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Foreword

by
Ira Chayut, Verification Architect
Nvidia Corporation

When Gateway Design Automation, Inc. created Verilog in the mid-
1980’s, the process of integrated circuit design was very different than it is
today. The role of Verilog, as well as its capability, has evolved since its
inception into today’s SystemVerilog.

The task of ASIC Functional Verification is becoming increasingly
difficult. How difficult is a matter of conjecture and argument. In 2001,
Andreas Bechtolsheim, Cicso Systems engineering vice president, was
quoted in EE Times with one of the higher estimates:

Design verification still consumes 80 percent of the overall chip
development time'

In contrast, an EE Times poll that was taken in 2004 of 662 professionals
at the Design Automation Conference placed functional verification as 22
percent of the integrated design process’.

The gap between 22 percent and 80 percent is indicative of how vague
the delineation between verification and the other “stages” of integrated
circuit design and development. Many “verification” efforts are
implemented by the design engineers themselves, but are still part of the
verification process and can benefit from the same tools that assist dedicated
verification professionals.

Regardless of the actual percentage (assuming that it could be accurately
measured), Functional Verification of an integrated circuit design is a
significant fraction of the total effort. Verification is also a critical step to
shippable first silicon. Even as the costs of the masks run over $1 million,
that figure can be dwarfed by the lost-opportunity of the weeks it takes for
each re-spin. Any tools that can reduce the cost of verification and increase
the probability of shipping early silicon should be adopted aggressively.

! http://www.eedesign.com/article/printableArticle jhtml?articleID=17407503
? http://www.eetimes.com/showArticle jhtml?articleID=21700028
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While assertions have been a part of software development for many
years, Assertion-Based Verification (ABV) has recently become popular. In
some ways, this is odd, as the process of hardware specification has become
more similar to software design. However, the properties that we wish to
declare and assert in a hardware design are fundamentally different than
those in the software world.

The difference between hardware and software programming models is
time. Hardware languages, such as Verilog, have mechanisms to represent
the passage of time and procedural programming languages (C, C++, Java,
etc.) do not. So, it is not surprising that the software methods of specifying
assertions did not have a way of incorporating time.

SystemVerilog, the most recent descendent of Gateway’s Verilog,
includes SystemVernlog Assertions (SVA) — a set of tools to allow engineers
to include ABV into their designs. SVA has a rich syntax to support time
within sequences, properties, and (ultimately) assertions.

With SVA, design and verification engineers can encode the intended
behavior of hardware designs and can create thorough checks for bus
protocols. These (relatively) terse descriptions can be used in simulation, in
formal verification, and as additional documentation for the design.

It is clear that SVA will have a major impact on how integrated circuits
are designed and verified. To benefit from this impact, you need to learn the
syntax of SVA and how to apply it to your own design. This book can help
you learn and apply SVA. It uses examples, including the PCI bus protocol,
to illustrate how to write SVA and their simulation results.

The detailed examples of the SVA language within this book are very
helpful to understanding the concepts and syntax of time-based assertions.
They make the book what it is and are essential in all SystemVerilog design
and verification engineers’ library.

As a final note, Stevie, my daughter, claims that no one ever reads the
foreward of books. If you did take the time to read this, please let her know
by sending her a brief e-mail at: steviechayut@gmail.com.

Thanks
Ira



Preface

It was the middle of the year 2002 and we received an email from our
manager. It said, “Who would like to pick up the support for OVA?” Our
first thoughts were “what the heck is OVA?” After talking to a few other
engineers, we figured out that it was a subset of “open VERA language.”
OVA stands for “Open VERA Assertions” and it is a declarative language
that can describe temporal conditions. As always, to satisfy our technical
thirst, we agreed to pick up the support for OVA. We learned the language in
a couple of months and started training customers, training around 200
customers in less than 6 months. The way customers were flooding the class
rooms really impressed us. We were convinced that this is the next best thing
in verification domain. While customers were getting trained in a hurry, they
were not developing any OVA code. This was a new dimension of
verification technique and the language was new. The tools were just starting
to support these language constructs. There was not much intellectual
property (IP) available. Naturally, customers were not as comfortable as we
thought they should be.

In the meantime, Synopsys Inc. had donated the Open VERA language to
the Accellera committee to be part of the SystemVerilog language. Several
other companies made contributions for the formation of the new
SystemVerilog language. The Accellera committee ratified the
SystemVerilog 3.1 language as a standard at DAC 2004. The SystemVerilog
language included the assertion language as part of the standard. This is
commonly referred to as “SystemVerilog Assertions” (SVA). We continued
in the path of training customers in Assertion based verification, only now
we were teaching SVA. We could see clearly that customers were more
comfortable with the pre-developed assertion libraries, but they were
reluctant to write custom assertion code. What could be holding them back?
Was it the tools? No, the tools were ready. Was it the language? Maybe, but
it is a standard now, so that wasn’t necessarily the case.

After a few lengthy discussions, we realized that the lack of examples to
demonstrate SV A language constructs could be holding back customers from
using this new technology. The lack of expertise typically contributes to
slow adoption. This is when we thought an SVA cookbook might help—a
book of examples, a book that could act as a tutorial, a book that could teach
the language. And that is how this project started. We have made an effort to
write what we learned from teaching this subject for the past two years.
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While there is much more to learn in this area, this is just an effort to share
what we have learned.

How to read this book.

This book is written in a way such that engineers can get up to speed with
SystemVerilog assertions quickly.

Chapters 0, 1 and 2 are sufficient to learn the basics of the syntax and
some of the common simulation techniques. After reading these three
chapters, the wuser should be able to write assertions for their
design/verification environment.

Chapter 3, 4, 5 and 6 are cookbooks for different types of designs. A user
can refer to these chapters if they come across similar designs in their own
environment and use these chapters as a starting point for writing assertions.
These chapters can also be used as a tutorial.

If you are someone new to assertion based verification, you need to read
chapters 0 through 2 before reading the other chapters. If you are familiar
with SVA language, you can refer to these chapters on an as needed basis.

Chapter 0 - This is a white paper on “Assertion based verification
(ABV)” methodology. It introduces the concept of ABV and the importance
of function coverage.

Chapter 1 - Discusses SVA syntax with simple examples and goes
through a detailed analysis of the execution of SVA constructs in dynamic
simulation. Simulation waveforms and event tables are included for the
reader’s reference. To know the details of every SVA construct, the user
should refer to the SystemVerilog 3.1 a LRM (Chapter 17).

Chapter 2 — Uses a system example to illustrate SVA simulation
methodology. Topics cover protocol extraction, simulation control and
functional coverage.

Chapter 3 - Illustrates how to verify FSMs with SVA, uses two different
FSM models as examples.

Chapter 4 — Illustrates verification of a data path using SVA. A partial
JPEG design is used to demonstrate verification of both contro! signals and
data using SVA.
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Chapter 5 — Illustrates verification of a memory controller using SVA.
The controller supports different types of memories such as SDRAM,
SRAM, Flash, etc.

Chapter 6 — Illustrates verification of a PCI local bus based system using
SVA. A sample PCI system configuration is used and various PCI protocols
are verified using SVA.

Chapter 7 — Illustrates a sample testbench for verifying the assertions. It
also discusses the theory behind verifying the accuracy of an assertion.

A CD-ROM is included with the book. All the examples shown in the
book can be run with VCS 2005.06 release. Sample scripts to run the
examples are included. VCS is a registered trademark of Synopsys Inc.

Acknowledgements

The authors would like to convey their sincere thanks to the following
individuals that have contributed immensely for the completion of this book.

Anupama Srinivasa, DSP Solutions Architect, AccelChip, Inc.
Jim Kjellsen, Staff Applications Consultant, Synopsys, Inc.
Juliet Runhaar, Senior Applications Consultant, Synopsys, Inc.

We would also like to thank the following individuals for reviewing the
book and providing several constructive suggestions:

Ira Chayut, Bohran Roohipour, Irwan Sie, Ravindra Viswanath, Parag
Bhatt, Derrick Lin, Anders Berglund, Steve Smith, Martin Michael, Jayne
Scheckla, Rakesh Cheerla, Satish Iyengar

Useful Web links

www.systemVerilogforall.com — Page maintained by us that provides
tips, examples and discussions on SystemVerilog language.

www.accellera.org — Official website of Accellera committee. The
SystemVerilog LRM can be downloaded from this site. There are also
several other useful papers and presentations on the latest standards.
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Chapter 0
ASSERTION BASED VERIFICATION

Use of assertions justified

The growing complexity and size of digital designs have made functional
verification a huge challenge. In the last decade several new technologies
have emerged in the area of verification and some of them have captured
their place as a requirement in the verification process.

Figure 0-1 shows a block diagram of a verification environment that is
adopted by a vast majority of verification teams. There are two significant
pieces of technology that are used by almost all verification engineers:

1. A constrained random testbench
2. Code coverage tool

The objective is to verify the design under test (DUT) thoroughly and
make sure there are no functional bugs. While doing this, there should be a
way of measuring the completeness of verification. Code coverage tools
provide a first level measure on the verification completeness. The data
collected during code coverage has no knowledge of the functionality of the
design but provides information on the execution of the code line by line.
By guaranteeing that every line of the DUT executed at least once during
simulations, a certain level of confidence can be achieved and code coverage
tolls can help achieve that. Last but not the least, the process of verification
should be completed in a timely fashion. It is a well-known fact that the
worst bottleneck for any verification environment is performance.
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Traditionally, designs are tested with stimulus that verifies a specific
functionality of the design. The complexity of the designs forces
verification engineers to use a random testbench to create more realistic
verification scenarios. High-level verification languages like OPEN VERA
are used extensively in creating complex testbenches.

Constrained random Test bench

—» pUT —r

b

Code Coverage

Figure 0-1. Before Assertion based verification

The testbenches normally perform three different tasks:

1. Stimulus generation.
2. Self-checking mechanisms.
3. Functional coverage measurement.

The first and foremost aim of a testbench is to create good quality
stimulus. Advanced languages like OPEN VERA provide built-in
mechanisms to create complex stimulus patterns with ease. These languages
support object-oriented programming constructs that help improve the
stimulus generation process and also the re-use of the testbench models.

A testbench should also provide excellent self-checking mechanisms. It
is not always possible to debug the design in post-processing mode.
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Mechanisms like waveform debugging are prone to human error and are also
not very feasible with the complex designs of today. Every test should have
a way of checking the expected results automatically and dynamically. This
will make the debugging process easy and also make the regression tests
more efficient. Self-checking processes usually targets two specific areas:

1. Protocol checking
2. Data checking

Protocol checking targets the control signals. The validity of the control
signals is the heart of any design verification. Data checking deals with the
integrity of the data being dealt with. For example, are the packets getting
transferred without corruption in a networking design? Data-checking
normally requires some level of formatting and massaging that is usually
taken care of within the testbench environment effectively.

Functional coverage provides a measure of verification completeness.
The measurement should contain information on two specific items:

1. Protocol coverage
2. Test plan coverage

Protocol coverage gives a measure on exercising the design for all valid
and invalid design conditions. In other words, it is a measure against the
functional specification of the design that confirms that all possible
functionality has been tested. Test plan coverage, on the other hand,
measures the exhaustiveness of the testbench. For example, did the testbench
create all possible packet sizes, did the CPU write or read to all possible
memory address spaces? Protocol coverage is measured directly from the
design signals, and the test plan coverage can be easily measured with built-
in methods within the testbench environment.

SystemVerilog assertions modify the verification environment in a
manner such that the strengths of different entities are leveraged to the
maximum. Figure 0-2 shows the modified block diagram for the verification
environment that includes Assertion Based Verification (ABV).

There are two categories discussed in the different pieces of the
testbench, which are addressed in detail by SystemVerilog assertions (SVA):

1. Protocol checking
2. Protocol coverage
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Constrained random Test bench

—> DUT [P

Code Coverage SystemVeribg Assertions

Figure 0-2. After SystemVerilog assertions

These two categories are closer to the design signals and can be managed
more efficiently within SVA than by the testbench. By connecting these
assertions directly to the design, the performance of the simulation
environment increases tremendously as does the productivity. Table 0-1
summarizes the re-alignment of a verification environment based on SVA.

Though SVA interacts with the design signals directly, it can be used
very effectively to share information with the testbenches. By sharing
information dynamically during a simulation, very efficient reactive
testbench environments can be developed. The completeness of the
verification process can be measured more effectively by combining the
code coverage and the functional coverage information collected during
simulation.
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Table 0-1. New verification environment

Testbench

SVA

Before SVA

After SVA

Stimulus generation
Protocol checking
Data checking
Protocol coverage
Test plan coverage

Stimulus generation
Data checking
Test plan coverage

N/A

Protocol checking
Protocol coverage

The book will introduce the SVA language, its use model and its benefits
in an elaborate fashion with examples. It will show how to find bugs early
by writing good quality assertions. Real design examples and the process of
writing assertions to verify the design will be discussed. Measuring
functional coverage on real designs and also how to use the functional
coverage information dynamically to create more sophisticated testbenches
will be discussed. Coding guidelines and simulation methodology practices

will be discussed wherever relevant.
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INTRODUCTION TO SVA
Understanding the Syntax

1.1 What is an Assertion?

An assertion is a description of a property of the design.

e If a property that is being checked for in a simulation does not
behave the way we expect it to, the assertion fails.

o If a property that is forbidden from happening in a design
happens during simulation, the assertion fails.

A list of the properties can be inferred from the functional specification
of a design and can be converted into assertions. These assertions can be
continuously monitored during functional simulations. The same assertions
can also be re-used for verifying the design using formal techniques.
Assertions, also known as monitors or checkers, have been used as a form of
debugging technique for a very long time in the design verification process.
Traditionally, they are written in a procedural language like Verilog. They
can also be written in PLI and C/C++ programs. The following code shows a
simple mutually asserted condition check written in Verilog, wherein signal
“a” and signal “b” cannot be high at the same time. If they are, an error
message is displayed.

“ifdef ma
if(a & b)
$display
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(“*“Error:Mutually asserted check failed\n”);
“endif

This kind of a monitor is included only as part of the simulation and
hence is included in the design environment only on a need basis. This can
be accomplished with the ‘ifdef construct which enables conditional
compilation of Verilog code.

1.2 Why use SystemVerilog Assertions (SVA)?

While Verilog language can be used to write certain checks easily, it has
a few disadvantages.

1. Verilog is a procedural language and hence, does not have good
control over time.

2. Verilog is a verbose language. As the number of assertions increase,
it becomes very difficult to maintain the code.

3. The procedural nature of the language makes it difficult to test for
parallel events in the same time period. In some cases, it is also
possible that a Verilog checker might not capture all the triggered
events.

4. Verilog language has no built-in mechanism to provide functional
coverage data. The user has to produce this code.

SVA is a declarative language and is perfectly suited for describing
temporal conditions. The declarative nature of the language gives excellent
control over time. The language itself is very concise and is very easy to
maintain. SVA also provides several built-in functions to test for certain
design conditions and also provides constructs to collect functional coverage
data automatically.

Example 1.1 shows a checker written both in Verilog and SVA. The
checker verifies that if signal “a” is high in the current clock cycle, then
signal “b” should be high within I to 3 clock cycles. Figure 1-1 shows the
waveform of a sample simulation of the signals “a” and “b.”

Example 1.1 Sample assertion written in Verilog and SVA

// Sample Verilog checker

always @(posedge a)
begin
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repeat (1) @(posedge clk);
fork: a_to b

begin

@ (posedge b)

$display

("SUCCESS: b arrived in time\n", $time);
disable a_to_b;

end

begin

repeat (3) @(posedge clk);

$display

("ERROR:b did not arrive in time\n", $time);
disable a_to_b;

end

join
end

// SVA Checker

a_to_b chk:
assert property
@ (posedge clk) $rose(a) |-> ##[1:3] $rose(b));

1 2 3456 78 9 10111213 1415161718

N et
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Figure 1-1. Waveform for sample assertion

Example 1.1 shows the advantages of SVA very clearly. SVA syntax is
discussed in detail in this chapter. The checker represents a very simple
protocol. It can be written in one line in SVA, although the same protocol
description takes several lines in Verilog. Also, the error and success
conditions need to be defined in Verilog explicitly, whereas the failure will
automatically display an error message in SVA. Results of a sample
simulation are shown below.
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SUCCESS: b arrived in time 127
vtosva.a_to b chk:
started at 125s succeeded at 175s

SUCCESS: b arrived in time 427
vtosva.a_to_b_chk:
started at 325s succeeded at 475s

ERROR: b did not arrxive in time 775

vtosva.a_to_b_chk:

started at 625s failed at 775s
Offending '$rose(b)'’

1.3 SystemVerilog Scheduling

The SystemVerilog language is defined to be an event based execution
model. In each time slot, many events are scheduled to happen. This list of
events follows the algorithm specified by the standard. By following this
algorithm, the simulators can avoid any inconsistencies in the interactions
between the design and testbench. There are three regions that are involved
in the evaluation and execution of the assertions.

Preponed — Values are sampled for the assertion variables in this
region. In this region, a net or variable cannot change its state. This
allows the sampling of the most stable value at the beginning of the time
slot.

Observed — All the property expressions are evaluated in this region.

Reactive — The pass/fail code from the evaluation of the properties are
scheduled 1n this region.

Figure 1-2 shows a simplified SystemVerilog event schedule flow chart.
To understand the SystemVerilog scheduling algorithm thoroughly, please
refer to the SystemVerilog 3.1a LRM [1].



1. Introduction to SVA
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Figure 1-2. Simplified SV event schedule flow chart

14 SV A Terminology

11

There are two types of assertions defined in the SystemVerilog language:

Concurrent assertions and Immediate assertions.
1.4.1 Concurrent assertions

e Based on clock cycles.

e Test expression is evaluated at clock edges based on the sampled

values of the variables involved.

¢ Sampling of variables is done in the “preponed” region and the
evaluation of the expression is done in the “observed” region of the

scheduler.

¢ Can be placed in a procedural block, a module, an interface or a

program definition.

e Can be used with both static (formal) and dynamic verification

(simulation) tools.
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A sample concurrent assertion is shown below.

a_cc: assert property (@(posedge clk)
not (a && b));

Figure 1-3 shows the results of the concurrent assertion a_cc. All
successes are shown with an up arrow and all failures are shown with a
down arrow. The key concept in this example is that the property is being
verified on every positive edge of the clock irrespective of whether or not
signal “a” and signal “b” changes.

12 34 56 7 8 9101112 1341516 171819120 21
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Figure 1-3. Waveform for a sample concurrent assertion

1.4.2 Immediate assertions

s Based on simulation event semantics.
Test expression is evaluated just like any other Verilog expression
within a procedural block. These are not temporal in nature and are
evaluated immediately.

e Have to be placed in a procedural block definition.

e Used only with dynamic simulation.

A sample immediate assertion is shown below.

always comb
begin

a_ia: assert (a && b);
end

The immediate assertion a_ia is written as part of a procedural block and
it follows the same event schedule of signal “a” and “b.” The always block
executes if either signal “a” or signal “b” changes. The keyword that
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differentiates the immediate assertion from the concurrent assertion is
“property.” Figure 1-4 shows the results of the immediate assertion a_ia.

1234567 8 91011121314 15161718 192021

we LUt ot

Figure 1-4. Waveform for a sample immediate assertion

1.5 Building blocks of SVA

In any design model, the functionality is represented by the combination
of multiple logical events. These events could be simple boolean expressions
that get evaluated on the same clock edge or could be events that evaluate
over a period of time involving multiple clock cycles. SVA provides a key
word to represent these events called “sequence.” The basic syntax of a
sequence is as follows.

sequence name_of sequence;
< test expressions;
endsequence

A number of sequences can be combined logically or sequentially to
create more complex sequences. SV A provides a key word to represent these
complex sequential behaviors called “property.” The basic syntax of a
property is as follows.

property name of property;

< test expression >; or

< complex sequence expressions >;
endproperty

The property is the one that is verified during a simulation. It has to be
asserted to take effect during a simulation. SVA provides a key word called
“assert” to check the property. The basic syntax of an assert is as follows.
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assertion_name: assert property(property name);

The steps involved in the creation of a SVA checker are shown in Figure
1-5.

Stepl: create boolean expressions

!

Step2: create sequence expressions

!

Step3: create property

!

Stepd: assert property

Figure 1-5. SVA Building blocks

1.6 A simple sequence

Sequence sl checks that the signal “a” is high on every positive edge of
the clock. If signal “a” is not high on any positive clock edge, the assertion
will fail. Note that “a” is the same as “a==1"b1.”

sequence sl;
@ (posedge clk) a;
endsequence

Figure 1-6 shows a sample waveform for signal “a” and how sequence sl
responds to this signal during simulation. Signal “a” goes to zero on the
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positive edge of clock cycle 7. This change in value is sampled in clock
cycle 8. Since concurrent assertions use the values sampled in the
“preponed” region of the scheduler, in clock cycle 7, the most stable value of
signal “a” sampled by the sequence sl is 1. Hence, the sequence succeeds. In
clock cycle 8, the sampled value of signal “a” is a 0 and hence the sequence
fails. A success is denoted with an arrow pointing up and a failure 1s denoted
with an arrow pointing down. Table 1-1 summarizes the sampled values of
signal “a” on each clock cycle up to clock cycle 15.

1234 56 7 8 9% 101112131415161718 1920 21
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Figure 1-6. Waveform for simple sequence sl

Table 1-1. Evaluation table for sequence s1

Clock tick Sampled value of signal “a”
1 0
2 1
3 1
4 1
5 1
6 1
7 1
8 0
9 1
10 1
11 0
12 1
13 1
14 0
15 1
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1.7 Sequence with edge definitions

In sequence sl, the logical value of the signal was used. SVA also has
built-in edge expressions that let the user monitor the transition of signal
value from one clock cycle to the next. This allows one to check for the edge
sensitivity of signals. Three of these useful built-in functions are shown
below.

Srose (boolean expression or signal_name)

o This returns true if LSB of signal/expression changed to 1
$tell ( boolean expression or signal_name)

o This returns true if LSB of signal/expression changed to 0
$stable (boolean expression or signal_name)

¢ This returns true if the value of the expression did not change

Sequence s2 checks that the signal “a” transitions to a value of 1 on every
positive edge of the clock. If the transition does not occur, the assertion will
fail.

sequence s2;
@ (posedge clk) $rose(a):;
endsequence

Figure 1-7 shows how sequence s2 responds to the transition of signal
“a.” Marker 1 shows the first success of sequence s2. At clock cycle 1, the
value of signal “a” goes from O to 1. At this clock, the sampled value of
signal “a” within the sequence is 0. Before clock cycle 1, there is no history
for signal “a” and hence the value is assumed to be “x.” A transition of value
from x to O is not a rising edge and hence the sequence fails. At clock cycle
2, the sampled value of signal “a” within the sequence is 1. A transition of
value from 0 to 1 is a rising edge and hence, the sequence s2 succeeds in
clock cycle 2. Another success is shown with marker 2 at clock cycle 9.
Table 1-2 summarizes the transition of signal “a” over time until clock cycle
9 and how the sequence samples and updates the values.
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Figure 1-7. Waveform for simple sequence with edge definition

Table 1-2. Evaluation table for sequence s2

Clock Sampled value Sampled value Sequence s2 -
Tick of “a” from the  of “a” in the status
previous cycle current cycle

1 X 0 Fail

2 0 1 Success

3 1 1 Fail

4 1 1 Fail

5 1 1 Fail

6 1 1 Fail

7 1 1 Fail

8 1 0 Fail

9 0 1 Success
1.8 Sequence with logical relationship

Sequence s3 checks that on every positive edge of the clock, either signal

9

a” or signal “b” is high. If both the signals are low, the assertion will fail.

sequence s3;
@(posedge clk) a || b:
endsequence
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Figure 1-8 shows how the sequence s3 responds to signal “a” and “b.”
Marker 1 shows that at clock cycle 12, the sampled values of both signals
“a” and “b” are 0 and hence the sequence fails. The same is true for clock
cycle 17 shown by marker 2. In all other clock cycles, either signal “a” or
signal “b” has a value of 1 and hence the sequence succeeds in those clock
cycles.

O @
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Figure 1-8. Waveform for sequence s3

1.9 Sequence Expressions

By defining formal arguments in a sequence definition, the same
sequence can be re-used on other signals of a design that have similar
behavior. For example, we can define a sequence as follows.

sequence s3_1lib (a, b);
a || b;
endsequence

The generic sequence s3 _lib can be re-used on any two signals. For
example, say we have two signals “reql” and “req2” and one of them should
be asserted on the positive edge of a clock. We can write a sequence as
follows.

sequence s3_lib_instl;
S3_lib(reql, req2);
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endsequence

Some of the common properties that are normally present in designs
can be developed as a library and re-used. For example, one-hot state
machine checks, parity checks, etc. are good candidates for a checker
library.

1.10  Sequences with timing relationship

Simple boolean expressions are checked on every clock edge. In other
words, they are simple combinational checks. A lot of times, we are
interested in checking events that take several clock cycles to complete.
These are called “sequential checks.” In SVA, clock cycle delays are
represented by a “##” sign. For example, ##3 means 3 clock cycles.

Sequence s4 checks for the signal “a” being high on a given positive edge
of the clock. If signal “a” is not high, then the sequence fails. If signal “a” is
high on any given positive edge of clock, then signal “b” should be high 2
clock cycles after that. If signal “b” is not asserted after 2 clock cycles, the
assertion fails. Note that the sequence begins when signal “a” is high on a
positive edge of the clock.

sequence s4;
@(posedge clk) a ##2 b;
endsequence

Figure 1-9 shows how sequence s4 responds in a simulation. Table 1-3
summarizes the sampled values of signal “a” and signal “b” on every clock
cycle.

1 23456 789 11112131415161718
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Figure 1-9. Waveform for sequence s4
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Unlike the examples from the previous section, note that the start and end
time of sequence s4 are not the same. If signal “a” is not high on any given
clock cycle, then the sequence starts and fails on the same clock cycle. If
signal “a” is high, then the sequence starts. The sequence succeeds after 2
clock cycles if signal “b” is high (clock 5 and clock 14). On the other hand,
if signal “b” is not high after 2 clock cycles, then the sequence fails. Note
that the success of a sequence is always represented in the figure at the
starting point of the sequence.

Table 1-3. Evaluation table for sequence s4

Clock tick Sampled Sampled Valid start  S4 status
value of value of of s4
“a” “b”

1 0 0 No Fail

2 1 0 Yes Fail (start at
2, end at 4)

3 0 1 No Fail

4 0 0 No Fail

5 1 0 Yes Success (start at
5, end at 7)

6 0 0 No Fail

7 0 1 No Fail

8 0 0 No Fail

9 1 0 Yes Fail (start at
9,end at 11)

10 0 0 No Fail

11 0 0 No Fail

12 0 1 No Fail

13 0 0 No Fail

14 1 0 Yes Success (start at
14, end at 16)

15 0 0 No Fail

16 0 1 No Fail

17 0 0 No Fail




1. Introduction to SVA 21

1.11  Clock definitions in SVA

A sequence or a property does not do anything by itself in a simulation.
They have to be asserted to take effect as shown below.

sequence s5;
@ (posedge clk) a ##2 b;
endsequence

property p5;
s5;
endproperty

a5 : assert property (p5);

Note that the clock is specified in the sequence 5. While this is one way
of relating a check to a clock there are also other ways of doing it. A clock
can be specified in a sequence, in a property or even in an assert statement.
The following code shows the clock defined in the property definition p5a.

sequence sba;
a ##2 b;
endsequence

property pb5a;
@ (posedge clk) sba;
endproperty

aba : assert property(p5a);

In general, it is a good idea to define the clocks in property definitions
and keep the sequences independent of the clocks. This will help increase
the re-use of the basic sequence definitions.

A separate property definition is not needed to assert a sequence. Since
the assert statement calls a property, the expression to be checked can be
called from the assert statement directly as shown below in assertion a5b.

sequence s5b;
a ##2 b;
endsequence
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a5b : assert property(@(posedge clk) s5b);

While we can call a sequence with a clock definition from within the
assert statement, calling a property with a clock definition from within the
assert statement is not allowed. This coding style is shown below in
assertion aSc.

a5c : assert property(@(posedge clk) p5a); / Not
allowed

1.12  Forbidding a property

In all the examples shown so far, the property is checking for a true
condition. A property can also be forbidden from happening. In other words,
we expect the property to be false always. If the property is true, the
assertion fails.

Sequence s6 checks that if signal “a” is high on a given positive edge of
the clock, then after 2 clock cycles, signal “b” shall not be high. The
keyword “not” is used to specify that the property should never be true.

sequence g6;
@(posedge clk) a ##2 Db;
endsequence

property pé6;
not s6;
endproperty

a6 : assert property(pé):;

Figure 1-10 shows how the checker a6 responds in a simulation. Note
that the checker fails on two occasions (clock 5 and clock 14) as shown by
markers 1 and 2. In both these clock cycles, the sequence that was forbidden
happened and hence asserted a failure.

On the other hand, the checker passes on two occasions when there is a
valid signal “a” (clock 2 and clock 9). For the checks that began in these
clock cycles, signal “b” does not go high after two clock cycles and hence
the checker succeeded. All other clock cycles wherein signal “a” was not
high succeeded automatically. Table 1-4 summarizes the sampled values of

signal “a” and signal “b” on each clock cycle.
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Table 1-4. Evaluation table for property p6
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Figure 1-10. Waveform of SVA checker forbidding a property

Clock Sampled Sampled Valid a6 status
tick value of  valueof  startof
“a,’ “b” S6
1 0 0 Yes Success (same clock)
2 1 0 Yes Success (start at 2, end at 4)
3 0 1 Yes Success (same clock)
4 0 0 Yes Success (same clock)
5 1 0 Yes Fail (start at 5, end at 7)
6 0 0 Yes Success (same clock)
7 0 1 Yes Success (same clock)
8 0 0 Yes Success (same clock)
9 1 0 Yes Success (start at 9, end at 11)
10 0 0 Yes Success (same clock)
11 0 0 Yes  Success (same clock)
12 0 1 Yes Success (same clock)
13 0 0 Yes Success (same clock)
14 1 0 Yes Fail (start at 14, end at 16)
15 0 0 Yes Success (same clock)
16 0 1 Yes Success (same clock)
17 0 0 Yes Success (same clock)
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1.13 A simple action block

The SystemVerilog language is defined such that, every time an assertion
check fails, the simulator is expected to print out an error message by
default. The simulator need not print anything upon a success of an
assertion. A user can also print a custom error or success message using the
“action block” in the assert statement. The basic syntax of an action block
is shown below.

assertion name
assert property(property name)
<success message> ;
else
<fail message>;

The checker a7 shown below uses simple display statements in the action
block to print successes and failures.

property p7;
@(posedge clk) a ##2 b;
endproperty

a7 : assert property(p7)
$display (“Property p7 succeeded\n”);
else
$display(“Property p7 failed\n”):;

The action block is not just limited to displaying success and failure. It
can be used for other applications such as controlling the simulation
environment and gathering functional coverage data. These topics will be
discussed in detail in Chapter 2.

1.14  Implication operator
In the property p7, the following can be noticed.

1. The property looks for a valid start of the sequence on every positive
edge of the clock. In this case, it looks for signal “a” to be high on
every positive clock edge.

2. Ifsignal “a” is not high on any given positive clock edge, an error is
issued by the checker. This is not a valid error message since we are
not interested in just checking for a specific level on signal “a.” This
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error just means that we did not get a valid starting point for the
checker at this clock. While these errors are benign, they can log a
lot of error messages over time, since the check is performed on
every clock edge. To avoid these errors, some kind of gating
technique needs to be defined, which will ignore the check if a valid
starting point is not present.

SVA provides a technique to achieve this goal. This technique is called
“Implication.” Implication is equivalent to an if-then structure. The left
hand side of the implication is called the “antecedent” and the right hand
side is called the “consequent.” The antecedent is the gating condition. If
the antecedent succeeds, then the consequent is evaluated. If the antecedent
does not succeed, then the property is assumed to succeed by default. This is
called a “vacuous success.” While implication avoids unnecessary error
messages, it can produce vacuous successes. The implication construct can
be used only with property definitions. It cannot be used in sequences.

There are 2 types of implication: Overlapped implication and Non-
overlapped implication.

1.14.1  Overlapped implication

Overlapped implication is denoted by the symbol |->. If there is a match
on the antecedent, then the consequent expression is evaluated in the same
clock cycle. A simple example is shown below in property p8. This property
checks that, if signal “a” is high on a given positive clock edge, then signal
“b” should also be high on the same clock edge.

property p8:;
@(posedge clk) a |-> b;
endproperty

a8 : assert property(p8);

Figure 1-11 shows how the assertion a8 responds in a simulation. Table
1-5 summarizes the sampled values of signal “a” and signal “b” and the
status of the assertion. There are 3 types of results shown in the table. A real
success is one where a valid high on signal “a” was detected, and at the same
clock edge a valid high on signal “b” was detected. A vacuous success is one
where signal “a” was not high and the assertion succeeded by defaunlt. A
failure is one where a valid high on signal “a” was detected and at the same
clock edge a valid high on signal “b” was not detected high.
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Figure 1-11. Waveform for property p8

Table 1-5. Evaluation table for property p8

Clock Tick Sampled Sampled A8 status
value of “a”  value of “b

1 0 1 Vacuous success
2 1 1 Real Success

3 1 1 Real Success

4 1 0 Fail

5 1 1 Real Success

6 0 1 Vacuous success
7 1 0 Fail

8 1 0 Fail

9 1 0 Fail

1.14.2  Non-overlapped implication

Non-overlapped implication is denoted by the symbol |=>. If there is a
match on the antecedent, then the consequent expression is evaluated in the
next clock cycle. A delay of one clock cycle is assumed for the evaluation of
the consequent expression. A simple example is shown below in property
p9. This property checks that, if signal “a” is high on a given positive clock
edge, then signal “b” should be high on the next clock edge.

property p9;
@ (posedge clk) a |=> b;
endproperty

a9 : assert property(p9):;
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Figure 1-12 shows how the assertion a9 responds in a simulation. Table
1-6 summarizes the sampled values of signal “a” and signal “b” and the
status of the assertion. Note that this assertion starts in the current clock
cycle and succeeds in the next clock cycle if it is a real success. Similarly, if
there is a valid start for the property (high on signal “a”), the property fails in
the next clock cycle if signal “b” is not high in that clock cycle.
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Figure 1-12. Waveform for property p9

Table 1-6. Evaluation table for property p9

Clock  Sampled Sampled a9 status

Tick value of “a”  value of “b
1 0 1 Vacuous success
2 1 1 Real success (start at 2, end at 3)
3 1 1 Fail (start at 3, end at 4)
4 1 0 Real success (start at 4, end at 5)
5 1 1 Real success (start at 5, end at 6)
6 0 1 Vacuous success
7 1 0 Fail (start at 7, end at 8)
8 1 0 Fail (start at 8, end at 9)
9 1 0 Real success (start at 9, end at 10)

1.14.3  Implication with a fixed delay on the consequent

Property p10 checks that if signal “a” is high in a given positive clock
edge, then signal “b” should be high after 2 clock cycles. A similar check
was shown before without the use of the implication operator. By using the
implication, all the false errors are removed. A check for the consequent
(signal “b”) is performed only if there is a valid start for the property (high
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on signal “a”). Figure 1-13 shows a sample simulation of the property p10.
Table 1-7 summarizes the sampled values of the signals involved in property
pl0.
property pl0;
@(posedge clk) a |-> ##2 b;
endproperty

al0 : assert property(pl0);
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Figure 1-13. Waveform for property p10

Table 1-7. Evaluation table for property p10

Clock Sampled Sampled al0 status

Tick value of “a”  value of “b
1 0 1 Vacuous success
2 1 1 Fail (start at 2, end at 4)
3 1 1 Success (start at 3, end at 5)
4 1 0 Success (start at 4, end at 6)
5 1 1 Fail (start at 5, end at 7)
6 0 1 Vacuous success
7 1 0 Fail (start at 7, end at 9)
8 1 0 Success (start at 8, end at 10)
9 1 0 Success (start at 9, end at 11)
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1.14.4  Implication with a sequence as an antecedent

Property p10 has a signal in the antecedent position. It is also possible to
have a sequence definition in the antecedent. In this case, a check for the
consequent sequence or Boolean expression is performed only if the
sequence in the antecedent succeeds. Sequence s11a checks that in any given
positive clock edge, if signal “a” and signal “b” are detected to be high, then
one clock cycle later, signal “c” should be high. Sequence s11b checks that,
after 2 clock cycles from the current positive edge of the clock, signal “d”
should be low. The final property checks that, if sequence slla succeeds,
then a check for sequence s11b is performed. If a valid sequence sl1a is not
detected, then the sequence sllb is not checked for and the property
succeeds vacuously.

sequence slla;
@(posedge clk) (a && b) ##1 c;
endsequence

sequence sllb;
@(posedge clk) ##2 1d;
endsequence

property pll;
slla |-> slilb;
endpeoperty

all : assert property(pll);

Figure 1-14 shows how the assertion all behaves in a simulation. The
markers 1s and le show the start and end of a successful property evaluation.
The markers 2s and 2e show the start and end of a failure. At clock cycle 11,
both signal “a” and signal “b” are detected high. In clock cycle 12, signal “c”
is high and hence the antecedent of the implication succeeds. This means
that, 2 clock cycles from now, which is clock cycle 14, signal “d” should be
low. But in the sample waveform signal “d” is a high and hence the property
fails.

All the vacuous successes are shown with a simple straight line. The
markers 3s and 3e show the start and end of a successful property evaluation.
The expression “a && b” is evaluated to be true in clock cycle 17 and one
clock cycle later, the signal “c” is high, as expected. Hence, at clock cycle
18, the sequence sl1a succeeds. The signal “d” is expected to be low 2 clock
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cycles from here and it is low as expected. Hence, the property succeeds at
clock cycle 20.
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Figure 1-14. Waveform for property pl11

1.15  Timing windows in SVA Checkers

So far, the examples shown with delays have a fixed delay greater than 0.
In the next few examples, different ways of specifying delays will be
discussed.

Property p12 checks whether the boolean expression “a && b” is true on
any given positive edge of the clock. If it is true, then within 1 to 3 clock
cycles, the signal “c” should be high. SVA allows specifying a timing
window for the consequent to match. The value specified in the left hand
side of the timing window should be less than the value specified in the right
hand side of the timing window. The left hand side can also have a value of
0. If 0 is specified in the left hand side, it means that the consequent must be
checked starting from the same clock edge at which the antecedent
succeeded.
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property pl2;
@ (posedge clk) (a && b) |-> ##[1:3] c;
endproperty

al2 : assert property(pl2);

Figure 1-15 shows how the property pl2 responds in a simulation.
Whenever a timing window is specified, multiple threads get kicked off for
all possible matches in every clock edge. The property gets executed as three
separate threads as follows.

(a & b) |-> ##[1] c or

(a && b) |-> ##[2] ¢ or
(a && b) |-> ##I[3] ¢
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Figure 1-15. Waveform for p12

The property has 3 chances to succeed. All the three threads have the
same starting point but the first thread that succeeds will make the property
succeed. Also note that, there can be only one valid start on any give
positive edge of the clock, but there can be multiple valid endings. This
happens due to the fact that each valid start has 3 possible chances to
succeed.

Table 1-8 summarizes the sampled values of all signals involved in the
evaluation of the property. On a given positive clock edge, if signal “a” and
signal “b” are both not high, then the property succeeds vacuously. On the
other hand, on a given positive clock edge, if signal “a” and signal “b” are
both high, then there is a valid start for the property. If signal “c” is not
detected high in the next 1 to 3 clock cycles, the property fails.
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Note that there is a valid start of the property detected on both clock
cycle 2 and 3. Both of these valid starts succeed in clock cycle 4. The check
that started at clock cycle 2 detected a high on signal “c” after 2 clock
cycles. The check that started at clock cycle 3 detected a high on signal “c”
after 1 clock cycle. Both of these are valid conditions and hence they
succeed. There is also a valid start on clock cycle 12. The property checks
for a high on signal “c” on clock cycles 13, 14 and 15. Since signal “c”
remained low in all three possible clock cycles, the check failed.

Table 1-8. Evaluation table for property p12

Clock Sampled Sampled Sampled Valid al2 status
tick value of value of value of start of

“a” “b” “c” p12
1 0 1 1 No Vacuous success
1 1 1 Yes  Real Success (start
at 2, end at 4)
3 1 1 0 Yes  Real Success (start
at3,end at 4)
4 1 0 1 No Vacuous success
5 1 0 1 No Vacuous success
6 0 1 0 No Vacuous success
7 0 1 0 No Vacuous success
8 1 1 1 Yes  Real Success (start

at 8, end at 10)

9 0 0 0 No Vacuous success

10 1 1 No Vacuous success

11 1 1 0 Yes  Real Success (start
at 11, end at 12)

12 1 1 1 Yes  Fail (start at 12,
end at 15)

13 0 0 0 No Vacuous success

14 1 0 0 No Vacuous success

15 1 0 0 No Vacuous success

16 0 0 1 No Vacuous success

17 1 1 1 Yes  Real Success (start

at 17, end at 18)
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1.15.1  Overlapping timing window

Property p13 is similar to property p12. The main difference between the
two is that the consequent of property p13 will be checked in the same clock
edge in which the antecedent has a valid match.

Property pl3;
@ (posedge clk) (a && b) |-> ##[0:2] c;
endproperty

al3 : assert property(pl3);

Figure 1-16 shows how property p13 responds in a simulation. The main
difference in the response when compared to property pl2 is that, the valid
start that happens in clock cycle 12 succeeds. This succeeds because of the

overlap in checking. The value of signal “c” is detected high in the same
clock edge as the valid match on the antecedent.
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Figure 1-16. Waveform for property p13

1.15.2  Indefinite timing window

The upper limit of the timing window specified in the right hand side can
be defined with a “$” sign which implies that there is no upper bound for
timing. This is called the “eventuality” operator. The checker will keep
checking for a match until the end of simulation. This is not a very efficient
way of writing SVA since this has a huge impact on the simulation
performance. It is best to always have a defined upper value in the timing
window.
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TPl

Property p14 checks that on a given positive edge of clock, signal “a” is
high. If so, then signal “b” will be high eventually starting from the next
clock cycle and after that, signal “c” will be high eventually starting at the
same clock cycle in which signal “b” was high.

property plé;
@{posedge clk) a |-> ##[1:$] b ##[0:%] c;
endproperty

al4d : assert property(pl4):;

Figure 1-17 shows how property pl4 reacts in a simulation. Table 1-9
summarizes the sampled values of the signals and the status of the assertion
al4. Note that the real successes can take any number of clock cycles to
finish. If there is a valid start and if either signal “b” or signal “c” does not
match before the end of the simulation, these checks are reported as
“incomplete checks.” Since overlap is allowed in the matching of signal “b”
and signal “c,” the whole check can finish in one clock cycle. Clock cycle 17
shows such a condition, wherein signal “a” was detected high on clock cycle
17 and both signal “b” and signal “c” were detected high on clock cycle 18.
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Figure 1-17. Waveform for property p14

Table 1-9. Evaluation table for p14

Clock Sampled Sampled  Sampled  Valid al4 status

tick value of value of value of start
“a” “b” “c” of p14
0 1 1 No Vacuous success
1 1 Yes Real success (start at 2, end at 4)

3 1 1 0 Yes Real success (start at 3, end at 8)



1. Introduction to SVA 35

Clock Sampled  Sampled Sampled  Valid al4 status

tick value of value of value of start
“a” “b” “e” of pl4
4 1 0 1 Yes Real success (start at 4, end at 8)
5 1 0 1 Yes Real success (start at 5, end at 8)
6 0 1 0 No Vacuous success
7 0 1 0 No Vacuous success
8 1 1 1 Yes Real success (start at 8, end at
10)
9 0 0 0 No Vacuous success
10 0 1 1 No Vacuous success
11 1 1 0 Yes Real success (start at 11, end at
12)
12 1 1 1 Yes Real success (start at 12, end at
17)
13 0 0 0 No Vacuous success
14 1 0 0 Yes Real success (start at 14, end at
17)
15 1 0 0 Yes Real success (start at 15, end at
17)
16 0 0 1 No Vacuous success
17 1 i 1 Yes Real success (start at 17, end at
18)

1.16 The “ended” construct

The sequences defined so far use simple concatenation mechanism. In
other words, multiple sequences were combined together over time by using
the starting point of the sequence as the synchronization point. SVA
provides another mechanism to concatenate sequences wherein the ending
point of the sequence is used as a synchronization point. This is expressed by
attaching the keyword “ended” to a sequence name. For example s.ended
means the ending point of the sequence. The keyword ended stores a
boolean value true or false depending on whether the sequence matched on
that particular clock edge. This boolean value of the s.ended is available
only in the same clock cycle.

Sequence s15a and s15b are two 2 simple sequences that take more than
1 clock cycle to match. Property pl5a checks that sequence sl5a and
sequence s15b match with a delay of one clock cycle in between them.
Property p15b checks the same protocol but by using the keyword ended. In
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this case, the end point of the sequences does the synchronization. Since the
endpoints are used, a delay of 2 clock cycles is defined between the 2
sequences.

sequence slb5a;
@ (posedge clk) a ##1 b;
endsequence

sequence slbb;
@ (posedge clk) c ##1 d;
endsequence

property plSa;
sl5a |=> s15b;
endproperty

property pl5b;
sl5a.ended |-> ##2 sl5b.ended;
endproperty

alba: assert property(pl5a):;
alSb: assert property (pl5b):

Figure 1-18 shows how properties pl5a and p15b react in a simulation.
Table 1-10 summarizes the status of the assertions al5a and al5b. The first
real success for assertion al5a happens at clock cycle 2. The check becomes
active at clock cycle 2 when signal “a” is detected high. The check
completes at clock cycle 5 when signal “d” is detected high. The first real
success for assertion alSb occurs at clock cycle 3. The check becomes active
at clock cycle 3 when the sequence s15a matches or in other words, signal
“b” is detected high. The check completes at clock cycle 5 when the
sequence s15b matches or in other words, when signal “d” is detected high.
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Figure 1-18. Waveform for SVA checker using “ended”

The first failure for assertion alSa happens at clock cycle 5. A valid
starting point is detected when signal “a” is detected high on a given positive
clock edge and is followed by a high on signal “b” one clock cycle later
(clock cycle 6). This leads to checking the consequent and since signal “c” is
not high after one clock cycle, the check fails at clock cycle 7.

The first failure for assertion al5b occurs at clock cycle 6. A valid starting
point is detected when sequence sl5a ends successfully at clock cycle 6.
This leads to checking the consequent wherein a valid end point for
sequence s15b is expected at clock cycle 8. Since signal “c” does not go high
as expected at clock cycle 7, the end point value of the sequence is false and
hence the check fails at clock cycle 8.

