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Foreword 

by 
Ira Chayut, Verification Architect 

Nvidia Corporation 

When Gateway Design Automation, Inc. created Verilog in the mid-
1980's, the process of integrated circuit design was very different than it is 
today. The role of Verilog, as well as its capability, has evolved since its 
inception into today's SystemVerilog. 

The task of ASIC Functional Verification is becoming increasingly 
difficult. How difficult is a matter of conjecture and argument. In 2001, 
Andreas Bechtolsheim, Cicso Systems engineering vice president, was 
quoted in EE Times with one of the higher estimates: 

Design verification still consumes 80 percent of the overall chip 
development time' 

In contrast, an EE Times poll that was taken in 2004 of 662 professionals 
at the Design Automation Conference placed functional verification as 22 
percent of the integrated design process^. 

The gap between 22 percent and 80 percent is indicative of how vague 
the delineation between verification and the other "stages" of integrated 
circuit design and development. Many "verification" efforts are 
implemented by the design engineers themselves, but are still part of the 
verification process and can benefit from the same tools that assist dedicated 
verification professionals. 

Regardless of the actual percentage (assuming that it could be accurately 
measured). Functional Verification of an integrated circuit design is a 
significant fraction of the total effort. Verification is also a critical step to 
shippable first silicon. Even as the costs of the masks run over $ 1 million, 
that figure can be dwarfed by the lost-opportunity of the weeks it takes for 
each re-spin. Any tools that can reduce the cost of verification and increase 
the probability of shipping early silicon should be adopted aggressively. 

' http://www.eedesign.coni/article/printableArticle.jhtml?articleID=l 7407503 
^ http://www.eetimes.com/showArticle.jhtml?articleID=21700028 

http://www.eedesign.coni/article/printableArticle.jhtml?articleID=l
http://www.eetimes.com/show
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While assertions have been a part of software development for many 
years, Assertion-Based Verification (ABV) has recently become popular. In 
some ways, this is odd, as the process of hardware specification has become 
more similar to software design. However, the properties that we wish to 
declare and assert in a hardware design are fundamentally different than 
those in the software world. 

The difference between hardware and software programming models is 
time. Hardware languages, such as Verilog, have mechanisms to represent 
the passage of time and procedural programming languages (C, C++, Java, 
etc.) do not. So, it is not surprising that the software methods of specifying 
assertions did not have a way of incorporating time. 

SystemVerilog, the most recent descendent of Gateway's Verilog, 
includes SystemVerilog Assertions (SVA) - a set of tools to allow engineers 
to include ABV into their designs. SVA has a rich syntax to support time 
within sequences, properties, and (ultimately) assertions. 

With SVA, design and verification engineers can encode the intended 
behavior of hardware designs and can create thorough checks for bus 
protocols. These (relatively) terse descriptions can be used in simulation, in 
formal verification, and as additional documentation for the design. 

It is clear that SVA will have a major impact on how integrated circuits 
are designed and verified. To benefit from this impact, you need to learn the 
syntax of SVA and how to apply it to your own design. This book can help 
you learn and apply SVA. It uses examples, including the PCI bus protocol, 
to illustrate how to write SVA and their simulation results. 

The detailed examples of the SVA language within this book are very 
helpftil to understanding the concepts and syntax of time-based assertions. 
They make the book what it is and are essential in all SystemVerilog design 
and verification engineers' library. 

As a final note, Stevie, my daughter, claims that no one ever reads the 
foreward of books. If you did take the time to read this, please let her know 
by sending her a brief e-mail at: steviechayut(a),gmail.com. 

Thanks 
Ira 



Preface 

It was the middle of the year 2002 and we received an email from our 
manager. It said, "Who would like to pick up the support for OVA?" Our 
first thoughts were "what the heck is OVA?" After talking to a few other 
engineers, we figured out that it was a subset of "open VERA language." 
OVA stands for "Open VERA Assertions" and it is a declarative language 
that can describe temporal conditions. As always, to satisfy our technical 
thirst, we agreed to pick up the support for OVA. We learned the language in 
a couple of months and started training customers, training around 200 
customers in less than 6 months. The way customers were flooding the class 
rooms really impressed us. We were convinced that this is the next best thing 
in verification domain. While customers were getting trained in a hurry, they 
were not developing any OVA code. This was a new dimension of 
verification technique and the language was new. The tools were just starting 
to support these language constructs. There was not much intellectual 
property (IP) available. Naturally, customers were not as comfortable as we 
thought they should be. 

In the meantime, Synopsys Inc. had donated the Open VERA language to 
the Accellera committee to be part of the SystemVerilog language. Several 
other companies made contributions for the formation of the new 
SystemVerilog language. The Accellera committee ratified the 
SystemVerilog 3.1 language as a standard at DAC 2004. The SystemVerilog 
language included the assertion language as part of the standard. This is 
commonly referred to as "SystemVerilog Assertions" (SVA). We continued 
in the path of training customers in Assertion based verification, only now 
we were teaching SVA. We could see clearly that customers were more 
comfortable with the pre-developed assertion libraries, but they were 
reluctant to write custom assertion code. What could be holding them back? 
Was it the tools? No, the tools were ready. Was it the language? Maybe, but 
it is a standard now, so that wasn't necessarily the case. 

After a few lengthy discussions, we realized that the lack of examples to 
demonstrate SVA language constructs could be holding back customers from 
using this new technology. The lack of expertise typically contributes to 
slow adoption. This is when we thought an SVA cookbook might help—a 
book of examples, a book that could act as a tutorial, a book that could teach 
the language. And that is how this project started. We have made an effort to 
write what we learned from teaching this subject for the past two years. 
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While there is much more to learn in this area, this is just an effort to share 
what we have learned. 

How to read this book. 

This book is written in a way such that engineers can get up to speed with 
SystemVerilog assertions quickly. 

Chapters 0, 1 and 2 are sufficient to learn the basics of the syntax and 
some of the common simulation techniques. After reading these three 
chapters, the user should be able to write assertions for their 
design/verification environment. 

Chapter 3, 4, 5 and 6 are cookbooks for different types of designs. A user 
can refer to these chapters if they come across similar designs in their own 
environment and use these chapters as a starting point for writing assertions. 
These chapters can also be used as a tutorial. 

If you are someone new to assertion based verification, you need to read 
chapters 0 through 2 before reading the other chapters. If you are familiar 
with SVA language, you can refer to these chapters on an as needed basis. 

Chapter 0 - This is a white paper on "Assertion based verification 
(ABV)" methodology. It introduces the concept of ABV and the importance 
of function coverage. 

Chapter 1 - Discusses SVA syntax with simple examples and goes 
through a detailed analysis of the execution of SVA constructs in dynamic 
simulation. Simulation waveforms and event tables are included for the 
reader's reference. To know the details of every SVA construct, the user 
should refer to the SystemVerilog 3.1a LRM (Chapter 17). 

Chapter 2 - Uses a system example to illustrate SVA simulation 
methodology. Topics cover protocol extraction, simulation control and 
fimctional coverage. 

Chapter 3 - Illustrates how to verify FSMs with SVA, uses two different 
FSM models as examples. 

Chapter 4 - Illustrates verification of a data path using SVA. A partial 
JPEG design is used to demonstrate verification of both control signals and 
data using SVA. 
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Chapter 5 - Illustrates verification of a memory controller using SVA. 
The controller supports different types of memories such as SDRAM, 
SRAM, Flash, etc. 

Chapter 6 - Illustrates verification of a PCI local bus based system using 
SVA. A sample PCI system configuration is used and various PCI protocols 
are verified using SVA. 

Chapter 7 - Illustrates a sample testbench for verifying the assertions. It 
also discusses the theory behind verifying the accuracy of an assertion. 

A CD-ROM is included with the book. All the examples shown in the 
book can be run with VCS 2005.06 release. Sample scripts to run the 
examples are included. VCS is a registered trademark of Synopsys Inc. 
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ASSERTION BASED VERIFICATION 
Use of assertions justified 

The growing complexity and size of digital designs have made functional 
verification a huge challenge. In the last decade several new technologies 
have emerged in the area of verification and some of them have captured 
their place as a requirement in the verification process. 

Figure 0-1 shows a block diagram of a verification environment that is 
adopted by a vast majority of verification teams. There are two significant 
pieces of technology that are used by almost all verification engineers: 

1. A constrained random testbench 
2. Code coverage tool 

The objective is to verify the design under test (DUT) thoroughly and 
make sure there are no functional bugs. While doing this, there should be a 
way of measuring the completeness of verification. Code coverage tools 
provide a first level measure on the verification completeness. The data 
collected during code coverage has no knowledge of the functionality of the 
design but provides information on the execution of the code line by line. 
By guaranteeing that every line of the DUT executed at least once during 
simulations, a certain level of confidence can be achieved and code coverage 
tolls can help achieve that. Last but not the least, the process of verification 
should be completed in a timely fashion. It is a well-known fact that the 
worst bottleneck for any verification environment is performance. 
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Traditionally, designs are tested with stimulus that verifies a specific 
functionality of the design. The complexity of the designs forces 
verification engineers to use a random testbench to create more realistic 
verification scenarios. High-level verification languages like OPEN VERA 
are used extensively in creating complex testbenches. 

Constrained random Testbench 

DUT 

Code Coverage 

Figure O-l. Before Assertion based verification 

The testbenches normally perform three different tasks: 

1. Stimulus generation. 
2. Self-checking mechanisms. 
3. Functional coverage measurement. 

The first and foremost aim of a testbench is to create good quality 
stimulus. Advanced languages like OPEN VERA provide built-in 
mechanisms to create complex stimulus patterns with ease. These languages 
support object-oriented programming constructs that help improve the 
stimulus generation process and also the re-use of the testbench models. 

A testbench should also provide excellent self-checking mechanisms. It 
is not always possible to debug the design in post-processing mode. 
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Mechanisms like waveform debugging are prone to human error and are also 
not very feasible with the complex designs of today. Every test should have 
a way of checking the expected results automatically and dynamically. This 
will make the debugging process easy and also make the regression tests 
more efficient. Self-checking processes usually targets two specific areas: 

1. Protocol checking 
2. Data checking 

Protocol checking targets the control signals. The validity of the control 
signals is the heart of any design verification. Data checking deals with the 
integrity of the data being dealt with. For example, are the packets getting 
transferred without corruption in a networking design? Data-checking 
normally requires some level of formatting and massaging that is usually 
taken care of within the testbench environment effectively. 

Functional coverage provides a measure of verification completeness. 
The measurement should contain information on two specific items: 

1. Protocol coverage 
2. Test plan coverage 

Protocol coverage gives a measure on exercising the design for all valid 
and invalid design conditions. In other words, it is a measure against the 
functional specification of the design that confirms that all possible 
functionality has been tested. Test plan coverage, on the other hand, 
measures the exhaustiveness of the testbench. For example, did the testbench 
create all possible packet sizes, did the CPU write or read to all possible 
memory address spaces? Protocol coverage is measured directly from the 
design signals, and the test plan coverage can be easily measured with built-
in methods within the testbench environment. 

SystemVerilog assertions modify the verification environment in a 
manner such that the strengths of different entities are leveraged to the 
maximum. Figure 0-2 shows the modified block diagram for the verification 
environment that includes Assertion Based Verification (ABV). 

There are two categories discussed in the different pieces of the 
testbench, which are addressed in detail by SystemVerilog assertions (SVA): 

1. Protocol checking 
2. Protocol coverage 
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Constrained random Test bench 

DUT 

Code Coverage SystemVerllDg Assertions 

Figure 0-2. After SystemVerilog assertions 

These two categories are closer to the design signals and can be managed 
more efficiently within SVA than by the testbench. By connecting these 
assertions directly to the design, the performance of the simulation 
environment increases tremendously as does the productivity. Table 0-1 
summarizes the re-alignment of a verification environment based on SVA. 

Though SVA interacts with the design signals directly, it can be used 
very effectively to share information with the testbenches. By sharing 
information dynamically during a simulation, very efficient reactive 
testbench environments can be developed. The completeness of the 
verification process can be measured more effectively by combining the 
code coverage and the functional coverage information collected during 
simulation. 
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Table 0-1, New verification environment 

Testbench SVA 
Before SVA 

After SVA 

Stimulus generation 
Protocol checking 
Data checking 
Protocol coverage 
Test plan coverage 

Stimulus generation 
Data checking 
Test plan coverage 

N/A 

Protocol checking 
Protocol coverage 

The book will introduce the SVA language, its use model and its benefits 
in an elaborate fashion with examples. It will show how to find bugs early 
by writing good quality assertions. Real design examples and the process of 
writing assertions to verify the design will be discussed. Measuring 
functional coverage on real designs and also how to use the functional 
coverage information dynamically to create more sophisticated testbenches 
will be discussed. Coding guidelines and simulation methodology practices 
will be discussed wherever relevant. 
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INTRODUCTION TO SVA 
Understanding the Syntax 

1.1 What is an Assertion? 

An assertion is a description of a property of the design. 

• If a property that is being checked for in a simulation does not 
behave the way we expect it to, the assertion fails. 

• If a property that is forbidden from happening in a design 
happens during simulation, the assertion fails. 

A list of the properties can be inferred from the functional specification 
of a design and can be converted into assertions. These assertions can be 
continuously monitored during functional simulations. The same assertions 
can also be re-used for verifying the design using formal techniques. 
Assertions, also known as monitors or checkers, have been used as a form of 
debugging technique for a very long time in the design verification process. 
Traditionally, they are written in a procedural language like Verilog. They 
can also be written in PLI and C/C++ programs. The following code shows a 
simple mutually asserted condition check written in Verilog, wherein signal 
"a" and signal "b" cannot be high at the same time. If they are, an error 
message is displayed. 

"ifdef ma 
if(a & b) 
$display 



Chapter 1 

{"Error:Mutually asserted check failed\n") 
"endif 

This kind of a monitor is included only as part of the simulation and 
hence is included in the design environment only on a need basis. This can 
be accomplished with the Mfdef construct which enables conditional 
compilation of Verilog code. 

1.2 Why use SystemVerilog Assertions (SVA)? 

While Verilog language can be used to write certain checks easily, it has 
a few disadvantages. 

1. Verilog is a procedural language and hence, does not have good 
control over time. 

2. Verilog is a verbose language. As the number of assertions increase, 
it becomes very difficult to maintain the code. 

3. The procedural nature of the language makes it difficult to test for 
parallel events in the same time period. In some cases, it is also 
possible that a Verilog checker might not capture all the triggered 
events. 

4. Verilog language has no built-in mechanism to provide functional 
coverage data. The user has to produce this code. 

SVA is a declarative language and is perfectly suited for describing 
temporal conditions. The declarative nature of the language gives excellent 
control over time. The language itself is very concise and is very easy to 
maintain. SVA also provides several built-in functions to test for certain 
design conditions and also provides constructs to collect functional coverage 
data automatically. 

Example 1.1 shows a checker written both in Verilog and SVA. The 
checker verifies that if signal "a" is high in the current clock cycle, then 
signal "b" should be high within 1 to 3 clock cycles. Figure 1-1 shows the 
waveform of a sample simulation of the signals "a" and "b." 

Example 1.1 Sample assertion written in Verilog and SVA 

// Sample Verilog checker 

always ©{posedge a) 
begin 
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repeat (1) ©(posedge elk); 
fork: a_to_b 

begin 
©(posedge b) 
$display 
("SUCCESS: b arrived in time\n", $time); 
disable a_to_b; 
end 

begin 
repeat (3) ©(posedge elk); 
$display 
("ERROR:b did not arrive in time\n", $time); 
disable a_to_b; 
end 

join 
end 

// SVA Checker 

a_to_b_chk: 
assert property 
©(posedge e l k ) $ r o s e ( a ) | - > # # [ 1 : 3 ] $ r o s e { b ) ) ; 

1 2 3 4 5 6 7 8 9 10 11 1213 141516 17 18 

n 
Figure 1-1. Waveform for sample assertion 

Example 1.1 shows the advantages of SVA very clearly. SVA syntax is 
discussed in detail in this chapter. The checker represents a very simple 
protocol. It can be written in one line in SVA, although the same protocol 
description takes several lines in Verilog. Also, the error and success 
conditions need to be defined in Verilog explicitly, whereas the failure will 
automatically display an error message in SVA. Results of a sample 
simulation are shown below. 
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SUCCESS: b a r r i v e d in t ime 127 
v tosva . a_ to_b_chk : 
started at 125s succeeded at 175s 

SUCCESS: b arrived in time 427 
vtosva.a_to_b_chk: 
started at 325s succeeded at 475s 

ERROR: b did not arrive in time 775 
vtosva.a_to_b_chk: 
started at 625s failed at 775s 

Offending '$rose(b)' 

1.3 SystemVerilog Scheduling 

The SystemVerilog language is defined to be an event based execution 
model. In each time slot, many events are scheduled to happen. This list of 
events follows the algorithm specified by the standard. By following this 
algorithm, the simulators can avoid any inconsistencies in the interactions 
between the design and testbench. There are three regions that are involved 
in the evaluation and execution of the assertions. 

Preponed - Values are sampled for the assertion variables in this 
region. In this region, a net or variable cannot change its state. This 
allows the sampling of the most stable value at the beginning of the time 
slot. 

Observed - All the property expressions are evaluated in this region. 

Reactive - The pass/fail code from the evaluation of the properties are 
scheduled in this region. 

Figure 1-2 shows a simplified SystemVerilog event schedule flow chart. 
To understand the SystemVerilog scheduling algorithm thoroughly, please 
refer to the SystemVerilog 3.1a LRM [1]. 
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Figure 1-2. Simplified SV event schedule flow chart 

1.4 SVA Terminology 

There are two types of assertions defined in the SystemVerilog language: 
Concurrent assertions and Immediate assertions. 

1.4.1 Concurrent assertions 

• Based on clock cycles. 
• Test expression is evaluated at clock edges based on the sampled 

values of the variables involved. 
• Sampling of variables is done in the "preponed" region and the 

evaluation of the expression is done in the "observed" region of the 
scheduler. 

• Can be placed in a procedural block, a module, an interface or a 
program definition. 

• Can be used with both static (formal) and dynamic verification 
(simulation) tools. 
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A sample concurrent assertion is shown below. 

a_cc: assert property(®(posedge elk) 
not (a && b)); 

Figure 1-3 shows the results of the concurrent assertion a_cc. All 
successes are shown with an up arrow and all failures are shown with a 
down arrow. The key concept in this example is that the property is being 
verified on every positive edge of the clock irrespective of whether or not 
signal "a" and signal "b" changes. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

n I uru—^ 
a_cc I 1 t t ! t t ! 1 U t 1 I 1 f 1 f i 1 1 

Figure 1-3. Waveform for a sample concurrent assertion 

1.4.2 Immediate assertions 

• Based on simulation event semantics. 
• Test expression is evaluated just like any other Verilog expression 

within a procedural block. These are not temporal in nature and are 
evaluated immediately. 

• Have to be placed in a procedural block definition. 
• Used only with dynamic simulation. 

A sample immediate assertion is shown below. 

always_coinb 
b e g i n 

a _ i a : a s s e r t (a && b ) ; 
end 

The immediate assertion a_ia is written as part of a procedural block and 
it follows the same event schedule of signal "a" and "b." The always block 
executes if either signal "a" or signal "b" changes. The keyword that 
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differentiates the immediate assertion from the concurrent assertion is 
"property." Figure 1-4 shows the results of the immediate assertion a_ia. 

1 2 3 4 S 6 7 8 9 10 11 13 B 14 IS 16 17 18 19 20 21 

dk 

a 

b _rn__rLrn_j~Lj 
^, U 1 \ I I I ! MM 

Figure 1-4. Waveform for a sample immediate assertion 

1.5 Building blocks of SVA 

In any design model, the functionality is represented by the combination 
of multiple logical events. These events could be simple boolean expressions 
that get evaluated on the same clock edge or could be events that evaluate 
over a period of time involving multiple clock cycles. SVA provides a key 
word to represent these events called "sequence." The basic syntax of a 
sequence is as follows. 

s e q u e n c e n a m e _ o f _ s e q u e n c e ; 
< t e s t e x p r e s s i o n > ; 

endseqxience 

A number of sequences can be combined logically or sequentially to 
create more complex sequences. SVA provides a key word to represent these 
complex sequential behaviors called "property." The basic syntax of a 
property is as follows. 

property name_of_property; 
< test expression >; or 
< complex sequence expressions >; 

endproperty 

The property is the one that is verified during a simulation. It has to be 
asserted to take effect during a simulation. SVA provides a key word called 
"assert" to check the property. The basic syntax of an assert is as follows. 
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a s s e r t i o n _ n a m e : a s s e r t p r o p e r t y ( p r o p e r t y _ n a m e ) ; 

The steps involved in the creation of a SVA checker are shown in Figure 
1-5. 

Stepl: create boolean expressions 

Step2: create sequence expressions 

Step3: create property 

I 
Step4: assert property 

Figure 1-5. SVA Building blocks 

1.6 A simple sequence 

Sequence si checks that the signal "a" is high on every positive edge of 
the clock. If signal "a" is not high on any positive clock edge, the assertion 
will fail. Note that "a" is the same as "a==l 'bl ." 

sequence si; 
©(posedge elk) a; 

endsequence 

Figure 1-6 shows a sample waveform for signal "a" and how sequence si 
responds to this signal during simulation. Signal "a" goes to zero on the 
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positive edge of clock cycle 7. This change in value is sampled in clock 
cycle 8. Since concurrent assertions use the values sampled in the 
"preponed" region of the scheduler, in clock cycle 7, the most stable value of 
signal "a" sampled by the sequence si is 1. Hence, the sequence succeeds. In 
clock cycle 8, the sampled value of signal "a" is a 0 and hence the sequence 
fails. A success is denoted with an arrow pointing up and a failure is denoted 
with an arrow pointing down. Table 1-1 summarizes the sampled values of 
signal "a" on each clock cycle up to clock cycle 15. 

1 2 3 4 5 6 7 8 9 10 H 12 13 14 15 16 17 18 19 20 21 

dk 

si 

jiJiJiJTJTJiJiiinjijiJi^ 
J LJTJTJ 
I M I I I f I I f I I 1 1 I I t I t I f 

Figure 1-6. Waveform for simple sequence si 

Table 1-1. Evaluation table for sequence si 

Clock tick 
1 
2 
3 
4 
5 
6 
7 

Sampled value of signal "a" 

9 
10 
11 
12 
13 
14 
15 
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1.7 Sequence with edge definitions 

In sequence si, the logical value of the signal was used. SVA also has 
built-in edge expressions that let the user monitor the transition of signal 
value from one clock cycle to the next. This allows one to check for the edge 
sensitivity of signals. Three of these useftil built-in functions are shown 
below. 

Srose {boolean expression or signalname) 

• This returns true if LSB of signal/expression changed to 1 

$fell ( boolean expression or signalname) 

• This returns true if LSB of signal/expression changed to 0 

$stable {boolean expression or signalname) 

• This returns true if the value of the expression did not change 

Sequence s2 checks that the signal "a" transitions to a value of 1 on every 
positive edge of the clock. If the transition does not occur, the assertion will 
fail. 

sequence s2; 
@(posedge elk) $rose(a); 

endsequence 

Figure 1-7 shows how sequence s2 responds to the transition of signal 
"a." Marker 1 shows the first success of sequence s2. At clock cycle 1, the 
value of signal "a" goes from 0 to 1. At this clock, the sampled value of 
signal "a" within the sequence is 0. Before clock cycle 1, there is no history 
for signal "a" and hence the value is assumed to be "x." A transition of value 
from X to 0 is not a rising edge and hence the sequence fails. At clock cycle 
2, the sampled value of signal "a" within the sequence is 1. A transition of 
value from 0 to 1 is a rising edge and hence, the sequence s2 succeeds in 
clock cycle 2. Another success is shown with marker 2 at clock cycle 9. 
Table 1-2 surrmiarizes the transition of signal "a" over time until clock cycle 
9 and how the sequence samples and updates the values. 
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Figure 1-7. Waveform for simple sequence with edge definition 

Table 1-2. Evaluation table for sequence s2 

Clock 
Tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sampled value 
of "a" from the 
previous cycle 

X 
0 

0 

Sampled 
of "a"in 
current( 

0 

0 
1 

value 
the 

:ycle 

Sequence s2 -
status 

Fail 
Success 
Fail 
Fail 
Fail 
Fail 
Fail 
Fail 
Success 

1.8 Sequence with logical relationship 

Sequence s3 checks that on every positive edge of the clock, either signal 
"a" or signal "b" is high. If both the signals are low, the assertion will fail. 

sequence s3; 
©{posedge elk) a 

endsequence 
b; 
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Figure 1-8 shows how the sequence s3 responds to signal "a" and "b." 
Marker 1 shows that at clock cycle 12, the sampled values of both signals 
"a" and "b" are 0 and hence the sequence fails. The same is true for clock 
cycle 17 shown by marker 2. In all other clock cycles, either signal "a" or 
signal "b" has a value of 1 and hence the sequence succeeds in those clock 
cycles. 

elk 

a 

h 

$3 

CD CD 
1 2 3 4 5 6 7 8 9 10 11 12 B 14 15 16 t7 18 19 20 21 

jinjmRJinjiJiniiJiiini^^ 
J U U 
I I I I t t 11 I I t I ! M I I t t 

Figure 1-8. Waveform for sequence s3 

1.9 Sequence Expressions 

By defining formal arguments in a sequence definition, the same 
sequence can be re-used on other signals of a design that have similar 
behavior. For example, we can define a sequence as follows. 

sequence s3 
a I I b ; 

endsequence 

l i b (a , b) 

The generic sequence s3_lib can be re-used on any two signals. For 
example, say we have two signals "reql" and "req2" and one of them should 
be asserted on the positive edge of a clock. We can write a sequence as 
follows. 

s e q u e n c e s 3 _ l i b _ i n s t l ; 
S 3 _ l i b { r e q l , r e q 2 ) ; 
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endsequence 

Some of the common properties that are normally present in designs 
can be developed as a library and re-used. For example, one-hot state 
machine checks, parity checks, etc. are good candidates for a checker 
library. 

1.10 Sequences with timing relationsliip 

Simple boolean expressions are checked on every clock edge. In other 
words, they are simple combinational checks. A lot of times, we are 
interested in checking events that take several clock cycles to complete. 
These are called "sequential checks." In SVA, clock cycle delays are 
represented by a "##" sign. For example, ##3 means 3 clock cycles. 

Sequence s4 checks for the signal "a" being high on a given positive edge 
of the clock. If signal "a" is not high, then the sequence fails. If signal "a" is 
high on any given positive edge of clock, then signal "b" should be high 2 
clock cycles after that. If signal "b" is not asserted after 2 clock cycles, the 
assertion fails. Note that the sequence begins when signal "a" is high on a 
positive edge of the clock. 

sequence s4; 
©{posedge elk) a ##2 b; 

endsequence 

Figure 1-9 shows how sequence s4 responds in a simulation. Table 1-3 
summarizes the sampled values of signal "a" and signal "b" on every clock 
cycle. 

1 2 3 4 5 6 7 8 9 M 11 12 13 14 15 W 17 18 

cn̂  miiijiiiiiJijirLrijirijiji^ 
A n n n n 
B n n f-̂  p 
rf I 1 1 i 1 1 i i t 1 1 1 1 t t 1 J 1 

Figure 1-9. Waveform for sequence s4 
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Unlike the examples from the previous section, note that the start and end 
time of sequence s4 are not the same. If signal "a" is not high on any given 
clock cycle, then the sequence starts and fails on the same clock cycle. If 
signal "a" is high, then the sequence starts. The sequence succeeds after 2 
clock cycles if signal "b" is high (clock 5 and clock 14). On the other hand, 
if signal "b" is not high after 2 clock cycles, then the sequence fails. Note 
that the success of a sequence is always represented in the figure at the 
starting point of the sequence. 

Table 1-3. Evaluation table for sequence s4 

Clock tick 

1 
2 

3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 

Sampled 
value of 
"a" 

0 
1 

0 
0 
1 

0 
0 
0 
1 

0 
0 
0 
0 
1 

0 
0 
0 

Sampled 
value of 
"b" 

0 
0 

1 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 
0 

0 
1 
0 

Valid start 
of s4 

No 
Yes 

No 
No 
Yes 

No 
No 
No 
Yes 

No 
No 
No 
No 
Yes 

No 
No 
No 

S4 status 

Fail 
Fail (start at 

2, end at 4) 
Fail 
Fail 

Success (start at 
5, end at 7) 

Fail 
Fail 
Fail 
Fail (start at 

9, end at 11) 
Fail 
Fail 
Fail 
Fail 

Success (start at 
14, end at 16) 

Fail 
Fail 
Fail 
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1.11 Clock definitions in SVA 

A sequence or a property does not do anything by itself in a simulation. 
They have to be asserted to take effect as shown below. 

sequence s5; 
©(posedge elk) a ##2 b; 

endsequence 

property p5; 
s5; 

endproperty 

a5 : assert property(p5); 

Note that the clock is specified in the sequence s5. While this is one way 
of relating a check to a clock there are also other ways of doing it. A clock 
can be specified in a sequence, in a property or even in an assert statement. 
The following code shows the clock defined in the property definition p5a. 

sequence s5a ; 
a ##2 b; 

endsequence 

property p5a; 
©(posedge elk) s5a; 

endproperty 

a5a : assert property(p5a); 

In general, it is a good idea to define the clocks in property definitions 
and keep the sequences independent of the clocks. This will help increase 
the re-use of the basic sequence definitions. 

A separate property definition is not needed to assert a sequence. Since 
the assert statement calls a property, the expression to be checked can be 
called from the assert statement directly as shown below in assertion a5b. 

sequence s5b; 
a ##2 b; 

endsequence 
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a5b : a s s e r t property(@(posedge elk) s 5 b ) ; 

While we can call a sequence with a clock definition from within the 
assert statement, calling a property with a clock definition from within the 
assert statement is not allowed. This coding style is shown below in 
assertion a5c. 

a5c : a s s e r t property (@ (posedge elk) p5a) ; //Not 
allowed 

1.12 Forbidding a property 

In all the examples shown so far, the property is checking for a true 
condition. A property can also be forbidden from happening. In other words, 
we expect the property to be false always. If the property is true, the 
assertion fails. 

Sequence s6 checks that if signal "a" is high on a given positive edge of 
the clock, then after 2 clock cycles, signal "b" shall not be high. The 
keyword "not" is used to specify that the property should never be true. 

sequence s6; 
©{posedge elk) a ##2 b; 

endsequenee 

property p6; 
not s6; 

endproperty 

a6 : assert property(p6); 

Figure 1-10 shows how the checker a6 responds in a simulation. Note 
that the checker fails on two occasions (clock 5 and clock 14) as shown by 
markers 1 and 2. In both these clock cycles, the sequence that was forbidden 
happened and hence asserted a failure. 

On the other hand, the checker passes on two occasions when there is a 
valid signal "a" (clock 2 and clock 9). For the checks that began in these 
clock cycles, signal "b" does not go high after two clock cycles and hence 
the checker succeeded. All other clock cycles wherein signal "a" was not 
high succeeded automatically. Table 1-4 summarizes the sampled values of 
signal "a" and signal "b" on each clock cycle. 
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Figure 1-10. Waveform of SVA checker forbidding a property 

Table 1-4. Evaluation table for property p6 

Clock 
tick 

Sampled 
value of 
"a" 

Sampled 
value of 
"b" 

Valid 
start of 
s6 

a6 status 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Success (same clock) 
Success (start at 2, end at 4) 
Success (same clock) 
Success (same clock) 
Fail (start at 5, end at 7) 
Success (same clock) 
Success (same clock) 
Success (same clock) 
Success (start at 9, end at 11) 
Success (same clock) 
Success (same clock) 
Success (same clock) 
Success (same clock) 
Fail (start at 14, end at 16) 
Success (same clock) 
Success (same clock) 
Success (same clock) 
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1.13 A simple action bloclc 

The SystemVerilog language is defined such that, every time an assertion 
check fails, the simulator is expected to print out an error message by 
default. The simulator need not print anything upon a success of an 
assertion. A user can also print a custom error or success message using the 
"action block" in the assert statement. The basic syntax of an action block 
is shown below. 

assertion_name : 
assert property{property_name) 

<success message> ; 
else 

<fail message>; 

The checker a7 shown below uses simple display statements in the action 
block to print successes and failures. 

property p7; 
©{posedge elk) a ##2 b; 

endproperty 

a7 : assert property(p7) 
$display("Property p7 succeeded\n"); 
else 
$ d i s p l a y { " P r o p e r t y p7 f a i l e d \ n " ) ; 

The action block is not just limited to displaying success and failure. It 
can be used for other applications such as controlling the simulation 
environment and gathering functional coverage data. These topics will be 
discussed in detail in Chapter 2. 

1.14 Implication operator 

In the property p7, the following can be noticed. 

1. The property looks for a valid start of the sequence on every positive 
edge of the clock. In this case, it looks for signal "a" to be high on 
every positive clock edge. 

2. If signal "a" is not high on any given positive clock edge, an error is 
issued by the checker. This is not a valid error message since we are 
not interested in just checking for a specific level on signal "a." This 
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error just means that we did not get a valid starting point for the 
checker at this clock. While these errors are benign, they can log a 
lot of error messages over time, since the check is performed on 
every clock edge. To avoid these errors, some kind of gating 
technique needs to be defined, which will ignore the check if a valid 
starting point is not present. 

SVA provides a technique to achieve this goal. This technique is called 
"Implication." Implication is equivalent to an if-then structure. The left 
hand side of the implication is called the "antecedent" and the right hand 
side is called the "consequent." The antecedent is the gating condition. If 
the antecedent succeeds, then the consequent is evaluated. If the antecedent 
does not succeed, then the property is assumed to succeed by default. This is 
called a "vacuous success." While implication avoids unnecessary error 
messages, it can produce vacuous successes. The implication construct can 
be used only with property definitions. It cannot be used in sequences. 

There are 2 types of implication: Overlapped implication and Non-
overlapped implication. 

1.14.1 Overlapped implication 

Overlapped implication is denoted by the symbol |->. If there is a match 
on the antecedent, then the consequent expression is evaluated in the same 
clock cycle. A simple example is shown below in property p8. This property 
checks that, if signal "a" is high on a given positive clock edge, then signal 
"b" should also be high on the same clock edge. 

property p8; 
©(posedge elk) a |-> b; 

endproperty 

a8 : assert property(p8); 

Figure 1-11 shows how the assertion a8 responds in a simulation. Table 
1-5 summarizes the sampled values of signal "a" and signal "b" and the 
status of the assertion. There are 3 types of results shown in the table. A real 
success is one where a valid high on signal "a" was detected, and at the same 
clock edge a valid high on signal "b" was detected. A vacuous success is one 
where signal "a" was not high and the assertion succeeded by default. A 
failure is one where a valid high on signal "a" was detected and at the same 
clock edge a valid high on signal "b" was not detected high. 
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Figure 1-11. Waveform for property p8 

Table 1-5. Evaluation table for property p8 

Clock Tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sampled 
value of "a" 
0 
1 
1 
1 
1 
0 
1 
1 
1 

Sampled 
value of "b 
1 
1 
1 
0 
1 
1 
0 
0 
0 

A8 status 

Vacuous success 
Real Success 
Real Success 
Fail 
Real Success 
Vacuous success 
Fail 
Fail 
Fail 

1.14.2 Non-overlapped implication 

Non-overlapped implication is denoted by the symbol |=>. If there is a 
match on the antecedent, then the consequent expression is evaluated in the 
next clock cycle. A delay of one clock cycle is assumed for the evaluation of 
the consequent expression. A simple example is shown below in property 
p9. This property checks that, if signal "a" is high on a given positive clock 
edge, then signal "b" should be high on the next clock edge. 

property p9; 
@(posedge elk) 

endproperty 
= > b; 

a9 : assert property{p9); 
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Figure 1-12 shows how the assertion a9 responds in a simulation. Table 
1-6 summarizes the sampled values of signal "a" and signal "b" and the 
status of the assertion. Note that this assertion starts in the current clock 
cycle and succeeds in the next clock cycle if it is a real success. Similarly, if 
there is a valid start for the property (high on signal "a"), the property fails in 
the next clock cycle if signal "b" is not high in that clock cycle. 

1 2 3 4 5 6 7 8 9 10 11121314151617181920 

cut 

a 

b 

a9 
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Figure 1-12. Waveform for property p9 

Table 1-6. Evaluation table for property p9 

Clock 
Tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sampled 
value of "a" 

0 
1 
1 
1 
1 
0 
1 
1 
1 

Sampled 
value of "b 

1 
1 
1 
0 
1 
1 
0 
0 
0 

a9 status 

Vacuous success 
Real success (start at 2, end at 3) 
Fail (start at 3, end at 4) 
Real success (start at 4, end at 5) 
Real success (start at 5, end at 6) 
Vacuous success 
Fail (start at 7, end at 8) 
Fail (start at 8, end at 9) 
Real success (start at 9, end at 10) 

1.14.3 Implication with a fixed delay on the consequent 

Property plO checks that if signal "a" is high in a given positive clock 
edge, then signal "b" should be high after 2 clock cycles. A similar check 
was shown before without the use of the implication operator. By using the 
implication, all the false errors are removed. A check for the consequent 
(signal "b") is performed only if there is a valid start for the property (high 
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on signal "a"). Figure 1-13 shows a sample simulation of the property plO. 
Table 1-7 summarizes the sampled values of the signals involved in property 
plO. 

property plO; 
©(posedge elk) a 

endproperty 
•> ##2 b ; 

alO : assert property(plO); 

elk 
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JiJiJiJiJinjiJiJirLriJiii^^ 
a 

b 

alO 

1 M 1 I I I 
I I I I N I I 

1 i 11 i t i 1 1 i r f 11 i t f 11 

Figure 1-13. Waveform for property pi 0 

Table 1-7. Evaluation table for property plO 

Clock 
Tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sampled 
value of "a" 

0 

0 

Sampled 
value of "b 

1 
1 
1 
0 
1 
1 
0 
0 
0 

alO status 

Vacuous success 
Fail (start at 2, end at 4) 
Success (start at 3, end at 5) 
Success (start at 4, end at 6) 
Fail (start at 5, end at 7) 
Vacuous success 
Fail (start at 7, end at 9) 
Success (start at 8, end at 10) 
Success (start at 9, end at 11) 
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1.14.4 Implication with a sequence as an antecedent 

Property plO has a signal in the antecedent position. It is also possible to 
have a sequence definition in the antecedent. In this case, a check for the 
consequent sequence or Boolean expression is performed only if the 
sequence in the antecedent succeeds. Sequence s l la checks that in any given 
positive clock edge, if signal "a" and signal "b" are detected to be high, then 
one clock cycle later, signal "c" should be high. Sequence s l lb checks that, 
after 2 clock cycles from the current positive edge of the clock, signal "d" 
should be low. The final property checks that, if sequence s l la succeeds, 
then a check for sequence si lb is performed. If a valid sequence s l l a is not 
detected, then the sequence s l lb is not checked for and the property 
succeeds vacuously. 

sequence slla; 
©(posedge elk) (a && b) ##1 c; 

endsequence 

sequence sllb; 
©{posedge elk) ##2 !d; 

endsequence 

property pll; 
slla I-> sllb; 

endpeoperty 

all : assert property(pll); 

Figure 1-14 shows how the assertion a l l behaves in a simulation. The 
markers Is and le show the start and end of a successful property evaluation. 
The markers 2s and 2e show the start and end of a failure. At clock cycle 11, 
both signal "a" and signal "b" are detected high. In clock cycle 12, signal "c" 
is high and hence the antecedent of the implication succeeds. This means 
that, 2 clock cycles fi^om now, which is clock cycle 14, signal "d" should be 
low. But in the sample waveform signal "d" is a high and hence the property 
fails. 

All the vacuous successes are shown with a simple straight line. The 
markers 3s and 3e show the start and end of a successful property evaluation. 
The expression "a && b" is evaluated to be true in clock cycle 17 and one 
clock cycle later, the signal "c" is high, as expected. Hence, at clock cycle 
18, the sequence si la succeeds. The signal "d" is expected to be low 2 clock 
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cycles from here and it is low as expected. Hence, the property succeeds at 
clock cycle 20. 

elk 
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all 
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Figure 1-14. Waveform for property pi 1 

1.15 Timing windows in SVA Clieckers 

So far, the examples shown with delays have a fixed delay greater than 0. 
In the next few examples, different ways of specifying delays will be 
discussed. 

Property pl2 checks whether the boolean expression "a «&& b" is true on 
any given positive edge of the clock. If it is true, then within 1 to 3 clock 
cycles, the signal "c" should be high. SVA allows specifying a timing 
window for the consequent to match. The value specified in the left hand 
side of the timing window should be less than the value specified in the right 
hand side of the timing window. The left hand side can also have a value of 
0. If 0 is specified in the left hand side, it means that the consequent must be 
checked starting from the same clock edge at which the antecedent 
succeeded. 
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property pl2; 
©(posedge elk) 

endproperty 
(a && b) •> # # [ 1 : 3 ] c ; 

a l2 : a s s e r t p r o p e r t y ( p l 2 ) ; 

Figure 1-15 shows how the property pi2 responds in a simulation. 
Whenever a timing window is specified, multiple threads get kicked off for 
all possible matches in every clock edge. The property gets executed as three 
separate threads as follows. 

(a && b) 
(a && b) 
(a && b) 

-> 
-> 
-> 

# # [ 1 ] c o r 
# # [ 2 ] c o r 
# # [ 3 ] c 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ifi 17 18 19 30 21 

LT™~i__n 
elk JiTLfinjinjiJiJiJirLriman^^ 

, TL 

c 

al2 

Figure 1-15. Waveformforpl2 

The property has 3 chances to succeed. All the three threads have the 
same starting point but the first thread that succeeds will make the property 
succeed. Also note that, there can be only one valid start on any give 
positive edge of the clock, but there can be multiple valid endings. This 
happens due to the fact that each valid start has 3 possible chances to 
succeed. 

Table 1-8 summarizes the sampled values of all signals involved in the 
evaluation of the property. On a given positive clock edge, if signal "a" and 
signal "b" are both not high, then the property succeeds vacuously. On the 
other hand, on a given positive clock edge, if signal "a" and signal "b" are 
both high, then there is a valid start for the property. If signal "c" is not 
detected high in the next 1 to 3 clock cycles, the property fails. 
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Note that there is a valid start of the property detected on both clock 
cycle 2 and 3. Both of these valid starts succeed in clock cycle 4. The check 
that started at clock cycle 2 detected a high on signal "c" after 2 clock 
cycles. The check that started at clock cycle 3 detected a high on signal "c" 
after 1 clock cycle. Both of these are valid conditions and hence they 
succeed. There is also a valid start on clock cycle 12. The property checks 
for a high on signal "c" on clock cycles 13, 14 and 15. Since signal "c" 
remained low in all three possible clock cycles, the check failed. 

Table 1-8. Evaluation table for property pi 2 

Clock Sampled Sampled Sampled Valid al2 status 
tick value of value of value of start of 

£12_ 
1 
2 

3 

4 
5 
6 
7 
8 

9 
10 
11 

12 

13 
14 
15 
16 
17 

0 
1 

1 

1 
1 
0 
0 
1 

0 
0 
1 

1 

0 
1 
1 
0 
1 

1 
1 

1 

0 
0 
1 
1 
1 

0 
1 
1 

1 

0 
0 
0 
0 
1 

1 
1 

0 

1 
1 
0 
0 
1 

0 
1 
0 

1 

0 
0 
0 
1 
1 

No 
Yes 

Yes 

No 
No 
No 
No 
Yes 

No 
No 
Yes 

Yes 

No 
No 
No 
No 
Yes 

Vacuous success 
Real Success (start 
at 2, end at 4) 
Real Success (start 
at 3, end at 4) 
Vacuous success 
Vacuous success 
Vacuous success 
Vacuous success 
Real Success (start 
at 8, end at 10) 
Vacuous success 
Vacuous success 
Real Success (start 
at 11, end at 12) 
Fail (start at 12, 
end at 15) 
Vacuous success 
Vacuous success 
Vacuous success 
Vacuous success 
Real Success (start 
at 17, end at 18) 
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1.15.1 Overlapping timing window 

Property pl3 is similar to property pl2. The main difference between the 
two is that the consequent of property p 13 will be checked in the same clock 
edge in which the antecedent has a valid match. 

Property pi3; 
©(posedge elk) (a && b) |-> ##[0:2] c; 

endproperty 

al3 : assert property(pl3); 

Figure 1-16 shows how property pl3 responds in a simulation. The main 
difference in the response when compared to property pl2 is that, the valid 
start that happens in clock cycle 12 succeeds. This succeeds because of the 
overlap in checking. The value of signal "c" is detected high in the same 
clock edge as the valid match on the antecedent. 

1 2 3 4 5 6 7 8 9 10 11 12 B 14 15 1617 18 19 20 21 
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Figure 1-16. Waveform for property pi 3 

1.15.2 Indefinite timing window 

The upper limit of the timing window specified in the right hand side can 
be defined with a "$" sign which implies that there is no upper bound for 
timing. This is called the "eventuality" operator. The checker will keep 
checking for a match until the end of simulation. This is not a very efficient 
way of writing SVA since this has a huge impact on the simulation 
performance. It is best to always have a defined upper value in the timing 
window. 
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Property p l4 checks that on a given positive edge of clock, signal "a" is 
high. If so, then signal "b" will be high eventually starting from the next 
clock cycle and after that, signal "c" will be high eventually starting at the 
same clock cycle in which signal "b" was high. 

property pl4; 
©{posedge elk) 

endproperty 
-> # # [ ! : $ ] b # # [ 0 : $ ] Ci 

a l4 : a s s e r t p r o p e r t y ( p l 4 ) ; 

Figure 1-17 shows how property pl4 reacts in a simulation. Table 1-9 
summarizes the sampled values of the signals and the status of the assertion 
al4. Note that the real successes can take any number of clock cycles to 
finish. If there is a valid start and if either signal "b" or signal "c" does not 
match before the end of the simulation, these checks are reported as 
"incomplete checks." Since overlap is allowed in the matching of signal "b" 
and signal "c," the whole check can finish in one clock cycle. Clock cycle 17 
shows such a condition, wherein signal "a" was detected high on clock cycle 
17 and both signal "b" and signal "c" were detected high on clock cycle 18. 
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Figure 1-17. Waveform for property p 14 

Table 1-9. Evaluation table forpl4 

Clock 
tick 

Sampled 
value of 
"a" 

Sampled 
value of 
"b" 

Sampled 
value of 
« Q " 

Valid 
start 
ofpl4 

al4 status 

1 
I 
0 

No 
Yes 
Yes 

Vacuous success 
Real success (start at 2, end at 4) 
Real success (start at 3, end at 8) 
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Clock 

tick 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Sampled 

value of 

"a" 

1 

1 

0 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

1 

Sampled 

value of 

"b" 

0 

0 

1 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

Sampled 

value of 
ii^» 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

1 

Valid 

start 

o fp l4 

Yes 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

al4 status 

Real success (start at 4, end at 8) 

Real success (start at 5, end at 8) 

Vacuous success 

Vacuous success 

Real success (start at 8, end at 

10) 

Vacuous success 

Vacuous success 

Real success (start at 11, end at 

12) 

Real success (start at 12, end at 

17) 

Vacuous success 

Real success (start at 14, end at 

17) 

Real success (start at 15, end at 

17) 

Vacuous success 

Real success (start at 17, end at 

18) 

1.16 The "ended" construct 

The sequences defined so far use simple concatenation mechanism. In 
other words, multiple sequences were combined together over time by using 
the starting point of the sequence as the synchronization point. SVA 
provides another mechanism to concatenate sequences wherein the ending 
point of the sequence is used as a synchronization point. This is expressed by 
attaching the keyword "ended" to a sequence name. For example s.ended 
means the ending point of the sequence. The keyword ended stores a 
boolean value true or false depending on whether the sequence matched on 
that particular clock edge. This boolean value of the s.ended is available 
only in the same clock cycle. 

Sequence si5a and si5b are two 2 simple sequences that take more than 
1 clock cycle to match. Property pl5a checks that sequence sl5a and 
sequence si5b match with a delay of one clock cycle in between them. 
Property pi5b checks the same protocol but by using the keyword ended. In 
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this case, the end point of the sequences does the synchronization. Since the 
endpoints are used, a delay of 2 clock cycles is defined between the 2 
sequences. 

sequence sl5a; 
©(posedge elk) a ##1 b; 

endsequence 

sequence sl5b; 
©{posedge elk) c ##1 d; 

endsequence 

property pl5a; 
sl5a |=> sl5b; 

endproperty 

property pl5b; 
sl5a.ended |-> ##2 sl5b.ended; 

endproperty 

al5a: assert property(plSa); 
al5b: assert property(pl5b); 

Figure 1-18 shows how properties pl5a and pl5b react in a simulation. 
Table 1-10 summarizes the status of the assertions al5a and al5b. The first 
real success for assertion al5a happens at clock cycle 2. The check becomes 
active at clock cycle 2 when signal "a" is detected high. The check 
completes at clock cycle 5 when signal "d" is detected high. The first real 
success for assertion al5b occurs at clock cycle 3. The check becomes active 
at clock cycle 3 when the sequence si5a matches or in other words, signal 
"b" is detected high. The check completes at clock cycle 5 when the 
sequence si5b matches or in other words, when signal "d" is detected high. 
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Figure 1-18. Waveform for SVA checker using "ended" 

The first failure for assertion a 15a happens at clock cycle 5. A valid 
starting point is detected when signal "a" is detected high on a given positive 
clock edge and is followed by a high on signal "b" one clock cycle later 
(clock cycle 6). This leads to checking the consequent and since signal "c" is 
not high after one clock cycle, the check fails at clock cycle 7. 

The first failure for assertion al5b occurs at clock cycle 6. A valid starting 
point is detected when sequence si5a ends successfully at clock cycle 6. 
This leads to checking the consequent wherein a valid end point for 
sequence sl5b is expected at clock cycle 8. Since signal "c" does not go high 
as expected at clock cycle 7, the end point value of the sequence is false and 
hence the check fails at clock cycle 8. 

