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Preface

Any real system be it physical, biological, chemical, astronomical, electrical,
electronic, etc. operates in continuous time and is governed by differential
equations. To learn the world we are living in and so comprehend the laws
inherent to its organisms, the mathematical methods of system analysis, syn-
thesis, and design have been under development for centuries. With time,
these methods have framed what we now call the “system theory” covering
all aspects of mathematical modeling of structures comprising subsystems and
even components.

A very specific area unites electronic systems, such as navigation, position-
ing, radar, sonar, control, broadcasting, television, communications, measure-
ments, remote sensing, etc. with permanently increasing fields of applications,
such as military, space exploration, aviation, bioengineering, cartography, as-
tronomy, manufacturing, robotics, medicine, metrology, scientific, entertain-
ment, and this list is not exhausted.

In spite of a relatively short history, electronic systems have passed a way
of tremendous development starting from the early days of communication
by telephone (Elisha Gray and Graham Bell, 1870s) and radio broadcasting
(Aleksandr Popov and Guglielmo Marconi, 1890s) up to the automatic control
(1940s), chaotic systems (1970s) (mechanical chaotic system have been studied
for over 200 years), and fractals (1980s). An enormous number of papers have
been published for decades as associated with different aspects of the system
theory and applications and the number of publications intensively grows
every year.

This book introduces the reader to the deterministic theory of the
continuous-time linear and nonlinear systems assuming them to be either
time-varying or time-invariant. We do not give cross-references to the crit-
ical and widely recognized works (the list of these works is applied). Instead,
we mention short biographies of the most outstanding people contributing to
the field, whenever the name first appears in the text.

To keep the development logical and more understandable, the systems are
observed from the linear time-invariant (LTI), to linear time-varying (LTV),
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nonlinear time-invariant (NTI), and nonlinear time-varying (NTV). The main
material is supplied with the Introduction and two Chapters presenting the
qualitative and quantitative methods.

The organization of the book is illustrated by the following humorous

diagram with a personage taken from the Education Cartoons for Teachers,
by Randy Glasbergen.
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Introduction

The following chapters elucidate the theory of the continuous-time sys-

tems:

1. In Introduction (Chapter 1), basic principles of operation of the most typ-
ical electronic systems are first observed. The systems are then classified
in nowadays seemingly obvious and acceptable terms. Finally, basic op-
erations with signals are briefly outlined for all general types of systems:
linear and nonlinear, time-invariant and time-varying.

. Chapter 2 addresses the quantitative methods of systems analysis. It starts
with the definitions of the system responses to test signals. The rigor-
ous methods are then observed for both linear and nonlinear systems.
The rigor is not for its own sake and not always necessary. Therefore, in
the sequel, the approximate methods are discussed for nonlinear systems.
Among these methods, the two far reaching approaches called averaging
and equivalent linearization are observed in detail. An analysis is finished
with the system norms and theory of stability.
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. The qualitative methods are observed in Chapter 3. System presentation
in phase plane is given along with a description of phase trajectories (limit
cycles, homoclinic and heteroclinic, and attractors). Structural stability,
bifurcations, chaotic orbits, and fractals are also discussed. Finally, con-
servative and dissipative structures are presented with the methods of
their analysis.

. Beginning with Chapter 4, the systems are analyzed systematically using
the conceptual cannons, foundations, and methods given in Chapters 1-3.
In Chapter 4, the LTI systems are examined in the time domain. Starting
with the convolution, the LTT systems are then described by the ordi-
nary differential equations (ODEs), simulated with block diagrams, and
represented in state space.

. In Chapter 5, the LTI systems are examined in the frequency (transform)
domain. Major tools here are the Fourier transform and Laplace transform
(bilateral and unilateral) applied to earlier observed the different forms in
the time domain. Stability analysis in the frequency domain and transform
domain is also given.

. Chapter 6 is devoted to LTV systems. In the time domain, this system is
represented with the time-varying impulse response (standard and modi-
fied) and general convolution. It is also represented with the ODEs and in
state space. In the transform domain, the tool is mostly the time-varying
frequency response. Linear periodic systems are observed and analyzed
as suggested by Floquet’s theory. Examples are taken from the frequency
transformation, parametric modulation, parametric excitation, paramet-
ric amplification, and synchronous detection.

. NTT systems are observed and analyzed in Chapter 7. Here, a memoryless
nonlinearity is described, interpolated, and approximated. The Volterra
and Wiener approaches are applied to memory systems both in the time
and frequency domains. As applications, the Hammerstein and Wiener
models are considered. Systems are also represented approximately with
the describing function method. Description by the ODEs is supported
with examples of nonlinear piezoelectric filter, harmonic oscillator, bi-
harmonic oscillatory system, and synchronized harmonic oscillator. Fi-
nally, state space presentation is given and illustrated with the phase
locked loop.

. In the last Chapter 8, the most general system model, namely NTV is
examined. The memoryless nonlinearity is considered in time and the
Volterra approach is extended to the time-variant coefficients of a mem-
ory system. The system is also analyzed with the ODE and illustrated
with the voltage controlled oscillator. Periodic (modulated) NTV systems
are described with the modulation functions method and supported by
examples of FM oscillators. Finally, state space presentation is given for
the time-varying Hammerstein and Wiener systems.
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The remainder of the book is build with Appendices reviewing the prop-
erties of the Dirac delta function (Appendix A), matrices (Appendix B), the
Fourier transform and transform properties (Appendix C), and the Laplace
transform and transform properties (Appendix D). Useful mathematical for-
mulas are postponed to Appendix E.

As well as the first part Signals', this book is essentially an extensive revi-
sion and development of my Lectures on Radio Signals, Circuits, and Systems
given during a couple of decades in Kharkiv Military University of Ukraine
and several courses on Signals and Systems, System Theory, and Signal Pro-
cessing in the Guanajuato University of Mexico in recent years. The book is
intended for the sophomore-junior and upper level electrical engineering stu-
dent who wants to acquire knowledge in classical and modern system analysis
and comprehend the links between linear and nonlinear, time-invariant and
time-varying structures. It may also be useful for post graduate studies and
specialists in electronic and other systems.

Salamanca, Mexico, Yuriy S. Shmaliy

! Shmaliy, Y.S., Continuous-Time Signals, Springer, Dordrecht, 2006.
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1

Introduction

All physical systems are governed by differential equations and operate in con-
tinuous time. Therefore, they are labeled as dynamical systems and interpreted
as functions that map input signals into output signals. This mapping may be
linear or nonlinear, time-invariant or time-variant, deterministic or stochas-
tic (random). The system input may fully be specified by its output and the
system then becomes closed loop (no input) being either passive (negative
feedback) or active or oscillating (positive feedback). If a closed loop system
has an auxiliary control input, then it is a closed loop control system or merely
a control system. Contrary, if a system is designed without output, then it is
an isolated system (no output) also called a closed system. A common idea
about a system may thus be formulated as follows:

System: A system is an assemblage of physical or mathematical com-

ponents organized and interacting to convert an input signal (also

called excitation signal or driving force) to an output signal (also

called response signal).

O

A system is presented as a mathematical model of a physical process that
relates the input signal to the output signal. Therefore, basically, the system
theory is forwarded toward solving four major problems:

System analysis, to understand properties of a given system. O
System design, to find a proper system that meets given specifications.

O

e System synthesis, to find a system structure or a proper block diagram.
O

e System implementation, to realize a system practically. ]

In modern signals mapping, attention is focused not solely on how the
function is defined, but also on what is the domain and range of signals.
Domains and ranges are often converted that makes a modern system typically
complex but also optimized. An example is when an analog signal is converted
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to the discrete form, then processed digitally, and returned back to the analog
form. In the other example, to transmit a digital signal through the telephone
system, the digital signal has to be converted into a bandlimited audio signal
in the analog domain of the telephone system.

Many systems are designed to have constant coefficients with negligible
noise. Such systems labeled deterministic are considered throughout this book.
For a long time, researchers were deeply convinced that deterministic systems
always give a deterministic output. It then occurred that, under certain con-
ditions, the deterministic system may produce the output that is not strongly
deterministic, but chaotic.

The essential feature of system theory is that the analytical results
for dynamical systems with discrete time are not always applicable in the
continuous-time systems. This is why the dynamical systems in continuous
time, also often called flows, and the discrete-time dynamic systems have dif-
ferent mathematics, even though the fundamental concepts are common for
both types.

In this book, we consider fundamentals and basic canons of all types of
the continuous-time deterministic systems, namely linear and nonlinear, time-
invariant and time-varying, with their presentations in the time and frequency
(transform) domains. Since the material relates to electrical engineering, prime
attention is paid to linear electronic systems associated with 27 signal period-
icity and methods of description of time-varying and nonlinear systems with
applications to their principle representatives, such as frequency transformers,
oscillators, nonlinear amplifiers, modulators, demodulators, control systems,
phase locked loops, etc. The reader is encouraged to follow fundamentals, defi-
nitions, and basic canons of signals given in [Shmaliy, Yu.S., Continuous- Time
Signals, Springer, 2006] that is referred to throughout the book as Signals.

1.1 Principles of Operation of Typical Systems

As many physical processes are of interest, many systems may be designed
to meet practical needs. In the modern view, systems exploiting electrical
and/or electromagnetic nature of signals can quite fully be represented with
the following examples grounded on practical usefulness.

1.1.1 Communications

In communications, a system is called a device that realizes a transformation of
the information in its input signal to the information in its output signal. Via
the communication channel, the information is submitted by the transmitter
at a distance and received by the receiver. Two structures are practically
feasible: the communication channel may be either wireless (Fig. 1.1a) or wire
(Fig. 1.1b).
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Wireless channel

@) 0 I Transmitter &CID& Receiver [,

Message
Message

®) 2O Transmiter e crammat 225 Recaiver |22,

Fig. 1.1. Structures of communication systems: (a) wireless and (b) wire.

A typical situation is when the information is represented not in electrical
media. It may be voice or image, for example. Therefore, an important block is
a modulator that performs the transformation of the nonelectric information
(voice) to the electric signal (voice-like). At the receiver, the electric signal
(voice-like) is transformed back to the nonelectric information (voice) by what
is called the demodulator. The other important operation of the transmitter
is information coding necessary to detect different signals. The receiver also
provides amplification, demodulation, filtering, and information decoding.

The information is transmitted via the amplitude or/and angle of a carrier
signal, so that a general form of a transmitted signal may be performed as

y(t) = A(t) cos¥(t), (1.1)

where various kinds of amplitude modulation (AM) are realized by variations
in the amplitude A(t). Frequency modulation (FM) and phase modulation
(PM) are provided by altering the signal angle ¥(t).

With AM, the signal (1.1) may be written as

y(t) = Ap[l + kam(t)] cos(wot + 1p) , (1.2)

where m(t) is the baseband message, Ay is the mean amplitude without AM,
ks is the amplitude sensitivity, wy is a carrier frequency, and g is a initial
constant phase. By FM, the function (1.1) is transformed to

t
y(t) = Ag cos w0t+kw/m(t)dt+¢o , (1.3)
0

where k, = 2wk and kr is the frequency sensitivity. Finally, with PM, the
signal is formed as

y(t) = Ap cos[wot + kpm(t) + o], (1.4)

where £, is the phase sensitivity .

At the receiver, the signal §(t) appears as a corrupted version of y(t) owing
to the channel imperfection. It is then detected and the message estimate 1m.(t)
is formed. With ideal wireless transmission, it is assumed that m(t) = m(t).
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1.1.2 Distance Measurement by Phase Radars

The principle of distance measurement between a stationary object (car) and
phase radar (acronym for radio detection and ranging) is illustrated in Fig.
1.2. The radar system consists of the transmitter and receiver organized in the
same equipment. A precision oscillator (Osc) generates the reference signal

<
v : e
Osc —"p| Transmitter —‘C

vy l - i
V,
«d 1 sp e ] Receiver ﬁCA//

Fig. 1.2. Distance measuring radar system.

vo(t) = Vo cos(wot + 1p) , (1.5)

where Vj, wp, and ¢y are constant.
The transmitter gains oscillations, which are then radiated by the antenna
as an electromagnetic field with an electric intensity

e1(t) = Ey cos(wot + v + @) , (1.6)

where ¢ a phase shift caused by signal amplification and propagation. While
propagating, an electromagnetic field acquires a phase shift

o (2;1) = 47;(1 , (1.7)

where d is a distance between the measurement set (radar) and an object
(car) and A is the wave length determined by the frequency wy and the phase
speed v of the wave propagation in the medium.

At the receiving antenna, an electric intensity of the electromagnetic field
becomes

A

and, after amplified and properly transformed at the receiver, the following
signal goes to the signal processing (SP) block,

4rd
ez(t) = Fs cos <w0t + Yo + @y — m ) , (1.8)

4nd
v1(t) = Vj cos <w0t + o + pr — T + gor) , (1.9)
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where ¢, the phase shift induced by the receiver. The SP block calculates
the phase difference between two signals, vo(t) and vy (t); that is,

47d
o=\ ¢ (1.10)

and the distance d is then defined by

A A
d= o+ (ot ), (111)

where the phase shifts, ¢ and ¢,, are measured at the early stage while testing
the system.

1.1.3 Radial Velocity Measurement of an Aircraft

Every pilot needs to know true airspeed to avoid critical situations. A geomet-
rical interpretation of a possibility of determining a radial velocity of an air-
craft is shown in Fig.1.3. The ground-placed equipment is located at a center
point 0 of the stationary coordinates (x,y,z). The point A, associated with
the aircraft, lies at the plane yjz; of the moving coordinates [x1(t1),y1, 1]
with a center at 0;. It is also assumed that the axes x and x; coincide, time
t1 corresponds to the moving coordinates, and that the aircraft moves along
the direction r with a constant velocity r.

ri
0 X, X1
0,

Z VA
Fig. 1.3. Flying aircraft.

To measure 7, the system (Fig. 1.4) is organized such that the ground-
placed transmitter radiates toward the aircraft a continuous harmonic wave
with a reference frequency wy. Owing to the Doppler! effect caused by the
aircraft movement, the frequency w; of the received signal differs from wy and
wo — w1 is proportional to 7.

! Christian Andreas Doppler, Austrian mathematician, 29 November 1803-17
March 1853.
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®, /j— Receiver —»{ SP Osc

®, 7

,
Osc ‘> Transmitter —(J

A 4

Fig. 1.4. Measurements of the radial velocity of an aircraft.

For the velocity v in the direction x and velocity of a radio wave v, the
time t; is defined by the direct Lorentz? transform that gives

t = t— nx

Vi)

Since the signal phase is invariant to the coordinate system, it is supposed
that ¢ = @1, where

(1.12)

‘Pzwo(t—:;), and <p1=w1(t1—7:)- (1.13)

If we now differentiate an equality ¢ = 1 with account of (1.12), we shall
go, by r1 = const and X = v, to

wo (1-2) :wl\/1—(Z)2. (1.14)

By taking into consideration that v = 7 cos 6, the Doppler frequency (2 =
wo — w1 is approximately calculated as

P 172
= — . 1.1
wo <U 5 2 08 0) (1.15)
The aircraft-placed electronic system measures (2 and its SP block calculates,
by (1.15), the radial velocity 7 for known 6 and v.

1.1.4 Control

A critically important kind of problem is solved with control systems. An
example of application of such systems to manage a manufacturing process is
shown in Fig. 1.5.

It is supposed that the manufacturing plant produces some multiple output
(production) y(¢) that is evaluated by sensors to convert y(t) to x;(¢). The
latter value is compared to the reference input (plan) x(¢) and the evaluated

2 Hendrik Antoon Lorentz, Dutch physicist and mathematician, 18 July 1853-4
February 1928.
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Manufacturing Process

x(f) Ax(1) Ay(@) |-

t
Regulator ¥ )>

x1(?)

Sensors

A

Fig. 1.5. Control of a manufacturing process.

difference Ax(t) = x(t) — x1(t) goes to a regulator. To manage the process, a
regulator produces the value Ay(t) such that the difference Ax(t) decreases
toward zero.

In an ideal case of x;(t) = x(t), the value Ay(t) becomes zero and no
adjustment is necessary for the process. If x;(t) > x(t) or x;1(¢) < x(t), the
manufacturing process develops under the external control.

1.1.5 Medical Ultrasonography

An example of application of systems in medicine is ultrasonography illus-
trated in Fig. 1.6. Here, a short pulse signal is generated and sent through the
attenuator to the ultrasonic acoustic transducer. For the Gaussian waveform,
the generated signal may be written as

vo(t) = Voe @t coswot , (1.16)

where Vy and wy are the constant peak amplitude and carrier frequency,
respectively, and the coefficient a is responsable for the pulse width. The

| 30

Puse |[%() | sp
Shaping "

Puse | () | Attenuator
Generator 7

Ultrasonic Transducer

Fig. 1.6. Medical ultrasonography of a human body.
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transducer converts vy(t) to the acoustic wave and forwards it into a human
body.

Whenever a sound wave encounters a material with a different acoustical
impedance, part of the sound wave is reflected, which the probe detects as an
echo. The signal, reflected and converted back to electric form, becomes

vi(t) = a(t)%e_“2(t_t1)2 cos[wot — ¢1(t)], (1.17)

where «, t1, and ¢; indicate the depth of the tissue interface causing the echo
at time ¢ = ¢1. The greater the difference between acoustic impedances, the
larger the echo is. Along with the reference pulse v(t), the reflected pulses
v1(t) go through the pulse shaper to the SP block, where they are jointly
processed to produce an electronic image.

Real ultrasonographs (Fig. 1.7a) exploit multiple transducers with high
resolution in space. Owing to this, an electronic image (Fig. 1.7b) looks like
a section of a human body allowing for qualified medical personnel to make a
decision about a state of human organs.

trachea

(b)

Fig. 1.7. Medical ultrasonography: (a) ultrasonographer and (b) example of an
electronic image.

1.1.6 Robot Positioning

In many ways a position of a robot can be determined. Electronic, mechani-
cal, optical, and even satellite systems such as the Global Positioning System
(GPS) are used. An example is a wireless electronic system (Fig. 1.8a) consist-
ing of the three transmitters placed at the points A, B, and C and radiating
electromagnetic signals at given frequencies. The rotating antenna of a robot
determines directions to every transmitter and indicates the relevant angles,

P11, P2, and ©3.
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o( X2, Y2 ) ( X3, Y3 )O
B e e

A -
@ o (xi, ) N—
0)0
®y .
Osc » Transmitter —(\
) Osc
Receiver —»{ SP
(b) X0, Yo

Fig. 1.8. Robot positioning for three spaced local stations with known coordinates:
(a) geometrical interpretation and (b) measuring system.

An interaction of the robot’s receiver with every transmitter is shown in
Fig. 1.8b. An antenna of the receiver is designed to have a narrow directional
pattern such that an angle 6 is measured for the maximum signal at the
receiver with high accuracy. When all angles are measured, the SP block of a
receiver calculates the robot coordinates x¢, y, as follows.

For known coordinates of all of the transmitters (Fig. 1.8b), the distances
d; and dy between A and B, and B and C, respectively, are defined by

di = /e = x2)2 4 (7 — ¥)2, (1.18)

d = /(x5 = %2)2 + (v — ¥2)*- (1.19)

Distances between the robot and each of the transmitters are defined in a
like manner, so that, for A, B, and C, respectively, we can write

a1 = \/(yo — 1) + (r0 — x1)2, (1.20)

ay = \/(y2 — )%+ (%0 — x2)?, (1.21)
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a3 = /(7 — ¥0)? + (x5 — x0)? (1.22)

The unknown coordinates xg and y, are then calculated by solving jointly
the equations

d} = a? + a3 — 2a;a9cos(f; — 6s), (1.23)
d3 = a3 + a2 — 2aaz cos(fy — 03), (1.24)

comprising the functions defined by (1.18)—(1.22). This simple algorithm illus-
trates a system operation for a stationary robot. Most generally, for a moving
robot, the equations complicate by accounting the parameters of movement
(velocity and acceleration).

1.1.7 Remote Sensing

Nowadays, remote sensing is used widely for geophysical, meteorological,
oceanographical and other purposes. In passive satellite sensing (Fig. 1.9a),
energy E; from an external source, e.g., the sun, leads to radiation with energy
Egr that is received by the satellite-placed system. In an active method, energy
generated by the satellite-placed sensor system is beamed outward and the
fraction returned is measured. Radiation bears information about color and
positioning (longitude, altitude, latitude), so that an image may be restored,
in principle, as two-dimensional (2D) or three-dimensional (3D).

A critical component of the remote sensing system is the sensor (detector)
that instantaneously measures radiation coming from the entire scene. The
whole picture is then electronically recorded, processed, and restored to obtain
a more or less true imagination about the scene. Fig. 1.9b shows a restored
image of the western U.S. and adjoining Pacific Ocean provided by the GOES
10 geostationary satellite.

1.1.8 Reference Source of Frequency

Even a quick look at the above-considered structures selects a separate block
called “Osc” (oscillator) . It is presumed that the carrier frequency wg of a
signal generated by “Osc” is constant, so time invariant. To meet this require-
ment, special systems termed reference sources of frequency are designed.

The widely used “Osc” is the Oven Controlled Crystal Oscillator (OCXO),
which basic structure is shown in Fig. 1.10. The principle component here is
a precision quartz crystal resonator, whose resonant frequency is highly ac-
curate, precise, and low sensitive to environment. The resonator is excited
in an oscillator scheme with small nonlinearity. To reduce the amplitude-to-
frequency conversion, a power supply voltage Epg is stabilized. Also, to dimin-
ish a frequency vs. temperature dependence, an electronic block is placed to an
oven, whose temperature is sustained at the point of a minimum temperature
sensitivity of a resonator.
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AL ,‘\\.
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(b)

Fig. 1.9. Remote sensing: (a) principle of passive sensing and (b) electronic image.

The output signal of a reference source of frequency is obtained to be
almost harmonic y(t) = Ag cos[wot + ¥(t)], where the amplitude Ag is near
constant and the frequency instability is small being predetermined by the
time derivative of a nonstationary phase ¥(t). The phase ¥(t) is affected by
a number of internal and external factors such that the frequency instability
Aw(t) may be evaluated by

Aw(t) = O Z A vat+ dtepM(t) +era(®) (1.25)

d¢ d
where Awq is a small frequency offset for the desired (required) reference
frequency, a is a linear frequency drift coefficient due to aging, and epy(?)
and epp(t) are components of phase and frequency modulations, respectively,
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Fig. 1.10. Basic structure of an oven controlled crystal oscillator.

caused by noise and environment. Seemingly obvious is that the goal of any
reference source of frequency is to set Aw(t) to zero. If the internal resources
are insufficient to fulfill this requirement, an external signal E. is applied of the
higher level reference frequency source to discipline an oscillator. Frequently,
an OCXO is disciplined with the GPS timing signals. If such signals are not
available or the GPS timing receiver induces too much noise, the ground-
placed rubidium, cesium, and even hydrogen atomic standards of frequency
are used.

1.2 Systems Performance and Classification

Most generally, a system may be described with some operator (function) O
that couples the vector input signal x(¢) with the vector output signal y(t)
by the relation

y(t) = Ox(t). (1.26)

In the sequel, we conventionally will denote a system operator as in Table
1.1 and, when a system is not specified, use a simble O, as in (1.26). The
operator may be either scalar O or vector O.

Depending on the properties of operator O, continuous-time systems may
be performed to have different characteristics. Classification of systems is given
below.

1.2.1 Regularity

It is commonly desirable to have a system, which operator is exactly described
by mathematical functions (usually simple) at every time instant. Such a sys-
tem is called deterministic meeting the requirements of regularity. If the oper-
ator can be described only in statistical terms or in frames of the probability
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Table 1.1. System operator

System Operator
Linear time-invariant @
Linear time-varying o(t)

Nonlinear time-invariant ~ O(z) = Oz(¢)]

Nonlinear time-varying O(z,t) = Olz(t), 1]

theory, the system is said to be random or stochastic. For example, if multi-
ple measurements of the input-to output characteristic of a square amplifier
give the same table, the amplifier may be said to be deterministic. If every
new measurement differs from others owing to fluctuations in the amplifier
components, the characteristic (and so amplifier) will be noisy or random.
Throughout this book we consider only deterministic systems.

1.2.2 Continuity

In the modern world, time-continuity is the simplest and one of the most
important properties of all signals and systems. It gives the idea of continuous-
time and discrete-time.

Continuity: A system, where input and output are both continuous,

is the continuous-time system (1.26) and the one having the input and

output both discrete, is the discrete-time system.

O

If a system operates in discrete time t,,, where n is integer, the relation
(1.26) is written as y[n] = Ox|n].

The definition of continuity is certainly conditional in a sense. Indeed,
many modern systems operating in continuous-time scale utilize computers
in their signal processing blocks, thereby becoming continuous/discrete-time.
On the other hand, in some systems having discrete-time scale, signals are
converted to analog forms, then transmitted, received, and returned back to
discrete forms. Such systems may be said to be discrete/continuous-time.

1.2.3 Dimensionality

Systems can be designed in different configurations to have not only one input
and one output. Depending on a number of inputs and outputs, the following
types of systems are recognized:

e Multiple-input multiple-output (MIMO) system is the one having
more than one input and more than one output. The MIMO system has
a structure (Fig. 1.11a) with a multiple ¥ x 1 input and multiple p x 1
output, respectively,
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System

}y(t) x(1) —> 0 — (1)

{ xi(t) —>  System [—> 210
x(t 0)

3t (1) —») )

(a) (b)

Fig. 1.11. Generalized system models: (a) MIMO and (b) SISO.

I t Y1 (t)
x(t) = xzzt and  y(t) = yzft) , (1.27)
wx(t) yp(t)

which components are x;(t), ¢ = 1,2,...,k, and y;(¢), j =1,2,...,p. O
e Single-input single-output (SISO) system is the one having only one
input z(t) (k = 1) and only one output y(t) (p = 1)(Fig. 1.11b). O

e Single-input multiple-output (SIMO) system is designed, having only
one input z(t) (k = 1), but more than one output, y(t) (p > 1). 0

e Multiple-input single-output (MISO) system has several inputs, x(t)
(k > 1), but only one output y(t) (p =1). O

1.2.4 Memory

Memory of a system is predetermined by the form of its operator allowing for
two structures.

Memoryless Systems: A system is memoryless (or static) if a sys-
tem output at a time instant ¢t depends on only a system input at the
same time instant ¢.

O
For MIMO memoryless linear systems, the following relation holds true,

y(t) = Ox(t) = Ax(t), (1.28)

where an operator O is just a matrix A with constant components. An ex-
ample of SISO memoryless nonlinear systems is a square amplifier described
with

y(t) = O(z)z(t) = ax*(t),

where O(x) means the product z(t)z(t) gained with a.

Memory Systems: A system is memory (or dynamic) if a system
output at a time instant ¢ depends on not only a system input at t,
but also on some past history.
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Examples of memory systems are integrators and differentiators. The mem-
ory operation of integration

t

y(t) = Ox(t) = / x(r) dr (1.29)

— 00

t
is provided by the system operator O = [ dt involving all past history and

the memory operation of differentiation -
d
y(t) = Ox(t) = dtx(t) (1.30)

is obtained with the system operator O = (‘ft exploiting the most nearest past.

1.2.5 Causality
This property is usually associated with physical realizability of systems.

Causal Systems: A system is said to be causal if its output y(t)
at an arbitrary time instant ¢ depends on only its input x(t — 6) for
6> 0.
O
In other words, the output of a causal system at the present time depends
on only the present and/or past values of the input and does not depend on
its future values, suggesting that

y(t) = Ox(t —6), 6 >0. (1.31)

Practically, (1.31) means that, in causal systems, the output cannot ap-
pear before the input is applied to a system. In fact, in real communication
channels a signal can only be delayed with time that meets (1.31) and never
be advanced.

Noncausal Systems: A system is said to be noncausal if its output
y(t) at an arbitrary time instant ¢ depends on its input x(t + ) for
0 >0.

The definition suggests that

y(t) = Ox(t+6), >0, (1.32)

and thus a noncausal system requires future (thus unknown) points of the
input. An example is the Fourier transform claiming a signal to be known
from ¢t = —oco to t = oo that obviously cannot be met in practice.

It is worth remembering that all memoryless systems are causal, but not
every causal system is memoryless.
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1.2.6 Linearity

The most natural engineering approach is to model a system in simple forms
and functions. First of all, a system is examined for linearity and, if so, the
well developed methods and transforms are applied.

Linear Systems: A system is said to be linear if a system operator O
satisfies the conditions of both homogeneity (scaling) and additivity
(superposition). Otherwise, a system is nonlinear.
O
The condition of homogeneity (also called scaling property) implies that
the operator O is linear (and so a system is linear) if for a given input ax(t)
the output y(¢) is provided in two equal forms of

y(t) = Olax(t)] = aO[x(t)] . (1.33)
The property (1.33) is illustrated in Fig. 1.12a for a constant coefficient a.

x(7) o —>Yy®H x@t)—— O y(@)
a - a
(@)
ax,(t) ax,(H)—>{ O
a,x,(1)
0 >y = @xO—> 0 ¥()
a,x, (1) ax,(t)—> O
(b)

Fig. 1.12. Linearity conditions: (a) scaling and (b) additivity.

The other condition termed additivity and often called the superposition
principle implies that the operator O is linear if the following relation holds
true for the given inputs aix1(t), asza(t), ... , aprg(t):

k k
y(t) =0 ami(t) =Y Olaix;(t)]. (1.34)
i=1 i=1

This property also realizable in two equal forms is illustrated in Fig. 1.12b
for constant coefficients a;, i = 1,2,...,k.

Typically, the conditions of homogeneity and additivity are met in the
same linear operator. An example is the relation (1.34) that, by the homo-
geneity property (1.33), may ultimately be written as
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k

k k
y(t) =0 Z aizi(t) =Y Olax;(t)] = Z a;Oz(t) .

i=1

The other example is a linear memoryless operation of the transformation
of a vector input x(t) to the vector output y(¢) by means of a matrix A,
namely y(t) = Ax(¢).

1.2.7 Time Invariance

One of the most critical properties of a system is a dependence of its operator
on time.

Time-invariant system: A system is said to be time-invariant if
any time shift # in the input signal causes the same time shift in the
output signal; that is,

y(t+6)=0x(t+0). (1.35)

A system is time-varying or time-variant otherwise.
O
In the theory of random (or stochastic) systems, time invariance is related
to mean values. Therefore, time-invariant systems are often called stationary.
Fig. 1.13 illustrates the property (1.35) and we notice that, by Table 1.1,
the operators of both linear and nonlinear systems can demonstrate time
invariance.

x(1-0) y(®)
x(?) 0 > 0 = Yy(t-0) = x(t) —{ O > 0 y(-90)

Fig. 1.13. Time invariance of systems.

The most general classification of input-to-output systems relates to
whether the system is linear and/or time-invariant or not.

Liner Time-invariant (LTI) System

The linear time-invariant system is a linear system that is also time-invariant
(all its coefficients are time constants). The simplest LTI system is described
with an operator O = a, where a is a constant; that is,

y(t) = Ox(t) = ax(t). (1.36)

A generalized structure of an LTI system is shown in Fig. 1.14a.
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LTI LTV
) —> 0 —— Yy x(t)—> O() —> Y(©)
(a) (b)

NTI NTV
xX(t)—> 0(x) —> Yy X(t) —> 0(x,1) —> Y(©)

(c) (d)

Fig. 1.14. Continuous-time systems: (a) LTI, (b) LTV, (¢) NTI, and (d) NTV.

Linear Time-varying (LTV) System

The LTV system is a linear system, in which at least one of the coefficients is
time-varying and thus its operator O is time-variant as well (Fig. 1.14b). The
simplest example of an LTV system is a memoryless mapping

y(t) = O(t)z(t) = at)z(t), (1.37)

where a(t) is a time-varying coefficient, provided O(t) = a(t). Note that, in
practice, communication and other wireless channels are always time-variant,
since they are affected by environment and thus the coefficients are not time-
constant. All adaptive and modulated linear systems are also tame-varying,
by the definition.

Nonlinear Time-invariant (NTI) System

The NTT system is a system, whose operator is time-invariant but depends
on the input (Fig. 1.4c). An example is a square amplifier, provided

y(t) = Olz(t)]z(t) = az?(t). (1.38)

Other examples are rectifiers, oscillators, phase-looked loops (PLL), etc.
Note that all real electronic systems become practically nonlinear owing to
saturation.

Nonlinear Time-varying (NTV) System

The NTV system is a nonlinear system, in which at least one of the coefficients
depends on time (Fig. 1.14d). For instance, if a coefficient a in (1.38) changes
with time by some reasons, the system becomes NTV, provided

y(t) = Olz(t), x(t) = a(t)x*(t) . (1.39)
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All synchronized oscillators and adaptive nonlinear structures are NTV.
The NTV systems seem more “mystical” from the standpoint of stability, but
typically have simpler structures and, in a modern view, often solve problems
in the most accurate and even optimum way.

Let us notice that, owing to the environmental influence, aging in compo-
nents, temperature effects caused by large values of signals, and saturation, all
real physical continuous-time systems are virtually time-varying and nonlin-
ear. Digital systems are much lesser affected by those factors and any software
is absolutely insensitive to them.

1.2.8 Observability and Controllability

Every dynamic system may be described in terms of states. The terms state
observability and state controllability were introduced by Kalman? in 1960 as
characterizing the system structure.

Observability: A system is completely observable on the finite time

interval [to,t1] if for any ¢y an initial state q(tg) can be determined

from observation of the output y(¢) over this interval with the input

x(t) known over the same interval.

O

State observability is thus a measure for how well internal states of a system
can be inferred by knowledge of its external outputs. Formally, a system is
said to be observable if, for any possible sequence of state and control vectors,
the current state can be determined in finite time using only the outputs. In
other words, this means that we can watch the system outputs and figure out
what is going on inside the system with its states, even if it takes a very long
time.

In turn, the term state controllability is associated with “state control.”
Even intuitively, it predetermines that the system state is supposed to be
adjusted in some way.

Controllability: A system is completely controllable on the finite
time interval [to,t;] if for any initial state q(tp) there may be found
an input x(t) to transfer the system to the other given state q(t1).
O
A system is thus controllable if its state variables can be directly controlled
by the input(s). Contrary, in the uncontrollable or partly controllable system,
all or some state variables cannot be “adjusted” in finite time by the admissible

input(s).

3 Rudolf Emil Kalman, Hungarian-born American scientist, 19 May 1930 — .
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1.2.9 Detectability and Stabilizability

Closely related to controllability and observability are two other fundamental
properties of systems called detectability and stabilizability.

Suppose the system is unobservable but the unobservable mode is stable.
Detectability requires the unobservable part of the system to be asymptot-
ically stable and hence is a weaker concept that observability, provided the
definition:

Detectability: An LTI system is detectable if every unobservable state
is stable.
O
It then follows that an observable system is automatically detectable, since
it has no unobservable states.

Stabilizability: An LTI system is stabilizable if every unocontrollable
state is stable.
O

This definition suggests that the effective control law may be found even
though a system is uncontrollable. It can be shown that an LTI system is
stabilizable by feedback if there exists a feedback matrix gain such that the
system behavior is asymptotically stable. Note that for finite-dimensional lin-
ear systems if the system is open-loop stabilizable then it is stabilizable by
feedback and conversely.

1.2.10 Accuracy and Precision

No one system is ideal, and each system operates with errors. When a system
is one of measurement, such as radar, GPS, etc., the error limits its functional
facilities, so must somehow be evaluated and, if possible, reduced. The error
is typically random (deterministic or methodological errors are usually elimi-
nated at the early stage) and the system “mistakes” are usually evaluated in
terms of accuracy and precision.

Accuracy: Accuracy is the degree of conformity with an ideal (or
reference) system also called standard.
O

A simple treatment of accuracy may be done by associating the system
input with a ball and its output with a target. A system is thus accurate (Fig.
1.15a) if it hits the center of a target with the scattering allowed.

It is accepted that accuracy relates to the quality of a system, and is dis-
tinguished from precision, which relates to the quality of the system operation
by which the result is obtained.

Precision: Precision is the degree of perfection in the system or the
degree of refinement in the performance of the system operation.
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(c)

Fig. 1.15. Accuracy and precision: (a) accurate, (b) precise, (¢) both accurate and
precise, and (d) neither accurate nor precise.

O

Fig. 1.15b illustrates the system precision associated with the small scat-
tering of hits on target. In other words, precision indicates reproducibility of
a result obtained by a system. As such, precision relates to the quality of a
system operation, by which a result is obtained, and is distinguished from
accuracy, which relates to the quality of the result.

It follows from the comparison of Fig. 1.15a and Fig. 1.15b that an accurate
system is not obligatory precise and a precise system is not always accurate.
Fig. 1.15c gives an idea about the system that is both accurate and precise.
In turn, the performance sketched in Fig. 1.15d addresses the system that is
neither accurate nor precise. Let us notice that highly precise and accurate
systems, such as GPS, are typically very costly.

1.2.11 Uncertainty and Robustness

Readers may wonder if the system can be designed to operate with infinite
accuracy and precision and, if not, what are the limitations?

An important physical (and theoretical) limitation on the combined accu-
racy of certain pairs of simultaneous measurements was introduced in 1927
by Heisenberg? that is now known as the uncertainty principle.

4 Werner Karl Heisenberg, German physicist, 5 December 1901-1 February 1976.
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Heisenberg’s uncertainty principle: The conjugate quantities
such as pairs of observables (position and momentum) of a single
elementary particle cannot be measured with arbitrary precision.

O

Specifically for applications in systems, this principle suggests that the
system states cannot be measured all at once with infinite accuracy and pre-
cision. In fact, whenever we describe a system as state space, we commonly
think about the system states (phase, frequency, linear frequency drift rate,
etc.) as related to the current time ¢. Such values are called instantaneous.
However, the frequency, for example, is evaluated by the phase rate. So, we
need two different (even very closely placed) points to evaluate frequency.
Therefore the term instantaneous may only be used in the sense of a theoret-
ical limit for the evaluated quantity.

Reasoning similarly for the other system states, one arrives at the conclu-
sion that any dynamic system (with nonzero states) inherently has “internal
faults” that gives certain problems to system design. For example, decision
making under uncertainty is a central problem in robotics, plant control, and
machine learning. Therefore, closely tied to the problem of uncertainty is that
of approximation. For instance, in large scale system problems, learning deci-
sions under uncertainty inevitably requires approximation.

The uncertainty may be evaluated as follows. Let an LTI system be charac-
terized with the operator O in the transform domain, so with the transfer func-
tion H (s). The function may then be composed with the nominal frequency
response H (s) and the uncertainty addition A(s), namely H(s) = H(s)+A(s).
If the magnitude response |A(jw)| does not exceed unity over all frequencies,
the disturbance A is called allowable. Usually, allowable uncertainties A are
assumed in applications.

It seems that the first solution for the uncertainty problem was found
by Black® in the 1930s for the telephone industry regarding the constructing
feedback amplifiers insensitive to variations in their units and supply volt-
ages. The achieved pioneering result by Black was lately recognized among 25
seminal papers in control published in 20th century.

The system uncertainty is closely related to the required system robust-
ness. “Robust” is a term introduced by Box® in the 1950s as relevant to devis-
ing tests on data “contaminated” and other relevant problems. Furthermore,
the term was applied to system problems and Black’s amplifier was treated
as an example of robust systems.

Robustness: System robustness is the measure of its ability to oper-
ate correctly in the presence of invalid inputs and despite the internal
faults.

5 Harold Stephen Black, American engineer and inventor, 1898-1983.
6 George Edward Pelham Box, English statistician, 18 October 1919 -.
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To diminish an influence of the uncertainty A upon the system perfor-
mance, the weighting transfer function W (s) is searched, satisfying the con-
ditions for the system to be robust. Three basic models may be observed in
designing robust systems:

e Additive (Fig. 1.16a): H=H+WA,
e Multiplicative (Fig. 1.16b): H = H(1+ WA) ,
H =

e Feedback (Fig. 1.16¢): 1+}§{WA .

W P> A l—> W P A
v
(@ ®) Al e

H

Y

AW

()

Fig. 1.16. Robust system models with uncertainty: (a) additive, (b) multiplicative,
and (c) feedback.

Example 1.1. An ideal integrator is given with the nominal transfer function
H(s) = 1/s. The first order real physical integrator is described with H =
1/(s+a), where a is a small constant. Find the weight W for the multiplicative
model (Fig. 1.16b).

Having H = H(1 4+ W A), we may write H —1=WA. For the allowable
|A] < 1, the relation yields an inequality

< W

H
—1
r

s 1‘ < |W/|. The weight-

that, for the transfer functions given, results in | T

ing transfer function is thus

a
Wi(s) = it

It follows that, by a = 0, the weight is zero, W = 0. Indeed, without

uncertainty, a = 0, no correction is necessary and the relevant branch in Fig.

1.16b vanishes. Overall, the weight derived claims that the integrator would

be robust for the uncertainty associated with a small coefficient a. O
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1.2.12 Stability

Any system is critically sensitive to stability. Independently on types and ap-
plications, it is usually highly desirable for the systems to be stable in order
to operate properly and fulfil the requirements. If we think that the neces-
sary condition of system operation is to fulfil some operator (function), then
stability of this operator may be treated as a sufficient condition of system
operation. Basically, two factors (external and internal) affect the system op-
eration, and provided the definition:

Stability: The system is stable 1) if its output does not diverge as long

as the input does not diverge and 2) a slight disturbance in a system

does not produce a significant disrupting effect on that system.

O

Systems with the input x(t) and output y(t) are always desirable to be
stable. The closed-loop systems (no input) are usually oscillatory. Such sys-
tems (oscillators) are underdamped with low input signals, critically damped
with normal amplitudes, and overdamped with large amplitudes. Therefore,
oscillators are typically unstable at zero and stable at an equilibrium point.

There are several approaches of how to ascertain stability of systems in a
different sense depending on stationarity and linearity. In the sequel, we shall
observe most of them in the time and transform domains as well as in the
phase plane. For now, it seems in order to give the reader an idea about the
seemingly most obvious input-to-output stability.

The requirement for the system output not to diverge as long as the input
does not diverge relates to whether the signal is bounded or not.

BIBO Stability: A system is said to be bounded-input/bounded-
output (BIBO) stable if for any bounded input x(t) the corresponding
output y(t) is also bounded; that is,

lz(t)] <a < [y(t)| = [Oz(t)] < B, (1.40)

where o« and [ are finite real constants. A system is BIBO unstable
if (1.40) is not met, i.e. y(¢) grows without limit (diverges) from a
bounded input.
O
Note that the BIBO stability of an LTT system is neatly described in terms
of whether or not its impulse response is absolutely integrable (satisfies the
Dirichlet conditions).

Example 1.2. The SISO memory systems are described with the equations,

y(t) = ax(t) b / dT+C gt x(t), (1.41)
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t+6
y(t) = atlz(t)] + 2 / 2(r)dr + (ftc(t)a;(t) L 030, (142)

— 00
The first system (1.41) is causal, linear, time-invariant, and BIBO-stable. The
second system (1.42) is not causal (the integration involves future points at
6), nonlinear (due to the term |z(t)|), time-variant (due to the time-dependent
coefficient ¢(t)), and BIBO-unstable (the first term evolves proportionally with
time ¢ and hence the upper bound of |y(¢)| lies at infinity). O

1.3 Basic Structures

Three basic structures of systems are recognized, namely the open system or
input-to-output system, closed loop system, and closed loop control system.

1.3.1 Open (Input-to-output) System

A simple system structure implies an input x(¢) and output y(¢) coupled
with an operator O by (1.26). Systems shown in Fig. 1.14 are examples of
input-to-output systems.

1.3.2 Closed Loop System

If the system output is coupled with the system input by an operator O as
y(t) = O1x(t) and the input in turn is fully defined by the output via some
other operator Oy as x(t) = Oyy(t), then the system becomes closed loop
(having no input) (Fig. 1.17a).

O, x(1) 0, > y()

> y()
0, k 0, k

(a) (b)

Fig. 1.17. Feedback systems: (a) closed loop and (b) closed loop control.

It can be shown that a closed loop system also called feedback system is
described with the equation

(1—010,)y(t) =0. (1.43)

The term “feedback” suggests that the output “feeds back” the input
through the block Os. Two possible realizations of the closed loop systems
are feasible. The feedback can be organized to be either positive or negative.
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Negative Feedback

If an operator Oy inverts a signal x(¢) on its way round the closed loop, the
system is said to be the negative feedback closed loop system. Practically, such
systems have limited applications, since they have no input and are unable
to generate the output signal. For the cascade-connected system, the negative
feedback closed loop system plays typically a role of a load.

Positive Feedback

If an operator O3 does not invert a signal in the feedback, the system is said
to be the positive feedback system. When an open loop gain in such a sys-
tem overcomes unity, the feedback causes the output to increase. Otherwise,
the output attenuates. With unit feedback gain, a dissipated energy is fully
recovered that is used in oscillators at steady state.

Example 1.3. An LTI system is described with the ODE
Y +ay +by = aa’ (1.44)
and, by x = Ky, becomes closed loop performed by
y' +a(l—K)y +by=0. (1.45)

It can be shown, by the theory of the ODEs, that stability of a system
described with (1.45) is guaranteed if a(1 — K) > 0. Thus, having negative
feedback with K < 0, the system is always stable. With positive feedback
and 0 < K < 1, it is still stable and oscillations attenuate with time. If K =
1, the system becomes conservative to mean that oscillations have constant
amplitude. Finally, if K > 1, the system is unstable and oscillations develop.

O

1.3.3 Closed Loop Control System

Without an input, a closed loop (Fig. 1.17a) has a practical meaning if it
generates oscillations, thus is nonlinear and with positive feedback. To extend
an application range for feedback systems, a control input is induced as shown
in Fig. 1.17b. Such a system is called closed loop control.

The input x;(t) of a block O; is predefined to be x;(t) = O2y(t) + x(t).
Therefore, the system equation is given by

O1x(t) = (1 — 0102)y(1) . (1.46)

In line with the closed loop, any closed loop control system can also be
designed to have either negative or positive feedback. Negative feedback is of-
ten deliberately introduced to increase the stability and accuracy of a system.
Positive feedback is usually an unwanted consequence of system behavior. It
is induced when a nonlinear system is intended to generate oscillations.



1.3 Basic Structures 27

Example 1.4. A system (1.44) is closed with a feedback z1(t) = Ky(t)+ x(t)
and described by an equation

y' +a(l — Ky + by = ax’ (1.47)

with zero initial conditions. The Laplace transform of (1.47) is

s2Y (s) + a(l — K)sY (s) +bY (s) = asX(s),

producing the system transfer function

_Y(s) as
HO) = X9 T @ rat— K)s+b° (1.48)

The roots of the denominator of (1.48) are defined by

a(l - K) \/a2(1 — K)?
9 + 4 b.
It can be shown, by the theory of the ODEs, that the system is stable if the
real parts of s; o are negative that is only possible if K < 1. Stability is thus
always guarantied with the negative feedback, K < 0, and with the positive
feedback, if 0 < K < 1. O

S1,2 = —

1.3.4 Interconnection

Different interconnections are used in system design: cascade, parallel, and
feedback.

Cascade Interconnection

When the output of one system with the operator O; is connected to the input
of another one with the operator Oy, the interconnection is called cascade (Fig.
1.18a). Two systems included in cascade are described with the equation

y(t) = 020:x(t) . (1.49)

Examples of cascade interconnections may be found in Fig. 1.16. Note
that, in some cases, the ordering of the systems matters, in others it does not.

Parallel Interconnection

A signal x(t) may go simultaneously to several (two and more) systems, which
outputs are added together to create a signal y(¢). This is what is called
parallel interconnection (Fig. 1.18b). Two subsystems included in parallel are
described with the equation

y(t) = (01 + O2)x(t). (1.50)
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0,

y(@)

x(t) —>» O, 0, —> y() x(1)

Y

(0)
(a) (b) §

Fig. 1.18. Interconnection of systems: (a) cascade and (b) parallel.

Feedback Interconnection

This subtle type of interconnection was already discussed when considered
closed loops (Fig. 1.17). What is worth keeping in mind is that each of the
subsystems, 07 and Os, in both structures (Fig. 1.17a and Fig. 1.17b) can
also be feedback.

1.4 Basic Operations with Signals in Systems

Irrespective of the physical nature of systems, their basic operation principles
remain virtually the same. Below, we will not subtilize (details are eluci-
dated in the following Chapters) and list only the basic operations peculiar
to continuous-time LTI, LTV, NTI, and NTV electronic systems.

1.4.1 Linear Time-invariant Systems

Every LTI electronic system be it very sophisticated obeys the following basic
principles of operation:

Amplitude Scaling

Assume that a signal z(t) passes through a system and appears at the out-
put with a gain factor a (Fig. 1.19a). The output is thus provided with the
memoryless operation of scaling

y(t) = Ox(t) = ax(t), (1.51)

representing the product of a constant coefficient a and a signal x(t) both
having arbitrary signs and values. An electric equivalent of (1.51) is shown
in Fig. 1.19b meaning that the output voltage vg(t) is induced on a resistor
R by an electric current i(¢) without shifting in time and violating the wave-
form of i(t). Vectors i(t) and vg(t) hence coincide in direction (Fig. 1.19d)
that is supported by the direct and inverse memoryless relations (Fig. 1.19¢),

respectively,
vr(t) = Ri(t), (1.52)
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i(t) = ;vR(t), (1.53)
associated with (1.51).
MUN » Wi i) R v (t)=Ri(t) 0 i VR
) i(1) = v (1) / R

(@) (b) () (d)

Fig. 1.19. Amplitude scaling: (a) basic structure, (b) memoryless electric circuit,
(c) basic equations, and (d) vector diagram.

Ideal Integration

An ideal integration of z(t) (Fig. 1.20a) is provided in a purely capacitive elec-
tric circuit (Fig. 1.20b). Such a system comprises the only memory element,
a capacitor C. Accordingly, the waveform of an electric current (¢) leads the
waveform of an electric voltage ve(t) by 90° in phase (Fig. 1.20d) that is
represented by the direct and inverse relations (Fig. 1.20c), respectively,

1 / .
ve(t) = C/ i(r)dr, (1.54)
i(t) = C:iitvc(t). (1.55)

1 ;

() C ve()=— jl'(T)dT l )

O i,_ﬁ - c:, 90
h

v
ve(t) i(t)= CT 0 Ve

(a) (b) (€) (d)

Fig. 1.20. Ideal integration: (a) basic structure, (b) memory capacitive electric
circuit, (¢) basic equations, and (d) vector diagram.

If to apply the Fourier transform to either (1.54) or (1.55) and assign
Xc(jw) = V(jw)/I(jw), the purely imaginary impedance of a capacitor will
be defined in the frequency domain by

1 1
Xco(w) = =—J .
c(jw) jwC J wC
One thus concludes that the memory operation of integration is associated
with a complex gain of a system.

(1.56)
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Ideal Differentiation

The other ideal memory operation provides differentiation (Fig. 1.21a) in the
purely inductive electric circuit (Fig. 1.21b). A system consists of only the
component, the inductor L. It can be shown that the voltage vy, (¢) induced on
L leads the electric current i(¢) by 90° in phase (Fig. 1.21d) that is supported
by the relationships (Fig. 1.21c):

vr(t) =L S i(t), (1.57)

i(t):i /UL(T)dT. (1.58)

_,di() 9
0 [Ta ] i) L nO=L=y
- & L 90° Vi
vi(0) =" vy,

(a) (b) (c) (d)

Fig. 1.21. Ideal differentiation: (a) basic structure, (b) memory inductive electric
circuit, (c) basic equations, and (d) vector diagram.

Analogously to (1.56), the Fourier transform applied to either (1.57) or
(1.58) allows finding the purely imaginary impedance of an inductor

X1 (jw) = jwL. (1.59)

Again one can notice that an ideal differentiation (as the memory opera-
tion) is also associated with a complex gain of a system.

Addition
Given k signals x;(t), i = 1,2,..., k, each of which is gained with a constant
coefficient a;, 1 = 1,2, ..., k. For LTI systems, the following additive operation

is fundamental,

y(t) = a1z1(t) + agx2(t) + ... + a;zi(¢) . (1.60)

An example of an addition of two harmonic signals z1(t) (Fig. 1.22a) and
x9(t) (Fig. 1.22b) is given in Fig. 1.22c.
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w | )C](t) + )Cz(t)
1
<\> ‘\\‘_/ \\_.‘ .

x(t) x1(2) x2(2)

(b) (d)

Fig. 1.22. Operations with signals in systems: (a) signal z1(t), (b) signal z2(t), (c)
addition z1(¢t) + z2(t), and (d) product z1(t)z2(t).

Ideal Time Shifting

In system channels, a signal z(t) (electric voltage or current) is typically de-
layed in time on some amount . The ideal operation of delay (time shifting)
produces the output signal y(t) (electric voltage or current)

y(t) =zt —to) . (1.61)
Note that an advance shifting (¢t + to) cannot physically be realized as
involving future points, thus unknown.

Basic ideal operations with signals in electrical LTV systems are postponed
to Table 1.2.

Table 1.2. Basic ideal operations with signals in electrical linear systems

Operation LTT system LTV system
Amplitude scaling  v(t) = Ri(t) v(t) = R(t)i(t)
i(t) = po(t) i(t) = pryv(t)
t t
Integration o(t)= G [ i(r)dr ()= [ C(IT)i(T)dT

i(t) = é ft v(r)dT i(t) = L%t) _ft v(r)dT

Differentiation v(t) = L Ji(t) o(t) = & L(t)i(t)
d

Time delay y(t) = z(t — to) y(t) = x[t — to(t)]
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Example 1.5. A series connection of a resistor R, capacitor C, inductance
L, and a source of an electric voltage v(t) is described with an equation

t

o(t) = é/z dT+L it). (1.62)

This system realizes the LTI operations of scaling (1.51), integration (1.54),
differentiation (1.57), and addition (1.60). O

1.4.2 Linear Time-varying Systems

In LTV systems, at least one of the coefficients is varied with time (intention-
ally or randomly). Assuming that a system has only one such coefficient a(t),
the basic operations peculiar to LTV systems can be performed for a signal
x(t) (referring to the comments given for LTT systems) as in the following;:

o Amplitude scaling of a signal x(t) is provided by

y(t) = Ox(t) = a(t)x(t) . (1.63)

This operation has two electrical equivalents supported by the equations
given in Table 1.2. a

e Ideal integration of a signal x(t) is obtained with

y(t) = /a(r)x(r)dT or y(t):a(t)/a:(T)dT (1.64)

by two electrical equivalents described with the equations postponed to
Table 1.2. 0

o Ideal differentiation of a signal z(t) can be realized in two forms of

y(t) = Laitt) or y(t)=a(n) i) (1.65)

associated with two electrical equivalents given in Table 1.2.

O

e Addition. Given k signals x;(t) (electric voltages or currents),: = 1,2,...  k,
each of which is gained with the time-variant coefficient a;(t), i =
1,2, ..., k. An additive sum of these signals is defined by

y(t) = a1(t)x1(t) + a2 (t)xa(t) + ... + a;(t)z;(t) . (1.66)
O
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Example 1.6. A low-pass RC system has the bandwidth controlled by a
time-varying capacitor C(t). The ODEs of this system written with respect
to the input voltage v(t) and output voltage v (t) are, respectively,

v(t) = R[C(Hve )] +vo(t),

Ve + 1 + ¢ v = L v

c"\rc" Cc)° RO
As can be seen, the equations combine the operations of scaling (1.63),
differentiation” (1.65), and addition (1.66). O

1.4.3 Nonlinear Time-invariant Systems

It is seemingly obvious that nonlinear systems can utilize an infinite variety
of nonlinear operations. Nevertheless, the following operations might be most
frequently met in electrical and electronic systems.

Nonlinear Memoryless Amplification

Amplifiers can be designed to provide the input-to-output memoryless (or
functional) nonlinear transformations with arbitrary laws. Not all nonlinear
functions meet practical needs. Most frequently, the following nonlinear am-
plifiers are used.

Square-law amplifier. The memoryless transformation may follow what is
called a “square-law” curve, meaning that the output is proportional to the
input power,

y(t) = O(x)z(t) = a®z2(t), (1.67)
where a is constant.

Example 1.7. Given a harmonic signal z(t) = acoswot with period T =
27 Jwo. Its average power is defined by

2 /2 2
P, = C} / cos? wot dt = a2
—T/2

A signal goes through a square amplifier, which output calculates

2

1
y(t) = a® cos® wot = a2 + o) €O 2wt .

The signal average power a?/2 is evaluated by attaching a low-pass filter at
the output of an amplifier. a

" Remark: Throughout the book we also equivalently use the following notation of
differentiation: &y =1y’
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Logarithmic amplifier. Sometimes the output voltage of an amplifier may
want to represent the natural logarithm of its input voltage. This can be
done using feedback. Fig. 1.23a shows the circuit diagram of a logarithmic
amplifier, which feedback includes a diode. Here the output voltage y(t) =
Vous (t) depends on its input voltage x(t) = Vi, (¢) as

y(t) = O(x)2(t) = —aln “”(bt) , (1.68)

where a and b are constants.

D ’—%I—‘
R
x(t) —{ 1 | x(1) >t I »(1)

— | y(®)
(a) (b)

Fig. 1.23. Nonlinear amplifiers: (a) logarithmic and (b) exponential.

Exponential amplifier. An exponential curve is achieved by interchanging
the diode and resistor as in Fig. 1.23b. Accordingly, the operator of an expo-
nential amplifier is performed by

t
y(t) = O(x)x(t) = —bexp xi) : (1.69)
where a and b are still constants.

Power amplification. In power amplification, they typically design the am-
plifier structure with two nonlinear subamplifiers. A harmonic wave z(t) =
cos wot is gained here so that one of its parts passes through one subamplifier
and another one through the other subamplifier. The operator of a subampli-
fier is defined by

acoswot, —p + 2mn < wot < @ + 2mn

y(t) = O(@)z(t) = {O, otherwise ’ (1.70)
where n is integer. Depending on an angle ¢, the following classes of nonlinear
amplifiers are distinguished:

e (lass B is when ¢ = /2 and thus only 50% of the input signal is used,
meaning that a half of a harmonic wave is gained and the other half cut-off.
A disadvantage of this class is that two gained waveforms cannot typically
be fused without distorsiones caused by real circuits. ad
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o (lass AB relates to m < ¢ < 7/2 and hence more than 50% but less than
100% is used. In the limiting case of Class A (p = 7), an amplifier gains
a full signal and becomes linear. O

e (lass C refers to as employing 7/2 < ¢ < 0. Here less than 50% of a signal
is used. a

e (lass D unites amplifiers, which are also known as switching amplifiers or
digital amplifiers. Operating in switch mode, such an amplifier is either
completely turned on or completely turned off by an input signal. O

One needs to remember that all linear amplifiers become nonlinear, when
the input voltage exceeds the power supply voltage. This effect is termed
saturation.

Product (Multiplication)

For the two-dimensional vector input x(t) = [x1(t) 72(¢)]7, the operation of
multiplication of its components is provided with the product

y(t) = O(x)x(t) = axy(t)x2(t) . (1.71)

An example is given in Fig. 1.22d for two harmonic signals z1(¢) (Fig. 1.22a)
and zo(t) (Fig. 1.22b). Following Fig. 1.22c and Fig. 1.22d, one could realize
the difference between the sum and product of two signals.

Example 1.8. Given two signal, z1(t) = asin(wit + ¢) and z2(t) = coswat.
The product produced by a unit-gain multiplier can be written as

y(t) = asin(wit + ) coswat

a
0 sin[(w1 +w2)t + ] .