There are 2 different ways of writing the same check. The first method
synchronizes the sequences based on the starting points of the sequences.
The second method synchronizes the sequences based on the end points of
the sequences.
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Table 1-10. Evaluation table for SVA checker using “ended”
Clock Sampled Sampled Sampled  AlSastatus  AlSb status
tick value of value of wvalue
“a” “b”
1 0 1 1 Vacuous Vacuous
success success
2 1 1 0 Real Success Vacuous
(start at 2, success
end at 5)
3 1 1 1 Vacuous Real Success
success (start at 3,
end at 5)
4 1 0 0 Vacuous Vacuous
success success
5 1 0 1 Fail (start at Vacuous
S,endat7) success
6 0 1 0 Vacuous Fail (start at
success 6, end at 8)
7 0 1 1 Vacuous Vacuous
success success
8 1 1 0 Vacuous Vacuous
success success
9 0 0 1 Vacuous Vacuous
success success
10 0 1 1 Vacuous Vacuous
success success
11 1 1 0 Fail (start at Vacuous
11,endat 13) success
12 1 1 0 Vacuous Fail (start at
success 12, end at
14)
13 0 0 0 Vacuous Vacuous
success success
14 1 0 1 Vacuous Vacuous
success success
15 1 0 0 Vacuous Vacuous
success success
16 0 0 1 Vacuous Vacuous
success success
17 1 1 0 Fail (start at Vacuous
17, end at 20)  success
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1.17 SV A Checker using parameters

SVA allows using parameters in the checkers just like Verilog. This
gives great flexibility in creating re-usable properties. For example, the delay
information between 2 signals can be parameterized within the checker and
then the checker can be re-used in a similar situation elsewhere in the design
with different timing relationships. Example 1.2 shows a checker defined
with a default value for the parameter delay. If this checker is called within
the design, it uses a delay of one clock cycle by default. The same checker
can be re-used by over-writing the delay parameter value while instantiating
the checker. In Example 1.2, module “top” has 2 instances of the
“generic_chk” checker. Instance il overwrites the delay parameter as 2 clock
cycles and instance 12 uses the default value of 1 clock cycle.

Example 1.2 Sample SVA checker using parameters
module generic_chk (input logic a, b, clk);
parameter delay = 1;
property plé;

@(posedge clk) a |-> #i#delay b;
endproperty
al6: assert property(pls6):;
endmodule
// call checker from the top level module
module top(....);

logic clk, a, b, c, d;

generic _chk #(.delay(2)) il (a, b, clk);
generic _chk i2 (c, d, clk);

endmodule

Figure 1-19 shows how the 2 instances of checkers, il and i2, react to
transitions in signals during a simulation.
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Figure 1-19. Waveform for SVA checker with parameters

1.18  SVA Checker using a select operator

SVA allows using logical operators within sequences and properties.
Property p17 checks that, if signal “c” is high then the value of signal “d” is
equal to the value of signal “a.” If signal “c” is not detected high, then the
value of signal “d” is equal to the value of signal “b.” This is a
combinational check and is performed on every positive edge of clock.

property pl7;

@(posedge clk) ¢ ? d == a : d == b;
endproperty
al7: assert property(pl7);

1 23 4567 89 10111213141516171819 2021

L
C

|

Figure 1-20. Waveform for SVA checker using select operator

Figure 1-20 shows how property pl7 reacts in a simulation. Table 1-11
summarizes the sampled values of the respective signals and the status of the
assertion al7. At clock cycle 1, signal “c” is detected high and hence, the



1. Introduction to SVA 41

check expects that signal “d” and signal “a” have the same value. But signal
“d” is detected as high and signal “a” as low and hence the check fails.

Table 1-11. Evaluation table for SVA checker using select operator

Clock Sampled Sampled Sampled Sampled al7status
tick value of value of value of value of

“a” “b” [13 c” “d”
1 0 1 1 1 Fail
2 1 1 1 0 Fail
3 1 1 0 1 Success
4 1 0 1 0 Fail
5 1 0 1 1 Success
6 0 1 0 0 Fail
7 0 1 0 1 Success
8 1 1 1 0 Fail
9 0 0 0 1 Fail
10 0 1 1 1 Fail
11 1 1 0 0 Fail
12 1 1 1 0 Fail
13 0 0 0 0 Success
14 1 0 0 1 Fail
15 1 0 0 0 Success
16 0 0 1 1 Fail
17 1 1 1 0 Fail

1.19  SVA Checker using true expression

SVA checkers can be extended in time by using a “true expression. This
represents a “don’t care” condition and it extends the sequence by a clock
cycle. This can be used when writing complex protocols wherein multiple
properties are monitored and matched simultaneously.

Sequence s18a checks for a simple condition. Sequence s18a_ext checks
for the same condition, but moves the match on this sequence by one clock
cycle. This has an impact on when this sequence is used in the antecedent of
a property. The end points of the 2 sequences are different and hence the
clock cycle at which the consequent will be checked will vary.
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Property p18 checks for a match on si18a.ended in the antecedent and 2
clock cycles later, checks for a match on sl18b.ended. Property pl8 ext
checks for a match on s18a_ext.ended in the antecedent. The match on this is
the same as the match on sl8a.ended, but moved 1 clock cycle ahead.
Hence, the consequent of property pl8 ext needs to match after one clock
cycle and not 2 clock cycles as defined in property pl18. Both properties p18
and pl18_ext check for the same condition, but they both have different
matching points for their antecedents.

“define true 1

sequence sl8a;
@(posedge clk) a ##1 b;
endsegquence

sequence sl8a_ext;
@(posedge clk) a ##1 b ##1 “true;
endsequence

sequence sl8b;
@(posedge clk) c ##1 d;
endsequence

property pl8
@(posdge clk) sl8a.ended |-> ##2 s18b.ended;
endproperty

property pl8_ext
@(posdge clk) sl8a_ext.ended |=> sl18b.ended;
endproperty

al8: assert property(pls);
al8_ext: assert property(pl8_ ext);

Figure 1-21 shows how property p18 and p18 ext react in a simulation. It
is clearly seen that the starting point of assertion al8 ext is delayed by one
cycle when compared to that of the assertion al8.
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Figure 1-21. Waveform for SVA checker using “true expression

1.20  The “Spast” construct

SVA provides a built in system task called $past that is capable of
getting values of signals from previous clock cycles. By default, it provides
the value of the signal from the previous clock cycle. The simple syntax of
this construct is as follows.

$past (signal_name, number of clock cycles)

This task can be used effectively to verify that, the path taken by the
design to get to the state in this current clock cycle is valid. Property p19
checks that in the given positive clock edge, if the expression (¢ && d) is
true, then 2 cycles before that, the expression (a & & b) was true.

Property pl9;
@ (posedge clk) (c && d) |->
($past ( (a&&b), 2) == 1'bl);
endproperty

al9: assert property(pl9);

Figure 1-22 shows how the property p19 reacts in a simulation. Table 1-
12 summarizes the sampled values of the relevant signals and the status of
the assertion al9. The assertion fails at clock cycle 1. At clock cycle 1, there
is a valid start since both signal “c” and signal “d” are high. The consequent
of the checker needs to compare the value of the expression (a && b) 2
cycles before. This is not possible since there is no history for these signals
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before clock cycle 1 and hence the values are assumed to be “x.” Hence, the
checker fails at clock cycle 1.

The check has a real success at clock cycle 5. At clock cycle 5, there is a
valid start since both signal “c” and signal “d” are high. The consequent
checks that at clock cycle 3, the expression (a && b) is true. As expected, at
clock cycle 3, the signals “a” and “b” are detected high and hence the check
succeeds.

The check fails at clock cycle 16. At clock cycle 16, there is a valid start,
since both signal “c” and signal “d” are high. The consequent checks that at
clock cycle 14, the expression (a && b) is true. The signal “a” is detected
high as expected and signal “b” is detected low. This makes the expression
(a && b) false and hence the check fails.
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Figure 1-22. Waveform for SVA checker using “$past” construct

Table 1-12. Evaluation table for SVA checker using $past construct

Clock Sampled Sampled Sampled Sampled al9 status

tick value of value of value of value of
“a” “b” “c” “d”

1 0 1 1 1 Fail

2 1 1 1 0 Vacuous success
3 1 1 0 1 Vacuous success
4 1 0 1 0 Vacuous success
5 1 0 1 1 Real Success

6 0 1 0 0 Vacuous success
7 0 1 0 1 Vacuous success
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Clock Sampled Sampled Sampled Sampled al9 status
tick value of value of value of wvalue of
“a” “b” “c” “d”
8 1 1 1 0 Vacuous success
9 0 0 0 1 Vacuous success
10 0 1 1 1 Real Success
11 1 1 0 0 Vacuous success
12 1 1 1 0 Vacuous success
13 0 0 0 0 Vacuous success
14 1 0 0 1 Vacuous success
15 1 0 0 0 Vacuous success
16 0 0 1 1 Fail
17 1 1 1 0 Vacuous success

1.20.1  The $past construct with clock gating

The $past construct can be used with a gating signal. For example, on a
given clock edge, the gating signal has to be true even before checking for
the consequent condition. The simple syntax of a $past construct with a

gating signal is as follows.

$past (signal_name, number of clock cycles, gating signal)

Property p20 is similar to the property pl9. But the check is effective
only if the gating signal “e’ is valid on any given positive edge of the clock.

Property p20;
@(posedge clk) (c && d) |->
($past ((a&&b), 2, e) ==
endproperty

a20: assert property(p20):;

1.21  Repetition operators

1'bl);

If signal “start” is high on a given positive edge of the clock, then,
starting from the next clock cycle, signal “a” stays high for 3 continuous
clock cycles; one clock cycle after that, signal “stop” is high.
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A sequence like this can be checked by the following SVA code.

@ (posedge clk) $rose(start) |->
##1 a ##1 a ##1 a ##1 stop

Writing such a checker can get very verbose if signal “a” has to stay high
for many cycles. Also, in this case, it is assumed that signal “a” stays high
continuously. This protocol can get complex when we want to check if
signal “a” stays high, not necessarily on three continuous clock cycles. In
other words, signal “a” should repeat itself 3 times continuously or
intermittently.

SVA language provides three different types of repetition operators:
Consecutive repetition, go to repetition and non-consecutive repetition.

Consecutive repetition — This allows the user to specify that a signal or
a sequence will match continuously for the number of clocks specified. A
hidden delay of one clock cycle is assumed between each match of the
signal. The simple syntax of consecutive repetition operator is shown below.

signal or sequence [*n]

“n” is the number of times the expression should match repeatedly.

For example a [*3] will expand to the following.

atlaii a

A sequence such as (2 ##1 b) [*3] will expand as follows.

(a ##1 b) ##1 (a ##1 b) ##1 (a ##1 b)

Go to repetition — This allows the user to specify that an expression will
match the number of times specified not necessarily on continuous clock
cycles. The matches can be intermittent. The main requirement of a “go to”
repeat is that the last match on the expression checked for repetition should
happen in the clock cycle before the end of the entire sequence matching.

The simple syntax of “go to” repetition operator is shown below.

Signal [->n]
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Consider the following sequence.
Start ##1 al->3]1 ##1 stop

It is required that there is a match on signal “a” (the third and final
repetition of signal “a”) just before the success of “stop.” In other words,
signal “stop” succeeds on the last clock cycle of the sequence match, and in
the previous clock cycle, there should be a match on signal “a.”

Non-consecutive repetition — This is very similar to “go to” repetition
except that it does not require that the last match on the signal repetition
happen in the clock cycle before the end the entire sequence matching. The
simple syntax of a non-consecutive repetition operator is shown below.

Signal [=n]

Only expressions are allowed to repeat in “go to” and “non-
consecutive” repetitions. Sequences are not allowed.

1.21.1  Consecutive repetition operator [*]

Property p21 checks that two clock cycles after a valid start, signal “a”
stays high for 3 continuous clock cycles and two clock cycles after that,
signal “stop” is high. One clock cycle later signal “stop” is low.

Property p2l;
@ (posedge clk) $rose(start) |->

##2 (al*3]1) ##2 stop ##1 !stop;
endproperty

a2l: assert property(p2l);
Figure 1-23 shows how property p21 reacts in a simulation. The

waveform shows 2 failures and 1 real success. All other successes are
vacuous.



48 Chapter 1

1 234567 891011121314 15161718 1920 2122232425

o JUUUUUUUUrUUrrUuuUuid T U
i M M

start

: 1 o I
stap m m W

o BVt b L

Figure 1-23. Waveform for SVA checker using consecutive repeat

Failure at clock cycle 2 — A valid start signal is detected at clock cycle
2. The checker then looks for signal “a” to be high on 3 continuous clock
cycles starting from the positive clock edge of clock cycle 4. Signal “a” is
detected high on clock cycle 4 and 5, but is detected low on clock cycle 6.
Hence, the check fails. Note that the check started at clock cycle 2 and failed
at clock cycle 6.

Success at clock cycle 9 - A valid start signal is detected at clock cycle
9. The checker then looks for signal “a” to be high for 3 continuous clock
cycles starting from the positive clock edge of clock cycle 11. Signal “a” is
detected high on clock cycle 11, 12 and 13 as expected. Two clock cycles
later (at clock cycle 15) signal “stop” is high as expected. One clock cycle
later the signal “stop” is detected low. Hence, the check succeeds. Note that
the check started at clock cycle 9 and finished at clock cycle 16.

Failure at clock cycle 17 - A valid start signal is detected at clock cycle
17. The checker then looks for signal “a” to be high for 3 continuous clock
cycles starting from the positive clock edge of clock cycle 19. Signal “a” is
detected high on clock cycles 19, 20 and 21. The check now looks for a high
on signal “stop” at clock cycle 23 but it is not there. Hence, the check fails.
Note that signal “a” remained high for 4 clock cycles. The checker needs
only 3 repeats and hence it moves on to look for the signal “stop.” The check

started at clock cycle 19 and failed at clock cycle 23.

1.21.2  Consecutive repetition operator [*] on a sequence

Property p22 checks that two clock cycles after a valid start, sequence (a
##2 b) repeats 3 times and two clock cycles after that, signal “stop” is high.
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Property p22;
@(posedge clk) $rose(start) |->
##2 ((a ##2 b) [*3]) ##2 stop:;
endproperty

a22: assert property(p22);

Figure 1-24 shows how property p22 reacts in a simulation. It shows 2
failures and one real success.

Failure 1 — The first failure is shown by marker 1s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##2 b) repeats three times. But in this case, the
sequence is repeated only 2 times. Hence, the checker fails and the failing
point is shown by marker le.

Success 1 — The only real success is shown by marker 2s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##2 b) repeats three times. The sequence is
repeated 3 times as expected. A valid stop is expected 2 clock cycles after
the successful repetition of the sequence and it happens as expected. Hence,
the checker succeeds and the succeeding point is shown by marker 2e.
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Figure 1-24. Waveform for SVA checker using consecutive repeat on a sequence
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Failure 2 — The second failure is shown by marker 3s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##2 b) repeats three times. The sequence repeats
as expected. A valid stop is expected 2 clock cycles after the successful
repetition of the sequence and it does not arrive. Hence, the checker fails and
the failing point is shown by marker 3e.

1.21.3  Consecutive repetition operator [*] on a sequence with a delay
window

Property p23 checks that two clock cycles after a valid start, sequence (a
##[1:4] b) repeats 3 times and two clock cycles after that, signal “stop” is
high. The fact that the sequence has a timing window makes this check
slightly complicated.

property p23;
@(posedge clk) $rose(start) |->
##2 ((a ##[1:4]1 b) [*3]) ##2 stop:
endproperty

a23: assert property(p23);
The main sequence (a ##[1:4] b) [*3] expands as follows.

((a ##1b) or (a ##2 b) or (a ##3 b) or (a ##4 b)) #itl
((a ##1 b) or (a ##2 b) or (a ##3 b) or (a ##4 b)) ##1
((a ##1 b) or (a ##2 b) or (a ##3 b) or (a ##4 b))

Figure 1-25 shows how property p23 reacts in a simulation. It shows 2
failures and one real success.

Failure 1 — The first failure is shown by marker 1s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##[1:4] b) repeats three times. But in this case,
the sequence is repeated only 2 times. Hence, the checker fails and the
failing point is shown by marker le. Note that the 2 repeats that matched are
(a ##1 b) and (a ##2 b) respectively.
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Figure 1-25. Waveform for SVA checker using consecutive repeat on a sequence with
window of delay

Success 1 — The only real success is shown by marker 2s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##[1:4] b) repeats three times. The sequence is
repeated 3 times as expected. A valid stop is expected 2 clock cycles after
the successful repetition of the sequence and it happens as expected. Hence,
the checker succeeds and the succeeding point is shown by marker 2e. Note
that the 3 repeats that matched are (a ##2 b), (a ##4 b) and (a ##2 b)
respectively.

Failure 2 — The second failure is shown by marker 3s. A valid start is
detected at this point. After 2 clock cycles from this point, the checker
expects that the sequence (a ##[1:4] b) repeats three times. The sequence
does repeat as expected. A valid stop 1s expected 2 clock cycles after the
successful repetition of the sequence and it does not arrive as expected.
Hence, the checker fails and the failing point is shown by marker 3e. Note
that the 3 repeats that matched are (a ##2 b), (a ##2 b) and (a ##3 b)
respectively.

1.21.4  Consecutive repetition operator [*] and eventuality operator

Property p23 specified a window of timing for the sequence that repeated
itself. It is also possible to provide a window for the number of repetitions.
For example, a [*¥1:5] means that signal “a” should repeat itself anywhere
between 1 to 5 times. The definition can be expanded as follows.

a or
(a ##1 a) or
(a ##1 a ##1 a) or
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(a ##1 a ##1 a ##1 a) or
(a ##1 a ##1 a ##1 a ##1 a)

The bounds of the repeat window follow the same rules as the delay
windows. The left hand side value should be lesser than the right hand side
value. The right hand side value can be a “$” sign indicating an unbounded
number of repeats.

Property p24 shows an example of a finite check with an unbounded
number of repeats defined. It checks that 2 cycles after a valid start signal,
the signal “a” will stay high repeatedly until a valid stop arrives.

Property p24;

@(posedge clk) $rose(start) |->
##2 (al*1:8%]1) ##1 stop:

endproperty

al24: assert property (p24);

Figure 1-26 shows how property p24 reacts in a simulation. It shows one
failure and one real success.

Failure 1 — A valid start occurs at clock cycle 3 shown by marker 1s.
The check expects that 2 clock cycles from this point, signal “a” will stay
high repeatedly until a valid stop arrives. Signal “a” detects high
continuously until clock cycle 7. In clock cycle 8, it is detected low but the
signal “stop” has not arrived yet. Hence, the check fails at clock cycle §
shown by marker le.

Success 1 — A valid start occurs at clock cycle 11 shown by marker 2s.
The check expects that 2 clock cycles from this point, signal “a” will stay
high repeatedly until a valid stop arrives. Signal “a” stays high continuously
until clock cycle 15. In clock cycle 16, it is detected low and the signal
“stop” arrives as expected. Hence, the check succeeds at clock cycle 16

shown by marker 2e.
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Figure 1-26. Waveform for SVA checker using consecutive repeat and eventuality

1.21.5  Go to repetition operator [->]

Property p25 checks that, if there is a valid start signal on any given
positive edge of the clock, 2 clock cycles later, signal “a” will repeat three
times continuously or intermittently before there is a valid stop signal.

property p25;
@ (posedge clk) $rose(start) |->
##2 (al[->31) ##1 stop;
endproperty

a25: assert property(p25);

Figure 1-27 shows how property p25 reacts in a simulation. The figure
shows that there is one failure, one real success and one incomplete check.

Failure 1 - A valid start of the checker is shown by marker 1s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 3 times as expected. After the third match on
signal “a,” a valid “stop” signal is expected on the next clock cycle. This
does not happen and hence the check fails as shown by marker le.
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Figure 1-27. Waveform for SVA checker using go to repetition operator

Success 1 - A valid start of the checker is shown by marker 2s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 3 times as expected. After the third match on
signal “a,” a valid “stop” signal is expected on the next clock cycle. The
“stop” signal arrives as expected and hence the check succeeds at marker 2e.

Incomplete 1 - A valid start of the checker is shown by marker 3s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 2 times; before the third one arrives, the
simulation is finished. Also note that a valid “stop” signal arrives before the
end of the simulation cycles. This “stop” will not have any effect since the
repeat statement has not completed. The 3 expected repeats act as a blocking
statement before the “stop” signal. Hence, the check is incomplete at the end
of the simulation.

1.21.6  Non-consecutive repetition operator [=|

Property p26 checks that if there is a valid start signal on any given
positive edge of the clock, 2 clock cycles later, signal “a” will repeat three
times continuously or intermittently before there is a valid stop signal. One
clock cycle later, the signal “stop” should be detected low. It checks for the
exact same thing as property p25 except that it uses a “non-consecutive”
repeat operator in the place of a “go to” repeat operator. This means that, in
property p26, there is no expectation that there is a valid match on signal “a”
in the previous cycle of a valid match on “stop” signal.

Property p26;
@ (posedge clk) $rose(start) |->



1. Introduction to SVA 55

##2 (al=3]) ##1 stop ##1 !stop;
endproperty

a26: assert property(p26);

Figure 1-28 shows how property p26 reacts in a simulation. The figure
shows that there are two successes and one incomplete check.
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Figure 1-28. Waveform for SVA checker using non-consecutive repetition operator

Success 1 - A valid start of the checker is shown by marker 1s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 3 times as expected. After the third match on
signal “a,” a valid “stop” signal is expected, not necessarily on the next
clock cycle. A valid “stop” signal arrives 2 clock cycles after the third match
on signal “a” and hence the check succeeds as shown by marker le. This is
the main difference between “go to” repetition and “non-consecutive”
repetition. Property p25 failed for the same condition since a “go to”
repetition was used.

Success 2 - A valid start of the checker is shown by marker 2s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 3 times as expected. After the third match on
signal “a,” a valid “stop” signal is expected, not necessarily on the next
clock cycle. A valid “stop” signal arrives 1 clock cycle after the third match
on signal “a” and hence the check succeeds as shown by marker 2e.



56 Chapter 1

Incomplete 1 - A valid start of the checker is shown by marker 3s. The
check expects that 2 clock cycles after the valid start, signal “a” will repeat
three times. Signal “a” repeats 2 times; before the third one arrives, the
simulation is finished. Also note that a valid “stop” signal arrives before the
end of the simulation cycles. This “stop” will not have any effect since the
repeat statement has not completed. The 3 expected repeats act as a blocking
statement before the “stop” signal. Hence, the check is incomplete at the end
of the simulation. This behavior is the same as in “go to” repetition.

1.22 The “and” construct

The binary operator “and” can be used to combine two sequences
logically. The final property succeeds when both the sequences succeed.
Both sequences must have the same starting point but they can have
different ending points. The starting point of the check is when the first
sequence succeeds and the end point is when the other sequence succeeds,
ultimately making the property succeed.

Sequence s27a and s27b are two independent sequences. The property
p27 combines them with an and operator. The property succeeds when both
the sequences succeed.

sequence s27a;
@(posedge clk) a##[1:2] b;
endsequence

sequence s27b;
@ (posedge clk) c##[2:3] d;
endsequence

property p27;
@ (posedge clk) s27a and s27b;
endproperty

a27: assert property(p27);
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Figure 1-29. Waveform for SVA checker using “and” construct

Figure 1-29 shows how property p27 reacts in a simulation. Table 1-13
summarizes the sampled values of all relevant signals and the status of the
assertion a27. There are 3 types of results. There can be a failure due to lack
of a valid start. This happens on a given clock edge if signal “a” is not high
or signal “c” is not high (clock cycles 1, 2, 4, 5, 6, 13, 14).

Table 1-13. Evaluation table for SVA checker using “and” construct

Clock  Sampled Sampled Sampled Sampled Valid a27 status
cycle value of value of valueof value of start
“a” “b” “e” “d”

1 0 0 0 0 No Fail

2 0 0 0 0 No Fail

3 1 0 1 0 Yes Success (start at
3, end at 5)

4 0 1 0 0 No Fail

5 0 0 0 1 No Fail

6 0 0 0 0 No Fail

7 1 0 1 0 Yes Success (start at
7, end at 10)

8 1 0 1 0 Yes Success (start at
8, end at 10)

9 1 1 1 0 Yes Success (start at
9,endat 11)

10 1 1 1 1 Yes Success (start at
10, end at 12)

11 | 1 1 1 Yes Fail (startat 11,
end at 14)

12 1 1 1 1 Yes Fail (start at 12,

end at 14)
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Clock  Sampled Sampled Sampled Sampled Valid a27 status
cycle value of value of valueof valueof start
“a7’ “b” “c” “d”
13 0 0 0 0 No Fail
14 0 0 0 0 No Fail

There are 5 different successes and each one of them has a different
length. The valid checks that started at clock cycle 7 and clock cycle 8 both
finish at clock cycle 10. For the check that starts at clock cycle 7, signal “b”
is true in clock cycle 9, and signal “d” is true in clock cycle 10. For the
check that starts at clock cycle 8, signal “b” is true in clock cycle 9, and
signal “d” is true in clock cycle 10.

There are two failures, one at clock cycle 11 and one at clock cycle 12.
Each one of them has the same length but they fail due to different reasons.
For the check that starts at clock cycle 11, signal “b” is true in clock cycle
12. But signal “d” is never true in clock cycles 13 or 14 and hence the check
fails at clock cycle 14. For the check that starts at clock cycle 12, signal “b”
is not true in clock cycle 13. Both signal “b” and signal “d” are not true in
clock cycle 14 and hence the check fails in clock cycle 14.

1.23 The “intersect” construct

The “intersect” operator is very similar to the “and” operator with one
additional requirement. Both the sequences need to start at the same time
and complete at the same time. In other words, the length of both
sequences should be the same.

Property p28 checks for the same condition as property p27. The only
difference is that it uses the intersect construct instead of the and construct.

sequence s28a;
@(posedge clk) a##[1:2] b;
endsequence

sequence s28b;
@(posedge clk) c##[2:3] d;
endsequence

property p28;
@(posedge clk) s28a intersect s28b;
endproperty
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a28: assert property(p28);

Figure 1-30 shows how property p28 reacts in a simulation. Table 1-14
summarizes the sampled values of all the relevant signals and the status of
the assertion a28. Figure 1-30 also shows the results of assertion a27 that
uses the and construct on the same set of design conditions. This helps
understand the differences between the and construct and the intersect
construct.
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Figure 1-30. Waveform for SVA checker using “intersect” construct

The failures due to lack of a valid start remain the same. The second set
of failure happens from the fact that the individual sequences do not match
as expected. This kind of failure happens at clock cycles 11 and 12. The
third set of failure happens even though the individual sequences match as
expected. These failures happen since the individual sequence did not take
the same length of time to match. In the failure shown in clock cycle 3,
sequence s28a takes one clock cycle to match (“a” is true in clock cycle 3
and “b” is true in clock cycle 4) and sequence s28b takes 2 clock cycles to
match (“c” is true in clock cycle 3 and “d” is true in clock cycle 5). In the
failure shown in clock cycle 7, s28a takes two clock cycles to match (“a” is
true in clock cycle 7 and “b” is true in clock cycle 9) and sequence s28b
takes three clock cycles to match (“c” is true in clock cycle 7 and “d” is true
in clock cycle 10).

The three successes happen at clock cycles 8, 9 and 10 respectively. In all
these three cases the sequences match with the same length of time.

In the success shown in clock cycle 8, sequence s28a matches twice, at
clock cycles 9 and 10. The sequence s28b also matches twice, at clock
cycles 10 and 11. The common length is 2 clock cycles for both the
sequences to match. Hence, the intersect succeeds with s28a matching at
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clock cycle 10 and s28b also matching at clock cycle 10. Each of them has a
length of 2 clock cycles.

Table 1-14. Evaluation table for SVA checker using “intersect” construct

Clock Sampled  Sampled Sampled Sampled Valid a28 status

tick value of value of value of value of start
“a” “b” “c” “d”
0 0 0 0 No Fail

2 0 0 0 0 No Fail

3 1 0 1 0 Yes Fail (sequences
succeed with
different length)

4 0 1 0 0 No Fail

5 0 0 0 1 No Fail

6 0 0 0 0 No Fail

7 1 0 1 0 Yes Fail (sequences
succeed with
different length)

8 1 0 1 0 Yes Success (start at
8, end at 10)

9 1 1 1 0 Yes Success (start at
9,end at 11)

10 1 1 1 1 Yes Success (start at

” 10, end at 12)

11 1 1 1 1 Yes Fail (start at 11,
end at 13)

12 1 | 1 1 Yes Fail (start at 12,
end at 14)

13 0 0 0 0 No Fail

14 0 0 0 0 No Fail

In the success shown in clock cycle 9, sequence s28a matches twice, at
clock cycles 10 and 11. The sequence s28b also matches twice, at clock
cycles 11 and 12. The common length is 2 clock cycles for both the
sequences to match. Hence, the intersect succeeds with s28a matching at
clock cycle 11 and s28b also matching at clock cycle 11. Each of them has a
length of 2 clock cycles.

In the success shown in clock cycle 10, sequence s28a matches twice, at
clock cycles 11 and 12. The sequence s28b matches at clock cycle 12. The
common length is 2 clock cycles for both the sequences to match. Hence, the
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intersect succeeds with s28a matching at clock cycle 12 and s28b also
matching at clock cycle 12. Each of them has a length of 2 clock cycles.

1.24 The “or” construct

The binary operator “or” can be used to combine two sequences
logically. The final property succeeds when any one of the sequence
succeeds.

Sequence s2%a and s29b are two independent sequences. The property
p29 combines them with an or operator. The property succeeds when any
one of the sequence succeeds.

sequence s29a;
@(posedge clk) a##[1:2] b;
endsequence

sequence s29b;
@(posedge clk) c##[2:3]1 d;
endsequence

property p29;
@(posedge clk) s28a or s28b;
endproperty

a29: assert property(p29);

Figure 1-31 shows how property p29 reacts in a simulation. Table 1-15
summarizes the sampled values of all the relevant signals and the status of
the assertion a29. Figure 1-31 also shows the results of assertion a27 that
uses the and construct on the same set of design conditions. This helps
understand the differences between the and construct and the or construct.
The failures due to the lack of a valid start remain the same. The second set
of failure happens from the fact that the individual sequences do not match
as expected. This kind of failure happens at clock cycle 12. Both sequences
never match within their timing window and hence the check fails.

The successes are almost the same for the and operator and or operator.
The main difference is the duration of the match. The or operator matches as
soon as a match is found on sequence s29a and hence does not wait for
sequence s29b to finish.
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Figure 1-31. Waveform for SVA checker using “or” construct

Table 1-15. Evaluation table for SVA checker using “or” construct

Clock Sampled Sampled Sampled Sampled  Valid a29 status

tick value of value of wvalue of value of start
“a” “b” “c” “d”
1 0 0 0 0 No Fail
2 0 0 0 No Fail
3 1 0 1 0 Yes Success (start at 3,
end at 4)
4 0 1 0 0 No Fail
5 0 0 0 1 No Fail
6 0 0 0 0 No Fail
7 1 0 1 0 Yes Success (start at 7,
end at 9)
8 1 0 1 0 Yes Success (start at 8,
end at 9)
9 1 1 1 0 Yes Success (start at 9,
end at 10)
10 1 1 1 1 Yes Success (start at 10,
endat11)
11 1 1 1 1 Yes Success (start at 11,
end at 12)
12 1 1 1 1 Yes Fail (start at 12,
end at 14)
13 0 0 0 0 No Fail

14 0 0 0 0 No Fail
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One of the failures with the and construct at clock cycle 11 becomes a
success with the or construct. The reason for this is that the first part of
sequence s29a matches at clock cycle 12 and this immediately makes the
property succeed. In the and construct this alone is not enough. The second
part of the sequence has to match, but it does not occur within the specified
time window. Therefore, the same condition makes the property p27 fail at
clock cycle 14.

1.25  The “first_match” construct

Whenever a timing window is specified in sequences along with binary
operators such as and and or, there is a possibility of getting multiple
matches for the same check. The construct “first_match” ensures that only
the first sequence match is used and the others are discarded. This becomes
very helpful when combining multiple sequences together wherein only the
first match in the timing window is required to evaluate the remaining part
of the property.

In the example shown below, two sequences are combined with an or
operator. There are several possible matches for this property and they are as
follows.

a ##1 b;
a ##2 b;
c ##2 d4;
a ##3 b;
c ##3 d4;

When the property p30 gets evaluated, the first one to match will be kept
and every other match will be discarded.

sequence s30a;
@(posedge clk) a ##[1:3]1 b;
endsequence

sequence s30b;
@ (posedge clk) c ##[2:3]1 d;
endsequence

property p30;
@(posedge clk) first match(s30a or s30b);
endproperty
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a30: assert property (p30);

Figure 1-32 shows how property p30 reacts in a simulation. There are 2
successes shown in the figure, one at clock cycle 3 and another at clock
cycle 9. The success at clock cycle 3 is based on the match on the sequence
(c ##2 d). The success at clock cycle 9 is based on the match on the
sequence (a ##1 b). In both cases, the first sequence match made the
property succeed.
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Figure 1-32. Waveform for SVA checker using “first_match” construct

1.26  The “throughout” construct

Implication is one technique discussed so far that allows defining pre-
conditions. For example, for a specific sequence to be tested, a certain pre-
condition must be true. There are also situations wherein the condition must
hold true until the entire test sequence completes. Implication checks for pre-
condition once on the clock edge and then starts evaluating the consequent
part. Hence, it does not care if the antecedent remains true or not. To make
sure that certain condition holds true during the evaluation of the entire
sequence, “throughout” operator should be used. The simple syntax of a
throughout operator is shown below.

(expression) throughout (sequence definition)
Property p31 checks the following.
a.  The check starts when signal “start” has a falling edge.

b. Test the expression ((la&&!b) ##1 (c[->3]) ##1 (a&&b)).
¢. The sequence checks that between the falling edge of signals “a”
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and “b,” and the rising edge of signals “a” and “b,” signal “¢”
should repeat itself 3 times continuously or intermittently.

d. During the entire test expression, signal “start” should always be
low.

property p3l;
@(posedge clk) $fell(start) |->
(tstart) throughout
(##1 (la&&!b) ##1 (cl[->31) ##1 (a&&b));
endproperty

a3l: assert property(p3l);

Figure 1-33 shows how property p31 reacts in a simulation. The check
succeeds at clock cycle 3 and fails in clock cycle 16.
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Figure 1-33. Waveform for SVA checker using “throughout” construct

Success 1 — The antecedent of the property succeeds on clock cycle 3
when a falling edge is detected on the start “signal.” One cycle after that,
signals “a” and “b” are expected to be low, and they are as expected in clock
cycle 4. From this point, signal “c” is expected to repeat itself three times. It
does repeat three times, once each in clock cycles 6, 9 and 11. In clock cycle
12, it is expected that both signals “a” and “b” are high, and they are as
expected. Hence, the property starts at clock 3 and succeeds at clock 12.
Note that signal “start” was detected low from the clock cycles 3 through
12. That is the key for the success of this check.

Failure 1 — The antecedent of the property succeeds on clock cycle 16
when a falling edge is detected on the “start” signal. One cycle after that,
signals “a” and “b” are expected to be low, and they are in clock cycle 17.
From this point signal, “c” is expected to repeat itself three times. We get

two repeats on clock cycles 18 and 20. But on clock 21, before the third
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repeat on signal “c” arrives, the signal “start” is detected high and the check
fails at clock cycle 21. The “throughout” condition was violated here and
hence the check fails.

1.27 The “within” construct

The “within” construct allows the definition of a sequence contained
within another sequence.

seql within seq?2

This means that seql happens within the start and completion of seq2.
The starting matching point of seq2 must happen before the starting
matching point of seql. The ending matching point of seql must happen
before the ending matching point of seq2. Property p32 checks that the
sequence s32a happens within the rise and fall of signal “start.” The rise and
fall of signal “start” is defined as a sequence in s32b.

sequence s32a;
@ (posedge clk)
((la&&!b) ##1 (c[->3]1) ##1 (a&&b));
endsequence

sequence s32b;
@(posedge clk)
$fell (start) ##[5:10] $rose(start);
endsequence

sequence s32;
@ (posedge clk) s32a within s32b;
endsequence

property p32;
@(posedge clk) $fell(start) |-> s32;
endproperty

a32: assert property(p32);
The same set of design conditions used to describe the throughout

operator is used in Figure 1-34 to show how property p32 reacts in a
simulation. There are two valid starts for this check, one at clock cycle 3 and
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another at clock cycle 16. In both these clocks, a falling edge of the signal
“start” is detected.
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Figure 1-34. Waveform for SVA checker using “within” construct

Success 1 — The check starting at clock cycle 3 succeeds. The falling
edge of signal “start” is at clock cycle 3 and the rising edge of the signal
“start” is at clock cycle 13. Within these clock cycles, signal “c” is detected
high three times in clock cycles 6, 9 and 11. Hence, the check succeeds.

Incomplete 1 - The check starting at clock cycle 16 never finishes. The
falling edge of signal “start” is at clock cycle 16 and the rising edge of the
signal “start” is at clock cycle 21. Within these clock cycles, signal “c” is
detected high two times in clock cycles 18 and 20 respectively. The third
repeat of signal “c” comes at clock cycle 22 but signal “start” is detected
high at clock cycle 21. This is a failure but since a “go to” repetition operator
1s used to check for signal “c,” it acts as a blocking sequence. This makes the
check fail and issues an incomplete message during simulation.

1.28  Built-in system functions

SVA provides several built-in functions to check for some of the most
common design conditions.

Sonehot{expression) — checks that the expression is one-hot, in other
words, only one bit of the expression can be high on any given clock
edge.

Sonehot0(expression) — checks that the expression is zero one-hot, in
other words, only one bit of the expression can be high or none of the bits
can be high on any given clock edge.
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$isunknown(expression) — checks if any bit of the expression is X or Z.

Scountones(expression) — counts the number of bits that are high in a
vector.

Assert statement a33a checks that the bit vector “state” is one-hot. Assert
statement a33b checks that the bit vector “state” is zero one-hot. Assert
statement a33c checks if any bit of the vector “bus” is X or Z. Assert
statement a33d checks that the number of ones in the vector “bus” is greater
than one.

a33a: assert

property (@ (posedge clk) $onehot(state));
a33b: assert

property (@ (posedge clk) $onehotO (state)):;
a33c: assert

property (@ (posedge clk) $isunknown (bus));
a33d: assert

property (@(posedge clk) $countones (bus)> 1);
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Figure 1-35. Waveform for SVA checker using built-in system functions

Figure 1-35 shows how the assert statements react in a simulation. Table
1-16 summarizes the sampled values of vector “state” and “bus” and the
status of each assertion. Note that assertion a33a fails in clock cycle 2 since
all bits are zero. The one-hot condition requires that one bit be high on all
positive edges of the clock. On the other hand, assertion a33b passes since it
checks for zero one-hot and all bits being zero is legal for this construct.
Both a33a and a33b fail in clock cycles 5, 6, 7 and 8 wherein more than one
bit is high. Assertion a33c fails anytime the value of the vector “bus” is not
Z or X. It passes on clock cycles 5, 6 and 7 wherein the value is Z. Assertion
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a33d fails on clock cycles 2, 3, 5, 6, and 7 wherein no more than one bit is

high. Assertion a33d passes in clock cycles 4 and 8 since 2 bits are high in
the vector “bus” on these two clock cycles.

Table 1-16. Evaluation table for SVA checker using built-in functions

Clock Sampled Sampled a33a - a33b - a33¢ - a33d -
tick value of value of Sonehot Sonehotd) Sisunkno Scounto
“state” “bus” status status wn nes
status status

2 0000 00100 Fail Success Fail Fail
3 0010 00001 Success Success Fail Fail
4 0100 01001 Success Success Fail Success
5 0011 Z Fail Fail Success Fail
6 1101 Z Fail Fail Success Fail
7 1101 Z Fail Fail Success Fail
8 1101 01010 Fail Fail Fail Success

1.29 The “disable iff”’ construct

In certain design conditions, we don’t want to proceed with the check if
some condition is true. In other words, it is like an asynchronous reset that
will make the check currently being evaluated void. SVA provides a
construct called “disable iff” that acts like an asynchronous reset for the
checker. The simple syntax for a disable iff is as follows.

disable iff (expression) < property definition>

Property p34 checks that after a valid start, signal “a” repeat 2 times and
1 cycle after that, signal “b” repeats 2 times and one cycle later signal “start”
becomes low. During this entire sequence, if reset is detected high at any
point, the checker will stop and issue a vacuous success by default.

property p34;

@ (posedge clk)

disable iff (reset)

$rose(start) |=> al=2] ##1 b[=2] ##1 Istart ;
endproperty

a34: assert property(p34);
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Figure 1-36 shows how property p34 reacts in a simulation. A valid start
is shown with marker 1s. After the valid start, signal “a” repeats two times
and then signal “b” repeats two times. Signal “start” becomes low after that
as expected.

During this entire sequence, the signal “reset” is inactive as expected and
hence the check succeeds at marker le. A second valid start is shown with
marker 2s. After the valid start, signal “a” repeats two times and then the
“reset” signal becomes active before signal “b” could repeat two times. This
nullifies the check and the property succeeds vacuously.
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Figure 1-36. Waveform for SVA checker using “disable iff” construct

1.30  Using “intersect” to control length of the sequence

The intersect operator discussed in Section 1.23 can be used effectively
to control the length of sequences, particularly in cases where the upper
bound of the timing window is not defined. Whenever an eventuality
operator is used, there is no restriction on the number of clock cycles that
can be used by the checker to succeed. The intersect operator provides a
mechanism to define the minimum and maximum number of clock cycles
that can be used by the eventuality operator to succeed.
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Property p35 defines a sequence that checks that on a given clock edge if
signal “a” is high then eventually signal “b” should go high starting from the
next clock cycle and eventually signal “c” should go high starting from the
next clock cycle. This sequence will start whenever signal “a” is high and
can take until the end of the simulation time to succeed. This is restricted by
using the intersect operator 1[*2:5]. This intersect definition checks that
from the starting point of the sequence match (high on signal “a”) to the
ending point of the sequence match (high on signal “c”) it can take anywhere
between 2 to 5 clock cycles.

Property p35;
(@(posedge clk) 1[*3:5] intersect
(a ##[1:8] b ##[1:8]1 c));
endproperty

a35: assert property (p35);

Figure 1-37 shows how property p35 reacts in a simulation. Table 1-17
summarizes the sampled values of the relevant signals and shows the status
of assertion a35. On a given clock edge if signal “a” is not detected high, it is
a failure. This happens in several clock cycles (1, 3, 4, 5, 11 and 13) and
these are not valid starts.
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Figure 1-37. Waveform for SVA checker using intersect to control the length of the sequence

The check succeeds in several clock cycles (2, 6, 7, 8, 9, 10, 12 and 14).
Note that the sequence takes 5 clock cycles or less from the start to the end
point. The check has a real failure at clock cycle 6. Signal “a” is detected
high at clock cycle 6 and signal “b” arrives at clock cycle 9. Signal “c” does
not arrive at clock cycle 10, which completes the upper limit allowed for the
length of the entire check. Hence, the check fails at clock 10. Note that
signal “c” does arrive at clock cycle 11, but it’s too late.
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Table 1-17. Evaluation table for SVA checker using intersect operator to control the length of
the sequence

Clock  Sampled Sampled Sampled  Valid a3s status

tick value of value of value of start
“a” “b» “c”
1 0 1 1 No Fail
2 1 1 0 Yes Success (start at 2, end at 6)
3 0 1 1 No Fail
4 0 1 0 No Fail
5 0 1 0 No Fail
6 1 0 1 Yes Fail (start at 6, end at 10)
7 1 0 0 Yes Success (start at 7, end at 11)
8 1 0 1 Yes Success (start at 8, end at 11)
9 1 1 0 Yes Success (start at 9, end at 11)
10 1 1 0 Yes Success (start at 10, end at 13)
11 0 0 1 No Fail
12 1 1 0 Yes Success (start at 12, end at 16)
13 0 0 1 No Fail
14 1 1 0 Yes Success (start at 14, end at 16)
15 1 1 0 Yes Fail
16 1 0 1 Yes Success
17 1 1 1 Yes Success

1.31  Using formal arguments in a property

Some of the common properties that can be re-used can be defined with
formal arguments. Property “arb” takes 4 formal arguments and has a check
defined on these formal arguments. The property is also bound to a specific
clock. SVA allows clock definition as one of the formal arguments to the
property. This way, the property can be bound to similar design block
working with different clocks. Also, the timing delays specified can be
parameterized to make the property definition very generic.

The property checks for a valid start first. On a given positive edge of the
clock, if a falling edge of signal “a” is followed by the falling edge of signal
“b” within 2 to 5 clock cycles, then it is a valid start.. If the antecedent
matches, then the property checks for a falling edge on signal “c” and signal
“d” on the next clock cycle and makes sure that these two signals stay low
for 4 consecutive cycles. One cycle later, signal “c” and signal “d” should be
detected high and one cycle after that signal b should be detected high.
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Assuming that this is a protocol followed by an arbiter that deals with
three different master devices with similar signals, the property can be re-
used easily to check all three master interfaces. Assertions a36_1, a36_2 and
a36_3 define the assertions for each master interface, using the signals
relevant to each interface as the arguments for the property.

property arb (a, b, ¢, d);
@(posedge clk) ($fell(a) ##[2:5] $fell(b)) |->
##1 ($fell(c) && $fell(d)) ##0
(lc&&!d) [*4] ##1 (c&&d) ##1 b;
endproperty

a36_1: assert property(arb(al, bl, cl, dl));
a36_2: assert property(arb(a2, b2, c2, d2));
a36_3: assert property(arb(a3, b3, c3, d3));

Figure 1-38 shows how the assertions defined for each interface react in a
simulation. Assertion a36_1 has one valid start and it succeeds. Assertion
a36_3 has one valid start and it fails.
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Figure 1-38. Waveform for SVA checker using formal arguments in a property
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Success 1 (a36_1) - The check begins when a falling edge arrives on
signal “al” on clock cycle 4. This expects that a falling edge arrives on
signal “b1” within 2 to 5 clock cycles and it does arrive on clock cycle 7. In
the next clock cycle, signal “c1” and “d1” are low as expected. They should
remain low for four cycles. They remain low from clock cycle 8 to 11. At
clock cycle 12, both the signals “c1” and “d1” are high as expected. At clock
cycle 13, signal “b1” is high as expected. Hence, the signal starts at clock
cycle 4 and succeeds at clock cycle 13.

Failure 1 (a36_3) - The check begins when a falling edge arrives on
signal “a3” on clock cycle 15. This expects that a falling edge arrives on
signal “b3” within 2 to 5 clock cycles and it does arrive on clock cycle 18. In
the next clock cycle, signal “c3” and “d3” are expected to be low. Since
signal “d3” 1s not detected to be low, the check fails at clock cycle 19.

1.32  Nested implication

SVA allows having nested implications. These are useful when we have
multiple gating conditions leading to a single final consequent.

Property p_nest checks that a valid start occurs if there is a falling edge
on signal “a,” then one cycle later, signals “b,” “c” and “d” should all be
active low to keep the valid start alive. If the second condition matches, then
it is expected that within 6 to 10 cycles the condition “free” is true. Note that
the consequent condition “true” is evaluated if and only if the signals “b,”
“c” and “d” match as expected.

“define free (a && b && c && d)

property p_nest;
@(posedge clk) $fell(a) |->
##1 (!b && lc && !4) |->
##[6:10] “free;
endproperty

a_nest: assert property(p_nest);

The same property can be re-written without using the nested implication
as follows.

property p nestl;
@(posedge clk) $fell(a) ##1 (1b && lc && !d)
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| -> ##[6:10] “free;
endproperty

a_nestl: assert property(p_nestl);
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Figure 1-39. SVA checker with nested implication

Note that the nested implication property p nest has no “else”
condition and hence, the property can be easily re-written as shown in
p_nestl.

Figure 1-39 shows how the assertion a_nest behaves in a simulation.
Marker 1 shows the first success of the checker. A valid start occurs when a
falling edge is detected on signal “a.” One cycle later, signals “b,” “c” and
“d” are detected low as expected and hence the check is kept alive and the
consequent gets evaluated. The condition “free” is detected true 6 clock
cycles later and hence the check succeeds.

The second marker indicates the next valid start wherein a falling edge of
signal “a” is detected. One cycle later, signals “c” and “d” are detected low
but signal “b” is not low. Hence, the check is not active anymore and the
check succeeds vacuously.

