) can be applied
too. As a result, we have

F (s1) = Le−2θ1u(θ1) =
1

s1 + 2
,

F (s2) = Le−2θ2u(θ2) =
1

s2 + 2
.

The transfer function of the system is thus defined by

H(s1, s2) = F1(s1)F2(s2) =
1

(s1 + 2)(s2 + 2)
. (7.79)

��
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Convolution Transform

If a function f is represented by the convolution, two important cases can
be distinguished. When f(t1, . . . , tn) = f1(t1) ∗ f2(t1, . . . , tn), the transform
produces

F (s1, . . . , sn) = F1(s1 + . . . + sn)F2(s1, . . . , sn) . (7.80)

In the case of an n-fold convolution, f(t1, . . . , tn) = f1(t1, . . . , tn) ∗
f2(t1, . . . , tn), the transform is found in a manner similar to a single variable,

F (s1, . . . , sn) = F1(s1, . . . , sn)F2(s1, . . . , sn) . (7.81)

7.4.2 Laplace Transform of the Volterra Series

We now know enough properties to find the Laplace transform of the Volterra
series (7.27) and, thereby, translate an NTI system to the transform domain.

An application of the Laplace transform to the Volterra series needs some
care. To emphasize the special feature of such transformations, let us consider
the degree n Volterra system

y(t) =

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t− θ1) . . . x(t− θn)dθ1 . . . dθn . (7.82)

As can be seen, the transform of the output y(t) is one-variable, y(s). In
turn, the integrand in the right-hand side consists of a multivariate kernel hn
and thus the relevant transform would be a function of n variables s1, . . . , sn.
To overcome this obvious discrepancy, it is in order to reassign the output as
follows

y(t) = y(t1, . . . , tn)|t1=...=tn=t � y(t, . . . , t) . (7.83)

Actually, nothing has changed. We just substituted a single-variable output
with the multivariate output having equal variables. On the other hand, it
allows matching the transforms of both sides of (7.82) and write

Lyn(t) = Lyn(t1, . . . , tn) = Yn(s1, . . . , sn)

= L
∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)x(t − θ1) . . . x(t− θn)dθ1 . . . dθn , (7.84)

where t = t1 = . . . = tn.
By the properties (7.77) and (7.81), (7.84) instantly becomes

Yn(s1, . . . , sn) = H(s1, . . . , sn)X(s1) . . . X(sn) , (7.85)
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where H(s1, . . . , sn) = Lhn(θ1, . . . , θn) is the multivariate transfer function
also called the degree n Laplace domain kernel, or, by s = jω, frequency
domain kernel of an NTI system. Here, X(si), i ∈ [1, n], is the transform
of the input in the relevant scale. Now, both sides of (7.85) are matched in
variables.

A generalized structure of the degree n Volterra system is shown in Fig.
7.12. Note that the multivariate transform of the input is composed, by

),...,( 1 nn ssH
),...,( 1 nn ssY),...,( 1 nn ssX

Fig. 7.12. Generalized structure of the degree n Volterra system.

(7.85), with the single variable transforms having different Laplace variables,
Xn(s1, . . . , sn) = X(s1) . . . X(sn).

Example 7.14. A unit step pulse acts in the input of an NTI system,
x(t) = u(t). A system is represented with the degree n = 2 Volterra ker-
nel h2(θ1, θ2) = e−2(θ1+θ2)u(θ1)u(θ2).

Using (7.82) and (7.83), the output can be represented as

y(t1, t2) =

∞∫

−∞

∞∫

−∞
e−2(θ1+θ2)u(θ1)u(θ2)u(t1 − θ1)u(t2 − θ2)dθ1dθ2

=

t1∫

0

t2∫

0

e−2(θ1+θ2)dθ1dθ2 =
1
4
(
1− e−2t1

) (
1− e−2t2

)
u(t1)u(t2) (7.86)

and, by t1 = t2 = t, (7.86) becomes

y(t) =
1
4
(
1− e−2t

)2
u(t) . (7.87)

The transfer function (7.79) of this system is found in Example 7.13. Be-
cause of Lu(t) = 1/s, the Laplace transform of the output becomes, by (7.85),

Y (s1, s2) =
1

s1s2(s1 + 2)(s2 + 2)
. (7.88)

To be absolutely sure that (7.88) corresponds to (7.87), we recall that
t1 = t2 = t, apply the inverse Laplace transform to (7.87), and find

y(t) =
1

(2πj)2

σ+j∞∫

σ−j∞
Y (s1, s2)e−s1t1−s2t2ds1ds2
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=

⎡
⎣ 1

2πj

σ+j∞∫

σ−j∞

est

s(s + 2)
ds

⎤
⎦

2

=
[
L−1 1

s(s + 2)

]2
.

Now take 1
(s−a)(s−b)

L⇔ 1
a−b
(
eat − ebt

)
from a table of the Laplace transforms

(Appendix D) and set b = 0 and a = −2. After simple manipulations, we
arrive at (7.87) and the verification is complete. ��

7.4.3 System Representation in the Transform Domain

The fundamental relation (7.85) and basic structure shown in Fig. 7.12 al-
low representing different NTI systems in the transform domain by block
diagrams. Typically, of interest are two kinds of cascade interconnections ob-
served below.

When the degree n NTI system follows by an LTI system, the structure
becomes as in Fig. 7.13a, for which the multivariate kernel h1n is defined by
the convolution as

h1n(t1, . . . , tn) = h(t) ∗ hn(t1, . . . , tn)

=

∞∫

−∞
h(θ)hn(t1 − θ, . . . , tn − θ)dθ . (7.89)

Fig. 7.13. Cascade of NTI and LTI systems: (a) time domain and (b) transform
domain.

By (7.80), the transform of (7.89) can be written as

H(s1, . . . , sn) = Hn(s1, . . . , sn)H(s1 + . . . + sn) (7.90)

and represented by the diagram as in Fig. 7.13b, where s1n = s1 + . . . + sn.
In the second possible case, an LTI system follows by an NTI system (Fig.

7.14a) and the resulting kernel h2n is defined by the convolution as

h2n(t1, . . . , tn) =

∞∫

−∞
. . .

∞∫

−∞
hn(θ1, . . . , θn)h(t1 − θ1) . . . h(tn − θn)dθ1 . . . dθn .

(7.91)
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Fig. 7.14. Cascade of LTI and NTI systems: (a) time domain and (b) transform
domain.

By (7.77) and (7.81), the transform of (7.91) can easily be defined to be

H2n(s1, . . . , sn) = H(s1) . . . H(sn)Hn(s1, . . . , sn) . (7.92)

A structural representation of (7.92) is given in Fig. 7.14b, where we assigned
HΠ(s) = H(s1)H(s2) . . . H(sn).

Below, we observe a typical example demonstrating an efficiency of (7.90)
and (7.92) in finding the transfer function of an NTI system.

Example 7.15. Consider an NTI system organized as in Fig. 7.15a. To define
the transfer function, the structure can be represented in different equivalent
forms shown in Figs. 7.15b-d. Respectively, the transfer function can also be
found in different ways.

A linear part of the system following by the multiplier can be repre-
sented as in Fig. 7.15b with two branched having the transform domain ker-
nels H1(s)H2(s) and H1(s)H3(s). A part following by H4(s) can now be de-
scribed by the transform F1(s1, s2) = H1(s1)H2(s1)H1(s2)H3(s2). By (7.90),
the transfer function of the system becomes

H2(s1, s2) = H1(s1)H1(s2)H2(s1)H3(s2)H4(s1 + s2) . (7.93)

The system can be split into NTI (left) and LTI (right) subsystems as
shown in Fig. 7.15c. Then F1(s1, s2) is defined in a manner identical to that
used for Fig. 7.15b and we arrive at the same transfer function (7.93).

One can also split the system into two parts as in Fig. 7.15d and, first,
consider the right block (dashed). By (7.90), the transform domain kernel of
this subsystem is provided to be F2(s1, s2) = H2(s1)H3(s2)H4(s1 + s2) and,
by (7.92), we have the same transfer function (7.93) of the whole system. ��
Example 7.16. An NTI system is represented with the transfer function

H3(s1, s2, s3) =
1
s2

[
1

s1(1 + s1 + s2)
+

1
s3(1 + s2 + s3)

]
. (7.94)

To restore the diagram associated with (7.94), we first notice that each
of the terms composing H3(s1, s2, s3) consists of the transform domain kernel
dependent on the sum of the Laplace variables. This means that the system
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Fig. 7.15. Equivalent forms of block diagrams of an NTI system.

is represented with two subsystems shown in Fig. 7.15b. The block diagram
of the system thus becomes as in Fig. 7.16.

It can easily be verified that the kernels

H1(s) = H2(s) = H3(s) =
1
s
,

H4(s) = H5(s) =
1

1 + s

of the diagram (Fig. 7.16) exactly fit the transfer function (7.94). ��
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Fig. 7.16. Block diagram of an NTI system (7.94).

7.5 Approximation by Describing Functions

To continue with our description of the input-to-output NTI systems, we re-
mind the reader that the Volterra series method becomes low efficient if non-
linearity is sharp. A competitive approximate engineering approach is known
as the describing function (DF) method produced by the classical method
of equivalent linearization. Reminiscent of the familiar harmonic balance, the
method is applicable for both memory and memoryless systems.

7.5.1 System Representation with Describing Functions

The basic idea of the DF method is illustrated in Fig. 7.17. Assume we have
an arbitrary input x(t) passing through an NTI system to produce the out-
put y(t) (Fig. 7.17a). The DF methods suggests expanding x(t) to the se-
ries of subsignals x1(t), . . . , xm(t). For these subsignals, the impulse responses
h1(t), . . . , hm(t) are found to produce the suboutputs y1(t), . . . , ym(t), respec-
tively. All suboutputs are added to yield an approximate output ya(t). By
this, an NTI system is linearized as shown in Fig. 7.17b. In order for ya(t)
to be closer to the real signal y(t), all impulse responses are searched in the
sense of the minimum mean square error.

Basically, any basis of subsignals xi(t), i ∈ [1,m], can be used being
not obligatory orthogonal. Electronic systems, however, are usually associ-
ated with the 2π-periodicity. Therefore, they are typically interested in an
expansion of a signal x(t) to the Fourier series.

A great deal of practical problems are solved by accounting in the sig-
nal x(t) only the first (or fundamental) harmonic. If x(t) is substituted with
a harmonic wave (cosine or sine) with the amplitude r, then the first har-
monic of the output can be found as the complex amplitude c1e

−jΨ1 . The
relevant gain of such a linearized system is evaluated by the ratio of the
amplitudes

N(r, jω) =
c1
r
e−jΨ1 (7.95)
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Fig. 7.17. NTI system: (a) general structure and (b) linearized by the DF method.

called the describing function. The function (7.95) is thus kind of frequency
response of a linearized system and the system response to the harmonic input
is hence evaluated by y(t) = N(r, jω)x(t).

Such a simplification, like other attempts of linearization, does not seem to
be useful for subtle NTI structures. Instead, the approach allows solving many
problems in open and closed NTI systems, such as predicting limit cycles, that
makes the DF method useful in engineering practice. Extensive investigations
of the method were provided by Gelb and Velde.

Cosine Input Signal

Suppose we have a SISO NTI system with the cosine input

x(t) = r cosωt = re−j0 cosωt . (7.96)

By van der Pol’s variables, (2.90) and (2.91), the output associated with
(7.96) for an arbitrary general nonlinearity y(x, x′) can be performed as

y(t) = O(x)x(t) = y(x, x′) = y(r cosωt,−rω sinωt) . (7.97)

Formally, we can expand (7.97) to the Fourier series

y(r cosωt,−rω sinωt) =
∞∑
k=1

ck cos(kωt− Ψk) (7.98)
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that, saving only the first harmonic, gives

y(r cosωt,−rω sinωt) ∼= c1 cos(ωt− Ψ1) . (7.99)

By multiplying (7.99) with cosωt or sinωt and thereafter averaging the
product over ωt from −π to π, we arrive at two equations, respectively,

c1 cosΨ1 =
1
π

π∫

−π
y(r cosωt,−rω sinωt) cosωt dωt , (7.100)

c1 sinΨ1 =
1
π

π∫

−π
y(r cosωt,−rω sinωt) sinωt dωt . (7.101)

The complex amplitude of the output can now be found by multiplying
(7.101) with −j and then summing (7.100) and (7.101) that gives

c1e
−jΨ1 =

1
π

π∫

−π
y(r cosωt,−rω sinωt)e−jωtdωt . (7.102)

In virtue of (7.99) and (7.102), the linearized system produces the following
output

y(t) = c1e
−jΨ1 cosωt . (7.103)

By (7.95), the DF for the cosine input can now be defined as

N(r, jω) =
1
πr

π∫

−π
y(r cosωt,−rω sinωt)e−jωtdωt (7.104)

or, if a system lost memory, by

N(r) =
1
πr

π∫

−π
y(r cosωt)e−jωtdωt . (7.105)

Finally, the output of a linearized system is described by

y(t) = N(r, jω)x(t) , (7.106)

where N(r, jω) is predefined either by (7.105) or (7.106).

Example 7.17 (Relay System). Given a memoryless relay system with a
nonlinearity described by y(x) = Au(x)−Au(−x). For the cosine input x(t) =
r cosωt, the output is a periodic rectangular pulse train (Fig. 7.18).

By (7.105), the DF is obtained to be
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Fig. 7.18. Signal transformation in a relay memoryless system.

N(r) =
1
πr

π∫

−π
y(r cosωt)e−jωtdωt

=
A

πr

⎛
⎜⎝

π/2∫

−π/2

e−jωtdωt−
3π/2∫

π/2

e−jωtdωt

⎞
⎟⎠ =

4A
πr

. (7.107)

��
Example 7.18 (Backlash). Consider a memory NTI system, which nonlin-
earity is represented with the hysteresis loop called the backlash. When the
nonlinearity restricts the amplitude of a cosine input, r > A, the signals are
formed as in Fig. 7.19.

To define the DF, one needs determining the values of phases, correspond-
ing to points at which the piecewise nonlinearity changes in the direct and
back ways. In doing so, we assign y1 = a(x + δ) and y2 = a(x − δ) to be the
backward and toward linear branches of a backlash, respectively.

The phase φ1 is defined by an equality y1 = a(x1 + δ) = A that gives
x1 = (A− aδ)/a. Equating the value of x1 to r cosφ1 yields

φ1 = arccos
A− aδ

ar
. (7.108)

Reasoning similarly, the reminding phases are determined to be

φ2 = arccos
−A− aδ

ar
, (7.109)

φ3 = 2π − arccos
−A + aδ

ar
, (7.110)
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Fig. 7.19. Signal transformation in a backlash memory system.

φ4 = 2π − arccos
A + aδ

ar
. (7.111)

The DF is now defined, by (7.104), as in the following,

N(r, jω) =
A

πr

φ1∫

0

e−jωtdωt− A

πr

φ3∫

φ2

e−jωtdωt +
A

πr

2π∫

φ4

e−jωtdωt

+
a

πr

φ2∫

φ1

(r cosωt + δ)e−jωtdωt +
a

πr

φ4∫

φ3

(r cosωt− δ)e−jωtdωt

= j
A− aδ

πr
(e−jφ1 − e−jφ3) + j

A + aδ

πr
(e−jφ2 − e−jφ4)

+
a

2π
(φ2 − φ1 − φ3 + φ4) + j

a

4π
(
e−2jφ2 − e−2jφ1 − e−2jφ3 + e−2jφ4

)

=
a

2

[
f

(
A

ar
+

δ

r

)
+ f

(
A

ar
− δ

r

)]
− j

4Aδ

πr2
, (7.112)

where an auxiliary function is

f(u) =

⎧
⎨
⎩

−1 if u < −1
2
π

(
a sinu + u

√
1− u2

)
if |u| � 1

1 if u > 1
. (7.113)

Fig. 7.20 illustrates x(t), y(t), and ya(t) for a = 1 and δ = 0.5.
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Fig. 7.20. Signals in a backlash memory system.

Observing Fig. 7.20 and comparing x(t) with y(t) and ya(t), one can in-
dicate the effect of phase delay associated with system’s memory. Depending
on δ, the effect becomes more or less brightly pronounced. By δ = 0, all sig-
nals coincide in phase. The latter case having its own applied significance is
examined below. ��
Example 7.19 (Saturation). A particular case of the backlash system with
δ = 0 describes the saturation effect in linear memoryless systems. In view of
δ = 0, the transformation of signals is obtained as in Fig. 7.21.

Fig. 7.21. Signal transformation in a memoryless system with saturation.

As it follows from Fig. 7.21, the DF N(r) can be derived by (7.105) if we
integrate from 0 to π involving two angles φ1 = arccos A

ar and φ2 = π − φ1.
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That leads to

N(r) =
2A
πr

φ1∫

0

e−jωtdωt− 2A
πr

π∫

φ2

e−jωtdωt

+
2a
π

φ2∫

φ1

cosωte−jωtdωt

=
4A
πr

sinφ1 +
a

π
(π − 2φ1 − sin 2φ1) . (7.114)

The signals x(t), y(t), and ya(t) are shown Fig. 7.22 for a = 1. Contrary

Fig. 7.22. Signals in a memoryless system with saturation.

to Fig. 7.20, no phase shift occurs here between the signals. The only easily
seen effect is produced by saturation at the level of ±A. ��

Sinusoidal Input Signal

Let us now suppose that the input is sinusoidal,

x(t) = r sinωt = re−j0 sinωt , (7.115)

and describe the output by

y(t) = O(x)x(t) = y(r sinωt, rω cosωt) . (7.116)

Similarly to the cosine input, one can expand (7.116) to the Fourier series

y(r sinωt, rω cosωt) =
∞∑
k=1

ck sin(kωt− Ψk) (7.117)

and derive the DF for the memory and memoryless cases to be, respectively,
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N(r, jω) =
j

πr

π∫

−π
y(r sinωt, rω cosωt)e−jωtdωt , (7.118)

N(r) =
j

πr

π∫

−π
y(r sinωt)e−jωtdωt . (7.119)

As can be seen, (7.118) and (7.119) associated with the sinusoidal input
differ from (7.104) and (7.105), respectively, corresponding to the cosine input.
This does not mean, however, that the final expressions for N(r, jω) and N(r)
also differ for the cosine and sinusoidal inputs.

Example 7.20 (Relay System). Consider the familiar relay system (Fig.
7.18) allowing for the sinusoidal input. By (7.119), the DF is defined to be

N(r) =
j

πr

π∫

−π
y(r sinωt)e−jωtdωt

=
Aj

πr

⎛
⎝

π∫

0

e−jωtdωt−
2π∫

π

e−jωtdωt

⎞
⎠ =

4A
πr

. (7.120)

One infers that the DF (7.120), derived for the sinusoidal input is exactly
that (7.107) derived for the cosine input. ��
Example 7.21 (Dead Zone). Consider a nonlinear unit with a dead zone
in a gap of ±δ at zero. For the sinusoidal input with the amplitude r > δ, the
signal is transformed as in Fig. 7.23 with the angles φ1 = arcsin δ

r , φ2 = π−φ1,
φ3 = π + φ1, and φ4 = 2π − φ1.

By (7.119), similarly to Example 7.18, the DF is derived to be

N(r) =
a

π

(
π − 2φ1 − 2δ

r

√
1− δ2

r2

)
. (7.121)

��
We notice that the DF method, as a product of equivalent linearization,

can be applied whenever the NTI (memory or memoryless) system needs to be
analyzed for harmonic inputs. It can also be applied for combined harmonic
signal (bi-harmonic, etc.). To pass through the transformation routine with a
minimum burden, the following properties of the DFs are usually used.

7.5.2 Properties of Describing Functions

The necessity of observing the properties of described functions arises, at least,
from the fact that the general relations for DFs associated with cosine and
sine inputs are different, whereas for particular nonlinearities they are equal.
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Fig. 7.23. Signal transformation in a memoryless system with a dead zone.

Uniqueness

Consider a general nonlinearity y(x, x′). The DF for a sinusoidal input is
provided by (7.118). Substituting sinωt = cos

(
ωt− π

2

)
, we go to

N(r, jω) =
j

πr

∫

2π

y
[
r cos

(
ωt− π

2

)
,−rω sin

(
ωt− π

2

)]
e−jωtdωt .

By changing a variable, ψ = ωt− π
2 , the relation becomes

N(r, jω) =
j

πr

∫

2π

y(r cosψ,−rω sinψ)e−j
π
2 e−jψdψ

=
1
πr

∫

2π

y(r cosψ,−rω sinψ)e−jψdψ (7.122)

that is exactly (7.104) derived for the cosine signal. This means that the DF
is unique for the given nonlinear function. The uniqueness suggests that the
relation to derive the DF depends on the phase shift in the harmonic input and
that the DF itself does not depend on this shift. The property is supported
by Examples 7.17 and 7.20.

We notice that, for the reason of uniqueness of the DF, the input is often
chosen to be sinusoidal.

Complexity

The DF of a generalized memory system is a complex function. As such, it
can be represented as
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N(r, jω) = Na(r, ω) + jNr(r, ω) , (7.123)

where the real component Na(r, ω) and imaginary component Nr(r, ω) are
defined as follows. Consider (7.118) and substitute the exponential function
with the Euler formula, e−jωt = cosωt− j sinωt. It gives

N(r, jω) =
j

πr

π∫

−π
y(r sinωt, rω cosωt) cosωt dωt

+
1
πr

π∫

−π
y(r sinωt, rω cosωt) sinωt dωt = Na(r, ω) + jNr(r, ω) (7.124)

and thus

Na(r, ω) =
1
πr

π∫

−π
y(r sinωt, rω cosωt) sinωt dωt , (7.125)

Nr(r, ω) =
1
πr

π∫

−π
y(r sinωt, rω cosωt) cosωt dωt . (7.126)

The real DF (7.125) produces the output that coincides in phase with the
input. Therefore, it is called the in-phase gain. In turn, (7.126) is said to be
the quadrature phase gain, because the output is shifted on π/2 for the input.

Alternatively, (7.123) can be expressed in the polar coordinates as

N(r, jω) = ρ(r, ω)ejϕ(r,ω) , (7.127)

where the radius and phase are specified by, respectively,

ρ(r, ω) =
√

N2
a (r, ω) + N2

r (r, ω) , (7.128)

tanϕ(r, ω) =
Nr(r, ω)
Na(r, ω)

. (7.129)

Knowing ρ(r, ω) and ϕ(r, ω), one can define the in-phase and quadrature
phase gains by, respectively,

Na(r, ω) = ρ(r, ω) cosϕ(r, ω) , (7.130)

Nr(r, ω) = ρ(r, ω) sinϕ(r, ω) . (7.131)

Example 7.22. A memory NTI system is represented with the DF (7.112).
The real and imaginary components of the DF are, respectively,

Na(r, ω) =
a

2

[
f

(
A

ar
+

δ

r

)
+ f

(
A

ar
− δ

r

)]
,
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Nr(r, ω) = −4Aδ

πr2
,

where an auxiliary function f is defined by (7.113). ��

Memoryless Nonlinearity

Consider the DF for a general memoryless nonlinearity (7.119). For a sinu-
soidal input, the output is expanded to the sinusoidal Fourier series. Because
the integration of the product (sinnωt) cosωt, where n is integer, over ωt from
−π to π produces zero we have two equal forms of N(r),

N(r) =
j

πr

π∫

−π
y(r sinωt)e−jωt dωt

=
1
πr

π∫

−π
y(r sinωt) sinωt dωt = Na(r) , (7.132)

meaning that N(r) is a real function.

Memoryless Odd Nonlinearity

If an NTI system is memoryless and nonlinearity is odd, y(x) = −y(−x), the
DF is calculated for the restricted bounds as

N(r) =
2j
πr

π∫

0

y(r sinωt)e−jωtdωt . (7.133)

In fact, for a general memoryless nonlinearity (7.119), we can write

N(r) =
j

πr

0∫

−π
y(r sinωt)e−jωtdωt +

j

πr

π∫

0

y(r sinωt)e−jωtdωt

= N1(r) + N2(r)

Inducing a phase shift π and recalling that y(x) = −y(−x), we rewrite the
first integral as

N1(r) =
j

πr

0∫

−π
y(r sinωt)e−jωtdωt

=
j

πr

π∫

−π+π

y[r sin(ωt− π)]ejπe−jωtd(ωt− π)
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= − j

πr

π∫

0

y(−r sinωt)e−jωtdωt =
j

πr

π∫

0

y(r sinωt)e−jωtdωt

that is equal to the second integral N2(r) and we arrive at (7.133). This
property was exploited in Example 7.19.

In view of (7.132), we also have

N(r) =
2
πr

π/2∫

−π/2

y(r sinωt) sinωt dωt . (7.134)

Since the integrand in (7.134) is a function symmetric about zero, (7.134) can
also be calculated by

N(r) =
4
πr

π/2∫

0

y(r sinωt) sinωt dωt . (7.135)

So, for the memoryless odd nonlinearity, three equal forms of N(r) are
available, namely those provided by (7.133)–(7.135).

Example 7.23. Consider a memoryless system with an odd nonlinearity
y(x) = x3. By (7.119), the DF is defined to be

N(r) =
jr2

π

π∫

−π
sin3 ωte−jωtdωt

=
jr2

π

π∫

−π
sin3 ωt cosωt dωt +

r2

π

π∫

−π
sin4 ωt dωt

=
r2

π

π∫

−π
sin4 ωt dωt =

r2

π

3
8
dωt

∣∣∣∣
π

−π
=

3r2

4
. (7.136)

Alternatively, one can follow (7.133)–(7.135). Observe that different inte-
gral forms lead to the same result (7.136). ��

Overall, the DF method is a very convenient and useful tool to solve a
great deal of nonlinear problems. As a product of equivalent linearization, it
is essentially a unified approach to linearize an NTI system in steady-state and
define the frequency response. In this regard, the method is more practicable
than the Volterra approach. On the other hand, the DF is inappropriate in
transient and becomes almost useless, when an exact shape of an output is of
concern. If so, the Volterra series and presentation by differential equations
have no alternative.
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7.6 Description by Differential Equations

Representation of NTI systems with ODEs is usually achieved in the most
short form. Most generally, a SISO NTI system is performed with the N -
order nonlinear ODE that for the nighest order time derivative of the output
y(t) can be written as

dNy

dtN
= f

(
y,

dy
dt

, . . . ,
dN−1y

dtN−1
, x,

dx
dt

, . . . ,
dMx

dtM

)
, (7.137)

where M � N . Because the nonlinear function f in the right-hand side can be
arbitrary, the general solution of (7.137) cannot be found. This lamentable pe-
culiarity of nonlinear ODEs is so strong that, even for the particular forms, not
every equation can be solved analytically. Therefore, the qualitative methods
are used widely to sketch a picture associated with the system dynamics.

On the other hand, not every nonlinear ODE needs to be solved exactly. In
a great deal of engineering problems, of interest is a certain spectral content
of y(t), rather than its full spectrum. Examples may be found in systems with
both weak and strong nonlinearities. Moreover, nonlinearity is often formed
intentionally to produce or gain one spectral component and suppress others.

By virtue of the fact that an exact solution is typically hard to find and
often unnecessary for applications, many efforts have been made for centuries
to find and develop the approximate methods. After discussing an exact solu-
tion of the Bernoulli7 nonlinear ODE of the first order, we shall observe the
most widely used approximate methods.

7.6.1 System of the First Order (Bernoulli’s Equation)

Among a variety of NTI systems of the first order, are many closed loop
representatives described by the Bernoulli equation. The equation allows in-
vestigating both weak and sharp nonlinearities.

Before discussing the nonlinear case, let us consider an LTI system de-
scribed by

y′ + ay = bx , (7.138)

where a and b are some constants. We can suppose that the input x(t) is
coupled with the output y(t), by the nonlinear feedback, as x(t) = yα(t),
where α 	= 1 is real. The closed loop is thus described with the nonlinear
ODE

y′ + ay = byα (7.139)

known as the Bernoulli equation.

7 Jacob (Jacques) Bernoulli, Swiss mathematician, 27 December 1654–16 August
1705.
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An exact solution of (7.139) can be found by changing a variable, u = y1−α,
that transforms (7.139) to the linear ODE

u′ + cu = d , (7.140)

where c = a(1 − α) and d = b(1 − α). Using the standard trick with the
integration factor (Chapter 4), further integrating from t0 to t, and thereafter
returning to the original variable yield

y(t) = 1−α

√√√√√e−a(1−α)(t−t0)

⎡
⎣b(1− α)

t∫

t0

ea(1−α)(τ−t0)dτ + C

⎤
⎦

= 1−α

√
b

a
+
(
C − b

a

)
e−a(1−α)(t−t0) , (7.141)

where a constant C is determined by the initial condition y(t0) = y0 at t0 to
be C = y1−α

0 . A simple observation shows that the solution starts with y0 at
t0 and can either converge or diverge depending on the coefficients.

Example 7.24. Consider an NTI system described by the Bernoulli ODE
(7.139) with a = 2, b = 1, and α = 3,

y′ + 2y = y3 . (7.142)

The initial condition is y0 = y(t0). By (7.141), the solution becomes

y(t) = y0

√
e−2t

1− 2y2
0(1− e−2t)

. (7.143)

It is seen that, by t = t0, the function starts with y(t0) = y0 and, by t→∞,
tends toward zero asymptotically. The system is thus stable. ��

7.6.2 Linearization of Nonlinear ODEs

When an NTI system is exploited around some operation point, its lineariza-
tion is very useful to ascertain stability. Linearization is also very often applied
for weak annoying nonlinearities caused by undesirable factors.

A complete linearized picture appears if we apply the Taylor expansion
to the right-hand side of (7.137) at some operation point x0, y0 and save
only constant and linear terms. If all of the n-order time derivatives at this
point are known, y′0, y′′0 , . . . , y(N−1)

0 , x′0, x′′0 , . . . , x(M)
0 , a linearized equation

becomes

ỹ(N)(t) =
∂f

∂y

∣∣∣∣
0

ỹ(t) +
∂f

∂y′

∣∣∣∣
0

ỹ′(t) + . . . +
∂f

∂y(N−1)

∣∣∣∣
0

ỹ(N−1)(t) + . . .
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+
∂f

∂x

∣∣∣∣
0

x̃(t) +
∂f

∂x′

∣∣∣∣
0

x̃′(t) + . . . +
∂f

∂x(M)

∣∣∣∣
0

x̃(M)(t) , (7.144)

where we used the following assignments:

∂f

∂var

∣∣∣∣
0

� ∂f

∂var

∣∣∣∣
x=x0 ,y=y0 ,x(m)=x

(m)
0 ,y(n)=y

(n)
0

, n ∈ [1, N − 1] ,m ∈ [1,M ] ,

ỹ = y − y0 , ỹ′ = y′ − y′0 , . . . , ỹ(N) = y(N) − y
(N)
0 ,

x̃ = x− x0 , x̃′ = x′ − x′0, . . . , x̃(M) = x(M) − x
(M)
0 . (7.145)

Let us add that, from the standpoint of accuracy, all increments in (7.145)
must be small enough.

If we substitute all of the derivatives in (7.144) with the coefficients

ã0 =
∂f

∂y

∣∣∣∣
0

, b̃0 =
∂f

∂x

∣∣∣∣
0

, ãn =
∂f

∂y(n)

∣∣∣∣
0

, b̃m =
∂f

∂x(m)

∣∣∣∣
0

, (7.146)

we arrive at the other form of the linearized ODE

ỹ(N)(t) = ã0ỹ(t) + ã1ỹ
′(t) + . . . + ãN−1ỹ

(N−1)(t) + . . .

+b̃0x̃(t) + b̃1x̃
′(t) + . . . + b̃M x̃(M)(t) . (7.147)

A linear ODE (7.147) can be solved by the standard methods allowing
for ascertaining stability of an NTI system at a given point. With this aim,
(7.147) is often translated to state space.

Example 7.25. Consider a familiar Bernoulli ODE (7.139) at the point
y(t0) = y0. By (7.144) and (7.145), the linearized equation becomes

ỹ′ = − (a− αbyα−1
0

)
ỹ (7.148)

and can be rewritten as

y′ = −ay0 + byα0 −
(
a− αbyα−1

0

)
(y − y0) . (7.149)

The effect of linearization is easily traced on a phase plane of y′ and y.
Fig. 7.24 represents (7.139) for a = 2, b = 1, and α = 3, by (7.142). A linear
function (7.149) is placed here at three different points depicted by circles. As
can be seen, there is no large error in modeling the NTI system with straight
lines in a small vicinity of the operation point.

For the coefficients given, (7.149) becomes

ỹ′ = − (2− 3y2
0

)
ỹ , (7.150)

having a solution
ỹ(t) = y0e

−(2−3y2
0)t . (7.151)

A comparison of (7.143) and (7.151) shows that the functions trace along
different trajectories with time. However, their limiting values with t = t0 and
t =∞ are the same. ��
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Fig. 7.24. Linearization of an NTI system (7.142) in phase plane.

Example 7.26 (Linearized Van der Pol’s Oscillator). Given the nonlin-
ear oscillator equation by van der Pol,

y′′ + ω2
0y = ε(1− y2)y′ . (7.152)

At the form (7.137), the nonlinear function is specified by f(y, y′) =
−ω2

0y + ε(1 − y2)y′. By (7.144) and (7.145), a linearized version of (7.152)
is provided to be

ỹ′′ + (ω2
0 + 2εy0z0)ỹ = ε(1− y2

0)ỹ
′ , (7.153)

where y0 and z0 are coordinates of the operation point. The linearization effect
here is reminiscent of that considered in Example 7.25. ��

It seems now obvious that the general solution of the NTI system ODE
(7.137) does not exist for arbitrary nonlinearity. Moreover, many nonlinear
electronic problems do not imply finding such solutions and rely rather on ap-
proximate results. In view of that, below we examine several typical NTI sys-
tems illustrating applications of the approximate methods observed in Chapter
2.

7.6.3 Nonlinear Piezoelectric Filter

A typical nuisance effect in electronic systems is a dependance of some com-
ponents on the electric power. In many cases, the effect can be neglected. For
selective circuits, however, it may become crucial if the frequency response is
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“deformed” substantially. An example is a familiar piezoelectric crystal res-
onator (Chapter 5) used nowadays universally whenever accurate and precise
selectivity and oscillations are needed.

An electric scheme of a piezoelectric filter is shown in Fig. 7.25a. The
fundamental frequency of a resonator is due to the series resonance branch
composed with the equivalent motional inductance L1, resistance R1, and
capacitance C1. In parallel, a static capacitance C0 is included producing the
parallel resonance, which frequency is typically much far from the resonator
bandwidth.

Fig. 7.25. Piezoelectric filter scheme: (a) basic and (b) simplified.

An important peculiarity of a piezoelectric resonator is that, with high
drive levels, all its equivalent parameters depend on the power of a piezoelec-
tric current i(t). The effect is termed the drive level dependence (DLD).

To illustrate the nonlinear DLD effect, we shall examine a simplified
scheme (Fig. 7.25b) represented with a series resonant branch, which capaci-
tance C1 depends on the power of a piezoelectric current as

C1(t) = C10[1− βi2(t)] , (7.154)

where C10 is a value of C1 with normal drive levels, β is a DLD coefficient,
and the DLD effect is small, |βi2(t)| � 1. It is supposed that the input and
output are matched with the resonator, Rin = Rout = R1.

The motion equation for the voltage vout(t) induced on Rout is written as

L1

Rout

dvout

dt
+

R1 + Rout

Rout
vout +

1
Rout

∫
vout

C1(t)
dt = v ,

v′′out + 2
R1

L1
v′out +

1
C1L1

vout =
R1

L1
v′ . (7.155)

Substituting (7.154) and recalling that |βi2(t)| � 1, we write

v′′out + 4δv′out + ω2
0

(
1 +

β

R2
1

v2
out

)
vout = 2δv′ , (7.156)

where 2δ = R1/L1 is the resonator bandwidth and ω0 = 1/
√
L1C10 is the res-

onance frequency with normal drive levels. Finally, we arrive at the formalized
nonlinear ODE
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Fig. 7.26. Block diagram simulation of (7.157).

y′′ + 4δy′ + ω2
0(1 + αy2)y = 2δx′ , (7.157)

where α = β/R2
1, x = v is the input, and y = vout is the output. The block

diagram simulation of (7.157) is shown in Fig. 7.26.
By virtue of the high quality factor of a piezoelectric filter, Q = ω0/2δ � 1,

the investigations of (7.157) can be provided by the method of harmonic
balance. For the harmonic input x(t) = V cosωt, a periodic solution of (7.157)
can be written as

y(t) = A cos(ωt + ψ) , (7.158)

where, in the view of nonlinearity, the amplitude A(ω) and phase ψ(ω) are
functions of the current frequency. Dropping the high-order harmonics, the
nonlinear term in (7.157) becomes

y3(t) ∼= 3
4
A3 cos(ωt + ψ) (7.159)

allowing for a linearization and representation of (7.157) by

y′′ + 4δy′ + ω2
Ay = −2δωV sinωt , (7.160)

where ω2
A = ω2

0

(
1 + 3

4βA
2
)

is the DLD frequency.
Substituting the following functions to (7.160)

y = A cosψ cosωt−A sinψ sinωt ,

y′ = −Aω cosψ sinωt−Aω sinψ cosωt ,

y′′ = −Aω2 cosψ cosωt + Aω2 sinψ sinωt

and equating the terms with cosωt and sinωt leads to the equations

(ω2 − ω2
A) cosψ + 4δω sinψ = 0 , (7.161)

4δωA cosψ −A(ω2 − ω2
A) sinψ = 2δωV . (7.162)

The first equation (7.161) produces tanψ = ω2−ω2
A

4δω that can be accounted
in the second one (7.162) and we have the solutions
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A =
2δωV√

(ω2 − ω2
A)2 + 16δ2ω2

, (7.163)

tanψ = −ω2 − ω2
0

4δω
+

ω2
0

4δω
3
4
βA2 . (7.164)

Assigning the fractional detuning Δ = (ω−ω0)/ω0 and allowing ω +ω0
∼=

2ω0, we arrive at the relations for the magnitude response |H(jΔ)| = A(Δ)/V
and phase response ψ(Δ) of the nonlinear piezoelectric filter, respectively,

|H(jΔ)| = 1

2
√

1 + Q2
(
Δ− 3

8βV
2|H(jΔ)|2)2

, (7.165)

ψ(Δ) = − arctanQ

(
Δ− 3

8
βV 2|H(jΔ)|2

)
. (7.166)

As can be seen, the algebraic equation (7.165) is cubic regarding |H(jΔ)|2
and quadratic for Δ2. For Δ2, it thus can be rewritten as

Δ2 − 3
4
βV 2H2Δ +

9
64

β2V 4H4 +
4H2 − 1
4H2Q2

= 0 (7.167)

that has a solution

Δ1,2 =
3
8
βV 2H2 ±

√
1− 4H2

2HQ
. (7.168)

The magnitude and phase responses can now be plotted. In doing so, we
change |H(jΔ)| from 0 up to some reasonable value and find, by (7.168), the
relevant detunings Δ1,2. Thereafter, the phase response (7.166) is calculated
for |H(jΔ)| and Δ1,2 and we show both responses in Fig. 7.27. It is seen
that increasing the DLD coefficient β results in “deforming” the magnitude
response so that the resonance frequency becomes larger (Fig. 7.27a). This
effect is neatly traced in the phase response (Fig. 7.27b). As can be seen,
the zero phase associated with a peak value of the magnitude response shifts
toward higher frequencies, by increasing β.