There are 2 different ways of writing the same check. The first method 
synchronizes the sequences based on the starting points of the sequences. 
The second method synchronizes the sequences based on the end points of 
the sequences. 
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Table 1-10. Evaluation table for SVA checker using "ended" 

Clock 

tick 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Sampled 

value of 

"a" 

0 

1 

1 

1 

1 

0 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

1 

Sampled 

value of 

"b" 

1 

1 

1 

0 

0 

1 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

Sampled 

value of 

"c" 

1 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

1 

Sampled 

value of 

"d" 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

A15a status 

Vacuous 

success 

Real Success 

(start at 2, 

end at 5) 

Vacuous 

success 

Vacuous 

success 

Fail (start at 

5, end at 7) 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Fail (start at 

11, end at 13) 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Fail (start at 

17, end at 20) 

A15b status 

Vacuous 

success 

Vacuous 

success 

Real Success 

(start at 3, 

end at 5) 

Vacuous 

success 

Vacuous 

success 

Fail (start at 

6, end at 8) 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Fail (start at 

12, end at 

14) 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

Vacuous 

success 

VacuoiB 

success 
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1.17 SVA Checker using parameters 

SVA allows using parameters in the checkers just like Verilog. This 
gives great flexibility in creating re-usable properties. For example, the delay 
information between 2 signals can be parameterized within the checker and 
then the checker can be re-used in a similar situation elsewhere in the design 
with different timing relationships. Example 1.2 shows a checker defined 
with a default value for the parameter delay. If this checker is called within 
the design, it uses a delay of one clock cycle by default. The same checker 
can be re-used by over-writing the delay parameter value while instantiating 
the checker. In Example 1.2, module "top" has 2 instances of the 
"generic_chk" checker. Instance il overwrites the delay parameter as 2 clock 
cycles and instance 12 uses the default value of 1 clock cycle. 

Example 1.2 Sample SVA checker using parameters 

module generic_chk (input logic a, b, elk); 

parameter delay = 1 ; 

property pl6; 
©{posedge elk) a |-> ##delay b; 

endproperty 

al6: assert property{pl6); 

endmodule 

// call checker from the top level module 

module top{ ); 

logic elk, a, b, c, d; 

generic_chk #(.delay{2)) il (a, b, elk); 
generie_chk i2 (c, d, elk); 

endmodule 

Figure 1-19 shows how the 2 instances of checkers, il and 12, react to 
transitions in signals during a simulation. 
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Figure 1-19. Waveform for SVA checker with parameters 

1.18 SVA Checker using a select operator 

SVA allows using logical operators within sequences and properties. 
Property pi 7 checks that, if signal "c" is high then the value of signal "d" is 
equal to the value of signal "a." If signal "c" is not detected high, then the 
value of signal "d" is equal to the value of signal "b." This is a 
combinational check and is performed on every positive edge of clock. 

p r o p e r t y p i 7 ; 
©(posedge e l k ) c ? d == a : d == b; 

e n d p r o p e r t y 

a l 7 : a s s e r t p r o p e r t y ( p l 7 ) ; 
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Figure 1-20. Waveform for SVA checker using select operator 

Figure 1-20 shows how property pi7 reacts in a simulation. Table 1-11 
summarizes the sampled values of the respective signals and the status of the 
assertion al7. At clock cycle 1, signal "c" is detected high and hence, the 
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check expects that signal "d" and signal "a" have the same value. But signal 
"d" is detected as high and signal "a" as low and hence the check fails. 

Table 1-11. Evaluation table for SVA checker using select operator 

Clock 
tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Sampled 
value of 
"a" 

0 
1 
1 
1 
1 
0 
0 
1 
0 
0 
1 
1 
0 
1 
1 
0 
1 

Sampled 
value 
"b" 

1 
1 
1 
0 
0 
1 
1 
1 
0 
1 
1 
1 
0 
0 
0 
0 
1 

of 
Sampled 
value 
"c" 

1 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
1 
1 

of 
Sampled 
value 
"d" 

1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
0 
1 
0 
1 
0 

of 
al7 status 

Fail 
Fail 
Success 
Fail 
Success 
Fail 
Success 
Fail 
Fail 
Fail 
Fail 
Fail 
Success 
Fail 
Success 
Fail 
Fail 

1.19 SVA Checker using true expression 

SVA checkers can be extended in time by using a 'true expression. This 
represents a "don't care" condition and it extends the sequence by a clock 
cycle. This can be used when writing complex protocols wherein multiple 
properties are monitored and matched simultaneously. 

Sequence sl8a checks for a simple condition. Sequence sl8a_ext checks 
for the same condition, but moves the match on this sequence by one clock 
cycle. This has an impact on when this sequence is used in the antecedent of 
a property. The end points of the 2 sequences are different and hence the 
clock cycle at which the consequent will be checked will vary. 
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Property pl8 checks for a match on slSa.ended in the antecedent and 2 
clock cycles later, checks for a match on si8b.ended. Property pl8_ext 
checks for a match on sl8a_ext.ended in the antecedent. The match on this is 
the same as the match on sl8a.ended, but moved 1 clock cycle ahead. 
Hence, the consequent of property pl8_ext needs to match after one clock 
cycle and not 2 clock cycles as defined in property pi8. Both properties pl8 
and pl8_ext check for the same condition, but they both have different 
matching points for their antecedents. 

"define t r u e 1 

sequence sl8a; 
©{posedge elk) a ##1 b; 

endsequence 

sequence sl8a_ext; 
©{posedge elk) a ##1 b ##1 "true; 

endsequence 

sequence sl8b; 
©(posedge elk) c ##1 d; 

endsequence 

property pl8 
®{posdge elk) sl8a.ended |-> ##2 sl8b.ended; 

endproperty 

property pl8_ext 

©(posdge elk) sl8a_ext.ended |=> sl8b.ended; 
endproperty 

al8: assert property(pl8); 
al8_ext: assert property(pl8_ext); 

Figure 1-21 shows how property pi8 and pl8_ext react in a simulation. It 
is clearly seen that the starting point of assertion a lSex t is delayed by one 
cycle when compared to that of the assertion al8. 
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Figure 1-21. Waveform for SVA checker using "true expression 

1.20 The "$past" construct 

SVA provides a built in system task called $past that is capable of 
getting values of signals from previous clock cycles. By default, it provides 
the value of the signal from the previous clock cycle. The simple syntax of 
this construct is as follows. 

$past (signal_name, number of clock cycles) 

This task can be used effectively to verify that, the path taken by the 
design to get to the state in this current clock cycle is valid. Property pi9 
checks that in the given positive clock edge, if the expression (c && d) is 
true, then 2 cycles before that, the expression (a && b) was true. 

Property pl9; 
©(posedge elk) (c && d) |-> 

($past((a&&b), 2) == I'bl); 
endproperty 

al9: assert property(pl9); 

Figure 1-22 shows how the property pl9 reacts in a simulation. Table 1-
12 summarizes the sampled values of the relevant signals and the status of 
the assertion al9. The assertion fails at clock cycle 1. At clock cycle 1, there 
is a valid start since both signal "c" and signal "d" are high. The consequent 
of the checker needs to compare the value of the expression (a &«& b) 2 
cycles before. This is not possible since there is no history for these signals 
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before clock cycle 1 and hence the values are assumed to be "x." Hence, the 
checker fails at clock cycle 1. 

The check has a real success at clock cycle 5. At clock cycle 5, there is a 
valid start since both signal "c" and signal "d" are high. The consequent 
checks that at clock cycle 3, the expression (a «&& b) is true. As expected, at 
clock cycle 3, the signals "a" and "b" are detected high and hence the check 
succeeds. 

The check fails at clock cycle 16. At clock cycle 16, there is a valid start, 
since both signal "c" and signal "d" are high. The consequent checks that at 
clock cycle 14, the expression (a «&& b) is true. The signal "a" is detected 
high as expected and signal "b" is detected \ovi. This makes the expression 
(a && b) false and hence the check fails. 
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Figure 1-22. Waveform for SVA checker using "$past" construct 

Table 1-12. Evaluation table for SVA checker using Spast construct 

Clock 
tick 

1 
2 
3 
4 
5 
6 
7 

Sampled 
value 
"a" 

0 
1 
1 
1 
1 
0 
0 

of 
Sampled 
value 
"b" 

1 
1 
1 
0 
0 
1 
1 

of 
Sampled 
value 
"c" 

1 
1 
0 
1 
1 
0 
0 

of 
Sampled 
value 
"d" 

1 
0 
1 
0 
1 
0 
1 

of 
al9 status 

Fail 
Vacuous success 
Vacuous success 
Vacuous success 
Real Success 
Vacuous success 
Vacuous success 
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Clock Sampled Sampled Sampled Sampled al9 status 
tick value of value of value of value of 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

1 
0 
0 
1 
1 
0 
1 
1 
0 
1 

1 
0 
1 
1 
1 
0 
0 
0 
0 
1 

1 
0 
1 
0 
1 
0 
0 
0 
1 
1 

0 
1 
1 
0 
0 
0 
1 
0 
1 
0 

Vacuous success 
Vacuous success 
Real Success 
Vacuous success 
Vacuous success 
Vacuous success 
Vacuous success 
Vacuous success 
Fail 
Vacuous success 

1.20.1 The $past construct with clock gating 

The $past construct can be used with a gating signal. For example, on a 
given clock edge, the gating signal has to be true even before checking for 
the consequent condition. The simple syntax of a Spast construct with a 
gating signal is as follows. 

Spast (signal_name, number of clock cycles, gating signal) 

Property p20 is similar to the property pl9. But the check is effective 
only if the gating signal "e' is valid on any given positive edge of the clock. 

Property p2 0; 
©{posedge elk) (c && d) |-> 

($past((a&&b), 2, e) == I'bl); 
endproperty 

a20: assert property(p20); 

1.21 Repetition operators 

If signal "start" is high on a given positive edge of the clock, then, 
starting from the next clock cycle, signal "a" stays high for 3 continuous 
clock cycles; one clock cycle after that, signal "stop" is high. 
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A sequence like this can be checked by the following SVA code. 

©(posedge elk) $rose{start) |-> 
##1 a ##1 a ##1 a ##1 stop 

Writing such a checker can get very verbose if signal "a" has to stay high 
for many cycles. Also, in this case, it is assumed that signal "a" stays high 
continuously. This protocol can get complex when we want to check if 
signal "a" stays high, not necessarily on three continuous clock cycles. In 
other words, signal "a" should repeat itself 3 times continuously or 
intermittently. 

SVA language provides three different types of repetition operators: 
Consecutive repetition, go to repetition and non-consecutive repetition. 

Consecutive repetition - This allows the user to specify that a signal or 
a sequence will match continuously for the number of clocks specified. A 
hidden delay of one clock cycle is assumed between each match of the 
signal. The simple syntax of consecutive repetition operator is shown below. 

s i g n a l o r s e q u e n c e [*n] 

"n" is the number of times the expression should match repeatedly. 

For example a [*3] will expand to the following. 

a##1 a##1 a 

A sequence such as (a ##1 b) [*3] will expand as follows. 

(a ##1 b) ##1 (a ##1 b) ##1 (a ##1 b) 

Go to repetition - This allows the user to specify that an expression will 
match the number of times specified not necessarily on continuous clock 
cycles. The matches can be intermittent. The main requirement of a "go to" 
repeat is that the last match on the expression checked for repetition should 
happen in the clock cycle before the end of the entire sequence matching. 
The simple syntax of "go to" repetition operator is shown below. 

S i g n a l [->n] 
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Consider the following sequence. 

Start ##1 a[->3] ##1 stop 

It is required that there is a match on signal "a" (the third and final 
repetition of signal "a") just before the success of "stop." In other words, 
signal "stop" succeeds on the last clock cycle of the sequence match, and in 
the previous clock cycle, there should be a match on signal "a." 

Non-consecutive repetition - This is very similar to "go to" repetition 
except that it does not require that the last match on the signal repetition 
happen in the clock cycle before the end the entire sequence matching. The 
simple syntax of a non-consecutive repetition operator is shown below. 

S i g n a l [=n] 

Only expressions are allowed to repeat in "go to" and "non-
consecutive" repetitions. Sequences are not allowed. 

1.21.1 Consecutive repetition operator [*] 

Property p21 checks that two clock cycles after a valid start, signal "a" 
stays high for 3 continuous clock cycles and two clock cycles after that, 
signal "stop" is high. One clock cycle later signal "stop" is low. 

Property p21; 
©(posedge elk) $rose{start) |-> 

##2 (a[*3]) ##2 stop ##1 Istop; 
endproperty 

a21: assert property(p21); 

Figure 1-23 shows how property p21 reacts in a simulation. The 
waveform shows 2 failures and 1 real success. All other successes are 
vacuous. 
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Figure 1-23. Waveform for SVA checker using consecutive repeat 

Failure at clock cycle 2 - A valid start signal is detected at clock cycle 
2. The checker then looks for signal "a" to be high on 3 continuous clock 
cycles starting from the positive clock edge of clock cycle 4. Signal "a" is 
detected high on clock cycle 4 and 5, but is detected low on clock cycle 6. 
Hence, the check fails. Note that the check started at clock cycle 2 and failed 
at clock cycle 6. 

Success at clock cycle 9 - A valid start signal is detected at clock cycle 
9. The checker then looks for signal "a" to be high for 3 continuous clock 
cycles starting from the positive clock edge of clock cycle 11. Signal "a" is 
detected high on clock cycle 11, 12 and 13 as expected. Two clock cycles 
later (at clock cycle 15) signal "stop" is high as expected. One clock cycle 
later the signal "stop" is detected low. Hence, the check succeeds. Note that 
the check started at clock cycle 9 and finished at clock cycle 16. 

Failure at clock cycle 17 - A valid start signal is detected at clock cycle 
17. The checker then looks for signal "a" to be high for 3 continuous clock 
cycles starting from the positive clock edge of clock cycle 19. Signal "a" is 
detected high on clock cycles 19, 20 and 21. The check now looks for a high 
on signal "stop" at clock cycle 23 but it is not there. Hence, the check fails. 
Note that signal "a" remained high for 4 clock cycles. The checker needs 
only 3 repeats and hence it moves on to look for the signal "stop." The check 
started at clock cycle 19 and failed at clock cycle 23. 

1.21.2 Consecutive repetition operator [*] on a sequence 

Property p22 checks that two clock cycles after a valid start, sequence (a 
##2 b) repeats 3 times and two clock cycles after that, signal "stop" is high. 
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Property p2 2; 
©(posedge elk) $rose(start) |-> 

##2 ((a ##2 b)[*3]) ##2 stop; 
endproperty 

a22: assert property(p22); 

Figure 1-24 shows how property p22 reacts in a simulation. It shows 2 
failures and one real success. 

Failure 1 - The first failure is shown by marker Is. A valid start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##2 b) repeats three times. But in this case, the 
sequence is repeated only 2 times. Hence, the checker fails and the failing 
point is shown by marker 1 e. 

Success 1 - The only real success is shown by marker 2s. A valid start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##2 b) repeats three times. The sequence is 
repeated 3 times as expected. A valid stop is expected 2 clock cycles after 
the successful repetition of the sequence and it happens as expected. Hence, 
the checker succeeds and the succeeding point is shown by marker 2e. 
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Figure 1-24. Waveform for SVA checker using consecutive repeat on a sequence 



50 Chapter 1 

Failure 2 - The second failure is shown by marker 3 s. A vahd start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##2 b) repeats three times. The sequence repeats 
as expected. A valid stop is expected 2 clock cycles after the successful 
repetition of the sequence and it does not arrive. Hence, the checker fails and 
the failing point is shown by marker 3e. 

1.21.3 Consecutive repetition operator [*] on a sequence with a delay 
window 

Property p23 checks that two clock cycles after a valid start, sequence (a 
##[1:4] b) repeats 3 times and two clock cycles after that, signal "stop" is 
high. The fact that the sequence has a timing window makes this check 
slightly complicated. 

property p2 3; 
©{posedge elk) $rose(start) |-> 

##2 ((a ##[1:4] b)[*3]) ##2 stop; 
endproperty 

a23: assert property(p23); 

The main sequence (a ##[1:4] b) [*3] expands as follows. 

((a ##1 b) or (a ##2 b) or (a ##3 b) or (a ##4 b)) ##1 
((a ##1 b) or (a ##2 b) or (a ##3 b) or (a ##4 b)) ##1 
((a ##1 b) or (a ##2 b) or (a ##3 b) or (a ##4 b)) 

Figure 1 -25 shows how property p23 reacts in a simulation. It shows 2 
failures and one real success. 

Failure 1 - The first failure is shown by marker Is. A valid start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##[1:4] b) repeats three times. But in this case, 
the sequence is repeated only 2 times. Hence, the checker fails and the 
failing point is shown by marker 1 e. Note that the 2 repeats that matched are 
(a ##1 b) and (a ##2 b) respectively. 
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Figure 1-25. Waveform for SVA checker using consecutive repeat on a sequence with 
window of delay 

Success 1 - The only real success is shown by marker 2s. A valid start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##[1:4] b) repeats three times. The sequence is 
repeated 3 times as expected. A valid stop is expected 2 clock cycles after 
the successful repetition of the sequence and it happens as expected. Hence, 
the checker succeeds and the succeeding point is shown by marker 2e. Note 
that the 3 repeats that matched are (a ##2 b), (a ##4 b) and (a ##2 b) 
respectively. 

Failure 2 - The second failure is shown by marker 3s. A valid start is 
detected at this point. After 2 clock cycles from this point, the checker 
expects that the sequence (a ##[1:4] b) repeats three times. The sequence 
does repeat as expected. A valid stop is expected 2 clock cycles after the 
successfiil repetition of the sequence and it does not arrive as expected. 
Hence, the checker fails and the failing point is shown by marker 3e. Note 
that the 3 repeats that matched are (a ##2 b), (a ##2 b) and (a ##3 b) 
respectively. 

1.21.4 Consecutive repetition operator [*] and eventuality operator 

Property p23 specified a window of timing for the sequence that repeated 
itself. It is also possible to provide a window for the number of repetitions. 
For example, a [*1:5] means that signal "a" should repeat itself anywhere 
between 1 to 5 times. The definition can be expanded as follows. 

a o r 
(a ##1 a) o r 
(a ##1 a ##1 a) o r 
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{a ##1 a ##1 a ##1 a) o r 
(a ##1 a ##1 a ##1 a ##1 a) 

The bounds of the repeat window follow the same rules as the delay 
windows. The left hand side value should be lesser than the right hand side 
value. The right hand side value can be a "$" sign indicating an unbounded 
number of repeats. 

Property p24 shows an example of a finite check with an unbounded 
number of repeats defined. It checks that 2 cycles after a valid start signal, 
the signal "a" will stay high repeatedly until a valid stop arrives. 

Property p24; 
©(posedge elk) $rose{start) |-> 

##2 (a [*!:$]) ##1 stop; 
endproperty 

a24: assert property(p24); 

Figure 1 -26 shows how property p24 reacts in a simulation. It shows one 
failure and one real success. 

Failure 1 - A valid start occurs at clock cycle 3 shown by marker Is. 
The check expects that 2 clock cycles fi^om this point, signal "a" will stay 
high repeatedly until a valid stop arrives. Signal "a" detects high 
continuously until clock cycle 7. In clock cycle 8, it is detected low but the 
signal "stop" has not arrived yet. Hence, the check fails at clock cycle 8 
shown by marker le. 

Success 1 - A valid start occurs at clock cycle 11 shown by marker 2s. 
The check expects that 2 clock cycles from this point, signal "a" will stay 
high repeatedly until a valid stop arrives. Signal "a" stays high continuously 
until clock cycle 15. In clock cycle 16, it is detected low and the signal 
"stop" arrives as expected. Hence, the check succeeds at clock cycle 16 
shown by marker 2e. 



1. Introduction to SVA 53 

cUt 

start 

a 

stop 

a24 

1 2 :• 4 5 5 7 :l 9 10 11 12 1314 15 16 17 

niumnimimRinpimnR _n 

uu 

r 
n 

Is le 2s 2e 

Figure J-26. Waveform for SVA checker using consecutive repeat and eventuality 

1.21.5 Go to repetition operator [->] 

Property p25 checks that, if there is a vahd start signal on any given 
positive edge of the clock, 2 clock cycles later, signal "a" will repeat three 
times continuously or intermittently before there is a valid stop signal. 

property p2 5; 
©(posedge elk) $rose(start) |-> 

##2 (a[->3]) ##1 stop; 
endproperty 

a25: assert property{p25); 

Figure 1-27 shows how property p25 reacts in a simulation. The figure 
shows that there is one failure, one real success and one incomplete check. 

Failure 1 - A valid start of the checker is shown by marker 1 s. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 3 times as expected. After the third match on 
signal "a," a valid "stop" signal is expected on the next clock cycle. This 
does not happen and hence the check fails as shown by marker 1 e. 
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Figure 1-27. Waveform for SVA checker using go to repetition operator 

Success 1 - A valid start of the checker is shown by marker 2s. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 3 times as expected. After the third match on 
signal "a," a valid "stop" signal is expected on the next clock cycle. The 
"stop" signal arrives as expected and hence the check succeeds at marker 2e. 

Incomplete 1 - A valid start of the checker is shown by marker 3s. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 2 times; before the third one arrives, the 
simulation is finished. Also note that a valid "stop" signal arrives before the 
end of the simulation cycles. This "stop" will not have any effect since the 
repeat statement has not completed. The 3 expected repeats act as a blocking 
statement before the "stop" signal. Hence, the check is incomplete at the end 
of the simulation. 

1.21.6 Non-consecutive repetition operator [=] 

Property p26 checks that if there is a valid start signal on any given 
positive edge of the clock, 2 clock cycles later, signal "a" will repeat three 
times continuously or intermittently before there is a valid stop signal. One 
clock cycle later, the signal "stop" should be detected low. It checks for the 
exact same thing as property p25 except that it uses a "non-consecutive" 
repeat operator in the place of a "go to" repeat operator. This means that, in 
property p26, there is no expectation that there is a valid match on signal "a" 
in the previous cycle of a valid match on "stop" signal. 

Property p2 6; 
©(posedge elk) $rose(start) 
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##2 {a[=3]) ##1 stop ##1 istop; 
endproperty 

a26: assert property{p26); 

Figure 1-28 shows how property p26 reacts in a simulation. The figure 
shows that there are two successes and one incomplete check. 
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Figure 1-28. Waveform for SVA checker using non-consecutive repetition operator 

Success 1 - A valid start of the checker is shown by marker Is. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 3 times as expected. After the third match on 
signal "a," a valid "stop" signal is expected, not necessarily on the next 
clock cycle. A valid "stop" signal arrives 2 clock cycles after the third match 
on signal "a" and hence the check succeeds as shovra by marker le. This is 
the main difference between "go to" repetition and "non-consecutive" 
repetition. Property p25 failed for the same condition since a "go to" 
repetition was used. 

Success 2 - A valid start of the checker is shown by marker 2s. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 3 times as expected. After the third match on 
signal "a," a valid "stop" signal is expected, not necessarily on the next 
clock cycle. A valid "stop" signal arrives 1 clock cycle after the third match 
on signal "a" and hence the check succeeds as shown by marker 2e. 
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Incomplete 1 - A valid start of the checker is shown by marker 3s. The 
check expects that 2 clock cycles after the valid start, signal "a" will repeat 
three times. Signal "a" repeats 2 times; before the third one arrives, the 
simulation is finished. Also note that a valid "stop" signal arrives before the 
end of the simulation cycles. This "stop" will not have any effect since the 
repeat statement has not completed. The 3 expected repeats act as a blocking 
statement before the "stop" signal. Hence, the check is incomplete at the end 
of the simulation. This behavior is the same as in "go to" repetition. 

1.22 The "and" construct 

The binary operator "and" can be used to combine two sequences 
logically. The final property succeeds when both the sequences succeed. 
Both sequences must have the same starting point but they can have 
different ending points. The starting point of the check is when the first 
sequence succeeds and the end point is when the other sequence succeeds, 
ultimately making the property succeed. 

Sequence s27a and s27b are two independent sequences. The property 
p27 combines them with an and operator. The property succeeds when both 
the sequences succeed. 

sequence s27a; 
©(posedge elk) a##[l:2] b; 

endsequence 

sequence s2 7b; 
©(posedge elk) c##[2:3] d; 

endsequence 

property p2 7; 
©{posedge elk) s27a and s27b; 

endproperty 

a27: assert property(p27); 
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Figure 1-29. Waveform for SVA checker using "and" construct 

Figure 1-29 shows how property p27 reacts in a simulation. Table 1-13 
summarizes the sampled values of all relevant signals and the status of the 
assertion a27. There are 3 types of results. There can be a failure due to lack 
of a vaHd start. This happens on a given clock edge if signal "a" is not high 
or signal "c" is not high (clock cycles 1, 2, 4, 5, 6, 13, 14). 

Table 1-13. Evaluation table for SVA checker using "and" construct 

Clock 

cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Sampled 

value of 

"a" 

0 

0 

1 

0 

0 

0 

Sampled 

value of 

"b" 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

Sampled 

value of 
« P « 

0 

0 

1 

0 

0 

0 

Sampled 

value of 

"d" 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

Valid 

start 

No 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

a27 status 

Fail 

Fail 

Success (start at 

3, end at 5) 

Fail 

Fail 

Fail 

Success (start at 

7, end at 10) 

Success (start at 

8, end at 10) 

Success (start at 

9, end at 11) 

Success (start at 

10, end at 12) 

Fail (start at 11, 

end at 14) 

Fail (start at 12, 

end at 14) 
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Clock 

cycle 

13 

14 

Sampled 

value of 

" a " 

0 

0 

Sampled 

value of 

" b " 

0 

0 

Sampled 

value of 

" c " 

0 

0 

Sampled 

value of 

"d" 

0 

0 

Valid 

start 

No 

No 

a27 status 

Fail 

Fail 

There are 5 different successes and each one of them has a different 
length. The valid checks that started at clock cycle 7 and clock cycle 8 both 
finish at clock cycle 10. For the check that starts at clock cycle 7, signal "b" 
is true in clock cycle 9, and signal "d" is true in clock cycle 10. For the 
check that starts at clock cycle 8, signal "b" is true in clock cycle 9, and 
signal "d" is true in clock cycle 10. 

There are two failures, one at clock cycle 11 and one at clock cycle 12. 
Each one of them has the same length but they fail due to different reasons. 
For the check that starts at clock cycle 11, signal "b" is true in clock cycle 
12. But signal "d" is never true in clock cycles 13 or 14 and hence the check 
fails at clock cycle 14. For the check that starts at clock cycle 12, signal "b" 
is not true in clock cycle 13. Both signal "b" and signal "d" are not true in 
clock cycle 14 and hence the check fails in clock cycle 14. 

1.23 The "intersect" construct 

The "intersect" operator is very similar to the "and" operator with one 
additional requirement. Both the sequences need to start at the same time 
and complete at the same time. In other words, the length of both 
sequences should be the same. 

Property p28 checks for the same condition as property p27. The only 
difference is that it uses the intersect construct instead of the and construct. 

sequence s28a; 
©(posedge elk) a##[l:2] b; 

endsequence 

sequence s28b; 
©(posedge elk) c##[2:3] d; 

endsequence 

property p2 8; 
©{posedge elk) s28a intersect s28b; 

endproperty 
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a28: assert property(p28); 

Figure 1-30 shows how property p28 reacts in a simulation. Table 1-14 
summarizes the sampled values of all the relevant signals and the status of 
the assertion a28. Figure 1-30 also shows the results of assertion a27 that 
uses the and construct on the same set of design conditions. This helps 
understand the differences between the and construct and the intersect 
construct. 
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Figure 1-30. Waveform for SVA checker using "intersect" construct 

The failures due to lack of a valid start remain the same. The second set 
of failure happens from the fact that the individual sequences do not match 
as expected. This kind of failure happens at clock cycles 11 and 12. The 
third set of failure happens even though the individual sequences match as 
expected. These failures happen since the individual sequence did not take 
the same length of time to match. In the failure shown in clock cycle 3, 
sequence s28a takes one clock cycle to match ("a" is true in clock cycle 3 
and "b" is true in clock cycle 4) and sequence s28b takes 2 clock cycles to 
match ("c" is true in clock cycle 3 and "d" is true in clock cycle 5). In the 
failure shown in clock cycle 7, s28a takes two clock cycles to match ("a" is 
true in clock cycle 7 and "b" is true in clock cycle 9) and sequence s28b 
takes three clock cycles to match ("c" is true in clock cycle 7 and "d" is true 
in clock cycle 10). 

The three successes happen at clock cycles 8, 9 and 10 respectively. In all 
these three cases the sequences match with the same length of time. 

In the success shown in clock cycle 8, sequence s28a matches twice, at 
clock cycles 9 and 10. The sequence s28b also matches twice, at clock 
cycles 10 and 11. The common length is 2 clock cycles for both the 
sequences to match. Hence, the intersect succeeds with s28a matching at 
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clock cycle 10 and s28b also matching at clock cycle 10. Each of them has a 
length of 2 clock cycles. 

Table 1-14. Evaluation table for SVA checker using "intersect" construct 

Clock 
tick 

Sampled 
value of 
"a" 

Sampled 
value of 
"b" 

Sampled 
value of 
H^n 

Sampled 
value of 
"d" 

Valid 
start 

a28 status 

9 

10 

11 

12 

13 
14 

0 

1 

1 

1 

1 

0 
0 

0 
0 
0 

0 
1 
0 
0 

0 

0 

1 

1 

1 

0 
0 

No 
No 
Yes 

No 
No 
No 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 
No 

Fail 
Fail 
Fail (sequences 
succeed with 
different length) 
Fail 
Fail 
Fail 
Fail (sequences 
succeed with 
different length) 
Success (start at 
8, end at 10) 
Success (start at 
9, end at 11) 
Success (start at 
10, end at 12) 
Fail (start at 11, 
end at 13) 
Fail (start at 12, 
end at 14) 
Fail 
Fail 

In the success shown in clock cycle 9, sequence s28a matches twice, at 
clock cycles 10 and 11. The sequence s28b also matches twice, at clock 
cycles 11 and 12. The common length is 2 clock cycles for both the 
sequences to match. Hence, the intersect succeeds with s28a matching at 
clock cycle 11 and s28b also matching at clock cycle 11. Each of them has a 
length of 2 clock cycles. 

In the success shown in clock cycle 10, sequence s28a matches twice, at 
clock cycles 11 and 12. The sequence s28b matches at clock cycle 12, The 
common length is 2 clock cycles for both the sequences to match. Hence, the 
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intersect succeeds with s28a matching at clock cycle 12 and s28b also 
matching at clock cycle 12. Each of them has a length of 2 clock cycles. 

1.24 The "or" construct 

The binary operator "or" can be used to combine two sequences 
logically. The final property succeeds when any one of the sequence 
succeeds. 

Sequence s29a and s29b are two independent sequences. The property 
p29 combines them with an or operator. The property succeeds when any 
one of the sequence succeeds. 

sequence s29a; 
©{posedge elk) a # # [ l : 2 ] b ; 

endseguence 

sequence s2 9b; 
©{posedge elk) c##[2:3] d; 

endsequence 

property p2 9; 
©(posedge elk) s28a or s28b; 

endproperty 

a29: assert property{p29); 

Figure 1-31 shows how property p29 reacts in a simulation. Table 1-15 
summarizes the sampled values of all the relevant signals and the status of 
the assertion a29. Figure 1-31 also shows the results of assertion a27 that 
uses the and construct on the same set of design conditions. This helps 
understand the differences between the and construct and the or construct. 
The failures due to the lack of a valid start remain the same. The second set 
of failure happens from the fact that the individual sequences do not match 
as expected. This kind of failure happens at clock cycle 12. Both sequences 
never match within their timing window and hence the check fails. 

The successes are almost the same for the and operator and or operator. 
The main difference is the duration of the match. The or operator matches as 
soon as a match is found on sequence s29a and hence does not wait for 
sequence s29b to finish. 
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Figure 1-31. Waveform for SVA checker using "or" construct 

Table 1-15. Evaluation table for SVA checker using "or" construct 

Clock 

tick 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

Sampled 

value 

"a" 

0 

0 

1 

0 

0 

0 

0 
0 

of 

Sampled 

value of 

"b" 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 
0 

Sampled 

value 

"c" 

0 

0 

1 

0 

0 

0 

1 

0 
0 

of 

Sampled 

value of 

"d" 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

0 
0 

Valid 

start 

No 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

a29 status 

Fail 

Fail 

Success (start at 3, 

end at 4) 

Fail 

Fail 

Fail 

Success (start at 7, 

end at 9) 

Success (start at 8, 

end at 9) 

Success (start at 9, 

end at 10) 

Success (start at 10, 

end at 11) 

Success (start at 11, 

end at 12) 

Fail (stall at 12, 
end at 14) 
Fail 
Fail 
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One of the failures with the and construct at clock cycle 11 becomes a 
success with the or construct. The reason for this is that the first part of 
sequence s29a matches at clock cycle 12 and this immediately makes the 
property succeed. In the and construct this alone is not enough. The second 
part of the sequence has to match, but it does not occur within the specified 
time window. Therefore, the same condition makes the property p27 fail at 
clock cycle 14. 

1.25 The "firstmatch" construct 

Whenever a timing window is specified in sequences along with binary 
operators such as and and or, there is a possibility of getting multiple 
matches for the same check. The construct "first_match" ensures that only 
the first sequence match is used and the others are discarded. This becomes 
very help fill when combining multiple sequences together wherein only the 
first match in the timing window is required to evaluate the remaining part 
of the property. 

In the example shown below, two sequences are combined with an or 
operator. There are several possible matches for this property and they are as 
follows. 

a ##1 b 
a ##2 b 
c ##2 d 
a ##3 b 
c ##3 d 

When the property p30 gets evaluated, the first one to match will be kept 
and every other match will be discarded. 

sequence s30a; 
©{posedge elk) a ##[1:3] b; 

endseguence 

sequence s3 0b; 
©(posedge elk) c ##[2:3] d; 

endsequence 

property p3 0; 
©(posedge elk) first_match(s3 0a or s3 0b); 

endproperty 
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a30: a s s e r t property(p30) ; 

Figure 1-32 shows how property p30 reacts in a simulation. There are 2 
successes shown in the figure, one at clock cycle 3 and another at clock 
cycle 9. The success at clock cycle 3 is based on the match on the sequence 
(c ##2 d). The success at clock cycle 9 is based on the match on the 
sequence (a ##1 b). In both cases, the first sequence match made the 
property succeed. 
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Figure 1-32. Waveform for SVA checker using "first_match" construct 

1.26 The "throughout" construct 

Implication is one technique discussed so far that allows defining pre
conditions. For example, for a specific sequence to be tested, a certain pre
condition must be true. There are also situations wherein the condition must 
hold true until the entire test sequence completes. Implication checks for pre
condition once on the clock edge and then starts evaluating the consequent 
part. Hence, it does not care if the antecedent remains true or not. To make 
sure that certain condition holds true during the evaluation of the entire 
sequence, "throughout" operator should be used. The simple syntax of a 
throughout operator is shown below. 

(expression) throughout {sequence definition) 

Property p31 checks the following. 

a. The check starts when signal "start" has a falling edge. 
b. Test the expression ((!a&&!b) ##1 (c[->3]) ##1 (a&&b)). 
c. The sequence checks that between the falling edge of signals "a" 
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and "b," and the rising edge of signals "a" and "b," signal "c" 
should repeat itself 3 times continuously or intermittently, 

d. During the entire test expression, signal "start" should always be 
low. 

property p31; 
©{posedge elk) $fell(start) |-> 

{!start) throughout 
{##1 (!a&&!b) ##1 {c[->3]) ##1 {a&&b)); 

endproperty 

a31: assert property(p31); 

Figure 1-33 shows how property p31 reacts in a simulation. The check 
succeeds at clock cycle 3 and fails in clock cycle 16. 
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Figure 1-33. Waveform for SVA checker using "throughout" construct 

Success 1 - The antecedent of the property succeeds on clock cycle 3 
when a falling edge is detected on the start "signal." One cycle after that, 
signals "a" and "b" are expected to be low, and they are as expected in clock 
cycle 4. From this point, signal "c" is expected to repeat itself three times. It 
does repeat three times, once each in clock cycles 6, 9 and 11. In clock cycle 
12, it is expected that both signals "a" and "b" are high, and they are as 
expected. Hence, the property starts at clock 3 and succeeds at clock 12. 
Note that signal "start" was detected low from the clock cycles 3 through 
12. That is the key for the success of this check. 

Failure 1 - The antecedent of the property succeeds on clock cycle 16 
when a falling edge is detected on the "start" signal. One cycle after that, 
signals "a" and "b" are expected to be low, and they are in clock cycle 17. 
From this point signal, "c" is expected to repeat itself three times. We get 
two repeats on clock cycles 18 and 20. But on clock 21, before the third 
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repeat on signal "c" arrives, the signal "start" is detected high and the check 
fails at clock cycle 21. The "throughout" condition was violated here and 
hence the check fails. 

1.27 The "within" construct 

The "within" construct allows the definition of a sequence contained 
within another sequence. 

seql within seq2 

This means that seql happens within the start and completion of seq2. 
The starting matching point of seq2 must happen before the starting 
matching point of seql. The ending matching point of seql must happen 
before the ending matching point of seq2. Property p32 checks that the 
sequence s32a happens within the rise and fall of signal "start." The rise and 
fall of signal "start" is defined as a sequence in s32b. 

sequence s32a; 
©(posedge elk) 

({!a&&!b) ##1 (c[->3]) ##1 (a&&b)); 
endsequence 

sequence s32b; 
©{posedge elk) 

$fell(start) ##[5:10] $rose(start); 
endsequence 

sequence s32; 
©(posedge elk) s32a within s32b; 

endsequence 

property p3 2; 
©(posedge elk) $fell(start) |-> s32; 

endproperty 

a32: assert property(p32); 

The same set of design conditions used to describe the throughout 
operator is used in Figure 1-34 to show how property p32 reacts in a 
simulation. There are two valid starts for this check, one at clock cycle 3 and 
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another at clock cycle 16. In both these clocks, a falling edge of the signal 
"start" is detected. 

elk 
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Figure 1-34. Waveform for SVA checker using "within" construct 

Success 1 - The check starting at clock cycle 3 succeeds. The falling 
edge of signal "start" is at clock cycle 3 and the rising edge of the signal 
"start" is at clock cycle 13. Within these clock cycles, signal "c" is detected 
high three times in clock cycles 6, 9 and 11. Hence, the check succeeds. 

Incomplete 1 - The check starting at clock cycle 16 never finishes. The 
falling edge of signal "start" is at clock cycle 16 and the rising edge of the 
signal "start" is at clock cycle 21. Within these clock cycles, signal "c" is 
detected high two times in clock cycles 18 and 20 respectively. The third 
repeat of signal "c" comes at clock cycle 22 but signal "start" is detected 
high at clock cycle 21. This is a failure but since a "go to" repetition operator 
is used to check for signal "c," it acts as a blocking sequence. This makes the 
check fail and issues an incomplete message during simulation. 

1.28 Built-in system functions 

SVA provides several built-in functions to check for some of the most 
common design conditions. 

Sonehot(expression) - checks that the expression is one-hot, in other 
words, only one bit of the expression can be high on any given clock 
edge. 

$onehotO(expression) - checks that the expression is zero one-hot, in 
other words, only one bit of the expression can be high or none of the bits 
can be high on any given clock edge. 
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$isunknown(expresslon) - checks if any bit of the expression is X or Z. 

Scountones(expression) - counts the number of bits that are high in a 
vector. 

Assert statement a33a checks that the bit vector "state" is one-hot. Assert 
statement a33b checks that the bit vector "state" is zero one-hot. Assert 
statement a33c checks if any bit of the vector "bus" is X or Z. Assert 
statement a33d checks that the number of ones in the vector "bus" is greater 
than one. 

a33a: a s s e r t 
property(©(posedge elk) $onehot(state)); 

a33b: assert 
property{©(posedge elk) $onehotO(state)); 

a33c: assert 
property (©(posedge elk) $isunkiiovm(bus) ) ; 

a33d: assert 
property(©(posedge elk)$countones(bus)> 1); 
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Figure J-35. Waveform for SVA checker using built-in system functions 

Figure 1-35 shows how the assert statements react in a simulation. Table 
1-16 summarizes the sampled values of vector "state" and "bus" and the 
status of each assertion. Note that assertion a33a fails in clock cycle 2 since 
all bits are zero. The one-hot condition requires that one bit be high on all 
positive edges of the clock. On the other hand, assertion a33b passes since it 
checks for zero one-hot and all bits being zero is legal for this construct. 
Both a33a and a33b fail in clock cycles 5, 6, 7 and 8 wherein more than one 
bit is high. Assertion a33c fails anytime the value of the vector "bus" is not 
Z or X. It passes on clock cycles 5, 6 and 7 wherein the value is Z. Assertion 
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a33d fails on clock cycles 2, 3, 5, 6, and 7 wherein no more than one bit is 
high. Assertion a33d passes in clock cycles 4 and 8 since 2 bits are high in 
the vector "bus" on these two clock cycles. 

Table 1-16. Evaluation table for SVA checker using built-in functions 

Clock Sampled Sampled a33a - a33b - a33c - a33d 
tick value of value of Sonehot SonehotO $i$unkno Scounto 

"state" "bus" status status wn nes 
status status 

2 
3 
4 
5 
6 
7 
8 

0000 
0010 
0100 
0011 
1101 
1101 
1101 

00100 
00001 
01001 

z 
z 
z 

01010 

Fail 
Success 
Success 

Fail 
Fail 
Fail 
Fail 

Success 
Success 
Success 

Fail 
Fail 
Fail 
Fail 

Fail 
Fail 
Fail 

Success 
Success 
Success 

Fail 

Fail 
Fail 

Success 
Fail 
Fail 
Fail 

Success 

1.29 The "disable iff construct 

In certain design conditions, we don't want to proceed with the check if 
some condition is true. In other words, it is like an asynchronous reset that 
will make the check currently being evaluated void. SVA provides a 
construct called "disable iff' that acts like an asynchronous reset for the 
checker. The simple syntax for a disable iff is as follows. 

disable iff (expression) < property defmition> 

Property p34 checks that after a valid start, signal "a" repeat 2 times and 
1 cycle after that, signal "b" repeats 2 times and one cycle later signal "start" 
becomes low. During this entire sequence, if reset is detected high at any 
point, the checker will stop and issue a vacuous success by default. 

property p34; 
©{posedge elk) 
disable iff (reset) 
$rose{start) |=> a[=2] 

endproperty 
##1 b[=2] ##1 Istart 

a34: assert property{p34); 
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Figure 1-36 shows how property p34 reacts in a simulation. A valid start 
is shown with marker Is. After the valid start, signal "a" repeats two times 
and then signal "b" repeats two times. Signal "start" becomes low after that 
as expected. 

During this entire sequence, the signal "reset" is inactive as expected and 
hence the check succeeds at marker le. A second valid start is shown with 
marker 2s. After the valid start, signal "a" repeats two times and then the 
"reset" signal becomes active before signal "b" could repeat two times. This 
nullifies the check and the property succeeds vacuously. 
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Figure 1-36. Waveform for SVA checker using "disable iff construct 

1.30 Using "intersect" to control lengtti of the sequence 

The intersect operator discussed in Section 1.23 can be used effectively 
to control the length of sequences, particularly in cases where the upper 
bound of the timing window is not defined. Whenever an eventuality 
operator is used, there is no restriction on the number of clock cycles that 
can be used by the checker to succeed. The intersect operator provides a 
mechanism to define the minimum and maximum number of clock cycles 
that can be used by the eventuality operator to succeed. 
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Property p35 defines a sequence that checks that on a given clock edge if 
signal "a" is high then eventually signal "b" should go high starting from the 
next clock cycle and eventually signal "c" should go high starting from the 
next clock cycle. This sequence will start whenever signal "a" is high and 
can take until the end of the simulation time to succeed. This is restricted by 
using the intersect operator 1[*2:5]. This intersect definition checks that 
from the starting point of the sequence match (high on signal "a") to the 
ending point of the sequence match (high on signal "c") it can take anywhere 
between 2 to 5 clock cycles. 

Property p3 5; 
(©(posedge elk) 1[*3:5] intersect 

(a ##[!:$] b ##[!:$] c)); 
endproperty 

a35: assert property(p35); 

Figure 1-37 shows how property p35 reacts in a simulation. Table 1-17 
summarizes the sampled values of the relevant signals and shows the status 
of assertion a35. On a given clock edge if signal "a" is not detected high, it is 
a failure. This happens in several clock cycles (1, 3, 4, 5, 11 and 13) and 
these are not valid starts. 
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Figure 1-37. Waveform for SVA checker using intersect to control the length of the sequence 

The check succeeds in several clock cycles (2, 6, 7, 8, 9, 10, 12 and 14). 
Note that the sequence takes 5 clock cycles or less from the start to the end 
point. The check has a real failure at clock cycle 6. Signal "a" is detected 
high at clock cycle 6 and signal "b" arrives at clock cycle 9. Signal "c" does 
not arrive at clock cycle 10, which completes the upper limit allowed for the 
length of the entire check. Hence, the check fails at clock 10. Note that 
signal "c" does arrive at clock cycle 11, but it's too late. 
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Table 1-17. Evaluation table for SVA checker using intersect operator to control the length of 
the sequence 

Clock 
tick 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Sampled 
value of 
"a" 

0 
1 
0 
0 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 

Sampled 
value of 
"b" 

1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 

Sampled 
value of 
"c" 

1 
0 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
0 
1 
1 

Valid 
start 

No 
Yes 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
Yes 

a35 status 

Fail 
Success (start at 2, end at 6) 
Fail 
Fail 
Fail 
Fail (start at 6, end at 10) 
Success (start at 7, end at 11) 
Success (start at 8, end at 11) 
Success (start at 9, end at 11) 
Success (start at 10, end at 13) 
Fail 
Success (start at 12, end at 16) 
Fail 
Success (start at 14, end at 16) 
Fail 
Success 
Success 

1.31 Using formal arguments in a property 

Some of the common properties that can be re-used can be defined with 
formal arguments. Property "arb" takes 4 formal arguments and has a check 
defined on these formal arguments. The property is also bound to a specific 
clock. SVA allows clock definition as one of the formal arguments to the 
property. This way, the property can be bound to similar design block 
working with different clocks. Also, the timing delays specified can be 
parameterized to make the property definition very generic. 

The property checks for a valid start first. On a given positive edge of the 
clock, if a falling edge of signal "a" is followed by the falling edge of signal 
"b" within 2 to 5 clock cycles, then it is a valid start.. If the antecedent 
matches, then the property checks for a falling edge on signal "c" and signal 
"d" on the next clock cycle and makes sure that these two signals stay low 
for 4 consecutive cycles. One cycle later, signal "c" and signal "d" should be 
detected high and one cycle after that signal b should be detected high. 
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Assuming that this is a protocol followed by an arbiter that deals with 
three different master devices with similar signals, the property can be re
used easily to check all three master interfaces. Assertions a36_l, a36_2 and 
a36_3 define the assertions for each master interface, using the signals 
relevant to each interface as the arguments for the property. 

property arb (a, b, c, d ) ; 
©{posedge elk) {$fell(a) ##[2:5] $fell(b)) |-> 

##1 ($fell(c) && $fell{d)) ##0 
{Ic&&!d) [*4] ##1 (c&&d) ##1 b; 

endproperty 

a36_l: assert property(arb(al, bl, cl, dl)); 
a36_2: assert property(arb(a2, b2, c2, d2)); 
a36_3: assert property(arb(a3, b3, c3, d3)); 

Figure 1-38 shows how the assertions defined for each interface react in a 
simulation. Assertion a36_l has one valid start and it succeeds. Assertion 
a36 3 has one valid start and it fails. 
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Figure J-38. Waveform for SVA checker using formal arguments in a property 
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Success 1 (a36_l) - The check begins when a falling edge arrives on 
signal "al" on clock cycle 4. This expects that a falling edge arrives on 
signal "bl" within 2 to 5 clock cycles and it does arrive on clock cycle 7. In 
the next clock cycle, signal "cl" and "dl" are low as expected. They should 
remain low for four cycles. They remain low from clock cycle 8 to 11. At 
clock cycle 12, both the signals "cl" and "dl" are high as expected. At clock 
cycle 13, signal "bl" is high as expected. Hence, the signal starts at clock 
cycle 4 and succeeds at clock cycle 13. 

Failure 1 (a36_3) - The check begins when a falling edge arrives on 
signal "a3" on clock cycle 15. This expects that a falling edge arrives on 
signal "b3" within 2 to 5 clock cycles and it does arrive on clock cycle 18. In 
the next clock cycle, signal "c3" and "d3" are expected to be low. Since 
signal "d3" is not detected to be low, the check fails at clock cycle 19. 

1.32 Nested implication 

SVA allows having nested implications. These are useful when we have 
multiple gating conditions leading to a single final consequent. 

Property p_nest checks that a valid start occurs if there is a falling edge 
on signal "a," then one cycle later, signals "b," "c" and "d" should all be 
active low to keep the valid start alive. If the second condition matches, then 
it is expected that within 6 to 10 cycles the condition "free" is true. Note that 
the consequent condition "true" is evaluated if and only if the signals "b," 
"c" and "d" match as expected. 

" d e f i n e f r e e (a && b && c && d) 

property p_nest; 
©{posedge elk) $fell(a) |-> 

##1 (!b && Ic && !d) I-> 
##[6:10] "free; 

endproperty 

a_nest: assert property(p_nest); 

The same property can be re-written without using the nested implication 
as follows. 

property p_nestl; 
©(posedge elk) $fell(a) ##1 {!b && !c && !d) 
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I-> # # [ 6 : 1 0 ] ^ f r e e ; 
endproperty 

a _ n e s t l : a s s e r t p r o p e r t y ( p _ n e s t l ) ; 
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Figure 1-39. SVA checker with nested imphcation 

Note that the nested implication property pnest has no "else" 
condition and hence, the property can be easily re-written as shown in 
p_nestl. 