The third marker indicates a valid start wherein a falling edge of signal
“a” is detected. One cycle later, signals “b,” “c” and “d” are detected low as
expected and hence the check is still active and the consequent gets
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evaluated. The condition “free” is not detected true within 6 to 10 clock
cycles after and hence the check fails.

1.33  Using if/else with implication

SVA allows the use of an “if/else” statement on the consequent of an
implied property. Property p_if else checks that a valid start occurs if a
falling edge is detected on signal “start” and one clock cycle later either
signal “a” or signal “b” is detected high. On a successful match of the
antecedent, the consequent can take two possible paths.

1. Ifsignal “a” is detected high, then, signal “c” should repeat twice
intermittently and one cycle later signal “e” should be high.

2. Ifsignal “a” is not high, then, signal “d” should repeat twice
intermittently and one cycle later signal “f” should be high.

Note that there is a priority in the evaluation of the consequent for signal

[T 1}

a.

property p if else;
@ (posedge clk)
($fell (start) ##1 (a]lb)) |->
if (a)
(c[->2] ##1 e)
else
(d[->2]1 ##1 £);
endproperty

a if else: assert property(p_if_else);
To re-write this property without using an “iffelse” construct, three

separate properties are required. A priority based “if/else” on two signals
leads to three different possibilities as shown below.

a b Leaf
1 0 a
1 b

1 1 a
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Note that if both signals “a” and “b” are high, then the “if” block of
signal “a” is executed since it has priority. The three properties are shown
below.

property p_if else leafl;
@(posedge clk)
($fell(start) ##1 a) |->
(c[->2] ##1 e);
endproperty

a_if else leafl:
assert property(p_if else leafl);

property p_if else_leaf2;
@ (posedge clk)
($fell (start) ##1 b) |->
(d[->2] ##1 £);
endproperty

a_if else leaf2:
assert property(p_if else_ leaf2);

property p if else_leaf3;
@ (posedge clk)
($fell (start) ##1 (a &&b)) |-»
{(c[->2] ##1 e);
endproperty

a_if else_leaf3:
assert property(p_if else leaf3);

1.34  Multiple clock definitions in SVA

SVA allows a sequence or a property to have multiple clock definitions
for sampling individual signals or sub-sequences. SVA will automatically
synchronize between the clock domains used in the signals or sub-
sequences. The following code shows a simple example of a sequence using
multiple clocks.

sequence s_multiple clocks;
@ (posedge clkl) a ##1 @(posedge clk2) b;
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endsequence

The sequence s_multiple_clocks checks that, on a given positive edge of
clock “clk1,” signal “a” is high and then on a give positive edge of clock
“clk2,” signal “b” is high. The sequence matches when signal “a” is high on
any given positive edge of clock “clkl.” The ##1 delay construct will move
the evaluation time to the nearest positive clock edge of clock “clk2” and
then will check for signal “b” being high. When multiple clocked signals
are used in a sequence, only ##1 delay construct is allowed. Re-writing the
sequence s_multiple_clocks as follows is not allowed.

sequence s _multiple clocks illegall;
@ (posedge clkl) a ##0 @(posedge clk2) b;
endsequence

sequence s_multiple clocks_illegal2;
@ (posedge clkl) a ##2 @(posedge clk2) b;
endsequence

The use of ##0 will create confusion on which one is the nearest clock
after the match on signal “a.” This will create race conditions; hence, it is
not allowed. The use of ##2 is not allowed since it is not possible to
synchronize to the nearest positive clock edge of clock “clk2.”

Similar techniques can be used to create properties with multiple clocks.
The following code shows an example.

property p multiple clocks;
@(posedge clkl) sl ##1 @(posedge clk2) s2;
endproperty

It is assumed that the sequence sl is not clocked or it has the same clock
definition as “clkl.” It is assumed that the sequence s2 is not clocked or it
has the same clock definition as “clk2.” The property can also have a non-
overlapping implication operator in between the sequence definitions. A
sample code is shown below.

property p multiple clocks_implied;
@ (posedge clkl) sl |=> @(posedge clk2) s82;
endproperty

The use of an overlapping implication operator between two multiple
clocked sequences is not allowed. Since the end of the antecedent and the
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beginning of the consequent overlaps, it can lead to race conditions;
hence, it is illegal. The following code shows the illegal coding style.

property p multiple clocks_implied_illegal;
@(posedge clkl) sl |-> @(posedge clk2) s2;
endproperty

1.35 The “matched” construct

Whenever a sequence is defined with multiple clocks, the construct
“matched” is used to detect the endpoint of the first sequence. Sequence s_a
looks for a rising edge on the signal “a.” Signal “a” is sampled based on the
clock “clkl.” Sequence s_b looks for a rising edge on the signal “b.” Signal
“b” is sampled based on the clock “clk2.” The property p_match verifies that
on a given positive edge of clock “clk2,” if there is a match on sequence s_a,
then one cycle later sequence s_b should be true.

sequence s_a;
@(posedge clkl) $rose(a);
endsequence

sequence s _b;
@ (posedge clk2) $rose(b);
endsequence

property p_match;
@(posedge clk2) s_a.matched |=> s _b;
endproperty

a _match: assert property(p match);

Figure 1-40 shows how the assertion a_match behaves in a simulation.
The property gets a valid start when there is a match on sequence s_a. Note
that we are looking for this match on every positive edge of clock “clk2,”
though sequence s_a is sampled based on clock *“clk1.”

A valid rise on signal “a” happens at clock cycle 3 of “clkl.” This
updates the match value on sequence s_a to true. This value will be held
until the nearest positive clock edge of “clk2.” The nearest positive edge of
“clk2” is at clock cycle 2 of “clk2.” At this point the property becomes
active and one clock cycle of “clk2” later, it is expected that the sequence



80 Chapter 1

s_b matches. Hence, the first success of the property starts at clock cycle 2
of “clk2” and ends at clock cycle 3 of “clk2.”
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Figure 1-40. SVA checker using "matched" construct

Another valid rise on signal “a” happens at clock cycle 11 of “clk2” and
this is sampled by the property at clock cycle 5 of “clk2.” The property
becomes active at this point and it is expected that in clock cycle 6 of “clk2,”
the sequence s_b match. But in this case, a rising edge of signal “b” does not
occur and hence the property fails. The key concept to understand in using
“matched” construct is that, the sampled match value is stored only until
the next nearest clock edge of the other sequence.

1.36  The “expect” construct

SVA supports a construct called “expect,” which is similar to the wait
construct in Verilog, with the key difference being that the expect statement
waits on the successful evaluation of a property. It acts as a blocking
statement for the code that follows the expect construct. The syntax of the
expect construct is very similar to the assert construct. The expect statement
is allowed to have an action block upon the success or failure of the
property. A sample code using the expect construct is shown below.

initial

begin
@ (posedge clk);
#2ns cpu ready = 1'bl;
expect (@ (posedge clk) ##[1:16]
memory ready == 1'bl)
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$display ("Hand shake succesgssfull\n");
else

begin

$display ("Hand shake failed: exiting\n")

$finish();

end

for(i=0; i<64; i++)
begin

send_packet () ;

$display ("PACKET %0d sent\n", 1i);
end

end

Note that after the signal “cpu_ready” is asserted, the expect statement
waits for anywhere between 1 to 16 cycles for the signal “memory_ready” to
be asserted. If the signal “memory ready” is asserted as expected, a success
message is displayed and the “for” loop code starts executing. If the signal
“memory_ready” is not asserted as expected, then a failure message is
displayed and the simulation exits.

1.37  SVA using local variables

A variable can be declared locally within a sequence or a property and an
assignment can be made on that variable. The variable is placed next to a
sub-sequence separated by a comma. If the sub-sequence matches, then the
variable assignment is executed. Every time the sequence is attempted, a
new copy of the variable is created.

property p local varl;
int lvarl;
@ (posedge clk)

($rose(enablel), lvarl = a) |->
##4 (aa == (lvarl*lvarl*lvarl));
endproperty

a_local_varl: assert property(p_local_varl);

The property p local varl looks for a rising edge on the signal
“enablel.” Upon a match on this, the local variable “Ivarl” stores the value



82 Chapter 1

of the design vector “a.” After 4 cycles, it is checked that the value of the
design output vector “aa” is equal to the cubed value of the local variable.
The consequent of the property waits for the design to satisfy the latency (4
clock cycles) and then compares the original design output with the locally
calculated value. Figure 1-41 shows how the check reacts in a simulation.
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Figure 1-41. Waveform for SVA with local variables

The marker 1s shows the point where the rising edge of the signal
“enablel” is sampled. At this point, vector “a” has a value of 5 and this is
stored in the local variable “Ivarl.” The marker e shows the point where the
output is sampled. This is 4 clock cycles after the input value was stored. At
marker le, since the output value (125) equals that of the cube of the local
variable “lvarl,” the assertion succeeds. Similarly, marker 2s shows when
the next input data is stored and marker 2e shows when the output is
sampled and compared with the cubed value of local variable “lvarl.”

The local variables can be stored and manipulated inside SVA.

property p_ lvar_ accum;

int lvar;

@ (posedge clk) $rose(start) |=>

(enablel ##2 enable2, lvar = lvar +aa) [*4]
##1 (stop && (aout == lvar));

endproperty

a_lvar_accum : assert property(p lvar_accum);

The property p_lvar_accum checks for the following.
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1.

A valid start occurs if a rising edge is detected on the signal “start”
on any given positive edge of the clock.

One cycle later, a specific pattern or a sub-sequence is looked for.
The signal “enablel” should be detected high and 2 cycles later
signal “enable2” should be detected high. This sub-sequence
should repeat itself 4 times continuously.

For every repeat of the sub-sequence, the value of the vector “aa” is
accumulated locally. At the end of the repetition, the local variable
holds a value accumulated from the vector “aa” four times.

One cycle after the repetition, it is expected that the signal “stop” is
detected high and the value held by the local variable is equal to the
value held by the output vector “aout.”

Figure 1-42 shows how the check reacts in a simulation.
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Figure 1-42. SVA with local variable assignment

The marker 1s shows a valid start of the check wherein the signal “start”
is detected high. Marker le shows the end of the check. The repetitions of
the enable signals complete successfully and one cycle later the signal “stop”
is detected high as expected. The local variable holds the same value as that
of the output vector “aout” and hence the check succeeds at the marker le.
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1.38  SVA calling subroutine on'a sequence match

SVA can also call a subroutine on every successful match of a sequence.
The local variables defined in the same sequence can be passed as arguments
to these subroutine calls. For each match on the sequence, the subroutine
calls are executed in the same order as they are listed in the sequence
definition.

sequence s_displayl;

@ (posedge clk)

($rose(a), $display("Signal a arrived at %t\n",
$time)) ;

endsequence

sequence s_display2;

@ (posedge clk)

($rose(b), $display("Signal b arrived at %t\n",
$time));

endsequence

property p_display window;

@ (posedge clk)

s _displayl |-> ##[2:5] s_display2;
endproperty

a_display window :
assert property(p_display w1ndow),

Sequence s_displayl looks for a rising edge on the signal “a.” Upon a
match on this event, it executes the display statement. Sequence s_display2
does a similar action on signal “b.” The property p_display_window checks
that if sequence s_displayl occurs then the sequence s_display2 should
occur anywhere between 2 and 5 clock cycles. By using display statements,
the user can get information on exactly how many cycles the consequent
sequence completed. Figure 1-43 shows how the check reacts in a
simulation.

The marker 1s shows a valid start of the checker since a rising edge of
the signal “a” is detected. At this point, SVA executes the display statement
relevant to this sequence (s_displayl). The marker le shows the point when
a rising edge arrives on signal “b.” Since this arrives after 3 cycles, the
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checker succeeds. At this point, the display statement relevant to this
sequence (s_display2) is executed.

The marker 2s shows a valid start of the checker since a rising edge of
the signal “a” is detected. At this point, SVA executes the display statement
relevant to this sequence (s_display1l). The marker 2e shows the ending point
of the checker. A valid rising edge never arrived on signal “b” within 2 and 5
clock cycles and hence, the checker failed. Since the second sequence never
matched, the relevant display statement is not executed. A default error is
issued by SVA.

clk ooy i
a ] |
» [ [
a_display_windew ] ' ' i i I l | i i !

1s le b 2

Figure 1-43. SVA using subroutines on sequence match

A sample simulation log is shown below.
Signal a arrived at 125
Signal b arrived at 275

"sub.v", 45: sub.a_display window:
started at 125s succeeded at 275s

Signal a arrived at 425
"sub.v", 45: sub.a_display window:

started at 425s failed at 675s
Offending 'S$rose(b)’
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1.39  Connecting SVA to the design
SVA checkers can be connected to the design by two different methods.

1. Embed or in-line the checkers in the module definition.
2.  Bind the checkers to a module, an instance of a module or
multiple instances of a module.

Some engineers don’t like adding any verification code within the
design. In this case, binding the SVA checkers externally is the choice.
SVA code can be embedded anywhere in a module definition. The
following example shows SVA being in-lined within the module.

module inline(clk, a, b, d1, d2, d);
input logic clk, a, b;

input logic [7:0] di1, d2;

output logic [7:0] d;

always@ (posedge clk)

begin
if (a)
d <= dl;
if (b)
d <= d2;
end

property p mutex;
@ (posedge clk) not (a && b);
endproperty

a_mutex: assert property(p mutex);

endmodule

If the user decides to keep the SVA checkers separate from the design,
then he has to create a separate checker module. By defining a separate
checker module, the re-usability of the checker increases. The following

code shows a checker module.

module mutex chk(a, b, clk);
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input logic a, b, clk;

property p mutex;

@(posedge clk) not (a && b);

endproperty

a_mutex: assert property(p mutex);

endmodule

Note that when a checker module is defined, it is an independent entity.
The checker is written for a generic set of signals. The checker can be bound
to any module or instance in the design. The syntax for binding is as follows.

bind <module_name or instance name>

<checker name> <checker instance name>

<design signals>;

For the example checker shown above, the binding can be done as
follows.

bind inline mutex_chk i2 (a, b, clk);

When the binding is done, the actual design signal names are used.
Let’s say we have a top-level module as follows.

module top (..);

inline ul (clk, a, b, inl, in2, outl);
inline u2 (clk, ¢, 4, in3, in4, out2):

endmodule

The checker mutex_chk can be bound to the two instances of the module
“inline” in the top-level module as follows.

bind top.ul mutex chk il(a, b, clk);
bind top.u2 mutex_chk i2{(c, d, clk);

The design signals that are bound can contain cross module reference
to any signal within the scope of the bound instance.
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1.40  SVA for functional coverage

Functional coverage is a metric for measuring verification status against
design specification. It is classified into two categories:

a. Protocol coverage.
b. Test plan coverage.

Assertions can be used to get exhaustive information on protocol
coverage. SVA provides a keyword “cover” to specify this. The basic syntax
of a cover statement is as follows.

<cover_name> : cover property(property name)

“cover_name” is a name provided by the user to identify the coverage
statement and “property name” is the name of the property on which the
user wants to get coverage information. For example, the checker
“mutex_chk” defined in Section 1.39 can be covered as follows.

c_mutex: cover property(p_mutex);

The results of the cover statement will provide the following
information:

1. Number of times the property was attempted.

2. Number of times the property succeeded.

3. Number of times the property failed.

4. Number of times the property succeeded vacuously.

A sample coverage log from a simulation for the checker “mutex_chk” is
shown below.

c¢_mutex, 12 attempts, 12 match, 0 vacuous match
Just like the assert statement, the cover statement can also have an

action block. Upon a successful coverage match, a function or a task can
be called or a local variable update can be performed.
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SVA SIMULATION METHODOLOGY

In Chapter 1, SVA language constructs were discussed in detail with
examples. All examples were illustrated as relationships between two or
more generic signals without any design details. In Chapter 2, a dummy
system is used to present a real situation. The process of protocol extraction
and assertion development will be discussed step by step. Various simulation
methodologies that can significantly increase the productivity of assertion
based verification will be discussed. Functional coverage and reactive
testbench development will be discussed in detail.

2.1 A sample system under verification

The sample system under consideration is shown in Figure 2-1. The
system has 3 master devices and 2 target devices. A link is established
between the master and the target devices by the mediator. At a given time,
only one master can conduct a transaction and with only one target device.
Any master device can conduct a transaction with any target device. The
transaction can be a read or a write. The mediator contains arbiter logic that
decides which master will be allowed to conduct a transaction. The arbiter
uses a simple round robin technique. The mediator also contains glue logic
that actually decodes the master information for the target device and vice
versa. The glue logic helps establish the link between a specific master
device and target device to conduct the transaction successfully.

2.1.1 The Master device

The block diagram of the master device along with input and output ports
is shown in Figure 2-2. The master device can perform a read and a write
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transaction. It can support 2 target devices in a single system. When the
master device gets the instruction “ask_for it,” it is ready to perform a
transaction. It sends an active low pulse on the “req” signal and waits for a
“gnt.” The “gnt” signal is an active low signal. If the “gnt” signal does not
come within 2 to 5 clock cycles, then the master will retry to get access at a
later time. If the “gnt” is acquired, then the master will immediately assert
the “frame” and “irdy” signals acknowledging the arrival of the “gnt” signal
(“frame” and “irdy” are active low signals). In the same clock cycle it also
selects the target device it will have the transaction with. The master uses the
output signal “rsel” to indicate this. If signal “rsel” is set to 1, then the
master will to have a transaction with target device 1. If the signal “rsel” is
set to 0, then the master will have a transaction with target device 0.

Masterl K——

<—— Target1

Master2 ——] Mediator

<——> TargetO

Master3 [K——

Figure 2-1. A sample system

Once the signal “rsel” is updated, the target device is expected to identify
itself to the master. The target device uses the signal “trdy” to acknowledge
its readiness. If the target does not acknowledge itself within 3 clock cycles
from the point when “rsel” is assigned, it is an error condition. If the target
does acknowledge itself, then the master decides whether to read or write.
The master sends the data and the instruction whether to read or write
through the “datac” bus.
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Figure 2-2. Sample master device
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Figure 2-3. Write transaction of a master device

The most significant bit is the instruction bit (shown as signal “rw” in
waveforms). If it is 1, the master will write and if it is a O then the master
will read. If it is a write transaction, the least significant 8 bits consist of the
data that needs to be written to the target device. If it is a read transaction,
then the data read from the target device appears on the “datao” input bus.
Each transaction of the master will last exactly 8 clock cycles. In other
words, a master can either read 8 bytes in a transaction or write 8 bytes in a
transaction. There is no specific address generation scheme. The master will
write to the most updated write pointer address existing within the target
device. Similarly, the master will read from the most updated read pointer
address within the target device. The sample waveform for a master write
transaction is shown in Figure 2-3. The sample waveform for a master read
transaction is shown in Figure 2-4.
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Figure 2-4. Sample read transaction of a master device

Once the read or write transaction is complete, the master indicates
completion by de-asserting the signals “frame” and “irdy” in the next clock
cycle. It also sets the “rsel” signal to tri-state. The arbiter acknowledges this
and de-asserts the “gnt” signal in the next clock cycle. Once the arbiter
removes the “gnt” signal, the target device acknowledges completion of the
transaction by de-asserting the “trdy” signal.

2.1.2 The Mediator

The block diagram of the mediator along with input and output ports is
shown in Figure 2-5. The mediator performs two important tasks:

1. Provide arbitration logic that decides which master will get access
to conduct a transaction with a target device.

2. Establish the link between a specific master device and a target
device. At a given time any number of masters can ask for access
by asserting their respective “req” signal.

The arbiter uses a round robin algorithm and decides which master will
get access. When the arbiter makes a decision, it will assert the “gnt” signal
of the respective master device. The arbiter can take anywhere between 2 to
5 clock cycles to make a decision. The internal logic for the arbiter is
described with a simple zero one-hot state machine.
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Figure 2-5. Sample mediator device

After the master selects the target it will have a transaction with, the
mediator will provide that information to the specific target device. Since
three masters are capable of having a transaction with any of the target
devices, the mediator has to monitor the “rsel” signals from all three masters.
At any given time, either all the three “rsel” signals are tri-stated or
definitely two of them are tri-stated. If all three “rsel” signals are tri-stated,
then there is no transaction request at that point. If there is a transaction, then
one of the “rsel” signals will have a value of 0 or 1, depending on which
target device will be used. If signal “rsel” is 1 then, the MSB of signal “sel”
is set high indicating that target device 1 is selected. If signal “rsel” is O then,
the LSB of signal “sel” is set high indicating that target device 0 is selected.
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Figure 2-6. Waveform for mediator functionality

The mediator also selects the correct data signals for both write and read
transactions. If it is a write transaction, then the mediator monitors which
master’s “rsel” signal is active and assigns the data value relevant to that
master to the selected target device input. For example, if master 1 is asking
for a write transaction with target device zero, then the signal “rsell” will be
set to low and the bus “datal” will be assigned to the mediator output bus
“data.” This output is fed to the input of the selected target device. The
mediator also assigns the correct output data from the target device back to
the master device in a read transaction. For example, if target 1 is involved
in the read transaction, then the bus “dataoutl” will be assigned to the bus
“datao.” The sample waveform for the mediator is shown in Figure 2-6.

2.1.3 The Target device
The block diagram of the target device along with input and output ports

is shown in Figure 2-7. The target device has a first-in-first-out type memory
that can store up to 64 bytes of data.
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Figure 2-7. Sample target device
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Figure 2-8. Target write transaction

The target device waits for the signal “sel bit” to be asserted. Once
signal “sel bit” is asserted, the target has to acknowledge by asserting the
signal “trdy” after 2 clock cycles. After asserting signal “trdy” the target
device waits for a valid data and a valid write signal if it is a write
transaction. Once a valid write signal is detected, the incoming data is stored
in the target device in locations starting from the most updated value of the
write pointer (wi) register. If it is a read transaction, then the target device
reads out 8 data points from its memory using the current read pointer
location (ri) as the starting address.

The type of transaction is indicated by the MSB of the bus “datain.” In a
read transaction, the data read appears on the bus vector “dataout.” When the
transaction is complete, the signal “sel_bit” is de-asserted and one clock
cycle after that the signal “trdy” is de-asserted. The sample waveform for a
target write transaction is shown in Figure 2-8. The sample waveform for a
target read transaction is shown in Figure 2-9.
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Figure 2-9. Target read transaction
2.2 Block level verification

As the individual design blocks get ready they should be tested
thoroughly. Exhaustive verification of the blocks will uncover the comer
case bugs ahead of time. Finding these bugs before integrating the system is
a must. Finding these bugs at the system level will be very difficult. Also,
system level failures provide a greater challenge for identifying and
debugging comer case bugs. SVA can be used efficiently to test the
individual blocks effectively. At the block level, the simulations are smaller
and hence the bugs can be traced easily and fixed promptly. There are 4
individual design blocks in the sample system that need to be verified:

1. Master
2. Target
3. Arbiter
4. Glue

There are also 2 block level interfaces that need to be tested thoroughly:

1. Master and Mediator
2. Target and Mediator

221 SVA in design blocks

The following tips are recommended for doing block level verification
with SVA:
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o All SVA checks written for a block level design should be in-
lined. Block level assertions often involve accessing internal
registers of a design and hence, in-lining the checks within the
design module is more efficient.

e The inclusion of SVA checks written at the block level should be
controlled by a parameter defined within the design module. This
gives the freedom to turn the checks on and off on a per
simulation basis.

¢ The severity level of the SVA checks written at the block level
should be controlled by a parameter defined within the design
module. The default severity in SVA is to print an error message
and continue simulating.

e Every block level SVA check written should be asserted and
covered. It is a must that all the block level checks must have at
least one real success.

2.2.2 Arbiter verification

Based on the protocol description of the arbiter from Section 2.1.2, the
following SVA checks can be extracted. Some of the common expressions
used repeatedly in the arbiter checks can be defined with “assign” statements
as shown below:

assign frame = framel && frame2 && frame3;
assign irdy = irdyl && irdy2 && irdy3;
assign gnt = igntl || lgnt2 || !gnt3;
assign req = !reql || !req2 || !reg3;

The “frame” and “irdy” signals are all active low signals. Each master
has a unique “frame” and “irdy” signal and these are inputs to the arbiter
module. If a master is active, it sets both the “frame” and “irdy” low. Hence,
by AND’ing the “frame” signals, we know that the bus is active if the
AND’ed value is low. Similarly, by AND’ing the “irdy” signals, we know
that the bus is active if the AND’ed value is low. If the AND’ed values of
“frame” and “irdy” signals are high, then none of the masters are active.

Each master has a unique “req” signal that requests the bus and the
arbiter provides a unique “gnt” signal. By OR’ing all the “req” signals we
know that even if one master has a valid request, the arbiter considers the
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request. Similarly, by OR’ing the “gnt” signals, we know that one master has
acquired the grant. Creating such intermediate expressions make the SVA
checkers more readable.

Arb_chkl: On any given clock edge, the internal state of the arbiter
should behave as a zero one-hot state machine.

property p_arb_onehot0;
@ (posedge clk) $onehotO(state);
endproperty

Arb_chk2: Upon a valid request by a master, the arbiter should provide a
grant within 2 to 5 clock cycles.

property p_req gnt;
@(posedge clk) $rose (req) |->
##[2:5] $rose (gnt);
endproperty

Arb_chk3: Once the grant is awarded, the master should acknowledge
acceptance in the same clock cycle by asserting the “frame” and “irdy”
signals.

property p _gnt frame;
@(posedge clk) $rose (gnt) |->
$fell (frame && irdy);
endproperty

Arb_chk4: Once the master completes the transaction it de-asserts the
“frame” and “irdy” signals, followed by that, the arbiter should de-assert the
“gnt” signal on the next clock cycle.

property p frame gnt;
@ (posedge clk) $rose(frame && irdy)
|=> $fell (gnt);
Endproperty

223 SVA Checks for arbiter in simulation
The four checks shown in Section 2.2.2 should be in-lined within the

arbiter module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.
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module arbiter(....);
// port declarations

parameter arb_sva = 1'bl;
parameter arb_sva severity = 1'bl;

// Arbiter design description
// SVA property description

// SVA Checks

always@ (posedge clk)
begin

if (arb_sva)

begin

a_arb_onehot0:
assert property(p_arb onehot0)
else if (arb_sva_severity) $fatal;

a_req_gnt:
assert property(p_reqg_gnt)
else if(arb_sva_severity) $fatal;

a_gnt_ frame
assert property(p gnt frame)
else if(arb_sva severity) $fatal;

a_frame gnt:
assert property(p frame gnt)
else if (arb_sva severity) $fatal;

c_arb onehot0: cover property(p_arb_onehot0);
c_reg_gnt: cover property(p_req gnt);
c_gnt_frame: cover property(p_gnt frame);
c¢_frame_gnt: cover property{p_frame gnt);

end
end

endmodule
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Figure 2-10. Arbiter checks in simulation

The parameter “arb_sva” will have to be set to 1 for the checks to be
included in a simulation. The parameter “arb_sva_severity” controls the
action to be taken during simulation. In this case, if the parameter is set to 1,
then the severity is set to $fatal. This means that upon a failure of any of
these checks, the simulation will exit. By setting the parameter to 0, the
checks will use the default condition, which is to print an error message on a
failure and continue simulating. A waveform from a sample simulation is
shown in Figure 2-10.

224 Master verification

Based on the protocol description of the master from Section 2.1.1, the
following SV A checks can be extracted. Note that each master has only one
“req,” “gnt,” “frame” and “irdy” signals. The mention of these signals in the
master checkers does not represent the expressions defined in the arbiter

checkers. They are just individual signals present in each master device.

Master_chkl: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal “r_sel” is high, then on the
same clock cycle, the master should assert the signals “frame” and “irdy.”
Three cycles later the target device one should acknowledge its selection by
asserting the signal “trdy.”

property p master_startl;
@ (posedge clk)
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($fell (req) ##[2:5] ($fell(gnt) && r_sel)) |->
(Yframe && lirdy) ##3 ltrdyI[1]:;
endproperty

Master_chk2: Upon a valid request from a master, the grant shall come
within 2 to 5 clock cycles. If so and if the signal “r_sel” is low, then on the
same clock cycle, the master should assert the signals “frame” and “irdy.”
Three cycles later the target device zero should acknowledge its selection by
asserting the signal “trdy.”

property p master_ start2;
@ (posedge clk)
($fell (req) ##[2:5] ($fell(gnt) && !r sel))|->
. (tframe && !irdy) ##3 !ltxrdyl[0];
endproperty

Master_chk3: Once the target acknowledges its selection, the master
should complete its transaction within 10 clock cycles. It should indicate the
transaction completion by de-asserting the signals “frame” and “irdy.” One
cycle later the signal “gnt” should be de-asserted.

property p master_stopl;

@{posedge clk)
$fell (trdyl[1]l) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

property p master stop2;

@ (posedge clk)
$fell (trdy[0]) |-> ##10 (frame && irdy) ##1 gnt;
endproperty

Note that two separate properties are written to check the transaction
completion, one for each target device.

Master_chk4: If the master is in a write transaction, then the bus data
(data_c) should not be tri-stated and should have valid data.

property p master datal;
@ (posedge clk)
($fell (trdylil) ##2 rw) |->
($isunknown (data) == 0) [*7];
endproperty
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property p master data2;
@ (posedge clk)
($fell (trdy[0]) ##2 rw) |->
($isunknown (data) == 0) [*7];
endproperty

e Note that two separate properties are written to check the validity
of data during write transaction, one for each target device.

e Note that if the signal “rw” is high, then the master is conducting
a write transaction.

Master_chkS: If the master is in a read transaction, then the bus data
(data_o) should not be tri-stated and should have valid data.

property p master dataol;
@(posedge clk)

($fell (trdy[1l]) ##3 lrw) |=>
($isunknown (data_o) == 0) [*7];
endproperty
property p _master datao2;
@(posedge clk)
($fell (trdy[0]l) ##3 !lrw) |=>
($isunknown (data_o) == 0) [*7];

endproperty
e Note that two separate properties are written to check the validity
of data during read transaction, one for each target device.
¢ Note that if the signal “rw” is low, then the master is conducting
a read transaction.
2.2.5 SVA Checks for the master in simulation
The five checks shown in Section 2.2.4 should be in-lined within the
master module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.
module master(....);

// port declarations

parameter master_sva = 1'bl;
parameter master sva_severity = 1'bl;
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// Master design description
// SVA property description
// SVA Checks
always@(posedge clk)

begin

if (master sva)

begin

a_master startl:
assert property(p master_ startl)
else if (master_sva_severity) $fatal;

a_master_ start2:
assert property(p master_start2)
else if (master_sva_severity) $fatal;

a_master stopl:
assert property(p_master_ stopl)
else if (master sva_severity) $fatal;

a_master stop2:
assert property(p_master stop2)
else if (master_sva_severity) $fatal;

a_master_datal:
assert property(p_master datal)
else if (master_sva_severity) $fatal;

a_master_data2:
assert property(p _master data2)
else if (master_sva severity) $fatal;

a_master dataol:
assert property(p_master dataol)
else if (master sva_ severity) $fatal;
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a_master_.

datao2:

assert property(p master_ datao2)

else if (master sva severity)

sfatal;

Chapter 2

c_master_startl: cover property(p master_startl);
¢_master_start2: cover property(p master start2);

c_master_
c_master_
c_master_
c_master_|

stopl: cover property(p master stopl);
stop2: cover property(p master_ stop2);
datal: cover property(p_master_datal);
data2: cover property(p master_data2);

¢_master_dataol: cover property(p master_dataol);
¢_master datao2: cover property(p master datao2);

end

end

endmodule

A waveform from a sample simulation of these master checks is shown

in Figure 2-11.
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Figure 2-11. Master checks in simulation for target 1
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2.2.6 Glue verification

Based on the protocol description of the glue logic from Section 2.1.2,
the following SVA checks can be extracted.

Glue_chkl: If any one of the master select signals “sell,” “sel2” or
“sel3” is high, then target device one should be selected.

property p sel 1;
@ (posedge clk)
(rsell || rsel2 || rsel3) |=> sel == 2'b10;
endproperty

Glue_chk2: If any one of the master select signals “sell,” “sel2” or
“sel3” is low, then target device zero should be selected.

property p sel 0;
@(posedge clk)
(trsell || trsel2 || 1rsel3) |=> sel == 2'b01;
endproperty

Glue_chk3: During a write transaction, if the signal “rsell” is not tri-
stated, then the data from master device one should be written to the
respective target device.

property p_rsell write;
@ (posedge clk)

((rsell || trsell) ##3 ($fell (txdyl(1l) ||
$fell (trdy[0])) ##3 datall8]) |->

(data == $past(datal)) [*7];
endproperty

* Note that we determine the nature of the transaction (read/write)
by using the most significant bit of the bus “data.”

e If the MSB of the bus “data” is high, then it is a write
transaction.
If the MSB of the bus “data” is low, then it is a read transaction.

¢  Within the master device, the nature of the transaction is
determined by the signal “rw.” This signal is a copy of the MSB
of the bus “data.” The signal “rw” is local to the master device.
The external interface should infer the nature of the transaction
by using the MSB of the bus “data.”
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Glue_chk4: During a write transaction, if the signal “rsel2” is not tri-
stated, then the data from master device two should be written to the

respective target device.

property p rsel2 write;
@ (posedge clk)
((rsel2 || trsel2) ##3 ($fell (trdyl1l) ||
$fell (trdy([0l)) ##3 data2(8]) |->
(data == $past(data2)) [*7];

endproperty

Glue_chk5: During a write transaction, if the signal “rsel3” is not tri-
stated, then the data from master device three should be written to the

respective target device.

property p rsel3 write;

@ (posedge clk)
1rsel3) ##3 ($fell (txdyl[1l) ||

((rsel3 ||

$fell (trdy[0])) ##3 data3[8]) |->
(data == $past(data3d)) [*7];

Endproperty

Glue_chk6: During a read transaction, if target device one is selected,
then data read from target one (dataoutl) should be fed back to the

respective master.

property p readl;
@(posedge clk)
($£ell (trdyl[1l]) ##4 tdataf8l) |->
(dataoutl == datao) [*7];
endproperty

Glue_chk7: During a read transaction, if target device zero is selected,
then data read from target zero (dataout2) should be fed back to the

respective master.
property p read0;
@ (posedge clk)
($£ell (trdy[0]) ##4 !datals]l) |->
(dataout2 == datao) [*7];

endproperty
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2.2.7 SVA Checks for the glue logic in simulation

The seven checks shown in Section 2.2.6 should be in-lined within the
glue module. There should be a provision to assert these properties on a need
basis. The following code shows how this can be achieved.

module glue(....);
// port declarations

parameter glue sva = 1'bl;
parameter glue_ sva_severity = 1'bl;

// glue design description
// glue SVA property description

// SVA Checks

always@(posedge clk)
begin

if (glue_sva)

begin

a_sel 1:
assert property(p sel 1)
else if(glue_sva_severity) $fatal;

a_sel 0:
assert property(p_sel 0)
else if(glue_sva_severity) $fatal;

a_rsell write:
assert property(p rsell write)
else if(glue_sva_severity) $fatal;

a_rsel2 write:
assert property(p_rsel2 write)
else if(glue_sva_severity) $fatal;

a_rsel3 write:
assert property(p_rsel3_write)
else if(glue_sva severity) $fatal;
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a_readl:
assert property(p readl)
else if(glue_sva_severity) $fatal;

a_read0:
assert property(p readO)
else if(glue_sva_severity) $fatal;

c_sel 1: cover property(p_sel_ 1):
c_sel 0: cover property(p sel 0};
c_rsell write: cover property(p_rsell write);
c_rsel2 write: cover property(p_rsel2 write);
c_rsel3 write: cover property(p_rsel3 write);
c_readl: cover property(p_readl):
c_read0: cover property(p_reado0):

end
end

endmodule

A waveform from a sample simulation of the glue checks is shown in
Figure 2-12.
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Figure 2-12. Glue checks in simulation

2.2.8 Target verification

Based on the protocol description of the target device from Section 2.1.3,
the following SV A checks can be extracted.

Target_chkl: If a target is selected, then it should assert the signal
“trdy” after 2 clock cycles.

property p sel trdy start;
@(posedge clk) $rose (sel_bit) |->
##1 trdy ##1 ltrdy:
endproperty

Target_chk2: At the end of a transaction, the “sel_bit” signal is de-
asserted. One clock cycle after that, the signal “trdy” should be de-asserted.
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property p_sel trdy stop;
@(posedge clk) $fell (sel_bit) |=> trdy;
endproperty

Target_chk3: In a write transaction, the write pointers should be
incremented by one after each clock cycle to complete a valid “write” to a
unique address every time.

property p_write;
@(posedge clk)
(datain[8] && sel_bit && (wi 1= 0)) |->
(wi == ($past(wi) + 1));
endproperty

e Note that the address pointer will roll over from 63 to 0. Hence,
this check cannot be applied if on a given clock edge the write
pointer is at 0.

e A different check can be written to verify that the pointer always
rolls over correctly from 63 to 0.

Target chk4: In a read transaction, the read pointers should be
incremented by one after each clock cycle to complete a valid “read” from a
unique address every time.

property p read;
@(posedge clk)
(1datain[8] && sel_bit && (ri != 63)) |=>
(ri == ($past(ri) + 1));
endproperty

¢ Note that in the case of read pointer, when the pointer is at 63
this check cannot be applied.

e The read operation has a latency of one clock cycle and hence we
use the Non-overlapping implication operator.

e Since a non-overlapping operator is used, the check moves
forward to one cycle and compares the address in the previous
cycle.

¢ For example, on a given clock edge, if the antecedent of the
implication is true, the check moves to the next clock cycle. If
the pointer is at 63, then the check moves to pointer 0 and
compares 63 and 0 for an increment of one. This is incorrect.
Hence, the check should not be performed if the value of the read
pointer is 63 on a given clock edge.



2. SVA SIMULATION METHODOLOGY 111

e A separate check can be written to make sure that the pointer
rolls over from 63 to 0 accurately.

Target_chkS5: During a valid read or write transaction, the data read
from or written to the target should be valid.

property p_target_datain;
@ (posedge clk)

($fell (trdy) ##3 (datain([8])) |->
not ($isunknown (datain)) [*7];
endproperty

property p_target_ dataout;
@(posedge clk)

($fell (trdy) ##3 (ldatainl([8])) |=>
not ($isunknown (dataout)) [*7];
endproperty

2.2.9 SVA Checks for the Target in simulation

The five checks shown in Section 2.2.8 should be in-lined within the
target module. There should be a provision to assert these properties on a
need basis. The following code shows how this can be achieved.

module target (....);
// port declarations

parameter target_sva = 1'bl;
parameter target_ sva_severity = 1'bl;

// target design description
// target SVA property description
// SVA Checks

always@ (posedge clk)
begin

if (target_sva)
begin

a_sel trdy start:
assert property(p_sel trdy start)
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else if(target sva severity) $fatal;
a_sel_trdy stop:

assert property(p_sel trdy stop)

else if(target sva severity) $fatal;

a_write:
assert property(p write)
else if (target_sva severity) $fatal;

a_read:
assert property(p read)
else if (target sva_severity) $fatal;

a_target_datain: ‘
assert property(p target_datain)
else if(target_sva_severity) $fatal;

a_target dataout:
assert property(p target dataout)
else if(target_sva_severity) $fatal;

c_sel trdy_ start:

cover property(p_sel trdy start):
¢_sel trdy stop: cover property(p_sel trdy stop):
c_write: cover property(p_write);
¢_read: cover property(p read);
c_target_datain: cover property(p_target datain);
¢_target dataout:

cover property (p_target dataout);

end
end
endmodule

A waveform from a sample simulation of the target checks is shown in
Figure 2-13.
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Figure 2-13. Target checks in simulation

2.3 System level verification

There are 3 masters and 2 targets in the system along with an instance of
the mediator. The top-level connection of the system is shown below.

Module top(.., .., ) ;
// port declarations

master ul {(ask[2], «clk, reql, gntl, framel,
irdyl, trdy, datal, rsell, datao):;

master u2 (ask([1], clk, reqg2, gnt2, frame2,
irdy2, trdy, data2, rsel2, datao):;

master u3 (ask[0], clk, zreg3, gnt3, frame3,
irdy3, trdy, data3, rsel3, datao);

arbiter u4 (clk, reset, frame, irdy, reql, req2,
reqg3, gntl, gnt2, gnt3);

glue ub (clk, framel, irdyl, frame2, irdy2,
frame3, irdy3, trdy, rsell, rsel2, rsel3, datal,
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data2, datasi, sel, data, dataoutl, dataout?2,
datao) ;

target u6 (clk, reset, sellll, txdyIll], data,
dataoutl) ;

target u7 (clk, reset, sell0], trdyI[0], data,
dataout2) ;

endmodule

The following tips are recommended for doing system level verification

with SVA:

231

Since the internal functionality of the individual blocks was
verified thoroughly, the block level assertions don’t have to be
included during the system level verification by default. The
main motive behind this is performance.

If performance is not a bottleneck, the block level assertions shall
be included in the system level verification by default. The
system interfaces provide a more realistic and unexpected set of
input conditions and block level assertions must be able to react
to them correctly.

The verification environment should provide the facility to turn
on block level assertions if there are any failures. For example,
in our sample system, if a failure occurs during a transaction
between master 1 and target 0, then the system level simulation
should be re-run by including the block level SVA checks
written for master 1 and target 0.

At the system level, a new set of assertions should be written that
verifies the connectivity of the system. More focus should be on

the interface rules rather than the internal block details.

SVA Checks for system level verification

The following set of checks can be written for the system level
verification based on the connectivity and protocol of the system.
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Ss_shkl: Only one “trdy” signal can be asserted at any given point. In
other words, only one target device can participate in a transaction at any
given time.

property p_target;
@(posedge clk) not (!trdy[0] && !trdylIll}l);

endproperty

Ss_chk2: Only one set of “frame” and “irdy” signals can be asserted at
any given clock cycle. In other words, only one master device can participate
in a transaction at any give time.

property p_ frame;
@(posedge clk)
$countones ({framel, frame2, frame3}) >1;

endproperty

property p_irdy:;
@ (posedge clk)
$countones ({irdyl, irdy2, irdy3}) »>1;
endproperty

Ss_chk3: Only one “gnt” signal shall be asserted at any given time. In
other words, the arbiter can provide access for only one master at a time to
pursue a transaction.

property p_gnt;
@ (posedge clk)
$countones ({gntl, gnt2, gnt3}) > 1;

endproperty

Ss_chk4: Only one “rw” signal shall be active at any given clock cycle,
the other “rw” signals should be tri-stated (“rw” signal is the MSB of the

masters data output bus).

property p_rw;
@ (posedge clk)

($isunknown (rwl) && $isunknown (rw2) &&
$isunknown (rw3) ) ||

({(rwl==1'bl || rwl==1'b0) && $isunknown (rw2)
&& $isunknown (rw3)) ||

)
((rw2==1'b1 || rw2==1'b0) && $isunknown (rwl)

r
&& $isunknown (rw3)) ||
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((rw3==1'bl || rw3==1'b0) && $isunknown (rw2)
&& S$Sisunknown (rw2));
endproperty

Ss_chk5: Only one “rsel” signal shall be active at any given clock cycle,
the other “rsel” signals should be tri-stated.

property p_rsel;
@(posedge clk)

$isunknown(rsell) && S$isunknown(rsel?2) &&
$isunknown (rsel3) ) ||

((rsell==1'bl || rsell==1'b0) && $isunknown
(rsel2) && S$isunknown(rsel3)) ||

((rsel2==1'bl || 1rsel2==1'b0) && $isunknown
(rsell) && $isunknown(rsel3d)) ||

({(rsel3==1'bl || 1rsel3==1'b0) && $isunknown
({rsel2) && $isunknown (rsell));
endproperty

Ss_chk6: Upon a valid request by a master, a valid “gnt” should arrive
within 2 to 5 clock cycles.

assign req

treql || !req2 || treq3:
assign gnt | | |

Igntl fgnt2 Ignt3;

property p_req gnt_w;
@(posedge clk)

$rose (req) |-> ##[2:5] $rose(gnt);
endproperty

Ss_chk7: At any given clock, if the “frame” and “irdy” signal of a master

are asserted, then the relevant “trdy” signal should be asserted after 3 clock
cycles.

assign frame = Iframel || !frame2 || !frame3;
assign irdy = tirdyl || tixdy2 || !irdy3;

property p_start_ frame;
@ (posedge clk)

$rose (frame && irdy_ ) |->##3 $rose(trdy );
endproperty



2. SVA SIMULATION METHODOLOGY 117

Ss_chk8: At any given clock, if the “frame” and “irdy” signals of the
master are de-asserted, then the relevant “trdy” signal should be de-asserted
after 2 clock cycles.

assign trdyp = trdyl[l] && trdy[o];

property p end frame;
@(posedge clk)
$rose (frame && irdy) |->##2 $rose(trdyp):;
endproperty

Ss_chk9: If there is no valid transaction at any given clock, then the bus
“data” and “datao” should be tri-stated.

property p_bus_not_in_use;
@ (posedge clk)
trdyp |->
($isunknown (data) && $isunknown (datao));
endproperty

a_target : assert property(p_target);

a_frame: assert property(p frame);

a_irdy: assert property(p_irdy);

a_rsel: assert property(p_rsel);

a_rw: assert property(p Iw);

a_gnt: assert property(p gnt);

a_req gnt w : assert property(p_reqg gnt w);
a_start frame: assert property(p start frame);
a_end_frame: assert property(p_end frame);
a_bus_in use: assert property(p_bus not_in use);

c_target : cover property(p target);

c_frame: cover property(p_frame):

c_irdy: cover property(p irdy):;

c_rsel: cover property(p_rsel);

C_rw: cover property(p rw);

c_gnt: cover property(p gnt):

c_reqg_gnt w : cover property(p_req gnt_w);
c_start_frame: cover property(p_start frame):
c_end_frame: cover property(p_end_ frame);
c_bus_in use: cover property(p_bus not_in_use};
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During the system level simulation, the top-level module should be
configured with the parameter settings such that all block level assertions are
turned off. In our sample system, since each design block has a parameter
that allows including its relevant SVA checks on a need basis, we can
configure the top module for system level run easily as shown below.

Module top(..,.., )
// port declarations

master

#(.master_sva(l'b0), .master_sva_severity(1'b0))
ul (askl[2l, c¢lk, reqgl, gntl, framel, irdyl, trdy,
datal, rsell, datao):

master

#(.master_sva(l'b0), .master sva_severity{(1'b0))
u2 (askl1l}, clk, reqg2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master

#(.master_sva(l'b0), .master_ sva_severity(1'b0))
u3d (askI[0], clk, reqg3, gnt3, frame3, irdy3, trdy,
data3, rsel3, datao):;

arbiter .

#(.arb_sva(l'b0), .arb_sva_severity(1'b0))

u4 (clk, reset, frame, irdy, reql, reqg2, req3,
gntl, gnt2, gnt3);

glue

#(.glue sva(l'b0), .glue_sva severity(1’'b0))

us (clk, framel, irdyl, frame2, irdy2, frame3,
irdy3, trdy, rsell, rsel2, rsell3, datal, dataZ2,
data3, sel, data, dataoutl, dataout2, datao):

target
#(.target_sva(l'b0), .target_sva_severity(1'b0))
ué (clk, reset, selll]l, txdyI[l]l, data, dataoutl):

target
#(.target sva(l'b0}, .target_sva_severity(1'b0))
u7 (clk, reset, sell0], txrdyl[0], data, dataout2);
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endmodule

Note that when each design block is instantiated, the parameter values
are passed. The first parameter “* sva” is set to 0 in all the individual
instantiations, which indicates that the block level assertions will not be
included. Now, the system level simulations can be run only with the system
level checks.