If the DLD effect occurs, the filter may no longer fulfil the requirements.
Let us observe what can happen following Fig. 7.28. Suppose we move along
the frequency response from the left to the right. When we reach a point A,
the response jumps to a point B. If to turn back, the function jumps from C
to D. The frequency response has thus a “dead zone” bounded by the points
A,B,C, and D. Owing to a hysteresis loop, the output will contain of spectral
components either on the level between D and A or B and C. The signal
will be “flaking” and filtering will no longer be properly obtained. On the
other hand, the effect may be used in special kinds of modulation and binary
coding.
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Fig. 7.27. Frequency response of a nonlinear piezoelectric filter: (a) magnitude and
(b) phase.

7.6.4 Harmonic Oscillator

A classical representative of NTI systems is a harmonic oscillator. The device
is inherently nonlinear, because, if it is linear, oscillations have no stable limit
cycle. An equivalent scheme of a transistor oscillator is shown in Fig. 7.29.
The resonant circuit is composed with L, R, and C. The output voltage v(t)
induced on the capacitor C governs the collector current i(t) of a nonlinear
transistor. In turn, the current i(t) induces the voltage on the feedback in-
ductance L1 that via the mutual inductance M induces the feedback voltage
on L. By the feedback, the dissipated energy is compensated and the steady
state oscillations become available. The nonlinear dependence i(v) is chosen
such that an equilibrium in the closed loop occurs at some given level.
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Fig. 7.28. Nonlinear effect in the magnitude response of a piezoelectric filter.

The voltage balance equation can be written as

L
dic
dt

+ Ric +
1
C

∫
ic(t)dt = M

di
dt

that, by ic = C dv
dt , becomes

v′′ + 2δv′ + ω2
0v = ω2

0M
di
dt

, (7.169)

where 2δ = R/L and ω2
0 = 1/LC.

The first time derivative of i(t) can be represented by

di
dt

=
di
dv

dv
dt

= S(v)v′ , (7.170)

Fig. 7.29. Harmonic transistor oscillator.
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where S(v) = di/dv is a memoryless sensitivity of the collector current i(t) to
v(t). By (7.170), the ODE (7.169) attains the form

v′′ +
[
2δ − ω2

0MS(v)
]
v′ + ω2

0v = 0 . (7.171)

Traditionally assigning y = v, we formally rewrite (7.171) as

y′′ + 2δ1y
′ + ω2

0y = 0 , (7.172)

where 2δ1(y) = 2δ − ω2
0MS(y) is the bandwidth of a closed loop. In the first

order approximation, the solution of (7.172) can be written as

y(t) = A0e
−δ1t cos(ω1t + ϑ0) , (7.173)

where A0 and ϑ0 are some constant amplitude and phase dependent on the
initial conditions. The oscillator frequency is defined by

ω2
1 = ω2

0 − δ2
1 . (7.174)

By the high quality factor, Q = ω0/2δ � 1, it is typical to think that
ω1
∼= ω0. At the steady state, the solution (7.173) therefore becomes y(t) =

A0 cos(ω0t+ϑ0), if we recall that the losses at the equilibrium are compensated
fully, thus δ1 = 0, and the steady state is reached at infinity, t→∞.

Let us now take a more precise look at (7.172) recalling that S(v) is non-
linear. Actually, namely this nonlinearity is responsible for the limit cycle at
equilibrium. For the sake of simplicity, we restrict our analysis with the typ-
ically implied cubic polynomial i = av − bv3 that produces S(v) = a − 3bv2.
The nonlinear bandwidth 2δ1 can therefore be rewritten as

2δ1(y) = 2δ − ω2
0Ma + ω2

0Mbv2 .

In terms of the feedback coefficient k = M/L1, characteristic resistance
ρ =

√
L/C, and quality factor Q = ω0/2δ, the bandwidth is evaluated by

2δ1(y) = −2δ(Qkρa− 1)
(

1− Qkρb

Qkρa− 1
y2

)
= −2δe(1− αy2) ,

where 2δe = 2δ(Qkρa− 1) is an equivalent bandwidth and α = Qkρ/(Qkρa−
1). The nonlinear ODE (7.171) thus becomes

y′′ − 2δe(1− αy2)y′ + ω2
0y = 0 . (7.175)

At the first moment after the power supply is switched on, the amplitude
of oscillations is very small. We thus have αy2 � 1, meaning that the sec-
ond term in (7.175) is negative. Consequently, the energy coming from the
feedback overcompensates the dissipated energy and oscillations develop. The
amplitude rises up to the value associated with αy2 = 1. At this point, the
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second term in (7.175) disappears and the system behaves along a limit cycle
with the frequency ω0.

It can be shown that, by a new variable z =
√
αy and ε = 2δe, the oscillator

becomes van der Pol’s (2.89),

y′′ + ω2
0y = ε(1− y2)y′ ,

and we remind the reader that investigations of the van der Pol oscillator were
provided in different aspects in Section 2.5.2 and Examples 2.20–2.25, 2.27,
3.1, 3.12, and 7.26.

7.6.5 Biharmonic Oscillatory System

A capability of a nonlinearity to create a single limit cycle is not the only one
that is used. If an oscillatory system comprises two or more resonant circuits, a
certain type of nonlinearity is able to create more than one limit cycle. Under
the certain circumstances, an oscillator may thus become biharmonic or even
multiharmonic (or multifrequency). An example is an oscillatory system with a
crystal resonator, whose bulk piezoelectric structure is inherently multimodal.

To analyze the principle of biharmonic excitation, let us consider a simple
scheme comprising two series resonant circuits as shown in Fig. 7.30. Typically,
the bandwidths of the branches are not overlapped and the resonant circuits
are therefore not coupled with each other. The current i = i1 + i2 induces a
voltage vin on the input resistor Rin. A nonlinear feedback with the gain G(vin)
transfers vin to the output. By vout, the dissipated energy is compensated
making possible for oscillations to be in steady state. A key point is the
nonlinearity of the gain G. In the sequel, we shall show that only with the
certain coefficients of this nonlinearity two stable limit cycles may be created,
thereby allowing for biharmonic oscillations.

The loop can be described by two equations of motion regarding the cur-
rents i1 and i2,

Fig. 7.30. Biresonant oscillatory system.
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L1
di1
dt

+ (R1 + Rin)i1 +
1
C1

∫
i1dt = v1out , (7.176)

L2
di2
dt

+ (R2 + Rin)i2 +
1
C2

∫
i2dt = v2out , (7.177)

where v1out and v2out are voltages induced on Rout regarding the signals with
the frequencies ω1 = 1/

√
L1C1 and ω2 = 1/

√
L2C2, respectively. The voltages

v1out and v2out are coupled with vin by the nonlinear gain G as follows:

G(vin) = G(v1 + v2) = v1out + v2out + ... ,

where v1 = Rin i1 and v2 = Rin i2. Equations (7.176) and (7.177) can now be
rewritten as

v′′1 + 2δ∗1v
′
1 + ω2

1v1 =
Rin

L1
v′1out , (7.178)

v′′2 + 2δ∗2v
′
2 + ω2

2v2 =
Rin

L2
v′2out , (7.179)

where 2δ∗1 = 2δ1 + Rin/L1, 2δ∗2 = 2δ2 + Rin/L2, 2δ1 = R1/L1, 2δ2 = R2/L2,
and vin = v1 + v2.

To investigate limit cycles, the nonlinear gain may be approximated with
the 5-order polynomial as

G(vin) = a(v1 + v2) + b(v1 + v2)3 − c(v1 + v2)5 , (7.180)

G′(vin) = [a + 3b(v1 + v2)2 − 5c(v1 + v2)4](v′1 + v′2) , (7.181)

where a, b, and c some constant coefficients.
Let us now examine stability of biharmonic oscillations. To find the rele-

vant conditions and investigate the special points in phase plane, we rewrite
(7.180) and (7.181) as follows

v′′1 + ω2
1v1 = ε1f1(v1, v

′
1, v2, v

′
2) . (7.182)

v′2 + ω2
2v2 = ε2f2(v1, v

′
1, v2, v

′
2) , (7.183)

where ε1 = 2δ1, ε2 = 2δ2, and the nonlinear functions are defined by

f1 = − v′1
1− k1

+
k1

1− k1

[
a + 3b(v1 + v2)2 − 5c(v1 + v2)4

]
(v′1 + v′2) , (7.184)

f2 = − v′2
1− k2

+
k2

1− k2

[
a + 3b(v1 + v2)2 − 5c(v1 + v2)4

]
(v′1 + v′2) , (7.185)

where k1 = Rin/(R1 + Rin) and k2 = Rin/(R2 + Rin) are the feedback coeffi-
cients of the first and second branches, respectively.

By the van der Pol solutions,
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v1 = r1 cos(ω1t + ϕ1) = r1 cosψ1 ,

v′1 = −r1ω1 sin(ω1t + ϕ1) = −r1ω1 sinψ1 ,

v2 = r2 cos(ω2t + ϕ2) = r2 cosψ2 ,

v′2 = −r2ω2 sin(ω2t + ϕ2) = −r2ω2 sinψ2 ,

and the Krylov and Bogoliubov method, the amplitudes r1 and r2 of oscilla-
tions are defined to be

r′1 = ε1A11(r1, r2) , (7.186)

r′2 = ε2A12(r1, r2) , (7.187)

where, in view of two variables, the values of A11 and A12 are determined by
double averaging over periods of oscillations with the frequencies ω1 and ω2,

A11(r1, r2) = − 1
4π2ω1

2π∫

0

2π∫

0

f1(r1 cosψ1,−r1ω1 sinψ1, r2 cosψ2,−r2ω2 sinψ2)

× sinψ1 dψ1 dψ2 , (7.188)

A12(r1, r2) = − 1
4π2ω2

2π∫

0

2π∫

0

f2(r1 cosψ1,−r1ω1 sinψ1, r2 cosψ2,−r2ω2 sinψ2)

× sinψ2 dψ1 dψ2 , (7.189)

where f1 and f2 are defined by (7.184) and (7.185), respectively. After the
routine integration (the reader is encouraged to use a symbolic block of the
applied software such as Mathcad and Matlab), equations (7.186) and (7.187)
attain the forms of, respectively,

r′1 = − μ1γr1

τ1(1− k1)
[α1 + β(r2

1 + 2r2
2) + r4

1 + 3r4
2 + 6r2

1r
2
2 ] , (7.190)

r′2 = − μ2γr2

τ2(1− k2)
[α2 + β(r2

2 + 2r2
1) + r4

2 + 3r4
1 + 6r2

2r
2
1 ] , (7.191)

where τ1,2 = 1/δ1,2 is the time constant of the relevant branch, k1,2 =
Rin/(R1,2 + Rin), μ1,2 = ak1,2 is a closed loop gain, α1,2 = (1 − μ1,2)/γμ1,2,
β = −24b/5c, and γ = 5c/8a.

Being difficult to solve analytically in the time domain, (7.190) and (7.191)
can completely be investigated in phase plane, by the phase trajectories
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dr1

dr2
=

τ2(1− k2)
τ1(1− k1)

P (r1, r2)
Q(r1, r2)

=
τ2(1− k2)
τ1(1− k1)

μ1r1[α1 + β(r2
1 + 2r2

2) + r4
1 + 3r4

2 + 6r2
1r

2
2 ]

μ2r2[α2 + β(r2
2 + 2r2

1) + r4
2 + 3r4

1 + 6r2
2r

2
1 ]

. (7.192)

We commence an investigation, by ascertaining stability at zero.

Stability at Zero

To ascertain stability at a zero excitation point, r1 = 0 and r2 = 0, we write
the characteristic equation of (7.192),

λ2 + rxλ + qx = 0 , (7.193)

in which the coefficients rx and qx are predetermined by

rx = −[P ′
1
(0, 0) + Q′

2
(0, 0)] , (7.194)

qx =
∣∣∣∣
P ′

1
(0, 0) P ′

2
(0, 0)

Q′
1
(0, 0) Q′

2
(0, 0)

∣∣∣∣ , (7.195)

where P ′
1
(0, 0) = ∂P

∂r1

∣∣∣
r1,r2=0

, P ′
2
(0, 0) = ∂P

∂r2

∣∣∣
r1,r2=0

, P ′
1
(0, 0) = ∂Q

∂r1

∣∣∣
r1,r2=0

,

and Q′
2
(0, 0) = ∂Q

∂r2

∣∣∣
r1,r2=0

. After the transformations, we have

rx = 2− a(k1 + k2) , qx = (ak1 − 1)(ak2 − 1) . (7.196)

For the system to be stable in the sense of Lyapunov, the real parts of
the roots of (7.193) must be negative. This is only possible if rx and qx are
positive. Additionally, to ascertain whether a fixed point is spirals or node, it
needs investigating the bound of the determinant D = r2

x − 4qx = 0. In view
of that, we have three equations to study:

(rx = 0) : 2− a(k1 + k2) = 0 , (7.197)

(qx = 0) : (ak1 − 1)(ak2 − 1) = 0 , (7.198)

(D = 0) : (k1 − k2)2 = 0 . (7.199)

By Fig. 3.1 and (7.197)–(7.199), stability of a fixed point in the range of
the possible values 0 � k1,2 � 1 is ascertained as shown in Fig. 7.31. When
both coefficients are small, k1 < 1/a and k2 < 1/a, no one resonant circuit
can be excited, because the feedback is insufficient. The fixed point is thus
a stable node. If k1 > 1/a and k2 > 1/a, the system can be excited at two
frequencies, ω1 and ω2, and the point is an unstable node. Whenever a system
is designed such that either k1 > 1/a and k2 < 1/a or vise versa, the fixed
point is saddle.
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Fig. 7.31. Stability of a fixed point at zero, by (7.197)–(7.199).

Phase Portrait

All fixed points in phase plane are defined by investigating the cross points of
the curves

P (r1, r2) = 0 , Q(r1, r2) = 0 , (7.200)

described by (7.192). Depending on the coefficients of the nonlinearity, several
oscillation modes are available. Topological pictures corresponding to each of
these modes are shown in Fig. 7.32. Several bifurcations are watched in phase
plane if to change the coefficients α1, α2, β, k1, and k2. Because α1, α2, and β
are defined via the coefficients a, b, and c, the phase portraits can be separated
as in the following.

For the symmetric resonant system, k1 = k2, the picture (Fig. 7.32a) is
obtained with

c <
9k

5(1− μ1)
b2 . (7.201)

Under the condition (7.201) and with small amplitudes (quasi linear system),
both branches are excited simultaneously. It is a typical soft excitation similar
to van der Pol’s oscillator. With larger amplitudes, the nonlinearity allows for
the development of one of the modes and attenuating the other one. Such a
process is known as modes competition. Depending on the initial conditions,
the limit cycle is formed here only for one of the frequencies.

The next portrait (Fig. 7.32b) ocurres if the coefficient c is set such that

9k
5(1− μ1)

b2 < c <
81k

25(1− μ1)
b2 . (7.202)
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Fig. 7.32. Phase portraits of the biharmonic oscillatory system: (a) soft excitation,
by (7.201), (b) hard excitation, by (7.202), (c) biharmonic mode, by (7.203), (d)
hard excitation, by (7.204), (e) break of a biharmonic mode, by k1 > k2, and (f)
break of a biharmonic mode, by k1 < k2.
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With zero amplitudes, the excitation conditions are not satisfied here neither
for the first circuit nor for second. Only with large initial amplitudes, one of
the branches can be excited. In the oscillators theory, such a process is termed
hard excitation.

An oscillator becomes biharmonic (Fig. 7.32c) if

81k
25(1− μ1)

b2 < c <
18k

5(1− μ1)
b2 . (7.203)

The system is characterized here with two stable limit cycles, meaning that
the structure generates in the steady state two signals with equal amplitudes
and different frequencies ω1 and ω2. The necessary condition for oscillations
to be biharmonic is the hard excitation. Most generally, this mean that if an
oscillator is excited softly, then one should not expect generating a multifre-
quency signal. However, if the process with soft excitation will further satisfy
(7.203), the biharmonic signal will be available at the steady state. Namely
such a trick with the conditions changed during the transient is widely used
in applications to create bifrequency and even multifrequency oscillators.

One more portrait ocurres as in Fig. 7.32d if k1 = k2 is obtained by

18k
5(1− μ1)

b2 < c . (7.204)

The topology is akin to Fig. 7.32a if to implement the hard excitation region
discussed above.

Because the resonant branches can dissipate energy with different rates
and thus the more realistic situation is when k1 	= k2, of importance is to
investigate how unequal coefficients affect the biharmonic mode. Fig. 7.32e
demonstrates what happens if k1 exceeds k2 by only several percent. Fig. 7.32f
sketches an inverse picture. It follows that, under the condition of k1 	= k2,
the system can lose an ability to be biharmonic. This means that the branch
with a larger feedback coefficient acquires more chances for excitation.

7.6.6 Synchronized Harmonic Oscillator

With any necessity for the communication or other system to operate per-
manently in a common time scale with other systems, a local oscillator is
disciplined in phase for the reference signal. A solution implies inducing a
synchronizing voltage vs(t) = Vs cosωst, where Vs is a constant amplitude and
ωs is a reference frequency, to a local oscillator as shown in Fig. 7.33.

Similarly to (7.169), the nonlinear ODE of a loop is written as

v′′ + 2δv′ + ω2
0v = ω2

0Vs cosωst + ω2
0M

di
dt

, (7.205)

allowing us to investigate stability of a synchronization mode.
Following (7.170) and introducing the nonlinear sensitivity S(v) = di/dv,

we go from (7.205) to
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Fig. 7.33. Synchronized harmonic oscillator.

v′′ +
(
2δ − ω2

0MS
)
v′ + ω2

0v = ω2
0Vs cosωst . (7.206)

If we further normalize the time scale, τ = ωst, and traditionally assign y = v
to be the output, we can rewrite (7.206) as follows

y′′τ + 2η(y)y′τ + ζ2y = λ cos τ , (7.207)

where y′τ = dy/dτ, y′′τ = d2y/dτ2, 2η = [2δ − ω2
0MS(y)]/ωs is the bandwidth,

ζ2 = ω2
0/ω

2
s , and λ = Vsζ

2.
For a typically high quality factor, Q = ω0/2δ � 1, a solution of (7.207)

may be found by the method of averaging. In doing so, it is in order first
representing an equation in the traditional form of

y′′τ + y = εf(y, y′τ , τ) , (7.208)

where ε = 1/Q and

f = ζ(ω0MQS − 1)y′ + Q(1− ζ2)y + VsQζ2 cos τ . (7.209)

We now approximate i(t) with an incomplete odd cubic polynomial i =
av − bv3, where a and b are constant coefficients properly predetermined to
obtain soft excitation. That gives S(v) = a− 3bv2 and (7.209) becomes

f = ζ[ω0MQ(a− 3by2)− 1]y′ + Q(1− ζ2)y + VsQζ2 cos τ . (7.210)

By the van der Pol solutions, y = r cosψ = r cos(τ+ϑ) and y′ = −r sinψ =
−r sin(τ + ϑ), and Krylov-Bogoliubov method, (7.208) can be represented, in
the first order approximation, with two equations

dr
dτ

= r′τ = εA1(r, ϑ) , (7.211)
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dψ
dτ

= ψ′τ = 1 + εB1(r, ϑ) , (7.212)

where the functions A1(r, ϑ) and B1(r, ϑ) are defined by, respectively,

A1(r, ϑ) = − 1
2π

2π∫

0

f(r cosψ,−r sinψ, ψ − ϑ) sinψ dψ , (7.213)

B1(r, ϑ) = − 1
2πr

2π∫

0

f(r cosψ,−r sinψ, ψ − ϑ) cosψ dψ . (7.214)

Substituting (7.210) to (7.213) and (7.214) and rewriting (7.212) for the
phase ϑ, we arrive at the equations for the amplitude and phase of oscillations,
respectively,

r′τ = −rζ

2

(
1
Q
− ω0Ma +

3
4
ω0Mbr2

)
− Vsζ

2

2
sinϑ , (7.215)

ϑ′τ = −1
2
(1 − ζ2)− Vs

2r
ζ2 cosϑ . (7.216)

In the form given, (7.215) is hard to analyze. A simplification can be
obtained by introducing the steady state amplitude r0 associated with the
absence of a synchronizing signal, Vs = 0. For r′τ = 0 and Vs = 0, (7.215) gives

1
Q
− ω0Ma +

3
4
ω0Mbr2

0 = 0

yielding

r0 =

√
4(ω0QMa− 1)

3Qω0Mb
. (7.217)

Using (7.217), equations (7.215) and (7.214) can be rewritten in the fol-
lowing most general forms,

�′τ =
μ

2
(
1− �2

)
�− κ

2
sinϑ , (7.218)

ϑ′τ = − ξ

2
− κ

2�
cosϑ , (7.219)

where � = r/r0, μ = ζ
(
ω0Ma− 1

Q

)
, κ = Vsζ

2/r0, and ξ = 1− ζ2. Equations
(7.218) and (7.219) allows us to analyze what happens with the amplitude,
phase, and frequency of oscillations if the amplitude and frequency of a syn-
chronizing signal is changed.
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Magnitude Response

The effect of synchronization is typically of interest in steady state. Therefore,
by r′τ = 0 and ϑ′τ = 0, we rewrite (7.218) and (7.219) as follows, respectively,

μ
(
1− �2

)
� = κ sinϑ , (7.220)

−ξ� = κ cosϑ . (7.221)

By squaring both sides of (7.220) and (7.221) and thereafter examining
the sum of these squares, we arrive at

�2
[
(1− �2)2 + α2

]
= η2 , (7.222)

where α(ξ) = ξ/μ and η = κ/μ. A solution of (7.222) represents the magnitude
response �(α) of a system. It is easily seen that (7.222) is cubic regarding �2

and quadratic for α. In the latter case, a direct solution is

α1,2 = ±
√

η2

�2
− (1− �2)2 , (7.223)

allowing us to restore a full picture.
The bounds α0 = ±η of the synchronization region are easily defined by

� = 1. A maximum value �max of � corresponds to α = 0 and is derived
by solving for �2 the cubic equation �6 − 2�4 + �2 = η2. Also, this equation
specifies the other possible values of � lying below �max and associated with
different amplitudes of a synchronizing signal. The magnitude response of such
an NTI system is shown in Fig. 7.34 for several values of η around unity.

As we noticed above, the synchronization region is bounded with α < |η|.
Within this range, by η > 1, the energy of a synchronizing signal dominates
and the oscillator is fully disciplined. The magnitude response is shaped here
to be almost that associated with a resonant circuit of the second order.

With η = 1, the oscillator is still well disciplined. However, owing to the
energy of a synchronizing signal, the magnitude response tends to be more
flat within the synchronization region having sharper sides.

The picture changes cardinally by η < 1. The energy of an input is still
enough to discipline an oscillator within the synchronization region. However,
it is too small beyond the bounds ±η. Accordingly, the magnitude response
tends to be almost rectangular with η = 0.5. It then becomes horseshoe, by
η = 0.385. With lower values of η, the response is represented with three levels
associated with the ellipsoid shaped around � = 1 and an almost flat pedestal.
To answer on the question which level is stable and which is not, one needs
to study stability of forced oscillations.
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Fig. 7.34. Magnitude response of a synchronized harmonic oscillator.

Stability of Forced Oscillations

To ascertain stability of a synchronized oscillator, one needs to investigate its
linearized version at an arbitrary steady state point shown in Fig. 7.34. In
doing so, it is first in order to rewrite (7.218) and (7.219) as

�′τ =
μ

2
(
1− �2

)
�− κ

2
sinϑ = P (�, ϑ) , (7.224)

ϑ′τ = − ξ

2
− κ

2�
cosϑ = Q(�, ϑ) , (7.225)

and find the coefficients (3.9) of the Jacobian matrix (3.8) at some steady
state point �s and ϑs. This gives

a = P ′�(�s, ϑs) =
μ

2
(
1− 3�2

s

)
, b = P ′ϑ(�s, ϑs) = −κ

2
cosϑs ,

c = Q′�(�s, ϑs) =
κ

2�2
s

cosϑs , d = Q′ϑ(�s, ϑs) =
κ

2�s
sinϑs .

The relevant characteristic equation is written as
∣∣∣∣
a− λ b

c d− λ

∣∣∣∣ = λ2 + σλ + Δ = 0 ,

where the coefficients are determined by

σ = −μ(1− 2�2
s ) , (7.226)
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Δ =
μ2

4
[
(1 − 3�2

s)(1 − �2
s ) + α2

]
. (7.227)

By these values, a solution of the characteristic equation is given as

2λ
μ

= (1− 2�2
s )±

√
�4
s − α2 . (7.228)

Using (7.226) and (7.227) and following Fig. 3.1, we separate the fixed
points as shown in Fig. 7.35. With σ2 − 4Δ < 0, that is �s <

√
α, the roots

Fig. 7.35. Fixed points of a system in the plane �s, α.

are complex and the point is spiral. If σ > 0 or �s > 1√
2
, spiral is stable and,

by σ < 0 or �s < 1√
2
, it is unstable. If σ = 0 or �s exactly equals to 1/

√
2, the

spiral degenerates to a center.
The condition Δ = 0 is satisfied by an ellipsoidal equation

1
3
− 3
(
�2
s −

2
3

)2

= α2

that allows us to examine the rest of the points. If σ2 − 4Δ > 0 and Δ > 0

that is �s >
√
α and |α| >

√
1
3 − 3

(
�2
s − 2

3

)2, respectively, the point is node.
The node is stable if σ > 0 or �s > 1√

2
and it is unstable if σ < 0 or �s < 1√

2
.

Finally, with Δ < 0 or |α| <
√

1
3 − 3

(
�2
s − 2

3

)2, the point is saddle.
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Phase Synchronization

We finish our analysis with ascertaining stability of phase synchronization
and frequency disciplining. Note that namely two of these characteristics are
of prime importance in synchronized oscillators.

Let us come back to (7.219) and consider this phase equation in real time
t = τ/ωs. If we represents ξ by

ξ = 1− ω2
0

ω2
s

=
(ωs − ω0)(ωs + ω0)

ω2
s

∼= −2Ω0

ωs
,

where Ω0 = ω0 − ωs, (7.219) can be rewritten as

ϑ′ = Ω0 −Ω cosϑ (7.229)

and, by changing a variable to ϕ = θ − π
2 , may be substituted with

ϕ′ = Ω0 −Ω sinϕ (7.230)

that often is more convenient to use in an analysis of phase systems.
To ascertain stability of synchronization, we first consider a limiting case

of ωs = ω0. This case means Ω0 = 0 and hence (7.230) degenerates to ϕ′ =
−Ω sinϕ. For the near zero initial phase, a linearized ODE becomes ϕ′ =
−Ωϕ. Because Ω is always positive, a solution of (7.230) with Ω0 = 0 is zero
at steady state and synchronization is stable. Moreover, it can be shown that
synchronization is stable for an arbitrary initial phase.

If we allow 0 < Ω0 � Ω, a solution of (7.230) would still be stable (zero
at infinity), because of the negative right side. The synchronization region is
hence bounded with |Ω0| � Ω that is consistent with the bounds |α| � η in
the magnitude response.

In the other limiting case, one may suppose that Ω0 � Ω and consider
instead an ODE ϕ′ = Ω0, which solution, commencing with zero, is ϕ =
Ω0t. The relevant asymptotic value of a synchronized frequency is therefore
calculated by Ω∗s = Ω0. Fig. 7.36 depicts the asymptotic level by a dashed
straight line.

To define transitions of Ωs from zero at Ω0 = ±Ω to the asymptotic line
Ω∗s = Ω0 beyond the synchronization region, one first needs to observe that
the relevant solution of (7.230) oscillates with period Tc owing to the harmonic
function in the right-hand side. To find Tc, we rewrite (7.230) in the integral
form

ϕ∫

ϕ0

dx
Ω0 −Ω sinx

= t0 − t (7.231)

that, by ϕ0 = 0, ϕ = 2π, t0 = 0, and t = Tc, yields
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Tc =

2π∫

0

dx
Ω0 −Ω sinx

. (7.232)

Solved (7.230) for ϕ(t), the frequency associated with oscillations in ϕ
is calculated by Ω�

s = dϕ
dt . Finally, averaging Ω�

s over Tc given by (7.232)
produces the frequency synchronized beyond the synchronization region,

Ωs =
1
Tc

Tc∫

0

Ω�
s (t)dt =

1
Tc

[ϕ(Tc)− ϕ(0)] . (7.233)

Fig. 7.36 sketches Ωs(Ω0) defined numerically in the whole range of Ω0.
One can observe that the effect of synchronization is strong with |Ω0| < Ω
and still is partly saved with |Ω0| > Ω.

Despite the direct approximate investigation of nonlinear ODEs of NTI
systems sketches a complete picture of the system dynamics in phase plane,
in many cases it becomes more convenient to solve the problem in state space.
Moreover, state space offers solutions for several most general applied struc-
tures of NTI systems. Therefore, we proceed below with the state space anal-
ysis of NTI systems.

7.7 State Space Representation

A special feature of state space is an ability of performing any ODE of any
order with the ODEs of the first order. Exploiting this facility, the state space
representation is often used when an NTI system is of high order and gener-
alization of a solution is required.

Fig. 7.36. Disciplining of frequency in a synchronized oscillator.



494 7 Nonlinear Time Invariant Systems

Most generally, an NTI system is performed in state space with

q′(t) = Ψ[q(t),x(t)] , (7.234)

y(t) = Υ[q(t),x(t)] , (7.235)

where Ψ and Υ are some nonlinear vector functions. As well as the general
nonlinear ODE (7.137), these equations cannot be solved, until the nonlinear
functions Ψ and Υ are specified. And even though they are given, solutions
can be found only for some particular cases.

Example 7.27. An NTI system is performed with the ODE

y′′′ + 3y′′y − 2y′ + y3 = 3x2 . (7.236)

To represent a system in state space, we assign the state variables q1 = y,
q2 = y′ = q′1, and q3 = y′′ = q′2, and find q′3 = −3q′2q1 + 2q2 − q3

1 + 3x2. The
state space nonlinear model of a system is now performed by

q′(t) = A[q(t)]q(t) + B[x(t)]x(t) , (7.237)

y(t) = Cq(t) , (7.238)

where

q =

⎡
⎣
q1

q2

q3

⎤
⎦ , A =

⎡
⎣

0 1 0
0 0 1
−q2

1 2 −3q1

⎤
⎦ , B =

⎡
⎣

0
0
3x

⎤
⎦ , C =

[
1 0 0

]
.

We notice that (7.237) and (7.238) cannot be solved in a manner similar
to any linear ODE, in which both A and B contain only constant components
and depend neither on state variables nor on signals. Typically, such equations
are studied in phase plane. ��

7.7.1 Linearization of State Space Model

When stability of an NTI system needs to be ascertained at some point, the
state space model is often linearized. Linearization is based on the construction
of the tangent space and provided similarly to the nonlinear ODE.

To come up with the linearization to (7.234) and (7.235), let us examine
a system in a vicinity of the point y0, x0 corresponding to the state q0 and
its time derivative q′0. The actual system state, input, and output can then
be defined by, respectively,

q(t) = q0(t) + q̃(t) , (7.239)

x(t) = x0(t) + x̃(t) , (7.240)
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y(t) = y0(t) + ỹ(t) , (7.241)

where q̃(t), x̃(t), and ỹ(t) are small time varying increments. By (7.239)–
(7.241), the state space model, (7.234) and (7.235), is rewritten as

q′0(t) + q̃′(t) = Ψ[q0(t) + q̃(t),x0(t) + x̃(t)] , (7.242)

y0(t) + ỹ(t) = Υ[q0(t) + q̃(t),x0(t) + x̃(t)] . (7.243)

The right-hand sides of (7.242) and (7.243) can now be expanded to the
Taylor series. If to save only the constant and linear terms, we arrive at the
linearized equations

q̃′(t) = Aq̃(t) + Bx̃(t) , (7.244)

ỹ(t) = Cq̃(t) + Dx̃(t) , (7.245)

in which the Jacobian matrices are determined as

A =
∂Ψ
∂q

∣∣∣∣
0

, B =
∂Ψ
∂x

∣∣∣∣
0

, C =
∂Υ
∂q

∣∣∣∣
0

, D =
∂Υ
∂x

∣∣∣∣
0

, (7.246)

where Ψ and Υ are taken from (7.242) and (7.243), respectively, and the
condition “0” means that all functions are taken at x0, y0, and q0.

Example 7.28. An NTI system is represented in state space by the ODEs

q′1 = q2 ,

q′2 = −3q1 − 2q2
3 + x1 ,

q′3 = −q1q2 − 4q3 + 2x2 .

The inputs are x1 = 0.5 and x2 = 1.
To ascertain stability of this system, substitute x1 = 0.5 and x2 = 1 to

the system equations, set all of the time derivatives to zero, and solve the
remaining algebraic equations. The only steady-state point is q0 =

[
0 0 1

2

]T .
At this point, by (7.246), the linearized state equation (7.244) is represented
with the system and input matrices, respectively,

A =

⎡
⎣

0 1 0
−3 0 −2
0 0 −4

⎤
⎦ and B =

⎡
⎣

0
1
2

⎤
⎦ .

The matrix A is characterized with the characteristic polynomial

λ3 + 4λ2 + 3λ + 12 = 0

having three roots: λ1 = −4, λ2 = j1.732, and λ3 = −j1.732. Because one of
the roots is real and negative and two others have zero real parts, the system
is stable in the sense of Lyapuniov and it is not asymptotically stable. ��
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As can be inferred, the general model (7.234) and (7.235) has not enough
applied features. Therefore, several more simple but soluble and practicable
forms have been investigated for decades. The necessity of using simplified
models follows, as a minimum, from Fig. 7.7, in which the NTI system (Fig.
7.7a) is split into the memoryless NTI (Fig. 7.7b) and memory LTI subsys-
tems. It then has appeared that two models, namely the Hammerstein (Fig.
7.8a) and Wiener (Fig. 7.8b), as well as their cascade, series, or feedback inter-
connections are capable of representing a great deal of real nonlinear systems
and channels with sufficient accuracy and without losing functionality. Such
a simulating structure was called the Wiener-Hammerstein system and the
latter often arises in the black box approach to identification of nonlinear
systems.

It what follows, we observe the most principle features of open and feed-
back NTI systems utilizing Hammerstein and Wiener subsystems.

7.7.2 Hammerstein System

The familiar Hammerstein model is used in applications for blind identification
of uncertain nonlinear channels and networks, modeling of power amplifiers
and controlled oscillators, design of the Hammerstein-type equalizers, etc.

The basic SISO structure of such a model is represented with the memory-
less NTI subsystem following by the memory LTI subsystem as shown in Fig.
7.37a. A nonlinearity is depicted here by f(·) and a linear block is described
with the transfer function H(s).

Fig. 7.37. Hammerstein system: (a) basic and (b) generalized.

The modified Hammerstein system often called generalized consists of two
branches (Fig. 7.37b). The basic branch fulfils the traditional function. In
parallel, an LTI branch with the transfer function H2(s) is included.

As follows from an analysis of the basic Hammerstein system, the input
x(t) is first preprocessed by a nonlinear block f(·) to produce a signal z(t).
The latter is thereafter transformed by a linear block to yield the output y(t).
In state space, this system is typically described with the equations
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q′(t) = Aq(t) + Bz(t) ,

y(t) = Cq(t) ,

z(t) = f [x(t)] , (7.247)

where the dimensions of the state vector q depend on the order of the LTI
subsystem. Stability of the Hammerstein system is guaranteed if the function
f(x) is bounded, |z(t)| � M <∞, B and C have finite components, and the
matrix A is Hurwitz.

By (4.175), a solution of (7.247) is given as

y(t) = CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bf [x(θ)]dθ , (7.248)

where Φ(t, τ) = eA(t−τ) is the state transition matrix. Alternatively, by
(5.194), the transform of the output is calculated for the known transform

z(t)
L⇔ Z(s) = Lf [x(t)] as

Y(s) = C(sI−A)−1BZ(s) , (7.249)

yielding the transfer function of a linear subblock H(s) = C(sI−A)−1B.
It is of importance that a solution of the state space equations (7.247) can

also be performed in the Volterra series form. Yet, for some particular cases,
the describing functions are applied to linearize nonlinearity.

Example 7.29 (Asynchronous Demodulator of AM Signal). Consider
the simplest asynchronous demodulator of AM signal modeled by the Ham-
merstein system. The classical scheme (Fig. 7.38) comprises a rectifier diode
and an RC filter to track the envelope of an input signal.

Fig. 7.38. Asynchronous demodulator of AM signal.

Assigning x(t) = v(t), q(t) = y(t) = vC(t), and z(t) = i(t), and approxi-
mating the electric current i(t) of a diode by (7.21) allows us to represent the
scheme in state space as
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q′(t) = Aq(t) + Bz(t) ,

y(t) = |C|q(t) ,

z(t) = I0

(
e

x(t)
VT − 1

)
,

where A = − 1
RC , B = 1

C , and C = [1]. By (7.248), the output becomes

y(t) = y0e
− t

RC +
I0
C

e−
t

RC

t∫

0

e
θ

RC

[
e

x(θ)
VT − 1

]
dθ , (7.250)

where y0 = y(0). A typical waveform of a demodulated AM signal restored
by (7.250) is shown in Fig. 7.39. Even a quick look at the picture leads to the

Fig. 7.39. Asynchronous demodulation: x(t) is AM signal and y(t) is demodulated
envelope, by (7.250).

conclusion that the restored signal y(t) fits physical imaginations about the
demodulation process. We notice that in the more sophisticated asynchronous
demodulators the phase shift between y(t) and the envelope of x(t) is almost
negligible. ��

Example 7.30 (Power Amplifier). Consider a scheme (Fig. 7.40) intended
for power amplification.