Figure 1-39 shows how the assertion a_nest behaves in a simulation. 
Marker 1 shows the first success of the checker. A valid start occurs when a 
falling edge is detected on signal "a." One cycle later, signals "b," "c" and 
"d" are detected low as expected and hence the check is kept alive and the 
consequent gets evaluated. The condition "free" is detected true 6 clock 
cycles later and hence the check succeeds. 

The second marker indicates the next valid start wherein a falling edge of 
signal "a" is detected. One cycle later, signals "c" and "d" are detected low 
but signal "b" is not low. Hence, the check is not active anymore and the 
check succeeds vacuously. 

The third marker indicates a valid start wherein a falling edge of signal 
"a" is detected. One cycle later, signals "b," "c" and "d" are detected low as 
expected and hence the check is still active and the consequent gets 
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evaluated. The condition "free" is not detected true within 6 to 10 clock 
cycles after and hence the check fails. 

1.33 Using if/else with implication 

SVA allows the use of an "if/else" statement on the consequent of an 
implied property. Property p_if_else checks that a valid start occurs if a 
falling edge is detected on signal "start" and one clock cycle later either 
signal "a" or signal "b" is detected high. On a successful match of the 
antecedent, the consequent can take two possible paths. 

1. If signal "a" is detected high, then, signal "c" should repeat twice 
intermittently and one cycle later signal "e" should be high. 

2. If signal "a" is not high, then, signal "d" should repeat twice 
intermittently and one cycle later signal " f should be high. 

Note that there is a priority in the evaluation of the consequent for signal 

property p_if_else; 
@(posedge elk) 
($fell(start) ##1 (a||b)) |-> 
if (a) 

{c[->2] ##1 e) 
else 

(d[->2] ##1 f) ; 
endproperty 

a_if_else: assert property{p_if_else); 

To re-write this property without using an "ifelse" construct, three 
separate properties are required. A priority based "if else" on two signals 
leads to three different possibilities as shown below. 

a b Leaf 

1 0 a 
0 1 b 
1 1 a 
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Note that if both signals "a" and "b" are high, then the " i f block of 
signal "a" is executed since it has priority. The three properties are shown 
below. 

property p_if_else_leaf1; 
©{posedge elk) 

($fell(start) ##1 a) |-> 
(c[->2] ##1 e) ; 

endproperty 

a_if_else_leaf1: 
assert property(p_if_else_leafl); 

property p_if_else_leaf2; 
©(posedge elk) 

($fell(start) ##1 b) |-> 
(d[->2] ##1 f); 

endproperty 

a_if_else_leaf2: 
assert property(p_if_else_leaf2); 

property p_if_else_leaf3; 
©(posedge elk) 

($fell(start) ##1 (a &&b)) |-> 
(c[->2] ##1 e); 

endproperty 

a_if_else_leaf3: 
assert property(p_if_else_leaf3); 

1.34 Multiple clock definitions in SVA 

SVA allows a sequence or a property to have multiple clock definitions 
for sampling individual signals or sub-sequences. SVA will automatically 
synchronize between the clock domains used in the signals or sub
sequences. The following code shows a simple example of a sequence using 
multiple clocks. 

sequence s_multiple_clocks; 
©(posedge clkl) a ##1 ©(posedge clk2) b; 
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endsequence 

The sequence s_multiple_clocks checks that, on a given positive edge of 
clock "clkl," signal "a" is high and then on a give positive edge of clock 
"clk2," signal "b" is high. The sequence matches when signal "a" is high on 
any given positive edge of clock "clkl." The ##1 delay construct will move 
the evaluation time to the nearest positive clock edge of clock "clk2" and 
then will check for signal "b" being high. When multiple clocked signals 
are used in a sequence, only ##1 delay construct is allowed. Re-vmting the 
sequence s_multiple_clocks as follows is not allowed. 

sequence s_multiple_clocks_illegall; 
©(posedge clkl) a ##0 ©(posedge clk2) b; 

endsequence 

sequence s_multiple_clocks_illegal2; 
©(posedge clkl) a ##2 ©{posedge clk2) b; 

endsequence 

The use of##0 will create confusion on which one is the nearest clock 
after the match on signal "a." This will create race conditions; hence, it is 
not allowed. The use of ##2 is not allowed since it is not possible to 
synchronize to the nearest positive clock edge of clock "clk2." 

Similar techniques can be used to create properties with multiple clocks. 
The following code shows an example. 

property p_multiple_clocks; 
©(posedge clkl) si ##1 ©(posedge clk2) s2; 

endproperty 

It is assumed that the sequence si is not clocked or it has the same clock 
definition as "clkl." It is assumed that the sequence s2 is not clocked or it 
has the same clock definition as "clk2." The property can also have a non-
overlapping implication operator in between the sequence definitions. A 
sample code is shown below. 

property p_multiple_clocks_implied; 

©(posedge clkl) si |=> ©(posedge clk2) s2; 
endproperty 

The use of an overlapping implication operator between two multiple 
clocked sequences is not allowed. Since the end of the antecedent and the 
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beginning of the consequent overlaps, it can lead to race conditions; 
hence, it is illegal. The following code shows the illegal coding style. 

property p_multiple_clocks_implied_illegal; 
©(posedge clkl) si |-> @(posedge clk2) s2; 

endproperty 

1.35 The "matched" construct 

Whenever a sequence is defined with multiple clocks, the construct 
"matched" is used to detect the endpoint of the first sequence. Sequence s_a 
looks for a rising edge on the signal "a." Signal "a" is sampled based on the 
clock "clkl." Sequence s_b looks for a rising edge on the signal "b." Signal 
"b" is sampled based on the clock "clk2." The property pmatch verifies that 
on a given positive edge of clock "clk2," if there is a match on sequence s_a, 
then one cycle later sequence s_b should be true. 

sequence s_a; 
©(posedge clkl) $rose(a); 

endsequence 

sequence s_b; 
©(posedge clk2) $rose(b); 

endsequence 

property p_match; 
©(posedge clk2) s_a.matched |=> s_b; 

endproperty 

a_match: assert property(p_match); 

Figure 1-40 shows how the assertion a_match behaves in a simulation. 
The property gets a valid start when there is a match on sequence s_a. Note 
that we are looking for this match on every positive edge of clock "clk2," 
though sequence s_a is sampled based on clock "clkl." 

A valid rise on signal "a" happens at clock cycle 3 of "clkl." This 
updates the match value on sequence s_a to true. This value will be held 
until the nearest positive clock edge of "clk2." The nearest positive edge of 
"clk2" is at clock cycle 2 of "clk2." At this point the property becomes 
active and one clock cycle of "clk2" later, it is expected that the sequence 



80 Chapter 1 

s_b matches. Hence, the first success of the property starts at clock cycle 2 
of "clk2" and ends at clock cycle 3 of "clk2." 
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Figure 1-40. SVA checker using "matched" construct 

Another valid rise on signal "a" happens at clock cycle 11 of "clk2" and 
this is sampled by the property at clock cycle 5 of "clk2." The property 
becomes active at this point and it is expected that in clock cycle 6 of "clk2," 
the sequence s_b match. But in this case, a rising edge of signal "b" does not 
occur and hence the property fails. The key concept to understand in using 
"matched" construct is that, the sampled match value is stored only until 
the next nearest clock edge of the other sequence. 

1.36 The "expect" construct 

SVA supports a construct called "expect," which is similar to the wait 
construct in Verilog, with the key difference being that the expect statement 
waits on the successful evaluation of a property. It acts as a blocking 
statement for the code that follows the expect construct. The syntax of the 
expect construct is very similar to the assert construct. The expect statement 
is allowed to have an action block upon the success or failure of the 
property. A sample code using the expect construct is shown below. 

i n i t i a l 

begin 
©(posedge elk); 
#2ns cpu_ready = I'bl; 
expect{©{posedge elk) ##[1:16] 

memory_ready == I'bl) 
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$display("Hand shake successful\n"); 
else 
begin 
$display("Hand shake failed: exiting\n") 
$finish(); 
end 

for(i=0; i<64; i++) 
begin 
send_packet{); 
$display("PACKET %0d sent\n", i); 

end 

end 

Note that after the signal "cpu_ready" is asserted, the expect statement 
waits for anywhere between 1 to 16 cycles for the signal "memory_ready" to 
be asserted. If the signal "memory_ready" is asserted as expected, a success 
message is displayed and the "for" loop code starts executing. If the signal 
"memory_ready" is not asserted as expected, then a failure message is 
displayed and the simulation exits. 

1.37 SVA using local variables 

A variable can be declared locally within a sequence or a property and an 
assignment can be made on that variable. The variable is placed next to a 
sub-sequence separated by a comma. If the sub-sequence matches, then the 
variable assignment is executed. Every time the sequence is attempted, a 
new copy of the variable is created. 

property p_local_varl; 
int Ivarl; 
®(posedge elk) 
($rose(enablel), Ivarl = a) |-> 

##4 (aa == (lvarl*lvarl*lvarl)); 
endproperty 

a_local_varl: assert property{p_local_varl); 

The property p_local_varl looks for a rising edge on the signal 
"enablel." Upon a match on this, the local variable "Ivarl" stores the value 
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of the design vector "a." After 4 cycles, it is checked that the value of the 
design output vector "aa" is equal to the cubed value of the local variable. 
The consequent of the property waits for the design to satisfy the latency (4 
clock cycles) and then compares the original design output with the locally 
calculated value. Figure 1-41 shows how the check reacts in a simulation. 
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Figure 1-41. Waveform for SVA with local variables 

The marker Is shows the point where the rising edge of the signal 
"enable 1" is sampled. At this point, vector "a" has a value of 5 and this is 
stored in the local variable "Ivarl." The marker le shows the point where the 
output is sampled. This is 4 clock cycles after the input value was stored. At 
marker le, since the output value (125) equals that of the cube of the local 
variable "Ivarl," the assertion succeeds. Similarly, marker 2s shows when 
the next input data is stored and marker 2e shows when the output is 
sampled and compared with the cubed value of local variable "Ivarl." 

The local variables can be stored and manipulated inside SVA. 

property p_lvar_accum; 
int Ivar; 
©{posedge elk) $rose(start)|=> 
(enablel ##2 enable2, Ivar = Ivar +aa) [*4] 
##1 (stop && (aout == Ivar)); 
endproperty 

a _ l v a r _ a c c u m : a s s e r t p r o p e r t y ( p _ l v a r _ a c c u m ) ; 

The property p_lvar_accum checks for the following. 
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3. 

4. 

A valid start occurs if a rising edge is detected on the signal "start" 
on any given positive edge of the clock. 
One cycle later, a specific pattern or a sub-sequence is looked for. 
The signal "enable 1" should be detected high and 2 cycles later 
signal "enable2" should be detected high. This sub-sequence 
should repeat itself 4 times continuously. 
For every repeat of the sub-sequence, the value of the vector "aa" is 
accumulated locally. At the end of the repetition, the local variable 
holds a value accumulated from the vector "aa" four times. 
One cycle after the repetition, it is expected that the signal "stop" is 
detected high and the value held by the local variable is equal to the 
value held by the output vector "aout." 

Figure 1 -42 shows how^ the check reacts in a simulation. 
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Figure 1-42. SVA with local variable assignment 

The marker 1 s shows a valid start of the check wherein the signal "start" 
is detected high. Marker le shows the end of the check. The repetitions of 
the enable signals complete successfially and one cycle later the signal "stop" 
is detected high as expected. The local variable holds the same value as that 
of the output vector "aout" and hence the check succeeds at the marker le. 
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1.38 SVA calling subroutine on a sequence match 

SVA can also call a subroutine on every successful match of a sequence. 
The local variables defined in the same sequence can be passed as arguments 
to these subroutine calls. For each match on the sequence, the subroutine 
calls are executed in the same order as they are listed in the sequence 
definition. 

sequence s_displayl; 
©(posedge elk) 
($rose(a), $display{"Signal a arrived at %t\n", 
$time)); 
endseguence 

sequence s_display2; 
©(posedge elk) 
($rose(b), $display("Signal b arrived at %t\n", 
$time)); 
endsequence 

property p_display_window; 
@(posedge elk) 
s _ d i s p l a y l | -> ##[2:5] s _ d i s p l a y 2 ; 
endproperty 

a_display_window : 
assert property(p_display_window); 

Sequence s_displayl looks for a rising edge on the signal "a." Upon a 
match on this event, it executes the display statement. Sequence s_display2 
does a similar action on signal "b." The property p_display_window checks 
that if sequence s_displayl occurs then the sequence s_display2 should 
occur anywhere between 2 and 5 clock cycles. By using display statements, 
the user can get information on exactly how many cycles the consequent 
sequence completed. Figure 1-43 shows how the check reacts in a 
simulation. 

The marker 1 s shows a valid start of the checker since a rising edge of 
the signal "a" is detected. At this point, SVA executes the display statement 
relevant to this sequence (s_displayl). The marker le shows the point when 
a rising edge arrives on signal "b." Since this arrives after 3 cycles, the 
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checker succeeds. At this point, the display statement relevant to this 
sequence (s_display2) is executed. 

The marker 2s shows a valid start of the checker since a rising edge of 
the signal "a" is detected. At this point, SVA executes the display statement 
relevant to this sequence (s_displayl). The marker 2e shows the ending point 
of the checker. A valid rising edge never arrived on signal "b" within 2 and 5 
clock cycles and hence, the checker failed. Since the second sequence never 
matched, the relevant display statement is not executed. A default error is 
issued by SVA. 
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Figure 1-43. SVA using subroutines on sequence match 

A sample simulation log is shown below. 

Signal a arrived at 125 

Signal b arrived at 2 75 

"sub.v", 45: sub.a_display_window: 
started at 125s succeeded at 275s 

Signal a arrived at 

"sub.v", 45: sub.a_display_window: 
started at 425s failed at 675s 

Offending '$rose(b)' 

425 
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1.39 Connecting SVA to the design 

SVA checkers can be connected to the design by two different methods. 

1. Embed or in-line the checkers in the module definition. 

2. Bind the checkers to a module, an instance of a module or 
multiple instances of a module. 

Some engineers don't like adding any verification code within the 
design. In this case, binding the SVA checkers externally is the choice. 
SVA code can be embedded anywhere in a module definition. The 
following example shows SVA being in-lined within the module. 

module inline(elk, a, b, dl, d2, d ) ; 

input logic elk, a, b; 
input logic [7:0] dl, d2; 
output logic [7:0] d; 

always®(posedge elk) 
begin 
if (a) 
d <= dl; 

if (b) 
d <= d2; 

end 

property p_mutex; 
©(posedge elk) not (a && b); 

endproperty 

a_mutex: assert property(p_mutex); 

endmodule 

If the user decides to keep the SVA checkers separate from the design, 
then he has to create a separate checker module. By defining a separate 
checker module, the re-usability of the checker increases. The following 
code shows a checker module. 

module mutex chk(a, b, elk); 
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input logic a, b, elk; 

property p_mutex; 
©(posedge elk) not (a && b); 

endproperty 

a_mutex: assert property{p_mutex); 

endmodule 

Note that when a checker module is defined, it is an independent entity. 
The checker is written for a generic set of signals. The checker can be bound 
to any module or instance in the design. The syntax for binding is as follows. 

bind <module_name or instance name> 
<checker name> <checker instance name> 
<design signals>; 

For the example checker shown above, the binding can be done as 
follows. 

bind inline mutex_chk i2 (a, b, elk); 

When the binding is done, the actual design signal names are used. 

Let's say we have a top-level module as follows. 

module t o p {. . ) ; 

inline ul (elk, a, b, inl, in2, outl); 
inline u2 (elk, c, d, in3, in4, out2); 

endmodule 

The checker mutexchk can be bound to the two instances of the module 
"inline" in the top-level module as follows. 

bind top.ul mutex_ehk il(a, b, elk); 
bind top.u2 mutex_ehk i2(c, d, elk); 

The design signals that are hound can contain cross module reference 
to any signal within the scope of the bound instance. 
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1.40 SVA for functional coverage 

Functional coverage is a metric for measuring verification status against 
design specification. It is classified into two categories: 

a. Protocol coverage. 
b. Test plan coverage. 

Assertions can be used to get exhaustive information on protocol 
coverage. SVA provides a keyword "cover" to specify this. The basic syntax 
of a cover statement is as follows. 

<cover_name> : cover property(property_name) 

"cover_name" is a name provided by the user to identify the coverage 
statement and "property_name" is the name of the property on which the 
user wants to get coverage information. For example, the checker 
"mutex_chk" defined in Section 1.39 can be covered as follows. 

c_mutex: cover property{p_mutex); 

The results of the cover statement will provide the following 
information: 

1. Number of times the property was attempted. 
2. Number of times the property succeeded. 
3. Number of times the property failed. 
4. Number of times the property succeeded vacuously. 

A sample coverage log from a simulation for the checker "mutexchk" is 
shown below. 

c_mutex, 12 attempts, 12 match, 0 vacuous match 

Just like the assert statement, the cover statement can also have an 
action block. Upon a successful coverage match, a function or a task can 
be called or a local variable update can be performed. 
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SVA SIMULATION METHODOLOGY 

In Chapter 1, SVA language constructs were discussed in detail with 
examples. All examples were illustrated as relationships between two or 
more generic signals without any design details. In Chapter 2, a dummy 
system is used to present a real situation. The process of protocol extraction 
and assertion development will be discussed step by step. Various simulation 
methodologies that can significantly increase the productivity of assertion 
based verification will be discussed. Functional coverage and reactive 
testbench development will be discussed in detail. 

2.1 A sample system under verification 

The sample system under consideration is shown in Figure 2-1. The 
system has 3 master devices and 2 target devices. A link is established 
between the master and the target devices by the mediator. At a given time, 
only one master can conduct a transaction and with only one target device. 
Any master device can conduct a transaction with any target device. The 
transaction can be a read or a write. The mediator contains arbiter logic that 
decides which master will be allowed to conduct a transaction. The arbiter 
uses a simple round robin technique. The mediator also contains glue logic 
that actually decodes the master information for the target device and vice 
versa. The glue logic helps establish the link between a specific master 
device and target device to conduct the transaction successfully. 

2.1.1 The Master device 

The block diagram of the master device along with input and output ports 
is shown in Figure 2-2. The master device can perform a read and a write 
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transaction. It can support 2 target devices in a single system. When the 
master device gets the instruction "ask_for_it," it is ready to perform a 
transaction. It sends an active low pulse on the "req" signal and waits for a 
"gnt." The "gnt" signal is an active low signal. If the "gnt" signal does not 
come within 2 to 5 clock cycles, then the master will retry to get access at a 
later time. If the "gnt" is acquired, then the master will immediately assert 
the "frame" and "irdy" signals acknowledging the arrival of the "gnt" signal 
("frame" and "irdy" are active low signals). In the same clock cycle it also 
selects the target device it will have the transaction with. The master uses the 
output signal "rsel" to indicate this. If signal "rsel" is set to 1, then the 
master will to have a fransaction with target device 1. If the signal "rsel" is 
set to 0, then the master will have a transaction with target device 0. 

Masterl <; - 1 / 

Master2 C ^^ 

Masters c 

C: 

Mediator 

<? 

Figure 2-1. A sample system 

Once the signal "rsel" is updated, the target device is expected to identify 
itself to the master. The target device uses the signal "trdy" to acknowledge 
its readiness. If the target does not acknowledge itself within 3 clock cycles 
from the point when "rsel" is assigned, it is an error condition. If the target 
does acknowledge itself, then the master decides whether to read or write. 
The master sends the data and the instruction whether to read or write 
through the "datac" bus. 



2. SVA SIMULATION METHODOLOGY 91 

elk 

gnt 

ask_for_it 

trdyH:0] 

datio [7:0| 

Master device 

rsel 

frame 

irdy 

req 

datac [8:0] 

Figure 2-2. Sample master device 
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Figure 2-3. Write transaction of a master device 

The most significant bit is the instruction bit (shown as signal "rw" in 
waveforms). If it is 1, the master will write and if it is a 0 then the master 
will read. If it is a write transaction, the least significant 8 bits consist of the 
data that needs to be written to the target device. If it is a read transaction, 
then the data read fi-om the target device appears on the "datao" input bus. 
Each transaction of the master will last exactly 8 clock cycles. In other 
words, a master can either read 8 bytes in a transaction or write 8 bytes in a 
transaction. There is no specific address generation scheme. The master will 
write to the most updated write pointer address existing within the target 
device. Similarly, the master will read from the most updated read pointer 
address within the target device. The sample waveform for a master write 
transaction is shown in Figure 2-3. The sample waveform for a master read 
transaction is shown in Figure 2-4. 
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Figure 2-4. Sample read transaction of a master device 

Once the read or write transaction is complete, the master indicates 
completion by de-asserting the signals "frame" and "irdy" in the next clock 
cycle. It also sets the "rsel" signal to tri-state. The arbiter acknowledges this 
and de-asserts the "gnt" signal in the next clock cycle. Once the arbiter 
removes the "gnt" signal, the target device acknowledges completion of the 
transaction by de-asserting the "trdy" signal. 

2.1.2 The Mediator 

The block diagram of the mediator along with input and output ports is 
shown in Figure 2-5. The mediator performs two important tasks: 

1. Provide arbitration logic that decides which master will get access 
to conduct a transaction with a target device. 

2. Establish the link between a specific master device and a target 
device. At a given time any number of masters can ask for access 
by asserting their respective "req" signal. 

The arbiter uses a round robin algorithm and decides which master will 
get access. When the arbiter makes a decision, it will assert the "gnt" signal 
of the respective master device. The arbiter can take anywhere between 2 to 
5 clock cycles to make a decision. The internal logic for the arbiter is 
described with a simple zero one-hot state machine. 
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Figure 2-5. Sample mediator device 

After the master selects the target it will have a transaction with, the 
mediator will provide that information to the specific target device. Since 
three masters are capable of having a transaction with any of the target 
devices, the mediator has to monitor the "rsel" signals from all three masters. 
At any given time, either all the three "rsel" signals are tri-stated or 
definitely two of them are tri-stated. If all three "rsel" signals are tri-stated, 
then there is no transaction request at that point. If there is a transaction, then 
one of the "rsel" signals will have a value of 0 or 1, depending on which 
target device will be used. If signal "rsel" is 1 then, the MSB of signal "sel" 
is set high indicating that target device 1 is selected. If signal "rsel" is 0 then, 
the LSB of signal "sel" is set high indicating that target device 0 is selected. 
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Figure 2-6. Waveform for mediator functionality 

The mediator also selects the correct data signals for both write and read 
transactions. If it is a write transaction, then the mediator monitors which 
master's "rsel" signal is active and assigns the data value relevant to that 
master to the selected target device input. For example, if master 1 is asking 
for a write transaction with target device zero, then the signal "rsell" will be 
set to low and the bus "datal" will be assigned to the mediator output bus 
"data." This output is fed to the input of the selected target device. The 
mediator also assigns the correct output data from the target device back to 
the master device in a read transaction. For example, if target 1 is involved 
in the read transaction, then the bus "dataoutl" will be assigned to the bus 
"datao." The sample waveform for the mediator is shown in Figure 2-6. 

2.1.3 The Target device 

The block diagram of the target device along with input and output ports 
is shown in Figure 2-7. The target device has a first-in-first-out type memory 
that can store up to 64 bytes of data. 
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Figure 2-8. Target write transaction 

The target device waits for the signal "sel_bit" to be asserted. Once 
signal "sel_bit" is asserted, the target has to acknowledge by asserting the 
signal "trdy" after 2 clock cycles. After asserting signal "trdy" the target 
device waits for a valid data and a valid write signal if it is a write 
transaction. Once a valid write signal is detected, the incoming data is stored 
in the target device in locations starting fi-om the most updated value of the 
write pointer (wi) register. If it is a read transaction, then the target device 
reads out 8 data points from its memory using the current read pointer 
location (ri) as the starting address. 

The type of transaction is indicated by the MSB of the bus "datain." In a 
read transaction, the data read appears on the bus vector "dataout." When the 
transaction is complete, the signal "sel_bit" is de-asserted and one clock 
cycle after that the signal "trdy" is de-asserted. The sample waveform for a 
target write transaction is shown in Figure 2-8. The sample waveform for a 
target read transaction is shown in Figure 2-9. 
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Figure 2-9. Target read transaction 

2.2 Block level verification 

As the individual design blocks get ready they should be tested 
thoroughly. Exhaustive verification of the blocks will uncover the comer 
case bugs ahead of time. Finding these bugs before integrating the system is 
a must. Finding these bugs at the system level will be very difficult. Also, 
system level failures provide a greater challenge for identifying and 
debugging comer case bugs. SVA can be used efficiently to test the 
individual blocks effectively. At the block level, the simulations are smaller 
and hence the bugs can be traced easily and fixed promptly. There are 4 
individual design blocks in the sample system that need to be verified: 

1. Master 
2. Target 
3. Arbiter 
4. Glue 

There are also 2 block level interfaces that need to be tested thoroughly: 

1. Master and Mediator 
2. Target and Mediator 

2.2.1 SVA in design bloclis 

The following tips are recommended for doing block level verification 
with SVA: 

file://'/mimi/immnmr/j/Ym
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• All SVA checks written for a block level design should be in-
lined. Block level assertions often involve accessing internal 
registers of a design and hence, in-lining the checks within the 
design module is more efficient. 

• The inclusion of SVA checks written at the block level should be 
controlled by a parameter defined within the design module. This 
gives the freedom to tum the checks on and off on a per 
simulation basis. 

• The severity level of the SVA checks written at the block level 
should be controlled by a parameter defined within the design 
module. The default severity in SVA is to print an error message 
and continue simulating. 

• Every block level SVA check written should be asserted and 
covered. It is a must that all the block level checks must have at 
least one real success. 

2.2.2 Arbiter verification 

Based on the protocol description of the arbiter firom Section 2.1.2, the 
following SVA checks can be extracted. Some of the common expressions 
used repeatedly in the arbiter checks can be defined with "assign" statements 
as shown below: 

assign frame = framel && frame2 && frames; 
assign irdy = irdyl && irdy2 && irdy3; 
assign gnt = Jgntl || !gnt2 || !gnt3; 
assign req = !regl || !req2 || !req3; 

The "fi-ame" and "irdy" signals are all active low signals. Each master 
has a unique "frame" and "irdy" signal and these are inputs to the arbiter 
module. If a master is active, it sets both the "frame" and "irdy" low. Hence, 
by AND'ing the "frame" signals, we know that the bus is active if the 
AND'ed value is low. Similarly, by AND'ing the "irdy" signals, we know 
that the bus is active if the AND'ed value is low. If the AND'ed values of 
"frame" and "irdy" signals are high, then none of the masters are active. 

Each master has a unique "req" signal that requests the bus and the 
arbiter provides a unique "gnt" signal. By OR'ing all the "req" signals we 
know that even if one master has a valid request, the arbiter considers the 
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request. Similarly, by OR'ing the "gnt" signals, we know that one master has 
acquired the grant. Creating such intermediate expressions make the SVA 
checkers more readable. 

Arb_chkl: On any given clock edge, the internal state of the arbiter 
should behave as a zero one-hot state machine. 

property p_arb_onehotO; 

©(posedge elk) $onehotO(state); 
endproperty 

Arb_chk2: Upon a valid request by a master, the arbiter should provide a 
grant within 2 to 5 clock cycles. 

property p_req_gnt; 
©(posedge elk) $rose (req) |-> 

##[2:5] $rose (gnt); 
endproperty 

Arb_chk3: Once the grant is awarded, the master should acknowledge 
acceptance in the same clock cycle by asserting the "frame" and "irdy" 
signals. 

property p_gnt_frame; 
©(posedge elk) $rose (gnt) |-> 

$fell (frame && irdy); 
endproperty 

Arb_chk4: Once the master completes the transaction it de-asserts the 
"frame" and "irdy" signals, followed by that, the arbiter should de-assert the 
"gnt" signal on the next clock cycle. 

property p_frame_gnt; 
©(posedge elk) $rose(frame && irdy) 

|=> $fell(gnt); 
Endp r op e r ty 

2.2.3 SVA Checks for arbiter in simulation 

The four checks shown in Section 2.2.2 should be in-lined within the 
arbiter module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 
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module arbiter( ); 

// port declarations 

parameter arb_sva = I'bl; 
parameter arb_sva_severity = I'bl; 

// Arbiter design description 
// SVA property description 

// SVA Checks 

always®(posedge elk) 
begin 
if{arb_sva) 
begin 

a_arb_onehotO: 
assert property{p_arb_onehotO) 
else if(arb_sva_severity) $fatal; 

a_req_gnt: 
assert property(p_req_gnt) 
else if{arb_sva_severity) $fatal; 

a_gnt_frame : 
assert property(p_gnt_frame) 
else if{arb_sva_severity) $fatal; 

a_frame_gnt: 
assert property{p_frame_gnt) 
else if(arb_sva_severity) $fatal; 

c_arb_onehotO: cover property(p_arb_onehotO); 
c_req_gnt: cover property(p_req_gnt); 
c_gnt_frame: cover property{p_gnt_frame); 
c_frame_gnt: cover property{p_frame_gnt); 

end 
end 

endmodule 
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Figure 2-10. Arbiter checks in simulation 

The parameter "arb_sva" will have to be set to 1 for the checks to be 
included in a simulation. The parameter "arb_sva_severity" controls the 
action to be taken during simulation. In this case, if the parameter is set to 1, 
then the severity is set to Sfatal. This means that upon a failure of any of 
these checks, the simulation will exit. By setting the parameter to 0, the 
checks will use the default condition, which is to print an error message on a 
failure and continue simulating. A waveform from a sample simulation is 
shown in Figure 2-10. 

2.2.4 Master verification 

Based on the protocol description of the master from Section 2.1.1, the 
following SVA checks can be extracted. Note that each master has only one 
"req," "gnt," "frame" and "irdy" signals. The mention of these signals in the 
master checkers does not represent the expressions defined in the arbiter 
checkers. They are just individual signals present in each master device. 

Master_chkl: Upon a valid request from a master, the grant shall come 
within 2 to 5 clock cycles. If so and if the signal "r_sel" is high, then on the 
same clock cycle, the master should assert the signals "frame" and "irdy." 
Three cycles later the target device one should acknowledge its selection by 
asserting the signal "trdy." 

property p_master_startl; 
©(posedge elk) 
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( $ f e l l ( r e q ) # # [ 2 : 5 ] ( $ f e l l { g n t ) & & r _ s e l ) ) | - > 
( I f r a m e && l i r d y ) ##3 ! t r d y [ l ] ; 

e n d p r o p e r t y 

Master_chk2: Upon a valid request from a master, the grant shall come 
within 2 to 5 clock cycles. If so and if the signal "r_sel" is low, then on the 
same clock cycle, the master should assert the signals "frame" and "irdy." 
Three cycles later the target device zero should acknowledge its selection by 
asserting the signal "trdy." 

property p_master_start2; 
©(posedge elk) 
($fell (req) ##[2:5] ($fell(gnt) && !r_sel))|-> 

(Iframe && lirdy) ##3 !trdy[0]; 
endproperty 

Master_chk3: Once the target acknowledges its selection, the master 
should complete its transaction within 10 clock cycles. It should indicate the 
fransaction completion by de-asserting the signals "frame" and "irdy." One 
cycle later the signal "gnt" should be de-asserted. 

property p_master_stopl; 
©(posedge elk) 

$fell (trdy[l]) |-> ##10 (frame && irdy) ##1 gnt; 
endproperty 

property p_master_stop2; 

©(posedge elk) 
$fell (trdy[0]) |-> ##10 (frame && irdy) ##1 gnt; 
endproperty 

Note that two separate properties are written to check the fransaction 
completion, one for each target device. 

Master_chk4: If the master is in a write transaction, then the bus data 
(datac) should not be tri-stated and should have valid data. 

property p_master_datal; 
©(posedge elk) 

($fell (trdy[l]) ##2 rw) |-> 
($isunknown(data) == 0) [*7] ; 

endproperty 
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p r o p e r t y p _ m a s t e r _ d a t a 2 ; 
©(posedge e l k ) 

{ $ f e l l ( t r d y [ 0 ] ) ##2 rw) | - > 
($isunknowii(data) == 0) [*7] ; 

endproperty 

• Note that two separate properties are written to check the validity 
of data during write transaction, one for each target device. 

• Note that if the signal "rw" is high, then the master is conducting 
a write transaction. 

Master_chk5: If the master is in a read transaction, then the bus data 
(data_o) should not be tri-stated and should have valid data. 

p r o p e r t y p _ n i a s t e r _ d a t a o l ; 
©(posedge e l k ) 

( $ f e l l ( t r d y [ l ] ) ##3 !rw) |=> 
($isunknown{data_o) == 0) [*7]; 

endproperty 

property p_master_datao2; 
©(posedge elk) 

{$fell (trdy[0]) ##3 !rw) |=> 
($isunknown(data_o) == 0) [*7] ; 

endproperty 

• Note that two separate properties are written to check the validity 
of data during read transaction, one for each target device. 

• Note that if the signal "rw" is low, then the master is conducting 
a read transaction. 

2.2.5 SVA Checks for the master in simulation 

The five checks shown in Section 2.2.4 should be in-lined within the 
master module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 

module master( ); 

// port declarations 

parameter master_sva = I'bl; 
parameter .master_sva_severity = I'bl; 
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// Master design description 

// SVA property description 

// SVA Checks 

always®(posedge elk) 

begin 

if{master_sva) 

begin 

a_master_startl: 
assert property(p_master_startl) 
else if{master_sva_severity) $fatal; 

a_master_start2: 
assert property(p_master_start2) 
else if(master_sva_severity) $fatal; 

a_master_stopl: 
assert property{p_master_stopl) 
else if{master_sva_severity) $fatal; 

a_master_stop2: 
assert property(p_master_stop2) 
else if(master_sva_severity) $fatal; 

a_master_datal: 
assert property{p_master_datal) 
else if(master_sva_severity) $fatal; 

a_master_data2: 
assert property(p_master_data2) 
else if(master_sva_severity) $fatal; 

a_master_dataol: 
assert property(p_master_dataol) 
else if(master_sva_severity) $fatal; 
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a_master_datao2: 
assert property(p_master_datao2) 
else if{master_sva_severity) $fatal; 

c_master_startl: cover property{p_master_startl); 
c_master_start2: cover property{p_master_start2); 
c_master_stopl: cover property(p_master_stopl) 
c_master_stop2: cover property(p_master_stop2) 
c_master_datal: cover property(p_master_datal) 
c_master_data2: cover property(p_master_data2) 
c_master_dataol: cover property(p_master_dataol); 
c_master_datao2: cover property(p_master_datao2); 

end 

end 

endmodule 

A waveform from a sample simulation of these master checks is shown 
in Figure 2-11. 
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2.2.6 Glue verification 

Based on the protocol description of the glue logic from Section 2.1.2, 
the following SVA checks can be extracted. 

Glue_chkl: If any one of the master select signals "sell," "sel2" or 
"sel3" is high, then target device one should be selected. 

property p_sel_l; 
©(posedge elk) 

(rsell II rsel2 || rsel3) |=> sel == 2'blO; 
endproperty 

Glue_chk2: If any one of the master select signals "sell," "sel2" or 
"sel3" is low, then target device zero should be selected. 

property p_sel_0; 
©(posedge elk) 

(Irsell II !rsel2 || !rsel3) |=> sel == 2'bOl; 
endproperty 

Glue_chk3: During a write transaction, if the signal "rsell" is not tri-
stated, then the data from master device one should be written to the 
respective target device. 

property p_rsell_write; 
©(posedge elk) 

((rsell II Irsell) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 datal[8]) |-> 

(data == $past(datal)) [*7]; 
endproperty 

• Note that we determine the nature of the transaction (read/write) 
by using the most significant bit of the bus "data." 

• If the MSB of the bus "data" is high, then it is a write 
transaction. 

• If the MSB of the bus "data" is low, then it is a read transaction. 
• Within the master device, the nature of the transaction is 

determined by the signal "rw." This signal is a copy of the MSB 
of the bus "data." The signal "rw" is local to the master device. 
The external interface should infer the nature of the transaction 
by using the MSB of the bus "data." 
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Glue_chk4: During a write transaction, if the signal "rsel2" is not tri-
stated, then the data from master device two should be written to the 
respective target device. 

property p_rsel2_write; 
©(posedge elk) 
((rsel2 II !rsel2) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 data2[8] ) |-> 

(data == $past(data2)) [*7] ; 
endproperty 

Glue_chk5: During a write transaction, if the signal "rsel3" is not tri-
stated, then the data from master device three should be written to the 
respective target device. 

property p_rsel3_write; 
©(posedge elk) 
((rsel3 II !rsel3) ##3 ($fell (trdy[l]) || 
$fell(trdy[0])) ##3 data3[8]) |-> 

(data == $past(data3)) [*7]; 
Endproperty 

Glue_chk6: During a read transaction, if target device one is selected, 
then data read from target one (dataoutl) should be fed back to the 
respective master. 

property p_readl; 
©(posedge elk) 
($fell (trdy[l]) ##4 !data[8]) |-> 

(dataoutl == datao) [*7]; 
endproperty 

Glue_chk7: During a read transaction, if target device zero is selected, 
then data read from target zero (dataout2) should be fed back to the 
respective master. 

property p_readO; 
©(posedge elk) 
($fell (trdy[0]) ##4 !data[8]) |-> 

(dataout2 == datao) [*7] ; 
endproperty 
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2.2.7 SVA Checks for the glue logic in simulation 

The seven checks shown in Section 2.2.6 should be in-hned within the 
glue module. There should be a provision to assert these properties on a need 
basis. The following code shows how this can be achieved. 

module g l u e ( ) ; 

// port declarations 

parameter glue_sva = I'bl; 
parameter glue_sva_severity = I'bl; 

// glue design description 

// glue SVA property description 

// SVA Checks 

always®(posedge elk) 

begin 
if(glue_sva) 
begin 
a_sel_l: 

assert property(p_sel_l) 
else if{glue_sva_severity) $fatal; 

a_sel_0: 
assert property(p_sel_0) 
else if{glue_sva_severity) $fatal; 

a_rsell_write: 
assert property(p_rsell_write) 
else if(glue_sva_severity) $fatal; 

a_rsel2_write: 
assert property{p_rsel2_write) 
else if(glue_sva_severity) $fatal; 

a_rsel3_write: 
assert property{p_rsel3_write) 
else if(glue_sva_severity) $fatal; 
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a _ r e a d l : 
a s s e r t property{p_readl) 
e l s e i f ( g l u e _ s v a _ s e v e r i t y ) $ f a t a l ; 

a_readO: 
assert property{p_readO) 
else if(glue_sva_severity) $fatal; 

c_sel_l: cover property(p_sel_l); 
c_sel_0: cover property(p_sel_0); 
c_rsell_write: cover property(p_rsell_write); 
c_rsel2_write: cover property(p_rsel2_write); 
c_rsel3_write: cover property{p_rsel3_write); 
c_readl: cover property(p_readl); 
c_readO: cover property(p_readO); 

end 
end 

endmodule 

A waveform from a sample simulation of the glue checks is shown in 
Figure 2-12. 
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Figure 2-12. Glue checks in simulation 

2.2.8 Target verification 

Based on the protocol description of the target device from Section 2.1.3, 
the following SVA checks can be extracted. 

Target_chkl: If a target is selected, then it should assert the signal 
"trdy" after 2 clock cycles. 

property p_sel_trdy_start; 
©(posedge elk) $rose {sel_bit) |-> 

##1 trdy ##1 Itrdy; 
endproperty 

Target_chk2: At the end of a transaction, the "sel_bit" signal is de-
asserted. One clock cycle after that, the signal "trdy" should be de-asserted. 
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property p _ s e l _ t r d y _ s t o p ; 
©(posedge elk) $ f e l l ( s e l _ b i t ) |=> t r d y ; 

endproperty 

Target_chk3: In a write transaction, the write pointers should be 
incremented by one after each clock cycle to complete a valid "write" to a 
unique address every time. 

property p_write; 
©(posedge elk) 
(datain[8] && sel_bit && (wi != 0)) |-> 

(wi == ($past(wi) + 1)) ; 
endproperty 

• Note that the address pointer will roll over from 63 to 0. Hence, 
this check cannot be applied if on a given clock edge the write 
pointer is at 0. 

• A different check can be written to verify that the pointer always 
rolls over correctly from 63 to 0. 

Target_chk4: In a read transaction, the read pointers should be 
incremented by one after each clock cycle to complete a valid "read" from a 
unique address every time. 

property p_read; 
©(posedge elk) 
(!datain[8] && sel_bit && (ri != 63)) |=> 

(ri == ($past(ri) + 1)); 
endproperty 

• Note that in the case of read pointer, when the pointer is at 63 
this check cannot be applied. 

• The read operation has a latency of one clock cycle and hence we 
use the Non-overlapping implication operator. 

• Since a non-overlapping operator is used, the check moves 
forward to one cycle and compares the address in the previous 
cycle. 

• For example, on a given clock edge, if the antecedent of the 
implication is true, the check moves to the next clock cycle. If 
the pointer is at 63, then the check moves to pointer 0 and 
compares 63 and 0 for an increment of one. This is incorrect. 
Hence, the check should not be performed if the value of the read 
pointer is 63 on a given clock edge. 
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• A separate check can be written to make sure that the pointer 
rolls over from 63 to 0 accurately. 

Target_chk5: During a valid read or write transaction, the data read 
from or written to the target should be valid. 

property p_target_datain; 
©(posedge elk) 
($fell (trdy) ##3 (datain[8])) |-> 

not ($isunknown (datain)) [*7]; 
endproperty 

property p_target_dataout; 
©(posedge elk) 
($fell (trdy) ##3 (!datain[8])) |=> 

not {$isunknown(dataout)) [*7]; 
endproperty 

2.2.9 SVA Checks for the Target in simulation 

The five checks shown in Section 2.2.8 should be in-lined within the 
target module. There should be a provision to assert these properties on a 
need basis. The following code shows how this can be achieved. 

module target( ); 

// port declarations 

parameter target_sva = I'bl; 
parameter target_sva_severity = I'bl; 

// target design description 
// target SVA property description 
// SVA Checks 

always©(posedge elk) 
begin 
if(target_sva) 
begin 

a_sel_trdy_start: 
assert property(p_sel_trdy_start) 
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e l s e i f ( t a r g e t _ s v a _ s e v e r i t y ) $ f a t a l ; 
a _ s e l _ t r d y _ s t o p : 

a s s e r t proper ty (p_se l_ t rdy_s top ) 
e l s e i f ( t a r g e t _ s v a _ s e v e r i t y ) $ f a t a l ; 

a_write: 
assert property{p_write) 
else if(target_sva_severity) $fatal; 

a_read: 
assert property{p_read) 
else if(target_sva_severity) $fatal; 

a_target_datain: 
assert property(p_target_datain) 
else if(target_sva_severity) $fatal; 

a_target_dataout: 
assert property(p_target_dataout) 
else if{target_sva_severity) $fatal; 

c_sel_trdy_start: 
cover property(p_sel_trdy_start); 

c_sel_trdy_stop: cover property(p_sel_trdy_stop); 
c_write: cover property(p_write); 
c_read: cover property(p_read); 
c_target_datain: cover property(p_target_datain); 
c_target_dataout: 

cover property(p_target_dataout); 

end 
end 
endmodule 

A waveform from a sample simulation of the target checks is shown in 
Figure 2-13. 
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Figure 2-13. Target checks in simulation 

2.3 System level verification 

There are 3 masters and 2 targets in the system along with an instance of 
the mediator. The top-level connection of the system is shown below. 

Module t o p ( . . , . . , ) ; 

// port declarations 

master ul (ask[2], elk, reql, gntl, framel, 
irdyl, trdy, datal, rsell, datao); 

master u2 (ask[l], elk, req2, gnt2, frame2, 
irdy2, trdy, data2, rsel2, datao); 

master u3 (ask[0], elk, req3, gnt3, frames, 
irdy3, trdy, dataS, rsel3, datao); 

arbiter u4 (elk, reset, frame, irdy, reql, req2, 
req3, gntl, gnt2, gnt3); 

glue u5 (elk, framel, irdyl, frame2, irdy2, 
frames, irdyS, trdy, rsell, rsel2, rsel3, datal. 
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data2, dataS, sel, data, dataoutl, dataout2, 
datao); 

target u6 (elk, reset, sel [1], trdy[l], data, 
dataoutl); 

target u7 (elk, reset, sel [0] , trdy[0], data, 
dataout2); 

endmodule 

The following tips are recommended for doing system level verification 
with SVA: 

• Since the internal functionality of the individual blocks was 
verified thoroughly, the block level assertions don't have to be 
included during the system level verification by default. The 
main motive behind this is performance. 

• If performance is not a bottleneck, the block level assertions shall 
be included in the system level verification by default. The 
system interfaces provide a more realistic and unexpected set of 
input conditions and block level assertions must be able to react 
to them correctly. 

• The verification environment should provide the facility to turn 
on block level assertions if there are any failures. For example, 
in our sample system, if a failure occurs during a transaction 
between master 1 and target 0, then the system level simulation 
should be re-run by including the block level SVA checks 
written for master 1 and target 0. 

• At the system level, a new set of assertions should be written that 
verifies the connectivity of the system. More focus should be on 
the interface rules rather than the internal block details. 

2.3.1 SVA Checks for system level verification 

The following set of checks can be written for the system level 
verification based on the connectivity and protocol of the system. 
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Ss_shkl: Only one "trdy" signal can be asserted at any given point. In 
other words, only one target device can participate in a transaction at any 
given time. 

property p_target; 
©(posedge elk) not (!trdy[0] && !trdy[l]); 

endproperty 

Ss_chk2: Only one set of "frame" and "irdy" signals can be asserted at 
any given clock cycle. In other words, only one master device can participate 
in a transaction at any give time. 

property p_frame; 
©(posedge elk) 

$countones({framel, frame2, frames}) >1; 
endproperty 

property p_irdy; 
©(posedge elk) 

$countones({irdyl, irdy2, irdyS}) >1; 
endproperty 

Ss_chk3: Only one "gnt" signal shall be asserted at any given time. In 
other words, the arbiter can provide access for only one master at a time to 
pursue a transaction. 

property p_gnt; 
©(posedge elk) 

$countones({gntl, gnt2, gnts}) > 1; 
endproperty 

Ss_chk4: Only one "rw" signal shall be active at any given clock cycle, 
the other "rw" signals should be tri-stated ("rw" signal is the MSB of the 
masters data output bus). 

property p_rw; 
©(posedge elk) 
($isunknown(rwl) && $isunknown(rw2) && 
$isunknown(rw3) ) || 
((rwl==l'bl II rwl==l'bO) && $isunknovm (rw2) 
&& $isunknown(rw3)) || 
((rw2==l'bl II rw2==l'b0) && $isunknown (rwl) 
&& $isunknown(rw3)) | j 
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{{rw3==l'bl II rw3==l'b0) && $isunknown (rw2) 
&& $isunknown(rw2)); 

endproperty 

Ss_chk5: Only one "rsel" signal shall be active at any given clock cycle, 
the other "rsel" signals should be tri-stated. 

property p_rsel; 
©(posedge elk) 

$isunknowii (rsell) && $isunknown(rsel2) && 
$isunknown(rsel3) ) || 
{(rsell==l'bl II rsell==l'bO) && $isunknowii 

(rsel2) && $isunknown(rselB)) || 
{(rsel2==l'bl || rsel2==l'b0) && $isunknovm 

(rsell) && $isunknowii(rsel3) ) | | 
( (rsel3 = = l'bl || rsel3 = = l'b0) &.&. $isunknovm 

{rsel2) && $isunknown(rsell)); 
endproperty 

Ss_chk6: Upon a valid request by a master, a valid "gnt" should arrive 
within 2 to 5 clock cycles. 

assign req = !reql || !req2 || !req3; 
assign gnt = Igntl || !gnt2 || !gnt3; 

property p_req_gnt_w; 
©(posedge elk) 

$rose (req) |-> ##[2:5] $rose(gnt); 
endproperty 

Ss_chk7: At any given clock, if the "frame" and "irdy" signal of a master 
are asserted, then the relevant "trdy" signal should be asserted after 3 clock 
cycles. 

assign frame_ = Iframel || !frame2 || !frame3; 
assign irdy_ = !irdyl || !irdy2 || !irdy3; 

property p_start_frame; 
©(posedge elk) 

$rose (frame_ && irdy_) |->##3 $rose(trdy_); 
endproperty 
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Ss_chk8: At any given clock, if the "frame" and "irdy" signals of the 
master are de-asserted, then the relevant "trdy" signal should be de-asserted 
after 2 clock cycles. 

assign trdyp = trdy[l] && trdy[0]; 

property p_end_frame; 
©(posedge elk) 

$rose (frame && irdy) |->##2 $rose(trdyp); 
endproperty 

Ss_chk9: If there is no valid transaction at any given clock, then the bus 
"data" and "datao" should be tri-stated. 

property p_bus_not_in_use; 
©(posedge elk) 
trdyp I-> 

($isunknown(data) && $isunknown(datao)); 
endproperty 

a_target : assert property(p_target); 
a_frame: assert property(p_frame); 
a_irdy: assert property(p_irdy); 
a_rsel: assert property(p_rsel); 
a_rw: assert property(p_rw); 
a_gnt: assert property(p_gnt); 
a_req_gnt_w : assert property(p_req_gnt_w); 
a_start_frame: assert property(p_start_frame); 
a_end_frame: assert property(p_end_frame); 
a_bus_in_use: assert property(p_bus_not_in_use); 

c_target : cover property(p_target); 
c_frame: cover property(p_frame); 
c_irdy: cover property(p_irdy); 
c_rsel: cover property(p_rsel); 
c_rw: cover property(p_rw); 
c_gnt: cover property(p_gnt); 
c_req_gnt_w : cover property(p_req_gnt_w); 
c_start_frame: cover property(p_start_frame); 
c_end_frame: cover property(p_end_frame); 
c_bus_in_use: cover property(p_bus_not_in_use); 
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During the system level simulation, the top-level module should be 
configured with the parameter settings such that all block level assertions are 
turned off. In our sample system, since each design block has a parameter 
that allows including its relevant SVA checks on a need basis, we can 
configure the top module for system level run easily as shown below. 