By applying a LP filter with a gain factor of 2 and cut-off frequency w; —wa <
we K w1 + wa, we save only the first component with the frequency w; — wa,
thereby supporting two useful applications:

a
=, sinf(w; —w2)t + ] +

o  With wy # wo, a signal x4 (t) might be supposed to be removed by a refer-
ence signal z5(t) from wy to w; — wy that is used in heterodyne receivers.
e With w; = wy and |p| < 7, the output varies as a function of ¢, namely
y = sin ¢, that is exploited in phase detectors and phase locked loops. O

In applications, the products are used to realize different nonlinear opera-
tions exploited, for example, in conventional AM with double sideband large
carrier, synchronous demodulation of AM, signals heterodyning, and phase
detection. In each of these cases, a mixer multiplies the signals together and
the product (or its part) is thereafter filtered to produce a desired quality.
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Rectification

Rectifiers are used to restore the envelope Z(t) of a signal y(t) = z(¢)z(t),
where z(t) is a message signal and z(t) is a carrier signal, or to convert an
alternative current (AC) waveform into a direct current (DC) waveform. Typ-
ically, two rectification schemes are used: the half-wave rectifier (Fig. 1.24a)
and the full-wave rectifier (Fig. 1.24b). Both schemes utilize semiconductor
diodes.

0 c i . <\m> w0 ©
%

(@) (b)

Fig. 1.24. Rectifiers: (a) half-wave and (b) full-wave (bridge method).

The nonlinear part of a half-wave rectifier may be described with the
operator

310 = O(e) = { 770 =0 =0 (172)
and that of a full-wave rectifier by
y(t) = Oy(t) = |ax(t)=(t)] . (1.73)

In a simplest case of each of the schemes, the envelope Z(t) associated with
a message signal x(t) carried by the input y(¢) is obtained by using an RC LP
filter.

Comparison

To go from an analog signal to the impulse signal, a comparator is used as a
nonlinear device intended to compare the input z(¢) to the reference voltage x,
and switch the output y(¢) to A if the input is above the threshold, z(t) > ;.
If drops below that value, z(t) < x,, the output is switched to B. The operator
of the transformation is therefore

y(t) = O@)a(t) = {g: igg o (1.74)

A schematic realization of (1.74) is shown in Fig. 1.25, where a resistor R
obtains the necessary gain of a comparator at the threshold z(¢) = ;.
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x(1) —:l>— (1)

Fig. 1.25. Comparison of two voltages, z(t) and ;.

A comparator (Fig. 1.25) is also often used in filter structures as a high
gain linear amplifier.

Limitation

A comparator (or a system of comparators) can be used to gain the input
linearly in a gap between two thresholds (reference voltages), x,1 < = < 22,
and limit (hold) the input at some level A when x(t) drops below z,; and
at B if z(t) exceeds xy2. The relevant nonlinear operator of limitation can be
described with the piecewise function

ax(t), xy1 < z(t) < &2
yt) =0(x)z(t) =<¢ A,  z(t) <zn . (1.75)
B, z(t) >z

We notice that, typically, any linear amplifier with saturation fits (1.75).

1.4.4 Nonlinear Time-varying Systems

In applications, nonlinear systems may undergo intentional and/or “annoy-
ing” changes in their structures, thereby becoming time-varying. Because the
nonlinear blocks are typically designed to be memoryless, time variations in
their components result merely in time dependencies of the coefficients in the
above-discussed nonlinear memoryless operators.

So, we passed over the most typical and thus basic linear and nonlinear,
memory and memoryless operations in systems. Using them separately, or
combining the memoryless nonlinear subsystems with linear memory blocks
allows designing a variety of linear and nonlinear systems and structures, such
as filters, resonant amplifiers, oscillators, control systems, modulators, demod-
ulators, phase locked loops (PLLs), etc. Methods of analysis and examples of
systems will be considered in the following chapters.

1.5 Summary

What we discussed above introduces the reader to the fundamental canons of
systems and, in what follows, we shall start elucidating the methods of systems
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description. To keep the development more understandable and transparent,
the reader has to remember the fundamental definitions and classifications of
systems based on the following foundations:

— A system is a mathematical model of a physical process that relates the
input signal to the output signal.

— System analysis is provided to understand major properties of a system.

— System design is used to find a proper system that meets given specifica-
tions.

— System synthesis is carried out to find a proper system structure or block
diagram.

— System simplification is necessary to realize a system practically.

1.6 Problems

1.1 (Systems). A message is transmitted in the communication channel
simultaneously via the amplitude and angle of a modulated carrier signal.
Based upon (1.1)—(1.4), write the modulated signals for simultaneous

1. AM and FM
2. AM and PM
3. FM and PM
4. AM, FM and PM

1.2. The radar (Fig. 1.2) has measured a frequency shift 2 between the
transmitted and received signals. Write properly the received signal model
(1.9) and explain why the frequency shift may occur? How it might be coupled
with the vehicular velocity?

1.3. The Doppler frequency of a measurement is given by (1.15). Based upon
and following Fig. 1.3, derive the radial velocity 7 and define the velocity

1. in direction x
2. in direction y
3. in direction z

1.4. Write an equation of the control system shown in Fig. 1.5. How the
function would be changed if there is an external additive factor v(t) at the
output of the “Manufacturing Process”?

1.5. Analyze the operation principle of ultrasonography (Fig. 1.6) and de-
duce what information about the human body may be extracted from the
amplitude, phase, and frequency of the reflected signal (1.17)7
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1.6. Following (1.18)—(1.24), solve the positioning problem for the robot in
the three coordinates xq, y,, and zo. Suppose that the 3D coordinates of the
transmitters, x;, y;, and z;, at the points A, B, and C are known. Note that
an antenna of the robot can be rotated only in a horizontal plane.

1.7. Analyze the principle equation (1.25) of an OXCO and explain a physical
essence of every term in its right-hand side. Suggest practical ways to diminish
the annoying components to zero.

1.8 (Systems classification). A system is performed with an input x(¢)
and output y(t), which in vector forms are, x(t) and y(¢), respectively. System
equations are given below. Realize whether the system is SISO, MISO, SIMO,
or MIMO?

1. d'(t) = Aq(t) + Bz(¢)

y(t) = Cq(t) + Dz(t)
2. y(t) = Ax(t) + b Say(t) + Se)y(t)
3. /() = Adlt) + Ba(t)

y(t) = Cq(t)
4. Ay(t) = al oy (t) +ba(t) + ¢ x(t)
5. az(t) = By(t)

6. q'(t) = Aq(t) + Bx(t)
y(t) = Ca(?)

7.q/(t) = Aq(t) + Bx(t)
y(t) = Ca(t) + Dx(?)

1.9. Given the following SISO system:

t+46
Ly(t) = ax(t) + e [ a(r)dr +cfz(t), 6>0
y(t) = atlz(t)] + b a(t) + &e()a(t)
y(t) = ady(t) + ba(t) + ¢ S a(t) + Ld(t)a(t)
y(t) = afy(t) + b G y(t) + ¢ S y(t) + da(t)
y(t) = ax(t) + c g [z(t) — g
y(t) = atlz(t)] + b5 a(t)

Which system is memory and which is not? Why?

Which system is causal and which is not causal? Why?

Which system is linear and which is nonlinear? Why?

Which system is time-invariant and which is time-variant? Why?
Which system may be said to be BIBO stable? Why?
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Fig. 1.26. System block diagrams.

1.10. A systems is represented with the block diagram (Fig. 1.26). Analyze
the system structure and deduce whether a system is LTI, LTV, NTI, or NTV.

1.11. Write an equation of the system shown in Fig. 1.26 in the form used
in Problem 1.9.

1.12. Analyze the system shown in Fig. 1.26 and realize whether a system
is BIBO stable or not obligatorily BIBO stable. Formulate conditions (con-
straints) under which a system would always be BIBO stable.

1.13. Realize, which system structure shown in Fig. 1.26 is closed loop and
which is not? Which closed loop has a positive feedback and which has a
negative feedback? Which is closed loop control and which is not?

1.14. Consider any two systems shown in Fig. 1.26 and sketch a new structure
with their

1. Series interconnection
2. Parallel interconnection
3. Feedback interconnection

If possible, simplify a resulting structure. Write an equation of a new system.

1.15. An electric circuit is shown in Fig. 1.27. Implying that all its electric
units are time constants and using Table 1.2, write an ODE of the system.

1.16. All memory electric units (C' and L) in the scheme shown in Fig. 1.27
are assumed to be time-controllable. Using Table 1.2, write an ODE of the
system.
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Fig. 1.27. Electrical systems.

1.17. A nonlinear memoryless system is represented with the below given
mapping equation:

L y(t) = a + bx(t) + cz?(t)
x(t

2. y(t) = a®2%(t) —aln i)

3. y(t) = ax(t) — bexp Il(lt)

4.y(t) =aln wé’t)

5. y(t) = ar™1(t) + bexp (1)

Supposing that z(t) = coswpt, determine the frequency content of the
output y(t) in the range of 0 < w < 2wy.

1.18. The system input z(¢) and output y(t) are represented with the mag-
nitude spectra, |Cy| and |Cyi|, respectively, as shown in Fig. 1.28. Realize,
which system is linear and which is nonlinear.

1.19 (Accuracy and precision). Positioning systems provide measure-
ments of the coordinates (x,y) of a linearly moving object (Fig. 1.29). Observe
the measurements and make a conclusion about accuracy and precision of each
of the systems.

1.20 (Uncertainty and robustness). The nominal performance of a sys-
tem (Problem 1.19) is shown in Fig. 1.29 with a bold line. Analyze the actual
performance and realize the system uncertainty 1) at every time instant, 2) at
particular parts of measurements, and 3) over all measurements.
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Fig. 1.28. Magnitude spectra, |Cyx| and |Cyx|, of the input signal x(t) and output
signal y(t), respectively.

0 0

(@Y ()| ¥

Fig. 1.29. Coordinates measured of a linearly moving object (bold) with different
systems.

1.21. Following Example 1.1, specify the weighting transfer function for the
additive and feedback robust system models with uncertainty. Verify that, by
H= _1 and H = !, the weights are W = and W = as for the additive

s+a

s(sia)
and feedback cases, respectively.
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Quantitative Methods of Systems Description

Any system represents some physical process with a mathematical model.
Therefore, its operator O is not always defined to be absolutely rigorous, but
rather described appropriately with some methods. Depending on applications
and practical needs, different methods may be used and different forms of sys-
tem presentation can be found. The most well developed methods are created
for LTT systems. All general responses of LTI systems are coupled with each
other by the transforms and already quite complete the LTI system theory
seems rigorous and strong. The other systems (LTV, NTI, and NTV) also
demonstrate abilities for generalization that will be shown in the sequel. Even
so, many nonlinear problems are still being solved involving approximation
and linearization as well as decomposing a system to well-studied blocks. Be-
low, we observe the most efficient methods of systems description in the time
and frequency (transform) domains. Such methods are called quantitative.

2.1 System Responses to Test Signals

Any input-to-output system responds to the input signal with its own unique
output signal. To generalize a system performance, the following standard test
waveforms are used.

The unit impulse 6(t) also called the Dirac! delta function possesses the
following fundamental properties:

oo, t=0

5(75):{07 1oy and /5(t)dt:1. (2.1)

The other useful properties of §(¢) are postponed to Appendix A. The unit
step function wu(t) is defined by

! Paul Adrien Maurice Dirac, English mathematician, 8 August 1902-20 October
1984.
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u(t) = {(1) i i 8 (2.2)
and is coupled with §(¢) by a pair of the transformations:
t
)= U anaut) = [ a)ar. (2.3)

Finally, the complex exponential signal e/“? is defined, as a test signal, by two
harmonic functions as

¥t = coswt + jsinwt, (2.4)

where w is an angular frequency. Note that, in some special cases, albeit not
commonly, other test signals may be useful.

The response of a system to the standard test waveform (function) is then
described mathematically to be the system general response: impulse, step,
or frequency.

2.1.1 Impulse Response

When we use d(t) as a test signal, we think about the response of a system to
the unit impulse, so about the impulse response, provided the definition:

Impulse response: The response of a system to the unit impulse is
the system impulse response.
O
More specifically, an LTT system is characterized by the impulse response
h(t) that is its response at time ¢ to the unit impulse at time ¢,

h(t) = O8(t) . (2.5)

In turn, an LTV system is characterized by the time-varying impulse response
h(t,0) that is its response at time ¢ to the unit impulse at time 6,

h(t,0) =O(t)d(t —0). (2.6)
Example 2.1. An LTI system (Fig. 2.1a) is described with the ODE

ivc(t) + chc(t) = 7_Cv(t),

t
vo(t) = vo(0)e % +er | /ef’cv(a) ae. (2.7)
-0
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Suppose that the input is shaped with the unit impulse, v(t) = 6(¢). Then,
by the sifting property of the delta function (Appendix A) and va(0) = 0, the
solution (2.7) produces the system impulse response function

1 e—t/Tc t> 0
= = Tec vz 2.
h(t) = vo(t) {07 P20 (2.8)
illustrated in Fig. 2.1b. O
P
v(f) R c== v
T
(@)
h(®)
1A |H (joo)|
N
1
2
0 T‘C ! 0 1/ o
(b) (@ o
s(2) 0 1/7¢ ®
| //
-1 /4
- /2
0 T t 0(w)

(c) (e)

Fig. 2.1. General responses of a system: (a) low-pass LTI system, (b) impulse
response h(t), (c) step-response s(t), (d) magnitude response |H (jw)|, and (e) phase
response O(w).

Examples of the impulse responses of time-varying and nonlinear systems
will be considered in the relevant Chapters.
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2.1.2 Step Response

The other standard test signal, the unit step u(t), is associated with the step
response of a system, provided the definition:

Step response: The response of a system to the unit-step is the
system step response.
O
Similarly to the impulse response, the step response is specifically mea-
sured for time-invariant and time-varying systems. For LTI systems, the step
response ¢(t) is defined as the system response at time ¢ to u(t) at ¢,

g(t) = Ou(t). (2.9)

For LTV systems, it is characterized by the time-varying step response g(t, 6)
that is its response at time t to the unit step at time 6,

g(t,0) = O(t)u(t — 6). (2.10)

It can be shown that, for LTI systems, the step response is equivalently
defined by integrating the impulse response and the impulse response by dif-
ferentiating the step response, respectively,

t

g(t):/h(T)dT and h(t) = dtg(t). (2.11)
0

Note that for time-varying and nonlinear systems the relevant pair of the
transformations (2.11) is not commonly valid.

Example 2.2. Given a system (Fig. 2.1a) described in Example 2.1. Let the
input be a unit-step function, v(t) = u(t). Then (2.7) produces, by vc(0) = 0,
the system step response

1—et/7 t>0
o0 = o) = { 20 (2.12)

shown in Fig. 2.1c. It may easily be verified that, by (2.11), the function (2.12)
becomes the impulse response (2.8) and integrating (2.8) produces the step
response (2.12). O

2.1.3 Frequency Response

In the frequency domain, a system is characterized with the frequency response
also called the system function that is the measure of its response to a har-
monic signal, which amplitude is unit and which frequency can be arbitrary,
provided the definition:
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Frequency response: The ratio of the system response to the com-
plex exponential signal z(t) = ¢/t and e/*? is the system frequency
response,

Response to e7«*

Frequency response = .
e]wt

(2.13)
O
Because a system is typically with memory, its frequency response is com-
monly a complex function. The absolute value of this function is called the
magnitude response and its phase the phase response.

Specifically for LTI systems, the frequency response is defined by

Jjwt

Hjw) = "R | (ju)jeient), (214)
where |H(jw)| is the magnitude response and pg(w) phase response. The
frequency response of an LTI system can be measured as follows. Sweep a
unit amplitude harmonic input signal through the bandwidth of a system and
measure the magnitude and phase of a relevant harmonic signal at the output.
It is of high importance that the impulse and frequency responses of an

LTI system are coupled by the Fourier? transform (Appendix C)

H(jw) & h). (2.15)

For LTI systems we thus can say that the frequency response H(jw) is
the Fourier transform of its impulse response h(t) and the impulse response
is the inverse Fourier transform of its frequency response. Overall, all general
responses of LTI systems are interchangeable by the transformations. There-
fore, both SISO and MIMO LTT systems are consistently described in the time
and frequency (transform) domains.

If a system is LTV, its frequency response as well as magnitude and phase
responses become time-varying,

. Jwt
H(jut) = RO s o0 (210
However, the time-varying impulse and frequency responses are not coupled
by the Fourier transform, contrary to (2.15) valid for LTT systems.
Note that nonlinear systems respond to the input signal with new har-
monics. Therefore the definition of the frequency response can only be used
as related to the harmonic of the same frequency as in the input.

Example 2.3. Consider a system described in Example 2.1. To define the
frequency response, the input signal must be set to be harmonic (cosine or
sine) with unit amplitude. Then suppose that v(t) = sinwt. The output is
thus predetermined to be

2 Jean Baptiste Joseph Fourier, French mathematician, 21 March 1768-16 May
1830.
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ve (t) = [H(jw)|sinfwt + ¢ (w)].-

Exploiting the general solution (2.7) with vc(0) = 0, substituting the
harmonic input and output, and using the Euler® formula (Appendix E) allows
us to write

t

|H (jw)|sin[wt + o (w)] = e~ il /efec sinwf dé

Tec
By
t ) .
el ey,
Te 27
By
LTt t
=" /e(flc*j“)f’da—/e(flc‘j”)ede
277
0
=14 12 (sinwt — Wt coswt) .

The expression results in two equations,

. . WTe
|H(jw)|smg0H(w) = _1 _|_w27_02 )
. ) 1
|H (jw)| cos o (w) = 1+ w?r2’

yielding the magnitude and phase responses of a system, respectively,

1
H(jw)| = : 2.17
HGI= 217
tan g (w) = —wTe (2.18)
The functions (2.17) and (2.18) are sketched in Fig. 2.1d and Fig. 2.1e,
respectively. a

Example 2.4. In a much lesser sophisticated way, the responses (2.17) and
(2.18) can be derived exploiting (2.15). Indeed, by the Fourier transform ap-
plied to (2.8), the frequency response is easily found to be

1

2.19
14 jwre ( )

H(jw) = /e—:c e It dt =
0

and it is evident that the magnitude and phase responses associated with
(2.19) are given by (2.17) and (2.18), respectively. O

3 Leonhard Euler, Swiss mathematician, 15 April 1707-18 September 1783.
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Nonlinear systems can also be characterized by responses to test signals,
following the general definitions. However, for such systems, the general re-
sponses are not interchangeable by the transformations, unlike the LTI sys-
tems case. For many nonlinear systems, the test responses cannot mathe-
matically be performed at all and approximate methods of identification are
applied. The other problem is here that the test responses can differ cardinally
for different values in different regions of signals. Therefore, nonlinear systems
are often locally linearized that makes the responses of linear systems to be
fundamental in the system theory.

2.2 Methods for Linear Systems

As follows from what was observed above, all LTI systems are exhaustively
characterized by responses to the standard test signals both in the time and
frequency (transform) domains. Their time responses (impulse and step) pre-
define each other by integration and differentiation and the impulse and fre-
quency responses are coupled by the Fourier transform. These splendid prop-
erties have created solid foundation for the methods of LTI systems analysis.

2.2.1 Convolution

In the time domain, the operator of an LTI system is called the convolution.
By the convolution, the output y(t) of a SISO LTI system is coupled with its
input z(t) via the impulse response h(t) as follows:

y(t) = Ox(t) = / z(0)h(t — 0)dl = x(t) = h(t)
= / h(0)x(t — 0)do = h(t) * z(t), (2.20)

where the symbol “4” commonly denotes a convolution. Relations in (2.20)
hold true for both noncausal signals and systems and suggest that x(¢) and
h(t) are commuting. When signals and systems are both causal, the lower
integral bound becomes zero and the upper equal to the current time value
t. By the convolution, a generalized structure of an LTI system in the time
domain appears as in Fig. 2.2a.

Example 2.5. Given a noncausal signal x(t) = e/“°! driving a system rep-
resented with the impulse response
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(@) ———>f h(®) >

x(1) y(t) = x(2) * h(1)
wJ () w

b U o YUe) = Hio) X o),

Fig. 2.2. A generalized structure of a SISO LTI system: (a) in the time domain
and (b) in the frequency domain.

By (2.20), the output is calculated to be

¢ ¢
1 ) e eft/'rc ) ejwot
y(t) = / efnbe= """ g = / w0t )0 g = _ . (2.21)
Te Te 1+ jwoTe
—0o0 — 00

With 7. — oo, the system is absolutely inertial (infinite memory) that
tends the output toward zero. In the other limiting case of 7. — 0, the system
is memoryless having unity gain and the output becomes equal to the input.
O

If the Fourier transforms are known of

X(jw) & a(t), Y(w) & y(t), and H(w) & h(t),

then the Fourier transform applied to the convolution integral (2.20) produces
an equivalent form in the frequency domain,

Y(jw) = H(jw)X (jw) . (2.22)

Relation (2.22) suggests that the operator of an LTI system in the fre-
quency domain is the frequency response H(jw) = |H (jw)|e?##(“) specified
by (2.14). We thus can say that the frequency response of an LTI system is the
ratio of the Fourier transform of its output Y (jw) and the Fourier transform
X (jw) of its input, namely

Y(jw)
X(jw)

A generalized structure of an LTI system in the frequency domain is shown
in Fig. 2.2b.

H(jw) = (2.23)

Example 2.6. Given a signal

2(t) = et & X (jw) = 218w — wo)
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driving a SISO LTI system (Example 2.5) having the impulse response

1 ¢ F 1
h(t) = Treu(t) & H(jw) = .
0= hut) & HGo) =
It can easily be verified that the Fourier transform applied to the output (2.21)
and the product H (jw)X (jw) produce the same result, respectively,

2w
Y (jw) = 0w —w
() = 4 b =)
that is the spectral density (Fourier transform) of the output. O

If a system is LTV, then its input z(¢) and output y(t) are coupled via the
time-varying impulse response h(t,0) by the general convolution

oo

y(t) = O@)e(t) = / 2(O)h(t, 0) 6 (2.24)

— 0o

that, contrary to (2.20), commonly does not commute.

2.2.2 Differential Equations

In the time domain, an LTI system can be described with the N-order linear
ordinarily differential equation (ODE)

N

Z dt” Z mdtm ’ (2.25)

n=0

where a,, and b,,, are real constant coefficients bearing all dynamic (memory)
properties of a system and N refers to the highest order derivative of the
output, meaning that the condition N > M ensures physical realizability. The
system output can then be expressed as follows

M m N e
sy =S - ) (2.26)

= ag dt™ ! ag dt™

where the first sum in the right-hand side represents the direct transformation
of z(t) to y(t) and the second one accounts for the feedback branches.

Example 2.7. A system (Example 2.1) is generalized with

1
ngoa an? Z ’”dtm z(t),

where y(t) = ve(t), z(t) = v(t), ap =1/7c, a1 = 1, and by = 1 /7. O
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A generalized N-order ODE of an LTV system is written as

N n M m
HZ:O g [9n @y ()] = mZ:O gy P (@] (2.27)

where at least one of the real coefficients, a,, and b,,, is time-varying. By
differentiating the products, (2.27) can be transformed to (2.25) with at least
one coeflicient time-varying.

CARMA Model

An alternative form of the linear system ODE (2.26) came from the series
analysis and is known as the continuous-time autoregressive moving average
(CARMA) model,

M am N qn
m=0 n=1

where the coefficients 3,, and «,, are constants. Originally, the CARMA model
was used to investigate correlation in discrete-time series. Therefore, the first
sum in the right-hand side was called the moving average (MA) model and the
second one autoregressive (AR) model. It is evident that two models, (2.26)
and (2.28), have no substantial differences, because of, by an_, = a,/ag and
Br—m = bm /ao, they convert to each other.

2.2.3 Transfer Function

It is known from the theory of ODEs that a solution of either (2.26) or (2.28)
cannot typically be found in the time domain in simple forms when N is
large. An alternative way implies applying the Laplace* transform (Appendix
D) to both sides of the linear ODE, exploiting the transforms of the input

X (s) éx(t) and output Y (s) éy(t), and representing (2.25) as follows

N M
Y(s)D ans" =X(s) Y bms™, (2.29)
n=0 m=0

where s = 0 + jw is the Laplace variable. This equation gives another form of
the system operator that can now be represented in the transform domain as
the system transfer function, provided the definition:

Transfer function: The transfer function of a LTI system is the
ratio of the Laplace transform Y'(s) of its output and the Laplace
transform X (s) of its input,

4 Pierre Simon Laplace, French physicist and mathematician, 23 March 1749-5
March 1827.
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Y(s)
H(s) = 2.30
©)= o (2:30)
O
By (2.29) and (2.30), the system transfer function can be expressed as
M
bm m
Y(s) mZ::O ° bo + b1s +...basM
X(s) N ao+a1s+ ... +ansN
> ans™
n=0
_ by (s—21)(s—22) ... (s — 2m) ’ (2.31)
ay (s —p1)(s—p2)...(s —pN)
where the roots z,,, m =1,2,..., M, of the polynomial in the numerator are
called the zeros to mean that H(s) by each of these roots will tend toward zero.
In turn, the roots p,, n = 1,2,..., N, of the polynomial in the denominator

are called the poles, because H(s) goes to infinite by each of them.
It is of importance that the transfer function and impulse response of an
LTT system are coupled by the pair of the Laplace transform, i. e.

H(s) & h(t). (2.32)

The generalized structure of a SISO LTT system in the s domain is shown
in Fig. 2.3b along with its counterpart in the time domain (Fig. 2.3a).

(@) ———> h() >
x(1) y(t) = x(t) * h(t)
<) < <

) X(s) Hes) Y(s)=H(s)X(s) R

Fig. 2.3. A generalized structure of a SISO LTI system: (a) in the time domain
and (b) in the s domain.

Example 2.8. A system is given with the ODE (Example 2.1). Applying the
Laplace transform to the both sides of this equation, we have

sVe(s) + 7:_[ Vel(s) = . V(s),

£ £ .
where Vo (s) & ve(t) and V(s) & v(t), that allows us to write the system trans-
fer function as
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Ve (S) 1
H(s) = = . 2.33
() V(s) 14 s7 (2:33)
Note that, by s = jw, (2.33) becomes the system frequency response H (jw)
given in Example 2.6. g

Overall, the transfer function, as a mathematical statement, is a relation-
ship between the input and the output of an LTI system in terms of the
transfer characteristics. Because the Fourier transform is a special case of the
bilateral Laplace transform then, by ¢ = 0, the system frequency response
H(jw) is a special case of the system transfer function H(s).

2.2.4 State Space Representation

The ODE (2.25) is coupled straightforwardly with the system model in state
space. The term “space” may be treated as a “memory element” of the system
and therefore the number of states is associated with the number of deriva-
tives. The set of all state variables is called the system’s state. Because the
set describes a system completely, it also contains sufficient information to
compute all future system’s states and outputs.

Most commonly, a MIMO LTV system is described with the so-called state
equation that is the first-order matrix ODE and state observation equation
that is a matrix algebraic equation, respectively,

d'(t) = A(t)a(t) + B)x(?), (2.34)
y(t) = C(t)a(t) + D(t)x(1). (2.35)

where q(t) is the N x 1 vector of the system states and q'(t) = {,q(t) is its
time derivative of the same dimensions. The k x 1 vector of a multiple input
x(t) and the p x 1 vector of a multiple output y(¢) are, respectively,

x1(t) y1(t)
x(t) = xzzt and  y(t) = yzft) . (2.36)
2 (t) o

The N x N matrix A(t) is called the system matriz, B(t) of dimensions
N X k the input matriz, C(t) of p x N the observation matriz or measurement
matriz, and D(t) of p x k the output matrix.

At least one of the matrices in (2.34) and (2.35) must be time-variant for
the system to be LTV. Otherwise, the system is LTT and the equations become

q'(t) = Aq(t) + Bx(t), (2.37)
y(t) = Cq(t) + Dx(¢). (2.38)
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If it is also a SISO LTI system, then its input z(¢) and output y(t) are both
scalars, and the state-space model simplifies to

qd'(t) = Aq(t) + Bz(t), (2.39)
y(t) = Cq(t) + Dx(t), (2.40)
where A has the same dimensions and the matrices B, C, and D possess the
dimensions N x 1, 1 x N, and 1 x 1, respectively. Moreover, if M < N in

(2.25), then the last term in the right-hand side of (2.40) vanishes, because
D = [0].

Example 2.9. A SISO system is described with the ODE (2.25). By assigning
the state variables

L
_
—~
~
~—
I
<
—~
~
~—

an () =y () = gy (1),

we arrive at the state space model (2.39) and (2.40), for the N x 1 system’s
state vector

T
a(t) = [a(t) g2(t) ... an(t)] (2.41)
and matrices
0 1 0 0
0 0 1 0
A= : : : , (2.42)
0 0 0 1
—ap/an —a1/an ... —an—_2/an —an_1/an
B=[00...1/ax]", (2.43)
bo — aobn /an
b1 — ale/aN
C= , (2.44)

bnv—1 —an—1by/an

D = [by/an] . (2.45)
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Just from the definition of the system state, it follows that the state space
equation describes the internal dynamic structure of a system and the obser-
vation equation shows how the states result in the system output.

Example 2.10. A system described by the ODE (Example 2.1) is SISO LTI
Therefore, its equations in state space are (2.39) and (2.40) with x(t) = v(t)
and y(t) = ve(t). Having N = 1, the state variable may be assigned to be
q1(t) = y(t) = ve(t) and then the state vector becomes of 1 x 1 dimensions,

q(t) = a1 (2)]

By the known coefficients of the system generalized ODE (2.25): ag =
1/7c, ay = 1, and by = 1/7, the matrices of the state space model become,
respectively,

1 1
A= |- , B=][1], C= , and D =]0].
Tec Tec
O

The state space model of a MIMO LTI system readily converts to the
system transfer function. In fact, by applying the Laplace transform to (2.39),
we can write

sQ(s) = AQ(s) + BX(s),

Q(s) = (sI— A)"'BX(s),
where I is an identity matrix and Q(s) & q(t) and X(s) & x(t). The transform
of the output equation (2.38) then becomes

Y(s) = [C(sI — A)"'B + D]X(s),
where Y (s) éy(t), producing

H(s)=C(sI-A)"'B+D, (2.46)
where
H(s) = [Hi(s) Ha(s) .. .HN(S)]T
is the N x 1 transfer function matrix.

Example 2.11. By the matrices given in Example 2.10, the 1 x 1 transfer
function matrix (2.46) associated with the system ODE (Example 2.1) ac-
quires the component equal to (2.33), namely

o= [ (w-[-1]) wew= [
O

On the whole, it follows that all basic methods intended for LTT systems
are interchangeable that creates an appreciable convenience and makes the
theory of these systems rigorous and strong. The same can be said, in part,
about the LTV systems. The case of nonlinear systems is apparently more
sophisticated requiring other methods of analysis.
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2.3 Common Methods for Nonlinear Systems

So far, we observed the methods intended for linear systems. When a sys-
tem is nonlinear, the functional dependance between its input and output is
described with a nonlinear operator,

y(t) = Ox)x(t), (2.47)

that can also be time-varying, O(x,t). In line with linear systems, both NTI
and NTV systems can be described by the ODEs and represented in state
space. However, a general solution of the ODE with an arbitrary nonlinearity
apparently does not exist, except for some particular cases. Therefore, several
other methods were developed to describe nonlinear systems. In the reminder
of this Chapter, we shall consider the most common rigorous methods and
widely used approximate methods associated with nonlinear systems.

2.3.1 Volterra Series

In linear systems, the output y(t) is coupled with the input x(t) via the
impulse response by the convolution (2.20) (LTI systems) or via the time-
varying impulse response by the general convolution (2.24) (LTV systems).
If a system is memoryless NTI, we commonly expand its output y(z) to the
Taylor® series around some point g,

dy(x) 19%y(x)
y(x) - y(xO) + ox x=x0 (x - xO) + 2 83}2 T=x0 (x - xO)Q

The Volterra® series method considers a system to be nonlinear and mem-
ory either. Therefore, the Volterra series is often called the Taylor series with
memory. The output accordingly is calculated by the Volterra series operator

y(t) = Ve(t) = Hox(t) + Hiz(t) + ...+ Hpz(t) + ...

:h0+2/.../hn(91,...,0n)x(t—91)...x(t—9n)d91...dﬁn, (2.49)
nzlfoo —00

where h,(01,...,0,) is called the Volterra kernel. By these kernels, the com-
ponents of the series (2.49) are found to posses the important functional prop-
erties, namely

5 Brook Taylor, English mathematician, 18 August 1685-29 December 1731.
5 Vito Volterra, Italian mathematician, 3 May 1860-11 October 1940.
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Hoz(t) = ho (2.50)
is a constant (the output with zero input),

oo

Hlﬁ(t) = / hl (91)$(t - 91)(216‘1 (251)

— 0o

is the output (convolution) corresponding to the linear system term, and the
rest of the components is calculated similarly:

oo o0

Haa(t) = / / ho (01, 02)a(t — 0)a(t — 0)d0vdBy . (2.52)

— 00 —0O0

oo o0 o0

H3$(t) = / / / h3(6‘1, 92, 93)$(t — Hl)x(t — eg)ﬁ(t — 93)(3191(216‘2(193 5

(2.53)

An expansion (2.49) suggests that, similarly to any LTI system that is
exhaustively characterized by the impulse response, any nonlinear system de-
scribed by the Volterra series is exhaustively characterized by the Volterra
kernels. In fact, the first term (2.50) is a constant value associated with the
system output for zero input. The second term (2.51) means nothing more
than the response of a linearized system. The third term (2.52) is the system
response produced by the square component. The fourth one (2.53) by the
cubic component, and so on. Therefore, if a nonlinear system is expandable to
the Volterra series, they often call its response to 6(¢) the generalized impulse
response and say that its output is coupled with the input by the generalized
convolution.

Example 2.12. Consider an NTI system, in which a signal z(t) goes through
a series connection of an LTI filter with the impulse response h(t) and square-
law amplifier. The system block diagram can be performed as in Fig. 2.4.

() —s] h@) 29 (1)

Fig. 2.4. An NTI system with quadratic nonlinearity.



2.3 Common Methods for Nonlinear Systems 59

First, the output of a filter can be defined by the convolution

oo

yi(t) = / h(0)x(t — 6)do

— 0o

and then the square value of y; (t) produces the system output

u(t) = 3(t) = / h(6))x(t — 6,)d6, / h(62)2(t — 0)d6s

oo o0

= / / hg(ol, 02)33(t - 01)33(t — 92)(101(102 y (254)
where ha(01,62) = h(01)h(02) is the Volterra kernel. The system is thus per-
formed with the only term Haxz(t) (2.52) of the Volterra series (2.49). O

Example 2.13. A linear part of the system (Fig. 2.4) is described with the
impulse response h(t) = Tlc e~ mu(t) and the input is the unit step x(t) = u(t).
The system output is thus the step response defined, by (2.54), to be

1 o 01 02

g(t) = //67*C e mdfdb,
T,
00

M)

O

In spite of a seemingly obvious generality and convertibility of (2.49) to
the transform domain, there are two typical problems in applications of the
Volterra series: How to measure the Volterra kernels? How to transfer from
the system differential equation to the Volterra series? One more problem is
that the terms in the Volterra series are not orthogonal, therefore must be
identified all at once.

To orthogonalize the Volterra series, Wiener” proposed a solution that
is known now as the Wiener method (Chapter 7). The method is based on
a simulation of the NTI memory system in a special manner via the func-
tional Volterra series, assuming a Brownian® motion in the input. In line with
the Volterra and Wiener approaches, some other methods have been devel-
oped, among them the Fliess generating power series. All these methods can
equivalently be used in the transform domain. However, effectiveness of series
expansions is typically acceptable if systems have weak nonlinearities.

" Norbert Wiener, American scientist, 26 November 1894-18 March 1964.
8 Robert Brown, British botanist, 21 December 1773-10 June 1858.
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2.3.2 Differential Equation Method

Both NTT and NTV systems can be performed by the N-order nonlinear ODEs
with respect to the nighest order time derivative of the output as follows,
respectively,

dNy dy dV"ly  dx dMy
dtN = f (y dt,..., dtN_l ,:,C, dt,...7 dtM> 5 (2.55)
dVy dy dV"ly  dx dMy
= t 2.
dtN f <y7 dt’ ) dtN_l 7x7 dt? ) dtM ) > ) ( 56)

where M < N. It is evident that general solutions of these equations cannot
be found. Instead, the analytical solutions exist only for several particular
cases.

Example 2.14. An NTI system is represented with the block diagram shown
in Fig. 2.5. Assign y1(t) to be the output of the first integrator. Then the
system equations for the inputs of each integrator may be written as
/I 2
Yy = _05y + Y1,
Yy =br —ay.
Differentiating the first equation and substituting for the second one leads
to the system nonlinear ODE
y' +yy +ay = bx (2.57)
that is modeled by Fig. 2.5 and can be represented in the Volterra form. 0O

2.3.3 State Space Representation

It is known that any ODE of high order can be represented by the equations
system of the first order. If a system is NTI, then its state space model can
be performed with the equations

—a
d
w

x(7) ) | ’ > (1)

-0.5

Fig. 2.5. An NTI system with a quadratic nonlinearity.



2.4 Approximation and Linearization 61

q'(t) = ¥la(t),x(t)], (2.58)
y(t) = Yla(t), x()], (2.59)
where W and Y are some nonlinear operators. Supposing that both operators

are linear, we go from (2.58) and (2.59) to (2.37) and (2.38), respectively.

Example 2.15. Consider an NTT system (Fig. 2.5). Assign its output to be
the first state, ¢1(t) = y(t), and the output of the second integrator y;(t) to
be the second state, g2(t) = y1(¢). The system nonlinear state space equations
then appear by simple manipulations:

q'(t) = Ala(t)]a(t) + Bz (t),

y(t) = Ca(t),
where
q(t) = Bﬁgm , A= {_Of‘g(”é] , B= [2] , C=[10].

Note that these equations cannot be solved in a manner similar to the linear
ODEs, in which A does not depend on the state vector. O

If a system is NTV, its generalized state space model becomes time-
varying,

q'(t) = ®q(t), x(t), 1], (2.60)

y(t) = Yla(t),x(t), 1], (2.61)

that evidently complicates a solution. The most well investigated solutions for
particular structures of NTT and NTV systems in state space will be considered
in the relevant Chapters.

2.4 Approximation and Linearization

Any real electronic system is nonlinear by saturation and not every input-to-
output nonlinearity can be described analytically by physical laws. In many
cases, the function is first measured and then approximated and linearized.
Linearization is often included to the approximation procedure.

2.4.1 Polynomial Approximation

A great deal of nonlinear problems is efficiently solved by polynomial approxi-
mation using the Taylor series. For memoryless SISO systems, (2.48) is usually
written as an approximating k-degree polynomial
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y(z) = y(xo) + a1(x — o) + as(x —x0)> + ... + ax(x — 20)",  (2.62)

k
for which the coefficients ay, are calculated analytically by aj, = |, o 8‘1;(,?)
T=X0

or determined experimentally. If the point zg is fixed, then (2.62) is very often
written for increments of the variable and function, namely as

Ay = a1 Az 4 ap A2 + ...+ apAx” | (2.63)
where Ay = y(z) — y(z¢) and Az =z — xp.

Example 2.16. The input-to-output dependence y(x) of a system was mea-
sured at three points: y(0) = 0, y(1) = 1, and y(2) = 3. By (2.63), the
coefficients of the approximating polynomial of the second degree, y(x) =
a1z +as2?, are defined by solving the equations 1 = a; +as and 3 = 2a; +4as
to be a1 = ag = 0.5. That yields y(z) = 0.52(1 + ). Fig. 2.6a shows the
measured points along with the approximating curve. O

Fig. 2.6. Measured nonlinear function: (a) approximation and (b) linearization.

2.4.2 Methods of Linearization

The most common method of analytical linearization implies describing a non-
linear system by linear functions around some points. Linearization may be
provided by the piecewise-linear (PWL) approach or linear spline interpola-
tion. Exponential, quadratic, cubic, and other piecewise-functions and splines
are also often used.

Analytic Linearization

Analytic linearization of the input-to-output dependence around some oper-
ation point is provided by saving only two first terms (constant and linear)
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in the Taylor series (2.48). If a nonlinear SISO system is memoryless, then a
linearizing expansion in the vicinity of o becomes, by (2.48),

y(@) = y(x0) + a1(z — o), (2.64)
where the coefficient
dy(x)
= 2.65
a o s ( )

is defined either analytically or experimentally.

Example 2.17. Given a memoryless SISO system represented with y(z) =
0.52(1 + z) (Example 2.16). By (2.65), we have a1 = 0.5 + x¢ and then, by
(2.64), the linearizing function becomes

y(x) = y(xo) + (; + xo) (x — x0) .

Fig. 2.6b shows this line at three discrete points y(0) = 0, y(1) = 1, and
y(2) = 3. O

Linearization of Nonlinear ODE

Likewise, linearization can be obtained for the N-order nonlinear ODE (2.55).
The Taylor expansion is applied at some desirable operation point zq, yo with
seemingly known derivatives y(, yj, - - - yéN), Ty T(y e xéM). Only constant

and linear terms are saved and a linearized equation is complete:

of of

of
g M (t) = gt g(t) + ... gV V@) 4 ...
g ayoy()+ay,0y()+ T gyv-n| (t) +
of| . Of| ., of | o
t t t 2.66
where
of a of
Ovar|,  Ovar T
n=12,...,.N—1, m=1,2,..., M, and, for the sake of accuracy, all incre-
ments
G=y—vo, 7=y —vh, ... NV =y@®D_yN
T=x—x9, T =2"—ap5 ..., i(M):x(M)—a:éM)

are commonly preserved to be reasonably small. By assigning
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_of - of o of -
ao_ayov bo_axov a’n._ay(n)ov a‘nd bn—

of

oty |+ (267)

0

(2.66) becomes a linear ODE

gN(t) = aodi(t) + ' () + ...+ an—1 gV V(@) + ..
Do (t) + 1@ (t) + ... 4 b (2) (2.68)
that can be written in the standard form (2.25) and then solved, by ay = 1. In
time-varying problems, the operation point changes with time, yo(t) and x ().

Therefore, the ODE linearized by (2.68) possesses at least one time-varying
coefficient.

Example 2.18. An NTI system is given with the ODE (2.57),

y'=—yy —ay+bx.
By (2.67), the coefficients are defined to be ap = —y; — a, a1 = —yo, and
bo = b and then the linearized ODE becomes

"

J' =~ +a)j — yoy' + b2,

having a general solution. a

Linearization of State Space Model

In a manner similar to the ODEs, an NTI system state space model, (2.58)
and (2.59), can also be linearized. Assume that the system is examined in
the vicinity of the point y,, x¢ corresponding to the state q, and its time
derivative q(. The actual system state, input, and output may then be defined
by, respectively,

q(t) = qo(t) +a(t), (2.69)
x(t) = xo(t) +x(¢), (2.70)
y(t) = yo(t) +¥(1), (2.71)

where q(t), X(t), and y(¢) are small time varying increments. By (2.69)—(2.71),
the state space model, (2.58) and (2.59), transforms to
Qo (t) + q'(t) = ¥lao(t) + at), xo(t) +x(1)], (2.72)
Yo(t) +¥(t) = Ylao(t) +at), xo(t) +x(t)] (2.73)

Expanding both sides of these equations to the Taylor series and truncating
for the constant and linear terms makes them linearized in the forms of (2.37)
and (2.38), respectively,

& (t) = Aq(t) + Bx(t), (2.74)
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7(t) = Ca(t) + Dx(), (2.75)
in which all matrices are Jacobian being predetermined by

ov

A— ow
dq |,

:3x0

oY
dq |,

oY

= oxl. (2.76)

where ® and Y are taken from (2.58) and (2.59), respectively.
Because the approach is the same, the linearized state space model is akin
to the linearized nonlinear ODE having the same range of applications.

Example 2.19. Following Example 2.14, an NTI system (Fig. 2.5) is de-
scribed in state space with

q'(t) = ¥q(t),x(t)], (2.77)
y(t) = Cq(t), (2.78)
where
_ @) _ [—0.5¢3(t) + go(t)
q(t) = {q;(t)] and ¥ = [ _aqlitHb;(t) . (2.79)

By (2.76), the matrices of the linearized equations (2.74) and (2.75) are
defined to be

q 0

A—{ 1‘; ] M C=([10], D=[0]. (2.80)

Because y(t) = ¢1(t), the matrix equations may be performed as

y'(t) yo(t) 11 [ y(t) 0
M EsHI R HE (281)
that, equivalently, leads to

y'(t) = —yo()y(t) + a2(t) (2.82)
g5 (t) = —ay(t) + bx(t) . (2.83)
By differentiating (2.82) and substituting for the second equation (2.83),
one arrives at the same linearized equation as in Example 2.18. O

Linearization Techniques

Technical linearization implies using some auxiliary nonlinear blocks to make
the system linear. Several linearization techniques are used, among them the
feedforward linearization, feedback linearization, and nonlinear predistortion
of signals can most frequently be met in designs. The linearization techniques
are expounded in Chapter 7.
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2.5 Averaging

Special approximate methods of averaging have been developed for centuries
to investigate the fundamental properties of nonlinear systems. The approach
relates to the closed loop systems typically modeled with the nonlinear ODE
of the second order

v +wiy=ef (y.y) , (2.84)

where f(y,y’) is a nonlinear function, € ~ 24 is a small parameter proportional
to the open system bandwidth 20 < wp, and wg is the system resonance
angular frequency. If a system is of higher order, then, by small ¢, its high
order time derivatives are commonly reduced to y or y’. A solution of (2.84)
is usually found by linearization and many linearization methods are based
on averaging.

The history of application of averaging to different physical system prob-
lems returns us back to the works of Lagrange’, Poisson'®, Poincaré'!,
Laplace, Lyapunov'?, Brillouin'?, Wentzel'* Kramers!®> (BWK method), and
many others. However, a historical breakthrough was done only in the 1920s
by van der Pol'® with his heuristical method of “slowly changing amplitude”.
Considering solely an electronic oscillator, van der Pol, virtually, discovered
a new approach to solve a great deal of problems in vibrating and oscillat-
ing nonlinear systems. Soon after, in the 1930s, Krylov!” with his student
Bogoliubov'® justified the van der Pol method mathematically, extended it
to higher-order approximations, and presented the asymptotic theory of os-
cillations. The first-order approximation of the asymptotic method was then
widely cited as the Krylov-Bogoliubov (KB) method. Thereafter, the theory
has been extended by Krylov, Bogoliubov, and Mitropolskiy!® to the other
method known as the equivalent linearization associated with harmonic bal-
ance. Furthermore, the theory was greatly developed by Bogoliubov and his
student Mitropolskiy and the asymptotic method of the higher-order approxi-
mations was called the Krylov-Bogoliubov-Mitropolskiy (KBM) method (also

9 Joseph-Louis Lagrange, French/Italian mathematician, 25 January 1736-10 April
1813.

10 Simon Denis Poisson, French mathematician, 21 June 1781-25 April 1840.

11 Jules Henri Poincaré, French mathematician, 29 April 1854-17 July 1912.

12 Aleksandr Mikhailovich Lyapunov, Russian/Ukrainian mathematician, 6 June
1857-3 November 1918.

13 Léon Nicolas Brillouin, French physicist, 7 August 1889-4 October 1969.

14 Georg Wentzel, German/Swiss physicist, 17 February 1898-12 August 1978.

15 Hendrik Antony Kramers, Dutch physicist, 17 December 1894-24 April 1952.

16 van der Pol, Balthasar, Dutch engineer, 1889-1959.

17 Nikolay Mitrofanovich Krylov, Russian born Ukrainian mathematician, 29
November 1879-11 May 1955.

18 Nikolai Nikolaevich Bogoliubov, Russian born Ukrainian mathematician, 21 Au-
gust 1909-13 February 1992.

19 Yuriy Alekseevich Mitropolskiy, Ukrainian mathematician, 1917— .
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cited as the generalized method of averaging). In line with these works, al-
beit not commonly, several other approaches are also used, among them the
shortened (truncated) equations method, averaging by transforming variables
(canonical variables method), and others.

It is worth remembering that almost all approximate methods elaborated
for nonlinear systems are applicable for linear systems with sometimes a
shorter way, although approximate, to reach the result.

2.5.1 Method of Expansion (Perturbation Method)

Even though the perturbation method (or method of expansion) does not ex-
ploit an idea of averaging straightforwardly, it is an asymptotic approach. We
therefore shall consider it in conjunction with the methods of averaging.
Historically, an application of the perturbation method to nonlinear prob-
lems was first formulated by Poisson, then studied by many scientists, and
finally generalized by Poincaré.
An idea of the method is to perform a solution for (2.84) by the series

o0

y:y0+ey1+e2y2+...+enyn+...:Zeiyi. (2.85)
i=0

Substituting (2.85) to (2.84) formally produces

Z eyl +wi Z €y = —ef (Z €Yi, Z elyz’) . (2.86)
=0 =0 =0 =0

Supposing that the nonlinear function is multiply differentiable (so ana-
lytic), the right-hand side of (2.86) is expanded, by the method, to the Taylor
series for the powers of a small parameter e. Herewith, the terms with €* are
discarder if i is higher than n. Equating the coefficients of €?, i < n, yields the
equations

Yo + wiyo =0,

yi +woyr = f(yo,v0)
Yy +wiyz = f1 (Yo, v0)y1 + fur (Yo vo)Y4 »

(2.87)

further solved for the unknown values of yo, y1, ..., Yn-
It can be shown that the series expansion often predetermines a critical
disadvantage neatly demonstrated by a harmonic wave

242 343

sin(wog + €)t = sinwot + €t coswot — sin wot — 31 coswot + ...

2!
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As it is seen, in line with the first harmonic term sinwgt, there exist the
so-called secular terms, which amplitudes increase with time infinitely. It is
evident that, by large n and relatively short observation time, the secular
terms will compensate each other. In practice, however, only small n is of
importance. Therefore, the perturbation method has not gained wide currency
in the nonlinear system problems.

2.5.2 Van der Pol’s Method

Let us come back to the closed loop system equation y” +a(1 — K)y'+by =0
(1.45), set a = —¢, b = wi, and K = y?, and represent it in the form of (2.84).
We thus arrive at what is known as the van der Pol oscillator equation,

Y +wiy =e(1— 97y, (2.88)

in which the nonlinear function is represented with f(y,v’) = (1 —1y?)y’. Note
that the classical van der Pol oscillator is normalized for the dimensionless
time 7 = wyt to be

Y +y=c1 -9y, (2.89)

where € ~ 20/wy = 1/Q < 1, and @Q is the quality factor of an open system.
An heuristical (although correct!) suggestion by van der Pol was to find a
solution of (2.88) in the forms of

y=rcost, (2.90)

Y = —worsiny, (2.91)

where ¥(t) = wot+9(t) and 9(¢) is a time-varying phase. In further, validity of
(2.90) and (2.91) was justified by many authors and these forms have became
a common feature of most of the methods considering the amplitude r(¢) and
phase ¥(t) of harmonic oscillations as slowly varying with time.

Now, let us write the first time-derivative of (2.90) completely:

Yy =1'cos — worsiny — I'rsiny. (2.92)

Since we also want to allow (2.91), the following constraint appears, by com-
paring (2.92) and (2.91),

r’ cosp —I'rsiny = 0. (2.93)
Substituting (2.90) and (2.91) to (2.84) produces
r’ sint) 4+ 9'rcost) = — N f(rcostp, —worsin 1) (2.94)
wo

and, by solving (2.94) with (2.93), we arrive at the solutions

r = —; f(rcost, —worsiny) sin, (2.95)
0
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9= ° f(rcosth, —worsini) cos . (2.96)
wor
Because both functions, r and ¥, are presumed to change slowly, they may
also be assumed to be constants during period T' = 27/w. Based upon this
and averaging (2.95) and (2.96) over T, we arrive at

27
P=_ /f(rcosw,—worsinw)sinwdw, (2.97)
271'(4]0
0
27
9 =_ /f(rcosw,—worsinw)coswdw. (2.98)
2mwor
0

For the van der Pol equation (2.88), substituting f(y,y’) to (2.97) and
(2.98) first gives

27
r = 26 /r(l — 1?2 cos? 1) sin® ¢ dip (2.99)
0
0
27
r_ € 22 .
= 47rr/r(1 r* cos” ) sin 2¢) dyp (2.100)
0
and then leads to the final ODEs regarding the amplitude and phase, respec-
tively,
2
, € o
r=gr <1 4) , (2.101)
¥ =0. (2.102)

To solve (2.101), it is in order, first, to change a variable, z = 72, then
separate variables, and integrate the both sides to get

dz €
/z(z—4) __4t+C7

where C' is an integration constant. An integral identity [ . (s
then leads to

x

1
_aln r+a

xT
+a)

1 z 1 z—4 €
Ty 2—4‘ . “MHC’
4 4
In|l— | =—et+4C, 1— =e eiC,
z z
4 2

and r =

z = .
1 — e—€tedC”’ \/1 — e—€tedC
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For the initial value of ry = 0, the last relation produces el =1— :12 and
0
the solution finally becomes
2
r(t) = (2.103)

\/1 + (% — 1) e—€t
Hence, van der Pol’s oscillator generates oscillations
y(t) = r(t) cos(wot + Jp)

with a constant phase ¥y and the transient in the amplitude determined by
(2.103). Fig. 2.7 illustrates (2.103) for the particular values of ro = 0.01,
e = 0.1, wg = 1, and ¥9 = 0. It is seen that the oscillations sustain at
r(t) =ro=2.

Fig. 2.7. Oscillations in van der Pol’s oscillator with ro = 0.01, ¢ = 0.1, wo = 1,
and Y9 = 0.

An importance of van der Pol’s equation (2.88) resides in the fact that it
models with a sufficient accuracy a great deal of particular oscillator schemes.
On the other hand, the method ignores high harmonics [a solution of (2.102)
produces a constant ¥] and, consequently, does not allow us to evaluate the
effect caused by the amplitude-to-phase conversion associated with nonlinear-
ities. This disadvantage is overcame in the asymptotic methods.

2.5.3 Asymptotic Methods of Krylov-Bogoliubov-Mitropolskiy

Created by Krylov and Bogoliubov and thereafter developed by Bogoliubov
and Mitropolskiy, the asymptotic methods are mathematically rigorous.

The main idea of the approach is to find a solution for (2.84) in a series
form of

y = rcosth + eup (1,9) + ua(r, V) + Sug(r, ) + ..., (2.104)
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where uq (r, 1), ua(r,v), ... are 2m-periodic functions of ¢, and slowly chang-
ing with time the values of r and v are defined by the differential equations,
respectively,

= €A (r) + 2 As(r) + ..., (2.105)
Y =wo+ €Bi(r) + EBa(r) + ..., (2.106)
in which the functions A;(r), Aa(r), ..., B1(r), Ba2(r), ...are determined by

averaging the nonlinear functions of the relevant harmonics of oscillations.
Typically, dealing with high order terms of the asymptotic series entail
difficulties. On the other hand, only the amplitude and its influence upon the
phase are commonly of practical importance. Therefore, application of the
method is usually restricted with the first and second orders of approximation.

The First Order Approximation

In the first order approximation, equations (2.105) and (2.106) are shortened
to, respectively,

r=eAi(r), (2.107)

Y =wo + eBi(r), (2.108)

and the functions A;(r) and B;(r) are given by, respectively,

27

Ai(r) = _271'1w0 /f(r cos 1, —Twp sin 1) siny dip (2.109)
0
2

Bi(r) = —27”1%‘}0 /f(r cos 1, —rwo sin ) cos 1 dib . (2.110)
0

As follows from a comparison of (2.97), (2.98) and (2.107), (2.110), the
first order approximation of the Krylov and Boboliubov asymptotic method
coincides with the van der Pol method.

The Second Order Approximation
In the second order approximation, a solution is found as

y =rcost + eur(r, ), (2.111)

where the function wu;(r, ) is defined by the series

e = W) - LS
=2
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in which

2

gn(r) = i/f(rcosw,—rwosinw) cosnyp i, (2.113)
0
2

hn(r) = 71T/f(rcosw,—rwosinw)sinnwdq/). (2.114)
0

The slowly changing averaged amplitude and phase are described by, re-
spectively,

7 = €Ay (r) + 2 As(r), (2.115)

Y =wo + eBi(r) + € Ba(r), (2.116)

where, the functions A;(r) and Bi(r) are still given by (2.109) and (2.110),
respectively. The remaining functions are defined with

0By
AQ(T‘) = _2(,«.)0 (214131 + Aq or T‘)
27
1 ’ . 8u1 ’ B
o uy(r, ) f,, + ( A1cosyp — rBysing +wo o [y | sinydy,
0
(2.117)
1 5 A1 0A
Ba(r) = _2w0 <B1 o or >
2m
1 ’ ) . 8U1 ’ )
~ g uy(r,9) fy + | A1 costp — rBysing +wo 9 Jyr | cospdi,
0
(2.118)
where
= 9f (,9") p = f (v,9)
v oy | e o |y,

The reader should not be confused by complexity of the functions u; (1, ¢),
Az (r) and Ba(r), since they are given in the most common forms. For partic-
ular NTT systems, substantial simplifications could take place that we demon-
strate below traditionally analyzing the van der Pol’s oscillator.

Example 2.20 (Solutions of van der Pol’s equation in the second
order approximation). Consider van der Pol’s equation (2.89) and find its
solutions in the second-order approximation by the asymptotic method.

We first transform (2.113) and (2.114) and realize that
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r3/4,n =3
() =0+ hal) = {54025

The function (2.112) is then defined to be
32(4]0

uy(r, ) = sin 3¢

and the solution (2.111) in the second order approximation becomes
3

er
Yy =1rcosy — 3200

To obtain the functions of the slowly changing r and v, we first determine

sin 34 . (2.119)

[l =r*wosin2y, fi, =1—r>cos®y
and thereafter, by (2.117) and (2.118), define

1 2 rt
A2(T):07 B2(r):_8+ 8 _256'

By (2.115) and (2.116), the differential equations for the time-varying am-
plitude and phase become, respectively,

2
= Cr <1 _— ) : (2.120)

2 1
2 4
, € 9 T
= wp — 1- . 2.121
V=0 g < r+ 32) (2.121)

A solution of (2.120) is given by (2.103) that allows integrating (2.121)
straightforwardly to obtain a solution

cunt— (1= T sy 2.122
w_wo_swo(_r+32)+0’ (2.122)
where ¥ is an initial phase.

We then deduce that, in the second order approximation, the amplitude of
van der Pol’s oscillator is still obtained by the first order approximation and
that the main effect is in the amplitude-to-phase conversion produced by the
second term in the right-hand side of (2.122). O

Overall, asymptotic approximation in the first order (error ~ €2) gives
solutions for the variable amplitude and constant phase, second order (error
~ €3) contributes for with the amplitude-to-phase conversion, third order
(error ~ €*) accounts for the phase-to-amplitude conversion, and so on. Let
us notice again that, since of prime importance is the amplitude behavior and
its influence upon the phase, an analysis is usually restricted with the first
and second order approximations.
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2.5.4 Systems with Slowly Changing Parameters

Bogoliubov and Mitropolskiy showed that the asymptotic approach still can
be useful if a closed loop system is NTV and its coefficients change with time
slowly as compared to period T'. It was also shown that a generalized form of
the ODE for such systems is written as

m(m)y] +k(r)y = ef (1, 9,9') (2.123)

where 7 = €t is a “slow” time. The model implies that the coefficients, m(7)
and k(7), are both nonzero and multiply differentiable (analytical) on the
observable time interval.

A solution of (2.123) is searched in frames of the asymptotic methods as

y = 1costp + euy (1,7, 1) + Eua (T, 7, ) + ..., (2.124)

where the functions wi(7,7,v), ua(7,7,), ... are 2m-periodic regarding an
angle 1. The amplitude and phase associated with (2.124) are then defined
by the ODEs, respectively,

v = €Ay (T,r) + EAs (T, ) + ..., (2.125)
V' = wo(T) + €Bi(1,7) + Bo(1,7) + ..., (2.126)

where
w2 (r) = T]:L((TT)) (2.127)

defines the square natural frequency. As well as for (2.84), here the functions
Aq(1, 1), As(T,7), ..., B1(T,7), Ba(T,7), ... are determined by averaging the
nonlinear function in the right-hand side of (2.123) from 0 to 27 over ¢ for the
relevant harmonic of oscillations. The first and second orders of approximation
obtained by this approach are observed below.