Fig. 7.40. Power amplifier.
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The input signal is performed by a sum of two harmonic signals, x(t) =
α cosω1t + cosω2t. A transistor amplifier with a gain factor G is designed
such that its collector current is in cubic dependence on the input voltage.
The input voltage of a BP filter can therefore be written as z(t) = Gx3(t).
The spectral content of z(t) is as follows,

1
G

z(t) = (α cosω1t + cosω2t)3

=
3α
2

(
α2

2
+ 1
)

cosω1t +
3
4
(
2α2 + 1

)
cosω2t +

α3

4
cos 3ω1t

+
1
4

cos 3ω2t +
3α
4

cos(ω1t + ω2t) +
3α
4

cos(ω1t− ω2t)

+
3α2

4
cos(2ω1t + ω2t) +

3α2

4
cos(2ω1t− ω2t) .

The BP filter tuned to the frequency 2ω1 − ω2 with a peak gain a forms
the output voltage y(t) = 3

4Gaα2 cos(2ω1t − ω2t) that is proportional to the
power α2 of a signal α cosω1t removed to the frequency 2ω1 − ω2.

The scheme is the Hammerstein system that is represented in state space
with (7.247), where z(t) = Gx3(t), and solutions (7.248) and (7.249). ��

7.7.3 Wiener System

Another widely used idealization of NTI systems is the familiar Wiener system
shown in Fig. 7.41. Here, the memory LTI subsystem with the transfer function

Fig. 7.41. Wiener system.

H(s) follows by the memoryless NTI subsystem described by the nonlinear
function f(·).

In state space, the SISO Wiener system can be represented as

q′(t) = Aq(t) + Bx(t) ,

z(t) = Cq(t) ,

y(t) = f [z(t)] , (7.251)

where the dimensions of the state vector q depend on the order of the LTI
subsystem and f(·) is any nonlinear function. Like the Hammerstein system,
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stability of the Wiener system is guaranteed by the bounded function f(·),
|y(t)| � M <∞, and Hurwitz matrix A, if B and C have finite components.

By (4.175), a solution of (7.251) can be written as

y(t) = f

⎡
⎣CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bx(θ)dθ

⎤
⎦ . (7.252)

In applications of the Wiener model, the main problem arises of identifying
the nonlinearity and coefficients of (7.251) and (7.252) to fit an uncertain
system with a reasonable accuracy.

Example 7.31 (Radio Frequency Transformer). Consider a basic non-
linear structure (Fig. 7.42) called the radio frequency transformer intended to
transform the spectrum of an input signal. A classical application of such a

Fig. 7.42. Radio frequency transformer.

transformer can be found in the heterodyne receiver. Here a received signal
x1(t) passes through the linear selective circuit with the transfer function H(s)
to produce an informative signal z1(t). Thereafter, z1(t) is mixed with the ref-
erence harmonic signal z2(t) = x2(t). The nonlinear product y(t) = z1(t)z2(t)
consists of the components at the difference and sum frequencies. The low fre-
quency components at the intermediate frequency are further used to produce
the audio signal.

In state space, such a Wiener system is described with

q′(t) = Aq(t) +
[
1 0
] [x1

x2

]
,

z(t) =
[
z1

z2

]
= Cq(t) ,

y(t) =
1
2
zT (t)Sz(t) ,

where z2 = x2 and S =
[

0 1
1 0

]
. By a solution of the linear part

z(t) = CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bx(θ)dθ



7.7 State Space Representation 501

and zero initial conditions, the output becomes

y(t) =

⎡
⎣C

t∫

t0

Φ(t, θ)Bx(θ)dθ

⎤
⎦
T

S

⎡
⎣C

t∫

t0

Φ(t, θ)Bx(θ)dθ

⎤
⎦ .

��

7.7.4 Cascade Hammerstein and Wiener Systems

Frequently, cascade interconnections of Hammerstein and Wiener systems are
used to simulate a whole system and not only its part. Different structures
are exploited. The Hammerstein-Wiener system (Fig. 7.43a) fits, for example,
a simple radio receiver. In turn, the Wiener-Hammerstein system (Fig. 7.43b)
models well corrective predistortion and/or postdistortion in power amplifi-
cation.

Fig. 7.43. Cascade NTI systems: (a) Hammerstein-Wiener and (b) Wiener-
Hammerstein.

Example 7.32 (Coherent Receiver). The Wiener-Hammerstein system
well models the coherent receiver (Fig. 7.44) intended to form the in-phase
I and quadrature phase Q components from the received signal x1(t) =
2A cos[ω0t− φ(t)], in which the phase φ(t) is informative.

A received signal x1(t) passes through the selective BP filter to the mixers
as z1(t) = 2 cos[ω0t−φ(t)]. In the first mixer, a signal z1(t) is multiplied with
the cosine signal x2(t) = z2(t) = cosω0t and in the second one with the sine
signal x3(t) = z3(t) = sinω0t. Accordingly, two signals are formed

v1(t) = 2 cos[ω0t− ϕ(t)] cosω0t =

= cos[2ω0t− ϕ(t)] + cosϕ(t) ,

v2(t) = 2 cos[ω0t− ϕ(t)] sinω0t =

= sin[2ω0t− ϕ(t)] + sinϕ(t) .

At the outputs of LP filters having unit gain factors, we thus have two
quadrature components,
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Fig. 7.44. Coherent receiver.

I(t) = y1(t) = cosϕ(t) ,

Q(t) = y2(t) = sinϕ(t) .

Using I(t) and Q(t), the phase is readily restored by tanϕ(t) = Q/I.
In state space, the receiver is performed by the equations

q′ = Aq +
[
1 0 0

]
x ,

z1 = Cq ,

v =
[
zTS1S2x
zTS3x

]
,

q′1 = A1q1 +
[
1 0
]
v,

q′2 = A2q2 +
[
0 1
]
v,

y =
[
I
Q

]
=
[
y1

y2

]
=
[
C1q1

C2q2

]
,

where q(t) =

⎡
⎣
q1(t)
q2(t)
q3(t)

⎤
⎦, x(t) =

⎡
⎣

x1(t)
cosω0t
sinω0t

⎤
⎦, z(t) =

⎡
⎣

z1(t)
cosω0t
sinω0t

⎤
⎦, S1 =

[
0 0 1
0 1 0

]
,

S2 =

⎡
⎣

0 1
0 0
0 0

⎤
⎦, and S3 =

⎡
⎣

0 0 1
0 0 0
0 0 0

⎤
⎦.

Here A, A1, A2, C, C1, and C2 are the matrices describing the linear
filters. ��

7.7.5 Closed Loop Systems

In modeling nonlinear systems, two closed loops are used as originating from
the Hammerstein and Wiener systems (Fig. 7.45). The Wiener-based closed
loop is also referred to as the Lure’s system. In some cases, the loops are
interchangeable. Basically, each of these loops can be designed with positive
or negative feedback. Because the feedback can change the picture cardinally,
an investigation of stability in such structures occupies an important place.
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Fig. 7.45. Closed loop systems: (a) Hammerstein-based and (b) Wiener-based
(Lur’e system).

Popov’s and Circle Criteria of Stability

To ascertain stability of closed loops (Fig. 7.45), one can try using the second
Lyapunov method. It turns out, however, that the Lyapunov approach is too
general. Therefore a number of efforts were made for decades to find some more
engineering tool. With time, the currency have gained two criteria: Popov’s
and circle.

Popov’s criterion : An autonomous closed loop Lur’e system is
asymptotically stable if
• Its LTI part is stable (has no right-hand plane singularities).
• Its memoryless NTI feedback is bounded, satisfied

f(0) = 0 and 0 <
f(y)
y

< M <∞ , y 	= 0 .

• There exists a constant α such that

(1 + αs)H(s) +
1
M

is a positive real function: it has no poles with positive real parts,
the poles with zero real parts are simple and have positive real
residues, and ReH(jω) � 0 for all ω.

��
In accordance with the Popov’s criterion, the function f(·) must trace

within the sector bounded by the line My and abscisa axis as shown in Fig.
7.46a.

The other useful engineering criterion is called the circle criterion that is
a modification of Popov’s criterion for the lower bound of nonlinearity. The
circle criterion follows from the works of Sandberg and Zames. Therefore it is
also often called Sandberg’s circle criterion or Zames’s circle criterion.

Circle (Sandberg-Zames) criterion : An autonomous closed-loop
Lure’s system is globally asymptotically stable if
• Its LTI part is stable (A is Hurwitz), controllable, and observable.
• Its memoryless NTI feedback is bounded, satisfied

f(0) = 0 and M2 <
f(y)
y

< M1 <∞ , y 	= 0 .
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Fig. 7.46. Bounded nonlinearity criteria: (a) Popov’s and (b) circle.

• The plot of H(jω) in the complex plane U = ReH(jω) and V =
ImH(jω) does not touch or encircle the circular region R(M1,M2):

R(M2,M1 	= 0) :

M1M2

[(
U +

1
2M2

+
1

2M1

)2

+ V 2 − 1
4

(
1

M2
− 1

M1

)]
� 0 ,

R(M2 = 0,M1 	= 0) : U � − 1
M1

,

R(M1 = 0,M2 	= 0) : U � − 1
M2

.

��
Unlike Popov’s criterion, the circle one claims the function f(·) to trace

within the sector bounded by two lines M1y and M2y as shown in Fig. 7.46b.
The circle criterion also states that if the Nyquist plot of H(jω) does not
touch or intersect the circular region R(M1,M2), then the system is absolutely
stable.

Hammerstein-based Closed Loop System

The Hammerstein-based model (Fig. 7.45a) represents a memoryless NTI sys-
tem with a memory LTI system placed in the feedback. If the feedback is posi-
tive, it can be a familiar harmonic oscillator. An example of a system with the
negative feedback is the frequency control loop of the voltage-controlled crys-
tal oscillator (VCXO). Here the controlling voltage steers the frequency via
the nonlinear memoryless diode-varactor. The frequency offset is then mea-
sured by a linear resonance circuit for the reference frequency to produce a
feedback voltage. When the VCXO frequency is exactly equal to the reference
frequency, the feedback voltage is x(t) and the control voltage is zero.

In state space, a SISO closed loop (Fig. 7.45a) is represented with

q′(t) = Aq + By(t) ,
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v(t) = Cq ,

y(t) = f [x(t) + v(t)] . (7.253)

The state equation can also be written in the compact form as

q′(t) = Aq + Bf [Cq + x(t)]

and the Popov’s criterion of stability can be applied as for Lure’s system that
we consider below.

Lur’s System

Another closed loop control originated from the Wiener system is known as
the Lur’s system. The structure of this loop is shown in Fig. 7.45b. The
system has found applications in secure communications owing to its ability
to generate chaotic signals with external synchronization. Examples of chaotic
Lur’s systems are Chua’s circuit, n-scroll circuits, and cellular neural networks
consisting of chaotic cells that reveal hyperchaotic behavior.

In state space, the SISO Lur’s system (Fig. 7.45b) is given by the equations

q′(t) = Aq(t) + Bv(t) ,

y(t) = Cq(t) ,

v(t) = x(t) + f(y) (7.254)

allowing for representing the state equation in the following compact form

q′(t) = Aq(t) + B{x(t) + f [Cq(t)]} .
Example 7.33 (Chua’s circuit). Consider the Chua’s circuit representing
the autonomous chaotic Lur’e system (x = 0) in state space (7.254) with the
equations

⎡
⎣
q′1(t)
q′2(t)
q′3(t)

⎤
⎦ =

⎡
⎣
−am1 a 0

1 −1 1
0 −b 0

⎤
⎦
⎡
⎣
q1(t)
q2(t)
q3(t)

⎤
⎦+

⎡
⎣
−a(m0 −m1)

0
0

⎤
⎦ f(q1) ,

y(t) =
[
1 0 0

]
⎡
⎣
q1(t)
q2(t)
q3(t)

⎤
⎦ ,

f(q1) =
1
2
(|q1 + 1| − |q1 − 1|) .

In order to obtain the double scroll attractor, the coefficients of the equa-
tions are chosen such that a = 9, b = 14.286, m0 = − 1

7 , and m1 = 2
7 . It

can easily be verified that the nonlinearity f(q1) is bounded within the sector
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[0, 1]. However, the matrix A is not Hurwitz having a simple pole s = 3.942 in
the right plane. This Lur’e system does not satisfy neither Popov’s nor circle
conditions and hence is unstable.

Solutions of the equations for the initial values q1(0) = 1, q2(0) = 0, and
q3(0) = 0 are shown in Fig. 7.47. At the first glance, no periodicity could be

Fig. 7.47. Solutions of Chua’s equations for q1(0) = 1, q2(0) = 0, and q3(0) = 0:
(a) q1(t), (b) q2(t), and (c) q3(t).

fixed in dynamics of the state variables.
More precisely, the double scroll picture can be watched in phase plane

of different states as shown in Fig. 7.48. As easily seen, the circuit trajectory
traces periodically about two centers of attraction. Such a pseudo random
effect is used in secure communications. It is important to notice that, by the
properly set coefficients, the circuit allows for the n-scroll attractor. However,
in applications, stability of the multi-scroll picture requires obtaining the val-
ues of the coefficients with high accuracy and precision under the operation
conditions. ��

7.7.6 Phase Locked Loop

We finish our analysis of NTI systems in state space with a brief presen-
tation of the so-called phase locked loop (PLL). This closed-loop system has
found wide applications in carrier phase and frequency tracking, symbol (bit)
synchronization, clock and data recovery, demodulation and modulation, fre-
quency synthesis and translation, frequency dividers, noise shaping, etc. The
technique was first described in 1932 by Bellescise in a paper “La réception
Synchrone” published in the French journal “Onde Electrique”. Thereafter,
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Fig. 7.48. Double scroll of Chua’s circuit in the phase plane of: (a) q2(t) and q1(t),
(b) q3(t) and q1(t), and (c) q3(t) and q2(t).
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an enormous number of papers and books was devoted to its investigation by
different methods.

Having a LP filter of an arbitrary order as a main memory component,
the loop may be analyzed in the time and transform domains having the most
general presentation in state space. Basic operation principle of the PLL is
illustrated in Fig. 7.49.

Fig. 7.49. Phase-locked loop.

A local voltage-controlled oscillator (VCO) generates a signal

y(t) =
√

2Ay sinϕy(t) , (7.255)

where Ay is a constant amplitude and ϕy(t) = ωost+ψy(t) is the time-varying
phase. Here ωos is the initial oscillator frequency.

Generally, it is supposed that neither ωos nor ψy(t) meet the requirements
and must be disciplined by the reference input signal

x(t) =
√

2Ax cosϕx(t) , (7.256)

where Ax is constant and ϕx(t) = ωrt+ψr(t). Here ωr is the reference frequency
and ψr(t) is the reference (generally, time-varying) phase.

In the analog multiplier (phase detector), the signals (7.255) and (7.256)
are mixed to produce

z(t) = kPDAxAy sin(ϕx − ϕy) + kPDAxAy sin(ϕx + ϕy) ,

where kPD is the gain of the multiplier. The low-frequency component is then
filtered. Therefore, z(t) may be written as

z(t) = kPDAxAy sinφ(t) , (7.257)

where the phase angle
φ(t) = ϕx(t)− ϕy(t) (7.258)

represents the instantaneous phase error in the loop and called the closed loop
phase error.
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An LP filter provides filtering the low frequency components at the output
of the multiplier. The filter order can be arbitrary. In view of that, its input
and output are coupled by the linear time-invariant operator

v(t) = Oz(t) (7.259)

that, equivalently, can be written in the following traditional forms of

N∑
n=0

an
dn

dtn
v(t) =

M∑
m=0

bm
dm

dtm
z(t) , (7.260)

V (s) =

M∑
m=0

bmsm

N∑
n=0

ansn
Z(s) , (7.261)

v(t) =

t∫

0

z(θ)h(t− θ)dθ , (7.262)

where all the coefficients, an, n ∈ [0, N ] and bm, m ∈ [0,M ], M � N , are con-
stants, V (s) and Z(s) are the Laplace transforms of v(t) and z(t), respectively,
and h(t) is the impulse response of the filter.

The frequency control characteristic of a local oscillator is typically non-
linear. It is known from the PLL theory that namely this nonlinearity allows
for shortening the phase transient during synchronization. In our case, for
the sake of simplicity, we are going to model a local oscillator with an ideal
integrator as

ψy(t) = Kos

∫
v(t)dθ ,

where Kos is the gain of the oscillator control input, and

ψ′y(t) = Kosv(t) . (7.263)

The next step presumes considering an equation φ′ = ϕ′r − ϕ′y , substitute
for above-defined functions and write the dynamic equation of the PLL,

φ′ = ϕ′r − ϕ′y = ωr − ωos + ψ′r − ψ′y

= Δ0 + ψ′r −Kosv(t) = Δ0 + ψ′r −KosOz(t)

= Δ0 −GO sinφ + ψ′r , (7.264)

where Δ0 = ωr − ωos is the frequency shift between the reference and local
oscillators and G = KoskPDAxAy is the closed loop gain. We notice that in
the simplified PLL model, it can be supposed that ωr = ωos and Δ0 = 0.

Under such assumptions and by assigning in (7.260) the left-hand side and
right-hand side ODE operators to be, respectively,



510 7 Nonlinear Time Invariant Systems

O1 ≡
N∑
n=0

an
dn

dtn
and O2 ≡

M∑
m=0

bm
dm

dtm
,

and, to represent a general operator O in (7.264), we finally arrive at the
generalized equation of the PLL

O1[φ′ − ψ′r −Δ0] = −GO2[sinφ] (7.265)

that can be investigated in different domains and various forms for the oper-
ators given, O1 and O2.

Example 7.34 (PLLs of low orders). If an LP filter is assumed to have
a uniform frequency response, we have O1 = O2 = 1 and the PLL equation
attains the simplest form of

φ′ + G sinφ = ψ′r + Δ0 . (7.266)

When O1 = a0 + d
dt and O2 = 1, the equation becomes

φ′′ + a0φ
′ + G sinφ = ψ′′r + a0ψ

′
r + a0Δ0 . (7.267)

For the filter designed such that O1 = a0 + d
dt and O2 = 1 + d

dt , the PLL
equation is written as

φ′′ + (a0 + G cosφ)φ′ + G sinφ = ψ′′r + a0ψ
′
r + a0Δ0 . (7.268)

We notice that (7.268) describes a wide class of phase systems, including
the classical pendulum and Josephson8 junction. Readers can find extensive
investigations of these equations in many books devoted to PLLs. ��

Allowing for aN = 1 and N = M , (7.265) can be represented in state
space. In doing so, we first rewrite (7.265) as follows

N∑
n=0

dn

dtn
(anφ′ + Gbn sinφ) =

N∑
n=0

an
dn

dtn
(ψ′r + Δ0)

and assign the state variables

q1 = φ , q2 = φ′ = q′1 , . . . , qN = φ(N−1) = q′N−1 , q(N+1) = φ(N) = q′N ,

q′N+1 = φ(N+1) = −a0φ
′ − a1φ

′′ − . . .− aN−1φ
(N)

−Gb0 sinφ−Gb1φ
′ cosφ + Gb2φ

′′ sinφ + . . . + bN sin(N) φ

= −a0q2 − a1q3 − . . .− aN−1qN+1

−Gb0 sin q1 − gb1q2 cos q1 + Gb2q3 sin q1 + . . . + GbN sin(N) q1 .

8 Brian D. Josephson, British physicist, 4 January 1940–.
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In the PLL, the input signal is associated with the initial frequency offset
Δ0 and dynamic frequency drift ψ′r. If we let

x1 = ψ′r + Δ0 , x2 = x′1 = ψ′′r , . . . , xN = x′N−1 = ψ(N)
r ,

the state space model of the PLL will be formed by

⎡
⎢⎢⎢⎢⎢⎣

q′1(t)
q′2(t)

...
q′N

q′N+1

⎤
⎥⎥⎥⎥⎥⎦

= A[q(t)]

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN

qN+1

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

0 0 . . . 0 0
a0 a1 . . . aN−1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)

...
xN−1(t)
xN (t)

⎤
⎥⎥⎥⎥⎥⎦

(7.269)

y(t) = φ(t) =
[
1 0 . . . 0 0

]

⎡
⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)

...
qN (t)

qN+1(t)

⎤
⎥⎥⎥⎥⎥⎦
, (7.270)

where the nonlinear system matrix is specified by

A[q(t)] =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
AN+1,1 AN+1,2 AN+1,3 . . . AN+1,N+1

⎤
⎥⎥⎥⎥⎥⎦

(7.271)

with the components

AN+1,1 = −Gb0
sin q1

q1
,

AN+1,2 = −a0 −Gb1 cos q1 ,

AN+1,3 = −a1 + Gb2 sin q1 ,

...

AN+1,N+1 = −aN−1 + GbN
sin(N) q1

qN+1
.

Example 7.35. Consider the PLL differential equation (7.268). By y = q1 =
φ, q2 = φ′ = q′1, q

′
2 = −(a0+G cos q1)q2−G sin q1, x1 = ψ′r+Δ0, and x2 = ψ′′r ,

the PLL is represented in state space with
[
q′1(t)
q′2(t)

]
= A[q(t)]

[
q1(t)
q2(t)

]
+
[

0 0
a0 1

] [
x1(t)
x2(t)

]
,
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y(t) =
[
1 0
] [ q1(t)

q2(t)

]
,

where the nonlinear system matrix is specified by

A[q(t)] =
[

0 1
−G sin q1

q1
−(a0 + G cos q1)

]
.

It is seen that at the equilibrium point of zero loop error, q1 = 0, the system

matrix becomes linear, A =
[

0 1
−G −(a0 + G)

]
, with negative components

A21 and A22. As one remembers, such a system is Lyapunov stable. ��

In this chapter, we observed the most common methods of NTI systems
analysis in the time and transform domains. An analysis is supplied with
the most typical examples. The reader must keep in mind that selection of
the methods is dictated by engineering needs, to mean that accuracy must
be sufficient and calculus short. With any necessity of describing the input-
to-output NTI system and restoring the exact output, the ODE or Volterra
method is usually used. If approximation is allowed, the describing functions
could be in order. If a system is closed, the amplitude and phase of possible
oscillations are typically of prime interest. Here, the approximate methods
based on averaging and linearization commonly solve the block of questions
satisfactory. A special place occupy the methods of ascertaining stability of
the solutions.

7.8 Summary

Contrary to linear systems, the NTI ones are typically much harder to analyze.
Here the qualitative and even approximate methods are often the only tools to
find proper solutions. In dealing with NTI systems, the reader must remember
the following fundamentals:

– A system that provides nonlinear transformations with a time-invariant
operator is the NTI system.

– For every new measured point, the Lagrange interpolation polynomial
must be recalculated fully, whereas the Newton one needs determining
only an addition for this point.

– Splines represent a wide class of functions intended to interpolate or/and
smooth the measured memoryless nonlinearity between neighboring points.

– The Taylor series is used universally to linearize or represent the memo-
ryless nonlinearity around some operation point.

– The Volterra series describes a memory system in the time domain via the
Volterra kernels and generalized convolution. It is also called the Taylor
series with memory.
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– The Wiener series is akin to the Volterra series. The terms in the Wiener
series are orthogonalized.

– The multivariate Laplace transform represents an NTI system in the trans-
form domain via the Volterra series.

– The describing function is akin to the frequency response of an NTI system
equivalently linearized for the harmonic input.

– The nonlinear ODE describing an NTI system has typically no general
solution. Therefore, the qualitative methods are widely used to investigate
stability and dynamics in phase plane.

– Any NTI system can be represented in state space. To ascertain stability
of a system, the state space model is linearized at a given point and the
characteristic equation associated with the system matrix is investigated.

7.9 Problems

7.1. Explain in simple words the difference between the LTI and NTI sys-
tems. Bring examples of both systems taken from the operation principles of
the most common systems given in Chapter 1.

7.2. Both the LTV and NTI systems are able to transform the spectral con-
tent of the input. In view of that, what actually is the difference between two
of these systems? Bring graphical illustration.

7.3 (interpolation). Explain the difference between the Lagrange and New-
ton interpolations. Which approach is more preferable for flexible measure-
ments with a variable number of the points?

7.4. The nonlinearity of a memoryless system is measured at discrete points
with a constant step Δx = xi+1 − xi, i = 1, 2, . . . The measurements are
postponed to Table 7.1. Interpolate the function with the Lagrange formulae.
Repeat interpolation with the Newton formulae. Compare the results.

7.5. Interpolate the nonlinearity (Table 7.1) with the cubic splines allowing
for a linear behavior beyond the measurement region.

7.6 (Volterra series). A SISO NTI system is represented with the ODE

y′′ +
(
y′

y
+ 1
)

y′ + y =
x

y
.

By an auxiliary variable z = y2, separate the system into the LTI memory
and NTI memoryless parts. Represent the system with the Volterra kernels
and sketch the block diagram.

7.7. Resolve Problem 7.6 for the following ODEs and auxiliary functions:

1. y′ + y = xy−2 , z = y3
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Table 7.1. Memoryless nonlinearity measured at discrete points

No y1 y2 y3 y4 y5 y6 y7 y8 y9

1 0 0.785 1.107 1.249 1.326 1.373 1.406 1.429 1.446
2 1.111 0.651 -0.305 -0.879 -0.543 0.395 1.071 – –
3 -2 -1 0 1 2 1 0 -1 -2
4 0.632 0 -0.233 -0.318 -0.35 -0.361 -0.366 – –
5 -0.6 -0.4 -0.2 0 -0.8 -0.6 -0.4 -0.2 0
6 -2 2 14 34 62 98 142 194 254
7 1 -0.5 -1 -0.5 1 3.5 7 11.5 17
8 -1 -1 -1 -0.5 0 0.5 1 1 1
9 -0.5 1 5.5 13 23.5 37 53.5 73 95.5
10 0 0 0 1 1 1 – – –

2. y′′′ + 3 y
′

y y′′ + y2 = x
y , z = y2

3. y′′ − y′2

2y − x√
y = −1 , z =

√
y

4. y′ + y − x√
y = 0 , z = y

3
2

7.8. An NTI system is represented with the block diagram shown in Fig.
7.50. Find the Volterra kernel of the system.

Fig. 7.50. Structures of NTI systems.

7.9. Based on the Volterra kernel derived in Problem 7.7, ascertain stability
of the system.

7.10. Using the Volterra kernels derived in Problem 7.8, define the Wiener
kernels of the system diagramed in Fig. 7.50.
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7.11 (Transform domain). Verify that the system performed by the
Volterra kernel h2(θ1, θ2) = θ1(1−e−θ2)u(θ1)u(θ2) is represented in the trans-
form domain with the two-variate transfer function H2(s1, s2) = 1

s21s2(s2+1)
.

7.12. An NTI system is represented with the following Volterra kernels. De-
fine the multivariate transfer function of the system.

1. h2(θ1, θ2) = e−θ1
(
e−3θ2 − e−θ2

)
u(θ1)u(θ2)

2. h3(θ1, θ2, θ3) = e−θ1−θ3
(
1− e−θ2

)
u(θ1)u(θ2)u(θ3)

3. h2(θ1, θ2) = e−θ1u(θ1 − θ2)
4. h2(θ1, θ2) = θ1u(θ1)− (θ1 − θ2)u(θ2 − θ1)u(θ1)

7.13. Verify that the two-variable transfer function H2(s1, s2) = 1
s1s2(s1+s2)

corresponds to the Volterra kernel h2(θ1, θ2) = θ2u(θ1)u(θ2)− (θ2− θ1)u(θ2−
θ1)u(θ1).

7.14. An NTI system is given with the multivariate transfer function. Using
the multivariate inverse Laplace transform, define the Volterra kernel of the
system.

1. H2(s1, s2) = 2
s1s2(s1+s2+3)

2. H2(s1, s2) = 3
s1(s1+s2)(s1+s2+1)

3. H3(s1, s2, s3) = 1
(s1+1)(s2+2)(s3+1)

4. H3(s1, s2) = 1
(s1+1)(s2+1)(s1+s2+2)

7.15. Using different forms of the cascade interconnections in the transform
domain, define the multivariate transfer function of a system diagramed in
Fig. 7.51.

Fig. 7.51. Structures of NTI systems.

7.16 (Describing Functions). Verify that the memoryless nonlinearity
y(x) = −Au(x+ δ)+2Au(x)−Au(x− δ) with the input signal x(t) = r sinψ,

r > A, is represented with the describing function N(r) = 4A
πr

(
1−
√

1− δ2

r2

)
.
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7.17. A memoryless NTI system has the following nonlinear characteristic.
Define the DF of a system.

1. y(x) = x|x|
2. y(x) = x1/3

3. y(x) = xa

4. y(x) = x3|x|
7.18. The memory NTI system is represented with a piecewise nonlinear

characteristic sketched in Fig. 7.52. Define the DF of the system for the sinu-
soidal input x(t) = r sinψ with an arbitrary amplitude r.

Fig. 7.52. Nonlinear memory characteristics of NTI systems.

7.19. Solve Problem 7.18 for the cosine input x(t) = r cosψ with an arbitrary
amplitude r. Compare the result to the sinusoidal input.

7.20 (Differential Equation). At an arbitrary operation point, linearize
an NTI system represented in Problem 7.7 with the nonlinear ODE.

7.21. An oscillator is described by the following nonlinear ODE. Determine
the fixed points. Linearize this equation at an arbitrary point.

1. y′′ − 2δ
(
1− μy

′2
ω2

)
y′ + ω2y = 0
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2. y′′ − 2δ (1− μ|y|) y′ + ω2y = 0
3. y′′ − 2δ

(
1 + ay − by2

)
y′ + ω2y = 0

4. y′′ − 2δ
(
1 + ay2 − by4

)
y′ + ω2y = 0

7.22 (State Space Presentation). The following nonlinear ODE repre-
sents a system. Translate this equation to the state space. Find fixed points
and investigate the system in phase plane.

1. y′′ + y′y2 − y3 = x2

2. y(4) − 3y′′′ + y′y2 − y3 = 2x2

3. y′′′ + (1− 4y2)y′ − y3 = 3x3

4. (2y′′ + y′)(y2 − y3) = 2x2

7.23. Give a simple explanation to the fact that the linearized nonlinear ODE
allows ascertaining stability of an NTI system at the point of linearization.

7.24. An oscillator (Problem 7.21) is described in state space with the fol-
lowing equations. Linearize these equations and investigate stability at the
fixed points via the characteristic equation.

1. y′ = −ωz, z′ = ωy + ε(1− μz2)z
2. y′ = −ωz, z′ = ωy + ε(1− μ|y|)z
3. y′ = −ωz, z′ = ωy + ε(1 + ay − by2)z
4. y′ = −ωz, z′ = ωy + ε(1 + ay2 − by4)z

7.25 (Stability). Ascertain stability of the system (Problem 7.21) by the
Popov’s and circle criteria.

7.26. Consider an NTI system in state space (Problem 7.24) and ascertain
its Lyapunov stability. Compare the result to that obtained by the Popov’s
and circle criteria.
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Nonlinear Time Varying Systems

8.1 Introduction

Any serious electronics engineer can say that systems (linear or nonlinear)
are inherently time-varying, at least because of physical fluctuations in units
(systems with fluctuations fall to the class of stochastic systems). For ex-
ample, electronic oscillators often imply adjusting frequency (or phase) for
the reference source to obtain the necessary quality of the output signal.
On the other hand, real physical units composing oscillators undergo nat-
ural changes with time owing to flicker noises, environment, and aging. Under
such circumstances, the oscillator frequency, phase, and even amplitude un-
dergo time-changes and an oscillator being a nonlinear system becomes also
time-variant.

Other examples can be found in nonlinear time-varying communication
channels and channel equalizers, trajectory tracking control, adaptive non-
linear controllers, noise constellation systems, fixed-architecture controller
synthesis for systems with input-to-output time-varying nonlinearities, au-
tonomous systems with time-varying gains, nonlinear state estimation feed-
back controllers for uncertain systems, stabilization of nonholonomic systems
by time-varying feedback, nonlinear amplifiers, oscillators with time-varying
nonlinearities, etc.

These and many other relevant examples explain the essence of the term
nonlinear time-varying (NTV). In fact, if a nonlinear system undergoes time-
changes caused by different sources (natural and artificial) then it is an NTV
system also sometimes called nonautonomous nonlinear.

The input x(t) and output y(t) of a SISO NTV system are coupled by the
nonlinear time-varying operator O(x, t),

y(t) = O[x(t), t]x(t) ≡ O(x, t)x(t) , (8.1)

dependent on both the input and time. If a system (8.1) is closed loop, the
operator depends on the output and time.
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For NTV systems, the operatorO(x, t) can be the ODE, integro-differential
equation, and integral equation. It can also be represented by the Volterra
and Wiener kernels and performed in state space. The qualitative methods
are usually not efficient here, although they are applied to systems with slowly
changing parameters and when time t exists as a coefficient. Averaging and
linearization are the most widely used techniques for NTV systems. If a non-
linear system (oscillator) is modulated with time periodically, the modulation
functions method can be used. The state space analysis is basic for several im-
portant classes of NTV systems, especially when a system is closed loop and
control. Here, the time-varying open and closed Hammerstein and Wiener
systems along with their interconnections (series, parallel, and feedback) help
solving a great deal of electronic problems.

Traditionally, we observe below the most common rigorous and approxi-
mate methods related to different classes of NTV systems.

8.2 Memoryless Time-varying Nonlinearities

Time-varying nonlinearities without memory are used in nonlinear amplifiers,
noise constellation devices, oscillators to transfer from soft to hard excitation,
adaptive nonlinear controllers, tracking control, etc. In each of these applica-
tions, the basic idea is to design an NTV structure with the separated the
memoryless NTV part playing a critical role in the system performance. The
nonlinearity is then varied with time following the control function to attach
the necessary properties to the system. In many cases, namely this approach
allows optimizing NTV systems within a stable operation range.

Typically, the nonlinearity is changed with time in three ways:

• By removing the operation point, ��
• By adjusting the shape at a given operation point, ��
• By switching. ��

Which way is most efficient depends on what kind of problems is under
consideration.

8.2.1 Bias Voltage Control

One of the most common methods of controlling the memoryless nonlinear-
ity in electronic systems implies changing the bias voltage in semiconductor
devices (transistors and diodes). It can be changed automatically with typ-
ically the exponential law after a system is energized. It can also be varied
by an external signal adapting a system to operation conditions. In transis-
tor NTV systems, control of nonlinearities is often provided similarly to the
heterodyne receivers and synchronous detectors; namely, the control voltage
is included in series to the input signal. By this, the bias voltage is controlled
and nonlinearity varied.
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Two basis schemes are used as shown in Fig. 8.1. In the first case (Fig.
8.1a), the necessary base-emitter voltage corresponding to the required bias
and nonlinearity is obtained after a capacitor C is fully charged. This scheme
represents what is called the automatic bias voltage control. In the second

Fig. 8.1. Bias voltage control in a transistor amplifier: (a) internal (automatic) and
(b) external (forced).

scheme (Fig. 8.1b), the bias voltage control in accomplished permanently via
the time-varying voltage VB(t) that is known as the external bias voltage
control. By VB(t), an amplifier is able to pass over the classes A, AB, and
B to the class C, so from the linear regime (class A) and weak nonlinearity
(class AB) to strong nonlinearity (classes B and C).

Fig. 8.2 illustrates the effect caused by time-varying bias voltage in a
memoryless NPN transistor amplifier (Fig. 8.1a), which nonlinear collector
current Ic is described with

Ic = αIES

(
e

VBE
VT − 1

)
, (8.2)

where, typically, α = 0.98 is the common base forward short circuit current
gain, IES = 10−13A is the reverse saturation current of the baseemitter diode,
and VT = 26mV is the thermal voltage.

After the scheme is energized, a capacitor C is charged by the emitter
current exponentially and so reduced with time is the bias voltage VB. With
such a trace of the bias, the harmonic input signal is mapped to the collector
current as shown in Fig. 8.2a. As can be seen, Ic changes with time substan-
tially varying the nonlinearity. The effect seems more illustrative if to reduce
all signals to the fixed point as in Fig. 8.2b. By different bias voltages, an
alternative collector current acquires different amplitudes. With large input
amplitudes and zero bias, the scheme becomes almost an ideal limiter owing
to a near zero current with the negative input signal.

In another scheme is organized as in Fig. 8.1b, the nonlinearity can be
varied harmonically and the alternative collector current thus modulated. This
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Fig. 8.2. Memoryless time-varying nonlinearity: (a) automatically controlled and
(b) about the operation point.
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solution was already observed, allowing for linearization, when we described
the heterodyne receiver and synchronous detector as LTV systems.

8.2.2 Interpolation of Time-varying Memoryless Nonlinearities

Any interpolation technique (Lagrange, Newton, splines, etc.) is applicable
for memoryless NTV systems and subblocks as related to some fixed time
instant. The interpolation formula is then represented in the matrix form or
even in a more complicated multivariate form.

An example is a semiconductor device, which nonlinear characteristic is
affected by temperature. For the system to operate properly, the characteristic
should be measured at fixed values of temperature, then interpolated and
described as two-dimensional. If to do so, the effect of temperature can be
compensated with time using a sensor of temperature.

Having no special peculiarities against the common approach, time-varying
interpolation is rather an extension to NTV systems. The reader, if necessary,
can provide a multidimensional interpolation without difficulties. Otherwise,
special books must be used.

8.2.3 Taylor Series Expansion for Time-varying Characteristics

A memoryless nonlinearity of an NTV system can be expanded to the Taylor
series as follows. If the operation point x0 is fixed and the nonlinearity y(x, t)
is time-variant, the Taylor expansion (7.22) is applied assuming t to be a
constant,

y(x, t) = y(x0) +
∂y(x, t)

∂x

∣∣∣∣
x=x0

(x− x0) +
1
2
∂2y(x, t)

∂x2

∣∣∣∣
x=x0

(x− x0)2

+ . . . +
1
k!

∂ky(x, t)
∂xk

∣∣∣∣
x=x0

(x− x0)k + . . . (8.3)

The other feasible case is when y(x) is fixed, but an operation point x0(t)
varies with time. An example is a time-varying bias voltage as shown in Fig.
8.2a. Here, the Taylor expansion gives

y(x) = y[x0(t)] +
∂y(x)
∂x

∣∣∣∣
x=x0(t)

[x− x0(t)] +
1
2
∂2y(x)
∂x2

∣∣∣∣
x=x0(t)

[x− x0(t)]2

+ . . . +
1
k!