Module t o p ( . . , . . , ) ; 

// port declarations 

master 
#{.master_sva(1'bO), .master_sva_severity(1'bO)) 
ul (ask[2], elk, reql, gntl, framel, irdyl, trdy, 
datal, rsell, datao); 

master 
#{.master_sva(1'bO), .master_sva_severity(1'bO)) 
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy, 
data2, rsel2, datao); 

master 
#(.master_sva(1'bO), .master_sva_severity(1 'bO) ) 
u3 (ask[0], elk, req3, gnt3, frames, irdyS, trdy, 
data3, rsel3, datao); 

arbiter 
#(.arb_sva(1'bO), .arb_sva_severity(1'bO)) 
u4 (elk, reset, frame, irdy, reql, req2, reqS, 
gntl, gnt2, gnt3); 

glue 
#{.glue_sva{1'bO), .glue_sva_severity{1'bO)) 
u5 (elk, framel, irdyl, frame2, irdy2, frame3, 
irdy3, trdy, rsell, rsel2, rsel3, datal, data2, 
data3, sel, data, dataoutl, dataout2, datao); 

target 
#(.target_sva{1'bO), .target_sva_severity(1'bO)) 
u6 (elk, reset, sel [1], trdy[l], data, dataoutl); 

target 
#(.target_sva(1'bO), .target_sva_severity(1'bO)) 
u7 (elk, reset, sel[0], trdy[0], data, dataout2); 
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Note that when each design block is instantiated, the parameter values 
are passed. The first parameter "*_sva" is set to 0 in all the individual 
instantiations, which indicates that the block level assertions will not be 
included. Now, the system level simulations can be run only with the system 
level checks. 

Let us assume that there are failures on "Ss_chk6" during the system 
level simulation. This check looks for interface failures between the masters 
and the arbiter module. To debug the errors, the simulation can be re-run by 
including the block level checks relevant to the masters and the arbiter. The 
top modules configuration for such a run is shown below: 

Module t o p ( . . , . . , ) ; 

// port declarations 

master 
#(.master_sva(1'bl), . master_sva_severity(1'bO)) 
ul {ask[2], elk, reql, gntl, framel, irdyl, trdy, 
datal, rsell, datao); 

master 
#{.master_sva{1'bl), .master_sva_severity{1'bO) ) 
u2 (ask[l], elk, req2, gnt2, frame2, irdy2, trdy, 
data2, rsel2, datao); 

master 
#(.master_sva(1'bl), .master_sva_severity(1' bO) ) 
u3 (ask[0], elk, req3, gnt3, frameS, irdyS, trdy, 
data3, rsel3, datao); 

arbiter 
#(.arb_sva{1'bl), .arb_sva_severity(1'bO)) 
u4 (elk, reset, frame, irdy, reql, req2, 
gntl, gnt2, gnt3); 

req3, 

glue 
#(.glue_sva(1'bO), .glue_sva_severity(1'bO)) 
u5 (elk, framel, irdyl, frame2, irdy2, frame3, 
irdy3, trdy, rsell, rsel2, rsel3, datal, data2, 
data3, sel, data, dataoutl, dataout2, datao); 
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t a r g e t 
# { . t a r g e t _ s v a ( 1 ' b O ) , . t a r g e t _ s v a _ s e v e r i t y ( 1 ' b O ) ) 

u6 (e lk , r e s e t , s e l [ 1 ] , t r d y [ l ] , d a t a , d a t a o u t l ) ; 

target 
#(.target_sva(1'bO), .target_sva_severity(1'bO) ) 
u7 (elk, reset, sel[0], trdy[0], data, dataout2); 

endmodule 

Note that the parameter "master_sva" and "arb_sva" are set to 1 in this 
configuration. In the basic design blocks, SVA checks could also be 
included conditionally using the ""ifdef - "endif construct. By conditionally 
compiling the SVA code, the user can either have the checks on all instances 
of the module or on none of the instances of the module. The disadvantage 
with this methodology is that, it is a global control mechanism. By using 
parameters, this disadvantage can be overcome and the user gets more 
flexibility in choosing the block level checks needed for a particular 
simulation run. 

2.4 Functional coverage 

The system level checks written so far look for specific protocol 
violations, if any. By making sure that these checks executed at least once in 
the simulation, the confidence level on the functionality of the system 
increases tremendously. The other aspect of functional coverage is covering 
all possible scenarios of system functionality during simulation from the 
testbench perspective. The scenarios to be covered during a simulation 
should be part of the test plan. 

The SVA checks written for dynamic simulation are only as good as the 
input stimulus. If the input vectors do not force the system to execute certain 
scenarios, then those remain untested. A lot of testbenches use random 
techniques to generate input stimulus vectors. A very common approach is to 
run a pre-determined number of transactions and measure coverage on 
certain scenarios. By constraining the random generation of input stimulus, 
the scenarios can be covered more efficiently. The key is to get the 
maximum functional coverage in a minimum number of cycles. The 
coverage information collected from SVA can be used effectively to create 
reactive verification environments. 
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2.4.1 Coverage plan for the sample system 

The sample system discussed in this chapter has a lot of key functionality 
that should be covered as part of the functional verification. 

2.4.1.1 Request Scenario 

"All possible request scenarios should be covered" 

There are three masters that can ask for access at any given time. This 
means that there are 7 possible combinations of the master "req" signals as 
shown in Table 2-1. 

Table 2-1. Master request scenarios 

Reql 
0 
1 
1 
0 
1 
0 
0 

Req2 
1 
0 
1 
0 
0 
1 
0 

Req3 
1 
1 
0 
1 
0 
0 
0 

A 0 in the table indicates that the master is requesting for the bus. The 
testbench should create all these possible input combinations during 
simulation. 

The following code example shows how functional coverage data can be 
used to control the simulation environment. Property definitions for all 7 
possible request combinations should be created as follows. 

property p_reql; // master 1 requesting 
©(posedge elk) $fell (reql) && req2 && req3; 

endproperty 

property p_req2; // master 2 requesting 
©(posedge elk) $fell (req2) && reql && req3; 

endproperty 

property p_req3; // master 3 requesting 
©(posedge elk) $fell (req3) && reql && req2; 

endproperty 
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property p _ r e q l 2 ; / / mas te r 1&2 r e q u e s t i n g 
©(posedge elk) 
$fell (reql) && $fell(req2)&& req3; 

endproperty 

property p_req2 3; // master 2&3 rtequesting 
©(posedge elk) 
$fell {req2) && $fell(req3) && reql; 

endproperty 

property p_req31; // master 1&3 requesting 
©(posedge elk) 
$fell (req3) && $fell(reql) && req2; 

endproperty 

property p_reql23; // master 1&2&3 requesting 
©(posedge elk) 
$fell (reql) && $fell{req2) && $fell(req3); 

endproperty 

Each property should have a cover statement associated with it as shown 
below. The action block of the cover statement can be used to update register 
flags. In this case, every time the property is covered, a local register count 
is incremented. In the same clock, we check if the counter has reached a 
value of 3. If so, then the flag associated to that property is asserted. In other 
words, it is expected that each request combination occurs three times during 
simulation and if and when it happens, a flag associated with that specific 
request combination will be asserted. 

c_reql: eover property(p_reql) 
begin 

creql++; 
if(creql == 3) creql_flag = I'bl; 

end 

c_req2: cover property(p_req2) 
begin 

creq2++; 

if(creq2 == 3) creq2_flag = I'bl; 
end 

c_req3: eover property(p_req3) 
begin 
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creq3++; 
if{creg3 == 3) creq3_flag = I'bl; 

end 
c_reql2: cover property(p_reql2) 

begin 
creql2++; 
if{creql2 == 3) creql2_flag = I'bl; 

end 

c_req23: cover property{p_req23) 
begin 

creq23++; 
if(creq23 == 3) creq23_flag = I'bl; 

end 

c_req31: cover property{p_req31) 
begin 

creq31++; 
if(creq31 == 3) creq31_flag = I'bl; 

end 

c_reql23: cover property(p_reql23) 
begin 

creql23++; 
if(creql23 == 3) creql23_flag = I'bl; 

end 

This coverage information can be used effectively to control the 
simulation environment. In a random testbench for the sample system, a pre
determined number of transactions could be performed one after the other. 
The simulation will finish when all transactions are completed. The 
following code shows how the functional coverage information can be used 
to terminate the simulation. 

always®(posedge elk) 
begin 

If{creql_flag && creq2_flag && creq3_flag && 
creql2_flag && creq23_flag && creq31_flag && 
creql23_flag) 

begin 
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$display{"FC: All possible request scenarios 
covered 3 times each\n"); 
$finish(); 

end 
end 

With this piece of code, there are two ways to terminate a simulation: 

1. Run the pre-determined number of transactions randomly and exit. 

2. Exit if all possible request scenarios are covered three times each. 

Whichever occurs first will terminate the simulation. 

2.4.1.2 Master to Target transactions 

"Every master device should perform both a read and a write 
transaction with every target device" 

There are 3 master devices and 2 target devices in the system. This 
creates 12 possible scenarios as shown in Table 2-2. Property definitions for 
all 12 possible transaction combinations should be created as follows. 

Table 2-2. Master to target transactions 

Master Target Transaction 
Ml 
Ml 
Ml 
Ml 
M2 
M2 
M2 
M2 
M3 
M3 
M3 
MS 

Tl 
Tl 
TO 
TO 
Tl 
Tl 
TO 
TO 
Tl 
Tl 
TO 
TO 

Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 
Read 
Write 

property p_mltlr; 
// masterl reading from target 1 
©(posedge elk) 
$fell (framel && irdyl) |-> 
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##3 { $ f e l l { t r d y [ l ] ) ) ##3 ! d a t a [ 8 ] ; 
endproperty 

property p_mltlw; 
// master 1 writing to target 1 
©(posedge elk) 
$fell (framel && irdyl) |-> 

##3 {$fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_mltOr; 
// master 1 reading from target 0 
©(posedge elk) 
$fell (framel && irdyl) |-> 

##3 ($fell (trdy[0])) ##3 !data[8]; 
endproperty 

property p_mltOw; 
// master 1 writing to target 0 
©(posedge elk) 
$fell(framel && irdyl) |-> 

##3 ($fell(trdy[0])) ##3 data[8]; 
endproperty 

property p_m2tlr; 
// master 2 reading from target 1 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($fell(trdy[l])) ##3 !data[8]; 
endproperty 

property p_m2tlw; 
// master 2 writing to target 1 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_m2t0r; 
// master 2 reading from target 0 
©(posedge elk) 
$fell (frame2 && irdy2) |-> 

##3 ($felltrdy[0])) ##3 'data [8]; 
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endproperty 

property p_m2t0w; 
// master 2 writing to target 0 
@(posedge elk) 
$fell {frame2 && irdy2) |-> 

##3 ($fell {trdy[0])) ##3 data[8]; 
endproperty 

property p_m3tlr; 
// master 3 reading from target 1 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell {trdy[l])) ##3 !data[8]; 
endproperty 

property p_m3tlw; 
// master 3 writing to target 1 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 {$fell (trdy[l])) ##3 data[8]; 
endproperty 

property p_m3t0r; 
// master 3 reading from target 0 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell {trdy[0])) ##3 !data[8]; 
endproperty 

property p_m3t0w; 
// master 3 writing to target 0 
©(posedge elk) 
$fell (frame3 && irdy3) |-> 

##3 ($fell (trdy[0])) ##3 data[8]; 
endproperty 

Each property should have a cover statement associated with it as shown 
below. The same technique used in Section 2.4.1.1 is used to keep count of 
the number of occurrences of the scenario. 

c _ m l t l r : e o v e r p r o p e r t y ( p _ m l t l r ) 
begin 
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m l _ t l _ r + + ; 
i f ( m l _ t l _ r == 3) m l _ t l _ r _ f l a g = I ' b l ; 

end 

c_raltlw: cover property(p_mltlw) 
begin 
ml_tl_w++; 
if(ml_tl_w == 3) ml_tl_w_flag = I'bl; 

end 

c_mltOr: cover property{p_mltOr) 
begin 
ml_tO_r++; 
if{ml_tO_r == 3) ml_tO_r_flag = I'bl; 

end 

C_mltOw: cover property(p_mltOw) 
begin 
ml_tO_w++; 
if(ml_tO_w == 3) ml_tO_w_flag = I'bl; 

end 

c_m2tlr: cover property{p_m2tlr) 
begin 
m2_tl_r++; 
if{m2_tl_r == 3) m2_tl_r_flag = I'bl; 

end 

c_m2tlw: cover property(p_m2tlw) 
begin 
m2_tl_w++; 
if{m2_tl_w == 3) m2_tl_w_flag = I'bl; 

end 

C_m2t0r: cover property(p_m2t0r) 
begin 
m2_t0_r++; 
if{m2_t0_r == 3) m2_t0_r_flag = I'bl; 

end 

C_m2t0w: cover property(p_m2t0w) 
begin 
m2 to W++; 
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if(m2_t0_w == 3) m2_t0_w_flag = I ' b l ; 
end 

c_m3t l r : cover property (p_m3tl r ) 
begin 

m3_tl_r++; 
i f ( m 3 _ t l _ r == 3) m3_ t l_ r_ f l ag = I ' b l ; 

end 

c_m3tlw: cover property(p_m3tlw) 
begin 
m3_tl_w++; 
if{m3_tl_w == 3) m3_tl_w_flag = I'bl; 

end 

c_m3t0r: cover property(p_m3tOr) 
begin 
m3_t0_r++; 
if(m3_t0_r == 3) m3_t0_r_flag = I'bl; 

end 

c_m3t0w: cover property(p_m3t0w) 
begin 
m3_t0_w++; 
if(m3_t0_w == 3) m3_t0_w_flag = I'bl; 

end 

This coverage information from both Sections 2.4.1.1 and 2.4.1.2 can be 
used effectively to control the simulation environment. With the piece of 
code shown below, there are two ways to terminate a simulation: 

1. Run a pre-determined number of transactions randomly and exit. 
2. If all possible request scenarios are covered three times and if all 

possible "master to target" transactions are covered three times, then 
exit the simulation. 

Whichever occurs first will terminate the simulation. 

always®(posedge elk) 
begin 

if(creql_flag && creq2_flag && creq3_flag && 
creql2_flag && creq23_flag && creq31_flag && 
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c r e q l 2 3 _ f l a g && m l _ t l _ r _ f l a g && m l _ t l _ w _ f l a g && 
m l _ t O _ r _ f l a g && ml_ tO_w_f l ag && m 2 _ t l _ r _ f l a g && 
m 2 _ t l _ w _ f l a g && m 2 _ t 0 _ r _ f l a g && m 2 _ t 0 _ w _ f l a g && 
m 3 _ t l _ r _ f l a g && m 3 _ t l _ w _ f l a g && m 3 _ t 0 _ r _ f l a g && 
m3_tO_w_flag) 

b e g i n 

$display("FC: All possible request scenarios 
covered 3 times\n"); 

$display("FC: All possible transactions covered 
3 times\n"); 

$finish{); 

end 
end 

2.4.1.3 Advanced coverage options 

There is another data point that can be used to measure the functional 
coverage of the system. 

"Every target memory location sliould be written to and read from at 
least once by eacli master" 

This information requires exhaustive testing. Every address space in the 
target device should be monitored for usage by each master device. SVA is 
not always the choice for performing functional coverage. Functional 
coverage that involves exhaustive test plan coverage points can be done 
more efficiently with a testbench language that supports object oriented 
programming constructs. Such exhaustive functional coverage points 
should be used while running long regression runs. 

2.4.2 Functional coverage summary 

Functional coverage measurement guarantees testing of all required 
scenarios. The measure can be used effectively for controlling simulation 
environments. One method is to terminate simulation upon achieving the 
functional coverage goals. In the sample system, the following results were 
observed: 
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• Default number of random transactions set in the testbench was 
500. 

• Terminating the simulation based on the request scenarios shown 
in Section 2.4.1.1 took 46 transactions. 

• Terminating the simulation based on the request scenarios shown 
in Section 2.4.1.1 and the "master to target" transactions shown 
in Section 2.4.1.2 took 63 transactions. 

The functional coverage data obtained can also be used to re-direct the 
testbench dynamically. In random testbenches, constraints are used to 
control the type of transactions generated. These constraints are assigned 
certain weights for the random distribution in the beginning of a simulation. 
Based on the functional coverage information obtained during the 
simulation, these weights can be adjusted dynamically to achieve the 
functional coverage goal quickly. 

2.5 SVA for transaction log creation 

SVA can be used to create excellent log files. The SVA checkers snoop 
for any design property violation during simulation. The same checkers can 
be called monitors if they log the information that they are snooping. In a 
complex system, it really helps to create a chronological log of the 
transactions. In our sample system, creating a log of all the read and write 
transactions, between whom these happened and at what time will be a great 
debugging asset. 

SVA has the option to use a lot of the Verilog like capabilities within the 
scope of the checker. The action block of each checker or cover statement 
can be used efficiently to create log files. While displaying information upon 
the success of an assert or a cover statement is one way to create log files, 
another way is to call a task or a function. The calling of a task or a function 
expands the capabilities of the SVA checker. Apart fi^om displaying 
information within the task, data checking can also be done effectively. The 
following code shows how a chronological transaction log is created for the 
sample system. 

// open a file to document transactions 

integer h_mt; 
initial 
begin 
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h_mt = $ f o p e n { " m t . d a t " ) ; 
end 

/ / c a l l i n g t a s k f o r d o c u m e n t a t i o n 

" i f d e f s l v doc 

c _ m l t l w _ d o c : 
c o v e r p r o p e r t y { p _ m l t l w 

c _ m l t l r _ d o c : 
c o v e r p r o p e r t y { p _ m l t l r 

c _ m l t 2 w _ d o c : 
c o v e r proper ty{p_ml tOw 

c _ m l t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m l t O r 

c_m2t lw_doc : 
c o v e r p r o p e r t y { p _ m 2 t l w 

c _ m 2 t l r _ d o c : 
c o v e r p r o p e r t y ( p _ m 2 t l r 

c_m2t2w_doc: 
c o v e r p r o p e r t y ( p _ m 2 t 0 w 

c _ m 2 t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m 2 t 0 r 

c _ m 3 t l w _ d o c : 
c o v e r p r o p e r t y { p _ m 3 t l w 

c _ m 3 t l r _ d o c : 
c o v e r p r o p e r t y ( p _ m 3 t l r 

c_m3t2w_doc: 
c o v e r proper ty{p_m3t0w 

c _ m 3 t 2 r _ d o c : 
c o v e r p r o p e r t y { p _ m 3 t O r 

"endif 

master_xaction(l,1); 

master_xaction(l,1); 

master_xaction{l,0); 

master_xaction{l,0); 

master_xaction(2,1); 

master_xaction(2,1); 

master_xaction(2,0); 

master_xaction(2,0); 

master_xaction{3,1); 

master_xaction(3,1); 

master_xaction(3,0); 

master xaction(3,0); 

task master_xaction{ 
input int m_identity, input int t_identity); 

integer i; 

begin 

if(data[8]) 
begin 
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f o r { i = 0 ; i < 8 ; i++) 
b e g i n 

$ fwr i te (h_mt ,"WRITE: 
Master %0d writing to Target %0d = %0d at 
%Ot\n",m_identity, t_identity, data[7:0], 
$time); 

©(posedge elk); 
end 
end 

if(!data[8]) 
begin 
©(posedge elk) ; 
for{i=0; i<8; i++) 
begin 
$fwrite(h_mt,"READ: 
Master %0d reading from Target %0d = %0d at 
%Ot\n", m_identity, t_identity, datao, $time); 

©{posedge elk); 
end 
end 

end 

endtask 

The properties defined for fanctional coverage in Section 2.4.1.2 are 
reused for creating transaction logs. If the cover statement succeeds, a task 
called "master_xaction" is called. The task expects two input arguments, one 
identifying the master and the other identifying the target device. By sending 
these arguments, a generic task can be written to log the transactions 
accurately. 

The transactions are logged into a separate file called "mt.dat." A Sfopen 
statement is used to open this file at the beginning of the simulation. Once 
the task is called, the task executes either the read block of the code or the 
write block of the code. Since our sample system does burst read or write in 
sets of 8 bytes, a "for" loop is used within the task. The loop goes around 
eight times and each time the relevant read or write data is logged into the 
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file "mt.dat" using a Sfwrite statement. A part of the log created for the 
sample system using this code is shown below. 

WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
WRITE: Master 
READ: Master 3 
READ: Master 3 
READ: Master 3 
READ: Master 3 
READ:Master 3 
READ:Master 3 
READ:Master 3 
READ:Master 3 

1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
1 writing to Target 1 = 
reading from Target 1 
reading from Target 1 
reading from Target 1 
reading from Target 1 

reading from Target 1 = 
reading from Target 1 = 
reading from Target 1 = 
reading from Target 1 = 

72 at 775 
77 at 825 
95 at 875 
37 at 925 
216 at 975 
184 at 1025 
198 at 1075 
182 at 1125 

= 72 at 1725 
= 77 at 1775 
= 95 at 1825 
= 37 at 1875 
216 at 1925 
184 at 1975 
198 at 2025 
182 at 2075 

The transaction logs can be made a lot more fancy and debug fiiendly 
depending on the user's application. Note that this code is included within 
the 'ifdef - 'endif block. This kind of a detailed transaction log might not be 
needed during long regressions and hence should have the provision to be 
included conditionally. 

2.6 SVA for FPGA Prototyping 

A variety of advanced verification methodologies exist today that can 
help find bugs quickly. Constrained random testbenches and assertions are 
an important piece in these methodologies. It is very common to write 
thousands of tests to make sure that all possible functionality has been tested 
correctly. While most of the bugs are found in the RTL verification, it is still 
very common to find functional bugs during the verification of implemented 
gates. Simulating gates has always been a performance bottleneck and will 
always be. Running all the tests developed during RTL verification on gates 
is not very practical. Gate level simulation is extremely slow and more and 
more verification teams are depending on other verification methodologies 
such as formal verification, FPGA prototyping, etc. as shown in Figure 2-14. 
By running the verification on the actual silicon, the verification process can 
be accelerated significantly. This allows running the regression suites 
developed for RTL exhaustively on actual silicon. 
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Regression Suite Regression Suite 

SOC (RTL, Gates) SOC(FPG A Prototype) 

A B 

Figure 2-14. FPGA Prototyping 

One major challenge in running tests on actual silicon prototype is 
debugging. SVA can help in this area significantly. By synthesizing the 
checkers along with the design, the debug process can be made a little easier. 
The checkers are written against the functional specification and having 
them monitor the design in real silicon adds great value. The design needs to 
be altered slightly to accommodate these assertions. If an assertion fails, it 
has to be notified to the external world using an output port. The output ports 
can be updated with the results, using the action block of the assertions. In 
most real-time testing, breakpoints can be set on these output ports and upon 
a failure on one of these debug ports, the verification can be stopped for 
further analysis. The master device used in the sample system is shown in 
Figure 2-2. This contains only the default ports relevant to the design. The 
sample Verilog code for the master device is shown below. 

module t t i a s t e r { a s k _ f o r _ i t , e l k , r e q , 
i r d y , t r d y , d a t a _ c , r _ s e l , d a t a _ o ) ; 

gnt, frame, 

input elk, gnt, ask_for_it; 
input [1:0] trdy; 
output req, frame, irdy, r_sel; 
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o u t p u t [ 8 : 0 ] d a t a _ c ; 
i n p u t [ 7 : 0 ] d a t a _ o ; 

parameter m a s t e r _ s v a = I ' b l ; 
parameter m a s t e r _ s v a _ s e v e r i t y = I ' b l ; 

/ / f u n c t i o n a l d e s c r i p t i o n of m a s t e r 

/ / B l o c k l e v e l SVA c h e c k s 

endmodule 

The block level assertions should be made part of the design to help in 
FPGA prototyping. Each block level assertion should be associated with a 
debug output port. The debug output port should be asserted if the assertion 
fails. The following code description shows how this can be achieved. 

module master (ask_for_it, elk, req, gnt, frame, 
irdy, trdy, data_c, r_sel, data_o, 
a_master_startl_flag, a_master_start2_flag, 
a_master_stopl_flag, a_master_stop2_flag, 
a_master_datal_flag, a_master_data2_flag, 
a_master_dataol_flag, a_master_datao2_flag); 

input e l k , gn t , a s k _ f o r _ i t ; 
input [1:0] t r d y ; 
output req, frame, irdy, r_sel; 
output [8:0] data_c; 
input [7:0] data_o; 

// debug pins for FPGA prototyping 
output a_master_startl_flag; 
output a_master_start2_flag; 
output a_master_stopl_flag; 
output a_master_stop2_flag; 
output a_master_datal_flag; 
output a_master_data2_flag; 
output a_master_dataol_flag; 
output a_master_datao2_flag; 

parameter master_sva = I'bl; 
parcuneter master_sva_severity = I'bl; 
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II functional description of master 

// Block level checks for prototype debugging 

~ifdef master_debug 

d_a_master_startl: 
assert property(p_master_startl) 
else 
a_master_startl_flag = I'bl; 

d_a_master_start2: 
assert property(p_master_start2) 
else 
a_master_start2_flag = I'bl; 

d_a_master_stopl: 
assert property{p_master_stopl) 
else 
a_master_stopl_flag = I'bl; 

d_a_master_stop2: 
assert property(p_master_stop2) 
else 
a_master_stop2_flag = I'bl; 

d_a_master_datal: 
assert property{p_master_datal) 
else 
a_master_datal_flag = I'bl; 

d_a_master_data2: 
assert property{p_master_data2) 
else 
a_master_data2_flag = I'bl; 

d_a_master_dataol: 
assert property{p_master_dataol) 
else 
a_master_dataol_flag = I'bl; 

d_a_master_datao2: 
assert property(p_master_datao2) 
else 
a_master_datao2_flag = I'bl; 

~endif 

endmodule 
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Note that the respective output port flags will be asserted upon a failure. 
Since these assertions are concurrent, they will look for a valid start on every 
clock edge. If the silicon testing mechanism does not provide a way to set 
breakpoints on an assertion failure, then it is required that the failure be 
latched. Otherwise, the failure notification can be lost if the assertion 
succeeds in future clock cycles. 

2.7 Summary on SVA simulation methodologies 

• The addition of SVA to testbench environment makes dynamic 
simulation more productive. 

• The designers are very familiar with the internal functionality of 
the design and hence, they should in-line SVA checkers in their 
respective design blocks. 

• The verification engineer, who integrates and verifies the system, 
should add system level assertions that thoroughly verify the 
interface protocol. 

• The verification engineer should be able to control/configure the 
block level assertions from his verification environment (He 
should be able to tum the assertions on and off on a need basis). 

• Functional coverage metrics can be collected with little effort 
using SVA. This information should be used effectively to create 
reactive testbenches. 

• SVA can be used to create informative log files since they are 
monitoring the design protocols throughout the simulation. 

• By writing SVA checkers that follow synthesis coding 
guidelines, they can be made part of the net-list and used to 
debug prototyping/emulation failures. 
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SVA FOR FINITE STATE MACHINES 

FSM is the main control block in any design. It helps the design progress 
from state to state in an orderly manner by generating the respective control 
signals. Another way to generate control signals is by combining counters 
and glue logic. But it lacks good design structure and is also difficult to 
debug. An FSM provides great hardware infrastructure for control signals 
and also debugging capabilities since each state of the design is usually well 
defined. 

There are two types of FSMs: 

Moore State machine - The Moore FSM outputs are the function of the 
present state only. 

Mealy State machine - One or more of the Mealy FSM outputs are a 
fiinction of the present state and one or more of the inputs. 

Different types of coding styles are used to describe the states of an FSM. 
The most popular coding style is the one-hot coding, wherein a one-bit 
register represents each state. This proves to be the fastest architecture. If the 
FSM has too many states, then one-hot coding will produce a rather big 
hardware. In these cases binary encoding is preferred. Another kind of 
encoding used commonly to describe an FSM is the gray coding. 

An FSM controls the functionality of the entire design and hence should 
be verified thoroughly. The most common type of check is to make sure that 
the state transitions are occurring correctly without violating any timing 
requirement. SVA can be used effectively to do such checks. 
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3.1 Sample Design - FSMl 

In this section, we analyze a simple linear FSM, which is more Hke a 
shift counter. The FSM produces control signals for the design in a linear 
sequential fashion and hence can be verified easily with SVA checks. 

3.1.1 Functional description of FSMl 

There are 16 states in the FSM. They are coded as follows: 

IDLE=16'dl 

GEN_BLK_ADDR = 16'd2 
WAIT6=16'd4 
NEXT_BLK=16'd8 
WAIT0 = 16'dl6 
CNTl = 16'd32 
WAITl = 16'd64 
CNT2=16'dl28, 
WAIT2 = 16'd256 
CNT3 = 16'd512 
WAIT3 = 16'dl024 
CNT4 = 16'd2048 
WAIT4=16'd4096 
CNT5 = 16'd8192 
WAITS = 16'd 163 84 
CNT6=16'd32768 

The FSM is coded with a one-hot coding style. Figure 3-1 shows the 
bubble diagram of FSMl: 

• The FSM moves to the IDLE state upon reset and waits there for a 
valid "get_data" signal. 

• Once a valid "get_data" signal is obtained, the FSM moves to the 
GEN_BLK_ADDR state. The FSM stays in this state until it finishes 
generating 64 read addresses (an internal counter keeps track of 64 
clock cycles). 

• After 64 clock cycles, it moves to the WAITO state. From this point, 
the FSM keeps moving to the next state on every clock cycle. 

• The CNT* states are the ones where the output control signals for 
the rest of the design are generated. 
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The WAIT* states are used to create a 2 cycle gap between the 
generation of the control signals (latch_en, dpl_en, dp2_en, dp3_en, 
dp4_en, wr). 
Once the FSM moves to the NEXTBLK state it has to decide 
which way to go. 

Figure 3-1. Bubble diagram for FSMl 

If the internal register "blk_cnt" has reached the value of 4096, the 
FSM goes to the IDLE state. This indicates that the entire data frame 
has been processed and the design is waiting for a new frame. When 
a new "get_data" signal arrives, the FSM goes through the same 
state transitions again starting from GEN_BLK_ADDR. 
While in state NEXT_BLK, if the internal register "blk_cnt" has not 
reached the value of 4096, the FSM will go back to the 
GEN_BLK_ADDR state. It waits for the generation of 64 new 
addresses and then moves over to the CNT* states to generate the 
control signals again. 
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Example 3.1 FSMl sample code 

modu le fsm { g e t _ d a t a , r e s e t _ , e l k , r d , r d _ a d d r , 
d a t a , d o n e _ f r a m e , l a t c h _ e n , s i p o _ e n , d p l _ e n , 
d p 2 _ e n , d p 3 _ e n , dp4_en , w r ) ; 

i n p u t g e t _ d a t a ; 
i n p u t r e s e t _ ; 
i n p u t e l k ; 
i n p u t [ 7 : 0 ] d a t a ; 

output rd; 
output logic sipo_en, latch_en; 
output logic dpl_en, dp2_en, dp3_en, dp4_en, wr; 
output logic done_frame; 
output [17:0] rd_addr; 

logic [5:0] addr_cnt; 
logic [11:0] blk_cnt; 
logic [3:0] pipeline_cnt; 
logic rd; 
logic [17:0] rd_addr; 
logic enable_cnt, enable_dly_cnt, enable_blk_cnt; 

assign done_frame = {blk_cnt == 4095); 
assign sipo_en = rd; 

enmn bit[15:0] {IDLE = 16'dl, 
GEN_BLK_ADDR = 16'd2, 
DLY = 16'd4, 
NEXT_BLK = 16'd8, 
WAITO = 16'dl6, 
CNTl = 16'd32, 
WAITl = 16'd64, 
CNT2 = 16'dl2 8, 
WAIT2 = 16'd256, 
CNT3 = 16'd512, 
WAIT3 = 16'dl024, 
CNT4 = 16'd2048, 
WAIT4 = 16'd4096, 
CNT5 = 16'd8192, 
WAIT5 = 16'dl6384, 
CNT6 = 16'd32768} n_state, c_state; 
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// assign the different control signals 

assign latch_en = (c_state == CNTl); 
assign dpl_en = {c_state == CNT2) 
assign dp2_en = {c_state == CNT3) 
assign dp3_en = (c_state == CNT4) 
assign dp4_en = (c_state == CNT5) 
assign wr = {c_state == CNT6); 

// 64bit counter to generate read address 

always_ff ©(posedge elk) 
if (!reset_ || !enable_cnt) 
addr_cnt <= 0; 

else if (enable_cnt) 
addr_cnt <= addr_cnt + 1; 

else 
addr_cnt <= addr_cnt; 

// 4096 bit counter 

always_ff ©(posedge elk) 
if (!reset_) 
blk_cnt <= 0; 

else if ((c_state == NEXT_BLK) && enable_blk_cnt) 
blk_cnt <= blk_cnt + 1 ; 

else 
blk_cnt <= blk_cnt; 

always_ff ©(posedge elk) 
if (!reset_) 
c_state <= IDLE; 
else 
c_state <= n_state; 

always ®(*) 
begin 
rd <= 0; 
enable_cnt <= 0; 
//enable_dly_cnt <= 0; 
case (c_state) 

IDLE: begin 
enable blk cnt <= 0; 
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if(get_data) 
n_state <= GEN_BLK_ADDR; 

else 
n_state <= IDLE; 

end 

GEN_BLK_ADDR: begin 
enable_cnt <= 1; 
rd <= 1; 
rd_addr <= {blk_cnt, addr_cnt}; 
if {addr_cnt == 63) begin 

//enable_dly_cnt <= 1; 
n_state <= WAITO; 

end 
else begin 

n_State <= GEN_BLK_ADDR; 
//pipeline_cnt <= 0; 

end 
end 

WAITO: n_state <= CNTl; 
CNTl: n_state <= WAITl; 
WAITl: n_state <= CNT2; 
CNT2: n_state <= WAIT2; 
WAIT2: n_state <= CNT3; 
CNT3: n_state <= WAIT3; 
WAIT3: n_state <= CNT4 ; 
CNT4: n_state <= WAIT4; 
WAIT4: n_state <= CNT5; 
CNT5: n_state <= WAITS; 
WAITS: n_state <= CNT6; 
CNT6: n_state <= DLY; 

DLY: begin 
enable_blk_cnt <= 1; 
n_state <= NEXT_BLK; 

end 

NEXT_BLK: begin 
enable_blk_cnt<=l; 
if (blk_cnt == 4095) 

n state <= IDLE; 
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else 
n_state <= GEN_BLK_ADDR; 

end 
endcase 

end 

endmodule 

The state transition from GEN_BLK_ADDR to the CNT*/WAIT* states 
is shown in Figure 3-2. 

dk 

reset 

n_stat<! 

c state 

"LJ"n„ĵ ĵrx__ 
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Figure 3-2. Waveform A for FSMl 
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Figure 3-3. Waveform B for FSMl 

Figure 3-3 shows that the FSM will loop back to GEN_BLK_ADDR 
state from the NEXT_BLK state if the register "blk_cnt" has not reached the 
value of 4096. When "blk_cnt" reaches the value of 4096, the FSM will 
break the loop from NEXT_BLK state and go to IDLE state. 

3.1.2 SVA Checkers for FSMl 

To verify FSMl thoroughly, the following checks need to be done. 
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FSMl_chkl: FSMl will always stay one-hot irrespective of the input 
conditions. 

FSMl is based on one-hot coding and hence should always have only 
one state bit asserted. If not, the FSM is not truly one-hot and the control 
signals might not be generated as expected. This can be tested by using any 
one of the built-in tasks, namely, $countones or $oaehot defined in the SVA 
language. 

property p_onehot; 
©(posedge elk) (reset_) |-> 

($countones{n_state) == 1); 
endproperty 

a_onehot: assert property(p_onehot); 
c_onehot: cover property(p_onehot); 

FSMl_chk2: If the current state is "IDLE" and if "get_data" is asserted, 
then the next state is "GEN_BLK_ADDR," and 64 cycles later the next state 
should be "WAITO." 

The FSM starts the transition, based on the IDLE state and the "getdata" 
signal. Once the FSM reaches GEN_BLK_ADDR, it has to stay there for 64 
clock cycles. 

sequence s_transl; 
{c_state == IDLE) ##1 
{{c_state == GEN_BLK_ADDR) [*64]) ##1 
{c_state == WAITO); 

endsequence 

property p_trans; 
©(posedge elk) 

(reset_ && $rose(get_data)) |-> 
{reset_) throughout (s_transl); 

endproperty 

a_trans: assert property {p_trans); 
c_trans: assert property {p_trans) 

The sequence "s_transl" verifies that, if the current state of FSMl is 
IDLE, then one cycle later it will transition to the GEN_BLK_ADDR. The 
FSM will stay in the state GEN_BLK_ADDR for 64 cycles (verified by 
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using the repeat (*) operator) and one cycle later will move to the WAITO 
state. It is required that the reset is inactive throughout this property. 

Figure 3-4 shows the results of "a_trans" property. The checker becomes 
active when there is a rising edge on the "get_data" signal and a match on 
the success is shown at the same point in the waveform. Though the checker 
stays active until reaching the WAITO state, the success is shown only at the 
starting point of the checker. The checker looks for a rising edge of 
"get_data" signal on every positive edge of the clock. If there isn't one, then 
the checker is assumed to succeed by default. This is a vacuous success as 
discussed in Chapter 1. 
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Figure 3-4. Waveform for FSMl_chk2 

FSMl_chk3: If the current state is "WAITO," then the FSM will 
transition states in a sequential manner from one state to another after one 
clock cycle each, unless the FSM is reset. 

There is a wait state between every CNT* state. Hence, the FSM takes 2 
clock cycles to move from one CNT* state to another CNT* state. The FSM 
moves in a linear fashion from CNTl state to CNT6 state. The only possible 
path is as follows: 

CNTl -> CNT2 -> CNT3 -> CNT4 -> CNT5 -> CNT6 

s e q u e n c e s _ t r a n s 3 ; 
##1 ( c _ s t a t e == CNTl) ##2 ( c _ s t a t e == CNT2) 
##2 ( c _ s t a t e == CNT3) ##2 ( c _ s t a t e == CNT4) ##2 
( c _ s t a t e == CNT5) ##2 ( c _ s t a t e == CNT6); 

endsequence 

property p _ l i n e a r _ t r a n s ; 
©(posedge e l k ) 
( ( r e s e t _ ) && ( c _ s t a t e == WAITO) 
&& ( $ p a s t ( c _ s t a t e ) = = GEN_BLK_ADDR)) | - > 
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s _ t r a n s 3 ; 
e n d p r o p e r t y 

a _ l i n e a r _ t r a n s : a s s e r t p r o p e r t y { p _ l i n e a r _ t r a n s ) ; 
c _ l i n e a r _ t r a n s : c o v e r p r o p e r t y { p _ l i n e a r _ t r a n s ) ; 

Sequence "s_trans3" verifies that, if the FSM is currently in WAITO state 
and if it was in GEN_BLK_ADDR state in the previous cycle, then the FSM 
moves to CNTl state after one cycle and WAITl state one cycle after that 
and so on up to reaching the state CNT6. Figure 3-5 shows the simulation 
results of the property p_linear_trans. 
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Figure 3-5. Waveform for FSMl_chk3 

FSMl_chk4: Make sure that FSMl is exercised such that it goes to both 
IDLE and GEN_BLK_ADDR at least once from the NEXTBLK state. 

This check acts as a fiinctional coverage piece making sure that all paths 
of the FSM transitions are exercised once by the input test vectors. 

sequence s_trans2; 
##63 (c_state == GEN_BLK_ADDR) ##1 
{c_state == WAITO); 

endsequence 

property p_frame; 
©(posedge elk) 

({reset_) && (c_state == GEN_BLK_ADDR) && 
(($past (c_state)== IDLE) || 
($past{c_state == NEXT_BLK)))) |-> 

s_trans2 ##0 s_trans3; 
endproperty 

a_frame: assert property{p_frame) cnt++; 
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c_frame: cover property(p_frame); 

property p_complete_frame; 
©(posedge elk) 
((cnt == 16'd4095)&&reset_&& 
(c_state==CNT6)) |-> 

done_frame; 
endproperty 

a_complete_frame: 
assert property(p_complete_frame) 
$display ("A complete frame 
transferred \n"); 
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Figure 3-6. Waveform for FSMl_chk4 

The property "p_frame" verifies the complete state transition of FSMl 
starting from IDLE state. While this check is performed, a local variable 
"cnt" is incremented in the action block every time the property "a_frame" 
succeeds. When the value of the variable "cnt" reaches 4095, all blocks of 
data have been processed and the control signal "done_frame" is asserted. At 
the end of a complete frame testing, the action block of the check 
"a_complete_frame" can be used to display the results. Figure 3-6 shows the 
simulation results of the property p_complete_frame. 

Two separate properties "p_frame_pathr' and "p_frame_path2" are 
written to make sure that all possible paths of the FSM are covered during 
simulation. 

property p_frame_pathl; 
©(posedge elk) 
((reset_) && {c_state == GEN_BLK_ADDR) && 
($past(c_state == NEXT_BLK))) |-> 
s trans2 ##0 s trans3; 
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endproperty 

c_frame_pathl: cover property (p_frame_pathl); 

property p_frame_path2; 
©(posedge elk) 
{(reset_) && {c_state == GEN_BLK_ADDR) && 
($past(c_state == IDLE))) |-> 

s_trans2 ##0 s_trans3; 
endproperty 

c_frame_path2: cover property (p_frame_path2); 

3.2 Sample Design - FSM2 

A slightly more complicated FSM is discussed in this section. The FSM 
discussed in Section 3.1 was linear and did not have many ways of getting to 
a particular state. FSM2 will have fewer states but there will be more ways 
of getting to a particular state. This presents a minor challenge in extracting 
the checks that need to be done. 

3.2.1 Functional description of FSM2 

FSM2 performs the role of an arbiter. At any given time, FSM2 can 
arbitrate between 3 master devices. ^\ny or all of the master devices can 
request for the grant of the bus and the arbiter will decide who gets the bus 
based on a round robin fashion. Once the master acquires a grant, it uses the 
bus to do certain transactions. At the end of the transaction, the master lets 
the arbiter know and the bus is freed. Once the bus is free, all the masters 
can once again make a request for the bus if they have any pending 
transactions. The key concept is to make sure that the arbiter is not starving 
any of the masters. 

The FSM has 7 possible states shown as follows: 

IDLE = 7'b0000001 
MASTERl =7'b0000010 
IDLE l=7'b0000100 
MASTER2 = 7'b0001000 
IDLE2 = 7'b0010000 
MASTER3 = 7'bO 100000 
IDLE3 = 7'b 1000000 
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The FSM is coded with a one-hot coding style. Figure 3-7 shows the 
bubble diagram of FSM2. 

reset. 

req1 &req2&req3 
—~—~̂  

IDLE1 

!req3 a req2 & reql 

Figure 3-7. Bubble diagram for FSM2 
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Upon reset the state machine moves to the IDLE state. 
While the state machine is in the IDLE state, it looks for a "req" 
from any of the master devices wanting to use the bus. The grant is 
given in a priority-encoded fashion. For example, when the FSM is 
in IDLE state, if all three master devices make a request then 
"masterl" gets the bus. 
While the state machine is in the MASTER* state, it asserts the 
"gnt" signal of the respective master device. 
Once the master device is done with using the bus, it indicates this to 
the arbiter by asserting the "done" signal and this moves the FSM to 
the respective IDLE* state of that master device. 
When the FSM is in the IDLEl state, it will look for "req" from the 
masters in the order of master2, masterS and then masterl. 
When the FSM is in the IDLE2 state, it will look for "req" from the 
masters in the order of masterS, masterl and then master2. 
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• When the FSM is in the IDLE3 state, it will look for "req" from the 
masters in the order of master 1, master2 and then master3. 

Example 3.2 FSM2 Sample code 

module bus_arbiter(elk, reset, frame, irdy, 
reql, req2, req3, gntl, gnt2, gnt3); 

input logic elk, reset, frame, irdy; 
input logic reql, req2, req3; 

output gntl, gnt2, gnt3; 

enum bit [6:0] {IDLE = 7'bOOOOOOl, 
MASTERl = 7'bOOOOOlO, 
IDLEl = 7'bOOOOlOO, 
MASTER2 = 7'bOOOlOOO, 
IDLE2 = 7'bOOlOOOO, 
MASTER3 = 7'bOlOOOOO, 
IDLE3 = 7'blOOOOOO} next, state; 

logic done, gntl, gnt2, gnt3; 

/* define glue signals */ 

assign done = frame && irdy; 

/* state register code */ 

always®(posedge elk or negedge reset) 
begin 
if(Ireset) 
state <= IDLE; 

else 
state <= next; 

end 

/* next state combinational logic */ 

always® (*) 
begin 
next = IDLE; 
case(state) 
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IDLE: 
if (reql == I'bO) 
next <= MASTERl; 

else if (reql == I'bl & req2 == I'bO) 
next <= MASTER2; 

else if {req3 == I'bO & reql == I'bl) 
next <= MASTERS; 

else 
next <= IDLE; 

MASTERl: 
if{Idone) 
next <= MASTERl; 

else 
next <= IDLEl; 

IDLEl: 

if(req2 == I'bO ) 
next <= MASTER2; 

else if {req3 == I'bO & req2 == I'bl) 
next <= MASTER3; 

else if (reqS == I'bl & reql == I'bO & req2 == 
I'bl) 
next <= MASTERl; 

else 
next <= IDLEl; 

MASTER2: 
if{Idone) 
next <= MASTER2; 

else 
next <= IDLE2; 

IDLE2: 
if (reqS == I'bO) 
next <= MASTER3; 

else if (req3 == I'bl & reql == I'bO) 
next <= MASTERl; 

else if (reql == I'bl & req2 == I'bO) 
next <= MASTER2; 

else 
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next <= IDLE2; 
MASTERS: 

if (Idone) 
next <= MASTER3; 

else 
next <= IDLE3; 

IDLE3: 
if (reql == I'bO) 
next <= MASTERl; 

else if (reql == 1'bl & req2 
next <= MASTER2; 

else if (req2 == I'bl & reqS 
next <= MASTERS; 

else 
next <= IDLES; 

endcase 

I'bO) 

I'bO) 

end 

/* output generating statements */ 

assign gntl = ({state == MASTERl)) 
assign gnt2 = ((state == MASTER2)) 
assign gntS = ((state == MASTERS)) 

endmodule 

Figure 3-8 shows a sample waveform for FSM2. For convenience, the 
state encoding is shown both in the enumerated value and hexadecimal 
value. The state value *1 means that the state is MASTERl, similarly, *2 for 
MASTER2 and *3 for MASTERS. At marker 1, both master2 and masterS 
make a request for the bus. The FSM is in IDLE3 state at this point and 
hence provides the grant to master2. At marker 2, the FSM is in IDLE2 state 
and both masterl and masterS request the bus. This time master3 gets the 
grant. The grant provided always depends on which IDLE* state the FSM is 
currently in. 
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Figure 3-8. Waveform for FSM2 

3.2.2 SVA Checkers for FSM2 

For a state machine like this, since there are many ways to get to a 
specific state, the first thing to understand is what are the possible legal 
paths? This can be a very difficult process depending on the complexity of 
the state machine. As a first step, a matrix should be created with all states 
represented on both the x and y axis. Then the matrix should be filled with a 
"Yes" or "No" indicating whether it is possible to transition from that state 
in the x axis to a respective state in the y axis. Once we have a representation 
as described above, we can start categorizing the SVA checks. 

Based on the matrix, if a state to state transition is forbidden, then it 
should be verified using a SVA check. 
All possible legal state transitions should be covered by the 
testbench. This metric can be measured by using the "cover" 
statements on SVA properties. The same information can also be 
obtained from code coverage tools. 
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Based on the matrix analysis, as shown in Table 3-1, the following 
checks need to be written to verify FSM2 thoroughly. 

Table 3-1. Matrix diagram for FSM2 state transition 

IDLE 
Ml 
11 
M2 
12 
M3 
13 

IDLE 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Ml 
Y 
Y 
Y 
N 
Y 
N 
Y 

11 
N 
Y 
Y 
N 
N 
N 
N 

M2 
Y 
N 
Y 
Y 
Y 
N 
Y 

12 
N 
N 
N 
Y 
Y 
N 
N 

M3 
Y 
N 
Y 
N 
Y 
Y 
Y 

13 
N 
N 
N 
N 
N 
Y 
Y 

FSM2_chkl: FSM2 should always behave as a one-hot state machine. 

p r o p e r t y p_ f sna2_encoding; 
©(posedge elk) $ o n e h o t ( s t a t e ) ; 

endproperty 

a _ f s m 2 _ e n c o d i n g : 
a s s e r t p r o p e r t y ( p _ f s m 2 _ e n c o d i n g ) ; 

c _ f s m 2 _ e n c o d i n g : 
c o v e r p r o p e r t y ( p _ f s m 2 _ e n c o d i n g ) ; 

The built-in function Sonehot can be used to make sure that only one bit 
of the state register is high at any given time, thus proving that the FSM 
always stays one-hot. 

FSM2_chk2: From IDLE state the FSM cannot go to IDLEl, IDLE2 or 
IDLE3 states. 

property p_forbid_transl; 
@(posedge elk) 
(((state == IDLEl) II (state == IDLE2) || 
(state == IDLE3)) && reset) |-> 

$past ((state == IDLE) == 0); 
endproperty 

a_forbid_transl:assert property(p_forbid_transl); 
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The property "p_forbid_transl" verifies that, if the current state is 
IDLEl, IDLE2 or IDLE3, then the state of the FSM in the previous cycle 
cannot be IDLE. 