The First Order Approximation

It seems obvious that in the first order approximation a solution of (2.123) is

still found as
y=rcosy, (2.128)

where the amplitude and phase are defined by the restricted series (2.125) and
(2.126), respectively,

v’ =eAi(T,7), (2.129)

' =wo(T) + €Bi(T,7) . (2.130)

For the time-varying coefficients, the functions A;(7,7) and Bi(7,r) are
given by, respectively,



2.5 Averaging 75

_ r d[m(7)wo ()]
L e A R
2
1 .
_ S (7)o (7) O/fO(T, ry)) siny dy (2.131)
1 27
Bi(r,1r) =— Srm(r)wo (7) O/fo(r, r,) cos d (2.132)
where
folr,rp) = flr,rcostp, —rwo(T)sin¢]. (2.133)

An important conclusion follows instantly. Because the time-varying pa-
rameters, m(7) and k(7), affect both A; and Bj, one should expect variations
in both the amplitude and phase.

Example 2.21 (Van der Pol’s oscillator with modulated frequency).
We will now think that the frequency of van der Pol’s oscillator is harmonically
modulated with a small amplitude a < 1 and frequency 0 < 2 ~ € < wp;
that is,

wo(t) = wo(l 4+ acos2t). (2.134)
The equation (2.84) may therefore be written as

Y +wi(1+acosyT)?y = e(1 —y*)y/, (2.135)

where 7 = et and v = 2/e. In terms of (2.123), this gives the coefficients
m(7) =1 and k(1) = w¢(1 + acosvy7)%.

By (2.131) and (2.132), the functions A;(7,7) and Bi(7,7) become, re-
spectively,

2
Aqi(ryr) = ; <1 - 2 ) + ;a”ysin*yr, (2.136)
Bi(r,r) =0 (2.137)
that transforms (2.129) and (2.130) to, respectively,

2
r = gr <1 - 2 > + ;Ta'ysin'w, (2.138)
Y = wo(l + acosyT). (2.139)

It is seen that the first time derivative of the phase (2.139) equals exactly
to the function (2.134) of a modulated frequency. Herewith, the amplitude
(2.138) also undergoes modulation. Inherently, by v = 0, both equations be-
come solutions of the classical van der Pol oscillator. a
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The Second Order Approximation
In the second order approximation, a solution (2.124) saves two terms,
y =rcost + eur (1,7, 1), (2.140)
where r and ¢ are defined by equations of the second order approximation
= €Ay (T,7) + 2 Aa(T,7), (2.141)

V' = wo(T) + €By(7,7) + €2Ba(1,7) . (2.142)

The functions A; (7, r) and By (7, r) are still defined by (2.131) and (2.132),
respectively. Expressions for As(7,7) and Ba(7,r) are given below, respec-
tively,

__ 1 |95 dB dm(r)
Az(7m) = 2wo(T) {r or Avtr dr 24 B+ m(r) dr Bl}
1 2
_27Tm(7.)w0(7_) /fl(T7T7w)Sinwd¢a (2143)
0
_ b JoA dA; o, 1 dm(r)
R L T
27
1
_2777'm(7')w0(r) /fl(Tﬂ“ﬂb) COSwde' (2144)
0

An auxiliary nonlinear function fi(7,r, ) in (2.143) and (2.144) is per-
formed as

fi(m, ) = fyun + fy {Al cosp — rBysinty + 881:/111,«)(7)]

azul 82ul 32U1
—m(T) {23731/)“](7—) + 237‘31/)Alw(T) +2 2 w(T)By
Ouy dw(t)  Ouy w(t) dm(T)
o6 dr 9y m(r) dr |’ (2.145)
where 5 )
fy= f(Ta’y’y) , (2.146)
Yy y=rcos 1 ,y'=—rwo(T)sinp
of (1,9,v")
fy = : (2.147)
! 8y/ y=rcos ,y'=—rwo(7)siny
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and the function wi(7,7,1) is defined by

2m
1 jny .
Ul(T, T, 1/’) = 27T]€(T) ;1 16_ n2 /fO(T, r, ¢)€7jnwd¢, (2148)
" 0

in which fo(7,7,%) is given by (2.133).

We notice that in all above-given relevant functions, integration is pro-
vided assuming r and 1 to be constants over period 2w, even though the
functions depend on “slow” time 7. In spite of such important simplifications,
for many cases, solutions cannot be performed analytically in simple func-
tions and numerical analysis often becomes the only choice to investigate a
system.

2.6 Equivalent Linearization

When the signal phase is not of importance, the first order approximation
serves with a sufficient accuracy. Furthermore, if the phase of an oscillator
signal is constant (or zero) with time, then the amplitude-to-phase conver-
sion is absent that is only possible in absence of overtones, so the oscillator is
linear. Referring to this fact, Bogoliubov and Mitropolskiy proposed to trans-
form an original nonlinear ODE with constant coefficients to the linear ODE
with time-varying coefficients. In other words, they suggested to go from the
NTT oscillator model to the LTV oscillator model. The method was called
equivalent linearization.
In accordance with the approach, equation (2.84),

y' + gy =ef (y,9) ,
is substitutes by the linear ODE

v+ )y +k(r)y =0, (2.149)

where both the time-variant (amplitude-dependent) equivalent bandwidth
A(r) and square resonance frequency k(r) are defined by, respectively,

27
A(r) = 7T7'€wo /f(r cos 1, —Twp sin 1) siny dip (2.150)
0
27
k(r) = wi — 7:7“ /f(r cos ), —rwo sin ) cos 1 dip . (2.151)
0

The equations of the first order approximation associated with (2.149)—
(2.151) are represented with
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r=—_\r), (2.152)

v =kY2(r). (2.153)

A transition from (2.84) to (2.149) produces an error of the first order
approximation (~ €2). In many cases, such an error is allowed. Therefore, the
method of equivalent linearization has gained currency in different modifica-
tions.

Example 2.22 (Equivalent linearization of van der Pol’s equation).
Represent (2.88) in the form of (2.149). By (2.150) and (2.151), the relevant
coefficients are defined to be, respectively,

o7,

k(r) = wi.

Instantly, (2.152) and (2.153) become (2.101) and (2.102), respectively,
meaning that equivalent linearization produces the same result as the van der
Pol’ method and first order approximation, by Krylov and Bogoliubov. O

Largely, one can conclude that the method of equivalent linearization is
closely related to the method of averaging.

2.6.1 Classical Method of Harmonic Balance

The term harmonic balance was introduced in the text by Krylov, Bogoli-
ubov, and Mitropolskiy, who also developed the harmonic balance method.
The method is akin to equivalent linearization leading, in the first order ap-
proximation, to the same results as by the van der Pol’s and asymptotic
methods.

An idea of classical harmonic balance is to perform a system by the ODE
similarly to (2.84), substitute the solutions

Yy =rcos,
y = —rwpsiny,
y" = —r'wysiny — rwd cos ) — rwer?’ cosp, (2.154)

expand the function f(y,y’) to the Fourier series, equate the amplitudes of
the first overtone, and go to the equations for the amplitude and phase.

Indeed, by substituting (2.154) to (2.84) and expanding f(y,y’) to the
Fourier series with only one harmonic, we can write

—r'wp sin 1) — rwet’ cos
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2m
- /f(rcomb,—rwosin@/})coswdz/} cos 1
27
0

27

+ 26 /f(rcosw, —rwp sin ) siny dyp | sin . (2.155)
T
0
By equating the amplitudes of cos and sin) to zero and assigning
2

A(r) = — :Al(r), (2.156)
k(r) = wi + 2ewo By (1), (2.157)

where A; and B; are given by (2.109) and (2.110), respectively, we arrive at
the equations of the first order approximation,

r =eAi(r) = —2)\(7"), (2.158)
0 = eBy(r) = —; {wo - kciz)] . (2.159)

Despite the original duty to deal with weakly nonlinear ODEs of the second
order, the method is often applied to higher order ODEs. In the latter case,
the high order time derivatives are first reduced to basic functions y = r cos vy

and 3y’ = —rwqgsin as in the following scheme
y" = rwsiny = —wdy',
y(4) = —Twé cosy = —wéy,

(2.160)
Solutions of the reduced equation are then obtained by (2.158) and (2.159).

2.6.2 Stationary Solutions by Harmonic Balance

An important significance of the harmonic balance approach is that it can
universally be used to define stationary solutions in different orders of ap-
proximation. Most generally, an idea is to express the periodic solution by the
finite Fourier series

y(t) = _ui(t), (2.161)
where N can be arbitrary and y;(t) is defined by

yi(t) = U; cosiwt + V; siniwt (2.162)
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with still unknown constant amplitudes U; and V;.

A solution (2.161) is then substituted into the nonlinear ODE neglecting
time derivatives of U; and V;. For the second order nonlinear ODE (2.84), this
gives

N

N N N
v+ wp Y g =—ef (Z vy yé) : (2.163)
i=0 i=0 =0 =0

To find U; and V;, the right-hand side of (2.163) is expanded to the Fourier
series. Thereafter, neglecting harmonics with the order higher than N and
equating the constant terms and amplitudes of cos(iwt) and sin(iwt) to zero,
one goes to a system of 2N 41 algebraic equations for unknown U; and V;. In
the first order approximation, by N = 1, the solution produces Uy, U;, and
V1. In the second order, we additionally have U and V5, and so on.

Example 2.23 (Solution of van der Pol’s equation by harmonic bal-
ance in the second order approximation). To find a stationary solution
of the van der Pol equation (2.88) in the second order approximation, we
suppose that, by (2.119), the series (2.161) is

y = Uj coswt + V3 sin 3wt . (2.164)

Setting all the time derivatives of the amplitude and phase to zero, we
then write
y = —Uywsinwt + 3Vaw cos 3wt ,

" = —Uw? coswt — 9Vaw? sin 3wt

that, neglecting the higher order overtones and equating to zero the ampli-
tudes of coswt, sinwt, and sin 3wt allows transferring from (2.89) to

1
w? — w(z) = 46U1V3w,

v,

1
4 2

1
Va(9w? — wd) = —46Ufw.

Since w = wyp, we let w = wy in the last equation and derive the amplitude
of the third harmonic

eU3

32(4}0
that is equal to that (2.119) obtained by the asymptotic method. For small
€, we also allow U? > V2 and then the second equation, by setting V2 = 0,
produces Uy = 19 = 2 that coincides with the asymptotical solution (2.120)
in the steady state when ' = 0.

Vs = (2.165)
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Finally, involving (2.165), the first equation, by w 4+ wp = 2w and Aw =
w — wp, produces

erd

Aw = — 2.166

YT T 256w, (2.166)

that, by o = 2, gives the same steady state value Aw = —¢2/16w that was
earlier provided by (2.121) in frames of the asymptotic method. a

An advantage of harmonic balance is that, by the Fourier series, it si-
multaneously solves the analysis and synthesis problems for the output y(t).
However, to apply the method efficiently, the solution form, like (2.164), must
somehow be predicted. Otherwise, the burden of the transformations, although
algebraic, can be very large owing to extra terms involved.

2.6.3 Double Harmonic Balance Method

For modulated oscillators (closed loop NPTV systems), the method of har-
monic balance modifies to what is called double harmonic balance. An idea is,
first, to exploit harmonic balance for the nonlinear ODE and go to ODEs for
the amplitudes of overtones. At the second stage, the time-varying parameters
are expanded to the finite Fourier series for the “slow” (modulation) frequency
and the method of harmonic balance is applied once again.

Let us consider a general form of the second order nonlinear ODE (2.123)
assuming that its coefficients are periodically varied (modulated),

@)y + k(t)y = ef (t,9,9). (2.167)
Supposing a solution (2.161), (2.167) can be rewritten as follows

N ! N N N
[m(b‘)zyé + Ry = —ef (t,Zyi,Z@A) (2.168)
i=0 i=0 =0

i=0
and, by substituting (2.162) and rearranging the terms, represented with

N
Z[inim'(t) — i2W2U;m(t) + U;k(t)] cos iwt

-
Il
o

+ Y [—iwUm! (t) — i*w?Vim(t) + Vik(t)] siniwt

-

-
Il
o

N
=—¢f |t, ) (U;cosiwt+ V;siniwt),
i=0

N
(—iwU; siniwt + iwV; cos iwt)
3 =0

(2

(2.169)
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Further extending the right-hand side of (2.169) to the Fourier series and
thereafter equating the amplitudes of the harmonic functions to zero gives
2N + 1 differential equations for U; and V;.

The time-varying known functions m(t) and k(¢) and unknown functions
U, and V; can now also be extended to the finite Fourier series as in the
following,

M
m(t) = Z (Mg cos k2t + mgp sin k(2t) | (2.170)
k=0
M
k(t) = (kek cos k2t + kg, sin k2t) | (2.171)
k=0
M
U;, = Z (aik1 cos k2t + a;po sin ki2t) | (2.172)
k=0
M
Vi = Z (bik1 cos k2t + bigo sin k2t) | (2.173)

?T‘
O

where, it is implied, all amplitudes of the harmonic functions in right-hand
sides are small constant values. In the first order approximation, the series
length is restricted with M = 1, in the second with M = 2, and so on. By
substituting (2.170)—(2.173) to (2.169), equating to zero the constant terms
and amplitudes of the harmonic functions, and neglecting products of small
values, a system of the algebraic equations is formed to solve for the unknown
amplitudes a;x1, aik2, bik1, and bxs.
A solution of (2.167) is hence generally performed by

N M

Y= (aik1 cos k2t + a;xo sin k2t) cos iwt
i=0 k=0

N M
+ Z Z ik1 COS k{2t + bio sin k£2t) siniwt . (2.174)

1=0 k=0
Note that not all the amplitudes a;r1, a2, bik1, and bxe play the same
role in the model (2.174). For example, in the first order of approximation,
the phase is not of importance and hence the terms with b;x; and b;;2 can be

neglected.

Example 2.24 (Solution of the modified van der Pol’ equation by
double harmonic balance in the first order approximation). Consider
an FM van der Pol oscillator represented with (2.135),

Y+ wi(1 4+ acos )%y = e(1 —y?)y/, (2.175)
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and the harmonically modulated frequency
wo(t) = wo(l + acos 2t), wi(t) = —awe2sin 2t . (2.176)

By harmonic balance, solutions of the first order approximation, by 1 =
wot + ¥ and neglecting products of small values such as ¢, can be found as

Yy =1cos,
Yy = —r(wo+9)sine,
y" = —rwo(wo + 29") cosp — r’wp sin (2.177)

where w
9(t) = (;)asin 0t, V() = awgcos 2t.

Substituting (2.177) to (2.175), neglecting higher overtones, and equating
to zero the terms with a sine function leads to

!/ 2 /
wo(t)ze LT _27"7
wo(t) 4 T
where wy(t) is given by (2.176). By simple transformations, the equation be-
comes that, (2.138), derived in frames of the asymptotical methods,

r? a ,
r=_r(1l- 4 —|—27"Qsm_(2t. (2.178)

Now, by (2.172), the modulated amplitude can be performed as

r =19 + a1y cos 2t + ayo sin 2t ,
r = —aq182sin 2t + a1242 cos 2t , (2179)

where 7y is the mean amplitude (unmodulated) and a7 and a;2 are small
additions caused by modulation. Substituting (2.179) to (2.178), neglecting
products of small values, and equating to zero the constant term and the
amplitudes of cosine and sine functions produce

r
1=70
47
€ 3
CL112 <1— 47"8) —alg.Q:O,

a119+a12§ (1 — ir%) = —ZT‘QQ.

The first equation gives rop = 2 and two remaining yield

2

all = —20(V2 + (G o 1)2 5 (2180)
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(G-1)v
=2
M2 G- 1)2
where v = {2/0 is a modulation frequency normalized for a system half band-
width § = 1/2 and G = 3r3/4 is the open loop gain.
The steady state solution of a modulated van der Pol oscillator is thus
approximated by the finite Fourier series

(2.181)

t)=2|1- av? cos vt + oG~y sin vt coswt
Y= 24 (G—1)2 "2 T -1)27 2
= {620 + ¢1 cos(2t — Wl)} coswt, (2.182)
where ¢y = 4,
2
1= o , (2.183)
V2 + (G —1)2
Yy = — arctan ¢- . (2.184)
14
O

Example 2.24 neatly demonstrates an important feature of the double
harmonic balance method. It follows that, by the method, we can reflect
the modulating signal in the amplitude, frequency, and phase of oscilla-
tions. Furthermore, given spectral contents of the modulating and modu-
lated signals, the linearized modulator can be represented with the rele-
vant frequency responses. This approach was first used by Sokolinskiy and
then developed by Shmaliy to be known as the modulation functions method
or dynamic modulation characteristics method. The method and its appli-
cation to the closed loop NPTV systems is expounded in Chapter 8. Be-
low, we illustrate its main idea traditionally considering the van der Pol’s
oscillator.

Example 2.25. The van der Pol oscillator (2.175) is modulated with a signal

s(t) = acosvT, (2.185)

where v = /6, 7 = §t and «a is a constant, causing the frequency to vary by
(2.176). FM is accompanied with spurious AM associated with the amplitudes
(2.180) and (2.181).

By small values of a, an oscillator can be linearized and the response of its
frequency to (2.185) can be specified with the frequency modulation function
(FMF)

H,(jv) = |H,(jv)|e’"*") =1 (2.186)
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that apparently is unit, because of the direct modulation and zero values of
bik1 and b;io, in the first order approximation.

The response of the oscillator amplitude to (2.185) can be specified with
the amplitude modulation function (AMF)

H,(jv) = |H,(jv)|e??r ™), (2.187)

where, by (2.182)—( 2.184), the magnitude AMF and phase AMF are derived
to be, respectively,

. Cc1 2v
H.(jv)| =" = , 2.188
== (2.159)
w—1
9 (v) = ¥,.(v) = — arctan (2.189)
v

As may be seen, spurious AM becomes negligible with v < 1 and attains
a maximum with v > 1. Therefore, with a broadband modulation, an ampli-
tude limiter would be in order. a

2.6.4 Describing Function Method

With time, classical equivalent linearization has been developed to the engi-
neering approach called the describing function method (DF method). Well
elaborated, the method is reminiscent of the familiar harmonic balance, but
proposes its own philosophy. Actually, it deals not with the whole system, but
only with its input-to-output nonlinear part, be it even with memory.

The basic idea of the DF method is to present an input of the nonlinear
system as a periodic harmonic wave (sine or cosine) having the amplitude r
and frequency w, save only the first harmonic in the output, and describe the
gain of such a linearized system by a ratio of the complex amplitudes of the
output and input vectors. The gain N(r, jw) called the describing function
is thus kind of frequency response of a linearized system. Accordingly, the
input-to-output relation is written as

y(t) = N(r, jw)x(t) . (2.190)
The cosine-input FD is defined by
N i
N(r,jw) = y(rcoswt, —rwsinwt)e 7 dwt (2.191)
wr
that, if a system is memoryless, becomes

™

1 .
N(r) = /y(rcoswt)e_]“’tdwt. (2.192)
o

—T
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Example 2.26. A memoryless NTI system is performed with y(t) = z3(¢).
Supposing y(t) = r coswt, the DF is defined, by (2.192), to be

s

r2

. 3
N(r) = - /e*j‘“t cos® wt dwt = 47‘2. (2.193)

It can be shown that (2.193) also appears by direct equivalent liarization. O
Example 2.27 (Linearization of van der Pol’s equation with DF).

Consider van der Pol’s oscillator (2.88). The cosine input DF for the nonlinear
function f(y,y’) is defined, by (2.192), to be

™

N(r,jw) = —L; /(1 — 2 cos?h)e Y sineh dop

™ 71'
w

:—27T/(1—7‘2C052w)sin2wdw+]: /(1_7'2C0521/1)Sin22/1dw

—T —T

- <1 - j) jw. (2.194)

By the operators identity, jw = glt, we thus have

fyy) = N(r, jw)y = (1 - i) y'

and the linearized equation becomes

" r? / 2
Yy —€ 1—4 Yy +woy =0

that was derived earlier, by equivalent linearization. O

If the input is sinusoidal, the DF is defined by

T

N(r,jw) = Jr /y(rsinwt,rwcoswt)e_j“’tdwt, (2.195)
Vs
N(r) = J /y(rsinwt)e*j“’tdwt (2.196)
r

—T

for memory and memoryless systems, respectively,
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Example 2.28. A memoryless system with a nonlinearity y(t) = x3(¢) has
an input y(¢) = rsinwt. The DF is defined, by (2.196), to be

. 2 7T . 3
N(r)= j; /sin3 wte ¥t dwt = 47“2. (2.197)

As can be seen, the function is exactly that (2.193) obtained for the cosine
input. O

Like in other attempts of linearization, simplifications allowed by the DF
method do not seem to be useful for subtle nonlinear structures. Moreover, in
some cases, the DF does not fit principle features of systems. The approach,
however, allows predicting and investigating with sufficient trustworthiness
limit cycles in closed loops and solves several other engineering problems. On
the whole, as a product of equivalent linearization, the DF method substitutes
an NTT system by an LTV one with all advantages and disadvantages.

2.7 Norms

An important quantitative measure of system performance is provided by
norms. Basically, evaluation with norms answers on the question how large
will be the output signal for the given input or allowed information about the
input.

Norm: The norm means a measure of the “size” of a signal and,
thereby, a system.
O

System norms are used in evaluating robustness, minimizing the peak of
the largest singular value or all singular values in the frequency domain, speci-
fying the performance in terms of sensitivity, etc. The system norms are evalu-
ated via the impulse response function and its transform. For some problems,
the system norms are expressed via the signal norms.

2.7.1 Norms for Signals

In mathematics, the vector length is called the norm. Accordingly, a linear
space L is said to be normed, if every vector z(t) € L is specified by its norm
|z]|. For the normed space, the following axioms are valid :

e Positivity: The norm is non negative, ||z|| > 0.
e Positive definiteness: The norm is ||z|| = 0 if and only if x = 0.

e Homogeneity: For any a, the following equality holds |laz|| = |a|-||z|. O
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o Triangle inequality: If x(t) € L and y(t) € L, then the following triangle
inequality is valid: ||z + y|| < [lz]| + ||y]|. 0

Different types of norms of scalar-valued signals are used in applications
depending on their physical meanings and geometrical interpretations.
Li-norm

The Li-norm of a signal x(t) is the integral of the absolute value |z(t)| repre-
senting its length or total resources,

Mh:/umw. (2.198)

The finite value of this norm ||z]|; < co means that the function is abso-
lutely integrable and, by the Dirichlet?® conditions, its transform exists.
Lo-norm

The Lo-norm of a real z(¢) is defined as the square root of the integral of
z?(t),

lale= | [ a*e)at. (2.199)
and if a signal is complex, then ||z|- is specified by
lalle= | [ s 0at= | [ laopar, (2.200)

where a symbol (*) means complex conjugate. By the Rayleigh?' theorem
(Parseval?? relation or Plancherel?® identity), the La-norm can also be defined
by

I
lalle = 1X12 = | 5o [ XGw)Pd, (2.201)

The Lo-norm is appropriate for electrical signals at least by two reasons:

20 Johann Peter Gustav Lejeune Dirichlet, Belgium-born German/French mathe-
matician, 13 February 1805-5 May 1859.

2! John William Strutt (Lord Rayleigh), English mathematician, 12 November 1842
30 June 1919.

22 Marc-Antoine de Parseval des Chsnes, French mathematician, 27 April 1755-16
August 1836.

23 Michel Plancherel, Swiss mathematician, 16 January 1885-4 March 1967.
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e Frequently, a signal is evaluated in terms of the energy effect, for example,
by the amount of warmth induced on a resistance. The squared norm may
thus be treated as a signal energy; that is

o0

E, = |z|2 = / z(t)z* (t)dt . (2.202)
—0o0
For instance, suppose that i(¢) is a current through a 1 {2 resistor. Then the
instantaneous power equals i2(¢) and the total energy equals the integral
of this, namely, ||i/|3.
e The energy norm is “insensitive” to changes in the signal waveform. These
changes may be substantial but existing in a short time. Therefore, their
integral effect may be insignificant.

L,-norm

The Lp-norm of x(t) is a generalization for both the Li-norm and Lo-norm.
It is defined as

lallo = 2| [ latolrat. (2.203)

The necessity to use the L,-norm refers to the fact that the integrand in
(2.203) should be Lebesgue?-integrable for the integral to exist. Therefore,
this norm is a generalization of the standard Riemann?® integral to a more
general class of signals.

L o-norm

The L,.-norm is often called the co-norm. It is characterized as the maximum
of the absolute value (peak value) of x(t),

[€]loe = max [z (t)], (2.204)

assuming that the maximum exists. Otherwise, if there is no guarantee that
it exists, the correct way to define the Lo.-norm is to calculate it as the least
upper bound (supremum) of the absolute value,

I2lloc = sup |z(t)] (2.205)
24 Henri Léon Lebesgue, Franch mathematician, 28 June 1875-26 July 1941.

25 Georg Friedrich Bernhard Riemann, German mathematician, 17 September 1826-
20 July 1866.
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Root-Mean-Square Norm

The root-mean-square (RMS) norm or just RMS is calculated by

T/2
1
— : 2
1zl rms = Tlgr;oT / |z (t)|2 dt. (2.206)
-T/2

Example 2.29. Given a signal z(t) = e~ “u(t), a > 0. It can be shown that
its norms are defined by [|z][1 = !, [|lz[l2 = | X ||z = \/12(1, and ||z]|e = 1.
Given the other signal y(t) = ,' (e7% — e *)u(t), a > 0 and b > 0.

The norms of this signal are given by ||y||1 = alba Iyl = V2 bl( 4’ and
ao(a

yllee =4 ()" O

In a similar manner are defined the norms of vector signals. If x(t) =
[21(t), 22(t), ..., 2,(t)]T is a n x 1 vector of some linear n-dimensional space
L™, x(t) € L™, then the relevant norms for this vector are ascertained by

= [ Y k(o (2207)

o0 oo

|2 = /Z|$i(t)|2dt: /XH(t)x(t)dt, (2.208)
o= | [ Slatorat) . (2.209)
[[%loo = sup max |z;(t)|, (2.210)
t 1
T/2
1
= 1 . 2
llems = | lim / Z|xl(t)| dt, (2.211)
-T2 "

where a symbol () means conjugate transpose.

Of applied importance is also the following multiplication condition. Let
two signals x € L™ and y € L™ be coupled by the relevant matrix A of the
transformation, x = Ay. Then the following inequality holds true

|Ax]| < [Afx]| for xeL".

We notice that the presentation of signals by norms may be useful in
defining the norms for systems. Yet, if the waveform of an input is known and
the norm of an output is given, then the norm of a system may be predicted.



2.7 Norms 91
2.7.2 Norms for Systems

Consider an LTT system characterized with the impulse response h(t), fre-
quency response H(jw), or transfer function H(s). The norms of such sys-
tems are commonly defined for the following recognized types of the transfer
function, namely for

Stable, if Re s > 0

Proper, if H(joo) < oo

Strictly proper, if H(joo) =0

Biproper, if H(s) and H~!(s) are both proper

Ooood

Typically, causal systems are evaluated with two norms, termed the Hs-
norm and H,,-norm.

The Hs-norm

For stable SISO systems, the Ho-norm characterizes an average gain and is
defined similarly to (2.199) by

[Hl2 = 2;. /H(S)H(—s)ds

_ 21 /|H(jw)|2dw. (2.212)
s

By the Rayleigh theorem, this norm can also be calculated via the impulse
response function as

IH|2= | [ n2@t)dt. (2.213)
/

Example 2.30. An LP filter is described with the ODE ¥’ + ay = bz, a >

0, b > 0, that corresponds to the frequency response H(jw) = , ijw and
impulse response h(t) = be~*u(t). The square magnitude response of the
filter becomes |H (jw)|? = aglfwg that, by (2.212), symmetry of |H (jw)|, and

. . o0
an identity fo a2‘fz2 =7r,

1 [ b b
Hl|lo = w= )
1112 \/71’/0 a2+w2d V2a

The same value appears if one applies (2.213) to the impulse response. O

yields
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If a SISO system is performed in state space by equations (2.39) and (2.40)
with D = 0, its transfer function is predetermined by (2.46) with D = 0 and
the Hy-norm is specified by

|H||; = VCLCT , (2.214)
where the so-called observability Gramian?® matrix is given by
L= /eAtBBTeATtdt. (2.215)
0

The Hy-norm for MIMO systems represented by the transfer function ma-
trix H(s) with the components Hy,,(s) and by the impulse response matrix
h(t) with the components hy,(t), is usually evaluated via the Frobenius®
norm, sometimes also called the Euclidean®® norm,

IA[lp = \/ZZ (a2 = \/tracc(AAH). (2.216)
k m

Employing this norm and taking into account the Rayleigh theorem, the
Hjy-norm of a MIMO system is found to be

1 .
Bl = |, [ IHGe) o

- /||h(t)|\§dt. (2.217)
0

If a MIMO system is represented in state space with equations (2.37) and
(2.38), then, by D = 0, its Hy-norm is defined by

IH|l2 = \/trace[CLCT] , (2.218)
where L is still given by (2.215).

26 Jorgen Pedersen Gram, Danish mathematician, 27 June 1850-29 April 1916.

27 Ferdinand Georg Frobenius, German mathematician, 26 October 1849-3 August
1917.

28 Fuclid of Alexandria, Mathematician of antiquity, about 325 BC-about 265 BC.
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The H,,-norm

The other widely used fundamental H.,-norm is associated with a peak-value
of the system performance. For instance, if a nominal frequency response of a
system is supposed to be uniform, then the H,,-norm characterizes a measure
of the maximum excursion in the actual frequency response. Therefore, this
norm is useful in ascertaining the system instability.

For SISO systems, similarly to the Lo,-norm, the H,-norm is character-
ized as the maximum of the absolute value (peak value) of H (jw),

[[H [|oo = max |H (jw)], (2.219)

implied that the maximum exists. If there is no guarantee that it exists, the
correct way to define the H..-norm is to calculate it as the least upper bound
of the absolute value,

[ Hl|oo = sup [H (jw)] . (2.220)

Example 2.31. A channel is described with the ODE ¢’ + ay = bz’ + cx
having ¢ > 0, b = 1, and ¢ > 0. By this equation, the frequency response of a

channel is defined to be H (jw) = f:r;‘:} . The square magnitude response is thus

H(jw)]? = Cz+“’z. A simple observation shows that, by ¢ < a, a maximum of
. . a o+w .
|H(jw)| is unity at w — oo. When ¢ = a, we have unity for all w. If ¢ > a, a

local maximum ¢/a exists at w = 0. One can thus conclude that

o, ife>a
HHHOO_{L ife<a

O

Example 2.32. A SISO LTT system is represented with the impulse response
h(t) = e~*u(t), b > 0. The norms of this system can be found to be ||H||s =
\/1% and || H || = 11).

A simple analysis shows that the above-defined system norms are specified

by the signals norms given in Example 2.29 as follows: ||H||2 = /||y/[x and
1 H|loo = llyllx 0

Il

For a SISO system characterized with the strictly proper transfer function
and represented in state space with D = 0, an important theorem claims
that ||H||ec < 7, where v is positive and real, if and only if the following

Hamiltonian?” matrix has no eigenvalues on the imaginary axis,
A ~72BB”
M = _CTC  _AT (2.221)

2% William Rowan Hamilton, Irish mathematician, physicist, and astronomer, 4 Au-
gust 18052 September 1865.
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If a system is MIMO, then the H.,-norm is often determined by the least
upper bound of the mazimum singular value, denoted cH (jw), of the matrix
H(jw); that is,

[Hl|oo = sup oH(jw). (2.222)

If such a system is represented in state space with D # 0, then the above-
mentioned theorem relates to the Hamiltonian matrix

A +BR'DTC BR!'BT

M= _cT1+DR'DT)C —(A+BR 'DTC)T |’

(2.223)

where R = 7?I — DTD. We notice that, by D = 0, the relation (2.223)
degenerates to (2.221).

2.7.3 System Norms via Signal Norms

We have already mentioned above and illustrated by Example 2.32 that system
norms can be expressed via signal norms.

More specifically, if we consider a SISO LTI system with the input
x(t) & X (jw), output y(t) L Y (jw), and impulse response h(t) & H(jw),
we can specify, by (2.201), its Lo-norm as follows

1 T . .
ol =1Y13 = o [ 1) X o) o

T , T T
< / H ()P X (o) dw < [ H|2, / X (jeo) 2 dw
2T 2T

= 151 X113 = [1H 51«13 -

The norms mapping is thus |ly|l2 < || H||so||x]|2-

Reasoning similarly, the other relations between the signal and system
norms have been found and generalized by the authors. For example, let a
stable SISO LTI system be represented with the input z(t), output y(¢), im-

pulse response h(t), and frequency response H (jw) Z h(t). Doyle, Francis,
and Tannenbaum showed that Table 2.1 gives the input/output norms for
such a system.

We notice that the mapping given in Table 2.1 is not exact, but rather
representing useful inequalities, as in the above considered case of |yll2 <
[ H | oo [|]]2-
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Table 2.1. Norms mapping in SISO LTT systems

lzlla [lllo

lyllz NHlloe o0
lylle  NIHl2  [[R]h

2.8 System Stability

Stability is one of the fundamental properties of any system. Even intuitively,
we think about the system operation as desirably insensitive (so stable) to
slight internal and external disturbances. We also want the output signal to
track the transformed input signal and not to be infinite even at one or several
points. To fit these needs, the system stability must somehow be evaluated
and the relevant conditions described mathematically.

Depending on the system linearity, stationarity, and even application, the
terms “stable” and “stability” are used in rather special and often different
senses. Therefore, when we speak about stability, we usually need to supply
this term with the addition “in the sense of ...”

Most generally, the definitions of stability may be related to the common
state space model of a system, (2.65) and (2.66),

q'(t) = ¥lq(t), x(t),t], (2.224)
y(t) = Yla(t),x(t), 1], (2.225)

and to its particular forms associated with linear and/or time-invariant re-
alizations. In what follows, we observe the most widely used definitions of
stability.

2.8.1 External (Bounded Input/Bounded Output) Stability

Let us consider a SISO system with the input z(¢) and output y(t). We have
already mentioned before, when classified systems, that a system is bounded-
input/bounded-output (BIBO) stable if for any bounded input z(t) the cor-
responding output y(t) is also bounded. The definition involves solely the
external resources. Therefore, the BIBO stability is often called the ezternal
stability as related to the relaxed systems (with zero initial states). Mathe-
matically, the condition for a system to be BIBO stable reads as follows:

BIBO stability: The system is BIBO stable if for any input x(¢) with
|z(t)]|oo < My < oo there is the output y(¢) with ||y (¢)|lec < M, < o0,
where M, and M, are finite positive real constants.
O
If this condition is not met, i.e. y(¢) grows without limit (diverges) from a
bounded input, then the system is BIBO unstable.
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BIBO Stability via the Impulse Response

Because the convergence of the output can only be possible if the impulse
response h(t) of the LTI system has finite total resources, the necessary and
sufficient condition for the LTI system to be BIBO stabile is the finite value
of the Li-norm of the impulse response,

1Al = / Ih(t)]dt < M < oo, (2.226)

where M is a constant. Let us verify (2.226) recalling that, in LTI systems,
the output and input are coupled by the convolution

y(t) = / z(9)h(t —v)de. (2.227)
We can now take the absolute values of both sides of (2.227) and go to
= | [ ao)nte—6)as| = [ fa(o)nte ~ )| a8

< [ 1=t~ o)l ao.

Substituting the absolute value |x(¢)| with the norm ||z oo,

/|x(0>||h<t—0>|d0< / 2]ocl (¢ — 6)] 6

= [zl / |h(t = 0)] A0 = [zl ]1,

yields |y(t)] < |z]|so||P|l1- If y(¢) and x(t) are both bounded, then ||h|; must
be finite, ||h|l1 < oo, and the verification of (2.226) is complete.

Example 2.33. A filter is characterized with the impulse response h(t) =
te~'u(t). By (2.226) and an identity [ze®*dx =e®* (¥ — 1), the Li-norm
is defined to be

1 1 —boo
||h||1—b<b—e oo).

Exploiting the limits lim ze™%* =0 and lim ze%* = oo, a > 0, we conclude

Z2—00

that the filter is BIBO stable only if b > 0. 0
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If an LTI system is MIMO with the impulse response matrix h(¢) having
the components h; (t), then it is BIBO stable if and only if all the components
of h(t) are absolutely integrable, so satisfying (2.226).

If a SISO system is LTV, it is characterized with the time-varying impulse
response h(t,#). The BIBO stability condition for such systems is that there
must exist a finite value of the integral

t
/|h(t,9)| 46 < M < 0, (2.228)
to

where t > to takes any value exceeding an initial time ty.

Example 2.34. An LTV channel is characterized with the impulse response

h(t,0) = 6(t — 1o — 0)e? “tu(t — 6).

In view of |e/%t| = 1, the absolute value of h(t,f) becomes |h(t,0)| =
0(t — 10— O)u(t —0). The integral (2.228) thus produces unity and the channel
is hence BIBO stable. a

The relevant condition for a MIMO LTV system is that there must exist
a positive constant M such that

t
/ Ih(t,0)|rdf < M < oo (2.229)

for all values of t, where ||h(¢,0)|r is the Frobenius (or Euclidean) norm
(2.216) of the impulse response matrix.

BIBO Stability via the Transfer Function

If a SISO LTI system is given with the transfer function H(s), the relevant
condition for a system to be BIBO stable can be derived as in the following.

Consider (2.226). Because |e™7*f| = 1, we can write the Li-norm (2.198)
for h(t) as

Il = [ welae = [ e ar

>/|h(t)e*j“t|dt= /h(t)e*“dt = |H(8)|o=0 -

o=0
It follows from these manipulations that the only condition for the system
to be BIBO stable is that the region of convergence (ROC) of the Laplace
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transform includes the imaginary axis. The condition is satisfied with ¢ = 0
and may be interpreted in the following way.

A SISO LTT system with the proper rational transfer function H(s) is
BIBO stable if and only if every pole of H(s) has a negative real part (lies in
the left-hand part of s-plane).

Example 2.35. An LTI system is represented with the transfer function

s(s—2)
H(s) = .
() (s+3)(s—1)(s+2)
The poles have real parts o1 = —3, 01 = 1, and o1 = —2. Because the
real part of one of the poles is positive (lies in the right half of a plane), the
system in BIBO unstable. a

Likewise, a MIMO LTI system with the proper rational transfer function
matrix H(s) having the components Hy,(s) is BIBO stable if and only if every
pole of each component in H(s) has a negative real part.

We notice that the modern theory of dynamic systems and control offers
many other definitions and forms of BIBO stability for systems that may be
found in the relevant books.

2.8.2 Internal Stability

So far, we defined the system stability in terms of its input and output avoiding
discussing the system itself. This is what was called the external (or BIBO)
stability. The only condition for ascertaining the external stability is the zero
initial states of a system.

Contrary to the external stability, the internal one is evaluated solely in
terms of the system performance. Therefore, the input is required to be zero
and we are thus deal only with the state equation (2.224) that, by x(¢) = 0
becomes

q'(t) = P[q(t),]. (2.230)

Let us think that the system (2.230) has N points of equilibrium q1, qo,
..., qn such that

\Il(ql,t):(), \I/(qg,t):(), ey \I/(qN,t):O.

For an arbitrary value of q(¢), we can introduce time-varying increments

al)=alt)—ar, Gt)=aq(t)-q, ..., av(t)=qlt)-awn,

which differentiation produces, respectively,

q;(t) = Clai(t) +ai, 1] = fifai (1), 1],
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Ax(t) = P[a2(t) + a2, t] = fr[aa2(1), 1],

dy(t) = Tlan(t) +an,t] = fvfan(t). 1. (2.231)

By (2.231), every equilibrium point of the system is reduced to the center
of the coordinates to mean that, for example, g} (t) = f1(0,t) = 0. By the way,
if a system (2.231) is further linearized, it attains the form of the linearized
state space model described earlier.

Instead of (2.231), we shall now consider an equation

q'(t) =fla(t).1] (2.232)

to represent a system at an arbitrary equilibrium point such that §'(¢) =
£(0,t) = 0. Exploiting (2.232), the definitions of the system stability may be
given in a different sense.

In what follows, we shall illustrate definitions of stability with an example
of the phase locked loop (PLL). The phase ¢(t) of a local oscillator is mea-
sured for the reference phase ¢g. A signal proportional to the phase difference
o(t) = ¢(t) — ¢o adjusts the local oscillator to tend o(t) toward zero. Owing
to time variations in ¢(¢), the difference ¢(t) is not always zero, but rather
contains some amount of error @(t). We therefore wonder whether the system
is internally stable or not to small excursions in ¢(t).

To find an answer, it needs returning back to works of Lyapunov, who
followed Chebyshev®? and created the theory of stability. The theory was
presented by Lyapunov in 1892 in his Doctoral thesis “The general problem
of the stability of motion,” in which several fundamental definitions of stability
were given. We shall give all definitions of stability as adapted to the notations
given above.

Stability (in the sense of Lyapunov): An equilibrium point “0”
of (2.232) is said to be stable in the sense of Lyapunov if for any real
€ > 0 there exists a real d(e,tp) > 0 such that

la(to)]| <& and ||q(t)|| <e for t>to. (2.233)
O

Typically, it is assumed that € > 4. Therefore the above-given definition
is often called local. If the initial value §(e, to) is supposed to be arbitrary and
hence € < § < r < 00, the stability is said to be global.

It is seen that the bounds é and e are not absorbed by the conditions
(2.233), although in other interpretations of Lyapunov’s stability they are
absorbed. If they are absorbed and a system is linear, then the Lyapunov
stability is often called marginal.

30 pafnuty Lvovich Chebyshev, Russian mathematician, 16 May 1821-8 December
1894.
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With respect to the above-mentioned phase system, Lyapunov’s definition
of stability means that the phase p(t) with ¢ > ¢y must trace within the bounds
le] without actually touching them. Examples of locally and globally Lyapunov
stable phase systems are shown in Fig. 2.8a and Fig. 2.8b, respectively.

0] Y] o
€ Ty 3
Do
S
N =N [ =\ ‘ . e N e N’
T~ = BT — N7
N
e -8
(@) (b)
0 10
¢ ?Po/'\ 8
o\ L T~ :
to \_/ 0 /
-5 -€ u/
- N
(© (d)

Fig. 2.8. System stability: (a) local in the sense of Lyapunov, (b) global in the
sense of Lyapunov, (c) local asymptotic, and (d) global asymptotic.

In other words, Lyapuniv’s stability does not guarantee that the system
is absolutely insensitive to any internal disturbances. Instead, it claims that
the sensitivity is just such that the system behaves with time within the
certain bounds |e]. For a great deal of applications the condition (2.233) is
appropriate. Therefore, this measure has gained wide currency.

Uniform stability (in the sense of Lyapunov): An equilibrium
point “0” of (2.232) is said to be uniformly stable in the sense of Lya-
punov if it is stable in the sense of Lyapunov with d(¢) > 0, meaning
that § does not depend on tg.
O
This definition is illustrated by Fig. 2.8a if we think that ¢ takes values
independently on the start moment #g.

Asymptotic stability: An equilibrium point “0” of (2.232) is said to
be asymptotically stable if
1. It is stable,

2. Every movement beginning closely to zero tends toward zero with
to <t — oo such that

la(to)| <6 and  lim §(t) = 0. (2.234)
O
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As well as the Lyapunov stability, the asymptotic stability is classified
to be local and global. Examples of both kinds are shown in Fig. 2.8c and
Fig. 2.8d, respectively. The difference between the Lyapunov and asymptotic
stabilities is that, in the first case, the system behaves within the bounds
le|, whereas the second case claims the system to behave toward zero with
time.

Example 2.36. Consider an electrical circuit shown in Fig. 2.9 and described

L R C

w

i(?) ve(?)

Fig. 2.9. Electric circuit of the second order.

for the voltage vo induced on the capacitor C' with the ODE

R

v’é+Lv’C+ ve=0.

1
LC
Let us assign ve to be the first state, g1 (t) = ve(t), and an electric current
to be the second state, i(t) = ¢2(t) = Cvy = Cqi(t). We thus go to the
equations

,_1 ;o 1 R
ql—CQQa qa = LQl qu'

To ascertain stability, we find the internal energy of the circuit,
Cvg  Li*  Cqi | Lgj

2 2 2 2’
and then define its time derivative (rate)

FE =

B'(t) = —Rg3(t) = —Rvi(t).

Immediately one concludes that, by R > 0, the energy dissipates with time
to zero (by negative rate) and the circuit is thus stable. One then can suppose
some ¢ > 0 and 6 > 0 and realize that this system is stable in the sense of
Lyapunov. Because 0 can be set arbitrary, the stability is global. Moreover,
since energy dissipates with time to zero, the circuit is asymptotically stable
and, by arbitrary ¢, it is globally asymptotically stable. a
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When we think about asymptotic convergence of any function, we also
wonder if this convergence is exponential or not. From the standpoint of engi-
neering needs, if any behavior is expressed in terms of simple functions, then
such a behavior is perceived as generalized. Therefore, the asymptotic stability
is often considered to be the exponential stability, provided the definition:

Exponential stability: An equilibrium point “0” of (2.232) is said to
be exponentially stable if there exists positive-valued constants 5 > 0,
a > 0, and € > 0 such that

la()| < Be= " a(to)|| for [alto)| <e and ¢ >to,
(2.235)
where the largest allowed « is called the rate of convergence.
O

Because the bound ¢ is not limited and hence the initial state q(tp) may
take any value, this kind of stability is also called the global exponential sta-
bility often abbreviated as G.E.S. In analogous to the asymptotic stability,
if ¢ < B, the exponential stability may be said to be local. In applications,
exponential stability has appeared to be a strong form of stability, since both
uniform and asymptotic stability definitions are absorbed. In particular, ex-
ponential convergence was shown to be robust to perturbations that makes it
to be essential for control algorithms.

The most loose definition of stability arises from the works of Lagrange on
the stability of equilibrium states of discrete conservative system. Lagrange
showed that if the potential energy reaches its minimum at a position of
equilibrium, then this position is stable, whereas if the potential energy reaches
its maximum, the position is unstable. Developed in further by Dirichlet and
some other authors, the definition of Lagrange’s stability may be formulated
as follows:

Stability (in the sense of Lagrange): The state q(to) of (2.232)
is said to be restricted or stable in the sense of Lagrange if for any tg
there exists a real B[q(to),to] < oo such that

la@®)|| < B for t>tp. (2.236)
O
As follows from this definition, the Lagrange stable system is not obliga-
torily staying at equilibrium.

Links with External Stability

It follows from the above-given definitions that the internal stability is com-
pletely determined via the system states. Contrary, the external stability in-
volves the system input and output. In recent decades, many efforts have been
made to find a link between two concepts of stability and ascertain stability in
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some common sense. Consequently, new “cross” definitions were introduced
and elaborated as connected with the important system properties such as
stabilizability and detectability. The problem is still under investigation, be-
cause the externally stable system is not always internally stable. Below we
refer only to several important results:

o Input/output to state stability (I0SS): This property is also called de-
tectability and strong unboundedness observability. The notion suggests
that if the input and output are both small, the state must be eventu-
ally small. It was also mentioned by Sontag and Wang that it is not a
notion of stability, because, for example, the unstable system q’(t) = q(t),
y(t) = q(y) is IOSS. Rather, it represents a property of zero-state de-
tectability. O

o Input to output stability (I0S): If a system is I0S, then it is also robustly
output stable (ROS). However, there is ROS system that is not I0S. O

o Input to state stability (ISS): A system is ISS if and only if it is IOSS and

10S. O
e Output to state stability (OSS): This property is associated with the prop-
erty of detectability. a

Overall, there is an opinion that internal system stability is equivalent to
detectability plus external stability. The proof, however, follows by routine
arguments.

Based on the above-given definitions of system stability, we may now con-
tinue with observing general conditions for linear and nonlinear systems to be
stable in different senses.

2.8.3 Stability of Linear Systems

If a system is linear and, possibly, time-varying, its stability at zero is ascer-
tained by the state space equation

q'(t) = A(t)q(t) (2.237)

Moreover, by the theory of ODEs, the equilibrium point is unique if the de-
terminant of A(¢) is not zero, |A(t)| # 0 for ¢t > to.
It will be shown in Chapter 4 that a general solution of (2.237) is given by

q(t) = ®(, to)a(to) , (2.238)
where ®(t,tg) is the so-called state transition matriz of a system, charac-
terized by two major properties: ®’(¢,t9) = A(t)®(¢,t0) and ®(tg,t0) = L
Employing ®(¢,t9), the condition for a system to be stable can be found as
in the following.
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Stability in the Sense of Lyapunov

An equilibrium point of a system described by (2.237) is stable in the sense
of Lyapunov if for any real € > 0 there exists a real § > 0 such that

[@(t, to)alto)l| <& for [la(to)] < 4. (2.239)

On the other hand, by the multiplication condition, we have

1@ (¢, to)alto) | < (o) [ lato)ll,
where ||q(to)] is restricted with ¢ and thus it is in order to write

1@ (2, to)alto) || < (£, t0)][0- (2.240)
Comparing (2.239) and (2.240), one concludes that the condition (2.239)
is satisfied for any real value M such that
€
IVE
In other words, a linear system is stable in the sense of Lyapunov if the

norm of its state transition matrix does not reach M = ¢/ with q(to) < 4. If
s0, the system behavior is bounded by ||q(¢)|| < & for ¢ > to.

|®B(t,to)|| < M < 0o with & = (2.241)

Stability in the Sense of Lagrange

If a linear system (2.237) is supposed to work with any initial state q(to)
having the finite norm [|q(to)|| < oo, the system is stable in the sense of
Lagrange if and only if its transition matrix satisfies

H‘I’(t,to)” <M< oo with t>tg, (2242)

where M is some allowed finite real bound. It then follows that an equilibrium
point q(tp) of a linear system is Lyapunov stable if and only if it is Lagrange
stable.

Asymptotic Stability

In a similar manner, the asymptotic stability can be ascertained. An equilib-
rium point of a linear system (2.237) is asymptotically stable if, and only if,
the norm of the state transition matrix is finite with time and tends toward
infinity with ¢ — oco. This means that

H‘I’(t,to)” <M< oo with t>t; and
tlim |@(t,to)|| =0, (2.243)
where M is still some allowed finite real value. So long as the condition (2.243)

deals solely with the norm of the state transition matrix, it is also the condition
for the global asymptotic stability.
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Exponential Stability

The concept of asymptotic stability may now be extended to the exponentially
decaying envelope. By the definition, an equilibrium point is exponentially
stable if there exists positive-valued constants 8 > 0, a > 0, and € > 0 such
that

12(, to)alto) || < e~ |lq(to)]

for ||g(to)|| < € and t > to. Applying the multiplication condition, we go to
the relation

1@ (t, to)alto) | < |2, to)lllalto)ll < B~ la(to)]l,
[®(t,t0)|| < Be= o), (2.244)

meaning that a system is exponentially stable if the norm of its state transition
matrix traces with time toward zero starting at q(tp) within the exponential
bound.

The above conditions given for linear systems cannot commonly by applied
to nonlinear systems and some other approaches are used. An exception is
when the initial condition is placed closely to equilibrium. In this case, a
nonlinear system is linearized and the above-given definitions guarantee the
system stability. Below we observe the most common methods for nonlinear
systems.

2.8.4 The First Lyapunov Method

Let us come back to the general state equation for nonlinear systems (2.224)
and discuss how the conditions of stability can be derived from. Commonly, the
procedure entails difficulty that, for NTT and NTV systems, is circumvented
by the first and second Lyapunov methods, respectively. However, some other
approaches are also efficiently used.

By his first method also called indirect, Lyapunov solved the problem with
stability by linearizing an NTT system at the point of equilibrium. To follow,
assume that an autonomous NTT system is described with the state equation
q'(t) = Plq(¢)] that is the time-invariant version of (2.230). Let this system
has n points of equilibrium q;, ¢ € [1,n], at which ¥[q;] = 0. The following
theorem states how stability of such a system can be ascertained.

Theorem (the first Lyapunov method): A point of equilibrium q;
of a system described by the nonlinear ODE

q'(t) =¥[qt)], ¥lq]=0, (2.245)

is asymptotically stable if the point of equilibrium q; of the corre-
sponding linearized system described by the linear ODE
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q'(t) = Aq(t), (2.246)
where A = a‘gggg)] _, is asymptotically stable.
ql D
To verify, one must expand the function ¥[q(t)] to the Taylor series at the
point of equilibrium. Saving the terms in the second order of approximation,
we thus have

q'(t) = Aq(t) +e(t),

where every component of the vector e(t) = e(||q(t)||?) is a small value prede-
fined by the relevant component of ||q(t)||?. Considering e(t) to be the “input”,
one can write a general solution of this ODE as follows (in Chapter 4, we shall
discuss the solution in detail)

a(t) = ®(t, to)alto) + / B(t,0)e(0) 0 ,

where ®(t,t5) = eA(t=%) is the state transition matrix. Exploiting the mul-
tiplication condition and triangle inequality, the norm of the solution can be
expressed by

a®)l < @& to)llllalto)| +/H‘I>(t79)||||e(9)|\d9-

Now recall that, by (2.244), the exponential stability of a system like
(2.246) is guaranteed if there exist real positive numbers § > 0 and o > 0
such that [|®(t,to)|| = |[eAtt)|| < Be=*(t=%0) for t > to. By this condition,
we immediately have

t
la®)ll < Be=*t=")|a(to) | + /ﬁe_“(t_e)l\ew)ll de.
to

On the other hand, the exponentially decaying function must satisfy the
condition for asymptotical stability. This means that for the given real positive
e > 0and § > 0 the norm |le(t)|| must be such that

“la@)) for Ja)) <s.

le®ll < 4

Accordingly, we go to

t
et=1) |l g(1)|| < Bllato) +e / e =1)]|q(0) ] do

to
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and, by the Grénwall®!-Bellman3? inequality (Appendix E), arrive at

e*)|g(t)]| < Bllato) e ")

that readily produces

1)l < Bllato) e~

For a system to be exponentially stable, the value of ¢ in the latter relation
must be set such that € < «. If so and still ||q(¢)|| < J, we can write ||q(¢)|| <
Blla(to)]]- This means, in turn, that ||q(t)]] < g and we finally get

la(t)]| < de(@=)E=t0)  for ¢ > 4. (2.247)

An importance of the inequality (2.247) resides in the following fact. It
proves that the exponential stability of an NTT system at the point of equi-
librium is guaranteed by the exponential stability of its linearized version at
the same point.

Example 2.37. The amplitude V(¢) of a signal of a crystal oscillator is
modeled at low drive levels with the ODE

v

V’z(a—v2

) V, v>0.
By setting V' = 0, the equilibrium point is defined as V = \/ ~/a. Following
the linearization procedure, the equation is linearized at V{ to be

V' =2aV.

The conclusion follows instantly. If a > 0, the amplitude develops without
bounds with Vj real. By a < 0, the amplitude attenuates to zero exponentially,
but a real V does not exist (Vj is imaginary). So, the point Vj is unstable. O

Example 2.38. Consider the Rayleigh oscillator

Y = —wz, 2 =wy+el—pz?)z

with w = € = 1 and g arbitrary. Because the factor e is not small, averaging
cannot be allowed. Instead, assigning q;1 = y and g2 = z, we go to the state
space model

where
q1 —q2
= s \I’ =
4 L]z] [Q1+(1—Hqg)92
3! Thomas Hakon Grénwall, Swedish-born US mathematician, 16 January 1877-9

May 1932.
32 Richard Ernest Bellman, US mathematician, 26 August 1920-19 March 1984.
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Following (2.246), the linearized system matrix appears to be

0 -1
A= [1 1—3WJ§0] ’
where g99 is the second state at equilibrium. The characteristic equation as-
sociated with this matrix is A> + oA + A = 0, where ¢ = 3ug3, — 1 and
A =1>0.1Itis known from the theory of ODEs that if ¢ > 0 and A > 0,
then the linearized system is asymptotically stable. Accordingly, a solution is
asymptotically stable if u > 1/3¢3,. 0

Example 2.39. A system is described with the equations
¢ =20(1+q@)+3¢, ¢=a+ae@l+aq),

having the point of equilibrium at zero. For this point, ¢t = g2 = 0, the
linearized system is performed, following (2.246), by

[qi] _ [2(1+q2) 2q1+6q2} |:Q1] ’
o La2

@ I+ 1+aq
G|_[20] ¢
g 11|]g]"
The characteristic equation of the linearized system matrix A is given by
A2 — 3)\ 4 2 = 0. Because one of the coefficients is negative, the equilibrium
point is unstable. O

As one can see, the first method by Lyapunov implies that the linearized
solution of a nonlinear ODE can be found. If it cannot be found or a nonlinear
system is time-varying, the second method of Lyapunov also known as the
method of Lyapunov functions is used.

2.8.5 The Second Lyapunov Method

In the second method by Lyapunov often called direct, the stability problem
of an NTV system

q'(t) = ¥q(t),] (2.248)
at a point of equilibrium is solved by finding some scalar continuous func-
tion V(q) (the Lyapunov function) possessing the certain properties. There
is no universal receipt how to find this function, except for some classes of
nonlinear ODEs. Despite this fact, the method has appeared to be highly effi-
cient in solving many theoretical and applied problems associated with system
stability.

An idea of the approach can easily be caught by imitating a system with
a football player kicking a ball in some media to hit a target placed in Fig.
2.10 at “0” of the coordinates ¢1, qo, 2.
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A system is supposed to be stable if with any even absolutely incredible
trajectory (although featured to this system) a ball hits a target. Otherwise,
a system is unstable. If all trajectories hitting a target are closed within some
function V' (q1, g, t), the latter is said to be the Lyapunov function. One there-
fore can truly interprete the Lyapunov function as a “snare for a ball”.

Most generally, the Lyapunov function is a function of n variables and
we can write it as V[q(¢), ¢]. If we now analyze this function for a situation
sketched in Fig. 2.10, we can come to the conclusion that the Lyapunov func-
tion possesses some necessary properties. First of all, it could be thought of as
generalized energy function for a system. In fact, in passive media the energy
always dissipates (except at 0) and the function thus reduces with time to
zero. Moreover, in such media, energy dissipates monotonously, to mean that
the time derivative of V' should always be negative. This deduction extends
to NTV systems, in which V is time-varying. Indeed, if we want the system
to work stably, we must think that no time variations are able to affect the
monotonously dissipated energy to be not dissipated.

From what is observed, it follows that the Lyapunov function V' must be
positive definite, provided the definition:

Positive definite function: A function V(q(t), t] is positive definite
in some space R if

V' is continuous and differentiable
V >0 for all q(t) and ¢

V(0,t) =0 if and only if q(¢) =0
V — oo as q(t) — oo

oooog

O
The following Lyapunov theorem states when a system is stabile in terms
of the positive definite function V.

Fig. 2.10. Interpretation of the second Lyapunov method.
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Lyapunov theorem: A point of equilibrium “0” of a system (2.248) is
stable if there exists a positive definite function V[q(t), t] such that its
time derivative V' is non-positive for all trajectories q(t) of a system.
O
Because the time derivative of V is allowed to be zero, stability stated
by this theorem is often understood in the sense of Lyapunov. This means
that a stable solution for a system will exist in some bound § > 0 such that
[la(®)|| < o. If the system behavior is required to be asymptotically stable, the
other theorem is applied.

Lyapunov theorem (asymptotic stability): A point of equilibrium

“0” of a system (2.248) is asymptotically stable (every trajectory con-

verges to zero at t — 00) if there exists a positive definite function

Vl]a(t), t] such that its time derivative V' is negative for all trajectories

q(t) of a system.

O

In this case, the time derivative of V' is always negative. Therefore the sys-
tem solution tends toward zero with time. Because the Lyapunov function can
take any positive finite value, such stability is also called the global asymptotic
stability (G.A.S).

Let us prove this theorem. Suppose a solution of (2.248) converges to some
value £ > 0 and we wonder if this value should obligatory be zero. Having a
nonzero value at ¢ — oo, the Lyapunov function may be searched such that

§ < Vq(t)] < Viq(0)].