∂ky(x)
∂xk

∣∣∣∣
x=x0(t)

[x− x0(t)]k + . . . (8.4)

As can be seen, y(x) is not affected by time in (8.4). The effect of time-
varying nonlinearity is achieved at the operation point by varying x0(t) as
demonstrated in Fig. 8.2b.
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Most generally, the memoryless nonlinearity can be expanded both in vari-
able and time in the neighborhood of some flexible point x0(t0). The Taylor
series expansion thus becomes two-dimensional and the nonlinear function
y(x, t) is represented with

y(x, t) = y(x0, t0) +
[

∂

∂x

∣∣∣∣
0

(x− x0) +
∂

∂t

∣∣∣∣
0

(t− t0)
]
y(x, t)

+
1
2!

[
∂

∂x

∣∣∣∣
0

(x− x0) +
∂

∂t

∣∣∣∣
0

(t− t0)
]2

y(x, t)

+ . . . +
1
k!

[
∂

∂x

∣∣∣∣
0

(x− x0) +
∂

∂t

∣∣∣∣
0

(t− t0)
]k

y(x, t) + . . . , (8.5)

where the notion “0” means x = x0 and t = t0 and an application of k to the
operator ∂/∂x is equivalent to ∂k/∂xk.

As well as in NTI systems without memory, application of the Taylor series
expansion to memoryless NTV systems has several important advantages. The
system is linearized at x0(t0) by saving only the constant and linear terms in
the series. By accounting for quadratic and/or cubic terms, in many cases it
becomes possible simulating nonlinear systems with sufficient accuracy or at
least without losing principle features.

Example 8.1. A time-varying feedback nonlinearity for a controller is re-
quired of the function

x(y, t) =
(

1− 1
2

cos t
)

arctan(y + sin t) ,

which surface plot is shown in Fig. 8.3a.
The system is linearized with the Taylor series (8.5) in the neighborhood

of a point (y0, t0) as

x(y, t) ∼=
(

1− 1
2

cos t0

)
arctan(y0 + sin t0)

+
1− 0.5 cos t0

1 + (y0 + sin t0)2
(y − y0)

+
[

1− 0.5 cos t0
1 + (y0 + sin t0)2

+
1
2

sin(t0) arctan(y0 + sin t0)
]

(t− t0) .

The nonlinearity is sketched in Fig. 8.3b for t = 0 and in Fig. 8.3c for t =
1.5. Tangent lines are found at y0 = 0 by the Taylor linear expansion. As can
be seen, the time-varying linearization provides for an accurate approximation
at a fixed point. ��
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Fig. 8.3. A time-varying feedback nonlinearity x(y, t): (a) two-variable plot, (b)
x(y, 0), and (c) x(y, 1.5). Straight lines are due to the Taylor linear expansion.

8.3 Volterra Series Expansion

In line with the convolution for LTI systems that is extended in its gen-
eral form to LTV systems, the Volterra approach for NTI systems can be
extended to NTV systems. The key point is to substitute the degree n time-
invariant Volterra kernel hn(τ1, . . . , τn) with the degree n time-varying kernel
hn(t, τ1, . . . , τn) and investigate properties of the latter.

The time-varying Volterra series have found applications in modeling non-
linear channels, controlled oscillators, periodically switched nonlinear circuits,
track-and-hold sampling mixers, etc. The series can universally be used with
any other necessity to describe nonlinear systems with variable coefficients
and desirably weak nonlinearities.
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To represent an NTV system with the time-varying Volterra series, it first
needs to expand the operator O(x, t) to the Taylor series,

y(t) = O(x, t)x(t)

= {V0[x(t), t] + V1[x(t), t] + . . . + Vn[x(t), t] + . . .}x(t) = V [x(t), t]x(t) ,
(8.6)

where Vn is the degree n nonlinear time-varying operator. Similarly to LTV
systems, the Volterra series can be represented in the time-varying form as

y(t) = h0 +
∞∑
n=1

∞∫

−∞
. . .

∞∫

−∞
hn(t, θ1, . . . , θn)x(θ1) . . . x(θn)dθ1 . . . dθn , (8.7)

where the time-varying Volterra kernel hn(t, θ1, . . . , θn) is defined by the time-
varying linear and nonlinear parts of a system. Like the LTV system case, it
is implied that hn(t, θ1, . . . , θn) does not equal to zero only if θi > t, i ∈ [1, n].
For the degree n time-varying Volterra kernel hn(t, θ1, . . . , θn), the generalized
convolution becomes

y(t) = Vn[x(t), t] = x(t) ∗ hn(t, θ1, . . . , θn) , (8.8)

specifying the following components for (8.6). The term associated with n = 0
is still a constant corresponding to the system output with zero input at t

V0x(t) = h0 . (8.9)

The degree n = 1 linear term is defined by

V1x(t) =

∞∫

−∞
h1(t, θ1)x(θ1)dθ1 , (8.10)

representing the general convolution of a linearized system. It is clear that
all of the properties of the general convolution (Chapter 6) are conserved by
(8.10). Likewise, one can find the terms of higher degrees. For quadratic and
cubic nonlinearities we thus have, respectively,

V2x(t) =

∞∫

−∞

∞∫

−∞
h2(t, θ1, θ2)x(θ1)x(θ2)dθ1dθ2 , (8.11)

V3x(t) =

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(t, θ1, θ2, θ3)x(θ1)x(θ2)x(θ3)dθ1dθ2dθ3 . (8.12)

By such a universal technique (8.7), any NTV system can be represented
with the Volterra series having time-varying kernels. The approach, however,
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inherits all major problems of the time-invariant series expansion. In fact, we
need to know exactly how to measure the time-varying Volterra kernels and
how to transfer from the system time-varying ODE to the time-varying series.
Let us notice that these and some other relevant problems are still under
theoretical investigations.

Example 8.2. An NTV system is organized as shown in Fig. 8.4 by a cascade
of the BP filter having the time-varying impulse response h1(t, θ), square
amplifier, and LP filter with the impulse response h2(t). The time-varying

Fig. 8.4. An NTV system.

BP filter has a controlled central frequency to track the carrier of a received
signal. A square amplifier produces a constant value proportional to the power
of a carrier signal. This value is filtered with an LP filter.

The system can be represented with the following signals,

y1(t) =

∞∫

−∞
h1(t, θ1)x(θ1)dθ1 ,

x1(t) =

∞∫

−∞

∞∫

−∞
h1(t, θ1)h1(t, θ2)x(θ1)x(θ2)dθ1dθ2 ,

y(t) =

∞∫

−∞
h2(t− θ3)

∞∫

−∞

∞∫

−∞
h1(θ3, θ1)h1(θ3, θ2)x(θ1)x(θ2)dθ1dθ2dθ3 ,

=

∞∫

−∞

∞∫

−∞

∞∫

−∞
h3(t, θ1, θ2, θ3)x(θ1)x(θ2)dθ1dθ2dθ3 ,

where
h3(t, θ1, θ2, θ3) = h1(θ3, θ1)h1(θ3, θ2)h2(t− θ3)

is the third-degree time-varying Volterra kernel of a system. ��
Example 8.3. An NTV system is represented with the diagram shown in Fig.
8.5. Here an LP filter with a modulated bandwidth 2δ(t) = (1 + α cosΩt),
where α is a modulation factor and Ω is a modulation frequency, is described
by the time-varying impulse response
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Fig. 8.5. An NTV system.

h1(t, θ) = (1 + α cosΩθ)e−(t−θ)e−
α
Ω (sinΩt−sinΩθ)u(t− θ) . (8.13)

An LP filter is characterized with the impulse response h2(t) = e−tu(t).
It can easily be verified that the system is represented with the relation

y(t) =

∞∫

−∞

∞∫

−∞
h2(t− θ2)h1(θ2, θ1)x(θ1)x(θ2)dθ1dθ2

=

∞∫

−∞

∞∫

−∞
h2(t, θ1, θ2)x(θ1)x(θ2) dθ1dθ2 ,

where the second degree time-varying Volterra kernel is given by

h2(t, θ1, θ2) = h1(θ2, θ1)h2(t− θ2)

= (1 + α cosΩθ1)e−(θ2−θ1)e−
α
Ω (sinΩθ2−sinΩθ1)u(θ2 − θ1)e−(t−θ2)u(t− θ2)

= (1 + α cosΩθ1)e−(t−θ1)e−
α
Ω (sinΩθ2−sinΩθ1)u(θ2 − θ1)u(t− θ2) . (8.14)

By (8.14), the output signal becomes

y(t) = e−t
t∫

−∞
e−

α
Ω sinΩθ2x(θ2)

θ2∫

−∞
(1 + α cosΩθ1)eθ1+

α
Ω sinΩθ1x(θ1) dθ1dθ2

(8.15)
and we notice that, for causal input x(t), the lower bounds in (8.15) must be
substituted with zero. ��

8.3.1 Properties of the Time-varying Volterra Operator

When a nonlinear system becomes time-varying, the Volterra operator loses
many of the useful properties featured to its counterpart applied to NTI sys-
tems. In what follows, we observe the most typical properties of the time-
varying Volterra operator.
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Non-commutativity

The time-varying Volterra kernels commonly does not commute, because time
t cannot be set arbitrary. This also means that the NTV operator does not
commute and we commonly have

hn(t, θ1, . . . , θn) ∗ x(t) 	= x(t) ∗ hn(t, θ1, . . . , θn) . (8.16)

Example 8.4. A signal goes through the time-varying LP filter having the
impulse response h(t, θ) = e−(t2−θ2)u(t − θ). The output of the filter is then
squared to evaluate the signal power.

The output of a system is coupled with the input by the relation

y(t) =

∞∫

−∞

∞∫

−∞
h(t, θ1)h(t, θ2)x(θ1)x(θ2) dθ1dθ2

=

∞∫

−∞

∞∫

−∞
e−2t2eθ

2
1+θ22u(t− θ1)u(t− θ2)x(θ1)x(θ2) dθ1dθ2 . (8.17)

By changing the variables to τ1 = t− θ1 and τ2 = t− θ2, we arrive at

y(t) =

∞∫

−∞

∞∫

−∞
e−2t(τ1+τ2)eτ

2
1+τ2

2 u(τ1)u(τ2)x(t− τ1)x(t− τ2) dτ1dτ2 . (8.18)

A comparison of the exponential functions in the integrands of (8.17) and
(8.18) shows that their forms do not fit linear transformations. Therefore, the
Volterra operator (8.17) does not commute. ��

Non-distributivity

Because the operator of an NTI system does not demonstrate an ability to
distribute (Chapter 7), the operator of an NTV system does not do it as well.
This inherent property is supported by Example 7.7 if to substitute one of
the time-variables, θ1 or θ2, with the current time t.

Homogeneity

Homogeneity featured to NTI systems is luckily saved in NTV structures. The
property means that the product of a signal x(t) and some real a equivalently
results in the multiplication of hn(t, θ1, . . . , θn) with an,

[ahn(t, θ1, . . . , θn)] ∗ x(t) = hn(t, θ1, . . . , θn) ∗ [a1/nx(t)] , (8.19)

[anhn(t, θ1, . . . , θn)] ∗ x(t) = hn(t, θ1, . . . , θn) ∗ [ax(t)] , (8.20)

where an integer n corresponds to the Volterra operator degree.
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Nonstationarity

It is seemingly obvious that nonstationarity is inherent property of NTV sys-
tems, because the operator is time-varying. In other words, an arbitrary time
shift ±t0 commonly changes the kernel, so that we have an inequality

hn(t± t0, θ1, . . . , θn) 	= hn(t, θ1, . . . , θn) . (8.21)

Most generally, if a system satisfies (8.21), then it belongs to the class of
time-varying systems.

Causality

Similarly to other types of systems, the time-varying Volterra operator (8.7)
can be modified for causal and/or noncausal signals and systems.

• Causal systems. If an NTV system is causal, its response at t1 is zero if
t � t1. In view of that and similarly to (6.7), the expansion becomes

y(t) = h0 +
∞∑
n=1

t∫

−∞
. . .

t∫

−∞
hn(t, θ1, . . . , θn)x(θ1) . . . x(θn)dθ1 . . . dθn .

(8.22)
��

• Causal signals. When a signal does not exist in negative time, all vari-
ables τi, i ∈ [1, n] cannot lie below zero and we have

y(t) = h0 +
∞∑
n=1

∞∫

0

. . .

∞∫

0

hn(t, θ1, . . . , θn)x(θ1) . . . x(θn)dθ1 . . . dθn . (8.23)

��
• Causal both systems and signals. If signals and systems are both real,

so causal, the expansion possesses finite bounds and we have

y(t) = h0 +
∞∑
n=1

t∫

0

. . .

t∫

0

hn(t, θ1, . . . , θn)x(θ1) . . . x(θn)dθ1 . . . dθn , (8.24)

Namely (8.24) is commonly applied to real physical signals and systems.
��
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Stability

Similarly to other systems, BIBO stability of NTV systems is ascertained by
evaluating the total resources via the Volterra kernels. The finite value

t∫

−∞
. . .

t∫

−∞
|hn(t, θ1, . . . , θn)|dθ1 . . .dθn � M <∞ (8.25)

valid for all t assures that a causal NTV system described with the time-
varying Volterra kernel hn(t, θ1, . . . , θn) is BIBO stable.

Example 8.5. A time-varying nonlinear channel is characterized with the
degree n = 2 Volterra kernel

h2(t, θ1, θ2) = δ(t− τ0 − θ2)e−(t2+θ21)u(t− θ1)u(θ1) , (8.26)

where τ0 is some constant time delay. Total resources of the channel are eval-
uated by (8.25) to be

t∫

−∞

t∫

−∞
|hn(t, θ1, θ2)|dθ1dθ2

=

t∫

−∞

t∫

−∞
|δ(t− τ0 − θ2)e−(t2+θ21)u(t− θ1)u(θ1)|dθ1dθ2

=

t∫

0

e−(t2+θ21)dθ1 = e−t
2

t∫

0

e−θ
2
1dθ1

=
√
π

2
e−t

2
erf(t) < 0.38 for t � 0 .

In the view of a finite value produced for all t � 0, the channel is charac-
terized as BIBO stable. ��

8.3.2 Representation in the Frequency Domain

There are a lot of applications requiring an NTV system performance in the
frequency domain. A classical example is an oscillator, which amplitude and
phase power spectral densities are extended by the flicker noise.

Following the transforms (6.22) and (6.23), the n-degree time-varying
Volterra kernel can be represented in the frequency domain and returned
back as follows,

Hn(jω1, . . . , jωn, t)
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=

∞∫

−∞
. . .

∞∫

−∞
hn(t, θ1, . . . , θn)e−jω1(t−θ1) . . . e−jωn(t−θn)dθ1 . . . dθn , (8.27)

hn(t, θ1, . . . , θn)

=
1

(2π)n

∞∫

−∞
Hn(jω1, . . . , jωn, t)ejω1(t−θ1) . . . ejωn(t−θn)dω1 . . . dωn (8.28)

and we remind the reader that this pair is not the Fourier transform.
The multifrequency response Hn(jω1, . . . , jωn, t) associated with the de-

gree n Volterra kernel is also called in different applications the multivariate
system function, or the multifrequency system function, or the multifrequency
network function.

Example 8.6. Consider a SISO NTV system represented with the ODE

y′ + 2y − 2e−t
√
yx = 0 , (8.29)

and zero initial condition y(0) = 0. The system can be substituted with the
Wiener model (Fig. 7.8b) having a time-varying dynamic part as follows

y′1 + y1 = e−tx , y = y2
1 . (8.30)

The system diagram is shown in Fig. 8.6.

Fig. 8.6. Wiener model of a system (8.29).

A direct solution of the first equation in (8.30),

y1(t) = e−t
t∫

0

e−τx(τ)eτdτ ,

allows us finding the time-varying impulse response of the LTV part. Sub-
stituting x(t) = δ(t − θ) and using the sifting property of the delta function
(Appendix A) yields

h(t, θ) = e−t
t∫

0

e−τδ(τ − θ)eτdτ = e−tu(t− θ) . (8.31)
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By the second equation in (8.30) and the convolution rule, the second degree
Volterra kernel describing the system becomes

h2(t, θ1, θ2) = h(t, θ1)h(t, θ2) = e−2tu(t− θ1)u(t− θ2) . (8.32)

If we now apply (8.27) to (8.32), the bi-frequency response representing
(8.29) in the frequency domain can be found as

H2(jω1, jω2, t) =

∞∫

−∞

∞∫

−∞
e−2tu(t− θ1)u(t− θ2)e−jω1(t−θ1)e−jω2(t−θ2)dθ1dθ2

=

t∫

0

t∫

0

e−2te−jω1(t−θ1)e−jω2(t−θ2)dθ1dθ2

=
e−2t

jω1jω2
e−j(ω1+ω2)t

(
ejω1t − 1

) (
ejω2t − 1

)

=
e−2t

jω1jω2

(
1− e−jω1t

) (
1− e−jω2t

)
. (8.33)

Here, we took into consideration the range of existence 0 � θ � t of the
time-varying impulse response.

Alternatively, one can apply the general convolution to (8.31) and first
find the time-varying frequency response of a linear part,

H(jω, t) =

∞∫

−∞
e−tu(t− θ)e−jω(t−θ)dθ

= e−t
t∫

0

e−jω(t−θ)dθ =
e−t

jω

(
1− e−jωt

)
. (8.34)

Because the kernel (8.32) is the product of the time-varying impulse re-
sponses, the product transform role (7.77) can be applied to (8.34). Conse-
quently, we arrive at (8.33) having verified the validity of (8.27).

Let us now think that the input is x(t) = ejωt. The output of a linear part
is thus y1(t) = H(jω, t)ejωt. Substituting to the first equation in (8.29) yields
an equation

H ′ + (1 + jω)H = e−t ,

which direct solution produces a familiar result (8.34). The output of a total
system is then calculated by the second equation in (8.30) as
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y(t) = H(jω1, t)H(jω2, t)ejω1tejω2t = H2(jω1, jω2, t)ejω1tejω2t

and we infer that the bi-frequency system function is defined by

H2(jω1, jω2, t) =
Response to ejωt

ejω1tejω2t
(8.35)

giving us the rule reminiscent of that applied to linear systems. ��
Observing (8.35), one can truly deduce that the multi-frequency sys-

tem function of an NTV system described by the n-degree Volterra kernel
hn(t, θ1, . . . , θn) is defined by

H2(jω1, . . . , jωn, t) =
Response to ejωt

ejω1t . . . ejωnt
. (8.36)

��
Similarly to LTV systems, the multiple spectral function of an NTV system

is coupled with the kernel hn(t, θ1, . . . , θn) by the Fourier transform applied
to time t and the “slow” system frequency Ω,

H(θ1, . . . , θn, jΩ) =

∞∫

−∞
h(t, θ1, . . . , θn)e−jΩtdt , (8.37)

h(t, θ1, . . . , θn) =
1
2π

∞∫

−∞
H(θ1, . . . , θn, jΩ)ejΩtdΩ . (8.38)

Finally, the Fourier transform couples the total multi-frequency system
function with Hn(jω1, . . . , jωn, t) by a pair

H(jω1, . . . , jωn, jΩ) =

∞∫

−∞
H(jω1, . . . , jωn, t)e−jΩtdt , (8.39)

H(jω1, . . . , jωn, t) =
1
2π

∞∫

−∞
H(jω1, . . . , jωn, jΩ)ejΩtdΩ . (8.40)

Example 8.7. Let us come back to a system (Example 8.6) described with
the degree n = 2 Volterra kernel (8.32) and bi-frequency system function
(8.33). By (8.36), the multiple spectral function is defined as

H(θ1, θ2, jΩ) =

∞∫

−∞
e−2tu(t− θ1)u(t− θ2)e−jΩtdt

=

∞∫

max θ

e−(2+jΩ)tdt =
1

2 + jΩ
e−(2+jΩ)max θ ,
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where max θ means a bigger value of θ1 and θ2 such that

H(θ1, θ2, jΩ) =

{
1

2+jΩ e−(2+jΩ)θ1 , θ1 > θ2
1

2+jΩ e−(2+jΩ)θ2 , θ2 > θ1
. (8.41)

The total function is defined by (8.39),

H(jω1, jω2, jΩ) =

∞∫

0

e−2t

jω1jω2

(
1− e−jω1t

) (
1− e−jω2t

)
e−jΩtdt ,

where the lower integral bound is inherently zero, by the range of existence
for causal systems. After the transformations, we have

H(jω1, jω2, jΩ) =
1

jω1jω2

[
1

2 + jΩ
− 1

2 + j(Ω + ω2)

− 1
2 + j(Ω + ω1)

+
1

2 + j(Ω + ω1 + ω2)

]
(8.42)

that allows us to investigate the system in the domain of three frequencies,
ω1, ω2, and Ω. ��

8.3.3 Representation in the Transform Domain

As well as for LTV systems, the transfer function representation is generally
not possible for NTV systems. However, the transform domain theory can be
applied if the coefficients of NTI systems are slowly changed with time. More
precisely, it means that spectral contents of all of the time-varying coefficients
must occupy the frequency region narrower (or even much more narrower)
than the system bandwidth. If so, the Laplace transform is applied straight-
forwardly, yielding the time varying transfer function, in which t is assumed
to be a constant. We notice that, straightly speaking, such a system is rather
NTI possessing all major properties of the latter. Studying such systems, one
must think that the properties are valid for all t � t0, where t0 is an initial
time.

8.4 Description by Differential Equations

Many NTV electronic systems are originally described by the finite order
nonlinear ODEs with time-variant coefficients using the theory of electrical
circuits. Most generally, a SISO NTV system can be performed with the N -
order nonlinear time-varying ODE
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dNy

dtN
= f

(
y,

dy
dt

, . . . ,
dN−1y

dtN−1
, x,

dx
dt

, . . . ,
dMx

dtM
, t

)
, (8.43)

where M � N . An obvious problem with a solution of (8.43) arises similarly to
its time-invariant counterpart. If the nonlinear function f(·, t) is not distinct
and changes with time arbitrary, a solution of (8.43) is not available. In view of
that, they used to consider instead simplified ODEs fitting principle features
of systems.

In a manner similar to NTI systems, the simplified forms of nonlinear
time-varying ODEs are investigated for stability and principle system charac-
teristics under the constraints imposed by time-variations. Below we observe
several typical NTV systems of the first and second orders.

8.4.1 Systems of the First Order

The first order NTV systems are used, for example, in dynamic noise reduction
(DNR) as the voltage controlled filters. Typically, such an LP filter tracks
dynamics of the input signal and so reduces the audio bandwidth of the signal
path at such times as the full bandwidth is not required, with a consequent
reduction in high frequency noise.

Most generally, the ODE of the first order SISO NTV system with the
input x(t) and output y(t) can be written as

y′ = f(y, x, t) , (8.44)

where a nonlinear time-varying function f(·, t) can be arbitrary. A general
solution of (8.44) is such that starting from the initial point y(t0) at t0 the
output changes as

y(t) = y(t0) +

t∫

t0

f(y, x, τ)dτ . (8.45)

Note that further transformations of (8.45) are possible only for some partic-
ular cases of f(·, t).

A general form of the relevant closed system is written as

y′ = f(y, t) (8.46)

and its solution is obtained by (8.45) if we substitute x(t) with x(y, t).

Example 8.8 (Voltage Controlled LP Filter). Consider a simple LP fil-
ter, which cut-off frequency is voltage controlled via a nonlinear capacitor of a
semiconductor diode varactor (Fig. 8.7). The effect of “nuisance parameters”
is caused here by inherent nonlinearity of a diode.

The capacitance of a varactor is calculated by
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Fig. 8.7. Simplest voltage controlled LP filter.

Cv = S

√
εε0eN

8π(U + ϕt)
=

Cv0

(1 + U/ϕt)γ
, (8.47)

where S is the area of the p-n transition, ε is the relative dielectric constant
(permittivity) of a semiconductor, ε0 is vacuum permittivity, e is the electron
charge (1.6× 10−19C), N = 3× 1021m−3, ϕt is the contact (Volta1) potential
difference in small fractions of a volt, and U is an applied voltage. The coef-
ficient γ is usually about 1/2. A capacitance value associated with U = 0 is
Cv0 = S(εε0eN/8πϕt)−γ .

The nonlinear time-varying ODE of the filter can be written as

v′C +
1

RCv(vC , t)
vC =

1
RCv(vC , t)

v

that, by (8.47), becomes

y′ +
1

RS

√
8π(ȳ + V + ϕt)

εε0eN
y =

1
RS

√
8π(ȳ + V + ϕt)

εε0eN
x , (8.48)

where ȳ is a rectified input voltage acting on a varactor. Equations like (8.48)
are hard to solve and solutions commonly do not exist in closed forms.

In the particular case, the time-varying frequency response can be found
if the inverse voltage V is allowed such that V � ȳ and V � ϕt. We thus
arrive at a linearized ODE

y′ + a(t)y = a(t)x ,

where a(t) = 1
RS

√
8πV (t)
εε0eN

. Substituting x(t) = ejωt and y(t) = H(jω, t)ejωt

leads to the equation

1 Alessandro Giuseppe Antonio Anastasio Volta, Italian physicist, 18 February
1745–5 March, 1827.
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H ′ + [jω + a(t)]H = a(t) ,

which general solution is

H(jω, t) = e
−

t∫
−∞

[jω+a(τ)]dτ
t∫

−∞
a(τ)e

τ∫
−∞

[jω+a(τ1)]dτ1
dτ .

If we further consider a typical situation when the width of the spectral
density of V (t) is narrower than the filter bandwidth, the coefficient a(t) can
be allowed to be constant in the integrals and we obtain the time-varying
frequency response

H(jω, t) = a(τ)e−[jω+a(τ)]t

t∫

−∞
e[jω+a(τ1)]τdτ =

a(t)
a(t) + jω

. (8.49)

Because the coefficient a(t) is time-variant, the cut-off frequency of the
filter is also varied with time by V (t). As we mentioned above, this effect is
used, for example, in dynamic noise reduction. ��

Bernoulli’s Time-varying Differential Equation

Among a variety of nonlinear ODEs, there is the one of the first order with
time-varying coefficients investigated long ago by Bernoulli and, nowadays,
widely used to solve dynamic problems in electronics. In particular, it fits the
amplitude processes in oscillators.

The most general form of Bernoulli’s time-varying ODE is

y′ + a(t)y = b(t)yn , (8.50)

where a(t) and b(t) are some time-variant coefficients and the initial condition
is y(t0) = y0. Earlier, we considered this equation having constant coefficients
(7.139). The approach to solve (8.50) remains the same and we bring the final
solution for n 	= 1,

y(t) =

⎡
⎢⎢⎢⎢⎢⎣

(1− n)
t∫
t0

e
(1−n)

t1∫
t0

a(t2)dt2

b(t1)dt1 + C

e
(1−n)

t∫
t0

a(t1)dt1

⎤
⎥⎥⎥⎥⎥⎦

1
1−n

, (8.51)

where C = y1−n
0 is predetermined by the initial condition y(t0) = y0. The

solution starts with y0 at t0 and can either converge or diverge depending
on the coefficients a(t) and b(t). Below, we exploit (8.51) to investigate the
amplitude transient in the voltage controlled oscillator.
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8.4.2 Voltage Controlled Oscillator

A typical example of NTV systems of the second order is the voltage controlled
oscillator, whose frequency is slowly varied with time by an external synchro-
nizing reference source. An oscillator is inherently nonlinear and variations of
its frequency are provided in the steady state.

A simplified equivalent scheme of a transistor oscillator is shown in Fig.
8.8. A parallel resonant circuit comprises an inductance L, resistance R, ca-

Fig. 8.8. Voltage controlled transistor oscillator.

pacitance C1, and voltage controlled capacitance Cv of a varactor. The control
signal +Vc obtains the necessary positive voltage on Cv. The voltage v(t) gov-
erns the collector current i(t) of a nonlinear transistor. The current i(t), in
turn, induces the voltage on the feedback inductance L1 and the feedback is
organized via the mutual inductance M .

The voltage balance in the resonant circuit is obtained with

L
dic
dt

+ Ric +
∫

1
C(t)

ic(t)dt = M
di
dt

,

where C(t) = C1Cv(t)/[C1 +Cv(t)] is a time-variant capacitance of the circuit
and i(t) is a nonlinear collector current governed by v(t).

By substituting ic = C(t)dv
dt = C(t)v′ and di

dt = S(v)v′, where S(v) is a
sensitivity of i(t) to v(t), the equation becomes

L
d
dt

C(t)
dv
dt

+ [RC(t)−MS(v)]
dv
dt

+ v = 0

and we arrive at the standard form (2.123) for NTV systems with slowly
changing parameters, namely at

[m(τ)y′]′ + k(τ)y = εf(τ, y, y′) , (8.52)

where y(t) = v(t), m(τ) = LC(τ), k(τ) = 1, ε = 1/Q. Q is the quality factor,
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f = −Q[RC(τ)−MS(y)]y′ ,

and τ = εt is a “slow” time. The model presumes that the coefficient m(τ) 	= 0
is differentiable (analytical) on the observable time interval that is typically
satisfied in real physical systems.

In the first order approximation a solution of (8.52) can be written as

y = r cosψ , (8.53)

where the amplitude and phase are given by, respectively,

r′ = εA1(τ, r) , (8.54)

ψ′ = ω0(τ) + εB1(τ, r) . (8.55)

The oscillator frequency is calculated by

ω2
0(τ) =

k(τ)
m(τ)

=
1

LC(τ)
(8.56)

and it is also typically assumed that the bandwidth 2δ of a resonant circuit is
not changed substantially and Q-factor is large and constant.

Under such conditions, functions A1(τ, r) and B1(τ, r) are defined, by
(2.131) and (2.132), to be, respectively,

A1(τ, r) = − r

4
C′(τ)
C(τ)

− 1
2π
√

LC(τ)

2π∫

0

f0(τ, r, ψ) sinψ dψ , (8.57)

B1(τ, r) = − 1
2πr
√

LC(τ)

2π∫

0

f0(τ, r, ψ) cosψ dψ , (8.58)

where
f0(τ, r, ψ) = Q[RC(τ)−MS(r cosψ)]rω0(τ) sinψ . (8.59)

Typically, to observe principle effects, the transistor nonlinearity is de-
scribed with the incomplete cubic polinomial i = av − bv3 that yields
S(v) = a− 3bv2 and

f0(τ, r, ψ) = Q[RC(τ)−M(a− 3br2 cos2 ψ)]rω0(τ) sinψ . (8.60)

Substituting (8.60) to (8.57) and (8.58), then neglecting products of small
values and providing the integration produce

A1(τ, r) = −rC′(τ)
4C(τ)

− Qω2
0

2

[
RC(τ) −M

(
a− 3

4
br2

)]
r ,
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B1(τ, r) = 0 .

By these functions, equations (8.54) and (8.55) become, respectively,

r′ = −ω2
0

2

[
RC(τ)−M

(
a− 3

4
br2

)]
r , (8.61)

ψ′ = ω0(τ) . (8.62)

The oscillations sustain with the amplitude r0 and average capacity C0 if
the expression in brackets of (8.61) is zero. This allows us to find the average
amplitude

r0 =

√
4(Ma−RC0)

3Mb
.

If we suppose further that C(τ) = C0 + C̃(τ), where C̃(τ) is a variable part
of C(τ), equation (8.61) will attain the final form of

r′ = −δ C̃(τ)
C0

r + δβ

(
1− r2

r2
0

)
r , (8.63)

where β = MQaω0−1. A general solution of (8.63) is given by (8.51) if we let
a(t) = δ

[
C̃(t)
C0
− β
]

and b = − δβ
r20

. This, however, does not lead to substantial

simplifications of (8.51), because C̃(t) is still indistinct.

Example 8.9. A capacitor C(τ) is varied harmonically with the frequency Ω
as

C(τ) = C0(1 − 2α cos γτ) = C0 + C̃(τ) ,

where α � 1, γ = Ω/ε, 2δ ∼ Ω � ω0, and C̃(τ) = −2C0α cos γτ . The
frequency of an oscillator (Fig. 8.8) is thus modulated with

ω0(τ) ∼= ω0(1 + α cos γτ) ,

representing a solution of (8.62).
Neglecting products of small values, the amplitude equation (8.63) attains

the form of

r′ = δβ

(
1− r2

r2
0

)
r + 2δαr cosΩt

that can be reduced further to the Bernoulli equation (8.50) with n = 3 and
a(t) = −δ(β + 2α cosΩt) and b = − δβ

r20
. By t0 = 0, a solution (8.51) becomes
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r(t) =

⎡
⎢⎢⎢⎣

2δβ
r20

t∫
0

e2δ(βt1+2 α
Ω sinΩt1)dt1 + r(0)−2

e2δ(βt+2 α
Ω sinΩt)

⎤
⎥⎥⎥⎦

− 1
2

, (8.64)

where the integral cannot be found in closed form, by simple functions. Fig.
8.9 illustrates a solution (8.64) for α = 0.2 and Ω = 3δ along with that
associated with an unmodulated signal, α = 0. As it is seen, inherent spurious
AM ocurres owing to nonlinearity and variations in the closed loop gain with
modulation. ��

Fig. 8.9. Amplitude transient in the voltage controlled oscillator with a harmoni-
cally varied capacitor.

8.5 Nonlinear Periodically Time-varying Systems

In communication systems and specific applications in electronics, oscillators
can undergo periodic changes of parameters causing, for example, frequency
modulation (FM). Nonlinear systems with periodically varying parameters
fall to the class of the nonlinear periodically time-varying (NPTV) systems.
The general theory of NPTV systems was outlined by Krylov, Bogoliubov,
and Mitroposlkiy both for slow and fast variations. The theory has then been
developed by many authors.

Typically, two cases of NPTV systems are recognized. In the first case of
slowly varying parameters, the modulation frequency is supposed to be lower
than the system bandwidth. That allows considering a system as memoryless
for modulation. The second case of rapidly changing parameters presumes
that the modulation frequency greatly exceeds the system bandwidth. This
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case also has a broad area of applications, because of fast modulation is able
to cause many useful as well as nuisance resonance effects associated with
overmodulation, frequency jumps, etc.

Commonly, equations of modulated NTV oscillatory systems have not gen-
eral solutions. On the other hand, rigorous solutions are typically redundant
for such systems and near harmonic solutions for the amplitude and phase
are searched. Below we observe approximate approaches to investigate NPTV
closed loop oscillatory systems.

8.5.1 Bogolubov-Mitropolskiy Model

One of the generalized models of NPTV closed loop systems was proposed
and extensively investigated by Bogoliubov and Mitropolskiy. The model is
appropriate for both slow and fast modulations. It is represented with the
second-order nonlinear ODE (2.123), in which the nonlinear function is sup-
posed to be periodic with period 2π, by the phase function φ = Ωt,

[m(τ)y′]′ + k(τ)y = εF (τ, φ, y, y′) , (8.65)

where ε is still a small parameter, τ = εt is a “slow” time, and m(τ) and k(τ)
are periodically time-variant parameters of a system.

Owing to periodicity, the function F (τ, φ, y, y′) is expanded to the finite
Fourier series

F (τ, φ, y, y′) =
K∑

k=−K
Fk(τ, y, y′)ejkΩt , (8.66)

where the subfunction Fk(τ, y, y′) is supposed to be some polynomial of y
and y′ with time-variant coefficients dependent on τ . Also, Ω = dφ/dt is an
instantaneous frequency of the slowly varying external periodic force. As can
be seen, (8.66) differs from (2.123) by a periodic function F . In view of that,
asymptotic solutions can be built from the common positions.

A solution of the first order approximation is written for such systems as

y = r cos
(
p

q
φ + ϑ

)
, (8.67)

where p and q are some mutually simple numbers which choice depends on
the effect (resonance) being under investigation. The amplitude r and phase
ϑ are defined by the equations, respectively,

r′ = εA1(τ, r, ϑ) , (8.68)

ϑ′ = ω(τ)− p

q
Ω(τ) + εB1(τ, r, ϑ) , (8.69)

in which the functions A1 and B1 periodic for φ with period 2π are defined
by solving the equations
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[
ω(τ)− p

q
Ω(τ)

]
∂A1

∂ϑ
− 2rω(τ)B1

=
1

2π2m(τ)

∑
σ

ejqσϑ
2π∫

0

2π∫

0

F0(τ, r, φ, ψ)e−jqσϑ
′
cosψ dφdψ , (8.70)

[
ω(τ) − p

q
Ω(τ)

]
r
∂B1

∂ϑ
+ 2ω(τ)A1 = − 1

m(τ)
d[m(τ)ω(τ)]

dτ

− 1
2π2m(τ)

∑
σ

ejqσϑ
2π∫

0

2π∫

0

F0(τ, r, φ, ψ)e−jqσϑ
′
sinψ dφdψ , (8.71)

and it is implied that

F0(τ, r, φ, ψ) = F [τ, φ, r cosψ,−rω(τ) sinψ] ,

ϑ′ = ψ − p

q
φ .

Special notations need to be made regarding the sums in (8.70) and (8.71).
The addition must be carried out over all the values of σ (negative and posi-
tive), for which the integrals do not equal to zero. In turn, the integrals are not
zero only by σ such that the power of the relevant exponential function (pro-
duced by expanding the integrand to the Fourier series) is zero. This means
that if F (τ, φ, y, y′) is a polynomial regarding y, y′, cosΩt, and sinΩt, then
σ takes a finite number of integer values.

In spite of the fact that the Bogoliubov-Mitropolskiy method is general
for any NPTV closed loop, more engineering features demonstrates the mod-
ulation functions method exploiting the double harmonic balance approach.

8.5.2 Modulation Functions Method (Slow Modulation)

Let us consider an NPTV closed loop system represented with an oscillator,
which frequency is periodically varied with time (modulated). FM oscillators
are used in communication systems to convey information.

When an oscillator loop is in steady state, the main question is how the
modulating signal results in FM at different modulation frequencies? Because
any oscillator having a limit cycle is inherently nonlinear, spurious AM occurs
and the other question arises of how high is the spurious AM index? On the
other hand, any closed loop nonlinear system is addicted to amplitude-to-
frequency conversion and we thus need to know how high is the spurious FM
index? The block of questions can be solved by the approach proposed by
Shmaliy and called the modulation functions method or dynamic modulation
characteristics method. The method is based on double harmonic balance and
motivated by investigations earlier carried out by Sokolinskiy.
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In accordance with the method, an FM oscillator is modeled to have the
modulating input x(t) and modulated output y(t) as shown in Fig. 8.10a. FM
can be provided either externally, by a message signal, or internally, by the
flicker noise acting on any of the oscillator components.

For the harmonic test, the input can be represented by the complex signal

x(t) = x0 + ΔxejΩt = x0

(
1 + αejΩt

)
, (8.72)

where α = Δx/x0 is the modulation factor, Ω is the modulation frequency,
and x0 and Δx are the constant value and amplitude of the harmonic addition,
respectively.