Let us assume that there are failures on “Ss_chk6” during the system
level simulation. This check looks for interface failures between the masters
and the arbiter module. To debug the errors, the simulation can be re-run by
including the block level checks relevant to the masters and the arbiter. The
top modules configuration for such a run is shown below:

Module top(..,.., )
// port declarations

master

#(.master sva(l'bl), .master sva_severity(1'b0))
ul (askl[2], clk, reqgl, gntl, framel, irdyl, trdy,
datal, rsell, datao):;

master

#(.master sva(l'bl), .master sva_severity(1'b0))
u2 (askl[1l]l, clk, reg2, gnt2, frame2, irdy2, trdy,
data2, rsel2, datao);

master

#(.master sva(l'bl), .master sva_ severity(1'b0))
u3d (ask[0], clk, reqs, gnt3,nframe3, irdy3, trdy,
data3, rsel3, datao);

arbiter

#(.arb_sva(l'bl), .arb_sva_severity(1'b0))

ud (clk, reset, frame, irdy, reql, req2, reg3,
gntl, gnt2, gnt3);

glue

#(.glue sva(1l'b0), .glue sva_severity(1’'b0))

us (clk, framel, irdyl, frame2, irdy2, £frame3,
irdy3, trdy, rsell, rsel2, rsel3, datal, data2z,
data3, sel, data, dataoutl, dataout2, datao);
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target
#(.target_sva(l'b0), .target sva_severity(1'b0)})
u6 (clk, reset, selll]l, trdyl[l]l, data, dataoutl);

target
#(.target sva(l'b0), .target_sva_severity (1'b0))
u7 (clk, reset, sell0], trdyl0], data, dataout2);

endmodule

Note that the parameter “master_sva” and “arb_sva” are set to 1 in this
configuration. In the basic design blocks, SVA checks could also be
included conditionally using the “’ifdef - "endif” construct. By conditionally
compiling the SVA code, the user can either have the checks on all instances
of the module or on none of the instances of the module. The disadvantage
with this methodology is that, it is a global control mechanism. By using
parameters, this disadvantage can be overcome and the user gets more
flexibility in choosing the block level checks needed for a particular
simulation run.

2.4  Functional coverage

The system level checks written so far look for specific protocol
violations, if any. By making sure that these checks executed at least once in
the simulation, the confidence level on the functionality of the system
increases tremendously. The other aspect of functional coverage is covering
all possible scenarios of system functionality during simulation from the
testbench perspective. The scenarios to be covered during a simulation
should be part of the test plan.

The SVA checks written for dynamic simulation are only as good as the
input stimulus. If the input vectors do not force the system to execute certain
scenarios, then those remain untested. A lot of testbenches use random
techniques to generate input stimulus vectors. A very common approach is to
run a pre-determined number of transactions and measure coverage on
certain scenarios. By constraining the random generation of input stimulus,
the scenarios can be covered more efficiently. The key is to get the
maximum functional coverage in a minimum number of cycles. The
coverage information collected from SVA can be used effectively to create
reactive verification environments.
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241 Coverage plan for the sample system

The sample system discussed in this chapter has a lot of key functionality
that should be covered as part of the functional verification.

24.1.1 Request Scenario
“All possible request scenarios should be covered”

There are three masters that can ask for access at any given time. This
means that there are 7 possible combinations of the master “req” signals as
shown in Table 2-1.

Table 2-1. Master request scenarios

Reql Req2 Req3
0 1 1
1 0 1
1 1 0
0 0 1
1 0 0
0 1 0
0 0 0

A 0 in the table indicates that the master is requesting for the bus. The
testbench should create all these possible input combinations during
simulation.

The following code example shows how functional coverage data can be
used to control the simulation environment. Property definitions for all 7
possible request combinations should be created as follows.

property p_reql; // master 1 requesting
@(posedge clk) $fell (reql) && reqg2 && req3;
endproperty

property p_req2; // master 2 requesting
@(posedge clk) $fell (reqg2) && reql && req3;
endproperty

property p_req3; // master 3 requesting
@(posedge clk) $fell (reg3) && reql && reg2;
endproperty
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property p _reql2; // master 1&2 requesting
@ (posedge clk)
$fell (reqgl) && $fell(reqgl)&& reqg3;
endproperty

property p_req23; // master 2&3 rtequesting
@ (posedge clk)
$fell (req2) && $fell(req3) && reqgl;
endproperty

property p req3l; // master 1&3 requesting
@ (posedge clk)
$fell (reg3) && $fell(reql) && reqg2;
endproperty

property p_reql23; // master 1&2&3 requesting
@ (posedge clk)
$fell (reql) && $fell(reg2) && $fell(req3);
endproperty

Each property should have a cover statement associated with it as shown
below. The action block of the cover statement can be used to update register
flags. In this case, every time the property is covered, a local register count
is incremented. In the same clock, we check if the counter has reached a
value of 3. If so, then the flag associated to that property is asserted. In other
words, it is expected that each request combination occurs three times during
simulation and if and when it happens, a flag associated with that specific
request combination will be asserted.

c_reql: cover property(p_reql)
begin
cregl++;
if (creql == 3) creqgl flag
end

it
=
o
=
~

c_reqg2: cover property(p_reqg2)
begin
creq2++;
if (creg2 == 3) creqg2 flag
end

1'bl;

c_req3: cover property(p_reg3)
begin
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creqg3++;

if (creq3 == 3) creq3 flag = 1'bl;
end

c_reqgl2: cover property(p_reql2)

begin

creqgl2++;

if (creql2 == 3) creql2_flag = 1'bl;
end

¢_req23: cover property(p req23)
begin
creq23++;
if (cxeq23 == 3) creq23_flag = 1'bl;
end

c_reqg3l: cover property(p _req3l)

begin
creq3l++;
if (creq3l == 3) creq3l flag = 1'bl;
end
c_reql23: cover property(p reqgl23)
begin
creqgl23++;
if (creql23 == 3) creql23 flag = 1'bl;
end

This coverage information can be used effectively to control the
simulation environment. In a random testbench for the sample system, a pre-
determined number of transactions could be performed one after the other.
The simulation will finish when all transactions are completed. The
following code shows how the functional coverage information can be used
to terminate the simulation.

always@ (posedge clk)
begin

if(creql flag && creg2 flag && creg3 _flag &&
creql2_flag && creq23_flag && creqg3l flag &&
creql23_flag)

begin
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$display ("FC: All possible request scenarios
covered 3 times each\n");

Sfinish();

end
end

With this piece of code, there are two ways to terminate a simulation:

1. Run the pre-determined number of transactions randomly and exit.
2. Exit if all possible request scenarios are covered three times each.

Whichever occurs first will terminate the simulation.
24.1.2  Master to Target transactions

“Every master device should perform both a read and a write
transaction with every target device”

There are 3 master devices and 2 target devices in the system. This

creates 12 possible scenarios as shown in Table 2-2. Property definitions for
all 12 possible transaction combinations should be created as follows.

Table 2-2. Master to target transactions

Master Target Transaction
M1 T1 Read
Ml Tl Write
Mi TO Read
Mi TO Write
M2 T1 Read
M2 T1 Write
M2 TO Read
M2 TO Write
M3 T1 Read
M3 Tl Write
M3 TO Read
M3 TO Write

property p mltlr;

// masterl reading from target 1
@(posedge clk)
$fell (framel && irdyl) |->
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##3 ($fell (trdyl[1ll)) ##3 tdatal8];
endproperty

property p mltlw;
// master 1 writing to target 1
@ (posedge clk)
$fell (framel && irdyl) |->
##3 ($fell (trdyli]l)) ##3 datal8l;
endproperty

property p mltOr;
// master 1 reading from target 0
@(posedge clk)
$fell (framel && irdyl) |-»>
##3 ($fell (trdyl[0])) ##3 !datal8];
endproperty

property p_mltOw;
// master 1 writing to target 0
@(posedge clk)
$fell (framel && irdyl) |->
##3 ($fell(trdyl[0])) ##3 datals];
endproperty

property p m2tlr;
// master 2 reading from target 1
@ (posedge clk)
$fell (frame2 && irdy2) |->
##3 ($fell(trdyll]l)) ##3 !datal8];
endproperty

property p m2tlw;
// master 2 writing to target 1
@ (posedge clk)
$fell (frame2 && irdy2) |-»>
##3 ($fell (trdyl[11)) ##3 datal8l;
endproperty

property p m2t0xr;
// master 2 reading from target 0
@ (posedge clk)
$fell (frame2 && irdy2) |-»>
##3 ($felltrdy[0])) ##3 1datal8];
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endproperty

property p m2tOw;
// master 2 writing to target 0
@ (posedge clk)
$fell (frame2 && irdy2) |->
##3 ($fell (trdyl[0l)) ##3 datal8l;
endproperty

property p m3tlr;
// master 3 reading from target 1
@(posedge clk)
$fell (frame3 && irdy3) |-»>
##3 ($fell (trdyl[1])) ##3 !datal8];
endproperty

property p m3tlw;
// master 3 writing to target 1
@(posedge clk)
$fell (frame3 && irdy3) |->
##3 ($fell (trdyl1l)) ##3 datalsl;
endproperty

property p m3t0r;
// master 3 reading from target 0
@(posedge clk)
$fell (frame3 && irdy3) |->
##3 ($fell (trdyl[0l)) ##3 !datal8];
endproperty

property p m3tOw;
// master 3 writing to target 0
@(posedge clk)
$fell (frame3 && irdy3) |-»>
##3 ($fell (trdyl[0])) ##3 datals8l:
endproperty

Each property should have a cover statement associated with it as shown
below. The same technique used in Section 2.4.1.1 is used to keep count of
the number of occurrences of the scenario.

¢ mltlr: cover property(p mltlr)
begin
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ml tl r++;
if(ml_tl r == 3) ml_tl r flag = 1'bl;
end

c_mltlw: cover property(p mltlw)
begin
ml_tl we+;
if(ml_tl w == 3) ml _tl w flag = 1'bl;
end

c_mltOr: cover property(p _mltOr)
begin
ml _t0_r++;
if(ml_t0_r == 3) ml_t0_r flag = 1'bl;
end

c_mltOw: cover property(p _mitOw)
begin
ml t0_w++;
if(ml_t0_w == 3) ml_t0 _w_flag = 1'bl;
end

c_m2tlr: cover property(p m2tlr)
begin
m2_tl r++;
if(m2_tl r == 3) m2_tl_r_ flag = 1'bl;
end

c_m2tlw: cover property(p _m2tlw)
begin
m2_t1l we+;
if(m2_tl w == 3) m2_tl w _flag = 1'bl;
end

c_m2t0r: cover property(p m2tOr)
begin
m2_t0_r++;
if(m2_t0_ r == 3) m2 t0_r_ flag = 1'bl;
end

¢_m2tOw: cover property(p _m2tOw)
begin
m2 _t0_w++;
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if(m2_t0_w == 3) m2_to0_w_flag
end

1'bl;

c_m3tlr: cover property(p m3tlr)
begin
m3_tl Tr++;
if(m3_tl r == 3) m3_tl_r flag
end

1'bl;

c_m3tlw: cover property(p_m3tlw)
begin
m3_tl w++;
if(m3_tl_w == 3) m3_tl_w flag
end

1'bl;

¢_m3t0r: cover property(p m3tOr)
begin
m3_t0_xr++;
if(m3_t0 r == 3) m3_t0_r_ flag
end

1'bl;

c_m3tOw: cover property(p m3tOw)
begin
m3_t0_w++;
if(m3_t0_w == 3) m3_t0_w_£flag
end

1'bl;

This coverage information from both Sections 2.4.1.1 and 2.4.1.2 can be
used effectively to control the simulation environment. With the piece of
code shown below, there are two ways to terminate a simulation:

1. Run a pre-determined number of transactions randomly and exit.
If all possible request scenarios are covered three times and if all
possible “master to target” transactions are covered three times, then
exit the simulation.

Whichever occurs first will terminate the simulation.

always@(posedge clk)
begin

if(creql flag && creq2 flag && creq3_flag &&
creql2 flag && creq23_flag && creq3l_flag &&
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creql23_flag && ml_tl r flag && ml tl w flag &&
ml _t0_r flag && ml_t0 _w flag && m2 _tl r flag &&
m2_tl w flag && m2_tO0_r flag && m2_tO0_w_flag &&
m3_tl r flag && m3_tl w flag && m3_t0 r flag &&
m3_t0_w_flag)

begin

$display ("FC: All possible request scenarios
covered 3 times\n");

$display ("FC: All possible transactions covered
3 times\n");

$finish();

end
end

2.4.1.3  Advanced coverage options

There is another data point that can be used to measure the functional
coverage of the system.

“Every target memory location should be written to and read from at
least once by each master”

This information requires exhaustive testing. Every address space in the
target device should be monitored for usage by each master device. SVA is
not always the choice for performing functional coverage. Functional
coverage that involves exhaustive test plan coverage points can be done
more efficiently with a testbench language that supports object oriented
programming constructs. Such exhaustive functional coverage points
should be used while running long regression runs.

24.2 Functional coverage summary

Functional coverage measurement guarantees testing of all required
scenarios. The measure can be used effectively for controlling simulation
environments. One method is to terminate simulation upon achieving the
functional coverage goals. In the sample system, the following results were
observed:
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¢ Default number of random transactions set in the testbench was
500.

e Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 took 46 transactions.

e Terminating the simulation based on the request scenarios shown
in Section 2.4.1.1 and the “master to target” transactions shown
in Section 2.4.1.2 took 63 transactions.

The functional coverage data obtained can also be used to re-direct the
testbench dynamically. In random testbenches, constraints are used to
contro! the type of transactions generated. These constraints are assigned
certain weights for the random distribution in the beginning of a simulation.
Based on the functional coverage information obtained during the
simulation, these weights can be adjusted dynamically to achieve the
functional coverage goal quickly.

2.5 SVA for transaction log creation

SVA can be used to create excellent log files. The SVA checkers snoop
for any design property violation during simulation. The same checkers can
be called monitors if they log the information that they are snooping. In a
complex system, it really helps to create a chronological log of the
transactions. In our sample system, creating a log of all the read and write
transactions, between whom these happened and at what time will be a great
debugging asset.

SVA has the option to use a lot of the Verilog like capabilities within the
scope of the checker. The action block of each checker or cover staternent
can be used efficiently to create log files. While displaying information upon
the success of an assert or a cover statement is one way to create log files,
another way is to call a task or a function. The calling of a task or a function
expands the capabilities of the SVA checker. Apart from displaying
information within the task, data checking can also be done effectively. The
following code shows how a chronological transaction log is created for the
sample system.

// open a file to document transactions
integer h mt;

initial

begin
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h mt = $fopen("mt.dat");
end

// calling task for documentation
“ifdef slv_doc

c_mltlw doc:

cover property(p_mltlw) master xaction(l,1);
¢_mltlr doc:

cover property(p_mitlr) master xaction(l,1);
c¢_mlt2w_doc:

cover property(p_mltOw) master xaction(l,0);
c_mlt2r doc: )

cover property(p_mltOr) master xaction{(l,0);
c_m2tlw_doc:

cover property(p_m2tlw) master xaction(2,1);
c_m2tlr_doc:

cover property(p_m2tlr) master xaction(2,1);
c_m2t2w_doc:

cover property(p_m2t0Ow) master xaction(2,0);
c_m2t2r_ doc:

cover property(p_m2tOr) master xaction(2,0);
c_m3tlw doc:

cover property(p_m3tlw) master xaction(3,1);
c_m3tlr doc:

cover property(p_m3tlr) master_ xaction(3,1);
¢_m3t2w_doc: .

cover property(p_m3tOw) master xaction(3,0);
c_m3t2r doc:

cover property(p_m3tOr) master_xaction(3,0);

“endif

task master xaction(
input int m_identity, input int t_identity):

integer 1i;
begin

if (datal8l)
begin
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for(i=0; i<8; i++)
begin

$fwrite(h_mt, "WRITE:

Master %0d writing to Target %04 = %0d at
$0t\n”,m_identity, t_identity, datal7:0],
Stime) ;

@(posedge clk);
end
end

if (ldatal[8])

begin

@(posedge clk);

for(i=0; i<8; i++)

begin

$fwrite (h_mt, "READ:

Master %0d reading from Target %0d = %0d at
$0t\n”, m_identity, t_ identity, datao, $time);

@(posedge clk);
end
end

end
endtask

The properties defined for functional coverage in Section 2.4.1.2 are
reused for creating transaction logs. If the cover statement succeeds, a task
called “master_xaction” is called. The task expects two input arguments, one
identifying the master and the other identifying the target device. By sending
these arguments, a generic task can be written to log the transactions
accurately.

The transactions are logged into a separate file called “mt.dat.” A $fopen
statement is used to open this file at the beginning of the simulation. Once
the task is called, the task executes either the read block of the code or the
write block of the code. Since our sample system does burst read or write in
sets of 8 bytes, a “for” loop is used within the task. The loop goes around
eight times and each time the relevant read or write data is logged into the
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file “mt.dat” using a $fwrite statement. A part of the log created for the
sample system using this code is shown below.

WRITE: Master 1 writing to Target 1 = 72 at 775
WRITE: Master 1 writing to Target 1 = 77 at 825
WRITE: Master 1 writing to Target 1 = 95 at 875
WRITE: Master 1 writing to Target 1 = 37 at 925
WRITE: Master 1 writing to Target 1 = 216 at 975
WRITE: Master 1 writing to Target 1 = 184 at 1025
WRITE: Master 1 writing to Target 1 = 198 at 1075
WRITE: Master 1 writing to Target 1 = 182 at 1125
READ: Master 3 reading from Target 1 = 72 at 1725
READ: Master 3 reading from Target 1 = 77 at 1775
READ: Master 3 reading from Target 1 = 95 at 1825

READ: Master 3 reading from Target 1 = 37 at 1875
READ:Master reading from Target 216 at 1925
READ:Master reading from Target 184 at 1975
READ:Master reading from Target = 198 at 2025
READ:Master reading from Target = 182 at 2075

Wwww
N
1

The transaction logs can be made a lot more fancy and debug friendly
depending on the user’s application. Note that this code is included within
the "ifdef - "endif block. This kind of a detailed transaction log might not be
needed during long regressions and hence should have the provision to be
included conditionally.

2.6 SVA for FPGA Prototyping

A variety of advanced verification methodologies exist today that can
help find bugs quickly. Constrained random testbenches and assertions are
an important piece in these methodologies. It is very common to write
thousands of tests to make sure that all possible functionality has been tested
correctly. While most of the bugs are found in the RTL verification, it is still
very common to find functional bugs during the verification of implemented
gates. Simulating gates has always been a performance bottleneck and will
always be. Running all the tests developed during RTL verification on gates
is not very practical. Gate level simulation is extremely slow and more and
more verification teams are depending on other verification methodologies
such as formal verification, FPGA prototyping, etc. as shown in Figure 2-14,
By running the verification on the actual silicon, the verification process can
be accelerated significantly. This allows running the regression suites
developed for RTL exhaustively on actual silicon.
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Regression Suite Regression Suite
F 3 A
SOC (RTL, Gates) SOC (FPGA Prototype)
A B

Figure 2-14. FPGA Prototyping

One major challenge in running tests on actual silicon prototype is
debugging. SVA can help in this area significantly. By synthesizing the
checkers along with the design, the debug process can be made a little easier.
The checkers are written against the functional specification and having
them monitor the design in real silicon adds great value. The design needs to
be altered slightly to accommodate these assertions. If an assertion fails, it
has to be notified to the external world using an output port. The output ports
can be updated with the results, using the action block of the assertions. In
most real-time testing, breakpoints can be set on these output ports and upon
a failure on one of these debug ports, the verification can be stopped for
further analysis. The master device used in the sample system is shown in
Figure 2-2. This contains only the default ports relevant to the design. The
sample Verilog code for the master device is shown below.

module master (ask_for it, clk, req, gnt, frame,
irdy, trdy, data_c, r_sel, data_o);

input clk, gnt, ask_for it;
input [1:0] trdy:
output req, frame, irdy, r sel;
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output [8:0] data_c;
input [7:0] data_o;

parameter master_sva = 1'bl;
parameter master_ sva_severity = 1'bl;

// functional description of master
// Block level SVA checks

endmodule

135

The block level assertions should be made part of the design to help in
FPGA prototyping. Each block level assertion should be associated with a
debug output port. The debug output port should be asserted if the assertion

fails. The following code description shows how this can be achieved.

module master (ask_for_it, clk, req, gnt, frame,
irdy, trdy, data_c, r_sel, data_o,

a_master_startl_ flag, a_master_start2 flag,
a_master_stopl_flag, a_master_stop2_ flag,
a_master datal_flag, a master_data2 flag,
a_master dataol_flag, a_master datao2_flag);

input clk, gnt, ask_for it;
input [1:0] trdy;

output req, frame, irdy, r sel;
output [8:0] data_c;

input [7:0] data_o;

// debug pins for FPGA prototyping
output a_master_startl flag;
output a_master start2 flag:
output a master_stopl flag;

output a_master_ stop2 flag;

output a master_datal flag;

output a_master_data2_ flag;

output a master dataol flag;
output a_master_datao2_flag:;

parameter master_sva = 1'bl;
parameter master_sva_severity = 1'bl;
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// functional description of master
// Block level checks for prototype debugging
“ifdef master_ debug

d_a _master startl:
assert property(p master_ startl)
else
a_master_startl flag = 1'bl;
d_a master_start2:
assert property(p master_ start2)
else
a_master_ start2 flag = 1'bl;
d_a_master_stopl:
assert property(p master_stopl)
else
a_master stopl flag = 1'bl;
d _a master stop2:
assert property(p_master_stop2)
else
a_master_ stop2_ flag = 1'bl;
d_a master_ datal:
assert property(p master_ datal)
else
a_master_datal_flag = 1'bl;
d_a_master_data2:
assert property(p_master_data2)
else
a_master data2 flag = 1'bl;
d_a_master_dataol:
assert property(p master dataol)
else
a_master dataol flag = 1'bl;
d_a_master datao2:
assert property(p master_datao2)
else
a_master_datao2_flag = 1'bl;

“endif

endmodule
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Note that the respective output port flags will be asserted upon a failure.
Since these assertions are concurrent, they will look for a valid start on every
clock edge. If the silicon testing mechanism does not provide a way to set
breakpoints on an assertion failure, then it is required that the failure be
latched. Otherwise, the failure notification can be lost if the assertion
succeeds in future clock cycles.

2.7 Summary on SVA simulation methodologies

e The addition of SVA to testbench environment makes dynamic
simulation more productive.

e The designers are very familiar with the internal functionality of
the design and hence, they should in-line SVA checkers in their
respective design blocks.

e The verification engineer, who integrates and verifies the system,
should add system level assertions that thoroughly verify the
interface protocol.

e The verification engineer should be able to control/configure the
block level assertions from his verification environment (He
should be able to turn the assertions on and off on a need basis).

¢ Functional coverage metrics can be collected with little effort
using SVA. This information should be used effectively to create
reactive testbenches.

o SVA can be used to create informative log files since they are
monitoring the design protocols throughout the simulation.

e By writing SVA checkers that follow synthesis coding
guidelines, they can be made part of the net-list and used to
debug prototyping/emulation failures.
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SVA FOR FINITE STATE MACHINES

FSM is the main control block in any design. It helps the design progress
from state to state in an orderly manner by generating the respective control
signals. Another way to generate control signals is by combining counters
and glue logic. But it lacks good design structure and is also difficult to
debug. An FSM provides great hardware infrastructure for control signals
and also debugging capabilities since each state of the design is usually well
defined.

There are two types of FSMs:

Moore State machine — The Moore FSM outputs are the function of the
present state only.

Mealy State machine — One or more of the Mealy FSM outputs are a
function of the present state and one or more of the inputs.

Different types of coding styles are used to describe the states of an FSM.
The most popular coding style is the one-hot coding, wherein a one-bit
register represents each state. This proves to be the fastest architecture. If the
FSM has too many states, then one-hot coding will produce a rather big
hardware. In these cases binary encoding is preferred. Another kind of
encoding used commonly to describe an FSM is the gray coding.

An FSM controls the functionality of the entire design and hence should
be verified thoroughly. The most common type of check is to make sure that
the state transitions are occurring correctly without violating any timing
requirement. SVA can be used effectively to do such checks.
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3.1 Sample Design — FSM1

In this section, we analyze a simple linear FSM, which is more like a
shift counter. The FSM produces control signals for the design in a linear
sequential fashion and hence can be verified easily with SVA checks.

3.1.1 Functional description of FSM1
There are 16 states in the FSM. They are coded as follows:

IDLE = 16'd1
GEN_BLK_ADDR = 16'd2
WAIT6 =16'd4
NEXT_BLK = 16'd8
WAITO0 =16'd16
CNT1 =16'd32
WAITI1 = 16'd64
CNT2 =16'd128,
WAIT2 = 16'd256
CNT3 =16'd512
WAIT3 =16'd1024
CNT4 =16'd2048
WAIT4 =16'd4096
CNTS5 =16'd8192
WAITS =16'd16384
CNT6 =16'd32768

The FSM is coded with a one-hot coding style. Figure 3-1 shows the
bubble diagram of FSM1:

¢ The FSM moves to the IDLE state upon reset and waits there for a
valid “get_data” signal.

e Once a valid “get_data” signal is obtained, the FSM moves to the
GEN_BLK_ADDR state. The FSM stays in this state until it finishes
generating 64 read addresses (an internal counter keeps track of 64
clock cycles).

e After 64 clock cycles, it moves to the WAITO state. From this point,
the FSM keeps moving to the next state on every clock cycle.

e The CNT* states are the ones where the output control signals for
the rest of the design are generated.
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The WAIT* states are used to create a 2 cycle gap between the
generation of the control signals (latch_en, dp1_en, dp2_en, dp3_en,
dp4 _en, wr).

Once the FSM moves to the NEXT_BLK state it has to decide
which way to go.

Latch_en

Figure 3-1. Bubble diagram for FSM1

If the internal register “blk_cnt” has reached the value of 4096, the
FSM goes to the IDLE state. This indicates that the entire data frame
has been processed and the design is waiting for a new frame. When
a new “get data” signal arrives, the FSM goes through the same
state transitions again starting from GEN_BLK ADDR.

While in state NEXT_BLK, if the internal register “blk_cnt” has not
reached the value of 4096, the FSM will go back to the
GEN_BLK ADDR state. It waits for the generation of 64 new
addresses and then moves over to the CNT* states to generate the
control signals again.
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Example 3.1 FSM1 sample code

module fsm (get data, reset , clk, rd,
data, done_ frame, latch en, sipo_en,
dp2_en, dp3_en, dp4 _en, wr);

input get_data;
input reset ;
input clk;

input [7:0] data;

output rd;
output logic sipo_en, latch_en;

Chapter 3

rd_addr,
dpl_en,

output logic dpl_en, dp2_en, dp3_en, dp4_en, wr;

output logic done_frame;
output [17:0] rd_addr;

logic [5:0] addr_cnt;
logic [11:0] blk_cnt;
logic [3:0] pipeline cnt;
logic rd;

logic [17:0] rd_addr;

logic enable cnt, enable dly cnt, enable blk cnt;

assign done_frame = (blk_cnt == 4095);
assign sipo _en = rd;

enum bit[15:0] {IDLE = 16'd1,
GEN_BLK_ADDR = 16'd2,
DLY = 16'd4,
NEXT BLK = 16'ds,
WAITO = 16'dls,
CNT1l = 16'd32,
WAIT1 = 16'dé64,
CNT2 = 16'dl28,
WAIT2 = 16'd256,
CNT3 = 16'd512,
WAIT3 = 16'd1024,
CNT4 = 16'd2048,
WAIT4 = 16'd4096,
CNT5 = 16'dsl92,
WAIT5 = 16'd16384,
CNT6 = 16'd32768} n_state, c_state;
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// assign the different control signals

assign latch_en = (c_state == CNT1};
assign dpl en = (c_state == CNT2);
assign dp2 en = (c_state == CNT3);
assign dp3_en = (c_state == CNT4):;
assign dp4_en = (c_state == CNT5);
assign wr = (c_state == CNT6);

// 64bit counter to generate read address

always ff @(posedge clk)

if (lreset_ || !enable_cnt)
addr_cnt <= 0;

else if (enable_cnt)
addr_cnt <= addr_cnt + 1;

else
addr_cnt <= addr_cnt;

// 4096 bit counter
always ff @(posedge clk)

if (lreset )
blk cnt <= 0;

else if ((c_state == NEXT_BLK) && enable_blk_ cnt)
blk _cnt <= blk_cnt + 1;
else

blk_cnt <= blk_cnt;

always ff @(posedge clk)
if (!reset )
c_state <= IDLE;
else
c_state <= n_state;

always @(*)
begin
rd <= 0;
enable_cnt <= 0;
//enable_dly cnt <= 0;
case (c_state)
IDLE: begin
enable blk cnt <= 0;
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if (get data)
n_state <= GEN_BLK ADDR;
else
n_state <= IDLE;
end

GEN_BLK ADDR: begin
enable_cnt <= 1;

rd <= 1;
rd_addr <= {blk _cnt, addr cnt};
if (addr_cnt == 63) begin

//enable_dly cnt <= 1;
n_state <= WAITO;
end
else begin
n_state <= GEN_BLK_ADDR;
//pipeline_cnt <= 0;
end
end

WAITO: n_state <= CNTL;
CNT1l: n_state <= WAIT1;
WAITLl: n_state <= CNT2;
CNT2: n_state <= WAITZ;
WAIT2: n_state <= CNT3;
CNT3: n_state <= WAIT3;
WAIT3: n_state <= CNT4;
CNT4: n_state <= WAIT4;
WAIT4: n_state <= CNT5;
CNT5: n_state <= WAIT5;
WAIT5: n_state <= CNT6;
CNT6: n_state <= DLY;

DLY: begin
enable_blk cnt <= 1:
n_state <= NEXT_BLK;

end

NEXT BLK: begin
enable_blk_cnt<=1;
if (blk cnt == 4095)
n_state <= IDLE;
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else
n _state <= GEN_BLK_ADDR;
end
endcase
end

endmodule

The state transition from GEN BLK ADDR to the CNT*/WAIT* states
is shown in Figure 3-2.
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Figure 3-2. Waveform A for FSM1
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Figure 3-3. Waveform B for FSM1

Figure 3-3 shows that the FSM will loop back to GEN_BLK ADDR
state from the NEXT_BLK state if the register “blk_cnt” has not reached the
value of 4096. When “blk_cnt” reaches the value of 4096, the FSM will
break the loop from NEXT_BLK state and go to IDLE state.

3.1.2 SVA Checkers for FSM1

To verify FSM1 thoroughly, the following checks need to be done.
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FSM1_chkl: FSM1 will always stay one-hot irrespective of the input
conditions.

FSM1 is based on one-hot coding and hence should always have only
one state bit asserted. If not, the FSM is not truly one-hot and the control
signals might not be generated as expected. This can be tested by using any
one of the built-in tasks, namely, $countones or $onehot defined in the SVA
language.

property p_onehot;

@(posedge clk) (reset_) |->
($countones (n_state) == 1);
endproperty

a_onehot: assert property(p onehot);
c_onehot: cover property(p onehot);

FSM1_chk2: If the current state is “IDLE” and if “get_data” is asserted,
then the next state is “GEN_BLK ADDR,” and 64 cycles later the next state
should be “WAITO0.”

The FSM starts the transition, based on the IDLE state and the “get_data”
signal. Once the FSM reaches GEN_BLK ADDR, it has to stay there for 64

clock cycles.

sequence s_transl;

(c_state == IDLE) ##1
((c_state == GEN_BLK_ADDR) [*641) ##1
(c_state == WAITO);

endsequence

property p_trans;
@(posedge clk)
(reset_ && S$rose(get_data)) |->
(reset_) throughout (s_transl):
endproperty

a_trans: assert property (p_ trans);
c_trans: assert property (p_ trans)

The sequence “s_transl” verifies that, if the current state of FSMI1 is
IDLE, then one cycle later it will transition to the GEN_BLK ADDR. The
FSM will stay in the state GEN_BLK ADDR for 64 cycles (verified by
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using the repeat (*) operator) and one cycle later will move to the WAITO
state. It is required that the reset is inactive throughout this property.

Figure 3-4 shows the results of “a_trans” property. The checker becomes
active when there is a rising edge on the “get_data” signal and a match on
the success is shown at the same point in the waveform. Though the checker
stays active until reaching the WAITO state, the success is shown only at the
starting point of the checker. The checker looks for a rising edge of
“get_data” signal on every positive edge of the clock. If there isn’t one, then
the checker is assumed to succeed by default. This is a vacuous success as
discussed in Chapter 1.
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arans  LUTUOHPLCERDECERA RO DR L L L LT

Figure 3-4. Waveform for FSM1_chk2

FSM1_chk3: If the current state is “WAITO,” then the FSM will
transition states in a sequential manner from one state to another after one
clock cycle each, unless the FSM is reset.

There is a wait state between every CNT* state. Hence, the FSM takes 2
clock cycles to move from one CNT* state to another CNT* state. The FSM
moves in a linear fashion from CNT1 state to CNT6 state. The only possible
path is as follows:

CNT1 -> CNT2 -> CNT3 -> CNT4 -> CNT5 -> CNT6

sequence s_trans3;

##1 (c_state == CNT1l) ##2 (c_state == CNT2)

##2 (c_state == CNT3) ##2 (c_state == CNT4) ##2

(c_state == CNT5) ##2 (c_state == CNT6):;
endsequence

property p_linear_ trans;

@ (posedge clk)

((reset_) && (c_state == WAITO)

&& ($past(c_state)== GEN _BLK ADDR)) |->



148 Chapter 3

8 _trans3;
endproperty

a_linear_ trans: assert property (p_linear_ trans);
c_linear_trans: cover property (p_linear trans);

Sequence “s_trans3” verifies that, if the FSM is currently in WAITO state
and if it was in GEN_BLK_ADDR state in the previous cycle, then the FSM
moves to CNT1 state after one cycle and WAIT1 state one cycle after that
and so on up to reaching the state CNT6. Figure 3-5 shows the simulation
results of the property p_linear_trans.
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Figure 3-5. Waveform for FSM1_chk3
FSM1_chk4: Make sure that FSM1 is exercised such that it goes to both

IDLE and GEN_BLK_ADDR at least once from the NEXT BLK state.

This check acts as a functional coverage piece making sure that all paths
of the FSM transitions are exercised once by the input test vectors.

sequence s_transl;

##63 (c_state == GEN_BLK ADDR) ##1
(c_state == WAITO);
endsequence

property p_frame;
@(posedge clk)

((reset_) && (c_state == GEN_BLK_ADDR) &&
(($past (c_state)== IDLE) ||
($past (c_state == NEXT BLK)))) |->

s_trans2 ##0 s_trans3;
endproperty

a_frame: assert property(p_frame) cnt++;
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c¢_frame: cover property(p frame);

property p_complete frame;
@(posedge clk)
((cnt == 16'd4095) &&reset &&
(c_state==CNT6)) |->
done_ frame;
endproperty

a_complete frame:
assert property(p_complete frame)
$display ("a complete frame has been
transferred \n");
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Figure 3-6. Waveform for FSM1_chk4

The property “p_frame” verifies the complete state transition of FSM1
starting from IDLE state. While this check is performed, a local variable
“cnt” is incremented in the action block every time the property “a_frame”
succeeds. When the value of the variable “cnt” reaches 4095, all blocks of
data have been processed and the control signal “done frame” is asserted. At
the end of a complete frame testing, the action block of the check
“a_complete frame” can be used to display the results. Figure 3-6 shows the
simulation results of the property p_complete frame.

Two separate properties “p_frame pathl” and *“p_frame_path2” are
written to make sure that all possible paths of the FSM are covered during
simulation.

property p_frame_pathl;:
@ (posedge clk)
((reset_) && (c_state == GEN_BLK ADDR) &&
($past (c_state == NEXT BLK))) |->
s_trans2 ##0 s_trans3;
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endproperty
c_frame_pathl: cover property (p_frame_pathl);

property p_frame path2;
@(posedge clk)

((reset_) && (c_state == GEN_BLK ADDR) &&
($past (c_state == IDLE))) |->
s_trans2 ##0 s_trans3;
endproperty

c_frame path2: cover property (p_frame path2);

3.2 Sample Design — FSM2

A slightly more complicated FSM is discussed in this section. The FSM
discussed in Section 3.1 was linear and did not have many ways of getting to
a particular state. FSM2 will have fewer states but there will be more ways
of getting to a particular state. This presents a minor challenge in extracting
the checks that need to be done.

3.241 Functional description of FSM2

FSM2 performs the role of an arbiter. At any given time, FSM2 can
arbitrate between 3 master devices. Any or all of the master devices can
request for the grant of the bus and the arbiter will decide who gets the bus
based on a round robin fashion. Once the master acquires a grant, it uses the
bus to do certain transactions. At the end of the transaction, the master lets
the arbiter know and the bus is freed. Once the bus is free, all the masters
can once again make a request for the bus if they have any pending
transactions. The key concept is to make sure that the arbiter is not starving
any of the masters.

The FSM has 7 possible states shown as follows:

IDLE = 750000001
MASTER1 =7b0000010
IDLE1 = 70000100
MASTER2 = 750001000
IDLE2 = 760010000
MASTER3 = 760100000
IDLE3 = 7'51000000
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The FSM is coded with a one-hot coding style. Figure 3-7 shows the
bubble diagram of FSM2.

reqt & req2 &reqd
reset MASTER1Z done \/ IDLE1
IDLE reqt % freqt & req2 & req3
req3 & Fege._ a2 203 & req2
freq?
"\ done N
MASTER2 | v o oLe2
req2 & reqt & req3
reqt &Yreq2
regd
éq3
done

MASTER3 % IDLE3 I3
req3 & 1
\’/ reqd 8 req & req reqi ETER & reqd

Figure 3-7. Bubble diagram for FSM2

Upon reset the state machine moves to the IDLE state.

While the state machine is in the IDLE state, it looks for a “req”
from any of the master devices wanting to use the bus. The grant is
given in a priority-encoded fashion. For example, when the FSM is
in IDLE state, if all .three master devices make a request then
“master]” gets the bus.

e While the state machine is in the MASTER?* state, it asserts the
“gnt” signal of the respective master device.

e Once the master device is done with using the bus, it indicates this to
the arbiter by asserting the “done” signal and this moves the FSM to
the respective IDLE* state of that master device.

e  When the FSM is in the IDLEI state, it will look for “req” from the
masters in the order of master2, master3 and then masterl.

¢ When the FSM is in the IDLE2 state, it will look for “req” from the
masters in the order of master3, masterl and then master2.
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e When the FSM is in the IDLE3 state, it will look for “req” from the
masters in the order of masterl, master2 and then master3.

Example 3.2 FSM2 Sample code

module bus_arbiter (clk, reset, frame, irdy,
reql, req2, reqg3, gntl, gnt2, gnt3);

input logic clk, reset, frame, irdy;
input logic reql, reqg2, reqg3;

output gntl, gnt2, gnt3;

enum bit [6:0] {IDLE = 7'b0000001,
MASTER1 = 7'b0000010,
IDLE1 = 7'b0000100,
MASTER2 = 7'b0001000,
IDLE2 = 7'b0010000,
MASTER3 = 7'b0100000,
IDLE3 = 7'b1000000} next, state;

logic done, gntl, gnt2, gnt3;
/* define glue signals */
assign done = frame && irdy;
/* state register code */

always@ (posedge clk or negedge reset)
begin
if (lreset)
state <= IDLE:;
else
state <= next;
end

/* next state combinational logic */

always@ (*)
begin
next = IDLE;
case(state)
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IDLE:

if (reql == 1'bO)
next <= MASTERI1;

else if (reql == 1'bl & req2 == 1'b0)
next <= MASTERZ;

else if (reqg3 == 1'b0 & reqgql == 1'bl)
next <= MASTER3;

else

next <= IDLE;

MASTER1 :
if (!done)
next <= MASTER1;
else
next <= IDLELl;

IDLEl:
if(req2 == 1'b0 )
next <= MASTER2;
else if (req3 == 1'b0 & reqg2 == 1'bl)
next <= MASTER3;
else if (reg3 == 1'bl & reql == 1'b0 & req2 ==
1'bl)
next <= MASTER1;
else

next <= IDLEL;

MASTER?2:
if (ldone)
next <= MASTER2;
else
next <= IDLE2:;

IDLE2:
if (req3 == 1'b0)
next <= MASTER3;
else if (reqg3 == 1'bl & regl == 1'b0)
next <= MASTERL;
else if (reql == 1'bl & req2 == 1'b0)

next <= MASTER2;
else
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next <= IDLE2;
MASTER3:
if (!done)
next <= MASTER3:;
else
next <= IDLE3;

IDLE3:
if (reql == 1'b0)
next <= MASTERL1;
else if (reql == 1'bl & reqg2 == 1'b0)
next <= MASTERZ2;
else if (reg2 == 1'bl & req3 == 1'b0)
next <= MASTER3;
else
next <= IDLE3;
endcase
end
/* output generating statements */
assign gntl = ((state == MASTER1)) ? O 1;
assign gnt2 = ((state == MASTER2)) ? 0 : 1;
assign gnt3 = ((state == MASTER3)) ? 0 1;

endmodule

Figure 3-8 shows a sample waveform for FSM2. For convenience, the
state encoding is shown both in the enumerated value and hexadecimal
value. The state value *1 means that the state is MASTER], similarly, *2 for
MASTER2 and *3 for MASTER3. At marker 1, both master2 and master3
make a request for the bus. The FSM is in IDLE3 state at this point and
hence provides the grant to master2. At marker 2, the FSM is in IDLE2 state
and both masterl and master3 request the bus. This time master3 gets the
grant. The grant provided always depends on which IDLE* state the FSM is
currently in.
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Figure 3-8. Waveform for FSM2

3.2.2 SVA Checkers for FSM2

For a state machine like this, since there are many ways to get to a
specific state, the first thing to understand is what are the possible legal
paths? This can be a very difficult process depending on the complexity of
the state machine. As a first step, a matrix should be created with all states
represented on both the x and y axis. Then the matrix should be filled with a
“Yes” or “No” indicating whether it is possible to transition from that state
in the x axis to a respective state in the y axis. Once we have a representation
as described above, we can start categorizing the SVA checks.

Based on the matrix, if a state to state transition is forbidden, then it
should be verified using a SVA check.
All possible legal state transitions should be covered by the
testbench. This metric can be measured by using the “cover”
statements on SVA properties. The same information can also be
obtained from code coverage tools.
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Based on the matrix analysis, as shown in Table 3-1, the following
checks need to be written to verify FSM2 thoroughly.

Table 3-1. Matrix diagram for FSM2 state transition

IDLE M1 11 M2 12 M3 13
IDLE Y Y N Y N Y N
M1 Y Y Y N N N N
n Y Y Y Y N Y N
M2 Y N N Y Y N N
12 Y Y N Y Y Y N
M3 Y N N N N Y Y
13 Y Y N Y N Y Y

FSM2_chk1: FSM2 should always behave as a one-hot state machine.

property p fsm2 encoding;
@(posedge clk) $onehot(state);
endproperty

a_fsm2_encoding:

assert property (p_fsm2_ encoding):
c_fsm2 encoding:

cover property (p_fsm2_encoding) ;

The built-in function Sonehot can be used to make sure that only one bit
of the state register is high at any given time, thus proving that the FSM
always stays one-hot.

FSM2_chk2: From IDLE state the FSM cannot go to IDLE1, IDLE2 or
IDLES3 states.

property p_forbid_transl:
@ (posedge clk)

(((state == IDLEl) || (state == IDLE2) ||
(state == IDLE3)) && reset) |->

$past ((state == IDLE) == 0);
endproperty

a_forbid_transl:assert property(p_forbid_transl};
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The property “p forbid transl” wverifies that, if the current state is

IDLE1, IDLE2 or IDLE3, then the state of the FSM in the previous cycle
cannot be IDLE.

o U U U
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Figure 3-9. Waveform for FSM2_chk2

Figure 3-9 shows the results of the check “a_forbid transl.” Marker 1
shows a point where the FSM is currently in IDLE1 state. The property
passes here since the FSM was in MASTERI1 state in the previous cycle and
not in IDLE state. Similarly, marker 2 shows a point where the FSM is in
IDLES3 state. The property passes here also since the FSM was in MASTER3
state in the previous clock cycle and not IDLE state.

FSM2_chk3:

From MASTERI state the FSM cannot go to other MASTER states or
IDLE2 or IDLE3.

From MASTER? state the FSM cannot go to other MASTER states or
IDLE1 or IDLE2.

From MASTERS3 state the FSM cannot go to other MASTER states or
IDLE1 or IDLE2.

This check makes sure that, if the FSM is in a certain MASTER* state,
then the next transition will always be to the IDLE* state specific to the
master state. In other words, if the FSM is currently in MASTERI1 state, then
it has to transition to only IDLE1 state next assuming the FSM is not reset. If
it transitions to any other state, it is a violation. Similarly, MASTER2 should
transition to IDLE2 and MASTERS3 to IDLE3 state respectively. Figure 3-10
shows the result of the check “a_forbid_trans2a.”
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property p forbid trans2a;
@(posedge clk)

(((state == IDLE2) || (state == IDLE3) ||
(state == MASTER2) || (state == MASTER3))
&& reset) |->
$past ((state == MASTER1l) == 0);
endproperty

a_forbid_trans2a:

assert property(p forbid trans2a);
c_forbid_trans2a:

cover property(p_forbid_ trans2a);

property p_forbid trans2b;
@(posedge clk)

(((state == IDLEl) || (state == IDLE3) ||
(state == MASTER1) || (state == MASTER3))
&& reset) |->
$past ((state == MASTER2) == 0);
endproperty

a_forbid_trans2b:

assert property(p forbid trans2b);
c_forbid_trans2b:

cover property(p forbid_ trans2b);

property p_forbid_ trans2c;
@ (posedge clk)

(((state == IDLE2) || (state == IDLE1l) ||
(state == MASTER2) || (state == MASTER1))
&& reset) |->
$past (state == MASTER3) == 0);
endproperty

a_forbid_trans2c:

assert property(p_forbid_trans2c);
c_forbid_trans2c:

cover property(p_forbid_trans2c);
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Figure 3-10. Waveform for FSM2_chk3

FSM2_chk4:

From IDLE1 state the FSM cannot go to IDLE2 or IDLE3 states.
From IDLE2 state the FSM cannot go to IDLE3 or IDLELI states.
From IDLE3 state the FSM cannot go to IDLE2 or IDLE1 states.

This check makes sure that the FSM will always transition to a
MASTER* state from an IDLE* state assuming that the FSM is not reset in
between. If the FSM transitions from one IDLE* state to another IDLE*
state, it is a violation. Figure 3-11 shows the result of the check
“p_forbid trans3a.”

property p_ forbid_trans3a;
@(posedge clk)

(((state == IDLE2) || (state == IDLE3))
&& reset) |->
$past (state== IDLEl) == 0);
endproperty

a_forbid_trans3a:

assert property(p_forbid trans3a);
c_forbid_trans3a:

cover property(p_forbid_trans3a);

property p_ forbid trans3b;
@(posedge clk)

(((state == IDLE1l) || (state == IDLE3))
&& reset) |->
Spast (state== IDLE2) == 0);
endproperty

a_forbid_trans3b:

assert property(p_forbid_ trans3b):
c_forbid_trans3b:

cover property(p forbid trans3b):



160 Chapter 3

property p forbid trans3c;
@(posedge clk)

(((state == IDLEl) || (state == IDLE2))
&& reset) |->
$past (state== IDLE3) == 0);
endproperty

a_forbid_trans3c:

assert property(p_forbid_trans3c);
c_forbid_trans3c:

cover property(p forbid_trans3c);

em Inliniuininininininininininly
reset, .
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o igure 3-11. Waveform for FSM2_chk4

FSM2_chkS: There should be a grant for every request sent to the
arbiter.

property p req gnt;
@(posedge clk)
((treql || !reg2 || !req3) && reset) |->
##1 (tgntl || tgnt2 || lgnt3);
endproperty

a_req_gnt: assert property(p_req gnt);
c_req gnt: cover property(p_req gnt);

The property “p_req gnt” verifies that, if any of the masters make a
request for the bus, then within one cycle, any one of the “gnt” signal should
be asserted. If the grant does not arrive in one cycle, it is a fatal error.