We can also think that a solution converges with a maximum rate V., =
—v < 0 and hence V! < —v for t > 0.

Accounting for the above-given considerations, the Lyapunov function re-
lated to some time instant T' must satisfy

that yields
< V[a(T)] < Vig(0)] —oT.

If we now increase T, the right-hand side will become negative with 7" >
V]a(0)]/v that leads to a contradiction. Because the function V' cannot be
negative, the only reasonable value for € is zero and the proof is complete.

Example 2.40. Let us come back to the circuit (Fig. 2.9) and ascertain its
stability with the direct Lyapunov method. In state space, by ¢1(t) = ve(t)
and ¢2(t) = i(t) = Cvg = Cgf(t), the circuit is described with the equations

. r 1 R
q1 = CQQa qs = qu LQZ-
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The best candidate to the Lyapunov function is therefore an equation of
internal energy

Ci?  L¢?
Via(t)] = 21 + 22,

which time-derivative gives

V'la(t)] = —Rg3 (1),

where R is real and positive. It may easily be verified that the function V'
is continuous, differentiable, and positive for all q(t) and ¢. Yet, V(0,t) = 0
and V — oo with q(t) — oo. So, this is the Lyapunov function. Because for
real positive R the rate V' is always negative, the circuit is asymptotically
stable. Recall that in Example 2.38 we arrived at the same conclusion via the
dissipated energy. a

Example 2.41. Consider an oscillator loop combined with two RC circuits
and two limiters, direct and inverting, respectively,

o 1, ¢1>0 - —1,¢2>0
f1(Q1)—{_1’q1<0 and fQ(QQ)_{ 1, ¢2<0

as shown in Fig. 2.11.

f(q,)

Fig. 2.11. Closed oscillator loop.

The voltages at the outputs of the limiters are defined by fi1(¢1) = g2 +
RC¢, and fa(q2) = q1 + RC¢). The system is thus described in state space
with q'(t) = ¥[q(t)], where, by C =1 and R =1,

q= [lh} Cw— [—Q1+f2(Q2)] .

q2 —q2 + f1(q1)

To ascertain stability, let us choose the Lyapunov function such that



112 2 Quantitative Methods of Systems Description

CQ CQ 2
_ Q1+ Q2291+QQ

Vie) =, 2 ~ 2 9"

The time-derivative of V' is given by

V(Q) = —(+ @) +afol)+afila).

An analysis of two last terms shows that they take values £1(q1 — ¢2),
where the multiplier “1” represents the maximum unit voltage in the loop.
Over period of oscillations, the terms produce zero and we have

V'(q) = —(¢i +¢3) = -2V,

meaning that the time-derivative of V is negative and the system is hence
stable. ad

Following the definition, the asymptotic stability can readily be extended
to the exponential stability, provided the definition:

Lyapunov theorem (exponential stability): A point of equilib-
rium “0” of a system (2.148) is exponentially stable, meaning that
every trajectory of q'(t) = W[q(t), t] satisfies

la@®)] < Be % [la(0)] ,

where 8 > 0, if there exists a positive definite function V{q(t),t] and
a constant v > 0 such that V' < —aV.
O
A motivation to satisfy an inequality V' < —aV arises from the obser-
vation that the latter guarantees minimum dissipation rate, proportional to
energy. Because (3 is allowed to be any positive finite value, this stability is
global exponential (G.E.S).

In this Chapter, we considered the most efficient and thus basic quan-
titative methods of linear and nonlinear systems analysis in the time and
frequency (transform) domains. It turns out that in many cases time and fre-
quency are not the proper scales to learn systems and another methods called
qualitative are often used to complete an analysis with information taken from
the so-called phase plane.

2.9 Summary

Quantitative methods unite the most powerful tools of system analysis in the
time and frequency (transform) domains. Before continuing with applying
these methods to different kinds of systems, the reader is encouraged to go
over the material once again emphasizing the following fundamentals:
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— The response of a system to the unit impulse is the system impulse re-
sponse.

— The response of a system to the unit step is the system step response.

—  The response of a system to e/“? is the system frequency response, repre-
sented with the magnitude and phase responses.

— For LTT systems, the impulse and frequency responses are coupled with
the Fourier transform. This is not valid for another types of systems.

— In LTT systems, the output is coupled with the input via the impulse
response by the convolution.

— In LTV systems, the output is coupled with the input via the time-varying
impulse response by the general convolution.

— In nonlinear systems, the output is coupled with the input via the gener-
alized impulse response (Volterra kernels) by the generalized convolution
(Volterra series).

— Any dynamic system can be described with the ODE of a proper order
and represented in state space.

— System states are associated with time derivatives.

— The transfer function of an LTI system is a ratio of the Laplace transform
of its output and the Laplace transform of its input. This is not valid for
another type of systems.

— The ODE of a nonlinear system with a small parameter may be substituted
with two nonlinear ODEs of the first order for the amplitude and phase.

— By equivalent linearization, an NTI system is converted to the LTV system.

— The “norm” means a measure of the “size” of a signal and, thereby, a
system.

— Stability means a negligible sensitivity of a system to slight external and
internal disturbances.

— Stability can be internal and external. Both can be ascertained in a differ-
ent sense.

— The most general theory of stability was created by Lyapunov.

2.10 Problems

2.1. Find simple words and examples to explain the difference between linear
and nonlinear, time-invariant and time-varying systems.

2.2. They say that the methods for linear systems are not applicable for
nonlinear systems. Is it true? If yes, then why is the theory of LTI systems
fundamental for other systems? Explain with examples.

2.3 (Response of a system). An LTI system is represented with the follow-
ing impulse response. Define the step response, frequency response, magnitude
response, and phase response of a system.

1. h(t) = 5(¢)
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2. h(t) = u(t) — u(t — 1)
3. h(t) = ae~"u(t) + cd(t)

4. h(t) = au(t) — au(t — 1) + bd(t)
5. h(t) = u(t)

2.4. An LTI system is represented with the following frequency response.
Define the magnitude, phase, impulse, and step responses of a system.

1. H(jw) =a

2. H(jw) = afu(w + wo) — u(w — w)]
3. H(jw) = ael*!

4. H(jw) = 6(w)

5. H(juw) = 6(jw — juwo)

6. H(jw) = ae?™

2.5 (Convolution). A causal input signal is described by z(t) = Ae =" u(t).
Using the convolution integral, define the output signal y(t) for the impulse
response of a system specified in Problem 2.3.

2.6. An input signal has a rectangular waveform x(t) = Afu(t +7/2) — u(t —
7/2)]. Write the spectral density of the input and determine the spectral
density of the output for the frequency response specified in Problem 2.4. By
the inverse Fourier transform, define the time function of the output.

2.7 (Volterra series). A nonlinear system is shown in Fig. 2.4 and described
with the Volterra series (2.54). Define the system output for z(¢) = A and the
impulse response given in Problem 2.3.

2.8. Using the Volterra approach, write the integral equations of the nonlin-
ear systems shown in Fig. 2.12.

()
x(7) y(®

hy(0)

x(0) )

(d)

Fig. 2.12. Nonlinear systems.
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(0 4
———>

Fig. 2.13. Systems performed with block diagrams.

2.9 (Differential equation). A nonlinear system is performed with the
block diagram shown in Fig. 2.13. Write the differential equation of a system.

2.10. Consider a system shown in Fig. 2.13. Suppose that the multiplier is
absent in the structure and the system is thus linear. Write the differential
equation of a system. Find the impulse and frequency responses of a system.

2.11. A system is represented with the following differential equation. Show
the block diagram of a system.

Yy =3y 4y = 22"+
By +yy =
20 +y =y
2+ = 2yy
=y +y

y' 4+ 2y —y=a" -2+

O Tk W

2.12 (Transfer function). A linear system is represented with the following
differential equation. Define the system transfer function.

2y 4+ 4y =22+
. agy” +ay = bz
v+ 20 = 5vc

() 252 méi;:m () EOQ ”dt"y()

50—2 51—1 52—2 a1—3 ap =1

5-Zandtn (t) = medtm x(t)

a()—l a1—2 a2—3 a3—2 bo—l b1—3 b2—2
2

63(0) = 35 b i alt) = X % (o)

n'»l> W N
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2.13. A system is described with the following transfer function. Convert the
transfer function to the differential equation.

1.H(s)=s

2.H(s)="!

3. H(s) = 82+§S+1

4. H(s)=s*>+2s+1
s+1)(s+2

5. H(S) = §5—1;ES—2§

6. H(s) =1+ !

2.14 (State space presentation). A system is given with the following
state space model. Write the differential equation of a system.

dql (t) 0 1 0- ql(t) q1 (t)
dga(t) | = |00 1] | ga(t) | dt, y(t)=[100]|q(t)
das(t) 000 | gs(t) q3(t)
dgi(t)] _ [0 A] [aqu(t) _ 1(2)
)] = 100 ] ] @ vo=m01 ]

Lh(ﬂ}
)= 37 el =02

2.15. A system is represented in state space with the equations (Problem
2.14). Write the differential equation of the system.

2.16. The differential equation of a system is defined by the transfer function
derived in Problem 2.12. Represent the system in state space.

2.17. A system is performed with the differential equation derived in Problem
2.10. Represent the system in state space.

2.18 (Linearization). The following nonlinear differential equation de-
scribes a system. Using the method of linearization, rewrite the equation in

the linearized form around the given initial point yo, g, - - -, Zo, T4y - - -
1.y —3yy =4y — 22" +
2. 3y// + (y/)2 =
3. 22" =9 + 42
4.22% + 9" = 2yy’
5.0 +x =y +vy
6.y" +y?=—-22'+x

2.19. A system is described with the differential equation associated with the
block diagram (Fig. 2.12). Represent this system with the linearized equation
around the point yo, y{, - - -, To, T(, - - -
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2.20 (Averaging). The oscillatory system is represented with the following
differential equation, in which € is a small parameter. Using the method by
Krylov and Bogoliubov, write the system equations for the amplitude and
phase in the first order approximation.

Ly" +3y=e(l-y°)y
2.3y " +ey +y—ey’) =0
3.y +e(l—ay’)y +y=0

2.21 (Equivalent linearization). Using the method of equivalent lineariza-
tion, write the linearized ODEs for the system described in Problem 2.20.

2.22. An oscillatory system is described with the ODE (Problem 2.20). Using
the classical harmonic balance method, define the stationary solution for the
system in the first order approximation.

2.23. Using the method of describing functions, linearize the nonlinear equa-
tions given in Problem 2.20.

2.24 (Norms). Give simple interpretations for norms of signals and systems.
Why not to characterize signals just with the maximum and minimum values
and systems with the peak-values of the responses?

2.25. A system is represented with the impulse response (Problem 2.3). De-
fine the Hy-norm of a system.

2.26. A system is represented with the transfer function (Problem 2.13).
Define the Hi-norm, Hs-norm, and H,-norm of a system.

2.27 (Stability). A system is given with the impulse response (Problem
2.3) and transfer function (Problem 2.13). Ascertain the BIBO stability of a
system.

2.28. Analyze the block diagrams (Fig. 2.13) and realize how the coefficient
a can affect stability of a system? Which system is stable and which is poten-
tially not?

2.29. A system is represented with the transfer function found in Problem
2.12. Investigate the poles of the transfer function and make a conclusion
about the BIBO stability of a system.

2.30. A system is described in state space with the following equations. The
equilibrium point lies at zero. Investigate stability of a system at this point
by the first Lyapunov method.

Lgi=¢d2+q)+3¢ , d=a+d@)(d+¢ —1)+3¢
2., =i+ @) @G+ -1)+q ., db=a

3 di=etad+de . ¢b=3¢-2¢03—d+4d

4.y = a1 -3pa) , ¢ =I(¢—3¢)(2¢ - d)+4d
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2.31. A system is described in state space with the following equations. As-
suming that the Lyapunov function V(q) = (¢? + ¢3)/2 is truly selected for
this system, make a conclusion about its stability by the second Lyapunov
method.

Lgi=-q—-2¢ , ¢h=—-@—q¢
2.1 =—q+aq@ , ¢=—¢ -3¢
3@ ==201—-q¢ , ¢h=-20+q¢
4l =—q+2¢ , ¢h=—q@+4iq

If a system does not seem to be stable for the Lyapunov function given, try
to find some other function. Alternatively, prove that the Lyapunov function
does not exist and the system is thus unstable.
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Qualitative Methods of Systems Description

In Chapter 2, we were concerned about the rigorous and approximate quan-
titative methods of linear and nonlinear systems analysis in the time and
frequency (transform) domains. It follows from what was observed that if a
system is nonlinear then not every corresponding ODE can be solved analyti-
cally in simple functions. However, we can glean a lot of information about the
behavior of solutions by looking carefully at what the equation says, without
actually solving it. Well elaborated the methods organized into the relevant
theory and based, first of all, on the works of Poincaré, are called qualitative.

In this Chapter we consider fundamentals of the qualitative theory hav-
ing no intention to examine all aspects of this very powerfull tool (for more
profound learning, the reader should open the dynamic systems theory). In-
stead, we elucidate only the most recognized and widely used methods in the
language suitable for electrical engineering. Several modern qualitative effects
such as chaos, for example, are discussed in brief as the theory still does not
offer simple and distinct engineering methods for their prediction.

3.1 Qualitative Analysis

In the qualitative theory, time is commonly excluded from the direct variables
and the system ODE is investigated in the so-called phase space that is the
collection of possible states of a dynamical system. To investigate, the N-
order ODE is represented with N ODEs of the first order related to each of
the system states. If N = 2, an analysis is provided on the phase plane, since
only two states exist. So long as the states may be assigned in different ways,
different ODEs of the first order may represent the same system.

Example 3.1. Consider a familiar equation by van der Pol,
Yy +wpy = el -y

If we assign z = 7/, we have
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v =2, Z=el—y?z—-wiy, (3.1)

where the states are y and z. We may also let z =y’ — ¢ (y — 33*) and then
equivalently write

1
3
Because the states in (3.1) and (3.2) have different meanings, one should

expect different results of an analysis, even though the whole picture of a
system will be the same. a

y’=z+€(y— y?’), 2 =—uhy. (3.2)

3.1.1 Phase Plane

Let us assume that a system of the second order, like van der Pol’s oscillator,
is represented with two ODEs of the first order. The most common form of
such a system in state space is performed with

dy dz
Q= P(y, z,t), g Qy, z,t), (3.3)

where P(y,z,t) and Q(y, z,t) are some linear or nonlinear, time varying or
time invariant functions. In the qualitative analysis, we typically let z = 3/
and go from (3.3) to the function

/
dz _dy' _ Qy,21) (3.4)
dy dy  P(y,21t)
that is useful, first of all, when both functions, () and P, are time invariant
and such that

!
dz _dy' _ Qy,2) (35)
dy dy  Py,2)

Function (3.5) can now be investigated on a plane of two variables, z = ¢/
and y, called the phase plane. The term suggests that, for any initial condition
(Yo, #0), a solution may be found as z(y) or y(z) and represented with the
so-called phase trajectories. Seemingly obvious is that every point of each of
these trajectories corresponds to a certain time instant and depends on the
initial conditions.

Because the initial conditions can be set arbitrary, a number of the phase
trajectories is infinite. Therefore, researchers, first of all, are interested of
considering some special points, functions, and ranges, by means of which the
system demonstrates its major properties.

As a first step toward sketching the phase trajectories, one needs to find
and mark on a phase plane the functions associated with 2z’ = @ = 0 and
y = P = 0. It follows from (3.5) that the function derived by Q = 0 will give
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us the points, where the phase trajectory has a zero slope (traces horizontally).
A set of these points form a function called the z-nullcline being the isocline
with a zero tangent to the axis y. Analogously, the function derived by P =0
gives us the points, where the phase trajectory has an infinite slope (traces
vertically). A function formed by a set of these points is called the y-nullcline
or the isocline with a zero tangent to the axis z. One can also let dz/dy =m
and find the isoclines with a slope m.

The special points of a system in phase plane are specified by @Q = P = 0.
Since the latter relation means z’ = 3’ = 0 and thus there is no behavior, the
relevant points are called fized as associated with a system in equilibrium.
Every fixed may be stable or unstable.

3.1.2 Stability of Linearized Nonlinear Systems
To study stability of s system at a fixed point means, first, to write

P(y,2) = Q(y,2) =0, (3.6)

then find some solution zg, 1o, linearize a system at this point, and finally
investigate it. Defined a solution yq, 29, a linearized system is represented in

the matrix form
d ab
2] =1l 12 62

using the Jacobian! matrix (Appendix B)

b
J(zy)=A= [Zd] : (3.8)

in which

IP(y, ) OP(y,z)
a:P/(y()vZO): ’ b:Pz/’(yOaZO): 5

Y ay Y=Yo0,2=%0 62 Y=Y0,2=20

2Q(y, 9Q(y,

c= Q:/y(y07 ZO) = Q({()Z Z) s d= Q/z (y07 ZO) = Qéi z)

Y="Yo0,2==0 Y="Yo,2=%20

(3.9)

The characteristic equation, associated with the matrix A (3.8), is written
as

a—\ b
c d— A\

‘:/\2+cr/\+A:0, (3.10)

! Carl Gustav Jacob Jacobi, German mathematician, 10 December 1804-18 Febru-
ary 1851.
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where the coefficients are predetermined to be 0 = —(a+d) and A = ad — be.
The roots of (3.10) are defined by
A ——Ui\/UZ—A (3.11)
125 7y 4 ; .

being simultaneously the eigenvalues of the Jacobian matrix. If the eigenvalues
are found, a linearized system can fully be described via the eigenvectors.

Analyzing (3.11), we recognize several special cases. First, it is important
to remember that the necessary and sufficient condition for the linear system
to be stable is satisfied by ¢ > 0 and A > 0. All points placed in the first
quadrant of the coordinates (Fig. 3.1) are thus stable.

Unstable Stable o
spiral spiral

N

Center

Stable

Unstable
node

node

Saddle Saddle

Fig. 3.1. Fixed points on phase plane.

With 62 — 4A < 0, the roots are complex and an equilibrium is spiral
also called focus. The relevant points lie within the parabola depicted in Fig.
3.1. Here, if ¢ > 0, spiral is stable (Fig. 3.2a) and, by ¢ < 0, it is unstable
(Fig. 3.2b). In a special case of o = 0, spiral degenerates to center also called
neutral center (Fig. 3.2f). In Fig. 3.2 and in the following, a stable point is
depicted by a bold point “e” and unstable by a cycle “o”.

If 02 —4A > 0 and A > 0, an equilibrium point in the topographical
nature is node. The node is stable (Fig. 3.2d) if ¢ > 0 and it is unstable (Fig.
3.2¢c)if o < 0.

It is seen that, by A < 0, the roots are always real with, however, different
signs. The relevant fixed points lie in the third and fourth quadrants and an
equilibrium here, in the topographical nature, is saddle (Fig. 3.2¢).
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( )

c)
(f)

a) @ (b
(
N7
/‘\

X

Fig. 3.2. Topological nature of fixed points on phase plane: (a) stable spiral (or
focus), (b) unstable spiral (or focus), (c) unstable node, (d) stable node, (e) saddle,
and (f) center.

(e

In applications, it sometimes seems convenient to deal directly with the
components a, b, ¢, and d of the Jacobian matrix rather than with their
functions o and A. Allowing this, the topological nature of the fixed points is
specified by the roots

210 =a+d++/(a+d)? - 4(ad — be)
=a+d++/(a—d)?+4bc (3.12)
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that is summarized in Table 3.1.

Table 3.1. Topographical nature of fixed points

Condition Fixed point
(@ —b)? +4bc >0

ad —bc <0 Saddle

ad —bc >0

a+d<0  Stable node
a+d>0  Unstable node
(a—b)2+4bc <0
a+d=0 Center
a+d#0
a+d <0  Stable spiral
a+d>0  Unstable spiral

Example 3.2. A system is described with the linear differential equation

y' =y. (3.13)

Its state plane form is y' = z and 2z’ = y. Therefore, the z-nullcline (z,0)
coincides with the axis z and the y-nullcline (0, y) is the axis y (Fig. 3.3a). The
only fixed point here is yp = 0 and zyp = 0 and, therefore, the characteristic
equation A24+0-X—1 =0 gives A\; = 1 and A\, = —1 and produces ¢ = 0 and
A = —1. It then follows from Fig. 3.1 that an equilibrium is saddle. O

3.2 Phase Trajectories

To define the phase trajectories in the phase plane, one needs solving the
differential equation of the first order (3.5),

dz _ Qy,2) (3.14)

dy  Ply,z)’
that can be brought about in different ways depending on the functions P(y, z)
and Q(y, z). An assemblage of the phase trajectories caused by different ini-
tial conditions will represent what we call the phase portrait. Every phase
trajectory traces in phase plane in some direction. The rule to determine the
direction at an arbitrary point (y, z) is established by Table 3.2.

Among all the phase trajectories there are special curves separating the
regions of different behaviors. The curve is called the separatriz that is not
crossed by any other trajectory. The separatrix goes from the unstable saddle
to the stable node or spiral. It may close two branches of the saddle or go
from one saddle to the other.
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z-nullcline

separatrix separatrix

y-nulicline

NIy
AN

Fig. 3.3. Solutions of equations y' = 2z and 2’ = y on phase plane: (a) nullclines,
(b) separatrices, and (c¢) phase portrait of phase trajectories.

Table 3.2. Directions of a phase trajectory at y, z

Function Direction

P(y,z) >0 y directs —
P(y,z) <0 y directs <
Q(y,z) >0  zdirects T
Q(y,z) <0  zdirects |

If a system is linearized or linear, (3.7), the separatrices at each of the
fixed points are specified by two 2 x 1 eigenvectors V corresponding to each
of the eigenvalues. The basic relation is

AV =)\V, (3.15)

where A is either A1 or Ag. To solve (3.15), one usually fixes one of the coordi-
nate values and then calculates the other one. The eigenvectors corresponding
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to A1 and A, represent the separatrix curves. The phase trajectories are defined
by solving (3.14), where P(y, z) and Q(y, z) are linear functions of y and z.

Example 3.3. Consider a system y” = y (Example 3.2), which Jacobian
matrix is
01
A= [1)

and the eigenvalues are \; = 1 and Ay = —1. For the first eigenvalue \; = 1,
the eigenvector is defined, by (3.15), with an equation

HIHEHEE

producing two equal equations z; = y; and y; = z;. For y; = 1 we hence
have z; = 1. Reasoning similarly, one can find yo = 1 and z, = —1 for the
second eigenvalue Ao = —1. The eigenvectors directed along the separatrices

(Fig. 3.3b) are thus
1 1
Vl - |:1:| ’ V2 - |:_1:| .

Table 3.2 suggests that the phase trajectories are directed as follows. In
the 1% quadrant as T_, in the 2°¢ as |7, in the 3* as = |, and in the 4% as
— 1. Fig. 3.3a illustrates this directions for the relevant nullclines. O

3.2.1 Limit Cycles

A special phase trajectory exhibited by nonlinear systems originates a so-
called limit-cycle or a closed trajectory in phase space. A limit cycle is initiated
in a nonlinear dynamical system when the latter evolves with time and its
trajectory might tend to spiral approaching a closed loop in the phase plane.

The following Bendixson’s? criterion helps figuring out if a system has
closed trajectories:

Theorem 3.1 (Bendixson’s criterion). Consider a system y' = P(y,z)
and 2’ = Q(y, z) within the given closed region D. If

OP(y, z) n 0Q(y, 2)
Jy 0z

then there cannot be a periodic orbit inside D.

£0, (3.16)

O

In line with the node and spiral, a limit cycle can also be either stable or

not. If the neighboring trajectories evolve towards the limit cycle, then it is

a stable limit cycle (Fig. 3.4a). Otherwise it is an unstable limit cycle (Fig.
3.4Db).

2 Tvar Otto Bendixson, Swedish mathematician, 1 August 1861-1935.
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() (b)

Fig. 3.4. Limit cycles: (a) stable and (b) unstable.

Stable limit-cycles are associated with self sustained oscillations in systems
such as van der Pol’s oscillator. An important peculiarity of a stable limit cycle
is that any small perturbation from its closed loop would cause the system
to return back. The following Poincaré-Bendixson theorem is often used to
determine if there is a closed trajectory in a system.

Theorem 3.2 (Poincaré-Bendixson theorem). Consider a system

y =P(y,z), 2 =Q(y,z2)

in the closed bounded region D, where P(y, z) and Q(y, z) are smoothed differ-
entiable functions. If a system trajectory of the dynamic system is such that
it remains in D for t > 0, then this trajectory is either a limit cycle or it
converges to a limit cycle.

O

Example 3.4. Consider a system that is known to be oscillatory,

Y = —y+az+y’a=Ply,2), Z=b-az—y*>=Qy,2),
where a = 0.08 and b = 0.6. A system has a fixed point yo = b, 20 = b/(a+b?)
that is an unstable spiral. The divergence of the trajectory is ascertained from

OP(y, z) N 0Q(y, 2)

=2yz—1—a—y?
Ay 8z = “eTys

it may be zero at some points, and thus, by the Bendixson criterion, a system
has a limit cycle. It can be shown that all the trajectories exist in some closed
range. Hence, by the Poincaré-Bendixson theorem, a system has a limit cycle.
Fig. 3.5 demonstrates, for two different initial conditions, that the trajectories
approach a stable limit cycle. a
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z(y)

251

2 Limit cycle
151

4
05T

1 1 ;
0 0.5 1 1.5 y

Fig. 3.5. Limit cycle in a system.

3.2.2 Homoclinic and Heteroclinic Trajectories

Let us assume that a system has a saddle or two saddles. Then two particular
cases can be considered. A separatrix may go from a saddle O and come back
to the same point with ¢ — +o00 or t — —oo. Such a closed trajectory is called
the homoclinic orbit or horseshoe (Fig. 3.6a). In the other case, a separatrix
may go, for example, from a saddle O3 to a saddle O; and reach this point
at t — +o0 or t — —oo (Fig. 3.6b). This trajectory is called the heteroclinic
path (cycle or trajectory).

Ly L
(a) (b)

Fig. 3.6. Saddle trajectories: (a) homoclinic and (b) heteroclinic.

If such trajectories exist, the questions arise if they are stable or not and
what are the conditions for them to be stable? In 1923, Dulac has proved the
following theorem that was further justified by Andronov®:

3 Aleksandr Aleksandrovich Andronov, Russian physicist, 11 April 1901-31 October
1952.
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Theorem 3.3 (Dulac theorem). Consider a system y' = P(y,z) and
2" = Q(y,z), in which the right-hand sides are analytic and a system has
a homoclinic trajectory Lo (Fig. 3.6a). Then Lg is stable if

oo = (3P+ 8Q> <0 (3.17)
Oy 0z ) |y4=0,20=0
and it is unstable if
o = (ap + 8Q) >0. (3.18)
dy 0z o=0,20=0
O

A special case here is when o9 = 0. Studied by many authors, this case
results in the following theorem:

Theorem 3.4. Consider a system y' = P(y,z) and 2’ = Q(y,z) such that
_ (oP 8Q) —0.

70 (ay T 02 )0 20,m0-0

If the integral measure is negative,

[ (or o
o1 = / ( + Q) dt <0, (3.19)
K 9y 0z )|, .er,
then the homoclinic trajectory Lo is stable and if
T (orP 9
o1 = / ( + Q) dt >0, (3.20)
B 8y 0z y,2€Lg
then Lg is unstable.
O
The other special case of 09 = 07 = 0 is more complicated to justify

theoretically, even though it has simple examples with analytically derived
trajectories. It follows that, in this case, a system has closed cycles within the
homoclinic cycle.

Example 3.5. Given a system

Yy =22=P(y,z), z=12y—-2"=Q(y,2).

It can be shown that, for this system, g = o1 = 0 and one should expect
for the closed cycles if the homoclinic trajectory exists. The system has two
fixed points: y = 0,z = 0 and y = 4,z = 0. It can easily be verified that the
first point is saddle and the second one is center. The general integral of a
system is given by

Y —6y*+2°=C
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and we determine
2 =46y — 3+ C

that, by C' = 0, is represented by a saddle with a homocline (Fig. 3.7). a

Fig. 3.7. System with a homoclinic trajectory (bold).

So far, we discussed the homoclinic cycle. If the trajectory occurs to be
heteroclinic, it goes from one saddle O; to the other one Os (Fig. 3.6b),
then the most important question is if this trajectory is sensitive to small
perturbations or it is not. The theorem proved by Andronov et al. claims that
the heteroclinic trajectory is not structurally stable, meaning that even an
insignificant perturbation is able to “destroy” this connection.

3.2.3 Attractors

Typically, the phase portrait of trajectories exhibits one or several curves,
points, or manifolds which the trajectories asymptotically approach. If such
special states are invariant under the dynamics, then they are said to be
attractors.

A stable limit cycle (Fig. 3.4a) acts as an attractor also called regular at-
tractor. A stable fixed point (node and spiral) surrounded by a dissipative
region is an attractor known as a map sink. It needs to remember that sys-
tems without dissipation of energy do not have attractors, since the motion is
periodic. An attractor may also be a complicated set with fractal structures
known as a strange attractor. The strange attractor may be watched both in
the deterministic and chaotic systems. For the latter case, the special theory
known as chaos theory is developed.
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3.2.4 Structural Stability of Systems

An important feature of any system is how it responds to small perturbations
being at equilibrium. The problem was first considered by Andronov apply-
ing the Poincaré theory. Then the definition of a “rough” system or struc-
turally stable system that is akin to physical robustness was stated by the
Andronov-Pontryagin* theorem. By Andronov, the rough system is the one,
which topography in the considered region is not changed by small perturba-
tions. Accordingly, the system is called “subtle” or (structurally unstable) if
it changes the topography in the considered region, by small variations in its
parameters. This results in the following theorem:

Theorem 3.5 (Andronov-Pontryagin theorem). Consider a system y' =
P(y,z) and 2’ = Q(y, 2z). If the condition

Py (Y0, 20) P.(yo, 20)
A=| Y7 Zooe 0 3.21
@, (Y0 20) Q~(yo, z0) 7 (3:21)
is met at the fized point (yo, 20), then the system is “rough” at this point.
O
Since a fixed point may have different nature (Table 3.1), it is of practi-
cal importance to estimate roughness of each of the fixed points. Table 3.3
summarizes such estimates for several equilibria.

Table 3.3. Structural stability

Condition Fixed point Roughness
A>0,0#0 Node or spiral Rough
A<O Saddle Rough
A>0,0=0 Subtle
Separatrix Saddle to saddle Subtle

Simple limit cycle = Rough

3.3 Bifurcations

The word “bifurcate” means to “divide into two parts or branches” and the
term bifurcation in the system theory means splitting of attractors. Accord-
ingly, the bifurcation theory learns changes in the topology (or attractor’s
structure) of dynamic systems caused by changes in systems.

4 Lev Semenovich Pontryagin, Russian mathematician, 3 September 1908-3 May
1988.
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Bifurcation parameter: The value pg of a parameter p is said to
be the bifurcation parameter, if a topological structure of a dynamic
system associated with pg differs from that associated with pu.

O

Any coefficient of a nonlinear system can play a role of the bifurcation
parameter if some its value changes cardinally a topological structure of the
phase portrait.

Example 3.6. Consider a system described with the equations
y' =2z, 2 =2y-3u?,
where p can take different values. The general integral of a system is
2y’ =0,
where C' is a constant, and the trajectories are described by

2 =4y (1 —py) +C.

Fig. 3.8 shows phase portraits of this system for three different values of
w=0.3, p=0,and p = —0.3. It is seen that the topology is changed with
1 = 0 (only one saddle point) and hence this value is bifurcation, puy = 0.
With another value of i, the topology has two fixed points: saddle and center.

O
Bifurcation diagram: A bifurcation diagram shows the possible
long-term values a variable of a system can obtain in function of a
parameter of the system.

O

It follows from the definition of the bifurcation diagram that it is a graph
showing the location of a system equilibrium point at different values of the
parameter. Typically, a location of a stable equilibrium is depicted by a solid
curve and that of unstable equilibrium by dashed curve.

A classical illustration for the bifurcation diagram is provided by the lo-
gistic map

Yer1 = pye (1 —ye)

where time takes discrete values with a step 1. Fig. 3.9 shows what happens
with the equilibria if changing a parameter u. It is seen that for 0 < p < 1, all
the points are plotted at zero and thus zero is the one-point attractor here. For
1 < p < 3, there is still one-point attractor, which is stable and which value
y = (u—1)/p increases as p increases. At p = 3, there is the flip bifurcation.
With further increase of u, the fixed point becomes unstable. Then, again,
bifurcations occur, approximately, at r = 3.45, 3.54, 3.564, 3.569, ..., until
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Fig. 3.9. Bifurcation diagram of a logical map.
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the value 3.57, at which the system is chaotic. However, the system is not
chaotic for all values of p > 3.57.

Investigated by Poincaré, Andronov, Pontriagin, Hopf®, and many other
scientists, nowadays, the bifurcation theory proposes to readers a broad clas-
sification of bifurcation phenomena. Table 3.4 gives examples of the several
most typical bifurcations in continuous-time dynamic systems.

Table 3.4. Typical bifurcations in dynamic systems

Bifurcation Fixed points Example
Fold Stable and unstable y = p—y?
< no
Pitchfork Stable <> unstable v =py —y®
and two stable
Pitchfork Stable and two unstable 3 = uy + ¢°
& unstable
Transcritical Stable and unstable y = py —y?
& unstable and stable
Saddle node Saddle < stable Y =p—y°
and unstable
Cusp Stable < two stable y =—b+ay—1y>
and one unstable
Andronov-Hopf  Stable spiral < center Y =la— (y? + 2%y — Bz
< unstable spiral Z =By +[a— (¥ +2)y

3.4 Chaotic Orbits and Fractals

The theory of chaotic orbits or just chaos is very recent, even though its roots
are in the works of Henri Poincaré (about 1900), who wrote:

“It so happens that small differences in the initial state of the system
can lead to very large differences in its final state. A small error in the
former could then produce an enormous one in the latter. Prediction
becomes impossible, and the system appears to behave randomly.”

O

Poincaré also found that there can be orbits in the motion of three ob-
jects in mutual gravitational attraction which are nonperiodic. This deduction
of Poincaré however, was not properly appreciated and, much later, it had
been thought that chaos is available in complex systems and is a consequence
of a large number of degrees of freedom. Therefore, formally, the theory of

5 Heinz Hopf, German mathematician, 19 November 1894-3 June 1971.
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chaos is often defined as the study of complex (with recursion) nonlinear dy-
namic (time-varying and nonperiodic) systems. Most recently, it was found
that chaotic orbits may nucleate even in deterministic systems with a number
of states no less than three.

With time, the essence of chaos has became more and more clear and
its practical applications were found, despite mathematicians still having not
decided on the definition of chaos. It turned out that chaotic behaviors in non-
linear systems may be used in modulation to transmit messages in what was
further called chaos-based communications and telecommunications. Other
areas of applications are information compression, image recognition, medical
diagnostics, electronic archives, etc.

Based upon the classical notions, the evolution of an initial condition yg
under a system operator does not behave chaotically, because of its predictabil-
ity, if the function y(t)

e Goes to an equilibrium when ¢t — oo a
e Goes to a periodic orbit when t — oo , a
e FEscapes to co ast — oo . a

Contrary to periodic behaviors, a chaotic orbit is not periodic or eventually
periodic. Such an orbit occurs if, as accepted conventionally, the Lyapunov
exponent (which we introduce below) is positive. An example of chaotic be-
haviors is the Lorenz system.

Example 3.7 (Lorenz oscillator). To illustrate the chaotic orbits, we show
below a numerical solution for a system described with the Lorenz equations,

d=oy—x), y=x(p—2)—y, 2=xzy—p=z,

where p = 28, 0 = 10, and § = 8/3. The initial conditions are set to be
x(0) = y(0) = 2(0) = 1. It is seen (Fig. 3.10) that the behaviors of all three
states have some carrier and that they are not periodic on a long time scale.

Fig. 3.11 shows the trajectories in three phase space sections. As it is
seen, the trajectories chaotically behave between two attractors, say “left” and
“right”. Let us consider, for example, the plane z-z (Fig. 3.11b). A trajectory
starts at t = 0 at the point x = y = z = 1, makes only one semi loop, and goes
to the left part, where it moves around the unstable attractor (loop) during a
lot of periods. At t = 14, it leaves the left attractor and appears closely to the
start point. Again, it makes a semi loop and comes back to the left attractor.
It then twice returns at about ¢ = 21 and ¢ = 23.3. But thereafter, before
coming back to the left attractor, the trajectory makes a full loop in the right
part. In a like manner, the trajectories behave in the planes y-z (Fig. 3.11a)
and z-y (Fig. 3.11c). If we look at the picture in a long-time base, we find two
brightly pronounced attractors, called the butterfly attractors, as it is shown
in Fig. 3.11d in the y-z plane.
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a0t 2(?)

Fig. 3.10. Numerical solutions of Lorenz’s equations for p = 28, o = 10, 8 = 8/3,
and z(0) = y(0) = 2(0) = 1.

Fig. 3.11. Lorenz chaotic orbits and attractors: (a) y-z plane, (b) z-z plane, (c)
z-y plane, and (d) y-z plane in long-term time.
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An applied significance of a picture shown in Fig. 3.11d is that it is nothing
less than a chaotic bit sequence. Such an unexpectedly splendid property of
Lorenz’s oscillator has found applications in digital communications. O

Fractals

The word “fractal” was introduced by Benoit Mandelbrot® in 1975 from the
Latin fractus (meaning “broken” or “fractured”) to describe an object which
has partial dimension. It is a geometric object that satisfies a specific tech-
nical condition, namely having a Hausdorff’-Besicovitch® dimension greater
than its topological dimension. The fractal denotes a shape that is recursively
constructed or self-similar: a shape that appears similar at all scales of mag-
nification.

Fractals are usually created by recursive equations in discrete time. There-
fore, they are typically so irregular that they cannot by described by smooth,
differentiable structures; thus, they are not directly associated with continuous-
time systems.

3.4.1 Lyapunov Exponents

A convenient mathematical tool to determine what kind of attractors may
exist in a system is the Lyapunov characteristic exponent or just the Lyapunov
exponent. These exponents describe the mean exponential rate of divergence
of two (or more) trajectories initially close to each other in phase space.

For the sake of simplicity, we shall first demonstrate the meaning of the
Lyapunov exponent considering a one-state system. So, let us assume that a
system is described with

y'=P(y), (3.22)

where P(y) is a nonlinear function, and select two nearby initial points y and
yo of a trajectory. The distance between y and g is supposed to be small and
we expand a nonlinear function in the right-hand side to the Taylor series
around o

OP(y)
dy

We now let y, = P(yo), neglect the nonlinear terms, and write

(y_y0)+7
Y=Yo

y' = P(yo) +

_ OP(y)

A/

Ay, (3.23)

Y=Yo

5 Benoit Mandelbrot, Polish-born French mathematician, 20 November 1924-.

" Felix Hausdorff, German mathematician, 8 November 1868-26 January 1942.

8 Abram Samoilovitch Besicovitch, Ukrainian-born Russian/English mathemati-
cian, 24 January 1891-2 November 1970.
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where Ay =y — yo and Ay’ =y’ — P(yo) = ¢ — y§- A general solution of the
linear ODE (3.23) is exponential,

Ay(t) = M Ay(0), (3.24)
that, being rewritten for A, gives
1. |Ay(t)]
= In .
t - [Ay(0)]

In applications, a value derived is of interest on a long time scale. There-
fore, an equation is rewritten as

A= lim 1 In [Ay(®)]
t—oo t [Ay(0)f
and is called the Lyapunov exponent.
If we now differentiate (3.24), Ay’ = Ae* Ay(0), and then substitute Ay
and Ay’ to (3.23), we arrive at an analytical measure of the Lyapunov expo-
nent; that is,

(3.25)

A= 81;(y) . (3.26)
Y ly=yo
An obvious conclusion follows instantly: if A > 0, the trajectories diverge;
when A = 0, they conserve a mutual distance; and, if A < 0, they converge.
Most generally, a closed loop system is described by a multi-state model
with the Lyapunov exponent derived in a like manner,

A= lim L YO — o) (3.27)
t=oo t [y(0) —yo(0)|

where the value |y(t) — yo(t)| means a distance between the trajectories in
state space at time ¢. It is commonly accepted that, like the one-state case, if
the largest Lyapunov exponent is negative, then the trajectories will converge
and the system will evolve to equilibria and limit cycles. With the positive
largest Lyapunov exponent, the trajectories will diverge and a system will go
to chaotic attractors. Finally, a zero largest Lyapunov exponent says that the
trajectories have in average the same space distance with time and the system
has regular attractors.

3.5 Conservative Systems
An important class of systems is formed by the conservative systems which
satisfy an energy-balance equation, provided the definition given by Maxwell?:

9 James Clerk Maxwell, Scottish mathematical physicist, 13 June 1831-5 November
1879.
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Conservative system: “A material system of such a nature that af-
ter the system has undergone any series of changes, and been brought
back in any manner to its original state, the whole work done by ex-
ternal agents on the system is equal to the whole work done by the
system overcoming external forces.”
James Clerk Maxwell
O

In a conservative system, the sum of the energy stored in the system at
some time ¢ plus the outgoing energy equals the sum of the initial energy stored
in the system and of the incoming energy. Therefore, the conservative systems
are often called the system without a dissipation of energy, pointing out that
the systems in which the energy is dissipated, the dissipative systems, are not
conservative. For conservative systems, the sum of all Lyapunov exponents is
zero and, for dissipative, it is negative.

If a system is described with the exact first-order differential equation of
the form

P(y,z)dz — Q(y,2z)dy =0, (3.28)

where

OP(y,z) _ 0Q(y,z)

oy = an (3.29)
then it is a conservative system. The solution to (3.28) is given by
2 y
/ Py, 2)dz — / Qly,2)dy = C, (3.30)
%o Yo

where the integration constant C' is associated with the initial conditions. An
example of the conservative system is van der Pol’s oscillator with a zero small
parameter € = 0 that makes its equation to be y” + w3y = 0. A great deal of
systems governed by partial differential equations are also conservative.

Example 3.8. A system is described with the equations

Y =2+202+2%) =Py,2), Z=y—y@’*+2)=0Q(,z2). (3.31)
Since P, = —Q’, = 2yz, then, by (3.29), the system is conservative. The

system has three fixed points: (—1,0), (0,0), and (1,0). A general integral, by
(3.29), is defined to be

(2 + 22)% —2(y% — 2%) = 4C. (3.32)
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If we now let 4C' = ¢* — 1, then an equation will attain the form

(2422 20 - 22) =t —1, (3.33)

describing the Cassinian'® ovals (Fig. 3.12), in which the directions of the
phase trajectories are readily defined by Table 3.2.

z

c=1

=

="

-1

o

Fig. 3.12. Cassinian ovals following with a step Ac = 0.1.

It can be shown that, by ¢ = 0, the oval degenerates into two points with
the coordinates (—1,0) and (1,0). With ¢ = 1, it is a so-called lemniscate. By
¢ > /2, the curves are ovals, if 1 < ¢ < /2, they are “dog bones,” and, by
0 < ¢ < 1, the curve consists of two loops. O

If (3.29) is not satisfied,
OP(y,z) , 0Q(y,z)
Ay 0z

the differential equation (3.28) is inexact. Inexact equations can be solved by
defining an integration factor g(y, z) such that the resulting equation becomes
exact, namely

# (3.34)

o(y, 2)P(y, z)dz — o(y, 2)Q(y, z)dy = 0, (3.35)
where the factor o(y, ) satisfies the partial differential equation (PDE)
oQ 0P do 0o
=—-P_ - 3.36
(82 * ay) Oy QBZ (3:36)

and (3.29) is satisfied with

19 Giovanni Domenico Cassini, French/Italian astronomer and mathematician, 8
June 1625-14 September 1712.
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9oy, 2)P(y,z) _ 9oy, 2)Q(y.2) (3.37)
Jy 0z
It is seen that, by o(y, z) = 1, a relation (3.36) becomes (3.29) and, so, a
condition (3.36) is most general. But we still do not know if a system satisfying
(3.36) is conservative. The definition given by Andronov claims that such a
system is conservative if the factor u(y, z) also called conservative density or
integral invariant density is positive valued,

o(y,z) > 0. (3.38)
Defined p(y, z), a solution of (3.35) is obtained in a like manner,

z

/ o(y, 2)P(yo, 2)dz — / 0y, 2)Qy, 2)dy = C. (3.39)

20 Yo

Example 3.9. Given a system, performed by the equations

Y =224+y"+22 - 1="Py,2), 2'=-2y=Q(y,2). (3.40)

Here we have P, = 2y # Q, = 0 and hence the associated differential
equation (3.28) is inexact. To find a general integral, we exploit (3.36) and
arrive at

do do

2yo=—(2z+y* +2* -1 2y, .

yo=—(2z4+y += )8y+ Yo,

It is known that an equation like this has an exponential solution. It also

follows that if 0 does not depend on y, then an equality holds if p = e*. Since

e” > 0, then, by (3.38), a systems is conservative. By this value, a general
integral applied to (3.35) is defined to be

(y* + 22 —1)e* =C, (3.41)

where the constant C' corresponds to the certain trajectory of a system. 0O

3.5.1 Hamiltonian Systems

An important class of conservative systems is united in what is known in
physics as Hamiltonian systems. The dynamical system is said to be a Hamil-
tonian system if for a smooth function H(y,z), where y and z are n x 1 vector
functions associated with y and z, respectively, the following equations hold
true:

,_ OH



142 3 Qualitative Methods of Systems Description

, OH
Zy = oy’ (3.43)
where i € [1,n]. If the function H exists, then it is the Hamiltonian function
or the Hamiltonian. Accordingly, (3.42) and (3.38) are called Hamilton’s equa-
tions. A number of degrees of freedom of a Hamiltonian system is the number
of (yi, z;) pairs in (3.42) and (3.43). This number is equal to n and the phase
space is thus 2n-dimensional.

For example, in mechanics, the vector y represents the coordinates of
the system components, while z is a set of momenta. Therefore, typically,
the hamiltonian is often assumed to describe the total energy of a system,
although this is not always the case. If the system energy is constant, the
Hamilton function is constant as well that allows using this fact in integrating
the equation (3.28).

If the Hamiltonian system is of the second order, equations (3.3) may be
rewritten as

dy _ _8H
gt = Py, z) = 9z (3.44)
dz OH

where the Hamiltonian H represents the system energy. It now follows
straightforwardly that the Hamiltonian system is a particular case of a con-
servative system.

Example 3.10. Let us come back to the system (Example 3.2) and write its
equations as follows,

yoooo 00 OH (3.46)

For the fixed point (zg = 0,39 = 0), we have P = z, and @ = y, and the
system energy is defined by

H= O/P(z)dz—O/Q(y)dy (3.47)

e 1o
=55 = 5y =C. (3.48)

As can be seen, the Hamiltonian derived (3.48) satisfies the equations
(3.46). The phase trajectories are thus described by

2=+ +2C (3.49)

that gives, by C' = 0, two separatrices, z = y and z = —y (Fig. 3.3b), rep-
resented in Example 3.3 by the eigenvectors. The phase portrait of a saddle
associated with (3.49) is shown in Fig. 3.3c. O
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Example 3.11. Consider two general integrals, (3.32) and (3.41). It can easily
be shown that, by assigning, respectively,

1 1
H=C= W+ - =),

c cC
H="=C o2,
wooe
and then differentiating (3.44) and (3.45), we arrive at the relevant functions
P(y,z) and Q(y, z) given in Examples 3.8 and 3.9, respectively. a

3.6 Dissipative (Near Conservative) Systems

As we have already mentioned before, a great deal of nonlinear systems of
practical importance is described by the ODE (2.84), in which ¢ is a small
value. However, namely this small € changes a picture cardinally: if € = 0, a
system is conservative (idealized) and when e > 0 a system becomes dissipative
(real physical). Referring to this fact, a qualitative analysis of a system may
be provided in the mathematical form like that used in (2.84). Indeed, if we
will think that there is a conservative system, (3.44) and (3.45), with known
properties, then the dissipative (although near conservative) system can be
described by

V= Py, )+ uply 2 = Ply, 2 0) (3.50)
= QU 2) + paly, 2.0 = Q) (3.51)

where p is a small value and p(y, z, 1) and ¢(y, 2, u) are analytic functions in
the observed range.
Referring to (3.44) and (3.45), the equations can be rewritten as

dy ~ OH 2
= 9s +pp1(y, 2) + ppa(y, 2) + ..., (3.52)
dz OH 9
a = oy +pag(y, 2) + pie(y, 2) + ..., (3.53)

where the products of small values 1%, k > 1, may be neglected. The following
Pontryagin theorem then helps to recognize whether a limit cycle in a system
(3.52) and (3.53) exists or not.

Theorem 3.6 (Pontryagin theorem). Let (5.52) and (5.53) be a near
Hamiltonian system with a small value p and Ly a closed loop of a Hamil-
tonian system ’f;t’ = —88];1 and ‘;j = %I;. Let also y = ¢(t) and z = (t) be
behaviors of a system with period T and Go a range within Lg. Then, if
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/ ; [P1, (Y, 2) + ¢1.(y, 2)] dy dz = 0, (3.54)
T
= /{p’ly[sa(ﬂr), ()] + q1.[e(x), ()]} doz # 0, (3.55)
0

then there exist values a > 0 and b > 0 such that
a) For any |p| < b, a system has only one closed loop L, that approaches
LO Zf:u - 07
b) A trajectory L, is a “rough” limit cycle that is stable when pl < 0 and
unstable if pl > 0.
O

Example 3.12. Consider van der Pol’s oscillator

y' ry=cl -9y,
where ¢ is a small value, and rewrite its equation in state space as
y'=-z, Z=y+el-y’):z.

With small ¢, the oscillator may be considered to be a near Hamiltonian
system,

, oH OH

where the Hamiltonian is
1
Hiy,2) = (5" + ).,

and the trajectories of a system are cycles with a center at (yo = 0, 29 = 0).
To study the original oscillator equations, we represent them in the forms
of (3.52) and (3.53). Accordingly, we have

p(y.2) =0, q(y.2)=010-y")z.

In accordance with the Pontryagin theorem, it now needs evaluating the
integral (3.54) attaining the form of

//Goqiz(y,z)dydz=//GO(1—y2)dde-

To evaluate, we change the variables to y = r cost and z = rsint, define the
determinant of the Jacobian of the transformation J = r, and rewrite the

integral as
27 r

//r(l—rzcos2 0) dr df = Zr2(4—r2).
00
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A simple observation shows that the integral is zero only if » = 2, since any
radius cannot be negative.
Now let us evaluate the value [ (3.55) that, for our conditions, becomes

2m

2
l:/(l—r2cos29)d9:27r(1—g) =21 <0.
0

It then follows, by Pontryagin’s theorem, that the closed trajectory, y =
—2cost and z = 2sint, of the Hamiltonian system originates the structurally
stable limit cycle that is stable if € > 0 and unstable with € < 0. a

Example 3.13. Given a system considered by Andronov et al.,

v =2, Z=ylz-1)+y*+2%+pz,

where p is a small parameter. The system has two fixed points: A (y = 0, z=
0) and B (y = 1, z = 0). The fixed point B is a saddle for an arbitrary pu. The
eigenvalues of the point A are calculated by

I G
="+ -1
Az = \/ 4

and we have the following characteristics of this point for different small values
of u:

If p < —2, then the fixed point is stable node

If —2 < p < 0, then the fixed point is stable spiral

If 0 < o < 2, then the fixed point is unstable spiral

If 2 < p, then the fixed point is unstable node

If 4 = 40, then the fixed point is unstable spiral

If 4 = —0, then the fixed point is stable spiral with an unstable cycle

Ooooooog

3.6.1 Near Conservative Time-varying Systems

All real physical systems are affected by environment and many of them are
controlled or synchronized by some external signal. In each of these cases, a
system becomes time-varying, LTV or NTV.

In analogous to (3.50) and (3.51), equations for the near conservative time-
varying systems may be written as

d
d:Z = P(y,z) + pp(y, z, i, ) , (3.56)
dz

=Q(y,2) +pq(y, 2z, p, 1), (3.57)

dt
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where the functions p(y, z, u,t) and ¢(y, z, u, t) are time-dependent and we
still think that p is a small parameter making a system near conservative,
although dissipative.

Certainly, we must know how the time-varying parts of (3.56) and (3.57)
result in behaviors of systems. If we know everything about the unperturbed
system described with y' = P(y, z) and 2’ = Q(y, z) and a system is at equilib-
rium, then the main question is if a system is still stable or it became chaotic
owing to the perturbing terms. To come up with an answer to this question,
one can apply the common methods and analyze a system at different time in-
stances that usually entails difficulties. In some particular cases, the answer,
even approximate, can be found faster. One of the cases is when a system
is perturbed periodically. Here, a transition to chaos may approximately be
predicted for a class of systems using the Melnikov method.

3.6.2 Melnikov’s Method

One of the common cases of practical importance is when a system described
by (3.56) and (3.57) has a homoclinic trajectory formed by a saddle loop such
as that shown in Fig. 3.7 with C' = 0. Most generally, the unperturbed system
can have any periodic orbit. It is known that, under the certain circumstances,
a system may become chaotic. To determine the relevant condition, let us
perform a system with a matrix equation

7z’ = f(z) + pg(z,t), (3.58)

where

_ (y(®) _ | P(y,2) _ |p(y,21)
O R O e T R Fe it B

Now consider Fig. 3.13 that shows a homoclinic trajectory (unperturbed
closed loop of a saddle) associated with the equation z’ = f(z) and two sepa-
ratrices (manifolds) of a saddle (perturbed open loop) occurred owing to the
term ug(z,t).

Let us suppose that at some time instant ¢y two separatrices of a perturbed
saddle, 1 and ro, trace at a distance D(tp). If this distance occurs to be zero,

D(tp) = 0, then the necessary condition is satisfied for a system to be chaotic.
Melnikov has shown that D(tp) can be calculated by

1
Iz (0)]]

where the components of a vector n[zo (¢t —to)] are identified by the equations

D(to) = M(to), (3.59)

f[Zo(t — to)]Tn[ZQ(t - to)] =0 5 (360)
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Unperturbed
closed loop

\ Perturbed
( open loop

P i i

Fig. 3.13. Homoclinic trajectory.

[£[z0(t = to)]| = [n[z0(t —t0)][ (3.61)

and zo = z(t — tg) is a solution of the equation z’' = f(z) associated with the
separatrices.

The value M (i) is provided by

by r —js'V~f(0’)d0’
M(ty) = / el70(0), 0 + to] "nlzo(0)]e a0 (3.62)
and has an alternative form of
o0 6
— [ V-£(0") A6’
M(t) = / £l70(0)] A g[20(0), 0 + tole © a0, (3.63)

where the divergence of the inner integral is ascertained by
0P(y,z) 0Q(y,z2)
V.-f=
Jy + 0z
and the wedge product of two vectors is defined by

(3.64)

fAg=Pq—Qp. (3.65)
The value M(ty) is proved by the Melnikov theorem and, therefore, is
called the Melnikov integral.

There is an important particular case when P(z) does not depend on y
and Q(y) on z. Thus, V - f = 0 and the Melnikov integral becomes
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M(t) = / £[2(60)] A glz0(6), 6 + to]d6 . (3.66)

Solving Melnikov’s integral equations helps understanding whether a sys-
tem is addicted to chaos or its behavior is absolutely predictable for an arbi-
trary control signal.

3.7 Summary

So, we have observed in brief the qualitative theory of systems. Even though
its roots are in the works of Poincaré and many studies have resulted in
a number of books and papers, the qualitative theory is still in progress.
Especially, it is related to chaotic systems. The theory helps investigating
a great deal of problems, when an analytic solution of the system dynamic
equation is problematic both in the time and frequency domains. Moreover,
analytic solutions are often redundant. Summarizing, we list below the most
fundamental canons of the qualitative theory:

Qualitatively, a system is learned in phase space (multiple states) or phase
plane (two states) with time excluded from the variables and existing
indirectly.

— A line with a constant tangent in phase plane is called the isocline.

— The fixed points in phase plane are determined by zero time derivatives
of all of the system states.

— The topological nature of a fixed point is defined by the coefficients of the
characteristic equation of a linearized system.

— The phase trajectory is a curve of a system behavior in phase plane. An
assemblage of phase trajectories is the phase portrait.

— A special trajectory that is not crossed by any other trajectory is called
a separatrix.

— A special closed phase trajectory exhibited by nonlinear systems is a limit
cycle.

— An attractor is a curve, or point, or manifold which the trajectories asymp-
totically approach. An attractor may be regular or chaotic.

— A fixed point, or trajectory, or manifold is structurally stable if it is robust
to small perturbations.

— A parameter of a system is said to be bifurcation if a topological structure
of a dynamic system associated with this parameter differs from that
associated with other parameter.
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— The conservative systems are often called the systems without a dissipa-
tion of energy.
— The Hamiltonian system is a particular case of conservative systems.

— If a system dissipates energy with time, then it is a dissipative system.

3.8 Problems

3.1 (Stability of linearized nonlinear systems). A system is given with
the following differential equation. Define the fixed points of a system. Realize,
whether the point is stable or not.

1.y =2z, 2 =6y—2y°

2.y =22-22, 2=y

3.y =32—-222+2y%, =3y

Ay =2—4?, 2 =2+ 22

5.y =122 — 623, 2/ =2y?

6.y =2z, 2 =6y—12y°

Ty =24 .00 —y?), =yttt =2
8.y =—2+yz, 2Z=y+22

9.9 =y2-z2-y), 2 =z2(4y-y*-3)

3.2 (Phase trajectories). Given a system

1.y" =y+2y
2.y" +ay +by=0
.y =2y"—vy

Represent the system in state space. Following Example 3.3, determine the
eigenvalues and eigenvectors. Plot the separatrices and define their directions.

3.3. For the linearized system (Problem 3.1), following Example 3.3, define
the eigenvectors at the fixed points. Determine the directions of the separa-
trices.

3.4. A system is represented in phase plane with the separatrices (Fig. 3.14).
Assuming arbitrarily initial conditions, show the possible phase trajectories
of a system.

3.5. In the phase portrait shown in Fig. 3.15, find errors in the separatrices
and fixed points. Recall that a stable fixed point is depicted by a bold point,
whereas unstable by a cycle.

3.6. Using the Bendixson criterion, realize whether the systems given in
Problem 3.1 has a limit cycle or not.
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(a) (b)

() (d)

Fig. 3.14. Fixed points and separatrices in phase plane.

(d) (e) ()

Fig. 3.15. Fixed points and separatrices in phase plane. What is wrong here? Find
errors.
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3.7. A system is given with
Ly =vy3+ 22+ 292 — 222, 2 =—2292—2%y+ 2% +siny
2.9 =y—2z—2y(y?+2%), Z=y+z—2(y*+2?
Using the Bendixson criterion, realize whether a systems has a limit cycle or

not.

3.8 (Structural stability). A system is given with the differential equations
(Problem 3.1). Using the Andronov-Pontriagin theorem, realize whether the
system is structural stable at the fixed point or not.

3.9. Using the Andronov-Pontriagin theorem, ascertain the structural stabil-
ity of a system described in Problem 3.7.

3.10 (Bifurcations). A system is given with the following differential equa-
tions having a free parameter u:

—_

Yy =2z, 2 =y(l - py)

2.y = (2—2u) 7=y

3.y =2(3— 2z)+2,uy2, 2 =3y

4oy =22 —(n—1)y%, 2’=y2+uz2

5.y =2z(2— uz), 2 = 2y?

6.y =2z, = 6y(1 — 2uy?)

7-y’=z+y( D(y? —2%), 2=yl —y)+2(up—1)(y* —2?)
8.y =—2(1-py), 2 =y+(p-2)2"

9.9 =y2—-pz—y), 2 =z2(4y—py*-3)

Investigate the phase portrait of a system and define the bifurcation value of
1.

3.11. Analyze bifurcations in the systems presented in Problem 3.10. What
kind of bifurcation it has? Use Table 3.4 as a reference.