Reset 
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Figure 3-9. Waveform for FSM2_chk2 

Figure 3-9 shows the results of the check "a_forbid_transl." Marker 1 
shows a point where the FSM is currently in IDLEl state. The property 
passes here since the FSM was in MASTERl state in the previous cycle and 
not in IDLE state. Similarly, marker 2 shows a point where the FSM is in 
IDLES state. The property passes here also since the FSM was in MASTERS 
state in the previous clock cycle and not IDLE state. 

FSM2_chk3: 
From MASTERl state the FSM cannot go to other MASTER states or 

IDLE2 or IDLES. 
From MASTER2 state the FSM cannot go to other MASTER states or 

IDLEl orIDLE2. 
From MASTERS state the FSM cannot go to other MASTER states or 

IDLEl or IDLE2. 

This check makes sure that, if the FSM is in a certain MASTER* state, 
then the next transition will always be to the IDLE* state specific to the 
master state. In other words, if the FSM is currently in MASTERl state, then 
it has to transition to only IDLEl state next assuming the FSM is not reset. If 
it transitions to any other state, it is a violation. Similarly, MASTER2 should 
transition to IDLE2 and MASTERS to IDLES state respectively. Figure S-10 
shows the result of the check "a forbid trans2a." 
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property p_forbid_trans2a; 
©(posedge elk) 
({(state == IDLE2) || (state == IDLE3) || 
(state == MASTER2) jj (state == MASTER3)) 
&& reset) |-> 

$past ((state == MASTERl) == 0); 
endproperty 

a_forbid_trans2a: 
assert property(p_forbid_trans2a); 

c_forbid_trans2a: 
cover property(p_forbid_trans2a); 

property p_forbid_trans2b; 
©(posedge elk) 
({(state == IDLED II (state == IDLE3) || 
(state == MASTERl) jj (state == MASTERS)) 
&& reset) |-> 

$past ((state == MASTER2) == 0); 
endproperty 

a_forbid_trans2b: 
assert property{p_forbid_trans2b); 

c_forbid_trans2b: 
cover property{p_forbid_trans2b); 

property p_forbid_trans2c; 
©(posedge elk) 
(((state == IDLE2) II (state == IDLED || 
(state == MASTER2) jj (state == MASTERl)) 
&& reset) |-> 

$past (state == MASTER3) == 0); 
endproperty 

a_forbid_trans2c: 
assert property{p_forbid_trans2c); 

c_forbid_trans2c: 
cover property(p_forbid_trans2c); 
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Figure 3-10. Waveform for FSM2_chk3 

FSM2_chk4: 
From IDLEl state the FSM cannot go to IDLE2 or IDLE3 states. 
From IDLE2 state the FSM cannot go to IDLE3 or IDLEl states. 
From IDLE3 state the FSM cannot go to IDLE2 or IDLEl states. 

This check makes sure that the FSM will always transition to a 
MASTER* state from an IDLE* state assuming that the FSM is not reset in 
between. If the FSM transitions from one IDLE* state to another IDLE* 
state, it is a violation. Figure 3-11 shows the result of the check 
"p_forbid_trans3a." 

property p_forbid_trans3a; 
©(posedge elk) 
{({state == IDLE2) || {state == IDLE3)) 
&& reset) |-> 

$past (state== IDLEl) == 0); 
endproperty 

a_forbid_trans3a: 
assert property{p_forbid_trans3a); 

c_forbid_trans3a: 
cover property(p_forbid_trans3a); 

property p_forbid_trans3b; 
©(posedge elk) 
(((state == IDLEl) || (state == IDLES)) 
&& reset) |-> 

$past {state = = IDLE2) == 0) ; 
endproperty 

a_f orbid_trans3b .-
assert property(p_forbid_trans3b); 

c_forbid_trans3b: 
cover property(p_forbid_trans3b); 
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property p_forbid_trans3c; 
©{posedge elk) 
({{state == IDLED || (state == IDLE2)) 

&&. reset) | -> 
$past (state== IDLE3) ==0); 

endproperty 

a_forbid_trans3c: 
assert property(p_forbid_trans3c); 

c_forbid_trans3c: 
cover property(p_forbid_trans3c); 
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Figure 3-11. Waveform for FSM2_chk4 

FSM2_chk5: There should be a grant for every request sent to the 
arbiter. 

property p_req_gnt; 
©(posedge elk) 
({Ireql || !req2 || !req3) && reset) |-> 

##1 (igntl II !gnt2 jj !gnt3); 
endproperty 

a_req_gnt: assert property{p_req_gnt); 
c_req_gnt: cover property(p_req_gnt); 

The property "p_req_gnt" verifies that, if any of the masters make a 
request for the bus, then within one cycle, any one of the "gnt" signal should 
be asserted. If the grant does not arrive in one cycle, it is a fatal error. 

Figure 3-12 shows the result of the check 'a_req_gnt." Marker 1 
shows the point in the waveform where masterS is requesting the bus 
and within one cycle the signal "gnt3" is asserted and hence the check 
passes. Similarly, marker 2 is pointing to a place where both master2 
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and masters are requesting the bus and "gnt2" is asserted within one 
clock cycle and hence the check passes. 
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Figure 3-12. Waveform for FSM2_chk5 

FSM2_chk6: Check for the fairness of the arbiter. Make sure that all the 
masters are getting equal number of grants. 

property p_req_gnt_l; 
©(posedge elk) ((Ireql && reset)) j-> 

##1 !gntl; 
endproperty 

c_req_gnt_l: cover property(p_req_gnt_l); 

property p_req_gnt_2; 
©(posedge elk) ((!req2 &.&. reset)) j-> 

##1 !gnt2; 
endproperty 

c_req_gnt_2: cover property(p_req_gnt_2); 

property p_req_gnt_3; 
©(posedge elk) ((!req3 && reset) 

##1 lgnt3; 
endproperty 
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c_req_gnt_3: cover property(p_reg_gnt_3); 

property p_reql; 
©(posedge elk) {$fell(reql) && reset); 

endproperty 

c_reql: cover property(p_reql); 

property p_req2; 
©(posedge elk) {$fell{req2) && reset); 

endproperty 

c_req2: cover property{p_req2); 

property p_req3; 
©(posedge elk) ($fell(req3) && reset); 

endproperty 

c_req3: cover property(p_req3); 

This check is performed to get the functional coverage information and 
also to validate the fairness of the arbiter. Three properties p_req_gntl, 
p_req_gnt2 and p_req_gnt_3 are written to calculate how many times a 
master was actually able to get a grant. The next three properties, p_reql, 
p_req2 and p_req3 are written to calculate how many requests each master 
actually made. By using the cover statements on these properties, the 
simulation results are printed based on the number of matches. In a sample 
random test environment, the following results were produced 

c_req_gnt_l, 10433 attempts, 288 match 
c_req_gnt_2, 10433 attempts, 290 match 
c_req_gnt_3, 10433 attempts, 291 match 
c_reql, 10433 attempts, 481 match 
c_req2, 10433 attempts, 474 match 
c_req3, 10433 attempts, 505 match 

Note that, each master requested the bus approximately 475 times and 
each one of the masters was granted the bus approximately 290 times. This 
shows that the arbiter is being very fair and is not starving any one master 
device. 
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3.2.3 FSM2 with a timing window protocol 

In the previous section, FSM2 asserted the "gnt" signal one clock cycle 
after a request was made. In this section, the arbiter fiinctionality is assumed 
such that it can take anywhere between 2 to 5 clock cycles to produce a 
grant. While most of the protocol extraction process still remains the same 
for the new arbiter, the timing needs to be adjusted in some of the checks. 

assign req = Ireql || !req2 || !req3; 
assign gnt = Igntl || !gnt2 || Ignt3; 

property p_req_gnt_w; 
©{posedge elk) $rose(req) |-> 

##[2:5] $rose(gnt); 
endproperty 

a_req_gnt_w : assert property{p_req_gnt_w); 

The property p_req_gnt_w looks for a rising edge on the "req" signal. 
The "req" signal is the OR output of all the three requests reql, req2 and 
req3 respectively. Once the pre-condition is true, it verifies that a rising edge 
occurs on the "gnt" signal within 2 to 5 clock cycles. The "gnt" signal is the 
OR output of all the three "gnt" signals gntl, gnt2 and gnt3 respectively. 
Functional coverage statements similar to the ones shown in check 
FSM2_chk6 can be easily vmtten for the new protocol based on the window 
of time. Figure 3-13 shows the results of the check "a_req_gnt_w." 

The marker "Is" indicates the first valid request made to the arbiter. A 
valid "gnt" comes at marker " le" after 5 clock cycles and hence the checker 
passes. The marker "2s" indicates the second valid request made to the 
arbiter. A valid "gnf comes at the marker "2e" after 2 clock cycles and 
hence the checker passes. 
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Figure 3-13. Waveform for window check 

A key functional coverage data that a user might be interested in is the 
arbiter latency. The arbiter can take 2 to 5 cycles to respond to each one of 
the master devices. It is important to know if the average latency of the 
arbiter is the same for all three masters. We can use SVA cover statements to 
calculate the response time of the arbiter for each master. 

genvar s; 
generate 

for (s=2; s<6; s++) 
begin: generic 
c_gnt_generic : 
cover property(©(posedge elk) $rose(gnt) |-> 

($past(req,s) == I'bl)); 
end 
endgenerate 

A generate statement can be used to create an array of cover statements. 
The objective is to find out the average response time of the arbiter. The 
built-in function $past is used to define a valid request and grant sequence. 
The variable "s" is used to loop around and create 4 separate cover 
properties for each possible latency values (2, 3, 4 and 5 clock cycles 
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respectively). The cover statement will increment the appropriate latency 
bin. Sample simulation results produced are shown below. 

tb.u4.ul.generic[2].c_gnt_generic, 5793 attempts, 
112 match, 0 vacuous match 

tb.u4.ul.generic[3].c_gnt_generic, 5793 attempts, 
113 match, 0 vacuous match 

tb.u4.ul.generic[4].c_gnt_generic, 5793 attempts, 
101 match, 0 vacuous match 

tb.u4.ul.generic[5].c_gnt_generic, 5793 attempts, 
104 match, 0 vacuous match 

From these results, it is clear that the arbiter has an even distribution of 
latency. The previous example can be slightly modified to get latency 
information specific to each master. This way we will know if it takes longer 
to provide a grant to any specific master. 

assign req_local[3:1] = {{req3, req2, reql}); 
assign gnt_local[3:1] = {{gnt3, gnt2, gntl}); 

genvar j, k; 
generate 

for (j=2; j<6; j++) 
begin: latency 
for (k=l; k<4; k++) 
begin: Master 
c_gnt_o : 
cover property(©(posedge elk) $fell(gnt_local[k]) 

|-> ($past(req_local[k],j) == I'bO)); 
end 
end 
endgenerate 

Note that, a vector of the "gnt" signals called "gnt_local" and a vector of 
the "req" signals called "req_local" are defined. This allows one to loop 
through each master one at a time. Two loops are used, the outer loop 
"latency" defines the latency bins and the inner loop "Master" defines the 
master's identity. The property is active once a valid "gnt" signal is detected. 
A valid "req" for this specific 'gnt" is searched in the past anywhere 
between 2 and 5 clock cycles. Sample simulation results for such a coverage 
statement is shown below. 
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tb.u4.ul.latency[2].Master[1].c_gnt_o, 5793 
attempts, 41 match, 0 vacuous match 

tb.u4.ul.latency[2].Master[2].c_gnt_o, 5793 
attempts, 37 match, 0 vacuous match 

tb.u4.ul.latency[2].Master[3].c_gnt_o, 5793 
attempts, 34 match, 0 vacuous match 

tb.u4.ul.latency[3].Master[1].c_gnt_o, 5793 
attempts, 3 9 match, 0 vacuous match 

tb.u4.ul.latency[3].Master[2].c_gnt_o, 5793 
attempts, 34 match, 0 vacuous match 

tb.u4.ul.latency[3].Master[3].c_gnt_o, 5793 
attempts, 40 match, 0 vacuous match 

tb.u4.ul.latency[4].Master[1].c_gnt_o, 5793 
attempts, 27 match, 0 vacuous match 

tb.u4.ul.latency[4].Master[2].c_gnt_o, 5793 
attempts, 36 match, 0 vacuous match 

tb.u4.ul.latency[4].Master[3].c_gnt_o, 5793 
attempts, 3 8 match, 0 vacuous match 

tb.u4.ul.latency[5].Master[l].c_gnt_o, 5793 
attempts, 34 match, 0 vacuous match 

tb.u4.ul.latency[5].Master[2].c_gnt_o, 5793 
attempts, 2 9 match, 0 vacuous match 

tb.u4.ul.latency[5].Master[3].c_gnt_o, 5793 
attempts, 41 match, 0 vacuous match 

3.3 Summary on SVA for FSM 

• FSMs are an integral part of any design and they need to be 
verified thoroughly. 

• Every forbidden transition should be checked using SVA. If a 
forbidden transition occurs, it should be flagged as a fatal error. 

• The testbench must cover all possible legal transitions. 
Functional coverage information should be used wisely to build a 
reactive simulation environment. 
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SVA FOR DATA INTENSIVE DESIGNS 

In any design, there are two areas that need to be verified thoroughly: 

a. Is the control logic behaving correctly? - These signals control the 
flow of data in the design and have complex timing relationships 
between each other. 

b. Is my output data as expected? - This makes sure that the output 
data of the RTL matches the output of the golden model (usually 
written in C). This guarantees that the functionality of the optimized 
hardware algorithms implemented in RTL matches that of the 
golden model. 

In general, assertion based verification is very suited for checking signals 
that have complex timing relationships or in other words, the control logic. 
The declarative nature of the language makes it more suitable for temporal 
checking. While assertions don't add any additional value for data checking, 
it can still be used for writing efficient self-checking environments. 

4.1 A simple multiplier check 

SystemVerilog assertions have the advantage of using most data types 
and operators that are part of the SystemVerilog language. This gives great 
flexibility in writing simple arithmetic checks. 

Example 4.1 A simple multiplier 

module au ( 
input l o g i c [7:0] a, b , c, 
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input l o g i c s e l , 
output l o g i c [15:0] d 

l o g i c [15:0] e; 
l o g i c [15:0] s e l _ h , s e l _ l ; 

// Resource sharing architecture 

alwayscomb 
begin 
if(sel) e = b; else e = c; 
d = multiply(a, e); 

end 

// Functional sva checker 

always®(a, b, c, sel) 
begin 
sel_h = a*b; 
sel_l = a*c; 

if(sel) 
sel_high : assert (sel_h == d); 
if (!sel) 
sel_low : assert (sel_l == d ) ; 

end 
endmodule 

Example 4.1 shows a simple multiplier. Only one multiplier is used and 
the multiplication is done based on the input that is selected by the "sel" line. 
Two simple checkers named "sel_high" and "sel_low" can be written to 
verify the multiplier. The check "sel_high" is active when the "sel" line is 
high and the check "sel_low" is active when the "sel" line is low. The user 
can choose to use any type of multiplier relevant to the user's environment. 
For example, it can be a shift/add multiplier, a booth multiplier or something 
else. From a functional verification standpoint, we need to make sure that no 
matter which type of multiplier algorithm is used, the end output result 
matches. Figure 4-1 shows the results produced by these two checkers. Note 
that the checker is active, based on the status of the "sel" signal (immediate 
assertion). 
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Figure 4-1. Waveform for Multiplier checker 

4.2 Sample Design - Arithmetic unit 

In this section, verification of an arithmetic unit is discussed (a Walsh-
Hadamard Transform (WHT) block). WHT is a common algorithm used in 
still image compression applications. WHT is used to convert the pixels 
from time domain to frequency domain before the image is encoded. 
Typically, these algorithms are tested very easily with C or Matlab 
programs. But when the algorithms are converted to hardware, it goes 
through severe optimizations that will make it more hardware efficient. It is 
very common to provide the same input data to both the golden C model and 
the RTL model. The RTL is verified by comparing its output with that of the 
C model. In this section, SVA is used to produce the golden results 
dynamically during a simulation and compared with the results from RTL. 

4.2.1 WHT Algorithm 

The WHT algorithm is an 8x8 matrix multiplication. In image 
compression applications, data is processed one block at a time. Each block 
is an 8x8 matrix, or in other words, 64 data points. The objective is to 
perform a matrix multiplication between 2 matrices, each of size 8x8, to 
produce the end result, an 8x8 matrix. Due to the repetitive nature of the 
matrix multiplication, this can be achieved one block at a time. The WH 
matrix is defined as follows. Since the matrix without the scaling factor 
consists of+1 and - 1 , the transform operation consists simply of addition 
and subtraction. 

WHT [8] [8] = 

{ 
{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1} , 
{1,1,1,1,-1,-1,-1,-1}, 
{1,1,-1,-1,-1,-1,1,1}, 
{1,1,-1,-1,1,1,-1,-1}, 
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{1,-1,-1,1,1,-1,-1,1}, 
{1,-1,-1,1,-1,1,1,-1}, 
{1,-1,1,-1,-1,1,-1,1}, 
{1,-1,1,-1,1,-1,1,-1} 

}; 

4.2.2 WHT Hardware implementation 

In hardware, the WHT algorithm can be optimized to reduce the number 
of additions and subtractions performed. This is achieved by exploiting the 
redundant additions and subtractions performed on the same set of data. 
Each arithmetic block is optimized to perform a 1x8 by 8x8 matrix 
multiplication. In other words, one row of data (8 data points) is processed at 
a time. The simplified arithmetic unit performs 3 stages of addition and 
subtraction to produce one row of output data. Figure 4-2 shows the block 
diagram of the hardware implementation of the WHT algorithm. 

Assume Dl, D2, D3, D4, D5, D6, D7 and D8 form a row of data. Now 
this row of data has to be processed through the WHT matrix. The equations 
of the three stages of optimized arithmetic operations can be listed as 
follows. 

Stage 1 

Yl = Dl + D2, Y2 = D3 + D4, Y3 = D5 -I- D6, Y4 = D7 + D8, 
Y5 = Dl + D4, Y6 = D5 + D8, Y7 = D2 + D3, Y8 = D6 + D7, 
Y9=D1 +D3, Y10 = D6 + D8,Y11 =D2 + D4, Y12 = D5 + D7 

Stage 2 

Zl = Yl + Y2, Z2 = Y3 + Y4, Z3 = Yl + Y4, Z4 = Y2 + Y3, 
Z5 = Yl + Y3, Z6 = Y2 + Y4, Z7 = Y5 + Y6, Z8 = Y7 + Y8, 
Z9 = Y5 -f Y8, ZIO = Y7 + Y6, Zl 1 = Y9 + YIO, 
Z12=Y1H-Y12,Z13=Y9-HY12,Z14 = Y11 +Y10 

Stage 3 

XI = Zl + Z2, X2 = Zl - Z2, X3 = Z3 - Z4, X4 = Z5 - Z6, 
X5 = Z7 - Z8, X6'= Z9 - ZIO, X7 = Zl 1 - Z12, X8 = Z13 - Z14 

XI, X2, X3, X4, X5, X6, X7 and X8 form a row of processed output 
data. 
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Figure 4-2. WHT hardware block diagram 

4.2.3 SVA Checker for WHT block 

To functionally verify this block, a checker does not have to know the 
internal implementation details of this block. A checker should be able to 
produce the golden result and compare it with the design data. The golden 
data can be produced within the SVA checker by simply performing a matrix 
multiplication. This data can then be compared with the output of the WHT 
block. Figure 4-3 shows a simple checker configuration for the WHT block. 

It is very common to register the outputs of such combination blocks to 
obtain the most stable data. A checker can be written using the enable signal 
of the register as the trigger. The results produced within the checker should 
be compared with the original registered output of the WHT arithmetic 
block. A sample SVA checker is shown in Example 4.2. 
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Figure 4-3. WHT checker configuration 

Example 4.2 SVA Checker for WHT block 

module au_comp_chk; ( 
input l o g i c e l k , r e s e t , e n a b l e l , enab le2 , 
input l o g i c s igned [15:0] 

d l , d2, d3, d4, d5, d6, d7, d8, 
input l o g i c s igned [15:0] 

o l , o2, o3, o4, o5, o6, o7, o8 
) ; 

l o g i c s igned [15:0] i n _ l o c a l [ 0 : 7 ] ; 
l o g i c s igned [15:0] o u t _ o r i g [ 0 : 7 ] ; 
l o g i c s igned [15:0] o u t _ l o c a l [ 0 : 7 ] ; 

in teger i , k; 

i n t e g e r w h _ l o c a l [ 0 : 7 ] [ 0 : 7 ] 

{ 
{ 1 , 1, 1, 1, 1, 1, 1 , 1 } , 
{ 1 , 1, 1 , 1 , - 1 , - 1 , - 1 , - 1 } , 
{ 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1, 1 } , 
{ 1 , 1 , - 1 , - 1 , 1, 1 , - 1 , - 1 } , 
{ 1 , - 1 , - 1 , 1 , 1 , - 1 , - 1 , 1 } , 
{ 1 , - 1 , - 1 , 1 , - 1 , 1, 1 , - 1 } , 
{ 1 , - 1 , 1 , - 1 , - 1 , 1 , - 1 , 1 } , 
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{ 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 } 

} ; 

a l w a y s ® ( o l , o 2 , o 3 , o 4 , o 5 , o 6 , o8) 
begin 

o u t _ o r i g [ 0 ] <= o l ; 
o u t _ o r i g [ l ] <= o2; 
o u t _ o r i g [ 2 ] <= o 3 ; 
o u t _ o r i g [ 3 ] <= o4; 
o u t _ o r i g [ 4 ] <= o5 ; 
o u t _ o r i g [ 5 ] <= o6; 
o u t _ o r i g [ 6 ] <= o7 ; 
o u t _ o r i g [ 7 ] <= o8 ; 

end 

always®(dl , d2, d3 , d4, d5, d6, d7, d8) 
begin 

f o r ( i = 0 ; i<8 ; i++) 

begin 

o u t _ l o c a l [ i ] <= 
(d l*wh_ loca l [ i ] [0]) + (d2*wh_local[ i ] [1] ) + 
(d3*wh_local [ i ] [2 ] ) + (d4*wh_local[ i ] [3] ) + 

(d5*wh_local [ i ] [4] ) + (d6*wh_local[ i ] [5] ) + 
(d7*wh_local [ i ] [6 ] ) + (d8*wh_local[ i ] [7] ) ; 

end 

end 

genvar j; 
generate 

for(j=0; j<8; j++) 
begin : loop 
a_au_comp_chk_o : 
assert property 
(©(posedge elk) (reset &&enable2) |-> 

{out_local[j] == out_orig[j])); 
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end 

endgenerate 

endmodule 

bind au_comp au_comp_chk al 

(elk, reset, enablel, enable2, dl, d2, d3, d4, 
d5, d6, d7, d8, ol, o2, o3, o4, o5, 06, o7, 
08) ; 
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Figure 4-4. Waveform for WHT checker 

The checker calculates the expected output locally and puts the results in 
an array named "out_local." The original output data from the design is also 
stored in an array named "out_orig." The checker creates an array of 
properties to verify the 8 data points by using the "generate" statement. The 
special variable "genvar," allows the use of a "for loop" to create 8 separate 
properties to verify each one of the data points simultaneously. The property 
is asserted when the enable signal is high and the design is not in reset. Each 
property will compare the respective output data, "out_locar' and 
"out_orig." If they are not equal, the assertion fails. Figure 4-4 shows the 
results from the first data point in the array. 

4.3 Sample Design - A JPEG based data-path design 

In this section, verification of a sample JPEG model is discussed. The 
design block is part of a JPEG encoder wherein data is read from memory 
and transformed using certain arithmetic algorithms. The transformed data is 
then stored in a memory for package and transmission. 

There are three main modules in the JPEG model - the data feeder, the 
data path and the data confrol modules. The top level block diagram of the 
JPEG model is shown in Figure 4-5. Details of each module are provided 
below: 
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The data control module helps with the hand shaking process with 
the memories and also generates control signals for the data path and 
data feeder modules to process the data. 
The data feeder module reads a block of data at a time from the 
memory and provides it to the data path module to process. 
The data path module performs the arithmetic operation on the block 
of data and stores it in memory. 

Memory 

Data 
Feeder 

1 

Datapath (Arithmetic module) 

Data Control Block 

Memory 

Figure 4-5. Block diagram of JPEG model 

4.3.1 A closer look at the individual modules 

Data feeder module 

Figure 4-6 shows a block diagram of the data feeder module. This 
module consists of two modules, a serial in parallel out module (SIPO) and a 
parallel in parallel out module (PIPO). The SIPO reads in one 16-bit data at 
a time and provides 64 16-bit data in parallel as output. 

When enabled (sipo_enable), the SIPO will start pushing the input data 
into the shift registers. Once we have 64 data samples, the SIPO will be 
disabled and the PIPO will latch the valid data out. The latched data is used 
by the datapath module for further processing. The data control block 
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generates the enable signals for the SIPO and PIPO. Figure 4-7 shows a 
sample waveform that shows the functionality of the data feeder module. 
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Figure 4-6. Data feeder block diagram 
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Figure 4-7. Waveform for Data feeder module 

Data path module 

The data path module takes in 64 16-bit data at a time and performs 
certain arithmetic operations on them. The process extends over multiple 
cycles to accommodate the completion of all operations. A multi-level 
pipeline is used to accomplish this task. Figure 4-8 shows a block diagram of 
the pipeline used to perform the arithmetic operations. 

The data path is a simple latch based pipeline design. The data goes 
through four stages of processing, transform 1, transpose, transform2 and 
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quantization. After each stage of processing, the stable values are latched to 
the next stage by using a PIPO. The PIPO is a latch that is controlled by the 
enable signals generated by the data control module. Each module gets 2 
clock cycles to complete their process. In other words, the data control 
module generates 4 enable signals at an interval of 2 clock cycles that are 
used to latch the stable data from the output of each stage. Figure 4-9 shows 
the relationship between the control signals of the pipeline. 

Data path module 

Transform \ P I P O Transpose npo Cransform^ H P O Juantizatio 1 PIPO 

. 1 

Data Control module 

Figure 4-8. Block diagram showing details of the pipeline 
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Figure 4-9. Waveform for pipeline control 

Data control module 

The data control module is a simple finite state machine (FSM). It 
produces the control signals required to keep the data moving along the 
pipeline smoothly. Figure 4-10 is a sample block diagram of the data control 
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module and Figure 4-11 is a waveform showing the generation of the control 
signals. 

The data control module generates the control signals for the data feeder 
and the data path modules. The state machine starts operating once it gets a 
"get_data" signal from outside. This kicks off the counters to generate the 
"read" signal for the memory and also the "read_address." It helps read 64 
valid data every time. 

clock 

reset 

get_data 

Data control block 

read 

-•• read address 

- • sipoenable 

-• pipo_enable 

-» stage tenable 

_>. stage2_enable 

-* stage3_enable 

- • stage4_enable 

-• write 

-» done frame 

Figure 4-10. Block diagram for data control block 

Once 64 valid data is read, the "read" is disabled and the enable signals 
for the pipeline are generated sequentially. After the data is processed 
through the 4 stages of pipeline, the "write" signal is generated to store the 
processed data into a memory model. After the "write," a fresh set of 64 data 
is read from the memory. This process continues until all the data is read 
from the memory. In the sample JPEG design used, the memory can hold 
262144 bytes (equivalent t o a 5 1 2 X 5 1 2 image). This means that the control 
signal generation is repeated 4096 (262144/64) times to finish the processing 
of all data points. After completing all blocks, the confrol block asserts the 
"done_frame" signal and immediately the "get_data" signal is de-asserted. 
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Figure 4-11. Waveform for control block 

What needs to be verified? 

• The validity of the data flow control signals. Are they generated 
correctly according to the timing requirements? 

• Is the data path working correctly, is it producing valid output data 
to be stored in the memory? 

4,3.2 SVA Checkers for the JPEG design 

Based on the description of the design, the following list of checkers 
needs to be written to verify the design thoroughly. 

JPEG_chkl: "get_data" and "done_frame" signals are mutually 
exclusive. 

The design starts reading data from the memory when the "get_data" 
signal is asserted. While acquiring and processing data, "done_frame" signal 
should be held low. When all data has been processed, the design asserts the 
"done_frame" signal and de-asserts the "get_data" signal. Hence, these two 
signals can never be asserted at the same time. 

property p_mutex; 
©(posedge elk) ({reset_) |-> 

not (done_frame && get_data)); 
endproperty 
a_mutex: assert property(p_mutex); 
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This is a mutually exclusive condition and can be written easily with a 
"not" operator. The "not" operator states that the test expression can never 
be true. The checker kicks off on every positive edge of the clock. The result 
of the checker "a_mutex" is shown in Figure 4-12. 
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Figure 4-12. Waveform for JPEGchkl 

JPEG_chk2: The "read" signal is held high for 64 cycles continuously 
and during this period, the "read_address' is incremented by one in every 
clock cycle. 

The sample design processes 64 data points at a time, which means that, 
a burst read is done for 64 cycles to get all the data that need to be processed. 
By verifying the above statement, we prove that we read a unique data on 
each of the 64 clock cycles. 

sequence s_read; 

(rd_addr == $past (rd_addr)+l) [*0:$] ##1 
$fell (rd); 

endsequence 

property p_read; 
©(posedge elk) 
{($rose (rd) && reset_) |-> 

s_read); 
endproperty 

a_read: assert property(p_read); 

The read address is checked for the increment by using the $past 
operator. The value of "rd_addr" in the current clock cycle should be the 
value in the previous clock cycle incremented by 1. This checking is done 
from the rising edge of the read signal ($rose (rd)) until the falling edge of 
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the read signal (Sfell (rd)). The "repeat until [*0:$]" operator is used to 
check the vaHdity of the address (until the "rd" signal is de-asserted). The 
result of the check "a_read" is shown in Figure 4-13. Every time there is a 
rising edge on the read signal, a valid match on the property is shown. The 
property itself will be active for several clock cycles but the match is 
indicated only once in the results and this is the point where the property 
begins to become active. 

cUc • . , _.; ._ 

re$et_ 

'" I I I r — 
rd.addr llilllillllllllllllli 83 |||ll||ilil||||||||il|||||||||il||l|||||||ii!li W lillilllff 

Figure 4-13. Waveform for JPEG_chk2 

JPEG_chk3: The "sipo_en" is held high for 64 cycles during the read 
cycle and then disabled, 2 cycles later the "pipo_en" signal is asserted to 
latch the data that will be processed by the datapath module. 

The data feeder module depends on the "sipoen" and the "pipo_en" 
signals to provide the valid data to the datapath module. This checker 
verifies the functionality of the data feeder module. 

sequence s_datafeeder; 

sipo_en[*64] ##1 $fell (sipo_en) ##1 
latch_en ##1 !latch_en; 

endsequence 

property p_datafeeder; 
©(posedge elk) ($rose (sipo_en) && reset_) |-> 

s_datafeeder; 
endproperty 

a_datafeeder: assert property(p_datafeeder) ; 

A simple repeat operator (*) is used to monitor whether the "sipo_en" 
signal is held high for 64 clock cycles. Once the "sipo_en" signal goes 
down, a "latch_en" pulse is asserted. The result of the check "a_datafeeder" 
is shown in Figure 4-14. 
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Figure 4-14. Waveform for JPEG_chk3 

The sequence "s_datafeeder" can also be written as follows. 

sequence s_datafeeder; 
##64 $fell (sipo_en) ##2 

latch_en ##1 latch_en; 
endsequence 

In this description of "s_datafeeder," the falling edge of "sipoen" is 
checked after 64 clock cycles and it does not guarantee that "sipo_en" was 
held high during these 64 clock cycles. 

JPEG_chk4: In the datapath module, each stage is enabled with a gap of 
2 clock cycles. 

Every stage in the data path has 2 clock cycles to provide the stable value 
for the next stage. The signals "dpl_enable," "dp2_enable," "dp3_enable" 
and "dp4_enable" help latch the stable data at each stage and they are 
asserted in a sequence of 2 clock cycle gaps. This makes sure that the data 
flow is happening correctly. 

sequence s_control; 
dpl_en ##1 !dpl_en ##1 dp2_en ##1 !dp2_en ##1 
dp3_en ##1 !dp3_en ##1 dp4_en ##1 !dp4_en ##1 
wr ##1 !wr; 

endsec[uence 

property p_Gontrol; 

©(posedge elk) $fell (latch_en) |=> s_control; 
endproperty 
a_control: assert property(p_control); 

Each enable signal for the PIPO is a pulse of one clock cycle and they are 
generated 2 clock cycles apart. The sequence "s_control" monitors the rise 
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and fall of each one of these control signals in a simple sequential 
concatenation method. The sequence starts when the data is loaded into the 
data path module (latchen). An implication operator (|->) is used to 
indicate that the falling edge of the signal "latch_en" is the gating condition 
for the rest of the sequence to be tested. The sequence ends when the data 
has passed through the data path and the processed data has been written into 
the memory (wr). 

JPEG_clili5: From the rising edge of "get_data" to the falling edge of 
"get_data," sequences "s_datafeeder" and "s_control" are repeated 4096 
times unless the design is reset. 

This guarantees that all data has been processed in the correct order. This 
is also used as a functional coverage check to make sure that all data from 
the memory has been processed. 

property p_control_all; 
©(posedge elk) ($rose {sipo_en) && reset_) |-> 

s_datafeeder ##1 s_control; 
endproperty 

property p_block; 
©(posedge elk) 
$fell (get_data) && $rose{done_frame) |-> 

(block == 4095); 
endproperty 

a_control_all: assert property{p_control_all); 
c_cont:rol_all: 

cover property{p_control_all)block++; 

a_block: assert property(p_block); 

To make sure that the entire sequence repeats 4096 times to process all 
the data points, the checks JPEG_chk3 and JPEG_chk4 should be 
concatenated. The property p_control_all will start when the data is read 
from the memory (sipo_en) and will end when the processed data has been 
written to the output memory (wr). A "cover" statement can be declared for 
the property p_control_all that will provide information on how many times 
the property really succeeded and how many times it succeeded vacuously. 
If there is a real success, the variable "block" is incremented by one each 
time. The number of real successes should equal 4095. The property a_block 
uses this variable to verify that all blocks of data have been verified. If the 
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"done__frame" signal has a rising edge and on the same clock cycle if the 
"get_data" signal has a falling edge, that indicates that the last block of data 
is being processed and at this point the variable "block" should indicate a 
value of 4095. The result of the check "a__contror' is shown in Figure 4-15. 
The result of the check "a_block" is shown in Figure 4-16. 
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Figure 4-15. Waveform for JPEG_chk5 
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Figure 4-16. Waveform for check ablock 

4.3.3 Data checking for the JPEG model 

In Section 4.3.2, SVA checkers were written to verify that all the control 
signals are generated correctly. This guarantees that the data is moving along 
the pipeline smoothly. This does not check for data integrity. Each block in 
the pipeline performs some transformation to the data and this needs to be 
verified. A very common method used to verify the data is by dumping the 
output to a file. This output file is later compared with the result produced by 
the golden model as a post-process. While this method could work, it has a 
few disadvantages: 
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1. The simulation has to finish in order to compare the output with the 
expected results. If the output is wrong, then a lot of simulation 
cycles have been wasted. 

2. This method is not very debug friendly since it does not say at which 
stage of the pipeline the output data started failing. One simple way 
to overcome this would be to dump the output of each and every 
pipeline stage and do the comparisons. While this will help debug, it 
will still waste simulation cycles as mentioned before. 

A more efficient way to do the data checking will be to do the 
comparison dynamically. This can be accomplished in several ways and 
each user has to decide which one is good for his or her simulation 
environment. Since the data checking is a repetitive process, the dynamic 
comparisons can be shut down after a few data packets have been verified. 
In other words, a goal can be set to gain confidence on the dynamic data 
checking process and once the goal is attained, these checkers can be shut 
down, hence improving simulation throughput. 

Possible steps for dynamic data checking of JPEG model: 

• Simulate the golden C model that will produce results for each 
pipeline stage as shown in Figure 4-17. While it is not always 
easy to match the RTL pipeline stages with that of the golden C 
model, it is also not impossible. 

• Generate the following output data files from the golden C model 
of the JPEG design before simulating the actual RTL - Whl.dat 
(output of transforml), Xpose.dat (output of transpose), Wh2.dat 
(output of transforml), Quantize.dat (output of quantization). 

• Use the same input data file on the RTL to perform data 
checking. 

• Create a generic checker that can load the golden results into the 
simulation environment and then compare them dynamically as 
the RTL simulates, as shown in Figure 4-18. As the simulation 
proceeds, at the relevant trigger points, the checker will compare 
the golden results with the design results and report any failures. 
A sample data checker is shown in Example 4.3. 
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Figure 4-18. Dynamic Pipeline checker 

Example 4.3 SVA checker for data-path verification 

module dp_chk( 

input logic reset, elk, enable, 

input logic [15:0] 

dl, d2, d3, ..., d61, d62, d63, d64) ; 

parameter data_file = ""; 

parameter identity = ""; 
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integer i=0, j=0; 
integer blk=0; 
integer fd, fdl; 

logic [31:0] pix_in_temp; 
logic [15:0] local_array[0:63]; 
logic [15:0] pix_in [0:262143]; 

// use $fopen construct to open the golden 
// results file 

initial 
begin 
fd = $fopen(data_file, "r"); 
end 

// copy design data to a local array 

always®{*) 
begin 
local_array[0] <= dl 
local_array[1] <= d2 
local_array[2] <= d3 

local_array[62] <= d63; 
local_array[63] <= d64; 
end 

// load actual results 

always®(negedge enable) 
begin 
if(reset) 
$display 
("\nDATA CHECKING: Block number %Od\n", blk); 
for{j=0; j<64; j++) 
begin 
fdl = $fscanf(fd, " %x", pix_in[j]); 
end 
blk++; 

end 

file:///nDATA
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II compare results 

genvar k; 
generate 
for(k=0; k<64; k++) 
begin: dchk 
a_dp_chk: assert property( 
©(posedge elk) (reset && $fell(enable)) |=> 
(pix_in[k] == local_array[k])) else $fatal; 

end 
endgenerate 

endmodule 

// check that data is put into blocks of 64 
correctly 

bind data_feeder dp_chk 
#(.data_file("input_image.dat"), 
.identity("INPUT")) dpchkl 
(reset_, elk, latch_en, qO, ql, , 
q61, q62, q63); 

// check that the output of first wh transform is 
// correct 

bind datapath dp_chk 
#(.data_file{"whl.dat"), .identity("WHl")) 
dpchk2 
reset, elk, dp_enablel, 
dwll,dwl2,.... ,dwl61,dwl62,dwl63,dwl64) ; 

// check that the transposed data is correct 

bind datapath dp_chk 
#(.data_file("xposed.dat") , 
.identity("TRANSPOSE")) dpchkS 
(reset, elk, dp_enable2, dwltl, dwlt2, ...., 
dwltSl, dwlt62, dwlt63, dwlt64); 

// check that the output of the second wh 
// transform is correct 
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bind datapath dp_chk 
#(.data_file("wh2.dat"), .identity("WH2")) 
dpchk4 
(reset, elk, dp_enable3, dwltwll, dwltwl2, ...., 
dwltwl63, dwltwl64); 

// check that the output of quantization is 
// correct 

bind datapath dp_chk 
#{.data_file{"quantized.dat") , 
.identity("QUANTIZATION")) dpchkB 
(reset, elk, dp_enable4, 
dol,do2,....do62, do63,do64) ; 

Example 4.3 shows a generic SVA datapath checker and how it is bound 
to the various stages of the pipeline design. 

• The checker defines 2 parameters that help identify the checker 
to be a unique one. The parameter "data_file" defines which 
golden file should be used by a specific instance of the checker. 
The parameter "identity" defines which section of the data path 
the checker is bound to. 

• The golden data is stored in a file. This data file is opened for 
reading purpose using the Sfopen construct. 

• On trigger (the enable signal), the actual design outputs are 
stored in the checker locally (local_array). Note that the datapath 
processes 64 data points at a time and hence, only 64 data points 
should be read from the golden file on a trigger. A variable is 
incremented by 1 on each trigger to document which block of the 
image is being verified currently. 

• Using a "generate" statement, 64 checkers are created, one for 
each data point. The "for" loop helps loop around and check all 
64 data points on every trigger. 

• The action block of the assert statement uses a Sfatal construct. 
This instructs the simulator to exit the simulation if there is a 
violation. This prevents running the simulation unnecessarily 
after finding mismatches. 

• The checker can be connected to specific points of the data path 
by using the "bind" construct. By defining the parameters 
relevant to each point, each checker becomes a unique instance. 
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A sample simulation log is shown below. 

DATA CHECKING: Block number 1 
"adv_datapath.sva", 118: 
tb.jpeg_int.datapath_inst.dpchkS.dchk[0].a_dp_ch 
k: started at 795s failed at 805s 
Offending '(pix_in[0] == local_array[0])' 

"adv_datapath.sva", 118: 
Fatal: "adv_datapath.sva", 118: 
tb.jpeg_int.datapath_inst.dpchkS.dchk[0].a_dp_chk 
: at time 805 

Note that the failure is coming from the instance of the checker attached 
to the "QUANTIZATION" module (instance dpchkS) of the data path. The 
failure clearly points out the time of failure and which data of the block 
failed. For example, in the above log, data point 0 of Block 1 failed. 

While this is one way to perform dynamic data checking, this might not 
be suitable for all designs. Each design is different and they have different 
specifications and requirements. This method can be used as a model to 
derive a methodology suitable for a specific design. 

4.4 Summary for data intensive designs 

• SVA provides the capability to perform arithmetic operations 
and is capable of using most SystemVerilog data types. 

• By using Verilog tasks and fimctions, data checking can be 
automated and functional coverage information on the design can 
be obtained. 

• Dynamic SVA checkers for data path uses the simulation cycles 
wisely and does not wait until the end of the simulation to find 
about design problems. The checkers also make debugging easy 
by pointing to the exact area of failure. 
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SVA FOR MEMORIES 
Memory controller protocol 

Computers and consumer electronic devices have huge amount of 
memory to store multimedia application data. In the ASIC world, almost all 
the chips that are being designed today use embedded memory (DRAM, 
SRAM, ROM, etc.). As the memory access time is becoming faster and 
faster, it becomes very essential that the end product work with multiple 
memory vendors and with different timing requirements. The major 
bottleneck in the verification of memory controller interface is the timing of 
the control signals. This can be effectively done using assertions. The 
assertions written for a particular type of memory device can be re-used with 
multiple vendors just by modifying the timing parameters. This chapter 
discusses developing reusable SVA checkers for different types of memory 
devices. 

5.1 Sample System - Memory controller 

The sample system has a CPU that interfaces with a memory controller. 
The CPU can read and write data to the various memories connected to the 
memory controller. The memory controller can interface to different type of 
memories such as SDRAM, DDR-SDRAM, SRAM, Flash, ROM, etc. The 
block diagram for the sample system is shown in Figure 5-1. 

5.1.1 CPU - AHB Interface Operation 

The CPU is a generic processor that uses the AHB bus interface to 
interact with the memory controller. The CPU generates the read/write 
commands. The CPU also generates the chip select signals for selecting the 
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memory with which the read/write operation will be performed. It supports 
both separate and shared memory address/data busses to SDRAM and static 
memories. It supports the AHB data width of 32, 64 or 128 bits. It also 
supports the AHB 32bit wide address bus. 

Figure 5-1. System block diagram 

Figure 5-2 shows the signal interface between the CPU-AHB bus 
interface and the memory controller. A brief description of the pins is listed 
below. 

hclk - clock generated by the CPU 
haddr - read/write address generated by the CPU 
hwdata - write data generated by the CPU 
hrdata - read data to the CPU from the memory 
hready - ready signal from CPU 
hready_resp - memory acknowledge signal for hready 
hsize - configures the size of the data transfer from CPU to memory 
• 0 0 - 1 2 8 bits of data transfer at a time 
• 0 1 - 6 4 bits of data transfer 
• 1 0 - 3 2 bits of data transfer 
hburst - defines how the memory address is accessed 
• 000 - single - one single memory location 
• 001 - INCR - Increments address 0x40, 0x44 ... 
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• 010 - WRAP4 - Wraps address in 4 word boundaries (0x48, 0x4c, 
0x40 0x44) 

• Oil - INCR4 - Increments address by 4 words from the current 
address 

• 100 - WRAPS - Wraps address in 8 word boundaries 
• 101 - INCR8 - Increments address in 8 word blocks 
• 110 - WRAP 16 - Wraps address in 16 word boundaries 
• 111 - INCR16 - Increments address in 16 word blocks 
sel_mem, sel_reg - select whether to do transaction with the external 
memories or the registers 

AHB BFM 

hclk 

haddr 

hsize 

hwdala 

htrans 

hready 

hraady_r8 

hresp 

hrdata 

Memory 
Controller 

Figure 5-2. CPU block diagram 

Figure 5-3 shows the waveform of a CPU write transaction to the 
memory controller. The CPU initiates a write transaction to the memory 
controller at marker 1. The size (hsize) is set to "10" and hence the data 
transaction is 32 bits wide. The burst (hburst) is set to "010" and hence the 
burst type is WRAP4. Based on the burst type, the address access will be 
0x0, 0x4, 0x8 and Oxc. Hence, the write transaction of size 32 bits and of 
type WRAP4 is initiated at marker 1. The figure shows that the address is 
incrementing from 80000000 to 8000000c and the data on "hwdata" is being 
written to the SDRAM. 
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Figure 5-3. CPU-AHB write 
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Figure 5-4. CPU-AHB read 

Figure 5-4 shows the waveform of a CPU read transaction to the memory 
controller. A read transaction of size 32 bits and type WRAP4 is initiated at 
marker 2 when the "ready" and "ready_response" signals are asserted. The 
figure shows that the same data that was written is being read. 

5.1.2 Memory controller operation 

The memory controller in the sample system interfaces to the SDRAM, 
SRAM and Synchronous Flash devices. A block diagram of the connection 
is shown in Figure 5-5. 
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SDRAM Interface 

195 

The memory controller interface to the SDRAM is generic. The interface 
is fully synchronous and all signals are registered on the positive edge of the 
clock. Read and write access to the SDRAM is burst oriented and they start 
at the address specified by the AHB bus and continue for a programmed 
number of locations. The connection from the memory controller to the 
SDRAM is direct and has no glue. It supports 16 SDRAM address bits. It 
also has programmable row and column address widths. All the SDRAM 
timing parameters are programmable. It supports auto-refresh with 
programmable refresh intervals. 

Memory Controller 
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Figure 5-5. Memory Controller Block Diagram 

A brief description of the pin connections between the SDRAM and the 
memory confroller is listed below. 

• elk - clock input to SDRAM 
• ras - selects the row address 
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• cas_ - selects the column address 
• we_ - when asserted write signal, when de-asserted read signal 
• sel_ - when asserted SDRAM is selected 
• data - bi-directional data bus for both reads and writes 
• addr - read/write address 
• bank_sel - selects a particular bank of SDRAM 

A sample waveform for a write conmiand issued by the memory 
controller is shown in Figure 5-6. A burst write of length four is written and 
read back. An active command (ras and chip select are asserted) is issued 
and then a write command (cas, we, and sel are asserted) is issued to the 
address 0x0000. Figure 5-6 shows that the data is written with a burst length 
of 4 to the memory at marker 1. Figure 5-7 shows a burst read command 
issued by the memory controller. The data is read out of the memory (marker 
1) after a "cas" latency of two clock cycles. 
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Figure 5-6. SDRAM write operation 
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Figure 5-7. SDRAM read operation 
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SRAM/FLASH Interface 

The SRAM/FLASH memories are static memories and the interfaces are 
similar. The memory controller supports asynchronous SRAMs, page-mode 
flashes and ROMs. The address width can be configured up to 32 bits. It also 
has the "ready" handshake signal to support non-SRAM type devices. The 
memory data width can be configured to 8 bits, 16 bits, 32 bits, 64 bits or 
128 bits. The static memory data width can be a minimum of 8 bits instead 
of the 16 bits standard requirement. The flash memory used in the sample 
system is write protected, so that the important system information is 
protected in the boot block. 

A brief description of the pin connections between the SRAM and the 
memory controller is listed below: 

• addr - address pins to the static memories from memory controller 
• data - data to/from the static memories to the memory controller 
• sel_ - chip select pins to select the corresponding static memory 
• we_ - write when asserted 
• oe_ - output enable asserted during read 
• bs_ - byte control pins to enable different data widths 

The interface for flash is similar to SRAM except that it has two more 
signals: 

• wp_ - write protect pin 
• rp_ ~ rsset power down pin 

Figure 5-8 shows a sample waveform for the interface between the 
memory controller and the SRAM. When signals "we_" and "sel_" are 
asserted (marker 1), a write is done to the SRAM. Similarly, when signals 
"sel_" and "oe_" are asserted (marker 2) and signal "we_" is de-asserted, a 
read is done from the SRAM. Figure 5-9 shows a sample waveform for the 
interface between the memory controller and the flash memory. The figure 
shows a burst read from the flash device. When signals "sel_" and "oe_" are 
asserted, a read operation from the address specified in the address bus 
(addr) is performed. 
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Figure 5-8. SRAM interface signals 
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Figure 5-9. Flash interface signals 

5.2 SDRAM Verification 

This section will discuss how to verify the SDRAM control signals. 
There are a lot of timing parameters for SDRAM device and assertion based 
verification can be used effectively to verify that these timing requirements 
are not violated. The sample system uses the following SDRAM 
configuration. 

512Mb SDRAM - 8M X 16bit X 4 bank 
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The 512Mb SDRAM under verification is a quad bank SDRAM and 
includes a synchronous interface. All signals are registered on the positive 
edge of the clock. Each of the 4 banks is organized as 8192 rows X 1024 
columns X 16 bits. Read and write access to the SDRAM is burst oriented. 
The access starts at a selected location and continues for a programmed 
number of locations. ReadAVrite access always begins with an active 
command followed by a read/write command. The address bit corresponding 
to the active command denotes the row address and the bank that is selected. 
AO-All denotes the address and BA[1:0] denotes the bank that is being 
accessed. The address bits corresponding to the read/write command denote 
the starting column address (denoted by A0-A7). 