The output y(t) generated by this NPTV system in steady state consists
of an infinite set of overtones of the fundamental frequency ω0 such that

y(t) =
∞∑
i=0

yi(t) = y0 +
∞∑
i=1

ri(t)ej[
∫
ωi(t)dt+ϕi]

= y0 + r1(t)ej[
∫
ω0(t)dt+ϕ1] + harmonics , (8.73)

where the amplitudes ri(t) and frequencies ωi(t) = iω0(t) of the ith component
yi(t) are varied with time periodically by x(t). With small modulation factor α,
the modulator can be supposed to be linear and overtones of the modulation
frequency neglected. Under such conditions, instead of a general structure
(Fig. 8.10a) two conventional linear channels x(t) → ri(t) and x(t) → ωi(t)
can be considered and described in the frequency domain as in the following.

The amplitude of the ith overtone of y(t) can be performed as

ri(t) = ri0
[
1 + Reμri(jΩ)ejΩt

]

= ri0 [1 + μ∗ri cos(Ωt + Ψri)] , (8.74)

where μri(jΩ) = μ∗ri(Ω)ejΨri(Ω) is the amplitude modulation factor and μ∗ri
can be either positive or negative.

A channel x(t) → ri(t) is represented in Fig. 8.10b by the upper branch
having an input α and output μri(jΩ). The amplitude modulation function
(AMF) of the ith overtone is defined for this branch by

Fig. 8.10. FM oscillator: (a) basic structure and (b) linearized.
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Hri(jΩ) = |Hri(jΩ)|ejΘri(Ω) =
μri(jΩ)

α
=

μ∗ri(Ω)
α

ejΨri(Ω) , (8.75)

where |Hri(jΩ)| is the magnitude AMF and

Θri(Ω) =
{

Ψri(Ω), μ∗ri � 0
Ψri(Ω) + π, μ∗ri < 0

is the phase AMF.
Reasoning similarly, we can represent the modulated frequency of the ith

overtone with

ωi(t) = iω0

[
1 + Reμωi(jΩ)ejΩt

]

= iω0 [1 + μ∗ωi cos(Ωt + Ψωi)] , (8.76)

where ω0 is an unmodulated frequency, μωi(jΩ) = μ∗ωi(Ω)ejΨωi(Ω) is the fre-
quency modulation factor, and μ∗ωi can be either positive or negative.

This channel, x(t)→ ωi(t), is represented in Fig, 8.10b by the lower branch
having an input α and output μωi(jΩ). For this branch, the frequency modu-
lation function (FMF) of the ith overtone is defined by

Hωi(jΩ) = |Hωi(jΩ)|ejΘωi(Ω) =
μωi(jΩ)

α
=

μ∗ωi(Ω)
α

ejΨωi(Ω) , (8.77)

where |Hωi(jΩ)| is the magnitude FMF and

Θωi(Ω) =
{

Ψωi(Ω), μ∗ωi � 0
Ψωi(Ω) + π, μ∗ωi < 0

is the phase FMF. One thus can conclude that both AMF and FMF are akin
to the frequency response of an LTI system.

In the above-introduced terms, a real output signal (8.73) can be per-
formed, by y0 = 0, as

y(t) =
∞∑
i=1

ri0
[
1 + Reμri(jΩ)ejΩt

]

× cos
{[

iω0

∫ [
1 + Reμωi(jΩ)ejΩt

]
dt + ϕi

]}
. (8.78)

For the fundamental frequency, i = 1, (8.78) is represented with the only
term such that

y(t) = r0 [1 + μ∗r cos(Ωt + Ψr)]
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× cos
{[

ω0

∫
[1 + μ∗ω cos(Ωt + Ψω)] dt + ϕ1

]}

= r0 [1 + μ∗r cos(Ωt + Ψr)]

× cos
{[

ω0t + μ∗ϕ sin(Ωt + Ψω) + ϕ1

]}
, (8.79)

where μ∗ϕ(Ω) = ω0
Ω μ∗ω(Ω) and

μϕ(jΩ) = μ∗ϕ(Ω)ejΨω(Ω) =
ω0

Ω
μ∗ω(Ω)ejΨω(Ω)

is the phase modulation factor.
Fig. 8.11 illustrates the modulation processes in the NPTV system mod-

eled with (8.79). As can be seen, both the frequency and amplitude of y(t)

Fig. 8.11. Modulation processes in an FM oscillator.

undergo modulation. The other important point to notice is that the am-
plitude deviation r0μ

∗
r(Ω) and frequency deviation ω0μ

∗
ω(Ω) as well as the

relevant phase shifts, Ψr(Ω) and Ψω(Ω), are functions of the modulation fre-
quency Ω. Namely this dependence on Ω governs dynamics of modulation
processes of FM oscillators via the AMF (8.75) and FMF (8.77).

To describe the AMF Hri(jΩ) and FMF Hωi(jΩ) in terms of the oscillator
nonlinear ODE, the double harmonic balance method can be used. By this
method, a solution of the ODE regarding the ith overtone of the oscillator
output is searched in the form of

yi(t) = Ai cosφi + Bi sinφi , (8.80)

where the amplitudes Ai and Bi are both modulated. By α � 1, we can
further write
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Ai = Ai0 + ai1 cosΩt + ai2 sinΩt , (8.81)

Bi = Bi0 + bi1 cosΩt + bi2 sinΩt , (8.82)

where Ai0 and Bi0 are values in absence of modulation and the variable am-
plitudes ai1, ai2, bi1, and bi2 are assumed to be small values.

In a complex form, (8.80) can be rewritten as

yi(t) =
√

A2
i + B2

i e
j
(
φi−arctan

Bi
Ai

)
= rie

jψi (8.83)

that allows us to represent the signal amplitude and instantaneous frequency
by, respectively,

ri =
√

A2
i + B2

i , (8.84)

ωi =
dψi
dt

=
d
dt

(
φi − arctan

Bi
Ai

)
(8.85)

and we notice that both ri and ωi are modulated via (8.81) and (8.82).
The AMF and FMF can now be expressed via Ai0, Bi0, ai1, ai2, bi1, and

bi2 if to equate (8.74) to (8.84) and (8.76) to (8.85), respectively, and provide
the necessary transformations.

Amplitude Modulation Function

The AMF is represented in terms of (8.80)–(8.82) if we substitute (8.81) and
(8.82) to (8.84) and provide the transformations neglecting products of small
values as in the following,

ri =
√

(Ai0 + ai1 cosΩt + ai2 sinΩt)2 + (Bi0 + bi1 cosΩt + bi2 sinΩt)2

= ri0

√
1 +

2
r2
i0

[(Ai0ai1 + Bi0bi1) cosΩt + (Ai0ai2 + Bi0bi2) sinΩt]

∼= ri0

{
1 +

1
r2
i0

[(Ai0ai1 + Bi0bi1) cosΩt + (Ai0ai2 + Bi0bi2) sinΩt]
}

,

where ri0 =
√

A2
i0 + B2

i0. The result can be rewritten as (8.74),

ri = ri0[1 + μ∗ri cos(Ωt + Ψri)] ,

where
μ∗ri =

1
r2
i0

√
(Ai0ai1 + Bi0bi1)2 + (Ai0ai2 + Bi0bi2)2 , (8.86)

tanΨri = −Ai0ai2 + Bi0bi2
Ai0ai1 + Bi0bi1

. (8.87)
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Both (8.86) and (8.87) complete representation of the AMF Hri(jΩ) (8.75)
via the solutions (8.80)–(8.82). By high quality factor, Q� 1, the components
Bi0, bi1, and bi2 become negligible and the AMF for the first overtone can
approximately be performed by the functions

μ∗r ∼=
1
A0

√
a2
11 + a2

12 , (8.88)

tanΨr ∼= −a12

a11
, (8.89)

suggesting that the sine component in (8.80) can be neglected.

Frequency Modulation Function

In a like manner, the FMF is specified via (8.80)–(8.82) by transforming (8.85).
However, as the reader probably remembers, the asymptotic methods give
solutions for frequency and phase only in the second order of approximation.
Therefore, the derivation of the FMF needs some care.

For the real cosine input (8.72), the modulated frequency ωi(t) of the ith
overtone, neglecting harmonics of the modulation frequency Ω, can approxi-
mately be written as

ω∗i (t) = iω0 + iΔω cosΩt ,

where Δω � ω0 is a small frequency deviation caused by α.
Inherently, the oscillator nonlinearity causes the amplitude-to-phase con-

version via overtones, owing to which additional components Δωci cosΩt and
Δωsi sinΩt appear in the frequency. If to add these components to ω∗i (t), then
the modulated frequency can be performed by

ωi(t) = iω0 + (iΔω + Δωci) cosΩt + Δωsi sinΩt

= iω0 [1 + μ∗ωi cos(Ωt + Ψωi)] , (8.90)

where
μ∗ωi =

1
iω0

√
(iΔω + Δωci)2 + Δω2

si , (8.91)

tanΨωi = − Δωsi

iΔω + Δωci
, (8.92)

and we notice that both μ∗ωi and Ψωi represent the FMF (8.77).
In a manner similar to the AMF, the components Δωci and Δωsi can also

be expressed via the amplitudes Ai and Bi. To provide, let us transform (8.85)
as follows,

− d
dt

arctan
Bi
Ai

= −B′iAi −A′iBi
A2
i + B2

i
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= Ω
Bi0ai2 −Ai0bi2

A2
i0 + B2

i0

cosΩt + Ω
Ai0bi1 −Bi0ai1

A2
i0 + B2

i0

sinΩt

= Δωci cosΩt + Δωsi sinΩt , (8.93)

where
Δωci = Ω

Bi0ai2 −Ai0bi2
A2
i0 + B2

i0

, (8.94)

Δωsi = Ω
Ai0bi1 −Bi0ai1

A2
i0 + B2

i0

. (8.95)

By (8.94), (8.95), Δωci � Δω, and Δωsi � Δω, we go from (8.91) to

μ∗ωi =
Δω

ω0

√(
1 +

Ω

iΔω

Bi0ai2 −Ai0bi2
A2
i0 + B2

i0

)2

+
(

Ω

iΔω

Ai0bi1 −Bi0ai1
A2
i0 + B2

i0

)2

(8.96)

∼= Δω

ω0

(
1 +

Ω

iΔω

Bi0ai2 −Ai0bi2
A2
i0 + B2

i0

)
(8.97)

∼= Δω

ω0

[
1 +

Ω

iΔω

Bi0
Ai0

(
ai2
Ai0
− bi2

Bi0

)]
. (8.98)

Similarly, (8.92) is transformed to

tanΨωi = − Δωsi

iΔω + Δωci
(8.99)

∼= − Ω(Ai0bi1 −Bi0ai1)
iΔω(A2

i0 + B2
i0) + Ω(Bi0ai2 −Ai0bi2)

(8.100)

∼= − Ω

iΔω

Bi0
Ai0

(
bi1
Bi0
− ai1

Ai0

)
. (8.101)

The FMF (8.77) is now approximately described by (8.98) and (8.101) in
terms of (8.81) and (8.82). Typically, the modulation processes are of concern
to the fundamental frequency ω0. If so, functions (8.98) and (8.101) can be
rewritten as, respectively,

μ∗ω ∼=
Δω

ω0

[
1 +

Ω

Δω

B0

A0

(
a12

A0
− b12

B0

)]
, (8.102)

Ψω ∼= − Ω

Δω

B0

A0

(
b11
B0
− a11

A0

)
. (8.103)

Further, in order to describe dynamics of an FM oscillator in terms of the
AMF and FMF, one needs writing the nonlinear oscillator ODE and solve it by
the double harmonic balance method for A0, B0, a11(Ω), a12(Ω), b11(Ω), and
b12(Ω). To illustrate the approach, below we examine electronic and crystal
FM oscillators.
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8.5.3 Oscillator with a Modulated Inductance

Let us consider a familiar electronic oscillator (Fig. 8.12), which inductance
L(t) is supposed to be modulated slowly as

L(t) = L0(1 + α cosΩt) , (8.104)

where L0 is constant, α � 1, and the modulation frequency Ω does not
exceed substantially the bandwidth, 0 � Ω ∼ 2δ = 1

RC . This means that Ω

Fig. 8.12. Oscillator with a modulated inductance.

is much smaller that the resonance frequency, Ω � ω0 = 1√
LC

. By (8.104),
the modulated frequency becomes

ω(t) = ω0 + Δω cosΩt = ω0

(
1 +

Δω

ω0
cosΩt

)

∼= ω0

(
1− α

2
cosΩt

)
, (8.105)

where Δω/ω0 = −α/2. Let us be interested of the oscillator response in the
amplitude and frequency to the modulation factor α at different Ω. We thus
need to find the relevant AMF (8.75) and FMF (8.77).

The oscillator balance equation can be written as

1
L

∫
voutdt +

vout

R
+ C

dvout

dt
= i(t) .

By substituting v1 = kv = M
L v, then describing the nonlinearity with the

traditional incomplete cubic polinomial i = a1v1 − a3v
3
1 , and assigning y =

vout, we arrive at the ODE

y′′ + 2δ(1−G1 + 3G3y
2)y′ + ω2

0(t)y = 0 , (8.106)

where the generalized gains G1 = a1kR and G3 = a3k
3R are associated with

the linear and cubic terms. When derived (8.106), we took into account the
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fact that L(t) is modulated slowly and hence is almost constant (having a
negligible time derivative) during the period of oscillations.

By harmonic balance, a solution of (8.106) is found as (8.80),

y = A cosφ + B sinφ . (8.107)

Substituting (8.107) to (8.106), dropping overtones, and equating ampli-
tudes of cosφ and sinφ to zero produce two equations,

A′′ + 2B′ω + Bω′ − 2δ(G1 − 1)(A′ + Bω)

+
3
2
δG3(3A2A′ + A2Bω + 2ABB′ + B2A′ + B3ω) = 0 , (8.108)

B′′ − 2A′ω −Aω′ − 2δ(G1 − 1)(B′ −Aω)

+
3
2
δG3(3B2B′ − B2Aω + 2AA′B + A2B′ −A3ω) = 0 . (8.109)

In frames of double harmonic balance, A and B are represented by (8.81)
and (8.82) as

A = A0 + a11 cosΩt + a12 sinΩt , (8.110)

B = B0 + b11 cosΩt + b12 sinΩt (8.111)

and substituted to (8.108) and (8.109). In the following transformations, one
needs to use (8.105) and neglect products of small values. Thereafter, if to
equate to zero the constant terms, we arrive at two equal equations with two
unknown amplitudes, A0 and B0,

A2
0 + B2

0 =
4

3G3
(G1 − 1) . (8.112)

Because (8.112) cannot be solved for two variables, it needs to consider some
additional condition to specify B0 via the overtones.

For the cubic nonlinearity given and initial base-emitter voltage v1 =
V cosωt, the collector current can be found as i(t) = I1c cosωt + I3c cos 3ωt,
where the amplitudes are I1c = V

R

(
GL − 3

4G3V
2
)

and I3c = − V 3

4R1
G3. The

third overtone induces an extra voltage

v3 =
1
C

∫
I3c cos 3ωtdt = −1

4
G3V

3

3ωCR
sin 3ωt (8.113)

such that the output voltage becomes

v∗ = V cosωt− δG3V
3

6ω
sin 3ωt . (8.114)

If we now set v∗1 = kv∗ and pass over the loop again, we will arrive at the
output voltage



8.5 Nonlinear Periodically Time-varying Systems 553

v ∼= V

(
GL − 3

4
G3V

2

)
cosωt +

3
4
G2

3

2δV 5

27ω
sinωt , (8.115)

where the amplitudes can be assigned as

A0 = V

(
GL − 3

4
G3V

2

)
, (8.116)

B0 =
3
4
G2

3

2δV 5

27ω
. (8.117)

On the other hand, we have V 2 = A2
0 + B2

0 and recall that, typically,
B2

0 � A2
0. In view of that, (8.116) and (8.117) produce

A0 =
√

4
3G3

(G1 − 1) , (8.118)

B0
∼= (G1 − 1)2

9Q
A0 , (8.119)

where Q = ω0/2δ is the quality factor. Now note that (8.118) is exactly a
solution of (8.112) if we allow B2

0 � A2
0. In turn, the “nonlinear” amplitude

B0 is represented via the main amplitude A0, quality factor Q, and linear gain
G1. That means that if an oscillator is quasi linear, G1 → 1, and Q → ∞,
then B → 0 and no substantial distortions in the phase and frequency can be
indicated over all modulation frequencies.

We can now equate to zero the terms with cosΩt and sinΩt in the trans-
formed (8.108) and (8.109), using (8.118) and (8.119). Consequently, we arrive
at four algebraic equations for a11, a12, b11, and b12, by ν = Ω/δ,

⎡
⎢⎢⎣
a11

a12

b11
b12

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3G3A0B0 0 3G3A
2
0 2ν

0 3G3A0B0 −2ν 3G3A
2
0

3G3A
2
0 2ν 3G3A0B0 0

2ν −3G3A
2
0 0 −3G3A0B0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−α2 B0ν
0
α
2 A0ν

⎤
⎥⎥⎦ .

(8.120)
A solution of (8.120), by G3 = 4(G1 − 1)/3A2

0, gives the functions

a11(ν) =
1
4
αA0

ν2

ν2 + 4(GL − 1)2
, (8.121)

a12(ν) = −1
2
αA0

ν(GL − 1)
ν2 + 4(GL − 1)2

, (8.122)

b11(ν) =
1
4
αB0

ν2[ν2 − 4(GL − 1)2]
[ν2 + 4(GL − 1)2]2

, (8.123)

b12(ν) = −αB0
ν3(GL − 1)

[ν2 + 4(GL − 1)2]2
. (8.124)
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Alternatively, by substituting B0 with (8.119), the amplitudes b11 and b12
can be rewritten as, respectively,

b11(ν) =
1
4
αA0

1
9Q

ν2(GL − 1)2[ν2 − 4(GL − 1)2]
[ν2 + 4(GL − 1)2]2

, (8.125)

b12(ν) = −αA0
1

9Q
ν3(GL − 1)3

[ν2 + 4(GL − 1)2]2
. (8.126)

Fig. 8.13 illustrates (8.121)–(8.124) for several values of G1, among which
the value G1 = 1.5 corresponds to the maximum generated power. The first

Fig. 8.13. Variable amplitudes: (a) a∗
11 = 4a11/αA0, (b) a∗

12 = 2a12/αA0, (c)
b∗11 = 36b11Q/αA0, and (d) b∗12 = 9b12Q/αA0.

point to notice is that, by 0← ν � 1, the modulation process is memoryless
(or static) and all of the variable amplitudes become zero.

As can be seen, increasing ν results in growing a∗11 = 4a11/αA0 that
asymptotically tends toward unity with a maximum rate at ν = 2(G1 − 1).
The negative a∗12 = 2a12/αA0 changes qualitatively as the derivative of a∗11.
However, the peak value −0.25 of a∗12 corresponding to the maximum rate of
a∗11 does not depend on GL.

One can now realize how strongly GL affects the modulation dynamics.
At the excitation bound, GL = 1, we have a∗11 = 1 and a∗12 = 0 for all ν. The
explanation lies in the following. With GL → 1, the losses of energy are almost
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fully recovered by feedback, the loaded quality factor rises dramatically, and
the loaded bandwidth therefore becomes extremely narrow. As a consequence,
a∗11 transfers from zero to unity by utterly low 0← ν � 1.

In line with a11 and a12, the amplitudes b11 and b12 vary mostly in the
range of small ν. The asymptotic level for b∗11 = 36b11Q/αA0 is (GL−1)2 and
it is zero for b∗12 = gb12Q/αA0. Because b11 and b12 are products of overtones,
their values are reciprocals of the quality factor. Therefore, when overtones
vanish, by GL = 1, both b11 and b12 become zero. The latter effect is neatly
seen in Fig. 8.13c and Fig. 8.13d, by GL = 1.1.

Employing (8.121)–(8.126), the AMF and FMF are now readily defined
via (8.86), (8.87), (8.102), and (8.103), respectively,

μ∗r =
αν

4
√

ν2 + 4(GL − 1)2
, (8.127)

tanΨr =
2(GL − 1)

ν
, (8.128)

μ∗ω ∼= −
α

2

[
1− ν2(G1 − 1)3[ν2 − 4(GL − 1)2]

18Q2[ν2 + 4(GL − 1)2]2

]
, (8.129)

Ψω ∼= − 2ν3(G1 − 1)4

9Q2[ν2 + 4(GL − 1)2]2
. (8.130)

Accordingly, the AMF is performed with

Hr(jν) = |Hr(jν)|ejΘr(ν) =
μ∗r(ν)

α
ejΨr(ν) (8.131)

and thus

|Hr(jν)| = μ∗r(ν)
α

=
ν

4
√

ν2 + 4(GL − 1)2
, (8.132)

tanΘr(ν) = tanΨr(ν) =
2(GL − 1)

ν
. (8.133)

In turn, the FMF is specified with

Hω(jν) = |Hω(jν)|ejΘω (ν) =
μ∗ω(ν)

α
ejΨω(ν) (8.134)

and, in the view of negative signs in (8.129) and (8.130), we have

|Hω(jν)| = −μ∗ω(ν)
α

=
1
2

[
1− ν2(G1 − 1)3[ν2 − 4(GL − 1)2]

18Q2[ν2 + 4(GL − 1)2]2

]
, (8.135)

Θω(ν) = π + Ψω(ν) = π − 2ν3(G1 − 1)4

9Q2[ν2 + 4(GL − 1)2]2
. (8.136)

Fig. 8.14 sketches the AMF and FMF for several values of G1. When FM
is “static” or memoryless, by ν � 1, spurious AM is very poor and the phase
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Fig. 8.14. AMF and FMF of an FM oscillator (Fig. 8.12): (a) |Hr(jν)|, (b) Θr(ν),
(c) |Hω(jν)|, and (d) 9

2
Q2[Θω(ν)− π].

difference between the modulating signal and envelope of y(t) is almost π/2.
It is seen that frequency distortions are negligible with ν � 1.

In this oscillator, spurious AM reaches a maximum, |Hr(jν)| = 0.25, when
ν � 1. Moreover, by ν � 1, the envelope of y(t) coincides in phase with the
modulating function, spurious FM reaches a maximum,

|Hω(jν)|ν
1 → 1
2

[
1− (G1 − 1)3

18Q2

]
, (8.137)

and the phase shift between ω(t) and L(t) becomes π. Note that this shift is
also π at ν = 0 and thus the maximum index of spurious FM corresponds to
the bound of the loaded bandwidth.

Relation (8.137) suggests a clear rule to decrease spurious FM, in contrast
to spurious AM that commonly cannot be avoided. In fact, if an oscillator
is near linear, G1 → 1, and its resonator has a high quality factor, Q � 1,
the value (8.137) becomes 0.5 corresponding to (8.105) over all modulation
frequencies. We notice that namely two these factors, a near unity G1 and high
Q, are pursued by designers of precision oscillators. Best results are achieved
in quantum and crystal oscillators.
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8.5.4 Frequency Modulated Crystal Oscillator

As the function (8.137) suggests, to obtain low distortion FM, an oscillator
must be quasi linear utilizing a resonator with high quality factor. A com-
monly accepted solution is to use a piezoelectric resonator instead of an LC
circuit and obtain G1 slightly more than unity. On the other hand, a quasi
linear piezoelectric oscillator becomes sensitive to changes in the closed loop
occurring with FM. Stability in the steady state must thus be ascertained
under the modulation conditions.

An equivalent scheme of the Colpitts2 crystal oscillator belonging to the
class of three-point oscillators is shown in Fig. 8.15. A piezoelectric resonator
is represented here with a series branch of motional L1, C1, and R1, in parallel
to which a static capacitance C0 is included. Two auxiliary capacitors, C2 and
C3, are included to organize feedback. FM is provided by a voltage applied to
a varactor diode, which capacitance Cv is put in series with the resonator.

Fig. 8.15. FM Colpitts crystal oscillator.

To derive an equilibrium equation, one can proceed with the Kirchoff’s3

laws and write

i = ir + i2 , ir = i1 + i0 ,
i0
C0

+ ir
C3 + Cv

CvC3
− i2

C2
= 0 ,

1
C1

∫
i1dt + R1i1 + L1

di1
dt
− 1

C0

∫
i0dt = 0 .

By ir = C3
dv
dt , the oscillator ODE can then be written as

C3g1v
′′′ + C3g2v

′′ + C3g3v
′ − C0

C2
i′′ − 2δr

C0

C2
i′ − ω2

2

(
1
pr
− 1
)

i = 0 , (8.138)

2 Edwin H. Colpitts, US engineer and inventor, 1872-1949.
3 Gustav Robert Kirchhoff, German mathematician, 12 March 1824–17 October

1887.
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where

ω2
2 =

1
L1C2

, pr =
C1

C0
, g1 = 1 + C0

(
1
C2

+
1
C3

+
1
Cv

)
,

g2 = 2δrg1 − 2
C0C

′
v

C2
v

, g3 = ω2
r [g1 + pr(g1 − 1)]− 2δr

C0C
′
v

C2
v

,

2δr =
R1

L1
=

1
Q2

rR1C1
, Qr =

ωr

2δr
, ω2

r =
1

L1C1
.

By inherently high Qr, spurious FM is negligible in crystal oscillators.
Therefore, to investigate dynamics and ascertain stability of oscillations with
FM means studying the spurious AM.

By van der Pol’s method, a solution of (8.138) can be written as

v = A cosφ ,

v′ = −Aω sinφ ,

v′′ = −A′ω sinφ−Aω2 cosφ ,

and v′′′ = −ω2v′. For the traditional nonlinearity i = a1v − a3v
3, harmonic

balance applied to (8.138) produces two equations,

A′C3(g3 − 3g1ω
2)− 2δrA

′C0

C2

(
a1 +

9
4
a3A

2

)
−AC3g2ω

2

+A

[
C0

C2
ω2 − ω2

r (1 + pr)
](

a1 +
3
4
a3A

2

)
= 0 , (8.139)

AC3(g1ω
2 − g3) + 2δrA

C0

C2

(
a1 +

3
4
a3A

2

)
− 2A′C3g2

+2A′
C0

C2

(
a1 +

9
4
a3A

2

)
= 0 . (8.140)

For the harmonically modulated capacitance Cv of a diode,

Cv = Cv0(1 + α cosΩt) , (8.141)

where α� 1, the oscillator frequency is modulated as

ω = ω0

(
1− α1

2
cosΩt

)
, (8.142)

where
α1 = α

C0pr

Cv0r1[pr(r1 − 1) + r1]
,

r1 = 1 + C0

(
1
C3

+
1
C2

+
1

Cv0

)
,
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and auxiliary functions for (8.139) and (8.140) are defined to be

g1 = r1(1− αr2 cosΩt) ,

g2 = 2δrg1 + αr3Ω sinΩt ,

g3 = g1ω
2
r + αδrr3Ω sinΩt + ω2

r pr(r1 − 1)− αω2
v0 cosΩt ,

where r2 = r1C0/Cv0, r3 = 2r1r2, and ω2
v0 = 1/L1Cv0.

Substituting all the above given functions to (8.139) and (8.140) and there-
after equating to zero the constant terms and the terms with cosΩt and sinΩt,
we obtain the equations

1− 2C0ω0Δ− C2ω
2
2

C3C2ω2
02δrr1

(
a1 +

3
4
a3A

2
0

)
= 0 , (8.143)

[
a11

a12

] [−(G1 − 1) −ν
ν −(G1 − 1)

]
=

[
−αA0r2

(
1 + (G1−1)2

18

)

αA0ν
(
r2 + 3

4

)
]
, (8.144)

where ν = Ω/δr and the frequency shift caused by Cv0 is

Δ = ω0
pr

4r1

(
2r1 − 1−

√
1− 4r2

1

p2
rQ

2
r

)
.

By (8.143), the amplitude A0 possess the familiar form of

A0 =
√

4
3G3

(G1 − 1) , (8.145)

where

G1 = a1
2C0ω0Δ− C2ω

2
2

C3C2ω2
02δrr1

,

G3 = a3
2C0ω0Δ− C2ω

2
2

C3C2ω2
02δrr1

.

Thereafter, (8.144) produces two variable amplitudes

a11
∼= αA0

r2(G1 − 1)
[
1 + (G1−1)2

18

]
+ ν2

(
r2 + 3

4

)

(G1 − 1)2 + ν2
, (8.146)

a12
∼= αA0ν

r2

[
1 + (G1−1)2

18

]
− (G1 − 1)

(
r2 + 3

4

)

(G1 − 1)2 + ν2
. (8.147)

An important peculiarity of these functions is that, by the critical values

G1b = 1 +
9
r2

(
r2 +

3
4

)
+

3
r2

√
9
(
r2 +

3
4

)2

− 2r2
2 , (8.148)
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r2b =
27
2

G1 − 1
(G1 − 1)2 − 18(G1 − 1) + 18

, (8.149)

the value of a11 becomes constant

a11b =
3
4
αA0

18 + (G1 − 1)2

(G1 − 1)2 − 18(G1 − 1) + 18
. (8.150)

and a12 zero over all modulation frequencies.
Fig. 8.16 answers the question of what happens with a11(ν) and a12(ν)

if r2 is fixed and G1 varies about G1b. It is seen that for any G1 � G1b,
spurious AM is bounded by (8.150) and the equilibrium point is always stable.
Contrary, if G1 is less than G1b and approaches unity, 1 ← G1 < G1b, the
spurious AM index rises dramatically causing instability. A similar picture is
watched in changes of a12: by 1← G1 � G1b, the amplitude a12 demonstrates
a dramatic overshoot causing instability.

Fig. 8.16. Variable amplitudes, by r2 = const: (a) a11(ν) and (b) a12(ν).

Now needs to be examined the case of a maximum generated power ob-
tained by G1 = 1.5 for r2 ranging within the allowed bounds, 0 � r2 � 1.
Again we infer that there is some critical value r2b for which a12 is constant
and a12 = 0 over all ν. However, no critical values of a11 and a12 exist (Fig.
8.17) to cause instability.

By (8.146) and (8.147), the magnitude and phase AMFs are defined to
be, respectively,

|Hr(jν)| =
√

ν2
(
r2 + 3

4

)2 + r2
2

[
1 + 1

18 (G1 − 1)2
]

ν2 + (G1 − 1)2
, (8.151)

tanΘr(ν) = −ν
r2

[
1 + (G1−1)2

18

]
− (G1 − 1)

(
r2 + 3

4

)

r2(G1 − 1)
[
1 + (G1−1)2

18

]
+ ν2

(
r2 + 3

4

) . (8.152)
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Fig. 8.17. Variable amplitudes for a constant G1 = 1.5: (a) a11(ν) and (b) a12(ν).

Inherently, by (8.148) and (8.149), the magnitude AMF becomes constant,
|Hr(jν)| = Hr0 = a11b(ν)/αA0, and phase AMF zero, Θr(ν) = 0, over all fre-
quencies ν. Following a11 and a12, the magnitude AMF increases dramatically
(Fig. 8.18a) when 1 ← G1 < G1b. The oscillator thus loses stability and it is
stable otherwise, if G1 � G1b.

A picture similar to Fig. 8.17 can be sketched for the AMF assuming
G1 = 1.5. A key point is that there is no value of r2 between zero and unity
to make the oscillator potentially unstable (Fig. 8.19). Moreover, the spurious
AM index lowers if r2 < r2b, making this value preferable for FM.

Overall, to avoid potential instability of this NPTV system, it is recom-
mended to choose the value of G1 such that the spurious AM has almost a
constant index over all modulation frequencies.

Example 8.10. An NPTV system shown in Fig. 8.15 utilizes a piezoelectric
resonator excited at the firth overtone frequency fr = 100MHz having the
quality factor Qr = 105, static capacitance C0 = 3 × 10−12F, and losses
R1 = 100Ohm. Additional capacitances are C2 = 100×10−12F and C3 = 50×
10−12F. A bias voltage +V of a varactor diode is chosen such that Cv0 = 10×
10−12F. FM is carried out by voice in the frequency range of (300− 3000)Hz.

Fig. 8.18. AMFs for a constant r2: (a) magnitude |Hr(jν)| and (b) phase Θr(ν).
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Fig. 8.19. AMF for G1 = 1.5: (a) magnitude |Hr(jν)| and (b) phase Θr(ν).

The resonator bandwidth, Wr = fr/Qr = 1000Hz, coincides with the spec-
tral content of the modulating signal. Coefficients r1 and r2 are evaluated by
r1 = 1 + C0

(
1
C2

+ 1
C3

+ 1
Cv0

)
= 1.39 and r2 = C0

r1Cv0
= 0.216, respectively.

For r2 = 0.216, we have G1b = 1.224 and thus, to avoid potential instability,
the gain G1 must be chosen such that G1 � 1.224. ��

8.5.5 Modulation Functions Method (Fast Modulation)

As it follows, the modulation functions method (slow modulation) is applicable
to an NPTV closed loop system (oscillator) that is periodically varied with
the frequency comparable with the resonator bandwidth, 2δ ∼ Ω � ω0. With
higher modulation frequencies, 2δ � Ω → ∞, both AMF and FMF reach
their asymptotic levels and, if such a system is characterized with a single
resonance (pole), an analysis is complete.

If a system is multiresonant (multipole), the main question arises how the
nonuniformity of the open loop frequency response affects modulation. An
example is an oscillator with any physical (bulk) resonator (dielectric, crystal,
microwave, etc), which resonant system is inherently multimodal. To describe
such a system, the modulation functions method needs to be modified for fast
modulation.

Let us consider an oscillator represented with the closed loop Hammerstein
system, whose linear periodically time-varying (modulated) feedback has two
branches as shown in Fig. 8.20. The memoryless nonlinearity f(·) and the
principle feedback with the frequency response H(jω, t) generate steady-state
oscillations at the frequency ω0. An additional unexcited feedback is supposed
to be multiresonant. For the sake of simplicity, we save in this branch only
the ith resonance at ωi > ω0, i = 1, 2, . . ., and represent it with the frequency
response Hi(jω).

Beyond the bandwidth of an additional feedback, the output y0(t) can be
described using (8.79) as follows
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Fig. 8.20. Oscillator with two resonant feedbacks.

y0(t) = r0 [1 + μ∗r cos(Ωt + Ψr)] cos
[
ω0t + μ∗ϕ sin (Ωt + Ψω) + ϕ1

]
, (8.153)

where μ∗r(Ω), Ψr(Ω), μ∗ϕ(Ω) = ω0
Ω μ∗ω(Ω), and Ψω(Ω) are specified with slow

modulation by (8.86), (8.87), (8.102), and (8.103), respectively. Here, without
loss in generality with FM, ϕ1 can be omitted.

Typically, the modulation factors in FM oscillators are such that |μ∗ω| �
|μ∗r | < 1 and |μ∗ϕ| � 1. That allows us to let

cos(β sin z) ∼= cos(β cos z) ∼= 1 ,

sin(β sin z) ∼= β sin z ,

sin(β cos z) ∼= β cos z

and represent the spectral content of (8.153) with

y0(t) = V1 cos (ω0t + ϕ0)

+V−Ω cos [(ω0 −Ω) t + ϕ−Ω] + V+Ω cos [(ω0 + Ω) t− ϕ+Ω]

−V−2Ω cos [(ω0 − 2Ω) t + ϕ−2Ω]− V+2Ω cos [(ω0 + 2Ω) t− ϕ+2Ω ] , (8.154)

where the amplitudes and phases are defined by

V1 = r0

√
1 +

1
4
μ∗2r μ∗2ϕ sin2 (Ψr − Ψω) , (8.155)

tanϕ0 = −1
2
μ∗rμ

∗
ϕ sin (Ψr − Ψω) , (8.156)

V±Ω = r0

√
1
4
(
μ∗2r + μ∗2ϕ

)∓ 1
2
μ∗rμ∗ϕ cos (Ψr − Ψω) , (8.157)

tanϕ±Ω = − μ∗ϕ sinΨω ∓ μ∗r sinΨr

μ∗ϕ,r cosΨr ∓ μ∗r,ϕ cosΨω
, (8.158)

V±2Ω =
r0

4
μ∗rμ

∗
ϕ , (8.159)
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ϕ±2Ω = −(Ψr + Ψω) . (8.160)

Let us now analyze an influence of the additional resonant feedback. Of
prime interest is to evaluate spurious AM and FM when the most power side
spectral component of (8.154) with the frequency ω0 +Ω ∼= ωi passes through
the additional branch. It can be supposed that, when passed, an auxiliary
voltage is generated at the output,

yi(t) = Vic cos(ω0 + Ω)t + Vis sin(ω0 + Ω)t , (8.161)

with amplitudes V1c(Ω) and V1s(Ω) caused by Hi(jω).
Adding (8.161) to (8.154) forms the output

y(t) = y0(t) + yi(t) = Vg(t) cos [ω0t + ϕg(t)] , (8.162)

where
Vg(t) =

√
V 2

g1 + V 2
g2, (8.163)

tanϕg(t) = −Vg2

Vg1
, (8.164)

Vg1 = V1 [1 + μ∗r cos (Ωt + Ψr)] cos
[
μ∗ϕ sin (Ωt + Ψω)

]

+Vic cosΩt + Vis sinΩt , (8.165)

Vg2 = V1 [1 + μ∗r cos (Ωt + Ψr)] sin
[
μ∗ϕ sin (Ωt + Ψω)

]

+Vis cosΩt− Vic sinΩt . (8.166)

Similarly to slow modulation, we can now transform (8.163) and (8.164)
in order to evaluate the factors of spurious AM and FM.

Spurious Amplitude Modulation

Neglecting harmonics of the modulation frequency, the amplitude (8.163) can
be transformed to the AM form of

Vg(t) = Vg0 [1 + μ∗Vi cos (Ωt + ΨVi)] , (8.167)

where
μ∗Vi =

1
2V 2

g0

√
V 4

Ci + V 4
Si ,

tanΨVi = − V 2
Si

V 2
Ci

,

V 2
g0 = r2

0

[
1 +

μ2
r

2
+ k2

i + kiμ
∗
r cos (Ψr − ϕi) + kiμ

∗
ϕ cos (Ψω − ϕi)

]
,
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V 2
Ci = r2

0

{
2
(
Vic
r0

+ μ∗r cosΨr

)

+μ∗rμ
∗
ϕ

[
Vis
r0

sin (Ψr − Ψω) +
ki
2

cos (Ψr + Ψω − ϕi)
]}

,

V 2
Si = r2

0

{
2
(
Vis
r0
− μ∗r sinΨr

)

−μ∗rμ∗ϕ
[
Vic
r0

sin (Ψr − Ψω)− ki
2

sin (Ψr + Ψω − ϕi)
]}

.