Figure 3-12 shows the result of the check ‘a_req gnt.” Marker 1
shows the point in the waveform where master3 is requesting the bus
and within one cycle the signal “gnt3” is asserted and hence the check
passes. Similarly, marker 2 is pointing to a place where both master2
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and master3 are requesting the bus and “gnt2” is asserted within one
clock cycle and hence the check passes.
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Figure 3-12. Waveform for FSM2_chks

FSM2_chk6: Check for the fairness of the arbiter. Make sure that all the
masters are getting equal number of grants.

property p req gnt 1;
@(posedge clk) ((!reql && reset)) |->
##1 lgntl;
endproperty

c_reqg gnt_1l: cover property(p_req gnt_1);

property p req gnt 2;
@(posedge clk) ((!req2 && reset)) |->
##1 lgnt2;
endproperty

c_req gnt_2: cover property(p_req gnt_2):;

property p_reqg gnt_3;
@(posedge clk) ((!req3 && reset)) |->
##1 lgnt3;
endproperty
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c_reqg_gnt_3: cover property(p req gnt_ 3);

property p reql;
@(posedge clk) ($fell (reql) && reset);
endproperty

c_reqgl: cover property(p reqgl):;

property p req2;
@(posedge clk) ($fell(req2) && reset):
endproperty

c_reqg2: cover property(p_req2);

property p_req3;
@ (posedge clk) ($fell (reg3) && reset);
endproperty

c_req3: cover property(p_req3);

This check is performed to get the functional coverage information and
also to validate the fairness of the arbiter. Three properties p_req gntl,
p_req_gnt2 and p_req gnt 3 are written to calculate how many times a
master was actually able to get a grant. The next three properties, p_reql,
p_req2 and p_req3 are written to calculate how many requests each master
actually made. By using the cover statements on these properties, the
simulation results are printed based on the number of matches. In a sample
random test environment, the following results were produced

c_req gnt 1, 10433 attempts, 288 match
c_reqg gnt_2, 10433 attempts, 290 match
c_req gnt 3, 10433 attempts, 291 match
c_reql, 10433 attempts, 481 match
¢_reqg2, 10433 attempts, 474 match
c_reqg3, 10433 attempts, 505 match

Note that, each master requested the bus approximately 475 times and
each one of the masters was granted the bus approximately 290 times. This
shows that the arbiter is being very fair and is not starving any one master
device.
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323 FSM2 with a timing window protocol

In the previous section, FSM2 asserted the “gnt” signal one clock cycle
after a request was made. In this section, the arbiter functionality is assumed
such that it can take anywhere between 2 to 5 clock cycles to produce a
grant. While most of the protocol extraction process still remains the same
for the new arbiter, the timing needs to be adjusted in some of the checks.

assign req
assign gnt

Ireql

|| treq2 || !req3;
tgntl || |

tgnt2 Ignt3;

property p_req gnt_w;
@ (posedge clk) $rose(req) |->
##[2:5] $rose(gnt);
endproperty

a_reqg gnt w : assert property(p_req gnt w);

The property p _req gnt w looks for a rising edge on the “req” signal.
The “req” signal is the OR output of all the three requests reql, req2 and
req3 respectively. Once the pre-condition is true, it verifies that a rising edge
occurs on the “gnt” signal within 2 to 5 clock cycles. The “gnt” signal is the
OR output of all the three “gnt” signals gntl, gnt2 and gnt3 respectively.
Functional coverage statements similar to the ones shown in check
FSM2_chk6 can be easily written for the new protocol based on the window
of time. Figure 3-13 shows the results of the check “a_req_gnt w.”

The marker “1s” indicates the first valid request made to the arbiter. A
valid “gnt” comes at marker “le” after 5 clock cycles and hence the checker
passes. The marker “2s” indicates the second valid request made to the
arbiter. A valid “gnt” comes at the marker “2e” after 2 clock cycles and
hence the checker passes.
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Figure 3-13. Waveform for window check

A key functional coverage data that a user might be interested in is the

arbiter latency. The arbiter can take 2 to 5 cycles to respond to each one of
the master devices. It is important to know if the average latency of the
arbiter is the same for all three masters. We can use SV A cover statements to
calculate the response time of the arbiter for each master.

genvar s;
generate

for

(s=2; s

<6; S++)

begin: generic
c_gnt _generic
cover property(@(posedge clk) S$rose(gnt) |->
($past (req,s) == 1'bl));

end

endgenerate

A generate statement can be used to create an array of cover statements.
The objective is to find out the average response time of the arbiter. The
built-in function $past is used to define a valid request and grant sequence.
The variable “s” is used to loop around and create 4 separate cover
properties for each possible latency values (2, 3, 4 and 5 clock cycles
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respectively). The cover statement will increment the appropriate latency
bin. Sample simulation results produced are shown below.

tb.u4.ul.generic[2] .c_gnt_generic, 5793 attempts,
112 match, 0 vacuous match

tb.u4.ul.generic[3].c_gnt generic, 5793 attempts,
113 match, 0 vacuous match

tb.u4.ul.generic[4] .c_gnt_generic, 5793 attempts,
101 match, 0 wvacuous match

tb.u4.ul.generic[5] .c_gnt_generic, 5793 attempts,
104 match, 0 vacuous match

From these results, it is clear that the arbiter has an even distribution of
latency. The previous example can be slightly modified to get latency
information specific to each master. This way we will know if it takes longer
to provide a grant to any specific master.

assign req locall3:1] ({req3, reg2, reql});
assign gnt_local[3:1] = ({gnt3, gnt2, gntl});

genvar j, k;
generate

for (j=2; j<6; j++)
begin: latency

for (k=1; k<4; k++)
begin: Master

c_gnt o

cover property(@(posedge clk) $fell (gnt_local [k])
| -> ($past(req locallkl,j) == 1'b0));

end

end

endgenerate

Note that, a vector of the “gnt” signals called “gnt_local” and a vector of
the “req” signals called “req local” are defined. This allows one to loop
through each master one at a time. Two loops are used, the outer loop
“latency” defines the latency bins and the inner loop “Master” defines the
master’s identity. The property is active once a valid “gnt” signal is detected.
A valid “req” for this specific ‘gnt” is searched in the past anywhere
between 2 and 5 clock cycles. Sample simulation results for such a coverage
statement 1s shown below.
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tb.u4.ul.latency(2]
attempts, 41 match, 0
tb.u4.ul.latency[2]
attempts, 37 match, 0
tb.u4.ul.latencyl[2]
attempts, 34 match, 0
tb.u4.ul.latency[3]
attempts, 39 match, 0
tb.u4.ul.latency[3]
attempts, 34 match, 0
tb.u4.ul.latency[3]
attempts, 40 match, O
tb.u4.ul.latency[4]
attempts, 27 match, 0
tb.u4.ul.latencyl4]
attempts, 36 match, 0
tb.u4.ul.latency (4]
attempts, 38 match, 0
tb.u4.ul.latency[5]
attempts, 34 match, 0
tb.u4.ul.latencyl[5]
attempts, 29 match, 0
tb.u4.ul.latencyl[5]
attempts, 41 match, 0

.Master[l].c_gnt o,

vacuous match

.Master[2].c_gnt_o,

vacuous match

.Master[3].c_gnt_o,

vacuous match

.Master{l] .c_gnt_o,

vacuous match

.Master[2].c_gnt_o,

vacuous match

.Master[3].c_gnt_o,

vacuous match

.Master[l].c_gnt_o,

vacuous match

.Master[2].c_gnt o,

vacuous match

.Master([3].c_gnt_o,

vacuous match

.Master{l].c_gnt_o,

vacuous match

.Master[2].c_gnt_o,

vacuous match

.Master[3].c_gnt o,

vacuous match

3.3  Summary on SVA for FSM

Chapter 3
5793
5793
5793
5793
5793
5793
5793
5793
5793
5793
5793

5793

o FSMs are an integral part of any design and they need to be

verified thoroughly.

e Every forbidden transition should be checked using SVA. If a
forbidden transition occurs, it should be flagged as a fatal error.

e The testbench must cover all possible legal transitions.
Functional coverage information should be used wisely to build a
reactive simulation environment.
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SVA FOR DATA INTENSIVE DESIGNS

In any design, there are two areas that need to be verified thoroughly:

a. Is the control logic behaving correctly? — These signals control the
flow of data in the design and have complex timing relationships
between each other.

b. Is my output data as expected? — This makes sure that the output
data of the RTL matches the output of the golden model (usually
written in C). This guarantees that the functionality of the optimized
hardware algorithms implemented in RTL matches that of the
golden model.

In general, assertion based verification is very suited for checking signals
that have complex timing relationships or in other words, the control logic.
The declarative nature of the language makes it more suitable for temporal
checking. While assertions don’t add any additional value for data checking,
it can still be used for writing efficient self-checking environments.

4.1 A simple multiplier check

SystemVerilog assertions have the advantage of using most data types
and operators that are part of the SystemVerilog language. This gives great
flexibility in writing simple arithmetic checks.

Example 4.1 A simple multiplier

module au (
input logic [7:0} a, b, c,
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input logic sel,
output logic [15:0] d
)i

logic [15:0] e;
logic [15:0] sel h, sel 1;

// Resource sharing architecture

always comb

begin
if(sel) e = b; else e = c;
d = multiply(a, e);

end

// Functional sva checker

always@(a, b, c, sel)
begin
sel h
sel 1

a*b;
a*c;

if (sel)

sel_high : assert (sel_h == d);
if (t!sel)

sel _low : assert (sel_1 == d);

end
endmodule

Example 4.1 shows a simple multiplier. Only one multiplier is used and
the multiplication is done based on the input that is selected by the “sel” line.
Two simple checkers named “sel_high” and “sel low” can be written to
verify the multiplier. The check “sel_high” is active when the “sel” line is
high and the check “sel_low” is active when the “sel” line is low. The user
can choose to use any type of multiplier relevant to the user’s environment.
For example, it can be a shift/add multiplier, a booth multiplier or something
else. From a functional verification standpoint, we need to make sure that no
matter which type of multiplier algorithm is used, the end output result
matches. Figure 4-1 shows the results produced by these two checkers. Note
that the checker is active, based on the status of the “sel” signal (immediate
assertion).



4. SVA for data intensive designs 169

2 MWooo | 48 | a8 | 9 | 5 | a4 | %8 | €2 1 % | o0 | te | 15 |
» W % T ad [va [ ¥ | &6 | af ¢l eb | b5 | a8 | 91 | ef |
« e T 5F [e6 [ Be | G0 | 06 9 67 ] bd | 88 | ed | 02 [
seh m_ | | —

s W 7400 | 1508 | a710 | Baty | Oebe | Ghdc | 0%20 | 5011 | 6106 | 6600 | 10ie | 139b ]
oY 1500 | i6aB | 9bd0 | Bafh | Oshe | Ghac | 4458 | b203 | 6ibb | adii | i0fe | 1396 |
v NN 1 1 t t ot !
sel l 7406 | 1ab8 | a710 | dde0 | 0000 | 0348 | 0Fe0 | 5011 | 74ab | 6600 | 1ab8 | 00%a |
3 _sel lew ' f T T

Figure 4-1. Waveform for Multiplier checker
4.2 Sample Design — Arithmetic unit

In this section, verification of an arithmetic unit is discussed (a Walsh-
Hadamard Transform (WHT) block). WHT is a common algorithm used in
still image compression applications. WHT is used to convert the pixels
from time domain to frequency domain before the image is encoded.
Typically, these algorithms are tested very easily with C or Matlab
programs. But when the algorithms are converted to hardware, it goes
through severe optimizations that will make it more hardware efficient. It is
very common to provide the same input data to both the golden C model and
the RTL model. The RTL is verified by comparing its output with that of the
C model. In this section, SVA is used to produce the golden results
dynamically during a simulation and compared with the results from RTL.

4.2.1 WHT Algorithm

The WHT algorithm is an 8x8 matrix multiplication. In image
compression applications, data is processed one block at a time. Each block
is an 8x8 matrix, or in other words, 64 data points. The objective is to
perform a matrix multiplication between 2 matrices, each of size 8x8, to
produce the end result, an 8x8 matrix. Due to the repetitive nature of the
matrix multiplication, this can be achieved one block at a time. The WH
matrix is defined as follows. Since the matrix without the scaling factor
consists of +1 and ~1, the transform operation consists simply of addition
and subtraction.

WHT [8][8] =
{
{17 15 1’ 1, 1, 1: 17 1}:
{13 1, 13 17'1,'15'13'1},
{1’ 1a_15_1a'1’_1’ 17 1}7
{13 1a'1"17 la 19-17'1}’
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4.2.2 WHT Hardware implementation

In hardware, the WHT algorithm can be optimized to reduce the number
of additions and subtractions performed. This is achieved by exploiting the
redundant additions and subtractions performed on the same set of data.
Each arithmetic block is optimized to perform a 1x8 by 8x8 matrix
multiplication. In other words, one row of data (8 data points) is processed at
a time. The simplified arithmetic unit performs 3 stages of addition and
subtraction to produce one row of output data. Figure 4-2 shows the block
diagram of the hardware implementation of the WHT algorithm.

Assume D1, D2, D3, D4, D5, D6, D7 and D8 form a row of data. Now
this row of data has to be processed through the WHT matrix. The equations
of the three stages of optimized arithmetic operations can be listed as
follows.

Stage 1
Y1=D1+D2,Y2=D3+D4,Y3=DS5+ D6, Y4 =D7+ DS,
Y5=D1+D4,Y6=D5+D8,Y7=D2+D3, Y8 =D6+ D7,
Y9=D1+D3,Y10=D6+D8, Y11 =D2 +D4,Y12=D5 + D7
Stage 2

Z1=Y1+Y2,722=Y3+Y4,23=Y1 +Y4,24=Y2 +Y3,
Z5=Y1+Y3,26=Y2+Y4,Z7=Y5+Y6,28=Y7+Y8,
29=Y5+Y8,Z210=Y7+Y6,Z11=Y9 + Y10,
Z12=Y11+Y12,Z13=Y9+Y12,7Z14=Y11 + Y10

Stage 3

X1=2Z21+72,X2=2721-72,X3=23~-74,X4=175-76,
X5=27-78,X6'=29-210,X7=2711-212,X8 =713 - Z14

X1, X2, X3, X4, X5, X6, X7 and X8 form a row of processed output
data.
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Figure 4-2. WHT hardware block diagram
4.2.3 SVA Checker for WHT block

To functionally verify this block, a checker does not have to know the
internal implementation details of this block. A checker should be able to
produce the golden result and compare it with the design data. The golden
data can be produced within the SVA checker by simply performing a matrix
multiplication. This data can then be compared with the output of the WHT
block. Figure 4-3 shows a simple checker configuration for the WHT block.

It is very common to register the outputs of such combination blocks to
obtain the most stable data. A checker can be written using the enable signal
of the register as the trigger. The results produced within the checker should
be compared with the original registered output of the WHT arithmetic
block. A sample SV A checker is shown in Example 4.2.
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Figure 4-3. WHT checker configuration

Example 4.2 SVA Checker for WHT block

module au_comp_ chk (
input logic clk, reset, enablel, enable2,
input logic signed [15:0]
di, d2, d3, 44, d5, de, d7, ds,
input logic signed [15:0]
ol, o2, o3, o4, o5, o6, 07, 08

logic signed [15:0] in_locall[0:7]:
logic signed [15:0] out orig[0:7];
logic signed [15:0] out_locall[0:7];

integer i, k;

integer wh_localf[0:7]1(0:7] =
{

{p, 1, 2,1, 2, 1, 1,
{1, 1, 12, 1,-1,-1,-1,~
{1, 1,-1,-1,-1,-1, 1,
{1, 1,-1,-21, 1, 1,
{L,-1,-1, 1, 1,-1,-1,
{1,-1,-2, 1,-1, 1, 1,-
{1,-1, 1,-1,-1, 1,-1,

1
l_l
]
H PR R RRPe

et Nt e S et e
-
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{11_11 l/'l/

}i

always@ (ol,
begin
out_origl[0] <= ol;

02, 03,

out_origl[l] <= 02;
out_origl2] <= 03;
out_origl3] <= o4;
out_origl4] <= 05;
out_origl5] <= o06;
out_origlée]l <= o07;
out_origl7] <= 08;
end
always@(dl, d2, d3,
begin
for (i=0; i<8; i++)
begin

out_localli] <=
(di*wh_locall[il [0])
(d3*wh_local[i] [2])
(d5*wh_locallil [4])
(d7*wh_localli] [6])

end
end

genvar j;
generate

for (§=0; j<8; J++)
begin loop

a_au_comp_chk o
assert property
(@ (posedge clk)

(reset &&enable2)
(out_locall[jl

i,-1, 1,-1}

04, o5, 06, O8)

d4, d5, de6, d7, ds)

+ (d2*wh locall[il [1]) +
+ (d4*wh_local[i] [31])

+ (dé*wh_local([il [5])

+ (d8*wh_local[il [7]1) ;

| ->
== out_orig[j] )):

173
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end
endgenerate
endmodule

bind au_comp au_comp_chk al

(clk, reset, enablel, enable2, dl1, d2, d3, d4,
ds, de, 47, d8, ol, o2, o3, o4, o5, o6, o7,
o8);

reset T

clk Jhnnnnnnnnnnanannnnnnnniy

out_origl0] N ) W S WU [ WS I — 1
it . 5o0a 0387 417 0304 0355 Ml 1

out_local{0] o [ 417 936¢ %5 T

loop[0).a_au_comp_chk_0 L (R 1 td P £ T O O |

Figure 4-4. Waveform for WHT checker

The checker calculates the expected output locally and puts the results in
an array named “out_local.” The original output data from the design is also
stored in an array named “out_orig.” The checker creates an array of
properties to verify the 8 data points by using the “generate” statement. The
special variable “genvar,” allows the use of a “for loop” to create 8 separate
properties to verify each one of the data points simultaneously. The property
is asserted when the enable signal is high and the design is not in reset. Each
property will compare the respective output data, “out local” and
“out_orig.” If they are not equal, the assertion fails. Figure 4-4 shows the
results from the first data point in the array.

4.3 Sample Design — A JPEG based data-path design

In this section, verification of a sample JPEG model is discussed. The
design block is part of a JPEG encoder wherein data is read from memory
and transformed using certain arithmetic algorithms. The transformed data is
then stored in a memory for package and transmission.

There are three main modules in the JPEG model - the data feeder, the
data path and the data control modules. The top level block diagram of the
JPEG model is shown in Figure 4-5. Details of each module are provided
below:
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e The data control module helps with the hand shaking process with
the memories and also generates control signals for the data path and
data feeder modules to process the data.

o The data feeder module reads a block of data at a time from the
memory and provides it to the data path module to process.

e The data path module performs the arithmetic operation on the block
of data and stores it in memory.

PIfal:; lajpy  Datapath (Arithmetic module)
eeder

Memory ) btefppe] Memoory

Data Control Block

Figure 4-5. Block diagram of JPEG model

4.3.1 A closer look at the individual modules
Data feeder module

Figure 4-6 shows a block diagram of the data feeder module. This
module consists of two modules, a serial in parallel out module (STPO) and a
parallel in parallel out module (PIPO). The SIPO reads in one 16-bit data at
a time and provides 64 16-bit data in parallel as output.

When enabled (sipo_enable), the SIPO will start pushing the input data
into the shift registers. Once we have 64 data samples, the SIPO will be
disabled and the PIPO will latch the valid data out. The latched data is used
by the datapath module for further processing. The data control block
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generates the enable signals for the SIPO and PIPO. Figure 4-7 shows a
sample waveform that shows the functionality of the data feeder module.

clock
reset
sipo_enable
pipo_enable

data_in

etk

reset
data_in
sipv_enable
pipo_enahle
data_putl
data_out6d

L data_outl

I Data Feeder

| . data out64

Figure 4-6. Data feeder block diagram
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Figure 4-7. Waveform for Data feeder module

Data path module

The data path module takes in 64 16-bit data at a time and performs
certain arithmetic operations on them. The process extends over multiple
cycles to accommodate the completion of all operations. A multi-level
pipeline is used to accomplish this task. Figure 4-8 shows a block diagram of
the pipeline used to perform the arithmetic operations.

The data path is a simple latch based pipeline design. The data goes
through four stages of processing, transforml, transpose, transform2 and
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quantization. After each stage of processing, the stable values are latched to
the next stage by using a PIPO. The PIPO is a latch that is controlled by the
enable signals generated by the data control module. Each module gets 2
clock cycles to complete their process. In other words, the data control
module generates 4 enable signals at an interval of 2 clock cycles that are
used to latch the stable data from the output of each stage. Figure 4-9 shows
the relationship between the control signals of the pipeline.

Data path module

Transform L PIPO Transpose| FIPO [Transform2 FIPO Quantization FIPO

Data Control module

Figure 4-8. Block diagram showing details of the pipeline
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reset .
stagel_enable m

stagel_enable ﬂ

staged_enable ﬂ

1

staged_enable

Figure 4-9. Waveform for pipeline control

Data control module

The data control module is a simple finite state machine (FSM). It
produces the control signals required to keep the data moving along the
pipeline smoothly. Figure 4-10 is a sample block diagram of the data control
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module and Figure 4-11 is a waveform showing the generation of the control
signals.

The data control module generates the control signals for the data feeder
and the data path modules. The state machine starts operating once it gets a
“get_data” signal from outside. This kicks off the counters to generate the
“read” signal for the memory and also the “read_address.” It helps read 64
valid data every time.

clock " " read

reset — [———————— read_address

get_data — [ sipo_enable
Data control block {———————» pipo_enable

——————» stagel_enable
—— , stage2_enable
— > stage3_enable
—————— stage4_enable
————— write

|-+ done_frame

Figure 4-10. Block diagram for data control block

Once 64 valid data is read, the “read” is disabled and the enable signals
for the pipeline are generated sequentially. After the data is processed
through the 4 stages of pipeline, the “write” signal is generated to store the
processed data into a memory model. After the “write,” a fresh set of 64 data
is read from the memory. This process continues until all the data is read
from the memory. In the sample JPEG design used, the memory can hold
262144 bytes (equivalent to a 512 X 512 image). This means that the control
signal generation is repeated 4096 (262144/64) times to finish the processing
of all data points. After completing all blocks, the control block asserts the
“done_frame” signal and immediately the “get_data” signal is de-asserted.
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Figure 4-11. Waveform for control block

What needs to be verified?

e The validity of the data flow control signals. Are they generated
correctly according to the timing requirements?

e Is the data path working correctly, is it producing valid output data
to be stored in the memory?

4.3.2 SVA Checkers for the JPEG design

Based on the description of the design, the following list of checkers
needs to be written to verify the design thoroughly.

JPEG _chkl: “get data” and “done frame” signals are mutually
exclusive.

The design starts reading data from the memory when the “get_data”
signal is asserted. While acquiring and processing data, “done_frame” signal
should be held low. When all data has been processed, the design asserts the
“done_frame” signal and de-asserts the “get_data” signal. Hence, these two
signals can never be asserted at the same time.

property p_mutex;
@ (posedge clk) ((reset ) |->
not (done_frame && get_data)):;
endproperty
a_mutex: assert property(p mutex);
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This is a mutually exclusive condition and can be written easily with a
“not” operator. The “not” operator states that the test expression can never
be true. The checker kicks off on every positive edge of the clock. The result
of the checker “a_mutex” is shown in Figure 4-12.

ek A

reset

get_data 3

done_frame 3

a_mutex U e e e

Figure 4-12. Waveform for JPEG_chk1

JPEG_chk2: The “read” signal is held high for 64 cycles continuously
and during this period, the “read address’ is incremented by one in every

clock cycle.

The sample design processes 64 data points at a time, which means that,
a burst read is done for 64 cycles to get all the data that need to be processed.
By verifying the above statement, we prove that we read a unique data on

each of the 64 clock cycles.

sequence s_read;
(rd_addr == $past (rd_addr)+1) [*0:$] ##1
$fell (xd);

endsequence

property p_ read;
@ (posedge clk)
(($rose (rd) && reset ) |->
s_read) ;

endproperty
a_read: assert property(p_read);

The read address is checked for the increment by using the $past
operator. The value of “rd_addr” in the current clock cycle should be the
value in the previous clock cycle incremented by 1. This checking is done
from the rising edge of the read signal ($rose (rd)) until the falling edge of
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the read signal ($fell (rd)). The “repeat until [*0:$]” operator is used to
check the validity of the address (until the “rd” signal is de-asserted). The
result of the check “a read” is shown in Figure 4-13. Every time there is a
rising edge on the read signal, a valid match on the property is shown. The
property itself will be active for several clock cycles but the match is
indicated only once in the results and this is the point where the property
begins to become active.

etk

rd i E ! l

rd_addr it!tti!liiilttﬂitilm!lt!illitilimtilEimi%ftlimlmfulillli!!ltmttiﬂtilﬁltti!!lgl I
a_read i : i ;

Figure 4-13. Waveform for JPEG_chk2

JPEG_chk3: The “sipo_en” is held high for 64 cycles during the read
cycle and then disabled, 2 cycles later the “pipo_en” signal is asserted to
latch the data that will be processed by the datapath module.

The data feeder module depends on the “sipo_en” and the “pipo_en”
signals to provide the valid data to the datapath module. This checker
verifies the functionality of the data feeder module.

sequence s_datafeeder;
sipo_en[*64] ##1 $fell (sipo_en) #i#1l
latch_en ##1 1latch_en;
endsequence

property p_datafeeder;

@(posedge clk) ($rose (sipo_en) && reset_ ) |->
s_datafeeder;
endproperty

a_datafeeder: assert property(p datafeeder);

A simple repeat operator (*) is used to monitor whether the “sipo_en”
signal is held high for 64 clock cycles. Once the “sipo_en” signal goes
down, a “latch_en” pulse is asserted. The result of the check “a_datafeeder”
is shown in Figure 4-14.
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Figure 4-14. Waveform for JPEG_chk3

The sequence “s_datafeeder” can also be written as follows.

sequence s_datafeeder;
##64 $fell (sipo_en) #i#2
latch _en ##1 latch_en;
endsequence

In this description of “s_datafeeder,” the falling edge of “sipo_en” is
checked after 64 clock cycles and it does not guarantee that “sipo_en” was
held high during these 64 clock cycles.

JPEG_chk4: In the datapath module, each stage is enabled with a gap of
2 clock cycles.

Every stage in the data path has 2 clock cycles to provide the stable value
for the next stage. The signals “dpl_enable,” “dp2_enable,” “dp3_enable”
and “dp4_enable” help latch the stable data at each stage and they are
asserted in a sequence of 2 clock cycle gaps. This makes sure that the data
flow is happening correctly.

sequence s_control;
dpl en ##1 !dpl_en ##1 dp2_en ##1 1dp2_en ##1l
dp3 _en ##1 !dp3_en ##1 dp4_en ##1 !dp4_en ##1
wr ##1 !wr;
endsequence

property p_control;

@(posedge clk) $fell (latch_en) |=> s_control;
endproperty
a_control: assert property(p_control);

Each enable signal for the PIPO is a pulse of one clock cycle and they are
generated 2 clock cycles apart. The sequence “s_control” monitors the rise
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and fall of each one of these control signals in a simple sequential
concatenation method. The sequence starts when the data is loaded into the
data path module (latch en). An implication operator (|->) is used to
indicate that the falling edge of the signal “latch_en” is the gating condition
for the rest of the sequence to be tested. The sequence ends when the data
has passed through the data path and the processed data has been written into
the memory (wr).

JPEG_chkS: From the rising edge of “get data” to the falling edge of
“get_data,” sequences “s_datafeeder” and “s_control” are repeated 4096
times unless the design is reset.

This guarantees that all data has been processed in the correct order. This
is also used as a functional coverage check to make sure that all data from

the memory has been processed.

property p control all;

@(posedge clk) ($rose (sipo_en) && reset ) |[->
s_datafeeder ##1 s_control;
endproperty

property p block;
@(posedge clk)
$fell (get_data) && $rose(done_frame)
(block == 4095);

->

endproperty

a_control_all: assert property(p control_all);
c_control_ all:
cover property(p_control all)block++;

a_block: assert property(p_block);

To make sure that the entire sequence repeats 4096 times to process all
the data points, the checks JPEG_chk3 and JPEG_chk4 should be
concatenated. The property p_control_all will start when the data is read
from the memory (sipo_en) and will end when the processed data has been
written to the output memory (wr). A “cover” statement can be declared for
the property p_control all that will provide information on how many times
the property really succeeded and how many times it succeeded vacuously.
If there is a real success, the variable “block” 1s incremented by one each
time. The number of real successes should equal 4095. The property a_block
uses this variable to verify that all blocks of data have been verified. If the
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“done_frame” signal has a rising edge and on the same clock cycle if the
“get_data” signal has a falling edge, that indicates that the last block of data
is being processed and at this point the variable “block” should indicate a
value of 4095. The result of the check “a_control” is shown in Figure 4-15.
The result of the check “a_block” is shown in Figure 4-16.

etk

reset

sipo_en L.__..__] L_._..jg
1
N
f
1
I

fateh_en ﬁ
dpl_en n
dp?_en ﬂ
dp3_en ﬂ
dpd_en R

wy

a_contrsl

Figure 4-15. Waveform for JPEG_chk5

clk
done_frare

gel_daia i
block A

i
a block LT L LR O LA L

Figure 4-16. Waveform for check a_block

433 Data checking for the JPEG model

In Section 4.3.2, SVA checkers were written to verify that all the control
signals are generated correctly. This guarantees that the data is moving along
the pipeline smoothly. This does not check for data integrity. Each block in
the pipeline performs some transformation to the data and this needs to be
verified. A very common method used to verify the data is by dumping the
output to a file. This output file is later compared with the result produced by
the golden model as a post-process. While this method could work, it has a
few disadvantages:
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1. The simulation has to finish in order to compare the output with the
expected results. If the output is wrong, then a lot of simulation
cycles have been wasted.

2. This method is not very debug friendly since it does not say at which
stage of the pipeline the output data started failing. One simple way
to overcome this would be to dump the output of each and every
pipeline stage and do the comparisons. While this will help debug, it
will still waste simulation cycles as mentioned before..

A more efficient way to do the data checking will be to do the
comparison dynamically. This can be accomplished in several ways and
each user has to decide which one is good for his or her simulation
environment. Since the data checking is a repetitive process, the dynamic
comparisons can be shut down after a few data packets have been verified.
In other words, a goal can be set to gain confidence on the dynamic data
checking process and once the goal is attained, these checkers can be shut
down, hence improving simulation throughput.

Possible steps for dynamic data checking of JPEG model:

Simulate the golden C model that will produce results for each
pipeline stage as shown in Figure 4-17. While it is not always
easy to match the RTL pipeline stages with that of the golden C
model, it is also not impossible.

Generate the following output data files from the golden C model
of the JPEG design before simulating the actual RTL - Whl.dat
(output of transform1), Xpose.dat (output of transpose), Wh2.dat
(output of transform1), Quantize.dat (output of quantization).
Use the same input data file on the RTL to perform data
checking.

Create a generic checker that can load the golden results into the
simulation environment and then compare them dynamically as
the RTL simulates, as shown in Figure 4-18. As the simulation
proceeds, at the relevant trigger points, the checker will compare
the golden results with the design results and report any failures.
A sample data checker is shown in Example 4.3.
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[ Stagel _golden_ output

Golden C ——— Stagel golden_output
en

Input data —* ——» Stage3_golden_output
model l————» Staged_golden_output

Figure 4-17. Golden output from C model

Input data ——> A pipeline stage » Output data

Generic SVA

Golden pipeline ]
stage result Checker

Compare results

Comparison
Succeed/Fail

Figure 4-18. Dynamic Pipeline checker

Example 4.3 SVA checker for data-path verification

module dp_chk(
input logic reset, clk, enable,
input logic [15:0]
di, 42, d3, .., del, d62, de3, d64);
parameter data file = "";
parameter identity = "";
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integer i=0, j=0;
integer blk=0;
integer f£d, £dl;

logic [31:0] pix_in_temp;
logic [15:0] local arrayl[0:631;
logic [15:0] pix in [0:262143];

// use $fopen construct to open the golden
// results file

initial

begin

fd = $fopen(data file, "r");
end

// copy design data to a local array

always@(*)

begin

local_array[0] <= di;
local_arrayl[l] <= d2;
local_arrayl[2] <= d3;

local_arrayl[62] <= dé63;
local arrayl[63] <= dé4;
end

// load actual results

always@ (negedge enable)
begin
if (reset)
$display
("\nDATA CHECKING: Block number %0d\n", blk);
for (j=0; j<64; Jj++)
begin
fdl = $fscanf(fd, " %x", pix _inl[jl);
end
blk++;
end
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// compare results

genvar k;

generate

for (k=0; k<64; k++)

begin: dchk

a_dp_chk: assert property(

@(posedge clk) (reset && $fell(enable)) |=>
(pix_inlk] == local arraylkl)) else $fatal;
end
endgenerate
endmodule

// check that data is put into blocks of 64
correctly

bind data_feeder dp_ chk
#(.data_file("input image.dat"),
.identity ("INPUT")) dpchkl

(reset , clk, latch en, g0, gl, ....,
g6l, 962, g63);

// check that the output of first wh transform is
// correct

bind datapath dp_chk

#(.data_file("whl.dat"), .identity("WH1"))
dpchk2

reset, clk, dp_enablel,
dwll,dwl2,...,dwlel,dwlé62,dwle3,dwle4) ;

// check that the transposed data is correct

bind datapath dp_chk
#(.data_file("xposed.dat"),
.identity ("TRANSPOSE")) dpchk3
(reset, clk, dp enable2, dwltl, dwlt2, ...,
dwltel, dwlté62, dwlté3, dwlte4);

// check that the output of the second wh
// transform is correct
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bind datapath dp_chk
#(.data file("wh2.dat"), .identity("WH2"))
dpchk4
(reset, clk, dp enable3, dwltwll, dwltwl2, ...,
dwltwl63, dwltwlé4) ;

// check that the output of quantization is
// correct

bind datapath dp_chk
#(.data_file("quantized.dat"),
.identity ("QUANTIZATION")) dpchk5
(reset, clk, dp enable4,
dol,do2,...do62,do63,d064) ;

Example 4.3 shows a generic SVA datapath checker and how it is bound
to the various stages of the pipeline design.

e The checker defines 2 parameters that help identify the checker
to be a unique one. The parameter “data_file” defines which
golden file should be used by a specific instance of the checker.
The parameter “identity” defines which section of the data path
the checker is bound to.

e The golden data is stored in a file. This data file is opened for
reading purpose using the $fopen construct.

e On trigger (the enable signal), the actual design outputs are
stored in the checker locally (local_array). Note that the datapath
processes 64 data points at a time and hence, only 64 data points
should be read from the golden file on a trigger. A variable is
incremented by 1 on each trigger to document which block of the
image is being verified currently.

e Using a “generate” statement, 64 checkers are created, one for
each data point. The “for” loop helps loop around and check all
64 data points on every trigger.

e The action block of the assert statement uses a $fatal construct.
This instructs the simulator to exit the simulation if there is a
violation. This prevents running the simulation unnecessarily
after finding mismatches.

e The checker can be connected to specific points of the data path
by using the “bind” construct. By defining the parameters
relevant to each point, each checker becomes a unique instance.
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A sample simulation log is shown below.

DATA CHECKING: Block number 1
"adv_datapath.sva", 118:
tb.jpeg int.datapath_inst.dpchk5.dchk[0] .a_dp_ch
k: started at 795s failed at 805s
Offending '(pix_in[0] == local_arrayl[0])"
"adv_datapath.sva", 118:
Fatal: "adv_datapath.sva", 118:
tb.jpeg_int.datapath_inst.dpchk5.dchk[0].a _dp chk
at time 805

Note that the failure is coming from the instance of the checker attached
to the “QUANTIZATION” module (instance dpchk5) of the data path. The
failure clearly points out the time of failure and which data of the block
failed. For example, in the above log, data point 0 of Block 1 failed.

While this is one way to perform dynamic data checking, this might not
be suitable for all designs. Each design is different and they have different
specifications and requirements. This method can be used as a model to
derive a methodology suitable for a specific design.

4.4 Summary for data intensive designs

e SVA provides the capability to perform arithmetic operations
and is capable of using most SystemVerilog data types.

e By using Verilog tasks and functions, data checking can be
automated and functional coverage information-on the design can
be obtained.

e Dynamic SVA checkers for data path uses the simulation cycles
wisely and does not wait until the end of the simulation to find
about design problems. The checkers also make debugging easy
by pointing to the exact area of failure.
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SVA FOR MEMORIES

Memory controller protocol

Computers and consumer electronic devices have huge amount of
memory to store multimedia application data. In the ASIC world, almost all
the chips that are being designed today use embedded memory (DRAM,
SRAM, ROM, etc.). As the memory access time is becoming faster and
faster, it becomes very essential that the end product work with multiple
memory vendors and with different timing requirements. The major
bottleneck in the verification of memory controller interface is the timing of
the control signals. This can be effectively done using assertions. The
assertions written for a particular type of memory device can be re-used with
multiple vendors just by modifying the timing parameters. This chapter
discusses developing reusable SVA checkers for different types of memory
devices.

5.1 Sample System — Memory controller

The sample system has a CPU that interfaces with a memory controller.
The CPU can read and write data to the various memories connected to the
memory controller. The memory controller can interface to different type of
memories such as SDRAM, DDR-SDRAM, SRAM, Flash, ROM, etc. The
block diagram for the sample system is shown in Figure 5-1.

511 CPU - AHB Interface Operation
The CPU is a generic processor that uses the AHB bus interface to

interact with the memory controller. The CPU generates the read/write
commands. The CPU also generates the chip select signals for selecting the
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memory with which the read/write operation will be performed. It supports
both separate and shared memory address/data busses to SDRAM and static
memories. It supports the AHB data width of 32, 64 or 128 bits. It also
supports the AHB 32bit wide address bus.

Memory

AU Controller [ 1| SRAM

FLASH

Figure 5-1. System block diagram

Figure 5-2 shows the signal interface between the CPU-AHB bus

interface and the memory controller. A brief description of the pins is listed
below.

hclk — clock generated by the CPU

haddr — read/write address generated by the CPU
hwdata — write data generated by the CPU

hrdata — read data to the CPU from the memory
hready — ready signal from CPU

hready resp — memory acknowledge signal for hready
hsize — configures the size of the data transfer from CPU to memory
o 00 — 128 bits of data transfer at a time

e 01 — 64 bits of data transfer

e 10 — 32 bits of data transfer

hburst — defines how the memory address is accessed
¢ 000 - single — one single memory location

¢ 001 — INCR - Increments address 0x40, 0x44 ...
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¢ 010 — WRAP4 -~ Wraps address in 4 word boundaries (0x48, Oxdc,
0x40 0x44)

¢ 011 — INCR4 - Increments address by 4 words from the current
address

e 100 - WRAPS8 — Wraps address in 8 word boundaries

e 101 — INCRS — Increments address in 8 word blocks

e 110 - WRAP16 — Wraps address in 16 word boundaries

e 111 —- INCR16 — Increments address in 16 word blocks

e sel_mem, sel_reg — select whether to do transaction with the external
memories or the registers

helk R
haddr "

hsize
hwdata

htrans

AHB BFM ready

Memory
Controller

¥y vy vyvxy

hready_rebp
hresp

hrdata

Figure 5-2. CPU block diagram

Figure 5-3 shows the waveform of a CPU write transaction to the
memory controller. The CPU initiates a write transaction to the memory
controller at marker 1. The size (hsize) is set to “10” and hence the data
transaction is 32 bits wide. The burst (hburst) is set to “010” and hence the
burst type is WRAP4. Based on the burst type, the address access will be
0x0, 0x4, 0x8 and Oxc. Hence, the write transaction of size 32 bits and of
type WRAP4 is initiated at marker 1. The figure shows that the address is
incrementing from 80000000 to 8000000c and the data on “hwdata” is being
written to the SDRAM.
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clk o L |
reset
addr [ *00003¢_{*00D060 [ 000004 | *00G008 [ *00000c | *000D0D | 80000004
size 1o 010
burst 001]010 010
hwdata FEEEFERE] *000000 [*111111 [*282292 [33333333
hwrite |
hready |
hready_resp
hrdata i[* | EFEEERET | 00MI6000
1

Figure 5-3. CPU-AHB write

clk LT LT L LT L1
reset
addr B0000004] HO0G0008 | 6000000: | 60000010 | 600D
Size Ri] ik} [HU]

burst | [1 1.1

hwdata EEFEeE THEFFFEL FHEFEH
hwrite
hready |

hready resp |
hrdata HEEEE] (0oibpo0 [ I0Inn | guwmwm | mBnEs | e

2

Figure 5-4. CPU-AHB read

Figure 5-4 shows the waveform of a CPU read transaction to the memory
controller. A read transaction of size 32 bits and type WRAP4 is initiated at
marker 2 when the “ready” and “ready_response” signals are asserted. The
figure shows that the same data that was written is being read.

51.2 Memory controller operation

The memory controller in the sample system interfaces to the SDRAM,
SRAM and Synchronous Flash devices. A block diagram of the connection
is shown in Figure 5-5.
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SDRAM Interface

The memory controller interface to the SDRAM is generic. The interface
is fully synchronous and all signals are registered on the positive edge of the
clock. Read and write access to the SDRAM is burst oriented and they start
at the address specified by the AHB bus and continue for a programmed
number of locations. The connection from the memory controller to the
SDRAM is direct and has no glue. It supports 16 SDRAM address bits. It
also has programmable row and column address widths. All the SDRAM
timing parameters are programmable. It supports auto-refresh with
programmable refresh intervals.

| I SDRAM

Adde o

Memory Controller SRAM

Flash

Figure 5-5. Memory Controller Block Diagram

A brief description of the pin connections between the SDRAM and the
memory controller is listed below.

e clk ~clock input to SDRAM
e ras_ - selects the row address
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cas_ - selects the column address

we_ — when asserted write signal, when de-asserted read signal
sel_— when asserted SDRAM is selected

data — bi-directional data bus for both reads and writes

addr — read/write address

bank_sel — selects a particular bank of SDRAM

A sample waveform for a write command issued by the memory
controller is shown in Figure 5-6. A burst write of length four is written and
read back. An active command (ras and chip select are asserted) is issued
and then a write command (cas, we, and sel are asserted) is issued to the
address 0x0000. Figure 5-6 shows that the data is written with a burst length
of 4 to the memory at marker 1. Figure 5-7 shows a burst read command
issued by the memory controller. The data is read out of the memory (marker
1) after a “cas” latency of two clock cycles.

clk LT L L L I LI
ras_
cas_ I L
we_ |
sel_ f L
data B - wode | LU | memm | nnER L
addr 000 £000
bank_sel D 0

1

Figure 5-6. SDRAM write operation

clk 1
ras_
cas_ B
we_
sel_
data T
addr

bank_sel

R B Rl e |
L o

0 ]

Figure 5-7. SDRAM read operation
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SRAM/FLASH Interface

The SRAM/FLASH memories are static memories and the interfaces are
similar. The memory controller supports asynchronous SRAMs, page-mode
flashes and ROMs. The address width can be configured up to 32 bits. It also
has the “ready” handshake signal to support non-SRAM type devices. The
memory data width can be configured to 8 bits, 16 bits, 32 bits, 64 bits or
128 bits. The static memory data width can be a minimum of 8 bits instead
of the 16 bits standard requirement. The flash memory used in the sample
system is write protected, so that the important system information is
protected in the boot block.

A brief description of the pin connections between the SRAM and the
memory controller is listed below:

addr — address pins to the static memories from memory controller
data — data to/from the static memories to the memory controller
sel_ — chip select pins to select the corresponding static memory
we_ — write when asserted

oe_ — output enable asserted during read

bs_ — byte control pins to enable different data widths

The interface for flash is similar to SRAM except that it has two more
signals:

s wp_ — write protect pin
e rp_-—reset power down pin

Figure 5-8 shows a sample waveform for the interface between the
memory controller and the SRAM. When signals “we_” and “sel " are
asserted (marker 1), a write is done to the SRAM. Similarly, when signals
“sel ” and “oe_” are asserted (marker 2) and signal “we_” is de-asserted, a
read is done from the SRAM. Figure 5-9 shows a sample waveform for the
interface between the memory controller and the flash memory. The figure
shows a burst read from the flash device. When signals “sel ” and “oe_” are
asserted, a read operation from the address specified in the address bus
(addr) 1s performed.

’
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Figure 5-8. SRAM interface signals
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Figure 5-9. Flash interface signals

SDRAM Verification

This section will discuss how to verify the SDRAM control signals.
There are a lot of timing parameters for SDRAM device and assertion based
verification can be used effectively to verify that these timing requirements
are not violated. The sample system uses the following SDRAM

configuration.

512Mb SDRAM - 8M X 16bit X 4 bank
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The 512Mb SDRAM under verification is a quad bank SDRAM and
includes a synchronous interface. All signals are registered on the positive
edge of the clock. Each of the 4 banks is organized as 8192 rows X 1024
columns X 16 bits. Read and write access to the SDRAM is burst oriented.
The access starts at a selected location and continues for a programmed
number of locations. Read/Write access always begins with an active
command followed by a read/write command. The address bit corresponding
to the active command denotes the row address and the bank that is selected.
A0-All denotes the address and BA[1:0} denotes the bank that is being
accessed. The address bits corresponding to the read/write command denote
the starting column address (denoted by A0-A7).

The different combinations of the SDRAM interface signals sel , ras ,
cas_ and we_ constitute the different commands. All the SDRAM
commands are summarized in Table 5-1. The “Command Inhibit” condition
prevents the SDRAM from executing the new commands, regardless of
whether the clock signal is enabled or not. Operations already in progress
will not get affected (sel_ =1, cas_, ras_, we_ =Xx).

clk
ras_
cas_
we_
sel_
data L) [l ]
addr u [ i 2]
bank_sel [} ] ]

A
|

Figure 5-10. Load Mode Register/Active command

e No Operation: This prevents unwanted commands from being
registered in idle/wait state (sel_ =0, cas_, ras_, we_=1).

o Load Mode Register: The register is loaded through the address bus
(A0-A11). The Load mode register is issued only when all the banks are
idle (sel , cas_, ras , we_ = 0). Figure 5-10 shows a “load mode register”
operation at marker 1 and an “active” operation at marker 2.
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e Active: This command is issued to activate/open a row for access. The

value on the address bus is the value of the row and the value on the
bank_address bus specifies the bank (sel , ras =03 cas_, we_=1).