The different combinations of the SDRAM interface signals sel_, ras_, 
cas_ and we_ constitute the different commands. All the SDRAM 
commands are summarized in Table 5-1. The "Command Inhibit" condition 
prevents the SDRAM from executing the new commands, regardless of 
whether the clock signal is enabled or not. Operations already in progress 
will not get affected (sel_ = 1, cas_, ras_, we_ = x). 
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Figure 5-10. Load Mode Register/Active command 

• No Operation: This prevents unwanted commands from being 
registered in idle/wait state (sel_ = 0, cas_, ras_, we_ =1) . 

Load Mode Register: The register is loaded through the address bus 
(AO-Al 1). The Load mode register is issued only when all the banks are 
idle (sel_, cas_, ras_, we_ = 0). Figure 5-10 shows a "load mode register" 
operation at marker 1 and an "active" operation at marker 2. 
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Active: This command is issued to activate/open a row for access. The 
value on the address bus is the value of the row and the value on the 
bank_address bus specifies the bank (sel_, ras_ = 0; cas_, we_ = 1). 

Table 5-1. SDRAM Commands 

Command 
No Operation 
Active 
Read 
Write 
Burst Terminate 
Load 
Mode Register 
Precharge 
Auto-Refresh 

Ras 
H 
L 
H 
H 
H 
L 

L 
L 
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H 
H 
L 
L 
H 
L 

H 
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Figure 5-11. SDRAM read/write 

• Read: This command is issued to do a burst read to an active row. The 
address provided on the bus "addr" provides the starting column address 
(sel_, cas_ = 0, ras_ we_ = 1). 

• Write: This command is issued to initiate a burst write access to an open 
row. The address on the bus "addr" provides the starting column address 
(sel_, cas_, we_ = 0, ras_=l). Figure 5-11 shows a simple SDRAM 



5. SVA for Memories 201 

read/write operation. A burst write is performed with a burst size of 4 at 
marker 1. A burst read to the same address location is done at marker 2. 

• Precharge: Precharge is used to de-activate the rows (sel_, ras_, we_ = 
0, cas_=l). If during precharge the addr[10] bit is set to 1, then all the 
rows in the banks are de-activated. 

• Auto-refresh: This command is issued in the normal operation of the 
SDRAM. This command must be issued every time a refresh is required. 
All active banks must be precharged prior to issuing an auto-refresh. 

• Burst Terminate: A burst terminate command is used to terminate a 
burst read or a burst write command. 

elk 
ras 
cas 
we 
sel 
data 
addr 
bank sel 

r LJ u 

D 

L 

M 

r ""L_r~ 
r~ 

1 r" 
i r~ 

omnoQ 
1 0100 lOQOO 

t 

1 r L_ 

0 

u 
r 
r 

2 

n [ 

Figure 5-12. Precharge / Auto-refresh 

Figure 5-12 shows the precharge command at marker 1 and auto-refresh 
command at marker 2. 

A read/write operation to a SDRAM can be performed once the steps 
summarized in Figure 5-13 are completed. The description of the steps is as 
follows: 

1. Initiahzation - once power is applied, SDRAM requires ~100us to 
initialize before any command can be issued. 

2. Once the initialization is completed, one NOP/COMMAND 
INHIBIT is applied. 

3. Then a precharge command is issued and all the rows are de
activated. 

4. A Refresh command is issued after precharge. 
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5. Mode register is loaded (set the "cas" latency, burst size and other 
configurations). 

6. Active command is issued (to activate the rows). 
7. Read/Write command is issued. 

Initialize forlOOus 

NOP/Command 
Inhibit 

Precharge 

Refresh 

1 
Load Mode register 

Active 

Read/Write 

Figure 5-13. SDRAM operation flow chart 
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5.2.1 SDRAM Assertions 

All the SDRAM commands like read, write, burst terminate, active, 
precharge, load mode register, etc. are derived from the four signals ras_, 
cas_, sel_ and write enable. Hence, all of these signals should be defined 
using "defines. These definitions can be re-used in the SVA checkers 
wherever necessary. 

"define s_precharge 
{!ras_n && !sel_n[0] && Iwe_n && cas_n) 

"define s_read 
{ras_n && !sel_n[0] && we_n && !cas_n && 
(burst == 3'bOOO)) 

"define s_burst_read 
(ras_n && !sel_n[0] && we_n && !cas_n && 
(burst != 3'bOOO)) 

"define s_write 
(ras_n && !sel_n[0] && !we_n &.&. !cas_n) 

"define s_autorefresh 
(!ras_n && !cas_n && !sel_n[0] && we_n) 

"define s_loadmoderegister 
(!ras_n && !cas_n && !sel_n[0] && !we_n) 

"define s_active 
(!ras_n && !sel_n[0] && cas_n && we_n) 

"define s_write 
(!cas_n && !we_n && !sel_n[0] && ras_n && 
(burst == 3'bOOO)) 

"define s_burst_write 

(!cas_n && !we_n && !sel_n[0] && ras_n && 
(burst != 3'bOOO)) 

Some of the possible SVA checkers extracted based on the ilinctionality 
of the SDRAM are shown below. The timing parameters used in these 
checkers specific to the SDRAM under consideration is listed in Table 5-2. 
Some of the timing parameters are specified in clock cycles and others in 
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nanoseconds (ns). For the values specified in nanoseconds, the number of 
clock cycles is dependent on the clock cycle period (tCK). In this sample 
design the value of tCK is 10ns. Hence, the number of clock cycles is 
derived based on the value of the clock period and the value of the timing 
parameter provided in the specification of the SDRAM as shown below. 

For example, tRCD=18ns 

tRCD/tCK = 1.8 clock cycles 

Hence, the timing window between an active command and a read/write 
command should be at least 2 clock cycles. 

Table 5-2. Timing parameters for SDRAM 

Parameter 
Load mode register to active 
Active to Active Command period 
Active to Read/Write 
Read latency 
Auto Refresh period 
Precharge Command period 
Active Bank a to Active Bank b 
Active to Precharge command 

Symbol 
tMRD 
tRC 
tRCD 
tCAS 
tRFC 
tRP 
tRRD 
tRAS 

Min 
4 cycles 
6 cycles (60ns) 
2 cycles (18ns) 
2 cycles 
6 cycles (60ns) 
2 cycles (18ns) 
2 cycles (12ns) 
5 cycles (42ns) 

Max 
4 cycles 

-
-
-
-
-
-

12000 cycles 
(120000ns) 

SDRAM_chkl: Load mode register to active command (tMRD). 

The load mode register is used to load the mode register of the SDRAM 
with information on how the device is configured. Once the SDRAM is 
configured an active command should arrive in "tMRD" (4 clock cycles). 
Figure 5-14 shows that the load mode register coitmiand is sampled at 
marker 1 and four clock cycles later active command is sampled (marker 2), 
as expected. Hence, the check a_tMRD succeeds. 

property p_tMRD; 
@(posedge elk) 
^s_loadmoderegister |-> 

##[tMRD] ^s_active; 
endproperty 
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a_tiyiRD: assert property (p_tMRD) ; 
c_tMRD: cover property{p_tMRD); 
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Figure 5-14. Load mode register to Active command, tMRD 

SDRAM_chk2: Check the value of load mode register (022). 

This assertion is used to check the value written into the mode register. 
This value is important as it determines the burst size and "cas" latency. 
When the load mode register command is issued, the value on the address 
bus is written into the load mode register. Bits [0:2] specify the burst size 
and the burst size is set to 4 (100). The "cas" latency value is set to 2. To set 
these parameters, the register has to be written with 0x0022. 

Figure 5-14 shows a load mode register command being issued by the 
memory controller at marker 1. At this point, the address bus has a value of 
0x0022. Hence, the check a_loadmoderegister succeeds. 

property p_loadmoderegister; 
©(posedge elk) 
{"s_loadmoderegister) |-> 

(addr == 16'h0022); 
endproperty 
a_loadmoderegister: 

assert property{p_loadmoderegister) ; 
c_loadmoderegister: 

cover property{p_loadmoderegister) ; 

SDRAM_chk3: tCAS, read data is available with a latency of tCAS after 
the read command is issued. 
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In the sample SDRAM memory, whenever a read command is issued, the 
data is available after the "cas" latency (Column Address Select Latency). 
This is programmed in the mode register based on the memory vendor. 
Figure 5-15 shows that a read command is sampled at marker 1. After tCAS 
cycles, the data is valid as shown by marker 2. To verify this property, 
implication construct and $isunknown construct are used. 

property p_read; 

©(posedge elk) 
("s_read || "s_burst_read) |-> 

##tCAS ($isunknowndata) == 0); 
endproperty 

a_read: assert property(p_read); 
c_read: cover property(p_read); 
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Figure 5-15. SDRAM read with tCAS latency 

SDRAM_chk4: tRCD, after an active command, read/write can occur 
only after tRCD. 

If the memory controller has issued an active command, then the read or 
write command cannot be issued within "tRCD" cycles. In the sample 
system used, once an active command is issued, a read/write command 
should be issued within 10 clock cycles. There are two specific conditions 
that need to be tested: 
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1. Once the active command is issued a read/write command does 
not occur within "tRCD" (this is a forbidden property). 

2. Once the active command is issued, the read/write command must 
be issued within 10 clock cycles. 
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Figure 5-16. Active to ReadAVrite command, tRCD 

p r o p e r t y p_ tRCD_not ; 
©(posedge elk) 
^ s _ a c t i v e | -> not ## [0 : (tRCD - 1)] 

{"s_read || "s_write || "s_burst_read 
I I "s_burst_write); 

endproperty 

property p_tRCD; 
©(posedge elk) 
"s_active |-> 

##[tRCD:10] ("s_read || ^s_write || 
"s_burst_read || "s_burst_write); 

endproperty 

a_tRCD_not: assert property (p_tRCD); 
a_tRCD: assert property (p_tRCD); 

c_tRCD_not: eover property {p_tRCD); 
c_tRCD: eover property {p_tRCD); 

Figure 5-16 shows that the active command is sampled at marker 1. The 
write command is sampled 2 cycles after the active command at marker 2. 
Hence, the check a_tRCD is successful. 
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SDRAM_chk5: tRC, active to active command cannot come within tRC. 

If an active command is issued, the controller cannot issue another active 
command within "tRC" (6 clock cycles). In the sample system used, if an 
active command is issued, then the next active command should be issued 
within 12000 clock cycles. 

property p_tRC_not; 
©(posedge elk) 
"s_active |-> 

not ##[1: (tRC 
endproperty 

1)] "s active; 

property p_tRC; 
©(posedge elk) 
"s_active |-> 

##[tRC:12000] 
endproperty 

"s active; 

a_tRC_not: assert property (p_tRC_not); 
a_tRC: assert property (p_tRC); 
c_tRC_not: cover property (p_tRC_not); 
c_tRC: cover property (p_tRC); 
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Figure 5-17. Active to Active command, tRC 

Figure 5-17 shows the first active command with marker 1. The next 
active command arrives after 11,625 clock cycles (not shown in the figure) 
and hence the check a tRC is successful. 
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SDRAM_chk6: tRFC, auto-refresh to auto-refresh cannot come within 
tRFC. 

This property is similar to the previous property, in that the window 
between consecutive auto-refresh commands should be greater than tRFC. In 
the sample system used, if an auto-refresh command is issued then the next 
auto-refresh command should be issued within 12000 clock cycles. 

property p_tRFC_not; 
©(posedge elk) 
"s_autorefresh |-> 

not ##[1: (tRFC-1)] ^s_autorefresh; 
endproperty 

property p_tRFC; 
©(posedge elk) 
"s_autorefresh |-> 

##[tRFC:12000] ^s_autorefresh; 
endproperty 

a_tRFC_not: assert property {p_tRFC_not); 
a_tRFC: assert property {p_tRFC); 

c_tRFC_not: cover property (p_tRFC_not); 
c_tRFC: cover property (p_tRFC); 
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Figure 5-18. Auto-refresh to Auto-refresh command, tRFC 

Figure 5-18 shows an auto-refresh command at marker 1. Another auto-
refresh command arrives after 9 cycles (not shown in the figure). As this 
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window is greater than "tRFC" as required by the memory specification, the 
assertion is successful. 

SDRAM_chk7: Write command can follow a read command only after 
tCAS. 

A write command cannot follow a read command immediately. By 
definition, a read command has a "cas" latency of 2 cycles. So the write can 
follow the read only after the "cas" latency window is satisfied. 

property p_rd_wr; 
©(posedge elk) 
"~s_read | -> 

not ##[0:tCAS] "s_write; 
endproperty 

a_rd_wr: assert property (p_rd_wr); 
c_rd_wr: cover property {p_rd_wr); 

SDRAM_chk8: tRP, precharge to active command cannot be issued until 
"tRP" is met. 

The precharge command (de-activates the rows) to the active command 
(enables the rows) cannot happen within the "tRP" (2 cycles) window. In the 
sample system used, if a precharge command is issued, then an active 
conmiand should be issued within 12000 clock cycles. 

property p_tRP_not; 
©(posedge elk) 
"s_precharge |-> 

n o t # # [ 0 : { t R P - 1 ) ] " s _ a c t i v e ; 
e n d p r o p e r t y 

property p_tRP; 

©(posedge elk) 
"s_precharge |-> 

##[tRP:12000] "s_active; 
endproperty 

a_tRP_not: assert property (p_tRP_not); 
a_tRP: assert property (p_tRP); 

c_trp_not: assert property (p_tRP_not); 



5. SVA for Memories 211 

c _ t r p : a s s e r t property {p_tRP); 
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Figure 5-19. Precharge to Active command, tRP 

Figure 5-19 shows a precharge occurring at marker 1. An active 
command is issued within 12000 cycles (not shown in figure) and hence the 
assertion is successful at marker 1. 

SDRAM_chk9: tRAS, active to precharge must occur between tRASmin 
(5 clock cycles) to tRASmax (12000 clock cycles). 

The active command (enables the rows) to the precharge command (de
activates the rows) cannot happen within the "tRASmin" cycles and should 
happen within "tRASmax" cycles. 

property p_tRAS_not; 
©(posedge elk) 
'~s_active | -> 

not ##[0: (tRAS_min - 1)] "s_precharge; 
endproperty 

property p_Tras; 

©(posedge elk) 
"s_active |-> 

## [tRAS_min: tRAS_max] •~s_precharge; 
endproperty 

a_tRAS_not: assert property (p_tRAS_not); 
a_tRAS: assert property {p_tRAS); 
c_tRAS: cover property (p_tRAS); 
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c_ tRAS_no t : c o v e r p r o p e r t y {p_ tRAS_no t ) ; 

SDRAM_chklO: Back to back writes are not allowed. 
p r o p e r t y p_wr_wr ; 

©(posedge e l k ) 
" s _ w r i t e | - > 

not ##1 "s_write; 
endproperty 

a_wr_wr: assert property (p_wr_wr); 
c_wr_wr: cover property (p_wr_wr); 

SDRAM_chkll: Check if auto-precharge is disabled during read/write 
operations. 

Most of the SDRAM today can be precharged automatically by setting 
the addr[10] bit to a high during read/write operations. This assertion is 
written using implications and logical operation on the command definitions. 

p r o p e r t y p _ d i s a b l e _ a u t o p r e c h a r g e ; 
©(posedge e l k ) 
( " s _ w r i t e | | " s _ b u r s t _ w r i t e | | 
•~s_read | | " s _ b u r s t _ r e a d ) | -> 

addr[10] == 0; 
endproperty 

a_disable_autoprecharge: 
assert property{p_disable_autoprecharge); 

Figure 5-20 shows the waveform for disabling auto-precharge during 
read/write commands. 
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Figure 5-20. Disabling Auto-precharge 

A write command is sampled at marker 1 and corresponding to the write, 
the addr[10] is 0. Similarly, when a read command is in progress (marker 2), 
theaddr[10] is set to 0. 

SDRAM_chkl2: tRRD, minimum time interval between active 
commands to different banks is defined by tRRD (2 cycles). 

Usually there are multiple banks in the SDRAM. There is a minimum 
time interval that is required between issuing active commands to different 
banks. The current system under verification has four banks. 

property p_tRRD; 
©(posedge elk) 
{•~s_active && b a n k _ a d d r [ 1 : 0] == 0) | - > 

n o t # # [ 0 : tRRD] ( " s _ a c t i v e && 
b a n k _ a d d r [ 1 : 0 ] != 0 ) ) ; 

e n d p r o p e r t y 

a_tRRD: assert property{p_tRRD); 
c_tRRD: cover property {p_tRRD); 

This check verifies that if an active command is issued to bank 0, then an 
acdve command cannot be issued to other banks (1, 2, 3) within "tRRD." 
The same check has to be repeated for banks 1, 2 and 3 respectively. This 
can be done easily with a generate statement and a "for" loop as shown 
below. 

genvar j; 
generate 
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for {j=0; j<4; j++) 
begin:loop 
a_generate: assert property{©(posedge elk) 
("s_active && bank_addr[1:0] == j) 
|-> not ##[1: tRRD] (~'s_active && 

(bank_addr[1:0] != j) ) ); 
c_generate: cover property{©(posedge elk) 
{"s_active && bank_addr[1:0] == j) 

|-> not ##[1: tRRD] ("s_active && 
{bank_addr[l:0] != j))); 

end 
endgenerate 

SDRAM_chkl3: If "data_size" is 128, then check the mask operation. 

The CPU-AHB bus can define the data size and write to the memory in 
128 bits, 64 bits or 32 bits. The most commonly used data size is 32 bits. But 
when 128/64 bits are used, the mask bits are used to write the data in 32-bit 
chunks to the same address. 

property p_xferl2 8; 
©(posedge elk) 
((size == 0) && {{dqm[0] == 0 && {"s_write 
I I"s_burst_write))) |-> 
##2 ($fell (dqm[l]) && addr == $past (addr, 2) 

("s_write ||"s_burst_write)) 
##1 $rose {dqm[l]) 
##1 ($fell (dqm[2]) && addr == $past (addr, 2) 

&& ("s_write ||"s_burst_write)) 
##1 $rose {dqm[2]) 
##1 ($fell (dqm[3]) && addr == $past (addr, 2) 

&& ("s_write ||"s_burst_write)) 
##1 $rose {dqm[3])); 

endproperty 

a_xferl28: assert property(p_xferl28) ; 
c_xferl28: cover property(p_xferl28); 

Figure 5-21 shows the 128-bit data transfer. Data is written in 4 chunks 
of 32 bits to the same address location. Marker 1 shows the first 32 bits of 
data being written to address 0x0021 and marker 2 shows the fourth chunk 
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of 32 bits of data being written to address 0x0021. Mask Bits dqm[3:0] are 
used to control the data that is being written to the memory. 

• When the data transfer size is 32, all the bits of the vector 
dqm[3:0] are set to 0. 

• If the data transfer size is 64, data is transferred in two chunks of 
32 bits. When the first chunk of 32-bit data is transferred, 
dqm[l:0] is set to 0. When the second chunk of 32-bit data is 
transferred, dqm[3:2] is set to 0. 

• For 128-bit transfers, when dqm[0] is set to 0, the first 32 bits of 
data is written to the memory and when dqm[l] is asserted, the 
second 32 bits of data is written to the memory. Similarly, when 
dqm[2] and dqm[3] are set to 0, the third and fourth chunks of 32 
bits of data are written to the memory respectively. 
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Figure 5-21. 128-bit data transfer 

SDRAM_chkl4: If "data_size" is 64, each read/write operation takes 2 
cycles. 

This property is similar to the previous one. The data is written in two 
chunks of 32 bits. When dqm[0] = 0 and dqm[l] == 0, the first chunk of 32 
bits of data is written. When dqm[2] == 0 and dqm[3] == 0, the second 
chunk of 32 bits of data is written. 

Figure 5-22 shows the 64-bit data transfer. The first 32 bits of data is 
written to address 0x0103 and mask signals 0 and 1 are set to 0 (marker 1). 
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The second chunk of data is written to the same address 0x0103 and mask 
signals 2 and 3 are set to 0 (marker 2). 

property p_xfer64; 
©(posedge elk) ((size == 1) && {(dqm[l:0] == 0 
&&("s_write ||"s_burst_write))) |-> 
##2 ($fell (dqm[2] && dqm[3]) && addr == $past 
(addr, 2) &.&. {"s_write | | "s_burst_write) ) 
##1 $rose {dqm[3] && dqm[2])); 
Endproperty 

a_xfer64: assert property(p_xfer64); 
c_xfer64: cover property(p_xfer64); 
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Figure 5-22. 64-bit data transfer 

SDRAM_chkl5: Read/write terminated by a burst terminate. 

A burst terminate command is used to terminate a burst read/write 
command. So, if a burst terminate command is issued, the previous cycle 
must be a burst read/write operation. 

property p_wr_rd_burstterminate; 
©(posedge elk) (s_burstterminate) j 
$past {("s_burst_write || "s_write 
"s_burst_read), 1); 
endproperty 

"s read 
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p_wr_rd_burstterminate: 
assert property{p_wr_rd_burstterminate); 

c_wr_rd_burstterminate: 
cover property(p_wr_rd_burstterminate); 

SDRAM_cover_chkr. Write terminated by a burst terminate. 

There are some scenarios and properties that should be covered as part of 
the verification. For example, in the property (p_wr_rd_burstterminate), if a 
"burst terminate" command is issued, the previous command should be a 
"burst write" or a "burst read" command. But in the result of the check there 
is no classification on which specific command (read/write) was terminated 
by the "burst terminate" command, since all possible legal conditions have 
been combined with the logical OR operator. In order to obtain this kind of 
scenario information, the property is split and cover statements are written. 

A separate property is written to check if the "burst write" was 
terminated using burst terminate. If this property is asserted, there might be 
failures because "burst terminate" command can be issued for terminating 
"burst read" also. Hence, for collecting coverage information on scenarios, 
there is no need to declare assert statements. 

property p_wr_burstterminate; 
©(posedge elk) 
{s_burstterminate) |-> 

$past (("s_burst_write || "s_write), 1); 
endproperty 

c_wr_burstterminate: 
cover property(p_wr_burstterminate); 
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Figure 5-23. Burst write to Burst terminate command 

Figure 5-23 shows a write command sampled at marker 1 and a burst 
terminate command sampled at marker 2. The cover statement is successful 
since the previous cycle of the burst terminate was a burst write command. 

SDRAM_cover_chk2: Read terminated by a burst terminate. 

The read command can be terminated by the "burst terminate" command 
similar to the previous check. This assertion checks that if in the current 
cycle a burst terminate command is issued than the previous cycles is a 
read/burst read. 

Figure 5-24 shows a read command (marker 1) terminated by the "burst 
terminate" command (marker 2). But since there is "cas" latency to the read 
command, the data for the terminated read will be available two cycles later 
from when the read conmiand was issued, as shown by marker 3. Until the 
data is available, no other command can be issued. 

p r o p e r t y p _ r d _ b u r s t t e r m i n a t e ; 
©(posedge e l k ) { s _ b u r s t t e r m i n a t e ) | - > 

$ p a s t ( ( " s _ b u r s t _ r e a d | | " s _ r e a d ) , 
1); 

endproperty 

c_rd_burstterminate: 
cover property(p_rd_burstterminate); 



5. SVA for Memories 219 

elk 
ras_ 
cas_ 
we_ 
sel_ 
data 
addr 
c rd terminate 

1 1 1 1 

1 
1 1 
1 

nftffiv^ml 

m 
1 1 

I I I ! 

J 
1 1 

1 

1 1 

m 
1 f f ] 

1 ^ 2 

::uaMi 

1 
3 

Figure 5-24. Read to Burst terminate 

SDRAM_cover_chk3: Write terminated by a read. 

The write command can be terminated by a read command. If a write 
command is in progress and a read command is issued, the write is 
immediately aborted. Once again, there is no need to assert this property. 
The write command can either be terminated by other ways or can be 
followed by any other command. Hence, asserting this property might 
produce unnecessary failures. 

Figure 5-25 shows that a write command (marker 1) is being terminated 
by the read command (marker 2) and the read command is terminated by the 
burst terminate command. The burst size in this example is 4 and both the 
read/write operations are being terminated after just one write/read transfer. 

property p_wr_rdterminate; 
©(posedge elk) ("s_write | | 
"s_burst_write) ##1 ("s_read 

endproperty 
"s burst read); 

c_wr_rdterminate : 
cover property(p_wr_rdterminate); 
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Figure 5-25. Write terminated by a Read command 

5.3 SRAM/FLASH Verification 

• SRAM (static RAM) is a type of memory that holds data without 
external refresh as long as it is powered. 

• SRAMs are a lot faster than SDRAMs. 
• SRAMs are expensive and take more space/area. 

The verification of an SRAM/FLASH is very simple as there are no 
complex refresh mechanisms. When the "write" and "chip select" signals are 
asserted, the data is written in the memory starting from the location 
specified in the address bus. Similarly, when chip select is asserted, write 
enable is de-asserted and output enable is asserted, the data is read out of the 
memory. In the sample system, data cannot be written to the flash, since 
write protect signal is always asserted. The sample system uses these static 
memories. 

SRAM : 256K X 16bit high speed Static RAM 

FLASH: 128Mbit flash (16Mbytes) 

The timing parameters of the SRAM used in the sample system are 
shown in Table 5-3. The timing parameters of the Flash used in the sample 
system are shovra in Table 5-4. 
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Table 5-3. Timing parameters for SRAM 
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Parameter Symbol Min Max 
Write Cycle Time 
Write Pulse Width 
Read Cycle Time 
Chip Select to output 
Address Access time 

tWC 
tWP 
tRC 

tco 
tAA 

1 cycle (10ns) 
2 cycle (20ns) 
1 cycle (10ns) 
1 cycle (10ns) 
1 cycle (10ns) 

Table 5-4. Timing parameters for Flash memory 

Parameter Symbol Min Max 
Read/Write Cycle time tAVAV 
Chip select to Output Delay tELQV 

Page Address Access time tAPA 

15 cycles (150ns) 
15 cycles 
(150ns) 
3 cycles 
(25ns) 

5.3.1 SRAM/FLASH Assertions 

SRAM_chkl: Write cycle time, tWC. 

The SRAM write cycle time should be greater than the "tWC" mentioned 
in the specification. The write cycle time is the time in which the address is 
stable and in which the chip select and write enable signals are asserted. 

To implement this assertion, the Sstable system function and the 
implication operator are used. The $stable ftinction makes sure that the 
value of the address in the current clock cycle is the same as the previous 
cycle. 

property p_tWC; 
©(posedge elk) 
($fell (we_n) && !sel_n[2]) !=> 

$stable(addr[22:0]); 
endproperty 
a_tWC: assert property(p_tWC); 
c_tWC: cover property(p_tWC); 
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Figure 5-26. Write wycle time, tWC 

Figure 5-26 shows that a write command is sampled at marker 1 and the 
assertion succeeds at marker 2, since the address is stable for at least one 
clock cycle from when the write was issued. 

SRAM_chk2: Write enable pulse width, tWP. 

This check verifies that the write pulse width is always greater than the 
minimum specified in the specification (2 cycles). Figure 5-27 shows that 
the falling edge of write (marker 1) and the rising edge of write (marker 2) 
are sampled 2 cycles apart. 

property p_tWP; 
©(posedge elk) 
$fell (we_n) |-> 

##tWP $rose 
endproperty 

(we n) ; 

a_tWP: assert property{p_tWP); 
c_tWP: cover property(p_tWP); 
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Figure 5-27. Write pulse width, tWP 

SRAM_chk3: tRC - read cycle time. 

This is similar to the write cycle time check. The read cycle time is the 
time in which the address is stable and in which the chip select and output 
enable are asserted. Figure 5-28 shows that chip select and output enable are 
asserted at marker 1. The address value is the same at both marker 1 and 
marker 2. 

property p_tRC; 
@(posedge elk) 
(!sel_n[2] && we_n && !oe_n) |=> 

($stable (addr)); 
endproperty 

a_tRC: assert property(p_tRC); 
c_tRC: cover property(p_tRC); 
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Figure 5-28. Read cycle time, tRC 

SRAM_chk4: tCO - chip select to output data valid. 

The parameter "tCO" is the minimum time that chip select has to be 
asserted before data becomes valid. Figure 5-29 shows that the chip select 
and output enable are asserted at marker 1. In the same clock cycle, the data 
value is "x." One cycle later, the data value is valid (marker 2). 

property p_tCO; 
©(posedge elk) 
(!sel_n[2] && we_n && !oe_n && 
($isunknown (data))) |=> 

($isunknowii {data))= = 0; 
endproperty 

a_tCO: assert property(p_tCO); 
c_tCO: cover property(p_tCO); 

SRAM chkS: tAA - Valid address to valid data. 

The parameter "tAA" is the minimum time for which address has to be 
valid before data becomes valid. Figure 5-30 shows that a read command is 
sampled at marker 1. The address in this clock cycle should be stable in the 
next clock cycle and the data should be valid as shown by marker 2. 
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Figure 5-29. Chip Select to valid data, tCO 
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Figure 5-30. Valid address to Valid data, tAA 

property p_tAA; 
©(posedge elk) (!sel_n[2] && we_n && !oe_n) 

({addr == $past (addr,l)) ##0 
($isunknown (data))==0); 

endproperty 
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a_tAA: a s s e r t property(p_tAA); 
c_tAA: cover property{p_tAA); 

FLASH_Chkl: Flash is write protected. 

The flash memory used in the sample system is write protected. It is 
necessary to make sure that the write protect signal (wp_) is always asserted 
when the chip select for flash is enabled. 

property p_write_protect; 
©(posedge elk) 
(!sel_n[3]) |-> 

wp_n = = 0; 
endproperty 

a_write_protect: 
assert property (p_write_protect); 

c_write_protect: 
cover property (p_write_protect); 

FLASH_chk2: Complete read cycle time (tAVAV). 

The minimum read cycle time as mentioned in the Table 5-4 is 
tAVAV(15 clock cycles). In the sample system used, the read cycle time 
cannot be more than 900 clock cycles. Hence, two checks are written to 
verify both the minimum and maximum timing requirements. 

property p_tAVAV_not; 
©(posedge elk) 
(!sel_n[3] && $fall(oe_n)) |-> 

not ##[0:15] $rose (oe_n); 
endproperty 

property p_tAVAV; 
©(posedge elk) 
(!sel_n[3] && $fell (oe_n)) |-> 

##[16:900] $rose (oe_n); 
endproperty 

a_tAVAV: assert property(p_tAVAV); 
a_tAVAV_not: assert property(p_tAVAV_not); 

c_tAVAV: eover property(p_tAVAV); 



5. SVA for Memories 227 

c_tAVAV_ n o t : c o v e r p r o p e r t y ( p _ t A V A V _ n o t ) ; 

FLASH_chk3: CS/ADDR to valid data is tELQV. 

The minimum time that the chip select and address should be stable 
before data is valid is specified by "tELQV" (15 clock cycles). Figure 5-31 
shows that the signal "sel" is asserted at marker 1. After 15 cycles, the first 
data is valid as denoted by marker 2. 

property p_tELQV; 
©(posedge elk) 
(!oe_n && $fell (sel_n[3]) 
##14 $isunknovm(data) ##1 
endproperty 

$isunknovm (data)==0) 

a_tELQV: assert property(p_tELQV); 
c_tELQV: cover property(p_tELQV); 
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Figure 5-3 J. Flash waveform for tELQV, tAPA, tAVAV 

FLASH_chk4: ADDR to valid data, tAPA. 

The parameter tAPA (3 cycles) is the minimum time that the address is 
required to be stable before data is valid. This is true for only the subsequent 
reads of the burst read and not the first read in a burst. 
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Figure 5-32 shows a burst read command. In a burst read, when the 
address changes, a new data should be read within tAPA. The change in 
address from "000000" to "000001" is sampled at marker 1. At this point, 
the data is unknown and 3 clock cycles later a valid data is sampled, as 
shown by marker 2. 

sequence s_data_trans; 
(!sel_n[3] && !oe_n && {$stable (addr)==0) 
$stable (oe_n)) ##0 $isunknown (data) 
##3 $isunknovni (data)= = 0; 
endseguence 

&& 

property p_tAPA; 
©(posedge elk) 
s_data_trans |-> 

$stable(addr); 
endproperty 

a_tAPA: assert property{p_tAPA); 
c_tAPA: cover property{p_tAPA); 
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Figure 5-32. Flash waveform for tAPA 
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5.4 DDR-SDRAM Verification 

Double Data Rate Synchronous Dynamic Random Access Memory 
(DDR-SDRAM) is a type of memory that is similar to Synchronous DRAM 
but has a higher bandwidth. Data is written and read at both the rising and 
falling edge of the clock, doubling the speed. The operations are similar to 
that of the SDRAM. The DDR-SDRAM used in the sample system has the 
following configuration. 

DDR-SDRAM: 4Mword x 16bit x 4bank 

The read and burst read operation in the DDR-SDRAM is the same as 
that of the SDRAM. The burst read command is issued by asserting "sel_" 
and "cas_" while holding "ras_" and "we_" high. The address inputs 
determine the starting address of the burst. The first data is available after 
the "cas" latency after the read command (which is 2 cycles, based on the 
DDR-SDRAM specifications), and the subsequent data are presented on the 
rising and falling edges of the signal "dqs" (data strobe). 

The burst write command is issued by asserting "sel_," "cas_," "we_" 
and de-asserting "ras_" on the rising edge of the clock (elk). There is a 
latency of 1 clock cycle for the signal "dqs" to arrive. There is no latency 
relative to the signal "dqs" for a write command. 

5.4.1 DDR-SDRAM Assertions 

DDR_Chkl: Burst Read operation for DDR memories. 

In the DDR memory there are multiple clocks. Data transfer and read are 
done on clock "clk2x" which samples data on both edges. Most of the 
checks written for SDRAM can be reused for a DDR-SDRAM. New checks 
have to be written wherever the control signals are crossing clock domains. 

The keyword matched is used to synchronize signals across multiple 
clock domains in SVA. In this assertion, the signals cas_, ras_, we_ and sel_ 
are being generated by clock "elk." The data is read at the negative edge of 
clock "clk2x." In this case, we have to use the matched construct to 
synchronize the read sequence from one clock domain to another. 

sequence s_read; 
©(posedge elk) 
(ras n && !sel n[0] && we n && !cas n); 
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endsequence 

property p_read; 
©{negedge clk2x) s_read.matched 
##3 ($isunknown (data)) 
##1 ($isunknown (data) == 0) ; 
endproperty 

a_read: assert property{p_read)j 
c_read: cover property{p_read); 
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Figure 5-33. DDR-SDRAM Burst read operation 

Figure 5-33 shows that a read command is sampled at marker 1 (s_read) 
based on the clock "elk." The matched value of this sequence is sampled in 
the next nearest negative edge of clock "clk2x," as shovra by marker 2. Data 
is then read out with a CAS latency of 4 clock cycles (clk2x) denoted by 
marker 3. A valid data is read on both edges of the signal "dqs" and the 
signal "dqs" is generated based on clock (clk2x). Hence, the negative edge 
of the clock (clk2x) is used to sample the data. 

DDR_Chk2: Burst write operation on DDR memories. 

sequence s_write; 
@(posedge elk) 

(ras_n && !sel_n[0] 
endsequence 

&& !we n && leas n); 
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property p_write; 
©(posedge clk2x) s_write.matched 

|-> ##1 ($isunknovm (data) == 0) 
##1 ($isunknown{data) == 0); 

endproperty 

a_write: assert property{p_write); 
c_write: cover property{p_write); 
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Figure 5-34. DDR-SDRAM Burst write operation 

Figure 5-34 shows a write command at marker 1 (based on clock (elk)). 
The write command is synchronized to the positive edge of clk2x at marker 
2. The positive edge of the clock (clk2x) is used for sampling in a write 
command because the signal "dqs" is generated based on the clock (clk2x). 
The assertion is successful at marker 2 since data is being written into the 
memory on both edges of the signal "dqs" (data strobe) as shown by marker 
3 and marker 4. 

5.5 Summary on SVA for Memories 

Assertions can be used effectively to verify the timing 
requirements of memory devices. 
All timing information relevant to the memory device should be 
parameterized. This way, the assertions developed for a 
particular type of memory can be reused with similar memory 
device from any other vendor. 
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• The assertions written for memories provide information on 
specific scenario coverage. For example, was a write terminated 
by a read/burst terminate, was a read terminated by a burst 
terminate, was a back to back write performed, did a write 
command follow a read command, did the tests cover different 
data widths - 128/64/32 bits, etc. This helps increase the 
verification confidence and also provides a measure for 
verification completeness. 
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SVA FOR PROTOCOL INTERFACE 
SVA checkers for a sample PCI system 

Compliance testing has become one of the major challenges in SOC 
designs. It is very common for designs to support certain standard protocols. 
For example, graphics applications might support a standard bus interface 
such as PCI/PCIX, USB or IEEE 1394 Firewire. These bus interfaces help 
the designs achieve higher bandwidth of data transmission and also provide 
a standard method to connect multiple devices. Bus protocols are complex 
and every device sitting on the bus should be compliant with a list of rules 
specific to that protocol. 

The verification environment built for testing these standard protocol 
interfaces are often re-usable since the same set of rules applies to any 
device that supports the specific interface. Verification engineers often 
develop bus interface models (BIM) of the devices that support a specific 
interface. The BIM need not replicate the detailed intemal functionality of 
the device. It just has to support the basic handshaking process that is 
compliant with the specific interface. This helps the verification engineer to 
create a sample system with the BIM and the Design Under Test (DUT). 
Tests can be written to create transactions between the BIM and the DUT. 
While running these tests, specific monitors are written to make sure that the 
DUT is being absolutely compliant with the standard protocol. Most 
verification environments create logs of the transactions as seen by the bus. 
SVA can be used very effectively to create these bus protocol monitors. In 
this chapter, a sample PCI system is used to demonstrate how SVA checkers 
are created for a PCI compliant device. 
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6.1 PCI - A Brief Introduction 

The PCI local bus is a high performance, 32-bit or 64-bit bus with 
multiplexed address and data lines. The bus is intended for use as an 
interconnect mechanism between highly integrated peripheral controller 
components, peripheral add-in boards and processor memory systems. A 
sample PCI compliant device is shown in Figure 6-1. 
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Figure 6-1. PCI compliant device 

A brief description of each pin is listed below. 

ad[31:0] - the address bus, this has the information on the location to 
which data is to be transferred or the location from which data should be 
obtained. This also acts as the data bus. 

c/be[3:0] - the command bus, contains one of the twelve commands 
shovm in Table 6-1. It also acts as the byte enable bus that defines which 
bytes in the data bus are to be transferred. 

par - a parity bit, even number of I's should appear on the ad, c/be and 
par bits. The required value of the par bit is driven by the device one clock 
cycle after the device drives the "ad" bus. 
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framen - frame signal, this is asserted by the master that wants to 
perform a data transaction. When the frame is asserted, the master also 
indicates the nature of the transaction by setting the appropriate command on 
the "c/be" bus. The frame signal is de-asserted when the master is ready to 
complete the final data transfer. 

Table 6-1. PCI Bus commands 

C/BE13:0| 
0000 
0001 
0010 
0011 
0100 
0101 
Olio 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
n i l 

Command type 
Interrupt Acknowledge 
Special cycle 
I/O Read 
I/O write 
Reserved 
Reserved 
Memory Read 
Memory Write 
Reserved 
Reserved 
Configuration Read 
Configuration Write 
Memory Read Multiple 
Dual Address cycle 
Memory Read Line 
Memory Write and Invalidate 

trdyn - target ready signal, this is asserted by the target device that is 
currently addressed by the master. By asserting this signal the target device 
lets the master know that it is ready for a data transaction. 

irdyn - master ready signal, this is asserted by the master that wants to 
perform a data transaction. 

stopn - stop signal, this is asserted by the target device if it wants to 
terminate the current transaction. If the target asserts the stop signal without 
performing any data phases, it is called a retry. If the target asserts the stop 
signal after performing one or more data phases, it is called a disconnect. 

devseln - device select signal, this is asserted by the target device if it is 
selected. The target ready signal is asserted only after asserting this signal. 

idsel - initialization device select signal, is used as a chip select during 
PCI configuration read and write transactions. 

perm - parity error signal, asserted one clock after a parity error is 
identified either by the master or a target. 

serm - system error signal, it is an output of both master and target 
devices. This is asserted only when something fatal occurs. 

reqn - request signal, this is used by the master device to request the use 
ofthePCIbus. 
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gntn - grant signal, this indicates that the PCI device has got the 
permission to use the PCI bus. 

ad[63:32] - upper 32 bits of the data bus, used for 64-bit transactions. 
c/be[7:4] - acts as the byte enable bus that defines which of the bytes in 

the upper data bus is to be transferred in a 64-bit transaction. 
par64 - a parity bit, even number of I's should appear on the ad[63:32], 

c/be[7:4] and par64 bits. The required value of the par64 bit is driven by the 
device one clock cycle after the device drives the "ad" bus. 

req64n - request signal, this is used by the master device to request the 
use of the PCI bus for a 64-bit transaction. 

ack64n - acknowledge pin, PCI target device acknowledges the 64-bit 
transaction requested by the master device. 

6.1.1 A sample PCI Read transaction 

A read transaction is initiated by the master device. The master asserts 
the "framen" signal and drives an address onto the "ad" bus. It also places a 
read command on the "c/be" bus. The target device decodes the address and 
identifies itself Once it identifies itself, it asserts the "devseln" signal. The 
master device continues asserting the "firamen" signal, but stops driving the 
address bus. It asserts the signal "irdyn" and also places the byte enable 
command on the "c^e" bus. In response to this, the target device places the 
first data on the data bus (ad) and also asserts the signal "trdyn" to 
acknowledge that the data on the bus is valid. In a multiple data transaction, 
it is the responsibility of the addressed target to increment the initial address 
to point to the subsequent data locations. 

During a transaction if the target device is not ready to place the next 
data on the bus, it creates a wait state by de-asserting the signal "trdyn." The 
signal "devseln" will stay asserted and the data placed on the bus in the 
previous transaction will stay. The master will read the data only if both 
"trdyn" and "irdyn" are asserted. When the target is ready to transmit again 
it will assert the signal "trdyn." The master device indicates that the next 
data read will be the last one in the current transaction by de-asserting the 
signal "fi'amen." Once the last data is read, the master de-asserts the signal 
"irdyn" and the target device de-asserts the "trdyn" and the "devseln" signals 
respectively. If both the signals "irdyn" and "firamen" are de-asserted, the 
bus is said to be in an idle state. A waveform for a sample PCI read 
transaction is shown in Figure 6-2. 
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Figure 6-2. Sample PCI read transaction 

Marker 1 shows the point where the master issues the read command 
(0110) on the "c/be" bus. On the same cycle, the address bus also carries the 
address for the target device. Marker 2 shows the point when the master 
reads a valid data. Marker 3 shows that the target device de-asserts the 
"trdy" signal indicating that it is not ready for the read transaction. Marker 4 
indicates the last data phase since the signal "framen" is de-asserted. In the 
next clock cycle, the signals "irdyn," "trdyn" and "devseln" are all de-
asserted, indicating the completion of the transaction. 

6.1.2 A sample PCI Write transaction 

The master device initiates a write transaction. It asserts the signal 
"framen" and drives an address onto the "ad" bus. It also places the write 
command on the "c/be" bus. The target device identifies itself and asserts 
the signals "devseln" and "trdyn." The master continues to assert the 
"framen" signal. The master places the data on the "ad" bus and also asserts 
the signal "irdy" to let the target know that the data on the bus is valid. The 
master also issues the command byte that identifies which bytes are to be 
written on the same clock cycle. If the master is not ready to place the next 
data on the bus, it can create a wait state by de-asserting the signal "irdyn." 
The master will drive the same data from the previous cycle during the wait 
state. The master will de-assert the "framen" signal just before the last data 
is ready to be written. Once all the data is written, the master de-asserts the 
"irdyn" signal and then the target de-asserts the signals "trdyn" and 
"devseln." A waveform for a sample PCI write transaction is shown in 
Figure 6-3. 
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Figure 6-3. Sample PCI write transaction 

Marker 1 shows the point where the master issues the write command 
(0111) on the "c/be" bus. On the same cycle, the address bus also carries the 
address for the target device. Marker 2 shows the point when the master 
writes a valid data. Marker 3 shows that the target device de-asserts the 
"trdy" signal indicating that it is not ready for the write transaction. In the 
same clock cycle, the master device de-asserts the signal "framen" indicating 
that this is the last data phase. Marker 4 shows that the signals "irdyn," 
"trdyn" and "devseln" are all de-asserted, indicating the completion of the 
write transaction. 

6.2 A sample PCI System 

A sample PCI system used for illustration purpose is shown in Figure 6-4. 
The figure shows that there are 2 PCI master devices and 2 PCI target 
devices. A user could be designing a device that is expected to act as a PCI 
master or a PCI target or both. One could use bus interface models for the 
other three devices in the sample system to verify the DUT. There are three 
specific scenarios for which SVA checkers could be written as part of the 
verification plan. These three scenarios are discussed in the upcoming 
sections. 
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Figure 6-4. Sample PCI system 

6.3 Scenario 1 - Master DUT Device 

In this section, we assume that the design under test is a PCI master. 
Based on the PCI local bus specification, the PCI master has to follow 
certain protocol to be fially compliant. It is very common to write monitors 
as part of the verification environment. These monitors make sure that the 
DUT is not violating any of the protocol specifications. 

The monitors can also produce detailed log files of all master transactions 
for post-processing purpose. SVA can be used to define a generic set of 
checkers that can be attached to any PCI master device. Since PCI is a 
standard protocol, the checkers developed should be written in such a way 
that it can be re-used with any PCI compliant master device. Figure 6-5 
shows a sample configuration of the system. 
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Figure 6-5. Sample configuration for PCI Master device as the DUT 

6.3.1 PCI Master assertions 

In this section, we show a few sample SVA checkers that can he written 
to verify the PCI master functionality. Some of the commonly used design 
conditions are defined as follows to enable re-use. 

~define s_IO_READ 
($fell (framen) && (cxben[3:0] 

'define s_IO_WRITE 
($fell (framen) && (cxben[3:0] 

"define s_MEM_READ 
($fell (framen) && (cxben[3:0] 

'define s_MEM_WRITE 
($fell (framen) && (cxben[3:0] 

"define s_CONFIG_READ 
($fell (framen) && (cxben[3:0] 

"define s_CONFIG_WRITE 
($fell (framen) && (cxben[3:0] 

"define s_DUAL_ADDR_CYCLE 
($fell (framen) && (cxben[3:0] 

"define s_MEM_READ_LINE 
($fell (framen) && (cxben[3:0] 

"define s_MEM_WRITE_INV 
($fell (framen) && (cxben[3:0] 

== 4'bOOlO)) 

== 4'bOOll)) 

== 4'bOllO)) 

== 4'bOlll)) 

== 4'blOlO)) 

== 4'blOll)) 

== 4'bllOl)) 

== 4'blllO)) 

== 4'bllll)) 
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"define s__BUS_IDLE 
(framen && irdyn) 

Master_chkl: On a given clock cycle, "framen" cannot be de-asserted 
unless "irdyn" stays asserted on the same clock cycle. 

property p_mchkl; 
©(posedge elk) 

$rose (framen) 
endproperty 

•> (irdyn == 0); 

a_mchkl: assert property(p_mchkl); 
c_mchkl: cover property(p_mchkl); 

The master device asserts the signal "framen" during the last data phase. 
Hence, the signal "irdyn" should stay asserted at this point. If not, this is a 
violation. Figure 6-6 shows a sample waveform of this check in a simulation. 
Markers 1, 2, 3, 4 and 5 show instances where there is a rising edge on the 
"framen" signal and in all those clock edges, the signal "irdyn" was always 
asserted. Hence, the checker succeeds. 
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Figure 6-6. PCI Master check 1 

Master_chk2: Once "framen" is de-asserted, it cannot be asserted during 
the same transaction. 
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p r o p e r t y p_mchk;2; 
©(posedge elk) $rose (framen) |-> 

framen[*l:8] ##0 $rose (irdyn && trdyn); 
endproperty 

a_mchk2: assert property(p_mchk2); 
c_mchk2: cover property{p_mchk2); 

tsln 

devsebk 
trdyw 
c*e|7:01 
{̂ tess/Uaita ((8:01 
a mchk2 

Figure 6-7. PCI Master check2 

Once the signal "framen" is de-asserted, the master device has only one 
more data phase left. But it can take more than just one cycle to complete the 
last data phase. For example, if the target is not ready to accept the data, then 
the master waits to finish the last data phase. Before the master completes 
the last data phase, the firame cannot be asserted again. In other words, the 
signals "irdyn" and "trdyn" have to be de-asserted first before asserting 
"firamen" again. Figure 6-7 shows a sample waveform of this check in a 
simulation. 

Marker 1 shows a success of the assertion. At this point, there is a rising 
edge on the signal "frame" and hence the check becomes active. Note that in 
the same clock cycle, the signal "trdyn" is de-asserted indicating that the 
target is not ready to accept data. In the next clock cycle, both the signals 
"trdyn" and "irdyn" are asserted and hence the last data phase is complete. 
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One clock cycle, later the signals "irdyn" and "trdyn" are de-asserted. 
Marker 2 also shows a success but in this case, when the rising edge of the 
frame occurs, both the signals "irdyn" and "trdyn" are asserted and hence the 
last data phase is completed. In the next clock cycle, the signals "irdyn" and 
"trdyn" are de-asserted. 

Master_chk3: Once "irdyn" is asserted, the master cannot change 
"irdyn" or "framen" until the current data phase begins. 

property p_mchk3; 
@(posedge elk) 
$ f e l l ( i rdyn) ##[0 :5] 
! (devse ln ) ##0 s topn | -> 

(!irdyn ) [*0:16] ##0 !trdyn; 
endproperty 

a_mchk3: assert property{p_mchk3); 
c_mchk3: cover property(p_mchk3); 

Once a master asserts the signal "irdyn," it is expected that a valid data 
phase begin within 16 clock cycles assuming there are no stop conditions 
issued by the target device. The data phase begins when the target device 
asserts the signal "trdyn." From the point when signal "irdyn" is asserted, 
assuming there are no stop conditions, the signal "irdyn" should be kept 
asserted until the signal "trdyn" is asserted by the target device. 