3.12. Table 3.4 gives several equations associated with the distinguished
kinds of bifurcations. Investigate these equations in the phase plane ',y and
illustrate each bifurcation graphically.

3.13. Investigate and plot the bifurcation diagram for the systems given in
Problem 3.10.

3.14. Investigate and plot the bifurcation diagram for the systems given in
Table 3.4.

3.15 (Conservative systems). Consider a system given in Problem 3.1.
Which system is conservative and which is not?

3.16. Consider a system given in Problem 3.10. Find a value of the parameter
1, making the conservative system to be non conservative and vise versa.
Which system cannot transfer from the conservative to non conservative state?
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3.17. Consider a system given in Problem 3.1. Whether this system is conser-
vative or not? If not, find the function o(y, z) to transform the non conservative
system to conservative?

3.18. Given a system

!

Y =224+ +22 -1, 2 =-2.
Verify that its general integral is (y2 + 22 — 1)e* = C.
3.19. Given a system
y =242 +2%), Z=y—yl’+2%).
Verify that its general integral is (y? + 22)% — 2(y? — 22) = C.

3.20 (Hamiltonian systems). A system is given with ¢ = z and 2’ =
—ay — by3. Verify that the Hamiltonian of the system is

1 a b
H— 52 2 4
22 + 4y + 4y
3.21. A system is given with 3’ = 2z and 2z’ = —siny. Verify that the Hamil-
tonian of the system is
1 Y
H=_2%+2sin* .
22 + 2s1n 9
3.22. Revise the systems given in Problem 3.1. If a system is conservative,
write its Hamiltonian.

3.23 (Dissipative (near conservative) systems). Consider a dissipative
system
/

y'=—z, 2 =y+upulatby—cy?)z,
describing an electronic oscillator.

1. How many fixed points has this system?

2. Characterize the fixed point of a system at zero.

3. What is the condition for the system to be Hamiltonian? Satisfied this
condition, what will be the Hamiltonian?

4. What is the condition for the system to have a limit cycle?
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LTI Systems in the Time Domain

4.1 Introduction

The most useful mathematical abstraction of real systems is a linear time-
invariant (LTT) system. As a model, an LTI system is represented with some
kind of a linear operator O that maps the input x(¢) to the output y(¢).
Typically, features and properties of a linear operator are much simpler than
those peculiar to the nonlinear operator. Moreover, it is tacitly implied that
the operator transforms signals linearly in the infinite range of values. Even
though the latter cannot be met in practice, at least by saturation, the LTI
model allows learning principle properties of many real structures and chan-
nels. Therefore, the LTI system analysis and synthesis are fundamental for
the general systems theory.

There are three basic approaches to describe an LTI system in the time
domain. One can use the convolution to couple an arbitrary input signal with
the LTT system output via its impulse response. An LTI system can also
be represented with the linear ordinarily differential equation of some order.
Alternatively, an LTT system could be performed by a set of its states in state
space or, albeit less commonly, in some other coordinates. All these methods
are interchangeable, thus universal for LTT modeling.

4.2 Convolution

Let us start with the mathematical description of LTI systems in the time
domain. For the sake of simplicity, it is in order to first consider a single-input
single-output (SISO) LTI system, whose output y(t) is coupled with its input
z(t) by some linear and time-invariant operator O,

y(t) = Ox(t). (4.1)
What could be this operator? To find an answer, one needs to apply the
test unit impulse, x(t) = 6(¢), and follow the fundamental definition:
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Impulse response of an LTI system: The response h(t) of an LTI
system at time ¢ to the unit impulse 0(¢) at time ¢ is the LTI system
impulse response
h(t) = Od(t). (4.2)
O
If we now use the sifting property of the delta function (Appendix A), we
can formally substitute a continuous-time input signal x(t) by

(oo}

2(t) = / 2(0)5(t — 0)do (4.3)
Substituting (4.3) to (4.1), using the definition (4.2), and invoking the

time shifting property of any linear operator that in our case gives h(t — ) =
O6(t — ), we arrive at the rule

Yt =0 / 2(0)5(t — 6)d0 = / 2(0)08(t — 0)d0 = / 2(O)h(t — 0)d0

that claims that the LTI system output y(t) is coupled with its input x(t) by
the LTT system impulse response h(t).
The integral relation derived is termed the convolution,

oo

y() = w(t) * h(t) = / 2(O)h(t — 0)d0, (4.4)

— 00

describing the process in a continuous-time LTT system that maps a continuous-
time input x(¢) into a continuous-time output y(¢). The convolution (4.4)
playing a fundamental role in the theory of LTI systems is also known as the
Duhamel’s' integral or the Duhamel’s convolution principle.

The answer is thus the following. In the time domain, the operator O of
an LTT system is the convolution (4.4) representing the LTT system response
y(t) at time ¢ to an arbitrary input z(¢) at time ¢.

Fig. 4.1 illustrates the convolution principle in the time domain. The sys-
tem impulse response h(t) is determined by applying a unit impulse to the
input, x(t) = §(¢). Then the LTI system output representes the system im-
pulse response y(t) = h(t) as shown in Fig. 4.1a. Provided h(t), the LTI system
response y(t) to an arbitrary signal x(¢) is obtained by the convolution (4.4)
as shown in Fig. 4.1b for the rectangular pulse.

Example 4.1. An LTI system is represented with the impulse response

! Jean Marie Constant Duhamel, French mathematician, 5 February 1797-29 April
1872.
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3(1) h(?)
o 5(7) o h(?) ’\
a

0 t 0 t
() ()
x(?) (0
b) — A —>
( 0 t 0 t

Fig. 4.1. The convolution principle for LTI systems: (a) determining the impulse
response h(t) and (b) response y(t) to an arbitrary signal z(t) via h(t) and (4.4).

ae P ift >0 o
) = {0 otherwise %€ u(t), b>0. (4.5)

A signal acting at the system input is a rectangular pulse (Fig. 4.1b),

x(t):{Aolfogtgf (4.6)

0 otherwise

To define the system output by the convolution (4.4), perform the rectan-
gular pulse (4.6) with two shifted unit-step functions as z(t) = z1(t) — x2(t),
where z1(t) = Aou(t) and z2(t) = Aou(t — 7).

It is seen that both h(t) and z1(t) = Aou(t) are zero-valued with negative
time. Therefore, by t < 0, 21(6) and h(t — 6) in (4.4) do not overlap. If ¢ > 0,
then h(t) and z1(t) = Aou(t) overlap from 8 = 0 to § = t. Accordingly, the
bounds in (4.4) are changed and the system response y1(t) to x1(¢) is provided
with

[’} t

yi(t) = / z1(0)h(t — 0)do = aAO/efb(t—G)de
o )
- ZAO (1—e ™) ut). (4.7)

Because the system response ya(t) to x2(t) is merely a shifted version of
Y1 (t)a

Yo (t) = yi (t — TYu(t — 7) = ZAO [1 - e*b@*ﬂ} u(t — 1),

we instantly arrive at the system response to (4.6); that is,

y(t) = y1(t)—y2(t) = ZAo (1—e™)u(t)- ZAO [1 — e‘b“‘”} u(t—7). (4.8)

Fig. 4.2 demonstrates several stages of the convolution calculus, by (4.5)
and (4.6). Geometrically, the convolution can be interpreted as a joint area
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x©®) T
0 t it t3 Z, 0
W1, -0 )/
N |
h(0-6) 1 |
!’_/ -----------------
| 0
h(t,~6) ’
1 B
|
h(t, =9) /
]
0
h(t; =0) \ /
o
0
h(t, ~0) \ /
0
»(t)
T
o t t, A t, t

Fig. 4.2. Several stages of the convolution computation.

(shadowed) of two shifted and inversely related functions z(¢) and h(t), for
which the output equals zero if 6 is negative. It is seen that the response
increases in the amplitude when the area increases (0 < t < t3). It then
reduces with ¢t > t5 asymptotically approaching zero, when the area reduces.

O

A common conclusion following the convolution computation analysis (Fig.
4.2) is that the length of the system response y(t) is the sum of the signal
length 7 and the impulse response h(t) length.
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4.2.1 System Step Response

If the input is formed with the test unit step function, z(¢) = u(t), the LTI
system output is the step response, provided the other fundamental definition:

Step response of an LTI system: The response g(t) of an LTI
system at time ¢ to the unit step u(t) at time ¢ is the LTI system step
response
g(t) = Ou(t) . (4.9)
O
We now know that the operator O of an LTI system in the time domain
is the convolution. Therefore, the system step response can be defined by

g(t) = ult) * h(t) = / w(O)h(t — 0)d0 = /h(t — 9)do. (4.10)
0

— 00

The integral form (4.10) establishes two fundamental relations between
the LTT system impulse and step responses:

t

g(t)z/h(T)dT & h(t)zdtg(t), (4.11)

— 0o

meaning that g(t) is performed by the instantaneous area of h(t) and, in turn,
h(t) is represented by the time rate of g(t).

Example 4.2. Consider the system response (4.7) to z1(t) = Aou(t) that, by
Ap = 1, becomes the system step response and we can write

g(t) = Z (1—e ) u(t).
Differentiating this relation, by (4.11), leads to the system impulse response
h(t) = ae~ttu(t)

that was earlier specified by (4.5). O

4.2.2 Properties of the Convolution

As we recently deduced analyzing Fig. 4.2, the convolution length is the sum
of the signal length and the impulse response length. There are many other
widely recognized and important properties of the convolution.
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Commutativity

Consider the convolution integral (4.4). If to introduce a new variable n = t—6
and substitute § =t —n and df = —dn, then (4.4) transforms to

o0 —oo+t

y(t) = / £(O)h(t — 6)d0 = — / £(t — m)h(n)dn
—00 oo+t
- / h(n)er(t — n)dn,

establishing the following commutativity property:
y(t) = x(t) * h(t) = h(t) * z(t), (4.12)
meaning that the input and impulse response are commuting in LTT systems.

Example 4.3. A system is characterized with the impulse response h(t) =
e~%u(t), a > 0, and the input signal is z(t) = e~*u(t), b > 0.
By the convolution (4.4), the system output is defined to be

t t
y(t) _ /efbeefa(tfﬁde — efat/ef(bfa)ede
0 0

1 —at —bt
= e " —e .
b —a ( )
One arrives at the same result, by using the commutativity property (4.12):

t t

y(t) :/efaeefb(tfe)doze*bt‘/\ef(afb)ede
0 0

1 —bt —at 1 —at —bt
= et —e = e —e .
o =, )
Now observe that the functions z(t) and h(t) differ only by the coefficients
a and b. A verification of the commutativity property follows immediately by
interchanging a and b that does not affect the system response. O

—a

Distributivity

The property of distributivity is supported by the superposition principle and
is critical for the distributed LTT systems. Distributivity suggests that if the
impulse response is composed with an additive sum of N particular impulse
responses, then the convolution can be calculated as
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N N

2(t)« > hi(t) =Y x(t) * hi(t) . (4.13)

i=1 i=1
Inversely, if an input is a superposition of several particular subsignals,
one can employ the rule

N N

h(t)« > ai(t) =Y h(t) * zi(t) . (4.14)

i=1 i=1
An application of (4.14) can be found in Example 4.1, where the input
z(t) is substituted with a sum of two subsignals z1(¢) and z2(t).

Homogeneity

When one of the functions, z:(¢) or h(t), is multiplied (gained) with a constant
a, then the following homogeneity property can be used,

x(t) * [ah(t)] = [ax(t)] * h(t) = alz(t) * h(t)]. (4.15)

One can find applications of this property in Example 4.1 and Example
4.2 as featured to LTI systems.

Linearity

Both distributivity and homogeneity imply linearity and it is seemingly obvi-
ous that the property of linearity is fundamental for all kinds of LTI systems.
Examples are the convolution, integration, and differentiation representing
the linear system operator O.

Associativity

In applications, a signal x(t) very often passes through two or more LTI sub-
systems, which impulse responses are presumed to be known. The response
of a whole cascade system to z(t) can be calculated using the property of
associativity.

Let an LTT subsystem having the impulse response h(t) responds to the
input z(t) as y1(t) = x(¢t) * h1(t). If y1(¢) acts in the input of some other LTI
subsystem with the impulse response ha(t), then the output is calculated by

y(t) = yi(t) * ha(t) = [z(t) * ha(t)] * ha(t) .
The property of associativity claims that

[£(t) * ha(£)]  ha(t) = x(t) * [ha(t) * ha(t)] - (4.16)
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To verify, one can rewrite the left-hand and right-hand sides of (4.16)
separately as in the following:

oo

[2(t) % by ()] * ha(t) = / [2(61) % by (61)]ha(t — 61)d6,
= 7 7x(92)h1(91 — 02)ha(t — 61)d6d0,, (4.17)
() * [ (£) * ho(t)] = 7 2(03)[ha(t — 03) * ha(t — 03)]d63
= 70 70 2(03)h1 (04)ha(t — O3 — 04)df3d0, (4.18)

Now change the variables in (4.18) to 63 = 6, and 6, = 61 —65. Having new

variables, (4.18) needs to be multiplied with the determinant of the Jacobian
8(03,04)
8(61.62)
(4.18) becomes (4.17) and the proof of the associative property is complete.

of the transformation that in our case is unity, J = = 1. Instantly

Example 4.4. Define the step response of a system composed by a cascade
of two subsystems (Fig. 4.3a) having equal impulse responses,

hi(t) = ha(t) = ae”btu(t).

By the associativity property (4.16), we first ascertain the impulse response
of the whole system

t t t
h(t) = / hy(0)ha(t — 0)dO = a? / e e b(t=0) g = g2 / do = a’te™ .
0

0 0

Then, by the convolution integral and identity [ ze®*dz = e** (* — 1),
the system step response becomes

L 2 2
g(t) =a? /(t —0)e =09 = 22 (1—e ) — C;) te
0

having a shape shown in Fig. 4.3b. In a bit more sophisticated way, the same
result can be obtained by calculating first the output of the first subsystem
and then the output of the second subsystem (the reader is encouraged to
verify this). Fig. 4.3c illustrates the transformation stages for the latter case.

O
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x(1) h(t)
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=
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Fig. 4.3. A cascade LTI system: (a) system, (b) output via h(t), and (c) output
via hy(t) and ha(t).

Consistency with Cross-correlation

Convolution is closely related to cross-correlation. Consider the real input z(t)
and the impulse response h(t). By the definition, the cross-correlation between
two functions is evaluated with (see Signals)

oo

Pun(0) = / z(t)h(t — 0)dt = x(t) x h(t).

— 00

It is seen that, by the sign changed of a variable in h(t), the cross-
correlation function becomes the convolution (4.4) and we thus can write

z(t) x h(t) = z(t) * h(—1), (4.19)

x(t) * h(t) = x(t) * h(—t). (4.20)

The consistency relations (4.19) and (4.20) are often used to evaluate the
correlation properties of a system via the convolution and vise versa.

4.2.3 Properties of LTI Systems

Using the properties of convolution, it becomes possible to outline many of
the useful properties of applied importance featured to LTI systems. The most
common of those are listed below.
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Linearity

By definition, any LTI system is linear and time-invariant. The output and
input of such a system are coupled by the convolution via the system impulse
response. The convolution cannot be applied in its standard form (4.4) to
time-variant and nonlinear systems.

Stationarity

The property of stationarity means time-invariance of the system operator
that is the second fundamental property of any kind of LTI systems. Because
the operator O of an LTI system is time-constant, the system performance is
not affected by time and it can be shown that, most generally, time shifting
in the input results solely in time shifting in the output:

y@—r%z@dﬁ—ﬂzl/hWM@—T—GM&

Any linear system that does not meet this requirement belongs to the class
of time-variant systems.

Memory (Inertia)

An LTI system can be with or without memory. The term “memory” in
electronic systems is consistent with the term “inertia” in mechanical systems.
In memoryless (inertialess) systems, the present output y(t¢) depends on only
the present input x(t). The relationship between y(t) and z(¢) thus can be of
the form

y(t) = Gz(t), (4.21)

where GG is a constant gain factor representing the system operator by an
identity O = G.
The impulse response of the memoryless system is delta-shaped,

h(t) = Go(t) (4.22)

and hence does not equal to zero only at ¢t = 0. Otherwise, if h(t) # 0 when
t # 0, a system has some memory and thus is inertial or dynamical. An
example of a memoryless system is amplitude scaling, whereas integration and
differentiation are elements of memory systems. Based upon this definition,
it can easily be observed that all systems considered in Examples 4.1-4.4 are
memory.

Example 4.5. An LTI system is represented with the impulse response h(t) =
ad(t). The input is a harmonic signal x(t) = Ag coswpt with constant both the
amplitude Ay and carrier angular frequency wg. By the convolution integral
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(4.4) and sifting property of the delta function (Appendix A), the output is
defined to be

y(t) = aAp / d(t — 0) coswpfdl = aAg cos wot

and we see that the system provides amplitude scaling, thus is memoryless.
O

Causality

Most generally, the convolution (4.4) implies integration over the infinite
bounds, thereby fitting the cases of both causal and noncausal signals and
systems. If a signal or/and system is causal, then the convolution modifies,
basically resulting in two special cases.

Convolution for either causal systems or signals. To modify the
convolution for causal systems, one needs to recall that a system is causal
if its output y(t) at an arbitrary time instant ¢; depends on only its input
x(t) for t; > t. This means that a causal system does not respond to any
input event until that event actually occurs. Indeed, the impulse response is
generated by a unit impulse that exists at only zero point, ¢ = 0. Thus, for
causal LTT systems, we have

h(t) = {g(’f) e (4.23)

Applying (4.23) to (4.12), we arrive at two equal forms of convolution for
causal systems:

t

y(t) = /x(e)h(t—e)da

— 00

/ h(0)z(t — 0)do. (4.24)
0

Reasoning along similar lines, one can verify that if a signal is causal; that
is,

fa(t) ift=0
o(t) = {0 ift<0° (4.25)
and a system is noncausal, then the convolution is calculated with

t

y(t) = /x(ﬁ)h(t — §)do = / h(0)z(t — 6)do.
0

— 00

Convolution for causal both systems and signals. Assume that
a system is causal and thus its impulse response is defined by (4.23). Let
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the input z(t) be also causal as specified by (4.25). By (4.25), the convolu-
tion forms (4.24) modify to those associated with causal both systems and
signals,

mo:/ﬁwm@—mwz/ﬁwmu—mw. (4.26)
0 0

We notice that the forms (4.26) were used in the examples considered
above in this Chapter.
Stability

For LTT systems, the critical property of stability is commonly associated with
the bounded-input/bounded-output (BIBO) stability. To ascertain the BIBO
stability, the absolute value of the impulse response is integrated over the
infinite bounds. A finite value of the integral

/m@w<M<m, (4.27)

where M < oo, means that a system is BIBO stable.

Example 4.6. A causal system has the impulse response h(t) = ae~"*u(t).
Its BIBO stability is ascertained by (4.27) via the relation

o
B = a/e*btdt = —ae*bt =
b 0
0

Depending on the value of b, three particular cases can be distinguished:

e Ifb >0, then B = a/b < oo, the area of the impulse response is finite
(Fig. 4.4a), and the system is thus BIBO stable.

e Ifb <0, then B — oo, the area of the impulse response is infinite (Fig.
4.4c), and the system is thus BIBO unstable.

o If b=0, we have an intermediate case (Fig. 4.4b).

4.2.4 Problems Solved with Convolution

As a rigorous and exact tool for LTI systems, the convolution allows solving
three principle system problems.
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h(t) h(f) h(t)

(a) (b) (c)

Fig. 4.4. Impulse response h(t) = ae u(t): (a) b> 0, (b) b= 0, and (c) b < 0.

Direct Problem

Given the input signal z(t), an LTI system is represented with the impulse
response h(t). Then the convolution straightforwardly solves the so-called di-
rect problem defining, by (4.4), the system output y(t). Examples 4.1, 4.3-4.5
illustrate solutions of the direct problem.

Inverse Problem

If an LTI system is represented with a known impulse response h(t) and
its output y(t) is measured, then the input x(¢) can be restored using the
convolution in what is called the inverse problem.

To define z(t), one can try solving the integral equation (4.4) that com-
monly entails difficulties. Alternatively, we can recall that the Fourier trans-
form of the convolution of two functions is the product of their spectral densi-
ties (Appendix C). Applying the transform to the both sides of (4.4), we thus
have

Y (jw) = X (o) H (jo)

where H (jw)éh(t) is the system transfer function defined as the Fourier

transform of the impulse response h(t) and X (jw) éx(t) and Y (jw) éy(t)
are the spectral densities of z(t) and y(t), respectively.

Expressing X (jw) = Y (jw)/H(jw) and thereafter applying the inverse
transform to, we arrive at the time presentation of the input signal

2w H

— 00

U YG)
2(t) = / L (4.28)

and the inverse problem is solved.

Example 4.7. A causal LTI system is given with the impulse response h(t) =
ae~""u(t) and the output is measured to be y(t) = By (1 — e ") u(t). The
Fourier transforms of h(t) and y(¢) are defined (Appendix C) by
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h(t) = ae u(t) & H(jw)=
b+ jw’
Byb
jw(b+ jw)
The inverse Fourier transform applied to the ratio Y (jw)/H (jw) produces,
by (4.28), the input signal
Y (jw) b1og b

H(]w) = Boajw {E(t) = Boau(t)

y(t) =By (1— e ult) & Y(jw)=

that is gained with Byb/a the step function w(t). It then follows that the
measured output y(t) represents the step response of this system. O

System Identification

In applications, especially in complex systems, they often consider a situation
when the input z(¢) and output y(¢) are both measurable in the unknown
system often called “black box”. The problem is thus to identify a system via
its input and output.

To define the system impulse response, we can apply the inverse Fourier
transform to the system transfer function H(jw) = Y (jw)/X (jw) and go to
its counterpart in the time domain,

h(t) = ;ﬁ / ;/((éz))ej“tdw. (4.29)

This, in turn, gives an alternative definition for the LTI system impulse
response having an important practical significance. In fact, as can be seen,
(4.29) does not claim the input z(t) to be obligatorily the unit impulse. In-
stead, any input waveform can be applied if the system input is observable.

Example 4.8. The input and output of a “black box” were measured in the

same time scale to be, respectively, z(t) = Aou(t) and y(t) = Bo (1 — e~%) u(t).
The Fourier transforms of these signals (Appendix C) are, respectively,

o) = Aau(t) & X(w) =0
y(t) =By (1 - e*bt) u(t) Z Y (jw) = jw(lB—Ol—bjw) .

By (4.29), the system is identified to have the frequency and impulse responses,
respectively,
. Y(]UJ) BO b B() —b
H(jw) = L= . é h(t) = be Ytu(t).
(je2) X(w) Apl+jw ®) Ao ®)
We hence defined the system impulse response without actually applying
the unit impulse. a
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4.2.5 Convolution Form for Multiple Systems

So far, we discussed applications of convolution for SISO LTI systems. If a
system has more than one input and/or output, the approach virtually remains
the same, albeit three basic structures shown in Fig. 4.5 are recognized. If an
LTT system has one input and more than one output, then it is the single-input
multiple-output (SIMO) LTI system (Fig. 4.5a). When several (more than
one) inputs are organized such that the only output exists, we call the LTI
system multiple-input single-output (MISO) (Fig. 4.5b). The most general LTI
structure having more than one input and several outputs is termed multiple-
input multiple-output (MIMO) (Fig. 4.5¢).

Because the MIMO model obviously absorbs all others as its particular
cases, we shall now discuss an LTI system having k inputs and p outputs
performed by the k x 1 and p x 1 vectors, respectively,

x(t) = [z1(t) z2(t) ... zi()]7, (4.30)

y(t) = [ () 1(t) - w®)]". (4.31)

Generally, in MIMO LTT systems, all of the inputs can interact with all of
the outputs (Fig. 4.5¢). Therefore, a system can be represented with the k x p
impulse response matrix

x,(1) »(t)

X, (1)

» (1)

x(1)

X, (1) v,
NERAAENS

X.W (1)

()
—

(1)

Fig. 4.5. Multiple LTI systems: (a) SIMO, (b) MISO, and (c¢) MIMO.
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hll(t) hlg(t) hlp(t)
Tt (8) T () . hup (1)

in which the component h;;(t), ¢ € [1,k], j € [L,p], represents the impulse
response at the jth output to ith input. Convolution for the MIMO LTI
system is therefore commonly written as

oo

v(t) = / b7 (¢ — 0)x(6)d0 . (4.33)

— 0o

Example 4.9. A causal MIMO LTI system having two inputs and two out-
puts is represented with the impulse response matrix

[ aePu(t) aetu(t)
h(t) = [—ae%tu(t) ae~u(t)

A vector of the causal input is described by
x(t) = [Aou(t) Bou(t)]”.

By (4.33), the system response to the input can be rewritten as

t
mn (t) B efb(tfe) _672b(t79) Ao
[yz(t)] N a/ [e‘”’“—f” et || By | %
0
that produces two output signals

a

a
t)=A4, (1—e ") —B 1—e 20
yl( ) 0 b ( € ) 02b ( € ) )
ya(t) = Ag o (1= e ) 4 By (1—e7t) .
2b b
As it is seen, each of the outputs comprises two responses associated with
two inputs. a

4.3 Representation by Differential Equations

Convolution is not the only tool to couple the input and output of an LTI
system in the time domain. Alternatively, because the output y(t) is generated
by the input x(t), both y(¢) and z(¢) can be coupled by an ordinary differential
equation (ODE) of some Nth order. The coefficients of such an equation are
predetermined by an LTT system to be constant and the order N is associated



4.3 Representation by Differential Equations 169

with the system memory. The LTI system operator O is thus also the ODE
equation operator.
Most generally, an SISO system is described with the ODE as

d a2 N1 v
apy(t) + a1 dty(t) + a9 dt2y(t) +...+ aN—ldtN—ly(t) + athNy(t)

2 M-1 M

d d d d
= box(t)—l—bl x(t)+by  x(t)+.. .+bM_1dtM71$(t)+bM dtMﬂJ(t), (4.34)

de?
where constant coefﬁcients bm, m € [0, M], and a,, n € [0, N], are real. An
important point to notice is that the system can physically be realized only if
N is a highest order derivative in (4.34), i.e. N > M.

In a compact batch form, (4.34) becomes

N

Z dt” Z mdtm (4.35)

n=0

and the output can be expresses straightforwardly as

N

M m a n
oD DR SIS (4.36)

m—0 ap dtm —1 an dem

If the input z(t) is known and the system coeflicients, a,, and b,, are
completely determined, then the ODE, (4.35) or (4.36), can be solved for
y(t), provided the necessary initial conditions. This means, by extension, that
if z(¢) is a unit impulse d(¢), then a solution of (4.35) is the system impulse
response h(t) and if x(¢) is a unit step u(t), then the ODE produces the
system step response g(t). In this sense, the method of differential equations
is consistent with convolution.

4.3.1 CARMA model

An alternative form of (4.36) came from the series analysis and is known as the
continuous-time autoregressive moving average (CARMA) model. The model
is performed as

M N
am an
D= Brem g @) =D an—n ,y(t). (4.37)
m=0 n=1

where the coefficients 3, and «,, are constant. Originally, ARMA model was
used to learn correlation in discrete-time series. Therefore, its part with the
coefficients [, is called the moving average (MA) model and the rest with
the coefficients «, the autoregressive (AR) model. By Byr—m = by /ap and
QN_n = Gpn/ag, (4.37) becomes (4.36) and thus there is no principle difference
between two models.
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Example 4.10. A voltage v(t) = z(t) forces an electric current i(t) = y(t) to
pass through a series connection of a resistance R, inductance L, and capaci-
tance C. The system motion equation is therefore

1
x(t):R()-i—L dt C

By the first time derivative, the equation becomes

d?y(t)  Rdy(t) 1 () = 1 dz(t)
a2 T roat e T Lo

that, in the batch forms (4.35), is

2 d" 1
Z an 1.0, Y Z b m T
= dt = dt
where, the coefficients are defined by a9 = 1/LC, a1 = R/L, as = 1, by = 0,
and by =1/L. By ag = LC, an = RC, as = 1, fp = C, and 31 = 0, the model
is easily transformed to (4.37). O

4.3.2 Properties of the ODE Operator

Application of the ODE operator to LTI systems, (4.35), presumes using some
specific properties discussed below.

Solutions

A general solution of (4.35) comprises two functions,

y(t) = y(@) +y(t), (4.38)

where y(¢) is known as a homogenous solution sometimes called complimentary
solution and y(t) is a forced solution also called particular solution, provided
the definitions:

Homogenous solution: The system response to the initial condi-
tions with zero input represents the homogenous solution y(t) of the
system ODE.
O
In other words, to define y(¢) starting at ¢ = o, (4.35) must be solved
under the condition that the input and all of its time derivatives are zero.

Forced solution: The system response to the input x(t) with zero
initial conditions represents the forced solution y(¢) of the system
ODE.
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O

It follows that, contrary to the homogenous solution, to define the system

ODE solution %(t) forced by the input z(t) we must set all of the initial
conditions to zero.

Homogenous solution. Following the definition, a homogenous solution
y(t) is defined by setting to zero the right-hand side of (4.35) that gives

N qn
> an gV =0. (4.39)
n=0
The exact solution of (4.39) is determined by N auxiliary initial conditions.
In general, a set of these conditions is given at some start time point ty by
the values of

dy™ (1)

9 ceey N—1 9
t=to dt t=to

dy(t)

y(to), dt

(4.40)

where t( is very often let to be zero, ty = 0.
The problem with solving (4.39) is coupled with finding the eigenvalues
(roots) of the system’s characteristic equation

N
> an X" =0 (4.41)
n=0

that is algebraic with exactly N roots A;, i € [1, N], which may be either real
or complex conjugate.

It is known from the theory of ODEs that the first order linear ODE
describing the first order LTT system has an exponential solution. The N-order
linear ODE can be presented with N ODEs of the first order. Therefore, most
commonly, when all of the roots of (4.41) are distinct and different, a solution
of (4.39) can be found as a superposition of N weighted exponential functions
called eigenfunctions as

N
y(t) =Y Cietit, (4.42)
=1

where each of the constant coefficients C; is specified by the initial conditions
(4.40) as follows. Take time derivatives of the right-hand side of (4.42) and
set them to be equal at ¢t = ty to the proper values of the initial conditions.
We thus have N algebraic equations

N

y(to) = Z Cieti'o

i=1
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N
dy(t) it
= AiCie ™
at |~
dy™ (1) = No1pn it
= AT Chenito 4.43
div-1 s ; i € ( )

where all \; are specified by (4.41), to solve for N unknown values of C;.
It is seen that zero initial conditions degenerate (4.43) at to = 0 to the
linear algebraic equations system

0=C1+Co+...+Chn,
0=XMCi1+ XCs+ ...+ AnvCn,

0=AV"10 + A0y + ...+ AN Oy (4.44)

that can be solved for C; in different ways.

In applications, the homogenous solution (4.42) is used to study stability,
internal properties, and dynamics of systems in absence of any of the external
signals and disturbances.

Forced solution. Because the input z(¢) can be of any waveform, the
forced solution y(t), contrary to y(t), cannot be generalized in closed form.
Typically, to find a forced solution for the given x(t), the function %(¢) must
somehow be predicted to satisfy the ODE order. Then the unknown coeffi-
cients of this function are defined.

Linearity

The N-order equation (4.35) describing an LTT system belongs to the class of
linear ODEs with constant coefficients. Linearity is thus an inherent property
of this equation. Namely for this reason, its solution is defined as the sum
(4.38) of the homogenous and forced solutions.

Causality

As we remember, causality is associated with physical realizability. An LTI
system can physically be realized by the following principle constraints:

e Order N. The order N in (4.35) refers to the highest derivative of the
output. This means that a signal in the LTI system feedback cannot be
changed faster than in the direct way and hence N > M. Otherwise, a
system does not meet physical imaginations and thus cannot be realized
practically. ]



4.3 Representation by Differential Equations 173

o SISO system. If the input x(¢) of a SISO system is such that z(¢) = 0
for t < to, then its output must also be such that y(t) = 0 for ¢ < ¢o. This
means that the response of a causal SISO system for ¢ > ¢y is calculated
by (4.35) with zero initial conditions (4.40). O

e MISO system. If a causal MISO system has, for example, two inputs,
x1(t) and xo(t), then its initial conditions for x4 () may be defined by z2(t).
Therefore, the system response y(t) to x1(t) for ¢t > ¢y cannot obligatory
be associated with zero initial conditions. O

Time-invariance

Time-invariance is an inherent property of LTI systems. With respect to the
system ODE (4.35), the term “time-invariance” means that all of the coeffi-
cients in (4.35) are time-constant.

Test Responses

The impulse response h(t) and step response g(t) of an LTT system are derived,
by (4.35), in the following forms, respectively,

N ar M am
> a0 = D b 8. (4.45)
n=0 m=0
N M
d" dam
n t)= bm t). 4.4
3 gy 90 = 3 b g () (4.46)

Following the definition, all of the initial conditions in (4.45) and (4.46) must
be set to zero.

Example 4.11. An LTI system is described with the ODE

S ult) + ay(t) = (1), (4.47)

in which a is constant and the input is performed by
z(t) = Age u(t), (4.48)

where Ay and b are also constant. The initial condition is y(0) = yo.
The characteristic equation (4.41) associated with (4.47) is A +a = 0
having the only root A = —a. Therefore, the homogenous solution is given by

y(t) = CeM = Ce .

By the initial condition applied to y(t) we have y(0) = yo = C and thus the
homogenous solution is
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y(t) = yoe . (4.49)

Because x(t) is performed with the exponential function (4.48) and y(t)

also has an exponential solution (4.49), it is logical to suppose that the forced
solution comprises two exponential functions. We therefore suppose that

y(t) = Be™™ 4 De™ %, (4.50)

where B and D are still unknown. Now substitute (4.50) to (4.47), provide
the transformation, define

and rewrite (4.50) as
7(t) = Be % + Q{Obe*bt : (4.51)
By the definition, the forced solution is defined for zero initial conditions.
Letting y(0) = 0 at ¢ = 0 in (4.51) produces
Ao
a—b"

A common solution of (4.47) can now be written as

B=-—

_ A
y(t) = y(t) + (1) =yoe " + 0 (e —e7) 120, (4.52)

Fig. 4.6 illustrates (4.52) for some given initial condition yo along with the
input signal (4.48). As can be seen, a common solution y(t) is strongly affected

a—>b ‘\“ x(1)
V0

v, € % ()

Fig. 4.6. Solutions of (4.47) for (4.48) and y(0) = yo.

by both the homogenous and forced constituents. It is not unexpected, because
the system (4.47) is almost equally sensitive to variations in the input and
initial conditions. a
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As an exact and convenient tool, the ODE operator allows representing an
LTT electronic system in two widely recognized forms:

e Electric circuit presentation. Any LTI system can be composed by the
components of electric circuits, such as resistors R, inductances L, and
capacitors C. At any point of such a system, signals can be gained with
linear amplifiers. a

e Block diagram presentation. Any LTI system can also be performed
(simulated) by a proper connection of three linear blocks, such as integra-
tors, adders, and amplifiers. a

4.4 Electric Circuit Presentation by ODEs

An electronic LTI system is a real physical device having very often a great
number of units, owing to which an exact solution of the system ODE becomes
unwieldy and awkward. However, not all of the components of a system con-
tribute equally to its dynamics. Therefore, many auxiliary units are usually
omitted and the ODE is reduced to the more or less standard form of much
lower order.

If the ODE order cannot be reduced without losing important features,
the other way is to split a system into several subsystems, each of which
can be presented with well studied elementary blocks of low order. Typically,
the elementary blocks are associated with LTI systems of the first and second
orders. A complex LTI system can then be composed by the elementary blocks
and linear amplifiers.

4.4.1 LTI Systems of the First Order

An LTI system of the first order is often associated with the first order
low-pass (LP) and high-pass (HP) filters. Two basic elementary configura-
tions of the first order LTT systems are used, namely the RC circuit and the
LR circuit, among which, the former has gained the most wide currency in
applications.

A generalized ODE of an LTI system of the first order has the form of

(fty(t) +ay(t) = ba(t) (4.53)

and its solution is found in the form of (4.38). A standard way to find a
solution of (4.53) is to multiply both its sides with the so-called integration
factor el @t that transforms (4.53) to the equation

d

o ety )] = el ),
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which integration yields
y(t) = e J odt [ / br(t)el “dt + C| | (4.54)

where C is predetermined by the initial condition y(tp) = yo and the inte-
gration must be provided from the start point ¢ty up to the current time t. A
solution (4.54) is general for both LTT and LTV systems. For LTI systems, in
which all of the coefficients are constant, (4.54) attains the form of

¢
y(t) = yoe *710) 4 peali=to) / z(7)ed ") dr | (4.55)
to

where the first term in the right-hand side represents the homogenous solution
y(t) = yoe (710 (4.56)
that was derived earlier by (4.49) for ¢ = 0, and the second term represents

the forced solution

t

y(t) = be~alt=t0) / z(r)e? ") dr (4.57)

to
that must further be transformed for the particular input z(t).

Example 4.12. Consider an LTI system described by (4.47) with the input
given by (4.48). By (4.57), its forced solution is defined to be

Ag

o (e—bt _ e—at)

t
y(t) = Aoe_at/e_l”e‘”dT =
0

that is equal to that obtained by (4.52). We thus conclude that a logical
supposition about the form of a forced solution made in (4.50) was correct.
O

Response to Unit Impulse

If we let the input x(t) to be a unit impulse acting at ¢t = 0, then, by (4.45),
the ODE (4.53) and so a solution (4.55) must produce the function associated
with the system impulse response. Indeed, by setting z(t) = §(t), we go to

¢
h(t) = yoe’“t—i—be*“t‘/é(T)e“TdT u(t)
0
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that, by the sifting property of the delta function (Appendix A), reduces to
h(t) = (yo + b)e “u(t) . (4.58)
If we now set a zero initial condition yo = 0, (4.58) becomes
h(t) = be™ “tu(t) (4.59)

and we verify that a forced solution of the ODE of the first order causal LTI
system for the input unit impulse represents its impulse response.

Note that a reciprocal T' = 1/a plays a role of the system time constant.
Fig. 4.7a illustrates (4.59) and we notice that a tangent to h(t) at t = 0 crosses
the axis exactly at t = T' = 1/a. Thus the time constant T of a system can
easily be ascertained from the plot of the impulse response.

h(?)
b j
0 l)a t
(a)
g(®)
bla //
0 1/a t
(b)

Fig. 4.7. Test responses of an LTI system of the first order: (a) impulse response
and (b) step response.
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Response to Unit Step

Let us now allow the input x(¢) to be the unit step u(t) acting at ¢ = 0. By the
definition, a solution (4.55) must be associated with the system step response.
In fact, setting x(t) = u(t) gives

= yoe “u(t) + Z (1—e ") u(t) (4.60)

that, by yo = 0, yields the system step response

gt) = "(1 —e “u(t). (4.61)

Note that (4.61) was earlier derived in the form of (4.7) via the convolution.
And it is just a matter of simple manipulations to show that, by differentiating,
(4.61) becomes (4.59) and, by integrating, (4.59) becomes (4.61) exactly as it
is stated by (4.11). Fig. 4.7b illustrates the step response provided by (4.61).

Example 4.13. Fig. 4.8a represents the RC circuit as an LTI system of the
first order. Here a resistor R causes the energy to dissipate and a capacitor
C represents a memory component. A mechanical equivalent of a system is
shown in Fig. 4.8b, where the force z(t) acts on a spring in the presence of a
friction that dissipates energy.

R
=1~
CIG i 3 C T ()
"""""""""""" </
(a) Friction

(b)
Fig. 4.8. LTI system of the first order: (a) electrical and (b) mechanical.

The system (Fig. 4.8a) is performed for the output voltage y(t) = ve(¢)
induced on a capacitor C' and input voltage z(t) = v(¢) by the ODE of the
first order

d 1 1
dtvc(t) + Rcvc(t) = Rcv(t) )

In a causal system, we set v(¢t) = 0 for ¢ < 0 and thus v.(0) = 0. Accord-
ingly, a solution of the equation is provided by (4.55) in the form of
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t

1 ¢ -
ve(t) = e~ RC /v(r)eRCdT.
0

The system impulse and step responses can now readily be obtained by
letting v(t) = d(¢t) and v(t) = u(t), respectively,

1 ¢
h(t) = RCe_ rRou(t), (4.62)
gt) = (1 — e re Ju(t). (4.63)
It can easily be verified that (4.62) and (4.63) are coupled by the rule estab-
lished by (4.11). O

4.4.2 LTI Systems of the Second Order

The other widely used elementary block is associated with LTI systems of the
second order. Typically, this block is represented with the 2-order ODE

d2
a2 y(t) +a

in which the coefficients a, b, and ¢ are predetermined to be constant.

In applications, (4.64) commonly models oscillations and vibrations in se-
lective LTT structures. The coefficient ¢ has a meaning of the system band-
width BW = 26 and both b and c¢ are typically associated with the system
square natural frequency w3. Therefore, (4.64) is usually rewritten in the other
general form of

C(iity(t) + by(t) = cx(t), (4.64)

d? d
2 Jy(t) = 4.
V0 +28 L u(0) + WBy(t) = ea(t) (165)
with arbitrary initial conditions at ¢t = 0:
dy(t
y(to) = yo , ng N . (4.66)

t=to

An important characteristic of any bandpass or oscillatory system is the
quality factor specified by
_ Wo  wo
©=Bw T2
A system can also be characterized with the damping factor

(4.67)

BW 0 1
= = = . 4.
2(,«)0 wo 2Q ( 68)

It can be shown that the characteristic equation associated with (4.65) is

«

N 4200 +wd =0, (4.69)
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having two complex-conjugate roots
Az = —8 £ jyJuf — 82 = —6 & ju

= wo (—a + a2 - 1) , (4.70)

where wg = \/ wi — 02 is called the system eigenfrequency. In bandpass systems
with high quality factor, @ > 1, losses of energy are usually small. Therefore,
wp > 6 and they typically allow ws & wyp.

Homogenous Solution

The homogenous solution (4.42) associated with (4.65) is found in a like man-
ner to comprise two exponential functions,

y(t) = CreM’ + Coe™’ (4.71)

where A1 and A\ are provided by (4.70) and C; and Cy are predetermined by
the initial conditions (4.66). By these conditions applied to (4.71) at ¢t = 0,
we arrive at two algebraic equations

yo = C1 + Ca,
y6 = MCi + X204,
readily soluble for C; and Cs,

—yo + A2yo Yo — M¥o
= = . 4.72
Ch I Cy N - Ap (4.72)

By (4.70) and (4.72), the homogenous solution (4.71) becomes

_ Yot Ao ae Yo — MYo et

) =
Y= o O T e
! - ! -
_ Y+t (5jLst)y0 e—(0—jws)t _ Yo + (0 - Jws)yo o~ (0+jws)t (4.73)
2jws 2jws
and it can easily be shown that, by yo = 0, (4.73) degenerates to
/
y(t) = Yo oot sin wgt
ws
y/
0 et gin wy \/1 —a?t. (4.74)

 woV1 — a2
In applications, three particular cases are commonly analyzed for the ho-

mogenous solution (4.74) to provide the proper system quality associated with
its dynamics (Fig. 4.9):
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.....

Fig. 4.9. Homogenous solutions for the 2-order LTI system with different damping
factors.

Underdamping. If o < 1, then the system is said to be underdamped.
The relevant solution oscillates about zero with an angular eigenfrequency
ws that is lesser than the natural frequency, ws < wg. The oscillations
envelope decays with time exponentially starting at y(0) = y}/wov/1 — a2
and having a time constant 7' = 1/awy. O

Overdamping. With a > 1, the solution has only positive values. It starts
with zero, then goes up, attains a maximum, and thereafter attenuates to
zero with time asymptotically. O

Critical damping. The case of @« = 1 is intermediate. Therefore the
systems is said to be critically damped. A solution for the critically damped
system is y(t) = yjte “ot. O

An applied convenience of the above used damping factor « resides in the

fact that it, in a like manner, also separates the forced solutions.

Forced Solution

It can be shown that the closed forms forced solutions of (4.65) differ depend-
ing on the values of the damping factor a. Referring to the above-considered
three cases, the solutions can be presented in the following forms:

Underdamping. If a system is underdamped, o < 1, the forced solution
is given by

g = " / 2(0)e“ sinfwo /1 — (¢ — 0)]d6

© woV1 — a2 )
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ce™" / 50
= / 2(0)6% sinw(t — 0)d0 . (4.75)
* 0
O
e Overdamping. In the overdamped case, o > 1, we have
—awot
i = / 2(6)e®0? sinhlwyy/a? — 1(t — 0)]d6
wova? —1 ),
Ceitst 50 -
= x(6)e°” sinh ws(t — 0)d6 . (4.76)
Ws
0
O
e Critical damping. A critical value of a = 1 produces
t
J(t) = cemeot / 2(0)(t — 0)e“%dg. (4.77)
0
O

So, we now know both the homogenous solutions, (4.73) and (4.74), and
forced solutions, (4.75)—(4.77), of a generalized LTI system of the second or-
der. By applying the standard test functions, the solutions can easily be trans-
formed to the the system test responses.

Impulse Response

The impulse response of an LTI system of the second order is defined by
setting x(t) = d(t) to (4.75)—(4.77). After the integration, we arrive at three
different analytic results corresponding to the underdamped, overdamped, and
critically damped systems, respectively,

h(t) = woij:w—()ta2 sin (wo V1- 04275)
= ; e sinwgt, a<l, (4.78)
Ze"‘”ot
h(t) = wov/a® — 1 sinh (wo Va2 — 1t)
— ° e ftsinhjwt, a>1, (4.79)
jws

h(t) = cte™@', a=1. (4.80)
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Fig. 4.10 exhibits what happens with the system impulse response, by

changing the damping factor. It is seen that the functions differ cardinally
in the underdamped and overdamped ranges. This is clearly illustrated in
Fig. 4.10b, where the ranges for the underdamped and overdamped solutions
are separated by the critical value of & = 1. Two limiting cases can also be
observed:

Zero damping factor, a = 0. With o — 0, a system works without
dissipation of energy that, of course, cannot be met in practice and is just
a useful mathematical idealization. Accordingly, the system bandwidth
tends toward zero, 6 — 0, and the ODE (4.65) degenerates to the form

d2

42 V@) +wiy(t) = ca(t), (4.81)

associated with a linear conservative system of the second order, which
impulse response is a sine wave with a natural frequency wy and constant
amplitude ¢/w,
c
h(t) = ~ sinwgt. (4.82)
wo
We notice that, even though this case cannot be reached fully, the goal of
any precision nonlinear oscillatory system (reference oscillator) is to tend
« toward zero as close as it is allowed by stability of the closed loop. O

Infinite damping factor, a — oo. In the other limiting case of infinite
a, the system bandwidth becomes infinite, 6 — 0o, and the system hence
totally loses its selectivity. It follows from (4.79) that, by 6 — oo, the
system impulse response becomes zero. O

Step Response

The step response function of an LTI system of the second order is defined
by setting x(t) = u(t) to (4.75)—(4.77). In line with the impulse response,
three particular solutions characterize the step response as associated with
the underdamped, overdamped, and critically damped systems, respectively

g(t) = 02 [1 — oot <cos wo/1 — a2t +

sinwO\/l — 04275)}

a
V1-— a2

)
02 [1 — e <cos wst + sinwst>} , a<l, (4.83)
(h) Ws

g(t)= {1 — oot (coshwo\/a2 — 1t +

\/g 1sinhw0\/oﬂ—1t>}
a2 —
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h(t)
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Fig. 4.10. Impulse response of a generalized LTI system of the second order with
different damping factors: (a) several values of « and (b) transition from a = 0 to
«a = 2 through the critical value of o = 1.

0
= C2 [1 —e 0 <coswst + sinwst>} , a>1, (4.84)
Wo Ws
g(t) = , (1—e o' —wote™) | a=1, (4.85)
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Because a system is still linear and time-invariant, differentiating (4.83)—
(4.85) yields the relevant impulse responses, (4.78)—(4.80), respectively. And,
again, two limiting cases can be recognized:

e Zero damping factor, « = 0. By (4.83) and o — 0, the step response
of a conservative system becomes

g(t)= ¢, (1 coswot) (4.86)
“o
that, by differentiating, inherently transforms to (4.82). O

e Infinite damping factor, @ — oco. This case makes the system band-
width 2 to be extremely larger than the natural frequency wg and the
quality factor to be zero, Q — 0. The system degenerates virtually to the
RC circuit with extremely large R. Therefore, the step response, by (4.84),
changes from zero exponentially and very slowly, approaching c¢/wé at in-
finity. O

In Fig. 4.11, we see how the step response of an LTI system of the second
order evolves if to change o around unity. If to evaluate the transient time for
the process envelope, then it can be shown that its minimum value corresponds
to @ = 1. With o > 1, the step response is almost exponential with the
time constant proportional to «. The value o < 1 makes the step response
oscillating about ¢/w3, whereas its envelope changes almost exponentially with
the time constant reciprocal to a.

In applications, the transient time is fixed for some allowed level that often
is 90 — 95% of the envelope at t = co. A shortest transient time is obtained
by some value of a@ < 1 when the first oscillation almost crosses this level.

Example 4.14. An RLC LTI system of the second order is performed by
a cascade connection of L, R, and C as shown in Fig. 4.12a. Its mechanical
equivalent is given in Fig. 4.12b. The system input is a voltage v(¢) and output
is a voltage vo(t) induced on a capacitor C. In the mechanical equivalent,
the force x(t) acts to the mass connected via a spring to the fixed point.
Mechanical shifts in this system are accomplished in the presence of friction
leading to dissipation of energy.

An electric current in the scheme (Fig. 4.12a) can be performed via the
voltage vc(t) as i(t) = Cdvc(t)/dt. Then the sum of all the voltages induced
by i(t) produces the system ODE of the second order

d? R d 1 1
dt2vc(t) + Ldtvc(t) + chc(t) = ch(t)

that, in terms of (4.65), transforms to

d? d
g2 e (t)+26 g (t) + wive(t) = wiv(t), (4.87)

where 26 = R/L and w? = 1/LC. Properties of this system are completely
specified by an equation (4.65) and its solutions if to substitute ¢ with w?. O
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g(®) a =01
a=0.5
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Fig. 4.11. Step response of a generalized LTI system of the second order for different
damping factors: (a) several values of o and (b) transition from o = 0 to o = 2
through the critical value of o = 1.

Example 4.15. Consider a system (Fig. 4.12a), in which the input voltage
is constant, v(t) = Vp. With time, all transients in the system will finish and
a capacitor C' will be charged for the voltage vo = Vj. Assuming such a
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t
X0 ()
v(t) Spring Force
BT Mass
(a) Friction—"

(b)
Fig. 4.12. LTI system of the second order: (a) electrical and (b) mechanical.

situation at ¢t = 0, we set a switcher in a position shown in Fig. 4.13. This
action forces an electric energy of a capacitor to be periodically exchanged
with a magnetic energy of an inductance. Because of a real resistor, R > 0,
dissipates energy, the amplitude of oscillations attenuates with time.

Transient in the electric current i(t) (Fig. 4.13) is described by the ho-
mogenous ODE

2
(ft?i(t) + 25§ti(t) +wii(t) =0. (4.88)
At the first moment ¢ = 0 after switched on, an inductance has a huge resis-
tance (an electric current in any inductance cannot change instantly). There-
fore, the first initial condition is zero, i(0) = 0. At the same time, the voltage
on a capacitor is equal to the voltage on an inductance that produces the
second initial condition,
ditt)| _ Va
dt |,_, L

The time function of i(t) is then given by the homogenous solution (4.74)

in the form of

Vo
woLV/1 — a2
We notice that a negative sign in (4.89) indicates that the electric current

generated by a voltage on a discharging capacity flows in an opposite direc-
tion. In Fig. 4.13 we have accounted for this fact. Therefore, referring to Fig.

i(t) = e~ sinwgy/1 — a2t . (4.89)

L R
|

Vo i N I=c

Fig. 4.13. Free discharge of a capacitor C' in the RLC series tuned circuit.



188 4 LTI Systems in the Time Domain

4.13, a negative sign in (4.89) might be omitted. We also notice that Fig. 4.9
illustrates i(¢) in Fig. 4.13, by y{, = Vo /L.
O

4.5 System Simulation by Block Diagrams

Another form of description of LTI systems implies using the so-called block
diagrams. The diagram is consistent with the system ODE and, actually, sim-
ulates a system mathematically rather than represents its physical nature.
Therefore, it is also called the simulation diagram. The diagrams are useful in
computed-aided systems design and analysis. They also help optimizing the
system performance and resources.

4.5.1 Basic Blocks of LTI Systems

Any LTI system can be simulated by involving three basic blocks discussed
below. No other kind of blocks is necessary.

e Scalar multiplier. This block is also called a multiplier (Fig. 4.14a),
providing the multiplication (gaining) of any time signal x(t) with any
constant a by

y(t) = ax(t).

e Adder. The function of an adder is to obtain an addition of K signals
x1(t), z2(t), ..., xx(t) as shown in Fig. 4.14b by

K
y(t) = a(t).
k=1

x(t) —>{ a t+—> ax(?) x,(t)
or (1) ixk(t)
x(1) () x, (1) -
(a) (b)

t

x(t) > | > jx(r)dr

—o0

(c)

Fig. 4.14. Basic blocks of LTI systems: (a) scalar multiplier, (b) adder, and (c)
ideal integrator.



4.5 System Simulation by Block Diagrams 189

e Ideal integrator. This block is also tacitly called an integrator (Fig.
4.14c) and its function is to integrate a signal z(t) from some far point in
the past up to the current time by

¢
y(t) = /QC(T)dT.
Combining the aforementioned blocks allows simulating any LTI system

performed with the ODE of any order.
Example 4.16. An LTI system of the first order is described with the ODE

;ty(t) + 5y(t) = 2x(t).

The relevant block diagram is as shown in Fig. 4.15. Indeed, for the output

2
x(t) | > ()

-5

Fig. 4.15. Block diagram of the LTI systems of the first order.

y(t), the input of an ideal integrator is dy(t)/d¢. On the other hand, this input
is formed by the sum of two signals, 22(¢) and —5y(t), and we arrive at the
system ODE. O

4.5.2 Generalized Structures of LTI Systems
Let us come back to the ODE of a generalized LTI system (4.35),

N qn M qm
> an g V) = > bm gm0 (4.90)
n=0 m=0

Our purpose would be to represent a solution of this equation by the
block diagram. To simplify the presentation form, it is in order to introduce
the operator of multiple differentiation that we would like to denote by D™ £
d™/dt"™, n > 1. Equation (4.90) can then be rewritten as

N M
Z a,D"y(t) = Z by D™ x(t) . (4.91)
n=0 m=0

Further transformation of (4.91) is associated with two so-called the
canonic forms of block diagrams, namely with the first direct and second direct
forms. We notice that, albeit less commonly, some other forms are used.
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The First Direct Form

The inverse operator D~! means integration, D! £ [ foo. Aimed at providing
the multiple N-times integration, we can formally multiply the both sides of
(4.91) with D=V Without loss in generality, we can even think that N = M
and normalize (4.91) with ay = 1. The transformations lead to the form

N-1 N
y(t) == anD" Nyt) + > buD™ Na(t)
n=0 m=0

N-1
= > D" N=any(t) + bux(t)] + bya(t) (4.92)
n=0
that can also be rewritten as
y(t) = D~ N[box(t) — aoy(t)] + DN [bra(t) — ary(t)] + . ..

+D by _12(t) — an_1y(t)] + bna(t). (4.93)

Both (4.92) and (4.93) are associated with the first direct (or canonic)
form of the block diagram simulation of the LTI system ODE (4.90). By the
property of distributivity, the operator of integration D' can be applied
either to each of the terms in (4.93) or to the sum of these terms. We thus
have two equal structures of block diagrams shown in Fig. 4.16.

x(1) by (@)
> —>
by —an-1
2

by —dai
2

bO —do

> @ <

Fig. 4.16. The first direct form of LTI systems simulation: (a) addition efficient
and (b) integration efficient.
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In the first case (Fig. 4.16a), the structure exploits only one multi-input
adder (addition efficient), however, suffers of a redundant number of integra-
tors. The second diagram (Fig. 4.16b) utilizes a minimum number of integra-
tors (integration efficient), but has a redundant number of adders. The latter
structure is thus more preferable, because any integrator, as a memory device,
is more complicated than any memoryless adder.

We notice that the power M might not obligatorily be equal to NV, as we
supposed in (4.93). If M < N, then the relevant branches with high-order
coefficients b, are omitted in Fig. 4.16.

Example 4.17. An LTI system of the second order is given with the block
diagram of the first direct form shown in Fig. 4.17.

To go from the diagram to the system ODE, first express the output
y'(t) = dy(t)/dt of the first adder as

y'(t) = yu(t) + 22(t) — 2y(t).-
Differentiating this relation gives
y'(t) =i (t) +22"(t) — 24/(¢) ,

where the output ¥/ (¢) of the second adder is performed by ¥/ (t) = 4x(t) +
4y(t). The system ODE then becomes

y"(t) = 22/ (t) + 4x(t) — 2y/(¢) + 4y(2t) .
The reader is encouraged to verify that the above obtained ODE fits the

block diagram shown in Fig. 4.17. a
(1)
yo | ]
x(7) 2 -2
——(
wo | || 20
4 4

Fig. 4.17. Block diagram of an LTT system of the second order.
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The Second Direct Form

The other direct (or canonic) form of diagrams appears if to represent (4.91)
as follows. We first write

N M
<Z a,ﬂ?") y(t) = <Z mem> x(t)
n=0 m=0

that identically can be represented as

(=) ( gifjpm) -

m=0

If now to substitute the ratio of the functions in the left-hand side with an
auxiliary function ¢(t), then the above equation can be split into two equations

N
(Z aﬂ)") q(t) = x(¢),
n=0

M
y(t) = (Z mem> q(t),
m=0

which, by multiplying the first of them with D=, become, by ay = 1,

N-1
g(t) == an D" Nq(t)+ D Na(t),
n=0

M
y(t) = b D™q(t). (4.94)
m=0

Based upon (4.94), the block diagram is created in two steps. First, an
auxiliary function ¢(t) is expressed via the input z(¢) and then the output
y(t) is performed in terms of ¢(¢). The relevant diagram is shown in Fig. 4.18
for N =M.

One can deduce that, contrary to the first direct form (Fig. 4.16b), the
second direct form requires a twice larger number of adders. In this sense,
this form is not addition efficient that actually is not a great disadvantage.

Example 4.18. An LTI system is given with the ODE
Y (t) + 2y(t) = 42/ (t) + 22(t) .

To perform a system in the second direct form, substitute its ODE, by
(4.94), with two equations
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(1)
>
A
bl bO A
> [ a0
—a) —ag Y

Fig. 4.18. The second direct form of the LTI system presentation.

(1)
Y

A

4 A 2 A

x(2)

[ HHa®

q" () q'(®)

Fig. 4.19. Block diagram of an LTT system of the second order.

q"(t) +2q(t) = x(t),

y(t) = 4q'(t) + 2q(t) .
Simulation with the block diagram is then obtained as in Fig. 4.19. O

A particular case of M = 0. In applications, SISO LTI systems are
often described by the ODE (4.90) with M = 0,

N d’n
> an o y(t) =box(t). (4.95)
~= dt»

This degenerate version of (4.90) is simulated with two significantly simplified
direct forms of block diagrams.
The first form (4.93), by b, = 0, n > 0, leads to the equation

y(t) = D™V [box(t) — aoy(t)] — ax DN y(t) —

—an—1Dy(t) (4.96)
that is simulated as in Fig. 4.20.
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x(1)
by

—ao —a

() .

Fig. 4.20. The first direct form of a SISO LTI system diagram, by M = 0.

The second form (4.94), by M = 0, produces

N—-1
g(t) == anD" Ng(t) + (1),
n=0

y(t) = bog(t) (4.97)

and we arrive at the diagram shown in Fig. 4.21. Even a quick look at Fig.
4.20 and Fig. 4.21 leads to the immediate conclusion that they are equivalent
having no substantial advantages to each other.