Also, Vi =
√

V 2
ic + V 2

is and tanϕi = −Vis
Vic

are the amplitude and phase of
(8.161) and ki = Vi/r0 is the modulation coefficient.

Spurious Frequency Modulation

The instantaneous frequency shift, caused by the phase ϕg (8.164), can be
defined by

Δωg(t) =
d
dt

ϕg(t) =
1

V 2
g1 + V 2

g2

(
Vg1

dVg2

dt
− Vg2

dVg1

dt

)
. (8.168)

Substituting (8.165) and (8.166) to (8.168) and neglecting products of small
values yield

Δωg(t) ∼=
−Ω [(μ∗ϕ cosΨω − ki cosϕi

)
cosΩt− (μ∗ϕ sinΨω − ki sinϕi

)
sinΩt

]
. (8.169)

The signal modulated frequency can now be performed in the standard
FM form as

ω(t) = ω0 [1 + μ∗Wi cos (Ωt + ΨWi)] , (8.170)

where μWi(Ω) = Δωg/ω0 and ΨWi(Ω) are provided by

μ∗Wi =
Ω

ω0

√
μ∗2ϕ − 2μ∗ϕki cos(Ψω − ϕi) + k2

i , (8.171)

tanΨWi =
μ∗ϕ sinΨω − ki sinϕi

μ∗ϕ cosΨω − ki cosϕi
, (8.172)

to describe the FMF of an oscillator.
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Modulation Factors and Functions

After the transformations, we finally arrive at the output signal

y(t) = Vg0 [1 + μ∗Vi cos (Ωt + ΨVi)]

× cos
{
ω0

∫
[1 + μ∗Wi cos (Ωt + ΨWi)] dt + ϕ1

}
, (8.173)

where

μ∗Vi = μ∗r0

√
1 + 2

ki
μ∗r0

cos (Ψr0 − ϕi) +
k2
i

μ∗2r0
, (8.174)

tanΨVi =
μ∗r0 sinΨr0 + ki sinϕi
μ∗r0 cosΨr0 + ki cosϕi

, (8.175)

μ∗Wi = μ∗ω0

√
1− 2

ki
μ∗ϕ0

cos (Ψω0 − ϕi) +
k2
i

μ∗2ϕ0

, (8.176)

tanΨWi =
μ∗ϕ0 sinΨω0 − ki sinϕi

μ∗ϕ0 cosΨω0 − ki cosϕi
. (8.177)

In these functions, μ∗r0, Ψr0, μ
∗
ω0, μ

∗
ϕ0, and Ψω0 are parameters of modulation

beyond the bandwidth of Hi(jΩ) and the frequency-varying coefficient ki = Vi

r0
is specified by Hi(jΩ).

A simple analysis of (8.174)–(8.177) shows that with an extremely small
gain of an additional resonance circuit, ki → 0, modulation is characterized
with the AMF and FMF featured to slow modulation: μ∗Vi = μ∗r0, ΨVi = Ψr0,
μ∗Wi = μ∗ω0, and ΨWi = Ψω0.

It also follows that when Ω is exactly equal to ωi−ω0, causing ϕi ∼= Ψri ∼=
Ψωi ∼= 0, then (8.174) and (8.176) reach their extrema, respectively,

μ∗Vi|ext = μ∗r0 + kimax ,

μ∗Wi|ext = μ∗ω0 −
ωi − ω0

ω0
kimax .

Because 0 < |μ∗ω0| � |μ∗r0| < 1 and ki can be large, the increase in the
modulation factors caused by an additional resonance can be very appreciable.
In this sense, the effect is reminiscent of the familiar parametric amplification
in LPTV systems demonstrated in Fig. 6.27.

For this model, the AMF and FMF can be defined by

|Hri(jΩ)| =
∣∣∣∣
μ∗Vi
μ∗r0

∣∣∣∣ , Θri =
{

ΨVi, μ∗Vi/μ
∗
r0 � 0

ΨVi + π, μ∗Vi/μ
∗
r0 < 0 , (8.178)
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|Hωi(jΩ)| =
∣∣∣∣
μ∗Wi

μ∗ω0

∣∣∣∣ , Θωi =
{

ΨWi, μ∗Wi/μ
∗
ω0 � 0

ΨWi + π, μ∗Wi/μ
∗
ω0 < 0 . (8.179)

To calculate (8.178) and (8.179), the complex modulation coefficient

kie
jϕi =

√
V 2
ic + V 2

is

r0
e
−j arctan

Vis
Vic (8.180)

must be specified for the particular oscillator scheme.

Example 8.11 (Modulation coefficient). To define ki and ϕi, by (8.180),
the loop (Fig. 8.20) may be reconfigured regarding the frequency ωi as shown
in Fig. 8.21. At ωi, the nonlinear function f(·) is linearized with a gain factor
a and the main feedback omitted.

Fig. 8.21. An oscillator loop linearized at ωi: (a) output-to-output and (b) input-
to-output.

The spectral component yb = ReV+Ωej(ωbt−ϕ+Ω) of y(t) acts at the fre-
quency ωb = ω0 +Ω in the output (Fig. 8.21a). Equivalently, it can be trans-
ferred to the input as xb = yb

a (Fig. 8.21b). The output component ybi caused
by xb is defined by

ybi = xb
a

1− aHi
= yb

1
1− aHi

= ybHb . (8.181)

By Hb(jω) = Hbr(ω) + jHbi(ω), we rewrite the real part of (8.181) as

ybi = V+Ω |Hb(jω)| cos(ωbt + ϕb − ϕ+Ω)

= V+Ω |Hb(jω)| cos(ϕb − ϕ+Ω) cosωbt− V+Ω |Hb(jω)| sin(ϕb − ϕ+Ω) sinωbt ,
(8.182)

where
|Hb(jω)| =

√
H2

br(ω) + H2
bi(ω) , (8.183)

tanϕb(ω) =
Hbi(ω)
Hbr(ω)

. (8.184)

Equivalently, ybi can be defined by the sum of two components, yb =
V+Ω cos(ωbt− ϕ+Ω) and yi (8.161); that is,
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ybi = (V+Ω cosϕ+Ω + V1c) cosωbt + (V+Ω sinϕ+Ω + V1s) sinωbt . (8.185)

By equating (8.182) and (8.185) and making the necessary transforma-
tions, we find the amplitudes

Vic = V+Ω [(Hbr − 1) cosϕ+Ω + Hbi sinϕ+Ω ] , (8.186)

Vis = V+Ω[(Hbr − 1) sinϕ+Ω −Hbi cosϕ+Ω] , (8.187)

where Hbr(ω) and Hbi(ω) are specified by a particular oscillator scheme. By
Hi(jω) = H1(ω)+jH2(ω) and an identity (1−aHi)−1 = Hb stated by (8.181),
the components Hbr(ω) and Hbi(ω) become

Hbr =
1− aH1

(1 − aH1)2 + a2H2
2

, (8.188)

Hbi = − aH2

(1− aH1)2 + a2H2
2

. (8.189)

Finally, because of Vi =
√

V 2
ic + V 2

is, (8.186) and (8.187) yield

Vi = V+Ω

√
(Hbr − 1)2 + H2

bi , (8.190)

and the coefficient ki is defined by

ki =
Vi
r0

=
V+Ω

r0

√
(Hbr − 1)2 + H2

bi . (8.191)

The most common property of ki can now be pointed out by analyzing
(8.188) and (8.189). As it is seen, exactly at Ω = ωi − ω0, we have H2 = 0,
thus Hbr = (1− aH1)−1 and Hbi = 0, and ki reaches a maximum value

kimax =
V+Ω

r0

∣∣∣∣
aH1

1− aH1

∣∣∣∣
that in the linearized model tends toward infinity when aH1 = 1. A typical
surface plot of ki(Ω, a|Hi(jω)|) is shown in Fig. 8.22.

The phase, tanϕi = −Vis/Vic, ranges from π/2 to −π/2. By increasing
Ω, it changes from positive to negative values if a|Hi(jω)| < 1, becomes zero
when a|Hi(jω)| = 1 and Ω = ωi − ω0, and changes from negative to positive
values if a|Hi(jω)| > 1. A typical surface plot of ϕi(Ω, a|Hi(jω)|) is shown in
Fig. 8.23.

Such changes in the modulation coefficient kie
jϕi mean that, similarly to

parametric excitation of LPTV systems, modulation of an NPTV closed loop
system (oscillator) can cause excitation of its additional resonant branch. ��

So, if the frequency response Hi(jω) of an additional resonant feedback is
distinct and kie

jϕi is specified as in Example 8.11, the AMF and FMF of an
FM oscillator can be calculated using (8.178) and (8.179) via (8.174)–(8.177).
Below, we apply this approach to the Butler type crystal oscillator.
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Fig. 8.22. A typical function of ki(Ω, a|Hi(jω)|).

Fig. 8.23. A typical function of ϕi(Ω, a|Hi(jω)|).

8.5.6 Butler Type FM Crystal Oscillator

To illustrate application of the approach to fast modulation, we are going to
examine in this section the Butler type FM crystal oscillator, whose equivalent
scheme is given in Fig. 8.24a. Here, a transistor and the net of L,C1 and C2

compose a non-inverting NTI amplifier. A cascade of a crystal resonator and
varactor diode represent an LTV resonant feedback. By two series branches
of a piezoelectric resonator, the scheme becomes as sketched in Fig. 8.24b,
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Fig. 8.24. Equivalent scheme of a Butler type FM crystal oscillator: (a) basic and
(b) simplified.

where Lq, Cq and Rq represent the fundamental vibration, La, Ca and Ra

the anharmonic vibration, and C0 is the resonator static capacitance. The
branches are characterized with the resonance frequencies, ωq = 1/

√
LqCq

and ωa = 1/
√
LaCa, and nonoverlapped bandwidths, 2δq = Rq/Lq and 2δa =

Ra/La.
To find the AMF and FMF associated with the feedback frequency re-

sponse Hi(jω), we substitute the loop at the frequency ωa with the equivalent
scheme shown in Fig. 8.25a. The scheme can further be generalized as in Fig.
8.25b for the impedance of an additional branch Zea = Rea + jXea and as in
Fig. 8.25c for the impedance of an additional feedback Ze = Re + jXe. Here,
the voltage vb(t, Ω) is the output component with the frequency ωq +Ω ∼ ωa.

Fig. 8.25. The Butler type FM crystal oscillator linearized at ωa: (a) basic scheme,
(b) with a generalized resonator, and (c) generalized.
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Real and imaginary components of the impedance of a crystal resonator
additional branch are given by (5.84) and (5.85), respectively,

Rea = Ra
1

(1 − νκa)2 + κ2
a

, (8.192)

Xea = Ra
ν(1− νκa)− κa

(1− νκa)2 + κ2
a

, (8.193)

where ν(ω) = (ω − ωa)/δa and κa = RaωaC0 is the κ-factor of an additional
branch of a crystal resonator. By (8.192) and (8.193), the frequency response
of an additional feedback is defined to be

Hi =
Rin

Rin + Rea + j(Xea − X̄v)
= H1 + jH2 , (8.194)

where X̄v(ω) = 1/ωC̄v and C̄v is a mean capacitance of a varactor diode.
By (8.194), the real part H1(ω) and imaginary part H2(ω) of Hi(jω) are

defined as
H1 =

Rin(Rin + Rea)
(Rin + Rea)2 + (Xea − X̄v)2

, (8.195)

H2 =
Rin(Xea − X̄v)

(Rin + Rea)2 + (Xea − X̄v)2
. (8.196)

Exploiting (8.195) and (8.196), the modulation functions of the FM crystal
oscillator can easily be calculated numerically. In the following examples, we
observe several particular situations.

Example 8.12 (Basic scheme). Consider a scheme (Fig. 8.25a) character-
ized with fa = 5.108 MHz, La = 10 H, and Ra = Rin = 150 Ohm. For clarity,
we let μ∗ω0 = 10−6, Ψω0 = 0, μ∗r0 = 10−2, and Ψr0 = π. The capacitance C̄v is
assumed to be extremely large and C0 negligibly small.

Under such conditions, (8.195) and (8.196) can be simplified to

H1 =
Rin(Rin + Rea)

(Rin + Rea)2 + X2
ea

,

H2 =
RinXea

(Rin + Rea)2 + X2
ea

,

where Rea = Ra and Xea = Ra(ω−ωa)/δa. Numerical plots of the magnitude
AMF |Hri(jΩ)| and phase AMF Θri(Ω) are shown in Fig. 8.26a and Fig.
8.26b, respectively. As can be seen, the functions qualitatively fit Fig. 8.22
and Fig. 8.23. Indeed, increasing a|Hi| makes the magnitude AMF brightly
pronounced and such that, by a|Hi| = 1, it becomes infinity. Further increasing
with a|Hi| > 1 reduces the peak value. Contrary to ϕi (Fig. 8.23), the phase
AMF (Fig. 8.26b) ranges from π to −π, but the trend remains qualitatively
the same. By increasing Ω, the phase changes from π to −π, if a|Hi| < 1. At
a|Hi| = 1, it jumps from π to −π exactly at Ω = ωa − ωq and, by a|Hi| > 1,
changes the sign. ��
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Fig. 8.26. AMF of an oscillator (Example 8.12): (a) magnitude and (b) phase.

Example 8.13 (Effect of C0). Consider Example 8.12, supposing that C̄v

is still very large, but C0 > 0 is real. For this case, the components H1 and
H2 are defined, respectively, by (8.195) and (8.196) with X̄v = 0.

The magnitude FMF |Hωi(Ω)| and phase FMF |Θωi(Ω)| are shown in Fig.
8.27a and Fig. 8.27b, respectively, for a|Hi| = 0.8 and several feasible values of
C0. As can be seen, the parallel resonance at the frequency 1/

√
LaC0 forces the

phase to change the sign. It is also seen that the peak value of the magnitude
FMF has appeared to be larger than μω0 by the factor of about 2000 that
coincides with Fig. 8.22. ��
Example 8.14 (Effect of C̄v). Let us now examine the most general case
of Fig. 8.25a when both C0 and C̄v are real and another parameters are those
given in Example 8.12. Setting for clarity C0 = 4 × 10−12 F and aHbr = 0.9,
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Fig. 8.27. FMF of an oscillator (Example 8.13): (a) magnitude and (b) phase.

we change C̄v, calculate (8.195) and (8.196), and watch for the AMF and
FMF.

The magnitude and phase AMFs are shown in Fig. 8.28a and Fig. 8.28b,
respectively, and we indicate some new trends. Reducing C̄v first results in
decreasing the peak value of |Hri(Ω)|. With some boundary value of C̄v, the
magnitude AMF becomes flat and, by further increasing C̄v, demonstrates a
dip, which minimum can locate closely to zero. By very small values of C̄v,
there are almost no changes in the AMF. The latter is because the feedback
becomes extremely poor when C̄v < 1. The relevant phase AMFs also differ
from those (Fig. 8.26b) observed in the basic structure.

Similarly to the magnitude AMF, the peak value of the magnitude FMF is
removed by increased C̄v toward higher frequencies (Fig. 8.29a) with, however,
no dips. Here, the phase FMFs (Fig. 8.29b) behave qualitatively as in Fig.
8.27b, except for shifts at zero. ��

The above-given examples neatly demonstrate several important features
of NPTV closed loop systems. First of all, if an LTI resonant part is multi-
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Fig. 8.28. AMF caused by an additional feedback: (a) magnitude and (b) phase.

frequency (multipole), the modulation indexes of both spurious AM and FM
can reach extremely large values at some resonance frequencies. Second of all,
energy induced with modulation by spectral components of the output to an
additional resonant feedback can cause excitation of this feedback. If it occurs,
an oscillator becomes either multifrequency, although unstable, or, typically,
can no longer fulfill the requirements.

8.6 State Space Representation

As well as other systems, NTV systems can also be represented in state space
that often has certain advantages against the ODE form. In fact, the state
space model allows finding generalizations and solutions at least for several
important particular cases.

Most generally, an NTV system is represented in state space with the
equations
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Fig. 8.29. FMF caused by an additional feedback: (a) magnitude and (b) phase.

q′(t) = Ψ[q(t),x(t), t] , (8.197)

y(t) = Υ[q(t),x(t), t] , (8.198)

where q(t) is the state vector, x(t) is the input vector, and y(t) is output
vector. Here Ψ and Υ are some nonlinear time-varying vector functions. Like
the NTI system case, these generalized equations are unsoluble, until the func-
tions Ψ and Υ are specified. Moreover, a general solution is not of importance,
because of real electronic systems are typically described in particular forms.
In the below examples, we examine several such forms associated with already
familiar electronic systems.

Example 8.15 (Voltage controlled oscillator). Consider a voltage con-
trolled oscillator (Fig. 8.12) with a time-varying capacitance C(t) and all other
parameters constant. The oscillator can be described with the ODE
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y′′ +
[
C′

C
+

R

L
+

M

LC

(
a− 3by2

)]
y′ +

1
LC

y = 0 ,

By assigning the state variables q1 = y, q2 = y′ = q′1, and

q′2 = −
[
C′

C
+

R

L
+

M

LC

(
a− 3bq2

1

)]
q2 − 1

LC
q1 ,

we arrive at the state and output equations, respectively,

q′(t) = A[q(t), t]q(t) + Bx(t) , (8.199)

y(t) = Cq(t) + Dx(t) , (8.200)

in which the input and output matrices are both zero, B = 0 and D = 0,
respectively, the measurement matrix is C = [1 0], and the system matrix is
nonlinear and time-variant,

A[q(t), t] =
[

0 1
− 1
LC −C′

C − R
C − M

LC (a− 3bq2
1)

]
.

In this typical case of an electronic oscillator, the general equations (8.197)
and (8.198) become (8.199) and (8.200), respectively. It follows that the state
equation is NTV, whereas the measurement equation is LTI. A general solu-
tion of (8.199) and (8.200) can be found by regular methods and stability can
be ascertained by investigating the system matrix A[q(t), t]. ��
Example 8.16 (Time-variant Hammerstein-based control system).
Consider a memoryless NTV system, which nonlinearity f(·, t) is adapted
to external situation and is thus time-varying. To operate only in the certain
frequency region, an LTI filter is placed over to organize a feedback. The sys-
tem thus becomes the time-varying Hammerstein-based closed loop control
system (Fig. 7.45a) with the nonlinearity f(·, t). In state space, such a SISO
control loop is represented with the familiar equations (7.253) modified to

q′(t) = Aq + By(t) ,

v(t) = Cq ,

y(t) = f [x(t) + v(t), t] (8.201)

that has a compact form of

q′(t) = Aq + Bf [Cq + x(t), t] .

To ascertain stability, the Popov’s criterion can be applied if to take into
consideration time variations if the nonlinearity. ��
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Example 8.17 (Time-variant Lur’e control system). A linear BP track-
ing (thus time-varying) filter is designed with saturation in the feedback rep-
resenting the time-varying Lur’e control system. The state space presentation
of this system (Fig. 7.45b) is given by the modified equations (7.254),

q′(t) = A(t)q(t) + Bv(t) ,

y(t) = Cq(t) ,

v(t) = x(t) + f(y) , (8.202)

having a compact form of

q′(t) = A(t)q(t) + B{x(t) + f [Cq(t)]} .

If the system matrix A(t) is Hurwitz, then stability of this system is as-
certained by the Popov criterion. ��

These examples neatly show that, at least in several important practical
cases, the general equations, (8.197) and (8.198), can be substituted with much
more simple forms having solutions and analizable for stability. In some other
cases, linearization of the state space NTV model often gives nice solutions
for particular problems.

8.6.1 Linearization

Linearization of NTV systems in state space is provided similarly to NTI
systems. First of all, one needs to examine the model in the vicinity of the
point (y0,x0), state q0, and its time derivative q′0, provided

q(t) = q0(t) + q̃(t) , (8.203)

x(t) = x0(t) + x̃(t) , (8.204)

y(t) = y0(t) + ỹ(t) , (8.205)

where q̃(t), x̃(t), and ỹ(t) are small time-varying increments. By (8.203)–
(8.205), the state space model (8.197) and (8.198) can then be rewritten as

q′0(t) + q̃′(t) = Ψ[q0(t) + q̃(t),x0(t) + x̃(t), t] , (8.206)

y0(t) + ỹ(t) = Υ[q0(t) + q̃(t),x0(t) + x̃(t), t] . (8.207)

If to expand the right-hand sides of (8.206) and (8.207) to the Taylor series
and save only the constant and linear terms, we can arrive at the linearized
equations

q̃′(t) = A(t)q̃(t) + B(t)x̃(t) , (8.208)

ỹ(t) = C(t)q̃(t) + D(t)x̃(t) , (8.209)
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in which the time-varying Jacobian matrices are determined by

A(t) =
∂Ψ
∂q

∣∣∣∣
0

, B(t) =
∂Ψ
∂x

∣∣∣∣
0

, C(t) =
∂Υ
∂q

∣∣∣∣
0

, D(t) =
∂Υ
∂x

∣∣∣∣
0

,

(8.210)
where “0” still means the point (x0,y0) and q0.

The linearized NTV system is thus the LTV system with all of the prop-
erties featured to the latter.

Example 8.18. An NTV system is described in state space by the equations
[
q′1
q′2

]
=
[ −3q1 − 2tq2 + x1

−q1q2 − 4tq2 + 2x2

]
, (8.211)

y(t) = 2tq1 + q1q2 + x1 + 2x2 . (8.212)

By (8.210), the system is linearized at t0 to posses the forms (8.208) and
(8.209) with the matrices

A(t) =
[ −3 −4t
−q2(t0) −q1(t0)− 4t

]
, B =

[
1 0
0 2

]
,

C(t) =
[
2t + q2(t0) q1(t0)

]
, D =

[
1 2
]
.

Here only the system and observation matrices are time-varying. ��
The other particular models of NTV systems are associated with the time-

varying Hammerstein and Wiener systems.

8.6.2 Time-varying Hammerstein System

Let us recall that the basic Hammerstein system (Fig. 7.37a) is represented
with the memoryless (static) NTI subsystem following by the memory (dy-
namic) LTI subsystem. Implying time variations in the structure, we thus
have three basic realizations of the time-varying Hammerstein system shown
in Fig. 8.30. In the first case (Fig. 8.30a), the nonlinear memoryless part is

Fig. 8.30. Hammerstein system with time-varying (a) nonlinearity, (b) linear block,
and (c) nonlinear and linear parts.
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time-varying. The second case (Fig. 8.30b) presumes the linear block to be
time-varying. When both blocks ate time-variant, we have the time-varying
Hammerstein system shown in Fig. 8.30c.

Time-varying Nonlinearity

Similarly to (7.247), the Hammerstein system shown in Fig. 8.30a is described
with the equations

q′(t) = Aq(t) + Bz(t) ,

y(t) = Cq(t) ,

z(t) = f [x(t), t] , (8.213)

where, it is supposed, the nonlinear function f [(x), t] has no memory. Other-
wise, the system is not Hammerstein.

For the system (8.213) to be stable, the function z(t) must be bounded,
|z(t)| � M < ∞, the input matrix B and observation matrix C must have
finite components, and the system matrix A must be Hurwitz.

The general solution y(t) associated with (8.213) is written as

y(t) = CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bf [x(θ), t]dθ , (8.214)

where Φ(t, τ) = eA(t−τ) is the state transition matrix. As can be seen, the
current time t in the integrand of (8.214) plays a role of a coefficient and is
typically assumed to be “slow”.

Example 8.19. Consider an asynchronous demodulator (Fig. 7.38) in which
an auxiliary bias voltage Vb(t) applied to the rectifier diode is such that the
electric current is time-varying,

i(t) = I0

[
e

x(t)+Vb(t)
VT − 1

]

In terms of the variables x(t) = v(t), q(t) = y(t) = vC(t), and z(t) = i(t),
the scheme is represented in state space with

q′(t) = Aq(t) + Bz(t) ,

y(t) = Cq(t) ,

z(t) = I0

[
e

x(t)+Vb(t)
VT − 1

]
,

where A = − 1
RC , B = 1

C , and C = 1. By (8.214), the output thus becomes
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y(t) = y0e
− t

RC +
I0
C

e−
t

RC

t∫

0

e
θ

RC

[
e

x(θ)+Vb(t)
VT − 1

]
dθ , (8.215)

where y0 = y(0). It can be shown that, if to vary Vb(t) properly, the demod-
ulated envelope can be obtained to trace as close to the modulating function
as it is allowed by this simplest scheme. The latter can be achieved using an
adaptive regulator. ��

Time-varying Linear Part

In the other version of the Hammerstein system (Fig. 8.30b), the linear part
is supposed to be time-varying that leads to the equations

q′(t) = A(t)q(t) + B(t)z(t) ,

y(t) = C(t)q(t) ,

z(t) = f [x(t)] . (8.216)

Employing the general solution (6.115) valid for LTV systems, we can write

y(t) = C(t)Φ(t, t0)q(t0) + C(t)

t∫

t0

Φ(t, θ)B(θ)f [x(θ)]dθ , (8.217)

where Φ(t, τ) is still the state transition matrix. This system is stable if z(t) is
bounded, |z(t)| � M <∞, the matrices B(t) and C(t) have finite components,
and A(t) is Hurwitz.

Example 8.20. Let us come back to the scheme (Fig. 7.38) and suppose that
the output filter is adapted to the waveform of the modulating signal. The
system matrix A(t) is thus time-varying and the equations (see Example 8.15)
become

q′(t) = A(t)q(t) + Bz(t) ,

y(t) = |C|q(t) ,

z(t) = I0

[
e

x(t)
VT − 1

]
,

where A(t) = − 1
RC(t) , B = 1

C , and C = [1]. Applying the solution (6.63)
to the above-defined state equation, one can represent the output y(t) in the
form of (8.217). ��
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8.6.3 Time-varying Wiener System

In line with the Hammerstein system, the Wiener system is also often de-
scribed to have time-varying blocks. Because the blocks in the Wiener system
are merely interchanged for the Hammerstein one, there are also three possi-
ble realizations as shown in Fig. 8.31. As well as in the Hammerstein system
case, here either nonlinear or linear or even both linear and nonlinear blocks
can be time-varying.

Fig. 8.31. Wiener system system with time-varying (a) nonlinearity, (b) linear
block, and (c) nonlinear and linear parts.

Time-varying Nonlinearity

Having a slowly time-varying nonlinear block (Fig. 8.31a), the SISO Wiener
system is described, similarly to (7.251), by the equations

q′(t) = Aq(t) + Bx(t) ,

z(t) = Cq(t) ,

y(t) = f [z(t), t] , (8.218)

where the nonlinear function f(·, t) is memoryless. Otherwise, the system is
not Wiener. Employing (7.251), the output of the time-varying Wiener system
can be written as

y(t) = f

⎡
⎣CΦ(t, t0)q(t0) + C

t∫

t0

Φ(t, θ)Bx(θ)dθ, t

⎤
⎦ . (8.219)

The system (8.219) is stable, if the function f(·, t) is bounded for all t � t0,

|y(t)| = |f(·, t)| � M <∞ ,

A is Hurwitz, and B and C have finite components. As well as in the time-
invariant Wiener system case, here the main problem is associated with the
identification of nonlinearity and coefficients of the linear block.
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Time-varying Linear Part

If a linear part is time-varying (Fig. 8.31b), the equations of a SISO Wiener
system become

q′(t) = A(t)q(t) + B(t)x(t) ,

z(t) = C(t)q(t) ,

y(t) = f [z(t)] , (8.220)

where the matrices A(t), B(t), and C(t) are time-varying. By (6.111), the
system output can then be specified with

y(t) = f

⎡
⎣C(t)Φ(t, t0)q(t0) + C(t)

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ

⎤
⎦ (8.221)

It can be shown that this system is stable when the function f(·) is bounded
for all t � t0,

|y(t)| = |f(·)| � M <∞ ,

the matrix A is Hurwitz, and B and C have finite components.

Example 8.21. Consider Example 7.31, in which the selective circuit is de-
signed to be adapted to the input signal. The frequency response of this circuit
is thus time varying and the system can be represented with the equations

q′(t) = A(t)q(t) +
[
1 0
] [x1

x2

]
,

z(t) =
[
z1

z2

]
= C(t)q(t) ,

y(t) =
1
2
zT (t)Sz(t) ,

where the matrices A(t) and C(t) are time-varying and S =
[

0 1
1 0

]
. By (8.221),

the system output becomes

y(t) =

⎡
⎣C(t)

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ

⎤
⎦
T

S

⎡
⎣C(t)

t∫

t0

Φ(t, θ)B(θ)x(θ)dθ

⎤
⎦ ,

representing an NTV system. ��
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We notice that an extension of the Hammerstein and Wiener systems
to the time-varying case can also be provided with their cascades, parallel
connections, and feedbacks as discussed in Chapter 7. Such complicated NTV
structures often serve to fit a great deal of practical needs related to both the
deterministic and stochastic NTV problems. In line with the Hammerstein
and Wiener systems, albeit not commonly, some other particular models of
NTV systems are used depending on practical needs. Descriptions of these
models can be found in special books.

In this Chapter, we examined NTV systems and most general methods of
their analysis. The reader must remember that, unlike linear systems, the non-
linear structures can generally be supposed to have arbitrary nonlinearities.
Therefore, the general theory of NTV systems in state space has substantial
limitations. In view of that, they usually exploit several well studied mod-
els, such as Hammerstein and Wiener, to fit real nonlinear physical systems
and describe them with a reasonable accuracy and without redundancy. In
many cases, NTV systems with weak nonlinearity are well modeled with the
Volterra method. In a few cases, the nonlinear ODE with time-varying coef-
ficients can be solved exactly. For NPTV closed loop oscillatory systems, the
Bogoliubov-Mitropolskiy and modulation functions methods can be used. Fi-
nally, the Hammerstein and Wiener models and their interconnections allow
representing NTV structures in state space with high efficiency.

8.7 Summary

The time-varying models of nonlinear systems are applied, whenever nonlinear
modulators, demodulators, voltage controlled oscillators, tracking filters, etc.
are analyzed. The most general foundations of the NTV systems theory are
the following:

– A system that provides nonlinear transformations with a time-varying
operator is the NTV system also called nonlinear nonautonomous system.

– Memoryless NTV systems are typically interpolated with the time-varying
Lagrange, Newton, or spline techniques.

– An NTV system can be expanded to the time-varying Taylor series at an
arbitrary point.

– The Volterra series with time-varying kernels is fully applicable for NTV
systems.

– Solutions of nonlinear ODEs representing NTV systems can be found only
in a few particular cases.

– Most generally, a closed loop NPTV system can be analyzed with the
Bogoliubov-Mitropolskiy and modulation functions method.
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– Linearization of NTV systems is provided in a manner similar to NTI
systems.

– In state space, NTV systems are typically described with the time-varying
Hammerstein and Wiener models as well as with their series, parallel, and
feedback interconnections.

8.8 Problems

8.1. Explain the differences between NTI and NTV systems. How can an
NTV system appear from the NTI system? What are the necessary and suf-
ficient conditions to transform an NTV system to an NTI system?

8.2. Observe the electronic systems given in Chapter 1 and find examples of
NTV systems and subsystems.

8.3. Given the following electronic nonlinear systems:

• A crystal oscillator, in which the flicker noise in units
– plays a critical role to shape the phase power spectral density,
– can be ignored.

• A BP active filter
– with saturation,
– included in a square amplifier and having a modulated capacitance,
– included in a phase tracking system.

• A wireless nonlinear communications channel operating
– in a homogenous media,
– under the environment conditions.

• The phase radar intended to measure
– a constant distance,
– a variable distance,
– a distance with tracking the carrier.

Ascertain, which system is NTV and which is NTI? What are the conditions
for these systems to be time-variant and time-invariant?

8.4 (Taylor series expansion). A memoryless SISO NTV system is given
with the following equation:

1. y(x, t) = t
(
3x2 + t

2x
)

2. y(x, t) = arctan(t + x)
3. y(x, t) = a

(
ex+bt − 1

)
4. y(x, t) = a (ex+at − 1)
5. y(x, t) = −a ln x+a cos t

b

6. y(x, t) = −b exp x+a sin t
a
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Using (8.3)–(8.5), linearize the system at some point x0, at some time instant
t0, and at (x0, t0).

8.5 (Volterra series expansion). Find simple words to explain the links
between LTI, LTV, NTI, and NTV systems in terms of the Volterra theory.
Give simple examples (block-diagrams) demonstrating how an NTI system
becomes NTV.

8.6. An NTV system is represented with the block-diagram shown in Fig.
8.32, write the system equation in the Volterra series form.

Fig. 8.32. Nonlinear time-varying systems.

8.7. Find the output of an NTV system shown in Fig. 8.32 for the following
impulse responses, respectively,

1. h1(t) = e−|t|, h2(t) = e−2tu(t), h3(t, θ) = e−(t2−θ2)u(t− θ)
2. h1(t, θ) = θ+1

t+1 e
−(t−θ)u(t− θ) , h2(t) = e−tu(t)

3. h1(t) = e−2tu(t), h2(t, θ) = δ(t− θ)ejω0t, h3(t) = e−2t cosω0t u(t)
4. h1(t) = e−2t cosω0t u(t) , h2(t, θ) = δ(t− θ − θ0)

8.8. Exploiting the output signal found in Problem 8.7 and using (8.25),
ascertain stability of an NTV system shown in Fig. 8.32.

8.9. Using the general transformation role (8.27) and the Volterra kernel de-
rived in Problem 8.6, define the multifrequency time-varying system function
for the structure given in Fig. 8.32.

8.10. Define the multiple spectral function (8.37) and total multifrequency
system function (8.39) associated with the multifrequency time-varying sys-
tem function derived in Problem 8.9.
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8.11 (Differential equation presentation). A SISO NTV system is rep-
resented with the following ODE,

1. q′ + q = x cos t, y = q + q2

2. 2q′ − q = xe−t, y = 1 + q2

3. q′ + 3q = tx, y = q2

4. 4q′ − 3q = e−tx cos t, y = q + q2 + q3

Analyze the system equations and show the block diagram. Write the general
solution of the system ODE.

8.12. Define the multifrequency system function described by the ODE
(Problem 8.11). First, by applying the transform (8.27) to the Volterra ker-
nels. Second, by letting x(t) = ejωt in the ODE. Verify correctness of the
general relation (8.36).

8.13. Given an oscillator with a time-varying unit (inductor or capacitor)
shown in Fig. 8.33, write the ODE of an oscillator for any energy bearer
(voltage or current) supposing arbitrary function of ΔL(t) and ΔC(t).

8.14. By the Krylov-Bogoliubov asymptotic method, transform the ODE of
an oscillator derived in Problem 8.13 to the ODE for the slowly changing
amplitudes and phase, similarly to (8.61) and (8.62).

8.15. Employing the solution of the Bernoulli equation, find the function of
the oscillator signal amplitude (problem 8.14) for the modulated ΔL(t) =

Fig. 8.33. Oscillator with a time-varying component.
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a cosΩt and ΔC(t) = b cosΩt. Illustrate this function by some particular
values of a, b, and Ω within the resonant circuit bandwidth.

8.16 (Periodically time-varying nonlinear systems). Consider an os-
cillator given in Fig. 8.33, whose frequency is modulated by the time-varying
ΔC(t) or ΔL(t). Explain, why spurious AM accompanies FM in nonlinear
oscillators. Is it possible to design an FM oscillator with a zero spurious AM
index?

8.17. Give simple explanations for the frequency modulation and amplitude
modulation functions (FMF and AMF, respectively) of an FM oscillator.
What are the conditions for applications of the modulation functions method
to NPTV oscillators?

8.18. Consider the ODE of an FM oscillator (Problem 8.13) and suppose
that ΔL(t) = a cosΩt� L and ΔC(t) = b cosΩt� C. Using the modulation
functions method, derive the FMF and AMF of an oscillator.

8.19 (State space presentation). Analyze the state space forms (8.197)
and (8.198) of a MIMO NTV system. Why the state equation cannot be
solved in closed form? Why a general solution of these equations is commonly
redundant for applications?

8.20. Using the ODE of a system (Problem 8.13), represent the system in
state space. Ascertain stability of an oscillator via the system matrix.

8.21. Linearize the state space equations of an oscillator (Problem 8.20) at
zero and ascertain stability at this point.

8.22. An NTV system is represented in state space with the following equa-
tions:

1.
[
q′1
q′2

]
=
[

q1 − 2q2
2 + 2x1

−(q1 + 4tq2) + x2

]
, y(t) = q1 + q1q2 + x1 + x2

2.

⎡
⎣
q′1
q′2
q′3

⎤
⎦ =

⎡
⎣
tq1 − 2q2q3 + x1

−q1 + x2

q2
3

⎤
⎦ , y(t) = q1 + x2

3.
[
q′1
q′2

]
=
[

t− 2q2

−1− 4tq1

] [
q1

q2

]
+
[
x1

x2

]
, y(t) = q1 + x1 + x2

4.
[
q′1
q′2

]
=
[

(q1 + q2)(2q1 − q2) + x1

−q2
1 − 4tq2

2 + x2

]
, y(t) = q1 − q2 + x1 + x2

Linearize the system and ascertain stability at zero.

8.23 (Hammerstein and Wiener systems). A nonlinear time-varying
amplifier follows by the LTI resonant circuit of the second order. Represent
this system by the Hammerstein model and write equations in state space.
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8.24. Solve Problem 8.23 for the LTI resonant circuit of the third order hav-
ing a time-varying resonance frequency that follows by the nonlinear memo-
ryless amplifier. Use the Wiener model.

8.25. An NTV memoryless system is described in Problem 8.4. The other
system of the second order is linear and can be either LTV or LTI. Represent
the following cascade of the given systems with the Hammerstein or Wiener
models and write the equations in state space.

1. NTV-to-LTI
2. LTI-to-NTV
3. LTV-to-NTV
4. NTV-to-LTV

8.26. Represent the Butler type oscillator shown in Fig. 8.24b with the closed
loop Hammerstein system shown in Fig. 8.30b and write the relevant equations
in state space.

8.27. Consider the Wiener system given by (8.219). Define the response of
this system to the unite impulse for the quadratic nonlinearity.



A

Dirac Delta Function

The Dirac delta function δ(x) (Fig. A.1) is also often referred to as the unit
impulse, impulse symbol, Dirac impulse, or delta function. It is the function

Fig. A.1. Dirac delta function.

that tends toward infinity at zero, is zero otherwise, and has a unit area. These
fundamental properties are supported by the following relations

δ(x) =
{∞, x = 0

0, x 	= 0 , (A.1)

∞∫

−∞
δ(x) dx = 1 . (A.2)

In the system theory, the delta-function is used both in the time domain
(x = t [sec]) and frequency domain (x = f [Hz] or x = ω = 2πf [rad/sec]).