Figure 6-8 shows a sample waveform of this check in a simulation. 
Marker 1 shows a success of the checker. The signal "irdy" and "devseln" 
are asserted at this point. One cycle later "trdyn" is asserted and hence the 
checker succeeds. 

Marker 2 shows a condition wherein both signals "irdyn" and "devseln" 
are asserted and 2 clock cycles later, the signal "trdyn" is asserted. The 
signal "irdyn" stays asserted until the arrival of the "trdyn" signal and hence 
the checker succeeds. 



244 Chapter 6 

elk 

rstxi 

raqn 

m^ 
ttsmem 

Myn 

devsiin 

c*e[7:0| 

Figure 6-8. PCI Master checkS 

Master_chk4: The master is required to assert "irdyn" within 8 cycles 
from when the "framen" is asserted. 

An intersect construct is used to control the length of the entire property. 
If the consequent of the property does not succeed within 1 to 8 clock cycles, 
the assertion will fail. 

property p_mchk4; 
@(posedge elk) 
$fell (framen) |-> 

1[*1:8] intersect 
($fell (framen) ##[!:$] $fell(irdyn)); 

endproperty 

a_mchk4: assert property(p_mchk4); 
c_mchk4: cover property(p_mchk4); 

Master_chk5: Normal Termination, once "framen" is de-asserted, the 
last data phase is completed within 8 clock cycles. 

property p_mchk5; 
©(posedge elk) 
$rose (framen) I-> 
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{ # # [ 1 : 8 ] ( $ r o s e ( i r d y n && t r d y n && d e v s e l n ) ) ) ; 
e n d p r o p e r t y 

a_mchk5: a s s e r t p r o p e r t y ( p _ m c h k 5 ) ; 
c_mchk5: c o v e r p r o p e r t y ( p _ m c h k 5 ) ; 

Master_chk6: Master Abort, "devseln" should be asserted within 5 
cycles of "framen" being asserted. If "devseln" is not asserted within 5 
cycles, then the "framen" should be de-asserted and one cycle later "irdyn" 
should be de-asserted. 

sequence s_mchk6; 
©(posedge elk) 
$fell (framen) ##1 (devseln)[*5] ##0 framen; 

endsequence 

property p_mchk6; 
@(posedge elk) 
s_mchk6.ended |-> ##1 $rose (irdyn); 

endproperty 

a_mchk6: assert property(p_mchk6); 
c_mchk6: cover property(p_mchk6); 

Figure 6-9 shows a sample waveform of this check in a simulation. 
Marker 1 shows the clock edge in which the signal "framen" is detected as 
asserted. If the signal "devseln" does not arrive in the next 5 clock cycles, 
then the master should abort this transaction. Marker 2 shows the clock edge 
on which "devseln" failed to arrive and Marker 3 shows the next clock edge 
wherein the master device de-asserts the signal "irdyn." Since the property 
starts when the sequence s_mchk6 ends successfully, marker 2 is the point 
where the success is shown. 
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Figure 6-9. PCI Master check6 

Master_chk7: When master is aborted by a target either by retry or 
disconnect, the master must de-assert its request before repeating the 
transaction. The request should be de-asserted on the clock cycle when the 
bus goes to the idle state and one clock cycle before or after the idle state. 

sequence s_mchk7_before; 
©(posedge elk) 

(Idevseln && $fell (stopn) && trdyn) 
##1 reqn ##1 ^s_BUS_IDLE; 

endsequence 

sequence s_mchk7_after; 
©(posedge elk) 

(Idevseln && $fell (stopn) && trdyn) 
##1 Ireqn ##1 "s_BUS_IDLE; 

endsequence 

property p_mchk7_before; 
©(posedge elk) 

s_mchk7_before.ended |-> 
reqn; 
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endproperty 

property p_mchk7_after; 
©(posedge elk) 

s_mchk7_after.ended |-> 
reqn [*2]; 

endproperty 

247 

a_mchk7_before: assert property(p_mchk7_before); 
a_mchk7_after: assert property(p_mchk7_after); 

c_mchk7_before: cover property(p_mchk7_before); 
c_mchk7_after: cover property(p_mchk7_after); 
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Figure 6-10. PCI Master check7 

This check needs two separate properties. The main requirement is that, 
if the target device issues a stop condition, the master will have the "reqn" 
signal de-asserted before requesting the bus again. The master device could 
have de-asserted the signal "reqn" before the stop condition actually arrived. 
In this case, it is verified that the signal "reqn" is de-asserted during the 
clock cycle when the bus is idle and also that the signal "reqn" was de-
asserted in the previous clock cycle (p_mchk7_before). 
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If the master device did not de-assert the signal "reqn" before the arrival 
of the stop condition, then it is verified that the signal "reqn" is de-asserted 
during the bus idle cycle and also the next clock cycle (p_mchk7_after). 
Note that the bus becomes idle 2 cycles after the target device asserts the 
signal "stopn." Figure 6-10 shows a sample waveform of this check in a 
simulation. 

Marker 1 shows the clock edge when the target device asserts the "stopn" 
signal. Marker 2 shows the point when the bus becomes idle. Note that the 
signal "reqn" is de-asserted at this clock cycle and also in the previous clock 
cycle. Hence, the checker a_mchk7_before succeeds. 

Master_chk8: When the target device terminates a transaction with a 
retry command, the master must repeat the same transaction until it is 
completed. 

sequence s_mchk8a(tempi); 
@(posedge elk) 
(((Igntn || $rose (gntn)) 
&& $fell framen)),templ=cxben[3:0]) 
##[1:2] $fell{irdyn) ##[0:5] $fell(stopn) 
&& $fell (devseln) && trdyn; 
endsequence 

sequence s_mchk8b(temp2); 
©(posedge elk) 
$fell (reqn) ##[0:100] Igntn 
##[0:5] $fell (framen) 
##0 ((cxben[3:0] == temp2)); 
endsequence 

property p_mchk8; 
int temp; 
®(posedge elk) 
s_mchk8a(temp) |-> 

# # [ 2 : 2 0] s _ m c h k 8 b ( t e m p ) ; 
e n d p r o p e r t y 

a_mchk8: assert property(p_mchk8); 
c_mchk8: cover property(p_mchk8); 
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Figure 6-11. PCI Master checkS 

Two separate sequences are written to check this property. The first 
sequence starts at the point when the master device asserts the "framen" 
signal. When the master asserts the firame, it also issues the command. A 
temporary variable called "tempi" is used to store the command that was 
issued by the master. The variable is updated upon a successfiil match on a 
falling edge of the signal "framen." In the next few cycles, if the target 
device terminates the transaction by asserting the signal "stopn," then the 
sequence s_mchk8a will match. The property p_mchk8 has the sequence 
s_mchk8a as the antecedent. If the antecedent is true, then we wait for the 
next command to be issued by the master. If and when the master issues a 
new command, we compare the command value stored in the local variable 
"temp" to the actual command issued by the master on the bus, to verify that 
both the commands are the same. If the commands are not the same, it is a 
violation. Figure 6-11 shows a sample waveform of this check in a 
simulation. 

Marker 1 shows the point when a falling edge of the signal "framen" is 
detected. At this point a command "f?" is placed on the command bus. 
Marker 2 shows the point when the target device terminated the transaction 
by asserting the signal "stopn." The master makes another request and gets 
the grant for the bus. Marker 3 shows the point when the master asserts the 
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signal "framen" again. At this point, a command of "f7" is placed on the bus 
once again and hence the check succeeds. 

Master_chk9: Bus parity check errors for address phase (SERR), this 
can be checked for all the different types of transactions like memory read, 
memory write, I/O read, I/O write, etc. 

property p_mchk9; 
@(posedge elk) 
$fell (framen) ##1 
(par ^ $past (*(ad[31:0] 
##[1:5] $fell (serrn); 

endproperty 

•cxben[3 :0] ) ) == 1) 

a_mchk9: assert property(p_mchk9); 
c_mchk9: cover property(p_mchk9); 
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Figure 6-12. PCI Master check9 

A parity check is performed during the address phase of every 
transaction. The parity should always be even for the signal "par" and the 
vectors "ad" and "c/be." This can be achieved by XOR'ing these three 
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signals. Usually, the parity error is issued on the next clock cycle. If a parity 
error occurs during the address phase of a transaction, it indicates a system 
error and the signal "serrn" should be asserted. Figure 6-12 shows a sample 
waveform of this check in a simulation. 

Marker 1 shows the point when the address phase is sampled. The value 
of the bus "c/be," value of the bus "address" and the signal "par" are 
sampled at this point and XOR'ed to find if even parity exists. Marker 2 
shows that, even parity does not exist and hence the signal "serrn" is 
asserted. Note that the signal "serm" is kept asserted for 2 clock cycles. 

Master_chklO: Parity error in data phase (PERR). 

A parity check is performed during the data phase of every transaction. 
The parity should always be even for the signal "par" and the vectors "ad" 
and "c^e." This can be achieved by XOR'ing these three signals. Usually, 
the parity error is issued on the next clock cycle. If a parity error occurs 
during the data phase of a transaction, the signal "perm" should be asserted. 
Figure 6-13 shows a sample waveform of this check in a simulation. 

property p_mchklO; 
©(posedge elk) 
(iirdyn && Itrdyn) ##1 
(par ^ $past (^(ad[31:0]*cxben[3:0])) == 1) |-> 

##[1:5] Iperrn; 
endproperty 

a_mchklO: assert property(p_mchklO); 
c_mchklO: cover property(p_mchklO); 

Marker 1 shows the point when the first data phase occurs out of the 
multiple data phases of this particular transaction. In the next clock cycle, 
the required parity value is set. This value is XOR'ed along with the value of 
the data and the command byte enable sampled from the previous clock 
cycle. If the parity bit is set incorrectly, the signal "perm" should be 
asserted. For marker 1, the XOR'ed value of the data and command is 1 and 
the par bit is set to 1. Hence, there is no parity error. Marker 2 shows the 
second data phase. The XOR'ed value of the data (1234) and the command 
(0000) is 1 and the parity bit is set to 0. This does not provide even parity 
and hence the signal "perm" is asserted in the next clock cycle, as shown by 
marker 3. 
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Figure 6-13. PCI Master checklO 

Master_chkll: PERR should not be asserted for special cycles. 

The master can issue a command for special cycle. The command bus 
carries the value of "0001" during a special cycle. The parity error cannot be 
asserted during a special cycle irrespective of what data is driven into the 
data bus. 

property p_mchkll; 
©(posedge elk) 
{$fell (framen)&&(cxben[3:0] == 

(perrn [*1:$] 
##0 ($rose (irdyn && trdyn) 
##1 perrnC*2]); 

endproperty 

(4'bOOOl)) 

a_mchkll: assert property(p_mchkll); 
c_mchkll: cover property(p_mchkll); 

If the master asserts the signal "framen" during a special cycle, the signal 
"perm" cannot be asserted until the bus becomes idle. Note that, it is 
necessary to make sure that the signal "perm" is not asserted for 2 cycles 
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even after the signals "trdyn" and "irdyn" are de-asserted. Since the parity 
error is issued in the next clock cycle of a data phase and the parity error is 
normally asserted for 2 clock cycles, this extension is necessary for the 
checker. Figure 6-14 shows a sample waveform of this check in a 
simulation. Marker 1 shows that the master has asserted the signal "framen" 
and issued the command "0001" on the c/be bus indicating that it is a special 
cycle. Note that the signal "perm," which indicates a parity error, remains 
de-asserted irrespective of what the "par" bit value is. Hence, the checker 
succeeds. Marker 2 shows a similar special cycle. 
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Figure 6-14. PCI Master checkl 1 

Master_Chkl2: Dual Address Cycle. 

It takes two cycles for the master to assert "irdyn" if it addresses a 64-bit 
target device. When the master asserts the signal "framen," it also issues the 
command for the dual address cycle. Along with the command, it also 
asserts the signal "req64n" to let the target know that the master wishes to 
perform a 64-bit transaction. 

property p_mchkl2; 
©(posedge elk) 
^s_DUAL ADDR_CYCLE && req64n 
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n o t $ f e l l ( i r d y n ) ; 
e n d p r o p e r t y 

a _ m c h k l 2 : a s s e r t p r o p e r t y { p _ m c h k l 2 ) ; 
c_mchk;12 : c o v e r p r o p e r t y (p_mchkl2) ; 

Master_chkl3: Full 64-bit Transactions. 

The master device asserts the signal "req64n" along with the "framen" 
signal to let the target device know that it wants to perform a 64-bit 
transaction. The target device responds by asserting the signals "devseln" 
and "ack64n" within 1 to 5 clock cycles. 

property p_mchkl3; 
©(posedge elk) 
$fell (gntn) ##[1:8] 
$fell (framen) && $fell(req64n) |-> 

##[1:5] $fell (ack64n) && $fell(devseln); 
endproperty 

a_mchkl3: assert property(p_mchkl3); 
c_mchkl3: cover property(p_mchkl3); 

Figure 6-15 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when the signal "gntn" is asserted. In the next 
clock cycle, the master asserts the "framen" signal and the "req64n" signal, 
as shown by marker 2. This alerts the target device that the master wants to 
perform a 64-bit transaction. The target acknowledges the request of the 
master by asserting the signal "ack64n" along with the signal "devseln" in 
the next clock cycle. The master asserts the signal "irdyn" in the next clock 
cycle. Note that the master takes 2 clock cycles to assert the signal "irdyn" 
after asserting the "framen" signal in a 64-bit transaction. 
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Figure 6-15. PCI Master checkl3 

Master_Chkl4: Check par64 signal validity. 

Similar to the 32-bit transactions, a parity bit is used for 64-bit 
transactions. An even parity is maintained on the XOR'ed value of the most 
significant 32 bits of the data bus and the 4 most significant bits of the 
command byte enable, using the signal "par64." 

property p_mchkl4; 
©(posedge elk) 
(!ack64n && !irdyn && Itrdyn && Idevseln) 
(^(ad[63:32]"cxben[7:4]) == 1) |=> 

par64; 
endproperty 

&& 

a_mchkl4: assert property{p_mchkl4); 
c_mchkl4: cover property(p_mchkl4); 

Figure 6-16 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when a valid 64-bit data phase occurs. The XOR 
value of the 32 MSB of data (00000200) and the 4 MSB of c/be (0000) is 1. 
Hence, to maintain the even parity, the value of the signal "par64" should be 
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a 1 in the next clock cycle. As seen in marker 2, the value of "par64" is 
detected as 1 and hence the check succeeds. 
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Figure 6-16. PCI Master check 14 

Master_chkl5: Bus Parking 

Bus parking happens when the "reqn" signal of a master is de-asserted but 
it still has the grant for the bus. The master goes to the idle state and then 
drives a stable value into the data bus and the conmiand bus to indicate that 
it has parked the bus. When the master goes to the idle state, "reqn" should 
not be asserted. If "reqn" is asserted, it is considered as a back to back 
transaction. 

sequence s_mchkl5; 
©(posedge elk) 
first_match{$fell (framen) ##[!:$] 

(framen && irdyn && Igntn && reqn)); 
endsequence 

property p_mchkl5; 



6. SVA FOR PROTOCOL INTERFACE 257 

©(posedge elk) 
s_mchkl5 | -> 
##[1:8] ( ( $ s t a b l e { a d [ 3 1 : 0 ] ) ) 
&& ($ s tab le ( cxben [3 :0 ] ) ) ) 
##1 (par ^ $past { " (ad [31 :0 ]"cxben[3 :0] ) ) 

endproperty 
= = 0); 

a_mchkl5: assert property(p_mchkl5); 
c_mchkl5: cover property(p_mchkl5); 
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Figure 6-17. PCI Master checklS 

A simple sequence s_mchkl5 is written to identify a valid completion of 
a master transaction. At the completion of the transaction, if the master still 
has the grant, then it is expected that it will drive a stable value into the data 
bus and the command bus, hence parking the PCI bus. The Sstable function 
is used to detect if the bus values have stabilized. It is expected that one 
cycle later, the correct parity bit is set for the stable values. The XOR 
technique is used once again to detect the validity of the parity bit. 
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Figure 6-17 shows a sample waveform of this check in a simulation. 
Marker 1 shows a valid start of a transaction and marker 2 shows the 
completion of the transaction. Note that at this point, the signal "reqn" is de-
asserted but the signal "gntn" is still asserted. Hence, the master is expected 
to drive a stable value into the data bus and command bus within 1 to 8 
cycles. Marker 3 shows the point when the master has parked the bus. 

Master_chkl6: Fast back to back transactions. 

A master device can perform fast back to back transactions wherein the 
signal "framen" is asserted in the immediate next clock cycle after the 
completion of a transaction. This can happen both at the completion of a 
single data phase or a multiple data phase sequence. Property p_mchkl6 will 
capture only the single data phase transactions whereas property p_mchkl7 
will capture both single data phase and multiple data phase transactions. 

property p_mchkl6; 
©(posedge elk) 
($rose (framen) && $fell (irdyn)) 
##1 $fell (framen) |-> 

$rose (irdyn); 
endproperty 

a_mchkl6: assert property(p_mchkl6); 
c_mchkl6: cover property(p_mchkl6); 

property p_mchkl7; 
@(posedge elk) 
(!irdyn && framen) 
##1 $fell (framen) |-> 

$rose (irdyn); 
endproperty 

a_mchkl7: assert property(p_mchkl7); 
c_mchkl7: cover property(p_mchkl7); 

Note that the main difference between the two properties is the sampling 
mechanism. If it is a single data phase back to back transaction, the signals 
"framen" and "irdyn" are sampled for their edges (falling edge of "framen" 
and rising edge of "irdyn"). Figure 6-18 shows a sample waveform of this 
check in a simulation. 
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Figure 6-75. PCI Master check 16/17 

Markers 1 and 2 indicate a single data phase back to back transaction. 
Markers 3 and 4 indicate a multiple data phase back to back transaction. 
Note that property p_mchkl7 is sufficient to capture both scenarios. 

Sample functional coverage point for PCI Master: 

Master Abort - The master abort can happen in any of the following 
conditions - I/O read, I/O write, Configuration read. Configuration write. 
Memory read. Memory write. A cover statement can be written to make sure 
that the testbench executed all of these possible abort conditions at least 
once. After the master asserts the "irdyn" signal, if a target device does not 
respond within 5 clock cycles by asserting the "devseln" signal, the master 
will abort the transaction by de-asserting the "irdyn" signal. Note that the 
commands are specified in the properties by using the 'define code. 

property p_mcovl; 
©(posedge elk) 
"s_IO_READ ##1 (devseln)[*5] |=> 

$rose (irdyn); 
endproperty 

property p_mcov2; 
©(posedge elk) 
^s 10 WRITE ##1 (devseln)[*5] 
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$rose ( i rdyn) 
endproperty 

property p_mcov3; 
©(posedge elk) 
^s_MEM_READ ##1 (devseln)[*5] |=> 

$rose (irdyn); 
endproperty 

property p_mcov4; 
©(posedge elk) 
^s_MEM_WRITE ##1 (devseln)[*5] |=> 

$rose (irdyn); 
endproperty 

property p_mcov5; 
©(posedge elk) 
~s_CONFIG_READ ##1 

endproperty 

(devseln)[*5] |=> 
$rose (irdyn); 

property p_mcov6; 
©(posedge elk) 
^s_CONFIG_WRITE ##1 (devseln)[*5] 

$rose (irdyn); 
endproperty 

c_mcovl: eover property(p_mcovl) 
c_mcov2: eover property(p_mcov2) 
c_mcov3: eover property(p_mcov3) 
c_mcov4: eover property(p_mcov4) 
c_mcov5: eover property(p_mcov5) 
c_racov6: eover property(p_mcov6) 

6.4 Scenario 2 - Target DUT Device 

In this section, we assume that the design under test is a PCI target 
device. The rest of the system remains exactly the same. Figure 6-19 shows 
the sample system. 
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Figure 6-19. Sample Configuration for PCI Target device as DUT 

6.4.1 PCI Target assertions 

Target_chkl: Once target asseils the signal "stopn," it should keep 
"stopn" asserted until the signal "framen" is de-asserted, one clock cycle 
later "stopn" is de-asserted. 

property p_tchkl; 
©(posedge elk) 
($fell (stopn) && Sframen) |-> 
"stopn [*1:$] 
##0 $rose (framen) ##1 $rose(stopn); 
endproperty 

a_tchkl: assert property(p_tchkl); 
c_tchkl: cover property(p_tchkl); 

Note that the property uses the "repeat until" construct to make sure that 
the signal "stopn" is kept asserted until the signal "framen" is de-asserted. 
Figure 6-20 shows a sample waveform of this check in a simulation. 



262 Chapter 6 

elk 

rstn 

fratnen 

Irdyn 

det'selii 

trdyn 

c/be|7:0] 

ai]dressjaa4a[63:0] 

stopn 

a tchkl 

1 1 1 

1 1 
1 1 

I 

1 
1 

1 1 1 

1 
1 

1 1 

0 00|j: 

1 
1 

Figure 6-20. PCI Target check 1 

Marker 1 shows the point when the signal "stopn" is asserted. In the next 
clock cycle, the signal "framen" is de-asserted and one cycle later, the signal 
"stopn" is also de-asserted, as shown by marker 2. 

Target_chk2: Once target has asserted the signal "trdyn," it cannot 
change "devseln" and "trdyn" until the current data phase completes. 

When the target device asserts the signal "trdyn," it has acknowledged 
that it is ready to either accept data or send data. Hence, it cannot de-assert 
the signal "trdyn" without completing a data phase. 

property p_tchk2; 
©(posedge elk) 
$fell (trdyn) |-> 

(Itrdyn && Idevseln) [*0:16] ##0 lirdyn; 
endproperty 

a_tchk2: assert property(p_tchk2); 
c_tchk2: cover property{p_tchk2); 

The property p_tchk2 becomes active on the falling edge of the signal 
"trdyn." The consequent of the property makes sure that the signals "trdyn" 
and "devseln" stay asserted until the signal "irdyn" is asserted. The latency 
on the "trdyn" signal is 16 cycles. 
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Target_chk3: The target device cannot assert the signal "trdyn" until 
"devseln" is asserted. 

property p_tchk3; 
©(posedge elk) 

$fell (trdyn) |->!devseln; 
endproperty 

a_tchk;3 : assert property (p_tchk3) ; 
c_tchk3: cover property(p_tchk3); 

Target_chk5: Disconnect with data. 

The target device indicates that it cannot continue a transaction by 
asserting the "stopn" signal and the "trdyn" signal at the same time. When 
this happens, the target is required to de-assert the "trdyn" signal in the next 
clock cycle but keep the signal "stopn" asserted. Hence, the last data phase 
completes without transferring any data since the signal "trdyn" is de-
asserted. This is classified as "Disconnect - B" by the PCI local bus 
specification. 

property p_tchk5b; 
©(posedge elk) 
{$fell (stopn) && Iframen && !trdyn && lirdyn) 

I =-• 
(framen && trdyn) 
##1 (stopn && devseln && irdyn); 

endproperty 

a_tchk5b: assert property(p_tchk5b); 
c_tchk5b: cover property(p_tchk5b); 

Figure 6-21 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when the signal "stopn" is asserted. In the next 
clock cycle, signal "trdyn" is de-asserted as expected. Marker 2 shows that, 
one clock cycle later, the signal "stopn," "devseln" and "irdyn" are all de-
asserted hence completing the transaction. 
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Figure 6-21. PCI Target check 5b 

Target_chk6: Disconnect without data termination. 

When the target device cannot complete any more data phases, it asserts 
the signal "stopn" and de-asserts the signal "trdyn." The target keeps the 
signal "stopn" asserted, until the final data phase is complete. 

Note that a complex property like this should be split into smaller 
sequences as follows. 

sequence s_tchk6a; 
©(posedge elk) 
{!irdyn && 1trdyn && Idevseln && !framen); 
endsequence 

sequence s_tchk6b; 
©(posedge elk) 
($fell (stopn) && $rose (trdyn) && Iframen); 
endsequence 

sequence s_tchk6c; 
©(posedge elk) 
$rose (framen) ##[0:8] (!irdyn && !stopn); 
endsequence 

sequence s_tchk6; 
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©(posedge elk) 

s_tchk6a.ended ##[1:8] s_tchk6b; 
endsequence 

property p_tchk6; 
©(posedge elk) 
s_tchk6.ended |=> s_tchk6c; 

endproperty 

a_tchk6: assert property{p_tchk6); 
c_tchk6: cover property(p_tchk6); 

The sequence s_tchk6a identifies a valid data phase. The sequence 
s_tchkb identifies the point when the target device asserts the "stopn" signal. 
The sequence s_tchk6 is a concatenation of the two sequences s_tchk6a and 
s_tchk6b. The sequence s_tchk6 takes the check to the point, wherein a 
"stopn" has been issued. The sequence s_tchk6c looks for the point when 
both the signals "irdyn" and "stopn" are asserted. This is required because 
the master can get into a wait state before completing the last data phase, 
which therefore could have de-asserted the signal "irdyn." 

Target_chk6_l: Master naturally terminating and target issuing an abort 
at the same time. 

This is a case when the target is asserting the "stopn" signal to stop the 
transaction and at the same time the master device is also aborting the 
transaction naturally. This means that on the same clock cycle that the target 
asserts the "stopn" signal; the master de-asserts the "framen" signal. 

sequence s_tchk6_l; 
@(posedge elk) 
{!irdyn && Itrdyn && Idevseln && !framen) 
##[1:8] ($fell (stopn) && trdyn && framen); 
endsequence 

property p_tchk6_l; 
©(posedge elk) 
s_tchk6_l.ended |=> (irdyn && stopn); 

endproperty 

a_tchk6_l: assert property(p_tchk6_l); 
c_tchk6_l: cover property(p_tchk6_l); 
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Figure 6-22. PCI Target check6_l 

Note that a sequence is written to identify the point wherein both target 
and master are trying to stop the transaction simultaneously. The property 
checks that, if the antecedent matches, then the signal "irdyn" should be 
asserted in the next clock cycle along with the signal "stopn." Figure 6-22 
shows a sample waveform of this check in a simulation. Marker 1 shows the 
point when signal "framen" is de-asserted and the signal "stopn" is asserted. 
Marker 2 shows the point when the signals "irdyn" and "stopn" are de-
asserted. 

Target_chk7: Retry 

If the target is not ready for a transaction, it has to ask the master to retry 
the transaction at a later point. This has to be done before the occurrence of 
the first data phase. The target device will assert the signal "stopn" before 
asserting the "trdyn" signal for the first time. 

sequence s_tchk7a; 
@(posedge elk) 
$ f e l l (framen) ##[1 :8] $ f e l l ( i r d y n ) ; 
endsequence 

sequence s_tchk7b; 
©(posedge elk) 
$fell (framen) ##[1:5] 
$fell(devseln) && $fell(stopn) && trdyn; 
endsequence 
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sequence s_tchk7; 
©(posedge elk) 
first_match{s_tchk7a and s_tchk7b); 

endsequence 

property p_tchk7; 
©(posedge elk) s_tchk7.ended |=> framen; 

endproperty 

a_tchk7: assert property(p_tchk7); 
c_tchk7: cover property(p_tchk7); 

The sequence s_tchk7 becomes active when the signal "framen" is 
asserted. Once the signal "framen" is asserted, it is expected that the target 
device identify itself by asserting the signal "devseln." It can happen 
anywhere between 1 to 5 clock cycles depending on the speed of the target 
device. If the target device wants to issue a retry, it will assert the signal 
"stopn" along with the signal "devseln." At this point, the signal "trdyn" 
should stay de-asserted. One cycle after the retry is issued, the master de-
asserts the "framen" signal to acknowledge the retry issued by the target 
device. 
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Figure 6-23. PCI Target checkV 

Figure 6-23 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when the master asserts the "framen" signal. 
Marker 2 shows the point when the target device asks the master to retry. 



268 Chapter 6 

One cycle after marker 2, the master de-asserts the "framen" signal and ends 
the transaction. 

Target_chk8: The signal "devseln" should not be asserted for a special 
cycle. 

property p_tchk8; 
©(posedge elk) 
$fell (framen) && (cxben[3:0] == 4'bOOOl) |-> 

devseln [*1:$] ##0 $rose (framen); 
endproperty 

a_tchk8: assert property(p_tchk8); 
c_tchk8: cover property(p_tchk8); 

During a special cycle, the signal "devseln" should not be asserted. The 
property becomes active when the "framen" signal is asserted and the master 
device places a special cycle command on the command bus. The 
consequent of the property makes sure that the signal "devseln" stays de-
asserted until the master completes the transaction (by de-asserting the 
"framen" signal). 
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Figure 6-24. PCI Target check 8 

Figure 6-24 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when a special cycle command is detected. Marker 
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2 shows the completion of the transaction. Note that from marker 1 to 
marker 2, the signal "devseln" stays de-asserted. 

Target_chk9: Target latency for the completion of the first data phase is 
16 cycles from the assertion of the signal "framen." 

Once the master asserts the signal "framen," the target device identifies 
itself by asserting the signal "devseln" first. Depending on the nature of the 
target device, it can take anywhere from 1 to 5 cycles for the "devseln" 
signal to be asserted. For example, a fast target device takes only one clock 
cycle to respond, a medium target device takes 2 clock cycles to respond. 
After asserting the "devseln" signal, the target device will assert the "trdyn" 
signal if it is ready for a transaction. The total latency allowed by the PCI 
local bus specification, from the point the "framen" signal is asserted by the 
master to the point when an actual data phase happens (both "trdyn" and 
"irdyn" are asserted) is 16 clock cycles. Depending on the nature of the 
device the latency split can be summarized as shown in Table 6-2. 

Two basic sequences are written to identify a valid data phase or a retry 
condition. A separate sequence is defined for each type of the target device. 
Note that the timing delay for the assertion of the "devseln" signal is the 
only difference between these sequences. 

Table 6-2. Target latency table 

Device type Frame -> devsel Devsel -> (irdy && trdy) 
FAST 1 0:15 
MEDIUM 2 0:14 
SLOW 3 0:13 
SUBTRACTIVE 4 0:12 

sequence s_tchk9a; 
©(posedge elk) 
{!irdyn && !trdyn); 
endsequence 

sequence s_tchk9b; 
©(posedge elk) 
{!irdyn && Istopn); 
endsequence 

sequence s_tchk9_fast; 
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©(posedge elk) 
$ f e l l (framen) ##1 $ f e l l ( d e v s e l n ) ; 
endsequence 
sequence s_tchk9_mediutn; 
©(posedge elk) 
$fell (framen) ##2 $fell(devseln); 
endsequence 

sequence s_tchk9_slow; 
©(posedge elk) 
$fell (framen) ##3 $fell(devseln); 
endsequence 

sequence s_tchk9_subtractive; 
©(posedge elk) 
$fell (framen) ##4 $fell(devseln); 
endsequence 

property p_tchk9_fast; 
©(posedge elk) 
s_tchk9_fast |-> ##[0:15] 

(!devseln) throughout 
(s_tchk9a.ended || s_tchk9b.ended); 

endproperty 

a_tchk9_fast: assert property(p_tchk9_fast); 
c_tchk9_fast: cover property(p_tchk9_fast); 

property p_tchk9_medium; 
©(posedge elk) 
s_tchk9_medium |-> ##[0:14] 

(!devseln) throughout 
(s_tchk9a.ended || s_tchk9b.ended); 

endproperty 

a_tchk9_medium: assert property(p_tchk9_medium); 
c_tchk9_medium: cover property{p_tchk9_medium); 

property p_tchk9_slow; 
©(posedge elk) 
s_tchk9_slow |-> ##[0:13] 

(!devseln) throughout 
(s tchk9a.ended 11 s tchk9b.ended); 
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endproperty 

a_tchk9_slow: assert property(p_tchk9_slow); 
c_tchk9_slow: cover property(p_tchk9_slow); 

property p_tchk9_subtractive; 
©(posedge elk) 
s_tchk9_subtractive |-> ##[0:12] 

(Idevseln) throughout 
(s_tchk9a.ended || s_tchk9b.ended); 

endproperty 

a_tchk9_subtractive: 
assert property{p_tchk9_subtractive); 

c_tchk9_subtractive: 
cover property(p_tchk9_subtractive); 

A separate property is written for each type of device. If the sequence 
mentioned in the antecedent of the property identifies a specific type of 
device, the consequent is allowed to take certain number of cycles to match, 
as specified in Table 6-2. For example, if it is a slow device, then the target 
device can take anywhere between 0 and 13 clock cycles to complete a valid 
data phase or issue a retry. 
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Figure 6-25. PCI Target check9 
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Figure 6-25 shows a sample waveform of this check in a simulation. 
Marker 1 shows the beginning of the property p_tchk9_fast. The master 
asserts the signal "framen" at this point. One cycle later, the signal "devseln" 
is asserted by the target device as shown by marker 2. One cycle after that, 
the signals "trdyn" and "irdyn" are asserted as shown by marker 3 and hence 
the check a_tchk9_fast succeeds. 

Marker 4 shows the beginning of the property p_tchk9_medium. The 
master asserts the signal "framen" at this point. Two cycles later, the signal 
"devseln" is asserted by the target device as shown by marker 5. Note that 
the signals "trdyn" and "irdyn" are asserted on the same clock cycle and 
hence the check a_tchk9_medium succeeds. 

Target_chklO: Latency for the subsequent data phase is 8 cycles from 
the previous data phase. 

Both the master and target can issue wait states in between a transaction 
if they are not ready. If in a given clock edge, a data phase has just 
completed in a burst transaction, then the next data phase should occur 
within 8 clock cycles. 

property p_tchklO; 
©(posedge elk) 
(!irdyn && !trdyn && !devseln && !framen) |-> 

##[1:8] (!irdyn && (!trdyn || Istopn)); 
endproperty 

a_tchklO: assert property(p_tchklO); 
c_tchklO: cover property(p_tchklO); 
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Figure 6-26. PCI Target check 10 

Figure 6-26 shows a sample waveform of this check in a simulation. 
Marker 1 shows a valid data phase. In the next clock cycle, the target device 
de-asserts the signal "trdyn" and hence issues a wait state. The wait state 
extends for one more cycle. One clock cycle after that, the signal "trdyn" is 
asserted again and hence a valid data phase occurs as shown by marker 2. In 
this case, the latency of the subsequent data phase is only 3 clock cycles and 
hence the check succeeds. 

Target_chkll: The first data phase on a read command requires a 
tumaround cycle enforced by the signal "trdyn." 

There are 4 possible read commands as shown in Table 6-1 and all read 
commands have a value of "10" in the 2 least significant bits. Whenever 
there is a read command, the master has to allow the target to drive the data 
into the bus and hence there is a tumaround cycle. The value of the data bus 
one clock cycle before the first data phase of a read cycle should be 
unknown. 

sequence s_tchklla; 
©(posedge elk) 
($fell (framen) && 

endsequence 
(cxben[l:0] 2'blO)); 

sequence s_tchkllb; 
©(posedge elk) 
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first_match($fell (devseln) ##[1:16] 
$fell (trdyn)); 

endseguence 

sequence s_tchkll; 
@(posedge elk) 
s_tchklla.ended ##[1:5] s_tchkllb; 

endsequence 

property p_tchkll; 
@(posedge elk) 
s_tchkll.ended |-> 
($isunknown (par) 
&& $past {$isunknown(ad[31:0]))); 
endproperty 

a_tchkll: assert property(p_tchkll); 
c_tchkll: cover property(p_tchkll); 
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Figure 6-27. PCI Target check 11 

The sequence s_tchklla detects a read command. Tlie sequence 
s_tchkllb detects the first valid data phase after the read command was 
issued. The property p_tchkll waits for the completion of the first data 
phase and then checks for the value of the par bit and the data bus in the 
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previous cycle using the $past constract. If the values are not driven to "z" 
in the previous cycle, it is a violation. 

Figure 6-27 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when a read command is detected (1110 -
memory read line command). Marker 3 shows the point when the first valid 
data phase happens. One cycle before this, the data bus value should be a 
"z." Marker 2 shows that the value on the data bus is unknown and hence the 
check succeeds. 

Marker 4 shows the point when a read command is detected (0110 -
memory read command). Marker 6 shows the point when the first valid data 
phase happens. One cycle before this, the data bus value should be a "z." 
Marker 5 shows that the value on the data bus is unknown and hence the 
check succeeds. 

Target_chkl2: Configuration cycle (1). 

During a valid configuration cycle, the 2 least significant bits of the 
address bus are set to either "00" or "01." When the configuration command 
is issued, the chip select signal "idsel" is asserted. The target device has to 
respond by asserting the signal "devseln" and eventually the configuration is 
completed when the signal "trdy" is asserted. 

sequence s_tchkl2a; 
©(posedge elk) 
(^s_CONFIG_READ || ^s_CONFIG_WRITE) && 
{(ad[l:0] == 2'bOO) || (ad[l:0] == 2'bOl)) && 
idsel; 
endsequence 

sequence s_tchkl2b; 
©(posedge elk) 
!devseln && stopn; 
endsequence 

sequence s_tchkl2; 
©(posedge elk) 
s_ tchk l2a ##[1:5] s _ t c h k l 2 b ; 
endsequence 

property p_tchkl2; 
©(posedge elk) 
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f irs t_match{s_tchkl2) | -> 
##[0:5] $ f e l l ( t r d y n ) ; 

endproperty 

a _ t c h k l 2 : a s s e r t p r o p e r t y ( p _ t c h k l 2 ) ; 
c _ t c h k l 2 : c o v e r p r o p e r t y { p _ t c h k l 2 ) ; 

Figure 6-28 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when a configuration command was issues by the 
system. Note that the signal "idsel" is asserted. Marker 2 shows the point 
when the target device asserts the signal "trdyn." 
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Figure 6-28. PCI Target check 12 

Target_chkl3: Configuration cycle (2). 

If the configuration command is issued and if the address bits are not set 
correctly ("10" or "11"), then the master should abort by de-asserting the 
"framen" signal. 

sequence s_tchkl3a; 
@(posedge elk) 
(^s_CONFIG_READ || ^s_CONFIG_WRITE) 
&& ({ad[l:0] == 2'blO) || (ad[l:0] 
&& idsel; 
endsequence 

== 2'bll)) 
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sequence s_tchkl3b; 
©(posedge elk) 
(devseln && stopn && trdyn) throughout 

{##[1:5] $rose (framen)); 
endsequence 

property p_tchkl3; 
©(posedge elk) 

s_tchkl3a |-> s_tchkl3b; 
endproperty 

a_tchkl3: assert property(p_tchkl3) ; 
c_tchkl3: cover property(p_tchkl3); 

The sequence s_tchkl3a detects an invalid configuration command. The 
sequence s_tchkl3b makes sure that the signals "devseln," "trdyn" and 
"stopn" stay de-asserted until the signal "framen" is asserted. The signal 
"framen" should be de-asserted within 5 clock cycles. 
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Figure 6-29. PCI Target check 13 

Figure 6-29 shows a sample waveform of this check in a simulation. 
Marker 1 shows the point when the invalid configuration command is 
detected. Marker 2 shows the point when the master aborts the transaction 
by de-asserting the "framen" signal. Note that the signals "trdyn," "devseln" 
and "stopn" stay de-asserted from markerl to marker 2. 
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Sample functional coverage point for PCI Target: 

Reserved commands - The signal "devseln" should not be asserted for any 
PCI reserved commands. The antecedent of the cover property looks for the 
reserved commands upon the assertion of the "framen" signal. The 
consequent makes sure that the signal "devseln" was kept de-asserted until 
the "framen" signal was de-asserted. 

property p_tcovl; 
©(posedge elk) 
$fell (framen) && (cxben[3:0] == 4'bOlOO) |-> 

devseln [*1:5] ##0 $rose (framen); 
endproperty 

c_tcovl: cover property(p_tcovl); 

property p_tcov2; 
©(posedge elk) 
$fell (framen) && (cxben[3:0] == 4'bOlOl) |-> 

devseln [*1:5] ##0 $rose (framen); 
endproperty 

c_tcov2: cover property(p_tcov2); 

property p_tcov3; 
©(posedge elk) 
$fell (framen) && (cxben[3:0] == 4'blOOO) |-> 

devseln [*1:5] ##0 $rose (framen); 
endproperty 

c_tcov3: cover property(p_tcov3); 

property p_tcov4; 
©(posedge elk) 
$fell (framen) && (cxben[3:0] == 4'blOOl) |-> 

devseln [*1:5] ##1 $rose (framen); 
endproperty 

c_tcov4: cover property(p_tcov4); 
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6.5 Scenario 3 - System level assertions 

279 

In this section, a few sample checks are shown for the PCI arbiter. The 
arbiter is usually part of the PCI bus. Figure 6-30 shows a sample system. 

Master device 1 Master device 2 Target device 2 

PCI LOCAL BUS 

DUT 

Target device 

SVA Checker 
for Arbiter 

Figure 6-30. Sample PCI System for Arbiter checks 

6.5.1 PCI Arbiter assertions 

Arbiter_chlil: The signal "gntn" should be asserted when "framen" is 
asserted. 

If the signal "gntn" is de-asserted and the signal "framen" is asserted in 
the same cycle, it is still valid. 

property p_schkl; 
©(posedge elk) 
$fell (framen) |-> 

!gntn[2] || $rose (gntn[2]); 
endproperty 

a_schkl: assert property(p_schkl); 
c_schkl: cover property(p_schkl); 
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Figure 6-31. PCI Arbiter checks 1,2,3 

Arbiter_chk2: Only one "gntn" signal can be asserted on a given clock 
cycle. 

In the current sample system, there are two masters and hence, the arbiter 
uses two "gntn" signals. 

property p_schk;2; 
©(posedge elk) 

$onehotO ({!gntn[3], !gntn[2]}); 
endproperty 

a_schk2: assert property{p_schk2); 
c_schk2: cover property{p_schk2); 

Since the "gntn" signals are active low signals, they are inverted and 
checked with a zero one-hot construct. 

Arbiter_chk3: One "gntn" signal cannot be de-asserted and another 
asserted in the same cycle unless it is in idle cycle. 

property p_schk3; 
©(posedge elk) 
$rose (gntn[2]) && 
(Iframen || lirdyn) |-> 
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no t $ f e l l ( g n t n [ 3 ] ) ; 
e n d p r o p e r t y 

a _ s c h k 3 : a s s e r t p r o p e r t y ( p _ s c h k 3 ) ; 
c _ s c h k 3 : c o v e r p r o p e r t y { p _ s c h k 3 ) ; 

Figure 6-31 shows a sample waveform of the checks a_schkl, a_schk2 
and a_schk3 in a simulation. 

Arbiter_chk4: The signal "lockn" should be asserted for the whole data 
phase. 

sequence s_schk4a; 
©(posedge elk) 
f i r s t _ m a t c h ( $ f e l l (lockn) ##[0:5] I d e v s e l n ) ; 
endsequence 

sequence s_schk4b; 
©(posedge elk) 
framen && Iirdyn && (Itrdyn || Istopn); 
endsequence 

property p_schk4; 
©(posedge elk) 
s_schk4a |-> !lockn [*1:$] ##0 s_schk4b; 
endproperty 

a_schk4: assert property(p_schk4); 
c_schk4: eover property(p_schk4); 

Arbiter_chk5: The signal "lockn" should be de-asserted during address 
phase. 

property p_schk5; 
©(posedge elk) 
$fell (lockn) |-> 

(($past (framen) == 0) 
&& ($past(framen,2) == 1)); 

endproperty 

a_schk5: assert property(p_schk5); 
c_schk5: eover property(p_schk5); 
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The antecedent of the property looks for the assertion of the "lockn" 
signal. The address phase occurs when the "framen" signal is asserted. By 
checking for the falling edge of the "framen" signal, we can confirm that an 
address phase just occurred. The $past operator is used to get the value of 
the "framen" signal in the past two cycles. 
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Figure 6-32. PCI Arbiter checks 4,5,6 

Arbiter_chk6: 
read operation. 

The first fransaction of a lock mechanism should be a 

sequence s_schk6; 
©(posedge elk) 
first_match($fell (gntnt2]) ##[1:8] 

$fell (framen) ##1 $fell(lockn)); 
endsequence 

property p_schk6; 
©(posedge elk) 
s_schk5.ended |-> 

($past(cxben[l:0]) == 2'blO); 
endproperty 

a_schk6: assert property(p_schk6); 
c_schk6: cover property{p_schk6); 
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The sequence s_sclik6 uses the "firstmatch" construct to identify the 
first assertion of the lock mechanism. The end of this is used as the 
antecedent of the property. The consequent part checks the 2 least significant 
bits of the command to make sure a read command was issued. 

Figure 6-32 shows a sample waveform of the checks a_schk4, a_schk5 
and a schk6 in a simulation. 

6.6 Summary on SVA for standard protocol 

• Standard protocols are very complex and require a huge list of 
checkers to verify compliance. 

• Timing rules are strict and these need to be achieved by the 
devices claiming to support these protocols. 

• A common set of checkers can be developed for a particular 
interface and the same checkers can be re-used with other 
devices supporting similar interfaces. 

• The complex nature of the protocol leads to multiple pre
conditions for most properties. Only SVA provides a variety of 
constructs and in-built mechanisms that can be used to define 
these complex pre-conditions. 

• SVA also provides the capabilities to capture bus conditions 
using local variables. These local variables can be used 
effectively along with the pre-conditions to write complex 
temporal checks. 

• SVA can be used effectively to create excellent functional 
coverage reports for a complex protocol. 
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CHECKING THE CHECKER 
Isolating assertion errors early 

Assertion based verification provides excellent potential for finding 
design bugs early in the verification cycle. The SVA language is defined to 
address ABV with powerful built-in constructs. Assertion failures are 
indicated to the user by default as required by the SystemVerilog 3.1a 
standard. It is not required to display the success of an assertion by default. 
The user can use the action block of an assertion to display successes. Since 
the number of successes can be numerous (since most assertions are 
evaluated on every clock edge), displaying every success by default can 
create huge log files depending on the number of assertions that are active 
during simulation, slowing down the simulation. 

A typical test configuration is shown in Figure 7-1. This is the same as 
Figure 0-2 shown in Chapter 0. Let's assume that a user executes this 
configuration and the simulation completes with a few assertion errors. The 
user should be absolutely confident that the error issued is a real design 
error. In other words, a user should be confident that his assertion code is 
correct and that the assertion failure is not a false condition. Debugging the 
entire design based on an assertion error is a tough task. If the error issued 
was due to bad assertion code, a user could waste a lot of time in the 
verification process. On the other hand, if there are no assertion failures 
during simulation, the verification engineer should be absolutely confident 
that the design works. If the assertion is not written accurately, it might not 
capture the intent of the design and hence, can miss a real error. 
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Constrained random Test bench 

Code Coverage Si^stemVerilDg Assertions 

Figure 7-1. Typical simulation configuratiai 

The declarative nature of the language makes SVA checks look very 
concise. If the checks are not coded well, the real intent of the property may 
not get represented accurately. It is critical to verify the functionality of the 
assertion code before binding it to the design. This involves investing some 
time upfront in the verification process, but it will prevent a user from 
navigating along a wrong debugging path. This chapter provides a few tips 
on how to check the checker. A sample configurable testbench for checking 
assertions that can be written between two signals is discussed in detail. The 
theory behind the configurable testbench will be used to verify a more 
complex protocol checker. Assertion validation is a vast topic and we just try 
exploring a few basic techniques in this chapter. 

7.1 Assertion Verification 

A simple testbench can be created to verify the functionality of an 
assertion. In most cases, the number of input conditions for an assertion is a 
finite number. This assumes that unbounded timing is not used in the 
definition of the property. An exhaustive testbench could be written to test 
all possible input conditions. If an unbounded timing is involved, it becomes 



7. CHECKING THE CHECKER 287 

impossible to create all possible input design conditions. Checkers involving 
unbounded timing can detect incorrect behavior, but do not fail at the end of 
simulation if an expected event does not occur. This is because the checker 
can not assume that a missing event would not happen if the simulation was 
run a bit longer. Unbounded timing checkers are thus considered incomplete. 
It is important to realize that even with a bounded time, the number of 
possible input design conditions can be numerous. This really depends on 
the complexity of the checker. An assertion is always based on two 
important concepts, as shovra in Figure 7-2: 

1. Logical relationship 
2. Temporal relationship 

If an assertion is written by logically combining (and, or, xor, etc.) an n-
bit expression, then the possible number of input conditions is (2" - 1). 
Consider the logical expression shown below: 

signall && signal2 && signals 

This expression will have 8 possible input conditions that need to be 
tested to guarantee the correct evaluation of the expression. 

Signall Logical Relationship 

Temporal relationship 

Signall 

Figure 7-2. Assertion relationship 

An assertion that involves a timing relationship between two signals can 
be tested thoroughly by using the bounds of the minimum and maximum 
timing limits. For example, consider the following case: 

signall ##[min:max] signal2 

This expression can fail on two conditions: 

1. If the timing between the two signals is less than "min." (This implies 
that signal 2 arrived before "min" time and did not stay true between 
"min" and "max" time) 

2. If the timing between the two signals is more than "max." 
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The assertion must succeed for all timings within the window (min and 
max). This means that varying the timing between signall and signal2 from 
(min-1) to (max+1) will cover all possible successes and at the least one 
error condition. If the timing between signall and signal2 is fixed, then the 
value of "min" and "max" are same. For a fixed timing relation, all possible 
successes and at least one error condition can be observed by varying the 
time from (min-1) to (min+1). 

7.2 Assertion Test Bench (ATB) for SVA with two signals 

In this section, we show how to create a configurable ATB. The objective 
is to create a testbench that can generate stimulus for SVA code that is 
written for two signals. The most basic requirement of an ATB is to get a 
correct response from the assertion for all possible successes and at least one 
error. An assertion involving two signals always has a leading signal (LS) 
and a trailing signal (TS). Consider the examples shown below: 

signall && signal2 
signall |-> signal2 
signall ##[1:3] signal2 
signall |-> ##2 signal2 

In all these examples, irrespective of whether we are checking for a 
logical relationship or a timing relationship, we will address signall as the 
leading signal and signal2 as the trailing signal. 