Table 5-1. SDRAM Commands

Command Ras Cas We Sel
No Operation H H H L
Active L H H L
Read H L H L
Write H L L L
Burst Terminate H H L L
Load L L L L
Mode Register
Precharge L H L L
Auto-Refresh L L H L
ok Ny g
ras
cas_ | | -
we_  —
sel_ .
data ~H oo | i | e | 00000
addr ) ] "
bank_sel ] g i

1 2

Figure 5-11. SDRAM read/write

e Read: This command is issued to do a burst read to an active row. The
address provided on the bus “addr” provides the starting column address
(set ,cas_=0,ras_we_=1).

o  Write: This command is issued to initiate a burst write access to an open
row. The address on the bus “addr” provides the starting column address
(sel_, cas_, we_ = 0, ras_=1). Figure 5-11 shows a simple SDRAM
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read/write operation. A burst write is performed with a burst size of 4 at
marker 1. A burst read to the same address location is done at marker 2.

e Precharge: Precharge is used to de-activate the rows (sel , ras_, we =
0, cas_=1). If during precharge the addr[10] bit is set to 1, then all the
rows in the banks are de-activated.

o Auto-refresh: This command is issued in the normal operation of the
SDRAM. This command must be issued every time a refresh is required.
All active banks must be precharged prior to issuing an auto-refresh.

o Burst Terminate: A burst terminate command is used to terminate a
burst read or a burst write command.

clk . L L I
ras_ T
cas_ [
we_ |
sel_ e R
data 10000000
addr R
bank_sel 8 !

1 2

Figure 5-12. Precharge / Auto-refresh

Figure 5-12 shows the precharge command at marker 1 and auto-refresh
command at marker 2.

A read/write operation to a SDRAM can be performed once the steps
summarized in Figure 5-13 are completed. The description of the steps is as
follows:

1. Initialization — once power is applied, SDRAM requires ~100us to
initialize before any command can be issued.

2. Once the initialization is completed, one NOP/COMMAND
INHIBIT is applied.

3. Then a precharge command is issued and all the rows are de-
activated.

4. A Refresh command is i1ssued after precharge.
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5. Mode register is loaded (set the “cas” latency, burst size and other
configurations).

6. Active command is issued (to activate the rows).

7. Read/Write command is issued.

v

Load Mode register

Initialize for 100us

l

NOP/Command
Inhibit Active
. |
Precharge Read/Write
Refresh

Figure 5-13. SDRAM operation flow chart
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521 SDRAM Assertions

All the SDRAM commands like read, write, burst terminate, active,
precharge, load mode register, etc. are derived from the four signals ras |,
cas_, sel_ and write enable. Hence, all of these signals should be defined
using ‘defines. These definitions can be re-used in the SVA checkers
wherever necessary.

“define s_precharge
(Iras_n && !sel n[0] && lwe n && cas_n)

“define s _read
(ras. n && !sel_nl[0] && we n && lcas_n &&
(burst == 3'b000))

“define s _burst_read
(ras_n && !sel n[0] && we n && lcas n &&
(burst != 3'b000))

“define s_write
(ras_n && !sel_n[0] && !we_n && !cas_n)

“define s_autorefresh
(!ras n && !cas n && !sel n[0] && we n)

“define s_loadmoderegister
(fras_n && l!lcas_n && !sel ni0] && !we_n)

“define s_active
(!ras n && !sel n[0] && cas_n && we_n)

“define s write :
(!cas_ n && !we n && !sel n[0] && ras n &&
(burst == 3'b000))

“define s_burst_ write
(lcas_n && lwe_n && !sel ni0] && ras_n &&
{burst = 3'b000))

Some of the possible SVA checkers extracted based on the functionality
of the SDRAM are shown below. The timing parameters used in these
checkers specific to the SDRAM under consideration is listed in Table 5-2.
Some of the timing parameters are specified in clock cycles and others in
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nanoseconds (ns). For the values specified in nanoseconds, the number of
clock cycles is dependent on the clock cycle period (tCK). In this sample
design the value of tCK is 10ns. Hence, the number of clock cycles is
derived based on the value of the clock period and the value of the timing
parameter provided in the specification of the SDRAM as shown below.

For example, tRCD=18ns
tRCD/tCK = 1.8 clock cycles

Hence, the timing window between an active command and a read/write
command should be at least 2 clock cycles.

Table 5-2. Timing parameters for SDRAM

Parameter Symbol Min Max

Load mode register to active tMRD 4 cycles 4 cycles

Active to Active Command period tRC 6 cycles (60ns) -

Active to Read/Write tRCD 2 cycles (18ns) -

Read latency tCAS 2 cycles -

Auto Refresh period tRFC 6 cycles (60ns) -

Precharge Command period tRP 2 cycles (18ns) -

Active Bank a to Active Bank b tRRD 2 cycles (12ns) -

Active to Precharge command tRAS 5 cycles (42ns) 12000 cycles
(120000ns)

SDRAM_ chkl: Load mode register to active command (tMRD).

The load mode register is used to load the mode register of the SDRAM
with information on how the device is configured. Once the SDRAM is
configured an active command should arrive in “tMRD” (4 clock cycles).
Figure 5-14 shows that the load mode register command is sampled at
marker 1 and four clock cycles later active command is sampled (marker 2),
as expected. Hence, the check a_tMRD succeeds.

property p_tMRD;
@(posedge clk)
“s_loadmoderegister |-»>
##[tMRD] “s_active;
endproperty
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a_tMRD: assert property(p tMRD);
C_tMRD: cover property{(p tMRD);

clk T 1
ras_
cas_
we_
sel_
data 0 00000000
addr 000
a_tMRD |

= i

[

g
g

-
b
b

1|}
il

p
A
i

Figure 5-14. Load mode register to Active command, tMRD

SDRAM_chk2: Check the value of load mode register (022).

This assertion is used to check the value written into the mode register.
This value is important as it determines the burst size and “cas” latency.
When the load mode register command is issued, the value on the address
bus is written into the load mode register. Bits [0:2] specify the burst size
and the burst size is set to 4 (100). The “cas” latency value is set to 2. To set
these parameters, the register has to be written with 0x0022.

Figure 5-14 shows a load mode register command being issued by the
memory controller at marker 1. At this point, the address bus has a value of
0x0022. Hence, the check a_loadmoderegister succeeds.

property p_loadmoderegister;
@(posedge clk)
(*s_loadmoderegister) |->
(addr == 16'h0022);

endproperty
a_loadmoderegister:

assert property(p_ loadmoderegister) ;
c_loadmoderegister:

cover property(p locadmoderegister);

SDRAM_chk3: tCAS, read data is available with a latency of tCAS after
the read command is issued.
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In the sample SDRAM memory, whenever a read command is issued, the
data is available after the “cas” latency (Column Address Select Latency).
This is programmed in the mode register based on the memory vendor.
Figure 5-15 shows that a read command is sampled at marker 1. After tCAS
cycles, the data is valid as shown by marker 2. To verify this property,
implication construct and $isunknown construct are used.

property p_ read;
@ (posedge clk)
(*s_read || “s_burst_read) |->
##tCAS ($isunknowndata) == 0);
endproperty

a_read: assert property(p read);
¢_read: cover property(p_ read);

clk j‘”‘lf‘“ﬂ(‘"‘”’?ﬁé’[
ras

cas_ ] ;

we_

sel_ ] ;

data R ERRECE] *0000)0
addr 000 i
a_read l | (1) |

g 2

Figure 5-15. SDRAM read with tCAS latency

SDRAM _chk4: tRCD, after an active command, read/write can occur
only after tRCD.

If the memory controller has issued an active command, then the read or
write command cannot be issued within “tRCD” cycles. In the sample
system used, once an active command is issued, a read/write command
should be issued within 10 clock cycles. There are two specific conditions
that need to be tested:
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1. Once the active command is issued a read/write command does
not occur within “tRCD” (this is a forbidden property).
2. Once the active command is issued, the read/write command must
be issued within 10 clock cycles.
clk e I S R e
ras_
cas_ ] -
we_ j__
sel_ I s B
data 0000 0001040 -—
addr 0000 000
a_RCD ! | | (1) I |

Figure 5-16. Active to Read/Write command, tRCD

property p_tRCD not;
@ (posedge clk)
“s_active |-> not ##[0: (tRCD - 1)]
(*s_read || “s_write || “s_burst read
I| ~s_burst write);
endproperty

property p tRCD;
@ (posedge clk)

“s_active |->
##[tRCD:10] ("s_read || ‘“s_write
s burst read || “s_burst write);
endproperty

a_tRCD _not: assert property (p_tRCD):;
a_tRCD: assert property (p_tRCD);

c¢_tRCD not: cover property (p_tRCD);
c_tRCD: cover property (p_tRCD);

Figure 5-16 shows that the active command is sampled at marker 1

. The

write command is sampled 2 cycles after the active command at marker 2.

Hence, the check a_tRCD is successful.
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SDRAM_ chkS: tRC, active to active command cannot come within tRC.

If an active command is issued, the controller cannot issue another active
command within “tRC” (6 clock cycles). In the sample system used, if an
active command is issued, then the next active command should be issued
within 12000 clock cycles.

property p tRC not;
@(posedge clk)
“g_active |->
not ##[1: (tRC - 1)] “s_active;
endproperty

property p_ tRC;
@ (posedge clk)
“s_active |-»>
##[tRC:12000] “s_active;
endproperty

a_tRC_not: assert property (p_tRC_not);
a_tRC: assert property (p_tRC):;
c_tRC_not: cover property (p_tRC_not);
C_tRC: cover property (p_tRC);

clk O 0 S
ras_ R
cas_ § ;

L

L L
we_ 3 R L
sel_ 1 1 1
data 10064000 LdBGRMEE [ oeeRR
addr 00067 om0 [ 0he0 | GeOr | ooed | om
a_tRC | |
1

Figure 5-17. Active to Active command, tRC

Figure 5-17 shows the first active command with marker 1. The next
active command arrives after 11,625 clock cycles (not shown in the figure)
and hence the check a_tRC is successful.
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SDRAM_chké: tRFC, auto-refresh to auto-refresh cannot come within
tRFC.

This property is similar to the previous property, in that the window
between consecutive auto-refresh commands should be greater than tRFC. In
the sample system used, if an auto-refresh command is issued then the next
auto-refresh command should be issued within 12000 clock cycles.

property p tRFC_not;
@(posedge clk)
“s_autorefresh |->
not ##[1: (tRFC-1)] "“s_autorefresh;
endproperty

property p_ tRFC;
@ (posedge clk)
“s_autorefresh |->
##[tRFC:12000] “s_autorefresh;
endproperty

a_tRFC not: assert property (p_tRFC_not);
a_tRFC: assert property (p_tRFC);

¢_tRFC_not: cover property (p tRFC_not);
c_tRFC: cover property (p tRFC);

clk ] ! oL LT LT
ras_ o % |
cas_ g §
we_ ]
sel_ _] | ;
data 14368487 1478487
addr TToww PR
a_tRFC l | | (1 |
\J 1

Figure 5-18. Auto-refresh to Auto-refresh command, tRFC

Figure 5-18 shows an auto-refresh command at marker 1. Another auto-
refresh command arrives after 9 cycles (not shown in the figure). As this
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window is greater than “tRFC” as required by the memory specification, the
assertion is successful.

SDRAM_ chk7: Write command can follow a read command only after
tCAS.

A write command cannot follow a read command immediately. By
definition, a read command has a “cas” latency of 2 cycles. So the write can
follow the read only after the “cas” latency window is satisfied.

property p_rd wr;
@ (posedge clk)
“s_read |->
not ##[0:£CAS] “s_write;
endproperty

a_rd wr: assert property (p_rd_wr):
c_rd_wr: cover property (p_rd wr);

SDRAM_ chk8: tRP, precharge to active command cannot be issued until
“tRP” is met.

The precharge command (de-activates the rows) to the active command
(enables the rows) cannot happen within the “tRP” (2 cycles) window. In the
sample system used, if a precharge command is issued, then an active
command should be issued within 12000 clock cycles.

property p_ tRP not;
@(posedge clk)
“s_precharge |->
not ##[0:(tRP -~ 1)1 ~s_active;
endproperty

property p_ tRP;
@ (posedge clk)
“s precharge |[->
##[tRP:12000] “s_active;
endproperty

a_tRP not: assert property (p_tRP not);
a _tRP: assert property (p_tRP);

c_trp _not: assert property (p_tRP_not);
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c_trp: assert property (p_ tRP);

clk Joo_ ] [

ras_ I —

cas_ L

we_ | 1

sel_ | 1 —

data _ A :

addr BGG]_ 0400 000D

a_tRP I l 1'5)1 % ! l

Figure 5-19. Precharge to Active command, tRP

Figure 5-19 shows a precharge occurring at marker 1. An active
command is issued within 12000 cycles (not shown in figure) and hence the

assertion is successful at marker 1.

SDRAM_chk9: tRAS, active to precharge must occur between tRASmin

(5 clock cycles) to tRASmax (12000 clock cycles).

The active command (enables the rows) to the precharge command (de-
activates the rows) cannot happen within the “tRASmin” cycles and should

happen within “tRASmax” cycles.

property p tRAS not;
@(posedge clk)
“s_active |->
not ##I[0:
endproperty

(tRAS min - 1)]

property p_Tras;
@ (posedge clk)
“s_active |->
##[tRAS_min:tRAS_max]
endproperty

“s_precharge;

“s_precharge;

a_tRAS not: assert property (p_tRAS not):

a_tRAS: assert property (p_tRAS);
¢_tRAS: cover property (p_tRAS);
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¢_tRAS_not: cover property (p_tRAS not);

SDRAM_chk10: Back to back writes are not allowed.
property p_wr_wr;
@ (posedge clk)
“s_write |->
not ##1 “s_write;
endproperty

a_wr_wr: assert property (p_wr_wr);
C_wr_wr: cover property (p_wr wr);

SDRAM_ chk11: Check if auto-precharge is disabled during read/write
operations.

Most of the SDRAM today can be precharged automatically by setting
the addr[10] bit to a high during read/write operations. This assertion is
written using implications and logical operation on the command definitions.

property p disable_autoprecharge;
@ (posedge clk)

(*s_write || “s_burst_write ||
“s_read || “s_burst_read) |->

addr [10] == O;
endproperty

a_disable_autoprecharge:
assert property(p disable autoprecharge);

Figure 5-20 shows the waveform for disabling auto-precharge during
read/write commands.
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clk — L | [
]

ras

-

cas_
we_ S P N F—
sel_ : | ™
data : [ i
addr : 060 e !
a_disable_aut -
oprecharge

s,
——
N
J———
o
S

Figure 5-20. Disabling Auto-precharge

A write command is sampled at marker 1 and corresponding to the write,
the addr{10] is 0. Similarly, when a read command is in progress (marker 2),
the addr([10] is set to O.

SDRAM_chk12: tRRD, minimum time interval between active
commands to different banks is defined by tRRD (2 cycles).

Usually there are multiple banks in the SDRAM. There is a minimum
time interval that is required between issuing active commands to different
banks. The current system under verification has four banks.

property p_ tRRD;
@ (posedge clk)
("s_active && bank_addr[1:0] == 0) |->
not ##[0: tRRD] (°"s_active &&
bank addr[1:0] != 0));
endproperty

a_tRRD: assert property(p tRRD);
c_tRRD: cover property (p_tRRD);

This check verifies that if an active command is issued to bank 0, then an
active command cannot be issued to other banks (1, 2, 3) within “tRRD.”
The same check has to be repeated for banks 1, 2 and 3 respectively. This
can be done easily with a generate statement and a “for” loop as shown
below.

genvar j;
generate
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for (j=0; Jj<4; Jj++)
begin:loop
a_generate: assert property(@(posedge clk)
("s_active && bank_addr[1:0] == j)
| -> not ##[1: tRRD] (“s_active &&
(bank _addr[1:0] != j)));
c_generate: cover property(@(posedge clk)
{*s_active && bank_addr[1:0] == j)
| -> not ##[1: tRRD] ( s_active &&
(bank_addr[1:0] != j))):
end
endgenerate

SDRAM_chk13: If “data_size” is 128, then check the mask operation.

The CPU-AHB bus can define the data size and write to the memory in
128 bits, 64 bits or 32 bits. The most commonly used data size is 32 bits. But
when 128/64 bits are used, the mask bits are used to write the data in 32-bit
chunks to the same address.

property p_ xferl28;
@ (posedge clk)

((size == 0) && ((dgm[0] == 0 && ( s_write
|| “s_burst _write))) |->
##2 ($fell (dgmll]) && addr == $past (addr, 2)
&&
(*s_write || s_burst_write))
##1 $rose (dgm(1l)
##1 ($fell (dgml[2]) && addr == $past (addr, 2)
&& (*s_write || s_burst_write))
##1 $rose (dgqml2])
##1 ($fell (dgml3]) && addr == $past (addr, 2)
&& (“s_write || s_burst_write))
##1 $rose (dqml3]));
endproperty

a_xferl28: assert property(p_xferl28):;
c_xferl28: cover property(p xferl2s8);

Figure 5-21 shows the 128-bit data transfer. Data is written in 4 chunks
of 32 bits to the same address location. Marker 1 shows the first 32 bits of
data being written to address 0x0021 and marker 2 shows the fourth chunk
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of 32 bits of data being written to address 0x0021. Mask Bits dqm([3:0] are
used to control the data that is being written to the memory.

When the data transfer size is 32, all the bits of the vector
dqm[3:0] are set to 0.
If the data transfer size is 64, data is transferred in two chunks of
32 bits. When the first chunk of 32-bit data 1s transferred,
dqm[1:0] is set to 0. When the second chunk of 32-bit data is
transferred, dqm[3:2] is set to 0.
For 128-bit transfers, when dqm][0] is set to 0, the first 32 bits of
data is written to the memory and when dqm[1] is asserted, the
second 32 bits of data is written to the memory. Similarly, when
dqm[2] and dqm[3] are set to 0, the third and fourth chunks of 32
bits of data are written to the memory respectively.

8 N O S O [ U D OO O [N N O O A O g
.| i ] { | ] | |
o i I 1 ] 1 | 1 |
- i ] i 1 f N
- e e i crde Tl £ - - 5{‘535“& |

L et | sbel | okRdl
"””WmlWW“[W‘WWT“WWWY”WM e | we

T T

Figure 5-21. 128-bit data transfer

SDRAM_chk14: If “data_size” is 64, each read/write operation takes 2

cycles.

This property is similar to the previous one. The data is written in two
chunks of 32 bits. When dgm[0] == 0 and dqm|1] == 0, the first chunk of 32
bits of data is written. When dgm|[2] == 0 and dgm[3] == 0, the second
chunk of 32 bits of data is written.

Figure 5-22 shows the 64-bit data transfer. The first 32 bits of data is
written to address 0x0103 and mask signals 0 and 1 are set to O (marker 1).
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The second chunk of data is written to the same address
signals 2 and 3 are set to 0 (marker 2).

property p xferé4;

Chapter 5

0x0103 and mask

@ (posedge clk) ((size == 1) && ((dgm[l:0] == 0
&&(s_write || s_burst_write))) |->
##2 ($fell (dgm[2] && dgm[3]) && addr == $past
(addr, 2) && ("s_write || s_burst_write))
##1 $rose (dgml[3] && dqm[2]));
Endproperty
a_xfer64: assert property(p xferé64);
c_xfer64: cover ©property(p xfer64);
clk ] 1 | | | 1 | f
ras_
cas_ ] ] | I [
we [ !
sel_ | | |
data TRI5 ! SEHEROLE ] i
addr 1 I nm [ [L3] I 0% 0060 i
dam{3} | I
dam(2] ‘
dqmi1] I L
dgmi0] I | I
hburst ‘::; ‘:ﬁl
hsize e
a_xfert4 ‘ ‘:\9 1 l 5 1

Figure 5-22. 64-bit data transfer

SDRAM_chk15: Read/write terminated by a burst terminate.

A burst terminate command is used to terminate a burst read/write
command. So, if a burst terminate command is issued, the previous cycle

must be a burst read/write operation.

property p_wr_rd burstterminate;
@(posedge clk) (g burstterminate) |-»>
$past ((“s_burst write || “s_write ||
“s_burst_read), 1);

endproperty

“s_read ||
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p_wr_rd burstterminate:

assert property(p_wr_rd burstterminate);
c_wr_rd_burstterminate:

cover property(p wr_rd burstterminate) ;

SDRAM_cover_chkl: Write terminated by a burst terminate.

There are some scenarios and properties that should be covered as part of
the verification. For example, in the property (p_wr_rd_burstterminate), if a
“burst terminate” command is issued, the previous command should be a
“burst write” or a “burst read” command. But in the result of the check there
is no classification on which specific command (read/write) was terminated
by the “burst terminate” command, since all possible legal conditions have
been combined with the logical OR operator. In order to obtain this kind of
scenario information, the property is split and cover statements are written.

A separate property is written to check if the “burst write” was
terminated using burst terminate. If this property is asserted, there might be
failures because “burst terminate” command can be issued for terminating
“burst read” also. Hence, for collecting coverage information on scenarios,
there is no need to declare assert statements.

property p wr_burstterminate;
@ (posedge clk)

(s_burstterminate) |->
$past (("s_burst_write || “s_write), 1);
endproperty

¢_wr_burstterminate:
cover property(p_wr_burstterminate) ;
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clk J L L l L )

ras_ _

cas_ L LI

we_ ]

sel_ | [

data | eoecenee | HHHH e

addr w0l 0800 -

c_wr_terminate | | | (1) |
1 2

Figure 5-23. Burst write to Burst terminate command

Figure 5-23 shows a write command sampled at marker 1 and a burst
terminate command sampled at marker 2. The cover statement is successful
since the previous cycle of the burst terminate was a burst write command.

SDRAM_ cover_chk2: Read terminated by a burst terminate.

The read command can be terminated by the “burst terminate” command
similar to the previous check. This assertion checks that if in the current
cycle a burst terminate command is issued than the previous cycles is a
read/burst read.

Figure 5-24 shows a read command (marker 1) terminated by the “burst
terminate” command (marker 2). But since there is “cas” latency to the read
command, the data for the terminated read will be available two cycles later
from when the read command was issued, as shown by marker 3. Until the
data is available, no other command can be issued.

property p_rd burstterminate;

@(posedge clk) (s _burstterminate) |->
$past (( s_burst read || “s_read),
1);
endproperty

c_rd _burstterminate:
cover property(p rd burstterminate) ;
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clk [

ras_

cas_ 1 !
we_ [ S |
sel_ ]

data 0000000} N oo I
[17]

addr L]
c_rd_terminate ___| I | 1 I

Figure 5-24. Read to Burst terminate

SDRAM_ cover_chk3: Write terminated by a read.

The write command can be terminated by a read command. If a write
command is in progress and a read command is issued, the write is
immediately aborted. Once again, there is no need to assert this property.
The write command can either be terminated by other ways or can be
followed by any other command. Hence, asserting this property might
produce unnecessary failures.

Figure 5-25 shows that a write command (marker 1) is being terminated
by the read command (marker 2) and the read command is terminated by the
burst terminate command. The burst size in this example is 4 and both the
read/write operations are being terminated after just one write/read transfer.

property p_wr_rdterminate;
@(posedge clk) ( s_write ||

s _burst_write) ##1 (“s_read || “s_burst_read);
endproperty

c_wr_rdterminate
cover property(p wr rdterminate);



220 Chapter 5

clk ] i i -
ras_
cas_ ""} ]
we_ o I p— r‘
sel_
data j““———*‘m—w :
addr o ' .
C_Wr_ T
redterminate N >

1

Figure 5-25. Write terminated by a Read command

5.3 SRAM/FLASH Verification

e SRAM (static RAM) is a type of memory that holds data without
external refresh as long as it is powered.

e SRAM:s are a lot faster than SDRAMS.

e SRAMSs are expensive and take more space/area.

The verification of an SRAM/FLASH is very simple as there are no
complex refresh mechanisms. When the “write” and “chip select” signals are
asserted, the data is written in the memory starting from the location
specified in the address bus. Similarly, when chip select is asserted, write
enable is de-asserted and output enable is asserted, the data is read out of the
memory. In the sample system, data cannot be written to the flash, since
write protect signal is always asserted. The sample system uses these static
memories. '

SRAM : 256K X 16bit high speed Static RAM
FLASH: 128Mbit flash (16Mbytes)
The timing parameters of the SRAM used in the sample system are

shown in Table 5-3. The timing parameters of the Flash used in the sample
system are shown in Table 5-4.
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Table 5-3. Timing parameters for SRAM
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Parameter Symbol Min Max
Write Cycle Time tWC 1 cycle (10ns) -
Write Pulse Width tWP 2 cycle (20ns) -
Read Cycle Time tRC 1 cycle (10ns) -
Chip Select to output tCO 1 cycle (10ns) -
Address Access time tAA 1 cycle (10ns) -
Table 5-4. Timing parameters for Flash memory

Parameter Symbol Min Max
Read/Write Cycle time tAVAV 15 cycles (150ns) -
Chip select to Output Delay  tELQV - 15 cycles

(150ns)
Page Address Access time tAPA - 3 cycles
(25ns)

5.3.1 SRAM/FLASH Assertions

SRAM_chkl: Write cycle time, tWC.

The SRAM write cycle time should be greater than the “tWC” mentioned
in the specification. The write cycle time is the time in which the address is
stable and in which the chip select and write enable signals are asserted.

To implement this assertion, the S$stable system function and the
implication operator are used. The $stable function makes sure that the
value of the address in the current clock cycle is the same as the previous

cycle.

property p_tWC;

@ (posedge clk)

($fell (we_n) && !sel _n[2]1) |=>
$stable(addr([22:0]);

endproperty

a tWC: assert property(p_tWC);

c_tWC: cover property(p_ tWC);
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clk

sel_
addr
we

oe

data
dout_vid
bs
a_twC

Chapter 5
| L I
000001 | 800002 000002 | 000003
| SEHEH R TEE AT 00002
f H
0

Figure 5-26. Write wycle time, tWC

g
0
1

Figure 5-26 shows that a write command is sampled at marker 1 and the
assertion succeeds at marker 2, since the address is stable for at least one
clock cycle from when the write was issued.

SRAM_chk2: Write enable pulse width, tWP.

This check verifies that the write pulse width is always greater than the
minimum specified in the specification (2 cycles). Figure 5-27 shows that
the falling edge of write (marker 1) and the rising edge of write (marker 2)
are sampled 2 cycles apart.

property p_ tWP;
@(posedge clk)

$fell

| ->

##CWP $rose
endproperty

(we_n);

a_tWP: assert property(p tWP);
c_tWP: cover property(p tWP);
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clk e
sel
addr g0 bono. eton][obotez
we 1 ] }
oe
data AT O i THTHEREAIIE
dout_vid 1
bs ] i
a_twp 1 O] s s i

1 2

Figure 5-27. Write pulse width, tWP

SRAM_chk3: tRC - read cycle time.

This is similar to the write cycle time check. The read cycle time is the
time in which the address is stable and in which the chip select and output
enable are asserted. Figure 5-28 shows that chip select and output enable are
asserted at marker 1. The address value is the same at both marker 1 and

marker 2.

property p tRC;

@ (posedge clk)

(tsel n[2] && we n && loe n) |=>
($stable (addr));

endproperty

a_tRC: assert property(p_tRC):;
¢_tRC: cover property(p_ tRC);
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olk 1T 1 L ]
sel_ '_“]

addr 1000101000000 000000 000001

we

oe _—_]

data | A | HEEECEE 00000 | *EExwmmnns | *EEEEEE
dout_vid flo N ]

a_iRC
1 2

Figure 5-28. Read cycle time, tRC

SRAM_chk4: tCO - chip select to output data valid.

The parameter “tCO” is the minimum time that chip select has to be
asserted before data becomes valid. Figure 5-29 shows that the chip select
and output enable are asserted at marker 1. In the same clock cycle, the data
value is “x.” One cycle later, the data value is valid (marker 2).

property p_tCoO;

@ (posedge clk)

(!sel nf2] &% we n && !oe_n &&
($isunknown (data))) |=>

($isunknown (data))==0;
endproperty

a_tCO: assert property(p tCO);
c_tCO: cover property(p tCO);

SRAM_chk5: tAA - Valid address to valid data.

The parameter “tAA” is the minimum time for which address has to be
valid before data becomes valid. Figure 5-30 shows that a read command is
sampled at marker 1. The address in this clock cycle should be stable in the
next clock cycle and the data should be valid as shown by marker 2.
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clk

sel_
addr

we

oe

data
dout_vid
bs
a_tCo

clk
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addr
we
oe
data

dout_vid
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a_tAA

225

I I —

000003 | 000804 000004{ 000005

HHEEHHEEEHEAI3033) [+ bouooon | MEEEEEEEEECLEEERAMA | M

0 0

[ [}

| ()

1 2

Figure 5-29. Chip Select to valid data, tCO

000010]000600 006000 00001
1
]‘ffffffmxmx[ CEEFHEEECECFEEECTEA0 0000000 I*ffﬁﬁxx
£ 0
£]0 i
| (1)
~1 2

Figure 5-30. Valid address to Valid data, tAA

property p_ tAA;
@(posedge clk) (!sel nl[2] && we_n && l!oe_n)

((addr == $past (addr,1)) ##0
($isunknown (data))==0);

endproperty

|=>
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a_tAA: assert property(p tAA);
C_tAA: cover property(p tAA);

FLASH_Chkl: Flash is write protected.

The flash memory used in the sample system is write protected. It is
necessary to make sure that the write protect signal (wp_) is always asserted
when the chip select for flash is enabled.

property p_write protect;
@(posedge clk)
(tsel n[3]) |->
wp_n == 0;
endproperty

a_write protect:

assert property (p_write_protect);
c_write_protect:

cover property (p_write protect);

FLASH_chk2: Complete read cycle time (tAVAV).

The minimum read cycle time as mentioned in the Table 5-4 is
tAVAV(1S5 clock cycles). In the sample system used, the read cycle time
cannot be more than 900 clock cycles. Hence, two checks are written to
verify both the minimum and maximum timing requirements.

property p_ tAVAV not;
@(posedge clk)
(tsel n[3] && $fall(oce_n)) |->
not ##[0:15] $rose (oe_n);
endproperty

property p tAVAV;
@(posedge clk)
(tsel ni3] && $fell (oce n)) |->
##[16:900] $rose (oe_n);
endproperty

a_tAVAV: assert property(p tAVAV);
a_tAVAV_not: assert property (p_tAVAV_ not)

~.

¢_tAVAV: cover property(p tAVAV);
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c_tAVAV_ not: cover property(p_ tAVAV not);
FLASH_chk3: CS/ADDR to valid data is tELQV.

The minimum time that the chip select and address should be stable

before data is valid is specified by “tELQV” (15 clock cycles). Figure 5-31
shows that the signal “sel” is asserted at marker 1. After 15 cycles, the first

data is valid as denoted by marker 2.

property p_ tELQV;

@ (posedge clk)

(toe_n && $fell (sel n[3])) |->

##14 $isunknown (data) ##1 ($isunknown
endproperty

a_tELQV: assert property(p_ tELQV);
c_tELQV: cover property(p_ tELQV);
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(data)==0) ;

=]

addr

3 [000000 000000 | 00000 | 000002 | 000003
oe_ ’ :

we_
sel_
data
a_teLQv

I
1

1
1
13

by

3 4 4

L L L]
a_tAPA HEERERNRNNRNRANRREAANERENENAE
atAvVAV. LI LT

|
|
l

!

I

1
Y

1 2

Figure 5-31. Flash waveform for tELQV, tAPA, tAVAV

FLASH_chk4: ADDR to valid data, tAPA.

The parameter tAPA (3 cycles) is the minimum time that the address is

required to be stable before data is valid. This is true for only the subsequent
reads of the burst read and not the first read in a burst.
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Figure 5-32 shows a burst read command. In a burst read, when the
address changes, a new data should be read within tAPA. The change in
address from “000000” to “000001” is sampled at marker 1. At this point,
the data is unknown and 3 clock cycles later a valid data is sampled, as
shown by marker 2.

sequence s_data_trans;

(1sel n[3] && loe_n && ($stable (addr)==0) &&
$stable (ce_n)) ##0 $isunknown (data)

##3 $isunknown (data)==0;

endsequence

property p tAPA;
@(posedge clk)

s_data_trans |->
$stable (addr) ;
endproperty

a_tAPA: assert property(p_tAPA);
c_tAPA: cover property(p tAPA);

clk Ty
addr 100000 100001 000
oe

data X 1000 T M1 Praonex |11 || b0
we

dout_vid ] b

sel

a_tAPA [ A [ ] P

1 2

Figure 5-32. Flash waveform for tAPA
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5.4 DDR-SDRAM Verification

Double Data Rate Synchronous Dynamic Random Access Memory
(DDR-SDRAM) is a type of memory that is similar to Synchronous DRAM
but has a higher bandwidth. Data is written and read at both the rising and
falling edge of the clock, doubling the speed. The operations are similar to
that of the SDRAM. The DDR-SDRAM used in the sample system has the
following configuration.

DDR-SDRAM: 4Mword x 16bit x 4bank

The read and burst read operation in the DDR-SDRAM is the same as
that of the SDRAM. The burst read command is issued by asserting “sel_”
and “cas_” while holding “ras_” and “we_" high. The address inputs
determine the starting address of the burst. The first data is available after
the “cas” latency after the read command (which is 2 cycles, based on the
DDR-SDRAM specifications), and the subsequent data are presented on the
rising and falling edges of the signal “dqs” (data strobe).

»

The burst write command is issued by asserting “sel_,” “cas_,” “we_”
and de-asserting “ras_” on the rising edge of the clock (clk). There is a
latency of 1 clock cycle for the signal “dqgs” to arrive. There is no latency
relative to the signal “dgs” for a write command.

5.4.1 DDR-SDRAM Assertions
DDR_Chk1: Burst Read operation for DDR memories.

In the DDR memory there are multiple clocks. Data transfer and read are
done on clock “clk2x” which samples data on both edges. Most of the
checks written for SDRAM can be reused for a DDR-SDRAM. New checks
have to be written wherever the control signals are crossing clock domains.

The keyword matched is used to synchronize signals across multiple
clock domains in SVA. In this assertion, the signals cas_, ras_, we_ and sel_
are being generated by clock “clk.” The data is read at the negative edge of
clock “clk2x.” In this case, we have to use the matched construct to
synchronize the read sequence from one clock domain to another.

sequence s_read;
@(posedge clk)
(ras_n && !sel n[0] && we_n && !cas_n);
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endsequence

property p_ read;

@(negedge clk2x) s_read.matched |->
##3 ($isunknown (data))

##1 ($isunknown (data) == 0);
endproperty

a_read: assert property(p_read);
c_read: cover property(p read);

clk g1 [
clk2x JU Uy
dgs L

rd_start —
cas_ L
ras_

sel i |

we_
data 00— ——
a_read AN
11\/2 3

Figure 5-33. DDR-SDRAM Burst read operation

Figure 5-33 shows that a read command is sampled at marker 1 (s_read)
based on the clock “clk.” The matched value of this sequence is sampled in
the next nearest negative edge of clock “clk2x,” as shown by marker 2. Data
is then read out with a CAS latency of 4 clock cycles (clk2x) denoted by
marker 3. A valid data is read on both edges of the signal “dqs” and the
signal “dqs” is generated based on clock (clk2x). Hence, the negative edge
of the clock (clk2x) is used to sample the data.

DDR_Chk2: Burst write operation on DDR memories.

sequence s_write;
@(posedge clk)
(ras_ n && !sel n[0] && !we_n && l!cas_n);
endseguence
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property p write;
@ (posedge clk2x)
|->  ##1

##1

endproperty

a_write: assert property(p_write);

($isunknown (data)
($isunknown (data)

s_write.matched

c_write: cover property(p write);

0)
0);
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Figure 5-34. DDR-SDRAM Burst write operation

Figure 5-34 shows a write command at marker 1 (based on clock (clk)).
The write command is synchronized to the positive edge of clk2x at marker
2. The positive edge of the clock (clk2x) is used for sampling in a write
command because the signal “dqgs” is generated based on the clock (clk2x).
The assertion is successful at marker 2 since data is being written into the
memory on both edges of the signal “dgs” (data strobe) as shown by marker

3 and marker 4.

3.5 Summary on SVA for Memories

e Assertions can be used effectively to verify the timing
requirements of memory devices.
o All timing information relevant to the memory device should be
parameterized. This way, the assertions developed for a
particular type of memory can be reused with similar memory
device from any other vendor.
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The assertions written for memories provide information on
specific scenario coverage. For example, was a write terminated
by a read/burst terminate, was a read terminated by a burst
terminate, was a back to back write performed, did a write
command follow a read command, did the tests cover different
data widths - 128/64/32 bits, etc. This helps increase the
verification confidence and also provides a measure for
verification completeness.
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SVA FOR PROTOCOL INTERFACE
SVA checkers for a sample PCI system

Compliance testing has become one of the major challenges in SOC
designs. It is very common for designs to support certain standard protocols.
For example, graphics applications might support a standard bus interface
such as PCI/PCIX, USB or IEEE 1394 Firewire. These bus interfaces help
the designs achieve higher bandwidth of data transmission and also provide
a standard method to connect multiple devices. Bus protocols are complex
and every device sitting on the bus should be compliant with a list of rules
specific to that protocol.

The verification environment built for testing these standard protocol
interfaces are often re-usable since the same set of rules applies to any
device that supports the specific interface. Verification engineers often
develop bus interface models (BIM) of the devices that support a specific
interface. The BIM need not replicate the detailed internal functionality of
the device. It just has to support the basic handshaking process that is
compliant with the specific interface. This helps the verification engineer to
create a sample system with the BIM and the Design Under Test (DUT).
Tests can be written to create transactions between the BIM and the DUT.
While running these tests, specific monitors are written to make sure that the
DUT is being absolutely compliant with the standard protocol. Most
verification environments create logs of the transactions as seen by the bus.
SVA can be used very effectively to create these bus protocol monitors. In
this chapter, a sample PCI system is used to demonstrate how SVA checkers
are created for a PCI compliant device.
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6.1 PCI — A Brief Introduction

The PCI local bus is a high performance, 32-bit or 64-bit bus with
multiplexed address and data lines. The bus is intended for use as an
interconnect mechanism between highly integrated peripheral controller
components, peripheral add-in boards and processor memory systems. A
sample PCI compliant device is shown in Figure 6-1.

Required pins optional pins
ad[31:0] Ar—]
c/be[3:0] ey | . 24[63:32]
par —— . €/bE[7:4]
framen -—— P CI paréd
rdyn -— req64n
irdyn D Compliant e ackédn
stopn - e, lockn
devseln - device |, intan
idsel —_ L, inthn
perrn - I » inten
serrn - —————— intdn
reqn -—

gnin —_— |

clk —
rsin B ——

Figure 6-1. PCI compliant device

A brief description of each pin is listed below.

ad[31:0] — the address bus, this has the information on the location to
which data is to be transferred or the location from which data should be
obtained. This also acts as the data bus.

c/be[3:0] — the command bus, contains one of the twelve commands
shown in Table 6-1. It also acts as the byte enable bus that defines which
bytes in the data bus are to be transferred.

par — a parity bit, even number of 1’s should appear on the ad, c/be and
par bits. The required value of the par bit is driven by the device one clock
cycle after the device drives the “ad” bus.



6. SVA FOR PROTOCOL INTERFACE 235

framen — frame signal, this is asserted by the master that wants to
perform a data transaction. When the frame is asserted, the master also
indicates the nature of the transaction by setting the appropriate command on
the “c/be” bus. The frame signal is de-asserted when the master is ready to
complete the final data transfer.

Table 6-1. PCI Bus commands

C/BE[3:0] Command type

0000 Interrupt Acknowledge
0001 Special cycle

0010 I/O Read

0011 I/O write

0100 Reserved

0101 Reserved

0110 Memory Read

0111 Memory Write

1000 Reserved

1001 Reserved

1010 Configuration Read
1011 Configuration Write
1100 Memory Read Multiple
1101 Dual Address cycle
1110 Memory Read Line
1111 Memory Write and Invalidate

trdyn — target ready signal, this is asserted by the target device that is
currently addressed by the master. By asserting this signal the target device
lets the master know that it is ready for a data transaction.

irdyn — master ready signal, this is asserted by the master that wants to
perform a data transaction.

stopn — stop signal, this is asserted by the target device if it wants to
terminate the current transaction. If the target asserts the stop signal without
performing any data phases, it is called a retry. If the target asserts the stop
signal after performing one or more data phases, it is called a disconnect.

devseln — device select signal, this is asserted by the target device if it is
selected. The target ready signal is asserted only after asserting this signal.

idsel — initialization device select signal, is used as a chip select during
PCI configuration read and write transactions.

permn — parity error signal, asserted one clock after a parity error is
identified either by the master or a target.

serrn — system error signal, it is an output of both master and target
devices. This is asserted only when something fatal occurs.

reqn — request signal, this is used by the master device to request the use
of the PCI bus.
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gntn — grant signal, this indicates that the PCI device has got the
permission to use the PCI bus.

ad[63:32} — upper 32 bits of the data bus, used for 64-bit transactions.

c/be[7:4] — acts as the byte enable bus that defines which of the bytes in
the upper data bus is to be transferred in a 64-bit transaction.

par64 — a parity bit, even number of 1’s should appear on the ad[63:32],
c/be[7:4] and par64 bits. The required value of the par64 bit is driven by the
device one clock cycle after the device drives the “ad” bus.

req64n — request signal, this is used by the master device to request the
use of the PCI bus for a 64-bit transaction.

ack64n — acknowledge pin, PCI target device acknowledges the 64-bit
transaction requested by the master device.

6.1.1 A sample PCI Read transaction

A read transaction is initiated by the master device. The master asserts
the “framen” signal and drives an address onto the “ad” bus. It also places a
read command on the “c/be” bus. The target device decodes the address and
identifies itself. Once it identifies itself, it asserts the “devseln” signal. The
master device continues asserting the “framen” signal, but stops driving the
address bus. It asserts the signal “irdyn” and also places the byte enable
command on the “c/be” bus. In response to this, the target device places the
first data on the data bus (ad) and also asserts the signal “trdyn” to
acknowledge that the data on the bus is valid. In a multiple data transaction,
it is the responsibility of the addressed target to increment the initial address
to point to the subsequent data locations.

During a transaction if the target device is not ready to place the next
data on the bus, it creates a wait state by de-asserting the signal “trdyn.” The
signal “devseln” will stay asserted and the data placed on the bus in the
previous transaction will stay. The master will read the data only if both
“trdyn” and “irdyn” are asserted. When the target is ready to transmit again
it will assert the signal “trdyn.” The master device indicates that the next
data read will be the last one in the current transaction by de-asserting the
signal “framen.” Once the last data is read, the master de-asserts the signal
“irdyn” and the target device de-asserts the “trdyn” and the “devseln” signals
respectively. If both the signals “irdyn” and “framen” are de-asserted, the
bus is said to be in an idle state. A waveform for a sample PCI read
transaction is shown in Figure 6-2.
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Figure 6-2. Sample PCI read transaction

Marker 1 shows the point where the master issues the read command
(0110) on the “c/be” bus. On the same cycle, the address bus also carries the
address for the target device. Marker 2 shows the point when the master
reads a valid data. Marker 3 shows that the target device de-asserts the
“trdy” signal indicating that it is not ready for the read transaction. Marker 4
indicates the last data phase since the signal “framen” is de-asserted. In the
next clock cycle, the signals “irdyn,” “trdyn” and “devseln” are all de-
asserted, indicating the completion of the transaction.

6.1.2 A sample PCI Write transaction

The master device initiates a write transaction. It asserts the signal
“framen” and drives an address onto the “ad” bus. It also places the write
command on the “c/be” bus. The target device identifies itself and asserts
the signals “devseln” and “trdyn.” The master continues to assert the
“framen” signal. The master places the data on the “ad” bus and also asserts
the signal “irdy” to let the target know that the data on the bus is valid. The
master also issues the command byte that identifies which bytes are to be
written on the same clock cycle. If the master is not ready to place the next
data on the bus, it can create a wait state by de-asserting the signal “irdyn.”
The master will drive the same data from the previous cycle during the wait
state. The master will de-assert the “framen” signal just before the last data
is ready to be written. Once all the data is written, the master de-asserts the
“irdyn” signal and then the target de-asserts the signals “trdyn” and
“devseln.” A waveform for a sample PCI write transaction is shown in
Figure 6-3.
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Figure 6-3. Sample PCI write transaction

Marker 1 shows the point where the master issues the write command
(0111) on the “c/be” bus. On the same cycle, the address bus also carries the
address for the target device. Marker 2 shows the point when the master
writes a valid data. Marker 3 shows that the target device de-asserts the
“trdy” signal indicating that it is not ready for the write transaction. In the
same clock cycle, the master device de-asserts the signal “framen” indicating
that this is the last data phase. Marker 4 shows that the signals “irdyn,”
“trdyn” and “devseln” are all de-asserted, indicating the completion of the
write transaction.

6.2 A sample PCI System

A sample PCI system used for illustration purpose is shown in Figure 6-4.
The figure shows that there are 2 PCI master devices and 2 PCI target
devices. A user could be designing a device that is expected to act as a PCI
master or a PCI target or both. One could use bus interface models for the
other three devices in the sample system to verify the DUT. There are three
specific scenarios for which SVA checkers could be written as part of the
verification plan. These three scenarios are discussed in the upcoming
sections.
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Target device 1 Target device 2
PCI LOCAL BUS
Master device 1 Master device 2

Figure 6-4. Sample PCI system

6.3 Scenario 1 — Master DUT Device

In this section, we assume that the design under test is a PCI master.
Based on the PCI local bus specification, the PCI master has to follow
certain protocol to be fully compliant. It is very common to write monitors
as part of the verification environment. These monitors make sure that the
DUT is not violating any of the protocol specifications.

The monitors can also produce detailed log files of all master transactions
for post-processing purpose. SVA can be used to define a generic set of
checkers that can be attached to any PCI master device. Since PCI is a
standard protocol, the checkers developed should be written in such a way
that it can be re-used with any PCI compliant master device. Figure 6-5
shows a sample configuration of the system.
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Target device ¥ Target device 2 Master device 2

PCILOCAL BUS

DUT SVA Checker

for Master
Master device DUT

Figure 6-5. Sample configuration for PCI Master device as the DUT

6.3.1 PCI Master assertions
In this section, we show a few sample SVA checkers that can be written
to verify the PCI master functionality. Some of the commonly used design

conditions are defined as follows to enable re-use.