In the frequency domain, the delta-shaped spectral density appears as a
product of the integration
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Table A.1. Alternative definitions of the Dirac delta function

Delta function Definition

δ(x− x0) = 1
π

lim
α→∞

sin α(x−x0)
x−x0

= lim
α→0

1

α
√

2π
e
− (x−x0)2

2α2

= 1
π

lim
α→∞

1−cos α(x−x0)

α(x−x0)2

= 1
π

lim
α→∞

sin2 α(x−x0)

α(x−x0)2

= 1
π

lim
α→∞

α
α2(x−x0)2+1

= 1
π2(x−x0)

lim
α→0

(x−x0)+α∫
(x−x0)−α

dy
y

= 1
2

∂2

∂t2
|x− x0|

Via the inverse Fourier transform:

δ(x− x0) = 1
2π

∞∫
−∞

ejω(x−x0) dω

= 1
π

∞∫
0

cos ω(x− x0) dω

1
2
[δ(x + x0) + δ(x− x0)] = 1

2π

∞∫
−∞

cos ωx0e
jωx dω

= 1
π

∞∫
0

cos ωx0 cos ωxdω

δ(f − f0) =

∞∫

−∞
e±2πj(f−f0)t dt =

∞∫

−∞
e±j(ω−ω0)t dt

= 2π

∞∫

−∞
e±2πj(ω−ω0)z dz = 2πδ(ω − ω0) , (A.3)

where an auxiliary variable is z = t/2π, f0 is a regular shift-frequency in
Hz, and ω0 is an angular shift-frequency in rad/sec, ω0 = 2πf0. Two delta
functions expressed in terms of regular and angular frequencies are coupled
by the relation

δ(f − f0) = 2πδ(ω − ω0). (A.4)

In line with alternative definitions given in Table A.1 and major properties
listed in Table A.2, several other general and particular ones are useful.

If the functions φ(x) and ψ(x) are continuous at x0 and a < x0 < b, then
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Table A.2. Major properties of the Dirac delta function

Property LTI system

Variable shifting δ(x− x0) =

{∞, x = x0

0, x �= x0

Integration
x0+ε∫
x0−ε

δ(x− x0) dx = 1

Symmetry (often required,
but not obligatory) δ(x− x0) = δ(x0 − x)

x0+ε∫
x0

δ(x− x0) dx =
x0∫

x0−ε

δ(x− x0) dx = 0.5

Relationships with

the unit-step functions δ(x) = du(x)
dx

u(x) =
x∫

−∞
δ(z)dz

δ(x) = lim
ξ→0

dv(x,ξ)
dx

= dH(x)
dx

Sifting property
(filtering property or
sampling property) φ(x0) =

∞∫
−∞

φ(x)δ(x− x0)dx

φ(0) =
∞∫

−∞
φ(x)δ(x)dx

φ(x)δ(x) = φ(0)δ(x)

φ(x)δ(x− x0) = φ(x0)δ(x− x0)

b∫
a

φ(x)δ(x)dx =

⎧
⎨
⎩

φ(0), a < 0 < b
0, a < b < 0 or 0 < a < b
φ(0)δ(0), a = 0 or b = 0

Scaling δ(ax) = 1
|a|δ(x)

δ(x−x0
a

) = |a|δ(x− x0)

Derivative
∞∫

−∞
φ(x) dδ(x)

dx
dx = − dφ(x)

dx

∣∣∣
x=0

x0+ε∫
x0−ε

φ(x) dnδ(x−x0)
dxn dx = (−1)n dnφ(x)

dxn

∣∣∣
x=x0

Fourier transform
∞∫

−∞
δ(x− x0)e

−jωxdx = e−jωx0

∞∫
−∞

δ(x)e−jωxdx = 1

1
2

∞∫
−∞

[δ(x + x0) + δ(x− x0)]e
−jωxdx

= 1
2
[ejωx0 + e−jωx0 ] = cos ωx0

Here, x0 is any real value, ε > 0 is real, u(x) =

{
1, x > 0
0, x < 0

is the unit step function,

v(x, ξ) =

⎧⎨
⎩

1, x > ξ
0.5 (x/ξ + 1) , −ξ � x � ξ
0, x < −ξ

, and H(x) =

⎧⎨
⎩

1, x > 0
0.5, x = 0
0, x < 0

is the Heaviside

unit-step function,
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b∫

a

φ(x)ψ(x)δ(x − x0) dx =

b∫

a

φ(x)ψ(x0)δ(x − x0) dx = φ(x0)ψ(x0) (A.5)

and, in particular, by a < u and v < b, we have

b∫

a

δ(x− u)δ(x− v) dx = δ(u− v) = δ(v − u) . (A.6)

If α(x) is continuous and monotonous with a positive derivative at a �
x � b and crosses the axis x at x0, namely α(a) < α(x0) = 0 < α(b), then

b∫

a

φ(x)δ[α(x)] dx =

α(b)∫

α(a)

φ[x(t)]
α′[x(t)]

δ(t) dx =
φ[x(0)]
α′[x(0)]

=
φ(x0)
α′(x0)

. (A.7)

If α(x) has a negative derivative at a � x � b, the (A.7) holds true with
its sign changed. If α(x) does not cross the axis x at a � x � b, then (A.7)
produces zero. Therefore, the following relation is valid

δ[α(x)] =
δ(x − x0)
|α′(x0)| . (A.8)

The following fundamental relations are valid for the two-dimensional delta
function δ(x, y) and two dimensional continuous function φ(x, y):

∞∫

−∞

∞∫

−∞
δ(x− x0, y − y0) dxdy = 1 , (A.9)

∞∫

−∞
φ(x, y)δ(x − x0, y − y0) dy = φ(x, y0)δ(x − x0) , (A.10)

∞∫

−∞

∞∫

−∞
φ(x, y)δ(x − x0, y − y0) dxdy = φ(x0, y0) . (A.11)
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Matrices

A rectangular table (array) of m× n elements having m rows and n columns
is called the rectangular matrix of dimensions m× n. It is denoted as

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ = [aij ] , (B.1)

where the numbers aij are called the matrix elements, in which the first index
i indicates the number of rows and the second one j the number of columns.
The matrix A is said to be a square matrix of order n, if m = n.

Basic definitions and operations. Two matrices A = [aij ] and B =
[bij ] are equal if and only if they have the same order and all relevant elements
are equal, namely aij = bij , i = 1, 2, . . . ,m, and j = 1, 2, . . . , n.

A matrix of dimensions 1× n is called an n-dimensional row vector

x =
[
x11 x12 . . . x1n

] ≡ [x1 x2 . . . xn
]

(B.2)

and an n× 1 matrix is called an m-dimensional column vector

y =

⎡
⎢⎢⎢⎣

y11

y21

...
ym1

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

y1

y2

...
ym

⎤
⎥⎥⎥⎦ . (B.3)

The vectors are often denoted with small letters, e.g. x, and matrices with
capital letters, e.g. A.

If a matrix or vector has only one element, then it is scalar.
A zero matrix 0 is a matrix having all its elements zero.
A square matrix D having all its elements zero apart the main diagonal is

said to be the diagonal matrix :
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D =

⎡
⎢⎢⎢⎣

d11 0 . . . 0
0 d22 . . . 0
...

...
. . .

...
0 0 . . . dnn

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

⎤
⎥⎥⎥⎦ . (B.4)

The other often used expression for the n× n diagonal matrix is

D = diag
(
d1 d2 . . . dn

)
. (B.5)

The n × n diagonal matrix D is said to be the identity matrix (or unit
matrix ) I if all its components equal to 1,

I =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤
⎥⎥⎥⎦ . (B.6)

Basic operations with matrices are given in Table B.1.

Table B.1. Basic operations with matrices

Given m× n matrices A = [aij ], B = [bij ], and C = [cij ]

Property Operation

Addition (subtraction) A±B = C = [cij ] = [aij ± bij ]

A−A = A + (−A) = 0

Commutativity A + B = B + A

A + 0 = 0 + A = A

Associativity (A + B) + C = A + (B + C)

Equating A = B = [aij ] = [bij ]

Multiplication by scalars B = αA = [bij ] = [αaij ]

α(A + B) = αA + αB

(α + β)A = αA + βA

α(βA) = (αβ)A = β(αA)

Sign changing with α = −1 B = αA = [bij ] = −[aij ] = −A

The matrix product AB is defined only when the number of columns of
A is equal to the number of rows of B. In this case, the matrices A and B
are said to be conformable. Accordingly, the product of an m × n matrix A
and an n× 1 vector x produces an m× 1 vector y, namely Ax = y.

The product AB is always definable if A and B are square of the same
order. Even so, the product commonly does not commute, i.e. AB 	= BA.
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If AB = BA, then A and B are said to be commuting each other. Basic
operations of multiplication are postponed to Table B.2.

Table B.2. Basic operations of multiplication

Property Operation

Product C = AB = [cij ], cij =
n∑

k=1

aikbkj

Commutativity AB �= BA (non-commuting matrices)

AB = BA (commuting matrices)

αA = Aα

A0 = 0A = 0

AI = IA = A

Distributivity (A + B)C = AC + BC

Associativity (AB)C = A(BC) = ABC

α(AB) = (αA)B = A(αB)

Idempotent matrix AA = A2 = A

Transpose and inverse. Suppose A is an m× n matrix. The transpose
of A is denoted by AT and is an n×m matrix formed by interchanging the
rows and columns of A, i.e. B = AT = [bij ] = [aji]. Therefore

AT =

⎡
⎢⎢⎢⎣

a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

⎤
⎥⎥⎥⎦ = [aji] . (B.7)

The m × 1 vector x and its 1 ×m transpose xT may thus be performed
as, respectively,

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xm

⎤
⎥⎥⎥⎦ =

[
x1 x2 . . . xm

]T
, (B.8)

xT =
[
x1 x2 . . . xm

]
. (B.9)

It follows that the product of an n×1 vector x and a transpose of an m×1
vector y produces an n×m matrix,
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xyT =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦
[
y1 y2 . . . ym

]
=

⎡
⎢⎢⎢⎣

x1y1 x1y2 . . . x1ym
x2y1 x2y2 . . . x2ym

...
...

. . .
...

xny1 xny2 . . . xnym

⎤
⎥⎥⎥⎦ .

If AT = A, then A is said to be symmetric. If AT = −A, then A is said to
be skew-symmetric. If a matrix is skew-symmetric, then its diagonal elements
are all zero.

If A = [aij ] is a square matrix of orden n > 1, then there exists an
associated number called the determinant and denoted by detA or |A|,

detA = |A| =
n∑
k=1

(−1)k+1a1k|M1k| , (B.10)

where |M1k| is the determinant of a square matrix of orden n − 1 obtained
from A by deleting the 1th row and kth column.

Most generally, the determinant is defined using the Laplace expansion.
Let Mij be the square matrix of orden n− 1 obtained from A by deleting the
ith row and jth column. The relevant number Aij called the cofactor of aij
is defined by

Aij = (−1)i+j |Mij | , (B.11)

where i, j = 1, 2, . . . , n. The detA is then defined by one of the following
expressions,

|A| =
n∑
k=1

(−1)i+kaik|Mik| =
n∑
k=1

aikAik , (B.12)

|A| =
n∑
k=1

(−1)k+jakj |Mkj | =
n∑
k=1

akjAkj . (B.13)

Relations (B.12) and (B.13) are known as the Laplace expansions of A
along the ith row and along the jth column, respectively. It follows from
(B.12) and (B.13) that

|A| = |AT | .
A square matrix A is singular if |A| = 0. Otherwise, it is nonsingular.
For any two square matrices A and B of order n the following identity

holds true

|AB| = |A||B| . (B.14)

A matrix A is said to be invertible if there exists a matrix B such that
the product AB commutes and BA = AB = I. The matrix B is called the
inverse matrix of A and is denoted by A−1. Thus

A−1A = AA−1 = I . (B.15)
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For every nonsingular matrix A there exists an inverse matrix A−1 = |a−1
ij |

such that its elements are determined by

a−1
ij =

Aji
|A| , (B.16)

where the cofactor Aij is given by (B.11).
The inverse matrix of an n× n matrix A can be computed as

A−1 =
1
|A|adjA , (B.17)

where the adjugate or adjoint of A is

adjA = [Aij ]T =

⎡
⎢⎢⎢⎣

A11 A21 . . . An1

A12 A22 . . . An2

...
...

. . .
...

A1n A2n . . . Ann

⎤
⎥⎥⎥⎦ . (B.18)

In particular, if A =
∣∣∣∣
a b
c d

∣∣∣∣ and |A| = 1, then A−1 =
∣∣∣∣
d −b
−c a

∣∣∣∣.
If A is invertible, then AB = 0 means that B = 0.
Basic operations with transposable and inversible matrices are given in

Table B.3.

Table B.3. Basic operations with transposable and inversible matrices

Property Operation

Transpose (A + B)T = AT + BT

(αA)T = αAT

(AB)T = BT AT

Double transpose (AT )T = A

Inverse (αA)−1 = 1
α
A−1

(AB)−1 = B−1A−1

A−1AB = IB = B

Double inverse (A−1)−1 = A

Duality (AT )−1 = (A−1)T

Linear transformations. A linear transformation of an n × 1 vector x
to the other n× 1 vector y is provided with a square matrix A of order n as
follows:

y = Ax . (B.19)

If for some scalar λ and nonzero column vector x 	= 0 we have
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Ax = λx , (B.20)

then λ is called an eigenvalue or characteristic value of A and x is said to be
an eigenvector associated with λ.

Alternatively, (B.20) can be rewritten as

(λI−A)x = 0 , (B.21)

having a nonzero eigenvector x only if λI −A is singular. To find the eigen-
values λ, the following equation must be solved,

|λI−A| = 0 , (B.22)

known as the characteristic equation of A. The determinant in (B.22) is com-
monly defined by the polynomial

|λI−A| = η(λ) = λn + an−1λ
n−1 + . . . + a1λ + a0 (B.23)

called the characteristic polynomial of A. If all eigenvalues λi, i = 1, 2, . . . , n,
of A are distinct, then (B.23) may be rewritten as

η(λ) = (λ− λ1)(λ− λ2) . . . (λ− λn) . (B.24)

Supposing that all distinct eigenvalues λ1, λ2, . . . , λn of the characteristic
equation (B.22) are known, the relevant eigenvectors x1, x2, . . ., xn may be
found from (B.20) to satisfy for i = 1, 2, . . . , n the following equation

λixi = Axi . (B.25)

If all distinct eigenvalues λ1, λ2, . . . , λn of A are different, then the relevant
eigenvectors x1, x2, . . ., xn are linearly independent and orthogonal. Note
that, in some cases, n linearly independent eigenvectors xi may be found for
multiple eigenvalues λi.

Linear independence. Given an n × n matrix A =
[
a1 a2 . . . an

]
,

where ai, i = 1, 2, . . . , n, denotes the ith column vector. The vectors ai,
i = 1, 2, . . . , n, are said to be linearly dependent if there exist numbers γi,
i = 1, 2, . . . , n, not all zeros such that

γ1a1 + γ2a2 + . . . + γnan = 0 . (B.26)

If (B.26) holds only for all γi = 0, then the column vectors ai, i = 1, 2, . . . , n,
are said to be linearly independent.

Rank of a matrix. The number of linearly independent column vectors in
a matrix A is called the column rank of A. The number of linearly independent
row vectors in a matrix A is said to be the row rank of A. It can be shown
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that the rank of A is equal to the biggest number of linearly independent rows
or columns.

The determinant rank of a matrix A is defined by the order of the largest
square submatrix N such that |N| 	= 0. It can be shown that the rank of A is
equal to the determinant rank of A.

Trace of a matrix. The trace of a square matrix A of order n is the sum

Tr(A) =
n∑
i=1

aii (B.27)

of its diagonal components demonstrating the following properties:

• Tr(A + B) = Tr(A) + Tr(B) , ��
• Tr(αA) = αTr(A) , ��
• Tr(BA) = Tr(AB) , ��
• Tr(AB−BA) = 0 . ��

Diagonalization. For the matrix T =
[
x1 x2 . . . xn

]
, which columns are

formed by the linearly independent eigenvectors of a matrix A, the following
identity may be written

AT = TΛ , (B.28)

where the diagonal matrix Λ is defined by

Λ =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

⎤
⎥⎥⎥⎦ . (B.29)

Because T is composed with n linearly independent vectors, it is nonsin-
gular and its inverse exists. The matrix Λ may hence be defined by

Λ = T−1AT (B.30)

or, if Λ is known, we have
A = TΛT−1 . (B.31)

The transformation process (B.31) is known as diagonalization of A. The
matrix T is called the diagonalization matrix or eigenvector matrix and Λ the
eigenvalue matrix. Note that the diagonalization matrix is not unique. A new
matrix T may be produced by reordering the columns or multiplying them
by nonzero scalars.

Application of the diagonalization matrix gives the other useful relation.
By changing the variables, x = Tu and y = Tv, an equation (B.19) may
equivalently be rewritten as

v = Λu .
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Similarity transformation. Given two square matrices, A and B, of
the same order. They say that the matrix B is similar to A if there exists a
nonsingular matrix Q such that

B = Q−1AQ . (B.32)

Equation (B.32) is called the similarity transformation having the following
properties:

• If B is similar to A, then A is similar to B. ��
• If A and B are similar, then they have the same eigenvalues. ��
• If A is similar to B and B is similar to C, then A is similar to C. ��
• A square matrix A of order n is similar to a diagonal matrix D if and only

if there exist n linearly independent eigenvectors of A. ��

Functions of a matrix. If a matrix A is diagonalizable, then, similarly
to (B.31), for any analytical function φ(λ) there can be defined a function
φ(A) of a matrix A such that

φ(A) = Tφ(Λ)T−1 ,

φ(A) = T

⎡
⎢⎢⎢⎣

φ(λ1) 0 . . . 0
0 φ(λ2) . . . 0
...

...
. . .

...
0 0 . . . φ(λn)

⎤
⎥⎥⎥⎦T−1 , (B.33)

where λi, i = 1, 2, . . . , n, are the eigenvalues of A, if only φ(λ) exists at λi.
It can be shown that if φ(λ) is expendable to the power series within a

circle |λ| < r of a radius r,

φ(λ) = α0 + α1λ + α2λ
2 + . . . =

∞∑
k=0

αkλ
k , (B.34)

then this expansion also holds true if to substitute a scalar λ with any matrix
A, all eigenvalues of which, λi, i = 1, 2, . . . , n, lie entirely within the same
circle,

φ(A) = α0I + α1A + α2A2 + . . . =
∞∑
k=0

αkAk . (B.35)

Several particular expansions of φ(A) are given in Table B.4.
It is of importance that the function of a matrix φ(A) saves some properties

associated with a scalar function φ(λ), for example,

cos2 A + sin2 A = I ,

eAe−A = I ,
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Table B.4. Series expansions of φ(A)

Function φ(A) Expansion

eA
∞∑

k=0

Ak

k!

cosA
∞∑

k=0

(−1)k

(2k)!
A2k

sinA
∞∑

k=0

(−1)k

(2k+1)!
A(2k+1)

coshA
∞∑

k=0

1
(2k)!

A2k

sinhA
∞∑

k=0

1
(2k+1)!

A(2k+1)

lnA
∞∑

k=1

(−1)k−1

k!
(A− I)k , for |λi − 1| < 1, i = 1, 2, . . . , n

(I−A)−1
∞∑

k=0

Ak , for |λi| < 1, i = 1, 2, . . . , n

ejA = cosA + j sinA .

On the other hand, an identity eA+B = eAeB holds true only if AB = BA,
i.e. when A and B commute.

The Cayley-Hamilton theorem. Let a square matrix A of order n is
represented with the characteristic polynomial (B.23),

η(λ) = |λI−A| = λn + an−1λ
n−1 + . . . + a1λ + a0 . (B.36)

The Cayley-Hamilton theorem states that, if so, the matrix A satisfies its own
characteristic equation (B.22):

η(A) = An + an−1An−1 + . . . + a1A + a0I = 0 . (B.37)

By the Cayley-Hamilton theorem, a function φ(A) defined by (B.35) with
an infinite series, can be represented with the finite series (B.37) as

φ(A) = β0I + β1A + . . . + βn−1An−1 =
n−1∑
k=0

βkAk . (B.38)

It then follows that φ(λ) defined by (B.34) can be represented with the finite
series (B.36) as

φ(λ) = β0 + β1λ + . . . + βn−1λ
n−1 =

n−1∑
k=0

βkλ
k . (B.39)

If all eigenvalues λi, i = 1, 2, . . . , n, of A are distinct, then the coefficients
βk, k = 0, 1, . . . , n− 1, are determined by solving the following equations:
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φ(λ1) = β0 + β1λ1 + . . . + βn−1λ
n−1
1 ,

φ(λ2) = β0 + β1λ2 + . . . + βn−1λ
n−1
2 ,

...

φ(λn) = β0 + β1λn + . . . + βn−1λ
n−1
n . (B.40)

If all eigenvalues λi, i = 1, 2, . . . , n, of A are not distinct, then (B.40) does
not consists of n equations. It is typical that an eigenvalue λj has multiplicity
p and all other eigenvalues are distinct. In this case, differentiating both sides
of (B.39) p− 1 times with respect to λ and setting λ = λj gives additionally
p− 1 equations

d
dλ

φ(λ)
∣∣∣∣
λ=λj

=
d
dλ

n−1∑
k=0

βkλ
k

∣∣∣∣∣
λ=λj

,

d2

dλ2
φ(λ)

∣∣∣∣
λ=λj

=
d2

dλ2

n−1∑
k=0

βkλ
k

∣∣∣∣∣
λ=λj

,

...

dp−1

dλp−1
φ(λ)

∣∣∣∣
λ=λj

=
dp−1

dλp−1

n−1∑
k=0

βkλ
k

∣∣∣∣∣
λ=λj

. (B.41)

The coefficients βk are then determined by combining (B.40) and (B.41).

Minimum polynomial of A. Given a square matrix A of order n, then
its minimum polynomial μ(λ) is the polynomial of lowest degree having 1 as
its leading coefficient such that μ(A) = 0. The degree of μ(A) cannot be
greater than n.

It can be shown that μ(λ) can be determined by

μ(λ) =
η(λ)
υ(λ)

, (B.42)

where υ(λ) is a greatest common divisor (gcd) of all elements of adj(λI−A),
thus η(λ) is divisible by μ(λ) and if all the eigenvalues of A are distinct, then
μ(λ) = η(λ). Yet, every eigenvalue of A is a zero of μ(λ).

In the same way μ(λ) may be used as η(λ) for the expression of higher
powers of A in terms of a limited number of powers of A.

Spectral decomposition. If a matrix A of order n is represented with
the minimum polynomial of the form

μ(λ) = (λ− λ1)(λ− λ2) . . . (λ− λm) , (B.43)
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then, it can be shown, A can be represented with

A = λ1E1 + λ2E2 + . . . + λmEm , (B.44)

where El, l = 1, 2, . . . ,m, is termed the constituent matrix. The form (B.44)
is called the spectral decomposition of A and the set of eigenvalues of A is
called the spectrum of A.

The following properties of El are of importance:

1. E1 + E2 + . . . + Em = I ��
2. EiEj = 0, i 	= j ��
3. E2

l = El (idempotent) ��
4. AEl = ElA = λlEl ��

It can be shown, by the properties of El, that φ(A) can also be decomposed
similarly to (B.44):

φ(A) = φ(λ1)E1 + φ(λ2)E2 + . . . + φ(λm)Em . (B.45)

To evaluate El, the following relation can be used:

El =

m∏
k=1,k �=l

(A− λkI)

m∏
k=1,k �=l

(λl − λk)
. (B.46)

Differentiation and integration of matrices. The operation of differ-
entiation of an m× n matrix A over a scalar variable t is provided with the
expression

d
dt

A(t) =
[

d
dt

aij(t)
]

=

⎡
⎢⎢⎢⎢⎣

d
dta11(t) d

dta12(t) . . . d
dta1n(t)

d
dta21(t) d

dta22(t) . . . d
dta2n(t)

...
...

. . .
...

d
dtam1(t) d

dtam2(t) . . . d
dtamn(t)

⎤
⎥⎥⎥⎥⎦

, (B.47)

meaning that the derivative of A is a matrix of the same dimensions, each
element of which is the derivative of the corresponding element of A.

In a like manner, the integral of an m× n matrix A over a scalar variable
t is provided with

∫
A(t) dt =

[∫
aij(t)dt

]
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=

⎡
⎢⎢⎢⎢⎣

∫
a11 dt

∫
a12 dt . . .

∫
a1n dt

∫
a21 dt

∫
a22 dt . . .

∫
a2n dt

...
...

. . .
...∫

am1 dt
∫
am2 dt . . .

∫
amn dt

⎤
⎥⎥⎥⎥⎦

. (B.48)

The following relations hold true for the derivatives of matrix functions:

d
dt

(AB) =
(

d
dt

A
)

B + A
(

d
dt

B
)

, (B.49)

d
dt

A−1 = −A−1

(
d
dt

A
)

A−1 , (B.50)

d
dt

An =
(

d
dt

A
)

An−1 + A
(

d
dt

A
)

An−2 + . . . + An−1

(
d
dt

A
)

. (B.51)

The derivative of a scalar function φ(x) over an n × 1 column vector
x = [x1, x2, . . . , xn]T is a row vector

d
dx

φ(x) =
[

dφ(x)
dx1

dφ(x)
dx2

. . . dφ(x)
dxn

]
. (B.52)

The derivative of an m× 1 vector function

y(x) = [y1(x), y2(x), . . . , ym(x)]T

over an n×1 column vector x = [x1, x2, . . . , xn]T is called the Jacobian matrix

dy
dx

=
[

dyi
dxj

]
=

⎡
⎢⎢⎢⎢⎣

dy1
dx

dy2
dx
...

dym

dx

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

dy1
dx1

dy1
dx2

. . . dy1
dxn

dy2
dx1

dy2
dx2

. . . dy2
dxn

...
...

. . .
...

dym

dx1

dym

dx2
. . . dym

dxn

⎤
⎥⎥⎥⎥⎥⎦

. (B.53)

The derivative of a scalar function φ(A) over a matrix A is defined by

d
dA

φ(A) =
[
dφ(A)
daij

]
. (B.54)

In a similar manner, partial derivatives are defined of scalar and vector
functions over vector functions. For example, derivatives of a scalar function
φ(y,x, t) of vectors y(x, t) and x = x(t) are defined by

dφ
dx

=
(

∂φ

∂y

)
∂y
∂x

+
∂φ

∂x
, (B.55)

dφ
dt

=
[
∂φ

∂x
+
(
∂φ

∂y

)(
∂y
∂x

)]
dx
dt

+
[
∂φ

∂y

]
∂y
∂t

+
∂φ

∂t
. (B.56)
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It can be shown that for a vector function z(y,x, t) and the same x and
y, we have

dz
dx

=
[
∂z
∂y

] [
∂y
∂x

]
+

∂z
∂x

, (B.57)

dz
dt

=
[
∂z
∂y

] [(
∂y
∂x

)
dx
dt

+
∂y
∂t

]
+
[
∂z
∂x

]
dx
dt

+
∂z
∂t

. (B.58)

Taylor expansion. Referring to the above-defined derivatives, the Taylor
expansion about a point x0 for a scalar function φ(x) and vector function z(x)
can be written as, respectively,

φ(x) = φ(x0) +
[
∂φ

∂x

]∣∣∣∣
x=x0

(x − x0)

+
1
2
(x − x0)T

[
∂

∂x

(
∂φ

∂x

)T]∣∣∣∣∣
x=x0

(x− x0) + . . . , (B.59)

z(x) = z(x0) +
[
∂z(x)
∂x

]∣∣∣∣
x=x0

(x− x0)

+
1
2
(x− x0)T

[
∂

∂x

(
∂z(x0)
∂x

)T]∣∣∣∣∣
x=x0

(x− x0) + . . . . (B.60)

The following identities hold true for derivatives of the determinant of
independent matrices:

d
dA
|A| = |A|[A−1] , (B.61)

d
dA

ln |A| = [A−1]T , (B.62)

d
dB
|ABC| = |ABC|[B−1]T , (B.63)

d
dA
|An| = n|An|[A−1]T . (B.64)

Matrix forms of linear ODEs with constant coefficients. A system
of linear ODEs of the first order with constant coefficients can be represented
by the matrix differential equation of the first order:

d
dt

x(t) = Ax(t) + y(t) , (B.65)

where x(t) is unknown n×1 vector of a scalar variable t, y(t) is a known n×1
vector of t, and A is an n× n matrix with constant components.
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A solution of (B.65) is given by

x(t) = eAtx0 +

t∫

t0

eA(t−θ)y(θ) dθ , (B.66)

where x0 = x(t0). The function eAt is known as the matrix exponential and
can be expanded to the series (see Table B.4).

If y(t) = x(t)B and (B.65) hence attains the form

d
dt

x(t) = Ax(t) + x(t)B , (B.67)

then a solution of (B.67) is defined by

x(t) = eAtx0e
Bt . (B.68)

If A and B are diagonalizable, then solutions (B.66) and (B.68) are per-
formed in standard matrix forms.

Matrix forms of linear ODEs with variable coefficients. Most gen-
erally, the matrix ODE is represented with two variable matrices A(t) and
B(t) as follows

d
dt

x(t) = A(t)x(t) + B(t)y(t) . (B.69)

A general solution of (B.69) is given with

x(t) = Φ(t, t0)x0 +

t∫

t0

Φ(t, θ)B(θ)y(θ) dθ , (B.70)

where Φ(t, t0) is called the state transition matrix satisfying the homogenous
equation

d
dt

Φ(t, t0) = A(t)Φ(t, t0) (B.71)

and having the following basic properties:

Φ(t0, t0) = I , (B.72)

Φ−1(t, t0) = Φ(t0, t) , (B.73)

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) . (B.74)

The state transition matrix Φ−1(t, t0) is defined via the fundamental ma-
trix Q(t) as

Φ(t, t0) = Q(t)Q−1(t0) , (B.75)
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where Q(t) also satisfies the homogenous equation

d
dt

Q(t) = A(t)Q(t) . (B.76)

Because any initial condition may be chosen to solve (B.76), the funda-
mental matrix Q(t) for A(t) is not unique having the following properties:

• It is nonsingular for all t. Otherwise, it does not satisfy (B.76) and cannot
be unit matrix I at t0 . ��

• It is the n× n square matrix. ��

Norms of matrices. Consider two n-dimensional normed vector spaces
N and M. Let the linear map (matrix) A belongs to the set T of all linear
maps from N to M. If a vector x belongs to N and y to M, we have the
transformation y = Ax. The norm for a vector y is defined by

‖y‖ = ‖Ax‖ . (B.77)

The norm for a matrix A is a function ‖A‖, satisfying

‖A‖ � sup
‖x‖=1

‖Ax‖ , (B.78)

‖γA‖ = |γ|‖A‖ , (B.79)

where “sup” denotes the upper bound. An inequality (B.78) also means that

‖Ax‖ � ‖A‖‖x‖ (B.80)

and it can be shown that norms of matrices satisfy two fundamental properties
called the submultiplicative property and triangle property, respectively,

‖AB‖ � ‖A‖‖B‖ , (B.81)

‖A + B‖ � ‖A‖+ ‖B‖ . (B.82)

If N is n-dimensional and M is m-dimensional, then the matrix A is of
m × n dimensions. For such a general case, the most frequently used matrix
norms are the following:

‖A‖1 = sup
1�j�n

m∑
i=1

|aij | , (B.83)

‖A‖2 =
√

λM , (B.84)

‖A‖∞ = sup
1�i�m

n∑
j=1

|aij | . (B.85)

In (B.84), λM denotes the greatest eigenvalue of ATA if A is real or ĀA if
A is complex, where Ā is a conjugate matrix.
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Table C.1 Properties of the continuous-time Fourier series

x(t) =
∞∑

k=−∞
Cke

jkΩt Ck =
1
T

T/2∫

−T/2

x(t)e−jkΩtdt

Property Periodic function x(t)
with period T = 2π/Ω Fourier series Ck

Time-shifting x(t± t0) Cke
±jkΩt0

Time-scaling x(αt), α > 0 Ck with period T
α

Differentiation d
dtx(t) jkΩCk

Integration
t∫
−∞

x(τ) dτ <∞ 1
jkΩCk

Linearity
∑
i

αixi(t)
∑
i

αiCik

Conjugation x∗(t) C∗−k

Time-reversal x(−t) C−k

Modulation x(t)ejKΩt Ck−K

Product x(t)y(t)
∞∑

i=−∞
CxiCy(k−i)

Periodic
convolution

∫
T
x(τ)y(t − τ)dτ TCxkCyk

Symmetry x(t) = x∗(t) real

⎧⎪⎪⎨
⎪⎪⎩

Ck = C∗−k , |Ck| = |C−k| ,
ReCk = ReC−k ,

ImCk = −ImC−k ,
argCk = − argC−k

x(t) = x∗(t) = x(−t)
real and even

{
Ck = C−k , Ck = C∗k ,

real and even

x(t) = x∗(t) = −x(−t)
real and odd

{
Ck = −C−k , Ck = −C∗k ,

imaginary and odd

Parseval’s theorem 1
T

T/2∫
−T/2

|x(t)|2dt =
∞∑

k=−∞
|Ck|2
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Table C.2 Properties of the continuous-time Fourier transform

x(t) =
1
2π

∞∫

−∞
X(jω)ejωtdω X(jω) =

∞∫

−∞
x(t)e−jωtdt

Property Non periodic
function x(t)

Fourier transform
X(jω)

Time shifting x(t± t0) e±ωt0X(jω)

Time scaling x(αt) 1
|α|X

(
jω
α

)

Differentiation d
dtx(t) jωX(jω)

Integration
t∫
−∞

x(τ)dτ 1
jωX(jω) + πX(j0)δ(ω)

∞∫
−∞

x(t)dt X(j0)

Frequency
integration 2πx(0)

∞∫
−∞

X(jω)dω

Linearity
∑
i

αixi(t)
∑
i

αiXi(jω)

Conjugation x∗(t) X∗(−jω)

Time reversal x(−t) X(−jω)

Modulation x(t)ejω0t X(jω − jω0)

Product x(t)y(t) 1
2πX(jω) ∗ Y (jω)

Convolution x(t) ∗ y(t) X(jω)Y (jω)

Symmetry x(t) = x∗(t) real

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(jω) = X∗(−jω) ,
|X(jω)| = |X(−jω)| ,

ReX(jω) = ReX(−jω) ,
ImX(jω) = −ImX(−jω) ,
argX(jω) = − argX(−jω)

x(t) = x∗(t) = x(−t)
real and even

⎧⎨
⎩

X(jω) = X(−jω) ,
X(jω) = X∗(jω) ,

real and even

x(t) = x∗(t) = −x(−t)
real and odd

⎧⎨
⎩

X(jω) = −X(−jω) ,
X(jω) = −X∗(jω) ,
imaginary and odd

Rayleigh’s theorem Ex =
∞∫
−∞
|x(t)|2dt = 1

2π

∞∫
−∞
|X(jω)|2dω
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Table C.3 The Fourier transform and series of basic signals

Signal x(t) Transform X(jω) Series Ck

1 2πδ(ω) C0 = 1 , Ck �=0 = 0

δ(t) 1 Ck = 1
T

u(t) 1
jω + πδ(ω) —

u(−t) − 1
jω + πδ(ω) —

ejΩt 2πδ(ω −Ω) C1 = 1 , Ck �=1 = 0
∞∑

k=−∞
Cke

jkΩt 2π
∞∑

k=−∞
Ckδ(ω − kΩ) Ck

cosΩt π[δ(ω −Ω) + δ(ω + Ω)] C1 = C−1 = 1
2 , Ck �=±1 = 0

sinΩt π
j [δ(ω −Ω)− δ(ω + Ω)] C1 = −C−1 = 1

2j , Ck �=±1 = 0

1
α2+t2 e−α|ω| 1

T e−
2πα|k|

T

Rectangular
x1(t)

τ sin(ωτ/2)
ωτ/2

1
q

sin(kπ/q)
kπ/q

Triangular
x2(t)

τ
2

sin2(ωτ/4)
(ωτ/4)2

1
2q

sin2(kπ/2q)
(kπ/2q)2

sinαt
αt

{
π
α , |ω| < α
0, |ω| > α

{
π
αT , |k| < αT

2π

0, |k| > αT
2π

e−αtu(t) ,
Reα > 0

1
α+jω

1
αT+j2πk

te−αtu(t) ,
Reα > 0

1
(α+jω)2

T
(αT+j2πk)2

tn−1

(n−1)!e
−αtu(t) ,

Reα > 0
1

(α+jω)n
Tn−1

(αT+j2πk)n

e−α|t| , α > 0 2α
α2+ω2

2αT
α2T 2+4π2k2

e−α
2t2

√
π
α e−

ω2

4α2
√
π

αT e−
π2k2

α2T2

x1(t) = u
(
t + τ

2

)− u
(
t− τ

2

)
, x2(t) = 2

τ

(
τ
2 − |t|

) [
u
(
t + τ

2

)− u
(
t− τ

2

)]
, q =

T
τ , Ck corresponds to x(t) repeated with period T , and τ is duration.
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Table D.1. Properties of the bilateral Laplace transform

X(s) =
∞∫

−∞
x(t)e−st dt x(t) = 1

2πj

σ+j∞∫
σ−j∞

X(s)est ds

Property Function z(t) Transform Z(s) ROC

Time shifting x(t− τ ) e−sτX(s) Rz = Rx

Shifting in s eνtx(t) X(s− ν) Rz = Rx + Re(ν)

Time scaling x(at) 1
|a|X(s) Rz = aRx

Time reversal x(−t) X(−s) Rz = −Rx

Linearity ax(t) + by(t) aX(s) + bY (s) Rz ⊃ Rx ∩Ry

Conjugation x∗(t) X∗(s∗) Rz = Rx

Product x(t)y(t) Z1(s) Rz ⊃ Rx ∩Ry

Convolution x(t) ∗ y(t) X(s)Y (s) Rz ⊃ Rx ∩Ry

Differentiation in t d
dt

x(t) sX(s) Rz ⊃ Rx

Differentiation in s −tx(t) d
ds

X(s) Rz = Rx

Integration
t∫

−∞
x(τ ) dτ 1

s
X(s) Rz ⊃ Rx ∩ [Re(s) > 0]

Z1(s) = 1
2πj

σ+j∞∫
σ−j∞

X(ν)Y (s− ν) dν

The unilateral (one-sided) Laplace transform is provided by

X(s) =

∞∫

0−

x(t)e−st dt , (D.1)

where 0− = lim
ε→0

(0− ε), having the following properties:

Initial value theorem: If x(t) = 0 for t < 0 and x(t) contains no impulses
or higher-order singularities at t = 0, then

x(0+) = lim
s→∞ sX(s) . (D.2)

Final value theorem: If x(t) = 0 for t < 0 and x(t) has a finite limit as
t→ 0, then

lim
t→∞ x(t) = lim

s→0
sX(s) . (D.3)

Differentiation in time:
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Table D.2. Laplace transform pairs of some functions

Function Transform ROC

δ(t) 1 All s

δ(t− τ ) e−sτ All s

dn

dtn δ(t) sn All s

u(t) 1
s

Re(s) > 0

−u(−t) 1
s

Re(s) < 0

u(t) ∗ u(t) ∗ . . . ∗ u(t)︸ ︷︷ ︸
n times

1
sn Re(s) > 0

tu(t) 1
s2 Re(s) > 0

1√
πt

u(t) 1√
s

Re(s) > 0

2
√

t
π
u(t) 1√

s3 Re(s) > 0

tnu(t) n!
sn+1 Re(s) > 0

tn−1

(n−1)!
u(t) 1

sn Re(s) > 0

− tn−1

(n−1)!
u(−t) 1

sn Re(s) < 0

e−atu(t) 1
s+a

Re(s) > − Re(a)

−e−atu(−t) 1
s+a

Re(s) < − Re(a)

te−atu(t) 1
(s+a)2

Re(s) > − Re(a)

−te−atu(−t) 1
(s+a)2

Re(s) < − Re(a)

tn−1

(n−1)!
e−atu(t) 1

(s+a)n Re(s) > − Re(a)

− tn−1

(n−1)!
e−atu(−t) 1

(s+a)n Re(s) < − Re(a)

u(t) cos ω0t
s

s2+ω2
0

Re(s) > 0

u(t) sin ω0t
ω0

s2+ω2
0

Re(s) > 0

u(t)e−at cos ω0t
s+a

(s+a)2+ω2
0

Re(s) > − Re(a)

u(t)e−at sin ω0t
ω0

(s+a)2+ω2
0

Re(s) > − Re(a)

1
a−b

(eat − ebt)u(t) 1
(s−a)(s−b)

1
a−b

(aeat − bebt)u(t) s
(s−a)(s−b)

u(t) cosh at s
s2−a2

u(t) 1
a

sinh at 1
s2−a2

u(t) 1
a2 (1− cos at) 1

s(s2+a2)

u(t) 1
a3 (at− sin at) 1

s2(s2+a2)



616 D Tables of Laplace Transform and Transform Properties

dx(t)
dt

L⇔ sX(s)− x(0−) , (D.4)

d2x(t)
dt2

L⇔ s2X(s)− sx(0−)− x′(0−) , (D.5)

dnx(t)
dtn

L⇔ snX(s)− sn−1x(0−)− sn−2x′(0−)− . . .− x(n−1)(0−) . (D.6)

Integration in time:

t∫

0−

x(τ) dτ
L⇔ 1

s
X(s) , (D.7)

t∫

−∞
x(τ) dτ

L⇔ 1
s
X(s) +

1
s

0−∫

−∞
x(t) dt . (D.8)



E

Mathematical Formulas

Basic functions :

# δ(t) =
{∞, t = 0

0, t 	= 0 (Dirac delta-function, unit impulse)

∞∫
−∞

δ(t) dt = 1 ,
t∫
−∞

δ(t) dt = u(t)

# u(t) =
{

1, t � 0
0, t < 0 (unit step)

d
dtu(t) = δ(t)

Limits :

# lim
x→a

f(x)
g(x) = lim

x→a
∂f(x)/∂x
∂g(x)/∂x (L’Hospital’s rule)

# lim
x→0

sin x
x = 1

# lim
x→0

sinNx
sin x = N

#
∞∫
0

sin bxdx = lim
α→1

∞∫
0

xα−1 sin bxdx = Γ (α)
bα sin απ

2

∣∣∣
α=1

= 1
b

Trigonometric identities :

# ejx = cosx + j sinx (Euler’s formula)

# e(α+jx) = eα(cos x + j sinx)

# cosx = ejx+e−jx

2

# sinx = ejx−e−jx

2j

# cos2 x + sin2 x = 1
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# cos2 x− sin2 x = cos 2x

# 2 cosx sinx = sin 2x

# cos2 x = 1
2 (1 + cos 2x)

# sin2 x = 1
2 (1 − cos 2x)

# cos3 x = 1
4 cos 3x + 3

4 cosx

# sin3 x = − 1
4 sin 3x + 3

4 sinx

# cosx cos y = 1
2 [cos(x + y) + cos(x− y)]

# sinx sin y = 1
2 [cos(x− y)− cos(x + y)]

# sinx cos y = 1
2 [sin(x + y) + sin(x− y)]

# cos(x ± y) = cosx cos y ∓ sinx sin y

# sin(x± y) = sinx cos y ± cosx sin y

# cosx + cos y = 2 cos x+y2 cos x−y2

# cosx− cos y = −2 sin x+y
2 sin x−y

2

# sinx± sin y = 2 sin x±y
2 cos x∓y2

# a cosx + b sinx = r sin(x + ϕ) = r cos(x− ψ),
r =
√
a2 + b2, sinϕ = a

r , cosϕ = b
r , sinψ = b

r , cosψ = a
r

# d
dx arcsinx = 1√

1−x2

# d
dx arccosx = − 1√

1−x2

# d
dx arctanx = 1

1+x2

# d
dxarccotx = − 1

1+x2

Hyperbolic identities :

# sinhx = − sinh(−x) = ±
√

cosh2 x− 1 = ±
√

1
2 (cosh 2x− 1) = ex−e−x

2

# coshx = cosh(−x) =
√

sinh2 x + 1 =
√

1
2 (cosh 2x + 1) = 2 cosh2 x

2 −
1 = ex+e−x

2

# tanhx = sinh x
cosh x = ex−e−x

ex+e−x

# cothx = cosh x
sinhx = ex+e−x

ex−e−x
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# cosh2 x− sinh2 x = 1

# coshx + sinhx = ex

# coshx− sinhx = e−x

Exponents :

# eln x = x

# ex

ey = ex−y

# exey = ex+y

# (ex)α = eαx

Logarithms :

# ln ex = x

# ln x
y = lnx− ln y

# lnαx = lnα + lnx

# lnxα = α lnx

Extension to series :

# sinx = x− x3

3! + x5

5! − . . . + (−1)n x2n+1

(2n+1)! + . . .

# cosx = 1− x2

2! + x4

4! − x6

6! + . . . + (−1)n x2n

(2n)! + . . .

# ex = 1 + x + x2

2! + x3

3! + . . . + xn

n! + . . .

# ejβ cos z =
∞∑

k=−∞
jkJk(β)ejkz

# cos(β sin z) = J0(β) + 2
∞∑
k=1

J2k(β) cos 2kz

# cos(β cos z) = J0(β) + 2
∞∑
k=1

(−1)kJ2k(β) cos 2kz

# sin(β sin z) = 2
∞∑
k=0

J2k+1(β) sin(2k + 1)z

# sin(β cos z) = 2
∞∑
k=0

(−1)kJ2k+1(β) cos(2k + 1)z

# ln(1 + x) =
∞∑
n=1

(−1)n+1

n xn = x− x2

2 + x3

3 − . . . , |x| < 1
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Series :

#
N−1∑
n=0

xn = 1−xN

1−x , x 	= 1 (by geometric progression)

#
N−1∑
n=0

eαn = 1−eαN

1−eα

#
∞∑
n=0

xn = 1
1−x , |x| < 1

#
∞∑
k=1

sin2(kπ/q)
k2 = π2(q−1)

2q2

Indefinite integrals :

#
∫
f ′(x)g(x)dx = f(x)g(x) − ∫ f(x)g′(x)dx (integration by parts)

#
∫
f(x)dx =

∫
f [g(y)]g′(y)dy [x = g(y)] (change of variable)

#
∫

dx
x = ln |x|

#
∫
x+a
x+bdx = x + (a− b) ln |x + b|

#
∫
exdx = ex

#
∫
eax

x dx = Ei(ax), a 	= 0,

#
∫
axdx = ax

ln a

#
∫

dx
x(axr+b) = 1

rb ln
∣∣∣ xr

axr+b

∣∣∣

#
∫
xeαxdx = eαx

(
x
α − 1

α2

)

#
∫
x2eαxdx = eαx

(
x2

α − 2x
α2 + 2

α3

)

#
∫
xλeαxdx = 1

αx
λeαx − λ

α

∫
xλ−1eαxdx

#
∫

1
xe
αxdx = Ei(αx) [α 	= 0]

#
∫

1√
x
e−αxdx =

√
π
α erf (

√
αx) [α > 0]

#
∫

ex

x2+α2 dx = 1
α Im[ejα Ei(x− jα)]

#
∫
xe−ax

2
dx = − 1

2ae
−ax2

#
∫
x2e−ax

2
dx = − 1

2axe
−ax2

+
√
π

4a3 erf(ax)

#
∫
x3e−ax

2
dx = −ax2+1

2a2 e−ax
2
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#
∫
xe−a

2x2+bxdx = 1
a2 e

b2

4a2

(
b
2a

∫
e−t

2
dt +

∫
te−t

2
dt
)
, t = ax− b

2a

#
∫
e−(ax2+bx+c)dx = 1

2

√
π
a e

b2−4ac
4a erf

(
x
√
a + b

2
√
a

)

#
∫

sinxdx = − cosx

#
∫

cosxdx = sinx

#
∫
x

{
sinx
cosx

}
dx =

{
sinx
cosx

}
∓ x

{
cosx
sinx

}

#
∫

sin2 xdx = − 1
4 sin 2x + x

2

#
∫

cos2 xdx = 1
4 sin 2x + x

2

#
∫

sin3 xdx = 1
12 cos 3x− 3

4 cosx

#
∫

cos3 xdx = 1
12 sin 3x + 3

4 sinx

#
∫

sin4 xdx = 3x
8 − 1

4 sin 2x + 1
32 sin 4x

#
∫

cos4 xdx = 3x
8 + 1

4 sin 2x + 1
32 sin 4x

#
∫

dx
a+b cosx = 2√

a2−b2 arctan
√
a2−b2 tan x

2
a+b , [a2 > b2]

= 1√
b2−a2 ln

√
b2−a2 tan x

2 +a+b√
b2−a2 tan x

2−a−b
, [a2 < b2]

#
∫

dx
a+b sin x = 2√

a2−b2 arctan a tan x
2 +b√

a2−b2 , [a2 > b2]

= 1√
b2−a2 ln a tan x

2 +b−√b2−a2

a tan x
2 +b+

√
b2−a2 , [a2 < b2]

#
∫

erf(ax) dx = x erf(ax) + 1
a
√
π
e−a

2x2

#
∫
eax cos bx dx = eax

a2+b2 (a cos bx + b sin bx)

#
∫
eax sin bx dx = eax

a2+b2 (a sin bx− b cos bx)

Definite integrals :

#
∞∫
−∞

sinαx
x dx = π

#
∞∫
−∞

e−αx
2
dx =

√
π
α

#
x∫
0

ea
2t2dt =

√
π

2a erfi(ax)



622 E Mathematical Formulas

#
∞∫
−∞

x2e−αx
2
dx =

√
πα−3/2

#
∞∫
0

sinαx
x dx = π

2 sgnα

#
∞∫
0

sin2 αx
x2 dx = πα

2

#
∞∫
−∞

sin4 αx
x2 dx = πα

2

#
∞∫
0

dx
α2+x2 = π

2α

#
∞∫
0

xα−1 sin bxdx = Γ (α)
bα sin απ

2

#
∞∫
0

sin bxdx = 1
b

#
∞∫
−∞

sin x
x(x−α)dx = π

α (cosα− 1) , α is real

#
∞∫
−∞

cos(ax)
b2−x2 dx = π

2b sin(ab), a, b > 0

Inequalities :

# x(t) � C +
t∫
t0

γ(τ)x(τ) dτ � Ce

t∫
t0

γ(τ) dτ

(Gronwall-Bellman)

Special functions :

# erf (x) = 2√
π

x∫
0

e−t
2
dt (Error function)

# erfi(x) = −j erf(jx) = 2√
π

x∫
et

2
dt (Imaginary error function)

# Ei (x) = −
∞∫
−x

e−t

t dt =
x∫
−∞

et

t dt [x < 0] (Exponential-integral)

# Ei (x) = ex
[

1
x +

∞∫
0

e−t

(x−t)2 dt
]

[x > 0] (Exponential-integral)
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# Jn(z) = 1
2π

π∫
−π

e−j(nϑ−z sinϑ)dϑ (Bessel function of the first kind)

# Tn(ω) =
{

cos(n arccosω), |ω| � 1
cosh(n arccoshω), |ω| > 1 (Chebyshev polynomials)
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Index

κ-factor, 571
s domain, 315, 319, 334

Acoustic wave, 8
bulk (BAW), 267
surface (SAW), 267

Adder, 188, 407
Addition, 30, 32
Additivity, 16
AM radio, 251
Amplifier, 37, 263, 266, 321

exponential, 34
feedback, 320
gain, 267
inverting, 325
power, 498
regenerative, 330
resonant, 264, 266
square, 33, 58, 527
transistor, 264, 266, 323

Amplitude, 195, 265, 407
modulated, 83
peak, 7
slowly changing, 72
unmodulated, 83

Amplitude modulation function (AMF),
545, 548, 555, 566

magnitude, 546, 560, 571
phase, 546, 560, 571

Amplitude scaling, 28, 32, 162
Anharmonic, 269
Antenna, 251
Approximation, 61

exponential, 433

polynomial, 61
the first order, 71, 74, 77, 78, 83, 487
the second order, 71, 76

Associativity, 159, 367
Asymptotic method, 70, 74, 78, 80, 83
Attenuation, 257, 266, 271, 272, 274

coefficient, 260
parameter, 334, 338

Attractor, 130, 135, 506
n-scroll, 506
butterfly, 135
map sink, 130
regular, 130
strange, 130

Autoregressive (AR) model, 52, 169
Averaging, 66

generalized method, 67

Backlash, 461
Bandwidth, 77, 183, 226, 257, 259–261,

263, 266, 328, 352, 364, 378, 409,
474, 551

sides, 260
Bendixson’s criterion, 126, 127, 409, 411
Bias voltage control, 520, 521
Bifurcation, 131

diagram, 132
parameter, 132
theory, 131, 134
typical types, 134

Block diagram, 175, 188, 196, 201, 206,
209, 313, 378, 380, 384, 386

the first direct (canonic) form, 189,
314, 379
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the second direct (canonic) form, 192,
315, 381

Bode plot, 244, 257, 260, 325, 328
Bogoliubov-Mitropolskiy model, 543
Brownian motion, 447

Cassinian oval, 140
Causality, 163, 172, 292, 445, 530
Channel, 97, 263, 320, 531

amplification, 321
LTI, 327
LTV, 359
quadrature, 407
RF, 321
wireless, 414

Chaos theory, 130
Chaotic cell, 505
Chaotic orbit, 134
Chaotic system

celular neural network, 505
Chua’s circuit, 505
Lorenz’s, 135
Lur’s, 505
n-scroll circuit, 505

Characteristic exponent, 400, 402, 411
Characteristic multiplier, 400, 402
Circuit

electrical, 175, 255, 307, 375
LTV electrical, 378
RC, 251, 256, 309, 376
resonant, 266, 407, 414
RL, 256, 309, 311
RLC, 252, 253, 260, 312, 385
selective, 252

Clock and data recovery, 506
Closed loop, 562

control, 209
LTI, 206
stability, 207

Coefficients
time-varying, 74, 77

Commutativity, 158, 442
Comparator, 36
Comparison, 36
Continuous-time

autoregressive moving average
(CARMA) model, 52, 169

system, 2, 134
Controllability, 394

Controllability matrix, 217
Controllable canonic form, 215
Conversion

amplitude-to-frequency, 10
amplitude-to-phase, 73, 77, 549
phase-to-amplitude, 73

Convolution, 49, 58, 153, 163, 167, 168,
178, 240, 288, 289, 357, 441, 453,
455

Duhamel’s principle, 154
general, 51, 57, 349
generalized, 58, 437, 442

Critical damping, 182, 183
Cross-correlation, 161
Crystal, 267

media, 267
surface, 267

Crystal resonator, 571

Damping factor, 179, 183, 185
Degree of freedom, 142
Demodulation, 506
Demodulator, 3, 37

asynchronous, 579
synchronous, 497

Density
conservative, 141
integral invariant, 141

Describing function
cosine input, 459
sinusoidal input, 464

Describing function (DF), 85, 458, 465
cosine input, 86
method, 85
sinusoidal input, 86

Detector, 10, 406
synchronous, 405, 406, 520, 523

Differential equation
method, 60

Differentiator, 15
Direct problem, 165
Dirichlet conditions, 88, 276, 279
Disctibutivity, 451
Dissipation rate, 112
Distortionless transmission, 249
Distributivity, 158, 366, 443, 529
Divided differences, 429
Doppler shift, 359
Doppler-delay spread function, 361
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Double harmonic balance, 81, 552
Drive level dependence (DLD), 474
Duality, 216
Duhamel’s integral, 154
Dynamic systems theory, 119

Eigenfrequency, 180
Eigenfunction, 171
Eigenvalue, 122, 125, 171, 400–402

periodic, 411
semiperiodic, 411

Eigenvector, 122, 125, 126
Electric charge, 376, 407
Electric potencial, 376
Energy, 109, 408, 414
Envelope, 248
Equalizer, 496
Equation

Bernoulli’s, 470, 472, 538
characteristic, 108, 121, 124, 171, 179,

226, 322, 490, 495
Mathieu’s, 409, 411, 413
voltage balance, 311, 377

Equivalent linearization, 66, 77
Equivalent scheme, 266
Euler formula, 48, 303, 415
Evenness, 243
Excitation, 413

biharmonic, 480, 486
soft, 484

Feedback, 207, 321, 328, 504, 562
negative, 26, 319, 320
positive, 26, 319, 320

Feedback matrix, 206, 208, 210
Feedback system

LTI, 206
Figure of merit, 270
Filter, 37, 96, 251, 254, 260, 261, 264

all-pass, 251, 252
anti-hum, 254
anti-presence, 254
band-elimination, 253
band-pass (BP), 252, 264, 499, 501,

527, 577
band-rejection (BR), 253
band-stop, 253, 254
band-suppression, 253
bass-cut, 251

Bessel, 340
BP ideal (perfect), 252
BR ideal (perfect), 253
Butterworth, 333–335, 339
Chebyshev, 333, 336
elliptic, 340
high-cut, 251
high-pass (HP), 175, 251, 252, 254,

258
hiss, 251
HP ideal (perfect), 252
ladder, 273
lattice, 272
low-cut, 251
low-pass (LP), 175, 249, 251–253,

255, 258, 273, 406, 508, 527, 536
LP ideal (perfect), 251, 254
narrow band-pass, 254
notch, 253, 254, 261
optimal, 254
order, 334, 338
RC, 256, 497
RL, 256
rumble, 251
selective, 254
T-notch, 254
tracking, 349, 362
treble cut, 251
voltage controlled, 536

Filter approximation, 333
Filtering, 250
Fixed point

center, 132
center (neutral), 122
focus, 122
node, 122, 124
saddle, 122, 124, 132, 142, 146
spiral, 122, 124, 126

Floquet exponent, 400
Floquet’s theory, 398, 400, 402, 411
Fourier series, 79, 84, 403, 609
Fractal, 137
Frequency, 408

carrier, 10, 402, 405, 406
central, 253, 275, 527
cut-off, 251–253, 256, 257, 328, 334,

337, 339
gain crossover, 325
instantaneous, 565
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intermediate, 404
linear drift rate, 195
mean cut-off, 253
modulated, 546, 565
modulating, 408
modulation, 84, 403, 527
natural (angular), 74, 179, 183, 248,

409
parallel resonance, 270
phase crossover, 325
pumping, 412
resonance, 260, 261, 263, 267, 407,

474
resonant, 413
series resonance, 270
carrier, 7

Frequency divider, 414, 506
Frequency domain, 239, 246, 357, 359,

398, 531
kernel, 454

Frequency drift, 11
Frequency instability, 11
Frequency modulation factor, 546
Frequency modulation function (FMF),

546, 549, 555, 566
magnitude, 546, 573
phase, 546, 573

Frequency offset, 11, 269, 412
Frequency response, 46, 54, 93, 239,

240, 245, 249, 253, 255, 256, 259,
261, 264, 266, 272, 323, 328, 331,
334, 356, 510

time-varying, 356, 375, 533, 537
two-dimensional (bi-frequency), 357,

361
Frequency tracking, 506
Frequency transformation, 402
Frequency transformer, 403, 405
Full-wave rectifier, 36
Function

complex exponent, 276
cosine truncated, 303
Dirac delta, 43, 228, 302, 359, 532
exponential truncated, 303
general complex exponent, 277
generalized energy, 109
Mathieu’s, 411
positive definite, 109, 112
sinc, 254

sinusoidal truncated, 303
unit step, 302

Fundamental matrix, 387, 390, 392,
399, 401, 402

Fundamental solution, 400

Gain constant, 249
Gain factor, 321
Gain stability margin, 325
Gaussian waveform, 7
General superposition inntegral, 350
Generalized detuning, 261–263
Geometric mean, 253
Gibbs phenomenon, 449
Grönwall-Bellman inequality, 107
Group delay, 247, 248, 250, 255, 256,

259, 334, 339

Half bandwidth, 84
Half-wave rectifier, 36
Hamilton’s equations, 142
Hamiltonian, 142
Hammerstein system, 439, 496, 497,

499–502, 504, 562, 578
closed loop control, 576
generalized, 496

Harmonic balance, 66, 78, 83, 411, 475,
552, 558

Harmonic pumping, 409
Harmonics, 80
Heterodyne, 405
High-quality audio coding, 328
Homogeneity, 159, 366, 444, 451, 529
Hurwitz, 577
Hurwitz determinant, 322
Hurwitz matrix, 219, 500, 506
Hysteresis, 426

Ideal differentiation, 30, 32
Ideal integration, 29, 32
Identity matrix, 56
Impedance, 256, 260, 264, 266, 269

characteristic, 263
collector-emitter, 264
phase, 261, 263, 270
total, 261, 263, 270

Impulse response, 44, 96, 153, 161,
164, 173, 176, 182, 183, 228, 240,
250–254, 292, 364
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generalized, 58
matrix, 97, 167
time-varying, 51, 57, 97, 349, 351,

359, 362, 367, 372, 373, 391, 393,
527, 533

time-varying modified, 352, 361, 362
Inconvertibility, 369
Initial condition, 171, 187, 196, 228, 318
Input matrix, 54, 198, 204, 318, 384,

386, 495
Integration factor, 175, 222, 386, 391
Integrator, 15, 61

ideal, 189, 327
Interdigital transducer (ITD), 274, 275
Intermediate (IF), 402
Interpolation, 523

Lagrange, 427, 523
Newton, 429, 523
Nyquist-Kotelnikov-Shannon, 254

Interpolation polynomial, 428
Inverse problem, 165
Isocline, 121

Jacobian, 65, 121, 123, 126, 144, 495
Josephson junction, 510

Kalman decomposition, 217
Krylov-Bogoliubov method, 66, 482,

487
Krylov-Bogoliubov-Mitropolskiy

method, 70

Laplace domain kernel, 454
Laplace transform

capacitance, 309
electric current, 307
electric voltage, 307
inductance, 309
resistor, 307

Least upper bound, 93
Lemniscate, 140
Limit cycle, 126, 127, 145, 544

rough, 144
stable, 126, 127
unstable, 126

Limitation, 37
Linear asynchronously time-varying

system, 364
Linear parametric excitation, 407

Linear parametric oscillator, 409
Linear periodically time-varying

(LPTV) system, 365, 396, 398,
399, 402, 407

stability, 401
Linear synchronously time-varying

system, 364
Linearity, 159, 162, 172, 244, 286, 366
Linearization, 61, 471, 577

analytical, 62
Linearization technique, 65, 435

feedback, 65, 435
feedforward, 65, 435
nonlinear predistortion, 65, 436

Lower sideband (LSB), 273
LTI system, 499, 504

cascade, 266
narrowband, 264
of high order, 266
of the first order, 175, 254, 305
of the second order, 179, 260, 263,

306
LTV system, 364, 371, 394

BIBO stability, 371, 393
generalized ODE, 378
in state space, 386
of the first order, 372

Lur’e system, 502, 505, 506
control, 577

Lyapunov, 218
exponent, 135, 137, 138, 400, 401
function, 108, 110, 111, 220, 221
the first (indirect) method, 105
the second (direct) method, 108, 110,

221, 503
theorem, 110
transformation of variables, 398, 399

Magnetic flux, 377
Magnitude response, 47, 239, 242, 245,

249, 255–257, 259, 262, 264, 267,
331, 333, 334, 337, 338, 476, 489

logarithmic, 244
rectangular, 251, 252

Manifold, 146
Matrix exponential, 223, 224, 226, 227
Matrix theory overview, 593
Measurement

distance, 4
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velocity, 5
Melnikov integral, 147

Memory, 162, 425
Method

cover-up, 294, 295
electric circuits, 245

functional, 437
Lagrange of variation, 389
Melnikov’s, 146
qualitative, 112, 119

quantitative, 43, 112
Volterra series, 437

Method of expansion (perturbation
method), 67

Mixer, 407, 525
Modes competition, 484
Modulation, 290, 402, 408, 506

amplitude (AM), 3, 405

broadband, 85
frequency (FM), 3, 75, 405, 545
phase (PM), 3, 405

Modulation factor, 403, 409, 414, 416,
566

Modulation function
amplitude (AMF), 85
frequency (FMF), 84

Modulation functions method, 84
fast modulation, 562
slow modulation, 544

Modulator, 3, 37

Monodromy matrix, 399
Motion equation, 170, 474
Motional

capacitance, 269, 474
inductance, 269, 474

resistance, 269, 474
Moving average (MA) model, 52, 169
Multifrequency network function, 532
Multifrequency system function, 532

Multivariate system function, 532
Mutual inductance, 204

Noble identity, 361
Non-commutativity, 367, 529

Nonlinear amplifier
classes, 34

Nonlinear ODE, 470
linearized, 471

Nonlinear periodically time-varying
(NPTV) system, 542, 562

Norm, 87
H2, 91, 92, 95
H∞, 93, 95
L1, 88
L2, 88
L∞, 89
Lp, 89
definition, 87
Euclidian, 92, 97
Frobenius, 92, 97
homogeneity, 87
positive definiteness, 87
positivity, 87
root-mean-square, 90

Normed space, 87
NTI system, 425

BIBO stable, 446
causal, 445
in state space, 495
memory, 504
memoryless, 468, 496, 499
noncausal, 445
stability, 472

NTV system, 520
BIBO stable, 531
causal, 530
in state space, 574
memoryless, 520, 523
noncausal, 530
of the first order, 536

Nuisance parameters, 536
Nullcline, 121, 126
Nyquist plot, 324, 326, 504

Observability, 396
Observability matrix, 216
Observable canonic form, 216
Observation equation, 54, 195, 197, 200,

202, 206, 208, 383, 390
Observation matrix, 54, 198, 204, 216,

318, 384, 386
Observation model, 198
Oddness, 243
Ordinarily differential equation (ODE),

51, 168, 244, 371, 387, 470, 535
forced solution, 170, 172, 181, 374,

375
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general solution, 138
homogenous solution, 170, 180, 374,

375
linear, 51, 124
nonlinear, 63
nonlinear linearized, 65
operator, 170
solution, 304
weakly nonlinear, 79

Oscillations, 407, 409, 414
forced, 490
harmonic, 74

Oscillator, 10, 37, 111, 402, 520, 525,
562

Butler crystal, 569
Colpitts, 557
critically damped, 181
FM crystal, 557, 561, 571
frequency modulated (FM), 545, 563
harmonic, 477
harmonic synchronized, 486
linear, 409
Lorenz, 135
Mathieu, 411
modulated, 551
multifrequency, 486
oven controlled crystal (OCXO), 10
overdamped, 24, 181
quartz crystal, 267
Rayleigh, 107
reference, 10, 183
synchronized, 490
three-point, 557
underdamped, 24, 181
voltage controlled, 539, 575
voltage controlled crystal (VCXO),

504
Output matrix, 54, 198, 204, 318, 384,

386
Overdamping, 182, 183
Overtone, 83

Parallel resonance, 474
Parallel resonant circuit, 260, 263, 264,

274
Parametric amplification, 414
Parametric demodulation, 405
Parametric excitation, 407, 413, 414
Parametric modulation, 404

Parametric modulator, 404
Parametric oscillations, 407
Parametric resonance, 408
Partial differential equation (PDE),

139, 140
Passband, 271, 333, 335, 337
Periodic orbit, 126, 411
Phase, 77, 195, 408, 502

carrier, 407
difference, 99
linear drift rate, 195
modulo 2π, 242
nonstationary, 11
principle, 242
reference, 99
slowly changing, 72
trajectory, 132

Phase delay, 247, 248, 250, 255, 256,
259

Phase distortions, 246
Phase locked loop (PLL), 37, 99, 406,

506, 510, 511
Phase modulation factor, 547
Phase plane, 112, 119, 120, 124, 126
Phase portrait, 124, 142, 484
Phase response, 47, 239, 242, 245, 248,

249, 255, 256, 259, 262, 264, 334,
339, 476

linear, 254
Phase space, 119, 126
Phase stability margin, 325
Phase synchronization, 492
Phase system, 100
Phase tracking, 506
Phase trajectory, 120, 124, 126, 140

closed, 126
heteroclinic, 128
homoclinic, 128, 129

Phase wrapped, 242
Physical realizability, 51
Piezoelectric

crystal ladder filter, 272
effect, 267
filter, 267, 271
nonlinear filter, 473, 476
resonator, 267, 269, 557
structure, 267
substrate, 274

Point
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equilibrium, 99, 100, 104, 108
fixed, 121, 139, 142

Positive definite matrix, 220
symmetric, 221

Power amplification, 34
Product, 35, 83, 289, 452
Proper ratio, 278

Qualitative analysis, 119, 120
Qualitative theory, 119
Quality factor, 179, 261, 265, 269, 271,

330, 413
Quartz oscillator clock, 267

Radio frequency (RF), 274
transformer, 500

Radio station, 252
Range of existence, 271, 355, 362
Rate of convergence, 102
Receiver, 2, 9, 251, 502

coherent, 501
CW, 272
GPS timing, 12
radio, 252
superheterodyne, 402

Rectangular pulse, 302
Rectification, 36
Region of convergence (ROC), 279, 280,

282, 286, 450
Relay system, 465
Resonator

crystal, 10
Ripple, 333, 336, 337, 339

factor, 338
Roll-off, 254, 266, 333, 336, 340
Roughness, 131

Saturation, 35, 463, 577
SAW device, 273, 274

filter, 273, 275
oscillator, 273
resonator, 275
sensor, 273
transformer, 273
typical design, 274

SAW energy, 275
SAW propagation velocity, 274
Scalar multiplier, 188
Scaling property, 16

Sensitivity
amplitude, 3
phase, 3
temperature, 10
frequency, 3

Sensor, 10
Separatrix, 124, 126, 146
Series resonant circuit, 260, 263
Shifting property, 177
Signal

absolutely integrable, 88
carrier, 248, 527
causal, 163
energy, 89, 142
GPS timing, 12
message, 406
modulating, 407
noncausal, 163
pumping, 414
spurious, 321
total resources, 88

Signal processing, 271
Similarity transformation, 211, 213
Slow time, 74, 77
Solution

exponential, 141
harmonic, 412
periodic, 411, 475
semiperiodic, 411

Spectral density, 242
magnitude, 242
phase, 242

Spectral function, 359
Splines, 429, 523

cubic, 431
Spread function, 361
Spurious

AM, 558, 564, 574
AM index, 544, 556, 560
FM, 564, 565, 574
FM index, 544

Stability, 24, 95, 164, 218, 291, 319, 401,
409, 446, 483, 490, 494, 500, 531

asymptotic, 100, 104, 106, 108, 110,
221, 394, 401, 495

bounded-input/bounded-output
(BIBO), 24, 95, 164

exponential, 102, 105, 106, 112, 401,
402
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external, 95, 102
global, 99
global asymptotic (G.A.S), 110
global exponential (G.E.S), 102, 112
in the sense of Lagrange, 102, 104
in the sense of Lyapunov, 99, 104,

321, 401, 402, 495
input to output (IOS), 103
input to state (ISS), 103
input/output to state (IOSS), 103
internal, 98
local, 99
local exponential, 102
marginal, 99, 320, 394
output to state (OSS), 103
resources, 327
robustly output (ROS), 103
structural, 131
uniform, 100

Stability criterion
circle, 503, 504, 506
Lyapunov function, 220
Lyapunov’s, 219
Nyquist, 322, 323
Popov’s, 503–506, 576
Routh-Hurwitz, 220, 322

State, 212
controllability, 213, 216
equation, 54, 195, 197, 202, 208, 383,

495
observability, 213, 215, 216
transition matrix, 103, 104, 223, 389,

390, 393, 394, 399, 401, 402
variable, 54, 55, 195, 197
variables convertibility, 211
vector, 54–56, 61, 211, 389

State space, 54, 60, 61, 138, 153, 195,
217, 317, 383, 384, 411, 493, 574

State space equations, 226, 383, 384
forced solution, 227
general solution, 222
homogenous solution, 223, 227
solution, 222, 386

State space model, 55, 64, 195, 198,
203, 206, 212, 226, 383–385

linearized, 64, 99, 494
the first direct form, 196
the second direct form, 200

Stationarity, 162, 445, 530

Steady state, 489
Step response, 46, 157, 173, 178, 183,

185, 228
time-varying, 369, 374

Stopband, 271, 272, 333, 339
Superposition principle, 16, 158, 366
Suppression, 272
Supremum, 89
Symbol (bit) synchronization, 506
Synchronization, 489

region, 492
Synchronous detection, 407
Synthesis, 506
System, 349

biharmonic oscillatory, 480
chaotic, 146
communication, 2, 273, 506
conservative, 138, 141, 142, 183
control, 6, 37, 206
controlable, 213
delay feedback, 331
dissipative, 139, 143, 146
Doppler radar, 5
dynamical , 1
Hamiltonian, 141, 143–145
input-to-output, 209
matrix, 54, 386, 495
medical ultrasonography, 7
memory, 426, 436
memoryless, 427
mobile phone, 273
near conservative, 143, 145
observable, 215
open loop, 209
precision nonlinear oscillatory, 183
radar, 4, 273
remote sensing, 10
resonant, 260
robot positioning, 8
rough, 131
subtle, 131
TV, 273
Volterra, 454
wireless, 8

System block diagram, 58
System characteristic

accuracy, 20
causality, 15
continuity, 13
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controlability, 19
detectability, 20, 103
dimensionality, 13
homogeneity, 16
linearity, 16
memory, 14
observability, 19
precision, 20
regularity, 12
robastness, 21
Stability, 24
stabilizability, 20, 103
uncertainty, 21

System definition, 1
System function, 46
System identification, 166
System matrix, 108, 204, 224, 226, 318,

383
System operator, 12, 239, 349, 425
System state, 195
System structure

cascade, 27, 501
closed loop, 25, 143, 206, 319, 502
closed loop control, 26, 206
feedback, 25, 206, 319
open, 25
parallel, 27

System type
autonomous, 322
causal, 15, 163, 292
continuous-time, 13
deterministic, 12
discrete-time, 13
linear, 16
linear time-invariant (LTI), 17, 54,

153
linear time-varying (LTV), 18, 32, 51,

54, 349
memory (or dynamic), 14
memoryless (or static), 14, 87
multiple-input multiple-output

(MIMO), 13, 167
multiple-input single-output (MISO),

14, 167
noncausal, 15, 163, 292
nonlinear, 16
nonlinear memoryless, 33
nonlinear time-invariant (NTI), 18,

33, 60, 425

nonlinear time-varying (NTV), 18,
37, 60, 519

random, 13
single-input multiple-output (SIMO),

14, 167
single-input single-output (SISO), 14,

167
stochastic, 13, 519
time-invariant, 17
time-varying (time-variant), 17

Taylor series, 57, 63, 64, 137, 195,
223–225, 434, 437, 495, 523

Test signal, 43
complex exponential, 44
unit impulse, 44
unit step, 44

Theorem, 129
Andronov’s, 130
Andronov-Pontryagin’s, 131
Cayley-Hamilton, 225, 227
Dulac’s, 128
final value, 301
Floquet’s, 398, 412
initial value, 300
Melnikov’s, 147
Poincaré-Bendixson, 127
Pontryagin’s, 143, 144
similarity, 284

Time constant, 177
Time domain, 153, 240, 315, 378
Time reversal, 284
Time scaling, 283
Time shifting, 31, 162, 225, 283, 451
Time-invariance, 173
Topography, 131
Tract, 263, 320
Trajectory, 110

homoclinic, 146
Transconductance, 265, 403, 405
Transducer

ultrasonic acoustic, 7
Transfer function, 52, 56, 97, 239, 291,

292, 294, 314, 315, 319, 323, 334,
337

multivariate, 454
poles, 279
time-varying, 362
zeros, 278
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Transform
Fourier, 15, 30, 47, 54, 165, 239–241,

244, 249, 255, 276, 278, 356, 357,
361, 397, 450, 609

Fourier inverse, 251
Laplace, 52, 239, 276, 279, 280, 287,

295, 304, 305, 307, 313, 317, 364,
450, 453, 613

Laplace bilateral, 54, 276, 278, 282
Laplace inverse, 293
Laplace unilateral, 276, 297
multivariate, 454

Transform domain, 239, 455, 535
Transform domain kernel, 456
Transient time, 185
Transmitter, 2, 8

SSB, 272
Triangular inequality, 88

Uncertainty principle, 22
Underdamping, 181, 183
Unit impulse, 43, 163, 305, 356, 373
Unit step, 157, 306, 374, 454
Upper sideband (USB), 272

van der Pol’s

equation, 68, 70, 72, 119

method, 66, 68, 78, 558

oscillator, 68, 70, 72, 75, 78, 80, 82,
84, 86, 120, 127, 139, 144, 473

solution, 68

Vandermonde matrix, 427

Variable amplitudes, 548, 559

Vibration

fundamental, 269

spurious, 269

Volterra kernel, 57, 437, 440, 446, 449,
452, 526, 529, 534

Volterra operator, 437, 442, 450, 528

Volterra series, 57, 436, 449, 453, 497,
525, 526

Volterra system, 451

Wiener kernel, 447, 449

Wiener method, 59, 447

Wiener operator, 447

Wiener system, 439, 496, 499–502, 581
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