A special case of M = 0 and b = 0. There is an isolated case of LTI
systems, when the ODE is performed with M = 0 and by = 0. It follows
from Fig. 4.20 that, by by = 0, the system has no input. If it is still an LTI
system then such a structure is of no essential practical importance. However,
if some coefficients a,, are nonlinear, a system can become oscillating falling
to the class of NTI systems. Contrary, in Fig. 4.21, the value by = 0 makes
the system isolated (no output) that is senseless. To avoid this confusion with
simulation, the coefficient by might be removed to the system input. Such a
manipulation does not violate the model with by # 0, but makes it equivalent
to that shown in Fig. 4.20 when by = 0.

An observation of the aforementioned forms of block diagrams assures that
the tool is highly efficient in systems simulation. Indeed, while describing a real
physical system (electrical and mechanical) by differential equations, we think
in terms of energy bearers (electric current, voltage, charge, etc). Hereby, the
ODE represents the LTI system via its physical resources. Contrary, the block

x(1) ()

by

Y
—

—ay —ap y

Fig. 4.21. The second direct form of a SISO LTT systems, by M = 0.
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diagram simulates a system formally via its ODE using the assigned general-
ized signals, z(t) and y(t), without discussing their physical nature. Therefore,
in systems design and optimization, it is worth passing over two important
stages: 1) system presentation by the ODEs and 2) system simulation and
optimization by the diagrams.

The other available and important tool of mathematical presentation of
LTI systems is known as the state space model. The model implies presenting
the system ODE of some N-order with a system of ODEs of the first order.
Such a presentation employs a concept of the system state variables, which can
or cannot be absolutely observable (measured) in real systems. The system
state-space model is now well developed and used widely becoming principle
for many applications.

4.6 State Space Representation

Any system operates with some signals. Any signal or its performance (am-
plitude and phase) can be expanded at some fixed time point ¢ to the Taylor
series and thereby performed by an infinite set of weighted time derivatives.
In phase systems, for example, the function of the information bearing phase
can be characterized at t; by the phase value, linear phase drift rate (or
frequency), linear frequency drift rate, and so on. Since a set of these char-
acteristics represents an LTT system via the Taylor series explicitly, then we
have one more form of the LTI system presentation.

This new form is called the system state space model or the state space
representation of a system. The system’s state is characterized by a set of
state variables that at any given time completely describes the system. The
variables may be assigned in different ways, however, the principle idea must
be preserved: one needs to translate the N-order system ODE to a system of
the 1-order ODEs. This can be done if the state variables are assigned to be the
outputs of integrators in the block diagram. Returning to the phase system,
we observe that the phase can be assigned to be the first state variable ¢ (t),
the linear phase drift rate the second state variable ¢a(t), the linear frequency
drift rate the third state variable g3(t), and the assignment can be extended
infinitely.

If we will be able to perform a system with the state variables, we then will
be required to couple these variables with the system input z(¢) and output
y(t). In state space modeling, this coupling is achieved with two equations.
The first equation couples the system present state with its nearest past state
and input. Therefore, it is called the system state equation, or system equation,
or state equation. The second equation specifies the output via the system’s
state and input. Since the system state is observed (measured) in this equation
indirectly, the equation is said to be the observation equation or measurement
equation. Both the system state equation and the observation equation are
called the system state space equations or just state space equations.



196 4 LTI Systems in the Time Domain

To understand the essence of state space modelig in more detail, let us
come back to the second direct form (Fig. 4.18). Here, we use an auxiliary
function ¢(t) and its time derivatives to represent a system by two differen-
tial equations (4.94), rather than using only one equation (4.91). If to assign
a(t) = qt), g2(t) = ¢'(t), ..., qn(t) = ¢ (t), we will get the second form
in terms of the system state variables ¢1(t), g2(t), ..., gn(t). The final step
toward the state space model will be to translate the system ODE of the
N-order to a system of the 1-order ODEs.

Before continuing with the mathematical presentation of the state space
model, it is worth emphasizing that any LTI system can be described in state
space if the following generic conditions are satisfied:

e Initial conditions. The system past history specifying the initial condi-
tions must be known. a

e System model. A set of the system state variables or the system input-
to-output equation specifying the system model must be known. a

e Input signal. The input must be known. O

After satisfying the conditions, the state space model inherently answers
the following key questions: What is the system state at present? How did the
system come at this state from the nearest past? What should we expect in
the nearest future?

4.6.1 The First Direct Forms of SISO Systems in State Space

The state space model of an LTT system is readily created following the block
diagram shown in Fig. 4.16b. We first assign the output of each of the integra-
tors to be the proper state variable ¢, (t). Then, observing the diagram from
up to down and differentiating consequently each of the states, we arrive at

y(t) = q1(t) + bnz(t),

q1(t) = qa(t) + bv—12(t) —an—1y(t),
45(t) = g3(t) + by—ax(t) —an—2y(t),

dy-1(t) = an(t) + brz(t) — ary(t),
dn(t) = box(t) — aoy(t). (4.98)

The first equation in (4.98) can serve to eliminate y(¢) in the remaining
equations. If to do so, we will go to the equations of the system’s state,

¢1(t) = g2(t) —an—1q1(t) + (bv—1 — an—1bn)z(t),
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t) + (beg - aN,QbN):E(t) ,

dn_1(t) = aqn(t) — arqu(t) + (b1 — arbn)z(t),
dn(t) = —aoqi(t) + (bo — aobn)z(t)

that can be rewritten in matrix form as

a1 (1) —an-110...0 q1(1) by_1—an_1bn
q5(t) —any—201 0 q2(t) bny_2 —an_2bn
: = S : + : ().
?v 1( ) —ar 00 1| |gn-1(?) b1 —aiby
qh(t) —ag 00...0 an(t) bo — agby
(4.99)

On the other hand, the first equation in (4.98) represents an observation
of the system first state variable ¢ (¢) via the input x(t) and output y(¢) that
can be reflected in matrix form as

+bya(t). (4.100)

qan(t)
Both the state equation (4.99) and the observation equation (4.100) have
compact matrix forms of, respectively,

q'(t) = Aq(t) + Bz(t), (4.101)
y(t) = Cq(t) + Dz(t), (4.102)

where the N x 1 vector q(t) of the system’s state is
alt) = [au(t) a2(t) ... an(t)]" . (4.103)

Here and in the following, the sign (7) means transpose (Appendix B). The
time derivative of q(t) is defined by the N x 1 vector

d T
Q1) = a) = [0 b - av®)]" (4.104)
The N x N matrix A is called the system matrix,
—aN-1 10...0
—aN—2 01 0
A= : : l (4.105)
—aq 00 1
—ag 00...0
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The 1 x N matrix C is commonly called the observation matriz or measure-
ment matrix,

C=[10..0]. (4.106)

Finally, two auxiliary N x 1 and 1 x 1 matrices are known as the input matric
and output matriz, respectively,

by—1 —an—1bn
by—2 —an—_2bNn

B = : , (4.107)
b1 —a1by
bo — aob]\]

D= [bn]. (4.108)

The block diagram presentation of SISO LTI systems in state space with
M = N is provided by (4.101) and (4.102) as shown in Fig. 4.22. Here we
recognize two principle parts. The system state vector q(t) is evaluated for the
given input z(¢) in the state model (doted) described by (4.101). The output
y(t) is then calculated by (4.102) via q(t) and z(¢) in the observation model
(doted).

Example 4.19. A system (Example 4.10) is given with the ODE

2 1
dr am
n t) = bm t),
Z a dtn y( ) 7nZ:O dt'm, ‘/'E( )

n=0

where, the coefficients are ag = 1/LC = wi, a1 = R/L =26, a3 = 1, by = 0,
and by = 1/L. The first direct form of this equation is given in state space by
(4.101) and (4.102), where the matrices are defined, by (4.105)—(4.108), as

> D
19
x(1) B q(@) | q(t) C lﬁ’)
x(1) y(®)
A e
State model Observation model

Fig. 4.22. Block diagram presentation of SISO LTI systems in state space for
M = N.
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A:[j‘éé], B:[léL], C=[10], D=]0].

It can easily be verified, by the inverse transformation, that the obtained
state space model fits the original ODE. a

Example 4.20. The ODE of an LTI system of the third order is given by
2y"(t) +4y" (t) — 2y (t) + 6y(t) = 32" (t) + 2" (t) + 6x(t) .

The state space presentation of this equation in the first form is given by
(4.101) and (4.102) if to specify the matrices as

210 —5/2
A=|101|, B=|3/2]|, c=[100], D=[3/2].
~300 ~3/2

The reader is encouraged to verify this, provide the inverse transformation,
and come from the state space model to the original ODE. O

A particular case of M = 0. Having b,, = 0 for n > 0, the system ODE
becomes (4.95). In view of that, the state equation of the first direct form
(4.99) degenerates to

0 (t) —an-110...0 q1(t) 0
a5 (t) —an—201 0 qa2(t) 0

: = Do : + | z(). (4.109)
qfv_l(t) —a; 00 1 qn—1(t) 0
qh(t) —ag 00...0 an(t) bo

By by = 0, we have D = 0 and then (4.101) and (4.102) become

d'(t) = Aq(t) + Ba(t), (4.110)
y(t) = Cq(t), (4.111)

where the system state vector q(¢) and its time derivative q'(t) are defined
by (4.103) and (4.104), respectively. The matrices A and C are described by
(4.105) and (4.106), respectively. Finally, the N x 1 matrix B is given by

B=1[00..b]" (4.112)

and the output matrix is zero, D = 0. Accordingly, the block diagram (Fig.
4.22) simplifies to that shown in Fig. 4.23.
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1a0)
t q(¢ t
x(1) B q(?) | q(®) C W ))
A Observation
State model model

Fig. 4.23. Block diagram presentation of SISO LTI systems in state space for
M < N.

4.6.2 The Second Direct Forms of SISO Systems in State Space

In a like manner, the state space presentation of a SISO LTI system can be
provided for the second direct form (Fig. 4.18). In doing so, we first assign the
output of each of the integrators to be the system state variable that leads to
the equations

qn_1(t) = qn(t),

an(t) = —an—1gn(t) — an—2gqn—1(t) — ... —aoq:(t) + z(t)
y(t) = boqi(t) + b1ga(t) + ... + bn-1gn(2)
+bN[—a0q1 (t) — a1g2(t) — ... —an—1gn(t) + !E(t)] . (4.113)

Without any other transformations, these equations produce the system
state and observation equations in matrix forms, respectively,

q;(t) o 1 0 ... 0 q1(t) 0
a(1) 0 0 1 0 (1) 0
: = : : : : + | z(), (4.114)
In—1(t) 0 0 0 1 an—1(t) 0
I (1) —Gp —a1 —G2 ... —AN-1 qn(t) 1
bo — apbn "Ta (t)
b1 — Clle QQ(t)

y(t) = : | Howa(t). (4.115)

bnv—1—an—1by qn(t)
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Now observe that (4.114) and (4.115) are still presented in the compact
forms (4.101) and (4.102), respectively, if to specify the matrices of dimensions
N x N, N x1,1x N, and 1 x 1 by, respectively,

0 1 O 0
0 0 1 0
A= 1 = oo , (4.116)
0 0 O 1
—ap —aip —ag ... —aAN-1
B=[00..01]", (4.117)
bo — CLQbN r
bl — CleN
C= , , (4.118)

bn_1—an—1bn
D= [by] . (4.119)

We thus deduce that, by M = N, both the first and the second direct
forms are simulated with the same structure shown in Fig. 4.22 having an
important common feature. With M < N or by = 0, the matrix D becomes
identically zero, the matrix C in both forms is calculated in a simpler way,
and the block diagram becomes as in Fig. 4.23.

Example 4.21. An LTI system is given with the ODE considered in Example
4.20 being specified with the coefficients a9 = 6, a1 = —2, a2 = 4, az = 2,
b0=6, b1:0, b2=1, andb3:3.

To go to the state space model, first, divide all of the coefficients by the
factor of 2 to make a3 = 1. The state space presentation of this equation in
the second form will then be given by (4.101) and (4.102) if to define the
matrices (4.116)—(4.119) by, respectively,

0
, B=|0o|, c=[-33-]], D=[3].
1

As can be observed, a difference between the first form given in Example
4.20 and the second one considered in this example is in the matrices A, B,
and C. This means that (4.101) and (4.102) can equivalently be filled with
different matrix components for the same system. O

A particular case of M = 0. Let us consider a SISO LTI system de-
scribed with the ODE (4.95), in which ay = 1. Since M = 0 implies by = 0, a
system is performed in state space with (4.110) and (4.111), where the matri-
ces A and B are given by (4.116) and (4.117), respectively. The 1 x N matrix
Cis
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C=1[b0...0] (4.120)

and the 1 x 1 matrix D has a zero component, D = 0. Having by = 0, this
system is simulated with the block diagram shown in Fig. 4.23.

Example 4.22. A SISO RLC-system of the second order is given with the
ODE (4.87),
o (1) + 2005 (1) + whve (t) = W3u(t),

where v(t) is the input and vc(¢) is output. In terms of (4.95), the coefficients
of the ODE are ag = wg, a1 = 2§, and by = w?. Its state space presentation is
given by (4.101) and (4.102), where the matrices are defined by

|0 1 |0 o
A= {_wg _25} . B- M . C=[u20].
The system is simulated with the block diagram shown in Fig. 4.23. O

The other opportunity to perform a system in state space is to proceed
directly with its ODE avoiding considering the diagram. The approach is akin
to the second form and seems to be most“transparent” in explanation if to
let M =0 and axy = 1, namely if a system is represented with the ODE

N1 gn
M) = — t) + boz(t) .
) = = 3 o gy 80+ boe(t)

The state variables are assigned here as follows:

@ (t) =y(t), (4.121)

an-1(t) =y 72 (1) = qiy_, (1),
an(t) =y V() = a1 (1),
—apqi (t) — a1qa(t) — ... —an_1qn(t) + boz(t) = y N (t) = ¢y (t). (4.122)

Then both (4.122) and (4.121) can be rewritten in matrix forms (4.110) and
(4.111), respectively, representing the system state and observation equations,
respectively,
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q;(t) 0 1 0 ... 0 ][ «(® 0
a(t) 0 0 1 0 (t) 0
: = : : + z(t), (4.123)
In-1(t) 0 0 0 1 qn-1(1) 0
dn(t) —ag —ay —az ... —ay_1] | qn(t) bo
[ a1(t)
y(t)=[10...0] QQ:(t) . (4.124)
_(IN'(t)

Comparing (4.123) and (4.124) with (4.114) and (4.115) for M = 0, we
find a difference only in the constant coefficient by that is removed in the
first case from matrix C to matrix B. This actually gives equivalent results.
However, by by = 0, the model, (4.123) and (4.124), has no input, whereas
the model, (4.114) and (4.115), loses its output.

Example 4.23. A system is described with the ODE given in Example 4.22.
By (4.123) and (4.124), the matrices for the state space model (4.110) and
(4.111) are defined by

0 1 0

In contrast to Example 4.22, here the coefficient w3 appears in B and vanishes
in C. a

4.6.3 MIMO Systems in State Space

The state space analysis is easily extended to the general case of MIMO sys-
tems. Assume that a system has k inputs and p outputs (Fig. 4.5¢) and is
described with N state variables. The state space model will then be repre-
sented by the equations

qd'(t) = Aq(t) + Bx(t), (4.125)

y(t) = Cq(t) + Dx(t) , (4.126)

where the N X 1 vector of the system state q(t) and its time derivative q’(¢)
are given by (4.103) and (4.104), respectively. The k x 1 vector of a multiple
input x(¢) and the p x 1 vector of a multiple output y(t) are presented by,
respectively,

x(t) = [21(t) a2(t) ... ax(t)]" (4.127)

y(t) = [11(t) va(t) .. yp()]" (4.128)
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The N x N system matrix and the p x N observation matrix are given as,
respectively,

ail a2 ... 1N C11 €12 ... C1N
a1 a22 ... AN C21 C22 ... C2N

A=| . |, c=|_ " 1. (4.129)
anN1 aN2 ... QNN Cpl Cp2 ... CpN

Finally, the N x k input matrix B and p x k output matrix D are performed
by, respectively,

bi1 biz ... bik diy dio ... dig
ba1 bag ... bag doy dao ... doy

=1 . . ; = . . . . (4.130)
le bN2 ka dpl dpg d/pk

We notice that all of the components in the matrices are defined by the
coeflicients of the system ODEs corresponding to the multiple input and out-
put. It is also worth to notice that simulation of a MIMO system is provided
by a familiar structure (Fig. 4.22). One merely needs substituting the scalar
functions x(t) and y(t) with the vector functions x(¢) and y(t), respectively.

Example 4.24. A MIMO system consists of two systems of the second order
coupled via the mutual inductance M. The system has two inputs, v (¢) and
va(t), and two outputs, ve1(t) and vee(t), as shown in Fig. 4.24. A straight-
forward description of a system gives two ODEs:

2
wor, i

Ug‘l(t) + 2517/01@) + u1(2)1 + w2 vea(t) = wglvl (t),
2
w(2JQ "

e (t) + 262005 (1) + wis + w2 vén () = wipva(t) ,
1
where 51 = R1/2L1, 52 = R2/2L2, w%l = 1/L101, w82 = l/LQCQ, UJ% =
1/MC'1, and w% = 1/MCQ

Vz(l‘)

/

— Ve (9)

\

Fig. 4.24. A MIMO LTT electronic system.
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To arrive at the standard forms, the equations can be rewritten for the
high order time derivatives of the outputs as in the following;:

2 2
w w w
" / 2 o1 s 2 01 2 01
Vo1 = —2017V01 —Wh YVo1 2027 2 Vo TWh2Y 2 Vo2 Wy YU —Wo2Y w2 2
2 2 2
2 2 2
w w w
" / 2 02 7 2 02 2 02
Vg = —202YVg —WiaYVCc2+2017 I Vo +wirY I Vo1 FWheYU2 —Wo17Y I v,
1 1 1

2 2 2
where v = wiwi/(WiwF — Wi Ws)-
The state variables can now be assigned as follows:

qd1 = vc1,

/ /
42 = Vc1 = 41,

Wl Wl 2
w
@y = V¢ = —251’7Q2—WOWQ1+252’Y w2 Q4+W02’Y 2 ' g3 Wi YU1 — Wiy w021 V2,
w3 2

w2, 2
w
Qs = Vg = —2027qs — wof/(la-i—%l“/ W2 7 g -Hdol“/ 2 Pq +w02”/v2 wén w022 (T
1
Based upon, the system state and observation equations attain the forms of,

respectively,

d 0 1 0 0 0
1 2 2
gh| _ | Wiy —2007 Wiy 200 | | g
A 0 0 0 1
q§ 2 W22 “’22 2 o
a woLY 3 201y Wi W02 —2027 da

0 0

2
u1(2)1’7 _w(%Q’Ytogl o
0 0 v |’

w2
—wiiy w2 Wiy
q1
vct | 1000 q2
vC2 o 0010 q3
q4

We notice that, by the state variables assigned, the matrix D in the obser-
vation equation (4.126) acquires zero components. Therefore the last equation
lost its dependence on the input. a
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4.6.4 LTI Systems with Feedback

There is a class of LTI systems utilizing feedback. Systems of this kind are
used in control systems and are often subject to the control theory.

Most commonly, two general models of LTI systems with feedback are
recognized. The feedback can organize either a closed loop system with an
output (no input) or a closed loop control system with an external control
signal as an input.

Closed Loop LTI System

In closed loop LTT systems, the input vector x(t) is specified by the output
vector y(t) and the k x p feedback matriz

ki1 k1o ... klp
kot koo ... kgp (4 131)
Kkt kia - . Ky

such that x(t) = Ky(t). The components to K are typically set such that
some special requirements for the closed loop are satisfied.
Substituting x(t) = Ky(¢) to (4.101) and (4.102) yields

q'(t) = Aq(t) + BKy(t), (4.132)

y(t) = Cq(t) + DKy(?). (4.133)

The observation equation (4.133) can now be solved for y(¢) and we arrive, by
substituting y(¢) in (4.132) and (4.133), at the state space model of a closed
loop:

qd'(t) = [A + BK(I- DK) 'Clq(t), (4.134)
y(t) = I -DK) 'Cq(t). (4.135)

The block diagram simulating (4.134) and (4.135) is shown in Fig. 4.25.
As it is seen, the system lost the input fitting the term “closed loop”.

Two particular cases of the model, (4.134) and (4.135), should also be
mentioned. If the state variables are assigned such that the matrix D has zero
components, the equations simplify to

q'(t) = (A + BKC)q(t) (4.136)
y(t) = Cq(t). (4.137)

And when the matrix C is identity (we meet this case in many applications),
then equations become
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> D
_ 12O
B q(1) | q(t) = s y(f))
A
State model Observation model
Feedback
K

Fig. 4.25. Block diagram of a closed loop LTI system in state space.

qd'(t) = (A+BK)q(t), (4.138)
y(t) =qa(t). (4.139)

As it is seen, the state equations (4.134), (4.136), and (4.138) are ho-
mogenous and therefore a composed matrix in their right-hand sides is totally
responsible for system stability. Indeed, the unstable eigenvalues of A can be
made stable through appropriate choice of a matrix K that is certainly an
advantage of systems with feedback.

Of importance is that a stable closed loop is typically organized to have
negative feedback. This means that the components in K must be negative.
Therefore, the coefficient K very often appears in block diagrams (such as in
Fig. 4.25) with a negative sign, namely as —K, to emphasize that feedback is
negative and the closed loop is stable.

Example 4.25. An LTI system of the second order represents a series tuned
circuit shown in Fig. 4.26a. The scheme is described by the ODE

V() + 2005 (1) + wivr = 20V/(t). (4.140)

with known initial conditions, vg(0) and v/;(0).
The feedback induced (Fig. 4.26b) generates a voltage vpp(t) = v(t) =
Kuvp(t) and the system equation becomes homogenous

V(1) +26(1 — K)v(t) + wive = 0. (4.141)

It follows that, with K < 1, losses in the system are always positive and
oscillations attenuate owing to energy dissipation. With K > 1, the losses are
negative meaning that the feedback overcompensates dissipation of energy
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AN | |
1 i
L
w(?) C R vr(?)
Pl P
(@)
~ren—|| -
Locg V()
(—//

ves®) | | K| ] we(®

(b)

Fig. 4.26. LTI system of the second order: (a) input-to-output and (b) closed loop.

and oscillations develop. Finally, with K = 1, the losses are zero that can be
met only if the dissipated energy is fully recovered by feedback.

The second direct form of (4.140) is given in state space by (4.136) and
(4.137), if to define the matrices by

A:{_?ug_gd}, Bzm, c=[020], D=[o0].

Having only one input and one output, the feedback matrix has 1 x 1
dimensions, K = [K]. The state equation (4.136) and the observation equation
(4.137) attain therefore the forms of, respectively,

] = ([ ]+ [2] 1o [263].

VR = [1 25} [ql(t)} .
After simple transformations, the state equation becomes

q2(t)
48] -] 28]
a5 (t) —wp —26(1 - K) | | ¢2(t)
It now becomes obvious that the coefficient K affects the system so that, by
K > 1, the component Agq of A is always positive. Furthermore, we will show
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that such a value of K makes the system unstable to mean that the amplitude
of oscillations develops with time. With K < 1, the system is always stable,
once the amplitude of oscillations decreases with time. The case of K =1 is
intermediate. a

Closed Loop Control LTI System

In the second important and widely used case, the input signal x(¢) is formed
as an additive sum of the output-generated signal Ky(¢) and the external
control signal u.(t), namely we have x(t) = Ky(t) + u.(t). By such an input,
the state and observation equations become, respectively,

d'(t) = Aq(t) + BKy(t) + Buc(t), (4.142)

y(t) = Cq(t) + DKy(t) + Duc(t). (4.143)

The block diagram directly simulating (4.142) and (4.143) is presented in
Fig. 4.27. As one can observe, the closed loop control system is the input-

> D
O
u (1) . 1B q(t) J q(t) ¢ : y(f))
]
State model Observation model
Feedback
K

Fig. 4.27. Block diagram of a closed loop control LTI system in state space.

to-output system. However, unlike any open loop, the closed loop control
possesses many useful properties of practical importance and its complexity
is often compensated by its flexibility.

In a manner similar to the closed loop, one can solve (4.143) for y(t),
substitute the result to (4.142) and go to the ultimate state space equations
for the closed loop control:

d'(t) = [A +BK(I - DK) 'Clq(t) + BI+K(I - DK) 'Djuc(t), (4.144)

y(t) = (I-DK) 'Cq(t) + (I - DK) 'Du.(t), (4.145)
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where I is an identity matrix. By zero components in D, the equations become

qd'(t) = (A + BKC)q(t) + Buc(t), (4.146)
y(t) = Ca(t) (4.147)
and, if C = I, they degenerate to

d'(t) = (A +BK)q(t) + Buc(t), (4.148)

y(t) = a(t). (4.149)

An advantage of this model is in its ability to be both stable and control-
lable by u.(t), if the feedback matrix K is chosen appropriately.

Example 4.26. A system (Fig. 4.26b) is complicated for the control signal
uc(t) = [uc(t)] to be as in Fig. 4.28. The system is represented with the
following ODE

V(1) +26(1 — K)w(t) + wive = 26ul(t) (4.150)

having a forced solution affected by the control signal u.(t). The coefficients
of the model (4.90) are ap = w3, a1 = 26(1 — K), az = 1, by = by = 0, and
by = 20.

”Z“ | ~
uc(t) C » ve(?)
6//

vB(f) ‘: K : Vr(?)

Fig. 4.28. Closed loop control LTI system of the second order.

Following Example 4.25, the second direct form of the system equations
(4.146) and (4.147) becomes, after the transformations,

40112 =] (58] + [} 0
(020 [335)

Except for the control input u.(t), the system has the same structure as
in Fig. 4.26b. Therefore, K affects its stability in the same manner. It follows
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from the state equation that with K < 1 the system is always stable, by
K > 1, it is unstable, and K = 1 corresponds to the intermediate case. a

4.6.5 Properties of State Space Model

As an incredibly effective and powerfull tool of system description and pre-
sentation, the state space model possesses many of useful properties of impor-
tance.

Convertibility of State Variables

Returning back to the introduction on state space modeling, we recall that
any LTT system can be performed either in the first or second direct forms of
block diagrams. Moreover, although less commonly, other forms of diagrams
are used. Because all of these forms can represent the same system with,
however, different state variables, there must exist some rule to transfer from
one set of state variables to the other one. The relevant rule is known as
similarity transformation.

Assume that we have a system described for the state vector q(t) by (4.125)
and (4.126), respectively,

q'(t) = Aq(t) + Bx(t),

y(t) = Cat) + Dx(1).

Let us also suppose that some other state vector v(¢) of the same dimen-
sions N x 1 is of interest. Since the system is LTI, then v(¢) and q(t) are
coupled linearly and we can formally write

v1(t) = p11q1(t) + pr2ga(t) + - - +pinvan(t),

vo(t) = p21q1(t) + pa2qa(t) + - - + pangn(t),

un () = pvi1qi(t) + prv2ga(t) + - + pawvan (t)

that in compact matrix form is
v(t) =Pq(t). (4.151)

The N x N matrix P is said to be the similarity transformation matrix
(or merely transformation matrix) with constant components p;;, 4, j € [1, N].
From (4.151) we have q(t) = P~'v(t) and then substituting to (4.125) and
(4.126) gives

PV (t) = AP !v(t) + Bx(t),

y(t) = CP~lv(t) + Dx(t).
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By multiplying the first of the above equations with P we finally arrive at
the state space model performed in terms of a new state vector v(t),

v/ (t) = Ayv(t) + Byx(t), (4.152)
y(t) = Cyv(t) + Dyx(t), (4.153)

where
A, =PAP! B,=PB, C,=CP!, D,=D. (4.154)

A new system state v(¢) can now be expressed via the original state q(t).

Example 4.27. Consider a SISO LTI system (Example 4.22) described in
state space with the matrices

A:{_(Lg_g&], B:m, C=[w?0], D=][0].

We want to describe the system’s state in terms of a new state vector v(t)
coupled with q(t) by the matrix

2
_|wg O
P‘{Owa]'

y (4.154), we define

A [wO 0 1
YT 0 Wi | —wd 20 O wa2 —wd —25

C, = [w2 0] {‘“’gz wgg} —[10].

Now observe that, by this transformation, we arrived at the system model
given in Example 4.23. a

Example 4.28. An LTI system is represented in the second form (Example
4.21) by

0
CBi= 0|, Gi=[-32-3]. Di=[}]
1

and in the first form (Example 4.20) by
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~210 —5/2
A2: 101 5 B2: 3/2 ) 022[100}7 D2:|:g}
—300 —3/2

We want to identify the similarity transformation matrix P to translate the
first form to the second one.
The second relation in (4.154) gives By = PBy,

—5/2 P11 P12 P13 0
3/2 | = | p21 p22 P23 0
—3/2 P31 P32 D33 1

that determines p13 = —5/2, pe3 = 3/2, and p33 = —3/2. The third relation
in (4.154), being rewritten as CoP = Cjy,

P11 P12 P13
[100] | po1 p22 pas | = [—3 S _g] )
P31 P32 P33

produces p11 = —3/2, p12 = 3/2, and p13 = —5/2. Finally, the first equality
in (4.154) performed as A;P = PA;,

=210 |p11 P12 P13 D11 P12 P13 010
1 01| [p21 p22 p23 | = | P21 P22 P23 001,
=300 | p31 P32 P33 D31 P32 P33 —-31-2

allows getting the rest of the components of P, namely: pa; = 9/2, p3; = —3,
po2 = —1, and p32 = 9/2.
The similarity transformation matrix is thus identified by

-3/2 3/2 —5/2
P=| 9/2 -1 3/2
-3 9/2 —3/2

that allows us to transfer from the first direct form to the second one and vise
versa. O

State Controllability

The term state controllability is akin to “state control.” Even intuitively, it
predefines the system’s state to be adjustable in some way. The term was
introduced to the text by Kalman in 1960, along with the other term state
observability that we shall consider in the sequel.

Most commonly, we call a system controllable if its state variables can
directly be controlled by the input(s). Contrary, in the uncontrollable or partly
controllable system, all or some state variables cannot be steered in finite time
by the admissible input(s). Specifically for LTI systems represented in state
space, the definition of controllability means the following:
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Controllability: An LTI system described by (4.125) and (4.126)
is completely controllable on the finite time interval [tg, ¢1] if for any
initial state q(tp) there may be found an input x(t) to transfer the
system to the other given state q(t1).
O
The test for controllability is as follows. The system (4.125) and (4.125) is
state controllable if the matrix
Sc.=[B AB A’B ... AV"'B] (4.155)

has full rank (Appendix B); that is,
rankS. = N .

Recall that rank is the number of linearly independent rows in a matrix.
Herewith, the matrix S. has to be non singular if it is square, but is not
necessarily square. Note that the N-order square matrix S, is not singular if
and only if its rank is N, i.e. det S. # 0.

Example 4.29. The system state equation (4.125) is given as

a0 =] a0+ 9]0

and the matrix S. is thus determined to be

= (B [0 50D -1%)

It can be shown that the rank of S. is unity, rankS, = 1 < N = 2.
Therefore, the matrix is singular and the system’s state is not controllable.
Alternatively, we can rewrite the system state equation as follows:

0(t) =—aq(t),

@5 (t) = —2qa(t) + x(t) .

A conclusion about uncontrollability follows directly from the fact that the
first state ¢} (¢) is not affected by the input and hence is not controllable. O

Example 4.30. Given the system state equation

a0 =y 5] a0+ [}]x0.

for which the matrix S. is calculated by

s=([1] [2)[])-02)
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This system is controllable, because the determinant of S, is not zero,
det S¢ = —1 # 0, and the rank is full, rank S, = 2. Alternatively, we can write

01 (t) = —qu(t) + =(t),

() = —2qa(t) + z(t)

and conclude that system is controllable, because both the first and second
states are affected by the input. a

The definition of state controllability allows figuring out what the sys-
tem is that is absolutely controllable? It can be shown that such a system is
represented with the following controllable canonic form

—a1 —a2 ... —aN—1 —anN 1
1 0 0 0 0

qiy=| 0 1 0 0 ta)+ |9 u), (4.156)
0 0 1 0 0

y(t) = [bl bQ . bN_1 bN] q(t) + Duc(t). (4 157)

As it follows from an analysis of (4.156), the first component ¢} (t) of a
vector q'(t) comprises all of the state variables and is controlled by w.(¢). The
system’s state is thus absolutely controllable.

State Observability

Observability is a measure for how well internal states of a system can be
inferred by knowledge of its external outputs. Formally, a system is said to be
observable if, for any possible sequence of state and control vectors, the current
state can be determined in finite time using only the outputs. Specifically for
LTT systems, this means the following:

Observability: An LTI system described by (4.125) and (4.126) is

completely observable on the finite time interval [to, 1] if for any to

an initial state q(¢y) can be determined from observation of the out-

put y(¢) over this interval with the input x(¢) known over the same

interval.

O

In other words, we can watch the outputs of an observable system and
figure out what is going on inside the system with its states, even if it takes
a very long time. For LTI systems, a commonly used test for observability is
as follows: the system is observable if the observability matrix
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C
CA
S, = ] (4.158)
CA.N—l
has full rank; that is,
rank S, = NV .

Example 4.31. An LTI system (Example 4.26) is represented with the sys-
tem and observation matrices, respectively,

A= [_2}8 _25(11_@} . c=[02].

The observability matrix (4.156) of a system is defined to be

0 1
So =2 [—wg —26(1 — K)] '

Because the determinant of S, is not zero, its rank is full, rank S, =2 = N,
and the system is thus completely observable. ad

In line with the controllable canonic form, an LTI system can also be
represented with the observable canonic form

—ai 1 0 0 bl
—asg 01 0 b2
q(t) = oo la®) | | uelt), (4.159)
—aN-—-1 00 1 bN,1
—anN 00...0 bN
y(t) =[100...0] q(t) + Duc(t). (4.160)

Examining (4.159), one deduces that the first system state is specified via
the second state. In turn, the second state is performed via the third state,
and so on. In other words, the first system state ¢1 (¢) and thereby the system
output (4.160) are performed by all of the other system states and the system
is thus observable.

Duality of State Observability and Controllability

Both the state observability and state controllability are mathematically dual
that is supported by the fact that controllability of the system described with

q'(t) = Aq(t) + Bu(t)

is the same as observability for the system represented by
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d'(t) = ATq(t),
y =B"q.

In view of that, the test for controllability can be substituted by the test for
observability through the following transformations:

A—-AT B-CT, S.-—8,. (4.161)

Example 4.32. An LTT system (Example 4.26) is given in the state space
form, (4.147) and (4.148), with the matrices

A=| L i x) o B=[1] o-low.

By (4.155), its controllability matrix is defined to be

Se = [(1) —25(11— K)} '

Following (4.161), one arrives at the same result, by substituting A with

T _ 0 —W(Z)
A _{1—26(1—1{) ’

C with BT = [0 1], and then S, with S.. O

Kalman Decomposition

Any LTI system can be performed in state space with what is called the
Kalman decomposition. Kalman proposed splitting a system into the four qual-
itatively different substructures regarding the system states: controllable and
observable q.,, controllable and not observable g.5, non-controllable and ob-
servable ¢, and non-controllable and not observable ¢z5. Presenting the state
vector as g = [qeo Qes Qeo Ues)” allows formally writing the system state and
observation equations as follows

A 0 Az O B,
1y | Ao1 Aoy Aoz Aoy B,
AU =170 "0 A 0 |9DF] g |u®), (4.162)
0 0 AiAy 0
y(t) =[C10C20]q(t), (4.163)

where all of the auxiliary matrices are specified by the matrices A, B, and C
taken from the state and observation equations.

The block diagram simulating (4.162) and (4.163) is shown in Fig. 4.29
clearly illustrating all kinds of subsystems.
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u () s\ y(©)
. &

Fig. 4.29. Kalman decomposition of LTI systems.

As can be seen, a subsystem with the impulse response matrix h., has
the input controlled by u.(t) and the output connected to y(¢). This block is
thus both controllable and observable. Contrary, a subsystem hgs is discon-
nected from u.(t) and y(t), therefore, is non-controllable and not observable.
Connected to u.(t) and disconnected from y(t), a subsystem h¢s is control-
lable, but not observable. Finally, a subsystem hg, is observable, but non-
controllable, because it is disconnected from u¢(t) and connected to y(t).

It would not be a big surprise that real systems do not always comprise
all of the subsystems shown in Fig. 4.29. The seemingly obvious point is that
the fully controllable and observable system would be represented by only the
block he,.

4.6.6 Stability

As the Lyapunov theory suggests, stability of an LTI system can completely
be ascertained by investigating the homogenous matrix state equation

qd =Aq, (4.164)
where the IV x N system matrix A with constant components,

ailr a2 ... A1N
a21 a2 2N

A=| . 1, (4.165)
aGN1 AN2 aANN

bears all the necessary information about behavior of a system. Ascertaining
stability can be provided in different ways, by the following widely recognized
criteria.
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Lyapunov Criterion

The most widely used criterion of stability was proposed by Lyapunov. By the
Lyapunov criterion, the sufficient condition for the trivial solution of (4.164)
to be stable in the Lyapunov sense is that all of the roots of the characteristic
equation

det(aij - )\(51J) = 0,

1, ifi=j . .
0. ifi 4 i, € [1, N], have negative real parts. If a square

matrix A possesses such a property, then it is called the Hurwitz?> matriz.
The determinant can be rewritten in the form of

where 51']‘ = {

a1 — A a2 ... 1N
as1 G2 — A asN
=0, (4.166)
ant an?2 aNnN — A

allowing us to represent the characteristic equation by a polynomial

fo) = an A +an AT b 4 aid+ao=0, ap>0. (4.167)

To apply the Lyapunov criterion, all of the roots of (4.167) must be found
and investigated for negative real parts.

Example 4.33. An LTI system is represented in state space with the ho-
mogenous matrix equation

[qaa)] :[ 0 ! quw}_
a5 (t) —wg —20(1—K) | | q2(t)
The corresponding characteristic equation is written as

-2 1 0
—w —201—K)—=X|
M 4+25(1 - K)A\+w2 =0,

having two roots,
Az = —6(1 - K) = /821 - K)? — w3

Because, typically, K is not large and wg > 26, both roots are complex.
For the real parts of the roots to be negative, we need to obtain K < 1. By
the Lyapunov criterion, the system is thus stable only if K < 1. O

2 Adolf Hurwitz, German mathematician, 26 March 1859-18 November 1919.



220 4 LTI Systems in the Time Domain
Routh-Hurwitz Criterion

One can also realize if the characteristic equation (4.167) has roots with neg-
ative real parts, using the Routh®-Hurwitz criterion. In accordance with this
criterion, all of the roots of (4.167) have negative real part if and only if all
of the following determinants are positive-valued:

a a a1 ap 0
Di=a;, Dy=|"" D3y=|azazai|, ...,
s a2 as aq as
ai ap 0 0 ... 0
as as ay 0 0
Dy=| . . . . (4.168)

a2N—-1 A2N—-2 2N -3 A2N—4 an

Example 4.34. Consider Example 4.33, in which the characteristic equation
(4.167) is given with the coefficients ag = w3, a; = 26(1 — K), and as = 1.
By the Routh-Hurwitz criterion (4.168), the relevant system would be stable
if the determinants Dy and D5 are positive-valued.

Providing the necessary transformations, we arrive at

D1 = a1 :2(5(1—K),
20(1 - K) wd
0 1

and point out that D and Dj yield the same condition 26(1 — K) > 0 for the
system to be stable. The latter is satisfied with K < 1 and thus the Lyapunov
and Routh-Hurwitz criteria are consistent (Compare with Example 4.33). O

Dgz‘ =25(1 — K)

Lyapunov Function Criterion

Because the Lyapunov functions method (Chapter 2) is applicable to any
system, it could be used to ascertain stability of LTI systems. Before applying,
it needs to introduce a concept of the positive definite matriz for LTI systems.
A matrix A is said to be positive definite if the quadratic form q7 Aq is
positive definite. If so, then this quadratic form is the Lyapunov function

V(a)=q"Aq>0 (4.169)

that is positive for all q # 0 and has a negative time-derivative, V'(q) < 0.
Using this definition, the following theorem is proved:

3 Edward John Routh, English mathematician, 20 January 1831-7 June 1907.
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Theorem 4.1. An LTI system (4.164) is asymptotically stable at zero if and
only if for any given positive definite symmetric matriz Q there exists a pos-
itive definite symmetric matriz P such that the following equality is satisfied,

AP +PA=-Q. (4.170)

O

To prove, let us think that P and Q are positive definite matrices. Then

V(q) = q"Pq is the Lyapunov function, because, first of all, it is positive-
valued,

V(g) =q"Pq >0, (4.171)
and, second of all, by differentiating V' (q) and using (4.164) and (4.170), we
have a negative-valued function

V'(a) = (a")Pa+q"Pqd =q"ATPq+q"PAq
=—q'Qq<0. (4.172)

The proof is hence complete.

The reader has to remember that the goal is to define the matrix P for
the given matrix Q and not vice versa. If one first define P and then find
Q, then the conditions for the above-mentioned theorem are violated and an
evaluation of the system stability may lead to wrong results.

Example 4.35. Consider two systems given with the system matrices and
characteristic equations, respectively,

_ 0 1 2 _
1.A_[_2_1] . A2+ A4+2=0
_ 10 2 _ R
2.A_[2J . A —22-1=0

Because the coefficients of the first equation are both positive, the system
is stable. The second characteristic equation has negative coefficients and the
system is thus unstable.

To verify this fact by the second Lyapunov method, one can assign the
positive definite symmetric matrix Q and matrix P as follows, respectively,

a0 P11 P12
Q= [0 b} , end P = |:p21 pzz} ’

where a > 0, b > 0, and the components of P are still unknown. Substituting
Q to (4.172), we realize that —q” Qq = —(aq? + bq3) < 0 fits the Lyapunov
function condition (4.172) for all ¢; and g2. The matrix Q is thus positive
definite.

We shall now determine P separately for each of the systems to realize
which matrix is symmetric and positive definite satisfying (4.171).
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1. The first system. Substituting A, Q, and P to (4.170) produces an
equality

—2pa1 —2p12 —2pa2+pu —piz| _ _ |a0
P11 — P21 — 2p22 P12 — 2p22 + pa1 0b|"’
which solution gives
3a a
+0b
P= |: 4 a 1 a4 :| .
i oa(5+0)
By this matrix, (4.171) yields the value
a a b

—a'Pa=— (q+¢)" - (2 +b) 6i — 58 <0

that is negative for all ¢; and ¢s. The Lyapunov conditions are satisfied and
the first system is thus stable.
2. Reasoning similarly regarding the second system, we have

P11 + P21 + P12 P12 + P22 :_1 a0
P21 + P22 D22 2100

that identifies the matrix P to be

le{—a—% b}

2
Now, by (4.171), we have

—q'Pq = (a+ b)qf +b(q1 — qg)2 >0

that is positive-valued for all ¢; and g2. The system is thus unstable. O

4.7 Solution of State Space Equations

As any linear ODE of the first order, the state equation (4.125) associated
with either SISO or MIMO LTI system can be solved for q(t). To arrive at
the relevant solution, let us recall that a single ODE of the first order (4.53)
is solved using the exponential integration factor. Similarly, the matrix ODE
(4.125) can be solved using the integration factor e=A?.

To find a general solution of (4.125), we multiply both its sides with e~A?,

e Alq/(t) — e ATAq(t) = e A'Bx(t).

The left-hand side is now the time derivative of the product and we go to the

equation
/

[e‘Atq(t)} = e A'Bx(t),
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which integration from ¢y to ¢ yields
¢
e Alq(t) = e Aloq(ty) + /e*AGBx(H)dH.
to

Multiplying the both sided of this equation with a reciprocal of the inte-
gration factor, eA?, results in the solution

t
q(t) = eAl=)q(ty) + / A= Bx(9)do (4.173)
to

that, by zero input x(¢) = 0, becomes homogenous,

q(t) = A=) q(tg) = B(t, to)q(to) - (4.174)

The matrix ®(t,ty) = eA(¢=%) in (4.174) predetermines a transition of
the state vector q from tg to t. Therefore, this matrix is termed the state
transition matriz.

If we now substitute (4.173) to the observation equation (4.126), we arrive
at a general solution of the state space equations

t
y(t) = CeAl=t)q(t0) + C / A=0Bx(9)d0 + Dx(t),
to

t
— CB(t,1o)q(to) + C / ®(t,0)Bx(0)d6 + Dx(1) (4.175)

to
To compute (4.175), the state transition matrix ®(t, to) must somehow be
evaluated in proper dimensions. As it follows, ®(¢, o) is formed by a reciprocal

of the integration factor, ®(¢) = eA?. The latter, owing to A in its power, is
called the matriz exponential, possessing several useful properties.

4.7.1 Matrix Exponential

Analogously to a reciprocal et of the integration factor e=¢¢ for linear ODEs
of the first order, the matrix exponential can be expanded to the Taylor series

®(t) = = e
k!
k=0
A2 AF
=T+At+", 24+ 1 th ., (4.176)

where I = A is the N x N identity matrix.
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Example 4.36. The system matrix is specified with the components

012
A=1]003
000

To expand the relevant matrix exponential e to the Taylor series (4.176),
first, define the product A% = AA,

0127012 003
A?2=1003|1]003| =000
000|000 000

Then the matrix A% = A%A becomes nilpotent,

0037012 000
A*=1000|]003]| =000
000|000 000

and all other higher order matrices A*, k > 3, are nilpotent as well. The
matrix exponential e? is thus produced by the Taylor series to be

t2
eAM=T+tA + 2A2

100 012] . [003
—lo1o|+¢|oo3|+" |ooo
001 ooo| 2 o000
1t 2+ 3
=lo1 3t |, (4.177)
00 1

An important finding follows instantly. Disregarding the general infinite
length of the Taylor series, the matrix exponential was produced by the finite
Taylor series. The latter is obviously of high importance for state space mod-
eling. O

Based upon (4.176), several important properties of the matrix exponential
®(¢t) can be distinguished:

e Value at zero. At ¢t = 0, the matrix ®(t) is identity,
®0)=e"=1. (4.178)
O

Example 4.37. As can be seen, by ¢ = 0, the matrix exponential (4.177)
becomes identity. a
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e Time shifting. An identity eA(!=?) = eAte=A? 3llows representing the

state transition matrix ®(¢,6) by the matrix exponential as

P(t—0) =P(t,0) = P(t)P(—0). (4.179)
O
e Inverse matrix exponential. Since eAfe=A* = I and hence e At =
(eAt) 71, then
S Ht) = ®(—t). (4.180)
e Differentiation. Differentiating ®(t) gives
(?teAt = At = AA (4.181)
that is supported by the manipulations:
d ar_ A? po1 AF
dte —0+A+2t2!+...+/€t k!-l—...
A2 A2
=A<I+At+ 91 +> = (I+At+ 91 +>A
O

Cayley-Hamilton Theorem

One more important property of the matrix exponential is established by the
Cayley*-Hamilton theorem.

Generally, the Taylor series (4.176) evaluates ®(t) via the infinite series
length. The Cayley-Hamilton theorem states, in its applications to the LTI
systems theory, that ®(¢) can be evaluated in the finite series of length NV,

b(t)=e =agl+aA+... Fay AN, (4.182)

if to specify properly the constant coefficients ag, a1, ...an—_1.
For the known eigenvalues A, k € [1, N], of A, the coefficients of (4.182)
are defined by the linear equations system

N—-1 Aot
ag+ a1y + ... —I—OéN_l)\O =",

N-1
ao—l—al/\l—i—...—i—aN,l)\l :e)‘lt,

ag + 1 AN—1 + ... + O[Nfl/\]NV:% = M-t (4183)

4 Arthur Cayley, English mathematician, 16 August 1821-26 January 1895.
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and it follows that the coefficients are commonly time-varying.

Because both (4.176) and (4.181) expand ®(¢) to the series regarding the
same matrix A, the coefficients ag, a1, ..., ay_1 can be determined via the
Taylor series (4.176), if to set all of the matrices A* for k > N — 1 to be
nilpotent (having zero components).

Example 4.38. Consider the system matrix A given in Example 4.36. The
relevant characteristic equation is

A1 2
0 -\ 3 |=-X=0,
0 0 —A

having the only one zero root A = 0. The coefficients of a polynomial (4.182)
can be determined if to consider the first equation in (4.183) and supply two

its time derivatives:

ag + a1 + ag)\? = eM ,

ag + 2as )\ = teM ,
2009 = t2eMt
From these equations, we have ag = 1, a; = t, and ap = t2/2. The matrix
exponential is thus evaluated by

t2
A =T+ tA + 2A2

that coincides with the Taylor expansion (4.177). O

So, we now know how to evaluate the matrix exponential. One thus is able
to find a closed form solution of a particular system state space model in the
form of (4.175).

Example 4.39. An LTI system considered in Example 4.22 is assumed to
have an infinite quality factor. Therefore, the bandwidth is zero, 26 = 0, and
the matrices of the state space model,

q'(t) = Aq(t) + Bu(t),
y(t) = Ca(t),

are specified by

A:{O 1}, B:m, C=[u20].

—wg 0

By to = 0, a solution (4.175) of the state space equations becomes
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y(t) = Cetq(0) + C / A= B(6)dl (4.184)

and the characteristic equation, for the given A, is written as

‘—/\1

— \2 2 _

producing two roots,
A1 =jwo, A2 =—jwo.

By the Carley-Hamilton theorem, the matrix exponential (4.182) is per-

formed with

At = aol + a1 A

that, by (4.183), results in

a4 oy jwy = 70t
Qo — o jwg = e Iwot
The coeflicients are thus determined to be

Qg = coswot ,
1
o] = sin wot
wo

and we specify the matrix exponential with

1
At — Tcos wot + A  sinwgt

wo
1 .
_ coswyt wp SN wot
—wp sinwgt  coswpt

The solution (4.184) can now be written as

o, coswot - sinwgt | [q1(0)
y(t) - ["‘JO O] |:—Cd0 sinwot (OZOSLUOt Q2(0)

/t{ coswolt — 6) ;Osinwo(t—‘))]mx(o)do
0

—wosinwy(t —0) coswo(t — )

t
= q1(0)w cos wot + g2(0)wp sin wot + wo / x(0) sinwo (t — 0)do (4.185)
0

comprising a homogenous solution (two first terms) and a forced solution (the
rest integral term). O
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4.7.2 System Impulse Response in State Space

An inherent property of the general solution (4.175) is that it predefines the
system impulse response by the unit impulse in the input.
For SISO LTI systems, (4.175) can be rewritten as

t
y(t) = CeAl=)q(tg) + C / eA=OB(0)do . (4.186)

to
Aimed at determining the system impulse response, we allow tg = 0, as-
sume zero initial condition, q(0) = 0, and set x(t) = J(¢). Instantly, by the

sifting property of the delta function, the impulse response function appears
to be

t
h(t) = C / eA=0Bs(0)do
0

= CeA'B. (4.187)

Example 4.40. An LTI system is given with the equation (4.185). By ¢1(0) =
¢2(0) = 0 and z(t) = §(¢), we go to the system impulse response

t
h(t) = wo / 0(0) sin wpfdf = w sinwot .
0

The same result appears, for known matrices (Example 4.39), if we employ
the general solution (4.187):
1 .
o coswoll . sinwef | [0
h(t) = [w5 0] [—wo sin wp goswoﬁ } [1
= wp sinwgt.

Let us notice that the above derived impulse response function corresponds
to conservative systems without dissipation of energy. Therefore, the function
oscillates with time without attenuation that is illustrated in Fig. 4.10b for
a=0. ad

4.7.3 System Step Response in State Space

In line with the impulse response, the system step response is readily produced
by (4.186) if to set to zero the initial condition, q(0) = 0, suppose to = 0, and
apply the unit step in the input. For SISO LTT systems, this leads to

t t
g(t)=C / eA-OBy(g)dd = C / AU=0BAY. (4.188)
0 0
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Example 4.41. The step response function of an LTI system (Example 4.39)
is calculated via its impulse response (Example 4.40) to be

t

t
g(t) = /h(T)dT = wo/sinondT =1 — coswot.
0 0

Equivalently, following (4.188), we arrive at the same result by

¢
1 .
o(t) = [ 0]/{ coswol) smwOG] [(1)] a9
0

—wp Sinwgf  cos wyb

t t
1 .-
= [wg O} / {“’0 smwoﬂ dé = wo/sinw09d6‘
cos wgb
0 0

=1 —coswyt.

Now note that the step response derived is illustrated in Fig. 4.11b, by
a=0. a

We finished with presentation and description of LTI systems in the time
domain. As it follows from what was observed, such systems obey many use-
ful properties and turn out to be particularly simpler than any other kind of
systems. Their inherent properties are linearity (homogeneity and distribu-
tivity) and that they do not depend on when they occur (time-invariance).
Especially important and often critical for applications is that the methods
of LTI systems description (convolution, ODEs, and state space) are consis-
tent, interchangeable, and produce equal results in rather different ways and
forms, although translatable into each other. This splendid feature saves in
the frequency (transform) domain.

4.8 Summary

As the most useful idealizations of real systems, LTI models are used widely
to investigate a great deal of practical and applied problems. The following
basic canons characterize LTI systems in the time domain:

— Any system that provides linear transformations with a time-invariant
operator is the LTI system.

— Any linear system is time-invariant, if all of its coefficients are time-
constant.

— The response of a system at time ¢ to the unit impulse at time ¢ is the
LTT system impulse response.
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The response of a system at time ¢ to the unit step at time ¢ is the LTI
system step response.

Convolution couples the input and output of an LTI system via the im-
pulse response by the integral equation; convolution in its standard form
is not valid for time-variant and nonlinear systems.

Convolution becomes cross-correlation by a sign changed in a variable of
the impulse response.

Any LTI system can be described by the N-order ODE; a solution of the
ODE is consistent with that provided by convolution.

The homogenous solution of the LTI system ODE is the LTI system re-
sponse to the nonzero initial conditions with zero input.

The forced solution of the LTI system ODE is the LTI system response
to the input with zero initial conditions.

Any LTI system can be simulated with the first and second direct
(canonic) forms of block diagrams.

The state variable is associated with time derivative and is commonly
interpreted as the system “memory element”.

Any LTI system can be represented in state space via the ODE or block
diagram if the state variables are properly assigned.

The state space representation of any LTI system is provided in matrix
form by the state and observation equations (state space equations).

The matrix form of state space equations is universal for both SISO and
MIMO LTT systems.

In state space, all of the properties of LTI systems are fully accounted by
the time-invariant matrices (system, observation, input, and output).

A general solution of the state space equations is universal for all kinds
of LTT systems.

4.9 Problems

4.1. Observing different electronic systems (Chapter 1), find applications for
LTT modeling in their structures.

4.2. An electronic system comprises the following blocks: Gaining amplifier,
Reference oscillator, Phase modulator, Amplitude detector. Examine opera-
tion principles of these subsystems and realize which one can be analyzed by
LTT modeling and which cannot.

4.3 (Convolution). A noncausal input signal has a waveform z(t) = e,

bt

b > 0. Using the convolution, define the output for the impulse response given:
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1. h(t) = e~ “u(t), a >0

2. h(t) = Au(t) — Au(t — 1)

3. h(t) = Au(t) — 2Au(t — 1) + Au(t — 27)
4. h(t)=a(1— 1) u(t) —ult—7)]

5.h(t) =al [u(t) —u(t —7)]

1. h(t) = u(t) z(t) = te~? u(t)

2. h(t) = u(t) x(t) = t2 bu(t)

3. h(t) = e tu(t) z(t) = u(t)

4. h(t) = u(t) — e 2u(t — 1) 2(t) = e~ 2u(t)

5. h(t) = a: [u(t) — u(t — 7)] x(t) = afu(t) — u(t — 7)]
6. h(t) =a(l—7) [u(t) —u(t —7)] o(t) = al [u(t) —u(t —7)]

4.5. An LTI system is characterized with the impulse response h(t) =
Alu(t) — u(t — 7)]. Using the convolution, define the system response to the
causal and noncausal cosine inputs, z(t) = u(t) cost and z(t) = cost, respec-
tively. Give graphical interpretations.

4.6. Solve Problem 4.5 for the impulse response h(t) = e~ *u(t), a > 0, and
sinusoid inputs, x(t) = u(t) sint and x(t) = sint.

4.7. Using the convolution, define the system step response for the impulse
responses given in Problems 4.3 and 4.4. Verify the results by (4.11).

4.8 (Properties of LTI systems). The system impulse response and input
are given by, respectively,

L. h(t) = eIl x(t) = te=u(t)

2. h(t) = 24t a(t) = t2e I

3. h(t) = 2e 4|t 716 (t) z(t) = et coswot
4. h(t) = te"u(t) z(t) = coswot

5. h(t) = u( ) e 2t {E(t) — ef2tu(t)
O (WS R A

Ascertain causality of each of these systems and signals and write properly
the convolution integral.

4.9. Realize which system given in Problem 4.8 is stationarity and/or mem-
ory and which is not. Verify your deduction.

4.10. An LTI system characterized with the impulse response h(t) = ae™u(t)
produces the output y(t) = a?(1/b + t)e~**u(t). Using the convolution, solve
the inverse problem to define the input x(t).
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4.11. The input and output of an LTI system are represented with the spec-
tral densities, respectively,

Aif —we/2 w < we/2
0 otherwise

Bif —w./2 < w < we/2
0 otherwise

(i) = { |

where A and B are constant. Identify a system by the impulse response.

4.12 (LTI systems of the first order). Verify that an LTI system of the
first order (Fig. 4.30) is described by the ODE

v () + 121 v (t) = leijzv’(t).
L 1
Ry
V(1 t
(1) R L3 v ()

Fig. 4.30. An LTT system of the first order.

Write the general solution for an arbitrary initial condition. Investigate the
homogenous solution. Define the system impulse and step responses.

4.13. Write the ODE and solve Problem 4.12 for an LTI system shown in
Fig. 4.31.

4.14 (LTI systems of the second order). Verify that an LTI system given
in Fig. 4.32 is described with the ODE

Ry / 1 _ Ry "
I vy (t) + LCUL(t)— R1+R2v (t).

Write the general solution for arbitrary initial conditions. Investigate the
homogenous solution. Define the system impulse and step responses. Investi-
gate the responses numerically for Ry = Ry = 1000hm, L = 5 x 1072 H, and
C =2x107°F.

vy (t) +

4.15. Write the ODE of an LTI system shown in Fig. 4.33 and solve Problem
4.14 for this system.

4.16 (Block diagrams). Verify that an LTI system described with the ODE
(Problem 4.14) can be simulated by block diagrams in the first and second
direct forms as shown in Fig. 4.34a and Fig. 4.34b.
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L
3 B sttt SN
v(l‘)é) Rzﬁg L§ l i, (1) ) % o }(1)
(1 2)
IIC AN a
v(t) & R, )z(r) o @ Rzﬁg C+ [t
3) )
R, R
. — 1 @ — EJ 1™
i(t) Rl C i(t) V() R | C ve(t)
©_~f T
() (0)

Fig. 4.31. LTI systems of the first order.

I
v(t) é} ¢ L vL (t)

Fig. 4.32. An LTI system of the second order.

4.17. Write the ODE of an LTT systems represented in Fig. 4.35 with the
block diagrams of the first direct form.

4.18. An LTI system is described with the following ODE

cay” + by 4 cy = da” — ex’
.3fydt—|—2y” 4y—|—y=3x”—:r
y" - 3y = 20" —
.y”+fydt_2y:zbmfl;”;,bozz,b1:1
m=0
cx= [y"dt

.2d”+4a:+y—2dt3 + 44
A" —x) =3(y —a")

a4 [adt — 2y = [ydt — 2y"
cagy” —box —ary — b1’ =0

© 0N T A 90[\9>—~
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L C
R A | |
] I AN
v(t) R[] ¢ T L l i, (t) i(2) é R EJ}ZO)
(1 (2
5{ Ry L
V(o) sz(t) Wt) l :
R Ry C ico(t)
]
4)
Rl RI L
0 =
i(t) R Lé C l i (t) v R C ve (1)
2 T 2 1
(%) (6)

Fig. 4.33. LTI systems of the second order.