“define s IO READ

($fell (framen) && (cxben[3:0] == 4'b0010))
“define s_JO_WRITE

($fell (framen) && (cxben[3:0] == 4'b0011))
“define s_MEM_READ

($fell (framen) && (cxbenf3:0] == 4'b0110))
“define s_MEM_WRITE

($fell (framen) && (cxben[3:0] == 4'b0111))
“define s_CONFIG_READ

($fell (framen) && (cxben[3:0] == 4'b1010))
“define s CONFIG_WRITE

($fell (framen) && (cxben[3:0] == 4'b1l011))
“define s_DUAL_ADDR_CYCLE

($fell (framen) && (cxben[3:0] == 4'b1101))
“define s_MEM_READ LINE

($fell (framen) && (cxben{3:0] == 4'b1110))

“define s_MEM WRITE_ INV
($fell (framen) && (cxben[3:0]

4'bl111))
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“define s_BUS_IDLE
(framen && irdyn)

Master_chkl: On a given clock cycle, “framen” cannot be de-asserted
unless “irdyn” stays asserted on the same clock cycle.

property p mchkl;
@ (posedge clk)

$rose (framen) |-> (irdyn == 0);
endproperty

a_mchkl: assert property(p mchkl);
c¢_mchkl: cover property(p_mchkl) ;

The master device asserts the signal “framen” during the last data phase.
Hence, the signal “irdyn” should stay asserted at this point. If not, this is a
violation. Figure 6-6 shows a sample waveform of this check in a simulation.
Markers 1, 2, 3, 4 and 5 show instances where there is a rising edge on the
“framen” signal and in all those clock edges, the signal “irdyn” was always
asserted. Hence, the checker succeeds.

ek TR

rstn

reqn SN R W B O D S
gutn [N R R S— R —
framen N L L LI
Irdyn [ S e I S ) S N
devseln [ S ) S N S O R D S
trdyn LU L] LU UL L
che{7:0] 8 o fll & (&6 ] a (I8 Ba/sio
addressidataf63:0] Sasa[[[[ 8] [ 1] P [*saba  [{[488 [] |18 ] [% [l [1]]%
a_rchid LU e e L

1 2 3 4 5

Figure 6-6. PCI Master checkl

Master_chk2: Once “framen” is de-asserted, it cannot be asserted during
the same transaction.
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property p mchk2;

@(posedge clk) $rose (framen) |->
framen[*1:8] ##0 S$rose (irdyn && trdyn);

endproperty

a_mchk2: assert property(p mchk2);
c¢_mchk2: cover property(p_mchk2);

B
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Figure 6-7. PCI Master check2

Once the signal “framen” is de-asserted, the master device has only one
more data phase left. But it can take more than just one cycle to complete the
last data phase. For example, if the target is not ready to accept the data, then
the master waits to finish the last data phase. Before the master completes
the last data phase, the frame cannot be asserted again. In other words, the
signals “irdyn” and “trdyn” have to be de-asserted first before asserting
“framen” again. Figure 6-7 shows a sample waveform of this check in a
simulation.

Marker 1 shows a success of the assertion. At this point, there is a rising
edge on the signal “frame” and hence the check becomes active. Note that in
the same clock cycle, the signal “trdyn” is de-asserted indicating that the
target is not ready to accept data. In the next clock cycle, both the signals
“trdyn” and “irdyn” are asserted and hence the last data phase is complete.
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One clock cycle, later the signals “irdyn” and “trdyn” are de-asserted.
Marker 2 also shows a success but in this case, when the rising edge of the
frame occurs, both the signals “irdyn” and “trdyn” are asserted and hence the
last data phase is completed. In the next clock cycle, the signals “irdyn” and
“trdyn” are de-asserted.

Master_chk3: Once “irdyn” is asserted, the master cannot change
“irdyn” or “framen” until the current data phase begins.

property p_mchk3;
@ (posedge clk)
$fell (irdyn) ##[0:5]

! (devseln) ##0 stopn | ->
(tixdyn ) [*0:16]1 ##0 !trdyn;
endproperty

a_mchk3: assert property(p_mchk3);
c¢_mchk3: cover property(p mchk3};

Once a master asserts the signal “irdyn,” it is expected that a valid data
phase begin within 16 clock cycles assuming there are no stop conditions
issued by the target device. The data phase begins when the target device
asserts the signal “trdyn.” From the point when signal “irdyn” is asserted,
assuming there are no stop conditions, the signal “irdyn” should be kept
asserted until the signal “trdyn” is asserted by the target device.

Figure 6-8 shows a sample waveform of this check in a simulation.
Marker 1 shows a success of the checker. The signal “irdy” and “devseln”
are asserted at this point. One cycle later “trdyn” is asserted and hence the
checker succeeds.

Marker 2 shows a condition wherein both signals “irdyn” and “devseln”
are asserted and 2 clock cycles later, the signal “trdyn” is asserted. The
signal “irdyn” stays asserted until the arrival of the “trdyn” signal and hence
the checker succeeds.
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Figure 6-8. PCI Master check3

Master_chk4: The master is required to assert “irdyn” within & cycles
from when the “framen” is asserted.

An intersect construct is used to control the length of the entire property.
If the consequent of the property does not succeed within 1 to 8 clock cycles,

the assertion will fail.

property p mchk4;

@ (posedge clk)
$fell (framen)

| ->

1[*1:8] intersect

($fell
endproperty

a_mchk4:
c_mchk4:

Master_chkS: Normal Termination, once “framen”

(framen) ##[1:38] S$fell(ixrdyn));

assert property(p mchk4);
cover property(p_mchk4);

is de-asserted, the

last data phase is completed within 8 clock cycles.

property p mchk5;

@ (posedge clk)
Srose (framen)

| ->
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(##[1:8] ($rose (irdyn && trdyn && devseln)));
endproperty

a_mchk5: assert property(p mchk5) ;
c_mchk5: cover property(p mchk5) ;

Master_chk6: Master Abort, “devseln” should be asserted within 5
cycles of “framen” being asserted. If “devseln” is not asserted within 5
cycles, then the “framen” should be de-asserted and one cycle later “irdyn”
should be de-asserted.

sequence s_mchké;
@(posedge clk)

$fell (framen) ##1 (devseln) [*5] ##0 framen;
endsequence

property p_mchké;
@(posedge clk)

s_mchké6.ended |-> ##1 $rose (irdyn):;
endproperty

a_mchk6: assert property(p mchké) ;
c_mchk6: cover property (p_mchké6) ;

Figure 6-9 shows a sample waveform of this check in a simulation.
Marker 1 shows the clock edge in which the signal “framen” is detected as
asserted. If the signal “devseln” does not arrive in the next 5 clock cycles,
then the master should abort this transaction. Marker 2 shows the clock edge
on which “devseln” failed to arrive and Marker 3 shows the next clock edge
wherein the master device de-asserts the signal “irdyn.” Since the property
starts when the sequence s_mchk6 ends successfully, marker 2 is the point
where the success is shown.
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Figure 6-9. PCI Master check6

Master_chk7: When master is aborted by a target either by retry or
disconnect, the master must de-assert its request before repeating the
transaction. The request should be de-asserted on the clock cycle when the
bus goes to the idle state and one clock cycle before or after the idle state.

sequence s_mchk7 before;
@ (posedge clk)

(1devseln && $fell (stopn) && trdyn)

##1 reqn ##1 “s_BUS_IDLE;
endsequence

sequence s_mchk7_after;
@ (posedge clk)

(tdevseln && $fell (stopn) && trdyn)

##1 !lregn ##1 “s_BUS_IDLE;
endsequence

property p_mchk7 before;
@ (posedge clk)
s_mchk7_before.ended |->
reqn;
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endproperty

property p_mchk7_after;
@ (posedge clk)
s_mchk7_after.ended |->
regn [*2];
endproperty

a_mchk7_before: assert property(p_mchk7_before);
a_mchk7_after: assert property(p _mchk7_after);

c_mchk7_before: cover property(p mchk7_before);
c_mchk7_after: cover property(p mchk7_after);
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Figure 6-10. PCI Master check7

This check needs two separate properties. The main requirement is that,
if the target device issues a stop condition, the master will have the “reqn”
signal de-asserted before requesting the bus again. The master device could
have de-asserted the signal “reqn” before the stop condition actually arrived.
In this case, it is verified that the signal “reqn” is de-asserted during the
clock cycle when the bus is idle and also that the signal “reqn” was de-
asserted in the previous clock cycle (p_mchk7_ before).
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If the master device did not de-assert the signal “reqn” before the arrival
of the stop condition, then it is verified that the signal “reqn” is de-asserted
during the bus idle cycle and also the next clock cycle (p_mchk7 after).
Note that the bus becomes idle 2 cycles after the target device asserts the
signal “stopn.” Figure 6-10 shows a sample waveform of this check in a
simulation.

Marker 1 shows the clock edge when the target device asserts the “stopn”
signal. Marker 2 shows the point when the bus becomes idle. Note that the
signal “reqn” is de-asserted at this clock cycle and also in the previous clock
cycle. Hence, the checker a_mchk7 before succeeds.

Master_chk8: When the target device terminates a transaction with a
retry command, the master must repeat the same transaction until it is
completed.

sequence s_mchk8a(templ) ;

@ (posedge clk)

(((tgntn || $rose (gntn))

&& $fell framen)),templ=cxben[3:0])
##[1:2] $fell(irdyn) ##I[0:5] $fell(stopn)
&& $fell (devseln) && trdyn;

endsequence

sequence s_mchk8b (temp2) ;

@ (posedge clk)

$fell (reqn) ##[0:100] !gntn
##[0:5]1 $fell (framen)

##0 ((cxben[3:0] == temp2));
endsequence

property p_mchk8;
int temp;
@ (posedge clk)

s_mchk8a (temp) |->
##[2:20] s _mchk8b(temp);
endproperty

a_mchk8: assert property(p_mchk8);
c_mchk8: cover property(p_mchk8);
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Figure 6-11. PCI Master check8

Two separate sequences are written to check this property. The first
sequence starts at the point when the master device asserts the “framen”
signal. When the master asserts the frame, it also issues the command. A
temporary variable called “templ” is used to store the command that was
issued by the master. The variable is updated upon a successful match on a
falling edge of the signal “framen.” In the next few cycles, if the target
device terminates the transaction by asserting the signal “stopn,” then the
sequence s_mchk8a will match. The property p_mchk8 has the sequence
s mchk8a as the antecedent. If the antecedent is true, then we wait for the
next command to be issued by the master. If and when the master issues a
new command, we compare the command value stored in the local variable
“temp” to the actual command issued by the master on the bus, to verify that
both the commands are the same. If the commands are not the same, it is a
violation. Figure 6-11 shows a sample waveform of this check in a
simulation.

Marker 1 shows the point when a falling edge of the signal “framen” is
detected. At this point a command “f7” is placed on the command bus.
Marker 2 shows the point when the target device terminated the transaction
by asserting the signal “stopn.” The master makes another request and gets
the grant for the bus. Marker 3 shows the point when the master asserts the
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signal “framen” again. At this point, a command of “f7” is placed on the bus
once again and hence the check succeeds.

Master_chk9: Bus parity check etrors for address phase (SERR), this
can be checked for all the different types of transactions like memory read,
memory write, I/O read, I/O write, etc.

property p_mchk9;
@ (posedge clk)
$fell (framen) ##1

(par * $past (" (ad[31:0]"cxben[3:0]1)) == 1) |->
##([(1:5] $fell (serrn);
endproperty

a_mchk9: assert property(p_mchk9) ;
c¢_mchk9: cover property(p_mchk9);
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Figure 6-12. PCI Master check9

A parity check is performed during the address phase of every
transaction. The parity should always be even for the signal “par” and the
vectors “ad” and “c/be.” This can be achieved by XOR’ing these three
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signals. Usually, the parity error is issued on the next clock cycle. If a parity
error occurs during the address phase of a transaction, it indicates a system
error and the signal “serrn” should be asserted. Figure 6-12 shows a sample
waveform of this check in a simulation.

Marker 1 shows the point when the address phase is sampled. The value
of the bus “c/be,” value of the bus “address” and the signal “par” are
sampled at this point and XOR’ed to find if even parity exists. Marker 2
shows that, even parity does not exist and hence the signal “serrn” is
asserted. Note that the signal “serrn” is kept asserted for 2 clock cycles.

Master_chk10: Parity error in data phase (PERR).

A parity check is performed during the data phase of every transaction.
The parity should always be even for the signal “par” and the vectors “ad”
and “c/be.” This can be achieved by XOR’ing these three signals. Usually,
the parity error is issued on the next clock cycle. If a parity error occurs
during the data phase of a transaction, the signal “perrn” should be asserted.
Figure 6-13 shows a sample waveform of this check in a simulation.

property p mchklO0;

@ (posedge clk)

(lirdyn && !trdyn) ##1

(par * $past (" (ad[31:0]"cxben[3:0]1)) == 1) |->
##[1:5]1 !perrn;

endproperty

a_mchkl0: assert property(p mchkl0);
c_mchkl0: cover property (p_mchkl0) ;

Marker 1 shows the point when the first data phase occurs out of the
multiple data phases of this particular transaction. In the next clock cycle,
the required parity value is set. This value is XOR’ed along with the value of
the data and the command byte enable sampled from the previous clock
cycle. If the parity bit is set incorrectly, the signal “perrn” should be
asserted. For marker 1, the XOR’ed value of the data and command is 1 and
the par bit is set to 1. Hence, there is no parity error. Marker 2 shows the
second data phase. The XOR’ed value of the data (1234) and the command
(0000) is 1 and the parity bit is set to 0. This does not provide even parity
and hence the signal “perm” is asserted in the next clock cycle, as shown by
marker 3.
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Figure 6-13. PC] Master check10

Master_chk11: PERR should not be asserted for special cycles.

The master can issue a command for special cycle. The command bus
carries the value of “0001” during a special cycle. The parity error cannot be
asserted during a special cycle irrespective of what data is driven into the
data bus.

property p_mchklil;

@ (posedge clk)

($fell (framen)&& (cxben[3:0] == (4'b0001))) |->
(perrn [*1:%]
##0 (Srose (irdyn && trdyn))
##1 perrni*2]1);

endproperty

a_mchkll: assert property (p_mchkll);
c¢_mchkll: cover property(p mchkll);

If the master asserts the signal “framen” during a special cycle, the signal
“perrn” cannot be asserted until the bus becomes idle. Note that, it is
necessary to make sure that the signal “perm” is not asserted for 2 cycles
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even after the signals “trdyn” and “irdyn” are de-asserted. Since the parity
error is issued in the next clock cycle of a data phase and the parity error is
normally asserted for 2 clock cycles, this extension is necessary for the
checker. Figure 6-14 shows a sample waveform of this check in a
simulation. Marker 1 shows that the master has asserted the signal “framen”
and issued the command “0001” on the c/be bus indicating that it is a special
cycle. Note that the signal “perrn,” which indicates a parity error, remains
de-asserted irrespective of what the “par” bit value is. Hence, the checker
succeeds. Marker 2 shows a similar special cycle.
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Figure 6-14. PCI Master checkl11
Master_Chk12: Dual Address Cycle.

It takes two cycles for the master to assert “irdyn” if it addresses a 64-bit
target device. When the master asserts the signal “framen,” it also issues the
command for the dual address cycle. Along with the command, it also
asserts the signal “req64n” to let the target know that the master wishes to
perform a 64-bit transaction.

property p mchkl2;
@ (posedge clk)
“s DUAL_ADDR_CYCLE && regé64n |=>
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not $fell (irdyn):;
endproperty

a_mchkl2: assert property(p mchkl2);
c_mchkl2: cover property (p_mchkl2);

Master_chk13: Full 64-bit Transactions.

The master device asserts the signal “req64n” along with the “framen”
signal to let the target device know that it wants to perform a 64-bit
transaction. The target device responds by asserting the signals “devseln”
and “ack64n” within 1 to 5 clock cycles.

property p mchkl3;
@ (posedge clk)
$fell (gntn) ##I[1:8]
$fell (framen) && $fell(req64n) |->
##[1:5] $fell (ack64n) && $fell (devseln);
endproperty

a_mchkl3: assert property(p_mchkl3);
c_mchkl3: cover property (p_mchkl3);

Figure 6-15 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when the signal “gntn” is asserted. In the next
clock cycle, the master asserts the “framen” signal and the “req64n” signal,
as shown by marker 2. This alerts the target device that the master wants to
perform a 64-bit transaction. The target acknowledges the request of the
master by asserting the signal “ack64n” along with the signal “devseln” in
the next clock cycle. The master asserts the signal “irdyn” in the next clock
cycle. Note that the master takes 2 clock cycles to assert the signal “irdyn”
after asserting the “framen” signal in a 64-bit transaction.
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Figure 6-15. PCI Master check13

Master_Chk14: Check par64 signal validity.

Similar to the 32-bit transactions, a parity bit is used for 64-bit
transactions. An even parity is maintained on the XOR’ed value of the most
significant 32 bits of the data bus and the 4 most significant bits of the
command byte enable, using the signal “par64.”

property p_mchkl4;
@(posedge clk)
(lack64n && !irdyn && !trdyn && !devseln) &&
(*(ad[63:32]"cxben[7:4]) == 1) |=>

paré4;
endproperty

a_mchkl4: assert property(p_mchkl4);
c_mchkl4: cover property (p_mchkl4);

Figure 6-16 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when a valid 64-bit data phase occurs. The XOR
value of the 32 MSB of data (00000200) and the 4 MSB of c¢/be (0000) is 1.
Hence, to maintain the even parity, the value of the signal “par64” should be
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a 1 in the next clock cycle. As seen in marker 2, the value of “par64” is
detected as 1 and hence the check succeeds.
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Figure 6-16. PCI Master check14

Master_chk1S5: Bus Parking

Bus parking happens when the “reqn” signal of a master is de-asserted but
it still has the grant for the bus. The master goes to the idle state and then
drives a stable value into the data bus and the command bus to indicate that
it has parked the bus. When the master goes to the idle state, “reqn” should
not be asserted. If “reqn” is asserted, it is considered as a back to back

transaction.

sequence s_mchkl5;
@ (posedge clk)

first match($fell (framen)
(framen && irdyn && !gntn && reqn));

endsequence

property p_mchkls5;

##[1:6]
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@ (posedge clk)

s_mchkl5 |->

##[1:8] (($stable(ad[31:0]1))

&& ($stable (cxben[3:01)))

##1 (par © $past (*(ad{31:0]"cxben[3:0]1)) == 0);
endproperty

a_mchkl5: assert property(p_mchkl5);
c_mchkl5: cover property(p mchkl5);
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Figure 6-17. PCI Master checkl5

A simple sequence s_mchk15 is written to identify a valid completion of
a master transaction. At the completion of the transaction, if the master still
has the grant, then it is expected that it will drive a stable value into the data
bus and the command bus, hence parking the PCI bus. The $stable function
is used to detect if the bus values have stabilized. It is expected that one
cycle later, the correct parity bit is set for the stable values. The XOR
technique 1s used once again to detect the validity of the parity bit.
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Figure 6-17 shows a sample waveform of this check in a simulation.
Marker 1 shows a valid start of a transaction and marker 2 shows the
completion of the transaction. Note that at this point, the signal “reqn” is de-
asserted but the signal “gntn” is still asserted. Hence, the master is expected
to drive a stable value into the data bus and command bus within 1 to 8
cycles. Marker 3 shows the point when the master has parked the bus.

Master_chk16: Fast back to back transactions.

A master device can perform fast back to back transactions wherein the
signal “framen” is asserted in the immediate next clock cycle after the
completion of a transaction. This can happen both at the completion of a
single data phase or a multiple data phase sequence. Property p_mchk16 will
capture only the single data phase transactions whereas property p_mchk17
will capture both single data phase and multiple data phase transactions.

property p_mchklé6;
@(posedge clk)
($rose (framen) && $fell (irdyn))
##1 $fell (framen) |->

$rose (irdyn);
endproperty

a_mchklé: assert property(p_mchklé6) ;
c_mchkl6: cover property(p_mchklé) ;

property p_mchkl7;
@ (posedge clk)
(1irdyn && framen)
##1 $fell (framen) |->
$rose (irdyn);
endproperty

a_mchkl7: assert property (p_mchkl7);
c_mchkl7: cover property(p _mchkl7);

Note that the main difference between the two properties is the sampling
mechanism. If it is a single data phase back to back transaction, the signals
“framen” and “irdyn” are sampled for their edges (falling edge of “framen”
and rising edge of “irdyn”). Figure 6-18 shows a sample waveform of this
check in a simulation.
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Figure 6-18. PCI Master check 16/17

Markers 1 and 2 indicate a single data phase back to back transaction.
Markers 3 and 4 indicate a multiple data phase back to back transaction.
Note that property p_mchk17 is sufficient to capture both scenarios.

Sample functional coverage point for PCI Master:

Master Abort - The master abort can happen in any of the following
conditions - I/O read, I/O write, Configuration read, Configuration write,
Memory read, Memory write. A cover statement can be written to make sure
that the testbench executed all of these possible abort conditions at least
once. After the master asserts the “irdyn” signal, if a target device does not
respond within 5 clock cycles by asserting the “devseln” signal, the master
will abort the transaction by de-asserting the “irdyn” signal. Note that the
commands are specified in the properties by using the "define code.

property p mcovl;

@(posedge clk)

“s_IO_READ ##1 (devseln) [*5] |=>
$rose (irdyn);

endproperty

property p_mcovl;
@ (posedge clk)
“s_ IO WRITE ##1 (devseln) [*5] |=>
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$rose (irdyn);
endproperty

property p_mcov3;

@ (posedge clk)

“s_MEM_READ ##1 (devseln) [*5] |=>
Srose (irdyn);

endproperty

property p_mcov4;

@ (posedge clk)

“s_MEM_WRITE ##1 (devseln) [*5] |=>
$rose (irdyn);

endproperty

property p_mcovs;

@ (posedge clk)

“s_CONFIG_READ ##1 (devseln) [*5] |=>
$rose (irdyn);

endproperty

property p mcové;

@ (posedge clk)

“s_CONFIG_WRITE ##1 (devseln) [*5] |=>
$rose (irdyn);

endproperty

c_mcovl: cover property(p mcovl);
c_mcov2: cover property(p_mcov2);
c_mcov3: cover property(p_mcov3);
c_mcov4: cover property(p mcovi4);
c_mcov5: cover property(p mcovs);
c_mcové: cover property(p mcové);

6.4 Scenario 2 — Target DUT Device

In this section, we assume that the design under test is a PCI target
device. The rest of the system remains exactly the same. Figure 6-19 shows
the sample system.
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Figure 6-19. Sample Configuration for PCI Target device as DUT

6.4.1 PCI Target assertions

Target_chkl: Once target asserts the signal “stopn,” it should keep
“stopn” asserted until the signal “framen” is de-asserted, one clock cycle

later “stopn” is de-asserted.

property p_tchkl;

@ (posedge clk)

($fell (stopn) && !framen) |->
!stopn [*1:$]

##0 Srose (framen) ##1 $rose(stopn);

endproperty

a_tchkl: assert property(p_tchkl);
c_tchkl: cover property(p_tchkl);

Note that the property uses the “repeat until” construct to make sure that
the signal “stopn” is kept asserted until the signal “framen” is de-asserted.
Figure 6-20 shows a sample waveform of this check in a simulation.
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Figure 6-20. PCI Target checkl

Marker 1 shows the point when the signal “stopn” is asserted. In the next
clock cycle, the signal “framen” is de-asserted and one cycle later, the signal
“stopn” is also de-asserted, as shown by marker 2.

Target_chk2: Once target has asserted the signal “trdyn,” it cannot
change “devseln” and “trdyn” until the current data phase completes.

When the target device asserts the signal “trdyn,” it has acknowledged
that it is ready to either accept data or send data. Hence, it cannot de-assert
the signal “trdyn” without completing a data phase.

property p tchk2;
@(posedge clk)
$fell (txdyn) |->
(ttrdyn && !devseln) [*0:16] ##0 !irdyn;
endproperty

a_tchk2: assert property(p_tchk2):;
c_tchk2: cover property(p_tchk2);

The property p_tchk2 becomes active on the falling edge of the signal
“trdyn.” The consequent of the property makes sure that the signals “trdyn”
and “devseln” stay asserted until the signal “irdyn” is asserted. The latency
on the “trdyn” signal is 16 cycles.
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Target_chk3: The target device cannot assert the signal “trdyn” until
“devseln” is asserted.

property p_ tchk3;
@(posedge clk)

$fell (trdyn) |->!devseln;
endproperty

a_tchk3: assert property(p_ tchk3):
c_tchk3: cover property(p_tchk3);

Target_chks: Disconnect with data.

The target device indicates that it cannot continue a transaction by
asserting the “stopn” signal and the “trdyn” signal at the same time. When
this happens, the target is required to de-assert the “trdyn” signal in the next
clock cycle but keep the signal “stopn” asserted. Hence, the last data phase
completes without transferring any data since the signal “trdyn” is de-
asserted. This is classified as “Disconnect — B” by the PCI local bus
specification.

property p_tchk5b;
@(posedge clk)
($fell (stopn) && !framen && !trdyn && !irdyn)
|=>
(framen && trdyn)
##1 (stopn && devseln && irdyn);
endproperty

a_tchk5b: assert property(p_ tchk5b};
c¢_tchk5b: cover property(p_tchk5b);

Figure 6-21 shows a sample waveform of this check in a simulation.
Marker I shows the point when the signal “stopn” is asserted. In the next
clock cycle, signal “trdyn” is de-asserted as expected. Marker 2 shows that,
one clock cycle later, the signal “stopn,” “devseln” and “irdyn” are all de-
asserted hence completing the transaction.
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Figure 6-21. PCI Target check 5b

Target_chké: Disconnect without data termination.

When the target device cannot complete any more data phases, it asserts
the signal “stopn” and de-asserts the signal “trdyn.” The target keeps the
signal “stopn” asserted, until the final data phase is complete.

Note that a complex property like this should be split into smaller
sequences as follows.

sequence s_tchkéa;

@ (posedge clk)

(tirdyn && !trdyn && !devseln && !framen);
endsequence

sequence s_tchkéb;

@ (posedge clk)

($fell (stopn) && $rose (trdyn) && !framen);
endsequence

sequence s_tchkéc;

@ (posedge clk)

$rose (framen) ##[0:8] (l!irdyn && !stopn);
endsequence

sequence s_tchké6;
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@ (posedge clk)
s_tchkéa.ended ##[1:8] s tchkéb;
endsequence

property p_ tchké6;
@(posedge clk)

s_tchké6.ended |=> s_tchkéc;
endproperty

a_tchké6: assert property(p tchké);
c¢_tchk6: cover property(p_ tchkeé);

The sequence s_tchk6a identifies a valid data phase. The sequence
s_tchkb identifies the point when the target device asserts the “stopn” signal.
The sequence s_tchko6 is a concatenation of the two sequences s_tchk6a and
s_tchk6b. The sequence s_tchk6 takes the check to the point, wherein a
“stopn” has been issued. The sequence s_tchk6e looks for the point when
both the signals “irdyn” and “stopn” are asserted. This is required because
the master can get into a wait state before completing the last data phase,
which therefore could have de-asserted the signal “irdyn.”

Target_chk6_1: Master naturally terminating and target issuing an abort
at the same time.

This is a case when the target is asserting the “stopn” signal to stop the
transaction and at the same time the master device is also aborting the
transaction naturally. This means that on the same clock cycle that the target
asserts the “stopn” signal; the master de-asserts the “framen” signal.

sequence s_tchké_1;

@ (posedge clk)

(lirdyn && !trdyn && !devseln && !framen)
##[1:8] ($fell (stopn) && trdyn && framen);
endsequence

property p_tchké 1;
@ (posedge clk)

s_tchké6_1.ended |=> (irdyn && stopn);
endproperty

a_tchk6é 1: assert property(p tchké 1);
c_tchké_1: cover property(p_tchké 1);
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Fi igure‘6-22. PCI Target check6_1

Note that a sequence is written to identify the point wherein both target
and master are trying to stop the transaction simultaneously. The property
checks that, if the antecedent matches, then the signal “irdyn” should be
asserted in the next clock cycle along with the signal “stopn.” Figure 6-22
shows a sample waveform of this check in a simulation. Marker 1 shows the
point when signal “framen” is de-asserted and the signal “stopn” is asserted.
Marker 2 shows the point when the signals “irdyn” and “stopn” are de-
asserted.

Target_chk7: Retry

If the target is not ready for a transaction, it has to ask the master to retry
the transaction at a later point. This has to be done before the occurrence of
the first data phase. The target device will assert the signal “stopn” before
asserting the “trdyn” signal for the first time.

sequence s_tchk7a;

@(posedge clk)

$fell (framen) ##[1:8] $fell (ixdyn);
endsequence

sequence s_tchk7b;

@ (posedge clk)

$fell (framen) ##[1:5]

$fell (devseln) && $fell(stopn) && trdyn;
endsequence
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sequence s_tchk7;
@ (posedge clk)

first match(s_tchk7a and s_tchk7b);
endsequence

property p_tchk7; ’
@(posedge clk) s_tchk7.ended |=> framen;
endproperty

a_tchk7: assert property(p_tchk7);
c_tchk7: cover property(p_ tchk7);

The sequence s_tchk7 becomes active when the signal “framen” is
asserted. Once the signal “framen” is asserted, it is expected that the target
device identify itself by asserting the signal “devseln.” It can happen
anywhere between 1 to 5 clock cycles depending on the speed of the target
device. If the target device wants to issue a retry, it will assert the signal
“stopn” along with the signal “devseln.” At this point, the signal “trdyn”
should stay de-asserted. One cycle after the retry is issued, the master de-
asserts the “framen” signal to acknowledge the retry issued by the target
device.
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Figure 6-23. PCI Target check?

Figure 6-23 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when the master asserts the “framen” signal.
Marker 2 shows the point when the target device asks the master to retry.
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One cycle after marker 2, the master de-asserts the “framen” signal and ends
the transaction.

Target_chk8: The signal “devseln” should not be asserted for a special
cycle.

property p_ tchk8;

@ (posedge clk)

$fell (framen) && (cxben[3:0] == 4'b0001) |->
devseln [*1:$] ##0 Srose (framen);

endproperty

a_tchk8: assert property(p_tchk8);
¢_tchk8: cover property(p_tchk8);

During a special cycle, the signal “devseln” should not be asserted. The
property becomes active when the “framen” signal is asserted and the master
device places a special cycle command on the command bus. The
consequent of the property makes sure that the signal “devseln” stays de-
asserted until the master completes the transaction (by de-asserting the
“framen” signal).
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Figure 6-24. PCI Target check 8

Figure 6-24 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when a special cycle command is detected. Marker
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2 shows the completion of the transaction. Note that from marker 1 to
marker 2, the signal “devseln” stays de-asserted.

Target_chk9: Target latency for the completion of the first data phase is
16 cycles from the assertion of the signal “framen.”

Once the master asserts the signal “framen,” the target device identifies
itself by asserting the signal “devseln” first. Depending on the nature of the
target device, it can take anywhere from 1 to 5 cycles for the “devseln”
signal to be asserted. For example, a fast target device takes only one clock
cycle to respond, a medium target device takes 2 clock cycles to respond.
After asserting the “devseln” signal, the target device will assert the “trdyn”
signal if it is ready for a transaction. The total latency allowed by the PCI
local bus specification, from the point the “framen” signal is asserted by the
master to the point when an actual data phase happens (both “trdyn” and
“irdyn” are asserted) is 16 clock cycles. Depending on the nature of the
device the latency split can be summarized as shown in Table 6-2.

Two basic sequences are written to identify a valid data phase or a retry
condition. A separate sequence is defined for each type of the target device.
Note that the timing delay for the assertion of the “devseln” signal is the
only difference between these sequences.

Table 6-2. Target latency table

Device type Frame -> devsel Devsel -> (irdy && trdy)
FAST 1 0:15
MEDIUM 2 0:14
SLOW 3 0:13
SUBTRACTIVE 4 0:12

sequence s_tchk9a;
@ (posedge clk)
(!irdyn && !trdyn);
endsequence

sequence s_tchk9b;
@ (posedge clk)
(tirdyn && !stopn);
endsequence

sequence s_tchk9 fast;
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@ (posedge clk)

$fell (framen) ##1 $fell (devseln);
endsequence

sequence s_tchk9_medium;

@ (posedge clk)

$fell (framen) ##2 $fell (devseln);
endsequence

sequence s_tchk9_slow;

@ (posedge clk)

$fell (framen) ##3 $fell (devseln);
endsequence

sequence s_tchk9_subtractive;

@ (posedge clk)

$fell (framen) ##4 $fell (devseln);
endsequence

property p_tchk9 fast;
@ (posedge clk)
s_tchk9_fast |-> ##[0:15]
(tdevseln) throughout
(s_tchk9a.ended || s_tchk9b.ended);
endproperty

a_tchk9 fast: assert property(p tchk9 fast):
c_tchk9 fast: cover property(p_tchk9 fast):

property p_tchk9 medium;
@(posedge clk)
s_tchk9 _medium |-> ##[0:14]
(!devseln) throughout
(s_tchk9a.ended || s_tchk9b.ended);
endproperty

a_tchk9 medium: assert property(p_tchk9 medium);
¢_tchk9 medium: cover property (p_tchk9 medium);

property p_tchk9_slow;
@ (posedge clk)
s_tchk9_slow |-> ##[0:13]
(tdevseln) throughout
(s_tchk9a.ended || s_tchk9b.ended);
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endproperty
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a_tchk9 slow: assert property(p_tchk9 slow);
c_tchk9 slow: cover property(p_tchk9 slow);

property p tchk9 subtractive;
@ (posedge clk)
s_tchk9_subtractive |-> ##[0:12]
(!devseln)
(s_tchk9a.ended || s_tchk9b.ended) ;
endproperty

throughout

a_tchk9_subtractive:
assert property(p_tchk9_subtractive);
c_tchk9_subtractive:
cover property(p tchk9 subtractive);

A separate property is written for each type of device. If the sequence
mentioned in the antecedent of the property identifies a specific type of
device, the consequent is allowed to take certain number of cycles to match,
as specified in Table 6-2. For example, if it is a slow device, then the target
device can take anywhere between 0 and 13 clock cycles to complete a valid
data phase or issue a retry.
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Figure 6-25. PCI Target check9
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Figure 6-25 shows a sample waveform of this check in a simulation.
Marker t shows the beginning of the property p_tchk9 fast. The master
asserts the signal “framen” at this point. One cycle later, the signal “devseln”
is asserted by the target device as shown by marker 2. One cycle after that,
the signals “trdyn” and “irdyn” are asserted as shown by marker 3 and hence
the check a_tchk9_fast succeeds.

Marker 4 shows the beginning of the property p_tchk9 medium. The
master asserts the signal “framen” at this point. Two cycles later, the signal
“devseln” is asserted by the target device as shown by marker 5. Note that
the signals “trdyn” and “irdyn” are asserted on the same clock cycle and
hence the check a_tchk9 medium succeeds.

Target_chk10: Latency for the subsequent data phase is 8 cycles from
the previous data phase.

Both the master and target can issue wait states in between a transaction
if they are not ready. If in a given clock edge, a data phase has just
completed in a burst transaction, then the next data phase should occur
within 8 clock cycles.

property p_tchkl0;
@ (posedge clk)

(irdyn && !trdyn && !devseln && !framen) |->
##[1:8] (!lirdyn && (!trdyn || !stopn));
endproperty

a_tchkl0: assert property(p_tchkl0):
c_tchkl0: cover property(p_ _tchklO0);
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Figure 6-26. PCI Target check10

Figure 6-26 shows a sample waveform of this check in a simulation.
Marker 1 shows a valid data phase. In the next clock cycle, the target device
de-asserts the signal “trdyn” and hence issues a wait state. The wait state
extends for one more cycle. One clock cycle after that, the signal “trdyn” is
asserted again and hence a valid data phase occurs as shown by marker 2. In
this case, the latency of the subsequent data phase is only 3 clock cycles and
hence the check succeeds.

Target_chkll: The first data phase on a read command requires a
turnaround cycle enforced by the signal “trdyn.”

There are 4 possible read commands as shown in Table 6-1 and all read
commands have a value of “10” in the 2 least significant bits. Whenever
there is a read command, the master has to allow the target to drive the data
into the bus and hence there is a turnaround cycle. The value of the data bus
one clock cycle before the first data phase of a read cycle should be
unknown.

sequence s_tchklla;
@(posedge clk)

($fell (framen) && (cxben[1:0] =
endsequence

2'b10));

sequence s_tchkllb;
@(posedge clk)
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first match($fell (devseln) ##[1:16]
$fell (trdyn)):;
endsequence

sequence s_tchkll;
@ (posedge clk)

s_tchklla.ended ##[1:5] s_tchkilb;
endsequence

property p_tchkll;

@ (posedge clk)

s_tchkll.ended |->

($isunknown (par)

&& $past ($isunknown(ad[31:0])));
endproperty

a_tchkll: assert property(p_ tchkll);
c_tchkll: cover property(p_tchkll);

elk O [ ([ T O O N R
sin
framen | [~
Irdyn WI | LM._“M
devsein 1 R
tdyn 1 | : i |
che[0] i _f| |0 W] &%
N o O T e T A O
stopn .
a_tchill I I | l ] |

1 2 3 4« 5 6

Figure 6-27. PCI Target check11

The sequence s _tchklla detects a read command. The sequence
s tchkl11b detects the first valid data phase after the read command was
issued. The property p_tchkll waits for the completion of the first data
phase and then checks for the value of the par bit and the data bus in the
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previous cycle using the $past construct. If the values are not driven to “z”
in the previous cycle, it is a violation.

Figure 6-27 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when a read command is detected (1110 —
memory read line command). Marker 3 shows the point when the first valid
data phase happens. One cycle before this, the data bus value should be a
“z.” Marker 2 shows that the value on the data bus is unknown and hence the
check succeeds.

Marker 4 shows the point when a read command is detected (0110 —
memory read command). Marker 6 shows the point when the first valid data
phase happens. One cycle before this, the data bus value should be a “z.”
Marker 5 shows that the value on the data bus is unknown and hence the
check succeeds.

Target _chk12: Configuration cycle (1).

During a valid configuration cycle, the 2 least significant bits of the
address bus are set to either “00” or “01.” When the configuration command
is issued, the chip select signal “idsel” is asserted. The target device has to
respond by asserting the signal “devseln” and eventually the configuration is
completed when the signal “trdy” is asserted.

sequence s_tchkl2a;
@ (posedge clk)

(*s_CONFIG READ || ~s_CONFIG_WRITE) &&
((ad[1:0] == 2'b00) || (ad[l:0] == 2'b0O1l)) &&
idsel;

endsequence

sequence s_tchkl2b;
@ (posedge clk)
tdevseln && stopn;
endsequence

sequence s_tchkl2;

@ (posedge clk)

s_tchkl2a ##[1:5] s_tchkl2b;
endsequence

property p_ tchkl2;
@ (posedge clk)
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first match(s_tchkl2) |[->
##[0:5] $fell (trdyn);
endproperty

a_tchkl2: assert property(p_tchkl2);
c¢_tchkl2: cover property(p tchkl2);

Figure 6-28 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when a configuration command was issues by the
system. Note that the signal “idsel” is asserted. Marker 2 shows the point
when the target device asserts the signal “trdyn.”
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Figure 6-28. PCI Target check12

Target_chk13: Configuration cycle (2).

If the configuration command is issued and if the address bits are not set
correctly (“10” or “11”), then the master should abort by de-asserting the

“framen” signal.

sequence s_tchkl3a;
@ (posedge clk)
(*s_CONFIG_READ |
&& ((ad[1l:0] == 2
&& idsel;
endsequence

| ~s_CONFIG_WRITE)
'b10) || (adll:0] ==

2'b11))
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sequence s_tchkl3b;

@ (posedge clk)

(devseln && stopn && trdyn)
(##101:5]

endsequence

$rose (framen));

property p tchkl3;

@ (posedge clk)

s_tchkl3a |-> s_tchkl3b;

endproperty

a_tchkl3: assert property(p tchkl3);
c_tchkl3: cover property(p_tchkl3);
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throughout

The sequence s_tchk13a detects an invalid configuration command. The

sequence s_tchk13b makes sure that the signals “devseln,

LEINTS

trdyn” and

“stopn” stay de-asserted until the signal “framen” is asserted. The signal
“framen” should be de-asserted within 5 clock cycles.
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Figure 6-29. PCI Target check13

Figure 6-29 shows a sample waveform of this check in a simulation.
Marker 1 shows the point when the invalid configuration command is
detected. Marker 2 shows the point when the master aborts the transaction
by de-asserting the “framen” signal. Note that the signals “trdyn,” “devseln”
and “stopn” stay de-asserted from marker]l to marker 2.
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Sample functional coverage point for PCI Target:

Reserved commands — The signal “devseln” should not be asserted for any
PCI reserved commands. The antecedent of the cover property looks for the
reserved commands upon the assertion of the “framen” signal. The
consequent makes sure that the signal “devseln” was kept de-asserted until
the “framen” signal was de-asserted.

property p_tcovl;
@(posedge clk)

$fell (framen) && (cxben[3:0] == 4'b0100) |->
devseln [*1:5] ##0 $rose (framen);
endproperty

c_tcovl: cover property(p tcovl);

property p_tcov2;
@(posedge clk)

$fell (framen) && (cxben[3:0] == 4'b0101) |->
devseln [*1:5] ##0 $rose (framen);
endproperty

¢ _tcov2: cover property(p tcov2);

property p_tcov3;
@ (posedge clk)

$fell (framen) && (cxben[3:0] == 4'bl000) |->
devseln [*1:5] ##0 S$rose (framen);
endproperty

c_tcov3: cover property(p tcov3);

property p_ tcov4;
@ (posedge clk)

$fell (framen) && (cxben[3:0] == 4'b1001) |->
devseln [*¥1:5] ##1 $rose (framen);
endproperty

c_tcov4: cover property(p_tcovi4):
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6.5 Scenario 3 — System level assertions

In this section, a few sample checks are shown for the PCI arbiter. The
arbiter is usually part of the PCI bus. Figure 6-30 shows a sample system.

Master device 1 Master device 2 Target device 2

h A

PCI LOCAL BUS

DUT SVA Checker
for Arbiter

Target device

Figure 6-30. Sample PCI System for Arbiter checks

6.5.1 PCI Arbiter assertions

Arbiter_chkl: The signal “gntn” should be asserted when “framen” is
asserted.

If the signal “gntn” is de-asserted and the signal “framen” is asserted in
the same cycle, it is still valid.

property p schkl;
@(posedge clk)
$fell (framen) |->
tgntnl2] || $rose (gntnl[2]);
endproperty

a_schkl: assert property(p schkl);
c_schkl: cover property(p_schkl):
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Figure 6-31. PCI Arbiter checks 1,2,3

Arbiter_chk2: Only one “gntn” signal can be asserted on a given clock
cycle.

In the current sample system, there are two masters and hence, the arbiter
uses two “gntn” signals.

property p schk2;
@(posedge clk)

$onehot0 ({lgntn([3],
endproperty

lgntnl2]});

a_schk2: assert property(p_schk2);
c_schk2: cover property(p_schk2);

Since the “gntn” signals are active low signals, they are inverted and
checked with a zero one-hot construct.

Arbiter_chk3: One “gntn” signal cannot be de-asserted and another
asserted in the same cycle unless it is in idle cycle.

property p_schk3;
@ (posedge clk)
Srose (gntnl[2]) &&

(tframen || !irdyn) |->
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not $fell (gntnl[3]);
endproperty

a_schk3: assert property(p schk3);
c_schk3: cover property(p schk3);

Figure 6-31 shows a sample waveform of the checks a_schkl, a_schk2
and a_schk3 in a simulation.

Arbiter_chk4: The signal “lockn” should be asserted for the whole data
phase.

sequence s_schk4a;

@(posedge clk)

first match($fell (lockn) ##[0:5] !devseln);
endsequernce

sequence s_schk4b;

@ (posedge clk)

framen && !irdyn && (!trdyn || !stopn);
endsequence

property p schk4;

@ (posedge clk)

s_schk4a |-> !lockn [*1:$] ##0 s_schk4b;
endproperty

a_schk4: assert property(p_schk4);
c_schk4: cover property(p_schk4):;

Arbiter_chkS5: The signal “lockn” should be de-asserted during address
phase.

property p_schk5;

@(posedge clk)

$fell (lockn) |->
({$past (framen) ==
&& ($past(framen,2)

endproperty

0)
== 1));

a_schk5: assert property(p schk5);
c_schk5: cover property(p_schk5);
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The antecedent of the property looks for the assertion of the “lockn”
signal. The address phase occurs when the “framen” signal is asserted. By
checking for the falling edge of the “framen” signal, we can confirm that an
address phase just occurred. The $past operator is used to get the value of
the “framen” signal in the past two cycles.
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Figure 6-32. PCI Arbiter checks 4,5,6

Arbiter_chk6: The first transaction of a lock mechanism should be a
read operation.

sequence s_schké6;

@ (posedge clk)

first match($fell (gntnl[2]) ##[1:8]
$fell (framen) ##1 $fell(lockn));

endsequence

property p_ schké;
@ (posedge clk)
s_schké.ended |->
($past (cxben[1:01) == 2'bl0);
endproperty

a_schk6: assert property(p_schké);
c_schké6: cover property(p_schké) ;
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The sequence s_schk6 uses the “first match” construct to identify the
first assertion of the lock mechanism. The end of this is used as the
antecedent of the property. The consequent part checks the 2 least significant
bits of the command to make sure a read command was issued.

Figure 6-32 shows a sample waveform of the checks a_schk4, a_schk5
and a_schké6 in a simulation.

6.6 Summary on SVA for standard protocol

¢ Standard protocols are very complex and require a huge list of
checkers to verify compliance.

¢ Timing rules are strict and these need to be achieved by the
devices claiming to support these protocols.

e A common set of checkers can be developed for a particular
interface and the same checkers can be re-used with other
devices supporting similar interfaces.

e The complex nature of the protocol leads to multiple pre-
conditions for most properties. Only SVA provides a variety of
constructs and in-built mechanisms that can be used to define
these complex pre-conditions.

e SVA also provides the capabilities to capture bus conditions
using local variables. These local variables can be used
effectively along with the pre-conditions to write complex
temporal checks.

e SVA can be used effectively to create excellent functional
coverage reports for a complex protocol.
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CHECKING THE CHECKER

Isolating assertion errors early

Assertion based verification provides excellent potential for finding
design bugs early in the verification cycle. The SV A language is defined to
address ABV with powerful built-in constructs. Assertion failures are
indicated to the user by default as required by the SystemVerilog 3.1a
standard. It is not required to display the success of an assertion by default.
The user can use the action block of an assertion to display successes. Since
the number of successes can be numerous (since most assertions are
evaluated on every clock edge), displaying every success by default can
create huge log files depending on the number of assertions that are active
during simulation, slowing down the simulation.

A typical test configuration is shown in Figure 7-1. This is the same as
Figure 0-2 shown in Chapter 0. Let’s assume that a user executes this
configuration and the simulation completes with a few assertion errors. The
user should be absolutely confident that the error issued is a real design
error. In other words, a user should be confident that his assertion code is
correct and that the assertion failure is not a false condition. Debugging the
entire design based on an assertion error is a tough task. If the error issued
was due to bad assertion code, a user could waste a lot of time in the
verification process. On the other hand, if there are no assertion failures
during simulation, the verification engineer should be absolutely confident
that the design works. If the assertion is not written accurately, it might not
capture the intent of the design and hence, can miss a real error.
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Constrained random Test bench

DUT [P

/

Code Coverage SystemVeribg Assertions

Figure 7-1. Typical simulation configuration

The declarative nature of the language makes SVA checks look very
concise. If the checks are not coded well, the real intent of the property may
not get represented accurately. It is critical to verify the functionality of the
assertion code before binding it to the design. This involves investing some
time upfront in the verification process, but it will prevent a user from
navigating along a wrong debugging path. This chapter provides a few tips
on how to check the checker. A sample configurable testbench for checking
assertions that can be written between two signals is discussed in detail. The
theory behind the configurable testbench will be used to verify a more
complex protocol checker. Assertion validation is a vast topic and we just try
exploring a few basic techniques in this chapter.

7.1 Assertion Verification

A simple testbench can be created to verify the functionality of an
assertion. In most cases, the number of input conditions for an assertion is a
finite number. This assumes that unbounded timing is not used in the
definition of the property. An exhaustive testbench could be written to test
all possible input conditions. If an unbounded timing is involved, it becomes
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impossible to create all possible input design conditions. Checkers involving
unbounded timing can detect incorrect behavior, but do not fail at the end of
simulation if an expected event does not occur. This is because the checker
can not assume that a missing event would not happen if the simulation was
run a bit longer. Unbounded timing checkers are thus considered incomplete.
It is important to realize that even with a bounded time, the number of
possible input design conditions can be numerous. This really depends on
the complexity of the checker. An assertion is always based on two
important concepts, as shown in Figure 7-2:

1. Logical relationship
2. Temporal relationship

If an assertion is written by logically combining (and, or, xor, etc.) an n-
bit expression, then the possible number of input conditions is (2" — 1).
Consider the logical expression shown below:

gignall && signal2 && signal3

This expression will have 8 possible input conditions that need to be
tested to guarantee the correct evaluation of the expression.