7.2.1 Logical relationship between two signals 

There are several possible logical relationships between two signals 
involved in an SVA. Logical relationships are evaluated on a per clock basis. 
In other words, these are combinational checks. 

Figure 7-3 shows a logical relationship tree for two signals. Based on the 
figure, there are 16 possible logical relationships between two signals. The 
logical relationship tree involves the following possibilities: 

1. Logical relationship between two level sensitive signals. 
2. Logical relationship between two edge sensitive signals. 
3. Logical relationship between two level sensitive signals with 

overlapping implication. 
4. Logical relationship between two edge sensitive signals with 

overlapping implication. 
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Any assertion that involves two level sensitive signals has the follovi'ing 
possibilities for the leading signal (LS) and the trailing signal (TS): 

a. HH - Both LS and TS are high 
b. HL - LS is high and TS is low 
c. LH - LS is low and TS is high 
d. LL - Both LS and TS are low 

Logical Rdationship 

Level based signals Edge based signals Ova-lapping 
Implication with 
level based signals 

Overlapping 
implicatian with 
edge based agnals 

r m r m i i i i \ \ \ \ 
HH HL LH LL HE. EF FR FF HH HL LH LL RR RF FR FF 

Figure 7-3. Logical relationship tree for SVA with two signals 

Any assertion that involves two edge sensitive signals has the following 
possibilities for the leading signal (LS) and the trailing signal (TS): 

a. RR - Both LS and TS have a rising edge 
b. RF - LS has a rising edge and TS has a falling edge 
c. FR - LS has a falling edge and TS has a rising edge 
d. FF - Both LS and TS have falling edges 

Note that the overlapping implication is listed as part of the logical 
relationship tree. If there is no timing involved between the leading signal 
and the trailing signal, the checker with an overlapping implication is a 
simple " i f statement. Hence, it can be grouped with the logical relationship 
tree. 

It is possible to have a mix of a level sensitive signal and an edge 
sensitive signal in the same assertion. These combinations are not listed as 
part of the tree to simplify the discussion. In a checker, if the leading signal 
is level sensitive and the trailing signal is edge sensitive, it can be grouped 
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with the level sensitive checks. Similarly, if the leading signal is edge 
sensitive and the trailing signal is level sensitive, the checker can be grouped 
with the edge sensitive checks. In the next section, we show how to generate 
stimulus that can verify all 16 possible relationships, as shown in Figure 7-3 
thoroughly. 

7.2.2 Stimulus generation for logical relationship - Level sensitive 

A list of possible properties for logical relationship between two level 
sensitive signals is shown below. Note that a logical "and" operator is used 
in this example. This can be replaced with any other logical operator and the 
stimulus generation will remain exactly the same. 

// On a given clock edge, both leading signal and 
// trailing signal are high 

property p_l_hh; 
©(posedge elk) a && b; 

endproperty 

// On a given clock edge, the leading signal is 
// high and the trailing signal is low 

property p_l_hl; 
©(posedge elk) a && !b; 

endp roper ty 

// On a given clock edge, the leading signal is 
// low and the trailing signal is high 

property p_l_lh; 
©(posedge elk) !a && b; 

endp rop e r ty 

// On a given clock edge, both leading signal and 
// trailing signal are low 

property p_l_ll; 
©(posedge elk) !a && !b; 

endproperty 

a_l_hh : assert property(p_l_hh); 
a_l_hl : assert property(p_l_hl); 
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a_l_lh : assert property(p_l_lh); 
a_l_ll : assert property(p_l_ll); 

Overlapping implication is very similar to a simple logical operator with 
the only difference of the pre-condition. There is a hidden " i f statement that 
evaluates the trailing signal conditionally. If the leading signal is not true, 
then the property succeeds by default. A list of possible properties for logical 
relationship between two level sensitive signals with overlapping implication 
is shown below. 

// on a given clock edge, if the leading signal 
// is high, check that the trailing signal is 
// also high 

property p4_oli_hh; 
©(posedge elk) a |-> b; 

endproperty 

// on a given clock edge, if the leading signal 
// is high, check that the trailing signal is 
// low 

property p4_oli_hl; 
©(posedge elk) a |-> !b; 

endproperty 

// on a given clock edge, if the leading signal 
// is low, check that the trailing signal is 
// high 

property p4_oli_lh; 
©(posedge elk) !a |-> b; 

endproperty 

// on a given clock edge, if the leading signal 
// is low, check that the trailing signal is 
// low 

property p4_oli_ll; 
©(posedge elk) !a |-> !b; 

endproperty 

a4_oli_hh: assert property(p4_oli_hh); 
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a 4 _ o l i _ h l 
a 4 _ o l i _ l h 
a4 o l i 11 

assert property{p4_oli_hl); 
assert property(p4_oli_lh); 
assert property(p4_oli_ll); 

To check a logical relation between two level sensitive signals, there are 
four possible input conditions (00, 01, 10, 11). By producing stimulus that 
covers all these four possible conditions, one can verify any logical 
operation between two level sensitive signals. The same stimulus will also 
satisfy the 4 conditions (HH, HL, LH, LL) shown in Figure 7-3. 
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b 

aj_lih 

aJ_W 

aj_!h 

aJ_U 

a_oli_Wi 

a_nH_H 

a_oM_lh 

.^j'^ r̂ i rn r^ rn 
1 1 1 
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Figure 7-4. Waveform for logical relation between two level sensitive signals 

The sample Verilog test code shown below is a simple 2-bit counter. The 
LSB of the counter drives the leading signal "a" and the MSB of the counter 
drives the trailing signal "b." The results produced by testing the above 
properties with the stimulus generated by the sample Verilog test code are 
shown in Figure 7-4. As shown in the figure, for the stimulus used, every 
assertion responded correctly for all real success and at least one real error. 

// sample test code for logical relationship 
// between level sensitive signals 

logic [1:0] logical_op_reg; 
logical_op_reg = 2'bOO; 

for(i=0; i<4; i++) 
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begin 
a <= logical_op_reg[0]; 
b <= logical_op_reg[1]; 
repeat(1) ©(posedge elk); 
logical_op_reg++; 

end 

7.2.3 Stimulus generation for logical relationship - Edge sensitive 

A list of possible properties for logical relationship between two edge 
sensitive signals is shown below. 

// on a given clock edge the leading signal has a 
// falling edge and the trailing signal has a 
// falling edge 

property p2_ff; 
©(posedge elk) $fell(a) && $fell(b); 

endproperty 

// on a given clock edge the leading signal has a 
// falling edge and the trailing signal has a 
// rising edge 

property p2_fr; 
©(posedge elk) $fell(a) &.&. $rose(b); 

endproperty 

// on a given clock edge the leading signal has a 
// rising edge and the trailing signal has a 
// falling edge 

property p2_rf; 
©(posedge elk) $rose{a) && $fell(b); 

endproperty 

// on a given clock edge the leading signal has a 
// rising edge and the trailing signal has a 
// rising edge 

property p2_rr; 
©(posedge elk) $rose(a) && $rose(b); 

endproperty 
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a2_ff 
a2_fr 
a2_rf 
a2 r r 

a s s e r t property(p2_ff) 
a s s e r t property (p2_fr) 
a s s e r t property (p2_rf) 
a s s e r t property{p2_rr) 

A list of possible properties for logical relationship between two edge 
sensitive signals with overlapping implication is shown below. 

// on a given clock edge, if the leading signal 
// has a falling edge, then the trailing signal 
// must have a falling edge 

property p4_oei_ff; 
©(posedge elk) $fell(a) |-> $fell(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a falling edge, then the trailing signal 
// must have a rising edge 

property p4_oei_fr; 
©(posedge elk) $fell(a) (-> $rose{b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a rising edge, then the trailing signal 
// must have a falling edge 

property p4_oei_rf; 
©(posedge elk) $rose(a) |-> $fell(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a rising edge, then the trailing signal 
// must have a rising edge 

property p4_oei_rr; 
©(posedge elk) $rose(a) |-> $rose{b); 

endproperty 

a4_oei_ff 
a4_oei_fr 
a4 oei rf 

assert property(p4_oei_ff) 
assert property(p4_oei_fr) 
assert property{p4_oei_rf) 
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a 4 _ o e i _ r r : a s s e r t p r o p e r t y { p 4 _ o e i _ r r ) ; 

Though we are checking only for logical relationship, the use of Srose or 
$fell constructs makes the stimulus generation slightly more complex. The 
stimulus generated should be capable of satisfying all the edge transitions. 
The sample Verilog test code shown below is a 2-bit counter and it 
accommodates all possible successes for both Fall-Fall and Fall-Rise 
conditions, as shown in the Figure 7-5. 

// sample test code for logical relationship 
// between edge sensitive signals 

f o r ( i = 0 ; i < 8 ; i++) 
begin 

a <= l o g i c a l _ o p _ r e g [ 0 ] ; 
b <= l o g i c a l _ o p _ r e g [ 1 ] ; 
repeat(1) ©(posedge elk); 
logical_op_reg++; 

end 
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Figure 7-5. Logical condition on edge based signals - FF, FR 

The sample Verilog test code shown below is also a 2-bit counter, but 
uses the negated values of the counter bits. It accommodates all possible 
successes for both Rise-Fall and Rise-Rise conditions, as shown in the 
Figure 7-6. 

// sample test code for logical relationship 
// between edge sensitive signals 
for{i=0; i<8; i++) 
begin 
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a <= ! l o g i c a l _ o p _ r e g [ 0 ] ; 
b <= ! l o g i c a l _ o p _ r e g [ 1 ] ; 
repeat (1) ©(posedge e l k ) ; 
l og ica l_op_reg++; 

end 

As seen in the last two sections, satisfying logical relationships is simple. 
The possible input conditions increase as the number of signals involved in 
the logical expression increase. 
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Figure 7-6. Logical condition on edge based signals - RR, RF 

7.2.4 Timing relationship between two signals 

The timing between the leading signal and the trailing signal can be a 
fixed delay or a variable delay. A timing relationship tree is very similar to 
the logic relationship tree except that it has twice the number of possibilities 
(fixed timing and variable timing) as shown in Figure 7-7. Also note that a 
timing relationship has a non-overlapping condition between the leading 
signal and the trailing signal. 

The timing relationship tree involves the following possibilities: 

1. Fixed timing relationship between two level sensitive signals. 
2. Variable timing relationship between two level sensitive signals. 
3. Fixed timing relationship between two edge sensitive signals. 
4. Variable timing relationship between two edge sensitive signals. 
5. Fixed timing relationship between two level sensitive signals with 

non-overlapping implication. 
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6. 

7. 

Variable timing relationship between two level sensitive signals with 
non-overlapping implication. 
Fixed timing relationship between two edge sensitive signals with 
non-overlapping implication. 
Variable timing relationship between two edge sensitive signals with 
non-overlapping implication. 

Timing Relationship 

Level based signals 

(Fixed time, Timing 
window) 

Edge based signals 

(Fixed time, Timing 
window) 

Non-Overlap ping 
Implication with 
level based signals 

(Fixed time, Timins 
window) 

Non- Overlapping 
implication with 
edge based signals 

(Fixed time, Timing 
window) 

i I I i I I 1 I I i I i M M 
HH HL LH LL KR HF FR FF HH HL LH LL R R HF FR FF 

Figure 7-7. Timing relationship tree 

A timing relationship between a level sensitive signal and an edge 
sensitive signal is possible. To simplify the timing relationship tree, these 
possibilities are not listed. As mentioned in Section 7.2.1, if the leading 
signal is level sensitive and the trailing signal is edge sensitive, it can be 
grouped with the level sensitive checks. Similarly, if the leading signal is 
edge sensitive and the trailing signal is level sensitive, the checker can be 
grouped with the edge sensitive checks. 

7.2.5 Stimulus generation for timing relationship 

A list of possible properties for fixed timing relationship between two 
level sensitive signals is shown below. 

// On a given clock edge, the leading signal is 
// high and after "min_time" clock cycles the 
// trailing signal is high 

property p3_hh; 
©(posedge elk) a ##min_time b; 
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endproperty 

// On a given clock edge, the leading signal is 
// high and after "min_time" clock cycles the 
// trailing signal is low 

property p3_hl; 
©(posedge elk) a ##min_time !b; 

endproperty 

// On a given clock edge, the leading signal is 
// low and after "min_time" clock cycles the 
// trailing signal is high 

property p3_lh; 
©(posedge elk) !a ##min_time b; 

endproperty 

// On a given clock edge, the leading signal is 
// low and after "min_time" clock cycles the 
// trailing signal is low 

property p3_ll; 
©{posedge elk) !a ##min_time !b; 

endproperty 

a3_fl: assert property(p3_hh) 
a3_f2: assert property(p3_hl) 
a3_f3: assert property{p3_lh) 
a3_f4: assert property(p3_ll) 

A list of possible properties for variable timing relationship between two 
level sensitive signals is shown below. 

// On a given clock edge, the leading signal is 
// high and between "min_time" and "max_time" 
// clock cycles the trailing signal is high 

property p3_wl_hh; 
©(posedge elk) a ## [min_time : max_time] b; 

endproperty 
// On a given clock edge, the leading signal is 
// high and between "min_time" and "max_tirae" 
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// clock cycles the trailing signal is low 

property p3_w2_hl; 

©(posedge elk) a ## [min_time : max_time] !b; 
endproperty 

// On a given clock edge, the leading signal is 
// low and between "min_time" and "max_time" 
// clock cycles the trailing signal is high 

property p3_w3_lh; 
©(posedge elk) !a ## [min_time : max_time] b; 

endproperty 

// On a given clock edge, the leading signal is 
// low and between "min_time" and "max_time" 
// clock cycles the trailing signal is low 

property p3_w4_ll; 
©(posedge elk) !a ## [min_time : max_time] lb; 

endproperty 

a3_wl 
a3_w2 
a3_w3 
a3 w4 

assert property(p3_wl_hh); 
assert property(p3_w2_hl); 
assert property(p3_w3_lh); 
assert property(p3_w4_ll); 

A list of possible properties for fixed timing relationship between two 
level sensitive signals with non-overlapping implication is shown below. 

// On a given clock edge, if the leading signal 
// is high, then after "min_time" clock cycles 
// the trailing signal must be high 

property p5_f_hh; 
©(posedge elk) a |-> ##min_time b; 

endproperty 

// On a given clock edge, if the leading signal 
// is high, then after "min_time" clock cycles 
// the trailing signal must be low 
property p5_f_hl; 
©(posedge elk) a |-> ##min_time !b; 
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endproperty 

// On a given clock edge, if the leading signal 
// is low, then after "min_time" clock cycles 
// the trailing signal must be high 

property p5_f_lh; 
©(posedge elk) la 

endproperty 
-> ##min time b; 

// On a given clock edge, if the leading signal 
// is low, then after "min_time" clock cycles 
// the trailing signal must be low 

property p5_f_ll; 
©(posedge elk) !a 

endproperty 
•> ##min time !b; 

a5_f_hh 
a5_f_hl 
a5_f_lh 
a5 f 11 

assert property{p5_f_hh) 
assert property{p5_f_hl) 
assert property{p5_f_lh) 
assert property(p5_f_ll) 

A list of possible properties for variable timing relationship between two 
level sensitive signals with non-overlapping implication is shown below. 

// On a given clock edge, if the leading signal 
// is high, then between "min_time" and 
// "max_time" clock cycles the trailing signal 
// must be high 

property p5_w_hh; 
©(posedge elk) 
a I-> ##[min_time 

endproperty 
max time] b; 

// On a given clock edge, if the leading signal 
// is high, then between "min_time" and 
// "max_time" clock cycles the trailing signal 
// must be low 

property p5_w_hl; 
©(posedge elk) 
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a I-> ##[min_time : max_time] !b; 
endproperty 

// On a given clock edge, if the leading signal 
// is low, then between "min_time" and 
// "max_time" clock cycles the trailing signal 
// must be high 

property p5_w_lh; 
©(posedge elk) 
!a I-> ##[min_time : max_time] b; 

endproperty 

// On a given clock edge, if the leading signal 
// is low, then between "min_time" and 
// "max_time" clock cycles the trailing signal 
// must be low 

property p5_w_ll; 
©(posedge elk) 
!a I-> ##[min_time : max_time] !b; 

endproperty 

a5_w_hh 
a5_w_hl 
a5_w_lh 
a5 w 11 

assert property(p5_w_hh) 
assert property{p5_w_hl) 
assert property{p5_w_lh) 
assert property{p5_w_ll) 

A list of possible properties for fixed timing relationship between two 
edge sensitive signals is shown below. 

// on a given clock edge, the leading signal has 
// a falling edge and after "min_time" cycle the 
// trailing signal has a falling edge 

property p4_f_ff; 
©(posedge elk) $fell(a) ##min_time $fell(b); 

endproperty 

// on a given clock edge, the leading signal has 
// a rising edge and after "min_time" cycle the 
// trailing signal has a rising edge 
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property p4_f_rr; 
©{posedge elk) $rose{a) ##min_time $rose(b); 

endproperty 

// on a given clock edge, the leading signal has 
// a falling edge and after "min_time" cycle the 
// trailing signal has a rising edge 

property p4_f_fr; 
©(posedge elk) $fell(a) ##min_time $rose{b); 

endproperty 

// on a given clock edge, the leading signal has 
// a rising edge and after "min_time" cycles the 
// trailing signal has a falling edge 

property p4_f_rf; 
©(posedge elk) $rose(a) ##min_time $fell(b); 

endproperty 

a4_f_rr 
a4_f_ff 
a4_f_rf 
a4 f fr 

assert property(p4_f_rr); 
assert property(p4_f_ff); 
assert property(p4_f_rf); 
assert property{p4_f_fr); 

A list of possible properties for variable timing relationship between two 
edge sensitive signals is shown below. 

// on a given clock edge, the leading signal has 
// a falling edge and within "min_time" to 
// "max_time" cycles the trailing signal has a 
// falling edge 

property p4_w_ff; 
©(posedge elk) 
$fell(a) ##[min_time : max_time] $fell(b); 

endproperty 

// on a given clock edge, the leading signal has 
// a rising edge and within "min_time" to 
// "max_time" cycles the trailing signal has a 
// rising edge 
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property p4_w_rr; 
©(posedge elk) 
$rose(a) ## ttnin_time 

endproperty 
max time] $rose(b); 

// on a given clock edge, the leading signal has 
// a falling edge and within "min_time" to 
// "max_time" cycles the trailing signal has a 
// rising edge 

property p4_w_fr; 
@(posedge elk) 
$fell(a) ##[min_time 

endproperty 
max time] $rose(b); 

// on a given clock edge, the leading signal has 
// a rising edge and within "min_time" to 
// "max_time" cycles the trailing signal has a 
// falling edge 

property p4_w_rf; 
©(posedge elk) 
$rose(a) ##[min_time 

endproperty 
max time] $fell(b); 

a4_w_rr 
a4_w_ff 
a4_w_rf 
a4 w fr 

assert property(p4_w_rr) 
assert property(p4_w_ff) 
assert property{p4_w_rf) 
assert property(p4_w_fr) 

A list of possible properties for fixed timing relationship between two 
edge sensitive signals with non-overlapping implication is shown below. 

// on a given clock edge, if the leading signal 
// has a falling edge, then after "min_time" 
// cycles the trailing signal must have a 
// falling edge 

property p6_f_ff; 
©(posedge elk) 
$fell(a) |-> ##min_time $fell(b); 

endproperty 
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II on a given clock edge, if the leading signal 
// has a rising edge, then after "min_time" 
// cycles the trailing signal must have a 
// rising edge 

property p6_f_rr; 
©(posedge elk) 
$rose(a) |-> ##min_time $rose(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a falling edge, then after "min_time" 
// cycles the trailing signal must have a 
// rising edge 

property p6_f_fr; 
©(posedge elk) 
$fell(a) I-> ##min_time $rose(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a rising edge, then after "min_time" 
// cycles the trailing signal must have a 
// falling edge 

property p6_f_rf; 
©(posedge elk) 
$rose(a) |-> ##min_time $fell(b); 

endproperty 
a6_f_rr: assert property(p6_f_rr) 
a6_f_ff: assert property(p6_f_ff) 
a6_f_rf: assert property(p6_f_rf) 
a6_f_fr: assert property(p6_f_fr) 

A list of possible properties for variable timing relationship between two 
edge sensitive signals with non-overlapping implication is shown below. 

// on a given clock edge, if the leading signal 
// has a falling edge, then within "min_time" to 
// "max_time" cycles the trailing signal must 
// have a falling edge 
property p6_w_ff; 
©(posedge elk) 
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$fell(a) |-> ##[rain_time : max_time] $fell(b); 
endproperty 

// on a given clock edge, if the leading signal 
// has a rising edge, then within "min_time" to 
// "max_time" cycles the trailing signal must 
// have a rising edge 

property p6_w_rr; 
©{posedge elk) 
$rose{a) |-> ##[min_time : max_time] $rose(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a falling edge, then within "min_time" to 
// "max_time" cycles the trailing signal must 
// have a rising edge 

property p6_w_fr; 
©(posedge elk) 
$fell(a) I-> ##[min_time : max_time] $rose(b); 

endproperty 

// on a given clock edge, if the leading signal 
// has a rising edge, then within "min_time" to 
// "max_time" cycles the trailing signal must 
// have a falling edge 

property p6_w_rf; 
©(posedge elk) 
$rose(a) |-> ##[min_time : max_time] $fell(b); 

endproperty 

a6_w_rr 
a6_w_ff 
a6_w_rf 
a6 w fr 

assert property(p6_w_rr); 
assert property(p6_w_ff); 
assert property(p6_w_rf); 
assert property(p6_w_fr); 

The following sample Verilog test code can generate stimulus that will 
satisfy all timing relationships defined between two signals except 
eventuality. Note that the signals "a" and "b" are initialized based on what 
the "timing level" is set to. For example, if the "timing level" is set to a 
"10," then the test code will generate stimulus for an "active high" level on 
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the leading signal and an "active low" level on the trailing signal, if it is a 
level sensitive checker. For an edge sensitve checker, if the "timing level" is 
set to a "10," then the test code will generate stimulus for a "rising edge" on 
the leading signal and a "falling edge" on the trailing signal. A simple "for" 
loop is used to generate timing windows starting from (min_time-l) to 
(max_time+3). This will make sure that all possible successes are created 
and at least one error is created. The same results can be achieved with an 
upper window of (max_time+l). By using (max_time+3), we produce more 
error conditions. If the timing is fixed, then the values of "min_time" and 
"max_time" are the same. 

Figure 7-8 shows a sample waveform of a fixed timing relationship 
property between two level sensitive signals (leading signal is active low and 
frailing signal is active high). Figure 7-9 shows a sample waveform of a 
variable timing relationship property between two edge sensitive signals 
(leading signal and the trailing signal look for a rising edge). 

// sample Verilog test code for timing 
// relationship between two signals 

if(timing_level == 2'bll) begin 
a = I'bO; b=l'bO; end 
if(timing_level== 2'bOO) begin 
a = I'bl; b=l'bl; end 
if(timing_level == 2'bOl) begin 
a = I'bl; b=l'bO; end 
if{timing_level == 2'blO) begin 
a = I'bO; b=l'bl; end 

for(i=(min_time-l); i<(max_time+3); i++) 
begin 
repeat(1) ©(posedge elk); 
a <= ~a; 
if{i == 0) 
begin 

b <= -b; 
repeat(1) ©(posedge elk); 
a <= ~a; b <= ~b; 

end 
else 
begin 

repeat(1) ©(posedge elk); 
a<= -a; 
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repeat((i-1)) ©(posedge elk); 
b<= -b; 
repeat(1) ©(posedge elk); 
b<= ~b; 

end 
end 
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Figure 7-8. Timing (fixed) between two level sensitive signals 
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Figure 7-9. Timing (variable) between two edge sensitive signals 

i 

Timing relationships can be tested by looping from (min-1) to (max+1) 
values. This will guarantee that all possible successes are tested and at least 
one failure is tested. Repetition of signals is an extension of timing 
relationships. Repetitions also involve timing relationships, but it requires 
that the leading signal or the trailing signal repeat its value for a defined 
number of cycles. Repetition relationships are discussed in detail in the next 
section. 

7.2.6 Repetition relationship between two signals 

There are two main categories of repetition between two signals: 

1. Repeat after - After an expected edge on the leading signal, with or 
without a time delay, the trailing signal is expected to repeat "n" times. 
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2. Repeat until - After an expected edge on the leading signal, the 
leading signal repeats until the expected value arrives on the trailing signal. 

The repeat operators often involve the combination of an edge sensitive 
signal and a level sensitive signal. The leading signal is often an edge 
sensitive signal and the trailing signal is often a level sensitive signal. The 
"repeat until" condition can have an edge sensitive signal as a trailing signal. 
The naming convention for the repetition properties is as follows: 

RH - LS has a rising edge and TS is high 
RL - LS has a rising edge and TS is low 
FH - LS has a falling edge and TS is high 
FL - LS has a falling edge and TS is low 

A list of possible properties for "repeat after" relationship between two 
signals is shown below. 

// on a given clock edge the leading signal has a 
// rising edge and after "start_wait" cycles, the 
// trailing signal is high "repetition" times 

property p7_c_rpt_rh; 
®(posedge elk) 
$rose(a) ##start_wait b[*repetition]; 

endproperty 

// on a given clock edge the leading signal has a 
// rising edge and after "start_wait" cycles, the 
// trailing signal is low "repetition" times 

property p7_c_rpt_rl; 
@(posedge elk) 
$rose(a) ##start_wait !b[*repetition]; 

endproperty 

// on a given clock edge the leading signal has a 
// falling edge and after "start_wait" cycles, 
// the trailing signal is high "repetition" times 

property p7_c_rpt_fh; 
©(posedge elk) 
$fell(a) ##start_wait b[*repetition]; 

endproperty 
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// on a given clock edge the leading signal has a 
// falling edge and after "start_wait" cycles, 
// the trailing signal is low "repetition" times 

property p7_c_rpt_f1; 
©(posedge elk) 
$fell(a) ##start_wait !b[*repetition]; 

endproperty 

A list of possible properties for "repeat until" relationship between two 
signals is shown below. 

// on a give clock edge, the leading signal has a 
// rising edge and stays high until the trailing 
// signal is low 

property p7_cu_rpt_rl; 
©(posedge elk) $rose{b) ##0 b[*l:$] ##1 !a; 

endproperty 

// on a given clock edge, the leading signal has 
// a falling edge and stays low until the 
// trailing signal is low 

property p7_cu_rpt_f1; 
©(posedge elk) $fell(b) ##0 !b[*l:$] ##1 !a; 

endproperty 

// on a given clock edge, the leading signal has 
// a rising edge and stays high until the 
// trailing signal is high 

property p7_cu_rpt_rh; 
©(posedge elk) $rose(b) ##0 b[*l:$] ##1 a; 

endproperty 

// on a given clock edge, the leading signal has 
// a falling edge and stays high until the 
// trailing signal is high 

property p7_cu_rpt_fh; 
©(posedge elk) $fell(b) ##0 !b[*l:$] ##1 a; 

endproperty 



310 Chapter? 

A sample code that can generate stimulus to verify both the "repeat after" 
and "repeat until" conditions for all possible properties is shown below. The 
stimulus uses the same concept as that of the timing. It loops between 
(repetition-1) and (repetition+3) to cover all possible successes and at the 
least one error condition. The variable "start_wait" defines the number of 
cycles to wait before looking for the repetition on the trailing signal (relevant 
to the "repeat_after" condition). The variable "stopwait" defines the 
number of cycle to wait before re-setting the leading signal (relevant to the 
"repeat_untir' condition). 

// sample Verilog test code for repetition 

logic [1:0] stop_wait; 

if(rpt_edge == 2'bll) begin 
a = I'bO; b=l'bO; end 

if(rpt_edge == 2'bOO) begin 
a = I'bl; b=l'bl; end 

if(rpt_edge == 2'bOl) begin 
a = I'bl; b=l'bO; end 

if(rpt_edge == 2'blO) begin 
a = I'bO; b=l'bl; end 

for(i=(repetition-1); i<(repetition+3); i++) 
begin 
repeat(1) ©(posedge elk); 
a <= -a; 
repeat(start_wait) ©(posedge elk); 
b <= ~b; 

// consecutive repeat condition 

repeat((i)) ©(posedge elk); 
b <= -b; 
s t o p _ w a i t <= $random() % 4 ; 
r e p e a t { s t o p _ w a i t [ 0 ] ) ©(posedge e l k ) ; 
a <= ~a ; 

end 
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Figure 7-10 shows a sample waveform for a "repeat after" condition. 
Figure 7-11 shows a sample waveform for a "repeat until" condition. 
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Figure 7-10. Waveform for "repeat after" condition 
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Figure 7-11. Waveform for "repeat untif condition 

A few possible relationships between 2 signals were discussed so for. 
The SVA constructs are abundant and there is a big list of possible 
relationships between 2 signals. We are not trying to produce a solution for 
all of those cases. What we have is a small part of the solution. The solution 
becomes more difficult as the number of signals involved increase. 

7.2.7 Environment for ATB involving two signals 

In the last few sections, we saw how an exhaustive set of stimulus can be 
generated to test different relationships between two signals. Several sample 
Verilog test codes that can satisfy different relationships were shown. In this 
section, we put the pieces together to create a single configurable testing 
structure, as shown in Figure 7-12. 
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Configuration 
file (parameter 
based) 

Assertion test bench 
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generation engines 
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Property/Assertion list 
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Figure 7-12. ATB Environment 

There are three parts in the testing structure: 

1. A parameter based configuration file wherein the user can specify 
the relationship he wishes to test. 

2. A SVA listing file containing both the property definitions and the 
code that will selectively assert properties, based on the parameter 
configuration. 

3. The top-level Verilog test code containing the various stimulus 
generation blocks discussed in the previous sections. Based on the 
parameter configuration, the relevant stimulus generation block 
will be executed to thoroughly verify the current property under 
test. The parameter definitions are shown in Table 7-1. 

Table 7-1. Parameter definitions 

Parameter Functionality 
parameter sigedge = 0; 

parameter sigledge = 1; 

parameter logicop = 0; 

parameter timing = 1; 

parameter mintime = 2; 

Defines if signals involved are edge sensitive, 0 
indicates no, 1 indicates yes 
Defines the edge of the leading signal, 1 means rising 
edge and 0 means falling edge (used only for logical 
relationship) 
Defines if the assertions involve logical relationship, 0 
indicates no, 1 indicates yes 
Defines if the assertions involve temporal relationship, 
0 indicates no, 1 indicates yes 
Defines timing information, maximum time should be 
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Parameter Functionality 
parameter maxtime = 2; 

parameter timing_level = 2'blO; 

parameter olimplication = 0; 

parameter o_e_implication = 0; 

parameter non_o_implication = 1; 

parameter rptme = 0; 
parameter rptedge = 2'bOO; 

parameter start_wait = 2; 

parameter repetition = 3; 

parameter crpt = 0; 
parameter crptuntil = 0; 

greater than the minimum time, minimum time cannot 
be zero, maximum time should be bounded 
Defines levels/edges of thesignals, "10" means HL 
for level and RF for edge 
Parameter to indicate overlapping implication with 
level sensitive signals, 0 means no, 1 is yes 
Parameter to indicate overlapping implication with 
edge sensitive signals 
Parameter to indicate non-overlapping implication 

Parameter to indicate repetitions are involved 
Parameter defining the levels/edges of signals 
Paramter to define the wait period before repetition in 
"repeat after" 
Parameter to define number of repetitions. Repetition 
value has to be greater than 1 
Parameter indicating the repeat after test 
Parameter indicating the repeat until test 

By setting the right parameters, a user can generate stimulus for a 
specific relationship. 

• If the parameter "logic_op" is set to 1 and the other parameters 
are set to 0, then the ATB will generate stimulus for "logical 
relationship" between two level sensitive signals. 

• If the parameter "timing" is set to 1 and all other parameters are 
set to 0, then the ATB will generate stimulus for "timing 
relationship" between two signals. A user can specify whether he 
wants a fixed time or a variable time relation by setting the 
values of the parameters "min_time" and "max_time." If the user 
sets the "sig_edge" parameter to 1, then the signals will be 
treated as edge sensitive. 

A sample SVA listing file used for the verification of SVA involving two 
signals is shown below. 

module sig_sva (a, b, elk) ; 

// include the parameter definitions 
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"include "config.v" 

input logic a, b, elk; 

// List definitions of all properties under test 

// code to selectively include assertions 

always®(posedge elk) 
begin 

// logical relationship between two level 
// sensitive signals 

if(logic_op == 1 && timing == 0 && sig_edge == 0) 
begin 
a_l_hh : assert property(p_l_hh) 

assert property(p_l_hl) 
assert property(p_l_lh) 
assert property(p_l_ll) 

a_l_hl 
a_l_lh 
a_l_ll 
end 

// logical relationship between two edge 
// sensitive signals FF,FR 

if(logic_op == 1 && timing == 0 && sig_edge == 1 
&& sigl_edge == 0) 
begin 
a2_ff: assert property{p2_ff); 
a2_fr: assert property{p2_fr); 
end 

// logical relationship between 2 edge sensitive 
// signals RF,RR 

if(logic_op == 1 && timing == 0 && sig_edge == 1 
&& sigl_edge == 1) 
begin 
a2_rf: assert property(p2_rf); 
a2_rf: assert property(p2_rr); 
end 

// timing relationship between 2 level sensitive 
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/ / s i g n a l s 

if(logic_op == 0 && timing == 1 && sig_edge == 0 
&& non_o_implication == 0) 
begin 
if(min_time == max_time) 
begin 
if(timing_level == 2'bll) 
a3_hh: assert property(p3_hh); 

if(timing_level == 2'blO) 
a3_hl: assert property{p3_hl); 

if(timing_level == 2'bOl) 
a3_lh: assert property{p3_lh); 

if{timing_level == 2'bOO) 
a3_ll: assert property{p3_ll); 

end 
if(min_time != max_time) 
begin 
if(timing_level == 2'bll) 
a3_wl_hh: assert property{p3_wl_hh); 

if{timing_level == 2'blO) 
a3_w2_hl: assert property(p3_w2_hl); 

if(timing_level == 2'bOl) 
a3_w3_lh: assert property{p3_w3_lh); 

if(timing_level == 2'bOO) 
a3_w4_ll: assert property{p3_w4_ll); 

end 
end 

// logical relationship between 2 level sensitive 
// signals with overlapping implication 

if((logic_op == 1 I I o_l_implication == 1) && 
timing == 0 && sig_edge == 0) 
begin 

a4_oli_hh 
a4_oli_hl 
a4_oli_lh 
a4_oli_ll 
end 

assert property(p4_oli_hh) 
assert property(p4_oli_hl) 
assert property(p4_oli_lh) 
assert property(p4_oli_ll) 

// logical relationship between 2 edge sensitive 
// signals with overlapping implication FF, FR 
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i f ( ( l o g i c _ o p == 1 I I o _ e _ i m p l i c a t i o n == 1) 
t iming == 0 && sig_edge == 1 && s i g l _ e d g e 
begin 
a4_oei_ll: assert property{p4_oei_ll); 
a4_oei_lh: assert property(p4_oei_lh); 
end 

&& 

// logical relationship between 2 edge sensitive 
// signals with overlapping implication RF, RR 

if((logic_op == 1 I I o_e_implication == 1) && 
timing == 0 && sig_edge == 1 && sigl_edge == 1) 
begin 
a4_oei_hl: assert property(p4_oei_hl); 
a4_oei_hh: assert property(p4_oei_hh); 
end 

if(logic_op == 0 && timing == 1 && sig_edge 
&& non_o_implication == 0) 
begin 
if(min_time == max_time) 
begin 

assert property(p4_f_rr); 
assert property(p4_f_ff); 
assert property(p4_f_rf); 
assert property(p4_f_fr); 

a4_f_rr 
a4_f_ff 
a4_f_rf 
a4_f_fr 
end 
if(min_time ! 
begin 
a4_w_rr 
a4_w_ff 
a4_w_rf 
a4_w_fr 
end 
end 

max time) 

assert property(p4_w_rr) 
assert property(p4_w_ff) 
assert property(p4_w_rf) 
assert property(p4_w_fr) 

// timing relation between 2 level sensitive 
// signals with non-overlapping implication 

if(logic_op == 0 && timing 
&& non_o_implication == 1) 
begin 
if(min time == max time) 

1 && sig_edge 
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begin 
if{timing_level == 2'bll) 
a5_f_hh: assert property(p5_f_hh); 

if{timing_level == 2'blO) 
a5_f_hl: assert property{p5_f_hl); 

if{timing_level == 2'bOl) 
a5_f_lh: assert property{p5_f_lh); 

if(timing_level == 2'bOO) 
a5_f_ll: assert property(p5_f_ll); 

end 
if(min_time != max_time) 
begin 
if(timing_level == 2'bll) 
a5_w_hh: assert property(p5_w_hh); 

if(timing_level == 2'blO) 
a5_w_hl: assert property(p5_w_hl); 

if(timing_level == 2'bOl) 
a5_w_lh: assert property(p5_w_lh); 

if{timing_level == 2'bOO) 
a5_w_ll: assert property{p5_w_ll); 

end 
end 

// timing relation between 2 edge sensitive 
// signals with non-overlapping implication 

if(logic_op == 0 && timing == 1 && f3ig_edge == 1 
&& non_o_implication == 1) 
begin 

if(min_time == max_time) 
begin 
a6_f_rr 
a6_f_ff 
a6_f_rf 
a6_f_fr 
end 
if{min_time != max_time) 
begin 

assert property(p6_f_rr); 
assert property(p6_f_ff); 
assert property(p6_f_rf); 
assert property(p6_f_fr); 

a6_w_rr 
a6_w_ff 
a6_w_rf 
a6 w fr 

assert property{p6_w_rr); 
assert property{p6_w_ff); 
assert property(p6_w_rf); 
assert property(p6_w_fr); 
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end 
end 

/ / r e p e t i t i o n r e l a t i o n s h i p 

i f ( r p t _ m e == 1 && c_rpt == 1 && rp t_edge == 
2 ' b l l ) 
begin 
a7_c_rpt_rh: assert property(p7_c_rpt_rh); 
a7_cu_rpt_rh: assert property(p7_cu_rpt_rh); 
end 

if{rpt_me == 1 && c_rpt == 1 && rpt_edge == 
2'blO) 
begin 
a7_c_rpt_rl: assert property(p7_c_rpt_rl); 
a7_cu_rpt_rl: assert property{p7_cu_rpt_rl); 
end 

if(rpt_me == 1 && c_rpt == 1 && rpt_edge == 
2'bOl) 
begin 
a7_c_rpt_fh: assert property{p7_c_rpt_fh); 
a7_cu_rpt_fh: assert property(p7_cu_rpt_fh); 
end 

if(rpt_me == 1 && c_rpt == 1 && rpt_edge == 
2'bOO) 
begin 
a7_c_rpt_fl: assert property(p7_c_rpt_fl); 
a7_cu_rpt_f1: assert property(p7_cu_rpt_fl); 
end 
end 

// Config Parameters illegal values. If 
// logical_op is asserted then timing cannot be 
// asserted 

property config_checkl; 
©(posedge elk) 

{logic_op == 1) |-> 
(timing == 0); 

endproperty 
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// only one of the implication operators can be 
// asserted at any time 

property config_check2; 
©(posedge elk) 

$onehotO({o_l_implication, 
o_e_implication, non_o_implication}); 

endproperty 

// min_time should be atleast 1 

property config_check3; 
©(posedge elk) 

(timing == 1) |-> {min_time >= 1); 
endproperty 

// repetition should be greater that one 

property config_check4; 
©(posedge elk) 

((c_rpt == 1) && (rpt_me == 1)) i-> 
(repetition > 1); 

endproperty 

a_checkl 
a_check2 
a_check3 
a check4 

assert property(config_checkl) 
assert property(config_check2) 
assert property(config_check3) 
assert property(config_check4) 

endmodule 

The ATB gets executed based on the parameter configuration. A sample 
ATB used for the verification of SVA involving two signals is shown below. 

module sig_sva_tb; 

logic a,b; 
logic elk; 
logic [1:0] rpt_wait; 
logic [1:0] stop_wait; 

"include "config.v" 

integer i,j ; 
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l o g i c [1:0] l o g i c a l _ o p _ r e g ; 

i n i t i a l 
begin 
e l k = I ' b O ; a = l ' b O ; b = l ' b O ; 
l o g i c a l _ o p _ r e g = 2 'bOO; 

//*********************************************** 

// case 1 
// logical operation, overlapping implication 
// level sensitive signals 
//*********************************************** 

if({logic_op == 1 I I o_l_implication == 1) && 
timing == 0 && sig_edge == 0) 
begin 
for(i=0; i<4; i++) 
begin 
a <= logical_op_reg[0]; 
b <= logical_op_reg[1]; 
repeat(1) ©(posedge elk); 
logical_op_reg++; 

end 
end 

// case 2 
// logical operation, overlapping implication 
// edge sensitive signals 
//*********************************************** 

if((logic_op == 1 I I o_e_implication == 1) && 
timing == 0 && sig_edge == 1) 
begin 

if(sigl_edge == 0) // ff, fr 
begin 
for{i=0; i<8; i++) 
begin 
a <= logical_op_reg[0]; 
b <= logical_op_reg[1]; 
repeat(1) ©(posedge elk); 
logical_op_reg++; 
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end 
end 

if(sigl_edge == 1) // rr, rf 
begin 
for(i=0; i<8; i++) 
begin 
a <= !logical_op_reg[0]; 
b <= !logical_op_reg[1]; 
repeat(l) ©(posedge elk); 
logical_op_reg++; 

end 
end 

end 

// case 3 
// timing relation between 2 signals 
//*********************************************** 

if(logic_op == 0 && timing == 1) 
begin 

if{timing_level == 2'bll) begin 
a = I'bO; b=l'bO; 
end 

if(timing_level== 2'bOO) begin 
a = I'bl; b=l'bl; 
end 

if(timing_level == 2'bOl) begin 
a = I'bl; b=l'bO; 
end 

if{timing_level == 2'blO) begin 
a = I'bO; b=l'bl; 
end 
for(i={min_time-l); i<(max_time+3); i++) 
begin 
repeat(1) ©(posedge elk); 
a <= ~a; 
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i f ( i == 0) 
b e g i n 

b <= - b ; 
r e p e a t ( 1 ) ©(posedge e l k ) ; 
a <= ~a ; b <= ~ b ; 

end 
e l s e 
b e g i n 

r e p e a t ( 1 ) ©(posedge e l k ) ; 
a<= - a ; 
r e p e a t ( ( i - 1 ) ) ©(posedge e l k ) ; 
b<= ~ b ; 
repeat(1) ©(posedge elk); 
b<= ~b; 

end 
end 
end 

II case 4 
// repetitions 
llitltltliltitltlilfk************************************* 

if(rpt_me == 1) 
begin 

i f ( r p t _ e d g e == 2 ' b l l ) b e g i n 
a = I ' b O ; b = l ' b O ; 
end 

i f ( r p t _ e d g e == 2'bOO) b e g i n 
a = I ' b l ; b = l ' b l ; 
end 

i f ( r p t _ e d g e == 2 ' b O l ) b e g i n 
a = I ' b l ; b = l ' b O ; 
end 

i f ( r p t _ e d g e == 2 ' b l O ) b e g i n 
a = I ' b O ; b = l ' b l ; 
end 

i f ( c _ r p t == 1) 
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begin 
for{i=(repetition-1); i<{repetition+3); i++) 
begin 
repeat(1) ©(posedge elk); 
a <= ~a; 
repeat{start_wait) ©(posedge elk); 
b <= ~b; 

// consecutive repeat condition 

repeat((i)) ©(posedge elk); 
b <= ~b; 
stop_wait <= $random() % 4; 
repeat(stop_wait[0]) ©(posedge elk); 
a <= -a; 

end 
end 
end 

repeat(2) ©(posedge elk); 
$f inishO ; 
end 

initial 

forever elk = #25 ~clk; 

endmodule 

bind sig_sva_tb sig_sva il (a, b, elk); 

Note that the configuration file is included into the ATB and the SVA 
listing file is bound to the ATB module. 

7,3 ATB example for a PCI Checker 

In this section, we take a complex SVA checker and show how to verify 
its functionality based on the concepts discussed in Section 7.2. Following 
is a checker discussed in Chapter 6. 

"Target latency for the completion of the first data phase is 16 cycles 
from the assertion of the signal framen" 
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sequence s_tchk9a; 
©(posedge elk) 
(lirdyn && Itrdyn); 
endseguence 

sequence s_tchk9b; 
©(posedge elk) 
(lirdyn && Istopn); 
endseguence 

sequence s_tchk9_fast; 
©{posedge elk) 
$fell(framen) ##1 $fell(devseln); 
endseguence 
property p_tchk9_fast; 
©(posedge elk) 
s_tchk9_fast |-> 
(Iframen && !devseln) throughout 
(##[1:15] (s_tchk9a.ended || s_tchk9b.ended)); 
endproperty 

a_tchk9_fast: assert property(p_tchk9_fast); 
c_tchk9_fast: cover property(p_tchk9_fast); 

The property p_tchk9_fast involves complex logical relationship and 
temporal relationship. The property becomes active when a valid start 
condition happens (s_tchk9_fast). Once the antecedent matches, the property 
can succeed in two different ways. Either stchk9a or s_tchk9b should match 
within 1 to 15 cycles, assuming the two signals that helped the antecedent 
match remain asserted throughout the evaluation. 

To verify this check exhaustively, the following should be done: 

1. All possible logical relationships between the signals "irdyn," 
"trdyn," "devseln" and "stopn" should be tested. 

2. All possible temporal relationships between the antecedent and the 
consequent should be tested. 

Based on the theory from Section 7.2, the possible logical combination 
for the four signals is 16, as shown in Table 7-2. Upon a successful match of 
the antecedent, any one of the success condition shown in Table 7-2 should 
occur within 1 to 15 clock cycles. By looping the checker from "(min-1)" to 
"(max+1)," which is 0 to 16, one can simulate all possible successes for all 
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possible delay conditions and at least one error condition. While looping in a 
specific delay value, all 16 possible logical relationships should be executed. 
Hence, there are 16 possible time slots and 16 possible logical conditions, 
leading to 256 possible scenarios. The check will pass on three conditions in 
each of the delay values starting from 1 to 15 and hence, there should be 45 
real successes for this check. In other words, this check can succeed in 45 
different conditions. This metric can be cross checked by writing cover 
statements for the property under validation. 

Table 7-2. Logical conditions for PCI check 

irdyn 
0 
0 
0 
0 
0 
0 
0 
0 

trdyn 
0 
0 
0 
0 
1 
1 
1 
1 

0 

0 

0 
0 
1 

1 

1 

1 

devsein 
0 
0 
1 
1 
0 
0 
1 
1 

0 

0 

1 
1 
0 

0 

1 

1 

stopn 
0 
1 
0 
1 
0 
1 
0 
1 

0 

1 

0 
1 
0 

1 

0 

1 

status 
Success (s_tchk9a && s_tchk9b) 
Success (s_tchk9a) 
Failure 
Failure 
Success (s_tchk9b) 
Failure 
Failure 

Failure 

Failure 

Failure 
Failure 
Failure 

Failure 

Failure 

Failure 

Failure 

A sample Verilog code that generates stimulus to satisfy these 256 
different scenarios is shown below. 

module ctc_complex; 

logic irdyn, trdyn, devsein, stopn, framen; 
integer i, j; 
logic elk; 
logic [3:0] test_expr; 

assign irdyn = test_expr[3]; 
assign trdyn = test_expr[2]; 
assign devsein = test_expr[1]; 
assign stopn = test_expr[0]; 
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i n i t i a l b e g i n 
e l k = I ' b O ; t e s t _ e x p r = 4 ' d l 5 ; 
r e p e a t ( 2 ) ©(posedge e l k ) ; 

f o r { i = l ; i < 1 7 ; i++) / / t i m i n g l o o p 
b e g i n 
for(j=0; j<16; j++) // logical loop 
begin 
framen = I'bO; 
repeat(1) ©(posedge elk); 
test_expr = 4'bllOl; 
repeat(i) ©(posedge elk); 
test_expr = j; 
repeat(1) ©(posedge elk); 
framen = I'bl; 
repeat(1) ©(posedge elk); 
test_expr = 4'bllll; 
repeat(1) ©(posedge elk); 

end 
end 

repeat(2) ©(posedge elk); 
$finish; 
end 

initial forever elk = #25 -elk; 

endmodule 

elk 

tmmtn 

a tcltl^ &sl 

immamiarjmm¥ij¥iMJFLfiJirinjii¥iri^^ 

12 

Figure 7-13. PCI Checker verification 

Note that the timing constraint is used as the outer loop and the logical 
constraint as the inner loop. The simulation of this test code on the checker 
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should produce 211 failures and 45 successes. This guarantees that the 
checker responds correctly for all possible input conditions. A sample 
waveform from this test is shown in Figure 7-13. 

7.4 Summary for checking the checker 

• The possible number of relationships between two signals can 
grow exponentially within the SVA domain. 

• By exploring just three of these relationships (logic, timing and 
repetition) between 2 signals, 56 possible assertion statements 
were written. As the number of signals involved in an SVA 
definition increases, the possible assertion statements will 
increase exponentially. 

• It is critical to have an automated way to validate these 
assertions. With basic Verilog language we were able to create 
some very effective stimulus generation schemes that tested the 
assertions thoroughly. 

• The same stimulus generation methodology was applied on a real 
life PCI checker to verify its correctness. 

• As the assertions get more complex, the advanced features of 
constrained random testbenches can be used effectively to check 
these assertions. Self checking mechanisms can be used to 
analyze the results of the assertion validation. 

• While there is no automated way of checking the checker yet, a 
user can still verify them like any other design module using 
testbenches. 

• Without a "checking the checker" methodology, a user will not 
know if the design is working or failing, or if the checker was 
written incorrectly. 

• This process demands some time investment in the beginning of 
verification process, but can be a huge time saver in the latter 
part of verification. 
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