V(1) /\; vL_(tl >
R2 Rz VL (t)

v(t)

O)

(a) (b)

Fig. 4.34. Block diagrams of an LTI system: (a) the first direct form and (b) the
second direct form.

10. 2y + [adt — 2y’ = [ [ydtdt —
11. 3y” + 2 [ ydt = 2x
1 n
12. Zan‘flt}f:a:—l—fa:dt—Zy’,aO:Z,al:l
1
13. Zandtn—I—fodt Z b 407 + 2y + [ ydt,
=0
a0—2 a1—1 b0—2 b1—1
14. 3y + Z b 40T — 4y +y =22, by =2, b =1
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x(0) w2 @) 9,
T
) (2) I [
o t x(1) N0
. — >
.[ > _[ y(g 2
2
3) 3 ) |

(5) 3 2 (6) b

Fig. 4.35. LTI systems represented with the block diagrams of the first direct form.

1
5.2+ [adt —2y = 3 by %5 bo=2,by =1
0

m=

2 3
16.24Y +x+2y=2%Y +49

Represent a system with the diagrams of the first and second canonic
forms.

4.19. An LTI system is simulated with the block diagram of the second direct
form (Fig. 4.36). Using the diagram, write the ODE of the system.

»(0)
> (%)

x(t) Y\ -~ »(0)

X(I)® J.—)".

&
—D—)G/J
—
—
[\S]

(1) ) “«

Fig. 4.36. LTI systems represented with the block diagrams of the second direct
form.
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4.20 (SISO systems in state space). A SISO LTT system of the first
order is shown in Fig. 4.33. Represent this system in state space via the ODE
defined in Problem 4.15.

4.21. A SISO LTT system is given with the block diagram shown in 4.35.
Represent a system in state space via the ODE defined in Problem 4.17.

4.22 (MIMO systems in state space). A MIMO LTT system is given as
in Fig. 4.37. Represent the system in state space.

‘XW (l)

() "
2 »(@®) X ) @

2

. () x,(1) | | F—»0

»n()

Sl 4
wy

x,(1) zr—> =
: 3 5
™M (2)

Fig. 4.37. MIMO LTI systems performed with block diagrams.

4.23 (LTT closed loop in state space). An LTI system is given with the
block diagram as shown in Fig. 4.35. Assuming that the input is connected
to the output with the function z(t) = —2y(¢), represent the system in state
space.

4.24. The inputs and outputs of a MIMO feedback system (Fig. 4.37) are
coupled with the functions x1 (t) = —3y2(t) and z2(t) = 0.2y (t). Represent a
system in state space.

4.25 (LTT closed loop control in state space). Solve Problem 4.23 for
2(t) = —2y(t) + uc(t), where uc(t) is a control signal.

4.26. Solve Problem 4.24 for z1(t) = —3ya(t) + uc1(t) and z2(t) = 0.2y1(t) —
ucz(t).
4.27 (Convertibility of state variables). An LTI system is represented in

Problem 4.19 in state space in the first direct form. Find a similarity matrix
and transfer to the second direct form.

4.28 (Stability). An LTI system is given with one of the following system
matrices

~1 21 12 1 123 111
Ar=|1-11|, Ay=|0-11]|, As;=|012|, As=]|011
0 01 12 -1 001 001

Using the Lyapunov criterion, realize which system is stable and which is
not.
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4.29 (Observability and controllability). An LTT system is given in state
space with the following matrices

121 1
A=|0 -11|, B=|0|, c=[110].
0 01 1

Investigate a system for observability and controllability.

4.30 (Matrix exponential). Using the Cayley-Hamilton theorem, evaluate
the matrix exponential of an LTT system given with the matrices (Problem
4.28).

4.31. An LTT system is represented in state space with the equations defined
in Problem 4.20. Evaluate the matrix exponential for this system.

4.32 (Solution of state space equations). The system state space equa-
tions are defined in Problem 4.20. The relevant matrix exponential is evaluated
in Problem 4.31. Using (4.171), write a general solution of the system state
space equations.

4.33. Define and investigate numerically the impulse and step responses of
an LTT system represented in Problem 4.32 with the general solution.
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LTI Systems in the Frequency Domain
(Transform Analysis)

5.1 Introduction

An alternative form of LTI systems presentation, although adequate and com-
monly used, is available in the frequency domain. Two approaches are basically
employed. In Fourier analysis (the reader is encouraged to read Signals and
follow Appendix C), an LTI system is described by the system frequency re-
sponse that can be obtained as the Fourier transform of the system impulse
response. In the more general Laplace analysis, an LTI system is represented
by the system transfer function that turns out to be the Laplace transform
of the system impulse response. All forms of an LTI system presentation in
the time domain (convolution, ODE, and state space model) can be converted
to the Fourier and Laplace transform domains equivalently, thus representing
such a system explicitly and exhaustively.

5.2 Fourier Analysis

An efficient tool to study any LTI system in the frequency domain is based
on the Fourier transform application. In the frequency domain often called
Fourier transform domain, an LTI system is characterized with the frequency
response that is the system complex function of frequency. The frequency
response is characterized by the system magnitude response, often measured in
dB, and phase response, typically measured in radians, both versus frequency.

To introduce the reader immediately to the essence of Fourier analysis,
let us consider an SISO LTT system with known transforms of its input and
output, respectively,

2 X(jw), yt) DY (jw).

Certainly, both spectral densities, X (jw) and Y (jw), must be coupled in
the frequency domain by some system operator O as
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Y (jw) = OX (jw). (5.1)

Then what should be this operator?

To find an answer, we recall that, in the time domain, the output y(¢)
is coupled with the input z(t) via the system impulse response h(t) by the
convolution A(t)*z(t). Then, the convolution property of the Fourier transform
allows us to write

OX(jw) = Y (jw) = Fy(t) = FIh(t) x 2()] = Hjw)X(jw).  (5.2)

Comparing the first and last expressions in (5.2), we deduce that the oper-
ator O is a complex function H(jw) that is identical to the Fourier transform
of the system impulse response,

H(jw) & nit). (5.3)

This means that the system impulse response is translated from the time
domain to the frequency domain. Therefore, it would be absolutely logical to
call H(jw) the system frequency response. In the LTI system theory, Fourier
analysis operates mostly with transforms of the system input, output, and
impulse response.

Example 5.1. An LTI system is represented with the impulse response
h(t) = ae™"u(t).

The Fourier transform produces the system frequency response (Appendix C)

a

Fht) = HGe) =

and one can easily verify that the inverse Fourier transform applied to H (jw)
produces the impulse response h(t). O

5.2.1 Frequency Response

As one of the principle characteristics of LTI systems in the frequency domain,
the frequency response is measured for the harmonic test signal, provided the
definition:

Frequency response: The ratio of the LTI system response to the
complex exponential signal z(t) = e/“' and e/*! is the system fre-
quency response,

. Response to e/?
H(jw) = . (5.4)

ejwt
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Example 5.2. The ODE
vy + ay = bz

represents an LTI system of_ the first order, where_a and b are time-constant.
By (5.4), assuming z(t) = e/“! and y(t) = H(jw)e’*t, we go to jwH +aH = b
that instantly yields the system frequency response

b

H(jw) = ot

O

On the other hand, by (5.2) and (5.3), we have two other equivalent defi-
nitions valid for LTI systems, respectively:

Frequency response: The ratio of the Fourier transform (spectral
density) Y (jw) of the system output and the Fourier transform (spec-
tral density) X (jw) of the system input is the LTI system frequency
response

H(jw) = (5.5)

Frequency response: The Fourier transform of the system impulse
response h(t) is the LTI system frequency response

H(jw) & n@t).

O

Example 5.3. Consider an LTI system given with the ODE (Example 5.2).
By applying the Fourier transform to both sided of this equation and using
the transform properties (Appendix C), we go to

JwY (jw) + aY (jw) = bX (jw)

that, by (5.5), leads to the same expression for the system frequency response
as that found in Example 5.2. ad

The above-considered Examples 5.2 and 5.3 neatly verify equivalency of
both definitions of the system frequency response. Accordingly, by (5.5), the
generalized structure of an LTT system in the frequency domain appears as
shown in Fig. 5.1. It follows that if X (jw) is unity with zero phase over all
frequencies (input is the unit impulse), then the frequency response H (jw)
repeats the shape of the spectral density Y (jw) of the output.
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X(jo) ) Y(jo)=H(jo)X(jo)
——» H(jo) >

Fig. 5.1. Generalized structure of an LTI system in the frequency domain.

Magnitude and Phase Responses

By the above-given definitions, the frequency response is commonly a complex
function. As such, it can be represented with

H(jw) = ReH (jw) + jImH (jw)
= |H (jw)|e?#n ), (5.6)

where |H (jw)| is called the magnitude response, or magnitude of the frequency
response, or magnitude frequency response, or sometimes system gain,

|H(jw)| = v/[ReH (jw))? + [ImH (jw)]? . (5.7)
In turn, the phase response pg(w) is defined by
ImH (j
vp(w) =arg H(jw) or tanpy(w)= ;;ng; . (5.8)

In electronic systems and, in particular, in Fourier analysis of these sys-
tems we deal with signals possessing the property of 2m-periodicity (harmonic
signals). Therefore, the phase response is assumed to range from —7 to 7. The
phase with such a property is called the principle phase, or wrapped phase, or
very often modulo 2w phase, or just phase mod 2w. The phase response mod
27 can be calculated by

arctan(Q/I), 120

or(w) = arctan(Q/I):I:w,I<0,{gi8 )

(5.9)

where I = ReH (jw) and Q = ImH (jw).

We notice that the general definition of the phase response (5.8) allows
restoring its unwrapped values existing in the infinite angular range if to ac-
count for a w-periodicity of the arctan-function.

If to substitute the spectral densities of the input and output as follows

X(jw) = |X(jw)|e—j<pz(w) and Y (jw) = |y(jw)|e—japy(w) 7

where |X (jw)| and |Y (jw)| are the magnitude spectral densities of the input
and output, respectively, and ¢, (w) and ¢, (w) are the phase spectral densities
of the input and output, respectively, then the magnitude and phase frequency
responses will attain the forms of, respectively,
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Y Gw)l
|H(jw)| = X ()| (5.10)
er (W) = py(w) — @a(w). (5.11)

By these relations, the magnitude response |H (jw)| is determined as a
ratio of the magnitude spectral densities of the output, |Y (jw)|, and input,
|X (jw)|. In turn, the phase response is defined by the difference between the
phase spectral densities of the output, ¢, (w), and input, @, (w).

Example 5.4. The spectral densities of the system input and output are
performed with, respectively,

1

X (jw) Y(w) =y,

T34 jw’
By (5.5), the system frequency response attains the form of

3t jw 1

H(iw) = -
(je) 2+ jw 24+ jw

causing the magnitude and phase responses to be, respectively,

V(64 w?)? +w?

HGw = VLT
w
tan oy (w) = T tw?

By the inverse Fourier transform applied to H(jw), the system impulse
response is defined as

FUH(jw) = h(t) = 5(t) + e~ u(t).

It can easily be verified that the direct Fourier transform applied to h(t)
produces the above specified system frequency response. O

As a product of the Fourier transform applied to the impulse response, the
frequency response function possesses all of the Fourier transform properties
featured to the spectral density of a signal. These properties are considered
in detail in Signals and their review is postponed to Appendix C. The most
critical characterizations of H (jw) are the following:

e Evenness (symmetry property): |H(jw)| is an even function; it is a
symmetric function about zero. a

e Oddness (antisymmetry property): ¢y (w) is an odd function; it is an
antisymmetric function about zero. a
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Cascade LTI Systems

Complex LTT systems are often performed by cascades of elementary (basic)
systems. It can easily be shown that the frequency response of a cascade sys-
tem is defined by the multiplication of the frequency responses of elementary
blocks,

N N )
H(jw) = [[ Hi(jw) = [] |H:i(jw)le/#m ) (5.12)

i=1 i=1
therefore, the relevant magnitude and phase responses are specified by, re-
spectively,

N

|H(jw)| = H |Hi(jw)l, (5.13)
N

(@) =D pniw). (5.14)

Logarithmic Measures and Bode Plot

An important measure of the system performance in the frequency domain is
the logarithmic magnitude response (in decibel units),

|H (jw)|as = 201og;o | H (jw)] - (5.15)

If the frequency response occupies a wide frequency range of several
decades, then the logarithmic measure of frequency, log(f), is also preferable.
The display of |H (jw)|ap versus log(w) or log(f) is known as the Bode® plot.
A benefit of Bode’s plot is that 1) it allows evaluating the particular parts of
the magnitude response in terms of the function rate in dB/decade and 2) the
magnitude response may by bounded with lines that, in many cases, leads to
useful generalizations.

Representation via Differential Equations

Many LTI systems are described by ODEs of the form

N ar M am
. H=>S b, t), M<N. 1
3 00 g0 = 32 b gy (0 (5.16)

Applying the Fourier transform to (5.16) and using the properties of lin-
earity and differentiation, one can find out that

! Hendrik Wade Bode, American engineer, 24 December, 1905-21 June, 1982.
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N M
Y(w) Y an(jw)" = X(jw) Y bm(je)™ .
n=0 m=0

By (5.5), the system frequency response would then be found to be

M
. Z bm(jw)m
. _ Y(jw) _ m=0
H(jw) = X(jw) ~ JXV: oy . (5.17)
n=0 "

Such a fast transition from the ODE in the time domain to the algebraic
form in the frequency domain often substantially simplifies an analysis. In
fact, instead of solving the ODE (5.16) for the impulse response, one can
consider the ratio (5.17) of two power polynomials with a complex variable
jw, representing the frequency response. The procedure is universal, however,
in engineering practice it often becomes easier defining the frequency response
by the methods of electric circuits.

Example 5.5. An LTI system is described with the ODE
y"'(t) +0.2y" (t) — y(t) = 0.22"(t) — (t) .
By the Fourier transform applied to both sides of the equation, we have
(jw)Y (jw) +0.2(jw)?Y (jw) = ¥ (jw) = 0.2(jw)*X (jw) — X (jw),

(0202 + 1 + jw)Y (jw) = (0.2w? + 1) X (jw).
and, by (5.5), the system frequency response appears to be

0.2w% +1
H(jw) = = ReH(j TmH (j
(Jw) 0902 + 14 jwd 1€ (jw) + jImH (jw)

where
(0.2w? + 1)?
(0.2w2 4+ 1) + w6’
w3(0.2w% + 1)
(0.2w2 4+ 1)2 4 w6~
The magnitude and phase responses can now be readily described with,
respectively,

ReH (jw) =

ImH (jw) = —

. 0.2w% 4+ 1
()] = \/(0.21,«)2 +1)2+wb’
3
tan oy (w) = “

0202417
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Fig. 5.2. Frequency response of an LTI system: (a) magnitude response, (b) Bode
plot, (¢) phase response, and (d) phase and group delays.

Fig. 5.2a illustrates | H (jw)| in the positive frequency domain and Fig. 5.2b
gives the relevant Bode plot. The phase response pp(w) is sketched in Fig.
5.2c. It is seen that the magnitude response has the slope of —20dB/decade
beyond the system bandwidth and that the phase response ranges from 0 to
—7/2. O

5.2.2 Phase Distortions

A typical duty of an input-to-output system is to alter the magnitude spectral
density of an input signal, thereby providing the necessary spectral content
in the output. In line with this, the output phase can also be changed by the
phase response of a system to produce the so-called phase distortions. For
some applications, violation of phase spectral density is not of importance
and relevant errors are ignored. For some others, phase distortions can lead
to errors in transmission of information, therefore are accounted. To evaluate
phase distortions, two measures are commonly used: phase delay and group
delay.
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Phase Delay

An important characteristic of any LTI system is the phase delay, provided
the definition:

Phase delay: The phase delay (in units of time) is a measure of how

much each sinusoidal component of the input signal is delayed in time

in the output signal of a system.

O

To find a quantitative measure for the phase delay, let us assume, following
the definition, that the input is a harmonic signal z(t) = A cos(wot + ¢o),
where A, wy, and ¢g are constant. Let an LTI system has at wq the response
H(jwo) = |H (jwo)|e?## (o). Tf we present the input as

z(t) = Acos(wot + ¢o) = ;Aej(wt)“r%) + ;Aefj(‘”(’”%)
then the output, by the oddness of the phase response, will be defined as
y(t) = ;AH(jwo)ej(‘”o”%) + ;AH(jwo)e*j(‘“o”%)
= AlH (jwo)| coslwot + ¢r (wo) + o]

= A|H (jwo)| cos {wo <t + wHw(sJO)) + ¢0]
= A|H (jwo)| cos [wo (t — 7p) + do] -

In this relation, obeying the definition, the frequency-dependent quantity

_en(wo)

wo
has a meaning of the phase delay (in units of time) in a harmonic signal at the
frequency wp. One thus infer that the phase delay is evaluated by the negative
ratio of the system phase response at wy and wy.

Tp(wo) = (5.18)

Group Delay

In some cases, the measure of phase delay is not appropriate, and the other
quantity called the group delay is used to characterize an LTT system, provided
the definition:

Group delay: The group delay (in units of time) is a measure of
how much a group of input signal components with neighboring close
frequencies is delayed in time in the output signal of a system. O
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Let us now think that the input is a cosine carrier signal with a cosine
envelope, x(t) = A cos 2t coswot, 2 < wg. For the sake of simplicity, we will
let the system frequency response to have a unit magnitude in the observed
frequency range, so H(jw) = e7?5#(«) for wy — 2 < w < wp + 2.

The output is therefore defined by

y(t) = ;Acos[(wo — Nt + pa(wo — N2)]

1
+2Acos[(wo + )t + op(wo + 2)]

= Acos [wot L prwo+02) ;L e (wo — 9)}
X COS [Qot + i (wo + ) ; (o = Q)]
= Acos {wo [H— pr(wo + ) + m(wo = Q)]}
2(4]0

xcos{QO [H— SOH(WOJFQ)—SDH(wo—Q)]} .

20
If we now allow g (wo + §2) + vr(wo — 2) = 2¢x(wp) and assign

pr(wo+2) +oulwo —2) _ pul(w)

Tp(wo) = — 2o o

to be the phase delay in the carrier signal, we then can also let

T (wo) = on(wot2) —pp(wo—2)  dop(w)
g = 20 ~ dw |,
to be a delay in the group of signals with neighboring frequencies around wy.

It then follows that, obeying the definition, the quantity

_den(w)
dw
plays a role of a delay in units of time of a group of signal’s components
with neighboring close frequencies. The group delay is hence evaluated by the
negative derivative of the system phase response with respect to w at wy.

Tg(w) = (5.19)

Example 5.6. The phase response of an LTT system is found in Example 5.5

to be
3

0.2w2 +1"°

By (5.18) and (5.19), the phase and group delays are evaluated at an
arbitrary angular frequency w with, respectively,

vr(w) = — arctan
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UJB

1
Tp(w) = " arctan 0202 4+ 1°

w?(3+0.2w?)
0.20w2 4+ 1)2 4 w6’

Fig. 5.2d sketches both these functions. It is seen that the maximum of the
group delay corresponds to the maximum rate of the phase response. However,
the maxima of the phase and group delays do not coincide. Because a system
in question is bandlimited (LP filter), the group delay is a more appropriate
measure of phase distortions in this case. a

Tg(Cd) = (

5.2.3 Distortionless Transmission

In some cases, an LTT system is intended for transmitting and receiving signals
without distortions. For distortionless transmission through an LTI system, it
is required that the exact input signal waveform be reproduced at the output.
Herewith, it is allowed for the signal amplitude to be gained and phase delayed
in time.

Most generally, with distortionless transmission, the output is coupled with
the input by the relation

y(t) = Ka(t — 1q) (5.20)

where K > 0 is a constant positive-valued coefficient often called a gain
constant and 74 is the time delay. If we assume an arbitrary input waveform
(Fig. 5.3a), then the undistorted output will be as in Fig. 5.3b. The signal is
delayed in time on 74 and its amplitude is gained with K.
By taking the Fourier transform (Appendix B) of both sides of (5.20), we
provide
Y (jw) = Ke 7™ X (jw). (5.21)

The system frequency response hence attains the form of
Y(jw)
X(jw)

and thus the magnitude and phase responses with distortionless transmission
are, respectively,

H(jw) = = KeJTa® (5.22)

|H(jw)| = K, (5.23)
o (w) = —wTq. (5.24)

A conclusion follows immediately: ideal distortionless transmission is
achieved solely in noncausal LTI systems, which magnitude response is con-
stant and phase response is linear over all frequencies.

The inverse Fourier transform applied to (5.22) produces (Appendix C)

h(t) = F 'H(jw) = KF te 7% = K§(t — 14), (5.25)
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x(1) ()

KA

(c) (d)

Fig. 5.3. Distortionless transmission: (a) input, (b) output, (c¢) uniform magnitude
response of a system, and (d) linear phase response of a system.

indicating that the impulse response of an LTI system with distortionless
transmission is delta-shaped at 74. It also follows that the phase and group
delays associated with (5.24) are equal,

Tp =Tg =Td -
On the other hand, the linear phase response can not obligatory be zero
at a center of coordinates, ¢ = 0. Most generally, one can consider ¢ (w) =

wo — wTq. In this case, the phase delay is not constant over frequencies and
tends toward infinity at ¢ = 0. Contrary, the group delay still remains constant,

d
dw
The latter has an important practical meaning. In fact, because information
is usually transmitted via the neighboring spectral components around the

carrier, the linear phase response with an arbitrary initial phase ¢ is also
appropriate for distortionless transmission.

Te =— , (po—Taw) ="Tq.

5.2.4 Filtering
One of the most important duties of electronic LTI systems is filtering.

Filtering: Filtering is said to be the process by which the amplitudes
of some spectral components of an input signal are changed or even
suppressed at the output of a system.
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O

Because, by (5.5), spectral content of the output is affected by the fre-

quency response, then any LTI system is actually a filter or a device that

exhibits some sort of frequency-selective behavior. The following types of fil-
ters are commonly recognized.

All-pass filter. An all-pass filter is a device whose spectral magnitude
response is unity over all frequencies. Fig. 5.3c illustrates the magnitude re-
sponse of an all-pass filter, which phase response is linear (Fig. 5.3d). There-
fore, an all-pass filter is the delay operator e 7“7 itself. Its phase response as
a function of w is —w7q (5.24).

As one may observe, the amplitude of a signal is not changed by an all-pass
filter that contradicts to the definition of filtering. Therefore an all-pass filter
is not actually a filter in the applied sense. It is rather a delay-line.

Low-pass filter. A low-pass filter (LP filter) passes low frequencies and
attenuates all other unwanted (high) frequencies. It is also sometimes called
a high-cut filter, or treble cut filter, or even hiss filter.

A simplest LP filter is the RC circuit that consists of a resistor in series
with the input signal path in conjunction with a capacitor in parallel with
the output signal path. An example is an LP filter in an audio amplifier that
would let through all signals below 3 KHz and suppress all others above 10
KHz.

An ideal LP filter is also called perfect LP filter and is specified with the
rectangular shape of the frequency response,

1, v € we

0 lol > o (5.26)

(o) = {
where w, is a cut-off frequency. Fig. 5.4a shows the rectangular-shape mag-
nitude response of this filter. The relevant impulse response is provided by
taking the inverse Fourier transform of (5.25); that is,

We SINwet

h(t) = : (5.27)

T wet

High-pass filter. A high-pass filter (HP filter) passes high frequencies and
attenuates unwanted low frequencies. Therefore, a HP filter is the opposite of
an LP filter. The other term is a low-cut filter, or bass-cut filter, or rumble
filter.

A simplest HP filter is the RC circuit that consists of a capacitor C' in
series with the input signal path in conjunction with a resistor R in parallel
with the output signal path. For example, a HP filter with a cut-off frequency
of fo = we/2m = 2 MHz might be required for the antenna input to a receiver
where AM Radio interference is proving troublesome. We thus will want to
pass all frequencies above 2 MHz but attenuate those below 2 MHz.
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| H(jw)| .
| H(jo)|
1
1
T © ® -0 o, [l
(a) (b)
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| H(jo)| | H(jo)| @
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Fig. 5.4. Ideal LTI filters: (a) low-pass (LP), (b) high-pass (HP), (¢) bandpass
(BP), and (d) band-rejection (BR).

An ideal HP filter (or perfect HP filter) has a rectangular-shape frequency
response

1, |w| > we
0, |w| Cwe ’

(o) = {

The magnitude response of an ideal HP filter is shown in Fig. 5.4b. Because
(5.28) can be interpreted as a difference between the frequency responses of
an all-pass filter and an LP filter, the impulse response of a HP filter can be
found, by (5.27) and (5.25) with 7¢ = 0 and K =1, to be

(5.28)

We Sinwct

h(t) = 4(t) (5.29)

T wet

Band-pass filter. A band-pass filter (BP filter) lets through signal spec-
tral components in a gap between two given cut-off frequencies. It can be
created by a combination of an LP filter and a HP filter.

A simplest BP filter is the RLC circuit that consists of a capacitor C
and inductance L in series with the input signal path in conjunction with
a resistor R in parallel with the output signal path. An example is a radio
receiver selective circuit (BP filter) that would let through all of the signals of
the received station. All of the other signals of the neighboring stations have
to be suppressed.

An ideal BP filter (or perfect BP filter) is performed with a rectangular-
shape selective frequency response that is unity between two given cut-off
frequencies, w¢; and wee, and is zero otherwise,
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(5.30)

H(jw) = 1, ~weo €w << ~wer and  wer < w < We
J 0, otherwise ’

Fig. 5.4c illustrates the magnitude response of an ideal BP filter. It is seen
that (5.30) can be treated as a difference of the frequency responses of two
ideal LP filters having the cut-off frequencies w.s and w,1, respectively. The
relevant impulse response is therefore calculated, using (5.27), by

We2 SINWeat  We1 Sinwert

h(t) =
T Weat T wel
202 sin 2t
= su;)t coswot , (5.31)

where 2 = (w2 — we1)/2 is an algebraic mean difference between two cut-off

frequencies and
Wel + We2

2
is an algebraic mean cut-off frequency. We notice that in other cases the central
frequency may be evaluated as the geometric mean by

Wo = \/WeiWes - (5.33)

wWo = (532)

However, both these simple measures, (5.32) and (5.33), may not be appropri-
ate when the frequency response is not symmetric about wg. Then the more
common measures of a central frequency must be used (see Signals).

Band-rejection filter. In electronics, the band-rejection filter (BR filter)
is the one that attenuates all frequencies between two given cut-off frequencies
and passes all frequencies beyond this gap. It is also called a band-stop filter,
or band-elimination filter, or band-suppression filter, or notch filter. The latter
term is also used for a special kind of BR filters.

A simplest BP filter is the RLC circuit that consists of a resistor R in series
with the input signal path in conjunction with a capacitor C' and inductance
(L) in parallel with the output signal path. For example, a BP filter would be
used to protect a Radio receiver against interference from a nearby transmitter
in the selected frequency range say 136-154 MHz or 152-175 MHz. The filter
must be tuned to reject the interfering signal.

An ideal BR filter (or perfect BR filter) is the opposite of an ideal BP
filter. As such, it is performed with the frequency response shown in Fig. 5.4d
and described by

0, ~wez Cw < —wer and  wer S w < We2

1, otherwise (5.34)

(o) = {

The frequency response of an ideal BR filter may be combined by the
frequency response of an ideal LP filter with the cut-off frequency w.; and
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an ideal HP filter with the cut-off frequency we¢o > w¢1. The relevant impulse
response is then readily provided, by (5.27) and (5.29), to be

h(t) = 8(t) — <

Weo SiNWeat  Wel sinwclt)

T Weal T weil
22 sin 2t
=5(t) — = coswt (5.35)
T 0t

Notch filter. A special kind of BR filters is called a notch filter. It is also
known as a band-stop filter, narrow band-pass filter, or T-notch filter.

The filter is typically used when wee and w.; are less than 1 to 2 decades
apart (that is, wes is less than 10 to 20 times the we1). For example, an anti-
hum filter would have fo1 = we1/27 = 59 Hz and feo = wea/27 = 61 Hz
and an anti-presence filter is designed to have f.; = we1 /27 = 1 KHz and
fCQ = wC2/27T = 4 KHz.

As any other ‘ideal’ devices, all of the above-considered ideal filters are
not realizable physically. That is because the sinc function in their impulse
response requires infinite time, thus, the filter would need to predict the future.
Even so, an ideal LP filter is used, for example, in the Nyquist-Kotelnikov-
Shannon interpolation formula to reconstruct the continuous (analog) signal
from the digital one (samples).

Therefore, in practice, selective filters are not ideal and do not attenuate
frequencies just outside the desired frequency range completely. Instead, there
is typically a smooth and quick decrease in transmitted frequency outside
the band. This is known as the roll-off, and usually expressed in parts of
dB/decade as in Fig. 5.2d, for example.

In some applied problems, the filter is intended to represent a desired
(optimized) shape of the magnitude response that may not always be rectan-
gular. Such filters are commonly called optimal filters. The phase response of
an optimal filter is usually required to be linear, but not obligatorily.

As we observed before in Chapter 4, any LTI system (filter or other de-
vice) can be described in the time domain with ordinary differential equations
(5.16). In Fourier analysis, the ODEs are translated to the frequency domain
and investigated for the system frequency response (5.17). Below we consider
two elementary LTI systems of the first and second orders.

5.2.5 LTI Systems of the First Order

The most general form of the ODE of an LTI system of the first order appears
if to set N =11in (5.16). By M < N that can be either 1 or 0, the equation
becomes

d d
ar | y(t) + aoy = b dtx(t) + box(t). (5.36)

dt
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The Fourier transform applied to the both sides of (5.36) produces

jwarY (jw) + aoY (jw) = jwb1 X (jw) + bo X (jw) (5.37)
that, by (5.5), instantly leads to the system frequency response

H( .w) _ bo + jwbl _ a()b() + a1b1w2 + jw(a0b1 - albo) (5 38)
J ag + jway a? +w?a? ' '

The magnitude and phase responses associated with (5.38) are thus, re-
spectively,

3 \/(aobo + a1b1w2)2 + wQ(aobl - a1b0)2
[H (jw)| = 02+ wa? , (5.39)

w(aobl — albo)
t = . 5.40
an ¢ () agbp + a1biw? ( )
As can be seen, |H (jw)| has no special points (singularities and zeros) and
thus (5.38) is a smooth function.
By ¢m(w), the phase delay (5.18) and group delay (5.19) are defined to
be, respectively,

w(aobl — albo)

1
=— t 41
() W T aobo + arbyw? ’ (5-41)
den(w) (agb1 — a1bo)(aoby — a1byw?)
— — _ . 42
Tg(UJ) dw (aobo + a1b1w2)2 + w2(a0b1 — a1b0)2 (5 )

In electronic applications, a dynamic LTI system of the first order (5.36)
is commonly represented with two simplest schemes of LP and HP filters.

Simplest LP Filters
Fig. 5.5 exhibits two electrical circuits of the most simple LP filters organized

with series connections of a resistor R and capacitor C' (Fig. 5.5a) and inductor
L and resistor R (Fig. 5.5b).

1 J_(\ -
w(?) C _L_/vc(t) w(t) R Ve (£)

(a) (b)

Fig. 5.5. Simplest LP filters: (a) RC and (b) RL.
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The RC filter and RL filter are governed by the voltage v(t) and described
with the ODEs, respectively,

d 1 1
3¢ V¢ + RCYC= ROV (5.43)
d R
dtUR+ VR = L’U, (5.44)
where the value
1 R
= =926 4
RCT L , (5.45)

has a dimension of angular frequency and physical meaning of the filter cut-off
frequency w, associated with the system bandwidth.

If we now assign z(t) = v(t), y(t) = ve(t) or y(t) = vr(t), a1 =1, ap = a,
by = 0, by = b, and think that a = b may be either 1/RC or R/L, we arrive
at a general ODE form of a simplest LP filter of the first order

y'(t) + ay(t) = ba(t),

earlier studied in the time domain.

The frequency response, magnitude response, phase response, phase delay,
and group delay associated with this equation are readily provided, by (5.38)—
(5.42), to be, respectively,

H(jw) = afjw, (5.46)
|H (jw)| = ¢a2b+ s (5.47)
tan oy (w) = —:) , (5.48)
Tp(w) = i} arctanz , (5.49)
(W)= o jaﬂ , (5.50)

where a = b = 2§.
Alternatively, one can exploit the impedances of a capacitor and inductor,
respectively,

1

jwC rp(jw) = jwl (5.51)

ro(jw) =

and straightforwardly write the frequency responses of the RC circuit and RL
circuit as, respectively,
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. mc  1/jwC
H(]w)_R+xc_R+1/ij’
. R R

H(jw) =

R+ g, - R+ jwL’

After simple transformations, both functions become (5.46).
Fig. 5.6 illustrates the frequency characteristics of a simplest LP filter.
An analysis shows that attenuation of the magnitude response at the level

H(jw)|

5i-

[Hijey

—20 dB/decade

0 o, =28 ® 0.1 1 o,=28 10 100
(a) log(w)

0 0, =2 ®

Delay, sec

@u(®)

ISE
N‘__
5

1,©)

7, )

0 1 o, =25 3 4 o

(c) (d)

Fig. 5.6. Frequency characteristics of a simplest LP filter: (a) magnitude response,
(b) Bode plot, (c) phase response, and (d) phase and group delays.

of 1/4/2 (Fig. 5.6a) or —3dB in the Bode plot (Fig. 5.6b) corresponds to the
cut-off frequency w. = 2J. Beyond the filter bandwidth, the frequency con-
tent attenuates with a slope of —20dB/decade. At w., the phase attains a
shift of —7w/4 (Fig. 5.6¢), the phase delay reduces from 1/26 to 7/84, and the
group delay becomes twice smaller than at w = 0 (Fig. 5.6d). With w increas-
ing toward infinity, the magnitude response and both delays asymptotically
approach zero, whereas the phase response approaches —7/2.

One thus can truly conclude that this simplest LTI system is not able
to obtain neither a constant phase delay nor group delay and thus phase
distortions will accompany the process.
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Example 5.7. An LP filter (Fig. 5.5a) is loaded with the input resistor R,
of a cascade included block. The frequency response of a loaded filter is thus
defined by

Rl/ij
H(jw) = Ri+1/jwC  _ R’y
Ri/jwC i :
R+ lerlﬂ/jwc R+ Ry + jwCRR,

The function can now be represented as

. Ry 1 24
H = =k
U9) = o Ry 14 jwCR 26+ o
where R ) RR
k= ! 20 = = o
R+ Ry’ CR,’ R R+ Ry

As it follows, the loaded filter can be represented with the frequency re-
sponse (5.46) and functions shown in Fig. 5.6 if we account for an attenuation
coefficient k = Ry /(R + Ry) and set 26 = 1/CRx. O

Simplest HP Filters

The other widely used representative of LTI systems of the first order is an
HP filter. Fig. 5.7 gives two electrical schemes of the most simple HP filters
composed by series connections of C' and R (Fig. 5.7a) and R and L (Fig. 5.7b).
The schemes are obtained from Fig. 5.5 by interchanging the components.

V(1) R V(1) V() Ly v ()

(a) (b)

Fig. 5.7. Simplest HP filters: (a) RC and (b) RL.

The ODEs corresponding to Fig. 5.7a and 5.7b are readily derived to be,
respectively,

d, 1, d
URT R T

d R d
) + PR (5.53)

and, in analogous to an LP filter, generalized by

(5.52)
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y'(t) +ay(t) = ' (1),
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(5.54)

where a = 1/RC or a = R/L. In alike manner, by (5.38)—(5.42), the frequency
response, magnitude response, phase response, phase delay, and group delay

associated with (5.54) can be derived to be, respectively,

. Jw
H =
(Jw) ot iw’
w
H(jw)| = ,
|H (jw)| Va4 w2

tan g (w) = Z ,

1 a
Tp(w) = . arctan W’
a
Te(w) = T2

(5.55)

(5.56)
(5.57)

(5.58)

(5.59)

An illustration for all these functions is given in Fig. 5.8. It is seen that
within the system bandwidth, w > w. = 24, the magnitude response varies
from 1/4/2 to unity in Fig. 5.8a or from —3dB to 0dB in the Bode plot

100

[ H(jo)|
1 -3
1 -10
2 5
P~
3
=
-20 20 dB/decade
0 w, =25 © 07 1 o=2 10
@) (b) log(w)
n | ou(®)
L 0 0,22 ©
]
| |
%
L
25
n
1
0 0. =2 ©

(©)

Fig. 5.8. Frequency characteristics of a simplest LP filter: (a) magnitude response,

(b) Bode plot, (c) phase response, and (d) phase and group delays.
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(Fig. 5.8b). Beyond the bandwidth, w < we, the frequency content attenuates
with the slope of 20dB/decade. At w = 0, the phase acquires a shift of 7/2 and,
at we, the value reduces to w/4 (Fig. 5.8¢). It also follows that the group delay
is equal to that, with its sign changed, featured to an LP filter (Fig. 5.4d).
However, both these filters do not allow for a constant phase delay or group
delay. Finally, the phase delay is not a proper measure of phase distortions
for this kind of filters, once 7, exhibits a singularity at w = 0.

Example 5.8. A simplest HP filter (Fig. 5.7b) is loaded with the input re-
sistor R; of a cascade system. The frequency response of a loaded filter is
therefore

RijwL

. jw Jw
H(jw) = R1+}% 'ﬁ,L =k .
R + Rlljij 25 + jw
where R R RR
k= "1 25="%, R.= o
R+ Ry L R+ Ry

This filter can be characterized with the frequency response (5.55) and
functions shown in Fig. 5.8, if to account for an attenuation coeflicient k and
set 20 = Ry /L. O

5.2.6 LTI Systems of the Second Order

Second-order LTT systems are usually associated with a resonance frequency
and some bandwidth around. They are used to increase sharpness of band-
width’s sides for different kinds of filters. Their most important property is
an ability to select or suppress signals in the narrow frequency band. Because
the gain of such systems becomes purely real at some frequency called reso-
nance frequency, the second-order LTI system is often called resonant system.
Two elementary resonant schemes are available: the series resonant circuit
and parallel resonant circuit.

Series Resonant RLC Circuit

A simplest second-order LTI system has a main part as a series resonant RLC
circuit that is a series connection of an inductance L, capacitance C, and
resistance R as shown in Fig. 5.9.

The resonance of such a circuit occurs at a frequency wg at which the
inductive reactance jwL and capacitive reactance 1/jwC' are equal in magni-
tude but cancel each other because they are 180 degrees apart in phase. The
sharp minimum in impedance which occurs is useful in tuning applications.
The sharpness of the minimum depends on the value of R and is characterized
by the quality factor @ of the circuit.

The complex impedance of a circuit (Fig. 5.9) can be written as
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Fig. 5.9. Series resonant RLC circuit.

1

Zs(jw) = R+ jwL + . :

(Jw) Wb+ o

For the purposes of generalization, we need to introduce the resonance fre-

quency wy = 1/v/LC, bandwidth 26 = R/L, quality factor Q = wy/26, and
generalized detuning

w wo
e—a(2-)
wo w
The quality factor of an RLC circuits is typically provided to be large,
@ > 1. If so, then the value £ = 1 means that a system is exactly a half

bandwidth § apart from wy.
The complex impedance (5.60) can now be rewritten as

(5.60)

> 9% 0 (5.61)

wo

Q>1

Zy(j€) = | Zs(j€) e+ = R(1 + j¢), (5.62)

having the total impedance and phase, respectively,

Z:(5€)| = RV1+ €2, (5.63)
tan () = €. (5.64)

A simple observation shows that, by & = 0, the circuit is at resonance,
W = wyp, exhibiting a minimum impedance Zs(jwp) = R that is real and zero
phase @s(wp) = 0. If £ # 0 and increases, the total impedance becomes larger
with the rate totally dependent on the quality factor. With £ < 0, the phase
ranges from —7/2 to 0 and, if £ > 0, it behaves from 0 to m/2.

If such a circuit is driven by a voltage x(t) = v(t), than the output y(¢) can
be assigned to be a voltage induced on any of the components (typically on
L or C). Therefore, there could not be found a universal scheme. Based upon
a series resonant circuit, a second-order LTI system can appear in different
configurations.

Example 5.9. Consider a simplest BR (or notch) filter shown in Fig. 5.10,
in which the output is a voltage induced on both L and C.
The filter frequency response is defined by

. jwL +1/jwC
H(jw) =
Uw) = g% i+ 1/jwC
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Fig. 5.10. Simplest BR filter.

and, in terms of the generalized detuning &, becomes
J€
14 4¢°
The filter is thus characterized with the following magnitude and phase
responses, respectively,

H(j¢) = (5.65)

€] 1
\/1 e , tanpg () = ¢

Fig. 5.11 illustrates (5.66). It follows that substituting £ = 0 with w = wy,

[H(j§)] = (5.66)

| 94(®)

1A

Fig. 5.11. Frequency response of a simplest BR filter: (a) magnitude and (b) phase.

needs substituting & = +1 with wy £ 4. It is also seen that, by £ = 0, the
magnitude response is zero and the phase response has a singularity. The
latter is due to the ideal elements L and C allowed for the filter model. Thus
it is not the case to fit real measurements. To provide the more realistic
responses, one needs accounting for the ohmic resistances of an inductor and
capacitor. a
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Parallel Resonant Circuit

The other basic configuration of the second-order LTI systems comprises in-
cluded in parallel the L, C, and R. This antipode of a series resonant circuit
called the parallel resonant circuit (Fig. 5.12) has appeared to be incredibly
useful in design of resonant amplifiers, channels, and tracts.

L
Y Y Y

R,
o L1 o

aQ

Fig. 5.12. Parallel resonant circuit.

The admittance of the parallel circuit is straightforwardly written as

1 1 1
= 4jwC+ (5.67)

Zy(jw) R jwL

If we substitute R, = ZyQ, where Z; = \/L/C is the characteristic

impedance, then the complex impedance can be obtained via the generalized
detuning £ (5.61) by a reciprocal of (5.67) as

R,
Z,(5€) = . 5.68
W= | e (5.65)
The total impedance and phase are thus, respectively,
R,
Z,(58)| = , 5.69
Z601= (5.69)
p(§) = —arctané. (5.70)

The bandwidth 2§ of a parallel circuit is ascertained in the same manner
as for the series circuit. We measure the frequency span between two points
around wp, at which the impedance is reduced by the factor of 1/4/2. This
span appears to be reduced by @ the resonance frequency wy, i.e.,

wo
0
The value R, of a parallel resonant circuit is substantially larger than that

R of a series resonant circuit. It can be shown that R, is a counterpart of a
reciprocal of R such that infinite ) means infinite R, and zero R.

25 = (5.71)
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Fig. 5.13. Simplest BP filter.

Example 5.10. A simplest BP filter is designed as shown in Fig. 5.13.

Because neither C nor L is ideal (see remarks for Example 5.9), one can
think that a parallel resonant circuit is loaded with some resistance R, as
in Fig. 5.12 to have a complex impedance Z,(j§) given by (5.68). The filter
frequency response is then defined by

4GS  _ R !
H(j€) = R+7Zp(j€)  R+R1+j,f, &

An observation shows that if R, > R — 0, then H(j§) — 1 and the filter
loses an ability to process the input. In the other limiting case of R > R;, the
frequency response becomes H (j€) = k/(1+ 7€), where the gain k is extremely
small, k = R, /(R + R;) < 1. The filter is thus inefficient.

In the matched case of R = R,, the frequency response is calculated by

1 1
H ] =
U9 =91+ jose
and we notice that the input is attenuated by the factor of 2 and the filter

bandwidth becomes twice wider. The relevant magnitude and phase responses
are, respectively,

(5.72)

1
H(j8)| = ;
(! 24/1 + 0.25¢2
Fig. 5.14 sketches both these functions. a

an (€)= 5. (5.73)

An advantage of a parallel resonance circuit is that its large resistance R,
is well matched with a large resistance of the source of an electric current.
For this reason, transistor resonant amplifiers are typically designed to have
a parallel resonant circuit in a load.

Example 5.11. A narrowband LTT system is represented by a linear transis-
tor resonant amplifier (Fig. 5.15a) combining the functions of gaining (tran-
sistor amplifier) and BP filtering (parallel resonant circuit).

A transistor amplifier converts the input voltage v(¢) to the electric current
i(t). To match the collector-emitter impedance of a transistor, its collector is
partially connected to the parallel resonant circuit.
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Fig. 5.15. Linear transistor resonant amplifier: (a) electrical equivalent scheme and
(b) generalized equivalent scheme.

Equivalently, the scheme can be represented as in Fig. 5.15b. It is assumed
that the harmonic input current has a complex amplitude —SV', where S is a
transconductance of a transistor and V' is a complex amplitude of a harmonic
input voltage. The source of an electric current has an inner resistance R;
and the parallel resonant circuit is represented with the complex impedance
Z,(jw) described by (5.68).

An equivalent impedance of the scheme is combined with the parallel con-
nection of R; and Z, to be

R Z
Ze(jw) = o
(Jw) R+ 7,
that, invoking (5.68), transforms to
R.
Z.(jE) = 5.74
U =14 e, (5.74)

where Re = RiR,/(R; + R;) and & = {Ri/ (R + R;).
It can be shown that the value R; reduces the quality factor of a parallel
circuit so that it becomes

QR;

Q= p iR
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The complex amplitude of an output voltage is now calculated by Vi =
—SZ,V and the frequency response of an amplifier is thus

. Vout SRe
H = =—-57Z,=— ) 5.75
39 =" e (5.75)
producing the magnitude and phase responses, respectively,

SR,
Viter
If an amplifier is matched with the resonant circuit by R; = R, the mag-
nitude and phase responses become, respectively,

[H(j§)] = o (§) =m —arctang, . (5.76)

SR, £
H(j&)| = , = —arctan _ . 5.77
HGON =, ) gt #1(© o 6
As it is seen, the functions in (5.77) are consistent to those associated with a
simplest BP filter (Example 5.10). O

5.2.7 LTI Systems of High Orders

Simple structures of the first and second orders possess not enough capabili-
ties to solve problems associated with high selectivity of signals. Mostly, it is
because attenuation of spectral components beyond the bandwidth is not ef-
ficient in such systems. The problem may be solved by using several resonant
circuits coupled properly. A cascade, however, suffers of instability. There-
fore, a number of circuits typically does not exceed three. The effect rises
dramatically by using piezoelectric structures, in which case both the high
sides roll-off and system stability are achieved.

Amplifier with Two Coupled Resonant Circuits

A straightforward solution is to use a cascade of systems of low-orders (RC,
RL, and/or RLC), thereby achieving the high side roll-off of the frequency re-
sponse. An example is a resonant amplifier with two parallel resonant circuits
coupled by a mutual inductance M as shown in Fig. 5.16a (or in Fig. 4.24).

A generalized equivalent scheme of this amplifier is shown in Fig. 5.16b.
Here, two equal complex impedances Z,(jw) described by (5.68) as associated
with two equal parallel resonant circuits, are coupled by means of an inductive
impedance Zys(jw) = jwM. It can be shown that the magnitude response of
such a system is described by

kiKSR.
V(+ K2 - g2) 4 dg2

where, SR, is as in (5.75), 0 < k1 < 1 is a coefficient indicating a power of
inclusion of a transistor amplifier to the first resonant circuit and K = MQ/L

|H (jw)| =
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Fig. 5.16. Linear transistor resonant amplifier with two coupled resonant circuits:
(a) electrical equivalent scheme and (b) generalized equivalent scheme.

is a coefficient of a mutual detuning of two resonant circuits. If K = 1, the
magnitude response exhibits a flat part around the resonance frequency, £ = 0.
If a nonuniformity is allowed in the system bandwidth, then, by increasing K,
the shape of |H (jw)| can be obtained as shown in Fig. 5.17a.

Fig. 5.17b gives a surface plot of the magnitude response for small values
of K. It is seen that, by K = 0, the amplifier gain is zero. When K is set to
be unity, the gain also becomes unity at wg. With greater values of K, the
picture passes over sections shown in Fig. 5.17a.

Certainly, even with two coupled tuned circuits, rectangularity of the mag-
nitude response is far from ideal. To increase the sides roll-off substantially,
filters with active feedback are used. However, the problem arises of stability.
The latter is overcame if piezoelectric resonators and filters are used.

5.2.8 Piezoelectric Structures

Selective properties of electronic systems are improved dramatically by using
piezoelectric resonators, filters, and structures, which quality factor and op-
eration stability can be achieved to be extremely high. Discovered by Pierre
Curie? (with his brother Jacques) in 1880, the piezoelectric effect took several
decades until it was finally used in 1921 by Cady? to design first crystal res-
onators. Soon after, in 1923, Pierce* designed the first quartz crystal oscillator
and, in 1927, Marrison® created the first quartz oscillator clock based on the
works of Cady and Pierce.

Modern piezoelectric resonators and filters effectively exploit accuracy and
precision of balk acoustic waves (BAWSs) and surface acoustic waves (SAWSs)
of the crystal media and surface, respectively. They can be organized with
several units and even decades of elementary resonators.

2 Pierre Curie, French chemist and physicist, 15 May 1859-19 April 1906.

3 Walter Guyton Cady, US scientist, 1874-1974.

4 George Washington Pierce, US physicist, 11 January 1872-25 25 August 1956.
5 Warren Marrison, US electrical engineer, 1896-1980.
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Fig. 5.17. Magnitude response of a two coupled resonant circuits: (a) by several
values of K and (b) surface plot, by small values of K.

Piezoelectric Resonators

As electro-mechanical devices, piezoelectric resonators employ BAW vibra-
tions featured to crystals. Nowadays, piezoelectric resonators are manufac-
tured for watches (Fig. 5.18a), oscillators of different frequencies and applica-
tions (Fig. 5.18b), quartz crystal standards of frequency (Fig. 5.18¢), sensors
of various physical quantities, and for special applications.

Because waves in bulk media propagate in different directions, there are
different kinds of BAW vibrations in any crystal resonator. Therefore, the
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fundamental vibration is accompanied with a number of spurious vibrations
often called anharmonics. In schemes, a piezoelectric resonator is imaged as in
Fig. 5.18d. Its basic equivalent scheme comprises four principle components:
motional inductance L, capacitance Cy, resistance Rq, and a static capaci-
tance Cy. Any of the ahnarmonic vibrations is commonly accounted for by
an additional series resonance branch as shown in Fig. 5.18e.

a I | Xor XTAL
4 *_:f!‘-‘-v (o Il:ll O
| d
£ = .'-:b—/'- @ lc(l)
B 1
(a) 1 L, R —©

L —r~
() ]
— ]

ITT

(©) (e)

Fig. 5.18. Piezoelectric resonator: (a) for watches, (b), for oscillators, (c) precision,
(d) schematic image, and (e) basic equivalent scheme.

For the fundamental vibration, the complex impedance of a resonator is
specified by the relation

(ijq + juo, T Rq) il
Zy(jw) = 1 .-
ijq + jwCq + Rql + jwCo
=|Z:(jw)|e?* @) = ro(w) + jzr (W) (5.78)

that can be represented in simpler forms if to introduce the resonator k-factor,
normalized frequency offset v, and auxiliary coefficient «(v), respectively,

k= RqwCy >0, (5.79)

w— Wy
V= ,

Or

—v(1+ Y ) (1+ " -
”‘”( +4Qr)( +2Qr) ’
2 _ R 1

where wy = | 1C is the resonator angular frequency, 24, = L: = Q2R.C, isa
is the quality factor.

Wr

qa
resonator bandwidth, and Q. = 7
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By the above introduces quantities, the real part, imaginary part, total

impedance, and phase of a resonator are described by, respectively,

1
=R o (5.80)
a(l —ak) —k (5.81)

o :Rq(l —aK)? + K2’
V14 [l - ak) — k]2
Zi=Ra¥ D (5.82)
tan g, = a(l — ak) — K. (5.83)

Fig. 5.19 shows (sold curves) typical spectral functions of an admittance
Y:(jw) = Z;1(jw) associated with the fundamental vibration of a piezoelectric
resonator. It is seen that the maximum, Y} (jws) & Ry, and minimum of ¥; (jw)

Y, (jo)| arg¥ (o
Rt ol et )
n/4+ i
4
{
;
0 f
®, (Op ,) [0
)
!
- /4+ /’
O T T
o, ®, o  -m/2T
(a) (b)
= 0.06 and @ = 100,

Fig. 5.19. Admittance of a piezoelectric resonator for
rigorous (sold) and approximate (dashed): (a) total and (b) phase.

correspond to the series and parallel resonance frequencies, respectively,

1
ws = ;
\/Lqu

C
= 1+ 1.
“p = s < 200>
The most important particular value of the s-factor (5.79) is kg = Rqw:Co.
It can be shown that when kg > 0.5, the phase never crosses zero that does
not meet practical needs. Therefore, the x-factor is commonly obtained such
that 0 < kg < 0.5. We notice that a reciprocal of kg is often called the figure

of merit,
1
MO = )
Ko
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for which the relevant range of existence is 2 < My < oo.

The quality factor of a crystal resonator is large, @ > 10%. Therefore, by
@ > 1, one can allow xk = k¢ and « = v, representing the spectral character-
istics (5.80)-(5.83) in the interresonance gap by, respectively,

1

T — 5 5.84
T q(l—uno)2+/€% ( )

o v(1 —vKg) — Ko
Ty = Ry (1= ko) + 12 (5.85)

\/1 + [V(l — Z/K/O) — KJ()]Q

Z, =R , 5.86
4 (1 —vko)? + K2 (5-86)
tan g, = v(1 — vKy) — Ko - (5.87)

Dashed curves in Fig. 5.19 sketch approximate values of the total impedance
and phase for @ = 100. It follows that, even by ¢ = 100, the difference be-
tween the relative curves is small. It almost vanishes when @ > 104.

Owing to highly stable structure of crystal media, the bandwidth of a
crystal resonator can be achieved to be extremely narrow and the @ in best
quartz crystal resonators of millions of units. That is, of course, of high applied
importance for accurate and precise electronic systems.

BAW Piezoelectric Filters

Piezoelectric filters are used as signal processing devices allowing for high op-
eration quality both in passband (minimum attenuation) and stopband (max-
imum attenuation). In such filters, owing to high quality factor, the transition
region between the passband and stopband can be obtained to be extremely
narrow. However, the constant group delay cannot be achieved and its devia-
tion from the required value may cause troubles.

Two elementary configurations of piezoelectric filters are recognized. The
‘crystal’ can be placed either in the series arm (Fig. 5.20a) or shunt arm
(Fig. 5.20b) of a ladder circuit. In each of these generalized schemes, the
impedances Z; and Zs are intended to provide final adjustment of the fre-
quency response and match the filter at the input and output. An additional

|:| Z Y43
T

N

v(t) Z 2 Vou (1) v(t) = Vour (1)

:

(@) (b)

Fig. 5.20. Elementary ladder piezoelectric filters with a ‘crystal’: (a) in series arm
and (b) in shunt arm.
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capacitor may be included in series with a crystal to obtain a subtle correction

of frequency.

Crystal ladder filters are widely used in SSB transmitters and CW re-
ceivers. However, they are not as perfect as the somewhat sophisticated lattice
piezoelectric filter showns in Fig. 5.21. The lattice filter is fully symmetrical

“» U % %5 % (Z)
l(z)
w(t v(t)
() /\% . %

(@)

Fig. 5.21. Lattice piezoelectric filter: (a) basic and (b) redrawn as a bridge.

and balanced. Its bandwidth extends to more than twice the bandwidth of
a corresponding ladder filter. In the stopband, the attenuation depends on
the ratio of impedances of ‘crystals’ in the bridges. Overall, the frequency
response of the lattice filter can be obtained to be highly symmetric about a
center of the passband.

Any of the above-considered elementary schemes can be organized to struc-
tures in order to obtain small attenuation in the passband and efficient sup-
pression beyond the bandwidth. Examples of the ladder filter structures are
shown in Fig. 5.22. In the upper sideband (USB) structure (Fig. 5.22a), the

v(t)$ = [& [& [& [ & [D.(r)
£ R EGIC
w0 T T T T

Fig. 5.22. Ladder piezoelectric filter structures: (a) upper sideband and (b) lower
sideband.
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filter passes signals with high frequencies and provides an efficient attenuation
in the low frequency stopband. Contrary, the lower sideband (LSB) structure
(Fig. 5.22b) allows through signals with low frequencies and efficiently sup-
presses components with high frequencies.

Examples of the frequency responses of USB and LSB ladder filter struc-
tures are shown in Fig. 5.23 with dashed and sold curves, respectively. If to

0dB —
72| PR
-10dB / : \

-20dB
LSB

\ USB

-30dB

40dB ;' \
—1 I Y
| Cascade AL
<

-50dB

-60dB
6.7250 6.7270 6.7290 6.7310 6.7330

6.7210 6.7230
Frequency f, MHz

Fig. 5.23. Frequency response of a cascade of LSB and USB ladder piezoelectric

structures.

include these structures in cascade, the resulting frequency response will pos-
sess a high-order of rectangularity in the extremely narrow band (Fig. 5.23).

SAW Devices
Surface acoustic wave (SAW) devices exploit properties of an acoustic wave
traveling along the piezoelectric surface. The waves were discovered in 1887 by
Lord Rayleigh and named for their discoverer. The first SAW devices based on
the transduction of acoustic waves were made in 1965 for pulse compression
radars and in the subsequent years there has been an explosion in their de-
velopment. Nowadays, SAW devices are employed as filters, oscillators, trans-
formers, and sensors covering applications ranging from professional radar
and communications systems to consumer areas such as TV (SAW filters be-
gan replacing LC filters in TV-sets since 1985), pagers and mobile phones
(since 1990). The world-wide production of different SAW devices stands at

hundreds of millions annually.
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Fig. 5.24. Basic design of the SAW device.

A typical design of the SAW device is sketched in Fig. 5.24. The basic
SAW device consists of two interdigital transducers (ITDs) placed on one of
the surfaces of a piezoelectric substrate. The input ITD converts the electric
signal v(t) to the SAW and about a half of its energy propagates in opposite
directions as shown in Fig. 5.24. While propagating, the SAW attenuates with
about 6dB/us. The part of the SAW distributed toward the output IDT is
reconverted, by this IDT, back to the electric signal. Other operation princi-
ples of the SAW device can easily be understood if it is mentioned that each
IDT can be represented by a parallel resonant circuit of three elements: radial
conductance (resistance), acoustic susceptance (inductance), and transducer
capacitance (capacitance).

LTI SAW devices are manufactured with different configurations of evap-
orated elements. Their typical duties are time delaying, BP or BR filtering,
and resonance.

A typical organization of the SAW delay line is shown in Fig. 5.25. Having
a small propagation velocity (3000-5000 m/s) of the SAW, the design allows
for time delay of microseconds with low attenuation in the radio frequency
(RF) range up to gigahertz.

SAW
NN
>
o [] v
w(t) > /
| |
=

Fig. 5.25. SAW delay line.
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In principle, the IDT can be designed to provide any required frequency
response. This noble feature allows designing the SAW filters of different ap-
plications. A typical design of the BP one is shown in Fig. 5.26. The filter still

J

s

w(t)

[] ve®
7

Fig. 5.26. SAW BP filter.

has two IDTs. Therefore, the required frequency response is formed by both
IDTs. However, only the first IDT is usually manufactured to have a desired
configuration as, for example, in Fig. 5.26. In spite of all the utterly useful
properties demonstrated by the filter, there is an important disadvantage.
Because of finite dimensions of the substrate truncate the ideal impulse re-
sponse, unwanted in-band ripples appear along with the reduced out-of-band
rejection.

Typically, SAW filters are designed to have the central frequency from 10
MHz to 2 GHz, transition bandwidth of 0.35 MHz to 1.5 MHz, insertion loss
of < 3 dB to > 30 dB, passband amplitude ripple of £3dB, and peak phase
deviation of £3°.