Signal 1 Logical Relationship Signal 2

L >

Temporal relationship

Figure 7-2. Assertion relationship

An assertion that involves a timing relationship between two signals can
be tested thoroughly by using the bounds of the minimum and maximum
timing limits. For example, consider the following case:

signall ##[min:max] signal2

This expression can fail on two conditions:

1. If the timing between the two signals is less than “min.” (This implies
that signal 2 arrived before “min” time and did not stay true between

“min” and “max” time)
2. If the timing between the two signals is more than “max.”
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The assertion must succeed for all timings within the window (min and
max). This means that varying the timing between signall and signal2 from
(min-1) to (max+1) will cover all possible successes and at the least one
error condition. If the timing between signall and signal2 is fixed, then the
value of “min” and “max” are same. For a fixed timing relation, all possible
successes and at least one error condition can be observed by varying the
time from (min-1) to (min+1).

7.2 Assertion Test Bench (ATB) for SVA with two signals

In this section, we show how to create a configurable ATB. The objective
is to create a testbench that can generate stimulus for SVA code that is
written for two signals. The most basic requirement of an ATB is to get a
correct response from the assertion for all possible successes and at least one
error. An assertion involving two signals always has a leading signal (LS)
and a trailing signal (TS). Consider the examples shown below:

signall && signal2
signall |-> signal2
signall ##([1:3] signal2
signall |-> ##2 signal2

In all these examples, irrespective of whether we are checking for a
logical relationship or a timing relationship, we will address signall as the
leading signal and signal2 as the trailing signal.

7.2.1 Logical relationship between two signals

There are several possible logical relationships between two signals
involved in an SVA. Logical relationships are evaluated on a per clock basis.
In other words, these are combinational checks.

Figure 7-3 shows a logical relationship tree for two signals. Based on the
figure, there are 16 possible logical relationships between two signals. The
logical relationship tree involves the following possibilities:

1. Logical relationship between two level sensitive signals.

2. Logical relationship between two edge sensitive signals.

3. Logical relationship between two level sensitive signals with
overlapping implication.

4. Logical relationship between two edge sensitive signals with
overlapping implication.
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Any assertion that involves two level sensitive signals has the following
possibilities for the leading signal (LS) and the trailing signal (TS):

a. HH — Both LS and TS are high
b. HL - LS is high and TS is low
c. LH~- LS is low and TS is high
d. LL — Both LS and TS are low

Logical Relationship
Level hased signals Edgebased signals Overlapping Overlapping
Implication with implication with
level based signals edge based signals

e bbb el el

LL F

Figure 7-3. Logical relationship tree for SVA with two signals

Any assertion that involves two edge sensitive signals has the following
possibilities for the leading signal (LS) and the trailing signal (TS):

a. RR — Both LS and TS have a rising edge
b. RF — LS has arising edge and TS has a falling edge
c. FR — LS has a falling edge and TS has a rising edge
d. FF — Both LS and TS have falling edges

Note that the overlapping implication is listed as part of the logical
relationship tree. If there is no timing involved between the leading signal
and the trailing signal, the checker with an overlapping implication is a
simple “if” statement. Hence, it can be grouped with the logical relationship
tree.

It is possible to have a mix of a level sensitive signal and an edge
sensitive signal in the same assertion. These combinations are not listed as
part of the tree to simplify the discussion. In a checker, if the leading signal
is level sensitive and the trailing signal is edge sensitive, it can be grouped
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with the level sensitive checks. Similarly, if the leading signal is edge
sensitive and the trailing signal is level sensitive, the checker can be grouped
with the edge sensitive checks. In the next section, we show how to generate
stimulus that can verify all 16 possible relationships, as shown in Figure 7-3
thoroughly.

7.2.2 Stimulus generation for logical relationship — Level sensitive

A list of possible properties for logical relationship between two level
sensitive signals is shown below. Note that a logical “and” operator is used
in this example. This can be replaced with any other logical operator and the
stimulus generation will remain exactly the same.

// On a given clock edge, both leading signal and
// trailing signal are high

property p_1_hh;
@(posedge clk) a && b;
endproperty

// On a given clock edge, the leading signal is
// high and the trailing signal is low

property p_1 hl;
@(posedge clk) a && !b;
endproperty

// On a given clock edge, the leading signal is
// low and the trailing signal is high

property p_1 1lh;
@(posedge clk) la && b;
endproperty

// On a given clock edge, both leading signal and
// trailing signal are low

propexrty p 1 11;
@(posedge clk) !a && !b;
endproperty

a_1l hh : assert property(p 1 hh);

a_1l hl : assert property(p 1 hl)};
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a_l 1lh : assert property(p 1 1lh);
a_1l 11 : assert property(p 1 11);

Overlapping implication is very similar to a simple logical operator with
the only difference of the pre-condition. There is a hidden “if” statement that
evaluates the trailing signal conditionally. If the leading signal is not true,
then the property succeeds by default. A list of possible properties for logical
relationship between two level sensitive signals with overlapping implication
is shown below.

// on a given clock edge, if the leading signal
// is high, check that the trailing signal is
// also high

property p4_oli hh;
@(posedge clk) a |-> b;
endproperty

// on a given clock edge, if the leading signal
// is high, check that the trailing signal is
// low

property p4 oli hl;
@(posedge clk) a |-> Ib;
endproperty

// on a given clock edge, if the leading signal
// is low, check that the trailing signal is
// high

property p4_oli 1lh;
@(posedge clk) !a |-> b;
endproperty

// on a given clock edge, if the leading signal
// is low, check that the trailing signal is
// low

property p4 oli 11;
@(posedge clk) !a |-> !b;
endproperty

a4_oli_hh: assert property(p4 oli_hh);
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a4_oli hl: assert property(p4 oli hl);
a4_oli_lh: assert property(p4_oli_1lh);
a4_oli_11: assert property(p4_oli 11};

To check a logical relation between two level sensitive signals, there are
four possible input conditions (00, 01, 10, 11). By producing stimulus that
covers all these four possible conditions, one can verify any logical
operation between two level sensitive signals. The same stimulus will also
satisfy the 4 conditions (HH, HL, LH, LL) shown in Figure 7-3.

1 2 3 4 5

clk

|

a_l hh
alll
allh
alll
a_oli_bh
a ol W
a_oli th
a ol Il

ERERNARNR
SN NN VS TR N T S
S N T e ] e S
UG WG TN SIS SN PES *UNE S
pranscaisss Forwsisn Phurare Jomanill e P Massnscn Jrocsscdh

Figure 7-4. Waveform for logical relation between two level sensitive signals

The sample Verilog test code shown below is a simple 2-bit counter. The
LSB of the counter drives the leading signal “a” and the MSB of the counter
drives the trailing signal “b.” The results produced by testing the above
properties with the stimulus generated by the sample Verilog test code are
shown in Figure 7-4. As shown in the figure, for the stimulus used, every
assertion responded correctly for all real success and at least one real error.

// sample test code for logical relationship
// between level sensitive signals

logic [1:0] logical_op_reg;
logical op_reg = 2'b00;

for (i=0; i<4; 1++)
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begin
a <= logical_op_regl0];
b <= logical op reglll];
repeat (1) @(posedge clk);
logical_op reg++;

end

7.2.3 Stimulus generation for logical relationship — Edge sensitive

A list of possible properties for logical relationship between two edge
sensitive signals is shown below.

// on a given clock edge the leading signal has a
// falling edge and the trailing signal has a
// falling edge

property p2 ff;
@ (posedge clk) $fell(a) && $fell(b);
endproperty

// on a given clock edge the leading signal has a
// falling edge and the trailing signal has a
// rising edge

property p2_ fr;
@(posedge clk) $fell(a) && S$rose(b);
endproperty

// on a given clock edge the leading signal has a
// rising edge and the trailing signal has a
// falling edge

property p2 rf;
@(posedge clk) $rose(a) && $fell(b);
endproperty

// on a given clock edge the leading signal has a
// rising edge and the trailing signal has a
// rising edge

property p2_rr;
@(posedge clk) $rose(a) && Srose(b);
endproperty
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a2_ff: assert property(p2 ff);
a2_fr: assert property(p2 fr);
a2_rf: assert property(p2 rf);
a2_rr: assert property(p2 rr);

A list of possible properties for logical relationship between two edge
sensitive signals with overlapping implication is shown below.

// on a given clock edge, if the leading signal
// has a falling edge, then the trailing signal
// must have a falling edge

property p4_oei ff;
@(posedge clk) $fell(a) |-> $fell(b);
endproperty

// on a given clock edge, if the leading signal
// has a falling edge, then the trailing signal
// must have a rising edge

property p4_oei fr;
@(posedge clk) $fell(a) |-> $rose(b);
endproperty

// on a given clock edge, if the leading signal
// has a rising edge, then the trailing signal
// must have a falling edge

property p4 oei rf;
@(posedge clk) $rose(a) |-> $fell(b);
endproperty

// on a given clock edge, if the leading signal
// has a rising edge, then the trailing signal
// must have a rising edge

property p4 oei rr;
@(posedge clk) $rose(a) |-> $rose(b);
endproperty

a4 oei ff: assert property(p4 ocei ff);
a4_oei_fr: assert property(p4_ocei_fr);
a4_oeil_rf: assert property(p4_oei_rf);
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a4_oeil_rr: assert property(p4 ocei rr);

Though we are checking only for logical relationship, the use of $rose or
$fell constructs makes the stimulus generation slightly more complex. The
stimulus generated should be capable of satisfying all the edge transitions.
The sample Verilog test code shown below is a 2-bit counter and it
accommodates all possible successes for both Fall-Fall and Fall-Rise
conditions, as shown in the Figure 7-5.

// sample test code for logical relationship
// between edge sensitive signals

for(i=0; 1i<8; i++)

begin
a <= logical_ op_reglo0];
b <= logical_op_reglll;
repeat (1) @(posedge clk);
logical_op reg++;

end

UGG WS VNS FO

Figure 7-5. Logical condition on edge based signals - FF, FR

The sample Verilog test code shown below is also a 2-bit counter, but
uses the negated values of the counter bits. It accommodates all possible
successes for both Rise-Fall and Rise-Rise conditions, as shown in the
Figure 7-6.

// sample test code for logical relationship
// between edge sensitive signals

for(i=0; 1<8; i++)

begin
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a <= llogical op reglo0];
b <= llogical_op reglll:
repeat (1) @(posedge clk);
logical_op_reg++;

end

As seen in the last two sections, satisfying logical relationships is simple.
The possible input conditions increase as the number of signals involved in
the logical expression increase.

elk
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Figure 7-6. Logical condition on edge based signals - RR, RF

7.2.4 Timing relationship between two signals

The timing between the leading signal and the trailing signal can be a
fixed delay or a variable delay. A timing relationship tree is very similar to
the logic relationship tree except that it has twice the number of possibilities
(fixed timing and variable timing) as shown in Figure 7-7. Also note that a
timing relationship has a non-overlapping condition between the leading
signal and the trailing signal.

The timing relationship tree involves the following possibilities:

Fixed timing relationship between two level sensitive signals.
Variable timing relationship between two level sensitive signals.
Fixed timing relationship between two edge sensitive signals.
Variable timing relationship between two edge sensitive signals.
Fixed timing relationship between two level sensitive signals with
non-overlapping implication.
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6. Variable timing relationship between two level sensitive signals with
non-overlapping implication.

7. Fixed timing relationship between two edge sensitive signals with
non-overlapping implication.

8. Variable timing relationship between two edge sensitive signals with
non-overlapping implication.

Timing Relationship

|
! l l l

Level based signals Edge based signals Non-Overlapping Non-Overlapping
. . - . . . Implication with implication with
(Fixed time, Timing (Fixed time, Timing level based signals edge based signals
window) window)
(Fixed time, Timing (Fixed time, Timing
windew) window)

e bbb b e bbb

1. RR RF FR FF

Figure 7-7. Timing relationship tree

A timing relationship between a level sensitive signal and an edge
sensitive signal is possible. To simplify the timing relationship tree, these
possibilities are not listed. As mentioned in Section 7.2.1, if the leading
signal is level sensitive and the trailing signal is edge sensitive, it can be
grouped with the level sensitive checks. Similarly, if the leading signal is
edge sensitive and the trailing signal is level sensitive, the checker can be
grouped with the edge sensitive checks.

7.2.5 Stimulus generation for timing relationship

A list of possible properties for fixed timing relationship between two
level sensitive signals is shown below.

// On a given clock edge, the leading signal is
// high and after “min time” clock cycles the
// trailing signal is high

property p3_hh;
@(posedge clk) a ##min time b;
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endproperty

// On a given clock edge, the leading signal is
// high and after “min_time” clock cycles the
// trailing signal is low

property p3_hl;
@(posedge clk) a ##min time 1b;
endproperty

// On a given clock edge, the leading signal is
// low and after “min_time” clock cycles the
// trailing signal is high

property p3_lh;
@(posedge clk) !a ##min_time b;
endproperty

// On a given clock edge, the leading signal is
// low and after “min_time” clock cycles the
// trailing signal is low

property p3_11;
@(posedge clk) la ##min time !b;
endproperty

a3_f1l: assert property(p3_hh);
a3_f2: assert property(p3_hl);
a3_f3: assert property(p3 1lh);
a3_f4: assert property(p3_11);

A list of possible properties for variable timing relationship between two
level sensitive signals is shown below.

// On a given clock edge, the leading signal is
// high and between “min_time” and “max time”
// clock cycles the trailing signal is high

property p3_wl hh;

@(posedge clk) a ## [min_time : max_time] b;
endproperty
// On a given clock edge, the leading signal is
// high and between “min_ time” and “max_time”
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// clock cycles the trailing signal is low

property p3_w2 hl;
@(posedge clk) a ## [min time : max_time] !b;
endproperty

// On a given clock edge, the leading signal is
// low and between “min_time” and “max_time”
// clock cycles the trailing signal is high

property p3_w3_1lh;
@(posedge clk) l!a ## [min_time : max_time] b;
endproperty

// On a given clock edge, the leading signal is
// low and between “min_time” and “max time”
// clock cycles the trailing signal is low

property p3 w4 _11;
@(posedge clk) !a ## [min_time : max_time] !b;
endproperty

a3_wl: assert property(p3 wl_hh);
a3_w2: assert property(p3 _w2_hl);
a3_w3: assert property(p3_w3_1lh);
a3_w4: assert property(p3 wé_11);

A list of possible properties for fixed timing relationship between two
level sensitive signals with non-overlapping implication is shown below.

// On a given clock edge, if the leading signal
// is high, then after “min_time” clock cycles
// the trailing signal must be high

property p5_f hh;
@(posedge clk) a |-> ##min_time b;
endproperty

// On a given clock edge, if the leading signal
// 1is high, then after "min time” clock cycles
// the trailing signal must be low
property p5_f hl;

@(posedge clk) a |-> ##min_time !b;
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endproperty

// On a given clock edge, 1f the leading signal
// 1s low, then after “min_time” clock cycles
// the trailing signal must be high

property p5_ f 1h;
@(posedge clk) !a |-> ##min_time b;
endproperty

// On a given clock edge, if the leading signal
// is low, then after “min_time” clock cycles
// the trailing signal must be low

property p5_f 11;
@(posedge clk) !a |-> ##min_time !b;
endproperty

a5_f hh: assert property(p5_f hh);
a5_f hl: assert property{p5_f hl);
a5_f lh: assert property(p5_ £ 1lh);
a5 f 1l: assert property(p5_£f 11);

A list of possible properties for variable timing relationship between two
level sensitive signals with non-overlapping implication is shown below.

// On a given clock edge, if the leading signal
// is high, then between “wmin_time” and

// “max_time” clock cycles the trailing signal
// wmust be high

property p5_w_hh;

@(posedge clk)

a |-> ##[min_time : max _time] b;
endproperty

// On a given clock edge, if the leading signal
// is high, then between “min_time” and

// “max_time” clock cycles the trailing signal
// must be low

property p5_w_hl;
@(posedge clk)
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a |-> ##[min_time : max_time] Ib;
endproperty

// On a given clock edge, if the leading signal
// is low, then between “min_time” and

// “max_time” clock cycles the trailing signal
// must be high

property p5_w_lh;

@(posedge clk)

la |-> ##[min_time : max_time] b;
endproperty

// On a given clock edge, i1f the leading signal
// is low, then between “min_time” and

// “max_time” clock cycles the trailing signal
// must be low

property p5_w_11;

@ (posedge clk)

la |-> ##[min_time : max_time] 1b;
endproperty

a5 _w _hh: assert property(p5_w_hh);
a5_w_hl: assert property(p5_ w hl);
a5 w_lh: assert property(p5 w lh);
a5_w_11: assert property(p5 w 11);

A list of possible properties for fixed timing relationship between two
edge sensitive signals is shown below.

// on a given clock edge, the leading signal has
// a falling edge and after “min_time” cycle the
// trailing signal has a falling edge

property p4 f ff;
@(posedge clk) $fell(a) ##min_time $fell (b);
endproperty

// on a given clock edge, the leading signal has
// a rising edge and after “min_time” cycle the
// trailing signal has a rising edge
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property p4 f rr;
@(posedge clk) $rose(a) ##min time $rose(b);
endproperty

// on a given clock edge, the leading signal has
// a falling edge and after “min_time” cycle the
// trailing signal has a rising edge

property p4_f fr;
@(posedge clk) $fell(a) ##min time $rose(b);
endproperty

// on a given clock edge, the leading signal has
// a rising edge and after “min time” cycles the
// trailing signal has a falling edge

property p4 f rf;
@(posedge clk) $rose(a) ##min _time $£fell(b);
endproperty

a4 _f rr: assert property(p4 f rr);
a4 _f ff: assert property(p4 f ff);
a4_f rf: assert property(p4_f rf);
a4 _f fr: assert property(p4 f fr);

A list of possible properties for variable timing relationship between two
edge sensitive signals is shown below.

// on a given clock edge, the leading signal has
// a falling edge and within “min_time” to

// *max_time” cycles the trailing signal has a
// falling edge

property p4_w_ff;

@(posedge clk)

$fell (a) ##[min_time : max timel] $fell(b);
endproperty

// on a given clock edge, the leading signal has
// a rising edge and within “min_time” to

// “max_time” cycles the trailing signal has a
// rising edge
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property p4 w_rr;

@(posedge clk)

$rose(a) ##[min_time : max_time] $rose(b);
endproperty

// on a given clock edge, the leading signal has
// a falling edge and within “min_time” to

// “max_time” cycles the trailing signal has a
// rising edge

property p4_w_fr;

@(posedge clk)

$fell (a) ##[min_time : max_time] $rose(b);
endproperty

// on a given clock edge, the leading signal has
// a rising edge and within “"min time” to

// *max_time” cycles the trailing signal has a
// falling edge

property p4 w_rf;

@(posedge clk)

$rose(a) ##[min_time : max_time] $fell(b);
endproperty

a4_w_rr: assert property(p4_w_rr);
a4 w_ff: assert property(p4_w_£ff);
a4_w_rf: assert property(p4_w_rf);
a4 _w_fr: assert property(p4 w _fr);

A list of possible properties for fixed timing relationship between two
edge sensitive signals with non-overlapping implication is shown below.

// on a given clock edge, if the leading signal
// has a falling edge, then after “min_time”

// cycles the trailing signal must have a

// falling edge

property p6_f ff;

@ (posedge clk)

$fell(a) |-> ##min_time $fell(b);
endproperty
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on a given clock edge, if the leading signal
has a rising edge, then after “min_time”
cycles the trailing signal must have a
rising edge

property p6 f rr;

@(posedge clk)

$rose(a) |-> ##min _time $rose (b);
endproperty

on a given clock edge, if the leading signal
has a falling edge, then after “min_time”
cycles the trailing signal must have a
rising edge

property p6_f fr;

@(posedge clk)

$fell(a) |-> ##min_time $rose(b);
endproperty

on a given clock edge, if the leading signal
has a rising edge, then after “min_time”
cycles the trailing signal must have a
falling edge

property p6_f rf;
@(posedge clk)

$rose(a) |-> ##min_time $fell (b);
endproperty
a6_f rr: assert property(p6_f rr);
a6_f ff: assert property(p6_f ff);
a6_f rf: assert property(p6_f rf);
a6_f fr: assert property(p6_f fr);

A list of possible properties for variable timing relationship between two

edge sensitive signals with non-overlapping implication is shown below.

on a given clock edge, if the leading signal
has a falling edge, then within “min_time” to
“max_time” cycles the trailing signal must
// have a falling edge
property p6_w_ff;

@(posedge clk)
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$fell(a) |-> ##[min_time : max_time] $fell (b);
endproperty

// on a given clock edge, if the leading signal
// has a rising edge, then within “min_time” to
// “max_time” cycles the trailing signal must
// have a rising edge

property pé_w_rr;

@(posedge clk)

$rose(a) |-> ##[min_time : max_time] $rose(b);
endproperty

// on a given clock edge, if the leading signal
// has a falling edge, then within “min time” to
// “max_time” cycles the trailing signal must

// have a rising edge

property p6_w_fr;

@(posedge clk)

$fell(a) |-> ##[min_time : max_time] $rose(b);
endproperty

// on a given clock edge, if the leading signal
// has a rising edge, then within “min_time” to
// “max_time” cycles the trailing signal must
// have a falling edge

property p6_w_rf;

@(posedge clk)

$rose(a) |-> ##[min_time : max_time] $fell(b);
endproperty

a6_w_rr: assert property(p6_w_rr);
a6_w_ff: assert property(p6_w_ff);
a6_w_rf: assert property(p6_w _rf);
a6_w_fr: assert property(p6_w fr):

The following sample Verilog test code can generate stimulus that will
satisfy all timing relationships defined between two signals except
eventuality. Note that the signals “a” and “b” are initialized based on what
the “timing level” is set to. For example, if the “timing level” is set to a
“10,” then the test code will generate stimulus for an “active high” level on
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the leading signal and an “active low” level on the trailing signal, if it is a
level sensitive checker. For an edge sensitve checker, if the “timing level” is
set to a “10,” then the test code will generate stimulus for a “rising edge” on
the leading signal and a “falling edge” on the trailing signal. A simple “for”
loop is used to generate timing windows starting from (min_time-1) to
(max_time+3). This will make sure that all possible successes are created
and at least one error is created. The same results can be achieved with an
upper window of (max_time+1). By using (max_time+3), we produce more
error conditions. If the timing is fixed, then the values of “min_time” and
“max_time” are the same.

Figure 7-8 shows a sample waveform of a fixed timing relationship
property between two level sensitive signals (leading signal is active low and
trailing signal is active high). Figure 7-9 shows a sample waveform of a
variable timing relationship property between two edge sensitive signals
(leading signal and the trailing signal look for a rising edge).

// sample Verilog test code for timing
// relationship between two signals

if (timing_level == 2'bll) begin
a = 1'b0; b=1'b0; end
if(timing level== 2'b00) begin
a = 1'bl; b=1'bl; end

if (timing level == 2'b0l) begin
a = 1'bl; b=1'b0; end
if(timing level == 2'b1l0) begin

a = 1'b0; b=1'bl; end

for(i=(min_time-1); i<(max_time+3); i++)

begin

repeat(l) @(posedge clk);

a <= ~a;

if(i == 0)

begin
b <= ~b;
repeat (1) @(posedge clk);
a <= ~a; b <= -b;

end

else

begin

repeat (1) @(posedge clk);
a<= ~a;
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repeat((i-1)) @(posedge clk);

b<= -~b;
repeat (1) @(posedge clk);
b<= ~b;
end
end

Fixed thuiong = 2 cvcles

1234 5678 910111213141516 171819

Figure 7-8. Timing (fixed) between two level sensitive signals
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Figure 7-9. Timing (variable) between two edge sensitive signals

Timing relationships can be tested by looping from (min-1) to (max+1)
values. This will guarantee that all possible successes are tested and at least
one failure is tested. Repetition of signals is an extension of timing
relationships. Repetitions also involve timing relationships, but it requires
that the leading signal or the trailing signal repeat its value for a defined
number of cycles. Repetition relationships are discussed in detail in the next
section.

7.2.6 Repetition relationship between two signals
There are two main categories of repetition between two signals:

1. Repeat after — After an expected edge on the leading signal, with or

(131

without a time delay, the trailing signal is expected to repeat “n” times.
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2. Repeat until — After an expected edge on the leading signal, the
leading signal repeats until the expected value arrives on the trailing signal.

The repeat operators often involve the combination of an edge sensitive
signal and a level sensitive signal. The leading signal is often an edge
sensitive signal and the trailing signal is often a level sensitive signal. The
“repeat until” condition can have an edge sensitive signal as a trailing signal.
The naming convention for the repetition properties is as follows:

RH — LS has a rising edge and TS is high
RL — LS has a rising edge and TS is low
FH — LS has a falling edge and TS is high
FL — LS has a falling edge and TS is low

A list of possible properties for “repeat after” relationship between two
signals is shown below.

// on a given clock edge the leading signal has a
// rising edge and after “start_wait” cycles, the
// trailing signal is high “repetition” times

property p7 c rpt rh;

@(posedge clk)

Srose(a) ##istart wait b[*repetition];
endproperty

// on a given clock edge the leading signal has a
// rising edge and after “start_wait” cycles, the
// trailing signal is low “repetition” times

property p7_c_rpt_rl;

@(posedge clk)

$rose(a) #i#start_wait !b[*repetition];
endproperty

// on a given clock edge the leading signal has a
// falling edge and after “start_wait” cycles,
// the trailing signal is high “repetition” times

property p7_c_rpt_fh;

@ (posedge clk)

$fell (a) #i#start wait bl*repetition];
endproperty
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// on a given clock edge the leading signal has a
// falling edge and after “start wait” cycles,
// the trailing signal is low “repetition” times

property p7_c rpt_ fl;

@(posedge clk)

$fell (a) ##start_wait !bl[*repetition];
endproperty

A list of possible properties for “repeat until” relationship between two
signals is shown below.

// on a give clock edge, the leading signal has a
// rising edge and stays high until the trailing
// signal is low

property p7_cu_rpt_rl;
@(posedge clk) S$rose(b) ##0 b[*1:8] ##1 !a;
endproperty

// on a given clock edge, the leading signal has
// a falling edge and stays low until the
// trailing signal is low

property p7_cu_rpt fl;
@(posedge clk) $fell(b) ##0 1b(*1:$] ##1 la;
endproperty

// on a given clock edge, the leading signal has
// a rising edge and stays high until the
// trailing signal is high

property p7_cu_rpt_rh;
@(posedge clk) $rose(b) ##0 b[*1:$]1 ##1 a;
endproperty

// on a given clock edge, the leading signal has
// a falling edge and stays high until the
// trailing signal is high

property p7_cu_zrpt_fh;
@(posedge clk) $fell(b) ##0 !b[*1:$] ##1 a;
endproperty
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A sample code that can generate stimulus to verify both the “repeat after”
and “repeat until” conditions for all possible properties is shown below. The
stimulus uses the same concept as that of the timing. It loops between
(repetition—1) and (repetition+3) to cover all possible successes and at the
least one error condition. The variable “start wait” defines the number of
cycles to wait before looking for the repetition on the trailing signal (relevant
to the “repeat_after” condition). The variable “stop wait” defines the
number of cycle to wait before re-setting the leading signal (relevant to the
“repeat_until” condition).

// sample Verilog test code for repetition
logic [1:0] stop wait;

if (rpt_edge == 2'bll) begin
a = 1'b0; b=1'b0; end

if (rpt_edge == 2'b00) begin
a = 1'bl; b=1'bl; end

if (rpt_edge == 2'b01) begin
a = 1'bl; b=1'b0; end

if (rpt_edge == 2'bl0) begin
a = 1'b0; b=1'bl; end

for(i=(repetition-1); i< (repetition+3); i++)
begin
repeat (1) @(posedge clk);

a <= ~ajy
repeat (start _wait) @(posedge clk);
b <= ~b;

// consecutive repeat condition

repeat ((i)) @(posedge clk);
b <= ~b;
stop_wait <= $random() % 4;
repeat (stop_wait [0]) @(posedge clk);
a <= ~aj
end
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Figure 7-10 shows a sample waveform for a “repeat after” condition.
Figure 7-11 shows a sample waveform for a “repeat until” condition.

parameter start_wait = 2

parameter repetition= 3
ek JUruiuinuuuiyuivuuuruduun
a 1 [1 [ [

Figure 7-10. Waveform for "repeat after" condition

parameter start wait =2
parameter repetition = 3
a 1 [ I [
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Figure 7-11. Waveform for "repeat until” condition

A few possible relationships between 2 signals were discussed so for.
The SVA constructs are abundant and there is a big list of possible
relationships between 2 signals. We are not trying to produce a solution for
all of those cases. What we have is a small part of the solution. The solution
becomes more difficult as the number of signals involved increase.

7.2.7 Environment for ATB involving two signals

In the last few sections, we saw how an exhaustive set of stimulus can be
generated to test different relationships between two signals. Several sample
Verilog test codes that can satisfy different relationships were shown. In this
section, we put the pieces together to create a single configurable testing
structure, as shown in Figure 7-12.
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Assertion test bench Results
with stimulus L
.| generation engines
(ATB)
Configuration
file (p arameter Y
based)

Property/Assertion list

Figure 7-12. ATB Environment

There are three parts in the testing structure:

1. A parameter based configuration file wherein the user can specify
the relationship he wishes to test.

2. A SVA listing file containing both the property definitions and the
code that will selectively assert properties, based on the parameter
configuration.

3. The top-level Verilog test code containing the various stimulus
generation blocks discussed in the previous sections. Based on the
parameter configuration, the relevant stimulus generation block
will be executed to thoroughly verify the current property under
test. The parameter definitions are shown in Table 7-1.

Table 7-1. Parameter definitions

Parameter Functionality

parameter sig_edge =0; Defines if signals involved are edge sensitive, 0
indicates no, 1 indicates yes

parameter sigl_edge=1; Defines the edge of the leading signal, 1 means rising
edge and 0 means falling edge (used only for logical
relationship)

parameter logic_op = 0; Defines if the assertions involve logical relationship, 0

indicates no, lindicates yes

parameter timing = 1; Defines if the assertions involve temporal relationship,
0 indicates no, 1 indicates yes

parameter min_time = 2; Defines timing information, maximum time should be
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Parameter Functionality

parameter max_time = 2; greater than the minimum time, minimum time cannot
be zero, maximum time should be bounded

parameter timing_level = 2'b10; Defines levels/edges of thesignals, “10” means HL
for level and RF for edge

parameter o_|_implication = 0; Parameter to indicate overlapping implication with

level sensitive signals, 0 means no, 1 is yes
parameter o_e_implication = 0; Parameter to indicate overlapping implication with
edge sensitive signals
parameter non_o_implication=1;  Parameter to indicate non-overlapping implication

parameter rpt_me = 0 Parameter to indicate repetitions are involved

parameter rpt_edge = 2'b00; Parameter defining the levels/edges of signals

parameter start_wait = 2; Paramter to define the wait period before repetition in
“repeat after”

parameter repetition = 3; Parameter to define number of repetitions. Repetition
value has to be greater than 1

parameter c_mpt = 0; Parameter indicating the repeat after test

parameter ¢_rpt_until = 03 Parameter indicating the repeat until test

By setting the right parameters, a user can generate stimulus for a
specific relationship.

o If the parameter “logic_op” is set to 1 and the other parameters
are set to 0, then the ATB will generate stimulus for “logical
relationship” between two level sensitive signals.

o If the parameter “timing” is set to 1 and all other parameters are
set to 0, then the ATB will generate stimulus for “timing
relationship” between two signals. A user can specify whether he
wants a fixed time or a variable time relation by setting the
values of the parameters “min_time” and “max_time.” If the user
sets the “sig_edge” parameter to 1, then the signals will be
treated as edge sensitive.

A sample SVA listing file used for the verification of SVA involving two
signals is shown below.

module sig sva (a, b, clk):

// include the parameter definitions
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“include "config.v"

input logic a, b, clk;

// List definitions of all properties under test
// code to selectively include assertions

always@(posedge clk)
begin

// logical relationship between two level
// sensitive signals

if(logic_op == 1 && timing == 0 && sig edge == 0)
begin

a_l_hh : assert property(p_1_hh);

a_1l hl : assert property(p 1 hl);

a_l_lh : assert property(p 1_1h);

a_l 1l : assert property(p_1_11);

end

// logical relationship between two edge
// sensitive signals FF,FR

if(logic_op == 1 && timing == 0 && sig edge == 1
&& sigl edge == 0)
begin

a2_ff: assert property(p2 ff);
a2_fr: assert property(p2 fr);
end

// logical relationship between 2 edge sensitive
// signals RF,RR

if(logic_op == 1 && timing == 0 && sig edge == 1
&& sigl_edge == 1)
begin

a2_rf: assert property(p2_rf):
a2_rf: assert property(p2 rr);
end

// timing relationship between 2 level sensitive
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// signals
if(logic_op == 0 && timing == 1 && sig edge == 0
&& non_o_implication == 0)
begin
if (min_time == max_time)
begin
if (timing_level == 2'bl1l)
a3_hh: assert property(p3_hh):;
if (timing_level == 2'b10)
a3_hl: assert property(p3 hl);
if (timing_level == 2'b01)
a3_lh: assert property(p3_1lh):;
if (timing level == 2'b00)
a3_11: assert property{(p3_1l1);
end
if(min time != max_time)
begin
if (timing level == 2'bll)
a3_wl_hh: assert property(p3_wl hh);
if (timing level == 2'b10)
a3_w2_hl: assert property(p3_w2 hl);
if (timing_level == 2'b01)
a3_w3_lh: assert property(p3_w3 1lh);
if (timing_level == 2'b00)
a3_w4_11: assert property(p3 w4 11);
end
end

// logical relationship between 2 level sensitive
// signals with overlapping implication

if((logic_op == || o 1 implication == 1) &&
timing == 0 && sig_edge == 0)
begin

a4_oli_hh: assert property(p4_oli_hh);
a4_oli_hl: assert property(p4_oli hl);
a4_oli_lh: assert property(p4_oli 1h);
a4_oli_1l: assert property(p4_oli_11);
end

// logical relationship between 2 edge sensitive
// signals with overlapping implication FF, FR
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if((logic_op == 1 || o_e implication == 1) &&
timing == 0 && sig_edge == 1 && sigl edge == 0)
begin

a4_oei_11: assert property(p4_oei 11);
a4_ocei_lh: assert property(p4 oei 1h);
end

// logical relationship between 2 edge sensitive
// signals with overlapping implication RF, RR

if((logic_op == 1 || o_e_implication == 1) &&
timing == 0 && sig_edge == 1 && sigl edge == 1)
begin

a4_oei_hl: assert property(p4_oei hl);
a4_oei_hh: assert property(p4_oei_hh);
end

if(logic_op == 0 && timing == 1 && sig_edge == 1
&& non_o_implication == 0)

begin

if(min_time == max_time)

begin

a4 f rr: assexrt property(p4_f rr);
a4_f ff: assert property(p4_f ff});
a4_f rf: assert property(p4_f rf);
a4 f fr: assert property(p4_f fr);
end

if (min_time != max time)

begin

a4 _w_rr: assert property(p4_w_rr);
a4 w _ff: assert property(p4 w ff);
a4 _w_rf: assert property(p4_w_rf):;
a4 _w_fr: assert property(p4_w_fr):
end

end

// timinhg relation between 2 level sensitive
// signals with non-overlapping implication

if(logic_op == 0 && timing == 1 && sig_edge == 0
&& non_o_implication == 1)
begin

if (min_time == max_time)



7. CHECKING THE CHECKER 317

begin
if(timing_level == 2'bll)

a5_f hh: assert property(p5 f hh);
if(timing level == 2'b10)

a5_f hl: assert property(p5 f hl);
if(timing level == 2'b01)

a5_f lh: assert property(p5_f 1lh):
if (timing level == 2'b00)

a5_f 11: assert property(p5_ f 11};
end
if (min_time != max_time)
begin
if(timing level == 2'bll)

a5_w_hh: assert property(p5_w_hh);
if(timing level == 2'b1l0)

a5_w_hl: assert property(p5_w_hl);
if(timing level == 2'b01)

a5_w_lh: assert property(p5_w_1lh);
if(timing level == 2'b00)

a5_w_11: assert property(p5 w 11);
end
end

// timing relation between 2 edge sensitive
// signals with non-overlapping implication

if(logic_op == 0 && timing == 1 && sig _edge == 1
&& non_o_implication == 1)

begin

if(min_time == max_time)

begin

a6_f rr: assert property(p6_£f rr);
a6_f ff: assert property(p6_£f ff);
a6_f rf: assert property(p6_f_ rf);
a6_f fr: assert property(p6_£f fr);
end

if(min_time != max_time)

begin

a6_w_rr: assert property(p6_w_rr);
a6_w_ff: assert property(p6_w_£ff):;
a6_w_rf: assert property(p6_w_rf);
a6_w_fr: assert property(p6 w_fr);
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end
end

// repetition relationship

if (rpt_me == 1 && c_rpt == 1 && rpt_edge ==
2'bl1)

begin

a7_c_rpt_rh: assert property(p7_c_rpt_rh):
a7_cu_rpt_rh: assert property(p7 cu rpt_rh);
end

if(rpt_me == 1 && c_rpt == 1 && rpt_edge ==
2'b10)

begin

a7_c_rpt_rl: assert property(p7_c_rpt_rl);
a7_cu_rpt_rl: assert property(p7_cu rpt_rl);
end

if (rpt_me == 1 && c_rpt == 1 && rpt edge ==
2'b01)

begin

a7_c_rpt_fh: assert property(p7_c_rpt_fh):
a7_cu_rpt_fh: assert property(p7 cu_rpt_fh)
end

~

if(rpt_me == 1 && c_xrpt == 1 && rpt_edge ==
2'b00)

begin

a7_c_rpt_fl: assert property(p7_c _rpt_fl):

a7_cu_rpt fl: assert property(p7_cu_rpt_ fl)
end

end

~

// Config Parameters illegal wvalues. If
// logical op is asserted then timing cannot be
// asserted

property config checkl;
@ (posedge clk)
(logic_op == 1) |->
(timing == 0);
endproperty
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// only one of the implication operators can be
// asserted at any time

property config check2;
@(posedge clk)
$onehot0 ({0 1 implication,
o_e_implication, non_o_implication});
endproperty

// min_time should be atleast 1

property config check3;
@(posedge clk)
(timing == 1) |-> (min_time >= 1);
endproperty

// repetition should be greater that one

property config checks4;
@(posedge clk)
((c_rpt == 1) && (rpt_me == 1)) |->
(repetition > 1);
endproperty

a_checkl: assert property(config checkl);
a_check2: assert property(config check2);
a_check3: assert property(config check3);
a_check4: assert property(config check4);

endmodule

The ATB gets executed based on the parameter configuration. A sample
ATB used for the verification of SVA involving two signals is shown below.

module sig sva tb;
logic a,b;

logic clk;

logic [1:0} rpt_wait;
logic [1:0] stop_wait;

“include T"config.v"

integer 1i,3;
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logic [1:0] logical op reg;

initial

begin

clk = 1'b0; a=1'b0; b=1'b0;
logical op reg = 2'b00;

//***********************************************
// case 1

// logical operation, overlapping implication

// level sensitive signals
//***********************************************

if((logic_op == 1 || o_1_ implication == 1) &&
timing == 0 && sig edge == 0)

begin

for (i=0; i<4; i++)

begin

a <= logical op regl[0];
b <= logical op regll];
repeat (1) @(posedge clk);
logical_op_reg++;

end

end

//***********************************************
// case 2

// logical operation, overlapping implication

// edge sensitive signals
//***********************************************

if((logic_op == 1 || o_e implication == 1) &&
timing == 0 && sig edge == 1)
begin

if (sigl _edge == 0) // £f, fr
begin
for(i=0; i<8; di++)
begin
a <= logical op reglo0];
b <= logical op reglll]:
repeat (1) @(posedge clk);
logical op_ reg++;
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end
end

if(sigl edge == 1) // rr, rf

begin

for (i=0; 1<8; i1++)

begin
a <= !logical op_regl0];
b <= llogical_op_reglil];
repeat (1) @(posedge clk);
logical op reg++;

end

end

end

//***********************************************

// case 3

// timing relation between 2 signals
//***********************************************

if(logic_op == 0 && timing == 1)
begin

if(timing level == 2'bll) begin
a = 1'b0; b=1'bo0;
end

if(timing_level== 2'b00) begin
a = 1'bl; b=1'bl;
end

if(timing level == 2'b01l) begin
a = 1'bl; b=1'b0;
end

if(timing level == 2'bl0) begin
a = 1'b0; b=1'bl;
end
for(i=(min_time-1); i<(max_time+3); i++)
begin
repeat (1) @(posedge clk);
a <= ~aj
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1if(i == 0)

begin
b <= ~b;
repeat(l) @(posedge clk);
a <= ~a; b <= ~b;

end
else
begin
repeat (1) @(posedge clk);
a<= ~aj;
repeat((i-1)) @(posedge clk);
b<= ~b;
repeat (1) @{posedge clk);
b<= ~b;
end
end
end

//***********************************************

// case 4
// repetitions
//***********************************************

if(rpt me == 1)

begin

if (rpt _edge == 2'bll) begin
a = 1'b0; b=1'b0;

end

if (rpt _edge == 2'b00) begin
a = 1'bl; b=1'bl;

end

if (rpt_edge == 2'b01l) begin
a = 1'bl; b=1'bo0;

end

if (rpt_edge == 2'b1l0) begin
a = 1'b0; b=1'bl;

end

if(c_rpt == 1)
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begin
for (i=(repetition-1); i< (repetition+3); i++)
begin

repeat (1) @(posedge clk);

a <= ~aj;
repeat (start_wait) @(posedge clk);
b <= ~b;

// consecutive repeat condition

repeat((i)) @(posedge clk);
b <= ~b;
stop_wait <= $random() % 4;
repeat (stop _wait[0]) @(posedge clk);
a <= ~aj;
end
end
end

repeat(2) @(posedge clk);
$finish();

end

initial
forever clk = #25 ~clk;

endmodule
bind sig_sva_tb sig sva il (a, b, clk);

Note that the configuration file is included into the ATB and the SVA
listing file is bound to the ATB module.

7.3 ATB example for a PCI Checker

In this section, we take a complex SVA checker and show how to verify
its functionality based on the concepts discussed in Section 7.2. Following
1s a checker discussed in Chapter 6.

“Target latency for the completion of the first data phase is 16 cycles
from the assertion of the signal framen”
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sequence s_tchk9a;
@ (posedge clk)
(!irdyn && !trdyn);
endsequence

sequence s_tchk9b;
@ (posedge clk)
(tirdyn && !stopn);
endsequence

sequence s_tchk9 fast;

@ (posedge clk)

$fell (framen) ##1 $fell (devseln);

endsequence

property p tchk9 fast;

@ (posedge clk)

s_tchk9_fast |->

(!framen && !devseln) throughout

(##[1:15] (s_tchk9a.ended || s_tchk9b.ended));
endproperty

a_tchkS fast: assert property(p_tchk9 fast);
c_tchk9 _fast: cover property(p tchk9_ fast);

The property p_tchk9 fast involves complex logical relationship and
temporal relationship. The property becomes active when a valid start
coudition happens (s_tchk9_fast). Once the antecedent matches, the property
can succeed in two different ways. Either s_tchk9a or s_tchk9b should match
within 1 to 15 cycles, assuming the two signals that helped the antecedent
match remain asserted throughout the evaluation.

To verify this check exhaustively, the following should be done:

1. All possible logical relationships between the signals “irdyn,”
“trdyn,” “devseln” and “stopn” should be tested.

2. All possible temporal relationships between the antecedent and the
consequent should be tested.

Based on the theory from Section 7.2, the possible logical combination
for the four signals is 16, as shown in Table 7-2. Upon a successful match of
the antecedent, any one of the success condition shown in Table 7-2 should
occur within 1 to 15 clock cycles. By looping the checker from “(min-1)” to
“(max+1),” which is 0 to 16, one can simulate all possible successes for all
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possible delay conditions and at least one error condition. While looping in a
specific delay value, all 16 possible logical relationships should be executed.
Hence, there are 16 possible time slots and 16 possible logical conditions,
leading to 256 possible scenarios. The check will pass on three conditions in
each of the delay values starting from 1 to 15 and hence, there should be 45
real successes for this check. In other words, this check can succeed in 45
different conditions. This metric can be cross checked by writing cover
statements for the property under validation.

Table 7-2. Logical conditions for PCI check

irdyn trdyn devseln stopn Status

0 0 0 0 Success (s_tchk9a && s_tchk9b)
0 0 0 1 Success (s_tchk9a)
0 0 1 0 Failure

0 0 1 1 Failure

0 1 0 0 Success (s_tchk9b)
0 1 0 1 Failure

0 1 1 0 Failure

0 1 1 1 Failure

1 0 0 0 Failure

1 0 0 1 Failure

1 0 1 0 Failure

1 0 1 1 Failure

1 1 0 0 Failure

1 1 Y 1 Failure

1 1 1 0 Failure

1 1 1 1 Failure

A sample Verilog code that generates stimulus to satisfy these 256
different scenarios is shown below.

module ctc_complex;

logic irdyn, trdyn, devseln, stopn, framen;
integer i, j;

logic clk;

logic [3:0] test expr;

assign irdyn = test exprl([3];
assign trdyn = test_exprl[2];
assign devseln = test expr[l]:
assign stopn = test_expr[0]:
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initial begin
clk = 1'b0; test expr = 4'dl5;
repeat(2) @(posedge clk);

for(i=1; i<17; i++) // timing loop
begin
for(j=0; j<16; j++) // logical loop
begin
framen = 1'b0;
repeat (1) @(posedge clk);
test_expr = 4'bl1101;
repeat (i) @(posedge clk);
test _expr = j;
repeat (1) @(posedge clk):;
framen = 1'bl;
repeat (1) @(posedge clk);
test _expr = 4'blll1l;
repeat(l) @(posedge clk);
end
end

repeat (2) @(posedge clk);
$finish;
end

initial forever clk = #25 ~clk;

endmodule
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trdyn
devanln
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-
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stopn
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Figure 7-13. PCI Checker verification

Note that the timing constraint is used as the outer loop and the logical
constraint as the inner loop. The simulation of this test code on the checker
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should produce 211 failures and 45 successes. This guarantees that the
checker responds correctly for all possible input conditions. A sample
waveform from this test is shown in Figure 7-13.

7.4 Summary for checking the checker

e The possible number of relationships between two signals can
grow exponentially within the SVA domain.

e By exploring just three of these relationships (logic, timing and
repetition) between 2 signals, 56 possible assertion statements
were written. As the number of signals involved in an SVA
definition increases, the possible assertion statements will
increase exponentially.

e It is critical to have an automated way to validate these
assertions. With basic Verilog language we were able to create
some very effective stimulus generation schemes that tested the
assertions thoroughly.

e The same stimulus generation methodology was applied on a real
life PCI checker to verify its correctness.

e As the assertions get more complex, the advanced features of
constrained random testbenches can be used effectively to check
these assertions. Self checking mechanisms can be used to
analyze the results of the assertion validation.

o While there is no automated way of checking the checker yet, a
user can still verify them like any other design module using
testbenches.

e  Without a “checking the checker” methodology, a user will not
know if the design is working or failing, or if the checker was
written incorrectly.

o This process demands some time investment in the beginning of
verification process, but can be a huge time saver in the latter
part of verification.
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