A SAW device can serve a resonator if to make efforts in conserving the
SAW energy in the IDT area. A typical design of the SAW resonator is shown
in Fig. 5.27. A short IDT is placed at a center of the crystal substrate. To re-
flect the SAW back to the IDT with small dissipation, two distributed passive
reflector banks (reflection gratings) of period A/4 are closely placed to the left
and right from the IDT. In best SAW resonators, the reflection coefficient is
achieved more than 99% allowing for the quality factor of Q ~ 10%.

The highly important property of the above considered BAW and SAW
devices is that they can realize LTI systems of extremely high orders. Thus,
the frequency response may be obtained of almost any reasonably desired
shape. On the other hand, precision and accuracy featured to such devices
requires special efforts in modeling. Therefore, the piezoelectric structures are
commonly subject to the computer-aided design.

All of the LTI systems so far considered in this Chapter have been analyzed
in the frames of Fourier analysis. A usefulness of the approach is that the
system ODE of an arbitrary order is substituted with the ratio of two power
polynomials with the variable jw and the coefficients exactly equal to those
in the ODE. This ratio, having a meaning of the frequency response, can also
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Fig. 5.27. SAW resonator.

be defined by the methods of linear circuits as we demonstrated above for
systems of high-orders. Despite the certain engineering features, the Fourier
method is not a suitable tool to investigate system stability. Whenever the
latter is in question, the Laplace method is very often used being the most
powerful in the transform domain.

5.3 Laplace Transform

The method by Laplace gives the other powerful technique to provide an
analysis of LTI systems in the transform domain. The Laplace transform exists
in two forms. The bilateral Laplace transform is a straightforward extension
of the Fourier transform associated with non causal signals and systems. The
unilateral Laplace transform relates to causal cases and is often used to solve
the LTT system ODEs.

5.3.1 Bilateral Laplace Transform vs. Fourier Transform
To derive the bilateral Laplace transform, one can start with the familiar
direct Fourier transform

o0

X (jw) = / x(t)e Itdt (5.88)

— 00

applied to some signal x(t) satisfying the Dirichlet conditions.
The transform (5.88) exploits the complex exponent function

eIt = coswt + jsinwt (5.89)
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that is basic in the spectral analysis of signals. Real and imaginary components
of (5.89) are shown in Fig. 5.28a. A generalization of the Fourier transform is
achieved by using instead the general complex exponential function

oIt — e (coswt + jsinwt) (5.90)

which real and imaginary parts are sketched in Fig. 5.28b for negative o. The
prime difference between two functions is that the envelope of €/ is constant
with time, whereas in e(?T7) it becomes zero at infinity.
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Fig. 5.28. Exponent functions: (a) complex (Fourier transform) and (b) general
complex (Laplace transform).

Formally, we can rewrite (5.88) as
X(jw) = 7x(t)e”te_(”+j“’)tdt,
introduce a new variable s = ¢ j:;’w, and go to the form of
X(jw) = f[a:(t)e“t]eStdt,

meaning that

Fla(t)] & X (jw) = L[z(t)e”],

where L is newly introduced an integral operator. If we will think that x(¢) =
x(t)e™ 7, we will arrive at the relation
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Flet)e " = L[z()] & X(s). (5.91)
The function X (s) in (5.91) is defined by the transform

oo

X(s) 2 Llx(t)] = / x(t)e stdt (5.92)

— 0o

known as the direct bilateral Laplace transform of x(t).
Let us now apply the inverse Fourier transform to (5.91) and write

1 7 .
z(t)e 7t = ) / X (o + jw)e’dw.
T

By multiplying the both sides of this relation with e°* and changing the vari-
able, we arrive at the relation

o+joo
z(t) 2 L7X(s)] = 2717]' / X (s)etds (5.93)

called the inverse bilateral Laplace transform of X (s). Accordingly, both (5.92)
and (5.93) are said to be the bilinear Laplace transform pair.
The Laplace transform is denoted by

2(t) & X(s),

where X (s) is usually a rational function in s-plane

X(S) _ b0+b18+...bMSMN
ag+a1s+...+ans
:bM(s—zl)(s—zz)...(s—zM). (5.94)
any (s —p1)(s—p2)...(s —pN)

Here, M and N are positive integers and the coefficients a; and b; are real
constants. The value M cannot exceed N in descriptions of real physical pro-
cesses. If N > M, a ratio (5.94) is said to be the proper ratio. If N < M, it
is the improper ratio.

In the Fourier transform, both x(t) and X (jw) are one-dimensional com-
plex functions. In contrast, the Laplace transform X (s) of x(¢) is a function
defined over a two-dimensional complex plane, called s-plane, spanned by o
for the horizontal real axis and w for the vertical imaginary axis. If ¢ = 0, the
transforms are identical, so one-dimensional.

The roots z; of the numerator tend X (s) toward zero. Therefore, z; are
called zeros (or sometimes nulls) and indicated in the s-plane by cycles (“o”).
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Contrary, the roots p; of the denominator tend X (s) toward infinity. There-
fore, they are called the poles and indicated in the s-plane with crosses (“x”).
The zeroes may lie inside and outside the region of convergence, whereas the
poles cannot lie within this region, by the definition.

The magnitude function | X (s)| can represent both nulls and poles by a
surface plot. Fig. 5.29 shows an example of such a representation which benefit
is in clarity featured to surface plots. A disadvantage is that | X (s)| does not
bear information about the region of convergence requiring an additional plot.

| X(s)|
i 5
S
. SR
e A S
R e S
R A R s 1
e
0 a5t S o .
Rk T -1 ®
: o 2
S 3

T
("'{?;

Fig. 5.29. Surface plot, by |X(s)] = | 3}, 5 |-

5.3.2 Region of Convergence

Because the Laplace transform of z(t) is the Fourier transform of z(t)e~°%, the
former can be applied to a broader class of functions, including exponentially

growing functions, satisfied the Dirichlet condition
/ le(t)e=tdt < 0o (5.95)
—0o0

The set of values s for which (5.95) is true is called the region of con-
vergence (ROC) of the function. The ROC of X (s) is represented by strips
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parallel to the jw-axis in the s-plane. Such a representation also includes zeros
and poles of X (s) exhibiting the following properties:

Property 1: If x(t) is absolutely integrable and of finite duration, then
the ROC is the entire s-plane, since the Laplace transform is finite and X (s)
exists for any s. ad

Example 5.12. Consider a unit impulse z(t) = 6(t). By the sifting property
of §(t), the Laplace transform is defined to be

X(s) = / Ste stdt =e 0 =1.

The ROC thus occupies the entire s-plane without any zeros (and, of course,
poles) as it is shown in Fig. 5.30a. O

Property 2: If z(¢) is right-sided (i.e., exists with ¢ > 0) and Re[s] = a
is in the ROC, then any s to the right of a (i.e., Re[s] > a) is also in the
ROC. O

Example 5.13. Given a signal z(t) = e*wu(t), where a is arbitrary real. With
a > 0, the Fourier transform of this function does not exist, since the Dirichlet
conditions are not satisfied. Contrary, the Laplace transform is derived to be

oo o0

1 o0
X(s) = / e“u(t)e s dt = /e—(s—a)t dt — — o ae_(s_a)t
> 0 0
= — 1 . e—(o‘—a)te—jwt
0o—a+jw 0

The integral converges if only o > a and we have

1
X(s) = , R >a.
()= Rels)>a
By s = a, the transform tends toward infinity, so there is a pole p = a. Fig.
5.30b sketches the ROC for this case. a

Property 3: If x(¢) is left-sided (i.e., exists with ¢ < 0) and Re[s] = a is
in the ROC, then any s to the left of a (i.e., Re[s] < a) is also in the ROC. O

Example 5.14. Given a signal z(t) = e*u(—t), where a is arbitrary real.

The Laplace transform integral

0

X(s) = / e (Tt gt = —

— 0o

e—(d—a)te—jwt 0

oc—a+jw

— 00
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Fig. 5.30. ROCs of the Laplace transforms: (a) Example 5.12, (b) Example 5.13,
(c) Example 5.14, (d) Example 5.15, (e) Example 5.16.

converges if o < a to produce

X(s) = , Re(s) <a,
with the pole p = a. Fig. 5.30c sketches the ROC for this case. a
Example 5.15. Given a signal z(t) = —e~*u(—t), where a is arbitrary real.

The Laplace transform is
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having a pole p = a and the same ROC as in Fig. 5.30c. ad

Property 4: If x(t) is two-sided, then the ROC is the intersection of the
two one-sided ROCs corresponding to the two one-sided components of z(t).
This intersection can be either a vertical strip or an empty set. a

Example 5.16. Given a signal z(t) = e~ u(t) + e**u(—t), where a > 0 and
b > 0. It follows, by Examples 5.13 and 5.14 that the ROC is a strip with two
poles, p; = —a and py = b, as shown in Fig. 5.30d.

If we consider x(t) = e®u(t)+ e~ u(—t), where a > 0 and b > 0, we arrive
at the picture shown in Fig. 5.30e. a

Property 5: A function z(t) is absolutely integrable (satisfying the Dirich-
let conditions and having the Fourier transform) if and only if the ROC of
the corresponding Laplace transform X (s) includes the imaginary axis, since
Re[s]=0 and s = jw. O

Example 5.17. Let us come back to Example 5.16. The ROC shown in Fig.
5.30d includes the imaginary axis and it can be shown that the relevant signal
z(t) = e %u(t)+e’u(—t), a > 0 and b > 0, is absolutely integrable. Contrary,
the ROC in Fig. 5.30e does not contain the imaginary axis and the relevant
function x(t) = eu(t) + e " u(—t), a > 0 and b > 0, does not satisfy the
Dirichlet conditions, so is not absolutely integrable. a

Observing Examples 5.13-5.15, we conclude that the same transform
1/(s — a) corresponds to different signals e**u(t) and —e~u(—t). Yet, the
same ROC Re(s) < a fits different signals, e**u(—t) and —e~**u(—t). To ex-
plain these facts, one needs to remember the following fundamental property:

Fundamental property: In order for the bilateral Laplace transform
X (s) to be unique for each function z(t), the ROC must be specified
as part of the transform.
O
Overall, to represent X (s) graphically, one can use either the | X (s)| plot
(Fig. 5.29) or ROC plot (Fig. 5.30). The latter is more preferable, because it
bears a complete information about the transform, contrary to the former.

5.3.3 Properties of the Bilateral Laplace Transform

As any other transform, the Laplace transform demonstrates many useful
properties allowing an efficient analysis of systems. In presenting these prop-
erties, we will think that the transform X(s) of x(t) is known and that the
ROC depicted by R is known as well.
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Time Shifting

Given a signal x(t) & X(s), ROC = R, and its shifted version z1(t) = z(t—to).
The Laplace transform X (s) of z1(¢) is defined, by (5.92), as

Xi(s) = /a:(t—to)e*“dt, ROC = R, .

By changing a variable to 8 =t — ty, we have

Xi(s) = / z(0)e™30Ft0) gh = e—sto / z(0)e*%dh = e 50 X ().

The time shifting property is thus ascertained by the following relationship
and the same ROC as for X (s):

a(t—ty) & e=*™X(s), Ri=R. (5.96)

Example 5.18. A signal
o(t) = eu(t) & X(s)= s—a’ Re(s) > a, (5.97)

where a is arbitrary real, is shifted in time to be z;(t) = e*(*~*0)y(t — to). By
(5.96), the Laplace transform X7 (s) of x1(¢) becomes

e*StQ
Xi(s) = , Re(s)>a
)=, Re(s)
and the inverse transformation readily leads to z1(s). O

Time Scaling

A pulse z(t) éF(s), ROC = R, is compressed (or stretched) in time to be
21(t) = z(at), where o > 0. The Laplace transform X (s) of x1(s) is

Xi(s) = / z(at)e”*dt, ROC = R;.
By a new variable § = at and ¢ = 6/« with o > 0, we have

oo

s 1
Xi(s) = / z(0)e«?dd = aX (;) , Ri=aR,

— 00
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where the ROC is scaled because of the scaling s/« in the transform. If o < 0,
a new variable # = —at can be assigned leading to
— 00

Xi(s) = ! /x(ﬁ)e‘zedﬁ

(0%
00

o0

1 —gg 1 s _
——a/x(G)e 9 = ax(a), R =aR.

Thus, for arbitrary o # 0, the following scaling property (also known as
the similarity theorem) holds true:

1

zat) & X (S) , Ri=aR. (5.98)
lal " \a

Example 5.19. A signal (5.97) is scaled with a > 0 to be z;(t) = e*“u(at).

By (5.88), the Laplace transform of the scaled signal is defined to be

Fi(s) = ! Re(s) > aa

s—aa’
and the inverse transform produces the origin. O

Time Reversal

A signal z(t) éX(s), ROC = R, is presented in time reversal by z1(t) =
x(—t). The Laplace transform X (s) of x1(s) is given by
Xi(s) = / r(—t)e *tdt, ROC = R;.

By a sign changed of time, we have

— 00 oo

Xi(s) = — / z(t)etdt = /x(t)e_(_s)tdt:X(—s)
and thus h -
z(~t) & X(-s), Ri=-R, (5.99)

meaning that time reversal of z(t) produces a reversal of both ¢ axis and s
axis in s-plane.

Example 5.20. A signal (5.97) is presented in time reversal by z1(t) =
e~ %u(—t). By (5.98), the Laplace transform of the scaled function is

1

s+a’
and the inverse transform leads to the origin. a

Xi1(s) = — Re(s) < a,
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Differentiation in Time

A signal x(t) & X(s), ROC = R, is differentiated in time to be z1 = dx(t)/dt.
To find the transform of z1(¢), differentiate the both sides of (5.93) to have

ar) 1

x(t) st

a2 / [sF(s)]e* ds.
o—joo

It then follows straightforwardly that

d"ggf) & sX(s), RiOR. (5.100)

Here R belongs to Ry meaning that the ROC of the differentiated function is
unchanged unless a cancelation (pole-zero) exists at s = 0.

Example 5.21. A unit impulse z(t) = 6(¢) éX(s) =1, R all s, is differenti-
ated to be z1(t) = do(¢)/d¢. By (5.100), the transform of x;(t) becomes

Fi(s)=s, Ralls,
and the inverse transform leads to the origin. a
Differentiation in the s Domain

A signal x(t )é (s ) ROC = R, is differentiated in the s domain to have a

transform X;(s) = dX (s)/ds. Differentiating (5.92) with respect to s yields
dx r
diS) = / [—tz(t)]e”*dt
and thus "
—ta(t) & diS) , Ri=R. (5.101)

Example 5.22. A unit impulse z(t) = 4(¢) éX(s) =1, R all s, is gained by
t to be x1(s) = td(t). By (5.101) and the sifting property of the d-function,
the transform of x4 (t) is defined to be

Xi(s) = d);g 2 / [ t5(t)]e=""dt = 0= =0, Ralls.

We arrive at the same result by differentiating F'(s) = 1 with respect to s. O
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Integration in Time

A signal x(t) éX(s), ROC = R, is integrated in time to be

21 (t) = / Lo & Xy(s).

— 00

By differentiating z;(¢) and using (5.100), we have

2(t) = dxgt(t) & Xy(s) = X(s)
and thus
/t 2(0)d0 & iX(s), Ry = RN [Re(s) > 0]. (5.102)

The ROC R; follows from the possibility to have a pole at s = 0, by 1/s.
Example 5.23. A signal

2(t) = e=tu(t) & X(s) = Sia, Re(s) > —a,

a > 0, is integrated to be z1(t) = ! (1 —e~*)u(t). By (5.92), we have

17 17 17
Xi(s) = “ / (1—e ™) e dt = " /e*Stdt ~ . /e’(”“)tdt
0 0 0

1 1 1
T as a(s+a) s(s+a)’ [Re(s) > —a] N [Re(s) > 0] .

Thus, X1(s) = !X(s) and the ROC is combined with two stripes, as
claimed by (5.102). O

Linearity
By the inherent property of linearity, if we have N signals,
L
where ¢ € [1, N], then the transform of their addition is
N

N
Zaixi(t) é ZaiXi(s), Ry DRiNRN...NRy. (5103)
=1

i=1

The ROC Ry contains intersections between all of the particular ROCs
as it is shown in Fig. 5.31 for two signals.
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R, >R NR,

Fig. 5.31. ROC of an addition of two signals.
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Example 5.24. A signal is composed by an additive sum of three truncated

exponential subfunctions,

z(t) = e 2 u(t) 4+ 2e*u(—t) + e u(t).

The transforms of the subfunctions are

)= ult) & Xi(s)= i ,o Rels)> -2,
xo(t) = e*u(—t) & Xa(s) = s_—12 , Re(s) <2,
3(t) = etult) & Xa(s) = si |+ Rels)> 1.

By (5.103), the Laplace transform of a signal is defined to be

X(S) :X1(8)+2X2(8)+X3(5) = 1 _ 2 1

s+ 2 s—2+s~|—1

—6(s+ 3)
= , —1<Re(s) <2.
(s+1)(s+2)(s—2) (s)
Example 5.25. A signal is given with

x(t) = Ae= =l
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where A and a are positive-values and 7 is a time shift. A signal can be
represented by an addition of three subfunctions,

x(t) = Aea(t_T)u(t) — Aea(t_T)u(t —7)+ Ae_a(t_T)u(t -7),

with known transform,

zi(t) = e ut) & Xi(s)= ., Re(s)>a,
s—a
2o(t) =yt —7) & Xo(s)= ¢, Rels) >a,
s—a
z3(t) = eyt — 1) & Xy(s) = Se+a, Re(s) > —a.

The transform of a signal is then defined, by (5.103), to be

X(S) = A[Xl (8) + X2(8) + X3(S)]

—art 2557
:A(s—l—a)e + 2se  Re(s) > a.

(s+a)(s—a)

Convolution in the Time Domain

This property is fundamental for the LTI systems description in the transform
domain. Suppose the transforms of the input z(¢) and impulse response h(t)
of a system are known, respectively,

z(t) & X(s), ROC=R,,
ht) & H(s), ROC=R,.
The output y(¢) is coupled with x(¢) via h(t) by the convolution

oo

y(t) = x(t) * h(t) = / z(0)h(t — 6)do.
By (5.92) applied to y(t), we have
Y(s)= / / z(0)h(t — 0)e*'dodt = / z(0) / h(t — 0)e~stdt| do

and then the time shift property (5.96) yields
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oo o0

Y(s)= / z(0)e Y H(s)do = H(s) / z(0)e *%dh = H(s)X(s).

The latter relation means that
2(t)*h(t) & X(s)H(s), Re> RyN Ry, (5.104)
where the ROC R, contains an intersection of the ROCs of X (s) and H(w).
Example 5.26. Given a signal
a(t) =6(t) & X(s) =1
acting in the input of an LTT system having the impulse response, a > 0,

1
s+a’
The convolution and sifting property of the delta function yield the output

h(t) = e~u(t) & H(s) = Re(s) > —a.

y(t) = (t) = h(t) = / 5(8)e= 0O u(t — 6)d6 — e~ tu(t)

that is equal to the impulse response. Thus

Y(s) = sj—a’ Re(s) > —a.

By (5.104), we arrive at the same result straightforwardly. O

Convolution in the Frequency Domain

Consider the transform of the product z(t) = z1(¢t)z2(t) of two functions

21(t) & Xi(s), a1 <Re(s) < by,

22(t) & Xo(s), as < Re(s) < by,
We thus need evaluating the integral

oo

X(s) = / 21 (D (Betdt .

— 0o

Then substitute xo(t) with its inverse transform
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1 o+joo
ra(t) = /)Xxﬂfﬂs
og—joo
and provide the transformations:
1 ) [ o+jo0 7
X(s)=,_. / x1(t) / Xo(s1)etdsy | e tdt
27y
—oo lo—joo i
] o+joo r o~ b
= o / Xa(s1) / z1(t)e” 70| dsy
o—joo |— oo i

Because the integral in brackets is the transform X;(s — s1), we have

o+4joo
1
X(s) = i / Xo(s1)X1(s — s1)dsy
o—joo

that comprises the convolution in the transform domain, and thus

L 1

X1 (t)ﬁg(t) -~ X4 (8) * XQ(S) , a1 +ag < RG(S) < by +bs, (5105)

2mj

where, it can be shown, the ROC’s lower and upper bounds are summed.
Modulation
Let us think that the following signal is known,

2(t) & X(s), a<Re(s)<b,

and be interested of the transform X;(s) of the modulated signal x1(t) =
e x(t). We then have

Xi(s) = / z(t)e*e sdt = / z(t)e” =t
and thus
e x(t) & X(s—a), a+a<Re(s)<b+a. (5.106)

We have considered, proved, and illustrated with examples many of the
most common properties of the bilateral Laplace transform. These and some
other properties are postponed to Appendix D. A common conclusion is that
the bilateral Laplace transform, as a generalization of the Fourier transform,
deals with both causal and noncausal signals and systems. Yet, it must be
supplied with the ROC for the transform to be unique for each function.
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5.3.4 System Characterization with Transfer Function

The convolution property of the Laplace transform gives us the rule (5.104) to
investigate an LTT system in the transform domain, provided the definition:

Transfer function: The ratio of the Laplace transform Y (s) of the
output y(t) and the Laplace transform X(s) of the input x(¢) is the
LTI system transfer function H(s),

Y(s)
H(s) = . 5.107
)=y (5.107)
O
An equivalent alternative definition is also valid for LTT systems:
Transfer function: The Laplace transform of the system impulse
response h(t) is the LTI system transfer function H(s),
£
h(t) <= H(s)
O

So, the transfer function H(s) completely characterizes an LTI system
because the impulse response h(t) completely characterizes the same system.
The generalized structure of an LTI system in the transform domain is thus
as in Fig. 5.32.

X(s) Hs) Y(s)=H(s)X(s) S

Fig. 5.32. Generalized structure of an LTI system in the transform domain.

Stability

To ascertain stability of an LTI system in the transform domain, we recall
that the system is BIBO stable if and only if its impulse response function
h(t) is absolutely integrable; that is,

/ Ih(r)[dr < M < oo,

Let us now consider the absolute value of the Laplace transform of the
absolutely integrable h(t) assuming that s = jw (or o = 0):

|H (jw)| = /h(t)e‘j“’tdt < / |h(t)e 9« |dt
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o0
= / |h(t)|e 7*tdt < oo (5.108)
—00

We thus have the only condition, meaning that an LTI system is stable if
the ROC of its H(s), by o = 0, contains the imaginary axis jw.

Causality

The property of causality is usually associated with stability. The following
typical cases are recognized.

Causal system. The ROC of H(s) for the causal system must be right-
hand placed (Property 2 of the ROC),

Re(s) > a, (5.109)

where ¢ is real. By virtue of that, the ROC of a causal system is the region in
the s-plane to the right of all the system poles. Example 5.27 and Fig. 5.33a
give relevant illustrations, by Hi(s) and Re(s) > —0.5.

Noncausal system. If an LTI system is characterized with the impulse
h(t)t <0
0 t=0"
ROC of H(s) is specified by

response h(t) = the system is noncausal. For such a system, the

Re(s) < a, (5.110)

meaning that the region of the ROC is left-hand placed in the s-plane and all
the system poles are to the right of this region. Example 5.25 and Fig. 5.33b
illustrate this case, by Hs(s) and Re(s) < 0.5.

Stable and causal systems. If an LTI system is both causal and stable,
all the poles of H(s) must lie in the left half of the s-plane. Moreover, because
of Re(s) > a, all poles have negative real parts and, since the axis jw is
included in the ROC, the value of a must be negative, a < 0.

Example 5.27. Consider LTI systems represented with the transfer functions

s—1

i) = (| g2 425 2) RS> 05,
Has) = (s+2)(22_+123+2) » Re(s) > 1,
i) =, 1)(SS;L_22S 4oy Rels) <05,

Hy(s) = 52 Re(s) < —0.5.

(s —1)(s2—2s+2)’
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The system Hi(s) has a zero z; = 1 and three roots in the denominator:
s1=—2,8=—1+4+j, and s3 = —1 — j. Because the ROC includes the axis
jw and all of the poles lie to the left of the ROC, the system is both stable
and causal (Fig. 5.33a).

Jjo Jjo
15 12
1 % o 1 1 % ¢ 1
3 0 2 c -3 0 i 2 o
—+22 -2
(a) (b)
Jo jo
+ +2
1
_‘2 " 0 1 c _‘2 v 0 1 c
-1
4 12
(c) (d)

Fig. 5.33. LTI systems: (a) stable and causal, (b) unstable and causal, (c) stable
and noncausal, and (d) unstable and noncausal.

The system Hj(s) has the same roots as in H;(s). However, its ROC does
not include the jw axis and this causal system is thus unstable (Fig. 5.33b).

The system Hs(s) is characterized with a zero z; = —2 and three poles,
p1=1,ps =14 j, and p3 = 1 — j. Since the ROC includes the jw axis and
all of the poles lie to the right of the ROC, the system is both stable and
noncausal (Fig. 5.33c).

The system Hy(s) has the same roots as in Hs(s). However, its ROC does
not contain the jw axis and the system is thus unstable and noncausal (Fig.
5.33d). O

5.3.5 The Inverse Laplace Transform

It is now a proper place to say several words about the calculus of the inverse
Laplace transform that was earlier formally defined by (5.93) as
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v+joo
x(t)é.cfl[X(s)]:%lrj / X (s)eds. (5.111)

To calculate (5.111) properly, the real value v in the integral bounds must
satisfy the condition for the ROC. For example, if X (s) has the ROC a <
Re(s) < b, the value v must be chosen such that ¢ < v < b. If v is set
correctly, the inverse transform (5.111) can be applied to all forms of the
transform function.

Typically, X (s) is represented with a ratio of the polynomial functions
(5.94). Irrespective of a number of zeros and poles in the transform, the
methods of evaluating the integral in (5.111) remain actually the same. If
one cannot represent X (s) by the sum of simple functions placed to a Laplace
transform table, the partial fraction expansion is used. The technique allows
splitting X (s) into fractions with known inverse transforms. To define un-
known coefficients in fractions, the cover-up method is exploited.

Distinct Real Roots

Let us think that (5.94) is performed with by = ay = 1 having distinct real
roots. We then may represent this ratio as a sum of fractions,

F(s) = (s—z1)(s—22)...(s— zm)
(s=p1)(s —p2)...(s—pn)
« @ «
= b4 oy N (5.112)
§—p1  S—p2 S —DN
where the coefficients «;, i € [1,N], are still unknown. By the cover-up
method, «; is predetermined to be

a; = (8 = pi) X(8)|s=p, (5.113)
and the problem is reduced to algebraic manipulations.
Example 5.28. The transfer function is represented by the sum of fractions,

s+ 1 aq e

H = =
() s(s+2) s+s—|—2’

in which the coefficients, o and aw, are unknown. By (5.113), we have

s+1 1
a1 = S =
! s(s+2)|,_, 2’
s+1 1
= 2 =
Qa2 (S+ )S(S+2) R 27
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and the transfer function becomes

1 1

B = 0 T ogs 9y

A Laplace transform table (Appendix D) gives the impulse response

1
ht) =, (1 + e 2 u(t)
that can also be obtained by the inverse Laplace integral. a

Repeated Real Roots

If X (s) is performed with repeated real roots, containing factors of the form
(s — pj)™, where n is integer, they say that p; is the multiple pole of X (s)
with multiplicity n. In line with the terms associated with ¢ € [1, N], ¢ # j,
an expansion of X (s) will contain of terms caused by i = 7,

B B2 Bn
+ +...+ , 5.114
s—p; T (s—py)? (s = p))" (114
for which the coefficients /3, [ € [1,n], are commonly determined by
_ 1 nx 5.115
i =y g (5= PG (5115)

S=pj

Example 5.29. The transfer function is represented by the sum of fractions

as
s2+1 aq Br P

H = =
() s2(s+2) 8—|—2+8+52’

where a1, 01, and (5 are unknown. By the cover-up method we have

s2+1 )
= 2 =
= (5425049 —n 4
2
g st +1 1
fr=s s2(s+2)|,_, 2
and, by (5.115), the remaining coefficient is defined to be
d [, s*+1 1
m‘@%ﬁ@mﬁro_4

The transfer function is thus represented with

5 11
H(s) = -
()= 4(s12) " as T 22
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that readily converts, by a table of the transforms, to the impulse response

1(5e*2t — 1+ 2t)u(t).

ht) =,

Note that the function can also be derived by (5.111) with, however, larger

routine.

Complex Roots

When some roots occur to be complex conjugate, two approaches are used.
Frequently, they agree with complex roots and use partial fraction expansion
to find simpler forms. We can also expand X (s) to fractions with the polyno-
mials of order higher than one and find transforms in a table. So, for complex

conjugate roots, one can follow the rule provided by (5.112) and (5.114).

Example 5.30. Given a transfer function

H(s) = A _ ™ B1 + Bas
(s+2)(s24+25+2) s+2 s2+4+2s+2’

having in the denominator three roots: s; = —2, s9 = —14j, and s3 = —1—j.

By the cover-up method, (5.113), the coefficient «; is defined to be

A
(s+2)(s?2+25+2)

To determine 3; and (32, we apply the same approach and go to

A

a1 = (s+2) =4

s=—2

A
(s+2)(s24+2s+2)
A A A

14jt2 2 Jo
By comparing the terms in the left-hand and right-hand sides, we define

A
B1=0, 52:2-

Finally, by a1, 81, and (5, the transfer function H(s) is found to be

A n As
2(s+2)  2(s2+2s5+2)

and, by rearranging the terms, becomes

)

(B1 + B28)]y—y, = (s* +25+2)

§=81

Bi— P2+ jb=

H(s) =

A 1 s+1 1

H(s) = - .
= 9 [s+1241 (511241542

By a table of the transforms, H (s) easily converts to the impulse response
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A —t
h(t) = 82 (sint —cost +e ") u(t).

Observe that h(t) derived is absolutely integrable, because a multiplier e ¢

approaches zero with time. Yet, the system is stable, since all the roots are
placed in the second and third quadrants of the s-plane. O

5.4 Unilateral Laplace transform

For causal signals and systems, the unilateral (or one-sided or singly-infinite)
Laplace transform turns out to be more efficient. Because the transform deals
with functions defined in positive time, (5.92) modifies to

X(s) & Llx(t)] = /x(t)e_“dt, (5.116)
o-
being the Laplace transform of a causal signal x(¢t)u(t).

The lower bound is chosen in (5.116) as “0~” to integrate the delta function
and its derivatives. This means that a small (zero) amount of a nearest past
is allowed for the transform. Sometimes, the bound is set as “0™” to avoid
integrating the delta function.

Because (5.116) ignores z(t) for ¢ < 0, the ROC of any unilateral Laplace
transform, by the Property 2 of the ROC, is always of the form Re(s) > a and
thus right-hand placed in the s-plane. For this reason, the ROC for (5.116) is
often omitted and the transform is called just the Laplace transform.

5.4.1 Properties of the Unilateral Laplace Transform

Restricted to zero, the lower integration bound causes special properties of the
unilateral Laplace transform associated with differentiation and integration.
The other properties are common for both forms of the transform.

Differentiation in Time

Let us think that a causal z(t) and its unilateral transform X (s) are known.
Then the transform X;(s) of z1(t) = dz(¢)/dt is defined, by (5.116), as

7 da(t s
Xi(s) = di)e tdt.
o=
By differentiating by parts, we go to the relation

Xi(s) = x(t)e*St|zi + s/x(t)e*“dt

0-
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that produces Xi(s) = —z(07) + sX(s), Re(s) > 0. The property of differen-
tiation in time is thus stated by

dz(t) £ _
i < sX(s)—z(07), (5.117)

claiming that the unilateral Laplace transform is sensitive to the initial con-
dition in a causal LTT system.

Example 5.31. An LTI system of the first order is represented with the ODE
y' +2y =0, y(0) = yo. By (5.117), the unilateral transform gives sY (s) —yo +
2Y(s) =0 and
Yo
Y(s) = .
(5)= "9

Using a table of the Laplace transforms, we arrive at

y(t) = yoe >

avoiding solving the ODE in the time domain by traditional methods. a

Double Differentiation in Time

Let us find the Laplace transform of the second time derivative of a signal
z(t), which X (s) is known. By (5.117), the transform can be written as

dz?(t)  ddz(t) ¢ _ J e
dt2  ~ dt dt = S[SX(S)_Q:(O )]—33(0 )a

where 2/(07) is the value of the first time derivative of z(t) and zero. The

property is thus established by
2
dztgﬂ & $2X(s) - s2(07) —2/(07). (5.118)

Example 5.32. An LTI system of the second order is represented with the
ODE ¢’ +2y' +y =0, y(0) = 0.5, and ¢'(0) = 1.
By (5.117) and (5.118), the transform is written as

$2Y () — ; —1+42sY(s)—1+Y(s) =0,

producing

¥ (s) = 1 s+4  s+4
2824 25+1  2(s+1)27
For repeated roots, by (5.114) and (5.115), we can write

s+4 B B2

V)= 412 = 5417 (s41)2
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and define the coefficients as

s+4 3
= 1)2 =
Be=(s+1) 2s+1)2| _, 2’
d s+4 1
= 1)2 =_.
61 ds |:(3+ ) 2(8+1)2:| — 2
The transform then attains the form
1 3
Y =
)= 951 1) T ags 412
and, by a table of the transforms, we go to a solution
1 —t
y(t) =, (1+30e ",
without actually solving the ODE. a

Integration in Time

In causal systems, signals are integrated over finite bounds from 0 to ¢. They
can also be integrated over the entire past history from —oo to t.

. . £ . . .
In the first case, if a causal signal x(t) < X (s) is known, of interest is
evaluating the unilateral Laplace transform of the integral measure

¢
1 (t) = / 2(6)do (5.119)
o=
that, alternatively, can be written as

oty = 4010

If we apply the unilateral Laplace transform to (5.120), we arrive at

21(07) =0. (5.120)

X(s) =sXi(s) —z1(07) =sX1(s) or Xi(s)= iX(s)

that proves the property of integration in time:

t

/x(e)do & iX(s). (5.121)
El

In the second case, we can consider two integrals,
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¢ 0- ¢
z1(t) = /x(ﬁ) dé = /x(G) d9+/x(9) dé. (5.122)
—00 —00 0—

By virtue of the fact that the integration from —oo to 0~ of any function
produces a constant, say A, we arrive at the relevant property:

t 0~
/x(&)dﬁ & iX(s)—kiA, A= /x(e)da. (5.123)

Example 5.33. An LTI system is described with the integral equation

t 0~
y(t)+2/y(9)d0:0, /y(e)d9:1.

The unilateral Laplace transform, by (5.123), produces
2 2
Y(s)+ 5 + SY(S) =0

that becomes

2
Y(s)=—
(5)=—,19
corresponding to the time-signal y(t) = —2e~ 2. 0

Initial Value Theorem

Frequently, it needs evaluating an initial value x(07) of z(¢) via the unilateral
Laplace transform X (s). To find this value, let us rewrite (5.117) as

[ da(t
/ 2 )efst dt = sX(s) —x(07)
dt
ha
and tend s to infinity,
T da(t
lim / g;(t )e*St dt = lim [sX(s) —z(07)].
o
Because lims_.oc [0~ dz(tt)e’s’f dt = 0, we have
2(07) = lim sX(s) (5.124)

§— 00

that is stated by the final value theorem.
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Example 5.34. Let us come back to Example 5.31, where we found that

2

y(t) = —2e 2 & Y(s) = “sia

An initial value of a signal is y(0) = —2. We go to the same result by the
initial value theorem (5.124). Indeed, we can write

s]ilgo sY(s) = ShﬂrglO S 9= -2
getting the same result alternatively. ad

Final Value Theorem

In a like manner, one can find the value of () at infinity. Consider the limit

o0

3 dZIJ(t) —st . —
213(1)/ a € dt = igxg)[sX(s) —z(07)].
o=

Providing the transformations, we have

/ dz(tt) dt = /da:(t) =z(00) —2(07) = ;E%[SX(S) —z(07)]
ha

o-
and arrive at the relation

x(00) = lim sX (s) (5.125)

s—0
that is stated by the final value theorem.

Example 5.35. Consider the transform found in Example 5.32,

1 n 3
2(s+1)  2(s+1)%°
The final value y(co) is ascertained, by (5.125), to be zero,

y(t) = ;(1+3t)e’t £ y(s) =

1
lim sF(s) = lim s 3 0.

i 250 2+ 1) Tas 2] T

We arrive at the same result, by considering the limit

1
lim x(t) = lim 2(1 +3t)e " =0

t—o00 t—o0

that shows an alternative way to hit a target. a
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5.4.2 Laplace Transforms of Some Common Functions

Not only properties of the Laplace transform are of prime importance in solv-
ing applied problems. The transforms of some common and widely used func-
tions often help reaching the goal in the shortest way. Below we observe the
transforms of several common functions and the reader is referred to Appendix
D, where the transform pairs of many others are gathered.

Dirac Delta function
The Laplace transform of the delta function z(t) = d(t) is derived by using
the sifting property of (),

X(s) = /(5(t)678tdt =e 0 =1,
o=

No restrictions to the ROC are produced and we have

0(t) & 1, ROCisalls. (5.126)
Unit Step Function
For x(t) = u(t), we have
—st —st 1 —st -
X(s):/u(t)e dt:/e dt=— e .
8 0
0- 0

The integral converges only if Re(s) > 0 and thus

ut) & 7, Re(s) > 0. (5.127)

Rectangular Pulse

Having x(t) = u(t) — u(t — 7), we use the time shift property and obtain
o0 o0

X(s) = /u(t)e*Stdt - /u(t —7)e” Stdt

0- 0-
1 —st | —st |

= s (—6 ‘0 t+e ‘T ) '
The integrals converge if Re(s) > 0 and we have

w(t) —ut—1) & i (1—e7) . Re(s) >0. (5.128)
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Truncated Exponential Function

The transform of z(t) = e~ %u(t), where a is real, is defined by

oo oo

X(5) = [ e ute st = [ e Crar
0~ 0
1 o0
- _ e—(s+a)t
s+a 0

It is seen that the integrals converge if Re(s) > —a and hence

1

e~ “u(t) & ,
s+a

Re(s) > —a. (5.129)

Truncated Sinusoid

Given a signal z(t) = u(t) sinwyt. By Euler’s formula, we have

) oo .

X(S) :/u(t)sinCUQteistdt:/ ) e*Stdt

2j
0~ 0
_ 1 /ef<sfm>tdt_ 1 /e*(SHwo)tdt
2j 2j
0 0
= — 1 . e~ (s=jwolt| 4 . 1 ’ e~ (stiwo)t
2j(s — jwo) o 2j(s+ jwo) 0

Here, both integrals converge if Re(s) > 0. For this ROC, we have

X( ) 1 1 wo
S) = —_ =
2j(s —jwo)  2j(s+jwo) s +wh
and thus
ut)sinwet & 0 Re(s) > 0 (5.130)
0 s2 +wi’ ' '

Truncated Cosine Function

In a like manner, the transform of a causal cosine signal x(t) = wu(t) coswot
can be found to be

S

L
t) coswot
u(t) cos wo 2w

Re(s) > 0. (5.131)

Finishing with examples, we notice again that the Laplace transforms of
some other common functions are postponed to Appendix D.
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5.5 Applications of Laplace transform

Owing to many splendid properties, the Laplace transform has found wide
applications in a broad area of systems problems. The transform helps solv-
ing elegantly linear ODEs of systems and offers an incredibly useful tool for
electrical circuits. LTI systems can efficiently be simulated in the transform
domain by block diagrams. Finally, the state space model is easily analyzed,
by the transform.

5.5.1 Solution of ODEs of LTI Systems

The most appreciable application of the Laplace transform is in solving the
ODEs of LTI systems. To apply the transform to the N-order ODE, it first
needs extending a property (5.117) to the multiple time derivative case. Com-
paring (5.117) and (5.118) one logically arrives at the rule

dz™(t) &

n _ on—1 -\ _ n=2.(0—) _
dgin s"X(s)— 8" x(07) —s"2'(07)

—sz(2(07) — 2=V (07). (5.132)

Now consider a familiar general ODE of an LTI system,

N e M qm
n t) = b, t), M<N. 5.133
3 g0 = 3 b 1,00 (5133)
If we think that the input is known, ;1c(75)é)X(s)7 the function z(t) is
multiply differentiable,
2(0) =20, @(0)=af, ..., MVO)=a",
and all of the initial conditions are distinct,
s =vo. VO =y, . VO =y,
we can apply the unilateral transform to (5.133), use (5.132), and write

N

> an [ (5) = 5" y(07) — o= sy (07) = D (07)]
n=0
M
=3 b [sz(s) — 5™ g (07) — ... — sa™M=2(07) — x<m*1>(07)} .
m=0

The transform of y(t) can now be expressed as
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M N M
> bps™ anFi1n(8) — Y by Fom(s)
m=0

n=0 m=0
Y(s)=X(s)™y + N , (5.134)
> aps” > ans”
n=0 n=0
where
Fin(s) =s""y(07) + ...+ sy™2(07) +y™ D (07), (5.135)
Fom(s) = s™t2(07) + ... 4 szm2(07) + zm=V(07). (5.136)

As can be seen, the first term in the right-hand side of (5.134) is the
bilateral transform of y(¢) and the remainder accounts for the initial conditions
and time derivatives of the input. It is clear that the remainder is zero if all
of the initial conditions and derivatives are zero. Defined Y (s), a table of the
Laplace transforms may serve finding an analytic expression for y(t).

Below, we use the Laplace transform to analyze in detail familiar LTI
systems of the first and second orders.

LTI system of the First Order
A SISO LTT system of the first order is described with the ODE

L lt) + aoy(r) = boa(t). (5.137)

Assuming that the initial condition y(0~) = yo is known and the input

ai

x(t) é}X(s) is known as well, we apply (5.117) and arrive at
a1[sY (s) — yo] + aoY (s) = bpX(s) (5.138)

that leads to the transform

b
s)= 0 X(s)+ M (5.139)
ai1s + ag ais + ap
The next step is to substitute X (s) and represent Y'(s) with forms that
can be found in tables of the Laplace transforms. Below we find solutions of

(5.139) for two test signals.

Unit impulse in the input. If the input is z(¢) = 4(t) éX(s) =1, the
transform (5.139) becomes

b
v(s) =0 oo
s+ag/a;
producing the output
bo\ oy
y(t) = {yo+ W) (5.140)
1

By yo = 0, the system impulse response appears to be h(t) = Z‘i e art,
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Example 5.36. Consider a system 3’ + 2y = 0, y(0) = yo, which solution is
y(t) = yoe~2!. Compared to (5.137), this equation has the coefficients ag = 2,
a; = 1, and by = 0. Instantly, by (5.140), we have a solution y(t) = yoe~2t. O

Unit step in the input. By z(t) = u(t)éX(s) = 1/s, the transform
(5.139) becomes
_ bo/as Yo
(s) =
s(s+ap/a1)  s+ag/a
~ yo—bo/ao  bo

= 141
s+ag/a; +aos (5 )

producing a solution
ag t _ap t

Loy b
y(t) =yoe '+ P(1—e ). (5.142)
0

The system step response g(t) = Z?) (I1—e" a(l)t) appears if to set yo = 0.

Example 5.37. Given a system, described with the ODE ¢’ +2y = «, y(0) =
0, having the coefficients ag = 2, a1 = 1, and by = 1. For z(t) = u(t), its step
responce, by (5.142), becomes g(t) = 0.5(1 — e~2t). 0

LTI System of the Second Order

A SISO LTT system of the second order can be described with the ODE
d2

as dto(t) + aq d y(t) + aoy(t) = box(t) . (5.143)

dt
For arbitrary initial conditions, y(0~) = yo and 3'(07) = y(, and known
input z(t) éX(s), the transform applied to (5.143) yields

as[s2Y (s) — syo — yo] + a1[sY (s) — yo] + aoY (s) = bo X (s) . (5.144)
From (5.144) one instantly derives

/
Y=, 00 X(s)4 P05 Tt (5.145)
a28° 4+ a18 + ag a28* + ai18 + ag
and, again, a shortest way to find a solution y(¢) for known X (s) is to use a
table of the Laplace transforms.
Let, for example, the input be delta-shaped, z(t) = §(¢), thus X(s) = 1.
The transform (5.145) then attains the form

azyos + azyy +aiyo +bo s+ A

Y = =
(s) a9252 + a1s + ag Yo (s +a)2+ 627

(5.146)

where
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al 2
o = y 6 =

2(12

dagas — a? - asyh + a1yo + bo

5.147
4a3 azyo ( )

By a table of the Laplace transforms, the output is obtained to be

g

Example 5.38. Consider a system described by y” + 2y +y = 0, y(0) = 3,
with the coefficients ag = 1, a1 = 2, as = 1, and by = 0. By (5.147), we have
a=1,8=0,and A = 4. The SOhlthIl then becomes that, y(t) = 5(1+3t)e™"

earlier found in Example 5.32 for the same system. EI

y(t) = yoe ™ (cosﬁ + % sin ﬁt) . (5.148)

5.5.2 Application to Electric Circuits

The approach to solve ODEs of LTI systems using the Laplace transform is
efficiently exploited in electric circuits. Here, first, all signals and memory
operations are substituted with the Laplace transform equivalents. Then the
terms are properly rearranged and a table of the transforms is used to produce
time functions. This new equivalent form in the s domain needs to remember
that all memory components are physical, thus their energy at some initial
time ¢ = 0 may not be zero. The unilateral Laplace transform is therefore the
best candidate to solve the block of problems.

Electric Voltage and Current

Because both the electric voltage v(t) and current i(¢) are commonly some
time functions, they can be represented in the s domain with the relevant
transforms, respectively,

ot) & Vis), S I(s) (5.149)

and graphical images in both domains as shown in Fig. 5.34. Note that
throughout the book we use equal images of i(t) and v(¢) sources for the
alternative and direct currents and voltages, respectively.

Resistor

The transform of a voltage v(¢t) = Ri(t) induced on a resistor R by an electric
current i(t) can be represented in the s domain, by (5.149), as

o(t) = Ri(t) & V(s)=RI(s). (5.150)
and sketched graphically as in Fig. 5.34.
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Time domain Laplace transform
i(0) 1(s)
Current ° © b t
(1) V(s)
Voltage 3—@—9 3—@—9
Resistor i X O—I@(élfo
3_)1(%)7_? N O
. C 1/sC v(07)/s
Capacitor E—IQY-{ }'7_0 %@_o
(1) V(s)
1/|S|C
[
o 1(s) \C\;(O")/ 0
V(s)
Li(0
Inductor o—l(f)—rvév\—o ol(s) NS\E\A 6) o
+ A\v(t)/ B * A\V(S)/A B
sL

Fig. 5.34. Electric elements and their Laplace transform equivalents.
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Capacitor

A voltage v(t) induced on a constant capacitor C' by an electric current ()
is given by the relation v(t) = éfiooz(t) dt. On the other hand, an elec-
tric current generated by the voltage through a capacitor is provided by
i(t) = Cdw(t)/dt. By the properties of differentiation, (5.117), and integration,
(5.123), we thus have two equal transforms

u(t) = é/_ i(r)dr & v(s)= 821(5)+ iv(O_), (5.151)
i(t):Cdg(tt) & I(s) = sOV(s) — Cu(07) (5.152)

and two options (Fig. 5.34) in graphical representation.

Inductance

Reasoning similarly for an inductance L, we write

i(t) = i/_ oy dt & I(s) = :LV(SH ii(()_), (5.153)
U(t):Ld;(tt) & V(s)=sLI(s) - Li(0") (5.154)

that is supported in Fig. 5.34 by graphical images.

RC and RL Circuits

Because of two different memory elements available, L and C, even a simplest
electric circuit of the first order has two different schematic realizations.

RC circuit. Let us come back to a familiar LP filter organized with a
resistor R and capacitor C' (Fig. 5.5a). By Fig. 5.34, a representation of this
circuit in the s domain becomes as in Fig. 5.35.

1(s) R

="
1/sC (\

201@) Ve(s)

v(07)/s /

Fig. 5.35. Representation of an RC circuit in the s domain.
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To describe the circuit, we first write an equality of voltages

V(s) = RI(s)+ ~.I(s)+ ivc(O_) (5.155)

sC

that can further be rewritten for the electric current as

I(s) = 11%8:1/% [V(s) — ivc(())} , (5.156)

where 7. = RC' is a time constant of the system.
By (5.156), the transform of a voltage induced on R is given by

s 1 _
Vr(s) = RI(s) = 41/ {V(s) — Svc(O )] (5.157)
and, by (5.151) and (5.156), the transform of a voltage on C becomes
_ 1 ve(07)
VC(S)_I(S)SC+ 5
1/ 1 _ ve(07)
= i1 [V(s) Lve(0 )} +00 (5.158)

So, the RC circuit is now fully represented in the s domain. Given the
initial conditions, the functions can further be translated to the time domain,
by a table of the Laplace transforms.

Example 5.39. Consider an RC circuit (Fig. 5.35), in which the input voltage
is v(t) = Vu(t) &V (s) = V/s.
By (5.156), the transform of an electric current can be found to be

V —ove(07) 1

I(s) = 1
() R s+ 1/7 (5.159)
that in the time domain becomes
V- 0~ t
iy = Ve - (5.160)
R

Instantly, we find the voltage induced on a resistor,

vr(t) = Ri(t) = [V — ve(07)]e ™ % . (5.161)
Substituting V(s) = V/s to (5.158) gives
_ 1/Tc (%e} (0_)

= el .1 2
Vols) = IV —we(07)] LT, 4" (5.162)

that has a counterpart in the time domain,

ve(t) =[V —ve(07)](1—e” e Yu(t) + ve (07 )u(t)
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= V(L —e 7 )u(t) +ve(0)e™ ~u(t). (5.163)
If we now set V' =1 and assume vc (0~ ) = 0, the function (5.163) becomes
the system step response

t

g9(t) = (1 = e )u(t), (5.164)
earlier provided by (4.63) with 7. = RC. O
RL circuit. The other electric circuit of the first order (Fig. 5.5b) com-

prises a resistor R and inductor L. By Fig. 5.34, its equivalent in the s domain
is as shown in Fig. 5.36.

V,(s)
© LA
o

S Lo

ris) O R[]

Fig. 5.36. Representation of an RL circuit in the s domain.

The voltage balance equation of the circuit can be written as

V(s) = (sL+ R)I(s) — Li(07) (5.165)
that allows finding the transforms of an electric current
Isy)= "+ b [W(s)+ Lio)] (5.166)
VT s +1/7 y ‘ ’ '
where T'= L/R is a time constant, and voltage induced on a resistor
Vr(s) = RI(s) = 1/me [V(s) + Li(07)] (5.167)
s+1/7 ' '

By (5.166), the transform of a voltage induced on L can be written as

Vi(s) =1(s)sL — Li(07)
1/7¢
s+ 1/
The circuit is thus exhaustively represented in the s domain and all of

the functions can further be translated to the time domain by tables of the
Laplace transforms.

=V(s) — [V(s) = Li(07)] . (5.168)
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Example 5.40. Given a system (Fig. 5.36) with the input voltage v(t) =
Ve “tu(t) éV(s) = Yo, a>0.

For the input given, the transform (5.166) of i(t) becomes

v L Lo
L(s+1/m)(s+ ) * s+ 1/701(0 ) (5.169)

corresponding, by a table of the Laplace transforms, to the time function

I(s) =

. Vv 1 _t —at cra—y  — ¢t
_ Lo o 1
0=7 0 1/m (e e ) (07 )e (5.170)
The voltage induced on a resistor is thus
1/7c ot _ ot
Vr(t) = v _/I/TC (e e —e “t) +i(07)e " . (5.171)

By (5.168), the transform V7 (s) is defined as

4 V/te L/7e ., _
sta  (st1/m)(s+a) Ts41/ni0) (5.172)

having a time domain presentation

VL(S) =

1/7¢
a—1/7

) =v " eetu) - |V

a—1/7 —Ri(07)| e meu(t). (5.173)

One can observe that all of the time functions were obtained here with a
relatively lower burden, unlike a direct solution of the ODE. ad

Series Resonant RLC Circuit

Basic electric RLC circuits of the second order exist in two configurations.
They typically exploit either a series or parallel connection.

By Fig. 5.34, a series RLC circuit is represented in the s domain as shown
in Fig. 5.37. The voltage balance equation is written as

1 1
Vis)=1(s) (sL + + R) —Li(07)+ vc(07)
sC S
and the transform of an electric current is readily expressed by

1 s
I =
() L s + 265 + w?

where 20 = R/L and w3 = 1/LC. The transforms of voltages induced on the
circuit components are

[V(s) +Li(07) — ivc((r) , (5.174)
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e O e Y Dx

Fig. 5.37. Representation of a series RLC circuit in the s domain.

20s 1
V = |4 Li(07) — - A7
W)= oo (VO L) = 0] - Ga)
2
= Li(07) — 07)| — Li(0~ 5.176
Vi) = gy g |V HL0O7) = Luo0)] - it0), (5176)
w3 1 ve(07)
Ve(s) = 0 v Li(07) — - 5.177
)= g [V 100~ o)+ U )
Example 5.41. Given a system (Fig. 5.37) with the input v(t) = Vu(t) & Vi(s) =
‘S/ and following components: C = 0.5F, L = 1H, R =22,i(07) =0,V = 2V,

and ve(07) = 1V. We thus have w3 =2 and § = 1.
For the parameters given, the transform (5.174) of i(t) becomes

1 1

I(s) = _
)= 2 osi2 ™ (s41)241

having a time representation i(¢) = e~*u(t) sin t. Reasoning similarly, one can
find time functions of each of the voltages in the circuit:

vp(t) = 2e tu(t) sint,
vr(t) = e *(cost — sint)u(t),
vo(t) = [2 — e *(cost +sint)|u(t) .
Fig. 5.38 illustrates all time functions associated with this circuit obtained

by the Laplace transform equivalents. a

5.5.3 Block Diagram Presentation by the Laplace Transform

The other value of the Laplace transform is that we can efficiently simulate
any LTI systems by block diagrams in a manner similar to the time domain.
The simulation by diagrams presumes starting with the system ODE
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i(6) | v
2

Fig. 5.38. Time functions of a series RLC circuits (Example 5.41).

N M
> anDy(t) =Y b DMa(t), (5.178)
n=0 m=0

where D™ = d"/dt", n > 1, and M < N. The Laplace operator is applied
to the both sides of (5.178) and, by zero initial conditions and £(D) = s, we
obtain

N M
Y(s)D ans" =X(s) Y bps™ (5.179)

n=0 m=0

that allows representing the system transfer function as

5 bus™
Y(s) a2y ™
H(s)= )= . (5.180)
(s) X
nZ::Oans

A representation of an LTI system in the s domain can now be made in
two familiar direct (canonic) forms.

The First Direct Form

To arrive at the first direct form, one needs rewriting (5.179) for powers of a
variable s. Without losing a generality, we set ay =1 and M = N and write

[a()Y(S) — bQX(S)] + S[G1Y(S) — le(S)] +...

sV an_1Y (s) = by_1 X (s)] + sV [V (s) — by X (s)] = 0. (5.181)
Divided the both sided with sV, (5.181) can be rewritten as
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Y (s) = s NboX(s) — agY(s)] + sV i X(s) — a1 Y(s)] + ...

+5 oy _1X(s) —an_1Y(s)] + by X(s) (5.182)

that allows us to sketch the first direct form of the diagrams as shown in Fig.
5.39. As well as in the time domain, the diagram is available in two forms.

b
X(s) b ; Y(s)

1

5

bi.i —an.|

(@) (b)

Fig. 5.39. The first direct form of block diagrams of LTI systems in the s domain:
(a) addition efficient and (b) integration efficient.

It can be organized to be either addition efficient (Fig. 5.39a) or integration
efficient (Fig. 5.39b). As can be seen, there is no substantial difference between
the diagrams in the time and s domains. Integrators are merely substituted

with the operators s—!.

Example 5.42. A system is represented with the transfer function
s—3
H =
(s) s2425+10"
having the following coefficients in (5.180): ag = 10, a1 = 2, as = 1, by = —3,

and by = 1. The first direct form of the diagram presentation of this system
is shown in Fig. 5.40. ad

(5.183)

The Second Direct Form

Similarly to the time domain, to sketch the second direct form of block dia-
grams in the s domain, we need substituting (5.179) with two relations:
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Y(s)

| g

Fig. 5.40. The first direct form of block diagrams of a system (5.183).

M
Y(s) =Y bms™Z(s), (5.184)
m=0

N -1
Z(s) = <Z as) X(s). (5.185)
n=0

The block diagram then appears straightforwardly to have two branches
as shown in Fig. 5.41.

Fig. 5.41. The second direct form of block diagrams of LTI systems in the s domain.
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Example 5.43. Consider an LTT system, which transfer function is given by
(5.183). By known coefficients of the system ODE, the system is simulated
with the diagram of the second direct form as shown in Fig. 5.42. O

Y(s)

-3
X(s)
s > 57 Z(s)
) -10

Y

Fig. 5.42. The second direct form of block diagrams of a system (Example 5.43).

Let us notice that not only the first and second canonic forms are used
in simulating LTI systems with block diagrams in the s domain. Albeit not
commonly, some other kinds of diagrams may serve better. Nevertheless, it
is commonly accepted that the above considered canonic solutions cover an
overwhelming majority of practical needs.

5.5.4 State Space Analysis via Laplace Transform

One of the most impressive and utterly important properties of the Laplace
transform is an ability to find the transfer function via the state space model
of a system.

Let us recall that a general state space model, (4.125) and (4.126), of a
MIMO system having k inputs, p outputs, and N state variables is given by

q'(t) = Aq(t) + Bx(t), (5.186)
y(t) = Cq(t) + Dx(t), (5.187)

where the N x 1 state vector q(t) and its time derivative q'(t) are, respectively,

alt) = [a1(t) ga() .. an ()], (5.188)
d(6)= 5 at) = [60) b0 . ay®)]" (5.189)

The k x 1 input vector x(¢) and p x 1 output vector y(t) are, respectively,
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T
x(t) = [@1(t) 22(t) .. ze(t) ], (5.190)

T

y() = [y1(t) y2(t) . yp(t) ] . (5.191)

The N x N system matrix A and p x N observation matrix C are given by

(4.129). the N x k input matrix B and p x k output matrix D are performed
with (4.130).

For zero initial conditions, we can apply the transform to (5.186) and write

sQ(s) = AQ(s) + BX(s), (5.192)

where Q(s) and X(s) are the Laplace transforms of q(t) and x(t), respectively.
From (5.192) we have

Q(s) = (sI — A)"'BX(s), (5.193)

where I is a proper unit matrix.
Applying the transform to (5.187) and substituting (5.193), we obtain

Y(s) = [C(sI - A)"'B + D]X(s) (5.194)
and thus the transfer function of a system is defined as
H(s)=C(sI-A)"'B+D. (5.195)

The next step is seemingly obvious. One can represent (5.195) in a proper
form, use a table of the Laplace transforms, and arrive at the system impulse
response.

Example 5.44. A SISO LTI system is performed in state space with equa-
tions () = Aq(t) + Bz(t) and y(t) = Cq(t), given the matrices

A:[_Ol_zl], B:m, C=[11], D=]0].

To define the transfer function, we first determine the inverse matrix

= (R [ <)

1 s+1 2
0 s+1]|°

C(s+1)2+2
Then substituting to (5.195) and providing the transformations yield

Hs) = (s+11)2+2 [11] [Sglsil} m
_ s+3
C(s+1)242°
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By a table of the Laplace transforms, we finally arrive at the system im-
pulse response

h(t) = e~ *(cos V2t + V2 sin V2t )u(t)

and notice that the result is obtained with a relatively low burden, unlike a
direct solution in the time domain. O

Overall, one can truly conclude that the transfer function of an LTT system
can easily be derived via the state space model if all of the matrices are
distinct. This conclusion is valid for both SISO and MIMO systems.

5.6 Stability Analysis of Feedback Systems

Ascertaining stability of LTI systems becomes of prime importance if the lat-
ter have any kinds of feedback. Systems with feedback play an important
role in applications owing to their special properties. Typically, negative feed-
backs allow for a substantial improvement of the characteristics of electronic
systems. Positive feedbacks, in turn, make systems un